Maier

DAS
GROSSE

ST.BASIC

Michael Maier

Das grofie ST-BASIC-Buch

DATA BECKER

1. Auflage 1988
ISBN 3-89011-283-8
Copyright © 1988

DATA BECKER GmbH
Merowingerstr. 30
4000 Duisseldorf

Text verarbeitet mit Word 4.0, Microsoft
Ausgedruckt mit Hewlett Packard LaserJet I
Druck und Verarbeitung Graf und Piligge, Disseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in irgendeiner Form (Druck, Foto-
kopie oder einem anderen Verfahren) ohne schriftliche Genehmigung der DATA
BECKER GmbH reproduziert oder unter Verwendung elektronischer Systeme verarbei-
tet, vervielfaltigt oder verbreitet werden.

Wichtiger Hinweis:

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren und Pro-
gramme werden ohne Ricksicht auf die Patentlage mitgeteilt. Sie sind aus-
schlieBlich fur Amateur- und Lehrzwecke bestimmt und diirfen nicht gewerb-
lich genutzt werden.

Alle Schaltungen, technischen Angaben und Programme in diesem Buch
wurden von dem Autoren mit groBter Sorgfalt erarbeitet bzw. zusammenge-
stellt und unter Einschaltung wirksamer KontrollmaBnahmen reproduziert.
Trotzdem sind Fehler nicht ganz auszuschlieBen. DATA BECKER sieht sich
deshalb gezwungen, darauf hinzuweisen, daB weder eine Garantie noch die
juristische Verantwortung oder irgendeine Haftung fiir Folgen, die auf fehler-
hafte Angaben zuriickgehen, Gibernommen werden kann. Fiir die Mitteilung
eventueller Fehler ist der Autor jederzeit dankbar.

Fiir Birgit, Michaela und Eva

Auf ein Wort

Ein Buch iiber BASIC zu schreiben, das wire mir, einem einge-
fleischten C-Programmierer, der sich auch - wenn es unbedingt
sein muB - in die tieferen Sphiren der Assemblerprogrammie-
rung vorwagt, vor gar nicht allzu langer Zeit nicht einmal im
Traum eingefallen. -

Zu tief mir saBl noch der Schreck meiner ersten Begegnung mit
dem ST-BASIC in den Knochen, denn schon die einfachsten
Befehle bescherten mir den GenuB3 zahlreicher Bombchen auf
dem Monitor. Um ehrlich zu sein, ich habe meinen Computer
nie wieder mit diesem BASIC belistigt.

Abhilfe von diesem MifBstand erhoffte sich die ST-Fan-Ge-
meinde (ich nicht mehr ...) vom englischen Softwarehaus Meta-
comco, das einen neuen BASIC-Interpreter entwickeln sollte. Als
dieser dann mit einiger Verzdgerung erschien, hatte man zwar
auf Fehlerfreiheit geachtet, doch Geschwindigkeit schien auch
fur die Programmierer von Metacomco ein Fremdwort zu sein.
Nein, auch dieses BASIC war - trotz seines konkurrenzlosen
Preises - nicht das Gelbe vom Ei. “

Jetzt, drei Jahre nachdem der ST der staunenden Fachwelt vor-
gestellt wurde, unternimmt Atari einen dritten Anlauf in Sachen
ST-BASIC. Geriichte dariiber kursierten schon linger in ST-
Kreisen, unklar war jedoch, fiir welchen Interpreter man sich
bei Atari entscheiden wiirde. Die Geriichtekiiche glaubte zu
wissen, daB3 es sich dabei nur um Omikron.- oder GfA-BASIC
handeln konnte, zwei Interpreter deutscher Produktion, die be-
weisen, daB BASIC keine lahme, unstrukturierte Programmier-
sprache aus grauer Vorzeit sein mulf.

Die Wiirfel fielen zugunsten des Omikron.BASIC, das sich in
seiner neuen Version 3.00 jetzt ST-BASIC nennen darf. Mit
diesem Schritt hat Atari ein dunkles Kapitel in der Geschichte
des ST zugeschlagen. Vorbei sind die Zeiten, da BASIC-Pro-

grammierer auf die teueren Interpreter anderer Firmen zuriick-
greifen mufiten, nur weil das mitgelieferte BASIC einfach nicht
zu gebrauchen war.

Doch mit den wachsenden Mdgglichkeiten dieser méichtigen Pro-
grammiersprache ist es bestimmt nicht leichter geworden, gute
Programme zu schreiben. Man mufl dazu nur nicht mehr auf
eine Compilersprache zuriickgreifen, sondern kann dies ab sofort
auch in BASIC erledigen. Geblieben ist als unabdingbare Vor-
aussetzung neben dem Beherrschen der verwendeten Program-
miersprache das nétige Wissen um die Interna des Computers.

Und genau dies ist der springende Punkt. BASIC, verschrien als
kinderleicht zu erlernende Programmiersprache, die hochstens
blutige Anfinger hinter dem Ofen hervorzulocken vermag, ver-
schrien, ermoglicht plétzlich die Erstellung professioneller Soft-
ware. Der Preis, den man fiir diese Errungenschaft zahlen muB,
ist der Verlust jener Einfachheit, die BASIC einst zum Siegeszug
verholfen hat. Trotz alledem ist es aber immer noch leichter, ein
professionelles Programm in BASIC zu entwickeln als in einer
Compilersprache oder gar in Assembler.

Dieses Buch richtet sich deshalb an alle, die etwas tiefer in die
Materie einsteigen mochten, um die fantastischen Moglichkeiten,
mit denen das neue ST-BASIC aufwarten kann, voll auszukosten.
Ich wiinsche Thnen viel Spafl bei der Lektiire und der Umset-
zung des neu erworbenen Wissens in eigene Projekte!

Inhaltsverzeichnis

1.

S
wn A WN -

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8

Der Editorcoovvviiiiiiiiiiiierrcceeeeeeceeeeceeeneecreenn s 15
ST-BASIC 1adencccceevvevviiiieiriiriciriiciereresieeeesesseesneens 15
Der Bildschirm-Editorcoooveevevreeerreceeiinrenieeeeseesenns 16
Der Full-Screen-Editorccccvceeeeeeeeeecininnneeeeeeenennes 20
Der Fullscreen-Editor des Omikron.BASIC 32
ST-Omikron.BASIC verlassenccccceeeveiiieiiiceneeneennn, 38
ST-BASIC GrundkuUrsSccccoeeeeririiieiiiiiieinieiiieeseeeeeenennns 39
Ausgabe auf dem Monitor mit PRINT 39
Variablentypen in ST-BASICccoovivieerriiiiiieceeecerenn. 42
Das erste Programmccoceeeeeiiiveiieeiienieniienneeeeeeneeneens 49
Programme speichern, laden und l6schen 55
Wie sag ich’s dem Computer?cccoeeeevvvnveeeerersecnnnne 58
Mathematische Funktionencceeceeeeeeeeeeeceenececennn. 61
Strings und Stringmanipulationcccceveeeeeeiieeenennns 67
Variablenfeldercccocoeeieveiiiieiiereeeieeccieeeee e s eeeeceens 90
Programmierhilfenccccoevvvveiieeeeeeeeeiieiieeeeeeeeeenans 92
Strukturierte Programmi€rungccccceeeevvveeeereeecennnne 99
Alles eine Frage der Routineccccoecevvviveviineneiinnnnnes 121
READ et e et e s sevae s s eeane s s eaaan s eeannnnas 140
BASIC-AIIETIEI .oovvviviiiiiiiiriereiiiiiriiireereeeeeeeereeeeeneeesenennens 143
Dateiverwaltungcccceeevriineeerinnciiniinnnneeneneeeiinnnneees 181
Dateien auf DiSKetteccceeeevviciieeeriieeciiiinreeeeeeeecenanns 181
Ohne Kanile geht gar nichtsccccoveeveievvieeeeeeeeeeennns 184
Noch ein Print, aber mit Write geht’s auch 186
Sequentielle Dateien €inlesencocceeeevvevvevvveniieeeerenenns 188
FileS KOPIEIEN ...uuveeeeinrenrnnennnenaeseessennnnenssnnensnnnnnsannes 191
Die File-Selector-BoXccccieevvueeeeecrvereeeniuveeenssnneeennnns 195
Fehler abfangenccccoovviiieiiiiiiiiiiniiiiieeieniieecineeneeeeenns 204

BacKup-Dateienccceeeevereennnunnrnrerenesnnnnnnnnnenensnnnsnnennnns 207

3.9

3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53
54

6.1
6.2
6.3
6.4
6.5
6.6

Wir sorgen fiir Ordnung auf der Diskette 211

Relative Dateiencccccceeeriirieeeeiveeeseirereesesneeessseeneenns 213
Minidatei - diesmal relativcccccocevrceeecrinnenne e 217
Warum das Rad noch einmal erfinden? 230
Schwarz auf Weil - Druckerausgabecccccecuueennn. 236
Mehrzeilige Suchvorgaben mit OR mit AND 240
Das Betriebssystem deS Atari ST coveeeeeeeeeeeeeeeeen, 241
Systemvariablenccccccvviiiiieeiiiiirreeeee e e 241
TOS, GEMDOS, BIOS und XBIOSccccccccvvverevrennnn. 246
GEMDOS ...ttt ceetrresectreeeceate e s serae s s s eanaassnen 248
Das BIOSiiicieicccereececree e cetree s eertee e e e e e erraeesenen 257
Das XBIOS ...t e e e e 260
Betriebssystemprogrammierungcccceeeeeeevveeneeeennn. 270
Grafikprogrammierungc.ccccceeeevveeieiineceesvnneeesennne 279
Einfache Grafikbefehleccccoovvvevieriecicieencciieeennne 279
123 10 1123 5 O UPRURR 283
Bildschirm ladenccccoeeieeeieiiiieeieceeeececeeeesseveeeseenns 285
Objekte verschieben und drehenccccuvvvvveeeennn... 287
GEM ..ottt st s e s nae s an e e s st 291
Arbeiten mit dem RCSooeurvveeioveeeeeeeensseeensssen 292
GEM-Programmierung unter ST-BASIC 301
SChIEDErEBIEr ...vveiiieiiieiieiireeeriteeeeeirrreeeereeeseereresananns 332
Pull-Down-Meniiscccceiiiiiiiiiiiiiiicccccccccccececccceea, 333
Eine eigene File-Selector-BoXcccecevervveeeceveenennen. 344
FensterteChnikcccccceeeeeiiieeieceeeeeeieeeeecneeeeeceeeeseennes 357

MUltitaskingcccccoiiiiiieeeeeeeeecceree e 367

8. Der Compileroeeeeeeeieiveeeeeieneiiiiiiiieeeeiineeeseeiseeeeseeeee 371

8.1 Die Bedienung des Compilerscccccceeeeecerieieeeieeeienens 372
8.2 Compiler-StEUETWOTITEccoeeerererrrrrunnieeereeereerseiieeeseseeeees 373
8.3 BASIC-Programme auf dem Compilerccceeveennee 375
8.4 Programme Optimierenccccceeeerrivivuneeneeeesessesuenens 377
8.5 Fehlermeldungen des Compilerscccccceveeeeirieccunenns 378
8.6 Verarbeitungstypen der Funktionenccccevveeeeeennes 379
8.7 Hilfsprogramme auf der Compilerdiskette 380
7Y 11 17-1 1T P PP 383
Anhang A: ASCII-Tabelleccocorrreriiiirciinereieiiinnineiiecenneens 383
Anhang B: Scancodes des Atari ST ...cccoeevreeivvecieieiiiicieieecreennn. 385
Anhang C: Verzeichnis aller VT-52-Sequenzen 386
Anhang D: Fehlermeldungencccoooveeiviieiiiiceiiiricceieeeceeeennns 387
Anhang E: TOS Fehlermeldungenccocccceveeeeeneniiienneeeecnenns 393
Anhang F: GfA-BASIC-Programme umschreiben 394

—— Der Editor 15

1. Der Editor

Es ist nicht moglich, ein Programm zu schreiben, ohne das
Handwerkszeug zu beherrschen, das man dafiir bendtigt. Im
Falle des ST- und Omikron.BASIC sind dieses Handwerkszeug
zwei Editoren, mit deren Hilfe die Befehle eingegeben oder gar
ganze Programme erstellt, abgespeichert, verindert und wieder
geladen werden kénnen. Deshalb ist ihnen - ehe wir zu gréferen
Taten schreiten - das erste Kapitel in diesem Buch gewidmet.

Leider ist es nicht moglich eine komplette Beschreibung aller
Funktionen zu liefern, ohne dabei auf Fachausdriicke zuriickzu-
greifen. Lesen Sie sich das folgende Kapitel zunichst einmal in
Ruhe durch. Alle Funktionen, die fiir den Anfang wichtig sind,
wie z.B. das Laden des ST-BASIC, sind so einfach wie nur ir-
gendwie moglich erklirt. Und die iibrigen Dinge, die kompliziert
erscheinen, werden an spiterer Stelle in diesem Buch unter Ga-
rantie noch einmal aufgegriffen.

Im iibrigen empfehle ich Ihnen, dieses Kapiel noch einmal nach
der Lektiire des Buches zu lesen. Spitestens dann werden Sie alle
Funktionen verstehen!

1.1 ST-BASIC laden

Ehe mit dem Editor gearbeitet werden kann, muf} zunichst ein-
mal das BASIC von Diskette geladen werden. Legen Sie dazu die
ST- bzw. Omikron.BASIC-Diskette in das Laufwerk, und klic-
ken Sie zweimal kurz hintereinander mit der linken Maustaste
auf das Symbol Laufwerk A. Jetzt 6ffnet sich ein Fenster, in
dem alle auf der Diskette enthaltenen Dateien angezeigt werden.

Setzen Sie nun den Mauspfeil auf OM_BASIC, und starten den
Ladevorgang durch einen erneuten Doppelklick mit der linken
Maustaste. Sobald sich das Programm im Speicher befindet, mel-
det sich der BASIC-Interpreter mit dem Bildschirm-Editor.

16 Das grole ST-BASIC-Buch ——

Die folgenden Erklirungen beziehen sich auf den Editor des
neuen ST-BASIC (Omikron.BASIC 3.00). Damit aber auch alle
anderen, die mit einer ilteren Version (kleiner als 3.00) arbeiten
miissen, weiterlesen kénnen, ist dem Full-Screen-Editor der al-
teren Versionen ein eigenes Kapitel gewidmet. Dieses Kapitel ist
ibrigens auch fiir alle ST-BASIC-Benutzer relevant, da hier die
zusitzlichen Moglichkeiten der Editor- Steuerung iiber die Funk-
tionstasten beschrieben werden.

1.2 Der Bildschirm-Editor

Nachdem Omikron.BASIC geladen wurde, erscheint in der linken
oberen Ecke die Startmeldung mit der Versionsnummer. Ein
paar Zeilen darunter finden Sie einen blinkenden Punkt, den
Cursor. Mit Hilfe der Pfeiltasten, die sich zwischen dem Haupt-
block der Tastatur und dem seperaten Zehnerblock befinden,
kann der Cursor in alle vier Richtungen bewegt werden.

ik OMIKRON.BASIC V3.8 © OMIKRON. Softuare %
= Press [Helpl to enter editor -
%“288142 bytes free.

Abb. 1.1: Der Bildschirm-Editor nach dem Laden

Eine Betitigung der Taste <Home> setzt den Cursor in die linke
obere Ecke des Bildschirms, wihrend ein gleichzeitiges Driicken
der Tasten <Control> und <Home> den Bildschirm l&scht, und
den Cursor in die linke obere Bildschirmecke setzt.

—— Der Editor 17

Zeichen l6schen

<Backspace> 16scht das Zeichen, das sich links des Cursors be-
findet, indem der Cursor um eine Position nach links gefahren
wird. Der Rest der Zeile bleibt in seiner Position unverindert.
Mit <Delete> kann ebenfalls ein Zeichen vom Bildschirm getilgt
werden. <Delete> sorgt jedoch dafiir, daBl der gesamte Zeilenrest
hinter dem Cursor um eine Position nach links mitwandert. Ein
Beispiel verdeutlicht dies wohl am schnellsten:

Das groBe ST-BASIC*Buch

Die Cursorposition wird durch ein Sternchen (*) markiert.
<Backspace> fiihrt nun zu:

Das groBe ST-Basi* Buch

<Delete> dagegen zieht das Wort 'Buch’ um eine Position nach
links, und verhindert somit das Entstehen von Leerzeichen:

Das groBe ST-Basi*Buch

Zeichen einfiigen

Mochten Sie jedoch ein Zeichen erginzen, koénnen Sie mit
<Insert> an der aktuellen Cursorposition ein Leerzeichen einfii-
gen. Der Cursor behilt dabei seine Position bei, der Zeilenrest
rechts des Cursors wandert um eine Position weiter:

Das gro Be ST-BASIC Buch

Befindet sich der Cursor iiber dem ‘e’, wihrend <Insert> ge-
driickt wird, erscheint an dieser Position ein Leerzeichen:

Das gro e ST-BASIC Buch

Jetzt kann der fehlende Buchstabe eingesetzt werden.

18 Das groBe ST-BASIC-Buch —

Zeile einfiigen und léschen

Mochten Sie nicht nur einen Buchstaben einsetzen oder 10schen,
sondern gleich ganze Zeilen, miissen Sie folgende Tasten drii-
ken:

<Control> <Cursor hoch>
Loscht die Zeile, in der sich der Cursor
gerade befindet.

<Control> <Cursor runter>
Fiigt eine Zeile ein.

<Control> <Delete> Loscht den Zeilenrest hinter dem Cursor.

Der Insert-Modus

Normalerweise werden Zeichen, die sich unter der aktuellen
Cursorposition befinden, einfach iiberschrieben. Dies ist jedoch
nicht immer wiinschenswert. Moéchten Sie ein Zeichen an der
Cursorposition eingefiigen, ohne daB das darunterliegende Zei-
chen iiberschrieben wird, miissen Sie mit

<Control> <Insert> den Insert-Modus einschalten. Eine
nochmalige Betitigung dieser Tastenkom-
bination schaltet den Insert-Modus wie-
der aus. Dieser Modus zieht auch eine
Verinderung der Funktionsweise von
<Backspace> und <Delete> nach sich:

<Backspace> iibernimmt die Funktion, die <Delete> im
Normalmodus besitzt.

<Delete> loscht das Zeichen unter dem Cursor,
und 14Bt den Zeilenrest nachriicken, der
Cursor behilt seine Position jedoch bei
(riickt also nicht nach links!).

—— Der Editor 19

Der VT52-Emulator

Der Monitor des Atari ST ist in gewisser Weise intelligent. Er
versteht nidmlich bestimmte Befehle, wie das Loschen des Bild-
schirms, das Merken der aktuellen Cursorposition, usw. Diese
Befehle werden allesamt mit der Taste <Esc> (Escape) eingelei-
tet, gefolgt von einem (oder mehreren) Buchstaben. Im Anhang
dieses Buches finden Sie eine Auflistung simtlicher Sequenzen
des VT52-Standards. Diese Funktionen koénnen Sie auch im
Bildschirm-Editor nutzen. Driicken Sie dazu einfach zuerst die
Taste <Esc> und anschlieBend den dazugehoérigen Buchstaben,
und sofort wird der Befehl ausgefiihrt.

Link-Zeilen

Auf dem Monitor des Atari kénnen maximal 80 Zeichen in einer
Zeile dargestellt werden. Werden Zeilen eingegeben, die linger
als 80 Zeichen sind, schreibt der Editor einfach in der folgenden
Zeile weiter. Damit auch optisch erkennbar ist, da3 der Inhalt
dieser Zeile nur die Fortsetzung der vorhergehenden Zeile dar-
stellt, erscheint am linken Rand ein senkrechter Strich (|), der im
Fachjargon Pipe genannt wird. Auch bei einer anderweitigen
Ausgabe, die den rechten Rand des Monitors iiberschreiten wiir-
den, wird in der darauffolgenden Zeile weitergeschrieben, die
dann wieder mit einem Pipe-Zeichen beginnt.

Sonstige Tastenkombinationen

<Return> Schreibt die Zeile, in der sich der
Cursor befindet, in den Pro-
grammspeicher, wenn sie mit einer
Zahl beginnt, ansonsten faf3t der
Interpreter den Zeileninhalt als Be-
fehle auf, die sofort ausgefiihrt
werden miissen. Deshalb spricht
man in diesem Fall auch von
Direktmodus.

<Control><Cursor links> Setzt die linke obere Ecke des
Rahmens.

20 Das groBe ST-BASIC-Buch ——

<Control><Cursor rechts> Setzt die rechte untere Ecke des
Rahmens.

Der Rahmen dient dazu, Ausgaben (z.B. iiber PRINT) nicht
mehr auf dem gesamten Bildschirm darstellen zu lassen, sondern
nur in einem bestimmten Bereich, der durch diesen Rahmen be-
grenzt wird. Auch der Cursor kann dann nur noch innerhalb
dieses Rahmens bewegt werden.

<Home><Home> Eine zweimalige Betitigung der
Taste <Home> 16scht den Rahmen
wieder. Ab sofort kann der Cursor
in den gesamten Bereich des Bild-
schirms gesetzt werden.

<Alternate><Control> Loscht den Tastaturpuffer. In die-
sem Puffer speichert ST-BASIC
alle gedriickten Tasten, die nicht
sofort zur Ausfithrung gelangen
konnen (z.B. bei einem Tasten-
druck, wihrend das Programm ar-
beitet).

<Shift><Shift> Werden beide Shift-Tasten des ST
gleichzeitig gedriickt, so wird auf
den Screen (Bilschirm) umgeschal-
tet, der vor der Riickkehr in den
Direktmodus vom Programm be-
nutzt wurde.

1.3 Der Full-Screen-Editor des ST-BASIC (Version 3.00)

Der Full-Screen-Editor dient zur Eingabe Thres Programmtextes,
wihrend der Bildschirm-Editor iiblicherweise nur zur Ausfith-
rung von Kommandos im Direktmodus benutzt wird. Im Ge-
gensatz zum Bildschirm-Editor ist er mit einer ganzen Reihe von
Funktionen ausgestattet, die die komfortable Eingabe eines Pro-

——— Der Editor : 21

grammtextes ermoglichen. So besitzt dieser Editor unter anderem
eine Meniileiste, iiber die simtliche Funktionen mit der Maus
angewihlt werden kOnnen.

Diesen Editor erreichen Sie aus dem Bildschirm-Editor heraus
iiber eine Betitigung der Taste <Help>. Mit <Control> <c> kon-
nen Sie den Editor wieder verlassen. Auch ein Anklicken des
Meniipunktes Quit Edit, den Sie in der Meniileiste unter File
finden, bewirkt ein Verlassen des Full-Screen-Editors.

Die Meniizeile

In der ersten Zeile finden Sie die Meniileiste, die folgende
Meniipunkte beinhaltet: File, Find, Block, Mode, Go und Run.
Um einen Menii-Aufruf abzuwickeln, fihrt man mit dem Maus-
pfeil auf einen dieser Meniinamen. Automatisch rollt dabei das
Menii herunter und gibt seine Funktionen preis, die durch eine
Berithrung mit dem Mauszeiger invertiert werden. Durch Driic-
ken der linken Maustaste wird ein invertierter Eintrag ange-
wihlt.

Die Meniileiste beinhaltet jedoch noch eine weitere Funktion: Es
lassen sich ndmlich auch die einzelnen Punkte der Meniileiste
anklicken. In diesem Fall wird dann die Funktion ausgeldst, die
an erster Stelle innerhalb des entsprechenden Meniipunktes zu
finden ist.

Der Meniipunkt File

Unter diesem Meniipunkt sind simtliche Funktionen zusammen-
gefaflt, die zum Laden und Speichern von Programmen benétigt
werden:

Save **
Speichert das Programm, das sich im Computer befindet, unter
dem Namen, der in die File-Selector-Box eingetragen wird, ab.

22 Das groBe ST-BASIC-Buch

DO_FILE.BARS

FILE FIND BLOCK HODE @M RUN : : SIZ2E: 1594

TO LAST HARK B333FFFFIIIFTIFITIIETITTFFI T334

TO LINE ... BAS X

LINE TO TOP X

: gl 1.80 Datum: 16.09.1988 X

‘% Ein ProBILEITEEES QNEN ST-BASIC BUCH' *
‘% ({20! T0 HARK #2 mbH Diisseldorf

Rttt eessedi TO HARK #3 '**t*t****8!8****!13***!**!**
* TO HARK #4
* SET HARK

[M@ SET HARK OH(Pointer),B8)
LU T SET HARK
LIV ElN: SET HARK &4 $+ CHR$(8), CHR$(8))-1)
GENDOS FIND ERROR Laufuerk ernitteln
Path$= CHR$(65+DriveZ)+":"+Paths+"\"

ENDIF

IF Post$=""" THEN ' ohne Extension kann man schlecht arbeiten
PuthS-PuthS*"* %" Pauschalextension anhiingen

ELSE
Path$=Path$+Post$

ENDIF

PRINT CHR$(27);"f"" Cursor aus=- und Maus einschalten

HOUSEON

FILESELECT (Path$,Name$,Ret)

Abb. 1.2: Der Full-Screen-Editor

Load **
Lidt ein Programm in den Speicher. Der Name muf3 wieder iiber
eine File-Selector-Box eingegeben werden.

Save Block
Speichert einen markierten Block ab.

Load Block

Lidt einen mit Save Block auf Diskette gespeicherten Block
(bzw. einen ASCII-Text) von Diskette und fiigt ihn gemiB den
angegebenen Zeilennummern in ein evtl. schon existierendes
Programm ein.

Directory
Zeigt das Inhaltsverzeichnis der Diskette an.

—— Der Editor 23

New
Loscht ein Programm im Speicher.

Quit Edit
Verlisst den Full-Screen-Editor.

Der Meniipunkt Find

Dieser Meniipunkt enthilt Funktionen, mit deren Hilfe Worter
(Buchstaben) bzw. Tokens innerhalb des Programms gesucht
werden konnen. Bei Find (Suchen) wird zwischen allgemeinen
Suchbegriffen oder Befehlswoértern (Tokens) unterschieden.
Wihrend der Interpreter bei normalen Suchbegriffen die Zei-
chenkette immer dann als gefunden meldet, wenn er sie ir-
gendwo im Programm antrifft - dies kann auch innerhalb von
Worten sein, funktioniert die Suche nach einem Token etwas an-
ders:

Um Speicherplatz zu sparen, legen BASIC-Interpreter ihre Be-
fehle nicht im Klartext (Print), sondern als kurze Befehlscodes
ab. Diese Befehlcodes bezeichnet man als Tokens. Die Suche
nach einem Token klappt folglich nur dann, wenn die gesuchte
Buchstabenkombination in einen Token umgewandelt wurde.
Neben den eigentlichen Befehlen werden auch die Variablenna-
men als Tokens im Programmtext abgelegt, und erst kurz vor der
Ausgabe auf dem Monitor in Klartext gewandelt.

Verwendet man Find Token bei der Suche nach einem Vari-
ablennamen, kann man sicher sein, dafl nur die gewiinschte Va-
riable als gefunden gemeldet wird, nicht aber Variablen, die
diese Buchstabenkombination irgendwo in ihrem Namen tragen.
Moéchten Sie mit Find Token eine Feldvariable ansprechen, koén-
nen Sie folgendes als Suchbegriff eingeben:

Array()
Es wird nach einer Feldvariable mit einem Index gesucht, Ar-

ray(5,9) wiirde folglich nicht gefunden.

24 Das groBe ST-BASIC-Buch ——

Array(,,)
Sucht nach der Feldvariable, die drei Indizes trigt.

Fir Prozedur- und Funktionsdefinitionen sowie fiir Marken
gelten bei der Eingabe des Such-String eigene Regeln:

- Eine Prozedur mufB3 bei der Eingabe des Suchbegriffes vor
dem Namen ein P erhalten: P Zeile() sucht die Definition der
Procedure Zeile mit einem Ubergabeparamter. Tauchen
mehrere gleichnamige Prozeduren auf, die sich nur durch die
Anzahl ihrer Parameter unterscheiden, muf3 ab dem 2. Para-
meter je ein Komma pro Ubergabeparameter angegeben wer-
den: P Zeile(,) sucht nach einer Definition mit 2 Parametern.

- Funktionsdefinitionen muB3 ein FN vorangestellt werden, da-
mit sie via Find Token ermittelt werden kénnen.

- Marken miissen -also solche durch ein dem Namen vorange-
stelltes Minuszeichen kenntlich gemacht werden.

Die Eintrdge in diesem Meniipunkt

Find Next

Setzt die Suche nach einem bereits eingegebenen Suchbegriff
fort. Der Suchbegriff muB3 mit dem nichsten Eintrag eingegeben
werden:

Find...

Gestattet die Eingabe eines Suchbegriffes. Findet der Computer
die entsprechende Buchstabenkombination im Programm, so po-
sitioniert er den Cursor an diese Stelle. Ansonsten ertdnt ein
Glockenton.

List...
Durchsucht den gesamten Text und listet alle Stellen auf, an
denen der Suchbegriff auftaucht.

—— Der Editor 25

Replace all...

Durchsucht das gesamte Programm nach der eingegebenen
Buchstabenkombination. StoBt der Interpreter auf eine solche,
wird sie ohne Riickfrage durch den neuen Text ersetzt.

Query Replace
Sucht einen bestimmten Text, und ersetzt ihn nach einer ent-
sprechenden Riickmeldung durch einen anderen.

Find Token

Sucht nach Befehlswortern (Variablen). Variablen, in denen diese
Buchstabenkombination ebenfalls vorkommt, werden bei der
Suche ignoriert.

List Token
Sucht nach Befehlswortern (Variablen) und invertiert alle Stellen,
an denen das Wort vorkommt.

Rename Token
Ersetzt Befehlsworter

List to Printer
Stellt auf Druckerausgabe um. Alle kiinftigen LIST-Befehle
werden auf dem Drucker ausgegeben.

Find Error
Der Cursor wandert an den Anfang oder das Ende des Wortes,
in dem ein Syntax- oder Type Mismatch Error erkannt wurde.

Der Meniipunkt Block

Unter diesem Meniipunkt sind die Blockoperationen zusammen-
gefaflt, die unter dem Full-Screen-Editor zur Verfiigung stehen.
Ehe mit einem Block gearbeitet werden kann, muf3 dieser erst
einmal definiert werden. Dazu stehen Ihnen zwei Moglichkeiten
offen:

26

Das groBe ST-BASIC-Buch ——

Sie klicken mit der Maus an die Stelle, die die linke obere
Ecke des Blockes bilden soll. Wihrend Sie die Maustaste
festhalten, fahren Sie den Mauszeiger an die Position, an
der der Block enden soll. Lassen Sie nun die Taste los, der
Block ist als solcher definiert.

Setzen Sie den Cursor auf das erste Zeichen, das der Block
enthalten soll, und wihlen den Meniipunkt Mark Block
Start. Somit wire der Blockanfang schon einmal markiert.
Im néichsten Schritt setzen Sie dann den Cursor in die
Zeile, mit der der Block enden soll, und klicken danach
den Meniipunkt Mark Block End in der Meniileiste an.
Damit ist der Block fertig definiert.

Bei der Definition sind zwei Formen von Blocken zu unterschei-

den:

- einzeilige Blocke, die auch Ausschnitte einer Zeile enthalten
koénnen.

- mehrzeilige Blocke, die immer mit dem Anfang der ersten
Zeile beginnen, und dem Ende der letzten Zeile enden.

Die E

Insert

intrige dieses Meniipunktes im einzelnen:

Kopiert einen definierten Block an die aktuelle Cursorposition

Move

Verschiebt einen Block an die neue Cursorposition. Der Block
wird an seiner alten Position geloscht.

Kill

Loscht einen Block unwiderruflich.

Mark

Bl. Start

Die aktuelle Cursorzeile markiert den neuen Blockanfang. Mit
dieser Funktion kann entweder ein neuer Block definiert (um-
stindlich) oder die Blockobergrenze verschoben werden.

—— Der Editor 27

Mark Bl. End
Die aktuelle Cursorzeile wird zum neuen Blockende ernannt.

Save Block *.*
Speichert einen definierten Block im ASCII-Format auf Diskette.

Load Block *.*
L4dt einen Block und fiigt ihn an der Cursorposition ein.

Print Block
Gibt einen Block auf dem Drucker aus.

Hide
Loscht die Blockmarkierungen, ohne den Block selbst zu l6schen.
Seine Grenzen bleiben weiterhin erhalten.

Der Meniipunkt Mode

Dieser Meniipunkt gestattet die Einstellung allgemeiner Punkte,
wie das Einschalten des EinfiigemodusEinfiige- oder Uber-
schreibmodus, das Umschalten zwischen verschiedenen Bild-
schirmen, oder das Aufspalten in zwei Teilbildschirme:

Insert
Schaltet den Einfiigemodus (Hikchen wird dem Eintrag voran-
gestellt) ein und wieder aus.

Switch Screen

St-BASIC verwaltet zwei Teilbildschirme, wenn der Meniipunkt
Split Screen aktiv ist. Mit Switch Screen gelangt man von einem
in den anderen Teilbildschirm. Auch ein Mausklick in den ent-
sprechenden Bildschirmteil bewirkt diesen Effekt.

28 Das groBe ST-BASIC-Buch ——

Split Screen

Teilt den Bildschirm in zwei Teile auf, wobei ein dicker Balken
in der Mitte beide Teile voneinander trennt. Wird dieser Balken
mit der Maus angeklickt, kann die Aufteilung der beiden Bild-
schirmhilften verschoben werden. Mit Switch Screen gelangt
man von einem zum anderen Bildschirmfenster. In beiden Teil-
bereichen wird jedoch das gleiche Programm angezeigt. Eine
Anderung des Programms in einem Bildschirmteil fithrt dadurch
logischerweise auch zu einer Anderung des Programms im an-
deren Teilfenster.

Change Size

Verindert die Buchstabengrofle. Mit dieser Funktion ist es mog-
lich gréBere Programmteile auf den Monitor zu bekommen. Eine
nochmaliges Aktivieren dieses Eintrages fithrt zur Wiederher-
stellung des alten Modus.

Line Numbers

ST-BASIC gestattet die Programmierung mit und ohne Zeilen-
nummern. Dieser Meniipunkt schaltet den gewiinschten Einga-
bemodus ein. Vorsicht! Wird der Editor bei abgeschalteter
Zeilennumerierung verlassen, fithrt der Interpreter (Fehler??!!)
eine Neunumerierung in Einerschritten durch. Vorhandene
Sprungziele bleiben jedoch unverindert!

Show Errors .
Sucht den Programmtext nach Fehlern ab

Save Settings

Speichert folgende Informationen in einer Datei OMI-
KRON.INF, die dann bei einem Neu start des Programms sofort
eingestellt werden:

- Belegung der Funktionstasten
- aktuelle Auflésung

Der Editor

angewihlter Modus (Insert- Uberschreibmodus)
Zeilennumern ein bzw. aus
Variablenart-Einstellungen iiber DEFXXX.

29

LOCh Mo Fl 7
FT3% *x*xxun*x*xn***u*x*x*x*x*x*xmn*xxxtx*n*uxxx*nm
MINIDATR.BAS

Z
.
. autorE M-ghael Maler l}ers on: 1 00 DutumH 15.08.1988
'
'
.

GROSSEN ST-BASIC
[{) 1998 by DﬂTﬁ BECKER GmbH Diisseldorf
RRRRRRRKRRRRRRRR KRR R KRR KRR KRR KKK

1
2
3
4
s
6
?
8

9 MODE "D"

1e DEF FN Screen$(X$>= CHR$(27)+X$

12 Gro=100"' fulls notia emfuch

43 DI Strusses(sro

14 DIN Plzt(Bro) ﬁr‘tt(ﬁr‘o) Tel$(6ro), Geb$(6ro)

16 FehLers$="[31[Diese Funktlon ist Leider! rl\l cht _moglich!!!1lSorryl”

17 Mel$="[1](Diese Datei enthdlt"+ STR$(Grod)+"| tensadtze ! JLOK]
48 Fehler_2¢="[31[Ich kann die Datei! nieht flmlen'][Sorru]

19

%2 REPEAT

22 PRINT @(0,1);"%"%7?8

23 FOR Y%=1 T0 6: PRINT @CY%,1):"x";@CY%,78>; "%": NEXT Y%

%3 PR%"} ggg g)" ";;l;’i?DQTEI Hountmonu"

26 PRINT @(3,28); "mm—mmmmmm e

22 PRINT @¢4.16)° 'Ein Dtmoprorunm aus dem grossen ST-Basic Buch"
28 PRINT 0¢9,285: Name erfassen"

134 MOUSEOFF

135 IF But%=1_THEN

136 Delete(T%) |

137 ENDIF L
ENDIF

UNTIL A$=v2"

140 RETURN

142-Suchen
143 Headers$="XxXXXXxxxxxxxxx Nome suchen RRRRERRRRRRRRRRK"

ey
88

Abb. 1.3: Der Full-Screen-Editor im Split-Modus

Der Meniipunkt GO

Der Meniipunkt GO beinhaltet unter anderem auch das Setzen
und Anspringen von Marken. Eine Marke ist eine Stelle im Pro-
gramm, die spiter auf Wunsch angesprungen werden kann.

To last Mark
Setzt den Cursor an die letze Marke

To Line...
Setzt den Cursor in die betreffende Zeile

30 Das groBe ST-BASIC-Buch —

Line To Top
Scrollt den Bildschirm weiter, bis die aktuelle Cursorzeile in der
ersten Eingabezeile erscheint.

Line to Bottom
Scrollt den Bildschirm zuriick, bis die aktuelle Cursorzeile am
unteren Bildschirmrand angekommen ist.

To Mark #X
Diese vier Befehle dienen dazu, den Cursor an eine bestimmte
Marke zu setzen.

Set Mark #X
Mit diesen vier Befehlen konnen die Marken 1 bis 4 definiert
werden.

Find Error
Durchsucht das Programm nach Fehlern.

Der Meniipunkt RUN

Dieser Meniipunkt gestattet das Starten und Aufrufen von Pro-
grammen:

RUN

Verlif3t den Full-Screen-Editor und startet das Programm, das
sich im Speicher befindet. Der gleiche Effekt kann auch mit
<Control> <R> erzielt werden.

Save & Run
Speichert das Programm auf Diskette ab, ehe es ausgefithrt wird.

Tron & Run
Schaltet TRON (Trace) ein, ehe das Programm gestartet wird.

—— Der Editor 31

Compile

Ruft den Omikron.Compiler Version 3.00 und groBer auf. Be-
sitzen Sie einen Compiler mit einer niedrigeren Versionsnummer,
so mufl das BASIC-Programm zuerst abgespeichert werden!

Save & Compile

Speichert das Programm vor dem Compileraufruf ab. (fiir Ver-
sion kleiner 3.00). Der Editor erwartet den Compiler in Lauf-
werk C , falls ein solches angemeldet ist, ansonsten in Laufwerk
A.

Run *.Bas
Lidt ein (BASIC-)Programm von Diskette und startet es sofort.
Ein Programm das sich bis dato im Speicher befand, wird iiber-
schrieben.

Exec *.Prg

Dieser Meniipunkt 1adt ein beliebiges Programm ein und fiihrt es
aus. Nach dem Programmende befinden Sie sich wieder im ST-
BASIC. Sicherheitshalber sollte ein BASIC-Programm, das sich
noch im Speicher befindet, abgespeichert werden, ehe ein an-
deres Programm aufgerufen wird. (Damit es Thnen nicht so wie
mir ergeht, und das neue Programm, weil es kein Blitter-TOS
vertrigt, nicht mehr verlassen werden kann. Tja, dann ist natiir-
lich das BASIC-Programm im Speicher verloren! Nicht ganz:
Versuchen Sie es in einem solchen Fall mit einem Reset, viel-
leicht haben Sie ja Gliick und ST-BASIC meldet sich wieder).

Accessory
Schaltet auf ein GEM-Menii um, und gestattet somit das Auf—
rufen von gebooteten Accessones

BASIC-Befehle abkiirzen

Folgende Befehle konnen abgekiirzt werden, indem gleichzeitig
die <Alternate>-Taste und der angegebene Buchstabe gedriickt
wird:

32

Abkiirzung fuhrt zu
<Alternate><A> ASC(
<Alternate> BLOAD
<Alternate><C> CONT
<Alternate><D> DATA
<Alternate><E> ELSE
<Alternate><F> FOR
<Alternate><G> GOTO
<Alternate><H> HARDCOPY
<Alternate><I> INPUT
<Alternate><K> KEY
<Alternate><L> LPRINT
<Alternate><M> MID§(
<Alternate><N> NEXT
<Alternate><0> OPEN
<Alternate><P> PRINT
<Alternate><R> RETURN
<Alternate><S> SYSTEM
<Alternate><T> THEN
<Alternate><U> USING
<Alternate><V> VARPTR
<Alternate><W> WHILE
<Alternate><X> MOUSEX
<Alternate><Y> MOUSEY

Das groBe ST-BASIC-Buch ——

Soviel zu den zusitzlichen Méglichkeiten des neuen ST-BASIC.
Die im folgenden Kapitel stehenden Funktionen sind - soweit
nicht anders angegeben - auch fiir Besitzer des neuen ST-BASIC
relevant.

1.4 Der Fullscreen-Editor des Omikron.BASIC

Der Full-Screen-Editor wird bei allen BASIC-Versionen kleiner
3.00 mit dem Befehl EDIT (Return) betreten. Verlassen werden
kann er mit der Tastenkombination <Control> <C>.

Uberschreib- und Einfiigemodus

Auch der Full-Screen-Editor kennt die beiden Modi Einfiigen
und Uberschreiben. Anhand der Cursorform kann man leicht er-
kennen, welcher Modus gerade aktiv ist: Besitzt der Cursor

——— Der Editor 33

niamlich das Aussehen eines senkrechtes Striches, der sich in In-
tervallen zu einem inversen Quadrat ausdeht und anschlieBend
wieder auf einen Strich zusammenschrumpft, ist der Einfiige-
Modus (Insert-Mode) gerade aktiv.

Andernfalls ist der Uberschreib-Modus angewihlt. Dann besitzt
der Cursor die Form eines blinkenden Quadrates. Zwischen bei-
den Modi kann iiber die Tastenkombination <Control><Insert>
hin- und hergeschaltet werden. Bevorzugen Sie das Umschalten
iiber die Meniileiste, setzen Sie den Mauszeiger auf den Menii-
punkt Mode, und klicken in dem darauf herunterrollenden Menii
den Eintrag Insert an. Ein Hikchen, das ab sofort vor diesen
Punkt gesetzt wird, zeigt an, daB3 der Einfiigemodus aktiv ist.

Zeilen einfiigen, 16schen, trennen und verbinden

Es stehen zwei Moglichkeiten zur Verfiigung, um eine Zeile
einzufiigen: <Return> fiigt unter der aktuellen Zeile eine Leer-
zeile ein <F9> fiigt an der aktuellen Zeile eine Leerzeile ein.
Eine Zeile l6schen, geht natiirlich ebenfalls: <Shift> <F9> ent-
fernt die aktuelle Cursorzeile! Um eine Zeile aufzutrennen, mufl
zuerst <Shift> <F6> und anschlieBend <F9> gedriickt werden.
Zwei Zeilen werden miteinander verbunden, wenn <Shift><F6>
und anschlieend <Shift><F9> gedriickt wird.

Weitere Steuerfunktionen

<Tab> Setzt den Cursor an die nichste 8er Posi-
tion.

<Undo> Restauriert den Inhalt einer Zeile, solange
der Cursor die Zeile nocht nicht verlassen
hat.

<Esc> Erzielt den gleichen Effekt wie <Undo>

kann jedoch zusitzlich Funktionen vorzei-
tig beenden (Programm laden,...).

<Home> Setzt den Cursor an den Programmanfang,
bzw. wenn er sich bereits dort befindet, an

34

<Ctrl><Delete>
<Alternate>

Blockoperationen

Das groBe ST-BASIC-Buch ——

das Programmende. Ein zweimaliges Beti-
tigen von <Home> setzt den Cursor stets
an den ProgrammschluB3, wenn er sich
inmitten des Programmtextes befindet.

Loscht den Zeilenrest hinter dem Cursor.

Beendet die Funktion Suchen u. Ersetzen
bzw. bricht die Wiederholfunktion ab.

Um den Blockanfang festzulegen, setzen Sie den Cursor in die
gewiinschte Zeile und driicken zweimal hintereinander die
Funktionstaste <F7>. Der Blockanfang ist definiert. Das Bloc-
kende wird festgelegt, indem Sxe zuerst <F7> und anschlieBend

<Shift><F7> driicken.

<F7><F8>

<F7><Shift><F8>

<F7><F9>

<F7><Shift><F9>

Suchen und Ersetzen

Speichert einen definierten Block als
ASCII-File auf der Diskette ab.

Ladt einen als ASCII-File auf Diskette
vorliegenden Block ein.

Kopiert einen Block an die aktuelle
Cursorposition.

Entfernt den Blockinhalt aus dem Speicher.

<F2><F2> "Text" <Return>

Sucht ab der aktuellen Cursorposition nach
der Buchstabenkombination Text. Wird
kein Text angegeben, wiederholt Omi-
kron.BASIC die Suche mit dem zuletzt
verwendeten Begriff.

—— Der Editor 35

<F2><F3> "Text" <Return>
Listet alle Stellen auf, an denen Text im
Programm vorkommt.

<F3><F2> Sucht einen bestimmten Text, und ersetzt
ihn nach Quittierung durch einen
anderen. AnschlieBend wird die Suche
fortgesetzt.

<F3><F3> Sucht und Ersetzt, diesmal jedoch ohne
eine Nachfrage.

GO-Funktion

Mit der Funktionstaste <Fl> kann eine beliebige Zeile ange
sprungen werden. Folgende Funktionen stehen zur Auswahl:

<F1> <Zeilennr.> Springt zur angegebenen Zeile.

<F1> <+> <Offset> Springt um <Offset> Zeilen naéh unten
(z.B. <F1> + 20).

<F1> <-> <Offset> Springt um <Offset> nach oben.

<F1> <Cursor hoch> Setzt die aktuelle Cursorzeile als oberste
Bildschirmzeile.

<F1> <Cursor runter> Setzt die aktuelle Zeile als unterste Bild-
schirmzeile. ’

<F10> Blittert im Programm eine Seite vor.

<Shift><F10> Blittert um eine Seite zuriick.

36 Das groBe ST-BASIC-Buch ——

Funktionstasten definieren

Nach einer Betitigung von <Shift><F7> konnen die Funktions-
tasten <F4> und <F5> (auch in Kombination mit <Shift>) mit
einem beliebigen Text belegen, indem Sie die gewiinschte Taste
driicken. Nach Eingabe des gewiinschten Textes, beenden Sie die
Definition durch erneutes Driicken von <Shift><F7>.

Repeat

Driicken Sie nach der Taste, die wiederholt werden soll <F6>,
und geben anschlieBend die Anzahl der Wiederholungen ein. Ein
Betitigen von <Return> bewirkt, dal das Zeichen in der ge-
wiinschten Anzahl auf dem Bildschirm erscheint.

Programm laden und speichern

Nach einer Betitigung der Funktionstaste <F8> werden Sie nach
dem Dateinamen gefragt, unter dem das Programm abgespeichert
werden soll. Das Programm wird als ASCII-Datei auf Diskette
abgelegt. Um ein Programm von Diskette zu laden, driicken Sie
die Tastenkombination <Shift><F8>. Befinden sich im ASCII-
File Zeilen, die Omikron-BASIC nicht versteht, werden diese
Zeilen durch inverse Darstellung gekennzeichnet.

Zeilennummern ein- und ausschalten

Die Tastenkombination <Control><Clr> sorgt dafiir, da3 Pro-
gramm ohne vorangestellte Zeilennummern eingegeben werden
konnen. Ein erneutes Betdtigen dieser Tasten hebt den Modus
wieder auf.

Vorsicht: Wird der Full-Screen-Editor mit abgeschalteter Zei-
lennumerierung verlassen, so fithrt Omikron.BASIC
eine Umnumerierung simtlicher Zeilen in Einerab-
stinden durch! Sprungziele bleiben jedoch unveridn-
dert. Auf diese Weise kénnen leicht unbrauchbare
Programme entstehen, wenn als Sprungadressen Zei-
lennummern verwendet werden.

—— Der Editor 37

Bildschirmaufteilung

Ahnlich wie der Editor des neuen ST-BASIC kann auch der alte
Editor-Bildschirm in unabhingige Teilbereiche aufgeteilt wer-
den. Diese Split-Funktion wird mit <Shift><F1> aktiviert, der
Cursor kann dann mit <Shift><F2> in die jeweils andere Bild-
schirmhilfte (Split wird hier in vertikaler Richtung durchge-
fithrt) gesetzt werden. Sie kénnen mit <Shift><F3> auch alter-
native Bildschirmdarstellungen wihlen. (z.B. 44*108 Zeichen,
57*128 Zeichen in Hires).

1.5 ST-Omikron.BASIC verlassen

Um den Interpreter wieder zu verlassen, gehen Sie in den Bild-
schirm-Editor, tippen

SYSTEM

ein, und betitigen die Return-Taste. Die anschlieBende Riick-
frage ist mit Y zu quittieren. Tippen Sie dagegen die Taste N,
wird der Interpreter nicht verlassen.

38

Das groBe ST-BASIC-Buch ——

—— ST-BASIC Grundkurs 39

2. ST-BASIC Grundkurs

Bisher haben Sie eine Menge Theorie iiber die Handhabung des
Editors gehort. Aus diesem Grund mochte ich Sie nicht linger
auf die Folter spannen und so schnell wie méglich zur Praxis
kommen.

2.1 Ausgabe auf dem Monitor mit PRINT

Laden Sie das ST-BASIC (Omikron.BASIC) - falls noch nicht
geschehen -, und geben Sie folgende Zeile ein:

print "Hallo"

Sobald Sie die <Return>-Taste betitigen, erscheint in der Zeile
darunter "Hallo". Damit haben wir bereits den ersten Befehl
kennengelernt, mit dem wir einen Text (in unserem Beispiel das
Wort Hallo) auf dem Bildschirm ausgeben konnen. Der Text, der
auf dem Bildschirm dargestellt werden soll, muf3 in Anfith-
rungszeichen hinter dem Befehl PRINT stehen. Was geschieht
nun, wenn wir die Anfithrungszeichen einfach weglassen?

print Hallo

Auf dem Monitor erscheint nach Betitigung der <Return>-Taste
diesmal nicht das Wort Hallo, wie wir es vielleicht erwartet hit-
ten, sondern eine Null (0). Wie 148t sich dies erkldren?

Der Computer unterscheidet zwischen Buchstaben und Variablen.
Buchstaben, hat man ihm beigebracht, miissen in Anfithrungsz-
eichen stehen. In unserem zweiten Beispiel hat er vergeblich
nach Anfithrungszeichen gesucht. Deshalb wuflte er, da3 es sich
bei diesem Hallo nicht um einen Text (Aneinanderreihung von
Buchstaben) handeln konnte. Folglich muf3 Hallo eine Variable
sein. Mit Sicherheit wurden Sie wihrend Ihrer Schulzeit im Ma-
thematikunterricht schon einmal mit Variablen konfrontiert.
Dort dienen Sie in (Un-) Gleichungen als Platzhalter, die eine

40 Das groBe ST-BASIC-Buch ——

bestimmte Zahl verkérpern. In der Gleichung x + 2 = 10 muf}
man x durch die Zahl 8 ersetzen, damit die Gleichung stimmt.
Eine #hnliche Funktion besitzen Variablen in einer Program-
miersprache: Sie verkérpern einen Wert (Zahl).

Stellen Sie sich eine solche Variable einmal als eine kleine
Schachtel vor, die sich im Computer befindet. Jede Schachtel
trigt einen Namen, in unserem obigen Beispiel Hallo. Kommt
der Computer zu der Ansicht, daf3 es sich um keinen Text, son-
dern um eine Variable handelt, beginnt er eifrig in seinem
Speicher zu suchen: St68t er dabei auf eine Schachtel, die den
angegebenen Namen trigt, so liet er ihren Inhalt aus, und
schreibt das auf diese Weise ermittelte Ergebnis direkt auf den
Monitor. Findet er dagegen keine Schachtel mit passendem Na-
men, erscheint dort eine Null. In der Informatik spricht man al-
lerdings nicht von Schachteln, sondern von Variablen, und das
werden wir ab sofort auch so machen.

Bliebe noch zu kliren, wie wir es schaffen, einer Variablen
einen Wert zuzuweisen. Dazu wird in BASIC das Gleichheitsz-
eichen (=) benutzt, das als Zuweisungsoperator fungiert:

let Hallo =3

Tippen Sie diese Zeile ab, und vergessen Sie nicht, anschlieend
die <Return>-Taste zu driicken. Dies ist deshalb wichtig, da der
Computer erst mit seiner Arbeit beginnt, wenn <Return> ge-
driickt wurde. Seine erste Aufgabe besteht nun darin, nachzuse-
hen, ob in seinem Speicher schon eine Variable mit derartigem
Namen vorhanden ist. Wird er nicht fiindig, so legt er eine neue
Variable mit diesem Namen an. Der Zuweisungsoperator sagt
ihm, daB er dieser Variablen den Wert 3 zuweisen soll. Jetzt
miilte die Zahl 3 auf dem Monitor erscheinen, wenn wir den
Befehl

print Hallo

——— ST-BASIC Grundkurs 41

eingeben. Und tatsichlich erscheit eine 3 auf unserem Monitor.
Der vorangestellte Befehl LET kann problemlos weggelassen
werden, am Ergebnis dieser Operation #ndert sich nichts. Dies
liegt daran, dafl der BASIC-Interpreter intellegent genug ist,
eine Zuweisung zu erkennen.

Nach diesem kurzen Exkurs iiber Variablen méchte ich ganz
gerne noch einmal auf den Befehl PRINT zuriickkommen, der ja
Gegenstand dieses Kapitels ist. Ich habe Ihnen bisher verraten,
daB ein Text, der auf dem Computerbildschirm ausgegeben wer-
den soll, hinter PRINT in Anfithrungszeichen stehen muf3. Feh-
len die Anfithrungszeichen, betrachtet der Computer das fol-
gende Wort als eine Variable und gibt deren Wert auf dem
Bildschirm aus. Mochten Sie Text und Variablen gleichzeitig
ausgeben, kénnen Sie das mit ; bewerkstelligen:

print "Heute ist der";Hallo;". September"

Auf dem Monitor erscheint: "Heute ist der 3. September". Der
Computer schreibt zuerst "Heute ist der" auf den Monitor, da es
sich um einen Text in Anfithrungszeichen handelt. Das Semiko-
lon bewirkt, daB der Inhalt der nachfolgenden Variablen Hallo
nicht in eine neue Zeile gedruckt, sondern gleich hinter "Heute
ist der" weitergeschrieben wird. Hier folgt nun der Inhalt der
Variablen Hallo, der in unserem kleinen Beispiel 3 betrigt. Wie-
derum stof3t der Computer auf ein Semikolon, er mull den fol-
genden Text also hinter die 3 schreiben.

Vielleicht ist Thnen aufgefallen, dafl zwischen "Heute ist der"
und der 3 ein Leerzeichen ausgegeben, wihrend hinter der 3
und dem darauffolgenden Text kein Leerzeichen -eingefiigt
wurde. Die Erklarung dafiir ist einfach: wie wir bereits festge-
stellt haben, handelt es sich bei unserem Hallo um eine Variable,
die einen bestimmten Wert (hier die Zahl 3) verkdrpert. Eine
Zahl kann entweder positive oder auch negative Werte anneh-
men. Da ein Vorzeichen nicht unbedingt die Lesbarkeit erhoht,
wird nur bei negativen Werten ein Vorzeichen (-) ausgegeben,
bei positiven Werten wird statt dessen der Zahl ein Leerzeichen
vorangestellt. Diesen Effekt habe ich ausgenutzt und so das
benoétigte Leerzeichen erhalten.

42 Das groBe ST-BASIC-Buch ——

Fassen wir noch einmal zusammen:

- Mit dem Befehl PRINT koénnen Texte und Variablen auf
dem Monitor ausgegeben werden.

- Texte, die ausgegeben werden sollen, miissen in Anfiih-
rungszeichen stehen, da ansonsten der Text als Variablen-
name aufgefasst wird.

- Das Semikolon (;) innerhalb eines PRINT-Befehls bewirkt,
daB darauffolgender Text direkt angefiigt wird.

- Wird eine Variable mit PRINT ausgedruckt, so stellt der
Computer bei positiven Werten ein Leerzeichen, bei negati-
ven Werten der Zahl ein Minuszeichen voran.

2.2 Variablentypen in ST-BASIC

Bisher haben wir nur eine Variable, die wir Hallo nannten, be-
nutzt. Dieser Variablen haben wir eine positive Zahl (3) zuge-
wiesen. Doch damit ist das Thema Variablen noch lange nicht
ausgereizt. Was geschieht, wenn wir dieser Variablen eine Kom-
mazahl zuordnen?

Hallo = 234.18

Der PRINT-Befehl bringt es an den Tag: Die Ziffern hinter dem
Dezimalpunkt werden vom Computer einfach abgeschnitten. Da-
gegen werden die Nachkommastellen bei folgender Zuweisung
beriicksichtigt:

Hallo! = 234.18

Vergleichen wir beide Variablennamen, fillt nur ein Unterschied
auf: Das Ausrufezeichen am Ende der zweiten Variablen muf
dafiir verantwortlich sein, dafl Nachkommastellen beriicksichtigt
werden. Und so ist es auch! Neben dem Namen, den die Va-
riable tragen soll, muf3 dem Computer noch mitgeteilt werden,
was in dieser Variablen gespeichert werden soll. Dies geschieht
iiber sogenannte Postfixe, also Zeichen, die an den Namen der
Variablen angehéngt werden.

—— ST-BASIC Grundkurs 43

Integervariablen

Als Integer werden ganze Zahlen ohne Nachkommastellen be-
zeichnet. Die erste Variable, die wir Hallo nannten, war eine
solche Integervariable. Solange man ihr ganze Zahlen zuweist,
gibt es keine Probleme. Diese treten erst dann auf, wenn man
versucht, einer Integer eine Kommazahl zuzuordnen. Nicht. daB
dies nicht ginge, der Computer akzeptiert die Zuweisung. Die
Nachkommastellen werden allerdings abgeschnitten, da er fiir sie
keinen Platz in der Variablen hat. Um dies zu verstehen, muf3
ich etwas weiter ausholen:

Schauen wir dazu einmal die (Integer-) Zahl 3548 an. Zerlegt
man diese Zahl nach der Wertigkeit ihrer Stellen, erhilt man
folgendes Ergebnis:

3%1000+5*100+4*10+8*1

Auf diese Weise lassen sich alle Zahlen des Dezimalsystems, das
auf den Ziffern 0 bis 9 beruht, darstellen. Yon rechts her be-
~ trachtet, hat die erste Stelle stets die Wertigkeit 1, wobei sich die
Wertigkeit von Stelle zu Stelle verzehnfacht. Der Computer tut
sich bei der Zahlendarstellung etwas schwerer, da er keine zehn,
sondern nur zwei Ziffern kennt, die 0 und die 1. Reiht man
mehrere Ziffern aneinander, so besitzt auch hier die erste Stelle
(von rechts aus betrachtet) die Wertigkeit 1. Wihrend sich beim
Dezimalsystem die Wertgkeit von Stelle zu Stelle verzehnfacht,
verdoppelt sie sich bei dem vom Computer verwendeten
Dualsystem. Die Bindrzahl 111111 besitzt folglich den Wert:

1*82+1*16+1*8+1%4+1*2+1*1

oder einfacher ausgedriickt: 63. Man hat sich nun darauf geei-
nigt, stets 8 solcher Binirstellen (Bit) zu einer Bindrzahl (Byte)
zusammenzufassen. Mit 8 Bit bzw. 1 Byte lassen sich dann 256
verschiedene Werte darstellen. Im Dezimalsystem ausgedriickt,
sind dies die Zahlen von 0 bis 255. Mit 256 Werten kann man
aber noch keine groflen Spriinge machen. Aus diesem Grund

44 Das groBe ST-BASIC-Buch ——

verwendet man fiir alle Zahlen, die groBer als 255 sind, zwei
Bytes. Dieses zweite Byte hat nun die Wertigkeit 256. Die Dezi-
malzahl 3548 benétigt im Computer zwei Bytes:

13 (2. Byte)
220 (1. Byte)

Im Inneren des Rechnes sieht dies dann so aus:

00001101 (1.Byte)
11011100 (2. Byte)

Zwei dergestalt zusammengefasste Bytes werden haufig auch als
Word bezeichnet. Neben Byte und Word gibt es noch Long, wo-
bei dann vier Bytes zusammengefat werden. Mit einer solchen
Longinteger kénnen Werte von

-2147483658 bis +2147483657
dargestellt werden.

Im Gegensatz zu anderen BASIC-Interpretern betrachtet ST-
BASIC alle Variablen als Longinteger, falls diese nicht ander-
weitig durch Postfixe gekennzeichnet sind. Verstehen Sie jetzt,
warum Hallo keine Kommazahl speichern konnte? Fiir den In-
terpreter ist Hallo eine Integervariable vom Typ long. Jeder
Versuch ihr eine FlieBkommazahl zuzuweisen, wird mit dem
Abschneiden der Nachkommastellen bestraft.

Jetzt aber endlich zu den Postfixen, mit denen die verschledenen
Variablentypen gekennzeichnet werden:

Variablentyp darstellbarer Zahlenbereich Postfix
Integer-Byte von 0 bis 255 %B

Integer- Word von -32768 bis 32767 %W oder %
Integer-Long von -2147483658 bis 2147483657 %L bzw.nichts

Anmerkung: Integer-Byte kann nur in Variablenfeldern (Ar-
rays) verwendet werden.

—— ST-BASIC Grundkurs 45

Beispiele fiir die Verwendung der Postfixe:

Variable Typ

Hallo%B(X) Integer-Byte
Hallo%W Integer-Word

Hallo% Integer-Word

Hallo%L Integer-Long

Hallo Integer-Long
FlieBkommavariablen

Wihrend sich mit Integervariablen lediglich ganze Zahlen dar-
stellen lassen, konnen mit FlieBkommavariablen (Float) auch
Nachkommastellen bzw. extrem grofe Zahlen, die den Bereich
einer Longinteger uiberschreiten, dargestellt werden. ST-BASIC
unterscheidet zwischen FlieBkommazahlen mit einfacher Genau-
igkeit (Single Precision) und doppelter Genauigkeit (Double
Precision). Fir eine FlieBkommavariable mit doppelter Genauig-
keit verleibt sich der Computer 10 Bytes ein, fiir einfache Ge-
nauigkeit begniigt er sich mit nur 6 Bytes. Bei Single Precision
wird mit "etwa" 9 Nachkommastellen (wovon 7 ausgegeben wer-
den), bei Double Precision etwa 19 Stellen hinter dem Komma
(17 werden ausgegeben) gerechnet. Der darstellbare Zahlenbe-
reich liegt bei beiden FlieBkommaformaten bei 10 hoch 4931.

Variablentyp darstellbarer Zahlenbereich Postfix
Float-Single +- 10 hoch 4931 !
Float-Double +- 10 hoch 4931 #
Variable Typ

Hallo! FlieBkommagzahl mit einfacher Genauigkeit
Hallo# FlieBkommazahl mit doppelter Genauigkeit

Mochten Sie einer FlieBkommazahl mit doppelter Genauigkeit
eine Zahl (Konstante) zuweisen, wie etwa

Hallo# = 1.66#

46 Das groBe ST-BASIC-Buch ——

sollte diese durch ein Postfix (#) als Konstante mit doppelter
Genauigkeit gekennzeichnet werden. Andernfalls wird der
FlieBkommavariablen Hallo# nur eine mit einfacher Genauigkeit
gespeicherte Konstante (1.66) zugewiesen, und dies ist ja nicht
im Sinne des Erfinders.

Stringvariablen (Zeichenketten)

Sie haben bisher mit Integer- und FlieBkommavariablen Be-
kanntschaft geschlossen. Beide Arten sind zur Speicherung von
Zahlen gedacht. Neben Zahlen kennt der Computer noch Buch-
staben oder genauer ausgedriickt: Zeichen. Zeichen deshalb, da
Buchstaben nur eine Teilmenge aus den Zeichen sind. Der
Buchstabe G ist ein Zeichen, die Klammer (, um nur ein Bei-
spiel herauszugreifen, ist ein Zeichen, aber kein Buchstabe.

Zeichen wird im Computerjargon auch character (abgekiirzt
char) genannt. Mehrere aneinander gehiingte Zeichen bilden eine
Zeichenkette oder einen String. Stringvariablen wird zur Kenn-
zeichnung ihres Standes ein Dollarzeichen $ nachgestellt: Hallo$
(gesprochen: Hallostring). Weisen wir einer solchen Variablen
einmal einen String zu:

Test$ = "Hallo"

Mit print Test$ erscheint auf dem Monitor Hallo. Ein String
muB} in Anfithrungszeichen stehen, damit ihn der Computer von
einer Variablen unterscheiden kann. Zeilen wie

Test$ = Hallo
Test% = "Hallo"
Test# = "Hallo"

werden vom Computer mit der Fehlermeldung TYPE MIS-
MATCH ERROR (einer Variabel wurde ein Wert zugewiesen,
den diese aufgrund ihrer Deklaration (das Postfix!) gar nicht
aufnehmen kann) geahndet.

—— ST-BASIC Grundkurs 47

Variablendeklaration einmal anders

Ein Postfix am Ende des Namens ist eine Moglichkeit, eine Va-
riable zu deklarieren. In ST-BASIC kann dies auch per Befehl
am Anfang eines Programms geschehen. DEFINT "A,B,C" weist
den Computer beispielsweise an, alle Variablen im Programm,
die mit den Anfangsbuchstaben A, B, oder C beginnen, als Inte-
ger-Word (zwei Bytes lang!!) aufzufassen, solange die betref-
fende Variable nicht durch ein entsprechendes Postfix ander-
weitig deklariert ist.

StoBt der Computer wihrend des Programmablaufs auf eine Va-
riable A$, so wird er - ungeachtet der Deklaration am Pro-
grammanfang durch den Befehl DEFINT "A,B,C" - diese als
Stringvariable betrachten, der eine Zeichenkette zugewiesen
werden muB}. Eine Variable August wird dagegen als Integerva-
riable vom Typ Word behandelt, da sie nicht anderweitig (z.B.
als Doublefloat) deklariert ist.

Die Deklarationsbefehle im einzelnen:

Befehl Deklaration fur Typ
DEFINT Integer-Word
DEFINTL Integer-Long

DEFSNG Float - single precision
DEFDBL Float - double precision
DEFSTR Stringvariable

Beispiele fiir die Anwendung:

DEFSNG "A-Z" Alle Variablen mit den Anfangsbuchsta-
ben von A bis Z werden als FlieBkom-
mavariablen mit einfacher Genauigkeit
(single precison) deklariert.

DEFSTR "A,C,F-M" Alle Variablen mit den Anfangsbuchsta-
ben A, C und F bis M werden als String-
variablen behandelt.

48 Das groBe ST-BASIC-Buch ——

Diese Befehle miissen stets in der ersten Programmzeile stehen
und als erste Befehle in ein Programm eingegeben werden, an-
sonsten werden sie vom Computer einfach nicht beachtet. Haben
Sie dennoch einmal einen Deklarationsbefehl vergessen, kénnen
Sie sich mit einem "Klimmzug" aus der Affire retten: Fiigen Sie
den Befehl nichtriglich (in die erste Programmzeile) ein und
speichern Sie das Programm als ASCII ab. Wenn Sie das Pro-
gramm dann erneut laden, werden die Variablen gemiB der De-
klaration in der ersten Zeile angelegt - der Schaden ist behoben.

Und noch etwas: Andere BASIC-Interpreter betrachten Vari-
ablen, die nicht durch ein Postfix besonders gekennzeichnet
sind, als FlieBkommavariablen mit einfacher Genauigkeit.
Mboéchten Sie Programme oder Routinen von anderen BASIC-In-
terpretern iibernehmen, sollten Sie alle Variablen ohne Postfix
mit DEFSNG "A-Z" als Singe-Float deklarieren, da andernfalls
ST-BASIC diese fir Long-Integer hilt und Nachkommastellen
einfach ignoriert.

Flags

Flags werden in Programmen benutzt, um Wahrheitswerte zu
speichern. Ein Wahrheitswert kann entweder wahr oder falsch
sein. Im ersteren Fall speichert man eine -1 (wahr), im letzteren
eine 0. Wozu aber dieser Aufwand?

Nehmen wir einmal an, Sie haben eine kleine Textverarbeitung
geschrieben. Beim Einlesen eines Textes von Diskette setzen Sie
pauschal ein Flag auf 0. Wird nun im Text eine Anderung
durchgefiihrt (z.B. ein Tippfehler ausgebessert), weisen Sie die-
sem Flag auf den Wahrheitswert wahr (-1) zu. Vor dem Verlas-
sen des Programms wird dieses Flag abgefragt. Fir den Fall, daf3
sein Wert -1 betrdgt, kann der Text mit den durchgefithrten
Anderungen entweder automatisch abgespeichert, oder aber eine
Warnmeldung ausgegeben werden, damit der Benutzer den Text
auf Diskette bringen kann, ehe seine Korrekturen verloren sind.

——— ST-BASIC Grundkurs 49

Fir ein Flag kénnten Sie eine FlieBkommavariable mit doppelter
Genauigkeit verwenden. Auf diese Art und Weise hitten Sie
dann 10 Bytes ihres (moglicherweise) kostbaren Speicherplatzes
zum Fenster hinausgeworfen. Aus diesem Grund kamen schlaue
Menschen auf die Idee, eine Variable einzufiihren, die nur die
Werte 0 und -1 zu speichern vermag. 0 verkorpert in diesem Fall
den Wahrheitswert falsch, wihrend -1 den Wahrheitswert wahr
reprisentiert. :

Flags werden in ST-BASIC als solche durch das Postfix %F ge-
kennzeichnet. Eine Einschrinkung ist dabei zu beachten. Dieser
Variablentyp darf - ebenso wie die Integer-Bytes - nur in Va-
riablenfeldern (Arrays) verwendet werden. Was Arrays sind, er-
fahren Sie allerdings erst etwas spiter. Der Vollstindikeit halber
wollte ich die Flags aber schon hier einmal vorstellen.

Nachdem wir nun simtliche Variablentypen, die in ST-BASIC
existieren, erschopfend behandelt haben, sollten Sie sich von
Ihrer Erschopfung ein wenig erholen, ehe wir unser erstes Pro-
gramm schreiben.

2.3 Das erste Programm

Bisher wurden Sie mit einer ganzen Menge Theorie bombadiert.
Aber dies hatte seinen Grund: Wenn wir schon ein Programm
schreiben, dann bitte ein etwas sinnvolles:

Die Pension "Schlumpf" im bayerischen Wald vermietet Frem-
denzimmer in verschiedenen Groflen an Touristen. Der Inhaber
dieser Pension, Herr Gargamel, hat sich einen Computer ange-
schafft, der ihn bei den wichtigsten Arbeiten, die in dieser Pen-
sion anfallen, entlasten soll. Eine immer wiederkehrende Arbeit
besteht darin, die in DM angegebenen Zimmerpreise fiir Oster-
reichische Giéste in Schilling umzurechnen, damit diese den
Rechnungsbetrag in ihrer Landeswihrung begleichen kénnen.

Sie ahnen es schon: Unser erstes Programmprojekt soll Betrige,
die in DM ausgewiesen werden, direkt in Osterreichische Schil-
ling umrechnen. Was brauchen wir dazu?

50 Das groBe ST-BASIC-Buch ——

1 DM entspricht etwa 7 OS (Osterreichische Schilling), der
Wechselkurs betrigt dann folglich 1/7 oder ausgerechnet und
(auf vier Stellen hinter dem Komma) gerundet: 0,1429. Dividiert
man den Rechnungsbetrag durch diesen Kurswert (0,1429), er-
hilt man die Summe in Schilling.

Gehen wir (vorlidufig) davon aus, daB3 nur volle DM-Betrige in
Schilling umzurechnen sind, kénnen wir die Rechnungssumme in
einer Integervariablen ablegen. Fiir den Kurswert werden wir
uns einer FlieBkommavariablen mit einfacher Genauigkeit (fiir
unsere Bediirfnisse vollkommen ausreichend) bedienen. Das Er-
gebnis unserer Division miissen wir auch noch in einer Variablen
festhalten. Logischerweise wird dies ebenfalls eine FlieBkomma-
variable sein, da bei der Umrechnung durch die Division Nach-
kommastellen entstehen kénnen.

10 1 e e v e e e e e e e A de A e e e e e e ok e e ok e o e e ke e ok e o e e ke ek e ok e ek e e e ek e e e e e ek e e e e e ke ok

20 '* WAEHRUNG.BAS *
30 L g *
40 '* Autor: Michael Maier Version: 1.00 Datum: 22.08.1988 *
50 '* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH' *
60 '* (C) 1988 by DATA BECKER GmbH Dusseldorf *

70 19 e e 3 e e e o I 3 I I I A e e e e e ko e o I o I I o T A e e e e e ke e ke o ok ok ok ok 3k I e o e e % e e e e e e e e e ke ke ke e
80 !

90

100 Kurs!=.1429: REM Wechselkurs DM/0S

110 Betrag#%=300: REM Rechnungssumme

120 Waehrung!=Betrag%/Kurs!' DM in 0S umrechnen

130 CLS : PRINT Betrag%;" DM";" entsprechen";Waehrung!;" Schilling"
140 END

Dies ist also das erste Programm, mit dessen Hilfe DM-Betrige
in Schilling umgerechnet werden konnen. Am Anfang einer je-
den Zeile steht eine Nummer, die Zeilennummer. In BASIC-In-
terpretern fritherer Jahre waren diese Zeilennummern Pflicht,
jede Zeile muflte mit einer Nummer versehen sein. Da keine
Nummer zweimal innerhalb eines Programms vorkommen durfte,
wurden {iblicherweise 10er Abstinde in der Zeilennummerierung
gewihlt. Wollte man Programmtext nachtriglich einfiigen,
konnten die dazwischenliegenden Zahlenbereiche ausgenutzt
werden, und man ersparte sich auf diese Art die zeitraubende
Umnumerierung der folgenden Zeilen.

—— ST-BASIC Grundkurs 51

ST-BASIC ist hier wesentlich flexibler: Die Zeilennummern
konnen wahlweise eingegeben werden. Mochten Sie keine Zei-
lennummern mit eingeben, so schalten Sie diese im Full-Screen-
Editor einfach {iber die Tastenkombination <Control>
<Clr/Homme> aus, bzw. wieder ein.

Ich selbst bevorzuge die Programmierung ohne Zeilennummern
(die Macht der Gewohnheit!). Aus diesem Grund werde ich
weitgehend auf sie verzichten. Da ST-BASIC intern - auch bei
abgeschalteter Zeilennumerierung - selbststindig Zeilennummern
anlegt, wird in den Listings jede Zeile mit einer Nummer begin-
nen. Sie brauchen diese nicht mit eingeben, falls Sie das eine
oder andere Programm selbst abtippen mochten. Achten Sie je-
doch darauf, daB die Zeilennumerierung auch wirklich abge-
schaltet wurde, damit Sie keine bose Uberraschung erleben,
wenn Sie das Programm laufen lassen mdéchten. Doch jetzt zu-
riick zum Programm:

Der Kurswert wird in der FlieBkommavariablen (single preci-
sion), die den sinnigen Namen Kurs trigt, abgelegt. Das Suffix
am Ende des Variablennamens sagt dem Computer, daBl in der
Variablen Kurs eine FlieBkommazahl mit einfacher Genauigkeit
zugewiesen werden soll. Der Kurswert selbst steht hinter dem
Zuweisungsoperator =, Die Nullstelle vor dem Komma kann ge-
trost weggelassen werden, sie spielt keine Rolle. Noch etwas: Im
Gegensatz zur herkémmlichen Schreibweise erwartet der Com-
puter kein Dezimalkomma sondern statt dessen einen Dezimal-
punkt, wie Sie dem Listing unschwer entnehmen konnen.

In einer Programmzeile konnen mehrere Anweisungen stehen,
die allerdings durch einen Doppelpunkt (:) getrennt werden
miissen. In Zeile 100 ist dies der Fall: Hinter der Zuweisung des
Kurswertes steht ein Doppelpunkt, der den nichsten Befehl
(REM) abtrennt.

REM

Der BASIC-Befehl REM (vom englischen Remark: Anmerkung)
gestattet das Einstreuen von Kommentaren in ein Programm.
Dies ist gerade bei lingeren Programmen wichtig. Ist ein Pro-

52 Das groBe ST-BASIC-Buch —

gramm nimlich einmal fertig entwickelt und man méchte es ein
paar Monate spiter verbessern, kann es leicht passieren, daf
man sich in seinem eigenen Programmcode nicht mehr zurecht-
findet. Moral von der Geschicht: Nur nicht mit Kommentaren
geizen!

Der Rest der Zeile hinter REM wird vom Computer einfach
iiberlesen. Es ist deshalb nicht méglich, einen neuen Befehl hin-
ter einer REM-~Anweisung zu plazieren. Der Computer wiirde
ihn einfach nicht beachten. Statt REM kann in ST-BASIC auch
das Hochkomma (’) benutzt werden, um einen Kommentar in
das Programm einzufiigen. Im obigen Beispiel wurde von dieser
Moglichkeit im sogenannten Header (Programmvorspann in den
Zeilen 10 bis 90) Gebrauch gemacht.

Die Rechnungssumme wird - da nur volle DM-Betrige in Be-
tracht kommen - einer Integervariaben zugewiesen. Auf den
Befehl LET habe ich auch hier verzichtet, da es ohne ihn ebenso
geht. In der Variablen Kurs ist jetzt also der Kurswert, in Be-
trag%h (ibrigens eine Integer vom Typ Word) die Rechnungs-
summe gespeichert.

Der nichste Schritt wird in der Programmzeile 120 durchgefiihrt:
Die Rechnungssumme (Betrag%) wird durch den Kurswert
(Kurs!) geteilt (der Operator fiir die Division lautet /) und das
auf diese Weise ermittelte Ergebnis der (FlieBkommavariablen,
aber warum sage ich das?) Waehrung! zugewiesen.

Dort ist jetzt der Betrag Schilling enthalten und wartet direkt
darauf, per PRINT-Befehl auf dem Bildschirm ausgegeben zu
werden. Zuvor wird jedoch der Optik wegen der Bildschirm mit
CLS (CLear Screen: 16sche Bildschirm) geloscht. Dann erst ist es
soweit: Durch einen Doppelpunkt von CLS getrennt steht der
PRINT-Befehl. Und jetzt geht es gleich rund: Der Rechnungs-
betrag in DM wird zuerst ausgegeben. Dann sorgt der Strich-
punkt hinter Betrag% dafiir, daB der Computer in derselben
Zeile weiterschreibt. Es folgt ein Text (DM), der als solcher
durch die Anfiithrungszeichen gekennzeichnet ist.

——— ST-BASIC Grundkurs 53

Das nichste Semikolon hitte ich mir sparen kénnen, doch dann
hiitten Sie nicht so schén gesehen, daf3 auch zwei Texte mitein-
ander verbunden werden koénnen. Da der Computer direkt wei-
terschreibt, beginnt der Text mit einem Leerzeichen (Space). Der
letzte Befehl END, sagt dem Computer, dafl er an dieser Stelle
fertig ist.

Puh! Jetzt muBte die Funktionsweise des Programms eigentlich
gekliart sein. Also probieren wir es gleich einmal aus! Benutzen
Sie dazu den Full-Screen-Editor (beim ST-BASIC mit <Help>,
bei Omikron.BASIC iiber die Eingabe des Befehls EDIT und
Driicken von <Return>). Tippen Sie nun die Zeilen 100 bis 140
ab und starten das Programm. Auch hier haben es Besitzer des
ST-BASIC wieder einfacher: Sie brauchen bloB die Tastenkom-
bination <Control> <R> zu driicken und schon sehen sie das Er-
gebnis auf dem Monitor. Ansonsten mufl der Editor erst iiber
<Control> <C> verlassen und danach RUN (<Return> nicht ver-
gessen!) eingetippt werden. Etwas umstindlicher, aber das Er-
gebnis ist in beiden Fillen identisch:

300 DM entsprechen 2099.3702 Schilling

Um andere DM-Betrige in Schilling umrechnen zu lassen, miis-
sen Sie wieder in den Full-Screen-Editor, dort den Wert hinter
der Variablen Betrag% ausbessern und das Programm erneut
starten.

Arithmetikoperatoren

Neben der Division, die in Programmzeile 130 durchgefiihrt
wurde, sind noch weitere arithmetische Funktionen moglich:
Addition, Subtraktion, Multiplikation und Potenzieren. Fiir jede
dieser Funktionen existiert ein Operator, der aus folgender Ta-
belle ersichtlich ist:

Operator Funktion Beispiel
+ Addition A%=3+4
- Subtraktion A% =5-2

* Multiplikation A% =2*3

54 Das groBe ST-BASIC-Buch —
Operator Funktion Beispiel
/ Division A#=1/3
\ Integer-Division A# =6\4
- Potenzieren ("hoch") A% =123
Anmerkungen:

Diese Operationen kénnen nicht nur mit Konstanten (Zah-
len), sondern auch Variablen (sofern sinnvoll) durchgefiihrt
werden. Die Anweisung A% = H% + 3 weist der Variablen
A% den Inhalt der Variablen H% zu und adddiert dazu den
Wert 3. Aber auch das ist méglich (auch wenn es ungewohnt
aussieht!): A% = A% + 1. Der Inhalt der Variablen A% wird
um den Wert 1 erhoht. Das = fungiert in diesem Fall ja als
Zuweisungsoperator und nicht als Gleichheitszeichen!

Der Unterschied zwischen der normalen Division .und der
Integer-Division liegt darin, da3 das Ergebnis einer Integer-
Division stets ganzzahlig ist, wihrend bei der normalen Di-
vision Kommastellen entstehen kénnen. A! = 7 \ 2 weist der
Variable A! (obwohl FlieBkommavariable!) den Wert 3 zu.
Der Rest der Division kann mit der Modulo-Funktion er-
mittelt werden: A% = 7 MOD 2 ergibt den Wert 1 in A%.
(Das Ergebnis der Integerdivision aus 7 \ 2 ist bekanntlich 3.
Folglich kann der Rest der Division mit 7 - (3*2) = 1 be-
rechnet werden.). Da der Computer auf die umstindliche
Berechnung der Nachkommastellen verzichten kann, resultiert
daraus ein gewaltiger Geschwindigkeitsvorteil bei der Inte-
ger-Division gegeniiber der normalen Division.

Soweit arbeitet das Programm ja zufriedenstellend, ganz
gliicklich wird Herr Gargamel mit unserer Version allerdings
noch nicht sein:

Die Rechnungssumme mufl jedesmal direkt im Programm
ausgebessert werden. Besser wire es, wenn das Programm
nach dem Betrag fragen und diesen entsprechend umrechnen
wiirde.

———— ST-BASIC Grundkurs 55

- Der in Schilling umgerechnete Wert besitzt 4 Stellen hinter
dem Komma, obwohl nur 2 Stellen nétig sind. Deshalb sollte
das Programm auch nur 2 Nachkommastellen ausgeben, die
dann entsprechend auf- bzw. abgerundet werden miissen.

Diese beiden Verbesserungen sollen Gegenstand der zweiten
Version unseres kleinen Programms sein. Zuvor muf} aber noch
ein anderes Problem gelost werden:

2.4 Programme speichern, laden und I6schen

Das Programm befindet sich im Speicher des Computers. Falls
Sie jetzt den Computer ausschalten (Halt! Tun Sie’s nicht!), oder
den Resetknopf betiitigen, wird das Programm gel6éscht. Bei obi-
gem Programm bedeutet dies noch keine Tragodie, da die 5 Pro-
grammzeilen wieder eingegeben sind. Stellen Sie sich aber vor,
ein solches Programm bestinde aus mehreren Seiten und die
miflten jedesmal von neuem eingegeben werden.

SAVE

Der Befehl SAVE speichert ein Programm auf Diskette ab. Die
Syntax lautet:

SAVE ["<Programmname>*]
bzw.

SAVE ["<Programmname>"],A
In beiden Fillen wird das Programm auf der Diskette mit dem
Namen <Programmname.BAS> abgelegt. An der Endung (Exten-

sion) .BAS die der Interpreter an den Namen hiingt, konnen Sie
erkennen, daf3 es sich um ein BASIC-Programm handelt.

56 Das groBe ST-BASIC-Buch —

Der Programmname selbst darf nicht linger als 8 Zeichen sein.
Moéchten Sie das Programm mit einer anderen Extension spei-
chern, so muf3 diese explizit angegeben werden (z.B. Pro-
gramm.BAK). Folgende Extensions sollten Sie jedoch nach Mog-
lichkeit vermeiden, da sie feste Bedeutungen besitzen:

Extension Bedeutung

.TOS Ausfiihrbares Programm, das unter TOS, dem Betriebssy-
stem des Atari ST liuft.

.PRG Ausfiihrbares Programm, das unter GEM liuft.

.TTP Ausfiihrbares Programm, wobei Parameter beim Programm-
start angegeben werden kénnen (Tos Takes Parameter).

.DOC Dokumenten-Datei fiir Anleitungen, ...

.BAS BASIC-Programm.

.BAK BAcKup-Datei (vgl. Kapitel 3).

Ohne die Angabe eines Programmnamens benutzt ST-BASIC den
letzten Programmnamen. Dies kann entweder der bei LOAD
oder bei NEW angegebene Name sein. Deshalb auch die eckigen
Klammern, die andeuten, daB der Programmname evtl. auch
weggelassen werden kann.

Wird nach dem Programmnamen noch ein ,A angehingt, so
speichert der Computer das Programm ebenfalls auf Diskette,
allerdings in einer unkodierten Form. Auf diese Weise gespei-
cherte Programme kénnen dann z.B. von Textverarbeitungspro-
grammen eingelesen werden. Dies ist bei mit dem einfachen
SAVE abgespeicherten Programmen nicht moglich, da diese in
kodierter Form abgespeichert werden (spart Speicherplatz und
ermoglicht schnellere Programmausfithrungszeiten). Auch wenn
mehrere Programme zusammengehingt ("gemerged") werden sol-
len, miissen sie in unkodierter Form auf Diskette vorliegen.

NEW

Der Befehl NEW entfernt ein Programm und den Inhalt simtli-
cher Variablen aus dem Speicher des Computers. Gehen Sie des-
halb schon im eigenen Interesse sorgsam mit diesem Befehl um.
Er ist aber immer dann vonndten, wenn Sie ein neues Programm

—— ST-BASIC Grundkurs 57

erstellen méchten und sich noch ein altes im Speicher befindet.
Alternativ kann mit diesem Befehl gleich ein Name fiir das neue
Programm angegeben werden. Die Syntax dafiir lautet:

NEW "<Programmname>"

In Zukunft kann dann bei einem SAVE auf die Angabe des Da-
teinamens verzichtet werden, da er bereits mit diesem Befehl
angegeben wurde.

LOAD

Last not least der Befehl zum Laden eines auf Diskette abge-
speicherten Programms:

LOAD [“<Programmname"]

Die Datei mit dem in Anfithrungszeichen stehenden Namen wird
in den Speicher geladen. Alternativ dazu kann man sich die An-
gabe eines Namens ersparen und nur LOAD eingeben. In diesem
Fall verwendet ST-BASIC den zuletzt bei SAVE, NEW bzw.
LOAD benutzten Dateinamen. Es ist bei diesem Befehl unwich-
tig, ob die Programme auf Diskette in kodierter oder unkodier-
ter Form vorliegen. ST-BASIC erkennt dies selbstindig, und ko-
diert den Programmtext bei Bedarf.

RUN

Den Befehl RUN habe ich schon einmal benutzt. Erinnern Sie
sich? Er diente dazu, ein Programm im Speicher zu starten. Wird
zusitzlich ein in Anfiithrungszeichen stehender Programmname
angegeben, 1ddt ST-BASIC dieses Programm in den Speicher und
beginnt sofort mit dessen Ausfithrung.

RUN "WAEHRUNG"

58 Das groBe ST-BASIC-Buch —

ladt die Programmdatei WAEHRUNG.BAS in den Speicher und
startet sofort mit der Ausfithrung. Der gleiche Effekt wird auch
iiber die beiden Befehle

LOAD "WAEHRUNG"
RUN

erzielt.

2.5 Wie sag ich’s dem Computer?

Nach diesem kurzen Intermezzo wagen wir uns an die verbes-
serte Version unseres Programms.

Das erste Problem: Die Eingabe des Rechnungsbetrages soll ab
sofort gleich direkt, also ohne das umstindliche Uberschreiben
des Programmtextes, moglich sein. Interaktive Programmierung
wird dieser Vorgang vom Fachmann genannt, wenn der Compu-
ter innerhalb eines Programmes auf eine Eingabe wartet, ehe er
im Programm fortfihrt. ST-BASIC bietet eine Fiille derartiger
Befehle: vom einfachen Standard-Eingabebefehl bis hin zur for-
matierten Eingabe, die selbst héchsten Anspriichen in der pro-
fessionellen Programmierung gerecht wird.

Fir unsere Bedirfnisse reicht (vorliufig) der Standardeingabe-
befehl véllig aus. Er lautet:

INPUT

INPUT sagt dem Computer also, daB er dem Benutzer eine
Moglichkeit bieten mufl, eine Eingabe - in welcher Form auch
immer - zu titigen. Doch wohin mit dieser Eingabe? Um mit ihr
weiterarbeiten zu konnen muB diese einer Variablen zugewiesen
werden. Was wiirde es uns auch helfen, wenn der Computer die
Eingabe irgendwo in seinem Speicher ablegt, ohne uns - den
Programmierern - den Inhalt zu verraten? Folglich bendtigen wir
noch eine Variable, der die Eingabe zugewiesen werden soll.
Diese muf3 hinter dem PRINT stehen.

Input A%

—— ST-BASIC Grundkurs 59

weist der Integervariablen A% den eingegebene Wert zu, wih-
rend die Eingabe bei ’

Input A!

einer FlieBkommavariablen, die den Namen A! trigt, zugewiesen
wird. Méchten Sie einen String vom Benutzer eingeben lassen,
muf3 dem Input-Befehl selbstverstindlich eine passende Variable
nachgestellt werden:

Input A$

Andernfalls wird der Text nicht akzeptiert, und der Variablen
(z.B. A%, A!, A#, usw.) einfach der Wert 0 zugewiesen. In an-
deren BASICdialekten wiirde sich das Programm sogar mit einer
Fehlermeldung verabschieden. Der Computer gibt - st6f3t er in
einem Programm auf ein INPUT - ein Fragezeichen aus und
wartet geduldig bis der Benutzer seine Eingabe durchgefiihrt hat.
Fir den Computer ist die Eingabe beendet, sobald die
<Return>-Taste gedriickt wird. Dann holt er sich den eingegebe-
nen Wert und weist ihn der angegebenen Variablen zu.

Soweit ist der INPUT-Befehl ja ganz recht, doch woher soll ein
Mensch, der das Programm nicht geschrieben hat, wissen, was er
eingeben soll? Seinen Namen, das Datum, die Uhrzeit? Um ein
Programm benutzerfreundlich zu machen, sollte noch ein Text
mit ausgegeben werden, der dem Benutzer verridt, welche Ein-
gabe gewiinscht wird (so ein Datum in Schilling umgerechnet ist
sicher ganz amiisant, aber ...). Eine Moglichkeit dazu kennen Sie
bereits: PTINT. Somit kénnte die Programmzeile lauten:

PRINT " Rechnungssumme in DM: "; : INPUT Betragk

Das Semikolon dient wieder dazu, das Fragezeichen direkt hinter
dem Text Rechnungssumme in DM: auszugeben. Der Doppel-
punkt trennt den INPUT- vom PRINT-Befehl. Als Ergebnis er-
halten wir auf dem Monitor:

Rechnungssumme in DM: ?

60 Das groBe ST-BASIC-Buch ——

Soweit, so gut! Aber es geht (noch!) einfacher! Der INPUT-Be-
fehl erméglicht nimlich auch die Angabe eines Textes, der mit
ausgedruckt werden soll:

INPUT " Rechnungssumme in DM: “;Betrag%

bewirkt das gleiche Ergebnis auf dem Monitor, nur erscheint
hierbei kein Fragezeichen:

Rechnungssumme in DM:

Mochten Sie mehrere Eingaben mit einem INPUT erledigen,
miissen die einzelnen Variablen durch Kommata getrennt wer-
den. Auch die Eingaben werden durch Komma getrennt:

10 INPUT " Bitte zwei Zahlen eingeben: ";A%,6B%
20 PRINT " Die Summe der beiden Zahlen lautet: ";A%+B%
30 END

Bitte zwei Zahlen eingeben: 12,14 (Eingabe)
Die Summe der beiden Zahlen lautet: 26

Diese Art der Eingabe ist vor allem fiir Koordinatenpaare (x,y)
sinnvoll:

10 REM Berechnung des Abstandes zwischen zwei Punkten

20 INPUT " Koordinaten fir Punkt A (x1,y1): “;x1,x2

30 INPUT " Koordinaten fur Punkt B (x2,y2): ";x2,y2

40 Abstand# = SQR((x1-x2)"2 + (y1-y2)°2)

50 PRINT " Der Abstand der beiden Punkte betragt: ";Abstand#
60 END

In den Zeilen 20 und 30 werden die Koordinaten (durch Komma
getrennt) fir die Punkte A und B eingegeben. Soweit diirften
noch keine Schwierigkeiten aufgetreten sein. Zeile 40 berechnet
dann den Abstand dieser Punkte nach der Formel:

Abstand = Wurzel aus (x1 - x2)2 + (y1- y2)2

——— ST-BASIC Grundkurs 61

Die Funktion SQR(<Wert>) ergibt die Quadratwurzel von
<Wert>, die der Variablen Abstand# zugewiesen wird. Der
Operator ~ ist bereits bekannt und erzeugt eine Potenz, in unse-
rem Fall das Quadrat der Differenzen x1 - x2 bzw. yl - y2.

Zeile 50 gibt das so berechnete Ergebnis via Print auf dem Mo-
nitor aus. Da Kommata beim INPUT-Befehl dazu dienen, Ein-
gaben, die verschiedenen Variablen zugewiesen werden sollen,
zu trennen, ist es nicht méglich ein Komma einem String zuzu-
weisen. Ein anderer INPUT-Befehl erlaubt dies allerdings:

LINE INPUT

entspricht in seiner Synatx dem INPUT, Kommata kénnen je-
doch mit eingegeben werden. Stehen mehrere Variablen hinter
dem Befehl, so ist fiir jede Variable eine eigene Eingabezeile
notig. Also:

10 LINE INPUT " Bitte zwei Zahlen eingeben: ";A%,B%
20 PRINT " Die Summe der beiden Zahlen lautet: "; A%+B%
30 END

Auf dem Monitor erscheint:

Bitte eine Zahl eingeben: 12 (Eingabe, mit Return beendet)
14 (Eingabe, mit Return beendet)
Die Summe der beiden Zahlen lautet: 26

Soviel zu INPUT bzw. LINE INPUT. In einem spiteren Kapitel
werde ich Ihnen die iibrigen Eingabebefehle vorstellen.

2.6 Mathematische Funktionen

Ehe Sie jetzt vollig frustriert dieses Buch in die Ecke werfen,
weil Sie seit Ihrer Schulzeit mit der Mathematik auf Kriegsfuf3
stehen, sollten Sie wissen, daB es gar nicht so schlimm wird, wie
die Uberschrift vielleicht befiirchten 148t. Genaugenommen ha-
ben Sie sogar schon mit einer mathematischen Funktion Be-
kanntschaft geschlossen: Die Wurzelfunktion SQR(). Und zudem
mochte ich keine Nachhilfestunde in Sachen Mathematik ertei-

62 Das groBe ST-BASIC-Buch ——

len, sondern ein paar Funktionen vorstellen, die wir zur zweiten
Verbesserung im Programm - dem Runden des umgerechneten
Betrages auf zwei Nachkommastellen - bendtigen.

Zur Wiederholung: Bei einem Rechnungsbetrag von 300 DM er-
rechnete das Programm eine Summe von 2099,3702 Schilling. Die
beiden letzten Kommastellen sind nicht relevant, also weg damit!
Aber wie? Schon einmal wurden - damals freilich ungewollt -
die Nachkommastellen einer FlieBkommazahl abgeschnitten. Er-
innern Sie sich? Genau, bei der Zuweisung einer FlieBkomma-
zahl an eine Integervariable fielen die Nachkommastellen weg.

An dieser Stelle muBl ich etwas beichten: Die Nachkommastellen
werden nicht einfach nur abgeschnitten. Bei Bedarf wird die
resultierende Integerzahl nimlich noch aufgerundet. Der Com-
puter sieht sich immer dann genotigt aufzurunden, falls der
Nachkommanteil den Wert 0,5 tbersteigt. Weist man also der
Integerzahl A% den Wert 1,75 zu, erhidlt man in A% die In-
tegerzahl 2."Nachtigall, ich hér’ Dich trapsen!" mag der ein oder
andere jetzt denken. Weist man einer Integervariable ndmlich die
FlieBkommazahl Waehrung! aus unserem Programm zu, so erhilt
man als Ergebnis eine Integerzahl - bei Bedarf sogar noch ge-
rundet! Und genau das wollten wir ja! Die beiden unnétigen (1?)
Kommastellen sollten gestrichen werden. Doch bei unserer Zu-
weisung werden nicht nur die beiden letzten, sondern ginzlich
alle Stellen hinter dem Komma entfernt. Ganz so einfach geht
dies also nicht! Versuchen wir’s anders:

Wenn wir - sozusagen mit einem Taschenspielertrick - die bei-
den ersten Nachkommastellen retten, dann die restlichen Nach-
kommastellen abschneiden und zu guter Letzt die beiden ersten
Nachkommastellen wieder anhingen koénnten, wére unser Pro-
blem geldst. Ein Versuch ist diese Idee mit Sicherheit wert. Zu-
erst also die beiden ersten Nachkommastellen retten:

Im Dezimalsystem besitzt jede Ziffer von rechts aus betrachtet
den zehnfachen Wert ihrer Vorgingerin. Damit habe ich Sie
schon in einem frithren Kapitel michtig gelangweilt! Multipli-
ziert man jetzt eine Zahl mit 10, wandern alle Ziffern um eine

——— ST-BASIC Grundkurs 63

Stelle nach rechts, bei einer Multiplikation mit 100 um 2 Stellen.

2345 * 10 = 23450
2345 * 100 = 234500

Ahnlich ergeht es Nachkommastellen bei einer Multiplikation
mit 10 bzw. 100:

2099,3702 * 10 = 20993,702
2099,3702 * 100 = 209937,02

Jetzt kann man die beiden noch vorhandenen Nachkommastellen
abschneiden, da die beiden ersten Stellen hinter dem Komma
durch die Multiplikation mit 100 vor das Komma gewandert
sind.

Diese beiden Stellen miissen nach dem Abschneiden der Nach-
kommastellen wieder hinter das Komma geschoben werden. Aber
das stellt an dieser Stelle kein Problem mehr fiir uns dar. Wenn
nimlich durch Multiplikation mit dem Wert 10 die Stellen um
eine Position nach links weiterwandern, dann miissen Sie durch
eine Division mit 10 wieder um eine Stelle nach rechts gescho-
ben werden kdénnen:

200037 / 10 = 20993,7
200037 / 100 = 2099,37

Die einzige Fehlerquelle, die wir jetzt noch vermeiden miissen,
ist die Integer-Division, die keine Nachkommastellen liefert.
Ansonsten kann nichts mehr schiefgehen:

120 Waehrung=(Betrag%/Kurs!)*100' zwei Stellen nach links
125 Waehrung!=Waehrung/100' danach wieder nach rechts

64 Das groBe ST-BASIC-Buch ——

Figt man diese beiden Zeilen in unser kleines Programm ein,
erhilt man wie gewiinscht zwei Stellen hinter dem Komma, und
das sogar auf- bzw. abgerundet! Dies ist eine Losung fiir das
Problem, aber darauf wollte ich eigentlich gar nicht hinaus! Es
geht nimlich noch kiirzer (in einer Zeile!).

In ST-BASIC existieren drei mathematische Funktionen, die sich
mit Vor- und Nachkommateilen einer Zahl befassen:

- INT
- FIX
- FRAC

INT

Die Funktion INT schneidet den Nachkommateil einer Zahl ab,
d.h. genauer gesagt, sie bildet die gr6te ganze Zahl:

A = INT(B)

Der Nachkommateil der Zahl B wird abgeschnitten, die auf diese
Weise erhaltene Integerzahl der Variablen A zugewiesen. Bei ne-
gativen Zahlen erhalten Sie die groBte ganze Zahl, die kleiner als
B ist.

B Int(B)
+3.1 3
+3.8 3
+1.9 1
-2.1 -3
-2.9 -3

FIX

Die Funktionsweise von FIX entspricht im wesentlichen der von
INT. Bei negativen Zahlen wird der Nachkommateil jedoch
ebenfalls abgeschnitten.

——— ST-BASIC Grundkurs 65

B Int(8) Fix(B)
+3.1 3 3
+3.8 3 3
+1.9 1 1
-2.1 -3 -2
-2.9 -3 -2
FRAC

FRAC schneidet bei positiven Zahlen den Vorkommateil einer
Zahl ab, bei negativen Werten gilt: FRAC(X) = X - FIX(X).

B Frac(B)

3.1 1

3.61 .61

3 0
-2.5 -.5
-6.9 -9

Wir méchten den Nachkommateil einer Zahl streichen, dazu be-
nutzen wir entweder die Funktion INT oder FIX. Negative
Werte werden in dem kleinen Beispiel kaum vorkommen, des-
halb liefern beide Funktionen das gleiche Ergebnis. Benutzen
wir also INT.

INT schneidet den Nachkommateil einer Zahl ab. Deshalb miis-
sen wir auch in diesem Fall die ersten zwei Nachkommastellen
durch eine Multiplikation mit 100 retten. Danach wird die
Funktion auf den soeben erhaltenen Wert angewendet und
schlieBlich gleich wieder durch 100 dividiert:

120 Waehrung!= INT(Betrag%/Kurs!*100)/100

Eine Kleinigkeit fehlt noch. Die Funktion INT schneidet ndm-
lich die Nachkommastellen, ohne eine Rundung durchzufiihren,
einfach ab. Es bleibt uns also nichts anderes iibrig, als die Run-
dung selbst in die Hand zu nehmen. Sehen wir uns dazu die
Funktion INT anhand einer Zahlentabelle niher an:

66 Das groBe ST-BASIC-Buch ——

B INT(B)

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

[

W W W NN NN NRDN DN

Sie sehen deutlich, daf3 stets nur der Vorkommateil einer Zahl in
das Ergebnis einfliet. Aber wieder kénnen wir uns mit einem
kleinen Trick behelfen. Da ab einem Nachkomma von ,5 gerun-
det werden soll, addieren wir zu unserer Zahl einfach den Wert
0,5. Ist der Nachkommawert der Zahl kleiner als 0,5, dndernt
sich die Zahl vor dem Komma nicht, und die INT-Funktion
schneidet weiterhin die Nachkommastellen ab. Wozu dann der
ganze Aufwand?

Ab einem Nachkommateil von ,5 dndert sich durch die Addi-
tion auch der Wert der ersten Stelle vor dem Komma (z.B. 2,6 +
.5 = 3,1). Wendet man auf diesen neuen Wert die INT-Funktion
an, erhidlt man - ein Blick in obige Tabelle verridt’s - den Wert
3! Genau das wollten wir ja erreichen!

Die zweite Version unseres Programms finden Sie anschlieBend
abgedruckt. Die Funktionsweise miifite durch die bisher ge-
machten Ausfithrungen und Erkldrungen verstindlich sein. Eine
Kleinigkeit wurde zusitzlich noch geiindert. Die Variable Betrag!
ist nun eine FlieBkommazahl mit einfacher Genauigkeit, es ist
also auch moglich, Kommastellen bei der Rechnungssumme mit
einzugeben. Ferner wird der Bildschirm (logischerweise) vor dem
INPUT-Befehl geloscht.

——— ST-BASIC Grundkurs 67

10 1 e e e e g e ok o A e de de ok e e e e de e de ok ke e ke ek ke ke ke ke e e de ke ke ke de ek ke ke ek ke ke ke ok ke ek ke ok ke ke kkok

20 '* WAEH_V02.BAS *
30 g g g g g g S L L) *
40 '* Autor: Michael Maier Version: 1.00 Datum: 22.08.1988 *
50 '* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *
60 '* (C) 1988 by DATA BECKER GmbH Dusseldorf *

70 1 e de e e e de 3k e e o e e e e e e e e e v e g e o e e e e o e e e e e e e e v e ok e e e e ok e ok e ok e e e e e ke ok e de e de ke e
80 !

90 !

100 Kurs!=.1429: REM Wechselkurs DM/0S

110 CLS : INPUT " Rechnungssumme in DM: ";Betrag!

120 Waehrung!= INT((Betrag!/Kurs!*100)+.5)/100

130 PRINT : PRINT Betrag!;" DM";" entsprechen";Waehrung!;" Schilling"
140 END

2.7 Strings und Stringmanipulation

Uber Strings habe ich mich schon einmal an anderer Stelle aus-
gelassen. Ehe ich Thnen auch noch verrate, was man mit Zei-
chenketten so alles anstellen kann, lade ich Sie zu einem kleinen
Ausflug in das Innere Ihres Computers ein.

Buchstaben sind auch nur Zahlen

Was soll denn das schon wieder? Buchstaben sind Buchstaben
und Zahlen sind Zahlen, da beiBt die Maus keinen Faden ab,
oder etwa doch? Sie kennen natiirlich den Unterschied zwischen
einer Zahl und einem Buchstaben, bzw. den daraus resultieren-
den Zeichenketten. Der Computer ist in diesem Punkt leider
nicht so flexibel wie Sie. Ehe ein Buchstabe auf dem Monitor
dargestellt werden kann, ist eine Menge Aufwand noétig:

Die Tastatur des Atari ST wird von einem eigenen Prozessor
iiberwacht, der sinnigerweise nach seiner Aufgabe Tastaturpro-
zessor genannt wird. Driickt der Benutzer eine Taste, meldet dies
der Tastaturprozessor dem Betriebssystem. Dazu schickt er ein
Datenpaket auf die Reise, anhand dessen die Taste genau iden-
tifiziert werden kann. Es ist aber falsch anzunehmen, ein Driic-
ken der Taste <A> bewirkt, dal der Buchstabe a an das Be-

68 Das groBe ST-BASIC-Buch ——

triebssystem weitergeleitet wird. Statt dessen erhilt es die Infor-
mation, welche Taste gedriickt wurde in Form einer Zahl. Mit
Zahlen kann der Computer ja bestens umgehen.

Das Betriebssystem entscheidet nun, was zu geschehen hat. Muf}
der Buchstabe beispielsweise auf dem Monitor ausgegeben wer-
den, so wird eine Tabelle zu Rate gezogen: alle Zeichen sind
dort zusammengefasst und eindeutig anhand einer Nummer
(Zahl) identifizierbar. In dieser Tabelle ist festgelegt, wie jedes
Zeichen bei einer Ausgabe auf dem Monitor auszusehen hat.
Diese Daten holt sich der Computer ab, und kann jetzt den In-
halt der entsprechenden Taste auf dem Monitor ausgeben.

Also ist fir den Computer ein Buchstabe eigentlich auch nur
eine Zahl, nimlich die Nummer dieses Buchstabens in einer Ta-
belle. Da auch bei einer Kommunikation zwischen Computer
und Drucker bzw. einem anderen Computer keine Buchstaben,
sondern lediglich die entsprechenden Zahlenwerte iibertragen
werden, wurde diese Tabelle fiir bestimmte Werte standarisiert.
Es muB3 nimlich eindeutig feststehen, welche Zahl den Buchsta-
ben a in dieser Tabelle reprisentieren soll. Schickt z.B. der
Computer die entsprechenden Codes fiir das Wort "BASIC" an
den Drucker und diese Werte wiren nicht genormt, wéire es
mehr als Zufall, wenn "BASIC" auch auf dem Drucker ausgege-
ben wiirde.

Standardisiert sind jedoch - wie gesagt - nur bestimmte Zei-
chen, darunter die Buchstaben und Ziffern. Sonderzeichen wie
4,6,1,8 gibt es in keiner anderen Sprache, sie wiedersetzen sich
somit jedem Standard. Deshalb ist es jedem Computerhersteller
freigestellt, bestimmte Sonderzeichen in den Zeichensatz des
Computers zu integrieren, die von der Norm abweichen. Dies ist
beispielsweise bei den Umlauten im Atari ST der Fall: Schlieen
Sie einen Epson-kompatiblen Drucker an den Computer an, so
erhalten Sie beim Ausdruck statt geschweifter Klammern Um-
laute. Umlaute werden dagegen vom Drucker einfach ver-
schluckt. Die iibrigen Buchstaben werden jedoch korrekt zu Pa-
pier gebracht, da ihr Code normiert ist.

——— ST-BASIC Grundkurs 69

Diese Tabelle, in der simtliche Zeichen iiber einen standarisier-
ten Code zu erreichen sind, heiflit ASCII-Tabelle (American
Standard Code for Information Interchange). Sie umfafBt 256
Zeichen, von denen 128 Werte standarisiert sind. Darunter fallen
Buchstaben, Ziffern, Interpunktionszeichen, und bestimmte
Steuerzeichen.

Soweit, so gut, aber wie kommt man nun an den Code eines
Zeichens heran? Dazu dient in BASIC die Function

ASC

Das Zeichen, dessen Wert Sie wissen mochten, muf3 in Klam-
mern hinter dem ASC stehen: ASC("a"). Selbstverstindlich muf
der auf diese Weise resultierende Wert einer Variablen zugeord-
net werden, damit er nicht irgendwo im Speicher verloren geht:

A% = ASC("a")
weist der Variablen A% den ASCII-Wert des Zeichens a zu.
Aber auch die Umkehrfunktion ist moglich. Dabei wird das zu
einem ASCII-Wert gehorende Zeichen ermittelt:

PRINT CHR$(97)

gibt den Buchstaben a auf dem Monitor aus.

Auf diese Weise werden die Zahlen in Buchstaben umgewandelt
und umgekehrt. Noch ein paar Beispiele:

10 A$ = "An
20 PRINT ASC(A$)
30 END

Der Code des Zeichens A wird ermittelt und auf dem Monitor
ausgegeben. Er betrigt stets 65.

10 A$ = "Aller Anfang ist leicht"
20 PRINT ASC(A3)
30 END

70 : Das groBe ST-BASIC-Buch ———

Wie Sie aus den drei Programmzeilen leicht ersehen kénnen,
wird auch hier die Zahl 65 ausgegeben, obwohl der Funktion
ASC in diesem Fall nicht nur ein Zeichen, sondern ein ganzer
String als Argument (der Wert in Klammern) iibergeben wurde.
Bei Ubergabe eines Strings wird nur der ASCII-Wert des ersten
Zeichens ermittelt, die Gibrigen Zeichen werden vom Computer
einfach ignoriert.

10 A% = 65
20 PRINT CHR$(A%)
30 END

Auf dem Monitor erscheint der Buchstabe A. Zu beachten ist
hierbei, daBB der ASCII-Code nur fiir Werte von 0 bis 255 defi-
niert ist. Ubergibt man groBere Werte oder negative Zahlen als
Argument, wird dies vom Computer mit einer Fehlermeldung
quittiert, die zu einem Programmabbruch fithrt. Aber auch Son-
derzeichen kénnen mit der CHR$-Funktion auf den Bildschirm
gebracht werden:

PRINT CHR$(14);CHR$(15)

Diese beiden Werte erzeugen auf dem Bildschirm das Atari-
Symbol. Steuerzeichen finden sich ebenfalls in der Tabelle:

PRINT CHR$(7)

148t einen Glockenton (auch als Piepsen bezeichnet) erklingen.
Die Umkehrfunktion, mit der der ASCII-Wert des soeben er-
zeugten Tones ermittelt werden kann, ist jedoch nicht méglich.
Falls Sie es dennoch schaffen sollten, so geben Sie mir bitte Be-
scheid! Ein weiters, hiufig gebrauchtes Steuerzeichen besitzt in
der ASCII-Tabelle den Wert 13 und wird als Carriage Return
(Wagenricklauf) bezeichnet. Dies ist der ASCII-Code, den auch
die <Return>-Taste beim Betiitigen auslost.

Die ASCII-Tabelle des Atari ST finden Sie im Anhang dieses
Buches. Wir werden in spiteren Kapiteln noch einige Male auf
sie stoflen.

—— ST-BASIC Grundkurs 71

Also stimmt es doch! Der Computer unterscheidet intern nicht
zwischen Buchstaben und Zahlen. Was auf den ersten Blick als
storend und ungewohnt empfunden wird, erweist sich aber schon
bald als Vorteil. Mochten Sie z.B. in einem Programm Namen
alphabetisch sortieren, kommt der ASCII-Code sehr gelegen. Der
Buchstabe B besitzt den Wert 66, A dagegen nur 65, Z schlieB3-
lich wird als SchluBlicht durch den Wert 90 dargestellt. Deshalb
ist fiir den Computer der Buchstabe B grofler als der Buchstabe
A. Werden nun Namen sortiert, greift der Computer auf die
entsprechenden ASCII-Codes der Buchstaben zuriick. Also auf
Zahlen, die er eindeutig nach ihrer Gréfle ordnen kann. Bei
Buchstaben kdnnte er dies nicht.

Aber auch in anderen Fillen ist der ASCII-Code fiir den Pro-
grammierer von Nutzen. Moéchten Sie beispielsweise bestimmte
Daten im Programm verschliisseln, um sie vor neugierigen Blic-
ken anderer zu schiitzen, kann dies iiber den ASCII-Code ge-
schehen. Sie ermitteln einfach die ASCII-Werte der Buchstaben,
die nach einem bestimmten System codiert werden. Ehe die Da-
ten spiater wieder auf dem Monitor ausgegeben werden, lassen
sie diese vom Computer dekodieren und basteln sich so einen
String iiber die CHR$-Funktion zusammen, wobei die soeben
dekodierten Zahlen als Argumente benutzt werden. So einfach
geht das.

String-Addition

Zahlen konnen Sie schon addieren. Aber auch eine Addition von
Strings ist in BASIC problemlos moglich. Als Operator dient
auch hier das +-Zeichen. Es bewirkt, dafl zwei Strings hinter-
einander gehingt werden. Der auf diese Weise neu entstehende
String darf jedoch nicht mehr als 32766 Zeichen enthalten.

10 A$ = “ST-BASIC"

20 B$ = "Buch"

30 C$ = A$+" "+B$

40 PRINT " Der Inhalt von A$: ";A$
50 PRINT " Der Inhalt von B$: ";B$
60 PRINT " Der Inhalt von C$: ";C$
70 END

72 Das groBe ST-BASIC-Buch ——

Lassen Sie dieses kleine Programm laufen, so erscheint auf dem
Monitor:

Der Inhalt von A$: ST-BASIC
Der Inhalt von B$: Buch
Der Inhalt von C$: ST-BASIC Buch

In Programmzeile 10 wird der Variablen A$ die Zeichenkette
ST-BASIC, in Zeile 20 der Variablen B$ der String Buch zuge-
wiesen. In Zeile 30 wird zuerst ein Leerzeichen (Space) an den
Inhalt von A$ angehingt, danach folgt der Inhalt von B$. Die
soeben durch String-Addition erhaltene Zeichenkette wird der
Variablen C$ zugewiesen. Jetzt wird der Inhalt der einzelnen
Variablen auf den Monitor geschrieben. Sie sehen, daB3 die bei-
den Stringvariablen durch das +-Zeichen verkettet wurden. Der
Zwischenraum wurde mit einem Leerzeichen eingefiigt, damit
beide Worter nicht direkt aneinandergehingt werden. Als ASCII-
Code besitzt das Lerrzeichen den Wert 32. Folglich. hitte ich die
Zeile 30 auch so formulieren kénnen:

C$=A$+CHR$(32)+BS$

String-Multiplikation

Ein Kuriosum, das ich bisher nur in ST-BASIC kenne: Strings
konnen "multipliziert" werden. So liefert die Anweisung

A$ = N0 * §

in der Variablen A$ den String +++++, also genau 5 mal das
Zeichen +.

A$ = "-n*10+CHR$(32)*2+"Headl ine"+CHRS(32)*2+1-1*10
weist der Variablen A$ die Zeichenkette

---------- Headline =----------

—— ST-BASIC Grundkurs 73

zu. Es wird also die Rechenregel "Punkt vor Strich" bei der Ver-
kniipfung beachtet, sogar Klammern diirfen gesetzt werden:

PRINT Il+ll+ll_ll*5
PR]NT (II+II+II-II)*5

Im ersten Fall erhalten Sie auf dem Monitor +----- , wihrend im
zweiten Fall das Ergebnis +-+-+-+-+- lautet. Der Multiplikati-
onsoperator (*) mufl hinter dem String stehen, den Sie verviel-
fachen méchten. Andernfalls meldet sich der Computer mit
"Type mismatch" zu Wort.

Mochten Sie ihre Programme portabel gestalten, also auf andere
Computer leicht iibertragbar machen, so sollten Sie statt der
String-Multiplikation des ST-BASIC moéglichst die STRINGS$-
Funktion bemiihen, die das gleiche Ergebnis erzielt, jedoch im
Gegensatz zur Stringmultiplikation auch in anderen Interpretern
implementiert ist. Der einzige Unterschied zwischen beiden Va-
rianten besteht darin, daB man bei STRINGS$ nur jeweils ein
Zeichen vervielfachen kann, wihrend der Operator (*) dies auch
fur Strings zulidBt. Abhilfe konnen hier folgende Zeilen schaf-
fen, die einen String (A$) n-mal aneinanderhingen. Das Ergeb-
nis der Multiplikation erhalten Sie in der Variablen Multi$:

Multi$="" FOR T% = 1 TO N* N durch entsprechende Zahl ersetzen
Multis$=Mul ti$+A$
NEXT T%

Keine Angst, obige Zeilen habe ich an dieser Stelle nur der
Vollstindigkeit halber eingefiigt, damit Sie sehen, wie die
String-Multiplikation in anderen BASIC-Dialekten realisiert
werden kann, nimlich durch eine n-malige Addition der Strings.

74 Das groBe ST-BASIC-Buch ——

Stringkonvertierung mit Val und Str$

Auch wenn man von String-Addition oder gar String-Multi-pli-
kation spricht, so bedeutet dies nicht, da man mit Strings rech-
nen kann. Vielmehr handelt es sich bei diesen Operationen um
eine Verkniifung von Zeichenketten. Mit Zahlen ist die Rech-
nerei dagegen unproblematisch. Versucht man zu der Zeichen-
kette 134 die Zahl 3 zu addieren, fiithrt dies zu einer Fehlermel-
dung. Apfel und Birnen lassen sich einfach nicht addieren. Wan-
delt man die Zeichenkette 134 dagegen vor der Addition auch in
eine Zahl um, gibt es keine Probleme. Zur Umwandlung eines
Strings in eine Zahl (numerischen Ausdruck) wird in BASIC der
Befehl

VAL(Zeichenkette)

verwendet. Dabei wird die Zeichenkette von links nach rechts
systematisch abgeklappert, und solange umgewandelt, bis der
Interpreter auf ein Zeichen stofit, das nicht umgewandelt werden
kann, oder das Ende der Zeichenkette erreicht ist. Damit ist die
Arbeit fiir den Computer erledigt. Selbst wenn spiter noch ein-
mal ein Zahlenausdruck folgen sollte, wird dieser nicht konver-
tiert:

Zeichenkette Val (Zeichenkette)
354 354
21.September 21

Basic 0
32.5_blabla 32,5

43 tausend 432 43

Links sehen Sie die Zeichenkette, die als Argument bei Val an-
gewendet wird. Kann der String nicht konvertiert werden (z.B.
bei BASIC), liefert die Funktion den Wert 0. Auch VAL("DM
42.17") fuhrt zu dem Ergebnis 0, da bereits das erste Zeichen
des Strings nicht konvertiert werden kann. VAL("42.17 DM") da-
gegen gibt als Ergebnis der Operation die Zahl 42,17 zuriick.

—— ST-BASIC Grundkurs 75

Der umgekehrte Vorgang. Ein numerischer Ausdruck (Zahl) soll
in eine Zeichenkette umgewandelt werden. Auch das geht, und
zwar mit der Funktion

STR$(<numerischer Ausdruck>)

Als Ergebnis liefert die Funktion einen Stringausdruck, der einer
Stringvariablen zugewiesen werden kann:

numerischer Wert resultierende Zeichenkette

12 12"

48.53 "48.53"

-14 "_14"

STR$(43+7) "5Q"

STR$(A%) je nach Inhalt der Variable A%

An die erste Stelle des entstehenden Strings wird bei positiven
Werten ein Leerzeichen gestellt, das als Platzhalter fiir ein evtl.
auftretendes negatives Vorzeichen dient.

Stringmanipulation

Zeichenketten werden mit dem Operator (+) verkniipft. Sie kon-
nen jedoch auch wieder "auseinandergenommen" werden:

LEFT$
Der Befehl Left$ liefert aus einem STRING <String> genau die
ersten n Zeichen von links:

A$=LEFT$(<String>,n)

Die Variable B$ enthalte die Zeichenkette "Donaudampfschif-
fahrtsgesellschaft". Dann weist LEFT$ der Variablen A$ fol-
gende Zeichenketten zu: (A$=LEFT$(BS,n))

76 Das groBe ST-BASIC-Buch —

n resultierende Zeichenkette

Donau
10 Donaudampf
15 Donaudampfschiff
20 Donaudampfschiffahrt

RIGHT$

Wihrend LEFTS die ersten n Zeichen des Strings liefert, erreicht
man die letzten n Zeichen der Zeichenkette mit der Funktion
RIGHTS. Die Syntax beider Befehle ist wieder identisch:

A$ = RIGHT$(<String>,n)

n resultierende Zeichenkette bei RIGHTS

12 gesellschaft
23 schiffahrtsgesellschaft
28 dampfschiffahrtsgesellschaft

MID$

Hiufig bendtigt man einen bestimmten Teilstring aus einer
Zeichenkette. Dieser Teilstring kann iiber MID$ erreicht werden.
Zwei Variationen von MID$ sind moglich:

A$ = MID$(<String>,n)

liefert alle Zeichen ab der n-ten Position bis zum String-Ende
von <String>:

n resultierende Zeichenkette

6 dampfschiffahrtsgesellschaft
11 schiffahrtsgesellschaft
22 gesellschaft

Bei der zweiten Variante kann zusitzlich mit angegeben werden,
wie viele Zeichen (<Anzahl>) ab der n-ten Position zuriickgege-
ben werden sollen:

A$ = MID$(<String>,Anzahl,n)

—— ST-BASIC Grundkurs 77

n Anzahl resultierende Zeichenkette
6 5 dampf

6 11 dampfschiff

11 6 schiff

1 5 Donau

16 5 fahrt

Mit diesen Befehlen diirfte es kein Problem mehr bereiten, eine
Zeichenkette in ihre Bestandteile zu zerlegen. Mochten Sie be-
stimmte Teilstrings in einer Zeichenkette abindern, so haben Sie
hierfiir mehrere Moglichkeiten:

Beispiel:
A$ = “Das kleine ST-BASIC Buch"

Mbochten Sie "kleine" durch "grosse" ersetzten, wird dies uber
LEFTS$ und MIDS$ etwa so bewerkstelligt:

A$ = LEFT$(A$,4)+"grosse"+MID$(AS,11)

Sie holen sich die ersten vier Zeichen (Das) mit Hilfe von
LEFT$ und hiingen das gewiinschte "grosse" an. Zum Schlufl
werden die restlichen Zeichen von A$ ab der 11. Position ange-
fiigt, und der neu gewonnene Stringausdruck der Variablen zu-
gewiesen. In A$ ist jetzt die Zeichenkette "Das grosse ST-BA-
SIC-Buch" enthalten. Das gleiche Ergebnis kann auch mit
LEFTS und RIGHTS erzielt werden:

AS = LEFT$(AS$,4)+"grosse"+RIGHTS(AS, 14)
Ich kann Ihnen sogar noch eine dritte Alternative anbieten:
MID$(AS,5,6) = "grosse"
Im letzteren Fall wurde eine spezielle Version von MID$ be-
nutzt. MID$(<String>,n,Anzahl) = X$ ersetzt <Anzahl> Zeichen

ab der n-ten Position in <String> durch X$. Beliebte Fehler-
quellen bei LEFTS$, MID$ und RIGHTS:

78

Das groBe ST-BASIC-Buch —

Es wird versucht, mehr Zeichen aus dem String abzuholen,
als iiberhaupt enthalten sind: A$="Hallo" B$=LEFT$(AS,10)
fithrt zu einer Fehlermeldung, da der String lediglich aus 5
Buchstaben besteht. Ebenso falsch sind folgende Ausdriicke:
B$=MID$(A$,6), B$=RIGHT$(A$,10), BS$=MIDS$(AS,2,8),
usw.

Der resultierende Wert ist bei allen drei Funktionen wieder
eine Zeichenkette, die einer Stringvariablen zugewiesen wer-
den muB: BS=LEFT$(AS$,2). Flasch ist: B%=LEFT$(AS$,2)

LEFTS$, MID$, und RIGHTS diirfen nur auf Zeichenketten
angewendet werden. Falsch wire: A$=MID$(B, 2,3), da B
eine Integer- und keine Stringvariable ist.

Das erste Zeichen eines Strings hat die Position 1:
A$=MID$(BS$,1,5) entspricht AS=LEFT$(B$,5). Falsch ist da-
gegen: A$=MID$(AS,0,5).

LEN

Die Funktion LEN, auf einen Stringausdruck angewendet, liefert
als Ergebnis die Anzahl der in dieser Zeichenkette enthaltenen

Buchstaben:
String LEN(<String>)
Donau 5
ST-Basic 8
Atari ST 8
g 1

10 CLS : INPUT " Bitte geben Sie ein Wort ein: ";A$ 20 Laenge%=
LEN(AS$)

30 PRINT " Das Wort ";A$;" enthidlt";Laenge%;" Buchstaben"

40 END

Obiges Programm verdeutlicht noch einmal die Funktionsweise
von LEN. In Zeile 10 wird zuerst der Bildschirm geldscht, an-
schlieBend erhilt der Benutzer die Aufforderung ein beliebiges
Wort einzugeben, das der Variablen A$ zugewiesen wird. Zeile

30

ermittelt {iber LEN(A$) die Anzahl der in A$ enthaltenen

——— ST-BASIC Grundkurs 79

Buchstaben und weist das Ergebnis der Integervariablen
Laenge% zu. In Zeile 40 wird dann das Wort sowie seine Lénge
auf dem Bildschirm angezeigt.

SPC bzw. SPACE$

Beide Funktionen erzeugen einen String, der aus <Anzahl>
Leerzeichen (Spaces) besteht:

A$=SPC(10)
A$=SPACE$(10)

weisen der Variablen A$ einen Leerzeichenstring der Lénge 10
zu. Diese Funktionen erfahren ihre Anwendung immer dann,
wenn Daten formatiert auf dem Bildschirm oder dem Drucker
ausgegeben werden sollen und unterschiedliche Lingen durch
Leerzeichen ausgeglichen werden miissen, damit ein iibersicht-
liches Formular entsteht.

Anmerkung: In anderen BASIC-Dialekten ist die Funktion SPC
auf den PRINT-Befehl beschrinkt. Ein Leerzei-
chenstring kann dort nur iiber die Funktion
Space$ erzeugt werden. In ST-BASIC sind beide
Alternativen gleichwertig. Mochten Sie jedoch
Programme auf andere BASIC-Interpreter iiber-
tragen, kann es unter Umstinden zu Problemen
kommen, wenn Sie SPC auflerhalb des Print-Be-
fehls verwenden.

STRING$

STRINGS entspricht der String-Multiplikation mit *, ist jedoch
auf das Vervielfachen eines Zeichens beschriankt:

A$=STRING$(<Anzahl>,<Zeichen>)

weist der Variablen A$ <Anzahl>-mal das Zeichen <Zeichen>
zu. Ein paar Beispiele:

80 Das groBe ST-BASIC-Buch ——

Anzahl Zeichen STRINGS$(Anzahl, Zeichen)
10 "4 ++++++++++
5 "A" AAAAA
5 CHR$(65) AAAAA
5 CHR$(32) " " vgl. Space$(5)
MIRRORS$

Die Funktion A$=MIRRORS$(<String>) weist der Variablen A$
den Inhalt von <String> zu, jedoch von hinten nach vorne gele-
sen:

<String> MIRRORS$(< String>)

hallo ollah
birgit tigrib
roma amor (so ein Zufall!)
basic cisab
UPPER$

Die Funktion A$=UPPER$(<String>) weist der Variablen A$ den
Inhalt von <String> zu, simtliche Kleinbuchstaben werden in
GroBbuchstaben umgewandelt, Sonderzeichen und Zahlen blei-
ben unberiihrt:

< String> Upper$(< String>)
langmeier LANGMEIER

bader BADER
Peter PETER
SaBINe Sabine

Tip: Da Sonderzeichen von dieser Funktion nicht betroffen
sind, die Umlaute 4,6,i jedoch unter diesen in der ASCII-
Tabelle abgelegt sind, sollte am Programmanfang mit dem
Befehl MODE"D" der Modus "deutsch" eingestellt werden.
In diesem Fall werden bei einem UPPER$ auch die Um-
laute in GroBbuchstaben gewandelt, das B wird jedoch
immer durch Doppel-S ersetzt.

—— ST-BASIC Grundkurs 81

LOWERS$

Die Umkehrfunktion zu UPPERS lautet LOWERS und wandelt
simtliche in <String> enthaltenen Grof3buchstaben in Klein-
buchstaben um. Kleinbuchstaben, Sonderzeichen und Zahlen
bleiben unverindert erhalten. Ist MODE"D" aktiv, werden auch
die Umlaute A, O, U in Kleinbuchstaben gewandelt.

<String> Lower$(<String>)
LANGMEIER langmeier
BaDer bader
GSG9 gsg9
SaBINe sabine
MODE

Eigentlich hat dieser Befehl ja nichts mit String-Manipulation zu
tun, und dennoch hat er auf Befehle zur String-Manipulation
EinfluB. Deshalb méchte ich ihn an dieser Stelle einbauen. Ein
Beispiel fiir seine Anwendung haben Sie bei UPPER$ und LO-
WERS kennengelernt.

MODE "D" schaltet auf den Modus "deutsch", MODE "GB" auf
den Modus "Grofbritannien" und MODE "USA" schlieBlich auf
"amerikanisch". Sofern die verschiedenen Modi Einfluf3 auf einen
Befehl ausiiben, werde ich dies bei der Erklirung des entspre-
chenden Befehls nachreichen.

String-Matching

Als String-Matching bezeichnet der Informatiker das Aufsuchen
eines Teil-Strings in einem (Mutter-)String. Dies wire z.B. der
Fall, wenn Sie in diesem Buch das Wort String-Matching suchen
wiirden. Der Teilstring bestiinde dann aus String-Matching,
wihrend der Mutter-String der Inhalt dieses Buches wire. Wir
wollen an dieser Stelle jedoch nicht gleich nach den Sternen
greifen, und uns mit dem Auffinden eines Teilstrings in einer
Zeichenkette normaler GroBe befassen. Gliicklicherweise sind
wir mit einer Funtion gesegnet, die uns diese Aufgabe abnimmt

82 Das groBe ST-BASIC-Buch ——

(C-Programmierer haben da weniger Gliick: sie missen sich ihre
eigene Funktion schreiben und das ist um einiges komplizier-
ter...):

Pos=INSTR(<Mutterstring>,<Suchstring>)

Die Funktion INSTR untersucht, ob die Zeichenkette <Such-
String> im <Mutter-String> enthalten ist. Ist dies der Fall, so
wird der Variablen Pos die Position des Suchstrings innerhalb
des Mutterstrings zugewiesen, andernfalls gibt die Funktion den
Wert 0 zuriick. Klingt kompliziert? Dann schnell ein Beispiel:

<Mutterstring > < Suchstring> Position
Dies ist ein kleiner Test ist 6
Dies ist ein kleiner Test war 0
Dies ist ein kleiner Test ie 2

Zusitzlich. kann noch angegeben werden, ab welcher Position mit
der Suche im <Such-String> begonnen werden soll:

Pos=INSTR(<Beginn>, <Mutterstring>,<Suchstring>)

Der Befehl hat die gleiche Wirkung, mit der Suche nach dem
<Suchstring> wird jedoch erst ab der Position <Beginn> begon-
nen. Wird der Such-String aufgefunden, so gibt die Funktion die
Position des <Such-Strings> innerhalb des <Mutter-Strings> zu-
riick, andernfalls wird der Wert 0 zugewiesen:

<Mutterstring> <Beginn> <Suchstring> Position
Bei diesem Beispiel ... 1 Bei 1
Bei diesem Beispiel ... 5 Bei 12
Bei diesem Beispiel ... 13 Bei 0

Soweit zum String-Matching. Ein kleines Beispielprogramm soll
die Anwendung noch einmal in einem gréBeren Zusammenhang
verdeutlichen. Dabei kommt es mir hier weniger auf die Eleganz
an (so etwas wiirde ich nie in einem normalen Programm fabri-
zieren), sondern vielmehr auf eine kurze Wiederholung des bis-
her Gelernten. Auf den letzten Seiten wurden Sie mit Theorie
direkt erschlagen, aber derart kniippeldick kommt es so schnell
nicht wieder. Doch nun zu unserem kleinen Programm.

—— ST-BASIC Grundkurs

Es soll ein Name in eine String-Variable eingegeben werden,
und zwar zuerst der Vorname, anschlieBend durch ein Leerzei-
chen getrennt der Familienname. Der erste Buchstabe des Vor-
namens soll in GroBschrift, die restlichen Zeichen bis zum Space
Kleinbuchstaben dargestellt werden. Der Familienname soll
vollig in GroBbuchstaben erscheinen. Um die Sache noch etwas
zu verkomplizieren, soll der Name, sowie die Linge des Vor-
und Zunahmens formatiert ausgegeben werden. Hier nun das

in

Programm:

VNV WN-=O

WWWWWMNDNNONNNNNNDNON =D D @000
PFUN2O0VONOCOCTVHAEWN=200VORRNOTVSWN-=O

1deskdededede e de ook e ek de ke A e A A A A koA e Ak R AR AR R Rk Rk R AR R Rk Rk
B NAME .BAS *

'* Autor: Michael Maier Version: 1.00 Datum: 30.08.1988 *
1* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *
'* (C) 1988 by DATA BECKER GmbH Diisseldorf *

PRRKKAKRIAKEAKRAKRIAKKKAKIKKAKAKKARAARAA KRR IAARRRKAR AR Rk hhkhhkhhkhhhdd
[
1

CLS : PRINT ' Bildschirm loschen und Leerzeile ausgeben

~INPUT " Bitte geben Sie Ihren Vor- und Nachnamen ein: ";Name$

' Nach einem Leerzeichen suchen ...
Pos%= INSTR(Name$, CHR$(32))

1
' Hier miBte eigentlich Uberprift werden, ob ein Leerzeichen

' eingegeben wurde, da andernfalls der Variablen Pos% der Wert
' 0 zugewiesen wird, und das Programm aussteigt ...

]

Name$= UPPER$(LEFT$(Name$, 1)+ MID$(Name$,2))

MID$ (Name$,2,Pos%-2)= LOWER$(MID$(Name$,2,Pos%-2))

Name$= LEFT$(Name$,Pos%)+ UPPER$(RIGHT$(Name$, LEN(Name$)-Pos%))
1

Vorname$= LEFT$(Name$,Pos%-1)

Zuname$= MID$(Name$, Pos%+1)

]

PRINT

PRINT STRINGS$(60,"*)

PRINT SPC(2);"Name"; SPACE$(10);"Vorname"; SPACE$(10);

PRINT “Zeichen Nachname Vorname"

PR [N‘r Il**ll*zg...ll**ll

PRINT

PRINT " "-Zuname$; SPACE$(14- LEN(Zuname$));

PRINT Vorname$; SPACE$(17- LEN(Vorname$));

PRINT SPC(LEN("Zeichen"));

PRINT LEN(Zuname$); SPACE$(12- LEN(STR$(LEN(Zuname$)-1)));

84 Das groBe ST-BASIC-Buch ——

35 PRINT LEN(Vorname$)
36 !
37 END

In Zeile 9 wird der Bildschirm geléscht. Das nachfolgende
PRINT sorgt dafiir, daf3 die erste Bildschirmzeile leer bleibt. In
Zeile 10 erhilt der Benutzer die Aufforderung seinen Vor- und
Zunahmen einzugeben. Dieser wird der Variablen Name$ zuge-
wiesen.

Zeile 12 untersucht die Variable Name$ auf ein Leerzeichen
(CHR$(32)) und weist die Position des Leerzeichens der Vari-
ablen Pos% zu. Da diese fiir die weiteren Operationen benutzt
wird, miite in einem anwenderfreundlichen Programm eine
Abfrage eingebaut werden, ob ein Leerzeichen in Name$ zu fin-
den ist. Andernfalls enthilt die Variable Pos% den Wert 0 zuge-
wiesen und scheidet fiir die Benutzung in der Stringmanipulation
aus. Doch da wir dies noch nicht kénnen, habe ich darauf ver-
zichtet.

Jetzt geht’s rund! In Zeile 18 wird zuerst der erste Buchstabe des
Strings mit dem Befehl LEFT$(Name$,1) abgeschnitten. Da
LEFTS ein Argument von UPPERS ist, wird der erste Buchstabe
(falls notig) in einen Grof3buchstaben gewandelt. Die restlichen
Zeichen bis zum Stringende werden mit String-Addition wieder
angehingt und das Ergebnis der Variablen Name$ zugewiesen.
Dort ist nun wieder die urspriingliche Zeichenkette zu finden,
der erste Buchstabe allerdings auf alle Fille in Grof3schrift.

Im nichsten Schritt werden die restlichen Buchstaben des Vor-
namens in Kleinschrift umgewandelt. Dazu besitzt ST-BASIC
bekanntlich den Befehl LOWERS. In Pos% ist die Position des
Leerzeichens gespeichert. Wir miissen also alle Zeichen ab der 2.
Position von Name$ (den ersten Buchstaben haben wir ja schon
in der letzten Zeile in GrofB3schrift umgewandelt), bis zu Pos%-1
in Kleinbuchstaben verwandeln. Pos%-1 deshalb, da Pos% die
Position des Leerzeichens angibt, das nicht mehr mitgewandelt
werden muf}. Beriicksichtigt man ferner, da3 der erste Buchstabe
im String nicht wieder in Kleinschreibweise dargestellt werden
soll, miissen die Parameter in MID§$ 2 und Pos%-2 lauten. Auf
diese Weise resultiert ein Teilstring, der mit dem 2. Buchstaben

——— ST-BASIC Grundkurs 85

beginnt und vor dem Leerzeichen endet. Gleichzeitig kommen
die beiden Spielarten von MID$ zum Einsatz: rechts des Zuwei-
sungsoperators (=) wird der Teil-String herausgeschnitten und
darauf die Funktion LOWERS angewendet. Diese Zeichenkette
wird wieder in Name$ eingebaut. Dies erfolgt iiber das MID$
links des Zuweisungsoperators.

Der Vorname ist fertig umgewandelt, jetzt geht es dem Zunamen
an den Kragen. Dieser beginnt nach dem Leerzeichen und endet
mit dem String-Ende. Auch hier kénnte man wieder MID$ be-
mithen, aber es geht auch - obgleich etwas komplizierter - iiber
RIGHTS. Als Parameter miissen wir in RIGHTS$ angeben, wie-
viele Zeichen wir vom String-Ende abschneiden mdochten. Dies
kénnen wir ausrechnen, indem wir von der Stringlinge (LEN)
die Position des Leerzeichens (Pos%) subtrahieren. Ubrig bleibt
die Anzahl der Buchstaben des Zunamens. Diesen Parameter be-
nutzen wir in RIGHTS, um den Zunamen zu isolieren. Mit UP-
PERS erfolgt die Umwandlung des Zunahmens in Grofbuchsta-
ben. RIGHTS hat noch einen weiteren Haken: Da wir den String
auseinandergenommen haben, miissen wir ihn auch wieder selbst
zusammensetzen. Aber das bereitet jetzt keine Schwierigkeiten
mehr: LEFTS liefert die Zeichenkette bis zum Zunamen, daran
hingen wir den umgewandelten Zunamen. Fertig!

In den Zeilen 22 und 23 zerlegen wir dann den soeben unter
vielen Mithen zusammgengesetzten Namen erneut in seine beiden
Bestandteile: Vor- und Zunamen.

Zeile 25 sorgt wieder fiir eine Leerzeile, ehe in Zeile 26 ein aus
sechzig Sternen (*) bestehender String auf den Bildschirm ge-
bracht wird.

Zeile 27 sorgt ebenso wie die Zeile 28 fiir die Tabelleniiber-
schrift. Dabei diirfte es keinerlei Verstindnisprobleme geben.
Achten Sie dabei allerings auf die Funktion des ; am Ende der
Zeile 27. Es bewirkt, daf3 ein folgender PRINT-Befehl (in Zeile
28) nicht mit einer neuen Zeile beginnt, sondern seine Daten in
die gleiche Zeile schreibt.

86 Das groBe ST-BASIC-Buch ——

In Zeile 29 kommt die String-Multiplikation und String-Addi-
tion zum Zug. Auch hier werden wieder 60 Sternchen erzeugt,
diesmal jedoch nicht mit STRINGS. Es wire iibrigens logischer
gewesen, 30-mal den String ** zu multiplizieren als 29 mal und
daran dann ** zu hiingen. Aber dann hitte ich Ihnen nicht so
schon demonstrieren kénnen, da3 ST-BASIC "Punkt vor Strich”
verkniipft.

Zeile 30 sorgt wieder fiir die Ausgabe einer Leerzeile, danach
werden die einzelnen Daten formatiert ausgegeben. Formatiert
bedeutet in diesem Zusammenhang, daf3 die einzelnen Daten in
die Tablelle spaltenweise unter die jeweilige Uberschrift einge-
tragen werden. Ab Spalte 3 soll der Zuname in der Tabelle er-
scheinen, ab Spalte 17 der Vorname usw.

Um den Zunamen ab der Spalte 3 ausgeben zu kdonnen, werden
die ersten beiden Spalten mit " " iibersprungen, danach folgt der
Zuname. Je nach Eingabe ist der Zuname unterschiedlich lang.
Ab Spalte 17 soll der Vorname ausgegeben werden. Deshalb
miissen die nicht benétigten Spalten zwischen dem Ende des
Zunamens und dem Beginn des Vornamens iiberbriickt werden.
Die Funktion Space$ ist dafiir geradezu pridestiniert: Es werden
14 (Spalte 17 - Spalte 3) Leerzeichen, abziiglich der Linge des
schon ausgedruckten Zunamens, ausgegeben. Die nichste Ausga-
beposition ist somit unabhiingig von der Linge des Zunamens
die Spalte 17. Dieses Spielchen wiederholt sich fiir die Ausgabe
des Vornamens.

Zeile 33 gibt 7 Leerzeichen aus und setzt die nichste Schreibpo-
sition direkt unter Zuname. Dort wird die Anzahl der im Zuna-
men enthaltenen Buchstaben ausgegeben. Diese kann u.U.
durchaus zweistellig werden. Deshalb miissen wir die nicht
bendtigten Spalten wieder iiberbriicken. Doch diesmal wird es
nochmals etwas komplizierter. Wir haben eine Zahl (LEN liefert
ja bekanntlich als Ergebnis eine (Integer-)Zahl) auf dem Moni-
tor ausgegeben. Von einer Zahl wiederum kann die Linge nicht
mit LEN ermittelt werden, da diese Funktion einen String als
Argument erwartet. Soll sie doch einen bekommen!

——— ST-BASIC Grundkurs : 87

Wir wandeln einfach die resultierende Linge mit der Funktion
STRS in einen String um. Von diesem String koénnen wir wie-
derum die Linge problemlos iiber LEN ermitteln. STR$ hat aber
eine Eigenheit: bei positiven Werten beginnt der String mit ei-
nem Leerzeichen (Platzhalter fiir Vorzeichen), ist also um einen
Wert grofer als es die umzuwandelnde Zahl war. Doch das
macht gar nichts! Wir ziehen einfach eine 1 ab, schon stimmt das
Ergebnis wieder! Diese Zeile sieht komplizierter aus, als sie ei-
gentlich ist: wir ermitteln die Linge des Zunamens, verwandeln
diese Zahl in einen String und erkunden von diesem wieder die
Linge, abziglich des Wertes 1 fiir das vorangestellte Leerzei-
chen. Fiir alle, denen das ganze Spielchen ein wenig kompliziert
erscheint, es gibt noch eine wesentlich einfachere Moglichkeit
die Stellen einer Zahl zu erfahren: Uber die Logarithmusfunk-
tion. An dieser Stelle mochte ich jedoch nicht ndher darauf ein-
gehen.

Zahlensysteme

Es gibt ungezihlte Lehrbiicher iiber Programmiersprachen, die
erst einmal die verschiedenen Zahlensysteme behandeln, ehe der
geplagte Leser den ersten Befehl zu Augen bekommt. Da werden
verschiedene Zahlen durch die Systeme jongliert, eine Akrobatik
die ich Thnen ersparen méchte, weil ST-BASIC diese Arbeit fiir
Sie ebensogut erledigen kann.

Das Dezimalsystem mii3te Ihnen ebenso wie das Dual- oder auch
Binirsystem vertraut sein. Zwei weitere Zahlensysteme, die in
der Computerei eine wichtige Rolle spielen, moéchte ich hier
ganz kurz ansprechen:

Das Hexadezimalsystem

Wihrend der Mensch im Dezimalsystem rechnet, kann der Com-
puter damit herzlich wenig anfangen. Er bevorzugt das Dualsy-
stem, das wiederum fiir den Menschen unverstindlich ist. Aus
diesem Grund hat man das Hexadezimalsystem eingefiihrt, das
keiner von beiden versteht.

88 Das groBe ST-BASIC-Buch ——

Aber SpaB beiseite, das Hexadezimalsystem arbeitet mit 16 ver-
schiedenen Ziffer. Fiir die Zahlen 0 bis 9 kann man die Ziffern
des Dezimalsystems benutzen, zur Darstellung der uibrigen Zah-
len borgt man sich die ersten sechs Buchstaben des Alphabets
(A, B, C, D, E, F). Die Zahl A des Hexadezimalsystems besitzt
im Dezimalsystem den Wert 10, F den Wert 15. Damit man er-
kennt, daB F in diesem Fall kein Buchstabe, sondern eine Zahl
im Hexadezimalsystem ist, stellt man noch das Dollarzeichen $
voran: $A.

Das Oktalsystem

Das Oktalsystem ist das System der C-Programmierer. Es besteht
aus den Ziffern 0-8 und erhilt als Kennzeichen ein & vorange-
stellt.

Das Dualsystem

Das Dualsystem basiert auf den beiden Ziffern 0 und 1. Aber
wozu sage ich das? Das einzig Neue daran ist, daB es durch ein
vorangestelltes % gekennzeichnet wird. Es existiert noch eine
weitere Moglichkeit das System anzugeben:

Prifix fiir Zahlensystem
&d Dezimalsystem

&h Hexadezimalsystem
&b Dual(Binér-)system
&o Oktalsystem

Nun aber in medias res, der Umwandlung von Zahlen in ein an-
deres System:

HEX$

Die Funktion HEX$ wandelt einen beliebigen numerischen Wert,
der als Argument angegeben werden muf3, in eine Hexadezi-
malzahl (genauer gesagt in eine Zeichenkette) um:

A$= HEX$(174)

—— ST-BASIC Grundkurs 89

liefert in A$ die Zeichenkette " AE". An der ersten Stelle steht
stets ein Leerzeichen.

BINS

Die Funktion BIN$ wandelt einen numerischen Wert in eine
Bindrzahl (Zeichenkette) um:

As$= BIN$(160).

ergibt die Zeichenkette " 10100000" in AS.

OCT$

Jetzt diirfen Sie dreimal raten, welche Funktion OCTS$ auslost!
Richtig, die Umwandlung eines numerischen Ausdrucks in eine
Oktalzahl (Zeichenkette):

A$= OCT$(63)
weist der Variablen AS$ " 77" zu.
Mochten Sie die auf diese Weise erhaltenen Zeichenketten wie-
der in eine Dezimalzahl wandeln, erledigt das die Funktion VAL

fiir Sie. Als Argument mufl3 die Zeichenkette (mit vorangestell-
tem Kennzeichen fiir das Zahlensystem!) iibergeben werden:

Ausdruck Inhalt von A
A= VAL("&77") 63
A= VAL("$AE") 174
A= VAL("%10100000") 160

Liegt in A$ beispielsweise ein Binir-String vor, kann das Prifix
einfach durch String-Addition vorne angehidngt werden:

Zahl= VAL("%"+A$%)

90 Das groBe ST-BASIC-Buch ——

Das Gleiche gilt natiirlich auch fiir das Hexadezimal- bzw.
Oktalsystem. Das Prifix mufl jedoch entsprechend abgeidndert
werden. Beim Hexadezimalsystem in $ (Zahl= VAL("$"+AS$))
bzw. in & beim Oktalsystem: Zahl= VAL("&"+B$)

Soviel zu den unterschiedlichen Zahlensystemen, die - wie Sie
soeben gesehen haben - in ST-BASIC keinerlei Probleme bei der
Umwandlung bereiten. In diesem Buch werde ich bei der Zah-
lendarstellung so wenig wie nur irgendwie moglich vom Dezi-
malsystem abweichen, um die Programme f{ibersichtlicher und
einfacher zu gestalten. Trotzdem der Vollstindigkeit halber die-
ser kleine Einschub.

2.8 Variablenfelder

Eine weitere Spezies der Gattung Variable stellen die Vari-
ablenfelder oder Arrays dar. Dabei werden mehrere Variablen
eines Typs (z.B. Integer, Float oder String) unter einem Namen
zusammengefasst. Ein in Klammern stehender Index am Ende
des Variablennamens gibt dariiber AufschluB3, welches Element
aus dem Array angesprochen werden soll.

A$(3)= “Ein Beispiel flr einen Array"

Anschaulicher kann man sich Variablenfelder als eine Kommode
mit mehreren Schubladen (die iibereinander angeordnet sind)
vorstellen. Die Schubladen sind durchnumeriert, und eine ein-
zelne Schublade kann iiber eine Nummer angesprochen werden.
Im obigen Beispiel wiirde der String "Ein Beispiel fiir einen Ar-
ray" in die Schublade mit der Nummer drei abgelegt. Mochten
Sie sich den Inhalt dieser Schublade anzeigen lassen, so erreichen
Sie dies mit dem Befehl

PRINT A$(3)

Damit man in einem Programm mit Feldvariablen arbeiten kann,
miissen sie zuvor dimensioniert werden. Dabei wird dem Com-
puter mitgeteilt, wieviel Platz er fiir dieses Array reservieren
muf.

——— ST-BASIC Grundkurs 91

DIM A$(5)

richtet ein Feld A$ mit 6 Dimensionen ein, da der Index von 0
bis 5 lduft, also von A$(0) bis A$(5).

Wird in ST-BASIC (und nur hier!) der DIM-Befehl vergessen,
dimensioniert der Interpreter selbstindig mit einem maximalen
Index von 10. Das heifit im Klartext, daB alle Zuweisungs- und
Ausgabe-Operationen bei undimensionierten Feldern solange
einwandfrei durchgefithrt werden, solange der Index den Wert
10 nicht uberschreitet. Den Versuch, in einem undimensionierten
Array einen hoheren Index als 10 anzusprechen, ahndet der
Computer mit einer Fehlermeldung.

Dennoch sollten Sie sich erst gar nicht angewOhnen, den DIM-
Befehl zu vernachlissigen. Andere BASIC-Versionen sind we-:
sentlich penibler, und dies fithrt dann bei einem undimensio-
nierten Feld unweigerlich zu einem Programmabbruch mit
Fehlermeldung. Aber auch mehrdimensionale Arrays sind mog-
lich:

DIM A$(5,5)

dimensioniert ein Array mit 36 Feldern. Zur Veranschaulichung
des Ganzen muf3 wieder die Kommode herhalten. Diesmal besitzt
sie 36 Schubladen. Mochten Sie die Schublade A$(3,2) anspre-
chen, so gehen Sie in die dritte Spalte und zweite Reihe. A$(4,1)
finden Sie dann logischerweise in der vierten Spalte und ersten
Reihe.

Nach diesem Schema kénnen Sie Arrays mit drei, vier und mehr
Dimensionen bilden. Bei mehrdimensionalen Arrays darf die
Gro6Be der ersten Dimension den Wert 65535 und die aller iibri-
gen Dimensionen zusammen den Wert 65535 nicht iibersteigen.
Die Gesamtgr6Be des Feldes erhalten Sie durch Multiplikation
der einzelnen Teildimensionen. Sie brauchen sich deshalb aber
keine grauen Haare wachsen zu lassen, da eine Uberschreitung
der erlaubten Gesamtgr6Be in der Praxis so gut wie nie vor-
kommt, wenn ein Feld verniinftig dimensioniert wird.

92 Das groBe ST-BASIC-Buch ——

Variablen-Art Platzbedarf in Byte je Element

Integer-Flag 1 Byte fiir jeweils 8 Elemente
Integer-Byte 1

Integer-Word 2

Integer-Long 4

Single-Float 6

Double-Float 10

String 6 (+ Linge + 10, sobald angelegt)

2.9 Programmierhilfen

In diesem Kapitel méchte ich Thnen gerne ein paar Befehle vor-
stellen, die dem Programmierer die tigliche Arbeit im Umgang
mit St-BASIC vereinfachen.

Funktionstastenbelegung

ST-BASIC sieht die Moéglichkeit vor, die 10 vorhandenen Funk-
tionstasten mit Zeichenfolgen zu belegen. Die Linge einer Zei-
chenfolge darf dabei den Wert 32 nicht iiberschreiten.

Wozu dieser Aufwand? Hiufig wird wihrend der Programmie-
rung eine bestimmte Zeichenkette immer wieder benoétigt. Sie
konnen diese natiirlich jedesmal iiber die Tastatur eintippen,
aber irgendwann wird Thnen dies zu bléd (Verzeihung!). Schlief3-
lich haben Sie die Moglichkeit, diese Zeichenkette auf eine be-
liebige der zehn Funktionstasten zu legen. Ein Druck auf die
entsprechende Taste geniigt und wie von Geisterhand erscheint
die entsprechende Zeichenfolge auf dem Bildschirm.

Um einer Funktionstaste einen bestimmten Text zuzuweisen,
wird in ST-BASIC der Befehl

KEY

verwendet.

KEY 2="ST-BASIC Buch"

weist der Funktionstaste <F2> den String "ST-BASIC-Buch" zu.

—— ST-BASIC Grundkurs 93

Sobald eine Funktionstaste mit einem Text belegt ist, geniigt ein
Druck auf die betreffende Funktionstaste (hier: <F2>), um die
Zeichenfolge ("ST-BASIC-Buch") auf dem Bildschirm erscheinen
zu lassen. Mochten Sie auf die Funktionstaste <F1> den Befehl
RUN legen, und diesen bei Tastendruck auch gleich ausfiithren
lassen, so miissen Sie den ASCII-Code bemiihen. Da ein Betiti-
gen der <Return>-Taste stets eine Zuweisung abschlieft, ist es
nicht moglich, <RETURN> durch Tastendruck einer Zeichen-
kette zuzuweisen. Der ASCII-Code fiir <RETURN> ist genormt
und besitzt den Wert 13:

KEY 1="run'+chr$(13)

weist der der Funktionstaste <FI> den Befehl RUN zu, und
fuhrt diesen bei einem Druck auf die Funktionstaste gleich aus:
das Programm im Speicher wird gestartet. Anlich ergeht es IThnen
mit den Anfihrungszeichen, auch sie miissen iiber den ASCII-
Code (34) eingegeben werden:

KEY3="FILES"+CHR$(34)+"A:\ST_BASIC*.BAS"+CHR$(34)+CHR$(13)

Ein Betitigen der Taste <F3> listet ab sofort simtliche auf Disk
A im Ordner ST_BASIC enthaltenen BASIC-Programme auf
dem Monitor auf. Weitere 10 Befehlsfolgen konnen auf den
Funktionstasten abgelegt werden, indem Sie eine Funktionstaste
in Verbindung mit <Shift> driicken:

KEY 13= “CLS"+CHR$(13)

Driicken Sie gleichzeitig <Shift> <F3>, so wird der Bildschirm
geloscht (Funtionstaste 13), wihrend bei <F3> alleine alle BA-
SIC-Programme auf dem Monitor aufgelistet werden. Mochten
Sie sich die Belegung aller Funktionstasten einmal ansehen, kann
dies iiber den Befehl

KEY LIST

geschehen.

94 Das groBe ST-BASIC-Buch ——

Programm listen

Der Befehl LIST dient dazu, ein Programm ganz oder teilweise
auf dem Bildschirm auszugeben. Alternativ kann das Listing
auch an einen Drucker geleitet werden.

LIST Listet das gesamte Programm.
LIST -200 Listet alle Zeilen bis zur Zeile 200.
LIST 220 Listet die Zeile 220.

LIST 100-200 Listet alle Zeilen von 100 bis 200.
LIST 200- Listet alle Zeilen ab Zeile 200.

Der Bindestrich kann auch durch ein Komma ersetzt werden:
LIST 100,200 Listet alle Zeilen von 100 bis 200.

Daneben kénnen die Zahlen auch durch Variablen ersetzt wer-
den:

LIST (ERL),(ERL+50) Listet ab der Zeile, deren Nummer
in der Variablen ERL steht, bis zur
Zeile mit der Nummer ERL+50.
Anmerkung: Tritt ein Fehler im
Programm auf, so enthilt die Vari-
able ERL (ERorr Line) die Num-
mer der Zeile, in der der Fehler
auftrat. In Abhédngigkeit dieses
Wertes kann dann in eine be-
stimmte Fehlerroutine verzweigt
werden. Aber dazu spiter mehr.

Statt einer Zeilennummer kénnen auch Marken (Labels) angege-
ben werden:

LIST -Marke Listet das Programm bis zur Zeile,
indem das Label Marke definiert
ist.

In einem Listing konnen Sie mit den Cursortasten auch nach
oben und nach unten scrollen (blittern):

—— ST-BASIC Grundkurs 95

Laden Sie dazu das entsprechende Programm in den Speicher des
Computers und lassen Sie sich mit dem Befehl LIST-100 (der
Wert hinter LIST ist beliebig) alle Zeilen bis zur Zeilennummer
100 ausgeben. Mit der Taste <Cursor nach unten> kdénnen Sie
den Cursor bis in die letzte Bildschirmzeile fahren. Dort ange-
kommen rollt (scrollt) das Listing weiter, solange Sie die Cur-
sortaste gedriickt gehalten oder erneut betétigen. Entsprechend
kénnen Sie mit <Cursor nach oben> in die entgegengesetzte
Richtung scrollen, sobald sich der Cursor in der obersten Bild-
schirmzeile befindet. Bevorzugen Sie die Ausgabe des Listings
auf einem Drucker (besonders bei lingeren Programmen oft un-
erlaBlich), ist dies mit dem Befehl

LLIST

moglich. Die Syntax entspricht dabei voll der des LIST-Befehls.
Eine Umleitung des Listings in eine Datei auf Diskette erreichen
Sie mit der folgenden Zeile.

OPEN "O",1,"<Dateiname>": CMD 1: LLIST: CLOSE 1

schreibt das Listing in eine Diskettendatei mit dem Namen
<Dateiname>. Mo6chten Sie das Programm iiber Modem (RS232-
Schnittstelle) Threm Freund vermachen, geht dies folgender-
malflen:

OPEN "V",1: CMD 1: LLIST: CLOSE1

Variableninhalte anzeigen

Der Befehl DUMP dient dazu, alle Variablen, die in einem Pro-
gramm vorkommen und deren Inhalte auf dem Bildschirm aus-
zugeben. Bei Arrays wird nur die Dimensionierung, nicht deren
Inhalt auf dem Monitor aufgelistet:

10 A$="Hallo"

20 DIM Fliess#(10,2,5),Schrott(25)
30 Dummy!= 2.18

40 END

DUMP

96 Das groBe ST-BASIC-Buch —

A$="Hal lo"

DIM FLIESS#(10,2,5)
DIM SCHROTT(25)
DUMMY!= 2.18

oK

Mboéchten Sie die Variablenliste lieber als Druckerlisting betrach-
ten, miissen Sie

LDUMP

eingeben. Auch hier kann die Ausgabe wieder auf die Diskette
umgeleitet werden:

OPEN "0",1,"<Dateiname>": CMD 1: LDUMP: CLOSE 1

Der Inhalt simtlicher Variablen wird iibrigens mit dem Befehl

CLEAR

geloscht.

Trace (Programmiiberwachung)

Mochten Sie wissen, in welcher Reihenfolge der Computer das
Programm abarbeitet, miissen Sie TRACE einschalten. Dies geht
mit dem Befehl

TRON (Trace on)

Wird das Programm gestartet, so druckt der Computer vor Aus-
fithrung eines Befehls die Zeilennummer und den gerade bear-
beiteten Befehl in Klammern auf dem Bildschirm aus. Auf diese
Weise kann der Programmablauf einfach iiberwacht werden.
Dazu ein Beispiel:

——— ST-BASIC Grundkurs 97

10 A$="Was weiB ich"
20 B%=30

30 X%=X%+1

40 PRINT A$

50 END

TRON: RUN

[10 LET] [20 LET] [30 LET] [40 PRINT] Was weiB ich
[50 END]

Mochten Sie TRACE wieder abschalten, so brauchen Sie nur

TROFF (TRACE OFF)

eingeben. Werden TRON und TROFF nicht im Direktmodus
eingegeben, sondern innerhalb des Programms ein- und wieder
ausgeschaltet, so verwaltet ST-BASIC die beiden Befehle in
Ebenen: bei einem viermaligen Einschalten von TRACE sind
vier TROFF-Befehle nétig, um den Trace-Modus wieder zu
deaktivieren. Im Direktmodus werden dagegen mit TRON sdmt-
liche Ebenen geloscht und der Trace-Modus auf alle Fille ein-
geschaltet. Mochten Sie noch mehr Kontrolle iiber Thr Programm
gewinnen, so kann

ON TRON GOSUB <Ziel>

weiterhelfen. Dabei wird nach jedem ausgefithrten Befehl zu der
in Ziel angegebenen Zeilennummer gesprungen und die dort ste-
henden Anweisungen ausgefiihrt, bis der Interpreter durch RE-
TURN wieder zum Riicksprung aufgefordert wird. Der nichste
Befehl wird abgearbeitet und wieder zu <Ziel> gesprungen. So-
mit kénnen bestimmte Variablen im Programm iiberwacht wer-
den. Je mehr Sie in der Unterroutine iiberpriifen, desto lang-
samen wird die Ausfithrungsgeschwindigkeit Ihres Programmes
sein. Versuchen Sie sich deshalb kurz zu fassen. In der Variablen
ERL steht die Zeilennummer, von der aus der Interpreter in die
Unterroutine “gesprungen ist, in ERR$ der zuletzt ausgefiihrte
Befehl.

98 Das groBe ST-BASIC-Buch ——

Sollten Sie obige Ausfithrungen nicht ganz verstanden haben,
muB} ich Sie wieder vertrosten. Zum Verstindnis von ON TRON
GOSUB werden Kenntnisse in der Programmierung von Unter-
routinen benétigt, die Sie (noch) nicht besitzen. Trotzdem hoffe
ich, daB die Funktionsweise von ON TRON GOSUB wenigstens
einigermafBen klar geworden ist.

' RENUMBER

Wenn Sie mit Zeilennummern programmieren, kommt es immer
wieder vor, daB die eine oder andere Zeile nachtriglich einge-
fiigt werden muB3, andere Zeilen eriibrigen sich und werden ge-
16scht. Ebenso kann es passieren, da3 Sie zwischen zwei Zeilen
eine neue Zeile einfiigen mochten, aber keine Zeilennummer
mehr dazwischenpaBt, da beide Zeilen bereits in Einerzeilenab-
stinden aufeinander folgen.

Fir diese Fille hidlt ST-BASIC eine Funktion parat, mit deren
Hilfe die Zeilen neu durchnumeriert werden kénnen: RENUM.
Als Parameter hinter RENUM kann die Zeilennummer angege-
ben werden, mit der das neue Programm, sowie die erste Zeile,
bei der die Umnummerierung beginnen soll. Dritter und letzt-
moglicher Parameter ist dann die Schrittweite zwischen zwei
Zeilennummern, die iiblicherweise 10 betrigt.

Beispiele:

RENUM 100,50,10 Numeriert das Programm ab Zeile 50 um.
Zeile 50 wird zur neuen Zeilennummer
100, die darauffolgenden Zeilen werden
in 10er-Schritten durchnumeriert, also
110, 120 usw.

RENUM 10 . Numeriert das Programm in Zehner-
schritten durch. Die erste Zeile im Pro-
gramm erhilt die Zeilennummer 10.

RENUM Ohne Parameter numeriert das Programm
in Zehnerschritten durch, die erste Zeile
erhiilt die Nummer 100. RENUM ohne
Parameter ist identisch mit RENUM 100.

—— ST-BASIC Grundkurs 99

2.10 Strukturierte Programmierung

Um es gleich vorwegzunehmen, hinter dem Zauberwort Struk-
turierte Programmierung verbirgt sich nichts anderes, als der
sauber gegliederte Aufbau (Struktur) eines Programms. Dem
Anwender, der mit der Software arbeiten muf3, wird es in der
Regel herzlich egal sein, in wieweit das Programm strukturiert
aufgebaut ist. Fiir ihn ist in erster Linie wichtig, dal die Soft-
ware einwandfrei arbeitet.

Der engagierte Programmierer denkt dariiber allerdings etwas
anders: Er méchte sich auch noch zu einem spiteren Zeitpunkt
in seinem Programm zurechtfinden. Der berithmt-beriichtigte
"Spaghetti-Code" fritherer BASIC-Interpreter erschwerte dies in
nicht unerheblicher Weise. Kreuz und quer wurde durch ein
Programm gesprungen, das sich ob seiner mit moglichst vielen
Befehlen vollgepackten Programmzeilen sowieso schon relativ
schwer entschliissseln lie. Irgendwann bleibt dann bei einer
derartigen Programmierweise die Ubersicht auf der Strecke, das
Programm wird zu einem Buch mit sieben Siegeln.

Um dies zu verhindern, bieten moderne Programmiersprachen
die Moglichkeit zur Strukturierung eines Programms. Auch ST-
BASIC bildet hier - fiir einen BASIC-Interpreter fritherer Jahre
ein Unding - keine Ausnahme. Das Konzept der strukturierten
Programmierung ist so einfach wie genial: Eine gegebene Pro-
blemstellung wird in viele kleine Einzelprobleme zerlegt, Schritt
fir Schritt verfeinert und dabei auf elementare Befehle zuriick-
gefiihrt. Ein Beispiel verdeutlicht dies wohl am besten:

Jeder von Thnen kennt zweifelslos das Spiel "Mastermind”, bei
dem eine bestimmte Farb- oder Zahlenkombination erraten wer-
den muf. Ein Spieler denkt sich eine solche Kombination aus,
der andere muf} sie durch geschicktes Kombinieren herausfin-
den. Dazu steckt er die vermutete Kombination auf das Spiel-
brett, der Partner iiberpriift seine Kombination mit der des
Mitspielers. Stimmen zwei Farben (Zahlen) an einer Position
iberein, muB} er dies anzeigen. Auch eine Farbe, die zwar in der
Kombination seines Mitspielers auftaucht, jedoch an der
falschen Stelle, muf3 angegeben werden. Auf dieser Basis wagt

100 Das groBe ST-BASIC-Buch ——

der Spieler dann seinen zweiten Versuch. Dies wiederholt sich
solange, bis entweder das Spielfeld voll (Kombination wurde
nicht erraten) ist oder die Kombination herausgefunden wurde.
Eine erste Zerlegung in Teilprobleme kdnnte etwa so aussehen:

Farbkombination ausdenken,
vermutete Kombination auf das Spielbrett stecken,
vermutete mit richtiger Kombination vergleichen,

wenn Kombination noch nicht korrekt erraten, dann mit
Schritt 2 fortfahren.

bl S

Schritt 3 148t sich noch weiter aufspalten:

3.1 Erste Position beider Kombinationen vergleichen,

3.2 wenn beide in der Farbe iibereinstimmen,

3.3 dann anzeigen, daB3 Farben in Position und Farbe iiberein-
stimmen,

3.4 sonst priifen, ob diese Farbe wenigstens an einer anderen
Position vorkommt.

3.5 Wenn dies der Fall ist,

3.6 dann anzeigen, daB8 Farbe korrekt erraten, jedoch an die
falsche Position gesteckt wurde,

3.5 wenn schon alle Positionen verglichen,

3.6 dann mit Schritt 4 weiter,

3.7 sonst nichste Position vergleichen, weiter mit 3.2.

Das Gesamtproblem Mastermind wurde in einzelne Teilprobleme
aufgespalten. Natiirlich konnen diese Teilschritte noch ver-
feinert werden, aber dies soll uns an dieser Stelle nicht weiter
interessieren.

Wenn..dann..sonst...

Bei der Verfeinerung des obigen Problems sind wir bereits auf
einen elementaren Befehl zur strukturierten Programmierung
gestoflen: Die "Wenn..dann..sonst.."-Bedingung.

—— ST-BASIC Grundkurs 101

wenn beide in der Farbe iibereinstimmen
dann anzeigen, daB Farben in Position und Farbe

iibereinstimmen.
sonst priifen, ob

Diese "Wenn..dann..sonst.."-Bedingung wird in BASIC mit den
Befehlen

if (wenn)

...... (Bedingung erfillt)

then (dann)

...... (Anweisung(en) ausfihren)
else (sonst)

...... (Anweisung(en) ausfihren)

ausgedriickt.

Zur Konstruktion: Hinter dem Befehl IF folgt eine Bedingung
(beide Farben stimmen fiiberein). Ist diese Bedingung erfillt
(beide Farben stimmen iiberein), werden die Anweisungen hinter
THEN (anzeigen, daf3 Farben ...) ausgefiihrt. Ist die Bedingung
dagegen nicht erfillt (die Farben stimmen nicht iiberein), gelan-
gen die Anweisungen hinter ELSE zur Ausfithrung (priifen, ob

)

Wie aber kann der Computer priifen, ob eine Bedingung erfiillt
ist? Ganz einfach, nimlich durch einen simplen Vergleich. In
unserem obigen Beispiel miifite man die Bedingung wie folgt
formulieren:

if <Farbe_1 gleich Farbe_2>
then ...

bzw. in syntaktisch richtiger Form:

if Farbe_1 = Farbe_2
then ...

Der Operator = ist uns in seiner Funktion als Zuweisungsopera-
tor (A$= "Hallo") schon bekannt, neu ist dagegen sein zweites
Einsatzgebiet als Vergleichsoperator. Stellen Sie sich Farbe 1
und Farbe_2 als zwei Variablen vor, in denen die Farben ge-

102 Das groBe ST-BASIC-Buch —

speichert werden. Stimmen die Inhalte der beiden Variablen
iiberein (sind also beide Farben identisch), so wird als Ergebnis
der Operation der Wahrheitswert wahr geliefert, andernfalls
falsch.

Diesen Wahrheitswert macht sich nun die IF-Konstruktion zu
nutze, und fihrt bei wahr die Bedingung hinter THEN, anson-
sten die Bedingung hinter ELSE aus. Der Vergleichsoperator =
liefert also einen Wahrheitswert. Wahrheitswert deshalb, weil die
beiden Moglichkeiten der Vergleichsoperation, im Computer
wieder (wie sollte es auch anders sein) durch Zahlen dargestellt
werden.

Die Zahl -1 steht dabei fiir den Wahrheitswert wahr, wihrend 0
den Status falsch reprisentiert. Und hier wiren wir wieder bei
den Flags, die derartige Wahrheitswerte speichern kdnnen (erin-
nern Sie sich noch dunkel an Kapitel 2?). Einem Flag kénnen
nimlich lediglich die beiden Werte 0 (falsch) und -1 (wahr) zu-
gewiesen werden. So ist es jederzeit méglich einem Flag den
Wahrheitswert einer Vergleichsopertion zuzuweisen und diesen
Wert spiter einer IF-Abfrage unterzujubeln! Das Ergebnis bleibt
in beiden Fillen gleich:

100 DIM Flag%F(7)' nur keinen Speicherplatz vergeuden
110 zahl_1%= 10

120 2ahl_2%= 20

130 zahl_3%= 10

140 Flag%F(0)= Zahl_1%= zahl_2%

150 Flagh%F(1)= Zahl_3%= Zahl_1%

160

170 IF Flag%F(0) THEN PRINT "“Zahl 1 gleich zahl 2%
180 IF Flag%F(1) THEN PRINT "“Zahl 1 gleich Zahl 3"
190

200 END

Sowohl in Zeile 140 als auch in Zeile 150 wird der Inhalt zweier
Variablen miteinander verglichen. Das Ergebnis dieser Operatio-
nen wird jeweils einer als Flag deklarierten Variable (Flag%F(),
diesen billigen Kalauer konnte ich mir einfach nicht verkneifen)
zugewiesen. Die beiden IF der Zeilen 170 und 180 benutzen nun
den Inhalt von Flag%F() als Wahrheitswert, um in Abhingigkeit

——— ST-BASIC Grundkurs 103

davon die hinter den beiden THEN stehenden Anweisungen
auszufithren. Ebenso hitte man den Vergleich hinter der IF-
Abfrage durchfithren kénnen:

170 IF Zahl_1%= Zahl_2% THEN PRINT "“Zahl 1 gleich Zahl 2"
180 IF Zahl_3%= zahl_1% THEN PRINT “Zahl 1 gleich Zahl 3"
190 ...

Da in Flags nur die beiden Wahrheitswerte 0 und -1 gespeichert
werden konnen, kann dies vom Cumputer mit einem einzigen
Bit erledigt werden. Ein Bit wiederum befindet sich nicht ir-
gendwo im Computer, sondern ein aus 8 Bits bestehendes Biindel
wird sauber zu einem Byte zusammengefaf3t. Mit 1 Byte kdénnen
folglich 8 solcher Flags realisiert werden. Dies ist der Grund
dafiir, warum Flags in ST-BASIC lediglich in Array-Notation
auftauchen und 8 Flags jeweils genau ein Byte beanspruchen!

Doch zuriick zur IF-Abfrage. Die in der gleichen Zeile hinter
THEN stehende(n) Anweisung(en) werden nur dann ausgefiihrt,
wenn das Ergebnis der Vergleichsoperation zur Aussage wahr
gefithrt hat. ST-BASIC erlaubt noch eine andere Variante der
IF. THEN..ELSE..-Struktur, wobei die einzelnen Befehle iibere
mehrere Zeilen verteilt werden kénnen.

Dies bringt eine gewaltige Steigerung der Ubersichtlichkeit mit
sich, besonders bei lingeren Programmen wirkt sich erfahrungs-
‘gemif} eine Verteilung der Struktur auf mehrere Zeilen fiir die
Lesbarkeit positiv aus. Da die einzelnen hinter THEN stehenden
Anweisungen auf mehrere Zeilen verteilt sind, mu3 dem Com-
puter dann zusidtzlich mitgeteilt werden, wann das Ende der
Struktur erreicht ist. Dies geschieht mit dem Befehl ENDIF:

IF <Bedingung 1>
THEN <Anweisung 1>
<Anweisung 2>
<Anweisung 3>
ELSE
IF <Bedingung 2>
THEN <Anweisung 4>

104 Das groBe ST-BASIC-Buch ——

<Anweisung 5>
ENDIF
ENDIF

Zwei IF-Strukturen sind ineinander verschachtelt. Schon optisch
148t sich die Abhingigkeit einer Anweisung von dem zugehori-
gen IF auf den ersten Blick erkennen.

Ist <Bedingung 1> erfiillt, gelangen die Anweisungen 1 bis 3 zur
Ausfihrung, andernfalls die hinter dem ELSE stehenden An-
weisungen. Doch dort findet sich eine zweite IF-Struktur. Diese
kommt nur dann zur Geltung, wenn die Bedingung 1 nicht er-
fullt ist. Ist die Bedingung 1 nicht, die Bedingung 2 jedoch er-
fullt, kommen die Anweisungen 4 und 5 zum Zug.

Die zweite IF-Struktur stellt keine Alternativanweisungen in
Form eines ELSE zur Verfiigung. Auch das ist méglich, da nicht
in jedem Fall ein ELSE benétigt wird. Interessant ist noch die
Stellung des ENDIF. Die zweite IF-Struktur muf3 nadmlich vor
der ersten wieder geschlossen werden. Sonst klappt die ganze
Verschachtelei nicht.

Der Ubersichtlichkeit halber steht das ENDIF stets in der glei-
chen Spalte unter dem IF, das es abschlieBt. Spiterstens jetzt
miite der Begriff der strukturierten Programmierung einleuch-
ten. Mit dem IF.THEN..ELSE..ENDIF kann einem Programm
ndmlich eine richtige Struktur (Form) verpasstwerden. Und da-
mit Sie den Vorteil der Strukturierung auch gleich sehen, hier
einmal die unstrukturierte Form des obigen Beispiels (Bedingung
mit B, Anweisung mit A abgekiirzt):

IF <B1> THEN <A1>:<A2>:<A3> ELSE IF <B2> THEN <A4>:<A5>

Am Ergebnis dndert sich nichts, wohl aber ist die Ubersicht ir-
gendwo hinter dem ersten THEN auf der Strecke geblieben.
Stellen Sie sich einmal vor, die entsprechenden Bedingungen
bzw. Anweisungen stehen in Form von Befehlen in dieser Zeile.
Uniibersichtlicher geht’s kaum noch und daher hat BASIC auch
seinen Ruf als Programmiersprache mit "Spaghetti-Code".

——— ST-BASIC Grundkurs 105

Haben Sie besonders viele IF-Abfragen ineinander verschachtelt,
ricken die hinter jedem neuen IF stehenden Anweisungen im-
mer weiter nach rechts herein. Als platzsparende Alternative
koénnen Sie deshalb noch etwas anders strukturieren, indem Sie
das THEN einfach in die gleiche Zeile wie das IF setzen:

IF <Bedingung 1> THEN
<Anweisung 1>
<Anweisung 2>
<Anweisung 3>

ELSE
IF <Bedingung 2> THEN

<Anweisung 4>
<Anweisung 5>
ENDIF
ENDIF

Obwohl das Programm nichts an seiner Ubersichtlichkeit verlo-
ren hat, wird mit jedem neuen IF nicht so weit nach rechts ein-
geriickt, wie dies bei dem ersten Beispiel der Fall gewesen ist.
Gerade bei komplexeren Strukturen birgt diese Methode einen
Vorteil in sich, da der Bildschirmbereich besser ausgenutzt wird
(die ganze Struktur rutscht nicht so schnell nach rechts und kann
eher komplett auf dem Monitor dargestellt werden).

Als Vergleichsoperator muf3te bisher das Gleichheitszeichen her-
halten. Dies ist jedoch nicht fiir alle auftretenden Eventualititen
ausreichend. Oft muB3 gepriift werden, ob eine Zahl groBer oder
kleiner als eine andere ist, bzw. ob sich zwei Zahlen voneinander
unterscheiden. Deshalb existieren noch ein paar weitere Ver-
gleichsoperatoren, die diese Fille abfangen. Allen gemeinsam ist
die Tatsache, daf3 als Ergebnis ihrer Ermittlungen stets der Wert
0 fir falsch und -1 fiir wahr geliefert wird:

Vergleichsoperator Bedeutung des Operators
= gleich
< kleiner
> groBer
< kleiner (oder) gleich

\
[}

groBer (oder) gleich
<> ungleich

106 Das groBe ST-BASIC-Buch ——

Die Operatoren <=, >=, und <> konnen auch in umgekehrter
Reihenfolge angegeben werden:

Vergleichsoperator Bedeutung des Operators
=> groBer (oder) gleich
=< kleiner (oder) gleich
>< ungleich

Der leichteren Lesbarkeit eines Programms zuliebe sollten die
Operatoren in der Reihenfolge benutzt werden, in der sie auch
gesprochen werden (gréB3er gleich).

Ein paar Beispiele:

IF A% > B% THEN ...wenn Inhalt von A% gréBer als B%
IF A% <> B% THEN ...wenn Inhalt von A% ungleich B%
IF A$ <= B$ THEN ...wenn A$ kleiner gleich B$

Selbstverstindlich kénnen auch Zeichenketten miteinander verg-
lichen werden, da der Computer bei einem Vergleich auf die
ASCII-Tabelle zuriickgreift, in der den Buchstaben unterschied-
liche Zahlen zugeordnet sind. (Sie erinnern sich ...)

Demzufolge ist der String "Hallo" kleiner als die Zeichenkette
"Vanillepudding”". Im Normalfall werden solche Vergleiche (ab-
gesehen von dem Gleichheitsoperator =) aber nur fiir Sortierrou-
tinen verwendet, und auch hier glinzt das ST-BASIC durch eine
schon in den Interpreter integrierte Routine. Wir als Program-
mierer miissen uns folglich nicht mehr mit dem Sortieren her-
umschlagen, der Computer erledigt dies fiir uns mit nur einem
Befehl sozusagen im Handumdrehen.

GOTO

Der GOTO-Befehl ist der iirgste Feind der strukturierten Pro-
grammierung, da er den vorgegebenen Programmflu3 von oben
nach unten vollkommen durcheinanderbringt und den Computer

——— ST-BASIC Grundkurs 107

zwingt, an einer anderen Programmstelle fortzufahren. Trotzdem
- oder vielleicht auch gerade deshalb - soll er in diesem Kapitel
seinen Platz finden.

Die Syntax des GOTO ist einfach:
GOTO <Ziel>
<Ziel> ist im einfachsten Fall eine Zeilennummer:

10 PRINT "Hallo"
20 GOTO 10
30 END

Wenn Sie das Programm abtippen (machen Sie es lieber nicht),
so druckt der Computer stindig das Wort Hallo auf den Bild-
schirm. Er wird nie damit aufhéren! Warum das?

In Zeile 10 findet er die Aufforderung, das Wort Hallo auf dem
Monitor darzustellen. Folgsam wie ein Computer nun einmal ist
kommt er diesem Befehl auch prompt nach. In der néchsten
Zeile findet er sich mit dem GOTO konfrontiert. Er muf3 sozu-
sagen einen Schritt zuriick, zur Zeile 10. Dort darf er wieder ein
freundliches Hallo auf den Bildschirm bringen. Ehe er sich recht
versieht, gelangt er iiber Zeile 20 schon wieder zur Zeile 10, und
was macht er jetzt? Er stellt zum dritten Mal das Wortchen
Hallo auf dem Bildschirm dar. Dieses Spielchen wiederholt sich
solange, bis Sie ihm entweder mit <Comtrol> <C> ein Ende be-
reiten (herzlichen Dank vom Computer) oder mittels des Netz-
schalters den Saft abdrehen.

ST-BASIC wire jedoch nicht ST-BASIC, konnte es nicht noch
ein paar zusitzliche Trimpfe ausspielen (die Zeilennummer kann
nimlich auch berechnet werden):

GOTO 100+10*Zeile

springt je nach Inhalt der Variablen Zeile in eine bestimmte
Programmzeile. Mochten Sie nur eine einzelne Variable angeben,
muf} diese nach einem GOTO in Klammern stehen (Begriindung
kommt gleich!):

108 Das groBe ST-BASIC-Buch ——

GOTO (Zeile)

setzt die Programmausfithrung in der Zeile Zeile fort. Zeilen-
nummern sind ganz ganz lieb und recht, aber was tun, wenn in
einem Programm keine Zeilennummern vorkommen? Dafiir kon-
nen dann bestimmte Sprungstellen (Marken) vereinbart werden.
Damit der Computer nicht versehentlich eine solche Marke
(Label) mit einer Variablen verwechselt (und dabei in die ewi-
gen Jagdgriinde verschwindet, weil der Variablentyp den Sprung
nicht zulieB) mulBl - gleichsam als Zeichen ihres Standes - ein
Minuszeichen vor eine Marke gesetzt werden. Es versteht sich
von selbst, daf3 nicht zwei gleiche Labels in einem Programm
auftauchen diirfen, damit der Computer auch immer schén den
Uberblick behilt (selbst dann noch, wenn Sie ihn schon lingst
verloren haben).

-Marke

definiert eine solche Sprungstelle (Marke) in einem Programm.
Ein

GOTO Marke

bewirkt nun, daB die Programmausfithrung direkt hinter dem
Label Marke fortgesetzt wird. Es hat sich als sehr sinnvoll her-
ausgestellt, Marken statt Zeilennummern fiir Spriinge (wenn sie
denn schon unbedingt sein miissen) zu verwenden. Durch sie er-
hoht sich die Lesbarkeit eines Programmes erheblich und eine
Programménderung (auch nach lingerer Zeit) kann leichter
durchgefithrt werden. Wenn Sie die Marken auch noch sinnvoll
taufen, kann fast nichts mehr schiefgehen.

Marken konnen fiibrigens auch mitten in einer Zeile definiert
werden, miissen dann allerdings durch Doppelpunkte von den
iibrigen Befehlen abgetrennt werden:

100 PRINT"GruB Gott": -Schleife: INPUT"Ihr Codewort: ";A$
110 IF A$ <> “ST-BASIC"

120 THEN GOTO Schleife

130 ENDIF

140 END

——— ST-BASIC Grundkurs 109

Nach der freundlichen BegriiBung durch den Computer (Griif3
Gott), wird der Benutzer aufgefordert, sein Codewort einzuge-
ben. Dieses Codewort wird der Variablen A$ zugewiesen. In
Zeile 110 folgt ein Vergleich des eingegebenen Codewortes mit
dem gespeicherten Code. Stimmen beide nicht iiberein, wird zur
Marke Schieife gesprungen. Eine erneute und diesmal hoffent-
lich korrekte Eingabe des Geheimcodes ist von Noten. Erst wenn
der Code richtig eingegeben wurde, gibt der Computer das Sy-
stem zur weiteren Nutzung frei. Die Marke hinter dem GOTO
kann auch in einer Stringvariablen abgelegt werden:

A$="Schleife": GOTO A$

Auch wenn diese Variante nicht unbindingt durch rasende Ge-
schwindigkeit glinzt (sie ist vielmehr die langsamste Moglichkeit
einen Sprungbefehl auszufiihren) kann sie bisweilen von Nutzen
sein.

ON..GOTO..

Eng mit dem GOTO-befehl verwandt ist ON..GOTO... Die Syn-
tax dafir lautet:

ON <Wert> GOTO <Ziel 1>,<2iel 2>,<Ziel 3>, ...

<Wert> wird durch eine Variable reprisentiert. Ist der Wert 1, so
erfolgt ein Sprung zu <Ziel 1>, bei 2 zu <Ziel 2>. Bei einem
<Wert> von kleiner als Null wird kein Sprung durchgefiihrt.
Auch Werte, deren GréfBe die Anzahl der hinter dem GOTO ste-
henden Ziele iibersteigt, lassen den Computer kalt. Es wird ein-
fach kein Sprung ausgefiihrt. Sie ahnen es sicher schon, daf
nicht nur Zeilennummern als Ziele angegeben werden koénnen:
Labels, Berechnungen, ja sogar Stringvariablen, die Labelnamen
beinhalten, kénnen bunt gemischt werden:

ON Irgendwas GOTO 100,Ende,WeiB_der_Teufel_wohin$

Dieser ON..GOTO..- Befehl schafft gerade in Verbingung mit
Labels Ubersicht. Dies ist auch der Grund, warum er von Pro-
grammieren bei der Menii-Auswahl bevorzugt wird.

110 : Das groBe ST-BASIC-Buch ——

Schleifen in allen Variationen

Einer der groBten Vorteile, mit denen ein Computer aufwarten
kann, ist das stindige Wiederholen bestimmter Anweisungen.
Diese Wiederholungen werden in der Informatik iiber Schleifen
realisiert. Eine Primitivschleife kann bereits mit einem GOTO-
Befehl erzeugt werden:

100 PRINT"GruB GOTT™

110 -Schleife: INPUT"Bitte geben Sie Ihr Passwort ein: ";Pa$
120 IF Pa$ <> “ST-BASIC" THEN

130 GOTO Schleife

140 ELSE

150 CLS

160 PRINT"Sie haben sich korrekt identifiziert!®
170 ENDIF

180 ¢

190 ' Ab hier folgt dann das eigentliche Programm ...
200 ¢

Wird das Passwort nicht korrekt eingegeben, so springt der
Computer von Zeile 130 zu Zeile 110. In diesem Bereich liegt
eine Schleife vor, auch wenn in der Computerei Schleifen nor-
malerweise iiber eigene Strukturen realisiert werden. -

FOR..NEXT

Wie konnte es auch anders sein. Die in allen BASIC-Interpretern
(selbst in denen der Computersteinzeit) auftauchende
FOR..NEXT-Schleife kommt zuerst an die Reihe. Diesmal je-
doch nicht mit grauer Theorie, sondern gleich direkt an einem
praktischen Beispiel:

0 Jededodedede g dedede ok o e v vt g e de ek o e e e ok e e de e ek ek ke e e e e Rk R R K AR Rk ko k ke ke ok

" MITTEL.BAS *
LR L L T *
'* Autor: Michael Maier Version: 1.00 Datum: 29.08.1988 *
'* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *
'* (C) 1988 by DATA BECKER GmbH Disseldorf *

1hkRkkkkhkddkkkkhkhkhkdkkkkikhkkhhkkkkikkkrrhkkkkkrhkhhhrhhkhhhhkhhikikkikkd

'Zuerst Anzahl der Werte fur die Dimensionierung erfragen
1

VOO NOVPHRWN-=O

—— ST-BASIC Grundkurs 111

10 CLS
11 INPUT " Anzahl der Werte: ";Zahl%
12 v 7
13 'Eingabe korrekt?
14 ¢
15 IF Zahl%<=0 THEN
16 PRINT " Was soll der Quatsch?"
17 END
18 ELSE
19 DIM Xil(Zahl%-1)' Dimensionierung von 0 bis ...
20 ENDIF
21
22 'Einlesen der einzelnen Werte
23 ¢
24 FOR T%=1 TO Zahl%
25 INPUT " Beobachtungswert "; STR$(T%);": ":Xil(T%-1)
26 NEXT T%
27 ¢
28 'Addition der einzelnen Beobachtungswerte
29 ¢
30 Summe!=0
31 FOR T%=0 TO Zahl%-1
32 Summe ! =Summe ! +Xi ! (T%)
33 NEXT T%
34
35 'und Division dieser durch die Anzahl der Werte
36 !
© 37 Summe!=Summe!/Zahl%
38 !
39 PRINT " Das arithmetische Mittel betrdgt:";Summe!
40 END

Das obige Programm berechnet den Mittelwert (arithmetische
Mittel) fiir eine bestimmte Anzahl von Werten nach der Formel:

1 n
Mittelwert = - * x(i)

n =l

Es wird iiber die einzelnen x-Werte aufsummiert und das Er-
gebnis dieser Addition durch die Anzahl der Werte dividiert.
Was liegt nidher als die einzelnen x-Werte in einem Array abzu-
legen? Damit nicht unnétig hoch dimensioniert wird, fragt das

112 Das groBe ST-BASIC-Buch ——

Programm in Zeile 11 nach der Anzahl der Werte, die eingege-
ben werden sollen und weist diese der Variablen Zahl% (ent-
spricht dem n in der Formel) zu.

Ehe in Zeile 19 der eigentliche DIM-Befehl folgt, wird noch mit
einer IF-Abfrage kontrolliert, ob die eingegebene Zahl nicht
kleiner (negative Dimensionierung ist nicht méglich!) oder gleich
0 ist. In diesem Fall bricht das Programm mit der Fehlermeldung
"Was soll der Quatsch" ab. Ansonsten (ELSE) wird ein Flie3-
komma-Array mit einfacher Genauigkeit (Xi!) dimensioniert.
Der Index einer Feldvariablen liuft bekanntlich von 0 bis ... Aus
diesem Grund muf3 die Anzahl der Dimensionen noch um eins
zuriickgeschraubt werden, um nicht unnétigerweise Speicherplatz
zu vergeuden.

Jetzt zur eigentlichen Neuerung in diesem kleinen Programm:
Um nicht fiir jeden Eingabewert eine eigene INPUT-Anweisung
einfiigen zu miissen, werden die Werte in einer Schleife mit nur
einem einzigen INPUT-Befehl (Zeile 25) eingelesen.

Die Funktionsweise der FOR..NEXT-Schleife im einzelnen: zu-
erst wird ein Schleifenzidhler (die Variable T%) auf den An-
fangswert (T%=1) gesetzt. Danach wird die Schleife durchlaufen,
bis der Interpreter auf den Befehl NEXT stoBt. Er kehrt zur
Ausgangsposition (FOR T% = 1 TO Zahl%) zuriick, erh6ht den
Schleifenzihler um eins und dberpriift, ob der Endwert der
Schleife (steht hinter TO, hier: Zahl%) schon erreicht ist. Ist dies
der Fall, wird die Programmausfithrung hinter der Schleife
(NEXT) fortgesetzt, ansonsten wird die Schleife ein weiteres Mal

durchlaufen:

FOR <Schleifenzdhler> = <Anfangswert> TO <Endwert>

NEXT <Schleifenzéhler>

Da im Programm genau Zahl%-Werte in das Feld eingetragen
werden miissen, liuft unsere FOR..NEXT-Schleife logischer-
weise von 1 bis Zahl%. Den Schleifenzihler verwenden wir als
Indexvariable in Xi! (Zeile 25) fir die Zuweisung der einzelnen

——— ST-BASIC Grundkurs 113

Werte in das Array. Doch aufgepaf3t! Wiahrend der Z#hler von 1
bis Zahl% liauft, beginnt der Index der Feldvariable bei 0 und
endet bei Zahl%-1. Deshalb muf3 der Indexwert um eins ernied-
rigt werden (T%-1). Statt dessen hitte man den Schleifenzihler
von 0 bis Zahl%-1 laufen lassen konnen:

FOR T%=0 TO Zahl%-1
<Input> '
NEXT T%

Warum ich das nicht gemacht habe? Ja, da ist noch eine Klei-
nigkeit: Der Benutzer soll nimlich gleichzeitig angezeigt bekom-
men, welchen Beobachtungswert er gerade eingibt. Auch dazu
verwendet das Programm wieder den Schleifenzihler T%, hier
jedoch mit den Werten von 1 bis ...

Liefe die Schleife von 0 bis Zahl%-1 miifite zur Nummer des
jeweiligen Beobachtungswertes noch eine 1 addiert werden, um
die der Schleifenzihler ja zuerst verringert wurde. Dies bedeutet
zweimaligen Rechenaufwand fir den Computer, der auf diese
Weise elegent umgangen werden konnte.

Interessant ist noch das STR$(T%) in Zeile 25. T% enthilt je-
weils den Wert des momentanen Schleifendurchlaufes. Damit nun
die Eingabe statt dem Feld Xi!() nicht versehentlich der Vari-
ablen T% zugewiesen wird (T% soll ja lediglich als Z#hler mit
ausgegeben werden), mufl T% mit der Funktion STR$() in einen
String umgewandelt werden. Dies macht ST-BASIC iibrigens
automatisch, so daB auch bei einer Eingabe von T% stets
STRS$(T%) erscheint.

Nach dem Einlesen der einzelnen Werte, miissen diese noch
aufsummiert werden. Dies geschieht (wie kénnte es auch anders
sein) wieder in einer Schleife, diesmal jedoch mit einem Start-
wert von 0 und einem Endwert von Zahl%-1. Der Bequemlich-
keit halber lautet der Schleifenzihler ebenfalls T%. Nach Been-
digung der Schleife enthilt die Variable Summe! die Summe der
einzelnen Beobachtungswerte. Diese muf3 schlieBlich noch durch
die Anzahl der Beobachtungswerte dividiert werden, um den
Mittelwert zu erhalten. Fertig! Starten Sie das Programm, so er-
scheint auf dem Bildschirm:

114 Das groBe ST-BASIC-Buch ——

Anzah! der Werte: 3 (Eingabe)
Beobachtungswert 1: 2
Beobachtungswert 2: 6
Beobachtungswert 3: &

Das arithmetische Mittel betragt: 4

oK

Mochten Sie die Schleife mit einer anderen Schrittweite als 1
durchlaufen, mufl dies iiber den Befehl STEP hinter der Endbe-
dingung explizit angegeben werden:

FOR T% = 0 TO 20 STEP 2

NEXT T%
Hier wird der Schleifenzihler nach jedem Durchlauf um den
Wert 2 erhdht, Schrittweiten von kleiner 1 sind ebenso moéglich
(z.B: 0.5):

FOR T% = 1 TO 10 STEP .5

NEXT T%
Der Schleifenzihler kann nach jedem Durchlauf auch erniedrigt
werden, wenn eine negative Schrittweite hinter STEP angegeben
wird:

FOR T% = 20 TO 1 STEP -1

NEXT T%

Der Ubersicht zuliebe wird die FOR..NEXT-Struktur wieder auf
mehrere Zeilen verteilt, wobei der Schleifeninhalt nach rechts
eingeriickt wird. Theoretisch ist auch eine -einzeilige
FOR..NEXT-Schleife denkbar:

FOR T%=1 TO Zahl%: PRINT T%: NEXT T%

—— ST-BASIC Grundkurs 115

Anmerkung: Ist die Startbedingung bereits vor dem ersten
Durchlauf groBer als die Endbedingung und
keine negative Schrittweite angegeben, so wird
die Schleife samt Inhalt kein einziges Mal aus-
gefiihrt.

Man spricht in diesem Zusammenhang auch von einer abweisen-
den Schleife, da sie nur dann zur Ausfithrung gelangt, wenn die
Startbedingung erfullt ist. Andere BASIC-Interpreter (darunter
das GfA-BASIC) besitzen eine nicht abweisende For..Next-
Schleife, die in jedem Fall mindestens einmal durchlaufen wird.
Bei der Ubertragung von Programmen eines anderen BASIC-In-
terpreters in ST-BASIC sollte man diese Tatsache stets im Hin-
terkopf behalten, um nicht eine bose Uberraschung zu erleben.

Repeat..Until

Eine weitere Schleifenstruktur bildet die REPEAT..UNTIL-
Schleife oder zu deutsch: Wiederhole ... Bis-Schleife. Es handelt
sich bei dieser Variante wieder um die Gattung der nichtabwei-
senden Schleifen, da ihr Inhalt auf jeden Fall einmal durchlau-
fen wird, ehe die eigentliche Schleifenbedingung hinter UNTIL
gepriift wird.

REPEAT
<Anweisung 1>
<Anweisung 2>
<Anweisung n> v
UNTIL <Bedingung erfullt>

Eine FOR..NEXT-SchleiBe kann durch eine REPEAT..UNTIL-
Schleife ersetzt werden:

FOR T%= 1 to 30
<Anweisung 1>
<Anweisung 2>

<Anweisung n>
NEXT T%

116 Das groBe ST-BASIC-Buch ——

entspricht der REPEAT..UNTIL-Schleife:

T%=0
REPEAT
T%=T%+1' Schleifenzdhler mit 'STEP 1!
<Anweisung 1>
<Anweisung 2>
<Anweisung n>
UNTIL T%=30

Dies gilt jedoch nur solange die Startbedingung fir die
FOR..NEXT-Schleife erfiillt ist. Andernfalls unterscheiden sich
beide Schleifen, da FOR..NEXT nicht, REPEAT..UNTIL jedoch
einmal durchlaufen wird. Né6tigenfalls muf3 mit einer IF..THEN-
Abfrage am Schleifenanfang die Einsprungbedingung iiberpriift
und die Schleife mit EXIT verlassen werden, falls diese nicht
erfiillt ist.

Auch dazu wieder ein kleines Beispiel, das Sie schon kennen:
Passworteingabe. Die Inputanweisung wird solange wiederholt,
bis das Passwort korrekt eingegeben worden ist:

100 REPEAT

110 CLS

120 INPUT " Bitte geben Sie Ihr Passwort ein: ";Pa$
130 UNTIL Pa$="ST-BASIC"

140 ¢

150 *hier folgt dann das eigentliche Programm

160 !

170 END

Endlosschleife

In manchen BASIC-Dialekten gibt es eine spezielle Struktur fiir
die Endlosschleife. Endlos deshalb, weil die Schleife nie auf
normalem Weg verlassen werden kann. In ST-BASIC ist dies
nicht der Fall, dennoch kann auch hier problemlos eine Endlos-
schleife zusammengebaut werden. Man bedient sich einfach der
REPEAT..UNTIL-Schleife und sorgt dafiir, dal die Bedingung

—— ST-BASIC Grundkurs 117

hinter UNTIL nie erfiillt wird. Am besten gibt man gleich den
Wahrheitswert falsch an, der in BASIC durch die 0 dargestellt
wird:

REPEAT
<Anweisung 1>
<Anweisung 2>
<Anweisung n>

UNTIL O

oder verstindlicher:

REPEAT
<Anweisung 1>
<Anweisung 2>

<Anweisung n>
UNTIL Immer_und_ewig

Schon und gut! Aber wie kann man eine solche Schleife wieder
verlassen? Eigentlich gar nie nicht, es sei denn der Interpreter
stoB3t in der Schleife auf einen EXIT-Befehl:

EXIT

Mit dem EXIT-Befehl ist es méglich eine Schleife (vorzeitig) zu
verlassen, auch wenn ihre Abbruchbedingung noch nicht erfiillt
ist. Dies gilt wibrigens nicht nur fiir Endlosschleifen, sondern
auch fir deren Verwandte.

100 REPEAT

110 CLS

120 INPUT " Bitte geben Sie ihr Passwort ein: *;Pa$
130 IF Pa$="ST-BASIC"

140 THEN EXIT

150 ENDIF

160 UNTIL immer_und_ewig

170 ...

180 ...

118 Das groBe ST-BASIC-Buch ——

Wird das Passwort richtig eingegeben, verlit der EXIT-Befehl
die Endlosschleife und das Programm wird direkt hinter dem
Schleifenende (Zeile 170 ff) fortgesetzt. Zusidtzlich kann hinter
EXIT noch die Programmstelle (Zeilennummer, Label, ...) ange-
geben werden, an der das Programm nach dem EXIT fortgesetzt
werden soll. Dazu wird dann eine Mischung aus EXIT und
GOTO verwendet:

EXIT TO <Ziel>
<Ziel> muf3 den Anspriichen des GOTO-Befehls geniigen.

Anmerkung: In GFA-BASIC existiert eine eigene Struktur
fur die Endlosschleife:

DO
<Anweisung 1>

<Anweisung n>
LooP

In ST-BASIC muf3 diese durch

REPEAT
<Anweisung 1>

<Anweisung n>
UNTIL O
ersetzt werden, wenn GFA- in ST-BASIC-Programme umge-

schrieben werden sollen, ebenso das EXIT IF <Bedingung> des
GFA-BASIC in:

IF <Bedingung> THEN EXIT

zum vorzeitigen Verlassen einer Schleifenstruktur.

——— ST-BASIC Grundkurs 7 119

WHILE..WEND

WHILE..WEND ist - Sie diirfen aufatmen - der letzte Vertreter
der Gattung Schleifen. Es handelt sich dabei um eine abweisende
Schleife, da bereits vor einem Schleifeneinsprung die hinter
WHILE stehende Bedingung iiberpriift wird. Ist sie nicht erfiillt,
wird die Schleife erst gar nicht durchlaufen, sondern das Pro-
gramm gleich hinter dem Schleifenende fortgesetzt. Andernfalls
gelangt der Schleifeninhalt zur Ausfithrung, bis der Interpreter
auf WEND st68t und zum Schleifenanfang zuriickkehrt. Dort
wird die Bedingung erneut uiberpriift.

Auch mit WHILE..WEND i3t sich eine Endlosschleife konstru-
ieren. Dann muB die Bedingung hinter WHILE stets erfiillt sein,
oder anders ausgedriickt den Wert -1 (wahr!) enthalten:

WHILE -1

<Anweisung 1>
<Anweisung 2>

WEND

100 ¢ e e Je de e e e g A e e e Fe e e v ok e e e e e e de ok de v e e ok e dede e e ek e e ek ke ke ke e ek ke ke ek ke ke ke ke ke ke ke

110 '* SIEB.BAS *
‘| 20 L L L L T *
130 '* Autor: Michael Maier Version: 1.00 Datum: 02.09.1988 *
140 '* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *
150 '* (C) 1988 by DATA BECKER GmbH Dusseldorf *
160 195 3 e e e e v o e 3 e % o e A 3k e e e e 3 vk e ke e o e ok ke e 3 e o v e ok ke o e o ok e ok e o ok ok ok ke e ok e ok ek e ke ke e ok
170

180 'Sieb des Eratosthenes

190 !

200 True%=-1:False%=0

210 REPEAT

220 CLS

230 INPUT " Bitte Suchobergrenze/2 eingeben (> 50) ";N%

240 UNTIL N%>50

250 DIM Liste%F(N%)

260 FOR T%=0 TO N%' Liste mit -1 vorbelegen
270 Liste%F(T%)=True%

280 NEXT T%

290 FOR T%=0 TO N%

300 IF Liste%F(T%) THEN

120 Das groBe ST-BASIC-Buch ——

310 ' Primzahl ausgeben
320 Prim%=2*T%+3

330 PRINT Prim%,

340 1%=T%+Prim%

350 'Alle Vielfachen davon streichen
360 WHILE I%<N%

370 Liste%F(1%)=False%
380 1%=1%+Prim%

390 WEND

400 ENDIF

410 NEXT T%

420 END

Als kronender AbschluB der Schleifen (ich versprech’s!) das be-
rithmt beriichtigte Sieb des Eratosthenes, mit dessen Hilfe sich
alle Primzahlen, die kleiner als eine gegebene natiirliche Zahl N
sind, ermitteln lassen.

Dieses Verfahren ist so einfach wie wirkungsvoll: Zuerst wird
eine Liste angelegt, und jeder Eintrag in dieser Liste auf den
Wert -1 (wahr) gesetzt (Falls Liste%F(X) = -1 <=> X ist eine
Primzahl). Beginnend vom Listenanfang (Auf alle Fille -1!) wird
jetzt fir jedes Element der Liste gepriift, ob es sich dabei um
eine Primzahl handelt. Dann kénnen auch alle Vielfachen dieser
Zahl aus der Liste gestrichen werden. Dies geschieht, indem die
entsprechenden Eintrige auf den Wert 0 (falsch) gesetzt werden.
Nach diesem Schema wird Eintrag fiir Eintrag, bis schlieBlich
alle Nicht-Primzahlen aus der Liste gestrichen worden sind.

Der obige Algorithmus berechnet alle Primzahlen bis zur Sucho-
‘bergrenze * 2 + 3. Einen Haken hat die ganze Geschichte noch:
Der Wert 2 taucht in obiger Liste nicht auf. Deshalb miif3te noch
eine Zeile eingefiigt werden, in der die fehlende Ziffer auf den
Bildschirm gedruckt wird:

285 Print 2

Noch eine weitere Neuerung steckt in diesem kleinen Programm.
Ein Komma am Ende einer Printausgabe bewirkt, da3 der Cur-
sor an die nichste Tabulatorposition (jede achte Spalte auf dem

—— ST-BASIC Grundkurs 121 -

Monitor bildet eine solche Tabulatorposition) gefahren und bei
einem folgenden PRINT dann an dieser Stelle weitergeschrieben
wird.

2.11 Alles eine Frage der Routine ...

Nein lieber Leser, Sie lesen vollig richtig. Es ist wirklich alles
eine Frage der Routine. Doch mit Routine ist in diesem Fall
nicht nur die Praxis gemeint.

Hiufig kommt es ndmlich vor, dafl bestimmte Dinge innerhalb
eines Programmes mehrfach durchgefithrt werden miissen, je-
doch an véllig unterschiedlichen Programmstellen. Ein Beispiel
dafiir wire das Sortieren eines Variablenfeldes. Man kann natiir-
lich die entsprechenden Befehle jedesmal erneut in den Pro-
grammtext einflechten, doch dies geht auf Kosten des Speicher-
platzes. Macht nichts, davon haben wir in unserem ST wirklich
genug! Doch wie steht es mit der Mehrarbeit, die durch das im-
mer wiederkehrende Abtippen der entsprechenden Programm-
zeilen auftritt? Viel praktischer wire ein Programmteil, der nur
ein einziges Mal programmiert werden mii3te und dann jedesmal
die Arbeit fiir uns verrichten wiirde! Einen solchen Programm-
teil nennt man im Computerjargon - Sie ahnen es schon - eine
(Unter-)Routine oder auf gut englisch: Subroutine. Wie funktio-
niert nun die Sache mit den Unterroutinen?

Einmal Unterroutine und zurlick ...

Eine Unterroutine ist nichts anderes als ein kleiner Programm-
teil, der eine bestimmte Aufgabe (z.B. das Sortieren eines Vari-
ablenfeldes, dessen Speichern auf Diskette oder Festplatte, das
Setzen des Datums und der Uhrzeit usw.) erledigt, sobald er in-
nerhalb des Programms aufgerufen wird und anschlieBend zum
Hauptprogramm zuriickkehrt. Der Aufruf erfolgt in BASIC mit

GOsSUB <Ziel>

122 Das groBe ST-BASIC-Buch —

der Riicksprung ins Hauptprogramm stets mit
RETURN

<Anweisung 1>
<Anweisung 2>
<Anweisung 3>

GOSUB Unterprogramm
<Anweisung n>

END

-Unterprogramm
<Anweisung U1>
<Anweisung U2>

<Anweisung Un>
RETURN

Das eigentliche Programm (Hauptprogramm) beginnt mit
<Anweisung 1> und endet mit END. Innerhalb des Hauptpro-
gramms erfolgt ein Sprung in das Unterprogramm, das den sin-
nigen Namen Unterprogramm trigt. Dort werden dann die An-
weisungen des Unterprogramms <Anweisungen Ul> Dbis
<Anweisung Un> ausgefithrt. St6Bt der Interpreter auf ein RE-
TURN, so kehrt er in das Hauptprogramm zuriick. Die nichste
Anweisung hinter dem GOSUB wird ausgefiihrt, hier wire dies
die Anweisung <n>.

Der wesentlichste Unterschied zwischen dem GOTO-Befehl und
dem GOBUB besteht darin, daf3 bei GOSUB wieder direkt hin-
ter den Unterroutinenaufruf im Hauptprogramm zuriickgekehrt
werden kann, wihrend dies bei einem GOTO praktisch unmog-
lich ist, da sich der Interpreter nicht merkt, von wo aus er an
den unter <Ziel> angegebenen Programmpunkt gesprungen ist.
Bei einem GOSUB (iibrigens GO SUBroutine, springe in das
Unterprogramm) merkt sich der Interpreter die Stelle des Auf-
rufs und kehrt mit einem RETURN wieder an die urspriingliche
Stelle im Hauptprogramm zuriick.

—— ST-BASIC Grundkurs 123

Als <Ziel> kann eine Zeilennummer (Mircosoft-BASIC 148t
griflen), eine Marke, und die iibrigen auch beim GOTO zuge-
lassenen Parameter angegeben werden.

Die Verwendung von Unterprogrammen macht ein Programm
kiirzer und ibersichtlicher. Ein weiterer Vorteil ist die groBere
Anderungsfreundlichkeit. Stellen Sie sich vor, Sie miissen an
zehn Programmstellen Zahlen sortieren, und zwar in aufsteigen-
der Reihenfolge. Aus irgendeinem Grung werden aber die Zah-
len plétzlich in absteigender Folge benotigt. Arbeiten Sie mit
Unterroutinen, so bedarf es lediglich einer Anderung des ent-
sprechenden Unterprogramms, schon sind Sie fertig. Sonst miifite
die Anderung gleich zehnfach im Programm vorgenommen wer-
den. Nicht nur ein Mehraufwand, sondern auch eine Fehler-
quelle, da erfahrungsgemdf3 immer der eine oder andere Sor-
tieralgorithmus im Programm tibersehen wird, wenn Programme
etwas linger werden.

Als Alternative zu GOSUB stellt ST-BASIC noch

ON ... GOsus

zur Verfilgung, das in der Syntax der ON..GOTO-Anweisung
entspricht. MIT ON..GOSUB wird jedoch in ein Unterprogramm
gesprungen, aus dem mit RETURN zuriickgekehrt werden kann.

Prozeduren

Auch bei Prozeduren handelt es sich um um Unterprogramme,
jedoch in einer etwas umfassendere,n weil moderneren Erschei-
nungsart.

Mit einer Prozedur wird nimlich ein neuer Befehl definiert, der
dann innerhalb des (Haupt-)Programms aufgerufen werden kann.
Auch im Bildschirm-Editor wird der neue Befehl unmittelbar
nach seiner Definition zur Verfiigung gestellt. Doch eine Proze-
dur kann noch mehr:

124 Das groBe ST-BASIC-Buch ——

- Parameter kénnen ihr ibergeben werden,

- es konnen lokale Variablen vereinbart werden;

- Parameter kénnen zuriickgegeben werden;

- Prozeduren konnen sich selbst wieder aufrufen
(Rekursion)

Dies sind alles Dinge, die bis vor kurzem fiir einen BASIC-In-
terpreter undenkbar waren und mit ST-BASIC Realitit geworden
sind. Doch genug der schénen Worte, schreiten wir zur Tat:

Eine Prozedur wird fir den Interpreter als solche gekennzeich-
net, indem sie mit dem Befehl

DEF PROC <Name>

definiert werden. Das Ende eine Prozedur erkennt ST-BASIC
wieder an einem RETURN.

DEF PROC <Name>
<Anweisung 1>
<Anweisung 2>
<Anweisung 3>

<Anweisung n>
RETURN

Auf diese Weise wird eine Prozedur <Name> definiert. Um sie
innerhalb des Hauptprogrammes aufzurufen, wird einfach ihr
Name <Name> wie ein Befehl in das Programm eingefiigt. StofBt
der Interpreter bei der Abarbeitung des Programms auf einen
unbekannten Befehlsnamen, iiberpriift er, ob damit nicht viel-
leicht eine Prozedur gemeint ist. Dann werden die zwischen der
Definition der Prozedur (DEF PROC) und dem abschlieBenden
RETURN stehenden Anweisungen ausgefithrt und zum Haupt-
programm zuriickgekehrt. Dazu ein einfaches Beispiel:

ST-BASIC kennt einen Befehl zum Léschen des Bildschirms:
CLS. Der Cursor wird nach dem Loschvorgang in die linke
obere Ecke des Monitors gesetzt. Hiufig moOchte man nicht

—— ST-BASIC Grundkurs 125

gleich den ganzen Bildschirm loschen, sondern lediglich den
Cursor in die besagte Ecke des Bildschirms bringen. Dieser Ef-
fekt wird mit Home auf der Tastatur ausgelost, innerhalb eines
Programms stellt ST-BASIC jedoch keinen derartigen Befehl zur
Verfiigung. Also schreiben wir uns einfach einen neuen Befehl
dafiir:

DEF PROC Home
PRINT CHR$(27);"H"
RETURN

Erscheint innerhalb des Hauptprogramms der Befehl Home, so
wird der Cursor in die linke obere Monitorecke gesetzt. Doch
auch im Bilschirmeditor wird der Befehl Home mit der Cursor-
positionierung in die linke obere Bildschirmecke beantwortet.
Ritselhaft wird Thnen warscheinlich die zweite Zeile der Defi-
nition vorkommen. Dies ist der eigentliche Befehl zur Positio-
nierung des Cursors an die besagte Position.

Der Monitor des Atari ST ist nimlich in gewisser Weise intelli-
gent. Er versteht bestimmte Befehle, wie Bildschirm l6éschen,
Cursor an eine angegebene Position setzen, eine Zeile loschen
oder einfiigen, Cursor ein- und ausschalten. Diese Befehle sind
einem bekannten Terminal nachempfunden (deshalb spricht man
auch von einem VT-52-Emulator) und besginnen stets mit dem
Befehl CHR$(27) (Escape, ESC), gefolgt von einem (oder meh-
reren) Buchstaben. Doch dazu spiter mehr.

Parameter iibergeben

Im Gegensatz zu einem Unterprogrammaufruf mit GOSUB kén-
nen einer Prozedur auch ein oder mehrere Parameter iibergeben
werden. Diese miissen innerhalb von Klammern an den Proze-
durenamen angehingt werden:

<Anweisung 1>
Setcursor(10,10)

126 Das groBe ST-BASIC-Buch ——

<Anweisung n>

DEF PROC Setcursor(Spalte,Zeile)
PRINT CHR$(27);CHR$(Spalte+32);CHR$(Zeile+32)
RETURN

Die in diesem kleinen Programmfragment vorkommende Proze-
dure Setcursor setzt den Cursor auf eine bestimmte Bildschirm-
position, die durch die beiden Ubergabeparameter Spalte und
Zeile eindeutig bestimmt wird. Auch hier mufl wieder der VT-
52-Emulator des Atari ST herhalten. Die beiden in Klammern
angegebenen Parameter Spalte und Zeile sind lokal. Was bedeutet
das schon wieder?

Globale und lokale Variablen

Variablen in BASIC sind normalerweise global definiert. Das be-
deutet, daBl eine Variable iiberall im Programm einen bestimm-
ten, einmal zugewiesenen Wert besitzt. Im Gegensatz dazu be-
sitzen lokale Variablen nur innerhalb der Befehlsdefinition
(Prozedur) einen bestimmten Wert. AuBerhalb dieser Prozedur
verwendete (globale) Variablen konnen einen véllig anderen In-
halt besitzen, obwohl Sie den gleichen Namen tragen. Mit ihren
lokal definierten Kollegen haben sie nichts zu schaffen. Ein
kleines Beispiel:

100 Spalte=20: Zeile=10

110 PRINT "Spalte:";Spalte;" Zeile:";Zeile

120 Setcursor(10,5)

130 PRINT "Spalte:";Spalte;" Zeile:";2eile

140 END

150 'die Prozedur Setcursor

160 DEF PROC Setcursor(Spalte,Zeile)

170 PRINT CHR$(27);CHR$(Spalte+32);CHR$(Zeile+32)

180 PRINT "In Prozedur: Spalte:";Spalte;" Zeile:";Zeile
190 RETURN

An diesem kleinen Beispiel wird deutlich, daB3 die beiden Vari-
ablen Spalte und Zeile innerhalb der Prozedur lokal definiert
sind. Obwohl beide auch im eigentlichen Hauptprogramm auf-
tauchen, besitzen sie innerhalb der Prozedur véllig andere Werte.
Mit Verlassen der Prozedur erhalten sie dann wieder die ur-

—— ST-BASIC Grundkurs 127

spriinglichen (globalen) Werte zugewiesen. Anders verhilt sich
die Sache, wenn die beiden Parameter nicht beim Funktions-
aufruf ibergeben werden:

100 Spalte=20: Zeile=10

110 PRINT “Spalte:";Spalte;" Zeile:";Zeile

120 Setcursor

130 PRINT “Spalte:";Spalte;" Zeile:";Zeile

140 END

150 ‘die Prozedur Setcursor

160 DEF PROC Setcursor

170 PRINT CHR$(27);CHR$(Spalte+32);CHR$(Zeile+32)

180 PRINT "In Prozedur: Spalte:";Spalte;" Zeile:";Zeile
190 RETURN

In diesem Fall sind die Variablen Spalte und Zeile global und
besitzen folglich auch im Unterprogramm die gleichen Werte wie
im Hauptprogramm. Mochten Sie die Variablen innerhalb des
Unterprogramms lokal behandelt wissen, so miissen diese mit ei-
nem eigenen Befehl als lokale Variablen im Unterprogramm ge-
kennzeichenet werden:

LOCAL <variable>, <Variable>, .

Eine so deklarierte Variable nimmt innerhalb des Unterpro-
gramms Werte an, die bei einer Riickkehr ins Hauptprogramm
nicht mehr bekannt sind. Dort auftauchende Variablen kénnen
trotz gleichen Namens vollig andere Werte beinhalten. Solange
Variablen nicht beim Aufruf einer Prozedur in Klammern iiber-
geben werden oder durch den Befehl LOCAL innerhalb des
Unterprogramms als lokale Variablen definiert sind, ist ihr Wert
innerhalb des gesamten Programms bekannt.

Werte werden an eine Prozedur iibergeben, indem man sie in
Klammern hinter den Funktionsaufruf schreibt. Selbstverstind-
lich muf3 die Anzahl der iibergebenen Parameter auch mit der in
der Prozedurdefinition iibereinstimmen bzw. miissen die richti-
gen Variablentypen {ibergeben werden. Andernfalls meldet der
Interpreter diesen Fehler, und das Programm bricht ab.

128 Das grole ST-BASIC-Buch —

Hiufig wird eine Prozedur mit bestimmten Werten aufgerufen,
diese fiithrt die entsprechenden Operationen aus und gibt einen
oder mehrere Werte an das Hauptprogramm zuriick. Um dem
Computer mitzuteilen, daB3 ein bestimmter Wert zuriickgegeben
werden soll, wird die Variable in der Prozedurdefinition durch
ein vorangestelltes R gekennzeichnet:

DEF PROC Setcursor(R Spalte, R Zeile)

RETURN
Wird diese Prozedurdefinition in das kleine Beispielprogramm
integriert, so erhalten die Variablen Spalte und Zeile ab dem
Prozeduraufruf die neuen Werte 10 und 5, da die Werte des

Funktionsaufrufs an das Hauptprogramm zuriickgegeben werden,
sobald die Prozedur ihre Titigkeit beendet hat.

Rekursionen

Im Gegensatz zu den BASIC-Dialekten vergangener Tage ist es
moglich, dafl sich eine Prozedur auch selbst aufruft. Diesen Vor-
gang nennt man in der Informatik Rekursion:

Male(10,20,100,250)

DEF PROC Male(x1,y1,x2,y2)

RETURN

Dieses kleine Programmfragment verdeutlicht die Funktionsweise
einer rekursiv programmierten Prozedur. Zunichst wird eine
solche Unterroutine ganz normal aufgerufen und di€ iibergebe-
nen Parameter werden in irgendeiner Weise verarbeitet. Neu ist

—— ST-BASIC Grundkurs 129

dagegen, daB3 sich diese Funktion innerhalb der Unterroutine
selbst aufruft. Wieder werden ihr die (zuvor schon verarbeiteten)
Parameter iibergeben.

Der erneute Aufruf bewirkt wiederum eine Bearbeitung der an-
gegebenen Parameter, bis die Funktion ein weiteres Mal aufge-
rufen wird usw. Erst wenn die Parameter dergestalt bearbeitet
sind, daBB die Funktion ihre Pflicht getan hat, kehrt sie in das
Hauptprogramm zuriick. Mit Hilfe der rekursiven Programmie-
rung konnen bestimmte Probleme auf #ufBlerst elegante Art und
Weise gelost werden. Es wiirde mit Sicherheit den Rahmen dieses
Buches sprengen detailliert auf die rekursive Programmierung
einzugehen - dariiber haben Informatiker schon ganze Binde
geschrieben -, aber anhand eines Beispiels soll einmal eine Re-
kursion aufgezeigt werden.

Variablenfelder sind Ihnen bereits bestens vertraut. Mochte man
ein solches Array sortieren, muf3 ein dafiir geeigneter Algorith-
mus benutzt werden. Informatiker waren auf diesem Gebiet be-
sonders findig. Es existieren eine Unzahl der verschiedensten
Sortieralgorithmen, vom einfachen Bubble-, iiber Shell-, Heap-
bis hin zu Bucket-Sort. Jeder Algorithmus kann mit bestimmten
Vorteilen aufwarten. Ein Vertreter der schnelleren Garde von
Sortiermethoden ist der 1962 von C.A.R Hoare entwickelte
Quicksort, der - Sie ahnen es schon - die ihm anvertrauten Da-
ten rekursiv sortiert:

100 Vkdkkkdkkkkkkkkkkkkkkhkdkhkkhkkdkhkdkkhhhkdhkidkkkkhkikidkkihrkhkkikir

110 '* QUICK.BAS *
120 LR gy *
130 '* Autor: Michael Maier Version: 1.00 Datum: 16.02.1987 *
140 ** Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH!' *
150 '* (C) 1988 by DATA BECKER GmbH Dusseldorf *

160 1 *ddedkdkdkdededededdededdedededededed ook dod st dede de ok do de e o de ok ok de ke sk de ok ok e ok e ok o e e e e ok e e ok e ke e e

170 '

180 '

190 DIM Feld%(9)

200 RESTORE

210 FOR T%=0 TO 9
220 READ Feld%(T%)
230 NEXT T%

240 !

130 Das groBe ST-BASIC-Buch —

250 Quicksort(0,9)

260 !

270 FOR T%=0 TO 9

280 PRINT Feld%(T%);" ;

290 NEXT T%

300 DATA 3,9,7,2,0,6,1,5,4,8

310 END

320 ¢!

330 DEF PROC Quicksort(Anfang%,Ende%)

340 ‘die folgende Zeile dient nur zum Testen
350 'und hat mit der eigentlichen Routine nichts
360 fzu tun!

370 PRINT "#":: FOR T%=0 TO 9: PRINT Feld%(T#%);"™ ";: NEXT T%: PRINT
380 'jetzt erst geht's los...

390 LOCAL A%,Z%

400 A%=Anfang%

410 2%=Ende%

420 X%=Feld%((AnfangZ+Ende%)/2)

430 REPEAT

440 WHILE Feld%(A%)<X%

450 A%=A%+1

460 WEND

470 WHILE Feld%(Z%)>X%

480 2%=2%-1

490 WEND

500 1F A%<=2% THEN

510 SWAP Feld%(A%),Feld%(2%)

520 ' auch die beiden folgenden Zeilen dienen nur zum
530 ' Testen und kdnnen entfernt werden

540 FOR T%=0 TO 9: PRINT Feld%(T%);" "“;: NEXT T%
550 PRINT ,A%;™ ";2%,% “;X%

560 ' hier geht's wieder normal weiter

570 A%=A%+1

580 2%=2%-1

590 ENDIF

600 UNTIL A%>2%
610 IF Anfang%<2% THEN

620 Quicksort(Anfang%,2%)
630 ENDIF

640 IF A%<Ende% THEN

650 Quicksort(A%,Ende%)
660 ENDIF

670 RETURN

—— ST-BASIC Grundkurs 131

Dieses Programm sortiert ein Integerarray Feld%. Ehe das Feld
durch den Aufruf der Funktion Quicksort in Zeile 250 sortiert
werden kann, miissen den einzelnen Indices erst verschiedene
Werte zugewiesen werden. Dies erledigt die FOR.NEXT-
Schleife iiber eine READ-DATA-Anweisung. Die Werte selbst
sind hinter der DATA-Anweisung in Zeile 300 abgelegt. Sobald
dies erledigt ist, erfolgt der Aufruf der Quicksortroutine. Die
anzugebenden Parameter sind dabei der erste und letzte zu sor-
tierende Index.

Bei jedem Einsprung in die Routine wird zuerst einmal der
gesamte Feldinhalt {iber eine PRINT-Anweisung ausgegeben.
Anschlieend werden den lokalen Variablen A% und Z% die
ebenfalls lokalen Parameter des Funktionsaufrufs Anfang% bzw.
Ende% zugewiesen.

Der nichste Schritt besteht nun darin, das Feld in zwei Teile
aufzuspalten. Dies geschieht, indem der Variablen X% das in der
Feldmitte stehende Element zugewiesen wird, das ab sofort als
Vergleichsvariable weiterbenutzt wird. Die erste WHILE-Schleife
sucht das erste Element von unten (Anfang), das nicht kleiner
als das Vergleichselement ist. Entsprechend wird in der folgen-
den Schleife das erste Element von oben (Feldende) gesucht, das
nicht gréBer als die Vergleichsvariable X% ist. Die auf diese
Weise gefundenen Elemente werden miteinander vertauscht und,
da sie theoretisch auch gleich grof3 sein konnen, iibersprungen.

Apropos vertauschen: In ST-BASIC existert dafiir ein eigener
Befehl:

SWAP <Feld(X)>,<Feld(Y)>
vertauscht die Elemente X und Y des Arrays Feld miteinander.
Die REPEAT-Schleife sorgt dafiir, daB dieses Spielchen so oft
wiederholt wird, bis die untere die obere Grenze iiberschritten

hat. Dann sind in beiden Teilfeldern keine Elemente mehr vor-
handen, die in den anderen Teil des Feldes gehoren.

132 Das groBe ST-BASIC-Buch ——

Danach werden die beiden Teilfelder sortiert. Dies geschieht, in-
dem sich die Funktion wieder selbst (rekursiv) aufruft und die
Sortiergrenzen auf das gewiinschte Teilfeld gesetzt werden.Damit
das Prinzip noch deutlicher wird, sind in dem Programm zwei
Zeilen eingefiigt, die den Inhalt des Feldes ausgeben. Dies ge-
schieht bei jedem Einsprung in die Routine Quicksort, sowie
nach jedem Austausch zweier Variablen. Um die Ausgaben bei-
der Zeilen optisch trennen zu kénnen, beginnt erstere stets mit
dem Zeichen #. Zusitzlich wird nach dem Tausch noch der In-
halt der unteren bzw. oberen Grenze und des Vergleichselements
mit ausgegeben.

Starten Sie das Programm, wird zuerst das Ausgangsfeld auf den
Monitor geschrieben:

#3 9 7 2 0 6 15 4 8

Das Programm wihlt als Vergleichselement die 6. Das erste Ele-
ment von unten (in diesem Fall von links), das nicht kleiner als
6 ist, ist die 9, von oben (hier von rechts) das erste Element, das
nicht groBer als das Vergleichselement ist, ist die 4. Beide wer-
den miteinander vertauscht:

3472061598 1 8 6
A% 2% X%

Noch sind die untere und die obere Grenze nicht iiberschritten,
es wird weitergesucht: von unten stof3t der Interpreter auf die 7,
von oben auf die 5. Auch diese beiden werden vertauscht:

3452061798 ‘ 2 7 6
A% 2% X%

Noch immer nicht iiberschreitet die untere die obere Grenze. Es
heiBt weitersuchen. Die beiden nichsten Variablen, die der
Vertauschungswut des Interpreters zum Opfer fallen sind 6 und
1:

3452016798 5 6 6

—— ST-BASIC Grundkurs 133

Jetzt ist es soweit, die untere Grenze liegt iiber der oberen. Also
die beiden Teilfelder mit einem rekursiven Aufruf sortieren.
Zuerst werden die einzelnen Elemente des Feldes wieder auf
dem Monitor ausgegeben:

#3452016798

Als Vergleichselement des zweiten Funktionsaufrufes muf3 die 2
herhalten. Wieder wird das erste Element von unten gesucht, das
nicht kleiner als das Vergleichselement ist, in diesem Fall die 3.
Vertauscht wird sie mit dem ersten Element von oben, das nicht
groBer als die 2 ist: 3:

1452036798 05 2
A% 2% X%

Solange die untere noch nicht die obere Grenze iiberschreitet,
muf} weitervertauscht werden:

1052436798 14 2
A% 2% X%
1025436798 23 2
A% 2% X%

Das Vergleichselement des nichsten Aufrufs ist die 0, die mit
der 1 vertauscht wird:

#1025436798

0125436798 01 0
: A% 2% X%

Beim nichsten Aufruf wird das Vergleichselement 2 einmal mit
sich selbst vertauscht:

#0125436798

0125436798 2 2 2
A% 2% X%

134 Das groBe ST-BASIC-Buch ——

Dieses Spielchen setzt sich fort, bis beide Teilfelder fertig sor-
tiert vorliegen. Anhand dieses kleinen Algorithmus, der iibrigens
auch in der implementierten Sortierroutine des ST-BASIC Ver-
wendung findet, sieht man sehr schon die Funktionsweise und
Eleganz einer rekursiv programmierten Unterroutine. Die Nach-
teile sollen allerdings auch nicht verschwiegen werden: Hiufig
ist es sehr schwierig, eine rekursive Routine zu programmieren,
da sich kein geeigneter Rekursionsweg finden 14Bt. Andererseits
kostet eine Rekursion bei ihrer Ausfithrung stets mehr Speicher-
platz als ihre iterativ (Gegenteil von rekursiv) durchgefiihrte
Schwester. Warum dieses?

Der Interpreter merkt sich den Punkt, von dem aus er in ein
Unterprogramm gesprungen ist. Dazu legt er die entsprechenen
Daten in einem bestimmten Speicherbereich ab. Dieser Speicher-
bereich, den der Prozessor auch bei seiner Arbeit verwendet,
heif3t Stack. Ruft sich eine Funktion rekursiv auf, so wichst der
Stack logischerweise mit jedem Aufruf an. Es sind Problemstel-
lungen denkbar, die nicht rekursiv gel6st werden koénnen, da
selbst der Speicherplatz eines Mega ST 4 nicht ausreicht, um die
Daten des Stacks aufzunehmen.

Funktionen

Ahnlich wie Prozeduren, konnen Sie in ST-BASIC auch Funk-
tionen selbst definieren. Im Gegensatz zu einer Prozedur gibt
eine Funktion jedoch stets einen Wert zuriick: den Funktions-
wert.

[Funktionsparameter] --Funktion--> Funktionswert

Dieser kann dann einer Variablen zugewiesen oder gleich auf
dem Monitor ausgegeben werden. Die Funktionsparameter kon-
nen bei Bedarf auch entfallen. Ein Funktionswert wird aber auf
jeden Fall zuriickgegeben. ST-BASIC unterscheidet zwei Funkti-
onsarten: Ein- und mehrzeilige.

———— ST-BASIC Grundkurs 135

Einzeilige Funktionen

Ehe eine Funktion benutzt werden kann, muf3 sie mit

DEF FN <Name(Parameter)> = <Ausdruck>

definiert werden. Die Anweisung DEF FN weist den Interpreter
an, eine Funktion mit dem Namen <Name> einzufithren, der die
Argumente <Parameter> iibergeben werden. <Ausdruck> enthilt
die eigentliche Funktionsvorschrift. Als Beispiel mdchte ich noch
einmal die Wechselkursumrechnung DM in Schilling mif3brau-
chen. Zuerst die Definition der Funktion:

DEF Fﬂ Schilling(Betrag!) = INT((Betrag!/.1429*100)+.5)/100

Diese Definition kann beliebig in den Programmtext eingestreut
werden, da der Interpreter beim Programmstart simtliche DEF
FN selbstindig ausfithrt. Mochten Sie diese Funktion aufrufen,
so geht dies iiber FN, gefolgt von dem Funktionsnamen und dem
benstigten Parameter als Argument:

Waehrung!= FN Schilling(100)

Der in Schilling umgerechnete Betrag von 100 DM wird der Va-
riablen Waehrung! zugewiesen, und kann via PRINT auf den
Monitor gebracht werden. Mit

PRINT FN Schilling(100)

umgeht man die Zuweisung an die Variable und sieht das Er-
gebnis sofort auf dem Monitor: 699.79

Mochten Sie einen String als Funktionswert erhalten, so muf3 der
Funktionsname mit einem Dollarzeichen ($) am Namensende ge-
kennzeichenet werden:

DEF FN Screen$(X$) = CHR$(27)+X$

auf diese Weise resultiert ein zwei Zeichen langer String, der mit
einer Escape-Sequenz beginnt. Mit ihm kann der VT-52-Emu-
lator des Atari ST angesprochen werden (erinnern Sie sich?).

136 Das groBe ST-BASIC-Buch ——

PRINT Screen$("H")

setzt den Cursor in die linke obere Ecke des Bildschirms
(HOME), ohne diesen jedoch zu l6schen. Funktionen koénnen
auch andere Funktionen aufrufen. Zum Beispiel die Funktion
zur Cursorpositionierung:

DEF FN Crsr$(Sp,Ze)= FN Screen$("Y")+CHR$(32+Sp)+CHR$(32+Ze)

Mochten Sie den Cursor an die Position (10,10) setzen, geniigt
der Aufruf

PRINT FN Crsr$(10,10).

Es versteht sich von selbst, da3 die Anzahl und der Typ der
iibergebenen Parameter mit denen in der Funktionsdefinition
ibereinstimmen miissen. Auch eine Funktion ohne Ubergabe ei-
nes Parameters ist denkbar und vor allem moéglich!

DEF FN Wuerfel= -RND(-6)

Diese Funktion liefert Zufallszahlen im Bereich von 1 bis 6.
Dazu wird der Zufallsgenerator des Atari mit der Funktion RND
(Randomize) angesprochen. Wird ihm als Argument ein negativer
Wert iibergeben, so liefert der Zufallsgenerator ganzzahlige Zu-
fallszahlen im Bereich von -1 und dem iibergebenen Wert. Das
Minuszeichen vor der Funktion RND sorgt dafiir, daB der
Funktionswert positiv wird:

~(-4) = +4

Mehrzeilige Funktionen

ST-BASIC erlaubt auch die Definition mehrzeiliger Funktionen.
Wieder muf3 die Umrechnung von DM in Schilling herhalten, um
den Unterschied zwischen beiden Funktionsarten deutlich zu
machen:

100 DEF FN Schilling(Betrag!)
110 RETURN INT((Betrag!/.1429*100)+.5)/100

——— ST-BASIC Grundkurs 137

Zwei Unterschiede existieren zur einzeiligen Variante:

- Der Zuweisungsoperator = ist verschwunden

- Die Funktion wird iiber RETURN verlassen, wobei der
Funktionswert, der zuriickgegeben werden soll, hinter
dem RETURN stehen mub.

Mehrzeilige Funktionen sind - wie sich unschwer erkennen 148t
- mit Mehrarbeit verbunden. Als Lohn der Miihe erhilt man
mehr Moglichkeiten und eine damit verbundene groBere Flexi-
bilitit:
- Kontrollstrukturen wie IF..THEN..ELSE oder Schleifen
kénnen in der Funktionsdefinition vorkommen.

- In Abhingigkeit bestimmter Bedingungen kOnnen un-
terschiedliche Funktionsausdriicke zur Berechnung
herangezogen werden.

- Funktionen kénnen rekursiv programmiert werden.

Dazu wieder ein (Parade-)Beispiel: Die Fakultitsfunktion ist in
der Mathematik bzw. Statistik wie folgt definiert:

- Die Fakultit von 0 ist 1,
- Die Fakultit von X ist X mal der Fakultit von (X-1).

Die Fakultit von 5 (geschrieben als 5!) berechnet sich folglich
als:

5*4) = 5*4*3] = 5*4*3%2] 5¥4*3%2*11 = 5*4*3*2%1 = 120
Ein klassisches Rekursionsproblem, das wie folgt geldst wird:

100 DEF FN Fakultaet(X!)' Float, da extrem groBe Werte!
110 IF FRAC(X!) > O THEN' Nachkommastellen vorhanden?

120 PRINT" Fakult&dt ist nur fur naturliche Zahlen definiert!®
130 'EXIT TO <Ziel> mit EXIT zurick
140 ENDIF

150 IF X1=0 THEN

138 Das groBe ST-BASIC-Buch ——

160 RETURNC1)' 0! =1
170 ENDIF _
180 RETURN FN Fakultaet(X!-1)*X!

Als Funktionsargument muB} eine FlieBkommazahl herhalten, da
bei der Fakultitsberechnung sehr schnell extrem grofle Werte
erreicht werden (69! = 1,71 * 10798 !!!!), die dann nicht mehr in
einer Integerzahl gespeichert werden kénnen.

Eine mehrzeilige Funktion kann iibrigens auch mit einem EXIT
TO <Ziel> verlassen werden. Dies wird dann nétig, wenn eine
Zahl mit Nachkommastellen zur Berechnung iibergeben wurde,
da dies (mathematisch) nicht definiert ist. Die Fakultidt kann nur
fiir positive natiirliche (ganze) Zahlen einschlieBlich der Null
berechnet werden. Als <Ziel> muB3 eine Zeilennumer oder eine
Marke angegeben werden, an die der Interpreter im Falle des
Falles springen kann. Die Funktion FRAC(X!) liefert - ich weif3
ich wiederhole mich - die Nachkommastellen einer Zahl, und
somit bei vorhandenen Nachkommastellen eine wahre Bedingung.

Die Rekursion selbst diirfte keine Schwierigkeiten mehr machen.
Rufen Sie die Funktion mit Fakultaet(5) auf, so geschieht fol-
gendes:

- Solange der Funktionswert noch nicht den Wert 0 er-
reicht hat, ruft sich die Funktion immer wieder selbst
auf, jedoch mit einem um den Wert 1 erniedrigten
Funktionswert.

- Ist der Funktionswert 0 erreicht, werden die einzelnen
Werte multipliziert und zuriickgegeben. Fertig!

Ubrigens: ST-BASIC besitzt eine eigene Funktion zur Berech-
nung der Fakultit einer natiirlichen Zahl, so dafl man sich das
Schreiben der Funktion schenken kann: FACT(X). Im Gegensatz
zu Prozeduren ist es nicht moéglich Funktionen mit- Riickgabe-
Parametern auszustatten. Es wird jeweils nur der Funktionswert
zuriickgegeben!

Eine niitzliche Funktion zur Stringmanipulation, die in ST-BA-
SIC jedoch nicht implementiert ist, méchte ich Ihnen nicht

——— ST-BASIC Grundkurs 139

vorenthalten: Insert$

100 DEF FN Insert$(Master$,Einf$,Stelle)
110 Master$= LEFT$(Master$,Stelle-1)+Einf$+ MID$(Master$,Stelle)
120 RETURN Master$

Die Funktion setzt den String Einf$ ab der Position Stelle in die
Zeichenkette Master$ ein. Mit diesen Werkzeugen ausgestattet,
konnen wir (endlich!) zu gréBeren Taten schreiten! Zuvor bin
ich Thnen allerdings noch die Erklirung eines Befehls schuldig,
den ich zwar schon bei Quicksort schon benutzt, aber noch nicht
erklart habe: READ, DATA und RESTORE.

2.12 READ, DATA und RESTORE

Moéchten Sie ein Array mit bestimmten Anfangswerten versor-
gen, stehen Thnen dafiir mehrere Moglichkeiten zur Verfiigung:

- Jedes Element kann iiber eine eigene Zuweisung mit dem
Anfangswert versorgt werden:

AC0)=10
A(1)=3
A(2)=41

- Auch eine manuelle Eingabe der Werte beim Programmstart
erweist sich als nicht besonders praktisch:

FOR T% = 0 TO Anzahl
Input A(T%)
NEXT T%

- die Werte konnen jedoch auch hinter der Anweisung DATA
abgelegt und iiber eine READ-Anweisung eingelesen werden.

140 Das groBe ST-BASIC-Buch ——

100 REM Array A() mit Anfangswerten versorgen
110 DIM A(10)

120 FOR T%=0 TO 10

130 READ A(T%)

140 NEXT T%

150

160 !

170 ¢

180 DATA 10,20,30,50,60,20,65,0,4,521,87

190 END

In der Programmzeile 180 sind genau 11 verschiedene Werte,
fein siuberlich durch Komma voneinander getrennt, abgelegt.
St6Bt der Interpreter bei seiner Arbeit auf den Befehl

READ

so wird das Element aus der DATA-Zeile gelesen, auf das der
DATA-Zeiger weist. Dieser Zeiger sagt dem Computer, welches
Element er als nichstes aus der DATA-Zeile holen muf3. Nach
dem Programmstart wird der Zeiger stets auf den ersten Wert in
der ersten DATA-Zeile gesetzt. In unserem Programm ist nur
eine Zeile vorhanden, deshalb nimmt der Interpreter den Wert
10.

AnschlieBend erh6ht er den DATA-Zeiger um eine Position, so
daB dieser ab sofort auf den nichsten Wert in der Datazeile
weist (20). Beim nichsten READ geht es diesem Wert an den
Kragen, gleichzeitig wird der Zeiger wieder ein Element weiter-
bewegt. Dies wiederholt sich bei jedem READ, bis alle Daten
eingelesen sind.

Yersuchen Sie mit READ mehr Daten aus der Tabelle abzuho-
len, als in dieser vorhanden sind, muf3 der Computer feststellen,
daB sein DATA-Zeiger irgendwo in die Pririe weist und er
meldet sich mit einem OUT OF DATA zu Wort. Zur Manipula-
tion des DATA-Zeigers existiert ein eigener Befehl:

RESTORE: RESTORE setzt den DATA-Zeiger
auf das erste Element der ersten
Datazeile. Aber auch inmitten der
Werte kann der Zeiger gesetzt wer-

——— ST-BASIC Grundkurs 141

den, indem hinter RESTORE eine
Zeilennummer oder eine Marke an-
gegeben wird.

RESTORE 500: Placiert den Zeiger auf das nichste
auffindbare Element ab Zeile 500.

RESTORE Irgendwohin: Setzt den Zeiger auf das nichste
Datenlement hinter dem Label "Ir-
gendwohin".

ON..RESTORE: Funktioniert wie ON..GOTO und
setzt den Zeiger auf die entspre-
chende(n) hinter RESTORE ange-
gebene(n) DATA-Zeile(n):

100 INPUT " Umsédtze fur Monat? (1-12) ";Monat%

110 ON Monat RESTORE Januar, Februar, Maerz, April, Mai, Juni ...
120 ¢

130 FOR T%=1 TO 31

140 READ Umsatz

160 IF Umsatz=-1 THEN

170 EXIT

180 ENDIF

190 PRINT T%;".";Monat%;" ".Umsatz
- 200 NEXT T%

210 END

220 ¢

230 -Januar

240 DATA 5436,4986,45673,12345,23987,23769,2976
250 DATA 7659,3276,4598,5456,5986,3456,-1

260 -Februar

270 DATA 65786,4987,3096,2386,2387,30975,23765,2386
280 DATA 54675,23987,-1

290 -Maerz

300 ‘und so weiter

Dieses (zugegebenermafBen) nicht sehr sinnvolle Programm
druckt die in jedem Monat getitigten Umsitze aus. Der
ON..RESTORE-Befehl sorgt dafiir, daB der DATA-Zeiger auf
den ersten Umsatzwert des entsprechenden Monats positioniert
wird. AnschlieBend werden die einzelnen Datawerte per READ-
Anweisung eingelesen.

142 Das groBe ST-BASIC-Buch —

Neu ist noch die Uberpriifung des eingelesenen Wertes. Betriigt
dieser -1, so sind bereits alle Umsitze eingelesen und die
Schleife kann verlassen werden. Auf diese Weise werden stets
nur soviele Daten eingelesen, wie auch wirklich vorhanden sind.
Bei unterschiedlichen Datenmengen ein unabdingbares Mu8,
damit die Fehlermeldung OUT OF DATA vermieden wird.

Neben Zahlen koénnen selbstverstindlich auch Zeichenketten in
DATA-Zeilen abgelegt werden. Diese miissen dann in Anfiih-
rungszeichen stehen:

90 DIM A$(12):T%=0

100 REPEAT

110 T%=T%+1 .

120 READ A$(T%)* einer STRINGvariable zuweisen

130 UNTIL A$(T%)="Dezember"140 '

150 END

160 '

170 DATA “Januar","Februar","Maerz", "April", "Mai", "Juni®
180 DATA "“Juli", "August", "September","0Oktober", "November"
190 DATA "Dezember"

In die Variable A$() werden die einzelnen Monatsnamen aus den
DATA-Zeilen eingetragen. Die REPEAT..UNTIL-Schleife sorgt
dafiir, daB alle Monatsnamen bis einschlieBlich "Dezember" ein-
gelesen werden. Ist dies geschehen, wird die Schleife beendet.
Somit erspart man sich das Abzihlen der einzelnen Werte, das
besonders bei lingeren Datenkolonnen zweitaufwendig und feh-
lerbehaftet ist.

2.13 BASIC-Allerlei

Mit Riesenschritten nihern wir uns dem nichsten Kapitel, in
dem sich alles um die Datenspeicherung auf Diskette drehen
wird. Und weil damit auch der Grundkurs in ST-BASIC zu
Ende geht, konnen wir uns gleich an eine etwas schwierigere
Kost wagen.

—— ST-BASIC Grundkurs 143

Ehe Daten auf Diskette gespeichert werden koOnnen, miissen
diese erst einmal erfasst werden. Was liegt also nidher, als eine
Mini-AdreBverwaltung zu entwickeln, anhand der gleich noch
ein paar prinzipielle Dinge besprochen werden kénnen, die ich
bisher unterschlagen habe? Was braucht der Mensch?

Bis jetzt waren die Programme relativ kurz, man konnte einfach
drauflos programmieren. Je komplexer die Programme allerdings
werden, desto mehr Gedanken muf3 man sich vor dem eigentli-
chen Programmiervorgang machen. Als Lohn dieser Miihe kann
man sich viel Zeit beim Austesten seiner Programme sparen.

BASIC verfiithrt dazu, ein Programm direkt in den Computer zu
"hacken" und anschlieBend solange auszuprobieren bis es funk-
tioniert. Bei Verwendung von Compilersprachen, deren Pro-
gramme nicht direkt ausfithrbar sind, sondern erst in eine aus-
fihrbare Form gebracht werden miissen, ist diese Problematik
nicht so akut. Stellen Sie sich einmal vor, Sie haben ein Pro-
gramm entwickelt und ehe Sie es testen kénnen, miissen Sie ei-
nige Minuten warten, in denen das Programm compiliert wird.
Schon bald werden Sie sich freiwillig zuerst iberlegen, was die-
ses Programm konnen soll, und wie dies bewerkstelligt werden
kann, ehe Sie den Computer einschalten. Und auch bei BASIC
sollten Sie sich im eigenen Interesse diesen Arbeitsstil angewoh-
nen.

Aufgabenstellung festlegen

Der erste Schritt vor dem eigentlichen Programmiervorgang ist
die Festlegung der Aufgabenstellung. Gut, dal wir eine AdreB3-
verwaltung schreiben wollen, das ist bekannt. Aber was soll
dieses Programm leisten? Profis verwenden hierzu ein Pflichten-
heft, in dem genau verzeichnet ist, was das Programm koénnen
soll. Fiir unsere Adressverwaltung koénnte dies etwa so aussehen:

1. Adressen erfassen
2. Adresse korrigieren und gegebenenfalls 16schen
3. Eine bestimmte Adresse suchen

144 Das groBe ST-BASIC-Buch ——

4, Adressen auf Diskette speichern
5. Adressen von Diskette einlesen
6. Programm verlassen

Als nichstes mufl abgeklirt werden, welche Daten vom Pro-
gramm erfasst werden sollen:

1. Name und Vorname

2. Strasse incl. Hausnummer
3. Postleitzahl und Wohnort
4, Telefonnummer

5. Geburtsdatum

Nachdem abgekliart wire, welche Funktionen das Programm ent-
halten und welche Daten damit erfafit werden sollen, muf} es
noch anwenderfreundlich gestaltet werden. Dazu bietet man dem
Benutzer nach dem Programmstart alle Funktionen an, die das
Programm beinhaltet, und 1#Bt ihn auswihlen, welche Funktion
er wiinscht. Diese Auswahl nennt man im Fachjargon auch
MENU. Und damit auch die Optik stimmt, realisieren wir den
Bildschirmaufbau wie folgt:

- Kopfzeile (HEADER),
- zur Verfiigung stehende Funktionen,

- Aufforderung an Benutzer eine Auswahl zu treffen

Nach dem Programmstart wird dieses Bild auf dem Monitor aus-
gegeben, und der Computer mufl warten, bis eine Taste gedriickt
wurde. Im nichsten Schritt ist zu uberpriiffen, ob diese Taste
eine bestimmte Funktion ausldsen soll oder ob eine falsche Taste
gedriickt wurde. Diese muB ignoriert werden, damit das Pro-
gramm nicht abstirzt. Kann der Taste eine Funktion zugewiesen
werden, so ist diese auszufithren (Abbildung 2.1).

Die einzelnen Funktionen selbst legt man in Unterprogrammen
(Module) ab, die iiber ein ON..GOSUB erreicht werden koénnen.
Welche Daten gespeichert werden sollen, dariiber waren wir uns
bereits im Klaren. Doch wie werden diese Daten am giinstigsten

——— ST-BASIC Grundkurs 145

im Computer abgelegt? Dumme Frage, ein Array muf} dafiir
herhalten. Die Dimension des Feldes wird in einer Variablen
gespeichert, damit bei Bedarf einfach und schnell nachdimensio-
niert werden kann. Eine Dimension von 100 sollte fiir den An-
fang genfigen.

MINIDATEI - Hauptmenii

Ein Demoprogramm aus dem grossen ST-Basic Buch
FHHHHEHHEHHOHOHEHHEHHHEHEHEHEHEHORHEHEHEHORHHHHHHHEHOHOEOHOHROHOHOHEHORHREE

3k ok kK N
L R B]

1. MName erfassen

2. Name korrigieren
3. Name suchen

4., Datei abspeichern
5. Datei laden

6. Programm verlassen

Bitte waehlen Sie!

Abb. 2.1: Das Hauptmenii der Minidatei

Mit diesen Voriiberlegungen sollte die Umsetzung in ein aus-
fithrbares Programm keinerlei Schwierigkeiten mehr machen.
Nach der Dimensionierung der String-Arrays, die iiblicherweise
am Programmbeginn erfolgt, wird das Menii aufgebaut. Dazu
wird der Befehl PRINT verwendet bzw. ein naher Verwandter
von PRINT, nimlich PRINT AT (sprich: Print At).

PRINT AT

Print At ermdglicht die Ausgabe von Daten an der Bildschirm-
position mit dem Koordinatenpaar (Zeile, Spalte). Die Syntax
dafiir lautet

PRINT a(2eile,Spalte);<Text>

146 Das groBe ST-BASIC-Buch ——

Uber den Befehl PRINT gibt es nichts Neues sagen. Das Zeichen
@ (Klammeraffe genannt) erreichen Sie durch gleichzeitiges
Driticken der Tasten <Alternate> und <U>. AnschlieBend wird
die Position angegeben, an der die Ausgabe von <Text> (durch
ein Semikolon von der Positionsangabe getrennt) erfolgen soll.
Die linke obere Ecke des Monitors besitzt dabei die Koordinaten
(0,0), die rechte untere Ecke die Koordinaten (24,79).

PRINT @(0,1);"*n*78

schreibt demnach in die erste Zeile ab Spalte 2 einen aus 78
Sternchen bestehenden String. Mit PRINT At 148t sich jetzt der
Bildschirmaufbau problemlos realisieren. Der Optik halber wird
die in der untersten Zeile stehende Aufforderung "Bitte wihlen
Sie" invers dargestellt. Die inverse Darstellung iibernimmt der
VT-52 Emulator des Atari ST. Eingeschaltet wird sie mit dem
Befehl

PRINT CHR$(27);"p"

wihrend

PRINT CHR$(27);"q"

dafiir sorgt, daf} sie wieder abgeschaltet wird. Die in der Zeile 9
definierte Funktion SCREENS$(), der als Argument das entspre-
chende Zeichen iibergeben wird, macht die ganze Sache etwas
ubersichtlicher.

Nachdem der Bildschirm aufgebaut ist, muf3 das Programm an-
halten und auf die Eingabe des Benutzers warten. Man konnte
jetzt auf die Idee kommen, dafiir eine INPUT-Anweisung zu
benutzen. Sicher eine Moglichkeit, aber es gibt einen eleganteren
Weg, der hier auch prompt beschritten werden soll:

INKEY$

INKEYS liefert eine vier Byte lange Zeichenkette, die die Daten
der zuletzt gedriickten Taste enthilt. Dabei wartet die Funktion
jedoch nicht auf einen Tastendruck wie INPUT. Wurde keine

——— ST-BASIC Grundkurs 147

Taste gedriickt, liefert INKEYS$ als Ergebnis einen leeren String.
Folglich mu3 INKEYS in einer Schleife solange wiederholt wer-
den, bis eine Taste gedriickt wurde:

REPEAT
' weist A$ das von INKEY$ gelieferte Ergebnis zu
A$= INKEY$

UNTIL A$ <> "t ynd zwar solange, bis Taste gedrickt

Sobald eine Taste gedriickt wurde, enthdlt A$ eine vier Byte
lange Zeichenkette:

1.Byte: Bit 0: Rechte Shift-Taste
Bit 1. Linke Shift-Taste
Bit 2: Control
Bit 3: Alternate
Bit 4: Zustand von Caps Lock

2.Byte: Scancode der Taste
3.Byte: Nicht benutzt
4.Byte: ASCII-Code der Taste

Fiir uns ist im Augenblick lediglich das vierte Byte interessant,
das mit

RIGHTS$(AS,1)

isoliert werden kann. Doch Vorsicht! Solange keine Taste ge-
driickt wurde, enthilt die Variable A$ einen Leerstring. Ver-
sucht man mit RIGHTS das letzte Byte von A$ abzuschneiden,
so fuhrt dies unweigerlich zu einer Fehlermeldung, wenn in A$
noch keine Zeichenkette vorhanden ist. Andererseits 148t sich
das Angenehme gleich mit dem Niitzlichen kombinieren: die
Schleife soll nur dann verlassen werden, falls der Benutzer eine
korrekte Meniiauswahl getroffen hat. Korrekt bedeutet in diesem
Zusammenhang, daf3 eine Zifferntaste von 1 bis 6 gedriickt
wurde. Die verbesserte Schleife:

REPEAT

148 Das groBe ST-BASIC-Buch ——

A$= INKEY$
IF AS <> "t THEN
A$= RIGHTS(AS$,1)
ENDIF
UNTIL A$>%0" AND A$ <"7%

Der Operator AND weist den Computer an, die Gesamtbedin-
gung nur dann als wahr zu akzeptieren, wenn beide Teilbedin-
gungen (A$ > 0, A$ < 7) erfillt sind. Doch dazu spiter
mehr.Zunichst werden der Variablen A$ die Daten der zuletzt
gedriickten Taste zugewiesen. Wurde noch keine Taste betitigt,
enthilt A$ einen Leerstring. Die IF-Abfrage tiberpriift, ob schon
eine Zeichenkette in A$ vorliegt und isoliert das fiir uns wert-
volle vierte Byte, das anschlieBend zur Uberpriifung des Ab-
bruchkriteriums herangezogen wird. Die Schleife wird immer
dann verlassen, wenn eine Taste von 1 bis 6 gedriickt wird. DaB
Buchstaben aufgrund ihres ASCII-Wertes auch fiir Vergleiche
herangezogen werden koénnen, ist fiir Sie bereits Schnee von vor-
gestern.

A$ enthilt nach Abbruch der Schleife die gedriickte Taste in
Form eines 1 Byte langen Characters. Doch der hilft uns bei
unserem nidchsten Problem iiberhaupt nicht weiter: ON..GOSUB
erwartet ndmlich eine Zahl (!) von 1 bis 6, und nicht irgendei-
nen Buchstaben. Also umwandeln! Aber wie?

Mit VAL() (A = VAL(AS$()) ginge es, aber das ist zu einfach!
Kennen Sie noch einen zweiten Losungsweg? Richtig, der
ASCII-Code, der sich fiir jeden Buchstaben mit Hilfe der Funk-
tion ASC() ermitteln 14B8t, muB ran! Wenn Sie sich die im An-
hang dieses Buches abgedruckte ASCII-Tabelle einmal in einer
ruhigen Minute zu Gemiite fithren, werden Sie feststellen, daf
die 1 den Code 49, die 2 den Wert 50, usw. zugeordnet bekom-
men hat.

Ermitteln wir von A$ den Code iiber ASC(A$) und subtrahieren
von diesem Ergebnis den Wert 48, resultieren daraus - je nach
gedriickter Taste - die Zahlen von 0 bis 9, die wir fiir unsere
ON..GOSUB-Anweisung verwenden konnen. Wie gesagt, auch
VAL() fiuhrt (in diesem Fall sogar schneller) zum Ziel, aber
dann hitten Sie nicht so viel iiber den ASCII-Code gelernt.

—— ST-BASIC Grundkurs 149

Mehr als eine reine Formsache ist das Ldschen der Variablen A
vorm Schleifeneintritt. Wird dies unterlassen, geschehen gar
wundersame Dinge, da die INKEY$-Schleife in Zukunft verlas-
sen wird, ohne daB eine Taste gedriickt werden muflte! Probie-
ren Sie es einmal spaBeshalber aus!

Die Meniiauswahl selbst ist in eine Schleifenstruktur eingebettet,
die nur dann beendet wird, falls die Taste 6 gedriickt wurde.
Die Struktur in "Pseudocode™

REPEAT
<Bi ldschirmaufbau>
REPEAT
<Taste gedrlckt?>
UNTIL <Taste richtige gedrlickt>
<ON <Taste> GOSUB >
UNTIL <Programmende>

Ach ja, vor der INKEY$-Schleife wird noch der Cursor ausge-
schaltet, damit er nicht irgendwo (stérenderweise) blinkt. Der
Ordnung halber wird er dann nach dem Schleifendurchlauf wie-
der aktiviert (Der noch kommende INPUT-Befehl soll ruhig sei-
nen blinkenden Cursor haben). Der Menilaufbau wére abge-
schlossen, jetzt kommen die einzelnen Funktionen des Program-
mes an die Reihe:

Zuerst einmal Adressen erfassen. Auf dem Monitor befindet sich
im Augenblick noch die Meniiauswahl, die mit einem CLS ent-
fernt wird. Im nichsten Schritt wird ein Formular auf dem
Bildschirm aufgebaut, in das die geforderten Daten eingegeben
werden werden konnen. Ist ein Datensatz komplett erfaf3t, kann
der Benutzer wihlen, wie er fortfahren mdochte:

150 Das groBe ST-BASIC-Buch ——

1. Eine weitere Adresse eingeben.
2. Eingegebene Adresse korrigieren.
3. In das Hauptmenii zuriickspringen.

Wie lassen sich nun diese Funktionen am zweckmiBigsten auf
einzelne Prozeduren verteilen? Der Bildschirm wird, da auch die
Meniipunkte Adressen Korrigieren bzw. Adresse suchen auf die
gleiche Maske zuriickgreifen sollen, in einer eigenen Prozedur
aufgebaut. Auch eine universell gestaltete Eingabeprozedur hat
ihre Vorteile: Der Meniipunkt "Adressen korrigieren" kann sie
ebenfalls benutzen. Da die Auswahl des Untermeniis jedoch von
Fall zu Fall verschieden sein wird, hat eine Abfrage nach der
weiteren Vorgehensweise des Benutzers in der Eingabeprozedur
nichts mehr zu suchen, sie ist vielmehr eine Sache des eigentli-
chen Unterprogramms.

Sinn dieser Voriiberlegungen ist, die anfallenden Arbeiten auf
verschiedene Prozeduren zu verteilen und somit das Programm
nicht unnétig in die Linge zu ziehen. Fassen wir die bisher ge-
klirten Aufgaben des Meniipunktes noch einmal zusammen, um
nicht den Uberblick zu verlieren:

¥¥dkkkk Unterprogramm: Adressen erfasgen *¥*¥*¥**

<Maske aufbauen>
<Eingabe einer Adresse erméglichen>
<Weitere Vorgehensweise abfragen>

Diese Grobstrukturierung mufl jetzt noch Schritt fiir Schritt
verfeinert werden, ehe mit der eigentlichen Programmierung be-
gonnen werden kann. Eine Prozedur zur Darstellung der Maske
zu schreiben, sollte uns vor keine gréBeren Probleme mehr stel-
len. Ein Punkt, der bei der Programmierung dieser Funktion
gleich mit beriicksichtigt werden sollte, ist die Ausgabe einer
Uberschrift. Dazu wird der Prozedur bei ihrem Aufruf ein (lo-
kaler) String ubergeben, in dem die Uberschrift enthalten ist.
Fiur’s Auge wird er dann genau in die Bildschirmmitte gesetzt:

PRINT a(Zeile, (Zeilenldnge-Stringldnge)/2);"..... "

——— ST-BASIC Grundkurs 151

Dieser Algorithmus zentriert den String. Zun#chst wird die
Lange der auszugebenden Zeichenkette von der maximalen Zei-
lenlinge abgezogen. Ubrig bleibt die Anzahl der nicht genutzten
Zeichen in dieser Zeile. Durch die Division mit 2 werden diese
zwischen dem linken und dem rechten Bildschirmrand aufgeteilt,
so daB schlieBlich der auszugebende String genau in der Bild-
schirmmitte erscheint.

Schwieriger wird die Prozedur zur AdreBeingabe, da hierzu
gleich eine ganze Menge Neuerungen benétigt werden. Aber al-
les schén der Reihe nach!

Formatierte Eingabe

INPUT bzw. LINE INPUT kennen Sie bereits. INKEY$ ist in
diesem Kapitel neu hinzugekommen. Und den absoluten Profi-
befehl zur Dateneingabe mochte ich Thnen jetzt servieren:
INPUT USING.

Ja, Sie lesen richtig! Bei INPUT USING handelt es sich um
einen Profibefehl, der vor allem fir die Verwendung in kom-
merziellen Programme gedacht ist. Wenn seine Handhabung auch
etwas komplizierter als die des INPUT bzw. INKEYS$ erscheint,
soll das niemanden abschrecken! Es ist bekanntlich noch kein
Meister vom Himmel gefallen. Und zudem sollten Sie mittler-
weile iiber geniigend Hintergrundwissen verfiigen, um diesen
Befehl zu verstehen.

INPUT a(Zeile,Spalte);<variable>

kenne ich schon, werden Sie jetzt vielleicht erfreut feststellen!
Das ist doch die Syntax des altbekannten INPUT-Befehls. Und
in der Tat, bisher unterscheiden sich beide Befehle noch iiber-
haupt nicht. Doch was jetzt kommt, ist neu:

USING <Steuerstring>

USING ist ein Befehlswort, das halt dastehen muB. Interessanter
wird es beim <Steuerstring>. Er zeichnet dafiir verantwortlich,
daB3 bei der Eingabe nur ganz bestimmte Zeichen angenommen

152 Das groBe ST-BASIC-Buch —

werden. Zeichen, die im <Steuerstring> nicht zugelassen sind,
werden vom Computer ignoriert. Soll z.B. die Eingabe einer Te-
lefonnummer erfolgen, so haben Buchstaben darin absolut nichts
zu suchen, wihrend Zahlen bei der Erfassung von Namen igno-
riert werden miissen. Folgende Zeichen sind im <Steuerstring>
von Bedeutung:

Zeichen bewirkt ein Zulassen von

0 Ziffern (0-9)

a Buchstaben (incl. Umlaute) falls Modus
"Deutsch"

% Sonderzeichen (excl. Umlaute)

falls Modus "Deutsch"
Control-Zeichen

-

+<Zeichen> <Zeichen> gulassen

-<Zeichen> <Zeichen> verbieten

c<Zeichen 1><Zeichen 2> <Zeichen 1> durch <Zeichen 2> ersetzen
u alle Buchstaben in GroB8schrift

1 . alle Buchstaben in Kleinschrift

Durch Kombination dieser Zeichen wird der Steuerstring zu-
sammengebaut. Aber dies ist nicht weiter kompliziert:

"0" Bei der Eingabe sind alle Ziffern von 0 bis 9
zugelassen.

"0a" Alle Ziffern und Buchstaben sind zugelassen.

"Oau” Alle Ziffern und Buchstaben sind zugelassen,
Buchstaben werden automatisch in GrofBschrift
umgewandelt.

"0a+.u"” Wie oben, zusitzlich ist jedoch die Eingabe ei-

nes Punktes gestattet.

"Oa+.-au” Der Buchstabe a ist ab sofort nicht mehr zu-
gelassen.

"+a+b+c” Bei der Eingabe werden nur die Buchstaben a,
b und ¢ angenommen.

"+a+b+ct+ " Wie oben, jedoch zusitzlich das Leerzeichen

(Space).

"+a+b+c+ +-+.c.-" Zusitzlich sind hier noch die beiden Zeichen -

——— ST-BASIC Grundkurs 153

und . zugelassen. Ein Driicken von . bewirkt
jedoch, daB ein - in der Eingabe erscheint, da
mit c.- der Punkt in einen Strichpunkt
umgewandelt wird.

Es bleibt sich letztendlich egal, ob die Buchstaben innerhalb des
Steuerstring in GroB3- oder in Kleinschrift eingegeben werden.
Der INPUT-Befehl wird mit der <Return>-Taste verlassen.
Auch INPUT USING wird mit dieser Taste beendet. Zusétzlich
konnen noch weitere Bedingungen im Steuerstring angeben wer-
den, mit denen die Eingabe abgebrochen werden soll:

Zeichen Abbruch bei

x<ASCII> Taste mit dem ASCII-Wert <ASCII>
s<Scan> Taste mit dem Code <Scan>

< Uberschreitung des linken Randes

> Uberschreitung des rechten Randes

Soll die Eingabe bei Betdtigung der Taste <E> beendet werden,
kann dies auf zweierlei Art und Weise angegeben werden:

1. Uber den ASCII-Code dieser Taste: 101. Der Steuerstring
mii3te dann so aussehen:

Hax"+CHR$(101) bzw. “axe"

Die CHR$()-Darstellung des ASCII-Wertes ist immer dann er-
forderlich, wenn das Zeichen, das den Abbruch auslésen soll,
nicht direkt eingegeben werden kann. Ein Beispiel dafiir wire
die Taste <ESC>, die den ASCII-Wert 27 besitzt:

“x"+CHR$(27)

2. Uber den Scancode dieser Taste. Dazu ist wieder eine Er-
klirung f#llig: Neben dem ASCII-Code gibt es noch den
Scancode, eine Tastennummer. Jede Taste besitzt einen ganz
bestimmten (Scan-)Code, anhand dessen sich die gedriickte
Taste eindeutig identifizieren 14Bt. Dies ist vor allem fir Ta-
sten, denen kein ASCII-Code (z.B. Cursor links, rechts, usw.)

154 Das groBe ST-BASIC-Buch ——

zugeordnet ist, wichtig. Wir werden spiter noch einmal dar-
auf zuriickkommen. Auch INKEYS liefert den Scancode der
gedriickten Taste, und zwar im zweiten Byte.

Bemerkenswert ist noch, daB die Zifferntasten des separaten
Zifferblocks eigene Tastennummern besitzen. Somit kann streng
zwischen den Ziffern des Hauptfeldes und denen des Ziffern-
blocks unterschieden werden. Auch fiir die Scancodes finden Sie
im Anhang eine Tabelle.

Doch zuriick zum eigentlichen Problem: Die Taste <E> besitzt
den Scancode $12 bzw. in dezimaler Notation 18. Um einen Ab-
bruch iiber diese Taste zu erméglichen, muB der Steuerstring
lauten:

"s"+CHR$(18)

So, den Steuerstring konnen wir mit diesem Wissen bereits zu-
sammenbauen. Uberlegen wir uns also, welche Eingaben fir die
einzelnen Bestandteile des Datensatzes erlaubt werden sollen:

NAME

Zur Eingabe des Familiennamens werden auf alle Fille einmal
Buchstaben bendétigt. Umlaute kénnen u.U. auch auftreten. Des-
halb muB3 am Programmanfang auf den Modus Deutsch mit
MODE "D" umgeschaltet werden. Fiir Doppelnamen (Bauer-
Reichel) sollte der Trennstrich méglich sein. Namenszusitze
(Titel) miissen durch ein Leerzeichen (Space) abgesetzt werden
konnen. Beriicksichtigt man ferner, daB simtliche Buchstaben
gleich bei der Eingabe in Grofschrift erscheinen sollen, so muf}
der Steuer-String fiir die Eingabe des Namens "a+ +-u" lauten.
Fir den Vornamen kann der gleiche Steuer-String benutzt wer-
den, die Umwandlung in GroBbuchstaben entfillt jedoch: "a+-+

"

—— ST-BASIC Grundkurs 155

STRASSE

Zur Eingabe des Straennamens werden wieder Buchstaben,
Ziffern fir die Hausnummern, das Leerezichen sowie der Punkt
benétigt: "0a+ +-+."

POSTLEITZAHL

Die Postleitzahl besteht aus genau vier Ziffern. Sind alle einge-
geben, so soll der Computer den INPUT USING-Befehl verlas-
sen. Dazu dient das > (Exit rechte Randiiberschreitung) im
Steuer-String: "0>"

ORT

Zur Eingabe des Ortes sind Buchstaben, Zahlen fiir den evtl.
vorhandenen Zustellbezirk (Miinchen22), sowie die beiden
Trennstriche - (Passau-Neustift) und / (Ingolstadt/Donau) von
Noten: "a0+/+-".

TELEFON

Die Eingabe der Telefonnummer erfordert Ziffern, sowie die
beiden Trennstriche zur Abrenzung der Vorwahl. Das Zeichen -
wird jedoch - um auch diese Funktion einmal zu verwenden -
in den Schrigstrich gewandelt: "0+-+/c-/".

GEBURTSDATUM

Lést, not least soll noch das Geburtsdatum erfasst werden. Dazu
werden lediglich Ziffern, sowie zur Trennung des Monats und
des Jahres Punkte benétigt: "0+."

Der nichste Parameter, den INPUT USING hinter dem Steuer-
string - durch ein Komma getrennt - erwartet, ist die <Return-
Variable>. In ihr wird vom Interpreter festgehalten, welche Ta-
ste das Verlassen der Eingabe bewirkt hat. Sie enthidlt den Wert
0, falls Return, -1, falls eine rechte Randiiberschreitung und -2,
falls eine Uberschreitung des linken Randes zum Ende der Ein-
gabe gefiihrt hat.

156 Das groBe ST-BASIC-Buch ——

FHEHEEEREEE0HEE Name erfassen IHHHBHEHEEOBHOR

Name!: SCHLUMPF Vorname: Birgit
Strasse! Am Sonnenhang 66

PLZ: 9999 Ort: Schlumpfhausen

Telefon: 8999/90978 Geb.: 15.89.1988

3 3¢ 3 2 3¢ ¢ M kK oK
3K 3 3k oK O ok e A K

[ichster Name Jorrektur [uriick ins Hauptmenii

Abb. 2.2: Maske fiir Adressen erfassen

Ansonsten sind - #hnlich wie auch bei INKEYS$ - die Shiftkeys,
der Scancode, die letzte Cursorposition sowie der ASCII-Wert
der Taste, die zum Abbruch der Eingabe gefiihrten hat, darin
enthalten.

Die maximale Zeichenlinge, die das Eingabefeld erhalten soll,
148t sich ebenfalls angeben. Erfolgt keine Angabe, betrigt die
Linge stets 255 Zeichen. Fir unsere AdreBverwaltung sollen je-
doch folgende Eingabelingen gelten:

DatenMax. Eingabelinge
Name 15
Vorname 15
StraBe 32
Postleitzahl 4
Ort 30
Telefon 11
Geburtsdatum 10

Das Eingabefeld wird noch in seiner gesamten Linge mit einem

—— ST-BASIC Grundkurs 157

Fullzeichen vorbelegt. Soll nicht der Unterstrich __ dazu verwen-
det werden, ist der Fillzeichencode als ASCII-Wert (wieder
durch Komma getrennt) an die maximale Eingabelinge zu hin-
gen. In unserem Fall eriibrigt sich die Angabe, da der Unter-
strich verwendet werden soll.

Der letzte Parameter, der bei INPUT USING angegeben werden
kann, ist die Cursorpositions-Variable. Wird sie nicht extra auf-
gefithrt, so steht der Cursor beim Aufruf des INPUT USING
stets an der ersten Eingabeposition. Damit wire die Syntax des
INPUT USING komplett besprochen. Noch einmal das ganze
Ungetiim zum Mitschreiben:

INPUT [&(y,x);]["Text";]<Eingabe-STRING-Variable> USING

[<Steuer-String>],[<L&nge>],[<Fiillzeichencode>],[<Cursorpositions-
Variable>]

Logische Verkniipfungen

In ST-BASIC existieren eine ganze Reihe von logischen Opera-
toren, mit denen sich Bool’sche Operationen (Teilgebiet der
Mathematik) ausfithren lassen.

AND

Dieser Operator sorgt einmal dafiir, dal zwei Teilbedingungen
erfiillt sein miissen, damit die Gesamtbedingung ebenfalls erfiillt
ist:

IF X<3 AND X>0 THEN
Bedingung 1 Bedingung 2

Die Bedingung hinter dem IF ist nur dann wahr, wenn beide
Teilbedingungen wahr sind. Ist nur eine Teilaussage falsch, wird
unweigerlich auch die Gesamtaussage falsch. In dieser Funktion
wurde der Operator AND schon einmal eingesetzt: in der Menii-
Auswahlschleife. Doch dies ist wieder einmal nur die halbe
Wahrheit. Der Operator AND beinhaltet nimlich noch eine
zweite Funktion: die bitweise AND-Verkniipfung zweier Zahlen
miteinander. Angenommen die beiden Variablen A und B ent-

158 Das groBe ST-BASIC-Buch ——

halten die Zahlen 31 und 43, oder in Dualschreibweise ausge-
drickt:

A: %00011111
B: %00101011

Bit fur Bit wird jetzt logisch nach folgender Tabelle undiert:

A B AANDB

e = =]
- O - 0O
- 0O 0o

Als Ergebnis liefert diese Verkniifung nur dann eine 1, wenn
beide verkniipften Bits eine 1 enthielten, ansonsten ist das Re-
sultat der Operation stets 0. Auf die beiden Zahlen angewendet,
bedeutet dies:

A: %00011111
B: %00101011

A AND B: 7%00001011

In Dezimalnotation lautet das Ergebnis der (bitweisen) AND-
Verkniipfung zwischen den Zahlen 31 und 43 11. Wofiir 148t
sich diese AND-Verkniifung sinnvoll einsetzten? Sie wird immer
dann herangezogen, wenn bestimmte Bits einer Zahl ausmaskiert,
also auf den Wert 0 gesetzt werden miissen. Ein Beispiel macht
dies gleich um vieles klarer:

In einer Long-Integer, die sich bekanntlich aus vier Bytes zu-
sammensetzt, interessiert nur der Inhalt des zweiten Bytes. Die
iibrigen Bits werden nicht bendtigt. Also undiert man diese Va-
riable mit einer Konstanten, in der alle Bits des zweiten Bytes
den Wert 1 besitzen. Durch das logische UND erhalten die Bits
des ersten, dritten und vierten Byte den Wert 0 - ungeachtet
ihres vorherigen Inhalts - zugewiesen, sie wurden ausmaskiert.
Der Wert des zweiten Bytes bleibt jedoch unverindert!

A AND 111111110000000000000000

——— ST-BASIC Grundkurs 159

oder in der etwas lesbareren Hexadezimalnotation:

A AND $FFO000

Diese Eigenschaft der UND-Verkniifung werden Sie noch bei
der Uberpriffung der Return-Variable des INPUT USING zu
schitzen lernen.

OR

Der niichste Vertreter der logischen Verkniifungen ist das
ODER. Werden zwei Teilaussagen miteinander odiert, so ist die
Gesamtaussage bereits dann wahr, wenn nur eine der beiden
Teilaussagen wahr war.

IF A>2O0RB < 30 THEN

Bei AND miissen beide Teilbedingungen erfiillt sein, fiir OR ge-
niigt eine wahre Teilaussage, damit als Ergebnis die Aussage
wahr resultiert. Auch eine bitweise Odierung zweier Zahlen ist
moglich. Wihrend AND jedoch in der Hauptsache dazu benutzt
wird, bestimmte Bits auszumaskieren, so dient OR dazu, be-
stimmte Bits zu setzen:

A B AORB

-0 - 0O
-_-_-0 0O
- - O

Das aus dieser Verkniifung resultierende Bit enthdlt immer dann
den Wert 1, wenn nur eines der beiden Bits eine | enthielt. Ver-
kniipfen wir wieder die beiden Zahlen 31 und 43 miteinander,
diesmal jedoch mit OR:

A: %00011111
B: %00101011

A OR B: %00111111

In Dezimalnotation lautet das Ergebnis der Verkniifung 63.

160 Das groBe ST-BASIC-Buch ——

NOT

NOT dreht IThnen zwar nicht das Wort im Munde, dafiir aber die
Bits im Computer um. Eine wahre Aussage wird mittels der Ne-
gation ndmlich zu einer falschen und eine falsche zu einer wah-
ren Aussage:

IF NOT (A=B) THEN ...
entspricht der Notation

IF A <> B THEN ...

Die Aussage ist nur dann erfiillt, wenn die Bedingung A=B nicht
erfillt ist, wenn die Variablen A und B also unterschiedliche
Werte reprisentieren. Auch die bitweise Negation einer Zahl ist
moglich:

A NOT A
1 0
0 1

Enthilt B den Wert 43, so liefert die Zuweisung
A = NOT B

in A den Wert
%00101011
NOT %11010100

oder in dezimaler Schreibweise ausgedriickt 212. Es handelt sich
dabei um das sogenannte Zweierkomplement einer Zahl. Subtra-
hieren Sie von der mit 8 Bits maximal darstellbaren Zahl 255 die
Zahl 43, so erhalten Sie ebenfalls das Ergebnis 212.

255 - A = NOT A (Zweierkomplement)

XOR

Das Ergebnis der Exklusiv-Oder-Verkniipfung liefert nur dann
eine wahre Aussage, wenn eine Bedingung erfiillt, die zweite

— ST-BASIC Grundkurs 161

Bedingung jedoch nicht erfiillt ist. Sind beide Aussagen erfillt
oder nicht erfillt, lautet der Wahrheitswert dieser Verkniip-
fungsform jeweils falsch. Auch bitweise kann XOR verkniipft
werden. Das resultierende Bit ist nur dann eine 1, wenn ein Bit
den Wert 0 und das andere Bit den Wert 1 enthielt:

A B AXORB

-0 - O
- =00

0
1
1
0

Mit den logischen Operatoren, die Sie bisher kennengelernt ha-
ben, sind Sie fiir die meiBten Fille bestens geriistet. Dennoch
existieren in ST-BASIC noch weitere logische Operatoren, auf
die ich an dieser Stelle jedoch nicht weitere eingehen mdchte, da
sie im wesentlichen nur eine Kombination aus verschiedenen
Operatoren darstellen. Fiir nihere Details empfehle ich Thnen das
Handbuch zu Rate zu ziehen.

"Bitgeschiebe"

Die folgenden beiden Befehl sind relativ schnell erklirt. Ich
habe zwar im Augenblick keinerlei Verwendung fiir sie, den-
noch mochte ich sie der Vollstindigkeit halber an dieser Stelle
vorstellen.

SHR

Was geschieht, wenn man die Bits der Zahl 56 (%00111000) um
eine Position nach rechts verschiebt?

%00111000 ---um 1 Bit nach rechts---> %00011100

Der Wert halbiert sich! Die Funktion SHR (SHift Right) ver-
schiebt die Bits Zahl A um N Positionen nach rechts:

Ergebnis = A SHR N

162 — Das groBe ST-BASIC-Buch ——

Dies entspricht einer n-maligen (vorzeichenlosen) Division der
Zahl durch 2. Im Gegensatz zur normalen Division wird diese
Funktion jedoch wesentlich schneller ausgefiihrt, da ein Com-
puter nichts schneller erledigen kann, als Bits zu verkniipfen
oder zu verschieben.

SHL

Wihrend SHR eine Zahl halbiert, wird sie mit der Funktion SHL
verdoppelt. SHL (SHift Left) schiebt die Bits einer Zahl A um
genau N-Positionen nach links:

Ergebnis = A SHR N
A SHR N entspricht der (vorzeichenlosen) Multiplikation mit

Ergebnis = A * 2°N

Formatierte Ausgabe mit Print

Ahnlich wie mit INPUT USING Daten formatiert erfasst werden
kénnen, dient PRINT USING zur formatierten Ausgabe von
Daten. Die Syntax fiir diesen Befehl lautet:

PRINT USING <"Formatmaske">,<Ausgabe(variable)>

Zu beachten ist dabei, dal nur Zahlen ausgegeben werden kon-
nen. Fiir eine Stringvariable kann dieser Befehl nicht verwendet
werden. Mochten Sie dagegen Zahlen sauber untereinander
(Rechtsbiindig und Komma unter Komma ...) ausgeben, eignet
sichn PRINT USING hervorragend. Sehen wir uns die
<Formatmaske> einmahl genauer an:

PRINT USING "###,##",2.8
ergibt auf dem Bildschirm:
2,80

Das Zeichen # in der Formatmaske dient als Platzhalter fiir eine
Ziffer. Fur jede Ziffernstelle einer Zahl muB ein solcher Platz-

—— ST-BASIC Grundkurs / 163

halter in der Formatmaske vorhanden sein. Kommazahlen wer-
den dergestalt in die Maske eingepasft, dafl der Vorkomma-
Anteil links, der Nachkomma-Anteil rechts des Kommas bzw.
Punktes in der Formatmaske stehen. Die restlichen, nicht be-
nutzten Nachkommastellen werden noch mit Nullen aufgefillt,

fertig.

Folgende Zeichen besitzen eine Bedeutung in der Formatmaske:

Zeichen Bedeutung

Platzhalter fiir eine Ziffer.
Dezimalpunkt an dieser Stelle ausgeben.

, Dezimalkomma an dieser Stelle ausgeben.

, spiater . Dezimalpunkt an dieser Stelle ausgeben,
Tausender durch Komma trennen.
spiter , Dezimalkomma an dieser Stelle ausgeben,
tausender durch Punkt trennen.

- Tausender durch Komma trennen, Nachkommastellen
unterdriicken. Tausender durch Punkt trennen,
Nachkommastellen unterdriicken.

- bei negativen Zahlen, Minusgeichen an dieser Stelle
ausgeben.

+ Vorzeichen (auch +) an dieser Stelle ausgeben, Aus-
nahme zu +/-: Ein '+’ oder ’-’, das direkt vor dem ersten
g, 0 00 oder !, steht, bewirkt die Ausgabe des Vor-
zeichens direkt vor der ersten giiltigen Stelle

*<Zeichen> Fiillt die Ausgabemaske vorne mit dem Zeichen
<Zeichen> auf, soweit diese Stellen nicht benutzt wer-
den. Nicht benutzte Stellen ('#') werden ansonsten mit
Leerzeichen aufgefiillt. Der Unterstrich ’_’ darf nicht als
Fiillzeichen benutzt werden.

_ <Zeichen> gibt das Zeichen <Zeichen> aus, auch wenn es sich dabei

um ein geschiitztes Zeichen mit einer Bedeutung fiir den
Formatstring handelt.

Exponent an dieser Stelle ausgeben.

164 Das groBe ST-BASIC-Buch ——

Die iibrigen, hier nicht aufgefithrten Zeichen, werden so ausge-
geben, wie sie sind.

PRINT USING ".######, ## DM",25875.57
ergibt
25.875,57 DM

auf dem Monitor. Der Punkt dient als Tausender-Separator, das
Komma trennt die Nachkommastellen ab.

PRINT USING "*O.###### ## DM",25875.57
ergibt
000025.875,57 DM

Die fiihrenden, nicht belegten Stellen werden aufgrund der
Fiillzeichendefinition *0 mit Nullen aufgefiillt. Sie sehen dabei
auch, daB3 auch die Fiillzeichendefinition selbst sowie der Tau-
senderseparator als Ziffernplatzhalter eingesetzt werden koénnen.
Das Vorzeichen (+ bzw. -) beansprucht fiir sich ebenfalls eine
Ziffernstelle, falls es nicht durch + bzw. - an einer anderen
Stelle innerhalb des Formatstrings definiert ist, auch dann, wenn
kein Vorzeichen ausgegeben wird, da es sich um eine positive
Zahl handelt.

Mit der Definition

PRINT USING "####. 44, AL

kénnen maximal Zahlen mit drei Vorkommastellen (< 1000) auf
den Monitor gebannt werden, da der erste Platzhalter das Vor-
zeichen aufnimmt. Wird im Formatstring das Kennzeichen je-
doch an eine andere Stelle gesetzt. PRINT USING ermoglicht
auch die Ausgabe einer Zahl im wissenschaftlichen Format mit
Angabe eines Exponenten. Wird im Formatstring dagegen kein
Exponent definiert (keine ~ vorhanden), so gibt ST-BASIC die
Zahl auf alle Fille ohne Exponenten aus.

—— ST-BASIC Grundkurs : 165

Fir den Formatstring gelten noch ein paar Einschrinkungen:
Insgesamt diirrfen maximal 30 Platzhalter (#) verwendet werden,
der Unterstrich (_) darf nicht als Fullzeichen verwendet werden
und die Linge des Formatstrings darf 253 Zeichen nicht iiber-
schreiten. Ein fehlerhafter Formatstring fithrt zu der Fehlermel-
dung Syntax Error.

USING

USING <Formatstring> ist auch ohne einen PRINT-Befehl mog-
lich. Die auf diese Weise definierte Formatmaske wird bei allen
folgenden PRINT, LPRINT, PRINT#, und der Funktion STR$
beriicksichtigt.

Nach diesem kleinen Ausflug wieder zuriick zur Minidatei: Die
Prozedur zum Erfassen der Daten muf3 geschrieben werden. Um
fiir den Benutzer die Eingabe der geforderten Daten zu erlei-
chern, soll mit Hilfe der Cursortasten von einer Eingabeposition
zur anderen gesprungen werden koénnen. Die Steuerstrings fiir
die einzelnen Eingaben haben wir bereits definiert. Daran an-
hingen miissen wir noch die Erlaubnis, da8 die Eingabe bei Be-
tatigung einer der beiden Cursortasten <nach oben> oder <nach
untenrunter> verlassen werden darf. EXIT by ASCII scheidet fiir
diese Problemstellung aus, da fir Cursortasten keinerlei ASCII-
Werte reserviert sind. Sie besitzen jedoch einen Scancode:

Scancode Bedeutung
72 Cursor hoch
80 . Cursor runter

Der Befehl zum Verlassen der Eingabe aufgrund eines bestimm-
ten Scancodes lautet s, gefolgt von dem entsprechenden Code,
der im 1-Byte-Format vorliegen muf3. Dazu verhilft uns wieder
die CHR$()-Funktion. Dieser String ist fiir alle INPUT USING
gleich, und wird deshalb in einer eigenen Zeichenkette abgelegt,
die per Stringaddition jeweils an die bereits erstellten Steuer-
strings gehidngt wird.

BACK$="s"+CHR$(72)+"s"+CHR$(80)

166 Das groBe ST-BASIC-Buch ——

Die Eingabe wird also bei Betidtigung einer der beiden Cursorta-
sten verlassen, in der Return-Variable findet sich dann unter
anderem auch der Scancode der Taste, die zu diesem Abbruch
gefiithrt hat. Jetzt muBl noch festgestellt werden, welche Taste
zum Verlassen des INPUT gefiihrt hat.

Relevant ist hier lediglich das zweite Byte (von links nach rechts
betrachtet), der vier Bytes langen Return-Variable. Die iibrigen
Bits miissen weg, um eine IF-Abfrage nach dem Scancode ein-
bauen zu konnen. Dazu verhilft uns das logische UND, mit des-
sen Hilfe alle anderen Bits ausmaskiert, d.h. auf den Wert 0 ge-
setzt werden konnen. Der Aufbau der Returnvariable noch ein-
mal im einzelnen:

1. Byte 2. Byte 3. Byte 4. Byte
Shiftkeys Scancode Cursorposition ASCII-Code

Die einzelnen Bits des ersten, dritten und vierten Bytes miissen
bei der logischen Undierung auf Null gesetzt werden, Byte zwei
wird mit acht gesetzten Bits (entspricht dem Wert 255 in Dezi-
malnotation bzw. $FF in Hexadezima Ischreibweise) undiert:

1. Byte 2. Byte 3. Byte 4. Byte
AND 00 255 00 00
bzw.
AND $00 $FF $00 $00

Die Unterroutine selbst wird von oben nach unten abgearbeitet.
Mit <Return> bzw. <Cursor nach unten> gelangt der Benutzer
somit automatisch in das nichste Eingabefeld, lediglich bei Be-
tatigung der <Cursor nach unten>-Taste mufl gewaltsam um eine
Eingabeposition hochgesprungen werden. Der Scancode fiir
<Cursor hoch> betrigt 72 bzw. in Hexadezimalnotation $48. He-
xadezimal deshalb, da mit dieser Schreibweise das 2.Byte leichter
erreicht werden kann. In Dezimalnotation miiBte die gesamte
Zahl umgerechnet werden. Die Abfrage nach der <Cursor hoch>
Taste lautet dann folglich:

IF (<Returnvariable> AND $FF) = $480000 THEN
<... um ein Eingabefeld hochspringen>
ENDIF

—— ST-BASIC Grundkurs 167

Vor jedes INPUT USING wird eine Marke gesetzt, die dann
iiber ein GOTO angesprungen werden kann. Eine Kleinigkeit
sollte noch beriicksichtigt werden:

Erfolgt eine Betitigung der <Cursor hoch>-Taste, wihrend ge-
rade das erste Datenfeld (Name) bedient wird, soll der Cursor in-
das unterste Eingabefeld (Geburtsdatum) springen, vom unter-
sten soll mit <Cursor runter> in das erste Eingabefeld gesprun-
gen werden. Damit wire auch die Eingabeprozedur fertiggestellt.
Um gleich zwei Fliegen mit einer Klappe zu schlagen, wird ihr
eine (lokale) Variable als Parameter iibergeben, die bestimmt in
welchen Eintrag des Feldes die erfaften Daten abgelegt werden
sollen. Wird die Eingaberoutine vom Unterprogramm "Adressen
korrigieren" angesprungen, stellt dieser Parameter dann die
Nummer des zu korrigierenden Eintrages dar.

Doch in welchem Eintrag des Arrays soll ein neuer Datensatz
abgelegt werden? Ganz einfach, in das nichste freie, d.h. nicht
schon mit einer Adresse belegte Feld. Eine Schleife erhéht eine
Zihlvariable solange, bis ein freier Eintrag im Array gefunden
ist. Halt! Was geschieht, wenn das gesamte Variablenfeld bereits
bis zum Kragen vollgepackt, also kein freier Eintrag mehr vor-
handen ist?

Dann verabschiedet sich der Computer! Also hei3t es, diesen
Fehler abzufangen: Eine Erfassung der Daten ist nur solange
moglich, wie freie Eintrige im Array vorhanden und die Ge-
samtgrofe (aus der Dimensionierung ersichtlich und in der Va-
riablen <Groesse> festgehalten) noch nicht Giberschritten ist:

<Zaehler> = 1)

WHILE <Array(<Zaehler>)> <> " AND <Zaehler> < <Groesse>
<Zaehler> = <Zaehler> + 1

WEND

Vor Schleifeneintritt wird wird eine Zihlvariable namens
<Zaehler> auf den Wert 1 gesetzt, dies entspricht dem zweiten
Eintrag im Array. Der erste Eintrag, mit dem Feldindex O,
bleibt unbenutzt. In ihm werden spiter die Daten erfaf3t, nach
denen das Feld durchsucht werden soll. AnschlieBend wird in
der abweisenden WHILE-Schleife gepriift, ob dieser Eintrag

168 Das groBe ST-BASIC-Buch —

schon belegt ist. Gleichzeitig darf das Feldende (<Groesse>) noch
nicht erreicht sein. Sind beide Bedingungen erfillt, wird der
Zaehler um 1 erh6ht, der nichste Eintrag wird uiberpriift. Dies
wiederholt sich solange, bis ein freier Eintrag im Array gefun-
den, oder das gesamte Feld bereits durchsucht wurde. Wird kein
freier Datensatz im Feld ermittelt, so gibt das Programm den
letzten Eintrag - der zwar schon belegt ist, aber was soll man
machen? - auf dem Monitor aus.

Der nichste Meniipunkt lautet "Korrektur". An Korrekturarbei-
ten konnen zwei Dinge anfallen:

- Tippfehler in einem Datensatz ausbessern
- kompletten Datensatz aus dem Array entfernen

Es wire ein duflerst komfortabler Zug des Programms, nach ei-
nem bestimmten Eintrag suchen zu lassen, der dann abgedndert
werden konnte. Ich habe mich allerdings fiir eine etwas andere
Form der Korrektur entschieden.

Der Benutzer erhilt den ersten Eintrag im Array vorgesetzt, und
kann dann das gesamte Feld durchblittern. Mit der Taste <K>
wird die Prozedur Erfassen angesprungen, eine Korrektur ist
moglich. Mit <E> kann der soeben auf dem Bildschirm stehende
Datensatz getilgt werden. Um fiir den Benutzer die Auswahl zu
erleichern, wurden zwei Feinheiten in das Programm eingebaut:

- In der unteren Bildschirmhilfte wird ein Untermenii
angezeigt, anhand dessen die weitere Programmkontrolle
erfolgt.

- Der erste (invers dargestellite) Buchstabe wihlt die ent-
sprechende Funktion.

- Damit die Funktion auch ausgefithrt wird, wenn der
Benutzer zwar den richtigen Buchstaben, jedoch in
Grofischrift statt in Kleinschreibweise, getippt hat,
wandelt das Programm den Character (um auch diesen
Namen wieder einmal zu verwenden) gleich mit UP-
PERS$() in GroBschrift um.

——— ST-BASIC Grundkurs 169

Das Blittern innerhalb des Arrays miifite eigentlich verstindlich
sein. Es muB lediglich darauf geachtet werden, dafl die untere
Grenze (erster Datensatz mit Index 1), sowie die obere Grenze
(Datensatz mit Index Groesse bzw. wenn Feld noch freie Ein-
trige enthilt, der letzte belegte Datensatz) nicht unter- bzw.
uiberschritten werden.

Interessannter wird das Eliminieren eines Eintrages aus dem
Array. Theoretisch konnen zwei Situationen auftreten:

- Der letzte Datensatz des Feldes soll entfernt werden. Dies ist
nicht weiter tragisch, man ersetzt in diesem Fall einfach die
Elemente mit dem entsprechenden Index durch einen Leerst-
ring.

- Schwieriger wird es, wenn (was der Normalfall sein diirfte)
sich der zu léschende Datensatz inmitten des Feldes befindet:
Damit keine leeren Eintrige innerhalb des Variablenfeldes
entstehen (tite unserer Funktion Blidttern gar nicht gut!),
miissen die folgenden Eintrige ab dem zu ldschenden Da-
tensatz um eine Indexposition nach unten verfrachtet werden.
Der letzte Eintrag mit Index n ist dann in diesem Feld zwei-
mal vorhanden (niamlich an Position n und an Position n-1),
und kann einmal entfernt werden (logischerweise aus Position
n, weil andernfalls wieder ein leerer Eintrag innerhalb der
Liste entstehen wiirde!). Da dies etwas kompliziert erscheint,
vergleichen Sie bitte Abbildung 2.3.

Enthilt die Liste nur ein einziges Element das entfernt werden
soll, stellt dies lediglich einen Spezialfall der ersten Variante dar.
In einer einelementigen Liste ist das Element ndmlich gleichzei-
. tig der erste und letzte Datensatz. Und letzte Datensatz kann aus
der Liste entfernt werden.

Der letzte (vorldufig) noch verbleibende Menii-Eintrag ist das
Auffinden eines bestimmten Namens innerhalb der Liste. Dazu
wird iiber ein eigenstindiges INPUT USING der Name eingele-
sen, in das Array an Indexposition 0 geschrieben und mit Hilfe
einer Schleife das gesamte Feld durchsucht.

170 Das groBe ST-BASIC-Buch ——

El t1
o letztes Element
. entfernen
Elenen
Element
i 1
Element 3 Element
2
Element 4 ETengn
U.S:H, 3

Abb. 2.3: Element aus der Liste entfernen

Als Abbruchbedingung gilt:
<Suchbegriff> = <Arrayinhalt>

bzw. fiir die Schleifenbedingung negativ formuliert:

<Zaehler> = 1

WHILE <Suchbegriff> <> <Arrayinhalt>
<Zaehler> = <Zaehler> + 1

WEND

Ein Vorgeschmack auf GEM

Sicher sind sie Ihnen schon einmal untergekommen. Jene
freundlichen, mit einem Verkehrszeichen dhnlichen Symbol ge-
schmiickten Warnmeldungen, die der Atari immer dann zu ser-
vieren pflegt, wenn ein Bedienungsfehler aufgetreten ist oder

——— ST-BASIC Grundkurs 171

eine Sicherheitsabfrage durchgefiihrt werden soll. Der Fachmann
nennt sie Alert-Boxen, und im ST-BASIC ist ein entsprechender
Befehl fir ihren Aufruf gleich mit eingebaut:

FORM_ALERT
ruft eine Alert-Box auf. Die Syntax tritt in zwei Erscheinungs-

formen auf:
FORM_ALERT(<Default>, <Text>)

bzw.

FORM_ALERT(<Default>, <Text>, <Button>)

<Default> enthilt die Nummer des Buttons (1-3), der auch durch
eine Betitigung der <Return>-Taste selektiert werden kann.
Wird als Defaultwert die 0 angegeben, so bedeutet dies, daB3 kein
Button mit Return selektiert werden kann. <Text> besteht aus
einer Zeichenkette, die sich wie folgt zusammensetzt:

“[<Nummer>] [<Zeile 1>]<Zeile 2>|<Zeile 3>][<Button 1>|<Button
2>|<Button 3>

<Nummer> gibt an, welches Symbol (Piktogramm) die Alert-Box
tragen soll:

0: Kein Symbol

1: Achtung (1)

2: Fragezeichen (?)
3: Stop

In den zweiten eckigen Klammern, die mit eingegeben werden
miissen, steht der Text, der in der Box erscheinen soll. Er darf
aus maximal fiunf Zeilen bestehen, die voneinander durch das
Zeichen | getrennt werden miissen. Das Zeichen | erreichen Sie
durch gleichzeitiges Driicken der Tasten <Shift> und <~> (gleich
links neben der Taste <Return>). Zu beachten ist dabei, daB die
maximale Linge einer Zeile 40 Zeichen nicht iiberschreiten darf.

172 Das groBe ST-BASIC-Buch —

Als letztes muB der String noch den Text fiir die einzelnen
Knoépfe enthalten, die dem Benutzer angeboten werden sollen.
Diese sind ebenfalls durch das Zeichen | voneinander zu trennen.
Es sind maximal drei Buttons erlaubt, der Button <Nummer>
kann auch per <Return> selektiert werden. Optisch wird dies
durch eine stirkere Umrahmung des Buttons dargestellt. Wird
zusitzlich noch <Button> mit angegeben, enthilt diese Variable
die Nummer des Quittierungsknopfes, der zum Verlassen der
Alert-Box gefiihrt hat:

erster Knopf
zweiter Knopf
dritter Knopf

1.
2.
3

Standen mehrere Moglichkeiten zur Auswahl, kann nach Ab-
bruch der Box der Button abgecheckt werden, der das Verlassen
bewirkt hat. Mit FORM_ALERT steht uns ein méchtiges
Werkzeug zur Verfiigung, um Fehlermeldungen auf den Monitor
zu projizieren. Ein paar Beispiele zu ihrer Anwendung:

FORM_ALERT(1, [2] [Was soll der Quatsch?] [Abbruchl")

FORM_ALERT(1, [3] [Das sollten Sie]nie wieder tun!l[Endel")

FORM_ALERT(2, [1] [Méchten Sie den Datensatz}wirklich léschen?][Ja
| Nein | WeiB nicht 1", exit)

In <Exit> finden Sie nach dem Verlassen der Box die Nummer
des Buttons vor, mit dem die Meldung verlassen wurde.

Moment! Irgendetwas stimmt da noch nicht ganz! Es kann nim-
lich nur der Button selektiert werden, der {iber Return verlassen
werden kann. Die iibrigen beiden Knopfe koénnen nicht selek-
tiert werden, da kein Mauszeiger vorhanden ist! Dieser muf3
nimlich vor Aufruf der Funktion im Handbetrieb mit

MOUSEON

—— ST-BASIC Grundkurs 173

eingeschaltet, und nach Beendigung der Funktion mit

MOUSEOFF

wieder ausgeschaltet werden. Aber jetzt klappt die Sache! Noch
eine Anmerkung: Der Atari ST merkt sich, wie oft die Befehle
MOUSEON und MOUSEOFF aufgerufen wurden. Wird bei-
spielsweise zweimal der Befehl MOUSEOFF ausgefiihrt, sind
wieder zwei Befehle MOUSEON vonnéten, um den Mauspfeil
auf dem Bildschirm erscheinen zu lassen.

Die beiden Meniipunkte "Daten abspeichern" und "Daten laden"
werden Gegenstand des niichsten Kapitel dieses Buches sein. In
dem jetzt folgenden Listing, sind zwei leere Unterprogramme
eingefiigt, damit das Programm nicht aussteigt, wenn einer die-
ser beiden Punkte aufgerufen wird. Aber jetzt endlich das Li-
sting:

0 1% e e A e o e e e o e e ok e e e e v e e I e ko e o e e ke e e e e e e ok e e o e v o e e ok e e o o e ok o e e o e e ok ok e e ok e
1 MINIDATA.BAS *
2 g S *
3 * putor: Michael Maier Version: 1.00 Datum: 15.08.1988 *
4 1x Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *
5 % (C) 1988 by DATA BECKER GmbH Dusseldorf *
6 PTARKKARKAKAKAKAKAAKRARKRRAAAEAAAARKAKAKRA KRR KRR A A ARk hkkkrhkkiiih
7]

8]

9 MODE "D"

10 DEF FN Screen$(X$)= CHR$(27)+X$

11

12 Groesse%L=100' falls notig einfach &ndern

13 DIM Name$(Groesse%L),Vorname$(Groesse%L),Strasse$(Groesse’L)

14 DIM Plz$(Groesse%L),0rt$(Groesse%L), Tel$(Groesse%L),Geb$(Groesse%L)
15 ¢

16 Fehler$="[3][Diese Funktion ist leider) nicht méglicht!1] [Sorryl"
1 7) .

18 REPEAT

19 CLS

20 PRINT @(0,1);"*n*78

21 FOR Y%=1 TO 5: PRINT @(Y%,1);"*";a(Y%,78);"*": NEXT Y%

22 PRINT @(6,1);"*w*78

23 PRINT @(2,28);"MINIDATEI - Hauptmeni"

24 PRINT @(3,28);"-------==mmemmemncmeme "

25 PRINT @(4,16);"Ein Demoprogramm aus dem grossen ST-BASIC Buch"

174 Das groBBe ST-BASIC-Buch ——

26 PRINT @(9,28);"1. Name erfassen"

27 PRINT @(11,28);%2. Name korrigieren"

28 PRINT @(13,28);%3. Name suchen"

29 PRINT @(15,28);"4. Datei abspeichern"

30 PRINT @(17,28);"5. Datei laden"

31 PRINT @(¢19,28);"6. Programm verlassen"

32 PRINT @(22,29);FN Screen$("p");" Bitte waehlen Sie! ";FN
Screen$("q") .

33 PRINT FN Screen$("f")' Cursor ausschalten

34 '

35 A%L=0

36 REPEAT

37 A$= INKEY$

38 IF A$<>"" THEN

39 A%L= ASC(RIGHT$(A$,1))-48
40 ENDIF

41 UNTIL A%L>0 AND A%L<7

42 PRINT FN Screen$("e")' Cursor wieder einschalten

43 ON A%L GOSUB Erfassen,Korrigieren,Suchen,Speichern,Laden
44 UNTIL A%L=6' Schleife wiederholen, bis '6' gedrickt

45 CLS

46 END

47

48-Erfassen

49 CLS

50 Header$=ll*************** Name erfassen Kkkkkkhkhkikikikikiikil
51 ' zuerst einmal den ersten freien Eintrag suchen!

52 T%=1

53 WHILE Name$(T%)<>"" AND T%<Groesse%L

54 T%=T%+1

55 WEND

56 Formular(Header$)

57 REPEAT

58 Eingabe(T%)

59 PRINT FN Screen$("f")' Cursor stort hier bloB!

60 PRINT @(19,15);FN Screen$("p");"N";FN Screen$("q");

61 PRINT "&chster Name “,FN Screen$("p");"K";FN Screen$("q");
62 PRINT "orrektur ";FN Screen$("p");"Z";FN Screen$("q");
63 PRINT "urlick ins Hauptmenu"

64 A$="": INPUT " ":;A$ USING "+n+z+ku>", Ret%L,1,32

65 PRINT FN Screen$("e")'Cursor wieder einschalten

66 IF A$=MK" THEN

67 Formular(Header$)

68 Anzeige(T%)

69 ELSE

70 IF A$="N" AND T%<Groesse%L THEN

—— ST-BASIC Grundkurs

71 T%=T%+1

72 Formular(Header$)
73 Anzeige(T%)

74 ENDIF

75 ENDIF

76 UNTIL A$=vz®

77 RETURN

78

79-Korrigieren

80 Header$=ll*************** Name korrigieren e e de v v de e 3 de % e v de de ke 11
81 PRINT FN Screen$("f")

82 T%=1

83 Formular(Header$)

84 REPEAT

85 Anzeige(T%)

86 PRINT @(19,4);FN Screen$("p");"N";FN Screen$("g");"&chster Name
87 PRINT FN Screen$("p");"L";FN Screen$("q");"etzter Name ";

88 PRINT FN Screen$("p");"K";FN Screen$("q");"orrektur ";

89 PRINT FN Screen$("p");"E";FN Screen$("q");"ntfernen ";

90 PRINT FN Screen$('"p");"z";FN Screen$("q");"urlick ins Hauptmen("
91

92 A$=II n

93 REPEAT

94 A$= INKEY$

95 IF A$<>"" THEN

96 A$= UPPER$(RIGHT$(AS,1))

97 ENDIF

98 UNTIL A$="N" OR A$="L" OR A$="K" OR A$=VE" OR A$="Z"

99]

100 IF (A$="N") AND (T%<Groesse%L) AND (Name$(T%+1)<>"") THEN
101 T%=T%+1

102 ELSE

103 IF A$="N" THEN

104 FORM_ALERT (1,Fehlers$)
105 ENDIF

106 ENDIF

107 IF A$="L" AND T%>1 THEN
108 T%=T%-1

109 ELSE

110 IF A$="L" THEN

111 FORM_ALERT (1,Fehler$)
112 ENDIF

113 ENDIF

114 IF A$="K" THEN
115 PRINT FN Screen$("e")
116 PRINT @(19,1);" w*78

175

e
’

176 Das groBe ST-BASIC-Buch ——

117 Eingabe(T%)

118 PRINT FN Screen$("f")

119 ENDIF

120 IF A$="E" THEN

121 MOUSEON

122 FORM_ALERT (2,"[2] [Datensatz wirklich Léschen?] [Ja]Neinl", But%)
123 MOUSEOFF

124 IF But%=1 THEN

125 Delete(T%)

126 ENDIF

127 ENDIF

128 UNTIL A$="z"

129 RETURN

130 !

131-Suchen

132 Header$=||*************** Name SUChen dedk de ek e de ke ek ke de ke ke k1
133 Name$(0)="":Vorname$(0)="":Strasse$(0)="":Plz$(0)=""

134 Ort$(0)="":Tel$(0)="":Geb$(0)=""

135 T%=0

136 Formular(Header$)

137 PRINT FN Screen$("e")

138 INPUT @(7,21);Name$(0) USING “a+ +-u",Ret%L,15

139 PRINT FN Screen$("f")

140 T%=1

141 REPEAT

142 WHILE Name$(T%)<>Name$(0) AND T%<Groesse%L

143 T%=T%+1

144 WEND

145 IF Name$(T%)=Name$(0) THEN

146 Anzeige(T%)

147 ELSE

148 FORM_ALERT (1,"[1] [Name nicht vorhanden!][Was soll's 1")
149 ENDIF

150 PRINT @(19,15);FN Screen$("p");"W";FN Screen$("q");

151 PRINT “eitersuchen W.FEN Screen$("p");"N";FN Screen$("g");
152 PRINT "eueingabe “,;FN Screen$("p");"Z";FN Screen$("q");
153 PRINT “uriick ins Hauptmeni*

154 A$=mn

155 REPEAT

156 A$= INKEY$

157 IF A$<>"" THEN

158 A$= UPPER$(RIGHT$(AS$,1))

159 ENDIF

160 UNTIL A$="W'" OR A$="N" OR A$="Z"

161 IF A$="W" AND T%<Groesse%lL THEN

162 T%=T%+1

—— ST-BASIC Grundkurs 177

163 ENDIF

164 IF A$="N" THEN

165 EXIT TO Suchen

166 ENDIF

167 UNTIL A$=1z®

168 RETURN

169 ¢

170-Speichern

171 ' diese Routine folgt noch ...

172 RETURN

173 ¢

174-Laden

175 ' diese Routine folgt noch ...
176 RETURN

177

178 ¢

179 DEF PROC Formular(Text$)

180 LOCAL T%

181 CLS

182 PRINT @(2,(78- LEN(Text$))/2);Text$

183 PRINT @(5,10);"*u*60

184 FOR T%=1 TO 9: PRINT @(5+T%,10);"*";Q(5+T%,69);"*": NEXT T%
185 PRINT @(15,10);"*"*60

186 PRINT @(7,15);"Name: Vorname: "
187 PRINT @(9,15);"Strasse: "

188 PRINT a(11,15);"PLZ: ____ Ort: "
189 PRINT a(¢13,15);"Telefon: Geb.: "

190 RETURN

191 ¢

192 DEF PROC Anzeige(Nummer¥)

193 PRINT @(7,21);Name$(Nummer%);

194 PRINT STRING$(15- LEN(Name$(Nummer%))," ")
195 PRINT @(7,50);Vorname$(Nummer%);

196 PRINT STRING$(15- LEN(Vorname$(Nummer%)),"_")
197 PRINT @(9,24);Strasse$(Nummer%);

198 PRINT STRING$(32- LEN(Strasse$(Nummer%)),"_")
199 PRINT 2(11,20);Plz$(Nummer%);

200 PRINT STRING$(4- LEN(Plz$(Nummer%)),"_ ")

201 PRINT @(11,32);0rt$(Nummer?%);

202 PRINT STRING$(30- LEN(Ort$(Nummer%))," ")
203 PRINT @(13,24); Tel$(Nummer?%);

204 PRINT STRING$(11- LEN(Tel$(Nummer%)),"_")
205 PRINT a(13,44);GebS(Nummer%);

206 PRINT STRING$(10- LEN(Geb$(Nummer%))," ")
207 RETURN

208

178 Das groBe ST-BASIC-Buch ——

209 DEF PROC Eingabe(Nummer%)

210 LOCAL Back$="s"+ CHR$(72)+"s"+ CHR$(80)

211 -Nam

212 INPUT @(7,21);Name$(Nummer%) USING "a+ +-u"+Back$,Ret%L,15
213 IF (Ret%L AND $FF0000)=$480000 THEN

214 GOTO Geb

215 ENDIF .
216 -Vorname

217 INPUT a&(7,50);Vorname$(Nummer%) USING "a+ +-"+Back$,Ret%lL,15
218 IF (Ret%L AND $FF0000)=$480000 THEN

219 GOTO Nam

220 ENDIF

221 -Street

222 INPUT @(9,24);Strasse$(Nummer%) USING "Oa+ +-+,"+Back$,Ret%L,32
223 IF (Ret%L AND $FF0000)=$480000 THEN

224 GOTO Vorname

225 ENDIF

226 -Plz

227 INPUT a@(11,20);Plz$(Nummer%) USING "0>"+Back$,Ret%L,4

228 IF (Ret%L AND $FF0000)=$480000 THEN

229 GOTO Street

230 ENDIF

231 -Ort

232 INPUT @(11,32);0rt$(Nummer%) USING "aO+/+-"+Back$,Ret%L,30
233 IF (Ret%L AND $FF0000)=$480000 THEN

234 GOTO Plz

235 ENDIF

236 -Telefon

237 INPUT @(13,24);Tel$(Nummer%) USING “0+-+/c-/"+Back$,Ret%L,11
238 IF (Ret%L AND $FF0000)=$480000 THEN

239 GOTO Ort

240 ENDIF

241 -Geb

242 INPUT @(13,44);Geb$(Nummer%) USING "O+."+Back$,Ret%L,10
243 IF (Ret%L AND $FF0000)=$480000 THEN

244 GOTO Telefon

245 ELSE

246 IF (Ret%L AND $FF0000)=$500000 THEN
247 GOTO Nam

248 ELSE

249 ENDIF

250 ENDIF

251 RETURN

252 !

253 DEF PROC Delete(Nummer%)
254 LOCAL Anzahl%=1

——— ST-BASIC Grundkurs 179

255 ' Anzahl der vorhandenen Datensidtze ermitteln
256 WHILE (Name$(Anzahl%+1))<>"" AND Anzahl%<Groesse%L
257 Anzahl%=Anzahl%+1

258 WEND

259 IF Nummer%=Anzahl% THEN

260 Loesche(Nummer%)

261 ELSE

262 WHILE (Nummer%<>Anzahl%)

263 Name$ (Nummer%)=Name$(Nummer%+1)

264 Vorname$ (Nummer%)=Vorname$(Nummer%+1)

265 Strasse$(Nummer%)=Strasse$(Nummer%+1)

266 ort$(Nummer?)=0rt$(Nummer+1)

267 Plz$(Nummer?%)=Plz$(Nummer%+1)

268 Tel$(Nummer%)=Tel$(Nummer%+1)

269 Geb$(Nummer¥%)=Geb$(Nummer%+1)

270 Nummer%=Nummer+1
271 WEND

272 Loesche(Nummer%)
273 ENDIF

274 RETURN

275 ¢!

276 DEF PROC Loesche(Nummer%)

277 Name$(Nummer%)="":Vorname$(Nummer%)="":Strasse$(Nummer%)=""278
PLz$(Nummer%)="":0rt$(Nummer%)="":Tel$(Nummer%)=""

279 Geb$(Nummeri)=""

280 RETURN

180 : Das groBe ST-BASIC-Buch ——

—— Dateiverwaltung 181

3. Dateiverwaltung

Daten erfassen ist die eine, sie auch nach dem Abschalten des
Computers nicht zu verlieren die andere Sache. Eine Moglichkeit
ein Programm mit Daten zu versorgen, kennen Sie bereits:
READ und DATA. Doch fiir die Erstellung einer AdreBverwal-
tung ist diese Methode denkbar ungeeignet.

Diese Daten legt man am besten auf Diskette in sogenannten
Dateien (Files, gesprochen: "Feils") ab. Von dort kénnen Sie bei
Bedarf eingelesen, verarbeitet, und wieder abgespeichert wer-
den.Zwei Arten der Datenspeicherung sind hierbei besonders zu
unterscheiden:

- Sequentielle Dateien
- Relative Dateien

sowie eine Mischform aus sequentieller und relativer Dateiver-
waltung, die

- Indexsequentiellen Dateien (ISAM)

3.1 Dateien auf Diskette

Bis jetzt war schon eine ganze Menge von sequentiellen Dateien
die Rede, was dahinter steckt habe ich allerdings noch nicht
verraten. Das wird jetzt nachgeholt:

Sequentielle Dateien

In sequentiellen Dateien werden die Daten einfach hintereinan-
der abgelegt. Damit die einzelnen Elemente bei einem spiteren
Einlesen voneinander unterschieden werden kénnen, trennt sie
der Computer durch ein Carriage Return, das bekanntlich den
ASCII-Wert 13 besitzt. Die einzelnen Elemente koénnen unter-

182 Das groBe ST-BASIC-Buch ——

schiedliche Lingen besitzen, ja sogar unterschiedliche Vari-
ablentypen kénnen in beliebiger Reihenfolge in eine solche Datei
geschrieben werden.

Diese Art der Datenspeicherung hat natiirlich auch einen Haken:
Da die einzelnen Elemente in der Datei unterschiedlich lang sein
kénnen, muf} die Datei stets komplett in den Speicher des Com-
puters gelesen werden. Férner sollte man sich genau merken,
welche Daten man in diese Datei geschrieben hat, sonst kénnte
es bei einem spiteren Einlesen Probleme geben. (Stellen Sie sich
vor, in einer Datei sind 50 AdreBen gespeichert, und als nich-
ster Wert wurde das Datum der Erfassung in die Datei geschrie-
ben!)

Andern sich bestimmte Daten, muf3 die Datei komplett neu auf
Diskette geschrieben werden, da einzelne Eintrige nicht einfach
abgedndert werden kénnen.

Random-access-Dateien (relative Dateien)

Im Gegensatz zur Speicherung in sequentieller Form werden die
zu speichernden Daten in relativen Dateien in einzelnen
Datensidtzen (Records) festgehalten. Ein solcher Datensatz kann
mehrere Elemente enthalten (z.B. Name, Vorname, Strafle, ...),
die Linge eines Records darf von einem zuvor festgelegten Wert
jedoch nicht abweichen. Dafiir ist es dann méglich, einen ganz
bestimmten Datensatz innerhalb der Datei anzusprechen und
einzulesen, was bei sequentiellen Dateien nicht der Fall ist.

Auch diese Form der Datenspeicherung ist nicht ohne Nachteile:
Jeder Record besitzt innerhalb der Datei die angegebene Linge,
unabhiingig davon, wie lang die in ihm enthaltenen Daten
tatsdchlich sind. Deshalb benétigt eine Random-access-Datei im
Normalfall wesentlich mehr Speicherplatz als ihre Artgenossin,
die sequentielle Datei. Ferner sollte eine relative Datei vor ihrer
Benutzung eingerichtet werden, das heif3t alle Datensitze werden
bereits auf der Diskette angelegt, die einzelnen Records enthal-
-ten jedoch nur Leerzeichen (Spaces).

—— Dateiverwaltung 183

Fazit: Eine relative Datei erfordert wesentlich mehr Vor-
iiberlegungen, einen etwas groBeren Programmier-
aufwand und mehr Speicherplatz auf Diskette. Dafiir
kann ein einzelner Datensatz gezielt angesprochen
werden.

ISAM-Dateien

Bei der indexsequentiellen (abgekiirzt ISAM) Dateiverwaltung
werden die beiden Formen - sequentielle und relative Dateien -
geschickt kombiniert. Die Idee, die hinter diesem Verfahren
steckt, ist folgende:

Sequentielle Dateien werden komplett in den Computer gelesen,
ehe sie bearbeitet werden kénnen; in relativen Dateien werden
lediglich bestimmte Datensitze eingelesen. Was geschieht nun,
wenn Daten in einer Datei gesucht werden miissen? Bei der se-
quentiellen Datei, die sich bereits komplett im Computer befin-
det, geht dies unheimlich schnell. Die Suche in relativen Dateien
dauert dagegen sehr lange, da Datensatz fiir Datensatz eingelesen
werden muf}, bis die betreffenden Daten gefunden sind. Und
der Zugriff auf Diskette benétigt seine Zeit, da erst die Mecha-
nik in der Diskettenstation in Gang gesetzt werden muf3.

Nun konnte man natiirlich die gesamte Datei in den Speicher
holen, aber was wire dabei gewonnen? In diesem Fall kdénnte
man gleich eine sequentielle Datei bemiihen!

Folglich greift man zu einem Trick: Die gesamte Datei wird in
relativer Form abgespeichert. Gleichzeitig werden die Suchbe-
griffe, nach denen die Datei durchstébert werden soll, in einer
sequentiellen Datei abgelegt, die Indexdatei genannt wird. Jeder
Eintrag in dieser Indexdatei besteht aus zwei Teilen:

<8uchbegriff> + <Datensatznummer>

Die Indexdatei liest man (zu Programmbeginn) komplett in den
Speicher. Werden jetzt bestimmte Daten benétigt, durchsucht
man einfach die Indexdatei im Computer. Wird der Suchbegriff
gefunden, mufl nur noch der Record eingelesen werden, dessen

184 Das groBe ST-BASIC-Buch ——

Nummer hinter dem Suchbegriff vermerkt ist. Und schon hat
man die gewiinschten Daten im Speicher. Dadurch erspart man
sich das zeitraubende Einlesen eines jeden Datensatzes, bis der
gewiinschte Suchbegriff gefunden ist.

Werden neue Daten erfaf3t, muB3 die Indexdatei erweitert werden
und zwar um den neuen Suchbegriff und die Nummer, unter der
der neue Record in der Random-access-Datei zu finden ist.
Wird ein Record aus der Datei geloscht, muB3 die Indexdatei
ebenfalls um den entsprechenden Suchbegriff gekiirzt werden.

Im Extremfall kénnen natiirlich mehrere Indexdateien (eine fiir
Namen, eine fiir Geburtsdatum ...) zu einer relativen Datei ge-
héren. Dann ist es moglich, die Datei nach den unterschiedlich-
sten Daten zu durchforsten.

3.2 Ohne Kanéle geht gar nichts

Ehe auch nur ein einziges Byte auf Diskette oder Harddisk ge-
speichert werden kann, muf3 erst ein Kanal ged6ffnet werden,
iiber den der weitere Datenaustausch zwischen dem Computer
und dem gewiinschten Speichermedium abgewickelt werden
kann. Einen solchen Kanal kann man sich wie eine Telefonlei-
tung zwischen dem Computer und der Diskettenstation vorstel-
len, die Verbindung zwischen beiden wird iiber den Befehl

OPEN
hergestellt. OPEN besitzt folgende Syntax:

OPEN <"Dateimodus">, <Kanalnummer>,<"Dateiname">

Der erste Parameter, den der Interpreter hinter einem OPEN er-
wartet ist der Dateimodus. Zur Verfiigung stehen dabei:

— Dateiverwaltung 185

Dateimodus Bedeutung

"I" (Input) sequentielle Datei lesen

"O" (Output) sequentielle Datei schreiben

"A" (Append) an bestehende sequentielle Datei anhingen
"F"(Files) Inhaltsverzeichnis

"P" (Printer) Drucker

"R" Random-Acess-Zugriff (relative Datei)
"c" Konsole, Bildschirm und Tastatur

"K" (Keyboard) Befehle an Tastaturprozessor

"M" (Midi) MIDI-Port

A RS232-Schnittstelle

Keine Angst, fiir unsere Zwecke reichen die ersten drei Datei-
typen erst einmal vollig aus, spiter kommen dann die iibrigen
Spielarten hinzu.

Um einen Kanal zu 6ffnen, dessen Sinn und Zweck das Schrei-
ben in eine sequentielle Datei ist, muB8 der Parameter "O" als
Dateityp angegeben werden. Ein auf diese Weise gedffneter Ka-
nal kann spiter dann nur zum Erstellen einer sequentiellen Datei
benutzt werden, es ist also nicht méglich, tiber diesen Kanal
Daten aus einer Datei einzulesen.

Ein Kanal wird also stets mit einer spezifischen Aufgabe (Lesen
einer sequentiellen Datei, Schreiben einer sequentiellen Datei,
Ausgabe der Daten an den MIDI-Port ...) betraut. Da es mdglich
ist, innerhalb eines Programms mehrere Kanile zu 6ffnen, mufl
ein Kriterium existieren, anhand dessen die einzelnen Kanile
unterschieden werden koénnen. Deshalb wird als nichster Para-
meter eine Kanalnummer beim Befehl OPEN angegeben. Diese
Nummer, anhand der die Daten dann sicher auf die Reise ge-
schickt werden konnen, ist eine Zahl im Bereich von 1 bis 16,
die beliebig (aber nicht doppelt!) vergeben werden kann.

OPEN "O",1 offnet einen Kanal mit der Nummer 1, der die
Aufgabe besitzt, die Daten in sequentieller Form einer Datei
anzuvertrauen. Gleichzeitig kann ein Kanal iiber OPEN "I",2 ge-
o6ffnet werden. Seine Aufgabe besteht darin, Daten einzulesen.
Mochten Sie innerhalb des Programms Daten einlesen, muf3 der
Kanal mit der logischen Dateinummer 2, zum Speichern von
Daten der Kanal mit der Nummer 1 benutzt werden.

186 Das groie ST-BASIC-Buch ——

Damit die in einer Datei gespeicherten Daten zu einem spiteren
Zeitpunkt auch wieder eingelesen werden konnen, muf3 als drit-
ter Parameter hinter OPEN noch ein Dateiname angegeben wer-
den. Dieser darf maximal aus acht Buchstaben bestehen, wobei
zusitzlich noch eine sogenannte Extension (bestehend aus drei
Buchstaben) angehiingt wird. Der eigentliche Dateiname und die
Extension sind durch einen Punkt voneinander getrennt. Im Ge-
gensatz zu den Befehlen LOAD, SAVE, und NEW wird die Ex-
tension jedoch nicht selbststindig vom Computer vergeben, son-
dern muB im Dateinamen mit enthalten sein.Fassen wir noch
einmal zusammen:

OPEN offnet einen Kanal, iiber den der Datenverkehr abgewi-
ckelt werden kann. Drei Parameter miissen angegeben werden:

Dateimodus: Gibt die Aufgabe des Kanals an (Lesen,
Schreiben, ...)

Kanalnummer: Dient der Identifizierung und dem Ansprechen
des Kanals, sie besteht aus einer Zahl im Be-
reich von 1 bis 16.

Dateiname: Unter diesem Namen werden die Daten auf
Diskette abgelegt. Er darf aus maximal acht
Buchstaben bestehen, wobei zusitlich noch drei
Buchstaben fiir eine Extension erlaubt sind.

3.3 Noch ein Print, aber mit Write geht’s auch

Ein Kanal wire jetzt also ge6ffnet, die Daten konnen auf die
Reise geschickt werden. Aber welchen Befehl kann dazu benut-
zen? PRINT gibt die ihm anvertrauten Daten auf dem Bild-
schirm aus, doch da wollen wir sie in diesem Fall nicht haben.
Ein anderer Vertreter der Gattung PRINT kann diese Aufgabe
jedoch bestens erledigen:

PRINT#<Kanalnummer>,<Daten>

—— Dateiverwaltung 187

PRINT# arbeitet genauso wie Print, nur schreibt er die Daten
nicht auf den Monitor (das geht zwar auch ...), sondern in den
unter <Kanalnummer> angegebenen Kanal. Wurde eine Datei
zum Schreiben gedffnet, kann sie per PRINT# mit Daten ver-
sorgt werden. Die Kanalnummer ist in jedem Fall anzugeben:

OPEN "O",1,"“BEISPIEL.DAT"
PRINT#1, "irgendwas"

entspricht:

OPEN "O",5,"BEISPIEL .DAT"
PRINT#5, "“irgendwas"

Sie sehen schon, welche Kanalnummer Sie bei OPEN auch ver-
wenden, die Ausgabe muf3 unbedingt auf den richten Kanal er-
folgen. Wird versucht, die Ausgabe auf einen nicht gedffneten
Kanal zu leiten, ernten Sie eine Fehlermeldung!

WRITE#

Write# besitzt die gleiche Syntax wie PRINT#, und gibt eben-
falls Daten auf dem angegebenen Kanal aus. Im Unterschied zu
PRINT# werden bei WRITE# jedoch die ausgegebenen Zei-
chenketten in Anfithrungszeichen gesetzt. Dies birgt einen ge-
waltigen Vorteil in sich: Das Komma dient bei einem INPUT als
Trennzeichen, d.h. fiir den INPUT-Befehl ist die Eingabe dann
beendet, wenn es auf ein Komma stoBt (vgl. INPUT A,B!). Ent-
hiilt ein String nun Kommata, so wird bei einem Input die Zei-
chenkette lediglich bis zum ersten Komma angenommen.Bei ei-
nem in Anfithrungszeichen stehenden String werden Kommata
jedoch nicht als Trennzeichen angesehen! Folglich kann mit ei-
nem Input die gesamte Zeichenkette eingelesen werden, auch
wenn sie Kommata enthilt.

Ferner schreibt WRITE# bei Daten, die durch Komma vonein-
ander getrennt sind, das Komma auch wirklich auf den angege-
benen Kanal (Input macht dies nicht!). Somit kénnen mehrere
Variablen mit nur einem einzigen WRITE# abgespeichert wer-

188 Das groBe' ST-BASIC-Buch —

den. Ein INPUT-Befehl kann sie zu einem spiteren Zeitpunkt
wieder problemlos einlesen, da fiir ihn ein Komma als Trenn-
zeichen gilt:

OPEN "O", 1, "NAME.BAS"
A=14:B=20:C=77:D=14
WRITE #1, A,B,C,D

Ergibt in der Datei NAME.DAT:
14,20,77,14

Von dort kénnen Sie dann mit einem Input-Befehl wieder abge-
holt werden. So, die Daten koénnen wir jetzt in eine Datei
schreiben. Doch ehe das Programm verlassen wird, muf3 die ge-
offnete Datei wieder geschlossen werden. Andernfalls sind die
Daten verloren. Zum SchlieBen einer Datei dient der Befehl

CLOSE <Dateinummer>,<Dateinummer>,...

Dabei werden die Dateien mit der Nummer <Dateinummer>
wieder geschlossen. Wird keine Dateinummer hinter dem CLOSE
angegeben, schliefit ST-BASIC simtliche Dateien, die zu diesem
Zeitpunkt gedffnet sind.

3.4 Sequentielle Dateien einlesen

Die Daten sind jetzt auf der Diskette, doch eines Tages benoti-
gen wir sie wieder. Zum Einlesen von Daten wird ein naher
Verwandter des INPUT-Befehls benutzt:

INPUT #<Kanalnummer>,<Variable(nliste)>

arbeitet wie INPUT, holt sich seine Eingabe jedoch nicht von
der Tastatur, sondern aus dem Kanal <Kanalnummer>. Das Ein-
lesen ist fir den Interpreter beendet, sobald er auf ein Carriage
Return (CHR$(13)) bzw. ein Komma st8t.

—— Dateiverwaltung 189

OPEN "I", 1, “NAME.DAT"
INPUT #1,A,B,C,D
CLOSE 1

liest die mit WRITE# auf Diskette geschriebene Datei wieder in
den Speicher des Computers. Ubrigens, es existiert auch ein
LINE INPUT#-Befehl, der Kommata erlaubt und nur Carrige
Return als Ende der Eingabe betrachtet.

Soweit ist noch alles klar. Schwieriger wird es, wenn man nicht
mehr weill, wie viele Daten in die Datei geschrieben wurden.
Will man nidmlich in einer Schleife mittels INPUT# solange Da-
ten von Diskette einlesen, bis sich die Datei komplett im Spei-
cher des Atari ST befindet (bis Input# einen Leerstring ("") lie-
fert, da keine weiteren Daten mehr vorhanden sind), meldet sich
der Interpreter zu Wort, sobald das Ende der Datei iiberschritten
wurde.

Zum Einlesen einer Datei, von der man nicht mehr wei3, wie
viele Elemente man in ihr bereits erfa3t hat, scheidet diese Me-
thode folglich aus. Da man sich allerdings unmoglich merken
kann, wie viele Eintrige in einer Datei vorhanden sind (in die-
sem Fall konnte man die Daten in einer FOR...NEXT-Schleife
einlesen), existiert in ST-BASIC eine eigene Funktion, die mit-
teilt, wann das File-Ende (Datei-Ende) erreicht ist. Diese Funk-
tion lautet:

EOF (<Dateinummer>)

EOF() (End Of File: Datei-Ende) liefert den Wahrheitswert
falsch, solange das File-Ende der Datei, die iber
<Dateinummer> angesprochen wird noch nicht erreicht ist. An-
dernfalls erhdlt man den Wahrheitswert wahr.

Fur die Konstruktion einer Abbruchbedingung ist diese Funk-
tion augenblicklich noch nicht brauchbar. Sie liefert nimlich
immer dann den Wert falsch (0) und fithrt dadurch zu einem
Verlassen der Schleife, wenn die Schleife noch ein weiteres Mal
durchlaufen werden miifite, weil das Datei-Ende noch nicht er-
reicht ist. Deshalb muB der von dieser Funktion gelieferte

190 Das groBe ST-BASIC-Buch —

Wahrheitswert erst einmal umgedreht, d.h. negiert werden, ehe
er als Abbruchkriterium in die Schleife eingebaut werden kann.
Dies erledigt die Funktion NOT:

OPEN "I" 1,"DATEI.NAM"
WHILE NOT EOF(1)' bis zum Datei-Ende wiederholen
INPUT #1, Name$
WEND
CLOSE 1

Das soeben Gesagte gilt zumindest fiir sequentielle Dateien, bei
relativer Dateiverwaltung ist das Verfahren etwas anders. Aber
dazu kommen wir spiter noch!

Nach diesem theoretischen Teil schreiten wir wieder zur Praxis:
Die Mini-Adreflverwaltung ist noch nicht ganz fertig! Ihr fehlen
noch die Unterroutinen zum Laden und Speichern der AdreBlen
auf Diskette. Zuerst einmal zum Abspeichern der Daten: In einer
Schleife wird die gesamte Liste vom ersten bis zum letzten Ein-
trag durchlaufen. Die einzelnen Daten werden dann mit PRINT#
(Komma tauchen nirgends auf, deshalb wird kein Write# beno-
tigt) in die sequentielle Datei verfrachtet. Beim Einlesen werden
dann die Daten (logischerweise wieder in der gleichen Reihen-
folge, wie sie in die Datei geschrieben wurden) in das Feld gela-
den, bis das Abbruchkriterium der Schleife, das Datei-Ende, er-
reicht ist. AnschlieBend kehrt die Unterroutine wieder in die
Meniiauswahl zuriick.

Speichern:

OPEN "O",1,"MINIADR.DAT"

T%=1

WHILE Name$(T%)<>"n
PRINT #1,Name$(T%)
PRINT #1,Vorname$(T%)
PRINT #1,Strasse$(T%)
PRINT #1,Plz$(T%)
PRINT #1,0rt$(T%)
PRINT #1,Tel$(T%)
PRINT #1,Geb$(T%)
T%=T%+1

WEND

—— Dateiverwaltung 191

CLOSE 1
RETURN

Laden:

OPEN "I" 5, “MINIADR.DAT"
T%=1
WHILE NOT EOF(5)
INPUT #5,Name$(T%)
INPUT #5,Vorname$(T%)
INPUT #5,Strasse$(T%)
INPUT #5,PLz$(T%)
INPUT #5,0rt$(T%)
INPUT #5,Tel$(T%)
INPUT #5,Geb$(T%)
T%=T%+1
WEND
CLOSE 5
RETURN

3.5 Files kopieren

Hiufig kommt es vor, dafl bestimmte Dateien kopiert werden
miissen; sei es, daB3 Sie eine Sicherheitskopie wiinschen, sei es,
daB Sie mit einer RAM-Disk arbeiten, die zuerst mit den ent-
sprechenden Dateien versorgt werden muf.

ST-BASIC besitzt dafir einen eigenen Befehl: COPY. Seine
Syntax lautet:

COPY <Quelldatei> TO <Zieldatei>

Doch wir schreiben uns eine dazu eigene kleine Prozedur!
Warum? Weil ich Thnen dabei zwei weitere Befehle vorfiithren
kann!

Der Algorithmus, den wir dafiir nutzen, ist denkbar einfach:
Sowohl die Quelldatei als auch die Zieldatei werden als sequen-
tielle Files betracht. Aus der Quelldatei wird nun solange Byte

192 Das groe ST-BASIC-Buch ——

fur Byte eingelesen und in die Zieldatei geschrieben, bis das
Ende der Quelldatei erreicht ist. Danach kehrt die Prozedur (in
das Hauptprogramm?) zuriick.

Der Input#-Befehl versagt kliglich, wenn man versucht, ein
einzelnes Byte aus einer Datei einzulesen. Das Eingabeende ist
fir ihn erst mit Erreichen eines Carriage Return bzw. eines
Kommas gegeben. Was geschieht nun, wenn im ganzen File kein
einziges Komma oder Carriage Return vorkommt? Der Inter-
preter wird sich unter Umstinden verabschieden, da ein String
aus maximal 32000 Zeichen bestehen darf. Und wenn die Datei
linger war, ja dann ...

Der Input#-Befehl ist fiir unsere Zwecke also nicht brauchbar,
Ein anderer Befehl zu Einlesen von Daten muf3 her! Hier ist er:

INPUT$(<Anzahl Zeichen>,<Dateinummer>)

lieBt genau <Anzahl Zeichen> aus der Datei mit dem Kanal
<Dateinummer> ein. Wird als <Anzahl Zeichen> der Wert 1 an-
gegeben, so erhidlt man genau | Byte aus der entsprechenden
Datei.

An dieser Stelle moéchte ich gleich das fehlerhafte Listing im
Handbuch zu ST-BASIC (Omikron.-BASIC Version 3.00, Seite
81) korrigieren. Die nachfolgende Prozedur gibt den gesamten
Inhalt einer Datei Name$ auf dem Bildschirm aus:

1000 DEF PROC Type(Name$)
1010 OPEN “I",1,Name$
1020 WHILE NOT EOF(1)
1030 PRINT INPUT$(1,1);
1040 WEND

1050 CLOSE 1

1060 RETURN

In Zeile 1010 wird eine sequentielle Datei mit der Kanalnummer
1 zum Lesen getffnet. Zeile 1030 liest genau ein Byte ein (IN-
PUTS) und gibt es mit PRINT gleich wieder auf dem Monitor
aus. Die Schleife sorgt dafiir, daB die gesamte Datei Byte fiir
Byte ausgegeben wird, bis das File-Ende erreicht ist. An-

—— Dateiverwaltung 193

schlieBend wird der Kanal wieder geschlosssen und die Prozedur
verlassen. So dhnlich muB auch unsere Prozedur zum Kopieren
einer Datei aufgebaut werden. Nur darf hier die Ausgabe der
einzelnen Daten nicht an den Monitor erfolgen, sondern gleich
in eine andere Datei. Diese muf3 zum (sequentiellen) Schreiben
geoffnet werden und eine andere Dateinummer tragen:

DEF PROC Filecopy(Von$,Nach$)
OPEN "I",1,Von$
OPEN "0",2,Nach$
WHILE NOT EOF(1)
PRINT #2,INPUTS$(1,1);
WEND
CLOSE 2
CLOSE 1
RETURN

Aber diese Routine arbeitet viel zu langsam! Wesentlich schneller
geht es, wenn groBere Datenmengen auf einmal eingelesen wer-
den konnen. Klingt paradox? Die Erklarung dafiir ist aber ganz
einfach: Die Diskettenstation arbeitet mit einer aufwendigen
Mechanik. Ein Tonkopf (bzw. zwei Tonképfe bei einer doppel-
seitigen Floppy) wird an die Spur gefahren, auf der das ge-
wiinschte Byte aufgezeichnet wurde. Da sich die Diskette dreht,
muf} er solange warten, bis sich das Byte gerade unter dem Ton-
kopf befindet, dann erst kann es eingelesen werden. Werden
gleich mehrere Bytes auf einmal eingelesen, geht dies wesentlich
schneller von statten, da sich der Tonkopf sowieso schon an der
richtigen Stelle befindet, er muf3 die nichsten Bytes nur noch
"mitnehmen". Zugegeben, dies ist eine stark stilisierte Erkldrung,
aber ich hoffe, sie ist dafiir leicht verstindlich.

Die maximale Grofle fiir einen Einlesevorgang betrigt 32000
Byte, da ein String nicht mehr Buchstaben fassen kann. Doch
schon bekommen wir wieder Schwierigkeiten! Die Funktion
EOF() hilft uns jetzt nimlich nicht mehr weiter. Bei einem
gleichzeitigen Einlesen von mehreren Bytes kann das Datei-Ende
iiberschritten werden, ohne daB dies von der Funktion EOF()
abgefangen werden koénnte. Stellen Sie sich nur einmal vor, in
der Datei sind noch 2000 Bytes einzulesen. EOF() bzw. NOT

194 Das grofe ST-BASIC-Buch ——

EOF() liefert als Ergebnis wahr, d.h. das File-Ende ist noch
nicht erreicht - aber fiir INPUT$(32000,1) sind nicht mehr ge-
nug Daten vorhanden! Was tun?

Ein Losungsweg fithrt iiber die Linge der Datei, d.h. die in
diesem File enthaltenen Bytes. Kénnte man diese Linge ermit-
teln, briuchte man nur in einer (abweisenden) Schleife solange
jeweils 32000 Bytes einlesen, bis keine 32000 Bytes mehr bis
zum Datei-Ende iibrig bleiben. Diese kénnte man dann noch auf
einen Schlag kopieren, und schon ist die gesamte Datei kopiert.
Auch zum Ermitteln der Linge eines bestimmten Files gibt es
eine Funktion:

LOF(<Dateinummer>)

LOF() (Length Of File) liefert bei sequentiellen Dateien, die
zum Lesen gedffnet sind, die Linge der Datei in Bytes. Das
Datei-Endezeichen EOF wird dabei mitgerechnet. Deshalb muf3
ein Byte von der Linge abgezogen werden, das in unserem Fall
nicht mitkopiert zu werden braucht.

Ist eine sequentielle Datei zum Schreiben geoffnet, liefert die
Funktion LOF() die Linge der Daten zuriick, die bereits auf
Diskette geschrieben wurden. Befinden sich noch Daten im Dis-
kettenpuffer (der Computer speichert die Daten erst einmal im
Diskettenpuffer, ehe sie auf Diskette verfrachtet werden, damit
bei einem Diskettenzugriff gleich gréfere Datenpakete auf die
Reise geschickt werden kénnen), so werden diese nicht beriick-
sichtigt. Handelt es sich um eine relative Datei, liefert LOF() als
Ergebnis die Anzahl der in dieser Datei gespeicherten Datensitze
zuriick.

Mit LOF() kann also die Linge der Datei ermittelt werden.
Diese wird in einer Variablen (L) festgehalten. Befinden sich
mehr als 32000 Bytes in der Datei, werden in einer Schleife
32000 Bytes eingelesen und gleich wieder in die Zieldatei ge-
schrieben (die Datei wird also hippchenweise kopiert). An-
schlieBend wird die Linge (L) um die bereits eingelesene Anzahl
von Bytes erniedrigt und die Schleifenbedingung erneut iiber-
priift.

—— Dateiverwaltung 195

Erst wenn die Datei weniger als 32000 noch zu kopierende Bytes
enthilt, wird die Schleife verlassen (bzw. gar nicht abgearbeitet),
und die restlichen Bytes (in der Variablen L enthalten) werden
kopiert. Hier nun die kleine Prozedur:

0 1 e v e e e v e e ke % e e e vk o e v e ke vk A v o e 3k e e 3k e vk o e v ok v e ok e v o e e ok e e vk o e o e e e ok ok e ke ok e e vk e de ok
1 1> FILECOPY.BAS *
2 LR S g g U U g *
3 '* Autor: Michael Maier Version: 1.00 Datum: 10.06.1988 *
4 1% Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *
5 1% (C) 1988 by DATA BECKER GmbH Dusseldorf . *
6 1 e e Je e e 3 e e Je 3 I e 3 e e e e v e e e e e e e ke e e v e ok e o e e I e o 3 I e e e e e e e Fe e e de e de e de e e ke e e e de ok
7 .

8]

9 ' die folgende Routine kopiert ein File

10 ¢

11 * Aufruf: Filecopy("A:\DATEI_1.BAS", "D:\DATEI_2.BAS")

12 ¢ ..von.. ..nach..

131

14 DEF PROC Filecopy(Von$,Nach$)

15 LOCAL L

16 OPEN “I",1,Von$

17 OPEN "O",2,Nach$

18 L= LOF(1)

19 WHILE L>32000' mehr passt in keinen String

20 PRINT #2, INPUT$(32000,1);
21 L=L-32000

22 WEND

23 ' EOF nicht mitkopieren => L-1
24 PRINT #2, INPUT$(L-1,1);

25 CLOSE 2

26 CLOSE 1

27 RETURN

3.6 Die File-Selector-Box und deren Verwaltung

Die kleine AdreBdatei, die wir entwickelt haben, kann jetzt die
erfassten Daten-auf Diskette schreiben, und von dort auch wie-
der einlesen. Diese Datei, in der sich die AdreBen befinden,
trigt den Namen MINIADR.DAT.

196 Das groBe ST-BASIC-Buch ——

Jetzt konnte man auf die Idee kommen, mehrere AdreB3dateien
anzulegen (z.B. fiir Freunde, Geschiftspartner usw.), die allesamt
von dem Programm verwaltet werden sollen. Dann muf} aber der
Name fir die Datei abgeindert werden konnen, damit mehrere
AdreBdateien mit der Minidatei verwaltet werden konnen. Die
einfachste Moéglichkeit, dies zu bewerkstelligen, besteht darin,
mit einem INPUT nach dem Dateinamen zu fragen, dann die
entsprechende Datei ganz normal mit OPEN zu 6ffnen und die
darin enthaltenen AdreB3en auszulesen.

INPUT "Welche Datei méchten Sie einlesen? "-Name$
OPEN "I",1, Name$

So oder #hnlich wiirde dieses Problem auf anderen Computern
gelost werden, nicht jedoch auf dem Atari ST und schon gar
nicht in ST-BASIC! Wozu besitzen wir schlielich GEM? GEM
bietet eine AduBerst komfortable Moglichkeit zur Eingabe bzw.
der Auswahl eines schon bestehenden Dateinamens vor dem
Einlesen oder Abspeichern einer Datei an: Die File-Selector-Box
(Dateiauswahlbox).

In der ersten Zeile dieser Box steht unter INDEX der sogenannte
Pfadname. Was aber ist ein Pfad? Er gibt wie ein normaler Pfad
auch den Weg zu einem Ziel an, in unserem Fall ist dies der
Weg zu einer Datei. Moderne Computer gestatten es nidmlich,
den Inhalt einer Diskette in Ordner zu unterteilen. In diesen
Ordnern kénnen dann entweder weitere Ordner, oder die ge-
wiinschten Dateien angelegt werden. Damit der Computer - oder
besser gesagt das Betriebssystem - eine entsprechende Datei le-
sen kann, muf} es wissen, in welchem Ordner sie sich befindet.
Und dafiir gibt es den Pfadnamen. Aber das ist noch nicht alles!
Der Pfad besteht noch aus weiteren Komponenten:

<Laufwerksbezeichnung>:\<Ordner 1>\<Ordner 2>*.BAS

—— Dateiverwaltung 197

Desk IEITGTINTLELLIM Korrekturprogranm Parameter Dienst

TERCHER oBUEKT AUSKAHL n:earheitenl

BADER Michaela INDEX:

BIELMEIER Fritz A:\NOTES.TEA\¥, NOT.
GURATSCH Eva
HUBER Michael Auswahl:
TR Birat 1BC_RE . NOT|

MAIER Michael

SCHILLER Peter

Klasse: 18C —— s

R ABBRUCH

Abb. 3.1: Die File-Selector-Box

Der erste Buchstabe des Pfades gibt das gerade aktive Laufwerk
an. Im Normalfall wird die Laufwerkskennung A sein (das ist
die eingebaute Diskettenstation), aber auch B, C, D (iiblicher-
weise die RAM-Disk) usw. sind moglich.

Von der Laufwerksbezeichnung durch einen Doppelpunkt abge-
trennt, folgt der eigentliche Pfad, d.h. die Ordnerverschachte-
lung. Im einfachsten Fall (die Datei befindet sich in keinem
Ordner, sondern im Hauptdirectory) lautet der Pfad dann:

<Laufwerksbezeichnung>:\"."‘r
A:*.*

Mochten Sie dagegen eine Datei einladen, die sich im Ordner
DOKUMENT.SDO befindet, muf3 der Pfad erweitert werden:

A:\DOKUMENT.SDO*.*

198 Das groBe ST-BASIC-Buch —

Jetzt erhalten Sie simtliche Dateien, die sich im Ordner DO-
KUMENT.SDO befinden. Aber auch ein Ordner im Ordner ist
moglich. Dann muf3 der Weg vom Hauptdirectory zum innersten
Ordner im Pfad angegeben werden. Die einzelnen Ordnernamen
werden wieder durch den Querstrich "\" (Backslash) voneinander
getrennt:

A:\DOKUMENT .SDO\FORMULAR .SDO* . *

gibt simtliche Dateien im Ordner FORMULAR.SDO, der sich
im Ordner DOKUMENT.SDO befindet aus. Der letzte Teil des
Pfades gibt den Namen an. Dieser besteht wiederum aus zwei
Teilen: dem eigentlichen Namen und einem Extender (Exten-
sion), der durch den Punkt vom eigentlichen Namen getrennt ist.
Ublichweise gibt der Extender den Dateityp an:

Extender Typ
BAS BASIC-Programm
PRG ausfithrbaren GEM-Programm

Aber davon war schon einmal die Rede! Neu ist dagegen, daB
der Name im Indexfeld (die erste Eingabezeile der Fileselector-
Box) durch sogenannte Wildcards (Joker) ersetzt werden kann.
Dies sind Platzhalter, die entweder einen Buchstaben, oder gar
einen kompletten Namen ersetzen. Mit ihrer Hilfe wird es mog-
lich, eine Auswahl verschiedener Dateien anzuzeigen. Dazu be-
nutzt man die beiden Zeichen * und ?.

Das Fragezeichen ? steht als Platzhalter genau fiir einen Buch-
staben oder genau ein beliebiges Zeichen, wihrend der Stern *
eine ganze Zeichenkette ersetzt. Ein paar Beispiele zur Veran-
schaulichung:

H?MMEL.PRG Zeigt alle (Programm-)Dateien an, die die an-
gegebenen Buchstaben enthalten, wobei das
zweite Zeichen (reprisentiert durch das Fra-
gezeichen) beliebig ist. Zum Beispiel HIM-
MEL.PRG, HUMMEL.PRG, HAMMEL.PRG
usw.

—— Dateiverwaltung : 199

H* PRG Zeigt alle (Programm-)dateien an, die mit ei-
nem H beginnen, wobei die restlichen Buchsta-
ben bis zum Beginn der Extension beliebig
sind. Zum Beispiel HALLO.PRG, HIL-
BERT.PRG usw.

* BAS Zeigt simtliche Dateien an, die mit der Exten-
sion BAS ausgestattet sind.

* 3 Zeigt ginzlich alle Dateien an, egal welche
Extension sie besitzen.

ST-BASIC bietet einen eigenen Befehl, um die File-Selector-Box
auf den Bildschirm zu bringen:

FILESELECT(<Pfadname>, <Dateiname>, <Flag>)

In der Stringvariablen <Pfadname> muf3 der Pfadname angege-
ben werden, der zu Beginn des Aufrufes im Indexfeld der Box
angezeigt werden soll. Auf jeden Fall muf3 darin ein korrekter
Pfad enthalten sein! Der "Minimalpfad" lautet: A:*.*. Méchten
Sie nur BASIC-Programme in der Box zur Auswahl stellen, so
erreichen Sie dies durch Abiindern des Extenders: A:*.BAS. Als
Dateiname kann - muf3 jedoch nicht - ein Name angegeben
werden, der dann nach dem Aufruf der Box im Eingabefeld
unter AUSWAHL: erscheint. Auf diese Weise kann z.B. ein
Vorschlag des Dateinamens angegeben werden. Wurde vom Be-
nutzer ein File ausgewihlt, so enthilt diese Stringvariable den
ausgewidhlen Dateinamen.

In der Variablen <Flag> wird nach Beendigung der Auswahl
vom Computer mitgeteilt, ob der Benutzer OK, oder Abbruch
angeklickt hat. Im ersten Fall enthilt <Flag> dann der Wert 1,
im letzeren den Wert 0. Damit der Benutzer auch mit der Maus
arbeiten kann, muB} sie vor Aufruf der Funktion ein- und an-
schlielend wieder ausgeschaltet werden. Hier nun ein ganz ein-
faches Beispielprogramm zum Aufruf der Box:

' Minimalpfad vor Aufruf der Box angeben
Pfadp=1Az* *u
MOUSEON' Maus einschalten

200 Das groBle ST-BASIC-Buch —

FILESELECT (Pfad$,Name$,Button)
MOUSEOFF
IF Button THEN

PRINT "Datei ";Name$;" ausgewshlt"
ELSE

PRINT "Abbruch wurde angeklickt!"
ENDIF

Nachdem der Benutzer seine Auswahl getitigt hat, kann die Da-
tei Name$ mit OPEN geoffnet und die entsprechenden Daten
konnen eingelesen oder abgespeichert werden.

Eine etwas komfortablere Verwaltung der Fileselector-Box ge-
stattet die folgende Prozedur:

VWONOOCUVMPEWN-=O0

27

B e e de e o e e e e e de e e e e e e e o ok ok ke e o e ke o ke e ok o e ke ke e ok o ok e ke e o o ok e ok ok ke ok e e e ke ok e de e ok ok

1% DO_FILE.BAS *
R S *
'* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *
L Ein Programm aus dem 'GROSSEN ST-BASIC BUCH'® *
"* (C) 1988 by DATA BECKER GmbH Dusseldorf *

1 e e e e e e e vk e 2k e e e ke e ok 2k ok ok ke ok ke ke ok ke o ok ok ke ok e ke o ke o ok e ok ke o ke e o ok o ke o ok ke o e ok ke o e e ok e ok e ok
]
]

' die hier aufgeflhrte Prozedur DO_FILE kann in eigene Programme
‘eingebaut werden, und dient der Verwaltung der FILESELECTOR.BOX
L}
F_Name$="":F_Pfad$="":Ext$="¥ *n
Do_File(F_Name$,F_Pfad$,Ext$,F_Name$,F_Pfad$, Ext$, Taste%)
' Just for Info ... (fur den der's wissen will)
IF Taste%=0 THEN

FORM_ALERT (1,"[1] [Taste ABBRUCH gedriickt!] [Abbruch 1")

ELSE
FORM_ALERT (1,"[1][Taste OK gedriickt] [Weiter 1")
ENDIF
]
END
)
' jetzt folgt die eigentliche Prozedur
]
DEF PROC Do_File(Name$,Path$,Post$,R Name$,R Path$,R Post$,R Tas%)

' Lokale Variablen verwenden, damit die Prozedur auch
' in anderen Programmen einsetzbar ist.

—— Dateiverwaltung 201

28 LOCAL R_Path$=Path$,R_Name$=Name$,T%,Drive%,Pointer%L,Ret%L
29 IF Path$="" THEN ' kein Pfad angegeben, dann einen basteln
30 Path$=" "*64' GEMDOS Konvention Folge leisten

31 Pointer%L= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)
32 ' anschlieBend aktuellen Pfadnamen holen

33 GEMDOS (,71, HIGH(Pointer%L), LOW(Pointer%L),0)

34 ' und zurechtstutzen

35 Path$= LEFT$(Path$, INSTR(Path$+ CHR$(0), CHR$(0))-1)
36 GEMDOS (Drive%,25)' aktuelles Laufwerk ermitteln

37 Path$= CHR$(65+Drive%)+":"+Path$+m\»

38 ENDIF :

39 IF Post$="" THEN ' ohne Extension kann man schlecht arbeiten
40 Path$=Path$+"* *ut payschalextension anhdngen

41 ELSE

42 Path$=Path$+Post$

43 ENDIF

44 PRINT CHR$(27);"f"' Cursor aus- und Maus einschalten
45 MOUSEON

46 FILESELECT (Path$,6Name$,Ret%L)

47 MOUSEOFF

48 PRINT CHR$(27);"e"' Cursor wieder einschalten

49 IF Ret%L=0 THEN ' Abbruch angeklickt

50 Path$=R_Path$' alte Vorgaben zurlckkopieren

51 Name$=R_Name$

52 Tas%=0

53 ELSE

54 ' letzten Backslash '\' suchen

55 T%= LEN(Path$)

56 WHILE T%>0 AND MID$(Path$,T%,1)<>"\"

57 T%=T%-1

58 WEND

59 Path$= LEFT$(Path$,T%)

60 Tas%=1

61 ENDIF

62 RETURN

Die jetzt folgenden Erklirungen zur Funktionsweise der Proze-
dur Do_File erfordern etwas weiterreichende Kenntnisse, als Sie
sie bis jetzt besitzen, vor allem iiber das Betriebssystem. Den-
noch sollten Sie sich nicht entmutigen lassen und die folgenden
Zeilen lesen. Zudem erfahren Sie darin auch gleich, wie die
Prozedur angewendet werden kann.

202 Das groe ST-BASIC-Buch ——

Der Prozedur werden drei Stringvariablen bei ihrem Aufruf
iibergeben, die restlichen Parameter sind lediglich Riickgabe-
werte. Die zu tibergebenden Stringvariablen lauten (in korrekter
Reihenfolge):

1. Pfadname
2. Dateiname (ohne Extender)
3. Extender fiir den Dateinamen

Gleich nach dem Aufruf der Prozedur werden der Pfadname
und der Dateiname in zwei lokale Variablen gerettet. ST-BASIC
gestattet die Deklaration einer lokalen Variable mit der Zuwei-
sung eines Wertes zu verbinden. Von diesem Effekt wurde hier
Gebrauch gemacht. Im nichsten Schritt wird iiberpriift, ob beim
Aufruf der Prozedur ein Pfadname iibergeben wurde. Ist dies
nicht der Fall, muf3 die Prozedur einen eigenen Pfadnamen zu-
sammenbasteln. Und dazu wird das Betriebssystem des Atari ST
mifbraucht.

Die Funktion GEMDOS() (mit Parameter 71) liefert den aktuel-
len Pfadnamen. Sie weist diesen jedoch nicht einfach einer Va-
riablen zu, sondern erwartet einen Zeiger auf einen bestimmten
Speicherbereich, in den der Pfad dann geschrieben wird. Eine
GEMDOS-Konvention sagt aus, dal dieser Pfadname maximal
64 Zeichen lang sein kann. Also fiillen wir zuerst einmal einen
String (Path$) mit 64 Leerzeichen. Im nichsten Schritt muB3 noch
ermittelt werden, wo sich der String im Speicher befindet. Die
auf diese Weise erhaltene Adrefle (Zeiger) kann der GEMDOS-
Routine iibergeben werden und schon enthilt die Stringvariable
Pfad$ den aktuellen Pfadnamen (die Laufwerkskennung ist darin
noch nicht enthalten!).

Dieser wird durch ein Nullbyte (CHR$(0)) abgeschlossen. Wih-
rend es aber in der Sprache C iiblich ist, eine Zeichenkette mit
einem Nullbyte zu beenden, kann ST-BASIC mit diesem Null-
byte iiberhaupt nichts anfangen. Also muBl es aus dem String
entfernt werden! Dies geht am besten, indem man seine Position
mit INSTR() sucht, und mit LEFTS$ alle links von dieser Position
(deshalb das -1) abschneidet.

— Dateiverwaltung 203

Die nichste GEMDOS-Funktion (Nr. 25) weist der Variablen
Drive% die Nummer des gerade aktiven Laufwerks zu. Dabei
gilt:

Inhalt von Drive% entspricht Laufwerk
0 A
1 B
2 Cc

Als Integer niitzt uns das aktuelle Laufwerk aber iiberhaupt
nichts! Im Pfadnamen benétigen wir einen Buchstaben. Der
ASCII-Code hilft uns auch hier wieder einmal aus der Patsche:
CHRS$(65) liefert den Buchstaben *A’, CHR$(66) den Buchstaben
B. Addieren wir zu dem Argument dieser Funktion einfach das
ermittelte Laufwerk (Drive%), resultiert daraus eine Laufwerks-
bezeichnung von A bis ..., je nach Inhalt der Variablen Drive%:
CHR$(65+Drive%). Jetzt kann der (fast) entgiiltig Pfad zusam-
mengesetzt werden:

CHR$(65+Drive%)+":"+Path$+"\"

Auch um den letzten Backslash (\) miissen wir uns selbst kiim-
mern. Mit String-Addition ist dies aber kein Problem. An den-
auf diese Weise erhaltenen Pfadnamen muf3 noch die Extension
angehidngt werden. Ist kein Extender als Parameter iibergeben
worden, so wird einfach die Pauschal-Extension *.* an den Pfad
gehingt. Vor dem Aufruf der File-Selector-Box noch den Cursor
aus- aber die Maus einschalten! Wurde vom Benutzer Abbruch
angeklickt, so werden die urspriinglichen Parameter wiederher-
gestellt und an das aufrufende Hauptprogramm zuriickgegeben.
Ebenso wird das Flag auf 0 gesetzt und zuriickgegeben. Hat der
Benutzer dagegen den Button OK angeklickt, so muf3 der letzte
Teil des Pfadnamens (die zuvor an diesen gehingte Extension)
wieder entfernt werden. Dies wird in einer Schleife erledigt.
Angefangen vom Stringende wird jedes Zeichen untersucht, bis
der erste Backslash entdeckt wird. Nach diesem wird der Pfad
dann abgeschnitten.

204 Das groBe ST-BASIC-Buch ——

Ein Algorithmus zum Abschneiden der Extension, der mir gut
gefallen hat, findet sich im Programmierhandbuch zum ST-BA-
SIC: Die Funktion INSTR sucht ein beliebiges Zeichen innerhalb
eines Strings und gibt seine Position zuriick. Dabei beginnt sie
mit der Suche beim ersten Zeichen. In diesem Fall muf3 jedoch
ab dem Stringende gesucht werden! Deshalb wird der String mit
MIRRORS$ einfach umgedreht, und schon kann INSTR zum
Suchen des letzten Backslash verwendet werden:

Path$= LEFT$(Path$,LEN(PATHS)- INSTR(MIRROR$(Path$)+"\" 1\")

Der auf diese Weise ermittelte Pfad, der Dateiname incl. Exten-
der, sowie der Wert 1 fir den OK-Button werden noch zuriick-
gegeben. Fertig! Mochten Sie jetzt die ausgewihlte Datei 6ffnen
(z.B. um sie einzulesen), geschieht dies mit:

OPEN "I",1, F_Pfad$+F_Name$

Was geschieht aber, wenn die zuriickgegebene Datei gar nicht
auf der Diskette existiert? Dann erhilt man prompt eine Fehler-
meldung! Diese wire ja noch zu verkraften, schlimmer ist je-
doch, daB sich der Interpreter dabei verabschiedet. Gute Pro-
gramme machen dies nicht! Folglich muf3 der Fehler abgefangen
werden. ST-BASIC bietet dafiir eine Moglichkeit an:

3.7 Fehler abfangen

Tritt wihrend der Programmabarbeitung ein Fehler auf, kann
statt der Ausgabe der Fehlermeldung und des Programmabbruchs
in eine eigene Fehlerbehandlungsroutine gesprungen werden.
Dort ist es dann moglich nachzufragen, welcher Fehler aufge-
treten ist, und eine entsprechende Meldung auszugeben. Die
Anweisung fir ST-BASIC bei Auftreten eines Fehlers an ein
vorbestimmtes Ziel (Marke, Zeilennummer) zu springen lautet:

ON ERROR GOTO <Ziel>

und wird normalerweise an den Programmanfang gesetzt. Méch-
ten Sie die Fehlerbehandlung abschalten, geniigt der Befehl:

—— Dateiverwaltung 205

ON ERROR GOTO 0

d.h. nach einem Fehler wird das Programm wieder wie gewohnt
abgebrochen. Auch ein CLEAR (Loschen aller Variableninhalte),
RUN oder NEW schaltet die Fehlerbehandlung mit ON ERROR
GOTO wieder ab. Eine Anderung des Programmcodes bewirkt
ebenfalls ein Abschalten dieser Funktion.

Um innerhalb der Fehlerbehandlungsroutine iiberhaupt priifen
zu koénnen, welcher Fehler aufgetreten ist, existiert eine System-
variable (Variable, die vom Computer verwaltet wird) namens

ERR

in der die Nummer des Fehlers festgehalten wird, sowie

ERR$

die den Text der Fehlermeldung enthilt, der ohne ein ON
ERROR GOTO ausgegeben worden wire. In

ERL

wird schliefllich noch die Nummer der Zeile festgehalten, in der
der Fehler aufgetreten ist. Eine Liste der einzelnen Fehlermel-
dungen und der dazugehorigen Nummern finden Sie im Anhang
dieses Buches.

Die Meldung File not found (Datei auf der Diskette nicht vor-
handen) trigt die Nummer 53. Besitzt die Variable ERR also den
Inhalt 53, handelt es sich bei dem aufgetretenen Fehler um eine
nicht gefundene Datei:

ON ERROR GOTO Fehler

Do_File(Pfad$, Name$,Ext$,Pfads, Name$,Ext$, Flagh)
1F Flag% THEN
OPEN "I",1,Pfad$+Name$
WHILE NOT EOF(1)

206 Das groBe ST-BASIC-Buch —

IF ERR=53 THEN
' Angegebene Datei nicht vorhanden!
FORM_ALERT(1,"[3]1 [Ich kann die Datei nicht lesen!][Abbruchl")
ELSE
' war anscheinend ein anderer Fehler ..
ENDIF
RESUME NEXT

Tritt ein Fehler auf, so springt der Computer in die Routine
Fehler. Dort wird zuerst gepriift, ob es sich bei diesem Fehler
um eine nicht gefundene Datei handelt (Fehlernummer 53 in der
Systemvariablen ERR). Ist dies der Fall, wird eine Alertbox mit
einer Fehlermeldung ausgegeben. Ansonsten miifite noch eine
Fehlermeldung hinter ELSE folgen (es konnen ja noch andere
Fehlerquellen auftreten!). Der Befehl RESUME veranla8t den
Computer schlie8lich, mit der Programmabarbeitung fortzufah-
ren:

RESUME
Den Befehl RESUME gibt es in drei Variationen:

1. RESUME <Ziel> Verlafit die Fehlerbehandlungsroutine
und setzt die Programmausfithrung bei
<Ziel> fort.

2. RESUME NEXT Verlifit die Fehlerbehandlungsroutine
und setzt die Programmausfithrung hinter
der Zeile fort, in der der Fehler aufge-
treten ist.

—— Dateiverwaltung 207

3. RESUME Verliaf3t ebenfalls die Fehlerbehandlungs-
routine, versucht dann allerdings noch
einmal, den Befehl auszufithren, der den
Sprung in die Fehlerroutine verursacht
hat.

Mbochten Sie die Fehlerroutine testen, kann ein Fehler auch auf
Befehl ausgeldst werden:

ERROR <Fehlernummer>

erzeugt einen Fehler mit der angegebenen Fehlernummer. Dabei
ist zu beachten, daB ERROR innerhalb des Programms stehen
mufl, damit die Fehlerbehandlungsroutine angesprungen wird,
andernfalls (im Direktmodus) werden die erzeugten Fehler im-
mer auf dem Monitor ausgegeben. :

3.8 Backup-Dateien

Mit den bisher besprochenen Werkzeugen koénnen auf einfachste
Weise mehrere Dateien mit der Adref3verwaltung bearbeitet wer-
den. Man wihlt dazu einfach die gewiinschte Datei in der File-
Selector-Box aus, liest sie in den Speicher und indert sie bei Be-
darf ab. Vor dem Verlassen des Programms muB3 dann diese Da-
‘tei noch auf Diskette zuriickgeschrieben werden.

Dabei wird jedoch die alte Datei zerstort, da sie vom Programm
einfach mit dem neuen Inhalt iberschrieben wird. (Innerhalb ei-
nes Directories konnen keine zwei Dateien den gleichen Namen
tragen). Mo6chte man beide Dateien behalten, muB3 die alte
Adrefldatei umbenannt werden. Es hat sich eingebiirgert, vor
dem Uberschreiben der Datei erst eine sogenannte BACKUP-
Datei anzufertigen. Diese trigt zwar den gleichen Dateinamen,
ihr Extender wird jedoch in BAK (Abkiirzung fiir BACKUP)
umgetauft. Wird nun die AdreB3datei zuriickgeschrieben, wird die
alte Datei nicht zerstort, da sie einen anderen Namen besitzt (der
sich zwar nur in der Extension unterscheidet, aber das macht ja
nichts!).

208 Das groBe ST-BASIC-Buch ——

Da bereits eine BACKUP-Datei auf der Diskette vorhanden sein
kann (von einem fritheren Zuriickschreiben der Datei), muf
diese erst noch entfernt werden. Hier die bendtigten Befehle:

KILL <Name>

Loéscht die Datei <Name> von der Diskette. Gehen Sie deshalb
schon in Threm eigenen Interesse mit diesem Befehl sorgsam um,
denn eine einmal geléschte Datei ist in den meisten Fillen un-
wiederbringlich verloren. Befindet sich die zu léschende Datei in
einem Ordner, so muf3 der Pfad mit angegeben werden.

NAME AS

Dient zum Umbenennen einer Datei. Die Syntax lautet:

NAME <alter Name> AS <neuer Name>

NAME "OM_ BASIC.PRG" AS "ST_BASIC.PRG" tauft die Datei
OM_BASIC.PRG in ST_BASIC.PRG um. Auch hier muf} der
Pfad vor dem Dateinamen angegeben werden, wenn sich die
umzubenennende Datei in einem Ordner befindet.

CoPY

kopiert eine Datei, und war nach der Syntax:

COPY <Quelldatei> TO <Zieldatei>

COPY "A:\ST_BASIC.PRG" TO "D: \ST BASIC.PRG" kopiert
die Datei ST _BASIC von Laufwerk A in Laufwerk D (Ram-
disk). COPY akzeptiert auch Wildcards (*, ?) im Namen
<Quelldatei>, nicht jedoch in der <Zieldatei>!

BACKUP

Als letzer Vertreter der Kopierbefehle, hier der Befehl, der eine
Kopie von der angegebenen Datei anfertigt, die dann den Ex-
tender BAK triigt.

BACKUP “MINIADR.DAT"

—— Dateiverwaltung 209

Fertigt eine Kopie der Datei MINIADR.DAT mit dem Namen
MINIADR.BAK.

Ehe eine Backupdatei angefertigt wird, muf} erst gepriift wer-
den, ob sich eine Datei mit dem angegebenen Namen auf Dis-
kette befindet (andernfalls kann man sich die Arbeit sparen.
Wovon sollte man auch ein Backup erstellen?). Ist dies der Fall,
wird eine evtl. von dieser Datei schon bestehende Backupdatei
geléscht und anschlieBend die neue Backupdatei gezogen.

Die folgende Prozedur iibernimmt die Anferigung einer Backup-
datei. Sie benétigt jedoch eine Funktion, die feststellt, ob eine
bestimmte Datei auf Diskette vorhanden ist. Da ST-BASIC keine
derartige Funktion bereitstellt, habe ich selbst eine entwickelt:
FN EXIST(Filename$) liefert als Ergebnis den Wert -1 (wahr),
wenn die angegebene Datei auf der Diskette vorhanden ist, an-
dernfalls schreibt sie den Wert 0 (falsch) zuriick. Die genaue Er-
klarung dieser Funktion erfolgt zu einem spiteren Zeitpunkt, da
weitergehende Kenntnisse zu ihrem Verstindnis notig sind!

Zuerst die Prozedur "Rename", die bei Bedarf eine BACKUP-
Datei anfertigt:

0 1 9 v v e e 3 o e 3k ok e 3k I vk ok e v ke ke 3k o vk 3k e 2k Sk e ke 3k ke ke 3k ok ke 3k e ke 3k o ke ke ok e ke ok e ke ke 3k e ok ok e 3k ok o e v ok e e ok o
1 RENAME .BAS *
2 IR e mmcoccrccsmonanarenn e e eeeeesseenmeeeee == -oer e n-.-- *
3 '* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *
[Ein Programm aus dem 'GROSSEN ST-BASIC BUCH!' *
5 (C) 1988 by DATA BECKER GmbH Dusseldorf *
6 1 % 3 e e v e v e e 3k e e ke e e 3 ke ke ke ke e 3k ok ok Ik ok Ik ok ok e o ok o e ke e e e e e e ke e e e ke e e e ke e e e ke de e e ke ke e ke ke ok
7]

8 (]

9 ' Die hier aufgeflihrte Prozedur bendtigt die Funktion EXIST.BAS
10 ' Ist ein File mit dem angegebenen Namen auf der Diskette vor-
11 * handen, so wird eine BACKUP-Datei erstellt. Eine bereits

12 ' existierende BACKUP-Datei wird zuvor geldscht.

131

14 ' Aufruf der Prozedur: Rename(<Filename>)

15 ¢

16 !

17 DEF PROC Rename(Filename$)
18 IF FN Exist%L(Filename$) THEN
19 ! Datei existiert bereits => BACKUP auch schon vorhanden?

210 Das groBe ST-BASIC-Buch ——

20 IF FN Exist%L(LEFT$(Filename$, INSTR(Filename$,"."))+"BAK")
21 ' dann BACKUP einfach léschen ...

22 THEN KILL LEFT$(Filename$, INSTR(Filename$,™."))+"BAK"
23 ENDIF

24 ' jetzt BACKUP anfertigen

25 BACKUP (Filename$)

26 ENDIF

27 RETURN

Der Volistindigkeit halber hier auch gleich das Listing der
Funktion EXIST, ohne die obige Prozedur nicht arbeitet! (Er-
klarung folgt spiter!)

0 1 % 3 v e e e e e e e e e 9 e I e e e e e ke ke ke 3 3k Ak o o e A 3 ok o e ok ok ok ke ke ke e e e e e e ke v ke ok d ok ok ok ok ok ok ok ok ok ok ke ok
1 > EXIST.BAS *
2 IR ecccecccecrccrccrroeremcacnneerecerececcc e ar e ... *
3 '* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *
[Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *
5 *x (C) 1988 by DATA BECKER GmbH Disseldorf *
6 1% e e e e 3 3 e e 3 e e e % vk o e vk o e e o e v o e v o A e o ke ok e e o e v e e e 3k e v o e v de I e o v A e o % e o v de de o
7 (]

8]

9 ' Die folgende Funktion lberprift, ob ein File 'Name$' auf der
10 ' Diskette vorhanden ist

11 * File vorhanden => Returnwert ist '-1' ('wahr!')

12 ' File nicht vorhanden => Returnwert ist '0' ('falsch')

13 ¢

14 IF NOT FN EXist%L(“EXIST.BAS") THEN

15 FORM_ALERT (1,"[3] [Datei nicht vorhanden!] [Abbruch 1")
16 ELSE

17 FORM_ALERT (1,"[1]1[Alles in Ordnungl[OK 1")
18 ENDIF

19 END

20 ' v

21 DEF FN Exist%L(Name$)

22 LOCAL T%

23 '

24 OPEN "F",1,Name$,55

25 IF EOF(1) THEN

26 ' Keine Files auf der Diskette vorhanden
27 ' => Fehlermeldung (0) zurlickgeben

28 CLOSE 1

29 RETURN (0)

30 ELSE

31 ' DTA-Buffer bereitstellen

—— Dateiverwaltung 211

32 FIELD 1,30 AS Buffer$,14 AS File$

33 GET 1,0

34 ' Datei vorhanden => '-1' zurlckgeben

35 IF Name$= LEFT$(File$, INSTR(File$, CHR$(0))-1) THEN
36 CLOSE 1

37 RETURN (-1)

38 ENDIF

39 ENDIF

40 CLOSE 1

41 ' File war nicht auf der Diskette
42 RETURN (0)

3.9 Wir sorgen fiir Ordnung auf der Diskette

Bei der Verwaltung der File-Selector-Box war schon einmal die
Rede von ihnen, den Ordnern, die mithelfen, bei dem ganzen
Wust von Dateien auf einer Diskette nicht den Uberblick zu
verlieren. Doch einen Ordner vom Programm aus zu erzeugen,
war fiir uns bis jetzt nicht moglich. Dem soll in diesem Kapitel
abgeholfen werden!

Ordner erzeugen

Um einen Ordner zu erzeugen, wird in ST-BASIC der Befehl

MKDIR <Ordnername>

benutzt. Er erstellt einen Ordner mit der Bezeichnung
<Ordnername> auf dem aktuellen Laufwerk.

Ein Ordner stellt zunichst einmal einen Eintrag im Inhaltsver-
zeichnis der Diskette, dem Directory, dar. Wird der Ordner ge-
offnet bzw. der Pfad um einen Ordner erweitert, erscheint ein
Unterinhaltsverzeichnis (Subdirectory), in dem die in diesem
Ordner enthaltenen Dateien aufgefiithrt sind.

212 Das groBBe ST-BASIC-Buch ——

Ordner 16schen

Ein Ordner kann natiirlich auch wieder von der Diskette ge-
16scht werden! Dazu dient der Befehl

RMDIR <Ordnername>

Das Subdirectory (Unterinhaltsverzeichnis) wird aus dem
(Haupt-)Directory entfernt.

Immer auf dem richtigen Pfade

Existieren auf einer Diskette mehrere Ordner und somit logi-
scherweise auch mehrere Unterinhaltsverzeichnisse (Subdirecto-
ries), mufl mit Hilfe eines entsprechenden Pfades jedes Unter-
verzeichnis angesprochen werden kénnen, um die gewiinschte
Datei aus einem Ordner einzulesen.

Enthilt der Ordner DOKUMENT.SDO die Datei BRIEF.SDO, so
schldgt jeder Versuch fehl, die Datei mit

OPEN "I",1,"BRIEF.SDO"

einzulesen, solange Sie sich noch im Hauptinhaltsverzeichnis be-
finden. Wird dagegen der Pfadname mit angegeben, wird der In-
halt des Subdirectories erreicht und kann eingelesen werden:

OPEN “I",1,"A:\DOKUMENT.SDO\BRIEF.SDO"

Um diese doch recht umstindliche Prozedur abzukiirzen (stellen
Sie sich einmal vor, Sie mochten im Ordner DOKUMENT.SDO,
den Ordner BRIEFE.SDO, der sich wiederum im Ordner GE-
SCHAEFT.SDO befindet, ansprechen, um daraus verschiedene
Dateien zu lesen, und Sie miilten jedesmal den vollen Datein-
amen als Pfad angeben!) kann ein Unterinhaltsverzeichnis zum
aktuellen Verzeichnis ernannt werden. Alle Operationen beziehen
sich dann ab sofort auf dieses Verzeichnis, obgleich kein Pfad
angegeben wird.

— Dateiverwaltung 213

Zum Umstellen auf ein Subdirectory dient der Befehl

CHDIR <Ordnername>

CHDIR "DOKUMENT.SDQO" erkliart den Inhalt des Subdirecto-
ries DOKUMENT.SDO zum aktuellen Verzeichnis, auf das sich
dann ab sofort alle Diskettenbefehle beziehen. Ein SAVE spei-
chert die ihm anvertraute Programmdatei in diesen Ordner, der
Befehl FILES (Inhalsverzeichnis ausgeben) gibt nur noch den In-
halt dieses Ordners aus. Mochten Sie wieder in das Hauptdirec-
tory zuriickkehren, so geniigt als <Ordnername> die Angage
zweier Punkte gefolgt von einem Backslash:

CHDIR M™..\M

und schon befinden Sie sich wieder im Hauptdirectory. Gleich-
zeitig kann das aktuelle Laufwerk mit CHDIR umgestellt wer-
den, indem der Pfad um die Laufwerkskennung

CHDIR "A:\DOKUMENT:SDO"

erweitert oder nur die Laufwerkskennung alleine angegeben
wird:

CHDIR "D:®

setzt das Defaultlaufwerk (aktuelles Laufwerk). Ab sofort wird
bei einem Diskettenzugriff das Laufwerk (Ramdisk) D ange-
sprochen.

3.10 Relative Dateien

Eine relative oder Random-access-Datei besteht, wie Sie bereits
wissen, aus einzelnen Datensitzen. Ahnlich wie sich eine Kartei
aus mehreren Karteikarten, die wiederum verschiedene Daten
tragen, zusammensetzt, enthiilt auch ein Datensatz verschiedene
Angaben:

Name + Vorname + StraBe + Plz + Ort + Telefon

214 Das groBe ST-BASIC-Buch ——

ergibt z.B. einen Datensatz fiir eine AdreBdatei. Damit einzelne
Datensiitze (Records) anschlieBend eingelesen werden kénnen,
miissen alle Records einer Datei die gleiche L#nge besitzen.
Diese Datensatzlinge wird als vierter Parameter beim Befehl
OPEN angegeben. Der Dateimodus ist jetzt nicht mehr "I" oder
"Q", sondern "R". Dies gilt sowohl fiir das Lesen als auch fur das
Schreiben der Datei:

OPEN “R",1,"MINIDDR.REL",<Datensatzldnge>

Datensatz einrichten

Zum Einrichten eines Datensatzes existiert der Befehl

FIELD <Dateinummer>,<L&nge> AS <Buffervariable>,...

Der erste Parameter hinter FIELD ist die Dateinummer, die auch
beim Befehl OPEN angegeben wurde. AnschlieBend werden die
einzelnen Puffervariablen (Zwischenspeicher), aus denen sich
wiederum der gesamte Record zusammensetzt, sowie die Anzahl
der Zeichen, die jede einzelne Puffervariable enthalten soll, an-
gegeben. Die Gesamtlinge der Puffervariablen darf die beim
OPEN angegebene Datensatzlinge nicht iiberschreiten. Ein Bei-
spiel verdeutlicht das soeben Gesagte wohl am besten.

Ein Datensatz soll aus folgenden Daten bestehen:

Daten Linge
Name 15
Vorname 15
Strasse 20
Ort 20

Die Datensatzlinge betrigt 70, folglich muB der Befehl zum
Offnen der Datei lauten:

OPEN “R",1,"MINIADR.REL",70

—— Dateiverwaltung 215

AnschlieBend wird der Record mit FIELD eingerichtet:

FIELD 1,15 AS Na$, 15 AS Vorna$, 20 AS Stra$, 20 AS Ort$

Die einzelnen Puffervariablen koénnen (nach dem Einlesen eines
Datensatzes, ansonsten ergibt es natiirlich keinen Sinn!) wie
normale Variablen auch abgefragt werden (in IF, Schleifen,
usw.), oder mit PRINT ausgegeben werden:

IF Na$ = "Arthur" THEN
WHILE Na$ <> "o

WEND

PRINT Na$,Vorna$,Stra$,ort$

Die Zuweisung eines Wertes an eine Puffervariable darf nur mit
MID$()=, LSET oder RSET erfolgen. Zumindest die Zuweisung
mit MID$()= miiBte Thnen mittlerweile geliufig sein. Die zwei
anderen Zuweisungsformen werden wir jetzt besprechen:

LSET und RSET

Die Syntax entspricht der von LET , im Gegensatz zu LET ist
ein LSET bzw. RSET aber unbedingt notig, wenn eine Puffer-
variable mit einem Wert versorgt werden soll:

LSET Na$ = "MAIER"

weist der Variablen Na$ den Inhalt MAIER zu. Das Besondere
dabei ist, daB der Stringausdruck in die Variable linksbiindig
eingesetzt wird. Nicht benutzte Zeichen (Differenz zwischen der
Linge der Puffervariable und der zugewiesenen Zeichenkette)
werden mit Leerzeichen aufgefiillt (Na$ = "MAIER" + CHRS$
(32)*(15-LEN("MAIER"))). Enthidlt die Zeichenkette mehr
Buchstaben, als die Puffervariable aufnehmen kann, so werden
die iiberhdngenden Buchstaben einfach abgeschnitten.

Im Gegensatz zu LEST setzt RSET den Stringausdruck nicht
links-, sondern rechtsbiindig in die Puffervariable ein. Auch
hier werden iiberfliissige (nicht benétigte) Zeichen der Puffer-

216 Das groBe ST-BASIC-Buch ——

variable mit Leerzeichen aufgefiillt. Ein zu langer Stringaus-
druck wird ebenfalls abgeschnitten. Sobald der Record mit den
notigen Daten versorgt ist, kann er auf Diskette geschrieben
werden. Zum Lesen und Schreiben des Puffers gibt es zwei ei-
gene Befehle. '

Puffer auf Diskette schreiben und wieder lesen

PUT <Dateinummer>, <Datensatznummer>

schreibt die sich im Puffer befindenden Daten in die gedéffnete
Datei, und zwar an die Position <Datensatznummer>.

GET <Dateinummer>, <Datensatznummer>

Liest die an der Position <Datensatznummer> stehenden Daten
aus der Datei mit der Kanalnummer <Dateinummer> in den
Puffer. Dort kénnen sie dann aus den einzelnen Puffervariablen
abgeholt werden.

Ehe die graue Theorie an einem Beispiel anschaulich dargestellt
werden soll, mufl noch ein Problem abgeklirt werden. Sollen
nimlich neben Zeichen auch noch Zahlen in einer relativen Da-
tei abgespeichert werden, miissen diese erst auf eine genau vor-
gegebene Linge gebracht werden (fir die Puffervariable). Zu-
dem handelt es sich bei dem Puffer um Stringvariablen, denen
keine Zahlen zugewiesen werden kénnen. Deshalb gibt es in ST-
BASIC Funktionen, die Zahlen in einen String mit 2, 4, 6, oder
10 Bytes umwandeln. Die so umgewandelten Zahlen koénnen
dann einer Puffervariablen mit LSET bzw. RSET zugewiesen
werden.

Funktion konvertiert in eine in einen
MKI$(Zahl) 16 Bit Integerzahl 2 Byte String
MKIL$(Zahl) 32 Bit Integerzahl 4 Byte String
MKS$(Zahl) Single-Float 6 Byte String
MKD$(Zahl) Double-Float 10 Byte String

und andersherum geht’s mit CVx:

—— Dateiverwaltung 217

Funktion konvertiert einen in eine
CVI(String) 2 Byte String 16 Bit Integer
CVIL(String) 4 Byte String 32 Bit Integer
CVS(String) 6 Byte String Single-Float
CVD(String) 10 Byte String Double-Float

Die beiden Funktionen X$ = MKI$(Zahl) und Zahl = CVI(X$)
heben sich also wieder auf.

3.11 Minidatei - diesmal relativ

Ich habe die Thnen bereits aus dem zweiten Teil dieses Buches
bestens bekannte MiniadreBverwaltung noch ein weiteres Mal

umgearbeitet, diesmal jedoch fiir relative Datenspeicherung!

Ein Record setzt sich aus den Komponenten

Daten Linge
Name 15
Vorname 15
Strasse 32
Plz 4
Ort 30
Tel 11
Geb 10

zusammen und erhilt folglich die Datensatzlinge 117. Ehe
AdreBen erfasst werden konnen, mufl eine (leere) AdreBldatei
eingerichtet werden. Diese Aufgabe iibernimmt Meniipunkt 4.
Die Auswahl, bzw. Neueingabe eines Dateinamens erfolgt iiber
die File-Selector-Box, die in der Do_ File-Routine verwaltet
wird. Befindet sich bereits eine Datei mit dem angegebenen Na-
men auf der Diskette, sorgt die Prozedur Rename dafiir, daf3 vor
dem Einrichten der neuen Datei erst einmal ein Backup ange-
fertigt wird. Sicher ist sicher!

AnschlieBend wird der Pfad gesetzt (falls die Datei in einem
Ordner angelegt werden soll) und der von der Prozedur Do_ File
zuriickgegebene Dateiname (Name$) als Filename verwendet. Die

218 Das groBe ST-BASIC-Buch ——

Datei enthiilt so viele Datensiitze, wie in der Variablen "Gro",
mit der auch die einzelnen Felder dimensioniert wurden, ange-
geben ist.

Neu ist auch die Prozedur Speichern(Nummer%), die den Vari-
ableninhalt des Index Nummer% auf Diskette schreibt. Nach
dem Offnen der Datei Name$ wird erst einmal der Datensatz mit
FIELD eingerichtet. Da simtliche Variablen, aus denen sich der
Puffer zusammensetzt, in einer Anweisung untergebracht werden
miissen, aus drucktechnischen Griinden jedoch maximal 72
Zeichen in einer Zeile stehen diirfen, miissen die letzten beiden
Puffervariablen zwei verschiedene Datensatzkomponenten auf-
nehmen. Doch das macht gar nichts! Auf diese Weise kann ich
Ihnen wenigstens demonstrieren, mit welchen Befehlen eine
Puffervariable gefiillt werden darf.

So, der Puffer wire definiert, jetzt muf3 er noch mit den Daten
versorgt werden, die auf Diskette geschrieben werden sollen.
LSET und MIDS$()= erledigen diese Aufgabe. AnschlieBend wird
der komplette Record auf der Diskette abgespeichert und der
Kanal geschlosssen, damit es keine Konflikte mit anderen gedff-
neten Kanidlen gibt. Da in relativen Dateien einzelne Records
abgespeichert werden koénnen, wird dies gleich beim Erfassen
bzw. Korrigieren von Adreflen erledigt.

Und weil wir gerade von der AdreBerfassung sprechen: Damit
ein Aufruf der Prozedur Speichern(Nummer%) erfolgen kann,
wird ein Dateiname benoétigt. Deshalb wird zuerst einmal eine
Unterroutine "Taufe" aufgerufen, die abkliart, ob in Name$ be-
reits ein Dateiname gespeichert ist (vom Anlegen oder Einlesen
einer Datei). Ansonsten erscheint die File-Selectorbox, und ein
Dateiname kann angegeben werden. Auch die Routine zum Ein-
lesen einer Datei muBte geindert werden. Zuerst werden simt-
liche Variableninhalte geloscht, damit nicht zwei Dateien mit-
einander vermischt werden. Dies koénnte man durchaus einer
FOR..NEXT-Schleife

FOR T%=1 TO Gro ' Dimensionierung
Loesche(T%)
NEXT T%

—— Dateiverwaltung 219

iiberlassen, die dann allerdings mit Sicherheit unnotige Arbeit
verrichten wiirde. Enthilt eine Variable nimlich keine Daten
mehr, so ist das Datei-Ende bereits erreicht, und die Schleife
kann verlassen werden. Deshalb wurde hier einer (abweisende)
WHILE...WEND-Schleife der Vorzug gegeben. In einer RE-
PEAT...UNTIL-Schleife werden dann - beginnend vom ersten
Record - alle Datensitze eingelesen, bis ein nicht belegter Da-
tensatz im Puffer steht. Dies ist das Zeichen dafiir, da die Da-
tei schon komplett eingelesen ist. Die Schleife kann abgebrochen
und der letzte (leere) Datensatz geldscht werden. Das Einlesen
der gesamten Datei erfolgt deshalb, da in einer relativen Datei,
die sich auf Diskette befindet, die Suche eines Namens relativ
lange dauert.

Ist eine Datei eingelesen, besitzen alle Variablen ihre maximal
erlaubten Lingen, da die nicht benétigten Stellen im Puffer mit
Leerzeichen aufgefiillt wurden. Um bei der Suche nach einem
bestimmten Namen nicht in Teufels Kiiche zu geraten (MUL-
LER <> MULLER), wird die Suchvorgabe ebenfalls bis zur ma-
ximal erlaubten Linge (15 Zeichen) mit Leerzeichen aufgefiillt.
Eine 4uBerst noble Geste wire es natiirlich, wenn die Leerzei-
chen am Ende einer Variablen gleich nach dem Einlesen abge-
schnitten wiirden. Mochten Sie das Programm in dieser Richtung
erginzen, sollten Sie folgendes beachten:

- Im Prinzip kann mit INSTR() die Position des ersten Leer-
zeichens ermittelt und mit LEFT$ die Zeichenkette zurecht-
gestutzt werden. Dieses Verfahren funktioniert aber nur
dann, wenn der Datensatz auch wirklich belegt war. Ein
Eintrag, der nur Leerzeichen enthilt, fithrt zu einem Riick-
gabewert der Funktion INSTR() von 1. Das Leerzeichen muf3
aber abgeschnitten werden, also LEFT$(...,INSTR()-1), und
daraus resultiert dann ein Wert 0, der auch prompt zu einer
Fehlermeldung fiihrt.

- Enthalt andererseits der Datensatz kein einziges Leerzeichen,
weil sein Inhalt alle Stellen in Beschlag nimmt, sieht es {ibel
aus! INSTR() liefert den Wert 0 und siehe da, eine Fehler-
meldung auf dem Monitor!

220 Das groBe ST-BASIC-Buch ——

Ferner konnen einzelne Datensiitze durchaus rechtmiBiger-
weise Leerzeichen enthalten, die nur als Trennzeichen die-
nen, z.B. ein Strafenname: "Am Sonnenhang 99" enthilt
gleich zwei Leerzeichen, hinter denen dann allerdings noch
wichtige Daten folgen. Die Anweisung

Strasse$ = LEFT$(Strasse$, INSTR(Strasse$,CHR$(32))-1)

wiirde den StraBennamen verstimmeln. Ubrig bliebe ledig-
lich das Wortchen "Am", mit dem ein Postbote herzlich wenig
anfang kann, muf} er einen Brief mit dieser Adrefe zustellen.
Abhilfe kann hier wieder - wenn es schon unbedingt die
Funktion INSTR() sein muBl - ein Umdrehen der Zeichen-
kette mit MIRRORS schaffen. Dann miissen Sie allerdings
noch die von INSTR() ermittelte Position von der maximalen
Variablenlinge subtrahieren, um sie in LEFT$() als Parame-
ter benutzen zu kénnen.

Sie sehen schon, es ist gar nicht so einfach, die Leerzeichen
wieder aus dem Variableninhalt zu entfernen, da geht es schon
wesentlich schneller, bei einem Vergleich die nicht mit Leer-
zeichen aufgefiillte Variable mit Spaces aufzublasen. Und wenn
die Leerzeichen nicht anderweitig stéren oder gar Fehler verur-
sachen, warum sollte man sie dann entfernen? Aber versuchen
Sie es ruhig! Ubung macht bekanntlich den Meister!

Und hier nun das Listing der relativen AdreBverwaltung, die
ibrigens nicht hundertprozentig gegen mogliche Fehlbedienung
geschiitzt ist; schlieBlich soll sie nur als Beispiel dienen, und
keiner Datenbank Konkurrenz machen:

0
1
2
3
4
5
6
7
8
9
1

1 9% 2 3 3k 3k o e ke e e e ke e vk e e e ke ok ke de ol ke o e ke 3k o ok ok e dke ok ok ke ok ok ok ok o ke ok ok ke ke o e ke o e ke ok ok e ke ok e ke ke e e e ok

* MINIDATR.BAS *
LR *
1* Autor: Michael Maier Version: 1.00 Datum: 15.08.1988 *
e Ein Programm aus dem 'GROSSEN ST-BASIC BUCH!® *
L (C) 1988 by DATA BECKER GmbH Dusseldorf *
1deddde ke ke ke d ek dod sk deok AR Rk ko dkd ke ke ek ke kA Ak kkkkkkkdkkk ke khkkhkkhhhkkhkhkh
(]

1

MODE "D

0 DEF FN Screen$(X$)= CHR$(27)+X$

— Dateiverwaltung 221

1

12 Gro%L=100* falls notig einfach andern

13 DIM Name$(Gro%L),Vorname$(Gro%L),Strasse$(Gro%L)

14 DIM PLz$(Gro%L),0rt$(Gro%L), Tel$(Gro%L),Geb$(Gro%L)

15 ¢
16 Fehler$="[3][Diese Funktion ist leider{ nicht méglich!!!] [Sorryl"
17 Mel$="[11[Diese Datei enthdlt"+ STR$(Gro%L)+"| Datensédtze!] [OK]"

18 Fehler_2$="[31[Ich kann die Datei] nicht finden!][Sorryl"
19

20 REPEAT

21 CLS

22 PRINT @(0,1);n*u*78

23 FOR Y%=1 TO 5: PRINT Q(Y%,1);"*",;a(Y%,78);"*": NEXT Y%
26 PRINT @(6,1);"*u*78

25 PRINT @(2,28);"MINIDATEI - Hauptmenu"

26 PRINT @(3,28);M----==m=-mmmmcmcaacnnn "

27 PRINT 8(4,16);"Ein Demoprogramm aus dem grossen ST-BASIC Buch"
28 PRINT @(9,28);"1. Name erfassen"

29 PRINT @(11,28);"2. Name korrigieren"

30 PRINT @(13,28);"3. Name suchen"

31 PRINT @(15,28);"4. Datei anlegen"

32 PRINT @(17,28);"5. Datei laden"

33 PRINT @(19,28);"6. Programm verlassen"

34 PRINT @(22,29);FN Screen$("p");" Bitte waehlen Sie! ";FN
Screen$("q")

35 PRINT FN Screen$("f")' Cursor ausschalten

36 '

37 A%L=0

38 REPEAT

39 A$= INKEY$

40 IF A$<>"" THEN

41 A%L= ASC(RIGHT$(A$,1))-48
42 ENDIF

43 -UNTIL A%L>0 AND A%L<7

44 PRINT FN Screen$("e")' Cursor wieder einschalten

45 ON A%L GOSUB Erfassen,Korrigieren,Suchen,Anlegen,Laden
46 UNTIL A%L=6' Schleife wiederholen, bis '6' gedriickt

47 CLS

48 END

49 ¢

50-Erfassen

51 CLS

52 ' einen Namen braucht die Datei auch noch

53 Taufe(Button%)

54 ' bei 'Abbruch' oder fehlendem Namen zurlick zum Hauptmeni
55 IF Button%=0 OR Name$="" THEN

222 Das groBe ST-BASIC-Buch —

56 RETURN

57 ENDIF

58 Header$gn*************** Name erfassen P Je de de de de de e de ke dede e ke de 1
59 ' zuerst einmal den ersten freien Eintrag suchen!

60 T%=1

61 WHILE Name$(T%)<>"" AND T%<Gro%L

62 T%=T%+1

63 WEND

64 Formular(Header$)

65 REPEAT

66 Eingabe(T%)

67 PRINT FN Screen$("f")' Cursor stort hier bloB!

68 PRINT @(19,15);FN Screen$("p");"N";FN Screen$("q");

69 PRINT "“&chster Name “.FN Screen$("p");"K";FN Screen$("q");
70 PRINT “orrektur “;FN Screen$("p");"Z";FN Screen$("q");
7 PRINT *urlick ins Hauptmeni"

72 A$="": INPUT " ¥:;A$ USING "+n+z+ku>" Reti%L,1,32

73 PRINT FN Screen$("e")!Cursor wieder einschalten

74 IF A$="K" THEN

75 Formular(Header$)

76 Anzeige(T%)

77 ELSE

78 IF A$="N" AND T%<Gro%L THEN

79 Speichern(T%)

80 T%=T%+1

81 Formular(Header$)

82 Anzeige(T%)

83 ENDIF

84 ENDIF

85 UNTIL A$=mz"

86 Speichern(T%)' damit auch keine Daten verloren gehen

87 RETURN

88 !

89-Korrigieren

90 Header$=u*************** Name korrigieren Jedede dede e de dede dededededede ke 1L

91 PRINT FN Screen$("f")

92 T%=1

93 Formular(Header$)

94 REPEAT

95 Anzeige(T%)

96 PRINT @(19,4);FN Screen$("p");"N";FN Screen$("q");"achster Name “;
97 PRINT FN Screen$("p");"L";FN Screen$("q");"etzter Name ";

98 PRINT FN Screen$("p");"K";FN Screen$("q");"orrektur ";

99 PRINT FN Screen$("p");"E";FN Screen$("g");"ntfernen ";

100. PRINT FN Screen$("p");"2Z";FN Screen$("q");"urlick ins Hauptmen("
101 ¢!

—— Dateiverwaltung 223

102 A$=mw

103 REPEAT

104 A$= INKEY$

105 IF A$<>"" THEN

106 A$= UPPER$(RIGHT$(A$,1))
107 ENDIF

108 UNTIL A$="N" OR A$="L" OR A$="K" OR A$="E" OR A$="Z"
109 !

110 IF (A3="N") AND (T%<Gro%L) AND (Name$(T%+1)<>"") THEN
"1 T%=T%+1

112 ELSE

113 IF A$="N" THEN

14 FORM_ALERT (1,Fehler$)
115 ENDIF

116 ENDIF

117 IF A$="L" AND T%>1 THEN

118 T%=T%-1

119 ELSE

120 IF A$="L" THEN

121 FORM_ALERT (1,Fehler$)
122 ENDIF

123 ENDIF

1246 IF A$="K" THEN

125 PRINT FN Screen$("e")

126 PRINT @(19,1);% w*78

127 Eingabe(T%)

128 Speichern(T%)

129 PRINT FN Screen$("f")

130 ENDIF

131 IF A$="E" THEN

132 MOUSEON

133 FORM_ALERT (2,"[2] [Datensatz wirklich léschen?] [Ja}Nein]",But%)
134 MOUSEOFF

135 1F But%=1 THEN

136 Delete(T%)

137 ENDIF

138 ENDIF

139 UNTIL A$=uzn

140 RETURN

141 !

142-Suchen

143 Header$=||*************** Name SUChen e e e Je e de e e de e de e de e e K 01

144 Name$(0)="":Vorname$(0)="":Strasse$(0)="":Plz$(0)=""
145 Ort$(0)="1:Tel$(0)="":Geb$(0)=1"

146 T%=0

147 Formular(Header$)

224 Das groBe ST-BASIC-Buch ——

148 PRINT FN Screen$("e")

149 INPUT a(7,21);Name$(0) USING "a+ +-u", RetZL,15

150 PRINT FN Screen$("f")

151 T%=1

152 REPEAT

153 WHILE Name$(T%)<>(Name$(0)+ SPACE$(15- LEN(Name$(0)))) AND
T#<GroZ%L

154 T%=T%+1

155 WEND

156 IF Name$(T%)=Name$(0)+ SPACE$(15- LEN(Name$(0))) THEN

157 Anzeige(T%)

158 ELSE

159 FORM_ALERT (1,"[1] [Name nicht vorhanden!][Was soll's 1")
160 ENDIF

161 PRINT @(19,15);FN Screen$("p");"W";FN Screen$("q");

162 PRINT “eitersuchen “.FN Screen$("p");"N";FN Screen$("q");

163 PRINT "eueingabe “-FN Screen$("p");"Z";FN Screen$("q");
164 PRINT “urlick ins Hauptmeni®"

165 A$="n

166 REPEAT

167 A$= INKEY$

168 IF A$<>"" THEN

169 A$= UPPER$(RIGHT$(A$,1))

170 ENDIF

171 UNTIL A$="W" OR A$="N" OR A$="zZ"

172 IF A$="W" AND T%<Gro%L THEN

173 T%=T%+1

174 ENDIF

175 IF A$="N" THEN

176 EXIT TO Suchen

177 ENDIF

178 UNTIL A$=1z®

179 RETURN

180 ¢

181-Anlegen

182 CLS

183 Pfad$="A:\":Name$="MINIDAT.REL":Ext$="* REL"
184 Do_File(Name$,Pfad$,Ext$, Name$,Pfad$,Ext$, Tastek)
185 IF Taste% AND Name$<>"" THEN

186 CLS :

187 ' aktuellen Pfad zum Directory machen

188 CHDIR (Pfad$)

189 ' und Uberprifen, ob schon eine solche Datei vorhanden
190 Rename(Name$)

191 ' dann Datei mit dem angegeben Namen anlegen

192 OPEN “R",1,Name$,117

—— Dateiverwaltung : 225

193 FIELD 1,117 AS Buffer$
194 LSET Buffer$= SPACE$(117)
195 FOR T%=1 TO Gro%L

196 PUT 1,T%

197 NEXT T%

198 . CLOSE 1

199 FORM_ALERT (1,Mel$)

200 ENDIF

201 RETURN

202 !

203-Laden

204 CLS

205 IF Pfad$="" THEN

206 ' noch kein Pfad verhanden => Pfad zuweisen
207 Pfad$="A:\":Name$="MINIDAT.REL":Ext$=""* REL"
208 ENDIF

209 Do_File(Name$,Pfad$,Ext$, Name$,Pfad$,Ext$, Taste’)
210 IF Taste% AND Name$<>"* THEN

21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

CLS
CHDIR (Pfad$)' neues Hauptdirectory
IF NOT FN Exist%L(Name$) THEN
FORM_ALERT (1,Fehler_2$)
ELSE
Reset_All' vorhandene Daten ldschen
OPEN "r",1,Name$, 117
FIELD 1,15 AS Na$,15 AS Vo$,32 AS St$,34 AS Ort$,21 AS Rest$
' aus drucktechnischen Grinden muBten die letzten Daten
' leider in je einer Buffervariable zusammengefasst werden
'ort$ => PL2$ (4 Stellen) und Ort$(30 Stellen)
'Rest$ => 11 Stellen Telefon$, 10 Stellen Geb$
T%=0
REPEAT
T%=T%+1
GET 1,T%
Name$(T%)=Na$
Vorname$(T%)=Vo$
Strasse$(T%)=St$
Plz$(T%)= LEFT$(Orts$,4)
ort$(T1%)= MID$(Ort$,5)
Tel$(T%)= LEFT$(Rest$,11)
Geb$(T%)= MID$(Rest$,12)
UNTIL Name$(T%)= SPACE$(15) OR T%=GroiL
Loesche(T%)
CLOSE 1
ENDIF

238 ENDIF

226 Das groBe ST-BASIC-Buch ——

239 RETURN

240 !

241 DEF PROC Formular(Text$)

242 LOCAL T%

243 CLS

244 PRINT @(2,(78- LEN(Text$))/2);Text$

245 PRINT a@(5,10);"*n*60

246 FOR T%=1 TO 9: PRINT (5+T%,10) ;" ":2(5+T%,69);"*": NEXT T%
247 PRINT @(15,10);n*n*60

248 PRINT a(7,15);"Name: Vorname: "
249 PRINT @(9,15);"Strasse: "
250 PRINT @(11,15);"PLZ: ____ Ort: "
251 PRINT @(13,15);"Telefon: Geb.: "
252 RETURN

253 !

254 DEF PROC Anzeige(Nummer?)

255 PRINT a(7,21);Name$(Nummer%);

256 PRINT STRING$(15- LEN(Name$(Nummer%)),"_")

257 PRINT @(7,50);Vorname$(Nummeri);

258 PRINT STRING$(15- LEN(Vorname$(Nummer%)),"_")

259 PRINT @(9,24);Strasse$(Nummer%);

260 PRINT STRING$(32- LEN(Strasse$(Nummer%)),"_")

261 PRINT a@¢11,20);Plz$(Nummer%);

262 PRINT STRING$(4- LEN(Plz$(Nummer%))," ")

263 PRINT @(11,32);0rt$(Nummer?%);

264 PRINT STRING$(30- LEN(Ort$(Nummer%)),"_")

265 PRINT @(13,24); Tel$(Nummer%);

266 PRINT STRING$(11- LEN(Tel$(Nummer%))," ")

267 PRINT @(13,44);GebS(Nummer%);

268 PRINT STRING$(10- LEN(Geb$(Nummer%))," ")

269 RETURN

270 !

271 DEF PROC Eingabe(Nummer%)

272 LOCAL Back$="s"+ CHR$(72)+"s"+ CHR$(80)

273 -Nam

274 INPUT @(7,21);Name$(Nummer%) USING "a+ +-u"+Back$,Ret%L,15
275 IF (Ret%L AND $FF0000)=$480000 THEN

276 GOTO Geb

277 ENDIF

278 -Vorname

279 INPUT @(7,50);Vorname$(Nummer%) USING “a+ +-"+Back$,Ret%L,15
280 IF (Ret%L AND $FF0000)=$480000 THEN

281 GOTO Nam

282 ENDIF

283 -Street

284 INPUT a(9,24);Strasse$(Nummer%) USING "Oa+ +-+."+Back$, Ret%L,32

—— Dateiverwaltung

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

IF (Ret%L AND $FF0000)=$480000 THEN
GOTO Vorname
ENDIF
-Plz
INPUT @(11,20);Plz$(Nummer%) USING "O>"+Back$,Ret%L,4
IF (Ret%L AND $FF0000)=$480000 THEN
GOTO Street
ENDIF
-Ort
INPUT @(11,32);0rt$(Nummer?%) USING "aO+/+-"+Back$,Ret%L,30
IF (Ret%L AND $FF0000)=$480000 THEN
GOTO Plz
ENDIF
-Telefon
INPUT @(13,24);Tel$(Nummer%) USING "0+-+/c-/"+Back$, Ret%L,11
IF (Ret%L AND $FF0000)=$480000 THEN
GOTO Ort
ENDIF
-Geb
INPUT @(13,44);Geb$(Nummers’) USING "O+."+Back$,Ret%L,10
IF (Ret%L AND $FF0000)=$480000 THEN
GOTO Telefon
ELSE
IF (Ret%L AND $FF0000)=$500000 THEN
GOTO Nam
ELSE
ENDIF
ENDIF
RETURN

DEF PROC Delete(Nummer%)

LOCAL Anzahl%=1,T%,Dummy%=Nummer%' zu loschenden Record merken

' Anzahl der vorhandenen Datensédtze ermitteln
WHILE (Name$(Anzahl%+1))<>"" AND Anzahl%<Gro%L
Anzahl%=Anzah%+1
WEND
IF Nummer%=Anzahl% THEN
Loesche(Nummer%)
Speichern(Nummer?%)
ELSE
WHILE (Nummer%<>Anzahl%)
Name$ (Nummer%)=Name$(Nummer%+1)
Vorname$ (Nummer%)=Vorname$(Nummer%+1)
Strasse$(Nummer%)=Strasse$(Nummer%+1)
Ort$(Nummer?%)=0rt$(Nummer%+1)
Plz$(Nummer%)=Plz$(Nummer%+1)

227

228 — Das groBe ST-BASIC-Buch ——

331 Tel$(Nummer%)=Tel$(Nummer%+1)

332 Geb$ (Nummer%)=Geb$ (Nummer%+1)

333 NummerZ%=Nummer%%+1

334 WEND

335 Loesche(Nummeri)

336 FOR T%=Dummy% TO Nummer?

337 Speichern(T%)

338 NEXT T%

339 ENDIF

340 RETURN

341 ¢

342 DEF PROC Loesche(Nummer%)

343 Name$(Nummer?)="":Vorname$(Nummers)="":Strasse$(Nummer)=""
344 PLz$(Nummer%)="":0rt$(Nummer%)="":Tel$(Nummer%)=""
345 Geb$(Nummeri)=nu

346 RETURN

347

348 DEF PROC Reset_All' ldscht sd@mtliche Datensdtze im RAM
349 LOCAL T%=1

350 WHILE Name$(T%)<>"" AND T%<Gro%L

351 Loesche(T%)

352 T%=T%+1

353 MWEND

354 RETURN

355

356 DEF PROC Do_File(Name$,Path$,Post$,R Name$,R Path$,R Post$,R Tas%)
357 ' Lokale Variablen verwenden, damit die Prozedur auch

358 ' in anderen Programmen einsetzbar ist.

359 LOCAL R_Path$=Path$,R_Name$=Name$,T%,Drive%,PointeriL,Ret%L
360 IF Path$="" THEN ' kein Pfad angegeben, dann einen basteln

361 Path$=" "*64' GEMDOS Konvention Folge leisten

362 Pointer%L= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)
363 ' anschlieBend aktuellen Pfadnamen holen

364 GEMDOS (,71, HIGH(Pointer%L), LOW(Pointer#%L),0)

365 ' und zurechtstutzen

366 Path$= LEFT$(Path$, INSTR(Path$+ CHR$(0), CHR$(0))-1)
367 GEMDOS (Drive%,25)' aktuelles Laufwerk ermitteln

368 Path$= CHRS(65+Drive%)+":"+Paths+"\"

369 ENDIF

370 IF Post$="" THEN ' ohne Extension kann man schlecht arbeiten
371 Path$=Path$+"* *11 pauschalextension anhidngen

372 ELSE

373 Path$=Path$+Post$

374 ENDIF

375 PRINT CHR$(27);"f"' Cursor aus- und Maus einschalten
376 MOUSEON

—— Dateiverwaltung 229

377 FILESELECT (Path$,Name$,Ret%L)
378 MOUSEOFF
379 PRINT CHR$(27);%e"' Cursor wieder einschalten

380 IF Ret%L=0 THEN * Abbruch angeklickt
381 Path$=R_Path$* alte Vorgaben zuriickkopieren
382 Name$=R_Name$

383 Tas%=0

384 ELSE

385 ' ersten Backslash '\!' suchen

386 T%= LEN(Path$)

387 WHILE T%>0 AND MID$(Path$,T%,1)<>"\"
388 T%=T%-1

389 WEND

390 Path$= LEFT$(Path$,T%)

391 Tas%=1

392 ENDIF

393 RETURN

394 ¢

395 DEF PROC Speichern(Nummer)

396 ' schreibt Datensatz 'Nummer’%' auf Diskette

397 OPEN “R",1,Name$,117
398 FIELD 1,15 AS Na$,15 AS Vo$,32 AS St$,34 AS Pl$,21 AS Rest$

399 ' auch hier wieder aus drucktechnischen Griinden die
400 v Zusammenfassung mehrerer Daten in eine Buffervariable
401 LSET Na$=Name$(Nummer%)

402 LSET Vo$=Vorname$(Nummer%)

403 LSET St$=Strasse$(Nummer%)

404 LSET PLl$=Plz$(Nummer%)

405 ' leider nicht anders zu machen ...
406 MID$ (PL$,5)=0rt$(Nummer%)

407 LSET Rest$=Tel$(Nummer%)

408 MID$ (Rest$, 12)=Geb$(Nummeri)

409 ' und auf Diskette schreiben
410 PUT 1,Nummer

411 CLOSE 1

412 RETURN

413

414 DEF PROC Taufe(R Taste%)
415 IF Name$="" THEN

416 Name$="MINIDAT.REL"

417 Pfad$="A:\":Ext$="*_REL"

418 Do_File(Name$,Pfads$,Ext$, Name$,Pfad$,Ext$, Taste%)
419 IF Taste% AND Name$<>"" THEN

420 CHDIR Pfad$

421 ENDIF

422 ELSE

230 Das groBe ST-BASIC-Buch ——

423 Taste%=1
424 ENDIF

425 RETURN

426 !

427 DEF FN ExistZ%L(Name$)
428 LOCAL T%

429 '

430 OPEN "F",1,Name$,&
431 IF EOF(1) THEN

432 ' Keine Files auf der Diskette vorhanden
433 ' => Fehlermeldung (0) zurlckgeben

434 CLOSE 1

435 RETURN (0)

436 ELSE

437 ' DTA-Buffer bereitstellen

438 FIELD 1,30 AS Buffer$,14 AS File$

439 GET 1,0

440 ' Datei vorhanden => '-1' zurlickgeben
441 IF Name$= LEFT$(File$, INSTR(File$, CHR$(0))-1) THEN
442 CLOSE 1

443 RETURN (-1)

444 ENDIF

445 ENDIF

446 CLOSE 1

447 ' File war nicht auf der Diskette
448 RETURN (0)

449 DEF PROC Rename(Filename$)

450 IF FN Exist%L(Filename$) THEN

451 ' Datei existiert bereits => BACKUP auch schon vorhanden?
452 IF FN Exist%L(LEFT$(Filename$, INSTR(Filename$,"."))+"BAK")
453 ' dann BACKUP einfach léschen ...

454 THEN KILL LEFT$(Filename$, INSTR(Filename$,"."))+"BAK"
455 ENDIF

456 ' jetzt BACKUP anfertigen

457 BACKUP (Filename$)

458 ENDIF

459 RETURN

3.12 Warum das Rad noch einmal erfinden?

Programmieren ist mit Sicherheit eine schone Sache, aber warum
soll man sich den Kopf iiber Probleme zerbrechen, die andere
schon lange gelost haben? Oder warum soll man fiir jedes neue
Programm wieder die gleichen Funktionen schreiben, die man

—— Dateiverwaltung 231

schon einmal entwickelt hat, und die sich prichtig bewédhrt ha-
ben? Ist es nicht viel sinnvoller, bestimmte Funktionen, die man
fiir ein professionelles Programm nun einmal benétigt, in einer
eigenen Datei unterzubringen, die einfach an das Programm an-
gehingt werden kann? Auf diese Weise erspart man sich eine
Menge Arbeit!

Solche Dateien, in denen alle moglichen Funktionen vorhanden
sind, die bei Bedarf dann nur noch aufgerufen werden miissen,
heiflen Libraries.

Library bedeutet zunichst einmal nichts anderes, als Bibliothek.
In Compilersprachen sind sie gang und gebe, was wire z.B. C
ohne eine Library? Nichts, denn dann gibe es nicht einmal
einen Befehl zur Datenein- oder -ausgabe! Und obwohl ST-
BASIC durch eine Vielzahl von Befehlen glinzen kann, wird es
durch die Verwendung von Befehlsbibliotheken noch einfacher,
gute Programme zu entwickelen. Im Lieferumfang des Interpre-
ters befindet sich beispielsweise eine GEM-Library, mit deren
Hilfe GEM-Funktionen - wir werden darauf spiter noch einmal
ausfithrlich zu sprechen kommen - aufgerufen werden koénnen.
Sie als Programmierer miissen sich keine Gedanken mehr ma-
chen, wie GEM-Funktionen zu programmieren sind, da sie -
bedingt durch die Library - nur noch aufgerufen werden mis-
sen!

Zum Abschlufl dieses Kapitels iiber Dateiverwaltung mochte
auch ich Thnen eine #uBerst niitzliche Library servieren, mit
deren Hilfe die File-Selector-Box verwaltet, eine Backup-Datei
erstellt und tuberpriift werden kann, ob sich die angegebene Da-
tei auf der Diskette befindet.

Wie arbeitet man nun mit einer solchen Library? Ganz einfach:
- Sie erstellen zuniichst einmal ihr Programm, wobei Sie die

Funktionen, die Thnen die Library zur Verfiigung stellt, be-
reits aufrufen kénnen.

232 Das groBe ST-BASIC-Buch ——

- Da sie vom Interpreter wihrend der Programmabarbeitung
jedoch benétigt werden, wird die gesamte Library einfach an
das Programm gehingt. Jetzt sind die Funktionen definiert,
und konnen ausgefiithrt werden.

- Das auf diese Weise erhaltene Programm wird - zusammen
mit der Library - auf Diskette abgespeichert. Von nun an
kann es ganz normal geladen und sofort ausgefithrt werden.

Beim Zusammenbasteln der beiden Programmteile sind folgende
Regeln zu beachten:

- Der Befehl, mit dessen Hilfe zwei Programme zusammenge-
hingt werden koénnen, lautet MERGE <Programmname>. Ein
Programmteil (dies wird im Normalfall Thr selbstgeschriebe-
nes Programm sein, das noch die Funktionen der Library
benétigt) muBl sich bereits im Speicher des Computers befin-
den.

- Der Befehl MERGE <Programmname> sorgt nun dafiir, daf3
das genannte Programm (Name der Library) an das schon
bestehende Programm gehéngt wird.

- Zusammengehiingt ist eigentlich der falsche Ausdruck, da
beide Teile miteinander verschmolzen werden. MERGE flugt
nimlich das (iibrigens im ASCII-Code, also mit SAVE,A ab-
gespeicherte) Programm so in das Programm im Speicher ein,
wie es die Zeilennummern erfordern. Ein Beispiel macht dies
sofort anschaulicher:

Folgendes Programm befinde sich im Speicher:

10 <Zeile 1>
20 <Zeile 2>
44 <Zeile 3>
50 <Zeile 4>
60 END

—— Dateiverwaltung 233

Auf der Diskette befindet sich das Programm <Datei.BAS>:

1 <Datei.BAS, Zeile 1>
2 <Datei.BAS, Zeile 2>
11 <Datei.BAS, Zeile 3>
22 <Datei.BAS, Zeile 4>
51 <Datei.BAS, Zeile 5>

ergibt "zusammengemerged":

1 <Datei.BAS, Zeile 1>
2 <Datei.BAS, Zeile 2>
10 <Zeile 1>

11 <Datei.BAS, Zeile 3>
20 <Zeile 2>

22 <Datei.BAS, Zeile 4>
44 <Zeile 3>

50 <Zeile 4>

51 <Datei.BAS, Zeile 5>
60 END

Deshalb diirfen in beiden Programm keine gleichen Zeilennum-
mern vorkommen! Die Library 'DAT_LIB.BAS’ beginnt mit
Zeile 1000. Soll Sie an Programme angehingt werden, die Zei-
lennummern von gréBer 1000 besitzen, mufB3 zuerst ein RENUM
durchfithrt werden, ehe die Library neu abgespeichert wird.
Vergessen Sie dabei aber auf keinen Fall, da das Programm auf
Diskette im ASCII-Format vorliegen muf3, damit der Befehl
MERGE benutzt werden kann.Hier nun die versprochende Li-
brary, deren Funktionen Sie schon kennen:

1000 1 e e e e d de e e e e e e e e e e Fe e e e e e o T Je e Je A A e 3¢ 3¢ e e e e e e e I e Je de de de I e e e e e e e e de e e de e o e e e

1010 '* DAT_LIB.BAS *
L I e LR LR LR L LR LR L LR LR *
1030 '* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *
1040 '* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH" *
1050 '* (C) 1988 by DATA BECKER GmbH Diisseldorf *
1060 1 e e e e e e o s v e e e e e I e e e v e 3 e e o e e e e e ke e e o 3k e ok e I e e ke vl e ke I ke e ok e ke ok e 3k ke e o o ok e ok e ok
1070

1080

1100 ' Programme eingebaut werden, damit Sie das Rad nicht noch einmal
1110 ' erfinden miissen:

]
]
1090 ' Die hier aufgeflihrten Prozeduren und Funktionen kénnen in eigene
1
1
1120

234

1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580

Das groBe ST-BASIC-Buch ——

' Prozedur DO_FILE(): verwaltet die FILE-SELECTORBOX

bendtigte Parameter: Name$: Dateiname, der nach dem Aufruf
der Funktion im Eingabefeld
'AUSWAHL' stehen soll.

Path$: gewlinschter Pfadname, wird kein
Name angegeben, benutzt die
Funktion den aktuellen Pfad.

Post$: Extension fiir den Pfad: ("*.*")

Die nachten drei Parameter geben die

ausgewdhlten Zeichenketten zurlck

Tas%: Nummer des Buttons, der ange-
klickt wurde.

'0' => 'ABBRUCH!
111 => 10K!

- e m e m m m o= m e m = e o= o= o=

DEF PROC Do_File(Name$,Path$, Post$,R Name$,R Path$,R Post$,R Tas¥%)

' Lokale Variablen verwenden, damit die Prozedur auch

' in anderen Programmen einsetzbar ist.

LOCAL R_Path$=Path$,R_Name$=Name$,T%,Drive%,PointerkL,Ret%L

IF Path$="" THEN ' kein Pfad angegeben, dann einen basteln
Path$=" "*64' GEMDOS Konvention Folge leisten
Pointer%L= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)
' anschlieBend aktuellen Pfadnamen holen
GEMDOS (,71, HIGH(Pointer%L), LOW(Pointer%L),0)
' und zurechtstutzen
Path$= LEFT$(Path$, INSTR(Path$+ CHR$(0), CHR$(0))-1)
GEMDOS (Drive%,25)' aktuelles Laufwerk ermitteln
Path$= CHR$(65+Drive%)+":"+Path$+"\"

ENDIF

IF Post$="" THEN ' ohne Extension kann man schlecht arbeiten
Path$=Path$+"* _*m1 payschalextension anhingen

ELSE
Path$=Path$+Post$

ENDIF

PRINT CHR$(27);"f"' Cursor aus- und Maus einschalten

MOUSEON

FILESELECT (Path$,Name$,Ret%L)

MOUSEOFF
PRINT CHR$(27);"e"' Cursor wieder einschalten
IF Ret%L=0 THEN ' Abbruch angeklickt

Path$=R_Path$' alte Vorgaben zuriickkopieren
Name$=R_Name$
Tas%=0

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010

Dateiverwaltung 235

ELSE
' ersten Backslash '\' suchen
T%= LEN(Path$)
WHILE T%>0 AND MID$(Path$,T%,1)<>"\"
T%=T%-1
WEND
Path$= LEFT$(Path$,T%)
Tas%=1
ENDIF

RETURN

e e e de e e e e Fe Je Je Je Je Je e ¢ e e e Je e de de e ¢ e e e e e e e 3¢ Fe 9 9 9 3¢ J¢ e e e K e e e e o e de de e ek g de ek ke ke ke ke ok

Funktion: FN EXIST(<Dateiname>)

Die folgende Funktion Uberpruft, ob ein File 'Name$' auf der
Diskette vorhanden ist

File vorhanden => Returnwert ist '-1' ('wahr')

File nicht vorhanden => Returnwert ist '0' ('falsch')1790 *
Aufruf: [<Variable>] = FN EXIST(<Dateiname>)

DEF FN Exist%L(Name$)

LOCAL T%
]
OPEN "F",1,Name$,55
IF EOF(1) THEN
' Keine Files auf der Diskette vorhanden
' => Fehlermeldung (0) zurilickgeben
CLOSE 1
RETURN (0)
ELSE
' DTA-Buffer bereitstellen
FIELD 1,30 AS Buffer$,14 AS File$
GET 1,0
' Datei vorhanden => '-1' zurlckgeben
IF Name$= LEFT$(File$, INSTR(File$, CHR$(0))-1) THEN
CLOSE 1
RETURN (-1)
ENDIF
ENDIF

2020 CLOSE 1
2030 ' File war nicht auf der Diskette
2040 RETURN (0)

2050

236

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

3.13

Das groBe ST-BASIC-Buch ——

1 dedededededede e de v de ok oo de de g g e ke o ok e o o e e e e o e e 5 ke ko o o e o e e e o ok e e ke ok ok e e ke e e e e e de e o

' Prozedur: RENAME(<Dateiname>)

1
' Die Prozedur RENAME Uberprift, ob ein File mit dem angegebenen

' Namen auf der Diskette vorhanden ist.

' Dann wird davon eine BACKUP-Datei gezogen, eine schon vorhandene
' BACKUP-Datei wird von der Diskette geléscht.

)

1

ACHTUNG: Diese Prozedur bendtigt die Funktion EXIST(), aus
V ======== dieser Library!!

' Aufruf der Prozedur: Rename(<Filename>)

DEF PROC Rename(Filename$)
IF FN Exist%L(Filename$) THEN
! Datei existiert bereits => BACKUP auch schon vorhanden?
IF FN Exist%L(LEFT$(Filename$, INSTR(Filename$,"."))+"BAK")
' dann BACKUP einfach léschen ...
THEN KILL LEFT$(Filename$, INSTR(Filename$,"."))+"BAK"
ENDIF
' Jjetzt BACKUP anfertigen
BACKUP (Filename$)
ENDIF
RETURN

Schwarz auf WeiB - Druckerausgabe

Bis jetzt wurden simliche Ausgaben entweder auf den Monitor
geleitet oder iiber einen mit OPEN geoéffneten Kanal auf Dis-
kette geschrieben. Oft ist es jedoch wiinschenswert, die Ausga-

ben

ben,

schwarz auf wei3 auf einem Blatt Papier vorliegen zu ha-
sie also auf einem Drucker auszugeben. Wie muf3 man dies

nun anstellen?

Wenn Sie noch einmal ein paar Seiten zuriick, an den Anfang
dieses Kapitels blidttern, so werden Sie feststellen, daf3 mit

OPEN "P", <Kanalnummer>

E— Dateiverwaltung 237

ein Kanal ge6ffnet werden kann, der die Daten, die auf diesen
Kanal geleitet werden, an den Drucker schickt:

OPEN "P",4
PRINT #4,"Diese Zeile erscheint auf dem Drucker!™
CLOSE 4

Mehr wiire zu diesem Thema fast nicht zu sagen! Oder doch? Es
gibt nimlich noch ein paar weitere Befehle, die eine Ausgabe
auf dem Drucker ermdglichen:

LPRINT

Entspricht dem Befehl PRINT, sendet die Ausgaben jedoch so-
fort an den Drucker:

LPRINT "Diese Zeile erscheint auf dem Drucker!"

Um diesen Befehl benutzen zu kénnen, mufl zuvor kein OPEN
erfolgen, da die Ausgabe stets auf dem Druckerport (Anschlufl
fiir den Drucker) landet. Noch einen Vorteil bringt dieser Befehl
mit sich:

Epson-Drucker und Epson-kompatible weigern sich normaler-
weise standhaft die Umlaute des Atrai ST korrekt auf das Papier
zu bringen, sie werden vom Computer einfach verschluckt! Da-
fiir erscheinen sie immer dann, wenn eigentlich eine geschweifte
Klammer ausgedruckt werden soll. Ein Textverarbeitungspro-
gramm lost dieses Problem, indem die ASCII-Werte der proble-
matischen Zeichen vor der Ausgabe an den Drucker bei Bedarf
entsprechend umgewandelt werden. Nur Sie arbeiten in BASIC
und nicht mit einem Textverarbeitungsprogramm! Auch die Idee,
simtiche Ausgaben statt auf den Druckerkanal in eine
Diskettendatei zu lenken, um sie dann mit einem
Textverarbeitungsprogramm einzulesen und auszudrucken, wird
Sie mit Sicherheit nicht sehr begeistern kénnen. Also was tun?
Die Losung findet sich im Handbuch zum ST-BASIC:. Man
nehme den Befehl MODE LPRINT, und sorge dafiir, daB der
Modus auf DEUTSCH gestellt wird. Dies geschieht mit ‘

MODE LPRINT "p®

238 Das groBe ST-BASIC-Buch ——

und bewirkt, daB Umlaute fiir Epson-Drucker vor der Ausgabe
erst einmal in den richtigen ASCII-Code gewandelt werden.
Wohlgemerkt, dieser Befehl hat nur auf LPRINT Einfluf}, eine
Ausgabe, die mittels PRINT# an den AdreBaten gelangt, wird
nicht umgesetzt. Sollte Thr Drucker dagegen ab sofort, d.h. nach
Verwendung dieses Befehls, den Ausdruck verstimmeln,
empfiehlt es sich, einen anderen Modus fiir LPRINT zu
verwenden. Zur Auswahl stehen ja noch GB und USA.

CMD <Kanalnummer>

sorgt dafiir, das alle Daten, die ausgegeben werden (z.B. mit
PRINT oder LPRINT) in die Datei <Kanalnummer> umgeleitet
werden. Mochten Sie beispielsweise dem Anwender die Wahl
einrdumen, ob er die da kommenden Ausgaben auf dem Monitor
(spart Papier und Farbband) oder lieber auf dem Drucker
wiinscht, miiBten eigentlich zwei getrennte Routinen zur
Ausgabe entwickelt werden: Eine fiir die Ausgabe auf dem
Bildschirm, in der PRINT-Befehle verwendet werden, und eine
fir die Druckerausgabe, die sich des Befehls LPRINT bedient.

PRINT "Hallo"

148t Hallo auf dem Monitor erscheinen, sobald die Ausgabe je-
doch umgeleitet wird, erscheint sie auf dem Papier:

OPEN "p», 1! Kanal zum Drucker 6ffnen
PRINT "Hallo"' Es lebe der Monitor
cMD 1! Ab sofort alles auf den Drucker
PRINT "Hallo"' erscheint auf dem Drucker
CLOSE 1

Mit CMD kann ein Listing auch in eine Diskettendatei geschrie-
ben werden, um sie spiter in ein Textverarbeitungsprogramm
einzubinden. Dazu lenkt man LLIST (arbeitet wie LIST, gibt
seine Daten jedoch an den Drucker weiter!), in eine zum Schrei-
ben gedéffnete Datei:

OPEN "O",4,"DATEI.BAS"

CMD 4

LLIST '100-200 wenn nur ein Teillisting gewlinscht
CLOSE 4 .

—— Dateiverwaltung 239

Fir die Ausgabe sollten Sie deshalb LLIST und nicht das ge-
wohnliche LIST bemiihen, da LLIST keine Steuerzeichen fiir den
Monitor in die Ausgabedatei schreibt, die das Textverarbei-
tungsprogramm, mit dem der ganze Sermon weiterverarbeitet
werden soll, verirgern konnten. Gleiches gilt auch fiir die an-
deren Befehle, deren vorangestelltes L dafiir Sorge trigt, daf die
Ausgabe auf den Drucker gelenkt wird (DUMP - LDUMP)

PRINT @(Zeile, Spalte) erméglicht die genaue Positionierung ei-
nes Textes auf dem Bildschirm. Der Klammeraffe bewirkt das
Erzeugen eines Steuerzeichens fiir den Monitor, der dem Cursor
Beine macht und ihn an die entsprechende Stelle springen 14ft.
LPRINT @() funktioniert dagegen nicht, da der Drucker die
Steuerzeichen des Monitors nicht kennt. Aber auch er verwendet
Steuerzeichen, die fiir die Gestaltung des Ausdrucks von enor-
mer Wichtigkeit sind.

Alle Steuerzeichen fiir den Drucker beginnen, sofern es sich um
einen Epson- oder kompatiblen Drucker handelt, mit einer Es-
cape-Sequenz. Dies ist fiir den Drucker gleichsam das Achtung,
daB jetzt interessante Daten zu erwarten sind, die z.B. eine Um-
stellung der Schriftart ausldsen.

Zum Einschalten der Eliteschrift (mein NEC behilt seine Schrift

bei, dndert dafiir jedoch die Zeichenbreite auf 12 cpi (Zeichen

pro Zoll) ab, wihrend ein FX-80/85 direkt auf Elite (ebenfalls

mit einer Breite von 12 cpi) umstellt), lautet der Steuercode
CHR$(27); CHR$(77);

bzw.

CHR$(27);"M";

der an den Drucker weiterzuleiten (LPRINT, PRINT#, ...) ist.

240 Das groBe ST-BASIC-Buch ——

3.14 Mehrzeilige Suchvorgaben mit OR mit AND

Mit dieser Version unserer AdreBverwaltung ist es nur moglich
eine AdreBdatei nach dem Familiennamen zu durchsuchen. Sind
in einer Datei aber mehrere Datensiitze enthalten, die den glei-
chen Namen tragen (z.M. MAIER, weil er so selten ist), miissen
Sie Eintrag fiir Eintrag weiterblittern, bis der richtige Datensatz
endlich gefunden ist. Professioneller wire es auf jeden Fall,
auch den Vornamen bei der Suche mitangeben zu kénnen, wobei
die Datei dann auch nach dem Vornamen durchsucht wird.
Stimmen Familien- und Vorname eines Datensatzes iiberein,
scheint der richtige Eintrag gefunden worden zu sein und kann
auf dem Monitor ausgegeben werden.

REPEAT

UNTIL Name$(0) = Name$(T%) AND Vorname$(0) = Vorname$(T%)

Auch die andere Alternative der Datensuche kann bisweilen ganz
niitzlich sein: Sie mochten alle Eintrige herausfischen, die mit
Familiennamen Huber oder mit Vornamen Peter heiflen. Dann
muf} OR heran:

REPEAT

UNTIL Name$(0) = Name$(T%) OR Vorname$(0) = Vorname$(T%)

—— Das Betriebssystem des Atari ST 241

4. Das Betriebssystem des Atari ST

Obwohl ST-BASIC an sich eine Unmenge von Befehlen zur
Verfiigung stellt, kommt man als Programmierer nicht um das
Betriebssystem des Atari ST herum. Mochte man ndmlich inner-
halb eines Programms eine Diskette formatieren oder das In-
haltsverzeichnis einer solchen einlesen, 148t sich dies nur iiber
das Betriebssystem (Operating System) bewerkstelligen.

Ferner existieren in ST-BASIC bestimmte Variablen, deren
Werte nur abgefragt werden konnen (eine Zuweisung ist nicht
moglich!) und die Auskunft iiber die Position des Mauszeigers,
das Datum, die Uhrzeit, die Cursorzeile, usw. geben. Auch von
ihnen werden Sie in diesem Kapitel horen.

4.1 Systemvariablen

Systemvariablen stellen in ST-BASIC Variablen dar, deren Na-
men reserviert sind, und denen - im Gegensatz zu anderen Va-
riablen kein Wert zugewiesen werden kann. Hiufig kann man in
diesem Zusammenhang auch von Funktionen lesen, da System-
variablen einen Wert liefern (auch Funktionen machen dies).
Wihrend man Funktionen jedoch ein Argument - das in Klam-
mern hinter dem Funktionsnamen stehende Funktionsargument -
iibergibt, erhalten Systemvariablen kein Argument, auf Grund
dessen sie ihre Berechnungen durchfithren kdnnen.

MOUSEX

Diese Variable enthdlt die X-Koordinate der momentanen
Mausposition. Eine Bewegung der Maus in horizontale (X-)
Richtung bewirkt eine automatische Anderung des Variablenin-
halts.

242 Das groBe ST-BASIC-Buch ——

MOUSEY

In MOUSEY legt der Interpreter die Position des mauszeigers in
vertikaler Richtung (Y-Koordinate) ab.

MOUSEBUT

Neben den Koordinaten des Mauszeigers besitzt die Maus auf
ihrer Oberseite noch zwei Tasten, die Maustasten oder Mouse-
buttons. Die Systemvariable MOUSEBUT gibt Aufschluf3 iiber
den Zustand dieser beiden Tasten. Ihr Inhalt im einzelnen:

Inhalt von MOUSEBUT Bedeutung
0 kein Kopf gedriickt
1 linker Knopf gedriickt
2 rechter Knopf gedriickt
3 beide Knipfe (gleichzeitig) gedriickt.

Wie lassen sich diese Informationen nun nutzen? Stellen Sie sich
einmal vor, Sie haben ein Bild mit einem Zeichenprogramm er-
stellt, das als Maske fiir ein Programm dienen soll. In dieser
Maske sind - in Anlehnung an GEM - Rechtecke mit Symbolen
vorhanden, die angeklickt werden miissen, damit die gewiinschte
Reaktion seitens des Programms ausgelost wird. Um nun fest-
stellen zu koénnen, welches Rechteck angeklickt wurde, miissen
die Systemvariablen herangezogen werden. In einer Schleife kann
zunichst auf einen Knopfdruck der linken Maustaste gewartet
werden:

REPEAT

UNTIL MOUSEBUT=1

Die leere Schleife wiirde an sich schon geniigen, da die Koordi-
natenposition der Maus problemlos auch noch spiter mit
MOUSEX und MOUSEY abgefragt werden kann. Doch was ge-
schieht, wenn der Benutzer nur schnell eine Box anklickt und
anschlieend die Maus auf eine ganz andere Position setzt? Die
Systemvariablen liefern falsche Koordinaten. Deshalb sollte man

—— Das Betriebssystem des Atari ST 243

die Koordinaten gleich innerhalb der Schleife einer anderen Va-
riablen anvertrauen. Zudem ist ein X bzw. Y schneller in einer
Abfrage hingeschrieben, als der Name der Systemvariablen.

REPEAT
Y%=MOUSEY
X%=MOUSEX

UNTIL MOUSEBUT=1

und anschlieBend die Abfrage auf ein bestimmtes Rechteck, hier
mit den X-Koordinaten 100,150 und den Y-Koordinaten 30, 90,
d.h. die Eckpunkte besitzen die Koordinaten:

linke obere Ecke: (100,30)
rechte obere Ecke: (150,30)
linke untere Ecke: (100,90)
rechte untere Ecke: (150,90)

IF X% >= 100 AND X% <= 150 THEN
IF Y% >= 30 AND Y% <= 90 THEN
GOSUB Unterroutine
ENDIF
ENDIF

In der IF-Abfrage wird also gepriift, ob sich die Mauskoordina-
ten innerhalb des betreffenden Rechtecks befinden. Innerhalb
bedeutet, daBB die X-Position der Maus zwar groBler gleich der
linken Begrenzungslinie des Rechtecks ist, zugleich jedoch klei-
ner gleich der Begrenzungslinie der rechten Rechteckseite sein
mul} (deshalb wieder das logische AND). Das soeben Gesagte
muf} natiirlich auch noch auf die Y-Position der Maus zutreffen,
damit eindeutig feststeht, ob sich die Maus auch wirklich in
diesem Rechteck befand.

TIMER

Timer enthilt die Zeit seit dem Einschalten des Computers, und
zwar in 1/200 Sekunden. Mochten Sie z.B. die Laufzeit fiir eine
bestimmte Berechnung stoppen, so gelingt dies mit dieser Vari-
ablen:

244 Das groBe ST-BASIC-Buch —

Zeit=TIMER' aktuellen Stand merken
FOR T%=1 TO 30000
PRINT T%
NEXT T%
PRINT (TIMER-Zeit)/200' Zeit in Sekunden

TIMES$

Systemvariablen kann man keine Werte zuweisen! Doch keine
Regel ohne eine Ausnahme, wie Sie gleich sehen werden: TIME$
liefert die aktuelle Uhrzeit im Format "HH:MM:SS", also Stunden
(HH) im 24-Stunden Format, Minuten und Sekunden, wobei die
einzelnen Komponenten durch einen Doppelpunkt voneinander
getrennt werden.

PRINT TIMES

Ergibt auf dem Bildschirm die aktuelle Uhrzeit. Wer jedoch
nicht im Besitze eines neuen MEGA ST ist, der mit einer Batta-
riegepufferten Echtzeituhr aufzuwarten vermag, mufl nach je-
dem Einschalten des Rechners die Uhrzeit neu stellen. Die
Uhrzeit wird nimlich beim Abspeichern einer Datei auf Diskette
oder Harddisk im Inhaltsverzeichnis festgehalten, und wenn die
Uhrzeit nicht richtig eingestellt ist, steht darin dann das falsche
Datum mit der falschen Zeit.

Aus diesem Grund kann der Systemvariablen TIMES (ebenso wie
ihrer Schwester DATES) die aktuelle Zeit zugewiesen werden.
Mochten Sie die Zeit beispielsweise auf 10.30 Uhr stellen, geben
Sie einfach die Zeichenkette

TIME$="10:30:00"

ein, und die Uhrzeit ist richtig eingestellt. Der Inhalt von TI-
MER wird durch eine solche Zuweisung nicht beriihrt.

—— Das Betriebssystem des Atari ST 245

DATES$

Wihrend TIMES$ die Uhrzeit ergibt, liefert DATES das jeweilige
Datum. Das Format wird von dem jeweils eingestellten Modus
beeinfluBt: Modus "D" ergibt das Format TT.MM.JJ, wihrend
MODUS "USA" das Format TT/MM/JJ erzwingt. T steht dabei
fur Tag, M fiir Monat, und J fiir Jahr. Auch DATES$ kann das
aktuelle Datum einfach zugewiesen werden.

Pl

Die Konstante PI () steht fiir die in der Mathematik gebrduch-
liche Kreiszahl 3.14159265...... Dabei wird die Konstante PI als
FlieBkommaazahl mit doppelter Genauigkeit behandelt. Wiin-
schen Sie lediglich einfache Genauigkeit, so kann die Konstante
entweder einer Single-Float

PI1=PI

zugewiesen und mit PI! weitergerechnet werden, oder es kann
ein PI mit einfacher Genauigkeit definiert werden:

CSNG(PI)

CSRLIN

Diese Variable enthilt die Zeile, in der sich der Cursor momen-
tan befindet. Die oberste Zeile ist die Nummer 1, die unterste
Zeile die Nummer 25.

ERR,ERL,ERR$

kennen Sie bereits! Sie werden zum Errorhandling (Fehlerbe-
handlung) in ST-BASIC herangezogen, und liefern die Fehler-
nummer (ERR), die Zeile, in der der Fehler aufgetreten ist
(ERL), und schlieBlich die Fehlermeldung im Klartext: ERRS.

246 Das groBe ST-BASIC-Buch —

4.2 TOS, GEMDOS, BIOS und XBIOS

Obwohl die Uberschrift einen Ausschnitt aus einem chinesischen
Telefonbuch vermuten lassen konnte, handelt es sich nicht um
einen solchen. Vielmehr sind mit diesen zugegebenermafBlen auf
den ersten Blick gar wunderlich anmutenden Namen oder besser
gesagt Abkiirzungen die Bezeichnungen fiir das Betriebssystem
des Atari ST gemeint. Aber was ist ein Betriebssystem? Fiir
einen Einsteiger, der seinen Computer das erste Mal in Betrieb
nimmt, scheint es eine Selbstverstindlichkeit zu sein, daBl auf
Tastendruck bestimmte Reaktionen ausgelést werden und mit der
Maus quer iiber den Bildschirm gefahren werden kann, daf} sich
- wie im Falle des Atari ST - Fenster 6ffnen, verschieben, ver-
groflern oder wieder verkleinern lassen.

Der Prozessor, also das Herz des Computers, kann zwar seine
Bits und Bytes durch den Arbeitsspeicher jonglieren, da er ihn
auf mannigfache Weise zu adressieren versteht, er beherrscht
auch die Manipulation einzelner Bits oder gar arithmetische
Operationen. Bei allen Ein- und Ausgaben muf3 er sich jedoch
auf die Hilfe anderer Peripheriebausteine stiitzen, wie auf einen
Floppycontroller fiir den Datenverkehr mit dem Medium
Floppy-Disk sowie andere Bausteine, die fiir ihn die Daten be-
sorgen und wieder auf die Reise schicken.

Die Formalititen, die dabei abzuwickeln sind, miissen dem
Computer erst beigebracht werden. Er muB3 wissen, wie er eine
bestimmte Schnittstelle ansprechen kann, und wie er wiederum
eine bestimmte Reaktion seitens der Peripheriebausteine zu be-
antworten hat. Diese Aufgabe tibernimmt fiirr den Computer das
Betriebssystem, das nach dem Chef von Atari - Jack Tramiel -
TOS (Tramiel Operating System) getauft wurde.

Dieses Betriebssystem befindet sich - zumindest in neueren
Computern der ST-Reihe - in ROMs, dabei handelt es sich um
Datenspeicher, die im Computer Platz finden und ihren Inhalt
nie vergessen. Selbst dann nicht, wenn der Strom abgestellt wird.
TOS selbst setzt sich aus einem CP/M-68K -Derivat (was fiir ein
Name!), und einem GEM (Graphics Environment Manager)-Teil
zusammen. Das Derivat wickelt dabei die Kommunikation mit

—— Das Betriebssystem des Atari ST 247

der AuBenwelt ab - und selbst die Tastatur z&hlt dabei zur Peri-
pherie. Im Gegensatz zu seinem Vorbild, dem CP/M-68K,
wurde es jedoch um einige Funktionen erweitert, da die Ver-
waltung der MIDI-Schnittstelle sowie die Steuerung der Maus
ebenfalls vom Computer gewihrleistet sein miissen.

Wie andere Betriebssysteme auch - man denke dabei an MS-
DOS, das Betriebssystem der IBM-kompatiblen Computerwelt -
unterteilt sich das Betriebssystem in einen allgemeinen und eine
geritespezifischen Teil. Der allgemeine Teil im ST triagt den
Namen GEMDOS (GEM/Disk-Operating-System; dieser Name
ist jedoch irrefithrend, da er mit GEM absolut nichts am Hut
hat), wihrend BIOS (Basic Input-Output System) mit den gerd-
tespezifischen Aufgaben betraut ist. Die zusitzlichen Funktionen
des Atari ST sind in einem dritten Modul des TOS unterge-
bracht, dem XBIOS (eXtended BASIC Input-Output System).

Der GEM-Teil des Betriebssystems besteht aus dem GEM-Dek-
top (neudeutsch: Benutzeroberfliche) mitsamt den dazugehdren-
den Hilfsprogrammen, den Accessories, sowie dem GEM-VDI
(Virtual Device Interface) und dem GEM-AES (Application En-
vironment System). Dem VDI obliegen simtlichen elementaren
Grafikfunktionen, wie das Zeichnen von Linien oder Kreisen,
das Einstellen der Strichstirke und des Fiillmusters usw.

AES ist dagegen fiir die grafische Kommunikation zwischen
Mensch und Maschine zustindig. Es sind AES-Routinen, die das
Dektop (Benutzeroberfliche) aufbauen, das nach dem Einschal-
ten des Atari sichtbar wird. GEM, die aufgesetzte Benutze-
roberfliche des TOS, setzt die Befehle des Benutzers in eine fiir
TOS verstindliche Sprache um. Innerhalb von TOS wird das
GEMDOS, das den Vorsitz im Triumvirat der drei Teilmodule
hat, mit der Ausfithrung des entsprechenden Befehls betraut.
Und GEMDOS wiederum beschiftigt seine beiden Knechte BIOS
und XBIOS. Soviel zur Theorie und dem Aufbau des Betriebssy-
stems (vgl. Abbildung 4.1). In diesem Kapitel wird es vor allem
das TOS sein, das uns beschiftigt. GEM kommt zu einem spite-
ren Zeitpunkt an die Reihe.

248 Das groBe ST-BASIC-Buch ———

W I RES

GEH
W39

BERBPODS

T0S
S0l

HEIDS BIDS

Abb.: 4.1 Das Betriebssystem des Atari ST

4.3 GEMDOS

Um eine GEMDOS-Funktion aufzurufen, wird der Befehl

GEMDOS([Riickgabewert] , <Funktionsnummer>, [Paranmeter])

benutzt. Da GEMDOS eine ganze Palette von Routinen anbietet,
wird jede Routine durch eine Funktionsnummer, die sich von.0
bis 87 erstreckt, gekennzeichnet. Auch ein oder mehrere Para-
meter kénnen bei Bedarf (durch Komma getrennt) angegeben
werden. Die einzelnen Funktionen, die unter ST-BASIC einge-
" setzt werden konnen (R bezeichnet den Riickgabewert):

—— Das Betriebssystem des Atari ST 249

GEMDOS(R,2,Zeichen) Cconout
Diese Routine gibt ein Zeichen auf dem Monitor aus. Auch
hierfiir ist der PRINT-Befehl besser geeignet.

GEMDOS(R,3) Cauxin
Liest ein Zeichen von der seriellen Schnittstelle (RS232) ein.

GEMDOS(R,4,Zeichen) Cauxout
Gibt ein Zeichen auf der seriellen Schnittstelle aus.

GEMDOS(R,5,Zeichen) Cprnout
Gibt ein Zeichen auf dem Drucker aus.

GEMDOS(R,10,HIGH(Buffer),LOW(Buffer)) Cconrs
Gestattet, eine Zeile in den Puffer zu lesen. Puffer ist dabei ein
Zeiger auf den eigentlichen Puffer fiir die Eingabe. Die ersten
beiden Bytes dieses Puffer enthalten die maximale Eingabeldnge,
sowie die tatsichlich eingegebe Zeichenzahl. Die Tastenkombi-
nation <Contro>l<C> bewirkt einen Programmabbruch wé#hrend
der Funktionsausfithrung. Ein Beispiel fiir den Einsatz:

Eingabe(10, Inhalt$)
END
DEF PROC Eingabe (Laenge%,R Text$)
Local Adr
' maximale Eingabeldnge, sowie Rest der Zeichenkette
Text$=CHR$(Laenge%)+CHR$(0)*(Laenge%+2)
' berechnet die Adresse der Zeichenkette Adr =
Lpeek(VARPTR(Text$))+ Lpeek(SEGPTR+28)
GEMDOS(, 10, HIGH(Adr),LOW(Adr))

Text$=MID$(Text$,3, ASC(MID$(Text$,2)))
RETURN

Die kleine Procedure liest einen String mit der maximalen Ein-
gabelinge von 10 Zeichen ein und gibt ihn an das aufrufende
Hauptprogramm zuriick. Vor dem ersten Zeichen stehen be-
kanntlich die maximale Eingabelinge sowie als zweites Byte die
tatsidchlich eingegebene Anzahl von Zeichen. Die maximale Ein-
gabelinge wird vor dem Aufruf der Routine als erstes Byte im
String abgelegt, die restlichen Zeichen (2 + maximale Eingabe-
lange) werden einfach mit einem Fiillbyte vorbelegt, damit nicht

250 Das groBe ST-BASIC-Buch ——

anschlieBend wichtige Speicherbereiche versehentlich iiberschrie-
ben werden. Da die Routine einen Zeiger auf den String erwar-
tet, wird dieser berechnet und in Adr festgehalten. Nach der
Eingabe wird ab der dritten Position die im 2. Byte angegebene
Buchstabenzahl aus dem String herausgeschnitten und zuriickge-
geben.

GEMDOS(R,14,Laufwerk) Dsetdrv
Setzt das aktuelle Laufwerk, wobei Laufwerk folgende Werte
annehmen kann:

0 Laufwerk A
1 Laufwerk B
2 Laufwerk C

In R ist die Nummer des Laufwerks enthalten, das vor dem
Aufruf der Funktion aktiv war. Entspricht dem Befehl:

CHDIR CHR$(65+Laufwerk)+":"

GEMDOS(R,16) Cconos
Ermittelt, ob der Bildschirm Daten ausgeben kann. Ist dies der-
Fall (immer!!) so steht in R der Wert $FFFF, ansonsten wird der
Wert 0 zuriickgegeben (nie!).

GEMDOS(R,17) Cprnos
Ermittelt, ob der Drucker bereit ist, ansonsten wird als Ergebnis
der Wert 0 geliefert.

GEMDOS(R,18) Cauxis
Ergibt den Wert 0, wenn kein Zeichen an der seriellen Schnitt-
stelle anliegt.

GEMDOS(R,19) Cauxos
Ergibt den Wert 0, wenn keine Daten iiber die serielle Schnitt-
stelle geschickt werden konnen.

GEMDOS(R,25) Dgetdrv
Ermittelt die Nummer (vgl. Dsetdrv) des aktuellen Laufwerks.

——— Das Betriebssystem des Atari ST 251

GEMDOS(,26,HIGH(Buffer),LOW(Buffer)) Fsetdta
Setzt die Adresse des DTA-Buffers (Disk-Transfer-Adress).
Dieser 44-Byte groBe Puffer dient als Zwischenspeicher fiir Dis-
kettenoperationen (z.B. Directory einlesen). Sein Aufbau im
einzelnen:

Byte Inhalt
1-21 fiir GEMDOS reserviert
22 Datei-Attribut

23-24 Uhrgeit der Erstellung
25-26 Datum der Erstellung
27-30 GroBe der Datei in Bytes
31-44 Name der Datei

Auch bei OPEN "F",1,"* *" erhdlt man mit GET 1,Datensatz die
oben angegebenen 44 Bytes, dann muB3 jedoch ein entsprechen-
der Puffer mit FIELD 1,... angelegt werden, aus dem die Daten
abgeholt werden koénnen. Diese Methode ist fiir ST-BASIC we-
sentlich praktischer.

GEMDOS(R,47) Fgetdta
Diese Funktion ermittelt die Adresse des DTA-Puffers.

GEMDOS(R,48) Sversion
Ermittelt die Versionsnummer des Betriebssystems.

GEMDOS(R,54,HIGH(Buffer), LOW(Buffer),Drv) Dfree
Entspricht im wesentlichen dem Befehl FRE(CHRS$(65+Drv) +"")
(freier Speicherplatz auf der Diskette in Laufwerk Drv ermit-
teln) und liefert als Ergebnis des Funktionsaufrufs einen Zeiger
auf einen aus vier Langworten bestehenden Puffer:

- Anzahl der freien Cluster (b_free)

- Gesamtclusterzahl der Diskette (b__total)

- Anzahl Bytes eines Sektors (b-secsize)

- Zahl der Sektoren je Cluster (2) (b_ clsize)

252 Das groBe ST-BASIC-Buch ——

Damit kann dann sowohl der freie, als auch der belegte Spei-
cherplatz auf der Diskette ermittelt werden:

Freier Speicherplatz: b_free * b_secsize * b_ clsize
Diskettenkapazitit: b_total * b_secsize * b_ clsize
Belegter Platz: Diskettenkapazitit - freier Platz

Drv enthiilt die Nummer des Laufwerks, von dem der freie
Speicherplatz ermittelt werden soll:

0 aktuelles Laufwerk (Defaultlaufwerk) benutzen
1 Laufwerk A
2 Laufwerk B

GEMDOS(R,57 HIGH(Adresse),LOW(Adresse)) Dcreate
Legt ein Subdirectory (Ordner) auf der Diskette an. Der Name
des Ordners darf aus maximal 8 Zeichen zuziiglich 3 Zeichen fiir
die Extension (durch Punkt vom Namen abgetrennt) bestehen.
Der Pfadname eines bereits existierenden Ordners kann ebenfalls
angegeben werden. Dann erzeugt die Funktion Dcreate einen
Ordner innerhalb des anderen. Adresse verweist auf einen
String, der nach C-Manier mit einem Nullbyte abgeschlossen
sein muf}, und den Ordnernamen enthilt. Die Adresse kann wie-
der mit

Adresse = LPEEK(VARPTR(STRING$)) + LPEEK(SEGPTR+28)
ermittelt werden. Entspricht dem Befehl MKDIR in ST-BASIC

GEMDOS(R,58, HIGH(Adresse), LOW(Adresse)) Ddelete
Entfernt das Subdirectory von der Diskette, dessen Name in dem
String, auf den der Zeiger Adresse verweist, durch ein Nullbyte
abgeschlossen steht. Sind in dem zu léschenden Ordner noch
Dateien vorhanden, wird eine Fehlermeldung zuriickgegeben. In
diesem Fall sind alle in diesem Subdirectory existierenden Da-
teien vor dem Loéschen des Ordners zu entfernen. Entspricht
RMDIM

—— Das Betriebssystem des Atari ST 253

GEMDOS(R,59,HIGH(Adresse), LOW(Adresse)) Dsetpath
Diese Funktion ernennt einen Ordner (Folder) zum aktuellen
Directory. Der neue Pfadname steht ab Adresse in einem String,
und wird durch ein Nullbyte abgeschlosssen. Entspricht dem
Befehl CHDIR. '

GEMDOS(R,60,HIGH(Adresse),LOW(Adresse),Atr) Fcreate
Legt eine neue Datei an, wobei der Name ab Adresse in einem
String stehen muf3 (Nullbyte!!). Der Riickgabewert ist ein soge-
nanntes File-Handle, das bei folgenden Schreib- und Lesebe-
fehlen anzugeben ist. Konnte die neue Datei erzeugt werden, so
ist die Handle-Nummer >= 6, ansonsten wird eine negative Zahl
zuriickgegeben. Der Fehlercode -36 kann darauf hindeuten, daf3
keine weiteren Dateien angelegt werden kénnen, da das Inhalts-
verzeichnis bereits voll ist. Dieser Befehl entspricht dem OPEN
"0",... in St-BASIC. Als Attribut Atr kénnen folgende Werte an-
gegeben werden:

0 Datei kann gelesen und beschrieben werden.

1 Datei kann nach dem SchlieBen nur noch gelesen werden.

2 Es wird eine versteckte Datei (Hidden-File) erzeugt, die
im Directory nicht erscheint.

4 System-Datei erzeugen.

8 Diskettenname schreiben.

Eine bereits auf der Diskette vorhandene Datei erhilt die Linge
0, d.h. ihr Inhalt wird geloscht. Zum Anlegen eines Ordners
(Attribut 16) mufB3 die Funktion Dcreate verwendet werden.

GEMDOS(R,61,HIGH(Adresse),LOW(Adresse), Mod) Fopen
Offnet eine Datei. Ein Modus Mod von 0 entspricht einem Open
"I", Mod = 1 entspricht OPEN "A", (Schreiben) und MOD = 2
bewirkt ein Offnen zum gleichzeitigen Lesen und Schreiben der
Datei. Ansonsten vgl. die Parameter bei Fcreate.

GEMDOS(R,62,Handle) Fclose
Schlief3t die Datei mit der Nummer Handle, dem Riickgabepa-
rameter bei Erzeugen (Fcreate) oder Offnen (Fopen) einer Datei.

254 Das groBe ST-BASIC-Buch ——

GEMDOS(R,63,Handle,HIGH(Anzahl),LOW(Anzahl), HIGH
(Adresse),LOW(Adresse)) - Fread
Liest Anzahl Bytes aus der Datei mit der Nummer Handle und
legt diese ab Adresse in einem Puffer (String) ab. R enthilt an-
schlieBend entweder die gelesenen Bytes oder aber eine Fehler-
meldung, falls dies nicht gegliickt ist.

GEMDOS(R,64,Handle, HIGH(Anzahl)),LOW(Anzahl), HIGH
(Adresse),LOW(Adresse)) Fwrite
Schreibt die Anzahl Bytes auf dem Puffer (String), auf den der
Zeiger Adresse weist, in die Datei mit der Nummer Handle.

GEMDOS(R,65,HIGH(Adresse),LOW(Adresse)) Fdelete
Loscht eine Datei von der Diskette. R enthilt eine Fehlernum-
mer bzw. 0, falls alles geklappt hat. Entspricht dem Befehl KILL
"<Datei>".

GEMDOS(R,66,HIGH(Anzahl),LOW(Anzahl),

Handle,Modus) Fseek
Wihrend iiblicherweise eine Datei nur sequentiell geschrieben
werden kann, gestattet diese Funktion einen Zeiger innerhalb ei-
ner Datei an eine bestimmte Position zu setzen. Drei Parameter
werden bendtigt:

- Anzahl der Bytes, um die der Zeiger verschoben wird.
- Handle-Nummer der Datei von Fopen (Fcreate).

- Modus, wobei hier drei Modi moglich sind:

0 - Vom Dateianfang aus verschieben.
1 - Von der aktuellen Position aus verschieben.
2 - Vom Datei-Ende riickwirts verschieben.

Bei Modus 1 muf3 Anzahl positiv, bei Modus 2 negativ oder po-
sitv (je nach Richtung) und bei Modus 3 schlieBlich stets negativ
sein, da vom Datei-Ende aus zuriickgegangen wird. Wird iiber
das Datei-Ende hinausgegangen, enthilt R eine Fehlermeldung.

——— Das Betriebssystem des Atari ST 255

GEMDOS(R,67 HIGH(Adresse),LOW(Adresse),Modus,

Attribut) Fattrib
Diese Funktion gestattet es, das Attribut einer Datei zu lesen
oder zu dndern. Man iibergibt ihr die Adresse des Dateinamens,
den Modus (0 => Attribut ermitteln, 1 => Attribut setzen) und
das neue Attribut: '

Datei les- und beschreibbar.

Datei nur lesbar, kann jedoch nicht beschrieben werden.
Datei ist verborgen (Hidden-File).

Systemdatei.

Diskettenname (Disk Label).

16 Ordner.

00 W N =~ O

Die Attribute von Ordnern und Diskettennamen koénnen mit
dieser Funktion nicht geindert werden. Ein Bespiel fiir die An-
wendung:

DEF PROC Attribut(Datei$,Attribut%)
LOCAL Dummy%, Adr
Datei$=Datei$+CHR$(0)' damit er nicht abstiirzt
Adr= LPEEK(SEGPTR+28)+ LPEEK(VARPTR(Datei$))
GEMDOS(Dummy?%, HIGH(Adr),LOW(Adr),1,Attribut®%)
IF Dummy% < O THEN ' hat nicht ganz geklappt!
FORM_ALERT(1,"[31(Fehler!] [Abbruch 1")

ENDIF
RETURN
GEMDOS(R,69,Device) Fdup
GEMDOS(R,70,Device,Handle) Ffcorce

Beide Routinen leiten eine Ein- oder Ausgabe von GEMDOS-
Routinen auf den Standard-Ausgabekanal um. Device bezeichnet
dabei:

1 Tastatur und Bildschirm.
2 Serielle Schnittstelle.
3 Drucker.

256 Das groBe ST-BASIC-Buch ——

GEMDOS(R,71,HIGH(Adresse),LOW(Adresse),Drv) Dgetpath
Schreibt in einen 64 Byte groBen Puffer, der ab Adresse zu fin-
den ist, den aktuellen Pfadnamen fiir das Laufwerk Drv. Die
Laufwerksbezeichnung am Pfadanfang selbst wird nicht in den
Puffer geschrieben, sondern muf selbst hinzugefiigt werden.

GEMDOS(R,72,HIGH(Anzahl),LOW(Anzahl)) Malloc
Diese Funktion fordert Anzahl von Bytes Speicherplatz an. In R
wird die Adresse des reservierten Speicherbereichs zuriickgege-
ben. Diese Funktion entspricht im wesentlichen dem Befehl
MEMORY, wobei mit Malloc angeforderte Speicherbereiche
nicht durch ein CLEAR gel6éscht werden.

GEMDOS(R,73,HIGH(Adresse),LOW(Adresse)) Mfree
Gibt den mit Malloc angeforderten Speicherblock wieder frei.

GEMDOS(R,78, HIGH(Adresse), LOW(Adresse),Atr) Fsfirst
Sucht den ersten Eintrag im Directory mit dem Attribut Atr.
Dieser wird in den DTA-Puffer iibertragen und kann dort abge-
holt werden. Diese Funktion sollte in ST-BASIC stets durch ein
OPEN "F",... umgangen werden.

GEMDOS(R,79) Fsnext
Sucht den nach Aufruf von Fsfirst nichsten Eintrag im Direc-
tory. Auch dieser Befehl kann durch OPEN "F",... umgangen
werden.

GEMDOS(R,86,0,HIGH(alt),LOW(alt),HIGH(neu),
LOW(neu)) Frename
Benennt eine Datei um. Durch NAME ... AS ersetzten!

GEMDOS(R,87 HIGH(Adresse), LOW(Adresse),

Handle,Modus) Fdattime
Diese Routine gestattet das Andern des Datums und der Zeit ei-
ner Datei. Dazu iibergibt man dem Aufruf die Handle-Nummer
des gedffneten Files (Fopen), sowie die Adresse eines 4 Byte
groBBen Puffers (String), in den die Daten geschrieben (Modus=0)
oder dessen Inhalt die alten Daten ersetzen sollen (Modus=1).

—— Das Betriebssystem des Atari ST 257

4.4 Das BIOS

Das Bios (BASIC Input- Output System) ist fiir die normalen
Ein- und Ausgaberoutinen zustindig und wird uber die Funk-
tion

B10S([Riickgabewert] , <Funktionsnummer>[,Parameter])

aufgerufen. Folgende BIOS-Routinen sind im Betriebssystem des
Atari ST implementiert:

BIOS(,0,HIGH(Adresse),LOW(Adresse)) Getmpb
Diese Routinen fithrt die Speicherverwaltung des GEMDOS
durch. Sie liefert eine Adresse auf einen Speicherblock, mit dem
Memory-Parameterblock (MPB). Dieser Block wiederum enthilt
drei weitere Zeiger, die jeweils auf eine weitere Struktur ver-
weisen. Ohne genaue Betriebssystemkenntnisse geht hier gar
nichts!

BIOS(R,1,Device) Bconstat
Die Funktion priift, ob ein Zeichen vom jeweiligen Device an-
liegt. Folgende Werte sind fiir Device anzugeben:

1 Serielle Schnittstelle (AUX, RS232).
2 Tastatur und Bildschirm (nicht in ST-BASIC verwenden!).
3 MIDI-Port.

BIOS(R,2,Device) Bconin
Liest ein Zeichen vom Geridt Device ein. In ST-BASIC sollte
diese Funktion nicht fiir die Tastatur verwendet werden.

0 Parallele Schnittstelle (Centronics-Port, Drucker!).

1 Serielle Schnittstelle (RS232).

2 Tastatur und Bildschirm.

3 MIDI-Schnittstelle.

BIOS(,3,Device,Zeichen) Bconout

Gibt ein Zeichen auf dem jeweiligen Gerit aus. Zur Zeichen-
ausgabe sollte in ST-BASIC der Bildschirm gemieden werden.

258 Das groBe ST-BASIC-Buch —

Parallele Schnittstelle (Centronics-Port, Drucker!).
serielle Schnittstelle (RS232).

Tastatur und Bildschirm.

MIDI-Schnittstelle.

Tastaturprozessor (Vorsicht!).

&S W N = O

BIOS(R 4,Flag, HIGH(Adresse),LOW(Adresse),Sektorzahl,
Sektornummer,Drive) Rwabs
Fiir Flag = 0 werden Sektorzahl Sektoren ab dem logischen Sek-
tor Sektornummer in den ab Adresse stehenden Puffer geschrie-
‘ben. Flag = 1 sorgt dafiir, daf3 der Pufferinhalt auf Diskette ge-
schrieben wird, Flag = 2 bzw. Flag = 3 arbeiten wie 1 und 2,
ignorieren jedoch einen erfolgten Diskettenwechsel.

BIOS(R,5,Nummer HIGH(Adresse),LOW(Adresse)) Setexc
Diese Funktion #ndert einen Exeptionvektor um. Nummer bein-
haltet dabei die Nummer des zu indernden Vektors. Die Adresse
der Routine, die den alten Vektor ersetzten soll, muf3 ab Adresse
stehen. Mochten Sie einen der 256 Exeption-Vektoren des
68000-Prozessors oder einen der 8§ GEM-Vektoren lesen, muf
als Nummer der Wert -1 angegeben werden.

BIOS(R,6) Tickcal
Liefert die Zeit in Millisekunden, die zwischen zwei Timerauf-
rufen vergangen ist.

BIOS(R,7,Drive) Getbpb
Ermittelt die Adresse des BIOS- Parameter Blocks fiir das ange-
gebene Laufwerk. Der Block besteht aus 9 Integerzahlen:

Recsiz SektorgréfBe in Bytes.

Clsiz Cluster-Grofie in Sektoren.

Clsizb Cluster-Grofle in Bytes.

Rdlen Linge des Directories in Sektoren.

Fsiz GroBe der File-Allocation-Table (FAT) in Sektoren.

Die FAT gibt Auskunft, in welchen Clustern eine
Datei abgespeichert wurde und dient dazu, die fol-
genden Cluster zu finden.

Fatrec Sektornummer der FAT-Kopie.

—— Das Betriebssystem des Atari ST 259

Datrec - Sektornummer der ersten Daten-Clusters.
Numcl Gesamtzahl der Datencluster auf der Diskette.
Bflags Diverse Flags.

Fiir Drive gelten dabei wieder folgende Werte:

0 Laufwerk A.

1 Laufwerk B.

2 Laufwerk C (Festplatte).

BIOS(R,8,Device) Bcostat
Stellt fest, ob das Ausgabegerit bereit ist, das nichste Zeichen
zu empfangen. Die Riickgabewerte sind dabei:

1 Das Geriit ist zur Ausgabe bereit.
0 Das Gerit ist (noch) nicht bereit.

Folgende Devices konnen angesprochen werden:

0 Parallele Schnittstelle (Centronics-Port, Drucker!).

1 Serielle Schnittstelle (RS232).

2 Tastatur und Bildschirm.

3 MIDI-Schnittstelle.

4 Téstaturprozessor.

BIOS(R,9,Drive) Mediach

Stellt fest, ob ein Wechsel der Diskette auf dem angegebenen
Laufwerk erfolgt ist. Riickgabewerte:

0 Die Diskette wurde sicher nicht gewechselt.
1 Diskettenwechsel konnte erfolgt sein.
2 Diskettenwechsel ist mit Sicherheit erfolgt

BIOS(R,10) ' Dryvmap
Ermittelt die Laufwerkskonfiguration, wobei ein Bitvektor in R
resultiert, in dem jedes gesetzte Bit fiir ein jeweils angeschlos-
senes Laufwerk steht:

260 Das groBe ST-BASIC-Buch ———

Bit 0 => Laufwerk A angeschlossen
Bit 1 => Laufwerk B angeschlossen
Bit 2 => Laufwerk C angeschlossen

BIOS(R,11,Status) Kbshift
Ermittelt bzw. verdndert den Status der Tastatur-Sondertasten.
Ist die Variable Status nicht negativ, so werden die Sondertasten
gemill dem Bitmuster von Status neu gesetzt, ein Status von -1
liefert einen Bitvektor nach folgender Tabelle:

Bit 0 => Rechte Shift-Taste.

Bit 1 => Linke Shift-Taste.

Bit 2 => <CONTROL>-Taste.

Bit 3 => Alt-Taste.

Bit 4 => Caps-Lock aktiv.

Bit 5 => CLR/HOME (rechte Maustaste).

Bit 6 => INSERT (linke Maustaste).

Bit 7 => Nicht verwendet, immer 0.

4.5 Das XBIOS

Das XBIOS (eXtended Basic Input-Output System) gestattet die
zusitzlichen Funktionen, die der Atari ST beinhaltet. Der Bild-
schirmspeicher, die Verwaltung der MIDI-Schnitt-stelle und der
Maus oder das Setzen der Bildschirmfarben, all diese Dinge ge-
hen auf das Konto des erweiterten BIOS. Sein Aufruf erfolgt
iber:

XB10S([Riickgabewert], <Funktionsnummer> [,Parameter])

—— Das Bétriebssystem des Atari ST 261

XBIOS(0....) Initmous
Diese Routine initialisiert die Mausroutinen, wobei die Funktion
nicht unbedingt mit GEM vertriglich ist.

XBIOS(R,1,Menge) Ssbrk
Reserviert Speicherplatz fiir ROM-Module

XBIOS(R,2) Physbase
Ermittelt die Adresse des Bildschirms, der gerade aktiv ist.

XBIOS(R,3) Logbase
Ermittelt die Adresse des Bildschirms, auf den gerade ausgege-
ben wird.

XBIOS(R 4) ' Getrez
Ermittelt die Auflosung des Bildschirms:

0 Niedrige Auflosung (Lores) 320¥200 Pixel, 16 Farben.
1 Mittlere Aufliisung (Midres) 640*200 Pixel, 4 Farben.
2 Hohe Auflosung (Hires) 640¥400 Pixel, 2 Farben.

XBIOS(,5,HIGH(log_adr),LOW(log__adr)HIGH
(pys_adr),LOW(pys__adr),Auflosung) Setscreen
Diese Funktion gestattet das Abdndern der Bildschirmparameter.
Log_adr, sowie Pys-adr enthalten die Adressen des logischen
und physikalischen Bildschirms, die iiber XBIOS(2) und
XBIOS(3) ermittelt werden konnen. Uber Auflésung konnen fol-
gende Auflosungen eingestellt werden:

0 Niedrige Auflésung (Lores) 320*%200 Pixel, 16 Farben.
1 Mittlere Auflésung (Midres) 640%200 Pixel, 4 Farben.
2 Hohe Auflésung (Hires) 640*400 Pixel, 2 Farben.

XBIOS(,6,HIGH(Adresse), LOW(Adresse)) Setpalette
Adresse verweist auf die (gerade) Anfangsadresse einer Farbta-
belle mit 16 Farben. Fii