

py
ie

Michael Maier

~ Das große ST-BASIC-Buch

DATA BECKER

1. Auflage 1988

ISBN 3-8901 1-283-8

Copyright © 1988

DATA BECKER GmbH
Merowingerstr. 30
4000 Dusseldorf

Text verarbeitet mit Word 4.0, Microsoft

Ausgedruckt mit Hewlett Packard LaserJet Il

Druck und Verarbeitung Graf und Pflügge, Düsseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in irgendeiner Form (Druck, Foto-

kopie oder einem anderen Verfahren) ohne schriftliche Genehmigung der DATA

BECKER GmbH reproduziert oder unter Verwendung elektronischer Systeme verarbei-

tet, vervielfältigt oder verbreitet werden.

Wichtiger Hinweis:

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren und Pro-

gramme werden ohne Rücksicht auf die Patentlage mitgeteilt. Sie sind aus-

schließlich für Amateur- und Lehrzwecke bestimmt und dürfen nicht gewerb-

lich genutzt werden.

Alle Schaltungen, technischen Angaben und Programme in diesem Buch

wurden von dem Autoren mit größter Sorgfalt erarbeitet bzw. zusammenge-

stellt und unter Einschaltung wirksamer Kontrollmaßnahmen reproduziert.

Trotzdem sind Fehler nicht ganz auszuschließen. DATA BECKER sieht sich

deshalb gezwungen, darauf hinzuweisen, daß weder eine Garantie noch die

juristische Verantwortung oder irgendeine Haftung für Folgen, die auf fehler-

hafte Angaben zurückgehen, übernommen werden kann. Für die Mitteilung

eventueller Fehler ist der Autor jederzeit dankbar.

Fir Birgit, Michaela und Eva

Auf ein Wort

Ein Buch über BASIC zu schreiben, das wäre mir, einem einge-

fleischten C-Programmierer, der sich auch - wenn es unbedingt
sein muß - in die tieferen Sphären der Assemblerprogrammie-

rung vorwagt, vor gar nicht allzu langer zeit nicht einmal im

Traum eingefallen. | |

Zu tief mir saß noch der Schreck meiner ersten Begegnung mit

dem ST-BASIC in den Knochen, denn schon die einfachsten

Befehle bescherten mir den Genuß zahlreicher Bömbchen auf
dem Monitor. Um ehrlich zu sein, ich habe meinen Computer

nie wieder mit diesem BASIC belästigt.

Abhilfe von diesem Mißstand erhoffte sich die ST-Fan-Ge-

meinde (ich nicht mehr ...) vom englischen Softwarehaus Meta-
comco, das einen neuen BASIC-Interpreter entwickeln sollte. Als

dieser dann mit einiger Verzögerung erschien, hatte man zwar
auf Fehlerfreiheit geachtet, doch Geschwindigkeit schien auch
für die Programmierer von Metacomco ein Fremdwort zu sein.
Nein, auch dieses BASIC war - trotz seines konkurrenzlosen

Preises - nicht das Gelbe vom Ei. | 4

Jetzt, drei Jahre nachdem der ST der staunenden Fachwelt vor-

gestellt wurde, unternimmt Atari einen dritten. Anlauf in Sachen
ST-BASIC. Gerüchte darüber kursierten schon länger in ST-

Kreisen, unklar war. jedoch, für welchen Interpreter man sich

beı Atarı entscheiden würde. Die Gerüchteküche glaubte zu

wissen, daß es sich dabei nur um Omikron.- oder GfA-BASIC

handeln konnte, zwei Interpreter deutscher Produktion, die be-
weisen, daß BASIC keine lahme, unstrukturierte Programmier-

sprache aus grauer Vorzeit sein muß.

Die Würfel fielen zugunsten des Omikron.BASIC, das sich in
seiner neuen Version 3.00 jetzt ST-BASIC nennen darf. Mit
diesem Schritt hat Atarı ein dunkles Kapitel in der Geschichte

des ST zugeschlagen. Vorbei sind die Zeiten, da BASIC-Pro-

grammierer auf die teueren Interpreter anderer Firmen zurück-
greifen mußten, nur weil das mitgelieferte BASIC einfach nicht
zu gebrauchen war.

Doch mit den wachsenden Möglichkeiten dieser mächtigen Pro-
grammiersprache ist es bestimmt nicht leichter geworden, gute
Programme zu schreiben. Man muß dazu nur nicht mehr auf

eine Compilersprache zurückgreifen, sondern kann dies ab sofort

auch ın BASIC erledigen. Geblieben ist als unabdingbare Vor-
aussetzung neben dem Beherrschen der verwendeten Program-

miersprache das nötige Wissen um die Interna des Computers.

Und genau dies ıst der springende Punkt. BASIC, verschrien als

kinderleicht zu erlernende Programmiersprache, die höchstens
blutige Anfänger hinter dem Ofen hervorzulocken vermag, ver-
schrien, ermöglicht plötzlich die Erstellung professioneller Soft-

ware. Der Preis, den man für diese Errungenschaft zahlen muß,
ist der Verlust jener Einfachheit, dıe BASIC einst zum Siegeszug
verholfen hat. Trotz alledem ist es aber immer noch leichter, ein

professionelles Programm in BASIC zu entwickeln als in einer

Compilersprache oder gar in Assembler.

Dieses Buch richtet sich deshalb an alle, die etwas tiefer in die

Materie einsteigen möchten, um die fantastischen Möglichkeiten,

mit denen das neue ST-BASIC aufwarten kann, voll auszukosten.

Ich wünsche Ihnen viel Spaß bei der Lektüre und der Umset-
zung des neu erworbenen Wissens in eigene Projekte!

Inhaltsverzeichnis

pm

m

e
d

ud

jo
e

Mn
&

W
N
 —

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Der Editorccceecees secccecevcscsceccscecsccscscesescecsecececs 15

ST-BASIC laden .0............ cc ecccceescescescecceteessesccecesceeceeees 15

Der Bildschirm-Eitorcsccsssccceceessccesccesccesceees 16
Der Full-Screen-Editorcurssssseoneeonosonnennnenonenneenn 20
Der Fullscreen-Editor des Omikron.BASIC 32

ST-Omikron. BASIC verlassenccsssssscccessssnreeeeeeees 38

ST-BASIC GrundkKur .0.0............ccccceccescesecssccsscesecescesecees 39

Ausgabe auf dem Monitor mit PRINT 39
Variablentypen in ST-BASIC uu... ee ccecceesceeeeeeeeeees 42

Das erste Programmccccscceccsscsccscsecnsceccesseccsccsees 49

Programme speichern, laden und léschen 55
Wie sag ich’s dem Computer?ccccssscesscesecececeees 58
Mathematische Funktionen.ensenssessessensennennnnnnnnneneen 61

Strings und Stringmanipulationeeesseeeseeeenseeseseeseereenn 67
Varıablenfelder............cesscesssesseesssensnnennenonnnsnnnnsnonenserenn 90

Programmierhilfennnceesesesseeenenenensnssennensnneseneneenenn 92
Strukturierte Programmierung.reeesssesssesnenenenonenonnenn 99
Alles eine Frage der Routineesseesseeseseneseeeseoeneeeneen 121
READceesseesssenssessnonsnnnennnnnnsennnonnennnnonsnnnennsnnennsnnene 140
BASIC-Allerleiccenssensssenseesssenensnnnnensonnnonnensennseenenn 143

Dateiverwaltung.2222ssssssssssnssssnsnsnnnsnnsnnnensnsnnennnnenn 181

Dateien auf Disketteccnneesssnessnnennnsnonennnnonnnnennnnnnenenn 181

Ohne Kanäle geht gar nichtseeessceseennesssnennnneeeesnnenen 184
Noch ein Print, aber mit Write geht’s auch 186

Sequentielle Dateien einleSen ccc ceceecceceeceecesceees 188

Files kopierenccssseeenseenssennenennsnnnsennnennnennnnnnnnnonsnnnnnnn 191

Die File-Selector-Boxcceeenceeessssenensesnenennnennnnennnennnnennn 195

Fehler abfangenennsnnseeseeesessnensnnennennnnsnnnnennnnsnunen 204

Backup-Dateienccnseessessenssensnnenssnnnnnnnnnnnnnenennnnnnnenn 207

3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

Wir sorgen fiir Ordnung auf der Diskette 211

Relative Dateienc.cccccscsseccccsscccsscccucsceeesceeeeeeeseuss 213
Minidatei - diesmal relativ ee eeseeeeeeeeeeees seveeees 217
Warum das Rad noch einmal erfinden? 230
Schwarz auf WeiB - Druckerausgabeccccceeees 236
Mehrzeilige Suchvorgaben mit OR mit AND 240

Das Betriebssystem des Atari ST... 241

Systemvariablenceeneessseesssensssenesnsnnnnnnennn seascenceeeeecees 241

TOS, GEMDOS, BIOS und XBIOS seseeeseeeeeenseees 246
GEMDOG ou... cssccssceesccesccesseesscesceeesseesces seceesceesceesceees 248
Das BIOS ou... cccccssssssseceeesseeeescesssseeecsenssneeseceesseeeeeeeenees 257
Das XBIOS ou... eecceseseeeceees deseccusceceesececsscesescececeeeeseeues 260
Betriebssystemprogrammierungccscceecesscssceeceeceeees 270

GrafikprograMmMierungccccccsecceseccesseeenseceecees 279

Einfache Grafikbefehlecceenssseenasssesssseesenenenen 279
BITBLT. kensssonsensssensssnnssosnsusnsnosssunssnssssnsssosseossenssnnnn 283
Bildschirm ladenccessseesesensnssnennenennenonnneenenenennenn 285

Objekte verschieben und drehen0200s20sn en 287

GEM2esssssessessessonnensnsnsnnnonnnonnnunsnnnnnnnnnnnnnsnsssnnsssnnsnenn 291

Arbeiten mit dem RCS ..aneneanennelaennennennnnnnnennnnnnnnnnen 292
GEM-Programmierung unter ST-BASIC 301

Schiebereglercceessssssesessnnesnennenneneenennn seceaseceeeessceases 332
Pull-Down-Menüs .0................08. anne nn seceasceescesees 333
Eine eigene File-Selector-Box............. sevescceeseees seseeesees 344
Fenstertechnikeeeessesssenesenessnennsnnenenonensnnssenssenensnnennn 357

MUltitaSkingcccsccsscsesccvccseccesccssceescescececeusceecs waren 367

8. Der Compiler2020020020802ennnnnennnnnnnnnnnnennenssnonene 371

8.1 Die Bedienung des Compilersccccssccseceeceseeescees 372

8.2 Compiler-Steuerwortecccccscesceccecceccecscescesceceeees 373

8.3 BASIC-Programme auf dem Compilereeessereescereen 375
8.4 Programme optimierenuseorssensesesssenssnnnnnnennnnnnnnnnnsennnn 377
8.5 Fehlermeldungen des Compilersccscccsescceseceees 378
8.6 Verarbeitungstypen der Funktionencsessseeeeeeeeen 379
8.7 Hilfsprogramme auf der Compilerdiskette 380

AMNANG cccceeccesscssccesccnccesccnsccsscesscessseneesscesscaecesscesseaecoseees 383

Anhang A: ASCIH-Tabelle020s020000002ennnennnennsnnnnnnnnnnenn 383
Anhang B: Scancodes des Atarı STencesseeenesennensennnneonerene 385
Anhang C: Verzeichnis aller VT-52-Sequenzen 386
Anhang D: Fehlermeldungenccsccsscssceecesecsececeecoeeeees 387

Anhang E: TOS Fehlermeldungensz2r02es0nseenenennenennene 393
Anhang F: GfA-BASIC-Programme umschreiben 394

 ——— Der Editor 15

1. Der Editor

Es ist nicht möglich, ein Programm zu schreiben, ohne das
Handwerkszeug zu beherrschen, das man dafür benötigt. Im
Falle des ST- und Omikron.BASIC sind dieses Handwerkszeug
zwei Editoren, mit deren Hilfe die Befehle eingegeben oder gar
ganze Programme erstellt, abgespeichert, verändert und wieder
geladen werden können. Deshalb ist ihnen - ehe wir zu größeren
Taten schreiten - das erste Kapitel in diesem Buch gewidmet.

Leider ist es nicht möglich eine komplette Beschreibung aller
Funktionen zu liefern, ohne dabei auf Fachausdrücke zurückzu-
greifen. Lesen Sie sich das folgende Kapitel zunächst einmal in
Ruhe durch. Alle Funktionen, die für den Anfang wichtig sind,
wie z.B. das Laden des ST-BASIC, sind so einfach wie nur ir-

sendwie möglich erklärt. Und die übrigen Dinge, die kompliziert
erscheinen, werden an späterer Stelle in diesem Buch unter Ga-

rantie noch einmal aufgegriffen.

Im übrigen empfehle ich Ihnen, dieses Kapiel noch einmal nach

der Lektüre des Buches zu lesen. Spätestens dann werden Sie alle

Funktionen verstehen!

1.1 ST-BASIC laden

Ehe mit dem Editor gearbeitet werden kann, muß zunächst ein-
mal das BASIC von Diskette geladen werden. Legen Sie dazu die
ST- bzw. Omikron.BASIC-Diskette in das Laufwerk, und klic-

ken Sie zweimal kurz hintereinander mit der linken Maustaste
auf das Symbol Laufwerk A. Jetzt öffnet sich ein Fenster, in
dem alle auf der Diskette enthaltenen Dateien angezeigt werden.

Setzen Sie nun den Mauspfeil auf OM_BASIC, und starten den

Ladevorgang durch einen erneuten Doppelklick mit der linken

Maustaste. Sobald sich das Programm im Speicher befindet, mel-

det sich der BASIC-Interpreter mit dem Bildschirm-Editor.

16 Das große ST-BASIC-Buch ———

Die folgenden Erklärungen beziehen sich auf den Editor des

neuen ST-BASIC (Omikron.BASIC 3.00). Damit aber auch alle

anderen, die mit einer älteren Version (kleiner als 3.00) arbeiten

müssen, weiterlesen können, ist dem Full-Screen-Editor der äl-

teren Versionen ein eigenes Kapitel gewidmet. Dieses Kapitel ist

übrigens auch für alle ST-BASIC-Benutzer relevant, da hier die

zusätzlichen Möglichkeiten der Editor- Steuerung über die Funk-

tionstasten beschrieben werden.

1.2 Der Bildschirm-Editor

Nachdem Omikron.BASIC geladen wurde, erscheint in der linken
oberen Ecke die Startmeldung mit der Versionsnummer. Ein

paar Zeilen darunter finden Sie einen blinkenden Punkt, den

Cursor. Mit Hilfe der Pfeiltasten, die sich zwischen dem Haupt-

block der Tastatur und dem seperaten Zehnerblock befinden,

kann der Cursor ın alle vier Richtungen bewegt werden.

ee OMIKROW.BASIC V3.8 G OMIKRON. ‚Software X
- Press [Help] to enter editor -
1706142 bytes free,

Abb. 1.l: Der Bildschirm-Edior nach dem Laden

Eine Betätigung der Taste <Home> setzt den Cursor ın die linke

obere Ecke des Bildschirms, während ein gleichzeitiges Drücken

der Tasten <Control> und <Home> den Bildschirm löscht, und

den Cursor ın die linke obere Bildschirmecke setzt.

 ——— Der Editor 17

Zeichen löschen

<Backspace> löscht das Zeichen, das sich links des Cursors be-

findet, indem der Cursor um eine Position nach links gefahren
wird. Der Rest der Zeile bleibt in seiner Position unverändert.
Mit <Delete> kann ebenfalls ein Zeichen vom Bildschirm getilgt
werden. <Delete> sorgt jedoch dafür, daß der gesamte Zeilenrest
hinter dem Cursor um eine Position nach links mitwandert. Ein
Beispiel verdeutlicht dies wohl am schnellsten:

Das große ST-BASIC*Buch

Die Cursorposition wird durch ein Sternchen (*) markiert.
<Backspace> führt nun zu:

Das große ST-Basi* Buch

<Delete> dagegen zieht das Wort ’Buch’ um eine Position nach
links, und verhindert somit das Entstehen von Leerzeichen:

Das große ST-Basi*Buch

Zeichen einfügen

Möchten Sie jedoch ein Zeichen ergänzen, können Sie mit
<Insert> an der aktuellen Cursorposition ein Leerzeichen einfü-
gen. Der Cursor behält dabei seine Position bei, der Zeilenrest
rechts des Cursors wandert um eine Position weiter:

Das gro Be ST-BASIC Buch

Befindet sich der Cursor über dem ’e’, während <Insert> ge-
drückt wird, erscheint an dieser Position ein Leerzeichen:

Das gro e ST-BASIC Buch

Jetzt kann der fehlende Buchstabe eingesetzt werden.

18 Das große ST-BASIC-Buch ————

| Zeile einfügen und löschen

Möchten Sie nicht nur einen Buchstaben einsetzen oder löschen,

sondern gleich ganze Zeilen, müssen Sie folgende Tasten drü-

ken:

<Control> <Cursor hoch> |

| Löscht die Zeile, in der sich der Cursor

gerade befindet.

<Control> <Cursor runter> |

Fügt eine Zeile ein.

<Control> <Delete> Löscht den Zeilenrest hinter dem Cursor.

Der Insert-Modus

Normalerweise werden Zeichen, die sich unter der aktuellen
Cursorposition befinden, einfach überschrieben. Dies ist jedoch

nicht immer wünschenswert. Möchten Sie ein Zeichen an der
Cursorposition eingefügen, ohne daß das darunterliegende Zei-
chen überschrieben wird, müssen Sie mit

<Control> <Insert> den Insert-Modus einschalten. Eine

| nochmalige Betätigung dieser Tastenkom-
bination schaltet den Insert-Modus wie-
der aus. Dieser Modus zieht auch eine

Veränderung der Funktionsweise von
<Backspace> und <Delete> nach sich:

<Backspace> übernimmt die Funktion, die <Delete> im
| Normalmodus besitzt.

<Delete> löscht das Zeichen unter dem Cursor,
und läßt den Zeilenrest nachrücken, der

Cursor behält seine Position jedoch bei

(rückt also nicht nach links!).

 ——— Der Editor 19

Der VT52-Emulator

Der Monitor des Atari ST ist in gewisser Weise intelligent. Er
versteht nämlich bestimmte Befehle, wie das Löschen des Bild-

schirms, das Merken der aktuellen Cursorposition, usw. Diese
Befehle werden allesamt mit der Taste <Esc> (Escape) eingelei-
tet, gefolgt von einem (oder mehreren) Buchstaben. Im. Anhang
dieses Buches finden Sie eine Auflistung sämtlicher Sequenzen
des VT52-Standards. Diese Funktionen können Sie auch im
Bildschirm-Editor nutzen. Drücken Sie dazu einfach zuerst die
Taste <Esc> und anschließend den dazugehörigen Buchstaben,

und sofort wird der Befehl ausgeführt.

Link-Zeilen

Auf dem Monitor des Atarı können maximal 80 Zeichen in einer
Zeile dargestellt werden. Werden Zeilen eingegeben, die länger
als 80 Zeichen sind, schreibt der Editor einfach in der folgenden
Zeile weiter. Damit auch optisch erkennbar ist, daß der Inhalt

dieser Zeile. nur die Fortsetzung der vorhergehenden Zeile dar-
stellt, erscheint am linken Rand ein senkrechter Strich (|), der im
Fachjargon Pipe genannt wird. Auch bei einer anderweitigen
Ausgabe, die den rechten Rand des Monitors überschreiten wür-
den, wird in der darauffolgenden Zeile weitergeschrieben, die

dann wieder mit einem Pipe-Zeichen beginnt.

Sonstige Tastenkombinationen

<Return> Schreibt die Zeile, in der sich der

| Cursor befindet, in den Pro-
grammspeicher, wenn sie mit einer

Zahl beginnt, ansonsten faßt der

Interpreter den Zeileninhalt als Be-
fehle auf, die sofort ausgeführt
werden müssen. Deshalb spricht

man in diesem Fall auch von

Direktmodus.

<Control><Cursor links> Setzt die linke obere Ecke des

Rahmens. |

 20 Das groBe ST-BASIC-Buch ————

<Control><Cursor rechts> Setzt die rechte untere Ecke des

Rahmens.

Der Rahmen dient dazu, Ausgaben (z.B. über PRINT) nicht
mehr auf dem gesamten Bildschirm darstellen zu lassen, sondern
nur in einem bestimmten Bereich, der durch diesen Rahmen be-
grenzt wird. Auch der Cursor kann dann nur noch innerhalb
dieses Rahmens bewegt werden.

<Home><Home> Eine zweimalige Betätigung der
Taste <Home> löscht den Rahmen

wieder. Ab sofort kann der Cursor
in den gesamten Bereich des Bild-
schirms gesetzt werden.

<Alternate><Control> Löscht den Tastaturpuffer. In die-
sem Puffer speichert ST-BASIC

alle gedrückten Tasten, die nicht
sofort zur Ausführung gelangen
können (z.B. bei einem Tasten-
druck, während das Programm ar-
beitet). |

<Shift><Shift> Werden beide Shift-Tasten des ST
gleichzeitig gedrückt, so wird auf
den Screen (Bilschirm) umgeschal-
tet, der vor der Rückkehr in den

Direktmodus vom Programm be-
nutzt wurde.

1.3 Der Full-Screen-Editor des ST-BASIC (Version 3.00)

Der Full-Screen-Editor dient zur Eingabe Ihres Programmtextes,
während der Bildschirm-Editor üblicherweise nur zur Ausfüh-
rung von Kommandos im Direktmodus benutzt wird. Im Ge-
gensatz zum Bildschirm-Editor ist er mit einer ganzen Reihe von
Funktionen ausgestattet, die die komfortable Eingabe eines Pro-

 — Der Editor 21

grammtextes ermöglichen. So besitzt dieser Editor unter anderem
eine Menüleiste, über die sämtliche Funktionen mit der Maus

angewählt werden können.

Diesen Editor erreichen Sie aus dem Bildschirm-Editor heraus
über eine Betätigung der Taste <Help>. Mit <Control> <c> kön-
nen Sie den Editor wieder verlassen. Auch ein Anklicken des
Menüpunktes Quit Edit, den Sie in der Menüleiste unter File
finden, bewirkt ein Verlassen des Full-Screen-Editors.

Die Menüzeile

In der ersten Zeile finden Sie die Menüleiste, die folgende
Menüpunkte beinhaltet: File, Find, Block, Mode, Go und Run.

Um einen Menü-Aufruf abzuwickeln, fährt man mit dem Maus-

pfeil auf einen dieser Menünamen. Automatisch rollt dabei das
Menü herunter und gibt seine Funktionen preis, die durch eine

Berührung mit dem Mauszeiger invertiert werden. Durch Drüc-
ken der linken Maustaste wird ein invertierter Eintrag ange-
wählt.

Die Menüleiste beinhaltet jedoch noch eine weitere Funktion: Es
lassen sıch nämlich auch die einzelnen Punkte der Menüleiste

anklicken. In diesem Fall wird dann die Funktion ausgelöst, die
an erster Stelle innerhalb des entsprechenden Menüpunktes zu

finden ist. |

Der Menüpunkt File

Unter diesem Menüpunkt sind sämtliche Funktionen zusammen-

gefaßt, die zum Laden und Speichern von Programmen benötigt
werden: Ä

Save *.*

 Speichert das Programm, das sich im Computer befindet, unter

dem Namen, der in die File-Selector-Box eingetragen wird, ab.

22 Das groBe ST-BASIC-Buch

FILE FIND BLOCK HODE Midi RUN , 6 X: @ SIZE: 1594 DO_FILE.BAS

“SEKAI EKER ae) SXEEAEEAKEAA EAE EAA EAE EEE TT

"x TO LINE ... BAS x
x .— ——nmannun. “LINE TO TOP x

1.66 Datum: 16.69.1988 £
'x BEN ST-BASIC BUCH’ x
a (>) ie mbH Düsseldorf x
“SESSA EEK ae: KXSEXTAKAEKA SAKE EEX
‘ TO MARK #4

' Sa;
GENDOS (JS: [:1.1.58-F% ONCPointer) ,@)
Ti, SET MARK #3

WIITEME SET MARK 84 h$+ CHR$(8), CHRS$(8))-1)
GENDOS (OM eesti: Laufverk ermitteln
Path$= CHR$(65¢DrivezZ)+":"*Path$+"."

ENDIF .
IF Post$="" THEN ° ohne Extension kann man schlecht arbeiten

Path$=Path$e"%.%"" Pauschalextension anhingen
ELSE

Path$=Path$+Post$
ENDIF
PRINT CHRSC27);"f"" Cursor aus- und Haus einschalten
NOUSEON
FILESELECT (Path$,Name$,Ret)

Abb. 1.2: Der Full-Screen-Editor

Load *.*
Lädt ein Programm in den Speicher. Der Name muß wieder über
eine File-Selector-Box eingegeben werden.

Save Block

Speichert einen markierten Block ab.

Load Block
Lädt einen mit Save Block auf Diskette gespeicherten Block
(bzw. einen ASCII-Text) von Diskette und fügt ihn gemäß den
angegebenen Zeilennummern in ein evil. schon existierendes

Programm ein.

Directory

Zeigt das Inhaltsverzeichnis der Diskette an.

 ——— Der Editor 23

New

Léscht ein Programm im Speicher.

Quit Edit | |

Verlässt den Full-Screen-Editor.

Der Menüpunkt Find

Dieser Menüpunkt enthält Funktionen, mit deren Hilfe Wörter

(Buchstaben) bzw. Tokens innerhaib des Programms gesucht
werden können. Bei Find (Suchen) wird zwischen allgemeinen
Suchbegriffen oder Befehlswörtern (Tokens) unterschieden.
Während der Interpreter bei normalen Suchbegriffen die Zei-
chenkette immer dann als gefunden meldet, wenn er sie ir-
gendwo im Programm antrifft - dies kann auch innerhalb von
Worten sein, funktioniert die Suche nach einem Token etwas an-

ders:

Um Speicherplatz zu sparen, legen BASIC-Interpreter ihre Be-
fehle nicht im Klartext (Print), sondern als kurze Befehlscodes
ab. Diese Befehlcodes bezeichnet man als Tokens. Die Suche
nach einem Token klappt folglich nur dann, wenn die gesuchte
Buchstabenkombination in einen Token umgewandelt wurde.

Neben den eigentlichen Befehlen werden auch die Variablenna-
men als Tokens im Programmtext abgelegt, und erst kurz vor der

Ausgabe auf dem Monitor in Klartext gewandelt.

Verwendet man Find Token bei der Suche nach einem Vari-
ablennamen, kann man sicher sein, daß nur die gewünschte Va-
riable als gefunden gemeldet wird, nicht aber Variablen, die

diese Buchstabenkombination irgendwo in ihrem Namen tragen.
Möchten Sie mit Find Token eine Feldvariable ansprechen, kön-

nen Sie folgendes als Suchbegriff eingeben:

Array()
Es wird nach einer Feldvariable mit einem Index gesucht, Ar-
ray(5,9) würde folglich nicht gefunden.

 24 Das große ST-BASIC-Buch ———

Array(,,)
Sucht nach der Feldvariable, die drei Indizes trägt.

Für Prozedur- und Funktionsdefinitionen sowie für Marken

gelten bei der Eingabe des Such-String eigene Regeln:

- Eine Prozedur muß bei der Eingabe des Suchbegriffes vor
dem Namen ein P erhalten: P Zeile() sucht die Definition der
Procedure Zeile mit einem Übergabeparamter. Tauchen
mehrere gleichnamige Prozeduren auf, die sich nur durch die
Anzahl ihrer Parameter unterscheiden, muß ab dem 2. Para-

meter je ein Komma pro Übergabeparameter angegeben wer-

den: P Zeile(,) sucht nach einer Definition mit 2 Parametern.

- Funktionsdefinitionen muß ein FN vorangestellt werden, da-
mit sie via Find Token ermittelt werden können.

- Marken müssen :also solche durch ein dem Namen vorange-

stelltes Minuszeichen kenntlich gemacht werden.

Die Einträge in diesem Menüpunkt

Find Next | |
Setzt die Suche nach einem bereits eingegebenen Suchbegriff
fort. Der Suchbegriff muß mit dem nächsten Eintrag eingegeben
werden:

Find...
Gestattet die Eingabe eines Suchbegriffes. Findet der Computer
die entsprechende Buchstabenkombination im Programm, so po-

sitioniert er den Cursor an diese Stelle. Ansonsten ertönt ein

Glockenton.

List...

Durchsucht den gesamten Text und listet alle Stellen auf, an

denen der Suchbegriff auftaucht.

 ——— Der Editor 25

Replace all...
Durchsucht das gesamte Programm nach der eingegebenen

Buchstabenkombination. Stößt der Interpreter auf eine solche,

wird sie ohne Rückfrage durch den neuen Text ersetzt.

Query Replace
Sucht einen bestimmten Text, und ersetzt ihn nach einer ent-
sprechenden Rückmeldung durch einen anderen.

Find Token
Sucht nach Befehlswörtern (Variablen). Variablen, in denen diese
Buchstabenkombination ebenfalls vorkommt, werden bei der
Suche ignoriert.

List Token |
Sucht nach Befehlswörtern (Variablen) und invertiert alle Stellen,
an denen das Wort vorkommt.

Rename Token

Ersetzt Befehlswörter

List to Printer

Stellt auf Druckerausgabe um. Alle künftigen LIST-Befehle
werden auf dem Drucker ausgegeben.

Find Error

Der Cursor wandert an den Anfang oder das Ende des Wortes,
in dem ein Syntax- oder Type Mismatch Error erkannt wurde.

Der Menüpunkt Block

Unter diesem Menüpunkt sind die Blockoperationen zusammen-
gefaßt, die unter dem Full-Screen-Editor zur Verfügung stehen.
Ehe mit einem Block gearbeitet werden kann, muß dieser erst
einmal definiert werden. Dazu stehen Ihnen zwei Möglichkeiten
offen:

26 Das groBe ST-BASIC-Buch -———

Sie klicken mit der Maus an die Stelle, die die linke obere

Ecke des Blockes bilden soll. Während Sie die Maustaste

festhalten, fahren Sie den Mauszeiger an die Position, an

der der Block enden soll. Lassen Sie nun die Taste los, der

Block ist als solcher definiert.

Setzen Sie den Cursor auf das erste Zeichen, das der Block

enthalten soll, und wählen den Menüpunkt Mark Block

Start. Somit wäre der Blockanfang schon einmal markiert.
Im nächsten Schritt setzen Sie dann den Cursor in die
Zeile, mit der der Block enden soll, und klicken danach

den Menüpunkt Mark Block End in der Menüleiste an.
Damit ist der Block fertig definiert.

Bei der Definition sind zwei Formen von Blöcken zu unterschei-

den:

- einzeilige Blöcke, die auch Ausschnitte einer Zeile enthalte
können. |

- mehrzeilige Blöcke, die immer mit dem Anfang der ersten
Zeile beginnen, und dem Ende der letzten Zeile enden.

Die Einträge dieses Menüpunktes im einzelnen:

Insert

Kopiert einen definierten Block an die aktuelle Cursorposition

Move

Verschiebt einen Block an die neue Cursorposition. Der Block
wird an seiner alten Position gelöscht.

Kill
Löscht einen Block unwiderruflich.

Mark Bl. Start

Die aktuelle Cursorzeile markiert den neuen Blockanfang. Mit
dieser Funktion kann entweder ein neuer Block definiert (um-
ständlich) oder die Blockobergrenze verschoben werden.

 ——— Der Editor 27

Mark BI. End

Die aktuelle Cursorzeile wird zum neuen Blockende ernannt.

Save Block *.* |

Speichert einen definierten Block im ASCII-Format auf Diskette.

Load Block *.*
Lädt einen Block und fügt ihn an der Cursorposition ein.

Print Block

Gibt einen Block auf dem Drucker aus.

Hide

Löscht die Blockmarkierungen, ohne den Block selbst zu löschen.
Seine Grenzen bleiben weiterhin erhalten.

Der Menüpunkt Mode

Dieser Menüpunkt gestattet die Einstellung allgemeiner Punkte,
wie das Einschalten des EinfügemodusEinfüge- oder Über-
schreibmodus, das Umschalten zwischen verschiedenen Bild-

schirmen, oder das Aufspalten in zwei Teilbildschirme:

Insert

Schaltet den Einfügemodus (Häkchen wird dem Eintrag voran-
gestellt) ein und wieder aus.

Switch Screen
St-BASIC verwaltet zwei Teilbildschirme, wenn der Menüpunkt
Split Screen aktiv ist. Mit Switch Screen gelangt man von einem
in den anderen Teilbildschirm. Auch ein Mausklick in den ent-
sprechenden Bildschirmteil bewirkt diesen Effekt.

 28 Das große ST-BASIC-Buch ———

Split Screen

Teilt den Bildschirm in zwei Teile auf, wobei ein dicker Balken
in der Mitte beide Teile voneinander trennt. Wird dieser Balken

mit der Maus angeklickt, kann die Aufteilung der beiden Bild-
schirmhälften verschoben werden. Mit Switch Screen gelangt
man von einem zum anderen Bildschirmfenster. In beiden Teil-

bereichen wird jedoch das gleiche Programm angezeigt. Eine
Änderung des Programms in einem Bildschirmteil führt dadurch
logischerweise auch zu einer Änderung des Programms im an-

deren Teilfenster.

Change Size |

Verändert die Buchstabengröße. Mit dieser Funktion ist es mög-
lich größere Programmteile auf den Monitor zu bekommen. Eine
nochmaliges Aktivieren dieses Eintrages führt zur Wiederher-
stellung des alten Modus.

Line Numbers

ST-BASIC gestattet die Programmierung mit und ohne Zeilen-

nummern. Dieser Menüpunkt schaltet den gewünschten Einga-

bemodus ein. Vorsicht! Wird der Editor bei abgeschalteter
Zeilennumerierung verlassen, führt der Interpreter (Fehler? ?!!)
eine Neunumerierung in Einerschritten durch. Vorhandene
Sprungziele bleiben jedoch unverändert! |

Show Errors

Sucht den Programmtext nach Fehlern ab

Save Settings

Speichert folgende Informationen in einer Datei OMI-

KRON.INF, die dann bei einem Neu start des Programms sofort
eingestellt werden:

- Belegung der Funktionstasten

- aktuelle Auflösung

 Der Editor | — 29

- angewählter Modus (Insert- Überschreibmodus)

- Zeilennumern ein bzw. aus

- Variablenart-Einstellungen iber DEFXXX.

FILE FING ELOCR MODE. Go FLT 5 Be
8 PT AIST
4 ‘x NIDATR. BAS *

3 'k Autor: Michael Maier ae ene bon. 1.09 Datum: 15.08.1988 x
4 'x Ein Programm GROSSEN ST-BASIC BUCH' x
S 'x <C) 1988 b u DA TA’ BECKER GmbH Diisseldorf x
6 EEE CAAR AAAI

2:
3 MODE "D"
1@ DEF FN Screen$(xX$>= CHRS(2794+K$

12 Gro=100" sealls nötig einfach ändern
$(Gro), Vorname$(Gro), Strasse$(Gro>

ta Dim Pins lg Ort $CGro), Tel$(Gro), Geb$(Gro>

16 Fehler$=' '£31[Diese Funkt ion ist Leider! ni icht möglich! ! | 1LSornul"
417 Mel$="[il[Diese Datei enthält"+ STR$CGro>+"} Dat tze!]JLOK]"
48 Fehler_ 2$="[31CIch kann die Datei! nicht finden! ikSorrud®

26 REPEAT
21
22 PRINT @(0,1) 5 "X"%78
23 FOR Y%=1 TO 6: PRINT @¢¥%,1);"%"; @CY%, 789; "": NEXT Y%
24 PRINT @c6,1):"x"x7?
25 PRINT Rca. 28); „MINIDATEI - Hauptmenü"
26 PRINT @(3,28>;
27 PRINT Ga. 16): „ein Demoprogramm aus den grossen ST-Basic Buch"
28 PRINT 189, 28): Name erfassen'

9 PRINT 1 ir _Name_k yieren"
138 | MOU ak 2," "C27 (Datensatz wirklich tpechen?itiaiNeini" 5 zu —

436 Delete<T%) |
E h

ENDIF
4139 UNTIL As="2"
149 RETURN
41
142-Suchen _
143 Header$ Name suchen XKXKKKKKKKAKKKKK"

Abb. 1.3: Der Full-Screen-Editor im Split-Modus

Der Menüpunkt GO

Der Menüpunkt GO beinhaltet unter anderem auch das Setzen

und Anspringen von Marken. Eine Marke ist eine Stelle im Pro-
gramm, die später auf Wunsch angesprungen werden kann.

To last Mark

Setzt den Cursor an die letze Marke

To Line... |
Setzt den Cursor in die betreffende Zeile

 30 Das große ST-BASIC-Buch ———

Line To Top

Scrollt den Bildschirm weiter, bis die aktuelle Cursorzeile in der

ersten Eingabezeile erscheint.

Line to Bottom

Scrollt den Bildschirm zurück, bis die aktuelle Cursorzeile am
unteren Bildschirmrand angekommen ist.

To Mark #X

Diese vier Befehle dienen dazu, den Cursor an eine bestimmte
Marke zu setzen.

Set Mark #X

Mit diesen vier Befehlen können die Marken 1 bis 4 definiert

werden.

Find Error
Durchsucht das Programm nach Fehlern.

Der Menüpunkt RUN

Dieser Menüpunkt gestattet das Starten und Aufrufen von Pro-
grammen:

RUN

Verläßt den Full-Screen-Editor und startet das Programm, das

sich im Speicher befindet. Der gleiche Effekt kann auch mit

<Control> <R> erzielt werden.

Save & Run

Speichert das Programm auf Diskette ab, ehe es ausgeführt wird.

Tron & Run

Schaltet TRON (Trace) ein, ehe das Programm gestartet wird.

 —— Der Editor : 31

Compile
Ruft den Omikron.Compiler Version 3.00 und größer auf. Be-
sitzen Sie einen Compiler mit einer niedrigeren Versionsnummer,

so muß das BASIC-Programm zuerst abgespeichert werden!

Save & Compile

Speichert das Programm vor dem Compileraufruf ab. (für Ver-
sıon kleiner 3.00). Der Editor erwartet den Compiler in Lauf-
werk C , falls ein solches angemeldet ist, ansonsten in Laufwerk
A.

Run *.Bas

Lädt ein (BASIC-)Programm von Diskette und startet es sofort.
Ein Programm das sich bis dato im Speicher befand, wird über-

schrieben.

Exec *.Prg

Dieser Menüpunkt lädt ein beliebiges Programm ein und führt es

aus. Nach dem Programmende befinden Sie sich wieder im ST-
BASIC. Sicherheitshalber sollte ein BASIC-Programm, das sich
noch ım Speicher befindet, abgespeichert werden, ehe ein an-

deres Programm aufgerufen wird. (Damit es Ihnen nicht so wie
mir ergeht, und das neue Programm, weil es kein Blitter-TOS

verträgt, nicht mehr verlassen werden kann. Tja, dann ist natür-
lich das BASIC-Programm im Speicher verloren! Nicht ganz:
Versuchen Sie es in einem solchen Fall mit einem Reset, viel-

leicht haben Sie ja Glück und ST-BASIC meldet sich wieder).

Accessory

Schaltet auf ein GEM-Menü um, und gestattet somit das Auf- |
rufen von gebooteten Accessories.

BASIC-Befehle abkürzen

Folgende Befehle können abgekürzt werden, indem gleichzeitig
die <Alternate>-Taste und der angegebene Buchstabe gedrückt
wird:

 32 Das große ST-BASIC-Buch ———

Abkürzung - führt zu

<Alternate><A> ASCI{
<Alternate> BLOAD

<Alternate><C> CONT

<Alternate><D> DATA

<Alternate><E> ELSE

<Alternate><F> FOR

<Alternate><G> GOTO

<Alternate><H> HARDCOPY

<Alternate><I> INPUT

<Alternate><K> KEY

<Alternate><L> LPRINT

<Alternate><M> MID$(
<Alternate><N> NEXT

<Alternate><O> OPEN

<Alternate><P> PRINT

<Alternate><R> RETURN

<Alternate><S> SYSTEM

<Alternate><T> THEN

<Alternate><U> USING

<Alternate><V> VARPTR

<Alternate><W> WHILE

<Alternate><X> MOUSEX

<Alternate><Y> MOUSEY

Soviel zu den zusätzlichen Möglichkeiten des neuen ST-BASIC.
Die im folgenden Kapitel stehenden Funktionen sind - soweit
nicht anders angegeben - auch für Besitzer des neuen ST-BASIC
relevant.

1.4 Der Fullscreen-Editor des Omikron.BASIC

Der Full-Screen-Editor wird bei allen BASIC-Versionen kleiner

3.00 mit dem Befehl EDIT (Return) betreten. Verlassen werden
kann er mit der Tastenkombination <Control> <C>.

Überschreib- und Einfügemodus

Auch der Full-Screen-Editor kennt die beiden Modi Einfügen
und Überschreiben. Anhand der Cursorform kann man leicht er-

kennen, welcher Modus gerade aktiv ist: Besitzt der Cursor

 ——— Der Editor | 33

nämlich das Aussehen eines senkrechtes Striches, der sıch in In-

tervallen zu einem inversen Quadrat ausdeht und anschließend
wieder auf einen Strich zusammenschrumpft, ist der Einfüge-
Modus (Insert-Mode) gerade aktiv.

Andernfalls ist der Überschreib-Modus angewählt. Dann besitzt
der Cursor die Form eines blinkenden Quadrates. Zwischen bei-
den Modi kann über die Tastenkombination <Control><Insert>
hin- und hergeschaltet werden. Bevorzugen Sıe das Umschalten

über die Menüleiste, setzen Sie den Mauszeiger auf den Menü-
punkt Mode, und klicken in dem darauf herunterrollenden Menü
den Eintrag Insert an. Ein Häkchen, das ab sofort vor diesen
Punkt gesetzt wird, zeigt an, daß der Einfügemodus aktiv ist.

Zeilen einfügen, löschen, trennen und verbinden

Es stehen zwei Möglichkeiten zur Verfügung, um eine Zeile
einzufügen: <Return> fügt unter der aktuellen Zeile eine Leer-
zeile ein <F9> fügt an der aktuellen Zeile eine Leerzeile ein.
Eine Zeile löschen, geht natürlich ebenfalls: <Shift> <F9> ent-
fernt die aktuelle Cursorzeile! Um eine Zeile aufzutrennen, muß
zuerst <Shift> <F6> und anschließend <F9> gedrückt werden.
Zwei Zeilen werden miteinander verbunden, wenn <Shift><F6>
und anschließend <Shift><F9> gedrückt wird.

Weitere Steuerfunktionen

<Tab> Setzt den Cursor an die nächste 8er Posi-
tion.

<Undo> Restauriert den Inhalt einer Zeile, solange
der Cursor die Zeile nocht nicht verlassen

‚hat.

<Esc> Erzielt den gleichen Effekt wie <Undo>
kann jedoch zusätzlich Funktionen vorzei-
tig beenden (Programm laden,...).

<Home> — 5 Setzt den Cursor an den Programmanfang,
| | | bzw. wenn er sıch bereits dort befindet, an

 34 Das groBe ST-BASIC-Buch ————

das Programmende. Ein zweimaliges Betä-
tigen von <Home> setzt den Cursor stets

<Ctrl><Delete>

<Alternate>

Blockoperationen

an den Programmschluß, wenn er sich
inmitten des Programmtextes befindet.

Löscht den Zeilenrest hinter dem Cursor.

Beendet die Funktion Suchen u. Ersetzen

bzw. bricht die Wiederholfunktion ab.

Um den Blockanfang festzulegen, setzen Sie den Cursor in die
gewünschte Zeile und drücken zweimal hintereinander die
Funktionstaste <F7>. Der Blockanfang ist definiert. Das Bloc-
kende wird festgelegt, indem Sie zuerst <F7> und anschließend
<Shift><F7> drücken.

<F7><F8>

<F7>,<Shift><F8>

<F7><F9>

<F7>,<Shift><F9>

Suchen und Ersetzen

Speichert einen definierten Block als

ASCII-File auf der Diskette ab.

Ladt einen als ASCII-File auf Diskette

vorliegenden Block ein.

Kopiert einen Block an die aktuelle

Cursorposition.

Entfernt den Blockinhalt aus dem Speicher.

<F2><F2> "Text" <Return>

Sucht ab der aktuellen Cursorposition nach

der Buchstabenkombination Text. Wird

kein Text angegeben, wiederholt Omi-
kron.BASIC die Suche mit dem zuletzt
verwendeten Begriff.

 —— Der Editor | 35

<F2><F3> "Text" <Return> |

Listet alle Stellen auf, an denen Text im
Programm vorkommt.

<F3><F2> Sucht einen bestimmten Text, und ersetzt
ihn nach Quittierung durch einen
anderen. Anschließend wird die Suche

- fortgesetzt.

<F3><F3> | Sucht und Ersetzt, diesmal jedoch ohne
eine Nachfrage.

GO-Funktion

Mit der Funktionstaste <Fl> kann eine beliebige Zeile ange
sprungen werden. Folgende Funktionen stehen zur Auswahl:

<Fl> <Zeilennr.> Springt zur angegebenen Zeile.

<Fl> <+> <Offset> Springt um <ÖOffset> Zeilen nach unten

(z.B. <Fl> + 20).

<Fl> <-> <Offset> Springt um <Offset> nach oben.

<F1> <Cursor hoch> Setzt die aktuelle Cursorzeile als oberste

Bildschirmzeile.

<F1l> <Cursor runter> Setzt die aktuelle Zeile als unterste Bild-

schirmzeile.

<F10> Blättert im Programm eine Seite vor.

<Shift><F10> Blättert um eine Seite zurück.

 36 Das große ST-BASIC-Buch ——

Funktionstasten definieren

Nach einer Betätigung von <Shift><F7> können die Funktions-
tasten <F4> und <F5> (auch in Kombination mit <Shift>) mit
einem beliebigen Text belegen, indem Sie die gewünschte Taste
drücken. Nach Eingabe des gewünschten Textes, beenden Sie die

Definition durch erneutes Drücken von <Shift><F7>.

Repeat

Drücken Sie nach der Taste, die wiederholt werden soll <F6>,

und geben anschließend die Anzahl der Wiederholungen ein. Ein
Betätigen von <Return> bewirkt, daß das Zeichen in der ge-
wünschten Anzahl auf dem Bildschirm erscheint.

Programm laden und speichern

Nach einer Betätigung der Funktionstaste <F8> werden Sie nach

dem Dateinamen gefragt, unter dem das Programm abgespeichert

werden soll. Das Programm wird als ASCII-Datei auf Diskette
abgelegt. Um ein Programm von Diskette zu laden, drücken Sie
die Tastenkombination <Shift><F8>. Befinden sich im ASCI-
File Zeilen, die Omikron-BASIC nicht versteht, werden diese
Zeilen durch inverse Darstellung gekennzeichnet.

Zeilennummern ein- und ausschalten

Die Tastenkombination <Control><Cir> sorgt dafür, daß Pro-
gramm ohne vorangestellte Zeilennummern eingegeben werden
können. Ein erneutes Betätigen dieser Tasten hebt den Modus
wieder auf. |

Vorsicht: Wird der Full-Screen-Editor mit abgeschalteter Zei-
lennumerierung verlassen, so führt Omikron.BASIC
eine Umnumerierung sämtlicher Zeilen ın Einerab-
ständen durch! Sprungziele bleiben jedoch unverän-
dert. Auf diese Weise können leicht unbrauchbare
Programme entstehen, wenn als Sprungadressen Zei-

lennummern verwendet werden.

 ——— Der Editor 37

Bildschirmaufteilung

Ahnlich wie der Editor des neuen ST-BASIC kann auch der alte
Editor-Bildschirm in unabhängige Teilbereiche aufgeteilt wer-
den. Diese Split-Funktion wird mit <Shift><Fl> aktiviert, der
Cursor kann dann mit <Shift><F2> in die jeweils andere Bild-
schirmhälfte (Split wird hier in vertikaler Richtung durchge-
führt) gesetzt werden. Sie können mit <Shift><F3> auch alter-
native Bildschirmdarstellungen wählen. (z.B. 44*108 Zeichen,
57*128 Zeichen ın Hires).

1.5 ST-Omikron.BASIC verlassen

Um den Interpreter wieder zu verlassen, gehen Sıe in den Bild-

schirm-Editor, tippen

SYSTEM

ein, und betätigen die Return-Taste. Die anschließende Rück-
frage ist mit Y zu quittieren. Tippen Sie dagegen die Taste N,

wird der Interpreter nicht verlassen.

38 Das groBe ST-BASIC-Buch ——

 —— ST-BASIC Grundkurs 39

2. ST-BASIC Grundkurs

Bisher haben Sie eine Menge Theorie über die Handhabung des
Editors gehört. Aus diesem Grund möchte ich Sie nicht länger
auf die Folter spannen und so schnell wie möglich zur Praxis
kommen.

2.1 Ausgabe auf dem Monitor mit PRINT

Laden Sie das ST-BASIC (Omikron.BASIC) - falls noch nicht
geschehen -, und geben Sie folgende Zeile ein:

print "Hallo"

Sobald Sıe die <Return>-Taste betätigen, erscheint in der Zeile
darunter "Hallo". Damit haben wir bereits den ersten Befehl
kennengelernt, mit dem wir einen Text (in unserem Beispiel das
Wort Hallo) auf dem Bildschirm ausgeben können. Der Text, der
auf dem Bildschirm dargestellt werden soll, muß in Anfüh-
rungszeichen hinter dem Befehl PRINT stehen. Was geschieht
nun, wenn wir die Anführungszeichen einfach weglassen?

print Hallo

Auf dem Monitor erscheint nach Betätigung der <Return>-Taste
diesmal nicht das Wort Hallo, wie wir es vielleicht erwartet hät-
ten, sondern eine Null (0). Wie läßt sich dies erklären?

Der Computer unterscheidet zwischen Buchstaben und Variablen.
Buchstaben, hat man ihm beigebracht, müssen in Anführungsz-
eichen stehen. In unserem zweiten Beispiel hat er vergeblich
nach Anführungszeichen gesucht. Deshalb wußte er, daß es sich
bei diesem Hallo nicht um einen Text (Aneinanderreihung von
Buchstaben) handeln konnte. Folglich muß Hallo eine Variable
sein. Mit Sicherheit wurden Sie während Ihrer Schulzeit im Ma-
thematikunterricht schon einmal mit Variablen konfrontiert.
Dort dienen Sie in (Un-) Gleichungen als Platzhalter, die eine

 40 Das große ST-BASIC-Buch ———

bestimmte Zahl verkörpern. In der Gleichung x + 2 = 10 muß
man x durch die Zahl 8 ersetzen, damit die Gleichung stimmt.
Eine ähnliche Funktion besitzen Variablen in einer Program-
miersprache: Sie verkörpern einen Wert (Zahl).

Stellen Sie sich eine solche Variable einmal als eine kleine
Schachtel vor, die sich im Computer befindet. Jede Schachtel

trägt einen Namen, in unserem obigen Beispiel Hallo. Kommt

der Computer zu der Ansicht, daß es sich um keinen Text, son-

dern um eine Variable handelt, beginnt er eifrig in seinem
Speicher zu suchen: Stößt er dabei auf eine Schachtel, die den

angegebenen Namen trägt, so ließt er ihren Inhalt aus, und
schreibt das auf diese Weise ermittelte Ergebnis direkt auf den
Monitor. Findet er dagegen keine Schachtel mit passendem Na-
men, erscheint dort eine Null. In der Informatik spricht man al-

lerdings nicht von Schachteln, sondern von Variablen, und das

werden wir ab sofort auch so machen.

Bliebe noch zu klären, wie wir es schaffen, einer Variablen

einen Wert zuzuweisen. Dazu wird in BASIC das Gleichheitsz-
eichen (=) benutzt, das als Zuweisungsoperator fungiert:

let Hallo = 3

Tippen Sie diese Zeile ab, und vergessen Sie nicht, anschließend

die <Return>-Taste zu drücken. Dies ist deshalb wichtig, da der

Computer erst mit seiner Arbeit beginnt, wenn <Return> ge-

drückt wurde. Seine erste Aufgabe besteht nun darin, nachzuse-
hen, ob in seinem Speicher schon eine Variable mit derartigem

Namen vorhanden ist. Wird er nicht fündig, so legt er eine neue
Variable mit diesem Namen an. Der Zuweisungsoperator sagt

ihm, daß er dieser Variablen den Wert 3 zuweisen soll. Jetzt

müßte die Zahl 3 auf dem Monitor erscheinen, wenn wir den
Befehl

print Hallo

 —— ST-BASIC Grundkurs 41

eingeben. Und tatsächlich erscheit eine 3 auf unserem Monitor.
Der vorangestellte Befehl LET kann problemlos weggelassen

werden, am Ergebnis dieser Operation ändert sich nichts. Dies

liegt daran, daß der BASIC-Interpreter intellegent genug ist,
eine Zuweisung zu erkennen.

Nach diesem kurzen Exkurs über Variablen möchte ich ganz
gerne noch einmal auf den Befehl PRINT zurückkommen, der ja
Gegenstand dieses Kapitels ist. Ich habe Ihnen bisher verraten,
daß ein Text, der auf dem Computerbildschirm ausgegeben wer-
den soll, hinter PRINT in Anführungszeichen stehen muß. Feh-
len die Anführungszeichen, betrachtet der Computer das fol-

gende Wort als eine Variable und gibt deren Wert auf dem
Bildschirm aus. Möchten Sie Text und Variablen gleichzeitig
ausgeben, können Sie das mit ; bewerkstelligen:

print "Heute ist der":Hallo;". September"

Auf dem Monitor erscheint: "Heute ist der 3. September". Der
Computer schreibt zuerst "Heute ist der" auf den Monitor, da es

sich um einen Text in Anführungszeichen handelt. Das Semiko-
lon bewirkt, daß der Inhalt der nachfolgenden Variablen Hallo

nicht in eine neue Zeile gedruckt, sondern gleich hinter "Heute
ist der" weitergeschrieben wird. Hier folgt nun der Inhalt der
Variablen Hallo, der in unserem kleinen Beispiel 3 beträgt. Wie-

derum stößt der Computer auf ein Semikolon, er muß den fol-

genden Text also hinter die 3 schreiben.

Vielleicht ist Ihnen aufgefallen, daß zwischen "Heute ist der"
und der 3 ein Leerzeichen ausgegeben, während hinter der 3

und dem darauffolgenden Text kein Leerzeichen eingefügt
wurde. Die Erklärung dafür ist einfach: wie wir bereits festge-
stellt haben, handelt es sich bei unserem Hallo um eine Variable,

die einen bestimmten Wert (hier die Zahl 3) verkörpert. Eine
Zahl kann entweder positive oder auch negative Werte anneh-

men. Da ein Vorzeichen nicht unbedingt die Lesbarkeit erhöht,
wird nur bei negativen Werten ein Vorzeichen (-) ausgegeben,
bei positiven Werten wird statt dessen der Zahl ein Leerzeichen
vorangestellt. Diesen Effekt habe ich ausgenutzt und so das
benötigte Leerzeichen erhalten.

 42 Das große ST-BASIC-Buch ———

Fassen wir noch einmal zusammen:

- Mit dem Befehl PRINT können Texte und Variablen auf
dem Monitor ausgegeben werden.

- Texte, die ausgegeben werden sollen, müssen in Anfüh-

_ rungszeichen stehen, da ansonsten der Text als Variablen-
name aufgefasst wird.

- Das Semikolon (;) innerhalb eines PRINT-Befehls bewirkt,
daß darauffolgender Text direkt angefügt wird.

- Wird eine Variable mit PRINT ausgedruckt, so stellt der
Computer bei positiven Werten ein Leerzeichen, bei negati-

ven Werten der Zahl ein Minuszeichen voran.

2.2 Variablentypen in ST-BASIC

Bisher haben wir nur eine Variable, die wir Hallo nannten, be-

nutzt. Dieser Variablen haben wir eine positive Zahl (3) zuge-
wiesen. Doch damit ist das Thema Variablen noch lange nicht
ausgereizt. Was geschieht, wenn wir dieser Variablen eine Kom-

mazahl zuordnen?

Hallo = 234.18

Der PRINT-Befehl bringt es an den Tag: Die Ziffern hinter dem
Dezimalpunkt werden vom Computer einfach abgeschnitten. Da-
gegen werden die Nachkommastellen bei folgender Zuweisung
berücksichtigt:

Hallo! = 234.18

Vergleichen wir beide Variablennamen, fällt nur ein Unterschied
auf: Das Ausrufezeichen am Ende der zweiten Variablen muß
dafür verantwortlich sein, daß Nachkommastellen berücksichtigt
werden. Und so ist es auch! Neben dem Namen, den die Va-

riable tragen soll, muß dem Computer noch mitgeteilt werden,

was in dieser Variablen gespeichert werden soll. Dies geschieht
über sogenannte Postfixe, also Zeichen, die an den Namen der
Variablen angehängt werden.

 ——— §T-BASIC Grundkurs 43

Integervariablen

Als Integer werden ganze Zahlen ohne Nachkommastellen be-

zeichnet. Die erste Variable, die wir Hallo nannten, war eine

solche Integervariable. Solange man ıhr ganze Zahlen zuweist,

gibt es keine Probleme. Diese treten erst dann auf, wenn man
versucht, einer Integer eine Kommazahl zuzuordnen. Nicht. daß

dies nicht ginge, der Computer akzeptiert die Zuweisung. Die

Nachkommastellen werden allerdings abgeschnitten, da er für sie
keinen Platz in der Variablen hat. Um dies zu verstehen, muß

ich etwas weiter ausholen:

Schauen wir dazu einmal die (Integer-) Zahl 3548 an. Zerlegt
man diese Zahl nach der Wertigkeit ihrer Stellen, erhält man

folgendes Ergebnis:

3*1000+5*100+4*10+8*1

Auf diese Weise lassen sich alle Zahlen des Dezimalsystems, das

auf den Ziffern O0 bis 9 beruht, darstellen. Von rechts her be-

_ trachtet, hat die erste Stelle stets die Wertigkeit 1, wobei sich die

Wertigkeit von Stelle zu Stelle verzehnfacht. Der Computer tut
sich bei der Zahlendarstellung etwas schwerer, da er keine zehn,
sondern nur zwei Ziffern kennt, die 0 und die |. Reiht man
mehrere Ziffern aneinander, so besitzt auch hier die erste Stelle

(von rechts aus betrachtet) die Wertigkeit Il. Während sich beim
Dezimalsystem die Wertgkeit von Stelle zu Stelle verzehnfacht,
verdoppelt sie sich bei dem vom Computer verwendeten

Dualsystem. Die Binärzahl 111111 besitzt folglich den Wert:

1*32+1*16+1*8+1*4+1*2+1*1:

oder einfacher ausgedrückt: 63. Man hat sich nun darauf geei-
nigt, stets 8 solcher Binärstellen (Bit) zu einer Binärzahl (Byte)
zusammenzufassen. Mit 8 Bit bzw. 1 Byte lassen sich dann 256
verschiedene Werte darstellen. Im Dezimalsystem ausgedrückt,

sind dies die Zahlen von O0 bis 255. Mit 256 Werten kann man
aber noch keine großen Sprünge machen. Aus diesem Grund

44 Das große ST-BASIC-Buch ———

verwendet man für alle Zahlen, die größer als 255 sind, zwei

Bytes. Dieses zweite Byte hat nun die Wertigkeit 256. Die Dezi-
malzahl 3548 benötigt im Computer zwei Bytes:

13 (2. Byte)
220 (1. Byte)

Im Inneren des Rechnes sieht dies dann so aus:

00001101 (1.Byte)

11011100 (2. Byte)

Zwei dergestalt zusammengefasste Bytes werden häufig auch als
Word bezeichnet. Neben Byte und Word gibt es noch Long, wo-
bei dann vier Bytes zusammengefaßt werden. Mit einer solchen
Longinteger können Werte von

-2147483658 bis +2147483657

dargestellt werden.

Im Gegensatz zu anderen BASIC-Interpretern betrachtet ST-

BASIC alle Variablen als Longinteger, falls diese nicht ander-
weitig durch Postfixe gekennzeichnet sind. Verstehen Sie jetzt,
warum Hallo keine Kommazahl speichern konnte? Für den In-

terpreter ist Hallo eine Integervariable vom Typ long. Jeder
Versuch ihr eine Fließkommazahl zuzuweisen, wird mit dem
Abschneiden der Nachkommastellen bestraft.

Jetzt aber endlich zu den Postfixen, mit denen die verschiedenen

Variablentypen gekennzeichnet werden:

Variablentyp darstelibarer Zahlenbereich Postfix

Integer-Byte von 0 bis 255 %B

Integer- Word von -32768 bis 32767 %W oder %

Integer-Long von -2147483658 bis 2147483657 %L bzw.nichts

Anmerkung: Integer-Byte kann nur in Variablenfeldern (Ar-
rays) verwendet werden.

 ——- §T-BASIC Grundkurs 45

Beispiele fiir die Verwendung der Postfixe:

Variable Typ

Hallo%B(X) Integer-Byte

Hallo%W Integer- Word

Hallo% Integer- Word

Hallo%L Integer-Long

Hallo Integer-Long

Fließkommavariablen

Während sich mit Integervariablen lediglich ganze Zahlen dar-
stellen lassen, können mit Fließkommavarıablen (Float) auch
Nachkommastellen bzw. extrem große Zahlen, die den Bereich

einer Longinteger überschreiten, dargestellt werden. ST-BASIC

unterscheidet zwischen Fließkommazahlen mit einfacher Genau-
igkeit (Single Precision) und doppelter Genauigkeit (Double
Precision). Für eine Fließkommavariable mit doppelter Genauig-

keit verleibt sich der Computer 10 Bytes ein, für einfache Ge-
nauigkeit begnügt er sich mit nur 6 Bytes. Bei Single Precision
wird mit "etwa" 9 Nachkommastellen (wovon 7 ausgegeben wer-
den), bei Double Precision etwa 19 Stellen hinter dem Komma
(17 werden ausgegeben) gerechnet. Der darstellbare Zahlenbe-
reich liegt bei beiden Fließkommaformaten bei 10 hoch 4931.

Variablentyp darstellbarer Zahlenbereich Postfix

Float-Single +- 10 hoch 4931 !

Float-Double +- 10 hoch 4931 #

Variable Typ

Hallo! Fließkommazahl mit einfacher Genauigkeit

Hallo# Fließkommazahl mit doppelter Genauigkeit

Möchten Sie einer Fließkommazahl mit doppelter Genauigkeit

eine Zahl (Konstante) zuweisen, wie etwa

Hallo# = 1.66#

 46 Das große ST-BASIC-Buch ———

sollte diese durch ein Postfix (#) als Konstante mit doppelter

Genauigkeit gekennzeichnet werden. Andernfalls wird der
Fließkommavariablen Hallo# nur eine mit einfacher Genauigkeit

gespeicherte Konstante (1.66) zugewiesen, und dies ist ja nicht
im Sinne des Erfinderss. _

Stringvariablen (Zeichenketten)

Sie haben bisher mit Integer- und Fließkommavariablen Be-
kanntschaft geschlossen. Beide Arten sind zur Speicherung von

Zahlen gedacht. Neben Zahlen kennt der Computer noch Buch-
staben oder genauer ausgedrückt: Zeichen. Zeichen deshalb, da
Buchstaben nur eine Teilmenge aus den Zeichen sind. Der
Buchstabe G ist ein Zeichen, die Klammer (, um nur ein Bei-
spiel herauszugreifen, ist ein Zeichen, aber kein Buchstabe.

Zeichen wird im Computerjargon auch character (abgekürzt
char) genannt. Mehrere aneinander gehängte Zeichen bilden eine
Zeichenkette oder einen String. Stringvariablen wird zur Kenn-
zeichnung ihres Standes ein Dollarzeichen $ nachgestellt: Hallo$
(gesprochen: Hallostring). Weisen wir einer solchen Variablen

einmal einen String zu:

Test$ = "Hallo"

Mit print Test$ erscheint auf dem Monitor Hallo. Ein String
muß in Anführungszeichen stehen, damit ihn der Computer von
einer Variablen unterscheiden kann. Zeilen wie

Test$ = Hallo

Test% = "Hallo"

Test# = "Hallo!

werden vom Computer mit der Fehlermeldung TYPE MIS-
MATCH ERROR (einer Variabel wurde ein Wert zugewiesen,
den diese aufgrund ihrer Deklaration (das Postfix!) gar nicht
aufnehmen kann) geahndet.

——— §T-BASIC Grundkurs 47

Variablendeklaration einmal anders

Ein Postfix am Ende des Namens ist eine Möglichkeit, eine Va-
riable zu deklarieren. In ST-BASIC kann dies auch per Befehl
am Anfang eines Programms geschehen. DEFINT "A,B,C" weist
den Computer beispielsweise an, alle Variablen im Programm,

die mit den Anfangsbuchstaben A, B, oder C beginnen, als Inte-

ger-Word (zwei Bytes lang!!) aufzufassen, solange die betref-
fende Variable nicht durch ein entsprechendes Postfix ander-

weitig deklariert ist.

Stößt der Computer während des Programmablaufs auf eine Va-

riable A$, so wird er - ungeachtet der Deklaration am Pro-

grammanfang durch den Befehl DEFINT "A,B,C" - diese als
Stringvariable betrachten, der eine Zeichenkette zugewiesen

werden muß. Eine Variable August wird dagegen als Integerva-
riable vom Typ Word behandelt, da sie nicht anderweitig (z.B.
als Doublefloat) deklariert ist.

Die Deklarationsbefehle im einzelnen:

Befehl Deklaration für Typ

DEFINT Integer-Word

DEFINTL Integer-Long

DEFSNG Float - single precision

DEFDBL Float - double precision

DEFSTR Stringvariable

Beispiele für die Anwendung:

DEFSNG "A-Z" Alle Variablen mit den Anfangsbuchsta-
ben von A bis Z werden als Fließkom-
mavariablen mit einfacher Genauigkeit
(single precison) deklariert.

DEFSTR "A,C,F-M" Alle Variablen mit den Anfangsbuchsta-
ben A, C und F bis M werden als String-
variablen behandelt.

 48 Das große ST-BASIC-Buch ———

Diese Befehle müssen stets in der ersten Programmzeile stehen

und als erste Befehle in ein Programm eingegeben werden, an-
sonsten werden sie vom Computer einfach nicht beachtet. Haben

Sie dennoch einmal einen Deklarationsbefehi vergessen, können
Sie sich mit einem "Klimmzug" aus der Affäre retten: Fügen Sie
den Befehl nächträglich (in die erste Programmzeile) ein und
speichern Sie das Programm als ASCII ab. Wenn Sie das Pro-
gramm dann erneut laden, werden die Variablen gemäß der De-
klaration in der ersten Zeile angelegt - der Schaden ist behoben.

Und noch etwas: Andere BASIC-Interpreter betrachten Vari-

ablen, die nicht durch ein Postfix besonders gekennzeichnet

sind, als Fließkommavariablen mit einfacher Genauigkeit.
Möchten Sie Programme oder Routinen von anderen BASIC-In-
terpretern übernehmen, sollten Sie alle Variablen ohne Postfix

mit DEFSNG "A-Z" als Singe-Float deklarieren, da andernfalls
ST-BASIC diese für Long-Integer hält und Nachkommastellen
einfach ignoriert.

Flags

Flags werden in Programmen benutzt, um Wahrheitswerte zu

speichern. Ein Wahrheitswert kann entweder wahr oder falsch
sein. Im ersteren Fall speichert man eine -1 (wahr), im letzteren
eine 0. Wozu aber dieser Aufwand?

Nehmen wir einmal an, Sie haben eine kleine Textverarbeitung
geschrieben. Beim Einlesen eines Textes von Diskette setzen Sie

pauschal ein Flag auf 0. Wird nun im Text eine Änderung
durchgeführt (z.B. ein Tippfehler ausgebessert), weisen Sie die-
sem Flag auf den Wahrheitswert wahr (-1) zu. Vor dem Verlas-
sen des Programms wird dieses Flag abgefragt. Für den Fall, daß
sein Wert -1 beträgt, kann der Text mit den durchgeführten
Änderungen entweder automatisch abgespeichert, oder aber eine
Warnmeldung ausgegeben werden, damit der Benutzer den Text
auf Diskette bringen kann, ehe seine Korrekturen verloren sind.

 —— ST-BASIC Grundkurs 49

Für ein Flag könnten Sie eine Fließkommavariable mit doppelter

Genauigkeit verwenden. Auf diese Art und Weise hätten Sie
dann 10 Bytes ihres (möglicherweise) kostbaren Speicherplatzes
zum Fenster hinausgeworfen. Aus diesem Grund kamen schlaue

Menschen auf die Idee, eine Variable einzuführen, die nur die

Werte 0 und -1 zu speichern vermag. 0 verkörpert in diesem Fall

den Wahrheitswert falsch, wahrend -1 den Wahrheitswert wahr

repräsentiert.

Flags werden in ST-BASIC als solche durch das Postfix %F ge-

kennzeichnet. Eine Einschränkung ist dabei zu beachten. Dieser
Variablentyp darf - ebenso wie die Integer-Bytes - nur in Va-
riablenfeldern (Arrays) verwendet werden. Was Arrays sind, er-
fahren Sie allerdings erst etwas später. Der Vollständikeit halber

wollte ich die Flags aber schon hier einmal vorstellen.

Nachdem wir nun sämtliche Variablentypen, die in ST-BASIC

existieren, erschöpfend behandelt haben, sollten Sie sıch von

Ihrer Erschöpfung ein wenig erholen, ehe wir unser erstes Pro-

gramm schreiben.

2.3 Das erste Programm

Bisher wurden Sie mit einer ganzen Menge Theorie bombadiert.
Aber dies hatte seinen Grund: Wenn wir schon ein Programm
schreiben, dann bitte ein etwas sınnvolles:

Die Pension "Schlumpf" im bayerischen Wald vermietet Frem-
denzimmer ın verschiedenen Größen an Touristen. Der Inhaber

dieser Pension, Herr Gargamel, hat sich einen Computer ange-

schafft, der ihn bei den wichtigsten Arbeiten, die in dieser Pen-
sion anfallen, entlasten soll. Eine immer wiederkehrende Arbeit
besteht darin, die in DM angegebenen Zimmerpreise für öster-

reichische Gäste in Schilling umzurechnen, damit diese den
Rechnungsbetrag in ihrer Landeswährung begleichen können.

Sıe ahnen es schon: Unser erstes Programmprojekt soll Beträge,

die in DM ausgewiesen werden, direkt in österreichische Schil-
ling umrechnen. Was brauchen wir dazu?

50 Das große ST-BASIC-Buch ———

1 DM entspricht etwa 7 OS (Osterreichische Schilling), der
Wechselkurs beträgt dann folglich 1/7 oder ausgerechnet und
(auf vier Stellen hinter dem Komma) gerundet: 0,1429. Dividiert
man den Rechnungsbetrag durch diesen Kurswert (0,1429), er-
hält man die Summe in Schilling.

Gehen wir (vorläufig) davon aus, daß nur volle DM-Beträge in
Schilling umzurechnen sind, können wir die Rechnungssumme in
einer Integervariablen ablegen. Für den Kurswert werden wir
uns einer Fließkommavariablen mit einfacher Genauigkeit (für
unsere Bedürfnisse vollkommen ausreichend) bedienen. Das Er-
gebnis unserer Division müssen wir auch noch in einer Variablen
festhalten. Logischerweise wird dies ebenfalls eine Fließkomma-
variable sein, da bei der Umrechnung durch die Division Nach-
kommastellen entstehen können.

10 EHAEKKHKEKRHEKEEREKEKEEKKEEKEEEAKEEEKEEEKREKEREREEEEREREEKAKKRRKKE

20 '* WAEHRUNG. BAS *

30 CK nn nn nn nn ne nn en num nn *

40 '* Autor: Michael Maier Version: 1.00 Datum: 22.08.1988 *

50 '* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *

60 '* (C) 1988 by DATA BECKER GmbH Düsseldorf *

70 EHRARKEKKEKKKEKEKKEKKKKKKEKEKKEEKKAEKKEKEEREKREKERKEEKEEKAEERERKREREE

80 !

90!

100 Kurs!=.1429: REM Wechselkurs DM/ÖS

110 Betrag%=300: REM Rechnungssumme

120 Waehrung!=Betrag%/Kurs!' DM in ÖS umrechnen

130 CLS : PRINT Betrag%;" DM";" entsprechen";Waehrung! ;" Schilling"

140 END

Dies ist also das erste Programm, mit dessen Hilfe DM-Beträge

in Schilling umgerechnet werden können. Am Anfang einer je-
den Zeile steht eine Nummer, die Zeilennummer. In BASIC-In-

terpretern früherer Jahre waren diese Zeilennummern Pflicht,

jede Zeile mußte mit einer Nummer versehen sein. Da keine
Nummer zweimal innerhalb eines Programms vorkommen durfte,

wurden üblicherweise 10er Abstände in der Zeilennummerierung
gewählt. Wollte man Programmtext nachträglich einfügen,
konnten die dazwischenliegenden Zahlenbereiche ausgenutzt
werden, und man ersparte sıch auf diese Art die zeitraubende

Umnumerierung der folgenden Zeilen. |

 ——— ST-BASIC Grundkurs Ä 51

ST-BASIC ist hier wesentlich flexibler: Die Zeilennummern
können wahlweise eingegeben werden. Möchten Sie keine Zei-
lennummern mit eingeben, so schalten Sıe diese im Full-Screen-
Editor einfach über die Tastenkombination <Control>
<Cir/Homme> aus, bzw. wieder ein.

Ich selbst bevorzuge die Programmierung ohne Zeilennummern

(die Macht der Gewohnheit!). Aus diesem Grund werde ich
weitgehend auf sie verzichten. Da ST-BASIC intern - auch bei
abgeschalteter Zeilennumerierung - selbstständig Zeilennummern
anlegt, wird in den Listings jede Zeile mit einer Nummer begin-
nen. Sie brauchen diese nicht mit eingeben, falls Sie das eine
oder andere Programm selbst abtippen möchten. Achten Sie je-

doch darauf, daß die Zeilennumerierung auch wirklich abge-
schaltet wurde, damit Sie keine böse Überraschung erleben,
wenn Sie das Programm laufen lassen möchten. Doch jetzt zu-
rück zum Programm:

Der Kurswert wird ın der Fließkommavariablen (single preci-
sion), die den sinnigen Namen Kurs trägt, abgelegt. Das Suffix
am Ende des Variablennamens sagt dem Computer, daß in der

Variablen Kurs eine Fließkommazahl mit einfacher Genauigkeit
zugewiesen werden soll. Der Kurswert selbst steht hinter dem

Zuweisungsoperator =. Die Nullstelle vor dem Komma kann ge-
trost weggelassen werden, sie spielt keine Rolle. Noch etwas: Im

Gegensatz zur herkömmlichen Schreibweise erwartet der Com-
puter kein Dezimalkomma sondern statt dessen einen Dezimal-
punkt, wie Sie dem Listing unschwer entnehmen können.

In einer Programmzeile können mehrere Anweisungen stehen,

die allerdings durch einen Doppelpunkt (:) getrennt werden
müssen. In Zeile 100 ist dies der Fall: Hinter der Zuweisung des

Kurswertes steht ein Doppelpunkt, der den nächsten Befehl
(REM) abtrennt.

REM

Der BASIC-Befehl REM (vom englischen Remark: Anmerkung)
gestattet das Einstreuen von Kommentaren in ein Programm.
Dies ist gerade bei längeren Programmen wichtig. Ist ein Pro-

 52 Das große ST-BASIC-Buch ——

gramm nämlich einmal fertig entwickelt und man möchte es ein
paar Monate später verbessern, kann es leicht passieren, daß

man sich in seinem eigenen Programmcode nicht mehr zurecht-
findet. Moral von der Geschicht’”: Nur nicht mit Kommentaren
geizen! |

Der Rest der Zeile hinter REM wird vom Computer einfach

überlesen. Es ist deshalb nicht möglich, einen neuen Befehl hin-
ter einer REM-Anweisung zu plazieren. Der Computer würde
ihn einfach nicht beachten. Statt REM kann in ST-BASIC auch

das Hochkomma (’) benutzt werden, um einen Kommentar in
das Programm einzufügen. Im obigen Beispiel wurde von dieser

Möglichkeit im sogenannten Header (Programmvorspann in den
Zeilen 10 bis 90) Gebrauch gemacht. |

Die Rechnungssumme wird - da nur volle DM-Beträge in Be-
tracht kommen - einer Integervariaben zugewiesen. Auf den
Befehl LET habe ich auch hier verzichtet, da es ohne ihn ebenso

geht. In der Variablen Kurs ist jetzt also der Kurswert, in Be-
trag% (übrigens eine Integer vom Typ Word) die Rechnungs-
summe gespeichert.

Der nächste Schritt wird in der Programmzeile 120 durchgeführt:
Die Rechnungssumme (Betrag%) wird durch den Kurswert
(Kurs!) geteilt (der Operator fiir die Division lautet /) und das
auf diese Weise ermittelte Ergebnis der (Fließkommavariablen,

aber warum sage ich das?) Waehrung! zugewiesen.

Dort ıst jetzt der Betrag Schilling enthalten und wartet direkt
darauf, per PRINT-Befehl auf dem Bildschirm ausgegeben zu
werden. Zuvor wird jedoch der Optik wegen der Bildschirm mit
CLS (CLear Screen: lösche Bildschirm) gelöscht. Dann erst ist es
soweit: Durch einen Doppelpunkt von CLS getrennt steht der

PRINT-Befehl. Und jetzt geht es gleich rund: Der Rechnungs-
betrag in DM wird zuerst ausgegeben. Dann sorgt der Strich-
punkt hinter Betrag% dafür, daß der Computer in derselben
Zeile weiterschreibt. Es folgt ein Text (DM), der als solcher
durch die Anführungszeichen gekennzeichnet ist.

 —— ST-BASIC Grundkurs 53

Das nächste Semikolon hätte ich mir sparen können, doch dann

hätten Sie nicht so schön gesehen, daB auch zwei Texte mitein-

ander verbunden werden können. Da der Computer direkt wei-

terschreibt, beginnt der Text mit einem Leerzeichen (Space). Der
letzte Befehl END, sagt dem Computer, daß er an dieser Stelle

fertig ist. |

Puh! Jetzt müßte die Funktionsweise des Programms eigentlich
geklärt sein. Also probieren wir es gleich einmal aus! Benutzen
Sie dazu den Full-Screen-Editor (beim ST-BASIC mit <Help>,
bei Omikron.BASIC über die Eingabe des Befehls EDIT und
Drücken von <Return>). Tippen Sie nun die Zeilen 100 bıs 140
ab und starten das Programm. Auch hier haben es Besitzer des
ST-BASIC wieder einfacher: Sie brauchen bloß die Tastenkom-
bination <Control> <R> zu drücken und schon sehen sie das Er-
gebnis auf dem Monitor. Ansonsten muß der Editor erst über

<Control> <C> verlassen und danach RUN (<Return> nicht ver-
gessen!) eingetippt werden. Etwas umständlicher, aber das Er-
gebnis ist in beiden Fällen identisch:

300 DM entsprechen 2099.3702 Schilling

Um andere DM-Beträge in Schilling umrechnen zu lassen, müs-
sen Sie wieder in den Full-Screen-Editor, dort den Wert hinter

der Variablen Betrag% ausbessern und das Programm erneut
starten.

Arithmetikoperatoren

Neben der Division, die in Programmzeile 130 durchgeführt
wurde, sind noch weitere arithmetische Funktionen möglich:
Addition, Subtraktion, Multiplikation und Potenzieren. Für jede
dieser Funktionen existiert ein Operator, der aus folgender Ta-

belle ersichtlich ist:

Operator Funktion Beispiel

+ Addition AR=3 +4
- Subtraktion A%=5-2

* Multiplikation A%=2*3

54 Das große ST-BASIC-Buch ——

Operator Funktion Beispiel

/ Division A#=1/3

\ Integer-Division A#+=6\4

* Potenzieren ("hoch") A% = 2°3

Anmerkungen:

Diese Operationen können nicht nur mit Konstanten (Zah-

len), sondern auch Variablen (sofern sinnvoll) durchgeführt
werden. Die Anweisung A% = H% + 3 weist der Variablen
A% den Inhalt der Variablen H% zu und adddiert dazu den
Wert 3. Aber auch das ist möglich (auch wenn es ungewohnt
aussieht!); A% = A% + 1. Der Inhalt der Variablen A% wird

um den Wert I erhöht. Das = fungiert in diesem Fall ja als
Zuweisungsoperator und nicht als Gleichheitszeichen!

Der Unterschied zwischen der normalen Division .und der
Integer-Division liegt darin, daß das Ergebnis einer Integer-

Division stets ganzzahlig ist, während bei der normalen Di-
vision Kommastellen entstehen können. A! = 7 \ 2 weist der
Variable A! (obwohl Fließkommavariable!) den Wert 3 zu.
Der Rest der Division kann mit der Modulo-Funktion er-
mittelt werden: A% = 7 MOD 2 ergibt den Wert | in A%.
(Das Ergebnis der Integerdivision aus 7 \ 2 ıst bekanntlich 3.
Folglich kann der Rest der Division mit 7 - (3*2) = 1 be-
rechnet werden.). Da der Computer auf die umständliche
Berechnung der Nachkommastellen verzichten kann, resultiert
daraus ein gewaltiger Geschwindigkeitsvorteil bei der Inte-
ger-Division gegenüber der normalen Division.

Soweit arbeitet das Programm ja zufriedenstellend, ganz
glücklich wird Herr Gargamel mit unserer Version allerdings
noch nicht sein:

Die Rechnungssumme muß jedesmal direkt im Programm
ausgebessert werden. Besser wäre es, wenn das Programm

nach dem Betrag fragen und diesen entsprechend umrechnen
würde.

 — S§T-BASIC Grundkurs 55

- Der in Schilling umgerechnete Wert besitzt 4 Stellen hinter
dem Komma, obwohl nur 2 Stellen nötig sind. Deshalb sollte

das Programm auch nur 2 Nachkommastellen ausgeben, die
dann entsprechend auf- bzw. abgerundet werden müssen.

Diese beiden Verbesserungen sollen Gegenstand der zweiten
Version unseres kleinen Programms sein. Zuvor muß aber noch
ein anderes Problem gelöst werden:

2.4 Programme speichern, laden und löschen

Das Programm befindet sich im Speicher des Computers. Falls

Sie jetzt den Computer ausschalten (Halt! Tun Sie’s nicht!), oder

den Resetknopf betätigen, wird das Programm gelöscht. Bei obi-
gem Programm bedeutet dies noch keine Tragödie, da die 5 Pro-
grammzeilen wieder eingegeben sind. Stellen Sie sich aber vor,
ein solches Programm bestände aus mehreren Seiten und die
müßten jedesmal von neuem eingegeben werden.

SAVE

Der Befehl SAVE speichert ein Programm auf Diskette ab. Die
Syntax lautet:

SAVE [''<Programmname>"']

bzw.

SAVE L['"<Programmname>"],A

In beiden Fällen wird das Programm auf der Diskette mit dem
Namen <Programmname.BAS> abgelegt. An der Endung (Exten-

sion) .BAS die der Interpreter an den Namen hängt, können Sie
erkennen, daß es sich um ein BASIC-Programm handelt.

 56 | Das groBe ST-BASIC-Buch ———

Der Programmname selbst darf nicht länger als 8 Zeichen sein.
Möchten Sie das Programm mit einer anderen Extension spei-
chern, so muß diese explizit angegeben werden (z.B. Pro-
gramm.BAK). Folgende Extensions sollten Sie jedoch nach Mög-
lichkeit vermeiden, da sie feste Bedeutungen besitzen:

Extension Bedeutung

.TOS Ausführbares Programm, das unter TOS, dem Betriebssy-

stem des Atari ST läuft.

.PRG Ausführbares Programm, das unter GEM läuft.

TTP Ausfiihrbares Programm, wobei Parameter beim Programm-

start angegeben werden können (Tos Takes Parameter).
DOC Dokumenten-Datei fiir Anleitungen, ...

.BAS BASIC-Programm.

-BAK BAcKup-Datei (vgl. Kapitel 3).

Ohne die Angabe eines Programmnamens benutzt ST-BASIC den
letzten Programmnamen. Dies kann entweder der bei LOAD
oder bei NEW angegebene Name sein. Deshalb auch die eckigen
Klammern, die andeuten, daß der Programmname evtl. auch

weggelassen werden kann.

Wird nach dem Programmnamen noch ein ‚A angehängt, so

speichert der Computer das Programm ebenfalls auf Diskette,

allerdings in einer unkodierten Form. Auf diese Weise gespei-
cherte Programme können dann z.B. von Textverarbeitungspro-

grammen eingelesen werden. Dies ist bei mit dem einfachen
SAVE abgespeicherten Programmen nicht möglich, da diese in
kodierter Form abgespeichert werden (spart Speicherplatz und
ermöglicht schnellere Programmausführungszeiten). Auch wenn

mehrere Programme zusammengehängt ("gemerged") werden sol-
len, müssen sie in unkodierter Form auf Diskette vorliegen.

NEW

Der Befehl NEW entfernt ein Programm und den Inhalt sämtli-
cher Variablen aus dem Speicher des Computers. Gehen Sie des-

halb schon im eigenen Interesse sorgsam mit diesem Befehl um.
Er ist aber immer dann vonnöten, wenn Sie ein neues Programm

 ——— ST-BASIC Grundkurs 57

erstellen möchten und sich noch ein altes im Speicher befindet.

Alternativ kann mit diesem Befehl gleich ein Name für das neue
Programm angegeben werden. Die Syntax dafür lautet:

NEW "<Programmname>"

In Zukunft kann dann bei einem SAVE auf die Angabe des Da-
teinamens verzichtet werden, da er bereits mit diesem Befehl

angegeben wurde.

LOAD

Last not least der Befehl zum Laden eines auf Diskette abge-

speicherten Programms:

LOAD ["<Programmname"]

Die Datei mit dem in Anführungszeichen stehenden Namen wird
in den Speicher geladen. Alternativ dazu kann man sich die An-
gabe eines Namens ersparen und nur LOAD eingeben. In diesem
Fall verwendet ST-BASIC den zuletzt bei SAVE, NEW bzw.

LOAD benutzten Dateinamen. Es ist bei diesem Befehl unwich-
tig, ob die Programme auf Diskette in kodierter oder unkodier-
ter Form vorliegen. ST-BASIC erkennt dies selbständig, und ko-
diert den Programmtext bei Bedarf.

RUN

Den Befehl RUN habe ich schon einmal benutzt. Erinnern Sie
sich? Er diente dazu, ein Programm im Speicher zu starten. Wird
zusätzlich ein in Anführungszeichen stehender Programmname
angegeben, lädt ST-BASIC dieses Programm in den Speicher und
beginnt sofort mit dessen Ausführung.

RUN "WAEHRUNG"

 58 Ä Das große ST-BASIC-Buch —

lädt die Programmdatei WAEHRUNG.BAS in den Speicher und
startet sofort mit der Ausführung. Der gleiche Effekt wird auch
über die beiden Befehle

LOAD "WAEHRUNG"

RUN

erzielt.

2.5 Wie sag ich’s dem Computer?

Nach diesem kurzen Intermezzo wagen wir uns an die verbes-
serte Version unseres Programms.

Das erste Problem: Die Eingabe des Rechnungsbetrages soll ab

sofort gleich direkt, also ohne das umständliche Überschreiben
des Programmtextes, möglich sein. Interaktive Programmierung
wird dieser Vorgang vom Fachmann genannt, wenn der Compu-

ter innerhalb eines Programmes auf eine Eingabe wartet, ehe er

im Programm fortfährt. ST-BASIC bietet eine Fülle derartiger
Befehle: vom einfachen Standard-Eingabebefehl bis hin zur for-
matierten Eingabe, die selbst höchsten Ansprüchen in der pro-

fessionellen Programmierung gerecht wird.

Für unsere Bedürfnisse reicht (vorläufig) der Standardeingabe-
befehl völlig aus. Er lautet:

INPUT

INPUT sagt dem Computer also, daß er dem Benutzer eine
Möglichkeit bieten muß, eine Eingabe - in welcher Form auch
immer - zu tätigen. Doch wohin mit dieser Eingabe? Um mit ihr
weiterarbeiten zu können muß diese einer Variablen zugewiesen
werden. Was würde es uns auch helfen, wenn der Computer die

Eingabe irgendwo in seinem Speicher ablegt, ohne uns - den
Programmierern - den Inhalt zu verraten? Folglich benötigen wir
noch eine Variable, der die Eingabe zugewiesen werden soll.
Diese muß hinter dem PRINT stehen. |

Input A%

 —— §T-BASIC Grundkurs 59

weist der Integervariablen A% den eingegebene Wert zu, wah-
rend die Eingabe bei |

Input A!

einer Fließkommavariablen, die den Namen A! trägt, zugewiesen
wird. Möchten Sie einen String vom Benutzer eingeben lassen,

muß dem Input-Befehl selbstverständlich eine passende Variable

nachgestellt werden:

Input A$

Andernfalls wird der Text nicht akzeptiert, und der Variablen
(z.B. A, A!, A#, usw.) einfach der Wert 0 zugewiesen. In an-

deren BASICdialekten würde sich das Programm sogar mit einer
Fehlermeldung verabschieden. Der Computer gibt - stößt er in
einem Programm auf ein INPUT - ein Fragezeichen aus und
wartet geduldig bis der Benutzer seine Eingabe durchgeführt hat.
Für den Computer ist die Eingabe beendet, sobald die

<Return>-Taste gedrückt wird. Dann holt er sich den eingegebe-
nen Wert und weist ihn der angegebenen Variablen zu.

Soweit ist der INPUT-Befehl ja ganz recht, doch woher soll ein
Mensch, der das Programm nicht geschrieben hat, wissen, was er

eingeben soll? Seinen Namen, das Datum, die Uhrzeit? Um ein
Programm benutzerfreundlich zu machen, sollte noch ein Text
mit ausgegeben werden, der dem Benutzer verrät, welche Ein-

gabe gewünscht wird (so ein Datum in Schilling umgerechnet ist
sicher ganz amüsant, aber ...). Eine Möglichkeit dazu kennen Sie
bereits: PTINT. Somit könnte die Programmzeile lauten:

PRINT " Rechnungssumme in DM: "; » INPUT Betrag%

Das Semikolon dient wieder dazu, das Fragezeichen direkt hinter
dem Text Rechnungssumme in DM: auszugeben. Der Doppel-
punkt trennt den INPUT- vom PRINT-Befehl. Als Ergebnis er-
halten wir auf dem Monitor:

Rechnungssumme in DM: ?

60 | Das große ST-BASIC-Buch -————

Soweit, so gut! Aber es geht (noch!) einfacher! Der INPUT-Be-
fehl ermöglicht nämlich auch die Angabe eines Textes, der mit
ausgedruckt werden soll:

INPUT " Rechnungssumme in DM: ";Betrag%

bewirkt das gleiche Ergebnis auf dem Monitor, nur erscheint
hierbei kein Fragezeichen:

Rechnungssumme in DM:

Möchten Sie mehrere Eingaben mit einem INPUT erledigen,

müssen die einzelnen Variablen durch Kommata getrennt wer-
den. Auch die Eingaben werden durch Komma getrennt:

10 INPUT " Bitte zwei Zahlen eingeben: !;A%,B%

20 PRINT " Die Summe der beiden Zahlen lautet: ";A%+B%

30 END

Bitte zwei Zahlen eingeben: 12,14 (Eingabe)

Die Summe der beiden Zahlen lautet: 26

Diese Art der Eingabe ist vor allem für Koordinatenpaare (x,y)
sinnvoll:

10 REM Berechnung des Abstandes zwischen zwei Punkten

20 INPUT " Koordinaten für Punkt A (x1,y1): ";x1,x2

30 INPUT "' Koordinaten für Punkt B (x2,y2): ";x2,y2

40 Abstand# = SQR((x1-x2)°2 + (y1-y2)°2)
50 PRINT " Der Abstand der beiden Punkte betragt: ";Abstand#

60 END

In den Zeilen 20 und 30 werden die Koordinaten (durch Komma
getrennt) für die Punkte A und B eingegeben. Soweit dürften
noch keine Schwierigkeiten aufgetreten sein. Zeile 40 berechnet
dann den Abstand dieser Punkte nach der Formel:

Abstand = Wurzel aus (x1 - x2)? + (yl - y2)°

 —— ST-BASIC Grundkurs 61

Die Funktion SQR(<Wert>) ergibt die Quadratwurzel von
<Wert>, die der Variablen Abstand# zugewiesen wird. Der
Operator * ist bereits bekannt und erzeugt eine Potenz, in unse-
rem Fall das Quadrat der Differenzen xl - x2 bzw. yl - y2.

Zeile 50 gibt das so berechnete Ergebnis via Print auf dem Mo-
nitor aus. Da Kommata beim INPUT-Befehl dazu dienen, Ein-
gaben, die verschiedenen Variablen zugewiesen werden sollen,
zu trennen, ist es nicht möglich ein Komma einem String zuzu-
weisen. Ein anderer INPUT-Befehl erlaubt dies allerdings:

LINE INPUT

entspricht in seiner Synatx dem INPUT, Kommata können je-

doch mit eingegeben werden. Stehen mehrere Variablen hinter

dem Befehl, so ist für jede Variable eine eigene Eingabezeile
nötig. Also: |

10 LINE INPUT " Bitte zwei Zahlen eingeben: ";A%,B%

20 PRINT " Die Summe der beiden Zahlen lautet: "; A%+B%

30 END

Auf dem Monitor erscheint:

Bitte eine Zahl eingeben: 12 (Eingabe, mit Return beendet)

14 (Eingabe, mit Return beendet)

Die Summe der beiden Zahlen lautet: 26

Soviel zu INPUT bzw. LINE INPUT. In einem späteren Kapitel
werde ich Ihnen die übrigen Eingabebefehle vorstellen.

2.6 Mathematische Funktionen

Ehe Sie jetzt völlig frustriert dieses Buch in die Ecke werfen,
weil Sie seit Ihrer Schulzeit mit der Mathematik auf Kriegsfuß
stehen, sollten Sie wissen, daß es gar nicht so schlimm wird, wie
die Überschrift vielleicht befürchten läßt. Genaugenommen ha-
ben Sie sogar schon mit einer mathematischen Funktion Be-
kanntschaft geschlossen: Die Wurzelfunktion SQR(). Und zudem

möchte ich keine Nachhilfestunde in Sachen Mathematik ertei-

 62 Das große ST-BASIC-Buch ——

len, sondern ein paar Funktionen vorstellen, die wir zur zweiten

Verbesserung im Programm - dem Runden des umgerechneten

Betrages auf zwei Nachkommastellen - benötigen.

Zur Wiederholung: Bei einem Rechnungsbetrag von 300 DM er-
rechnete das Programm eine Summe von 2099,3702 Schilling. Die
beiden letzten Kommastellen sind nicht relevant, also weg damit!

Aber wie? Schon einmal wurden - damals freilich ungewollt -
die Nachkommastellen einer Fließkommazahl abgeschnitten. Er-
innern Sie sich? Genau, bei der Zuweisung einer Fließkomma-
zahl an eine Integervariable fielen die Nachkommastellen weg.

An dieser Stelle muß ich etwas beichten: Die Nachkommastellen
werden nicht einfach nur abgeschnitten. Bei Bedarf wird die
resultierende Integerzahl nämlich noch aufgerundet. Der Com-

puter sieht sich immer dann genötigt aufzurunden, falls der
Nachkommanteil den Wert 0,5 übersteigt. Weist man also der
Integerzahl A% den Wert 1,75 zu, erhält man in A% die In-
tegerzahl 2."Nachtigall, ich hör’ Dich trapsen!" mag der ein oder
andere jetzt denken. Weist man einer Integervariable nämlich die
Fließkommazahl Waehrung! aus unserem Programm zu, so erhält
man als Ergebnis eine Integerzahl - bei Bedarf sogar noch ge-

rundet! Und genau das wollten wir ja! Die beiden unnötigen (!?)

Kommastellen sollten gestrichen werden. Doch bei unserer Zu-
weisung werden nicht nur die beiden letzten, sondern gänzlich
alle Stellen hinter dem Komma entfernt. Ganz so einfach geht
dies also nicht! Versuchen wir’s anders:

Wenn wir - sozusagen mit einem Taschenspielertrick - die bei-
den ersten Nachkommastellen retten, dann die restlichen Nach-

kommastellen abschneiden und zu guter Letzt die beiden ersten
Nachkommastellen wieder anhängen könnten, wäre unser Pro-
blem gelöst. Ein Versuch ist diese Idee mit Sicherheit wert. Zu-
erst also die beiden ersten Nachkommastellen retten:

Im Dezimalsystem besitzt jede Ziffer von rechts aus betrachtet
den zehnfachen Wert ihrer Vorgängerin. Damit habe ich Sie
schon in einem frühren Kapitel mächtig gelangweilt! Multipli-
ziert man jetzt eine Zahl mit 10, wandern alle Ziffern um eine

 —— ST-BASIC Grundkurs 63

Stelle nach rechts, bei einer Multiplikation mit 100 um 2 Stellen.

2345 * 10 = 23450
2345 * 100 = 234500

Ähnlich ergeht es Nachkommastellen bei einer Multiplikation
mit 10 bzw. 100:

2099,3702 * 10 = 20993,702
2099,3702 * 100 = 209937,02

Jetzt kann man die beiden noch vorhandenen Nachkommastellen

abschneiden, da die beiden ersten Stellen hinter dem Komma

durch die Multiplikation mit 100 vor das Komma gewandert

sind.

Diese beiden Stellen müssen nach dem Abschneiden der Nach-
kommastellen wieder hinter das Komma geschoben werden. Aber
das stellt an dieser Stelle kein Problem mehr für uns dar. Wenn

nämlich durch Multiplikation mit dem Wert 10 die Stellen um
eine Position nach links weiterwandern, dann müssen Sie durch
eine Division mit 10 wieder um eine Stelle nach rechts gescho-
ben werden können:

209937 / 10 = 20993,7

209937 / 100 = 2099,37

Die einzige Fehlerquelle, die wir jetzt noch vermeiden müssen,
ist die Integer-Division, die keine Nachkommastellen liefert.
Ansonsten kann nichts mehr schiefgehen:

120 Waehrung=(Betrag%/Kurs!)*100' zwei Stellen nach links

125 Waehrung!=Waehrung/100' danach wieder nach rechts

 64 Das große ST-BASIC-Buch ————

Fügt man diese beiden Zeilen in unser kleines Programm ein,
erhält man wie gewünscht zwei Stellen hinter dem Komma, und
das sogar auf- bzw. abgerundet! Dies ist eine Lösung für das

Problem, aber darauf wollte ich eigentlich gar nicht hinaus! Es
geht nämlich noch kürzer (in einer Zeile!).

In ST-BASIC existieren drei mathematische Funktionen, die sich

mit Vor- und Nachkommateilen einer Zahl befassen:

- INT

- FIX

- FRAC

INT

Die Funktion INT schneidet den Nachkommateil einer Zahl ab,
d.h. genauer gesagt, sie bildet die größte ganze Zahl:

= INT(B)

Der Nachkommateil der Zahl B wird abgeschnitten, die auf diese
Weise erhaltene Integerzahl der Variablen A zugewiesen. Bei ne-
gativen Zahlen erhalten Sıe die größte ganze Zahl, die kleiner als

B ist.

B Int(B)

+3.1 3
+3.8 3
+1.9 1
-2.1 -3
-2.9 -3

FIX

Die Funktionsweise von FIX entspricht im wesentlichen der von
INT. Bei negativen Zahlen wird der Nachkommateil jedoch
ebenfalls abgeschnitten.

 —— §T-BASIC Grundkurs 65

 B Int(B) Fix(B)

+31 3 3
+3.8 3 3
+1.9 1 1
-2.1 -3 -2
-2.9 3 -2

FRAC

FRAC schneidet bei positiven Zahlen den Vorkommateil einer

Zahl ab, bei negativen Werten gilt: FRAC(X) = X - FIX(X).

 B Frac(B)

3.1 l

3.61 61

3 0

-2.5 -.5

-6.9 -.9

Wir möchten den Nachkommateil einer Zahl streichen, dazu be-

nutzen wir entweder die Funktion INT oder FIX. Negative
Werte werden in dem kleinen Beispiel kaum vorkommen, des-

halb liefern beide Funktionen das gleiche Ergebnis. Benutzen
wir also INT.

INT schneidet den Nachkommateil einer Zahl ab. Deshalb müs-

sen wir auch in diesem Fall die ersten zwei Nachkommastellen

durch eine Multiplikation mit 100 retten. Danach wird die
Funktion auf den soeben erhaltenen Wert angewendet und
schließlich gleich wieder durch 100 dividiert:

120 Waehrung!= INT(Betrag%/Kurs!*100)/100

Eine Kleinigkeit fehlt noch. Die Funktion INT schneidet näm-
lich die Nachkommastellen, ohne eine Rundung durchzuführen,
einfach ab. Es bleibt uns also nichts anderes übrig, als die Run-

dung selbst in die Hand zu nehmen. Sehen wir uns dazu die
Funktion INT anhand einer Zahlentabelle näher an:

 66 Das große ST-BASIC-Buch ———

B INT(B)

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Ww
w
W
o
o
w
W
w
W
N

S
N

NH
HY
B
N

DD

N

Sie sehen deutlich, daB stets nur der Vorkommateil einer Zahl in

das Ergebnis einfließt. Aber wieder können wir uns mit einem
kleinen Trick behelfen. Da ab einem Nachkomma von ‚5 gerun-

det werden soll, addieren wir zu unserer Zahl einfach den Wert

0,5. Ist der Nachkommawert der Zahl kleiner als 0,5, ändernt

sich die Zahl vor dem Komma nicht, und die INT-Funktion

schneidet weiterhin die Nachkommastellen ab. Wozu dann der
ganze Aufwand?

Ab einem Nachkommateil von ‚5 ändert sich durch die Addi-
tion auch der Wert der ersten Stelle vor dem Komma (z.B. 2,6 +

‚5 = 3,1). Wendet man auf diesen neuen Wert die INT-Funktion
an, erhält man - ein Blick in obige Tabelle verrät’s - den Wert
3! Genau das wollten wir ja erreichen!

Die zweite Version unseres Programms finden Sie anschließend
abgedruckt. Die Funktionsweise müßte durch die bisher ge-
machten Ausführungen und Erklärungen verständlich sein. Eine
Kleinigkeit wurde zusätzlich noch geändert. Die Variable Betrag!
ist nun eine Fließkommazahl mit einfacher Genauigkeit, es ist
also auch möglich, Kommastellen bei der Rechnungssumme mit

einzugeben. Ferner wird der Bildschirm (logischerweise) vor dem
INPUT-Befehl gelöscht.

 ——— §T-BASIC Grundkurs 67

10 LHHKAKAKKEKEEEKEKEREKEREUKEKEKEEREREKEEREEEEREEREREERREREEEEEEK

20 '* WAEH_V02.BAS Ä *
30 CR amma wee mw meen wae en meme nwneneanannnawranwanananeannnnnenoanwaa es *

40 '* Autor: Michael Maier Version: 1.00 Datum: 22.08.1988 *

50 '* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH! *

60 '* (C) 1988 by DATA BECKER GmbH Düsseldorf *
70 IKKKKKUKKTKK TC CK IK TE TITTEN CN)

80 !

90 !

100 Kurs!=.1429: REM Wechselkurs DM/ÖS

110 CLS : INPUT "' Rechnungssumme in DM: ";Betrag!

120 Waehrung!= INT((Betrag! /Kurs!*100)+.5)/100

130 PRINT : PRINT Betrag! ;" DM";1 entsprechen'";Waehrung! ;" Schilling"

140 END

2.7 Strings und Stringmanipulation

Über Strings habe ich mich schon einmal an anderer Stelle aus-
gelassen. Ehe ich Ihnen auch noch verrate, was man mit Zei-

chenketten so alles anstellen kann, lade ich Sie zu einem kleinen

Ausflug in das Innere Ihres Computers ein.

Buchstaben sind auch nur Zahlen

Was soll denn das schon wieder? Buchstaben sınd Buchstaben

und Zahlen sind Zahlen, da beißt die Maus keinen Faden ab,

oder etwa doch? Sıe kennen natürlich den Unterschied zwischen

einer Zahl und einem Buchstaben, bzw. den daraus resultieren-

den Zeichenketten. Der Computer ist in diesem Punkt leider

nicht so flexibel wie Sie. Ehe ein Buchstabe auf dem Monitor

dargestellt werden kann, ist eine Menge Aufwand nötig:

Die Tastatur des Atari ST wird von einem eigenen Prozessor
überwacht, der sinnigerweise nach seiner Aufgabe Tastaturpro-

zessor genannt wird. Drückt der Benutzer eine Taste, meldet dies
der Tastaturprozessor dem Betriebssystem. Dazu schickt er ein

Datenpaket auf die Reise, anhand dessen die Taste genau iden-

tifiziert werden kann. Es ist aber falsch anzunehmen, ein Drüc-

ken der Taste <A> bewirkt, daß der Buchstabe a an das Be-

68 Das groBe ST-BASIC-Buch ————

triebssystem weitergeleitet wird. Statt dessen erhält es die Infor-
mation, welche Taste gedrückt wurde in Form einer Zahl. Mit
Zahlen kann der Computer ja bestens umgehen.

Das Betriebssystem entscheidet nun, was zu geschehen hat. Muß
der Buchstabe beispielsweise auf dem Monitor ausgegeben wer-

den, so wird eine Tabelle zu Rate gezogen: alle Zeichen sind
dort zusammengefasst und eindeutig anhand einer Nummer
(Zahl) identifizierbar. In dieser Tabelle ist festgelegt, wie jedes
Zeichen bei einer Ausgabe auf dem Monitor auszusehen hat.
Diese Daten holt sich der Computer ab, und kann jetzt den In-
halt der entsprechenden Taste auf dem Monitor ausgeben.

Also ist für den Computer ein Buchstabe eigentlich auch nur
eine Zahl, nämlich die Nummer dieses Buchstabens in einer Ta-

belle. Da auch bei einer Kommunikation zwischen Computer

und Drucker bzw. einem anderen Computer keine Buchstaben,
sondern lediglich die entsprechenden Zahlenwerte übertragen
werden, wurde diese Tabelle für bestimmte Werte standarisiert.
Es muß nämlich eindeutig feststehen, welche Zahl den Buchsta-
ben a in dieser Tabelle repräsentieren soll. Schickt z.B. der
Computer die entsprechenden Codes für das Wort "BASIC" an

den Drucker und diese Werte wären nicht genormt, wäre es
mehr als Zufall, wenn "BASIC" auch auf dem Drucker ausgege-

ben würde.

Standardisiert sind jedoch - wie gesagt - nur bestimmte Zei-
chen, darunter die Buchstaben und Ziffern. Sonderzeichen wie

4.6,0,B8 gibt es in keiner anderen Sprache, sie wiedersetzen sich

somit jedem Standard. Deshalb ist es jedem Computerhersteller
freigestellt, bestimmte Sonderzeichen in den Zeichensatz des
Computers zu integrieren, die von der Norm abweichen. Dies ist
beispielsweise bei den Umlauten im Atari ST der Fall: Schließen
Sie einen Epson-kompatiblen Drucker an den Computer an, so

erhalten Sie beim Ausdruck statt geschweifter Klammern Um-
laute. Umlaute werden dagegen vom Drucker einfach ver-
schluckt. Die übrigen Buchstaben werden jedoch korrekt zu Pa-
pier gebracht, da ihr Code normiert ist.

 —— ST-BASIC Grundkurs 69

Diese Tabelle, in der sämtliche Zeichen über einen standarisier-

ten Code zu erreichen sind, heißt ASCII-Tabelle (American
Standard Code for Information Interchange). Sie umfaßt 256
Zeichen, von denen 128 Werte standarisiert sind. Darunter fallen

Buchstaben, Ziffern, Interpunktionszeichen, und bestimmte

Steuerzeichen.

Soweit, so gut, aber wie kommt man nun an den Code eines

Zeichens heran? Dazu dient in BASIC die Function |

_ ASC

Das Zeichen, dessen Wert Sie wissen möchten, muß in Klam-

mern hinter dem ASC stehen: ASC("a"). Selbstverständlich muß
der auf diese Weise resultierende Wert einer Variablen zugeord-
net werden, damit er nicht irgendwo im Speicher verloren geht:

A% = ASCCa!)

weist der Variablen A% den ASCII-Wert des Zeichens a zu.
Aber auch die Umkehrfunktion ist möglich. Dabei wird das zu

einem ASCII-Wert gehörende Zeichen ermittelt:

PRINT CHRS(97)

gibt den Buchstaben a auf dem Monitor aus.

Auf diese Weise werden die Zahlen in Buchstaben umgewandelt
und umgekehrt. Noch ein paar Beispiele: |

10 AS = "A"

20 PRINT ASC(A$)

30 END

Der Code des Zeichens A wird ermittelt und auf dem Monitor

ausgegeben. Er beträgt stets 65.

10 A$ = "Aller Anfang ist leicht"

20 PRINT ASC(A$)

30 END

 70 Ä Das große ST-BASIC-Buch ——

Wie Sie aus den drei Programmzeilen leicht ersehen können,
wird auch hier die Zahl 65 ausgegeben, obwohl der Funktion
ASC in diesem Fall nicht nur ein Zeichen, sondern ein ganzer

String als Argument (der Wert in Klammern) übergeben wurde.

Bei Übergabe eines Strings wird nur der ASCII-Wert des ersten
Zeichens ermittelt, die übrigen Zeichen werden vom Computer
einfach ignoriert.

10 A% = 65

20 PRINT CHR$(A%)

30 END

Auf dem Monitor erscheint der Buchstabe A. Zu beachten ist
hierbei, daß der ASCH-Code nur fiir Werte von 0 bis 255 defi-

niert ist. Übergibt man größere Werte oder negative Zahlen als
Argument, wird dies vom Computer mit einer Fehlermeldung

quittiert, die zu einem Programmabbruch führt. Aber auch Son-

derzeichen können mit der CHR$-Funktion auf den Bildschirm
gebracht werden:

PRINT CHRS(14);CHR$(15)

Diese beiden Werte erzeugen auf dem Bildschirm das Atari-
Symbol. Steuerzeichen finden sich ebenfalls in der Tabelle:

. PRINT CHR$(7)

läßt einen Glockenton (auch als Piepsen bezeichnet) erklingen.

Die Umkehrfunktion, mit der der ASCII-Wert des soeben er-

zeugten Tones ermittelt werden kann, ist jedoch nicht möglich.
Falls Sie es dennoch schaffen sollten, so geben Sie mir bitte Be-
scheid! Ein weiters, häufig gebrauchtes Steuerzeichen besitzt in
der ASCII-Tabelle den Wert 13 und wird als Carriage Return

(Wagenrücklauf) bezeichnet. Dies ist der ASCII-Code, den auch

die <Return>-Taste beim Betätigen auslöst.

Die ASCII-Tabelle des Atari ST finden Sie im Anhang dieses
Buches. Wir werden in späteren Kapiteln noch einige Male auf
sie stoßen.

 —— §T-BASIC Grundkurs 71

Also stimmt es doch! Der Computer unterscheidet intern nicht

zwischen Buchstaben und Zahlen. Was auf den ersten Blick als

störend und ungewohnt empfunden wird, erweist sich aber schon

bald als Vorteil. Möchten Sie z.B. in einem Programm Namen

alphabetisch sortieren, kommt der ASCH-Code sehr gelegen. Der

Buchstabe B besitzt den Wert 66, A dagegen nur 65, Z schließ-

lich wird als Schlußlicht durch den Wert 90 dargestellt. Deshalb

ist für den Computer der Buchstabe B größer als der Buchstabe
A. Werden nun Namen sortiert, greift der Computer auf die
entsprechenden ASCII-Codes der Buchstaben zurück. Also auf

Zahlen, die er eindeutig nach ihrer Größe ordnen kann. Bei
Buchstaben könnte er dies nicht.

Aber auch in anderen Fällen ist der ASCII-Code für den Pro-
grammierer von Nutzen. Möchten Sie beispielsweise bestimmte
Daten im Programm verschlüsseln, um sie vor neugierigen Blic-
ken anderer zu. schützen, kann dies über den ASCII-Code ge-
schehen. Sie ermitteln einfach die ASCI-Werte der Buchstaben,

die nach einem bestimmten System codiert werden. Ehe die Da-
ten später wieder auf dem Monitor ausgegeben werden, lassen
sie diese vom Computer dekodieren und basteln sich so einen

String über die CHR$-Funktion zusammen, wobei die soeben

dekodierten Zahlen als Argumente benutzt werden. So einfach
geht das.

String-Addition

Zahlen können Sie schon addieren. Aber auch eine Addition von
Strings ist in BASIC problemlos möglich. Als Operator dient
auch hier das +-Zeichen. Es bewirkt, daß zwei Strings hinter-
einander gehängt werden. Der auf diese Weise neu entstehende
String darf jedoch nicht mehr als 32766 Zeichen enthalten.

10 A$ = "ST-BASIC"

20 BS = "Buch"

30 CS = AS+" "+BS ©

40 PRINT " Der Inhalt von AS: "sA$ |
50 PRINT " Der Inhalt von B$: ";B$
60 PRINT " Der Inhalt von C$: ";C$

70 END

 72 Das große ST-BASIC-Buch ———

Lassen Sie dieses kleine Programm laufen, so erscheint auf dem
Monitor: Oo

Der Inhalt von A$: ST-BASIC

Der Inhalt von B$: Buch

Der Inhalt von C$: ST-BASIC Buch

In Programmzeile 10 wird der Variablen A$ die Zeichenkette
ST-BASIC, in Zeile 20 der Variablen B$ der String Buch zuge-

wiesen. In Zeile 30 wird zuerst ein Leerzeichen (Space) an den
Inhalt von A$ angehängt, danach folgt der Inhalt von B$. Die
soeben durch String-Addition erhaltene Zeichenkette wird der
Variablen C$ zugewiesen. Jetzt wird der Inhalt der einzelnen
Variablen auf den Monitor geschrieben. Sie sehen, daß die bei-
den Stringvariablen durch das +-Zeichen verkettet wurden. Der
Zwischenraum wurde mit einem Leerzeichen eingefiigt, damit
beide Wörter nicht direkt aneinandergehängt werden. Als ASCII-
Code besitzt das Lerrzeichen den Wert 32. Folglich. hätte ich die
Zeile 30 auch so formulieren können:

CS=A$S+CHRS(32)+BS.

String-Multiplikation

Ein Kuriosum, das ich bisher nur in ST-BASIC kenne: Strings
können "multipliziert" werden. So liefert die Anweisung

AS = "40 * 5

in der Variablen A$ den String +++++, also genau 5 mal das
Zeichen +.

AS = "-*104+CHR$S(32)*2+"Headl ine"+CHRS(32)*2+"-"*10

weist der Variablen A$ die Zeichenkette

uunannnn- Headline ----------

 ——— ST-BASIC Grundkurs Ä 73

zu. Es wird also die Rechenregel "Punkt vor Strich" bei der Ver-
knüpfung beachtet, sogar Klammern dürfen gesetzt werden:

PR I NT NHL. Wes

PRINT Cyt u y*5

Im ersten Fall erhalten Sie auf dem Monitor +----- ‚„ während im

zweiten Fall das Ergebnis +-+-+-+-+- lautet. Der Multiplikati-
onsoperator (*) muß hinter dem String stehen, den Sie verviel-
fachen möchten. Andernfalls meldet sich der Computer mit

"Type mismatch" zu Wort.

Möchten Sie ihre Programme portabel gestalten, also auf andere

Computer leicht übertragbar machen, so sollten Sie statt der

String-Multiplikation des ST-BASIC möglichst die STRING$-
Funktion bemühen, die das gleiche Ergebnis erzielt, jedoch im

Gegensatz zur Stringmultiplikation auch in anderen Interpretern

implementiert ist. Der einzige Unterschied zwischen beiden Va-
rianten besteht darin, daß man bei STRING$ nur jeweils ein

Zeichen vervielfachen kann, während der Operator (*) dies auch
für Strings zuläßt. Abhilfe können hier folgende Zeilen schaf-
fen, die einen String (A$) n-mal aneinanderhängen. Das Ergeb-
nis der Multiplikation erhalten Sie in der Variablen Multi$:

Multi$="" FOR T% = 1 TO N! N durch entsprechende Zahl ersetzen

Multi$=Multi$+A$

NEXT T%

Keine Angst, obige Zeilen habe ich an dieser Stelle nur der
Vollständigkeit halber eingefügt, damit Sie sehen, wie die
String-Multiplikation in anderen BASIC-Dialekten realisiert
werden kann, nämlich durch eine n-malige Addition der Strings.

 74 Das große ST-BASIC-Buch ———

Stringkonvertierung mit Val und Str$

Auch wenn man von String-Addition oder gar String-Multi-pli-

kation spricht, so bedeutet dies nicht, daß man mit Strings rech-

nen kann. Vielmehr handelt es sich bei diesen Operationen um

eine Verknüfung von Zeichenketten. Mit Zahlen ist die Rech-

 nerei dagegen unproblematisch. Versucht man zu der Zeichen-
kette 134 die Zahl 3 zu addieren, führt dies zu einer Fehlermel-

dung. Äpfel und Birnen lassen sich einfach nicht addieren. Wan-
delt man die Zeichenkette 134 dagegen vor der Addition auch in
eine Zahl um, gibt es keine Probleme. Zur Umwandlung eines
Strings in eine Zahl (numerischen Ausdruck) wird in BASIC der
Befehl

VAL(Zeichenkette)

verwendet. Dabei wird die Zeichenkette von links nach rechts
systematisch abgeklappert, und solange umgewandelt, bis der

Interpreter auf ein Zeichen stößt, das nicht umgewandelt werden
kann, oder das Ende der Zeichenkette erreicht ist. Damit ist die

Arbeit für den Computer erledigt. Selbst wenn später noch ein-

mal ein Zahlenausdruck folgen sollte, wird dieser nicht konver-
tiert:

Zeichenkette Val (Zeichenkette)

354 354

21.September 21

Basic 0

32.5 blabla 32,5

43 tausend 432 43

Links sehen Sie die Zeichenkette, die als Argument bei Val an-
gewendet wird. Kann der String nicht konvertiert werden (z.B.
bei BASIC), liefert die Funktion den Wert 0. Auch VAL("DM
42.17") führt zu dem Ergebnis 0, da bereits das erste Zeichen
des Strings nicht konvertiert werden kann. VAL("42.17 DM") da-
gegen gibt als Ergebnis der Operation die Zahl 42,17 zurück.

 —— §T-BASIC Grundkurs 75

Der umgekehrte Vorgang. Ein numerischer Ausdruck (Zahl) soll

in eine Zeichenkette umgewandelt werden. Auch das geht, und

zwar mit der Funktion

STR$(<numerischer Ausdruck>)

Als Ergebnis liefert die Funktion einen Stringausdruck, der einer
Stringvariablen zugewiesen werden kann:

numerischer Wert resultierende Zeichenkette

12 "12"

48.53 "48.53"
-14 "14"

STR$(43+7) "50"
STR$(A%) je nach Inhalt der Variable A%

An die erste Stelle des entstehenden Strings wird bei positiven

Werten ein Leerzeichen gestellt, das als Platzhalter fiir ein evtl.
auftretendes negatives Vorzeichen dient.

Stringmanipulation

Zeichenketten werden mit dem Operator (+) verknüpft. Sie kön-
nen jedoch auch wieder "auseinandergenommen" werden:

LEFT$

Der Befehl Left$ liefert aus einem STRING <String> genau die
ersten n Zeichen von links:

A$=LEFT$(<String>,n)

Die Variable B$ enthalte die Zeichenkette "Donaudampfschif-

fahrtsgesellschaft". Dann weist LEFT$ der Variablen A$ fol-
gende Zeichenketten zu: (A$=LEFT$(B$,n))

 76 | Das große ST-BASIC-Buch ————

n resultierende Zeichenkette

5 Donau

10 Donaudampf

15 Donaudampfschiff

20 Donaudampfschiffahrt

RIGHT$

Während LEFT$ die ersten n Zeichen des Strings liefert, erreicht

man die letzten n Zeichen der Zeichenkette mit der Funktion

RIGHT$. Die Syntax beider Befehle ist wieder identisch:

A$ = RIGHT$(<String>,n)

n resultierende Zeichenkette bei RIGHT$

12 gesellschaft

23 schiffahrtsgesellschaft

28 dampfschiffahrtsgesellschaft

MID$

Häufig benötigt man einen bestimmten Teilstring aus einer

Zeichenkette. Dieser Teilstring kann über MID$ erreicht werden.
Zwei Variationen von MID$ sind möglich: |

A$ = MID$(<String>,n)

liefert alle Zeichen ab der n-ten Position bis zum String-Ende

von <String>:

n resultierende Zeichenkette

6 dampfschiffahrtsgesellschaft

11 schiffahrtsgesellschaft

22 gesellschaft

Bei der zweiten Variante kann zusätzlich mit angegeben werden,
wie viele Zeichen (<Anzahl>) ab der n-ten Position zurückgege-

ben werden sollen:

A$ = MID$(<String> ‚Anzahl, n)

 —— ST-BASIC Grundkurs 77

n Anzahl resultierende Zeichenkette

6 5 dampf

6 11 dampfschiff

11 6 schiff

1 5 Donau

16 5 fahrt

Mit diesen Befehlen dürfte es kein Problem mehr bereiten, eine

Zeichenkette in ihre Bestandteile zu zerlegen. Möchten Sie be-
stimmte Teilstrings in einer Zeichenkette abändern, so haben Sie
hierfür mehrere Möglichkeiten:

Beispiel:

A$ = "Das kleine ST-BASIC Buch"

Möchten Sie "kleine" durch "grosse" ersetzten, wird dies über
LEFT$ und MID$ etwa so bewerkstelligt:

AS = LEFTS(A$,4)+"grosse"+MIDS(A$, 11)

Sie holen sich die ersten vier Zeichen (Das) mit Hilfe von
LEFT$ und hängen das gewünschte "grosse" an. Zum Schluß
werden die restlichen Zeichen von A$ ab der 11. Position ange-
fügt, und der neu gewonnene Stringausdruck der Variablen zu-
gewiesen. In A$ ist jetzt die Zeichenkette "Das grosse ST-BA-
SIC-Buch" enthalten. Das gleiche Ergebnis kann auch mit
LEFT$ und RIGHTS erzielt werden:

AS = LEFTS(A$,4)+"grosse"+RIGHTS(AS, 14)

Ich kann Ihnen sogar noch eine dritte Alternative anbieten:

MID$(A$,5,6) = "grosse"

Im letzteren Fall wurde eine spezielle Version von MID$ be-

nutzt. MID$(<String>,n, Anzahl) = X$ ersetzt <Anzahl> Zeichen
ab der n-ten Position in <String> durch X$. Beliebte Fehler-
quellen bei LEFT$, MID$ und RIGHTS:

78 Das große ST-BASIC-Buch ———

Es wird versucht, mehr Zeichen aus dem String abzuholen,

als überhaupt enthalten sind: A$="Hallo" B$=LEFT$(A$,10)
führt zu einer Fehlermeldung, da der String lediglich aus 5
Buchstaben besteht. Ebenso falsch sind folgende Ausdrücke:
B$=MID$(A$,6), B$=RIGHT$(A$,10), B$=MID$(A$,2,8),
USW.

Der resultierende Wert ist bei allen drei Funktionen wieder

eine Zeichenkette, die einer Stringvariablen zugewiesen wer-
den muß: B$=LEFT$(A$,2). Flasch ist: B%=LEFT$(A$,2)

LEFT$, MID$, und RIGHT$ dürfen nur auf Zeichenketten
angewendet werden. Falsch wäre: A$=MID$(B, 2,3), da B

eine Integer- und keine Stringvariable ist.

Das erste Zeichen eines Strings hat die Position 1:
A$=MID$(B$,1,5) entspricht A$=LEFT$(B$,5). Falsch ist da-
gegen: A$=MID$(A$,0,5).

LEN

Die Funktion LEN, auf einen Stringausdruck angewendet, liefert
als Ergebnis die Anzahl der in dieser Zeichenkette enthaltenen

Buchstaben:

String LEN(<String>)

Donau 5

ST-Basic 8

Atarı ST 8

g 1

10 CLS : INPUT " Bitte geben Sie ein Wort ein: ";A$ 20 Laenge%=

LENCAS)

30 PRINT '" Das Wort ";A$;" enthält";Laenge%;" Buchstaben!"

40 END

Obiges Programm verdeutlicht noch einmal die Funktionsweise
von LEN. In Zeile 10 wird zuerst der Bildschirm gelöscht, an-
schließend erhält der Benutzer die Aufforderung ein beliebiges
Wort einzugeben, das der Variablen A$ zugewiesen wird. Zeile
30 ermittelt über LEN(A$) die Anzahl der in A$ enthaltenen

 — — S§T-BASIC Grundkurs 79

Buchstaben und weist das Ergebnis der Integervariablen
Laenge% zu. In Zeile 40 wird dann das Wort sowie seine Länge
auf dem Bildschirm angezeigt.

SPC bzw. SPACE$

Beide Funktionen erzeugen einen String, der aus <Anzahl>
Leerzeichen (Spaces) besteht:

A$=SPC(10)

A$=SPACE$(10)

weisen der Variablen A$ einen Leerzeichenstring der Länge 10
zu. Diese Funktionen erfahren ihre Anwendung immer dann,
wenn Daten formatiert auf dem Bildschirm oder dem Drucker
ausgegeben werden sollen und unterschiedliche Längen durch

Leerzeichen ausgeglichen werden müssen, damit ein übersicht-
liches Formular entsteht.

Anmerkung: In anderen BASIC-Dialekten ist die Funktion SPC
auf den PRINT-Befehl beschränkt. Ein Leerzei-
chenstring kann dort nur über die Funktion
Space$ erzeugt werden. In ST-BASIC sind beide
Alternativen gleichwertig. Möchten Sie jedoch
Programme auf andere BASIC-Interpreter über-
tragen, kann es unter Umständen zu Problemen

kommen, wenn Sie SPC außerhalb des Print-Be-
fehls verwenden.

STRING$

STRING$ entspricht der String-Multiplikation mit *, ist jedoch
auf das Vervielfachen eines Zeichens beschränkt:

A$=STRING$(<Anzahl>,<Zeichen>)

weist der Variablen A$ <Anzahl>-mal das Zeichen <Zeichen>
zu. Ein paar Beispiele:

 80 Das große ST-BASIC-Buch ——

Anzahl Zeichen STRING$(Anzahl, Zeichen)

10 "+" ttt+ttt++++
5 "A" AAAAA
5 CHR$(65) AAAAA

5 CHR$(32) " "vgl. Space$(5)

MIRROR$

Die Funktion A$=MIRROR$(<String>) weist der Variablen A$
den Inhalt von <String> zu, jedoch von hinten nach vorne gele-
sen:

<String> MIRROR$(<String>)

hallo ollah

birgit tigrib

roma amor (so ein Zufall!)
basic cisab

UPPER$

Die Funktion A$=UPPER$(<String>) weist der Variablen A$ den
Inhalt von <String> zu, sämtliche Kleinbuchstaben werden in
Großbuchstaben umgewandelt, Sonderzeichen und Zahlen blei-
ben unberührt:

< String> Upper$(< String>)

langmeier LANGMEIER

bader BADER

Peter PETER

SaBINe Sabine

Tip: Da Sonderzeichen von dieser Funktion nicht betroffen
sind, die Umlaute ä,ö,ü jedoch unter diesen in der ASCII-

Tabelle abgelegt sind, sollte am Programmanfang mit dem

Befehl MODE"D" der Modus "deutsch" eingestellt werden.
In diesem Fall werden bei einem UPPER$ auch die Um-

laute in GroBbuchstaben gewandelt, das B wird jedoch

immer durch Doppel-S ersetzt.

 ——— ST-BASIC Grundkurs 81

LOWERS

Die Umkehrfunktion zu UPPERS lautet LOWERS und wandelt

sämtliche in <String> enthaltenen Großbuchstaben in Klein-
buchstaben um. Kleinbuchstaben, Sonderzeichen und Zahlen

bleiben unverändert erhalten. Ist MODE"D" aktiv, werden auch

die Umlaute Ä, Ö, U in Kleinbuchstaben gewandelt.

<String> Lower$(<String>)

LANGMEIER langmeier

BaDer bader

GSG9 gsg9

SaBINe sabine

MODE

Eigentlich hat dieser Befehl ja nichts mit String-Manipulation zu
tun, und dennoch hat er auf Befehle zur String-Manipulation

Einfluß. Deshalb möchte ich ihn an dieser Stelle einbauen. Ein
Beispiel für seine Anwendung haben Sie bei UPPER$ und LO-
WER$ kennengelernt.

MODE "D" schaltet auf den Modus "deutsch", MODE "GB" auf

den Modus "Großbritannien" und MODE "USA" schließlich auf

"amerikanisch". Sofern die verschiedenen Modi Einfluß auf einen

Befehl ausüben, werde ich dies bei der Erklärung des entspre-
chenden Befehls nachreichen.

String-Matching

Als String-Matching bezeichnet der Informatiker das Aufsuchen
eines Teil-Strings in einem (Mutter-)String. Dies wäre z.B. der
Fall, wenn Sie in diesem Buch das Wort String-Matching suchen
würden. Der Teilstring bestünde dann aus String-Matching,
während der Mutter-String der Inhalt dieses Buches wäre. Wir
wollen an dieser Stelle jedoch nicht gleich nach den Sternen
greifen, und uns mit dem Auffinden eines Teilstrings in einer

Zeichenkette normaler Größe befassen. Glücklicherweise sind
wir mit einer Funtion gesegnet, die uns diese Aufgabe abnimmt

 82 Das große ST-BASIC-Buch ———

(C-Programmierer haben da weniger Glück: sie müssen sich ihre
eigene Funktion schreiben und das ist um einiges komplizier-
ter...):

Pos=INSTR(<Mutterstring>, <Suchstring>)

Die Funktion INSTR untersucht, ob die Zeichenkette <Such-
String> im <Mutter-String> enthalten ist. Ist dies der Fall, so
wird der Variablen Pos die Position des Suchstrings innerhalb
des Mutterstrings zugewiesen, andernfalls gibt die Funktion den

Wert 0 zuriick. Klingt kompliziert? Dann schnell ein Beispiel:

< Mutterstring> < Suchstring > Position

Dies ist ein kleiner Test ist 6

Dies ist ein kleiner Test war 0

Dies ist ein kleiner Test ie 2

Zusätzlich. kann noch angegeben werden, ab welcher Position mit

der Suche im <Such-String> begonnen werden soll:

Pos=INSTR(<Beginn>, <Mutterstring>, <Suchstring>)

Der Befehl hat die gleiche Wirkung, mit der Suche nach dem
<Suchstring> wird jedoch erst ab der Position <Beginn> begon-
nen. Wird der Such-String aufgefunden, so gibt die Funktion die
Position des <Such-Strings> innerhalb des <Mutter-Strings> zu-
rück, andernfalls wird der Wert 0 zugewiesen:

< Mutterstring> <Beginn> <Suchstring> Position

Bei diesem Beispiel ... 1 Bei i)

Bei diesem Beispiel ... 5 Bei 12

Bei diesem Beispiel ... 13 Bei 0

Soweit zum String-Matching. Ein kleines Beispielprogramm soll
die Anwendung noch einmal in einem größeren Zusammenhang
verdeutlichen. Dabei kommt es mir hier weniger auf die Eleganz
an (so etwas würde ich nie ın einem normalen Programm fabri-
zieren), sondern vielmehr auf eine kurze Wiederholung des bis-
her Gelernten. Auf den letzten Seiten wurden Sie mit Theorie

direkt erschlagen, aber derart knüppeldick kommt es so schnell

nicht wieder. Doch nun zu unserem kleinen Programm.

—— ST-BASIC Grundkurs

Es soll ein Name in eine String-Variable eingegeben werden,

und zwar zuerst der Vorname, anschließend durch ein Leerzei-
chen getrennt der Familienname. Der erste Buchstabe des Vor-

namens soll in Großschrift, die restlichen Zeichen bis zum Space

in Kleinbuchstaben dargestellt werden. Der Familienname soll
völlig in Großbuchstaben erscheinen. Um die Sache noch etwas

zu verkomplizieren, soll der Name, sowie die Länge des Vor-
und Zunahmens formatiert ausgegeben werden. Hier nun das

Programm:

O
n

A
U
S

W
P

=

©

W
N
W
W
W
W

D
N
D
N

DY
DY
D
Y
D
D

D
D

{Ha
a

a

a
a

SPS
S
e

-

0

E
F
W
N

RH
P
O
D
A
N

O
V

B
W
N

RS
Q
O
V
D
O
A
N

O
V
E

W
N

—

©

CRAKKKKEKKEKKEKEKEKEKREKREEEEEECREKEEEEEEEKREEEERERREEEEREREREERERRERER

ı* NAME .BAS *

'* Autor: Michael Maier Version: 1.00 Datum: 30.08.1988 *

i* Ein Programm aus dem '!'GROSSEN ST-BASIC-BUCH'! *

ı* (C) 1988 by DATA BECKER GmbH Düsseldorf | *

EHKKEAKKKEEKKEEKKEKRREEKEEAEEKEEEREEEKEREEKEERERREREKEREERERREEERREEE

t

CLS : PRINT ! Bildschirm löschen und Leerzeile ausgeben

-INPUT " Bitte geben Sie Ihren Vor- und Nachnamen ein: ";Name$

' Nach einem Leerzeichen suchen ...

Pos%= INSTR(Name$, CHR$(32))
i

' Hier müßte eigentlich überprüft werden, ob ein Leerzeichen

'ı eingegeben wurde, da andernfalls der Variablen Pos% der Wert

ı 0 zugewiesen wird, und das Programm aussteigt ...
i

Name$= UPPERS(LEFTS(Name$,1)+ MIDSC(Name$, 2))

MIDS (Name$,2,Pos%-2)= LOWERS(MIDS(Name$,2,Pos%-2))

Name$= LEFT$(Name$,Pos%)+ UPPER$(C RIGHT$(Name$, LEN(Name$)-Pos%))
‘

Vorname$= LEFT$(Name$,Pos%-1)

Zuname$= MIDS(Name$, Pos%+1)
0

PRINT
PRINT STRINGS(60,"'*"')
PRINT SPC(2);"Name"; SPACES(10);"Vorname"'; SPACE$(10);
PRINT "Zeichen Nachname Vorname"
PR I NT Uke NK + URN

PRINT | |

PRINT " "=:2uname$; SPACES(14- LEN(Zuname$));

PRINT Vorname$; SPACE$(17- LEN(Vorname$));

PRINT SPCC LENC"Zeichen"));

PRINT LENCZuname$); SPACE$(C12- LENC STR$C LEN(CZuname$)-1)));

 84 Das große ST-BASIC-Buch ———

35 PRINT LEN(Vorname$)

36 !

37 END

In Zeile 9 wird der Bildschirm gelöscht. Das nachfolgende
PRINT sorgt dafür, daß die erste Bildschirmzeile leer bleibt. In
Zeile 10 erhält der Benutzer die Aufforderung seinen Vor- und
Zunahmen einzugeben. Dieser wird der Variablen Name$ zuge-
wiesen.

Zeile 12 untersucht die Variable Name$ auf ein Leerzeichen
(CHR$(32)) und weist die Position des Leerzeichens der Vari-

ablen Pos% zu. Da diese für die weiteren Operationen benutzt

wird, müßte in einem anwenderfreundlichen Programm eine
Abfrage eingebaut werden, ob ein Leerzeichen in Name$ zu fin-
den ist. Andernfalls enthält die Variable Pos% den Wert 0 zuge-
wiesen und scheidet für die Benutzung in der Stringmanipulation
aus. Doch da wir dies noch nicht können, habe ich darauf ver-

zichtet.

Jetzt geht’s rund! In Zeile 18 wird zuerst der erste Buchstabe des

Strings mit dem Befehl LEFT$(Name$,1) abgeschnitten. Da
LEFT$ ein Argument von UPPERS ist, wird der erste Buchstabe

(falls nötig) in einen Großbuchstaben gewandelt. Die restlichen
Zeichen bis zum Stringende werden mit String-Addition wieder
angehängt und das Ergebnis der Variablen Name$ zugewiesen.
Dort ist nun wieder die ursprüngliche Zeichenkette zu finden,
der erste Buchstabe allerdings auf alle Fälle in Großschrift.

Im nächsten Schritt werden die restlichen Buchstaben des Vor-
namens in Kleinschrift umgewandelt. Dazu besitzt ST-BASIC
bekanntlich den Befehl LOWER$. In Pos% ist die Position des
Leerzeichens gespeichert. Wir müssen also alle Zeichen ab der 2.

Position von Name$ (den ersten Buchstaben haben wir ja schon
in der letzten Zeile in Großschrift umgewandelt), bis zu Pos%-1
in Kleinbuchstaben verwandeln. Pos%-1 deshalb, da Pos% die
Position des Leerzeichens angibt, das nicht mehr mitgewandelt
werden muß. Berücksichtigt man ferner, daß der erste Buchstabe

im String nicht wieder in Kleinschreibweise dargestellt werden
soll, müssen die Parameter in MID$ 2 und Pos%-2 lauten. Auf

diese Weise resultiert ein Teilstring, der mit dem 2. Buchstaben

 —— §T-BASIC Grundkurs 85

beginnt und vor dem Leerzeichen endet. Gleichzeitig kommen
die beiden Spielarten von MID$ zum Einsatz: rechts des Zuwei-

sungsoperators (=) wird der Teil-String herausgeschnitten und
darauf die Funktion LOWER$ angewendet. Diese Zeichenkette
wird wieder in Name$ eingebaut. Dies erfolgt über das MID$
links des Zuweisungsoperators. |

Der Vorname ist fertig umgewandelt, jetzt geht es dem Zunamen
an den Kragen. Dieser beginnt nach dem Leerzeichen und endet
mit dem String-Ende. Auch hier könnte man wieder MID$ be-
mühen, aber es geht auch - obgleich etwas komplizierter - über
RIGHT$. Als Parameter müssen wir in RIGHT$ angeben, wie-
viele Zeichen wir vom String-Ende abschneiden möchten. Dies
können wir ausrechnen, indem wir von der Stringlänge (LEN)
die Position des Leerzeichens (Pos%) subtrahieren. Übrig bleibt

die Anzahl der Buchstaben des Zunamens. Diesen Parameter be-

nutzen wir in RIGHT$, um den Zunamen zu isolieren. Mit UP-
PER$ erfolgt die Umwandlung des Zunahmens in Großbuchsta-
ben. RIGHTS hat noch einen weiteren Haken: Da wir den String
auseinandergenommen haben, müssen wir ihn auch wieder selbst
zusammensetzen. Aber das bereitet jetzt keine Schwierigkeiten
mehr: LEFT$ liefert die Zeichenkette bis zum Zunamen, daran

hängen wir den umgewandelten Zunamen. Fertig!

In den Zeilen 22 und 23 zerlegen wir dann den soeben unter
vielen Mühen zusammgengesetzten Namen erneut in seine beiden
Bestandteile: Vor- und Zunamen.

Zeile 25 sorgt wieder für eine Leerzeile, ehe in Zeile 26 ein aus
sechzig Sternen (*) bestehender String auf den Bildschirm ge-
bracht wird.

Zeile 27 sorgt ebenso wie die Zeile 28 für die Tabellenüber-
schrift. Dabei dürfte es keinerlei Verständnisprobleme geben.
Achten Sie dabei allerings auf die Funktion des ; am Ende der
Zeile 27. Es bewirkt, daß ein folgender PRINT-Befehl (in Zeile
28) nicht mit einer neuen Zeile beginnt, sondern seine Daten in
die gleiche Zeile schreibt.

 86 Das groBe ST-BASIC-Buch -————

In Zeile 29 kommt die String-Multiplikation und String-Addi-
tion zum Zug. Auch hier werden wieder 60 Sternchen erzeugt,

diesmal jedoch nicht mit STRING$. Es wäre übrigens logischer
gewesen, 30-mal den String ** zu multiplizieren als 29 mal und
daran dann ** zu hängen. Aber dann hatte ich Ihnen nicht so
schön demonstrieren können, daß ST-BASIC "Punkt vor Strich”

verknüpft.

Zeile 30 sorgt wieder für die Ausgabe einer Leerzeile, danach

werden die einzelnen Daten formatiert ausgegeben. Formatiert
bedeutet in diesem Zusammenhang, daß die einzelnen Daten in
die Tablelle spaltenweise unter die jeweilige Überschrift einge-
tragen werden. Ab Spalte 3 soll der Zuname in der Tabelle er-
scheinen, ab Spalte 17 der Vorname usw.

Um den Zunamen ab der Spalte 3 ausgeben zu können, werden

die ersten beiden Spalten mit " " übersprungen, danach folgt der

Zuname. Je nach Eingabe ist der Zuname unterschiedlich lang.
Ab Spalte 17 soll der Vorname ausgegeben werden. Deshalb

müssen die nicht benötigten Spalten zwischen dem Ende des
Zunamens und dem Beginn des Vornamens überbrückt werden.

Die Funktion Space$ ist dafür geradezu prädestiniert: Es werden
14 (Spalte 17 - Spalte 3) Leerzeichen, abzüglich der Länge des
schon ausgedruckten Zunamens, ausgegeben. Die nächste Ausga-

beposition ıst somit unabhängig von der Länge des Zunamens
die Spalte 17. Dieses Spielchen wiederholt sich für die Ausgabe

des Vornamens.

Zeile 33 gibt 7 Leerzeichen aus und setzt die nächste Schreibpo-

sition direkt unter Zuname. Dort wird die Anzahl der im Zuna-
men enthaltenen Buchstaben ausgegeben. Diese kann uU.

durchaus zweistellig werden. Deshalb müssen wir die nicht
benötigten Spalten wieder überbrücken. Doch diesmal wird es
nochmals etwas komplizierter. Wir haben eine Zahl (LEN liefert
ja bekanntlich als Ergebnis eine (Integer-)Zahl) auf dem Moni-
tor ausgegeben. Von einer Zahl wiederum kann die Länge nicht
mit LEN ermittelt werden, da diese Funktion einen String als
Argument erwartet. Soll sie doch einen bekommen!

 —— ST-BASIC Grundkurs Ä 87

Wir wandeln einfach die resultierende Länge mit der Funktion
STR$ in einen String um. Von diesem String können wir wie-
derum die Länge problemlos über LEN ermitteln. STR$ hat aber

eine Eigenheit: bei positiven Werten beginnt der String mit ei-
nem Leerzeichen (Platzhalter für Vorzeichen), ist also um einen
Wert größer als es die umzuwandelnde Zahl war. Doch das
macht gar nichts! Wir ziehen einfach eine 1 ab, schon stimmt das

Ergebnis wieder! Diese Zeile sieht komplizierter aus, als sie ei-

gentlich ist: wir ermitteln die Länge des Zunamens, verwandeln
diese Zahl in einen String und erkunden von diesem wieder die
Länge, abzüglich des Wertes I für das vorangestellte Leerzei-
chen. Für alle, denen das ganze Spielchen ein wenig kompliziert

erscheint, es gibt noch eine wesentlich einfachere Möglichkeit
die Stellen einer Zahl zu erfahren: Über die Logarithmusfunk-
tion. An dieser Stelle möchte ich jedoch nicht näher darauf ein-
gehen.

Zahlensysteme

Es gibt ungezählte Lehrbücher über Programmiersprachen, die
erst einmal die verschiedenen Zahlensysteme behandeln, ehe der

geplagte Leser den ersten Befehl zu Augen bekommt. Da werden

verschiedene Zahlen durch die Systeme jongliert, eine Akrobatik
die ich Ihnen ersparen möchte, weil ST-BASIC diese Arbeit für
Sıe ebensogut erledigen kann.

Das Dezimalsystem müßte Ihnen ebenso wie das Dual- oder auch
Binärsystem vertraut sein. Zwei weitere Zahlensysteme, die in
der Computerei eine wichtige Rolle spielen, möchte ich hier

ganz kurz ansprechen:

Das Hexadezimalsystem

Während der Mensch ım Dezimalsystem rechnet, kann der Com-
puter damit herzlich wenig anfangen. Er bevorzugt das Dualsy-
stem, das wiederum für den Menschen unverständlich ist. Aus
diesem Grund hat man das Hexadezimalsystem eingeführt, das
keiner von beiden versteht. |

88 Das große ST-BASIC-Buch -——-

Aber Spaß beiseite, das Hexadezimalsystem arbeitet mit 16 ver-.

schiedenen Ziffer. Für die Zahlen 0 bis 9 kann man die Ziffern
des Dezimalsystems benutzen, zur Darstellung der übrigen Zah-
len borgt man sich die ersten sechs Buchstaben des Alphabets
(A, B, C, D, E, F). Die Zahl A des Hexadezimalsystems besitzt

im Dezimalsystem den Wert 10, F den Wert 15. Damit man er-

kennt, daß F in diesem Fall kein Buchstabe, sondern eine Zahl

im Hexadezimalsystem ist, stellt man noch das Dollarzeichen $

voran: $A.

Das Oktalsystem

Das Oktalsystem ist das System der C-Programmierer. Es besteht

aus den Ziffern 0-8 und erhält als Kennzeichen ein & vorange-
stellt.

Das Dualsystem

Das Dualsystem basiert auf den beiden Ziffern 0 und 1. Aber
wozu sage ich das? Das einzig Neue daran ist, daß es durch ein

vorangestelltes % gekennzeichnet wird. Es existiert noch eine
weitere Möglichkeit das System anzugeben:

 Präfix für Zahlensystem

&d Dezimalsystem

&h Hexadezimalsystem

&b Dual(Binär-)system
&o Oktalsystem

Nun aber in medias res, der Umwandlung von Zahlen in ein an-
deres System: |

HEX$

Die Funktion HEX$ wandelt einen beliebigen numerischen Wert,
der als Argument angegeben. werden muß, in eine Hexadezi-
malzahl (genauer gesagt in eine Zeichenkette) um:

A$= HEX$(174)

 —— ST-BASIC Grundkurs 89

liefert ın A$ die Zeichenkette " AE". An der ersten Stelle steht

stets ein Leerzeichen.

BINS

Die Funktion BIN$ wandelt einen numerischen Wert in eine

Binärzahl (Zeichenkette) um:

A$= BIN$C160).

ergibt die Zeichenkette " 10100000" ın A$.

OCT$

Jetzt dürfen Sie dreimal raten, welche Funktion OCT$ auslöst!
Richtig, die Umwandlung eines numerischen Ausdrucks in eine

Oktalzahl (Zeichenkette):

A$= OCT$(63)

weist der Variablen A$ " 77" zu.

Möchten Sie die auf diese Weise erhaltenen Zeichenketten wie-
der in eine Dezimalzahl wandeln, erledigt das die Funktion VAL
für Sie. Als Argument muß die Zeichenkette (mit vorangestell-
tem Kennzeichen für das Zahlensystem!) übergeben werden:

 Ausdruck Inhalt von A

A= VAL("&77") 63

A= VAL("$AE") 174

A= VAL("%10100000") 160

Liegt in A$ beispielsweise ein Binär-String vor, kann das Präfix
einfach durch String-Addition vorne angehängt werden:

Zahl= VAL(!'%"+A$)

 90 | Das große ST-BASIC-Buch ———

Das Gleiche gilt natürlich auch für das Hexadezimal- bzw.
Oktalsystem. Das Präfix muß jedoch entsprechend abgeändert
werden. Beim Hexadezimalsystem in $ (Zahl= VAL("$"+A$))
bzw. in & beim Oktalsystem: Zahl= VAL("&"+B$)

Soviel zu den unterschiedlichen Zahlensystemen, die - wie Sie
soeben gesehen haben - in ST-BASIC keinerlei Probleme bei der
Umwandlung bereiten. In diesem Buch werde ich. bei der Zah-
lendarstellung so wenig wie nur irgendwie möglich vom Dezi-
malsystem abweichen, um die Programme übersichtlicher und
einfacher zu gestalten. Trotzdem der Vollständigkeit halber die-
ser kleine Einschub.

2.8 Variablenfelder

Eine weitere Spezies der Gattung Variable stellen die Vari-
ablenfelder oder Arrays dar. Dabei werden mehrere Variablen
eines Typs (z.B. Integer, Float oder String) unter einem Namen
zusammengefasst. Ein in Klammern stehender Index am Ende
des Variablennamens gibt darüber Aufschluß, welches Element
aus dem Array angesprochen werden soll.

A$(3)= "Ein Beispiel für einen Array"

Anschaulicher kann man sich Variablenfelder als eine Kommode
mit mehreren Schubladen (die übereinander angeordnet sind)
vorstellen. Die Schubladen sind durchnumeriert, und eine ein-

zelne Schublade kann über eine Nummer angesprochen werden.
Im obigen Beispiel würde der String "Ein Beispiel für einen Ar-

ray" ın die Schublade mit der Nummer drei abgelegt. Möchten
Sie sich den Inhalt dieser Schublade anzeigen lassen, so erreichen
Sie dies mit dem Befehl

PRINT A$(3)

Damit man in einem Programm mit Feldvariablen arbeiten kann,
müssen sie zuvor dimensioniert werden. Dabei wird dem Com-
puter mitgeteilt, wieviel Platz er für dieses Array reservieren
muß.

 ——— ST-BASIC Grundkurs 91

DIM A$(5)

richtet ein Feld A$ mit 6 Dimensionen ein, da der Index von 0

bis 5 läuft, also von A$(0) bis A$(5).

Wird in ST-BASIC (und nur hier!) der DIM-Befehl vergessen,
dimensioniert der Interpreter selbständig mit einem maximalen
Index von 10. Das heißt im Klartext, daß alle Zuweisungs- und
Ausgabe-Operationen bei undimensionierten Feldern solange

einwandfrei durchgeführt werden, solange der Index den Wert
10 nicht überschreitet. Den Versuch, in einem undimensionierten
Array einen höheren Index als 10 anzusprechen, ahndet der

Computer mit einer Fehlermeldung.

Dennoch sollten Sie sich erst gar nicht angewöhnen, den DIM-
Befehl zu vernachlässigen. Andere BASIC-Versionen sind we-:
sentlich penibler, und dies führt dann bei einem undimensio-

nierten Feld unweigerlich zu einem Programmabbruch mit
Fehlermeldung. Aber auch mehrdimensionale Arrays sind mög-

lich:

DIM AS(5,5)

dimensioniert ein Array mit 36 Feldern. Zur Veranschaulichung
des Ganzen muß wieder die Kommode herhalten. Diesmal besitzt
sie 36 Schubladen. Möchten Sie die Schublade A$(3,2) anspre-
chen, so gehen Sie in die dritte Spalte und zweite Reihe. A$(4,1)
finden Sie dann logischerweise in der vierten Spalte und ersten

Reihe.

Nach diesem Schema können Sie Arrays mit drei, vier und mehr
Dimensionen bilden. Bei mehrdimensionalen Arrays darf die

Größe der ersten Dimension den Wert 65535 und die aller übri-
gen Dimensionen zusammen den Wert 65535 nicht übersteigen.
Die Gesamtgröße des Feldes erhalten Sie durch Multiplikation
der einzelnen Teildimensionen. Sie brauchen sich deshalb aber
keine grauen Haare wachsen zu lassen, da eine Überschreitung.
der erlaubten Gesamtgröße in der Praxis so gut wie nie vor-
kommt, wenn ein Feld vernünftig dimensioniert wird.

 92 Das große ST-BASIC-Buch ———

Variablen-Art Platzbedarf in Byte je Element

Integer-Flag 1 Byte für jeweils 8 Elemente

Integer-Byte 1

Integer- Word 2

Integer-Long 4

Single-Float 6

Double-Float 10

String 6 (+ Länge + 10, sobald angelegt)

2.9 Programmierhilfen

In diesem Kapitel méchte ich Ihnen gerne ein paar Befehle vor-
stellen, die dem Programmierer die tägliche Arbeit im Umgang
mit St-BASIC vereinfachen.

Funktionstastenbelegung

ST-BASIC sieht die Möglichkeit vor, die 10 vorhandenen Funk-
tionstasten mit Zeichenfolgen zu belegen. Die Länge einer Zei-
chenfolge darf dabei den Wert 32 nicht überschreiten.

Wozu dieser Aufwand? Häufig wird während der Programmie-
rung eine bestimmte Zeichenkette immer wieder benötigt. Sie
können diese natürlich jedesmal über die Tastatur eintippen,

aber irgendwann wird Ihnen dies zu blöd (Verzeihung!). Schließ-
lich haben Sie die Möglichkeit, diese Zeichenkette auf eine be-
liebige der zehn Funktionstasten zu legen. Ein Druck auf die
entsprechende Taste genügt und wie von Geisterhand erscheint
die entsprechende Zeichenfolge auf dem Bildschirm.

Um einer Funktionstaste einen bestimmten Text zuzuweisen,

wird in ST-BASIC der Befehl

KEY

verwendet.

KEY 2="ST-BASIC Buch"

weist der Funktionstaste <F2> den String "ST-BASIC-Buch" zu.

 —— ST-BASIC Grundkurs 93

Sobald eine Funktionstaste mit einem Text belegt ist, genügt ein
Druck auf die betreffende Funktionstaste (hier: <F2>), um die
Zeichenfolge ("ST-BASIC-Buch") auf dem Bildschirm erscheinen
zu lassen. Möchten Sie auf die Funktionstaste <Fl> den Befehl
RUN legen, und diesen bei Tastendruck auch gleich ausführen
lassen, so müssen Sie den ASCII-Code bemühen. Da ein Betäti-
gen der <Return>-Taste stets eine Zuweisung abschließt, ist es

nicht möglich, <RETURN> durch Tastendruck einer Zeichen-
kette zuzuweisen. Der ASCII-Code für <RETURN> ist genormt
und besitzt den Wert 13:

KEY 1="run'!+chr$(13)

weist der der Funktionstaste <Fl> den Befehl RUN zu, und

führt diesen bei einem Druck auf die Funktionstaste gleich aus:
das Programm im Speicher wird gestartet. Änlich ergeht es Ihnen
mit den Anführungszeichen, auch sie müssen über den ASCII-
Code (34) eingegeben werden:

KEY3="FILES"+CHRS(34)+"A:\ST_BASIC*.BAS"+CHRS(34)+CHRS(13)

Ein Betätigen der Taste <F3> listet ab sofort sämtliche auf Disk
A im Ordner ST_BASIC enthaltenen BASIC-Programme auf
dem Monitor auf. Weitere 10 Befehlsfolgen können auf den
Funktionstasten abgelegt werden, indem Sie eine Funktionstaste
in Verbindung mit <Shift> drücken:

KEY 13= "CLS"+CHR$C13)

Drücken Sie gleichzeitig <Shift> <F3>, so wird der Bildschirm
gelöscht (Funtionstaste 13), während bei <F3> alleine alle BA-
SIC-Programme auf dem Monitor aufgelistet werden. Möchten
Sie sich die Belegung aller Funktionstasten einmal ansehen, kann
dies über den Befehl

KEY LIST

geschehen.

 94 Das große ST-BASIC-Buch ————

Programm listen

Der Befehl LIST dient dazu, ein Programm ganz oder teilweise
auf dem Bildschirm auszugeben. Alternativ kann das Listing
auch an einen Drucker geleitet werden.

LIST Listet das gesamte Programm.
LIST -200 Listet alle Zeilen bis zur Zeile 200.
LIST 220 Listet die Zeile 220.
LIST 100-200 Listet alle Zeilen von 100 bis 200.

LIST 200- Listet alle Zeilen ab Zeile 200.

Der Bindestrich kann auch durch ein Komma ersetzt werden:

LIST 100,200 Listet alle Zeilen von 100 bis 200.

Daneben können die Zahlen auch durch Varıablen ersetzt wer-

den: |

LIST (ERL)(ERL+50) Listet ab der Zeile, deren Nummer
in der Variablen ERL steht, bis zur

Zeile mit der Nummer ERL+50.
Anmerkung: Tritt ein Fehler im
Programm auf, so enthält die Vari-
able ERL (ERorr Line) die Num-
mer der Zeile, ın der der Fehler

auftrat. In Abhängigkeit dieses
Wertes kann dann in eine be-
stimmte Fehlerroutine verzweigt
werden. Aber dazu später mehr.

Statt einer Zeilennummer können auch Marken (Labels) angege-
ben werden:

LIST -Marke | Listet das Programm bis zur Zeile,

indem das Label Marke definiert

ist.

In einem Listing können Sie mit den Cursortasten auch nach
oben und nach unten scrollen (blättern):

 ——— §T-BASIC Grundkurs | 95

Laden Sie dazu das entsprechende Programm in den Speicher des

Computers und lassen Sie sich mit dem Befehl LIST-100 (der
Wert hinter LIST ist beliebig) alle Zeilen bis zur Zeilennummer
100 ausgeben. Mit der Taste <Cursor nach unten> können Sie

den Cursor bis in die letzte Bildschirmzeile fahren. Dort ange-
kommen rollt (scrollt) das Listing weiter, solange Sie die Cur-
sortaste gedrückt gehalten oder erneut betätigen. Entsprechend

können Sie mit <Cursor nach oben> in die entgegengesetzte

Richtung scrollen, sobald sich der Cursor in der obersten Bild-
schirmzeile befindet. Bevorzugen Sie die Ausgabe des Listings
auf einem Drucker (besonders bei längeren Programmen oft un-
erläßlich), ist dies mit dem Befehl

LLIST

möglich. Die Syntax entspricht dabei voll der des LIST-Befehls.

Eine Umleitung des Listings in eine Datei auf Diskette erreichen
Sie mit der folgenden Zeile.

OPEN "O",1,"<Dateiname>": CMD 1: LLIST: CLOSE 1

schreibt das Listing in eine Diskettendatei mit dem Namen
<Dateiname>. Möchten Sıe das Programm über Modem (RS232-
Schnittstelle) Ihrem Freund vermachen, geht dies folgender-
maßen: |

OPEN "v",1: CMD 1: LLIST: CLOSE1

Variableninhalte anzeigen

Der Befehl DUMP dient dazu, alle Variablen, die in einem Pro-

gramm vorkommen und deren Inhalte auf dem Bildschirm aus-
zugeben. Bei Arrays wird nur die Dimensionierung, nicht deren
Inhalt auf dem Monitor aufgelistet:

10 AS="Hallo"

20 DIM Fliess#(10,2,5),Schrott(25)

30 Dummy!= 2.18

40 END

DUMP

 96 Das große ST-BASIC-Buch -———

A$="Hallo"

DIM FLIESS#(10,2,5)

DIM SCHROTT(25)

DUMMY!= 2.18

OK

Mochten Sie die Variablenliste lieber als Druckerlisting betrach-
ten, müssen Sie

LDUMP

eingeben. Auch hier kann die Ausgabe wieder auf die Diskette
umgeleitet werden:

OPEN "O",1,"<Dateiname>": CMD 1: LDUMP: CLOSE 1

Der Inhalt sämtlicher Variablen wird übrigens mit dem Befehl

CLEAR

gelöscht.

Trace (Programmüberwachung)

Möchten Sie wissen, in welcher Reihenfolge der Computer das

Programm abarbeitet, müssen Sie TRACE einschalten. Dies geht
mit dem Befehl

TRON (Trace on)

Wird das Programm gestartet, so druckt der Computer vor Aus-
führung eines Befehls die Zeilennummer und den gerade bear-
beiteten Befehl in Klammern auf dem Bildschirm aus. Auf diese
Weise kann der Programmablauf einfach überwacht werden.
Dazu ein Beispiel:

 ——— ST-BASIC Grundkurs 97

10 A$="Was weiß ich"

20 B%=30

30 X%=X%+1

40 PRINT AS

50 END

TRON: RUN

(10 LET] [20 LET] [30 LET] [40 PRINT] Was weiß ich

[50 END]

Möchten Sie TRACE wieder abschalten, so brauchen Sie nur

TROFF (TRACE OFF)

eingeben. Werden TRON und TROFF nicht im Direktmodus
eingegeben, sondern innerhalb des Programms ein- und wieder

ausgeschaltet, so verwaltet ST-BASIC die beiden Befehle in
Ebenen: bei einem viermaligen Einschalten von TRACE sind
vier TROFF-Befehle nötig, um den Trace-Modus wieder zu
deaktivieren. Im Direktmodus werden dagegen mit TRON sämt-
liche Ebenen gelöscht und der Trace-Modus auf alle Fälle ein-
geschaltet. Möchten Sie noch mehr Kontrolle über Ihr Programm
gewinnen, so kann

ON TRON GOSUB <Ziel>

weiterhelfen. Dabei wird nach jedem ausgeführten Befehl zu der
in Ziel angegebenen Zeilennummer gesprungen und die dort ste-
henden Anweisungen ausgeführt, bis der Interpreter durch RE-
TURN wieder zum Rücksprung aufgefordert wird. Der nächste
Befehl wird abgearbeitet und wieder zu <Ziel> gesprungen. So-
mit können bestimmte Variablen im Programm überwacht wer-
den. Je mehr Sie in der Unterroutine überprüfen, desto lang-

samen wird die Ausführungsgeschwindigkeit Ihres Programmes
sein. Versuchen Sie sich deshalb kurz zu fassen. In der Variablen
ERL steht die Zeilennummer, von der aus der Interpreter in die
Unterroutine ‘gesprungen ist, in ERR$ der zuletzt ausgeführte
Befehl.

 98 Das große ST-BASIC-Buch ———

Sollten Sie obige Ausführungen nicht ganz verstanden haben,
muß ich Sie wieder vertrösten. Zum Verständnis von ON TRON
GOSUB werden Kenntnisse in der Programmierung von Unter-
routinen benötigt, die Sie (noch) nicht besitzen. Trotzdem hoffe
ich, daß die Funktionsweise von ON TRON GOSUB wenigstens
einigermaßen klar geworden ist.

‚RENUMBER
Wenn Sie mit Zeilennummern programmieren, kommt es immer

wieder vor, daß die eine oder andere Zeile nachträglich einge-

fügt werden muß, andere Zeilen erübrigen sich und werden ge-
löscht. Ebenso kann es passieren, daß Sie zwischen zwei Zeilen
eine neue Zeile einfügen möchten, aber keine Zeilennummer
mehr dazwischenpaßt, da beide Zeilen bereits ın Einerzeilenab-
ständen aufeinander folgen.

Für diese Fälle hält ST-BASIC eine Funktion parat, mit deren

Hilfe die Zeilen neu durchnumeriert werden können: RENUM.
Als Parameter hinter RENUM kann die Zeilennummer angege-
ben werden, mit der das neue Programm, sowie die erste Zeile,

bei der die Umnummerierung beginnen soll. Dritter und letzt-
möglicher Parameter ist dann die Schrittweite zwischen zwei
Zeilennummern, die üblicherweise 10 beträgt.

Beispiele:

RENUM 100,50,10 Numeriert das Programm ab Zeile 50 um.
Zeile 50 wird zur neuen Zeilennummer
100, die darauffolgenden Zeilen werden
in 10er-Schritten durchnumeriert, also

110, 120 usw.

RENUM 0 Numeriert das Programm in Zehner-
schritten durch. Die erste Zeile im Pro-

gramm erhält die Zeilennummer 10.

RENUM Ohne Parameter numeriert das Programm
in Zehnerschritten durch, die erste Zeile
erhält die Nummer 100. RENUM ohne
Parameter ist identisch mit RENUM 100.

 —— S§T-BASIC Grundkurs 99

2.10 Strukturierte Programmierung

Um es gleich vorwegzunehmen, hinter dem Zauberwort Struk-
turierte Programmierung verbirgt sich nichts anderes, als der
sauber gegliederte Aufbau (Struktur) eines Programms. Dem

Anwender, der mit der Software arbeiten muß, wird es in der

Regel herzlich egal sein, in wieweit das Programm strukturiert
aufgebaut ist. Für ihn ist in erster Linie wichtig, daß die Soft-
ware einwandfrei arbeitet.

Der engagierte Programmierer denkt darüber allerdings etwas
anders: Er möchte sich auch noch zu einem späteren Zeitpunkt
in seinem Programm zurechtfinden. Der berühmt-berüchtigte
"Spaghetti-Code" früherer BASIC-Interpreter erschwerte dies in

nicht unerheblicher Weise. Kreuz und quer wurde durch ein
Programm gesprungen, das sich ob seiner mit möglichst vielen
Befehlen vollgepackten Programmzeilen sowieso schon relativ
schwer entschlüsseln ließ. Irgendwann bleibt dann bei einer
derartigen Programmierweise die Übersicht auf der Strecke, das
Programm wird zu einem Buch mit sieben Siegeln.

Um dies zu verhindern, bieten moderne Programmiersprachen
die Möglichkeit zur Strukturierung eines Programms. Auch ST-
BASIC bildet hier - für einen BASIC-Interpreter früherer Jahre

ein Unding - keine Ausnahme. Das Konzept der strukturierten
Programmierung ist so einfach wie genial: Eine gegebene Pro-
blemstellung wird ın viele kleine Einzelprobleme zerlegt, Schritt
für Schritt verfeinert und dabei auf elementare Befehle zurück-
geführt. Ein Beispiel verdeutlicht dies wohl am besten:

Jeder von Ihnen kennt zweifelslos das Spiel "Mastermind", bei

dem eine bestimmte Farb- oder Zahlenkombination erraten wer-

den muß. Ein Spieler denkt sich eine solche Kombination aus,

der andere muß sie durch geschicktes Kombinieren herausfin-
den. Dazu steckt er die vermutete Kombination auf das Spiel-
brett, der Partner überprüft seine Kombination mit der des

Mitspielers. Stimmen zwei Farben (Zahlen) an einer Position
überein, muß er dies anzeigen. Auch eine Farbe, die zwar in der
Kombination seines Mitspielers auftaucht, jedoch an der
falschen Stelle, muß angegeben werden. Auf dieser Basis wagt

 100 Das groBe ST-BASIC-Buch ————

der Spieler dann seinen zweiten Versuch. Dies wiederholt sich

solange, bis entweder das Spielfeld voll (Kombination wurde

nicht erraten) ist oder die Kombination herausgefunden wurde.
Eine erste Zerlegung in Teilprobleme könnte etwa so aussehen:

Farbkombination ausdenken,

vermutete Kombination auf das Spielbrett stecken,

vermutete mit richtiger Kombination vergleichen,

wenn Kombination noch nicht korrekt erraten, dann mit

Schritt 2 fortfahren.

B
Y
N
 Sr

Schritt 3 läßt sich noch weiter aufspalten:

3.1 Erste Position beider Kombinationen vergleichen,
3.2 wenn beide in der Farbe übereinstimmen,

3.3 dann anzeigen, daß Farben in Position und Farbe überein-
stimmen,

3.4 sonst prüfen, ob diese Farbe wenigstens an einer anderen

Position vorkommt.
3.5 Wenn dies der Fall ist,

3.6 dann anzeigen, daß Farbe korrekt erraten, jedoch an die
falsche Position gesteckt wurde,

3.5 wenn schon alle Positionen verglichen,
3.6 dann mit Schritt 4 weiter,
3.7 sonst nächste Position vergleichen, weiter mit 3.2.

Das Gesamtproblem Mastermind wurde in einzelne Teilprobleme

aufgespalten. Natürlich können diese Teilschritte noch ver-

feinert werden, aber dies soll uns an dieser Stelle nicht weiter

interessieren.

Wenn..dann..sonst...

Bei der Verfeinerung des obigen Problems sind wir bereits auf
einen elementaren Befehl zur strukturierten Programmierung
gestoßen: Die "Wenn..dann..sonst.."-Bedingung.

 ——— ST-BASIC Grundkurs 101

wenn beide in der Farbe übereinstimmen

dann anzeigen, daß Farben in Position und Farbe

übereinstimmen.

sonst prüfen, ob

Diese "Wenn..dann..sonst.."-Bedingung wird in BASIC mit den
Befehlen

if (wenn)

enceee (Bedingung erfüllt)

then (dann)

.nun.n (Anweisung(en) ausführen)

else (sonst)

un... (Anweisung(en) ausführen)

ausgedrückt.

Zur Konstruktion: Hinter dem Befehl IF folgt eine Bedingung
(beide Farben stimmen überein). Ist diese Bedingung erfüllt
(beide Farben stimmen überein), werden die Anweisungen hinter
THEN (anzeigen, daß Farben ...) ausgeführt. Ist die Bedingung
dagegen nicht erfüllt (die Farben stimmen nicht überein), gelan-
gen die Anweisungen hinter ELSE zur Ausführung (prüfen, ob
...).

Wie aber kann der Computer prüfen, ob eine Bedingung erfüllt

ist? Ganz einfach, nämlich durch einen sımplen. Vergleich. In

unserem obigen Beispiel müßte man die Bedingung wie folgt
formulieren:

if <Farbe_1 gleich Farbe_2>

then ...

bzw. in syntaktisch richtiger Form:

if Farbe_1 = Farbe_2

then ...

Der Operator = ist uns in seiner Funktion als Zuweisungsopera-
tor (A$= "Hallo") schon bekannt, neu ist dagegen sein zweites
Einsatzgebiet als Vergleichsoperator. Stellen Sie sich Farbe_1
und Farbe _2 als zwei Variablen vor, in denen die Farben ge-

 102 Das große ST-BASIC-Buch ——

speichert werden. Stimmen die Inhalte der beiden Variablen

überein (sind also beide Farben identisch), so wird als Ergebnis
der Operation der Wahrheitswert wahr geliefert, andernfalls
falsch.

Diesen Wahrheitswert macht sich nun die IF-Konstruktion zu
nutze, und führt bei wahr die Bedingung hinter THEN, anson-
sten die Bedingung hinter ELSE aus. Der Vergleichsoperator =
liefert also einen Wahrheitswert. Wahrheitswert deshalb, weil die

beiden Möglichkeiten der Vergleichsoperation, im Computer
wieder (wie sollte es auch anders sein) durch Zahlen dargestellt
werden.

Die Zahl -1 steht dabei für den Wahrheitswert wahr, während 0

den Status falsch repräsentiert. Und hier wären wir wieder bei

den Flags, die derartige Wahrheitswerte speichern können (erin-
nern Sie sich noch dunkel an Kapitel 2°). Einem Flag können
nämlich lediglich die beiden Werte 0 (falsch) und -I1 (wahr) zu-
gewiesen werden. So ist es jederzeit möglich einem Flag den
Wahrheitswert einer Vergleichsopertion zuzuweisen und diesen
Wert später einer IF-Abfrage unterzujubeln! Das Ergebnis bleibt
in beiden Fällen gleich:

100 DIM Flag%F(7)' nur keinen Speicherplatz vergeuden

110 Zahl_1%= 10

120 Zahl_2%= 20

130 Zahl_3%= 10

140 Flag%AF(0)= Zahl_1%= Zahl_2%

150 Flag4F(1)= Zahl_3%= Zahl_1%

160 !

170 IF Flag%F(0O) THEN PRINT "Zahl 1 gleich Zahl 2"

180 IF Flag%F(1) THEN PRINT "Zahl 1 gleich Zahl 3"

190 !

200 END

Sowohl in Zeile 140 als auch in Zeile 150 wird der Inhalt zweier
Variablen miteinander verglichen. Das Ergebnis dieser Operatio-
nen wird jeweils einer als Flag deklarierten Variable (Flag%F(),
diesen billigen Kalauer konnte ich mir einfach nicht verkneifen)
zugewiesen. Die beiden IF der Zeilen 170 und 180 benutzen nun
den Inhalt von Flag%F() als Wahrheitswert, um in Abhängigkeit

 ——— §T-BASIC Grundkurs 103

davon die hinter den beiden THEN stehenden Anweisungen
auszuführen. Ebenso hätte man den Vergleich hinter der IF-

Abfrage durchführen können:

170 IF Zahl_1%= Zahl_2% THEN PRINT "Zahl 1 gleich Zahl 2"

180 IF Zahl_3%= Zahl_1% THEN PRINT "Zahl 1 gleich Zahl 3"

190 ... |

Da in Flags nur die beiden Wahrheitswerte 0 und -1 gespeichert

werden können, kann dies vom Cumputer mit einem einzigen

Bit erledigt werden. Ein Bit wiederum befindet sich nicht ir-
gendwo im Computer, sondern ein aus 8 Bits bestehendes Bündel

wird sauber zu einem Byte zusammengefaßt. Mit 1 Byte können
folglich 8 solcher Flags realisiert werden. Dies ist der Grund
dafür, warum Flags in ST-BASIC lediglich in Array-Notation
auftauchen und 8 Flags jeweils genau ein Byte beanspruchen!

Doch zurück zur IF-Abfrage. Die in der gleichen Zeile hinter
THEN stehende(n) Anweisung(en) werden nur dann ausgeführt,
wenn das Ergebnis der Vergleichsoperation zur Aussage wahr
geführt hat. ST-BASIC erlaubt noch eine andere Variante der
IF..THEN..ELSE..-Struktur, wobei die einzelnen Befehle übere

mehrere Zeilen verteilt werden können.

Dies bringt eine gewaltige Steigerung der Übersichtlichkeit mit
sich, besonders bei längeren Programmen wirkt sich erfahrungs-
‘gemäß eine Verteilung der Struktur auf mehrere Zeilen für die
Lesbarkeit positiv aus. Da die einzelnen hinter THEN stehenden

Anweisungen auf mehrere Zeilen verteilt sind, muß dem Com-

puter dann zusätzlich mitgeteilt werden, wann das Ende der

Struktur erreicht ist. Dies geschieht mit dem Befehl ENDIF:

IF <Bedingung 1>

THEN <Anweisung 1>

<Anweisung 2>

| <Anweisung 3>

ELSE

IF <Bedingung 2>

THEN <Anweisung 4>

 104 Das große ST-BASIC-Buch ———

<Anweisung 5>

ENDIF

ENDIF

Zwei IF-Strukturen sind ineinander verschachtelt. Schon optisch
läßt sich die Abhängigkeit einer Anweisung von dem zugehöri-
gen IF auf den ersten Blick erkennen.

Ist <Bedingung 1> erfüllt, gelangen die Anweisungen 1 bis 3 zur
Ausführung, andernfalls die hinter dem ELSE stehenden An-
weisungen. Doch dort findet sich eine zweite IF-Struktur. Diese
kommt nur dann zur Geltung, wenn die Bedingung | nicht er-
füllt ist. Ist die Bedingung 1 nicht, die Bedingung 2 jedoch er-
füllt, kommen die Anweisungen 4 und 5 zum Zug.

Die zweite IF-Struktur stellt keine Alternativanweisungen in
Form eines ELSE zur Verfügung. Auch das ist möglich, da nicht
in jedem Fall ein ELSE benötigt wird. Interessant ist noch die
Stellung des ENDIF. Die zweite IF-Struktur muß nämlich vor

der ersten wieder geschlossen werden. Sonst klappt die ganze

Verschachtelei nicht. |

Der Ubersichtlichkeit halber steht das ENDIF stets in der glei-
chen Spalte unter dem IF, das es abschließt. Späterstens jetzt

müßte der Begriff der strukturierten Programmierung einleuch-
ten. Mit dem IF..THEN..ELSE..ENDIF kann einem Programm
nämlich eine richtige Struktur (Form) verpasstwerden. Und da-
mit Sie den Vorteil der Strukturierung auch gleich sehen, hier
einmal die unstrukturierte Form des obigen Beispiels (Bedingung
mit B, Anweisung mit A abgekürzt):

IF <B1> THEN <A1>:<A2>:<A3> ELSE IF <B2> THEN <A4>:<A5>

Am Ergebnis ändert sich nichts, wohl aber ist die Übersicht ir-
gendwo hinter dem ersten THEN auf der Strecke geblieben.
Stellen Sie sich einmal vor, die entsprechenden Bedingungen

bzw. Anweisungen stehen in Form von Befehlen in dieser Zeile.
Unübersichtlicher geht’s kaum noch und daher hat BASIC auch

seinen Ruf als Programmiersprache mit "Spaghetti-Code".

——— ST-BASIC Grundkurs | 105

Haben Sie besonders viele IF-Abfragen ineinander verschachtelt,

rücken die hinter jedem neuen IF stehenden Anweisungen im-
mer weiter nach rechts herein. Als platzsparende Alternative

können Sie deshalb noch etwas anders strukturieren, indem Sie
das THEN einfach in die gleiche Zeile wie das IF setzen:

IF <Bedingung 1> THEN

<Anweisung 1>

<Anweisung 2>

<Anweisung 3>

ELSE

IF <Bedingung 2> THEN

<Anweisung 4>

<Anweisung 5>

ENDIF

ENDIF

Obwohl das Programm nichts an seiner Übersichtlichkeit verlo-
ren hat, wird mit jedem neuen IF nicht so weit nach rechts ein-
gerückt, wie dies bei dem ersten Beispiel der Fall gewesen ist.

Gerade bei komplexeren Strukturen birgt diese Methode einen
Vorteil in sich, da der Bildschirmbereich besser ausgenutzt wird
(die ganze Struktur rutscht nicht so schnell nach rechts und kann
eher komplett auf dem Monitor dargestellt werden).

Als Vergleichsoperator mußte bisher das Gleichheitszeichen her-
halten. Dies ist jedoch nicht für alle auftretenden Eventualitäten
ausreichend. Oft muß geprüft werden, ob eine Zahl größer oder

kleiner als eine andere ist, bzw. ob sich zwei Zahlen voneinander

unterscheiden. Deshalb existieren noch ein paar weitere Ver-
gleichsoperatoren, die diese Fälle abfangen. Allen gemeinsam ist
die Tatsache, daß als Ergebnis ihrer Ermittlungen stets der Wert
0 für falsch und -1 für wahr geliefert wird:

Vergleichsoperator Bedeutung des Operators

= gleich

< kleiner

> größer

<= kleiner (oder) gleich
>= Ä größer (oder) gleich

"<> | ungleich

 106 Das große ST-BASIC-Buch ———

Die Operatoren <=, >=, und <> können auch in umgekehrter

Reihenfolge angegeben werden:

Vergleichsoperator Bedeutung des Operators

=> größer (oder) gleich
=< kleiner (oder) gleich
>< ungleich

Der leichteren Lesbarkeit eines Programms zuliebe sollten die
Operatoren in der Reihenfolge benutzt werden, in der sie auch

gesprochen werden (größer gleich).

Ein paar Beispiele:

IFA% > B% THEN ..wenn Inhalt von A% größer als B%

IF A% <> B% THEN ..wenn Inhalt von A% ungleich B%

IF A$ <= B$ THEN ..wenn A$ kleiner gleich B$

Selbstverständlich können auch Zeichenketten miteinander verg-

lichen werden, da der Computer bei einem Vergleich auf die
ASCIH-Tabelle zurückgreift, in der den Buchstaben unterschied-

liche Zahlen zugeordnet sınd. (Sie erinnern sich ...)

Demzufolge ist der String "Hallo" kleiner als die Zeichenkette
"Vanillepudding”. Im Normalfall werden solche Vergleiche (ab-
gesehen von dem Gleichheitsoperator =) aber nur für Sortierrou-

tinen verwendet, und auch hier glänzt das ST-BASIC durch eine
schon in den Interpreter integrierte Routine. Wir als Program-

mierer müssen uns folglich nicht mehr mit dem Sortieren her-
umschlagen, der Computer erledigt dies für uns mit nur einem

Befehl sozusagen im Handumdrehen.

GOTO

Der GOTO-Befehl ist der ärgste Feind der strukturierten Pro-
grammierung, da er den vorgegebenen Programmfluß von oben
nach unten vollkommen durcheinanderbringt und den Computer

 —— ST-BASIC Grundkurs 107

zwingt, an einer anderen Programmstelle fortzufahren. Trotzdem
- oder vielleicht auch gerade deshalb - soll er in diesem Kapitel
seinen Platz finden.

Die Syntax des GOTO ist einfach:

GOTO <Ziel>

<Ziel> ist im einfachsten Fall eine Zeilennummer:

10 PRINT "Hallo"

20 GOTO 10

30 END

Wenn Sie das Programm abtippen (machen Sie es lieber nicht),
so druckt der Computer ständig das Wort Hallo auf den Bild-
schirm. Er wird nie damit aufhören! Warum das?

In Zeile 10 findet er die Aufforderung, das Wort Hallo auf dem

Monitor darzustellen. Folgsam wie ein Computer nun einmal ist
kommt er diesem Befehl auch prompt nach. In der nächsten

Zeile findet er sich mit dem GOTO konfrontiert. Er muß sozu-
sagen einen Schritt zurück, zur Zeile 10. Dort darf er wieder ein

freundliches Hallo auf den Bildschirm bringen. Ehe er sich recht
versieht, gelangt er über Zeile 20 schon wieder zur Zeile 10, und
was macht er jetzt? Er stellt zum dritten Mal das Wörtchen
Hallo auf dem Bildschirm dar. Dieses Spielchen wiederholt sich

solange, bis Sie ihm entweder mit <Comtrol> <C> ein Ende be-
reiten (herzlichen Dank vom Computer) oder mittels des Netz-
schalters den Saft abdrehen.

ST-BASIC wäre jedoch nicht ST-BASIC, könnte es nicht noch
ein paar zusätzliche Trümpfe ausspielen (die Zeilennummer kann

nämlich auch berechnet werden):

GOTO 100+10*Zeile

springt je nach Inhalt der Variablen Zeile in eine bestimmte
Programmzeile. Möchten Sie nur eine einzelne Variable angeben,
muß diese nach einem GOTO in Klammern stehen (Begründung
kommt gleich!):

 108 Das große ST-BASIC-Buch ——

GOTO (Zeile)

setzt die Programmausführung in der Zeile Zeile fort. Zeilen-
nummern sind ganz ganz lieb und recht, aber was tun, wenn in

einem Programm keine Zeilennummern vorkommen? Dafür kön-
nen dann bestimmte Sprungstellen (Marken) vereinbart werden.

Damit der Computer nicht versehentlich eine solche Marke

(Label) mit einer Variablen verwechselt (und dabei in die ewi-
gen Jagdgründe verschwindet, weil der Variablentyp den Sprung

nicht zuließ) muß - gleichsam als Zeichen ihres Standes - ein
Minuszeichen vor eine Marke gesetzt werden. Es versteht sich
von selbst, daß nicht zwei gleiche Labels in einem Programm
auftauchen dürfen, damit der Computer auch immer schön den
Überblick behält (selbst dann noch, wenn Sie ihn schon längst
verloren haben).

-Marke

definiert eine solche Sprungstelle (Marke) in einem Programm.
Ein

GOTO Marke

bewirkt nun, daß die Programmausführung direkt hinter dem

Label Marke fortgesetzt wird. Es hat sich als sehr sinnvoll her-
ausgestellt, Marken statt Zeilennummern für Sprünge (wenn sie
denn schon unbedingt sein müssen) zu verwenden. Durch sie er-
höht sich die Lesbarkeit eines Programmes erheblich und eine
Programmänderung (auch nach längerer Zeit) kann leichter
durchgeführt werden. Wenn Sie die Marken auch noch sinnvoll

taufen, kann fast nichts mehr schief gehen.

Marken können übrigens auch mitten in einer Zeile definiert

werden, müssen dann allerdings durch Doppelpunkte von den

übrigen Befehlen abgetrennt werden:

100 PRINT"GrÜüß Gott": -Schleife: INPUT"Ihr Codewort: ";A$

110 IF AS <> “ST-BASIC"

120 THEN GOTO Schleife

130 ENDIF

140 END

 ——— §T-BASIC Grundkurs 109

Nach der freundlichen Begrüßung durch den Computer (Grüß
Gott), wird der Benutzer aufgefordert, sein Codewort einzuge-
ben. Dieses Codewort wird der Variablen A$ zugewiesen. In
Zeile 110 folgt ein Vergleich des eingegebenen Codewortes mit
dem gespeicherten Code. Stimmen beide nicht überein, wird zur

Marke Schleife gesprungen. Eine erneute und diesmal hoffent-
lich korrekte Eingabe des Geheimcodes ist von Nöten. Erst wenn
der Code richtig eingegeben wurde, gibt der Computer das Sy-
stem zur weiteren Nutzung frei. Die Marke hinter dem GOTO
kann auch in einer Stringvariablen abgelegt werden:

A$="Schleife": GOTO A$

Auch wenn diese Variante nicht unbindingt durch rasende Ge-

schwindigkeit glänzt (sie ist vielmehr die langsamste Möglichkeit
einen Sprungbefehl auszuführen) kann sie bisweilen von Nutzen
sein.

ON..GOTO..

Eng mit dem GOTO-befehl verwandt ist ON..GOTO... Die Syn-
tax dafür lautet:

ON <Wert> GOTO <Ziel 1>,<Ziel 2>,<Ziel 3, ...

<Wert> wird durch eine Variable repräsentiert. Ist der Wert 1, so

erfolgt ein Sprung zu <Ziel l>, bei 2 zu <Ziel 2>. Bei einem
<Wert> von kleiner als Null wird kein Sprung durchgeführt.
Auch Werte, deren Größe die Anzahl der hinter dem GOTO ste-

henden Ziele übersteigt, lassen den Computer kalt. Es wird ein-
fach kein Sprung ausgeführt. Sie ahnen es sicher schon, daß

nicht nur Zeilennummern als Ziele angegeben werden können:
Labels, Berechnungen, ja sogar Stringvariablen, die Labelnamen
beinhalten, können bunt gemischt werden:

ON Irgendwas GOTO 100,Ende,Weiß_der_Teufel_wohin$

Dieser ON..GOTO..- Befehl schafft gerade in Verbingung mit
Labels Übersicht. Dies ist auch der Grund, warum er von Pro-

grammieren bei der Menü-Auswahl bevorzugt wird.

 110 : —— Das große ST-BASIC-Buch ———

Schleifen in allen Variationen

Einer der größten Vorteile, mit denen ein Computer aufwarten

kann, ist das ständige Wiederholen bestimmter Anweisungen.
Diese Wiederholungen werden in der Informatik über Schleifen
realisiert. Eine Primitivschleife kann bereits mit einem GOTO-

Befehl erzeugt werden:

100 PRINT"GrÜüß GOTT"

110 -Schleife: INPUT"Bitte geben Sie Ihr Passwort ein: ";Pa$

120 IF Pa$ <> "ST-BASIC" THEN

130 GOTO Schleife

140 ELSE

150 CcLS

160 PRINT"Sie haben sich korrekt identifiziert!"

170 ENDIF ,

180 * |

190 ' Ab hier folgt dann das eigentliche Programm ...

200 ! Ä

Wird das Passwort nicht korrekt eingegeben, so springt der

Computer von Zeile 130 zu Zeile 110. In diesem Bereich liegt
eine Schleife vor, auch wenn in der Computerei Schleifen nor-

malerweise über eigene Strukturen realisiert werden.

FOR..NEXT

Wie könnte es auch anders sein. Die in allen BASIC-Interpretern

(selbst in denen der Computersteinzeit) auftauchende
FOR..NEXT-Schleife kommt zuerst an die Reihe. Diesmal je-
doch nicht mit grauer Theorie, sondern gleich direkt an einem
praktischen Beispiel:

VERKKKKKHHTTTTTTT TH TR TITTEN KT

* MITTEL.BAS *
PR we we mw ew mee wwe wm ww mew meme wwe mew etm wee ewe we ewer ewes *

'* Autor: Michael Maier Version: 1.00 Datum: 29.08.1988 *
* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *

‘~~ (C). 1988 by DATA BECKER GmbH Dusseldorf *
BH HHH AIK I KIKI TREK IKE TEEEEEAREEREEEREEEREREREEREEEEEERER

O
O
N

O
W

F
W
D

=|

©

'Zuerst Anzahl der Werte für die Dimensionierung erfragen |

 ——— §T-BASIC Grundkurs 111

10 CLS

11 INPUT " Anzahl der Werte: ";Zahl%

121°

13 "Eingabe korrekt?

14 !

15 IF Zahl%<=0 THEN

16 PRINT " Was soll der Quatsch?"

17 END

18 ELSE

19 DIM Xi!(Zahl%-1)' Dimensionierung von 0 bis ...

20 ENDIF

a1!

22 'Einlesen der einzelnen Werte

23 !

24 FOR T%=1 TO Zahl%

25 INPUT " Beobachtungswert "; STR$CTXA);": ";X11CT%-1)

26 NEXT T%

of '

28 ‘Addition der einzelnen Beobachtungswerte

29 !

30 Summe! =0

31 FOR T%=0 TO Zahl%-1

32 Summe!=Summe!+Xi1(T%).

33 NEXT T%

34 \

35 ‘und Division dieser durch die Anzahl der Werte

36 !

~ 37 Summe!=Summe! /Zahl%

38 ! |

39 PRINT " Das arithmetische Mittel beträgt:";Summe!

40 END |

Das obige Programm berechnet den Mittelwert (arithmetische
Mittel) für eine bestimmte Anzahl von Werten nach der Formel:

In
Mittelwert=-* x(i)

n el

Es wird über die einzelnen x-Werte aufsummiert und das Er-
gebnis dieser Addition durch die Anzahl der Werte dividiert.
Was liegt näher als die einzelnen x-Werte in einem Array abzu-
legen? Damit nicht unnötig hoch dimensioniert wird, fragt das

 112 Das große ST-BASIC-Buch -———

Programm in Zeile 11 nach der Anzahl der Werte, die eingege-
ben werden sollen und weist diese der Variablen Zahl% (ent-
spricht dem n ın der Formel) zu.

Ehe in Zeile 19 der eigentliche DIM-Befehl folgt, wird noch mit
einer IF-Abfrage kontrolliert, ob die eingegebene Zahl nicht
kleiner (negative Dimensionierung ist nicht möglich!) oder gleich
0 ist. In diesem Fall bricht das Programm mit der Fehlermeldung
"Was soll der Quatsch" ab. Ansonsten (ELSE) wird ein Fließ-
komma-Array mit einfacher Genauigkeit (Xi!) dimensioniert.
Der Index einer Feldvariablen läuft bekanntlich von 0 bis ... Aus
diesem Grund muß die Anzahl der Dimensionen noch um eins
zurückgeschraubt werden, um nicht unnötigerweise Speicherplatz
zu vergeuden.

Jetzt zur eigentlichen Neuerung in diesem kleinen Programm:
Um nicht für jeden Eingabewert eine eigene INPUT-Anweisung
einfügen zu müssen, werden die Werte in einer Schleife mit nur
einem einzigen INPUT-Befehl (Zeile 25) eingelesen.

Die Funktionsweise der FOR..NEXT-Schleife ım einzelnen: zu-
erst wird ein Schleifenzähler (die Variable T%) auf den An-
fangswert (T%=1) gesetzt. Danach wird die Schleife durchlaufen,
bis der Interpreter auf den Befehl NEXT stößt. Er kehrt zur

Ausgangsposition (FOR T% = 1 TO Zahl%) zurück, erhöht den
Schleifenzähler um eins und überprüft, ob der Endwert der
Schleife (steht hinter TO, hier: Zahl%) schon erreicht ist. Ist dies
der Fall, wird die Programmausführung hinter der Schleife
(NEXT) fortgesetzt, ansonsten wird die Schleife ein weiteres Mal
durchlaufen:

FOR <Schleifenzähler> = <Anfangswert> TO <Endwert>

NEXT <Schleifenzähler>

Da im Programm genau Zahl%-Werte in das Feld eingetragen
werden müssen, läuft unsere FOR..NEXT-Schleife logischer-

weise von 1 bis Zahl%. Den Schleifenzähler verwenden wir als
Indexvariable in Xi! (Zeile 25) für die Zuweisung der einzelnen

 ——— ST-BASIC Grundkurs | 113

Werte in das Array. Doch aufgepaßt! Während der Zähler von 1
bis Zahl% läuft, beginnt der Index der Feldvariable bei 0 und
endet bei Zahl%-1. Deshalb muß der Indexwert um eins ernied-
rigt werden (T%-1). Statt dessen hätte man den Schleifenzähler
von O0 bis Zahl%-1 laufen lassen können:

FOR T%=0 TO Zahl%-1

<Input> |
NEXT T%

Warum ich das nicht gemacht habe? Ja, da ist noch eine Klei-
nigkeit: Der Benutzer soll nämlich gleichzeitig angezeigt bekom-
men, welchen Beobachtungswert er gerade eingibt. Auch dazu
verwendet das Programm wieder den Schleifenzähler T%, hier
jedoch mit den Werten von | bis ...

Liefe die Schleife von 0 bis Zahl%-1 müßte zur Nummer des
jeweiligen Beobachtungswertes noch eine 1 addiert werden, um
die der Schleifenzähler ja zuerst verringert wurde. Dies bedeutet
zweimaligen Rechenaufwand für den Computer, der auf diese

Weise elegent umgangen werden konnte.

Interessant ist noch das STR$(T%) in Zeile 25. T% enthält je-
weils den Wert des momentanen Schleifendurchlaufes. Damit nun
die Eingabe statt dem Feld Xi!() nicht versehentlich der Vari-
ablen T% zugewiesen wird (T% soll ja lediglich als Zähler mit
ausgegeben werden), muß T% mit der Funktion STR$() in einen
String umgewandelt werden. Dies macht ST-BASIC übrigens

automatisch, so daß auch bei einer Eingabe von T% stets

STR$(T%) erscheint.

Nach dem Einlesen der einzelnen Werte, müssen diese noch

aufsummiert werden. Dies geschieht (wie könnte es auch anders
sein) wieder in einer Schleife, diesmal jedoch mit einem Start-
wert von 0 und einem Endwert von Zahl%-1. Der Bequemlich-

keit halber lautet der Schleifenzähler ebenfalls T%. Nach Been-
digung der Schleife enthält die Variable Summe! die Summe der
einzelnen Beobachtungswerte. Diese muß schließlich noch durch
die Anzahl der Beobachtungswerte dividiert werden, um den
Mittelwert zu erhalten. Fertig! Starten Sie das Programm, so er-
scheint auf dem Bildschirm:

 114 Das große ST-BASIC-Buch ———

Anzahl der Werte: (

Beobachtungswert

Beobachtungswert

Beobachtungswert

Das arithmetische

ngabe) Ei

: 2

: 6

4

Z
W
N

S
W

ittel beträgt: 4

OK

Möchten Sıe die Schleife mit einer anderen Schrittweite als 1

durchlaufen, muß dies über den Befehl STEP hinter der Endbe-

dingung explizit angegeben werden:

FOR T% = 0 TO 20 STEP 2

NEXT T%

Hier wird der Schleifenzähler nach jedem Durchlauf um den
Wert 2 erhöht, Schrittweiten von kleiner 1 sind ebenso möglich
(z.B: 0.5):

FOR T% = 1 TO 10 STEP .5

NEXT T%

Der Schleifenzähler kann nach jedem Durchlauf auch erniedrigt

werden, wenn eine negative Schrittweite hinter STEP angegeben

wird:

FOR T% = 20 TO 1 STEP -1

NEXT T%

Der Übersicht zuliebe wird die FOR..NEXT-Struktur wieder auf
mehrere Zeilen verteilt, wobei der Schleifeninhalt nach rechts

eingerückt wird. Theoretisch ist auch eine einzeilige
FOR..NEXT-Schleife denkbar:

FOR T%=1 TO Zahl: PRINT T%: NEXT T%

 —— ST-BASIC Grundkurs 115

Anmerkung: Ist die Startbedingung bereits vor dem ersten
Durchlauf größer als die Endbedingung und
keine negative Schrittweite angegeben, so wird
die Schleife samt Inhalt kein einziges Mal aus-

geführt.

Man spricht in diesem Zusammenhang auch von einer abweisen-
den Schleife, da sie nur dann zur Ausführung gelangt, wenn die
Startbedingung erfüllt ist. Andere BASIC-Interpreter (darunter

das GfA-BASIC) besitzen eine nicht abweisende For..Next-
Schleife, die in jedem Fall mindestens einmal durchlaufen wird.
Bei der Übertragung von Programmen eines anderen BASIC-In-
terpreters in ST-BASIC sollte man diese Tatsache stets im Hin-
terkopf behalten, um nicht eine böse Überraschung zu erleben.

Repeat..Until

Eine weitere Schleifenstruktur bildet die REPEAT..UNTIL-
Schleife oder zu deutsch: Wiederhole ... Bis-Schleife. Es handelt
sich bei dieser Variante wieder um die Gattung der nichtabwei-
senden Schleifen, da ihr Inhalt auf jeden Fall einmal durchlau-
fen wird, ehe die eigentliche Schleifenbedingung hinter UNTIL
geprüft wird.

REPEAT

<Anweisung 1>

<Anweisung 2>

 <Anweisung n> |

UNTIL <Bedingung erfullt>

Eine FOR..NEXT-Schleiße kann durch eine REPEAT..UNTIL-
Schleife ersetzt werden:

FOR T%= 1 to 30

<Anweisung 1>

<Anweisung 2>

<Anweisung n>

NEXT T%

 116 Das große ST-BASIC-Buch ———

entspricht der REPEAT..UNTIL-Schleife:

T%=0

REPEAT

T%=T%+1' Schleifenzähler mit 'STEP 1!

<Anweisung 1>

<Anweisung 2>

<Anweisung n>

UNTIL T%=30

Dies gilt jedoch nur solange die Startbedingung für die
FOR..NEXT-Schleife erfüllt ist. Andernfalls unterscheiden sich
beide Schleifen, da FOR..NEXT nicht, REPEAT..UNTIL jedoch

einmal durchlaufen wird. Nötigenfalls muß mit einer IF.. THEN-
Abfrage am Schleifenanfang die Einsprungbedingung überprüft
und die Schleife mit EXIT verlassen werden, falls diese nicht
erfüllt ist.

Auch dazu wieder ein kleines Beispiel, das Sie schon kennen:

Passworteingabe. Die Inputanweisung wird solange wiederholt,
bis das Passwort korrekt eingegeben worden ist:

100 REPEAT

110 CLS

120 INPUT " Bitte geben Sie Ihr Passwort ein: ";Pa$

130 UNTIL Pa$="ST-BASIC"

140

150 'hier folgt dann das eigentliche Programm

160 !

170 END

Endlosschleife

In manchen BASIC-Dialekten gibt es eine spezielle Struktur für
die Endlosschleife. Endlos deshalb, weil die Schleife nie auf
normalem Weg verlassen werden kann. In ST-BASIC ist dies

nicht der Fall, dennoch kann auch hier problemlos eine Endlos-
schleife zusammengebaut werden. Man bedient sich einfach der
REPEAT..UNTIL-Schleife und sorgt dafür, daß die Bedingung

 ——— ST-BASIC Grundkurs 117

hinter UNTIL nie erfüllt wird. Am besten gibt man gleich den
Wahrheitswert falsch an, der in BASIC durch die O dargestellt
wird:

REPEAT

<Anweisung 1>

<Anweisung 2>

<Anweisung n>

UNTIL O

oder verständlicher:

REPEAT

<Anweisung 1>

<Anweisung 2>

<Anweisung n>

UNTIL Immer_und_ewig

Schön und gut! Aber wie kann man eine solche Schleife wieder
verlassen? Eigentlich gar nie nicht, es sei denn der Interpreter
stößt in der Schleife auf einen EXIT-Befehl:

EXIT

Mit dem EXIT-Befehl ist es möglich eine Schleife (vorzeitig) zu
verlassen, auch wenn ihre Abbruchbedingung noch nicht erfüllt
ist. Dies gilt übrigens nicht nur für Endlosschleifen, sondern
auch für deren Verwandte.

100 REPEAT

110 CLS

120 INPUT " Bitte geben Sie ihr Passwort ein: ";Pa$

130 IF Pa$="ST-BASIC"

140 THEN EXIT

150 ENDIF

160 UNTIL immer_und_ewig

170 ...

180 ...

 118 Das große ST-BASIC-Buch ——

Wird das Passwort richtig eingegeben, verläßt der EXIT-Befehl
die Endlosschleife und das Programm wird direkt hinter dem
Schleifenende (Zeile 170 ff) fortgesetzt. Zusätzlich kann hinter
EXIT noch die Programmstelle (Zeilennummer, Label, ...) ange-
geben werden, an der das Programm nach dem EXIT fortgesetzt
werden soll. Dazu wird dann eine Mischung aus EXIT und
GOTO verwendet:

EXIT TO <Ziel>

<Ziel> muß den Ansprüchen des GOTO-Befehls genügen.

Anmerkung: In GFA-BASIC existiert eine eigene Struktur
für die Endlosschleife:

DO

<Anweisung 1>

<Anweisung n>

LOOP

In ST-BASIC muß diese durch

REPEAT

<Anweisung 1>

<Anweisung n>

UNTIL 0

ersetzt werden, wenn GFA- in ST-BASIC-Programme umge-
schrieben werden sollen, ebenso das EXIT IF <Bedingung> des

GFA-BASIC in:

IF <Bedingung> THEN EXIT

zum vorzeitigen Verlassen einer Schleifenstruktur.

 —— ST-BASIC Grundkurs 7 119

WHILE..WEND

WHILE..WEND ist - Sie dürfen aufatmen - der letzte Vertreter
der Gattung Schleifen. Es handelt sich dabei um eine abweisende
Schleife, da bereits vor einem Schleifeneinsprung die hinter
WHILE stehende Bedingung überprüft wird. Ist sie nicht erfüllt,
wird die Schleife erst gar nicht durchlaufen, sondern das Pro-
gramm gleich hinter dem Schleifenende fortgesetzt. Andernfalls
gelangt der Schleifeninhalt zur Ausführung, bis der Interpreter
auf WEND stößt und zum Schleifenanfang zurückkehrt. Dort
wird die Bedingung erneut überprüft.

Auch mit WHILE..WEND läßt sich eine Endlosschleife konstru-
ieren. Dann muß die Bedingung hinter WHILE stets erfüllt sein,
oder anders ausgedrückt den Wert -1 (wahr!) enthalten:

WHILE -1

<Anweisung 1>

<Anweisung 2>

WEND

100 VRR TITTEN

110 '* SIEB.BAS *
120 Kee wm mmm mmm em me ee mm ewww we mm wee wee wenn eam ame ewe emer ew eee wee *

130 '* Autor: Michael Maier Version: 1.00 Datum: 02.09.1988 *

140 '* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *

150 '* (C) 1988 by DATA BECKER GmbH Dusseldorf *
160 EHKKKKAKK KEKE AKERS

170 !

180 'Sieb des Eratosthenes

190 !

200 True%=-1:False%=0

210 REPEAT

220 CLS

230 INPUT " Bitte Suchobergrenze/2 eingeben (> 50) ";N%

240 UNTIL N%>50

250 DIM Liste%F(N%)

260 FOR T%=0 TO N&! Liste mit -1 vorbelegen

270 Liste%F(T%)=True%

280 NEXT T%

290 FOR T%=0 TO N%

300 IF Liste%F(T%) THEN

120 Das groBe ST-BASIC-Buch ———

310 ' Primzahl ausgeben

320 Prim%=2*T%+3

330 PRINT Prim%,

340 1%=T%+Pr im%

350 "Alle Vielfachen davon streichen

360 WHILE I%<N%

370 Liste%F(1%)=False%

380 1%=1%+Pr im%

390 WEND

400 ENDIF

410 NEXT T%

420 END

Als krönender Abschluß der Schleifen (ich versprech’s!) das be-
rühmt berüchtigte Sieb des Eratosthenes, mit dessen Hilfe sich
alle Primzahlen, die kleiner als eine gegebene natürliche Zahl N
sind, ermitteln lassen.

Dieses Verfahren ist so einfach wıe wirkungsvoll: Zuerst wird
eine Liste angelegt, und jeder Eintrag in dieser Liste auf den
Wert -1 (wahr) gesetzt (Falls Liste%F(X) = -1 <=> X ist eine
Primzahl). Beginnend vom Listenanfang (Auf alle Fälle -1!) wird
jetzt für jedes Element der Liste geprüft, ob es sich dabei um
eine Primzahl handelt. Dann können auch alle Vielfachen dieser
Zahl aus der Liste gestrichen werden. Dies geschieht, indem die
entsprechenden Einträge auf den Wert O (falsch) gesetzt werden.
Nach diesem Schema wird Eintrag für Eintrag, bis schließlich
alle Nicht-Primzahlen aus der Liste gestrichen worden sind.

Der obige Algorithmus berechnet alle Primzahlen bis zur Sucho-
‚bergrenze * 2 + 3. Einen Haken hat die ganze Geschichte noch:
Der Wert 2 taucht ın obiger Liste nicht auf. Deshalb müßte noch
eine Zeile eingefügt werden, in der die fehlende Ziffer auf den
Bildschirm gedruckt wird:

285 Print 2

Noch eine weitere Neuerung steckt ın diesem kleinen Programm.
Ein Komma am Ende einer Printausgabe bewirkt, daß der Cur-
sor an die nächste Tabulatorposition (jede achte Spalte auf dem

 —— ST-BASIC Grundkurs 121

Monitor bildet eine solche Tabulatorposition) gefahren und bei
einem folgenden PRINT dann an dieser Stelle weitergeschrieben
wird.

2.11 Alles eine Frage der Routine ...

Nein lieber Leser, Sie lesen völlig richtig. Es ist wirklich alles
eine Frage der Routine. Doch mit Routine ist in diesem Fall
nicht nur die Praxis gemeint.

Häufig kommt es nämlich vor, daß bestimmte Dinge innerhalb
eines Programmes mehrfach durchgeführt werden müssen, je-
doch an völlig unterschiedlichen Programmstellen. Ein Beispiel
dafür wäre das Sortieren eines Variablenfeldes. Man kann natür-
lich die entsprechenden Befehle jedesmal erneut in den Pro-
grammtext einflechten, doch dies geht auf Kosten des Speicher-
platzes. Macht nichts, davon haben wir in unserem ST wirklich

genug! Doch wie steht es mit der Mehrarbeit, die durch das im-

mer wiederkehrende Abtippen der entsprechenden Programm-

zeilen auftritt? Viel praktischer wäre ein Programmteil, der nur

ein einziges Mal programmiert werden müßte und dann jedesmal
die Arbeit für uns verrichten würde! Einen solchen Programm-
teil nennt man ım Computerjargon - Sie ahnen es schon - eine
(Unter-)Routine oder auf gut englisch: Subroutine. Wie funktio-
niert nun die Sache mit den Unterroutinen?

Einmal Unterroutine und zurück ...

Eine Unterroutine ist nichts anderes als ein kleiner Programm-
teil, der eine bestimmte Aufgabe (z.B. das Sortieren eines Vari-
ablenfeldes, dessen Speichern auf Diskette oder Festplatte, das

Setzen des Datums und der Uhrzeit usw.) erledigt, sobald er in-
nerhalb des Programms aufgerufen wird und anschließend zum
Hauptprogramm zurückkehrt. Der Aufruf erfolgt in BASIC mit

GOSUB <Ziel>

 122 | Das große ST-BASIC-Buch ——

der Rücksprung ins Hauptprogramm stets mit

RETURN

<Anweisung 1>

<Anweisung 2>

<Anweisung 3>

GOSUB Unterprogramm

<Anweisung n>

END

-Unterprogramm

<Anweisung U1>

<Anweisung U2>

<Anweisung Un>

RETURN

Das eigentliche Programm (Hauptprogramm) beginnt mit
<Anweisung 1> und endet mit END. Innerhalb des Hauptpro-

gramms erfolgt ein Sprung in das Unterprogramm, das den sin-
nıgen Namen Unterprogramm trägt. Dort werden dann die An-

weisungen des Unterprogramms <Anweisungen Ul> bis
<Anweisung Un> ausgeführt. Stößt der Interpreter auf ein RE-
TURN, so kehrt er in das Hauptprogramm zurück. Die nächste

Anweisung hinter dem GOSUB wird ausgeführt, hier wäre dies
die Anweisung <n>.

Der wesentlichste Unterschied zwischen dem GOTO-Befehl und
dem GOBUB besteht darin, daß bei GOSUB wieder direkt hin-
ter den Unterroutinenaufruf im Hauptprogramm zurückgekehrt
werden kann, während dies bei einem GOTO praktisch unmög-
lich ist, da sich der Interpreter nicht merkt, von wo aus er an

den unter <Ziel> angegebenen Programmpunkt gesprungen ist.
Bei einem GOSUB (übrigens GO SUBroutine, springe in das
Unterprogramm) merkt sich der Interpreter die Stelle des Auf-

rufs und kehrt mit einem RETURN wieder an die ursprüngliche
Stelle im Hauptprogramm zurück.

 ——— ST-BASIC Grundkurs 123

Als <Ziel> kann eine Zeilennummer (Mircosoft-BASIC 1äßt
grüßen), eine Marke, und die übrigen auch beim GOTO zuge-
lassenen Parameter angegeben werden.

Die Verwendung von Unterprogrammen macht ein Programm
kürzer und übersichtlicher. Ein weiterer Vorteil ist die größere
Änderungsfreundlichkeit. Stellen Sie sich vor, Sie müssen an
zehn Programmstellen Zahlen sortieren, und zwar in aufsteigen-
der Reihenfolge. Aus irgendeinem Grung werden aber die Zah-
len plötzlich in absteigender Folge benötigt. Arbeiten Sie mit
Unterroutinen, so bedarf es lediglich einer Änderung des ent-
sprechenden Unterprogramms, schon sind Sie fertig. Sonst müßte
die Änderung gleich zehnfach im Programm vorgenommen wer-
den. Nicht nur ein Mehraufwand, sondern auch eine Fehler-

quelle, da erfahrungsgemäß immer der eine oder andere Sor-

tieralgorithmus im Programm übersehen wird, wenn Programme
etwas länger werden.

Als Alternative zu GOSUB stellt ST-BASIC noch

ON ... GOSUB

zur Verfiigung, das in der Syntax der ON..GOTO-Anweisung
entspricht. MIT ON..GOSUB wird jedoch in ein Unterprogramm
gesprungen, aus dem mit RETURN zurückgekehrt werden kann.

Prozeduren

Auch beı Prozeduren handelt es sich um um Unterprogramme,

jedoch in einer etwas umfassendere,n weil moderneren Erschei-

nungsart.

Mit einer Prozedur wird nämlich ein neuer Befehl definiert, der

dann innerhalb des (Haupt-)Programms aufgerufen werden kann.
Auch im Bildschirm-Editor wird der neue Befehl unmittelbar
nach seiner Definition zur Verfügung gestellt. Doch eine Proze-
dur kann noch mehr:

 124 Das groBe ST-BASIC-Buch ———

- Parameter können ihr übergeben werden,

- es können lokale Variablen vereinbart werden;

- Parameter können zurückgegeben werden;

- Prozeduren können sich selbst wieder aufrufen

(Rekursion)

Dies sind alles Dinge, die bis vor kurzem für einen BASIC-In-
terpreter undenkbar waren und mit ST-BASIC Realität geworden
sind. Doch genug der schönen Worte, schreiten wir zur Tat:

Eine Prozedur wird für den Interpreter als solche gekennzeich-
net, indem sie mit dem Befehl

DEF PROC <Name>

definiert werden. Das Ende eine Prozedur erkennt ST-BASIC

wieder an einem RETURN.

DEF PROC <Name>

<Anweisung 1>

<Anweisung 2>

<Anweisung 3>

<Anweisung n>

RETURN

Auf diese Weise wird eine Prozedur <Name> definiert. Um sie
innerhalb des Hauptprogrammes aufzurufen, wird einfach ihr

Name <Name> wie ein Befehl in das Programm eingefügt. Stößt
der Interpreter bei der Abarbeitung des Programms auf einen

unbekannten Befehlsnamen, überprüft er, ob damit nicht viel-
leicht eine Prozedur gemeint ist. Dann werden die zwischen der
Definition der Prozedur (DEF PROC) und dem abschließenden
RETURN stehenden Anweisungen ausgeführt und zum Haupt-
programm zurückgekehrt. Dazu ein einfaches Beispiel:

ST-BASIC kennt einen Befehl zum Löschen des Bildschirms:
CLS. Der Cursor wird nach dem Löschvorgang in die linke
obere Ecke des Monitors gesetzt. Häufig möchte man nicht

 —— §T-BASIC Grundkurs 125

gleich den ganzen Bildschirm löschen, sondern lediglich den
Cursor in die besagte Ecke des Bildschirms bringen. Dieser Ef-

fekt wird mit Home auf der Tastatur ausgelöst, innerhalb eines
Programms stellt ST-BASIC jedoch keinen derartigen Befehl zur
Verfügung. Also schreiben wir uns einfach einen neuen Befehl
dafür:

DEF PROC Home

PRINT CHR$(27);"'H"

RETURN

Erscheint innerhalb des Hauptprogramms der Befehl Home, so

wird der Cursor in die linke obere Monitorecke gesetzt. Doch

auch im Bilschirmeditor wird der Befehl Home mit der Cursor-
positionierung in die linke obere Bildschirmecke beantwortet.
Rätselhaft wird Ihnen warscheinlich die zweite Zeile der Defi-

nition vorkommen. Dies ist der eigentliche Befehl zur Positio-
nierung des Cursors an die besagte Position.

Der Monitor des Atari ST ist nämlich in gewisser Weise intelli-
gent. Er versteht bestimmte Befehle, wie Bildschirm löschen,

Cursor an eine angegebene Position setzen, eine Zeile löschen
oder einfügen, Cursor ein- und ausschalten. Diese Befehle sind
einem bekannten Terminal nachempfunden (deshalb spricht man

auch von einem VT-52-Emulator) und besginnen stets mit dem
Befehl CHR$(27) (Escape, ESC), gefolgt von einem (oder meh-
reren) Buchstaben. Doch dazu später mehr.

Parameter übergeben

Im Gegensatz zu einem Unterprogrammaufruf mit GOSUB kön-
nen einer Prozedur auch ein oder mehrere Parameter übergeben

werden. Diese müssen innerhalb von Klammern an den Proze-

durenamen angehängt werden: |

<Anweisung 1>

Setcursor(10,10)

 126 Das große ST-BASIC-Buch ———

<Anweisung n>

DEF PROC Setcursor(Spalte,Zeile)

PRINT CHR$C27);CHR$(Spalte+32);CHR$(Zeile+32)

RETURN

Die in diesem kleinen Programmfragment vorkommende Proze-
dure Setcursor setzt den Cursor auf eine bestimmte Bildschirm-

position, die durch die beiden Übergabeparameter Spalte und

Zeile eindeutig bestimmt wird. Auch hier muß wieder der VT-

52-Emulator des Atari ST herhalten. Die beiden ın Klammern

angegebenen Parameter Spalte und Zeile sind lokal. Was bedeutet

das schon wieder?

Globale und lokale Variablen

Variablen in BASIC sind normalerweise global definiert. Das be-
deutet, daß eine Variable überall im Programm einen bestimm-

ten, einmal zugewiesenen Wert besitzt. Im Gegensatz dazu be-

sitzen lokale Variablen nur innerhalb der Befehlsdefinition
(Prozedur) einen bestimmten Wert. Außerhalb dieser Prozedur

verwendete (globale) Variablen können einen völlig anderen In-

halt besitzen, obwohl Sie den gleichen Namen tragen. Mit ihren
lokal definierten Kollegen haben sie nichts zu schaffen. Ein
kleines Beispiel: |

100 Spalte=20: Zeile=10

110 PRINT “Spalte:";Spalte;" Zeile:";Zeile

120 Setcursor(10,5)

130 PRINT "Spalte:";Spalte;" Zeile:";Zeile

140 END

150 'die Prozedur Setcursor

160 DEF PROC Setcursor(Spalte,Zeile)
170 PRINT CHRS(27);CHRS(Spal te+32) ; CHRS(Zei Let+32)

180 PRINT "In Prozedur: Spalte:";Spalte;" Zeile:";Zeile

190 RETURN |

An diesem kleinen Beispiel wird deutlich, daß die beiden Vari-
ablen Spalte und Zeile innerhalb der Prozedur lokal definiert
sind. Obwohl beide auch im eigentlichen Hauptprogramm auf-

tauchen, besitzen sie innerhalb der Prozedur völlig andere Werte.
Mit Verlassen der Prozedur erhalten sie dann wieder die ur-

 —— §T-BASIC Grundkurs 127

sprünglichen (globalen) Werte zugewiesen. Anders verhält sich
die Sache, wenn die beiden Parameter nicht beim Funktions- |
aufruf übergeben werden:

100 Spalte=20: Zeile=10

110 PRINT "Spalte:";Spalte;" Zeile:";Zeile

120 Setcursor

130 PRINT "Spalte:";Spalte;" Zeile:";Zeile

140 END

150 !die Prozedur Setcursor

160 DEF PROC Setcursor

170 PRINT CHR$C27);CHR$(Spalte+32);CHR$CZeile+32)

180 PRINT "In Prozedur: Spalte:";Spalte;" Zeile:";Zeile

190 RETURN

In diesem Fall sind die Variablen Spalte und Zeile global und
besitzen folglich auch im Unterprogramm die gleichen Werte wie
im Hauptprogramm. Möchten Sie die Variablen innerhalb des

Unterprogramms lokal behandelt wissen, so müssen diese mit ei-
nem eigenen Befehl als lokale Variablen im Unterprogramm ge-
kennzeichenet werden:

LOCAL <Variable>, <Variable>, ...

Eine so deklarierte Variable nımmt innerhalb des Unterpro-

gramms Werte an, die bei einer Rückkehr ins Hauptprogramm

nicht mehr bekannt sind. Dort auftauchende Variablen können

trotz gleichen Namens völlig andere Werte beinhalten. Solange

Variablen nicht beim Aufruf einer Prozedur in Klammern über-
geben werden oder durch den Befehl LOCAL innerhalb des
Unterprogramms als lokale Variablen definiert sind, ist ihr Wert
innerhalb des gesamten Programms bekannt.

Werte werden an eine Prozedur übergeben, indem man sie in
Klammern hinter den Funktionsaufruf schreibt. Selbstverständ-
lich muß die Anzahl der übergebenen Parameter auch mit der in
der Prozedurdefinition übereinstimmen bzw. müssen die richti-
gen Variablentypen übergeben werden. Andernfalls meldet der
Interpreter diesen Fehler, und das Programm bricht ab.

 128 Das große ST-BASIC-Buch ————

Häufig wird eine Prozedur mit bestimmten Werten aufgerufen,
diese führt die entsprechenden Operationen aus und gibt einen
oder mehrere Werte an das Hauptprogramm zurück. Um dem

Computer mitzuteilen, daß ein bestimmter Wert zurückgegeben
werden soll, wird die Variable in der Prozedurdefinition durch

ein vorangestelltes R gekennzeichnet:

DEF PROC Setcursor(R Spalte, R Zeile)

RETURN

Wird diese Prozedurdefinition in das kleine Beispielprogramm

integriert, so erhalten die Variablen Spalte und Zeile ab dem
Prozeduraufruf die neuen Werte 10 und 5, da die Werte des
Funktionsaufrufs an das Hauptprogramm zurückgegeben werden,

sobald die Prozedur ihre Tätigkeit beendet hat.

Rekursionen

Im Gegensatz zu den BASIC-Dialekten vergangener Tage ist es.
möglich, daß sich eine Prozedur auch selbst aufruft. Diesen Vor-
gang nennt man in der Informatik Rekursion:

Male(10,20,100,250)

DEF PROC Male(x1,y1,x2,y2)

RETURN

Dieses kleine Programmfragment verdeutlicht die Funktionsweise
einer rekursiv programmierten Prozedur. Zunächst wird eine
solche Unterroutine ganz normal aufgerufen und die übergebe-
nen Parameter werden in irgendeiner Weise verarbeitet. Neu ist

 ——- S§T-BASIC Grundkurs 129

dagegen, daß sich diese Funktion innerhalb der Unterroutine
selbst aufruft. Wieder werden ihr die (zuvor schon verarbeiteten)
Parameter übergeben. |

Der erneute Aufruf bewirkt wiederum eine Bearbeitung der an-
gegebenen Parameter, bis die Funktion ein weiteres Mal aufge-
rufen wird usw. Erst wenn die Parameter dergestalt bearbeitet
sind, daß die Funktion ihre Pflicht getan hat, kehrt sie in das

Hauptprogramm zurück. Mit Hilfe der rekursiven Programmie-

rung können bestimmte Probleme auf äußerst elegante Art und
Weise gelöst werden. Es würde mit Sicherheit den Rahmen dieses
Buches sprengen detailliert auf die rekursive Programmierung
einzugehen - darüber haben Informatiker schon ganze Bände
geschrieben -, aber anhand eines Beispiels soll einmal eine Re-

kursion aufgezeigt werden.

Variablenfelder sind Ihnen bereits bestens vertraut. Möchte man

ein solches Array sortieren, muß ein dafür geeigneter Algorith-
mus benutzt werden. Informatiker waren auf diesem Gebiet be-
sonders findig. Es existieren eine Unzahl der verschiedensten
Sortieralgorithmen, vom einfachen Bubble-, über Shell-, Heap-
bis hin zu Bucket-Sort. Jeder Algorithmus kann mit bestimmten
Vorteilen aufwarten. Ein Vertreter der schnelleren Garde von

Sortiermethoden ist der 1962 von C.A.R Hoare entwickelte

Quicksort, der - Sie ahnen es schon - die ihm anvertrauten Da-
ten rekursiv sortiert:

100 IKRKKKKKTKTT TC TITTEN RITTER EINE

110 '* QUICK.BAS *
120 Rowman nn a nn m nn n *

130 '* Autor: Michael Maier Version: 1.00 Datum: 16.02.1987 *

140 '* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *

150 '* (C) 1988 by DATA BECKER GmbH Düsseldorf *
160 CHAKA KKKEEKEKKEEEKEEEREEKREEKKEKEREEEKEEEREEEEREEEEKEEEEREEEEERREKKE

170 !

180 !

190 DIM Feld%(9)

200 RESTORE

210 FOR T%=0 TO 9

220 READ Feld%(T%)

230 NEXT T%

240 !

 130 Das groBe ST-BASIC-Buch ———

250 Quicksort(0,9)

260 !

270 FOR T%=0 TO 9

280 PRINT FeldA(T%);" ";

290 NEXT T%

300 DATA 3,9,7,2,0,6,1,5,4,8

310 END

320 !

330 DEF PROC Quicksort(Anfang%, Ende%)

340 'die folgende Zeile dient nur zum Testen

350 'und hat mit der eigentlichen Routine nichts

360 'zu tun!

370 PRINT "#">:2 FOR T%=0 TO 9: PRINT Feld%(T%);" "2s: NEXT TA: PRINT

380 "jetzt erst geht's los...

390 LOCAL A%,2%
400 A%=Anfang%

410 2%=Ende%

420 X%=Feld%((Anfang%+Ende%)/2)

430 REPEAT

440 WHILE Feld%(A%)<x%

450 A%=A%+1

460 WEND

470 WHILE Feld%(Z%)>X%

480 7%=2%- 1

490 WEND

500 IF A%<=2% THEN

510 SWAP Feld%(A%), Feld%(2%)

520 ! auch die beiden folgenden Zeilen dienen nur zum

530 ı Testen und können entfernt werden

540 FOR T%=0 TO 9: PRINT Feld%lT%);" "s: NEXT T%
550 PRINT „AR;" "32%," "2x%

560 ' hier geht's wieder normal weiter

570 AX=A%+1

580 2%=2%- 1

590 ENDIF

600 UNTIL A%>Z%

610 IF Anfang%<Z% THEN

620 Quicksort(Anfang%, 2%)

630 ENDIF

640 IF A%<Ende% THEN

650 Quicksort(A%, Ende%)

660 ENDIF

670 RETURN

 —— §T-BASIC Grundkurs 131

Dieses Programm sortiert ein Integerarray Feld%. Ehe das Feld
durch den Aufruf der Funktion Quicksort in Zeile 250 sortiert
werden kann, müssen den einzelnen Indices erst verschiedene

Werte zugewiesen werden. Dies erledigt die FOR..NEXT-.
Schleife über eine READ-DATA-Anweisung. Die Werte selbst
sind hinter der DATA-Anweisung in Zeile 300 abgelegt. Sobald
dies erledigt ist, erfolgt der Aufruf der Quicksortroutine. Die
anzugebenden Parameter sind dabei der erste und letzte zu sor-

tierende Index.

Bei jedem Einsprung in die Routine wird zuerst einmal der
gesamte Feldinhalt über eine PRINT-Anweisung ausgegeben.

Anschließend werden den lokalen Variablen A% und Z% die
ebenfalls lokalen Parameter des Funktionsaufrufs Anfang% bzw.
Ende% zugewiesen.

Der nächste Schritt besteht nun darin, das Feld in zwei Teile

aufzuspalten. Dies geschieht, indem der Variablen X% das in der

Feldmitte stehende Element zugewiesen wird, das ab sofort als

Vergleichsvariable weiterbenutzt wird. Die erste WHILE-Schleife
sucht das erste Element von unten (Anfang), das nicht kleiner
als das Vergleichselement ist. Entsprechend wird in der folgen-

den Schleife das erste Element von oben (Feldende) gesucht, das
nicht größer als die Vergleichsvariable X% ist. Die auf diese
Weise gefundenen Elemente werden miteinander vertauscht und,
da sie theoretisch auch gleich groß sein können, übersprungen.

Apropos vertauschen: In ST-BASIC existert dafür ein eigener
Befehl:

SWAP <Feld(X)>,<Feld(Y)>

vertauscht die Elemente X und Y des Arrays Feld miteinander.

Die REPEAT-Schleife sorgt dafür, daß dieses Spielchen so oft

wiederholt wird, bis die untere die obere Grenze überschritten
hat. Dann sind in beiden Teilfeldern keine Elemente mehr vor-

handen, die ın den anderen Teil des Feldes gehören.

 132 Das große ST-BASIC-Buch ———

Danach werden die beiden Teilfelder sortiert. Dies geschieht, in-
dem sich die Funktion wieder selbst (rekursiv) aufruft und die
Sortiergrenzen auf das gewünschte Teilfeld gesetzt werden.Damit
das Prinzip noch deutlicher wird, sind in dem Programm zwei
Zeilen eingefügt, die den Inhalt des Feldes ausgeben. Dies ge-
schieht bei jedem Einsprung in die Routine Quicksort, sowie
nach jedem Austausch zweier Variablen. Um die Ausgaben bei-
der Zeilen optisch trennen zu können, beginnt erstere stets mit

dem Zeichen #. Zusätzlich wird nach dem Tausch noch der In-
halt der unteren bzw. oberen Grenze und des Vergleichselements

mit ausgegeben.

Starten Sie das Programm, wird zuerst das Ausgangsfeld auf den
Monitor geschrieben:

#39 7 20615 4 8

Das Programm wählt als Vergleichselement die 6. Das erste Ele-
ment von unten (in diesem Fall von links), das nicht kleiner als
6 ist, ist die 9, von oben (hier von rechts) das erste Element, das

nicht größer als das Vergleichselement ist, ist die 4. Beide wer-
den miteinander vertauscht:

3472061598 18 6

Ar ZA %X%

Noch sind die untere und die obere Grenze nicht überschritten,

es wird weitergesucht: von unten stößt der Interpreter auf die 7,

von oben auf die 5. Auch diese beiden werden vertauscht:

3452061798 2 7 6

Ar ZA %%

Noch immer nicht überschreitet die untere die obere Grenze. Es

heißt weitersuchen. Die beiden nächsten Variablen, die der

Vertauschungswut des Interpreters zum Opfer fallen sind 6 und

l:

3452016798 5 6 6

A% Z% = X%

 ——— ST-BASIC Grundkurs 133

Jetzt ist es soweit, die untere Grenze liegt über der oberen. Also
die beiden Teilfelder mit einem rekursiven Aufruf sortieren.

Zuerst werden die einzelnen Elemente des Feldes wieder auf

dem Monitor ausgegeben:

#3452016798

Als Vergleichselement des zweiten Funktionsaufrufes muß die 2
herhalten. Wieder wird das erste Element von unten gesucht, das
nicht kleiner als das Vergleichselement ist, in diesem Fall die 3.

Vertauscht wird sie mit dem ersten Element von oben, das nicht

größer als die 2 ist: 3:

1452036798 05 2
A% 7% — X%

Solange die untere noch nicht die obere Grenze überschreitet,

muß weitervertauscht werden:

1052436798 14 2

A% 2% = X%

1025436798 © 23 2
A% 2% X%

Das Vergleichselement des nächsten Aufrufs ist die 0, die mit
der 1 vertauscht wird:

#1025436798

0125436798 0 1 0

A% ZK = X&

Beim nächsten Aufruf wird das Vergleichselement 2 einmal mit
sich selbst vertauscht:

#0125436798

0125436798 22 2
uU X%

 134 Das große ST-BASIC-Buch ————

Dieses Spielchen setzt sich fort, bis beide Teilfelder fertig sor-

tiert vorliegen. Anhand dieses kleinen Algorithmus, der übrigens
auch in der implementierten Sortierroutine des ST-BASIC Ver-

wendung findet, sieht man sehr schön die Funktionsweise und

Eleganz einer rekursiv programmierten Unterroutine. Die Nach-
teile sollen allerdings auch nicht verschwiegen werden: Häufig
ist es sehr schwierig, eine rekursive Routine zu programmieren,
da sich kein geeigneter Rekursionsweg finden läßt. Andererseits
kostet eine Rekursion bei ihrer Ausführung stets mehr Speicher-
platz als ihre iterativ (Gegenteil von rekursiv) durchgeführte
Schwester. Warum dieses?

Der Interpreter merkt sich den Punkt, von dem aus er in ein

Unterprogramm gesprungen ist. Dazu legt er die entsprechenen

Daten in einem bestimmten Speicherbereich ab. Dieser Speicher-

bereich, den der Prozessor auch bei seiner Arbeit verwendet,

heißt Stack. Ruft sich eine Funktion rekursiv auf, so wächst der
Stack logischerweise mit jedem Aufruf an. Es sind Problemstel-
lungen denkbar, die nicht rekursiv gelöst werden können, da

selbst der Speicherplatz eines Mega ST 4 nicht ausreicht, um die

Daten des Stacks aufzunehmen.

Funktionen

Ähnlich wie Prozeduren, können Sie in ST-BASIC auch Funk-
tionen selbst definieren. Im Gegensatz zu einer Prozedur gibt
eine Funktion jedoch stets einen Wert zurück: den Funktions-
wert. :

[Funktionsparameter] --Funktion--> Funktionswert

Dieser kann dann einer Variablen zugewiesen oder gleich auf
dem Monitor ausgegeben werden. Die Funktionsparameter kön-
nen bei Bedarf auch entfallen. Ein Funktionswert wird aber auf
jeden Fall zurückgegeben. ST-BASIC unterscheidet zwei Funkti-
onsarten: Ein- und mehrzeilige.

 ——— ST-BASIC Grundkurs Ä 135

Einzeilige Funktionen

Ehe eine Funktion benutzt werden kann, muß sie mit

DEF FN <Name(Parameter)> = <Ausdruck>

definiert werden. Die Anweisung DEF FN weist den Interpreter
an, eine Funktion mit dem Namen <Name> einzuführen, der die
Argumente <Parameter> übergeben werden. <Ausdruck> enthält
die eigentliche Funktionsvorschrift. Als Beispiel möchte ich noch
einmal die Wechselkursumrechnung DM in Schilling mißbrau-
chen. Zuerst die Definition der Funktion:

DEF FN Schilling(Betrag!) = INT((Betrag!/.1429*100)+.5)/100

Diese Definition kann beliebig in den Programmtext eingestreut
werden, da der Interpreter beim Programmstart sämtliche DEF

FN selbständig ausführt. Möchten Sie diese Funktion aufrufen,
so geht dies über FN, gefolgt von dem Funktionsnamen und dem
benötigten Parameter als Argument:

Waehrung!= FN Schilling(100)

Der in Schilling umgerechnete Betrag von 100 DM wird der Va-
riablen Waehrung! zugewiesen, und kann via PRINT auf den
Monitor gebracht werden. Mit

PRINT FN Schilling(100)

umgeht man die Zuweisung an die Variable und sieht das Er-
gebnis sofort auf dem Monitor: 699.79

Möchten Sie einen String als Funktionswert erhalten, so muß der

Funktionsname mit einem Dollarzeichen ($) am Namensende ge-
kennzeichenet werden: |

DEF FN Screen$(X$) = CHR$(27)+X$

auf diese Weise resultiert ein zwei Zeichen langer String, der mit
einer Escape-Sequenz beginnt. Mit ihm kann der VT-52-Emu-

lator des Atari ST angesprochen werden (erinnern Sie sich?).

 136 Das große ST-BASIC-Buch -————

PRINT Screen$("H")

setzt den Cursor in die linke obere Ecke des Bildschirms

(HOME), ohne diesen jedoch zu löschen. Funktionen können
auch andere Funktionen aufrufen. Zum Beispiel die Funktion

zur Cursorpositionierung:

DEF FN Crsr$(Sp,Ze)= FN ScreenS("Y¥")+CHRS$(32+Sp)+CHRS$(32+Ze)

Möchten Sie den Cursor an die Position (10,10) setzen, genügt
der Aufruf

PRINT FN Crsr$(10,10).

Es versteht sich von selbst, daß die Anzahl und der Typ der
übergebenen Parameter mit denen in der Funktionsdefinition

übereinstimmen müssen. Auch eine Funktion ohne Übergabe ei-
nes Parameters ist denkbar und vor allem möglich!

DEF FN Wuerfel= -RND(-6)

Diese Funktion liefert Zufallszahlen im Bereich von 1 bıs 6.
Dazu wird der Zufallsgenerator des Atari mit der Funktion RND
(Randomize) angesprochen. Wird ihm als Argument ein negativer
Wert übergeben, so liefert der Zufallsgenerator ganzzahlige Zu-

fallszahlen im Bereich von -1 und dem übergebenen Wert. Das
~Minuszeichen vor der Funktion RND sorgt dafür, daß der
Funktionswert positiv wird:

-(-4) = +4

Mehrzeilige Funktionen

ST-BASIC erlaubt auch die Definition mehrzeiliger Funktionen.
Wieder muß die Umrechnung von DM in Schilling herhalten, um
den Unterschied zwischen beiden Funktionsarten deutlich zu
machen:

100 DEF FN Schilling(Betrag!)

110 RETURN INTC(Betrag! /.1429*100)+.5)/100

 — ST-BASIC Grundkurs 137

Zwei Unterschiede existieren zur einzeiligen Variante:

- Der Zuweisungsoperator = ist verschwunden

- Die Funktion wird über RETURN verlassen, wobei der

Funktionswert, der zurückgegeben werden soll, hinter
dem RETURN stehen muß.

Mehrzeilige Funktionen sind - wie sich unschwer erkennen läßt
- mit Mehrarbeit verbunden. Als Lohn der Mühe erhält man

mehr Möglichkeiten und eine damit verbundene größere Flexi-
bilität:

- Kontrollstrukturen wie IF..THEN..ELSE oder Schleifen

können in der Funktionsdefinition vorkommen.

- In Abhängigkeit bestimmter Bedingungen können un-
terschiedliche Funktionsausdrücke zur Berechnung
herangezogen werden.

- Funktionen können rekursiv programmiert werden.

Dazu wieder ein (Parade-)Beispiel: Die Fakultätsfunktion ist in
der Mathematik bzw. Statistik wie folgt definiert:

- Die Fakultät von 0 ist 1,

- Die Fakultät von X ist X mal der Fakultät von (X-1).

Die Fakultät von 5 (geschrieben als 5!) berechnet sich folglich
als:

5*4! = 5*4*3! = 5*4*3*2! 5*4*3*2*1! = 5*4*3*2*1 = 120

Ein klassisches Rekursionsproblem, das wie folgt gelöst wird:

100 DEF FN Fakultaet(X!)' Float, da extrem groBe Werte!

110 IF FRAC(X!) > O THEN' Nachkommastellen vorhanden?

120 PRINT" Fakultät ist nur für natürliche Zahlen definiert!"

130 "EXIT TO <Ziel> mit EXIT zurück

140 ENDIF

150 IF X!=0 THEN

 138 Das groBe ST-BASIC-Buch ———

160 RETURN(1)' O! = 1
170 ENDIF |
180 RETURN FN Fakultaet(X!-1)*X!

Als Funktionsargument muß eine Fließkommazahl herhalten, da
bei der Fakultätsberechnung sehr schnell extrem große Werte
erreicht werden (69! = 1,71 * 1098 !!!!), die dann nicht mehr in
einer Integerzahl gespeichert werden können.

Eine mehrzeilige Funktion kann übrigens auch mit einem EXIT
TO <Ziel> verlassen werden. Dies wird dann nötig, wenn eine
Zahl mit Nachkommastellen zur Berechnung übergeben wurde,

da dies (mathematisch) nicht definiert ist. Die Fakultät kann nur
für positive natürliche (ganze) Zahlen einschließlich der Null
berechnet werden. Als <Ziel> muß eine Zeilennumer oder eine
Marke angegeben werden, an die der Interpreter im Falle des
Falles springen kann. Die Funktion FRAC(X!) liefert - ich weiß
ich wiederhole mich - die Nachkommastellen einer Zahl, und
somit bei vorhandenen Nachkommastellen eine wahre Bedingung.

Die Rekursion selbst dürfte keine Schwierigkeiten mehr machen.
Rufen Sie die Funktion mit Fakultaet(5) auf, so geschieht fol-
gendes:

- Solange der Funktionswert noch nicht den Wert 0 er-

reicht hat, ruft sich die Funktion immer wieder selbst

auf, jedoch mit einem um den Wert 1 erniedrigten

Funktionswert. |

- Ist der Funktionswert 0 erreicht, werden die einzelnen
Werte multipliziert und zurückgegeben. Fertig!

Übrigens: ST-BASIC besitzt eine eigene Funktion zur Berech-
nung der Fakultät einer natürlichen Zahl, so daß man sich das
Schreiben der Funktion schenken kann: FACT(X). Im Gegensatz
zu Prozeduren ist es nicht möglich Funktionen mit: Rückgabe-
Parametern auszustatten. Es wird jeweils nur der Funktionswert
zurückgegeben!

Eine nützliche Funktion zur Stringmanipulation, die in ST-BA-
SIC jedoch nicht implementiert ist, möchte ich Ihnen nicht

 —— ST-BASIC Grundkurs 139

vorenthalten: Insert$

100 DEF FN Insert$(Master$,Einf$,Stelle)

110 Master$= LEFTS(Master$,Stelle-1)+Einf$+ MIDS(Master$, Stelle)

120 RETURN Master$

Die Funktion setzt den String Einf$ ab der Position Stelle in die
Zeichenkette Master$ ein. Mit diesen Werkzeugen ausgestattet,

können wir (endlich!) zu größeren Taten schreiten! Zuvor bin
ich Ihnen allerdings noch die Erklärung eines Befehls schuldig,
den ich zwar schon bei Quicksort schon benutzt, aber noch nicht
erklärt habe: READ, DATA und RESTORE.

2.12 READ, DATA und RESTORE

Möchten Sie ein Array mit bestimmten Anfangswerten versor-
gen, stehen Ihnen dafür mehrere Möglichkeiten zur Verfügung:

- Jedes Element kann über eine eigene Zuweisung mit dem
Anfangswert versorgt werden:

A(0)=10

AC1)=3

A(2)=41

- Auch eine manuelle Eingabe der Werte beim Programmstart
erweist sich als nicht besonders praktisch:

FOR T% = O0 TO Anzahl

Input A(T%)

NEXT T%

- die Werte können jedoch auch hinter der Anweisung DATA
abgelegt und über eine READ-Anweisung eingelesen werden.

 140 Das groBe ST-BASIC-Buch ————

100 REM Array AC) mit Anfangswerten versorgen

110 DIM AC10)

120 FOR T%=0 TO 10

130 READ A(T%)

140 NEXT T%

150 !

160 !

170 !

180 DATA 10,20,30,50,60,20,65,0,4,521,87

190 END

In der Programmzeile 180 sind genau 11 verschiedene Werte,

fein säuberlich durch Komma voneinander getrennt, abgelegt.

Stößt der Interpreter bei seiner Arbeit auf den Befehl

READ

so wird das Element aus der DATA-Zeile gelesen, auf das der
DATA-Zeiger weist. Dieser Zeiger sagt dem Computer, welches
Element er als nächstes aus der DATA-Zeile holen muß. Nach
dem Programmstart wird der Zeiger stets auf den ersten Wert in
der ersten DATA-Zeile gesetzt. In unserem Programm ist nur

eine Zeile vorhanden, deshalb nimmt der Interpreter den Wert

10.

Anschließend erhöht er den DATA-Zeiger um eine Position, so
daß dieser ab sofort auf den nächsten Wert in der Datazeile
weist (20). Beim nächsten READ geht es diesem Wert an den
Kragen, gleichzeitig wird der Zeiger wieder ein Element weiter-
bewegt. Dies wiederholt sich bei jedem READ, bis alle Daten
eingelesen sind. | | |

Versuchen Sie mit READ mehr Daten aus der Tabelle abzuho-
len, als in dieser vorhanden sind, muß der Computer feststellen,

daß sein DATA-Zeiger irgendwo in die Prärie weist und er
meldet sich mit einem OUT OF DATA zu Wort. Zur Manipula-

tion des DATA-Zeigers existiert ein eigener Befehl:

RESTORE: RESTORE setzt den DATA-Zeiger
auf das erste Element der ersten

Datazeile. Aber auch inmitten der

Werte kann der Zeiger gesetzt wer-

 — ST-BASIC Grundkurs Ä 141

den, indem hinter RESTORE eine
Zeilennummer oder eine Marke an-
gegeben wird.

RESTORE 500: Placiert den Zeiger auf das nächste

auffindbare Element ab Zeile 500.

RESTORE Irgendwohin: Setzt den Zeiger auf das nächste
Datenlement hinter dem Label "Ir-
gendwohin".

ON..RESTORE: Funktioniert wie ON..GOTO und
setzt den Zeiger auf die entspre-

chende(n) hinter RESTORE ange-
gebene(n) DATA-Zeile(n):

100 INPUT " Umsätze für Monat? (1-12) ";Monat%

110 ON Monat RESTORE Januar, Februar, Maerz, April, Mai, Juni ...

120 !

130 FOR T%=1 TO 31

140 READ Umsatz

160 IF Umsatz=-1 THEN

170 EXIT

180 ENDIF

190 PRINT T%;".";Monat%; " "Umsatz

200 NEXT T%
210 END

220 !

230 -Januar

240 DATA 5436,4986, 45673, 12345 , 23987, 23769, 2976

250 DATA 7659,3276,4598,5456, 5986, 3456, -1

260 -Februar Ä

270 DATA 65786,4987,3096,2386,2387,30975,23765 ‚2386

280 DATA 54675,23987, -1 |
290 -Maerz

300 ‘und so weiter

Dieses (zugegebenermaßen) nicht sehr sinnvolle Programm
druckt die in jedem Monat getätigten Umsätze aus. Der
ON..RESTORE-Befehl sorgt dafür, daß der DATA-Zeiger auf
den ersten Umsatzwert des entsprechenden Monats positioniert

wird. Anschließend werden die einzelnen Datawerte per READ-

Anweisung eingelesen.

 142 Das große ST-BASIC-Buch -————

Neu ist noch die Überprüfung des eingelesenen Wertes. Beträgt

dieser -1, so sind bereits alle Umsätze eingelesen und die

Schleife kann verlassen werden. Auf diese Weise werden stets
nur soviele Daten eingelesen, wie auch wirklich vorhanden sind.
Bei unterschiedlichen Datenmengen ein unabdingbares Muß,
damit die Fehlermeldung OUT OF DATA vermieden wird.

Neben Zahlen können selbstverständlich auch Zeichenketten in
DATA-Zeilen abgelegt werden. Diese müssen dann in Anfüh-
rungszeichen stehen:

90 DIM A$(12):T%=0

100 REPEAT

110 T%=T%+1

120 READ AS(T%)' einer STRINGvariable zuweisen

130 UNTIL A$(T%)="Dezember"140 !

150 END

160 !

170 DATA "Januar","Februar","Maerz","April","Mai", "Juni"

180 DATA "Juli", "August", "September", "Oktober", "November"

190 DATA "Dezember"

In die Variable A$() werden die einzelnen Monatsnamen aus den
DATA-Zeilen eingetragen. Die REPEAT..UNTIL-Schleife sorgt
dafür, daß alle Monatsnamen bis einschließlich "Dezember" ein-

gelesen werden. Ist dies geschehen, wird die Schleife beendet.
Somit erspart man sich das Abzählen der einzelnen Werte, das

besonders bei längeren Datenkolonnen zweitaufwendig und feh-
lerbehaftet ist.

2.13 BASIC-Allerlei

Mit Riesenschritten nähern wir uns dem nächsten Kapitel, in

dem sich alles um die Datenspeicherung auf Diskette drehen
wird. Und weil damit auch der Grundkurs in ST-BASIC zu
Ende geht, können wir uns gleich an eine etwas schwierigere
Kost wagen. | |

 —— ST-BASIC Grundkurs | 143

Ehe Daten auf Diskette gespeichert werden können, müssen

diese erst einmal erfasst werden. Was liegt also näher, als eine

Mini-Adreßverwaltung zu entwickeln, anhand der gleich noch
ein paar prinzipielle Dinge besprochen werden können, die ich

bisher unterschlagen habe? Was braucht der Mensch?

Bis jetzt waren die Programme relativ kurz, man konnte einfach
drauflos programmieren. Je komplexer die Programme allerdings
werden, desto mehr Gedanken muß man sich vor dem eigentli-
chen Programmiervorgang machen. Als Lohn dieser Mühe kann

man sich viel Zeit beim Austesten seiner Programme sparen.

BASIC verführt dazu, ein Programm direkt in den Computer zu

"hacken" und anschließend solange auszuprobieren bis es funk-
tioniert. Bei Verwendung von Compilersprachen, deren Pro-

gramme nicht direkt ausführbar sind, sondern erst in eine aus-
führbare Form gebracht werden müssen, ist diese Problematik
nicht so akut. Stellen Sie sich einmal vor, Sie haben ein Pro-

gramm entwickelt und ehe Sie es testen können, müssen Sie ei-
nige Minuten warten, in denen das Programm compiliert wird.
Schon bald werden Sie sich freiwillig zuerst überlegen, was die-
ses Programm können soll, und wie dies bewerkstelligt werden

kann, ehe Sie den Computer einschalten. Und auch beı BASIC
sollten Sie sich im eigenen Interesse diesen Arbeitsstil angewöh-
nen.

Aufgabenstellung festlegen

Der erste Schritt vor dem eigentlichen Programmiervorgang ist
die Festlegung der Aufgabenstellung. Gut, daß wir eine Adreß-

verwaltung schreiben wollen, das ist bekannt. Aber was soll
dieses Programm leisten? Profis verwenden hierzu ein Pflichten-
heft, in dem genau verzeichnet ist, was das Programm können
soll. Für unsere Adressverwaltung könnte dies etwa so aussehen:

l. Adressen erfassen

2. Adresse korrigieren und gegebenenfalls löschen

3. Eine bestimmte Adresse suchen

 144 Das große ST-BASIC-Buch ———

4. Adressen auf Diskette speichern

5. Adressen von Diskette einlesen

6. Programm verlassen |

Als nächstes muß abgeklärt werden, welche Daten vom Pro-

gramm erfasst werden sollen:

1. Name und Vorname

2. Strasse incl. Hausnummer

3. Postleitzahl und Wohnort

4. Telefonnummer .

5. Geburtsdatum

Nachdem abgeklärt wäre, welche Funktionen das Programm ent-

halten und welche Daten damit erfaßt werden sollen, muß es
noch anwenderfreundlich gestaltet werden. Dazu bietet man dem

Benutzer nach dem Programmstart alle Funktionen an, die das
Programm beinhaltet, und läßt ihn auswählen, welche Funktion
er wünscht. Diese Auswahl nennt man im Fachjargon auch
MENU. Und damit auch die Optik stimmt, realisieren wir den
Bildschirmaufbau wie folgt:

- Kopfzeile (HEADER),

- zur Verfiigung stehende Funktionen,

- Aufforderung an Benutzer eine Auswahl zu treffen

Nach dem Programmstart wird dieses Bild auf dem Monitor aus-
gegeben, und der Computer muß warten, bis eine Taste gedrückt
wurde. Im nächsten Schritt ist zu überprüfen, ob diese Taste

eine bestimmte Funktion auslösen soll oder ob eine falsche Taste
gedrückt wurde. Diese muß ignoriert werden, damit das Pro-
gramm nicht abstürzt. Kann der Taste eine Funktion zugewiesen
werden, so ist diese auszuführen (Abbildung 2.1).

Die einzelnen Funktionen selbst legt man in Unterprogrammen
(Module) ab, die über ein ON..GOSUB erreicht werden können.
Welche Daten gespeichert werden sollen, darüber waren wir uns
bereits im Klaren. Doch wie werden diese Daten am günstigsten

 —— ST-BASIC Grundkurs 145

im Computer abgelegt? Dumme Frage, ein Array muß dafür
herhalten. Die Dimension des Feldes wird in einer Variablen

gespeichert, damit bei Bedarf einfach und schnell nachdimensio-

niert werden kann. Eine Dimension von 100 sollte für den An-

fang genügen.

MINIDATEI - Hauptmenü

we
 3

K
OK

OK

x
R
K

Ein Demoprogramm aus dem grossen ST-Basic Buch

IBRBRBRRRRBERBBSBBBBBBBEHEHBHRBHBBBBSHBHBBEBBBBBRBBEBBBBBBRBBSBRRAHHBBBBBRBBBAHE

1 Name erfassen

2. Name korrigieren

3. Name suchen

4. Datei abspeichern

5. Datei laden

6. Programm verlassen

Bitte waehlen Sie!
Abb. 2.1: Das Hauptmenü der Minidatei

Mit diesen Vorüberlegungen sollte die Umsetzung in ein aus-
führbares Programm keinerlei Schwierigkeiten mehr machen.
Nach der Dimensionierung der String-Arrays, die üblicherweise
am Programmbeginn erfolgt, wird das Menü aufgebaut. Dazu
wird der Befehl PRINT verwendet bzw. ein naher Verwandter
von PRINT, nämlich PRINT AT (sprich: Print Ät).

PRINT AT

Print At ermöglicht die Ausgabe von Daten an der Bildschirm-
position mit dem Koordinatenpaar (Zeile, Spalte). Die Syntax
dafür lautet

PRINT a(Zeile,Spalte);<Text>

 146 Das groBe ST-BASIC-Buch ————

Uber den Befehl PRINT gibt es nichts Neues sagen. Das Zeichen
@ (Klammeraffe genannt) erreichen Sie durch gleichzeitiges
Drücken der Tasten <Alternate> und <U>. AnschlieBend wird
die Position angegeben, an der die Ausgabe von <Text> (durch
ein Semikolon von der Positionsangabe getrennt) erfolgen soll.
Die linke obere Ecke des Monitors besitzt dabei die Koordinaten
(0,0), die rechte untere Ecke die Koordinaten (24,79).

PRINT &(0,1):"*"*78

schreibt demnach in die erste Zeile ab Spalte 2 einen aus 78

Sternchen bestehenden String. Mit PRINT At läßt sich jetzt der

Bildschirmaufbau problemlos realisieren. Der Optik halber wird
die in der untersten Zeile stehende Aufforderung "Bitte wählen
Sie" invers dargestellt. Die inverse Darstellung übernimmt der
VT-52 Emulator des Atari ST. Eingeschaltet wird sie mit dem
Befehl

PRINT CHR$(27);"'p"

während

PRINT CHR$(27);"q"

dafür sorgt, daß sie wieder abgeschaltet wird. Die in der Zeile 9

definierte Funktion SCREENS$(), der als Argument das entspre-
chende Zeichen übergeben wird, macht die ganze Sache etwas

übersichtlicher.

Nachdem der Bildschirm aufgebaut ist, muß das Programm an-
halten und auf die Eingabe des Benutzers warten. Man könnte
jetzt auf die Idee kommen, dafür eine INPUT-Anweisung zu
benutzen. Sicher eine Möglichkeit, aber es gibt einen eleganteren
Weg, der hier auch prompt beschritten werden soll:

INKEY$

INKEY3$ liefert eine vier Byte lange Zeichenkette, die die Daten
der zuletzt gedrückten Taste enthält. Dabei wartet die Funktion
jedoch nicht auf einen Tastendruck wie INPUT. Wurde keine

 ——— §T-BASIC Grundkurs 147

Taste gedriickt, liefert INKEY$ als Ergebnis einen leeren String.
Folglich muB INKEY$ in einer Schleife solange wiederholt wer-
den, bis eine Taste gedriickt wurde:

REPEAT |

ı weist AS das von INKEY$ gelieferte Ergebnis zu

AS= INKEYS

UNTIL A$ <> "mt und zwar solange, bis Taste gedrückt

Sobald eine Taste gedrückt wurde, enthält A$ eine vier Byte
lange Zeichenkette:

1.Byte: Bit 0: Rechte Shift-Taste
Bit 1: Linke Shift-Taste

Bit 2: Control

Bit 3: Alternate

Bit 4: Zustand von Caps Lock

2.Byte: Scancode der Taste

3.Byte: Nicht benutzt

4.Byte: ASCII-Code der Taste

Fir uns ist im Augenblick lediglich das vierte Byte interessant,
das mit

RIGHTS(A$, 1)

isoliert werden kann. Doch Vorsicht! Solange keine Taste ge-
drückt wurde, enthält die Variable A$ einen Leerstring. Ver-
sucht man mit RIGHT$ das letzte Byte von A$ abzuschneiden,
so führt dies unweigerlich zu einer Fehlermeldung, wenn in A$
noch keine Zeichenkette vorhanden ist. Andererseits läßt sich
das Angenehme gleich mit dem Nützlichen kombinieren: die
Schleife soll nur dann verlassen werden, falls der Benutzer eine

korrekte Menüauswahl getroffen hat. Korrekt bedeutet in diesem
Zusammenhang, daß eine Zifferntaste von 1 bis 6 gedrückt
wurde. Die verbesserte Schleife:

REPEAT

 148 Das große ST-BASIC-Buch ———

A$= INKEY$
IF AS <> "" THEN

A$= RIGHTSCAS, 1)
ENDIF

UNTIL A$>"On AND A$ <u7u

Der Operator AND weist den Computer an, die Gesamtbedin-
gung nur dann als wahr zu akzeptieren, wenn beide Teilbedin-
gungen (A$ > 0, A$ < 7) erfüllt sind. Doch dazu später
mehr.Zunächst werden der Variablen A$ die Daten der zuletzt
gedrückten Taste zugewiesen. Wurde noch keine Taste betätigt,

enthält A$ einen Leerstring. Die IF-Abfrage überprüft, ob schon
eine Zeichenkette in A$ vorliegt und isoliert das für uns wert-
volle vierte Byte, das anschließend zur Überprüfung des Ab-
bruchkriteriums herangezogen wird. Die Schleife wird immer
dann verlassen, wenn eine Taste von 1 bis 6 gedrückt wird. Daß
Buchstaben. aufgrund ihres ASCII-Wertes auch für Vergleiche
herangezogen werden können, ist für Sie bereits Schnee von vor-
gestern.

A$ enthält nach Abbruch der Schleife die gedrückte Taste in
Form eines 1 Byte langen Characters. Doch der hilft uns bei
unserem nächsten Problem überhaupt nicht weiter: ON..GOSUB
erwartet nämlich eine Zahl (!) von 1 bis 6, und nicht irgendei-
nen Buchstaben. Also umwandeln! Aber wie?

Mit VAL(O (A = VAL(A$O) ginge es, aber das ist zu einfach!
Kennen Sie noch einen zweiten Lösungsweg? Richtig, der
ASCII-Code, der sich für jeden Buchstaben mit Hilfe der Funk-
tion ASC() ermitteln läßt, muß ran! Wenn Sie sich die im An-
hang dieses Buches abgedruckte ASCII-Tabelle einmal in einer
ruhigen Minute zu Gemüte führen, werden Sie feststellen, daß
die 1 den Code 49, die 2 den Wert 50, usw. zugeordnet bekom-
men hat.

Ermitteln wir von A$ den Code über ASC(A$) und subtrahieren
von diesem Ergebnis den Wert 48, resultieren daraus - je nach
gedrückter Taste - die Zahlen von 0 bis 9, die wir für unsere
ON..GOSUB-Anweisung verwenden können. Wie gesagt, auch
VAL() führt (in diesem Fall sogar schneller) zum Ziel, aber
dann hätten Sie nicht so viel über den ASCII-Code gelernt.

 —— ST-BASIC Grundkurs 149

Mehr als eine reine Formsache ist das Löschen der Variablen A

vorm Schleifeneintritt. Wird dies unterlassen, geschehen gar

wundersame Dinge, da die INKEY$-Schleife in Zukunft verlas-
sen wird, ohne daß eine Taste gedrückt werden mußte! Probie-
ren Sie es einmal spaßeshalber aus!

Die Meniiauswahl selbst ist in eine Schleifenstruktur eingebettet,
die nur dann beendet wird, falls die Taste 6 gedriickt wurde.
Die Struktur in "Pseudocode":

REPEAT

<Bildschirmaufbau>

REPEAT

<Taste gedrückt?>

UNTIL <Taste richtige gedrückt>

<ON <Taste> GOSUB >

UNTIL <Programmende>

Ach ja, vor der INKEY$-Schleife wird noch der Cursor ausge-
schaltet, damit er nicht irgendwo (störenderweise) blinkt. Der
Ordnung halber wird er dann nach dem Schleifendurchlauf wie-
der aktiviert (Der noch kommende INPUT-Befehl soll ruhig sei-
nen blinkenden Cursor haben). Der Menüaufbau wäre abge-
schlossen, jetzt kommen die einzelnen Funktionen des Program-

mes an die Reihe: Ä

Zuerst einmal Adressen erfassen. Auf dem Monitor befindet sich
im Augenblick noch die Menüauswahl, die mit einem CLS ent-
fernt wird. Im nächsten Schritt wird ein Formular auf dem
Bildschirm aufgebaut, in das die geforderten Daten eingegeben
werden werden können. Ist ein Datensatz komplett erfaßt, kann

der Benutzer wählen, wie er fortfahren möchte:

 150 Das große ST-BASIC-Buch ———— |

1. Eine weitere Adresse eingeben.

2. Eingegebene Adresse korrigieren.

3. In das Hauptmenü zurückspringen.

Wie lassen sich nun diese Funktionen am zweckmäßigsten auf
einzelne Prozeduren verteilen? Der Bildschirm wird, da auch die
Menüpunkte Adressen korrigieren bzw. Adresse suchen auf die
gleiche Maske zurückgreifen sollen, in einer eigenen Prozedur
aufgebaut. Auch eine universell gestaltete Eingabeprozedur hat
ihre Vorteile: Der Menüpunkt "Adressen korrigieren" kann sie
ebenfalls benutzen. Da die Auswahl des Untermenüs jedoch von
Fall zu Fall verschieden sein wird, hat eine Abfrage nach der
weiteren Vorgehensweise des Benutzers in der Eingabeprozedur

nichts mehr zu suchen, sie ist vielmehr eine Sache des eigentli-

chen Unterprogramms.

Sinn dieser Vorüberlegungen ist, die anfallenden Arbeiten auf
verschiedene Prozeduren zu verteilen und somit das Programm

nicht unnötig in die Länge zu ziehen. Fassen wir die bisher ge-
klärten Aufgaben des Menüpunktes noch einmal zusammen, um

nicht den Überblick zu verlieren:

#%%%*%* Unterprogramm: Adressen erfassen ******

<Maske aufbauen>

<Eingabe einer Adresse ermöglichen>

<Weitere Vorgehensweise abfragen>

Diese Grobstrukturierung muß jetzt noch Schritt für Schritt
verfeinert werden, ehe mit der eigentlichen Programmierung be-
sonnen werden kann. Eine Prozedur zur Darstellung der Maske
zu schreiben, sollte uns vor keine größeren Probleme mehr stel-
len. Ein Punkt, der bei der Programmierung dieser Funktion
gleich mit berücksichtigt werden sollte, ist die Ausgabe einer
Überschrift. Dazu wird der Prozedur bei ihrem Aufruf ein (lo-
kaler) String übergeben, in dem die Überschrift enthalten ist.
Für’s Auge wird er dann genau in die Bildschirmmitte gesetzt:

PRINT alZeile, (Zeilenlänge-Stringlänge)/2);"..... "

 ——— §T-BASIC Grundkurs 151

Dieser Algorithmus zentriert den String. Zunächst wird die
Länge der auszugebenden Zeichenkette von der maximalen Zei-

lenlänge abgezogen. Übrig bleibt die Anzahl der nicht genutzten
Zeichen in dieser Zeile. Durch die Division mit 2 werden diese
zwischen dem linken und dem rechten Bildschirmrand aufgeteilt,

so daß schließlich der auszugebende String genau ın der Bild-
schirmmitte erscheint.

Schwieriger wird die Prozedur zur Adreßeingabe, da hierzu
gleich eine ganze Menge Neuerungen benötigt werden. Aber al-
les schön der Reihe nach!

Formatierte Eingabe

INPUT bzw. LINE INPUT kennen Sie bereits. INKEY$ ist in
diesem Kapitel neu hinzugekommen. Und den absoluten Profi-
befehl zur Dateneingabe möchte ich Ihnen jetzt servieren:
INPUT USING.

Ja, Sie lesen richtig! Bei INPUT USING handelt es sich um
einen Profibefehl, der vor allem für die Verwendung in kom-
merziellen Programme gedacht ist. Wenn seine Handhabung auch
etwas komplizierter als die des INPUT bzw. INKEYS$ erscheint,

soll das niemanden abschrecken! Es ist bekanntlich noch kein
Meister vom Himmel gefallen. Und zudem sollten Sie mittler-
weile über genügend Hintergrundwissen verfügen, um diesen

Befehl zu verstehen.

INPUT @(Zeile, Spalte);<Variable>

kenne ich schon, werden Sie jetzt vielleicht erfreut feststellen!
Das ist doch die Syntax des altbekannten INPUT-Befehls. Und
ın der Tat, bisher unterscheiden sich beide Befehle noch über-

haupt nicht. Doch was jetzt kommt, ist neu:

USING <Steuerstring>

USING ist ein Befehlswort, das halt dastehen muß. Interessanter
wird es beim <Steuerstring>. Er zeichnet dafür verantwortlich,
daß bei der Eingabe nur ganz bestimmte Zeichen angenommen

 152 Das große ST-BASIC-Buch ———

werden. Zeichen, die im <Steuerstring> nicht zugelassen sind,

werden vom Computer ignoriert. Soll z.B. die Eingabe einer Te-
lefonnummer erfolgen, so haben Buchstaben darin absolut nichts

zu suchen, während Zahlen bei der Erfassung von Namen igno-
riert werden müssen. Folgende Zeichen sind im <Steuerstring>
von Bedeutung:

Zeichen bewirkt ein Zulassen von

0 Ziffern (0-9)
a Buchstaben (incl. Umlaute) falls Modus

"Deutsch"

% Sonderzeichen (excl. Umlaute)

falls Modus "Deutsch"

Control-Zeichen
a

+<Zeichen> <Zeichen> zulassen

-<Zeichen> <Zeichen> verbieten

c<Zeichen 1><Zeichen 2> <Zeichen 1> durch <Zeichen 2> ersetzen

u alle Buchstaben in Großschrift

] alle Buchstaben in Kleinschrift

Durch Kombination dieser Zeichen wird der Steuerstring zu-
sammengebaut. Aber dies ist nicht weiter kompliziert:

"0" Bei der Eingabe sind alle Ziffern von 0 bis 9
zugelassen.

"0a" Alle Ziffern und Buchstaben sind zugelassen.

"Dau” Alle Ziffern und Buchstaben sind zugelassen,

Buchstaben werden automatisch in Großschrift
umgewandelt.

"Oat.u" Wie oben, zusätzlich ist jedoch die Eingabe ei-
nes Punktes gestattet.

"Da+.-au” Der Buchstabe a ist ab sofort nicht mehr zu-
| gelassen. |

"+ta+bt+c" | Bei der Eingabe werden nur die Buchstaben a,

b und c angenommen.

"tatrb+ct+ " Wie oben, jedoch zusätzlich das Leerzeichen
(Space).

"+a+b+c+ +-+.c.-" Zusätzlich sind hier noch die beiden Zeichen -

 ——— ST-BASIC Grundkurs 153

und . zugelassen. Ein Drücken von . bewirkt

jedoch, daß ein - in der Eingabe erscheint, da

mit c.- der Punkt in einen Strichpunkt

umgewandelt wird.

Es bleibt sich letztendlich egal, ob die Buchstaben innerhalb des
Steuerstring in Groß- oder in Kleinschrift eingegeben werden.
Der INPUT-Befehl wird mit der <Return>-Taste verlassen.
Auch INPUT USING wird mit dieser Taste beendet. Zusätzlich
können noch weitere Bedingungen im Steuerstring angeben wer-
den, mit denen die Eingabe abgebrochen werden soll:

Zeichen Abbruch bei

x<ASCII> Taste mit dem ASCII-Wert <ASCII>

s<Scan> Taste mit dem Code <Scan>

< Überschreitung des linken Randes

> Überschreitung des rechten Randes

Soll die Eingabe bei Betätigung der Taste <E> beendet werden,
kann dies auf zweierlei Art und Weise angegeben werden:

1. Über den ASCII-Code dieser Taste: 101. Der Steuerstring

müßte dann so aussehen:

"ax"+CHR$(101) bzw. “axe!

Die CHR$()-Darstellung des ASCII-Wertes ist immer dann er-
forderlich, wenn das Zeichen, das den Abbruch auslösen soll,
nicht direkt eingegeben werden kann. Ein Beispiel dafür wäre

die Taste <ESC>, die den ASCH- Wert 27 besitzt:

WXN+CHRSC27)

2. Über den Scancode dieser Taste. Dazu ist wieder eine Er-
klärung fällig: Neben dem ASCII-Code gibt es noch den
Scancode, eine Tastennummer. Jede Taste besitzt einen ganz
bestimmten (Scan-)Code, anhand dessen sich die gedrückte
Taste eindeutig identifizieren läßt. Dies ist vor allem für Ta-
sten, denen kein ASCII-Code (z.B. Cursor links, rechts, usw.)

 154 Das große ST-BASIC-Buch ———

zugeordnet ist, wichtig. Wir werden später noch einmal dar-
auf zurückkommen. Auch INKEY$ liefert den Scancode der
gedrückten Taste, und zwar im zweiten Byte.

Bemerkenswert ist noch, daß die Zifferntasten des separaten
Zifferblocks eigene Tastennummern besitzen. Somit kann streng
zwischen den Ziffern des Hauptfeldes und denen des Ziffern-

blocks unterschieden werden. Auch für die Scancodes finden Sie

im Anhang eine Tabelle.

Doch zuriick zum eigentlichen Problem: Die Taste <E> besitzt
den Scancode $12 bzw. in dezimaler Notation 18. Um einen Ab-
bruch über diese Taste zu ermöglichen, muß der Steuerstring
lauten:

NSs"+CHRS(18)

So, den Steuerstring können wir mit diesem Wissen bereits zu-
sammenbauen. Überlegen wir uns also, welche Eingaben für die
einzelnen Bestandteile des Datensatzes erlaubt werden sollen:

NAME

Zur Eingabe des Familiennamens werden auf alle Fälle einmal

Buchstaben benötigt. Umlaute können u.U. auch auftreten. Des-
halb muß am Programmanfang auf den Modus Deutsch mit
MODE "D" umgeschaltet werden. Für Doppelnamen (Bauer-

Reichel) sollte der Trennstrich möglich sein. Namenszusätze
(Titel) müssen durch ein Leerzeichen (Space) abgesetzt werden
können. Berücksichtigt man ferner, daß sämtliche Buchstaben
gleich bei der Eingabe in Großschrift erscheinen sollen, so muß
der Steuer-String für die Eingabe des Namens "a+ +-u" lauten.
Für den Vornamen kann der gleiche Steuer-String benutzt wer-
den, die Umwandlung in Großbuchstaben entfällt jedoch: "a+-+
"

 ——— §T-BASIC Grundkurs 155

STRASSE

Zur Eingabe des StraBennamens werden wieder Buchstaben,

Ziffern fiir die Hausnummern, das Leerezichen sowie der Punkt

bendtigt: "Oa+ +-+."

POSTLEITZAHL

Die Postleitzahl besteht aus genau vier Ziffern. Sind alle einge-
geben, so soll der Computer den INPUT USING-Befehl verlas-
sen. Dazu dient das > (Exit rechte Randüberschreitung) im
Steuer-String: "0>"

ORT

Zur Eingabe des Ortes sind Buchstaben, Zahlen für den evtl.
vorhandenen Zustellbezirk (München22), sowie die beiden
Trennstriche - (Passau-Neustift) und / (Ingolstadt/Donau) von
Nöten: "a0+/+-".

TELEFON

Die Eingabe der Telefonnummer erfordert Ziffern, sowie die

beiden Trennstriche zur Abrenzung der Vorwahl. Das Zeichen -
wird jedoch - um auch diese Funktion einmal zu verwenden -
in den Schrägstrich gewandelt: "O+-+/c-/".

GEBURTSDATUM

Last, not least soll noch das Geburtsdatum erfasst werden. Dazu

werden lediglich Ziffern, sowie zur Trennung des Monats und
des Jahres Punkte benötigt: "0+."

Der nächste Parameter, den INPUT USING hinter dem Steuer-

string - durch ein Komma getrennt - erwartet, ist die <Return-
Variable>. In ihr wird vom Interpreter festgehalten, welche Ta-
ste das Verlassen der Eingabe bewirkt hat. Sie enthält den Wert
0, falls Return, -1, falls eine rechte Randüberschreitung und -2,

falls eine Überschreitung des linken Randes zum Ende der Ein-
gabe geführt hat.

 156 Das groBe ST-BASIC-Buch ———

SSBBHOBRBHBHEHHE Hame erfassen URRRREREHERBREE

Name: SCHLUMPF Vorname: Birgit

Strasse: Am Sonnenhang 66

PLZ: 3939 Ort: Schlumpfhausen

Telefon: 8999/98978 Geb.: 15.89.1988

Ic
Me

 S
e

ac
 M

e
ae
 a

c
Hr

 a
r

ae
 a

e
ae
 a

e
ae
 a

be
ale

 a
e

ar

Nächster Nme Norrektur Hurück ins Hauptmenü
Abb. 2.2: Maske für Adressen erfassen

Ansonsten sind - ähnlich wie auch bei INKEY$ - die Shiftkeys,
der Scancode, die letzte Cursorposition sowie der ASCII-Wert

der Taste, die zum Abbruch der Eingabe geführten hat, darin

enthalten.

Die maximale Zeichenlänge, die das Eingabefeld erhalten soll,
läßt sich ebenfalls angeben. Erfolgt keine Angabe, beträgt die
Länge stets 255 Zeichen. Für unsere Adreßverwaltung sollen je-

doch folgende Eingabelängen gelten:

DatenMax. Eingabelänge

Name 15

Vorname 15

Straße 32

Postleitzahl 4

Ort 30

Telefon 11

. Geburtsdatum 10

Das Eingabefeld wird noch in seiner gesamten Länge mit einem

 —— §T-BASIC Grundkurs 157

Füllzeichen vorbelegt. Soll nicht der Unterstrich _ dazu verwen-
det werden, ist der Füllzeichencode als ASCII-Wert (wieder
durch Komma getrennt) an die maximale Eingabelänge zu hän-
gen. In unserem Fall erübrigt sich die Angabe, da der Unter-
strich verwendet werden soll.

Der letzte Parameter, der bei INPUT USING angegeben werden

kann, ist die Cursorpositions-Variable. Wird sie nicht extra auf-
geführt, so steht der Cursor beim Aufruf des INPUT USING

stets an der ersten Eingabeposition. Damit wäre die Syntax des
INPUT USING komplett besprochen. Noch einmal das ganze

Ungetüm zum Mitschreiben:

INPUT [a(y,x);] ["Text";]<Eingabe-STRING-Variable> USING

[<Steuer-String>],[<Länge>],[<Füllzeichencode>],[<Cursorpositions-

Variable>]

Logische Verknüpfungen

In ST-BASIC existieren eine ganze Reihe von logischen Opera-

toren, mit denen sich Bool’sche Operationen (Teilgebiet der
Mathematik) ausführen lassen.

AND

Dieser Operator sorgt einmal dafür, daß zwei Teilbedingungen
erfüllt sein müssen, damit die Gesamtbedingung ebenfalls erfüllt
ist:

IF X<3 AND X>O THEN ae
Bedingung 1 Bedingung 2

Die Bedingung hinter dem IF ist nur dann wahr, wenn beide
Teilbedingungen wahr sind. Ist nur eine Teilaussage falsch, wird
unweigerlich auch die Gesamtaussage falsch. In dieser Funktion
wurde der Operator AND schon einmal eingesetzt: in der Menü-
Auswahlschleife. Doch dies ist wieder einmal nur die halbe
Wahrheit. Der Operator AND beinhaltet nämlich noch eine

zweite Funktion: die bitweise AND-Verknüpfung zweier Zahlen
miteinander. Angenommen die beiden Variablen A und B ent-

158 Das große ST-BASIC-Buch ——

halten die Zahlen 31 und 43, oder in Dualschreibweise ausge-

drückt:

A: %00011111

B: %00101011

Bit für Bit wird jetzt logisch nach folgender Tabelle undiert:

A B_ A AND B

0 0

0 1

1 0

1 1 =

©

©

©

Als Ergebnis liefert diese Verknifung nur dann eine 1, wenn
beide verknüpften Bits eine 1 enthielten, ansonsten ist das Re-

sultat der Operation stets 0. Auf die beiden Zahlen angewendet,

bedeutet dies:

A: 400011111

B: 400101011

A AND B: %00001011

In Dezimalnotation lautet das Ergebnis der (bitweisen) AND-
Verknüpfung zwischen den Zahlen 31 und 43 11. Wofür läßt
sich diese AND-Verknüfung sinnvoll einsetzten? Sie wird immer
dann herangezogen, wenn bestimmte Bits einer Zahl ausmaskiert,

also auf den Wert O0 gesetzt werden müssen. Ein Beispiel macht
dies gleich um vieles klarer:

In einer Long-Integer, die sich bekanntlich aus vier Bytes zu-
sammensetzt, interessiert nur der Inhalt des zweiten Bytes. Die

übrigen Bits werden nicht benötigt. Also undiert man diese Va-
riable mit einer Konstanten, in der alle Bits des zweiten Bytes
den Wert 1 besitzen. Durch das logische UND erhalten die Bits
des ersten, dritten und vierten Byte den Wert 0 - ungeachtet
ihres vorherigen Inhalts - zugewiesen, sie wurden ausmaskiert.

Der Wert des zweiten Bytes bleibt jedoch unverändert!

A AND 111111110000000000000000

 ——— §T-BASIC Grundkurs 159

oder in der etwas lesbareren Hexadezimalnotation:

A AND $FFOO00

Diese Eigenschaft der UND-Verknüfung werden Sie noch bei
der Überprüfung der Return-Variable des INPUT USING zu
schätzen lernen.

OR

Der nächste Vertreter der logischen Verknüfungen ist das
ODER. Werden zwei Teilaussagen miteinander odiert, so ist die
Gesamtaussage bereits dann wahr, wenn nur eine der beiden

Teilaussagen wahr war.

IF A > 2 OR B < 30 THEN

Bei AND müssen beide Teilbedingungen erfüllt sein, für OR ge-

nügt eine wahre Teilaussage, damit als Ergebnis die Aussage
wahr resultiert. Auch eine bitweise Odierung zweier Zahlen ist

möglich. Während AND jedoch in der Hauptsache dazu benutzt
wird, bestimmte Bits auszumaskieren, so dient OR dazu, be-
stimmte Bits zu setzen: |

A B AORB

a

CC
=

OD

_

a

D
O

re

yo
)

Das aus dieser Verknüfung resultierende Bit enthält immer dann
den Wert I, wenn nur eines der beiden Bits eine 1 enthielt. Ver-

knüpfen wir wieder die beiden Zahlen 31 und 43 miteinander,

diesmal jedoch mit OR:

A: 400011111

B: %00101011

A ORB: %00111111

In Dezimalnotation lautet das Ergebnis der Verknüfung 63.

 160 Das groBe ST-BASIC-Buch ————

NOT

NOT dreht Ihnen zwar nicht das Wort im Munde, dafiir aber die

Bits im Computer um. Eine wahre Aussage wird mittels der Ne-
gation nämlich zu einer falschen und eine falsche zu einer wah-
ren Aussage:

IF NOT (A=B) THEN ...

entspricht der Notation

IF A <> B THEN ...

Die Aussage ist nur dann erfüllt, wenn die Bedingung A=B nicht
erfüllt ist, wenn die Variablen A und B also unterschiedliche

Werte repräsentieren. Auch die bitweise Negation einer Zahl ist
möglich:

A NOTA

1
0 1

Enthält B den Wert 43, so liefert die Zuweisung

= NOT B

in A den Wert

400101011

NOT 411010100

oder in dezimaler Schreibweise ausgedrückt 212. Es handelt sich
dabei um das sogenannte Zweierkomplement einer Zahl. Subtra-
hieren Sie von der mit 8 Bits maximal darstellbaren Zahl 255 die

Zahl 43, so erhalten Sie ebenfalls das Ergebnis 212.

255 - A = NOT A (Zweierkomplement)

XOR

Das Ergebnis der Exklusiv-Oder-Verknüpfung liefert nur dann
eine wahre Aussage, wenn eine Bedingung erfillt, die zweite

 ——— ST-BASIC Grundkurs 161

Bedingung jedoch nicht erfüllt ist. Sind beide Aussagen erfüllt
oder nicht erfüllt, lautet der Wahrheitswert dieser Verknüp-

fungsform jeweils falsch. Auch bitweise kann XOR verknüpft
werden. Das resultierende Bit ist nur dann eine 1, wenn ein Bit

den Wert 0 und das andere Bit den Wert 1 enthielt:

A B_ A XOR B

=a

O
O

a
 ©
 0

1

1

0

Mit den logischen Operatoren, die Sie bisher kennengelernt ha-
ben, sind Sie für die meißten Fälle bestens gerüstet. Dennoch

existieren in ST-BASIC noch weitere logische Operatoren, auf
die ich an dieser Stelle jedoch nicht weitere eingehen möchte, da
sie im wesentlichen nur eine Kombination aus verschiedenen
Operatoren darstellen. Für nähere Details empfehle ich Ihnen das

Handbuch zu Rate zu ziehen.

"Bitgeschiebe"

Die folgenden beiden Befehl sınd relativ schnell erklärt. Ich
habe zwar im Augenblick keinerlei Verwendung für sie, den-
noch möchte ich sie der Vollständigkeit halber an dieser Stelle
vorstellen.

SHR

Was geschieht, wenn man die Bits der Zahl 56 (%00111000) um

eine Position nach rechts verschiebt?

400111000 ---um 1 Bit nach rechts---> %00011100

Der Wert halbiert sich! Die Funktion SHR (SHift Right) ver-
schiebt die Bits Zahl A um N Positionen nach rechts:

Ergebnis = A SHR N

 162 — Das groBe ST-BASIC-Buch ———

Dies entspricht einer n-maligen (vorzeichenlosen) Division der
Zahl durch 2. Im Gegensatz zur normalen Division wird diese
Funktion jedoch wesentlich schneller ausgeführt, da ein Com-
puter nichts schneller erledigen kann, als Bits zu verknüpfen

oder zu verschieben. Ä

SHL

Während SHR eine Zahl halbiert, wird sie mit der Funktion SHL
verdoppelt. SHL (SHift Left) schiebt die Bits einer Zahl A um

genau N-Positionen nach links:

Ergebnis = A SHR N

A SHR N entspricht der (vorzeichenlosen) Multiplikation mit

Ergebnis = A * 2°N

Formatierte Ausgabe mit Print

Ähnlich wie mit INPUT USING Daten formatiert erfasst werden
können, dient PRINT USING zur formatierten Ausgabe von
Daten. Die Syntax für diesen Befehl lautet:

PRINT USING <"Formatmaske">, <Ausgabe(variable)>

Zu beachten ist dabei, daß nur Zahlen ausgegeben werden kön-

nen. Für eine Stringvariable kann dieser Befehl nicht verwendet
werden. Möchten Sie dagegen Zahlen sauber untereinander
(Rechtsbündig und Komma unter Komma ...) ausgeben, eignet

sich PRINT USING hervorragend. Sehen wir uns die
<Formatmaske> einmahl genauer an:

PRINT USING "###, ##",2.8

ergibt auf dem Bildschirm:

2,80

Das Zeichen # in der Formatmaske dient als Platzhalter fiir eine

Ziffer. Für jede Ziffernstelle einer Zahl muß ein solcher Platz-

 ST-BASIC Grundkurs | | 163

halter in der Formatmaske vorhanden sein. Kommazahlen wer-

den dergestalt in die Maske eingepasßt, daß der Vorkomma-

Anteil links, der Nachkomma-Anteil rechts des Kommas bzw.

Punktes in der Formatmaske stehen. Die restlichen, nicht be-
nutzten Nachkommastellen werden noch mit Nullen aufgefüllt,
fertig.

Folgende Zeichen besitzen eine Bedeutung in der Formatmaske:

Zeichen Bedeutung

Platzhalter für eine Ziffer.

Dezimalpunkt an dieser Stelle ausgeben.

; Dezimalkomma an dieser Stelle ausgeben.

, später . Dezimalpunkt an dieser Stelle ausgeben,

Tausender durch Komma trennen. |

spater , Dezimalkomma an dieser Stelle ausgeben,

tausender durch Punkt trennen.

BR Tausender durch Komma trennen, Nachkommastellen

unterdrücken. Tausender durch Punkt trennen,

Nachkommastellen unterdrücken.

- bei negativen Zahlen, Minuszeichen an dieser Stelle

ausgeben.

+ Vorzeichen (auch +) an dieser Stelle ausgeben, Aus-
nahme zu +/-: Ein '+’ oder ’-’, das direkt vor dem ersten

4,’ 9) oder ’,’ steht, bewirkt die Ausgabe des Vor-

zeichens direkt vor der ersten giiltigen Stelle

* <Zeichen> Füllt die Ausgabemaske vorne mit dem Zeichen

<Zeichen> auf, soweit diese Stellen nicht benutzt wer-

den. Nicht benutzte Stellen (’#’) werden ansonsten mit
Leerzeichen aufgefüllt. Der Unterstrich ’_’ darf nicht als

Füllzeichen benutzt werden.

gibt das Zeichen <Zeichen> aus, auch wenn es sich dabei _<Zeichen>

um ein geschütztes Zeichen mit einer Bedeutung für den

Formatstring handelt.

Exponent an dieser Stelle ausgeben.

 164 Das große ST-BASIC-Buch ———

Die übrigen, hier nicht aufgeführten Zeichen, werden so ausge-
geben, wie sie sind.

PRINT USING ". ####HH, ## DM", 25875 .57

ergibt

25.875,57 DM

auf dem Monitor. Der Punkt dient als Tausender-Separator, das

Komma trennt die Nachkommastellen ab.

PRINT USING "*O. #44444 HH DM" 25875.57

ergibt

000025.875,57 DM

Die führenden, nicht belegten Stellen werden aufgrund der
Füllzeichendefinition *0 mit Nullen aufgefüllt. Sie sehen dabei
auch, daß auch die Füllzeichendefinition selbst sowie der Tau-

senderseparator als Ziffernplatzhalter eingesetzt werden können.

Das Vorzeichen (+ bzw. -) beansprucht für sich ebenfalls eine
Ziffernstelle, falls es nicht durch + bzw. - an einer anderen
Stelle innerhalb des Formatstrings definiert ist, auch dann, wenn

kein Vorzeichen ausgegeben wird, da es sich um eine positive
Zahl handelt.

Mit der Definition

PRINT USING "####.##" Al

können maximal Zahlen mit drei Vorkommastellen (< 1000) auf

den Monitor gebannt werden, da der erste Platzhalter das Vor-

zeichen aufnimmt. Wird im Formatstring das Kennzeichen je-
doch an eine andere Stelle gesetzt. PRINT USING ermöglicht

auch die Ausgabe einer Zahl im wissenschaftlichen Format mit
Angabe eines Exponenten. Wird ım Formatstring dagegen kein
Exponent definiert (keine * vorhanden), so gibt ST-BASIC die
Zahl auf alle Fälle ohne Exponenten aus.

 ——— §T-BASIC Grundkurs | 165

Für den Formatstring gelten noch ein paar Einschränkungen:
Insgesamt dürfen maximal 30 Platzhalter (#) verwendet werden,

der Unterstrich (_) darf nicht als Füllzeichen verwendet werden
und die Länge des Formatstrings darf 253 Zeichen nicht über-
schreiten. Ein fehlerhafter Formatstring führt zu der Fehlermel-
dung Syntax Error.

USING

USING <Formatstring> ist auch ohne einen PRINT-Befehl mög-
lich. Die auf diese Weise definierte Formatmaske wird bei allen
folgenden PRINT, LPRINT, PRINT#, und der Funktion STR$
berücksichtigt.

Nach diesem kleinen Ausflug wieder zurück zur Minidateı: Die
Prozedur zum Erfassen der Daten muß geschrieben werden. Um
für den Benutzer die Eingabe der geforderten Daten zu erlei-
chern, soll mit Hilfe der Cursortasten von einer Eingabeposition

zur anderen gesprungen werden können. Die Steuerstrings für
die einzelnen Eingaben haben wir bereits definiert. Daran an-
hängen müssen wir noch die Erlaubnis, daß die Eingabe bei Be-

tätigung einer der beiden Cursortasten <nach oben> oder <nach

untenrunter> verlassen werden darf. EXIT by ASCH scheidet für
diese Problemstellung aus, da für Cursortasten keinerlei ASCII-
Werte reserviert sind. Sie besitzen jedoch einen Scancode:

 Scancode Bedeutung

72 Cursor hoch

80 Cursor runter

Der Befehl zum Verlassen der Eingabe aufgrund eines bestimm-
ten Scancodes lautet s, gefolgt von dem entsprechenden Code,

der im 1-Byte-Format vorliegen muß. Dazu verhilft uns wieder
die CHR$()-Funktion. Dieser String ist für alle INPUT USING
gleich, und wird deshalb in einer eigenen Zeichenkette abgelegt,
die per Stringaddition jeweils an die bereits erstellten Steuer-
strings gehängt wird. |

BACKS=""s"+CHRS(72)+"s"+CHRS(80)

 166 Das große ST-BASIC-Buch ———

Die Eingabe wird also bei Betätigung einer der beiden Cursorta-
sten verlassen, in der Return-Variable findet sich dann unter

anderem auch der Scancode der Taste, die zu diesem Abbruch
geführt hat. Jetzt muß noch festgestellt werden, welche Taste
zum Verlassen des INPUT geführt hat.

Relevant ist hier lediglich das zweite Byte (von links nach rechts
betrachtet), der vier Bytes langen Return-Variable. Die übrigen
Bits müssen weg, um eine IF-Abfrage nach dem Scancode ein-
bauen zu können. Dazu verhilft uns das logische UND, mit des-
sen Hilfe alle anderen Bits ausmaskiert, d.h. auf den Wert 0 ge-
setzt werden können. Der Aufbau der Returnvariable noch ein-
mal im einzelnen:

1. Byte 2. Byte 3. Byte 4. Byte

Shiftkeys Scancode Cursorposition ASCII-Code

Die einzelnen Bits des ersten, dritten und vierten Bytes müssen

bei der logischen Undierung auf Null gesetzt werden, Byte zwei
wird mit acht gesetzten Bits (entspricht dem Wert 255 in Dezi-
malnotation bzw. $FF in Hexadezima Ischreibweise) undiert:

1. Byte 2. Byte 3. Byte 4. Byte

AND 00 255 00 00

bzw.

AND $00 $FF $00 $00

Die Unterroutine selbst wird von oben nach unten abgearbeitet.
Mit <Return> bzw. <Cursor nach unten> gelangt der Benutzer
somit automatisch in das nächste Eingabefeld, lediglich bei Be-
tätigung der <Cursor nach unten>-Taste muß gewaltsam um eine

Eingabeposition hochgesprungen werden. Der Scancode für
<Cursor hoch> beträgt 72 bzw. in Hexadezimalnotation $48. He-
xadezimal deshalb, da mit dieser Schreibweise das 2.Byte leichter
erreicht werden kann. In Dezimalnotation müßte die gesamte
Zahl umgerechnet werden. Die Abfrage nach der <Cursor hoch>
Taste lautet dann folglich:

IF (<Returnvariable> AND $FF) = $480000 THEN

<... um ein Eingabefeld hochspringen>

ENDIF

 ——— ST-BASIC Grundkurs 167

Vor jedes INPUT USING wird eine Marke gesetzt, die dann
über ein GOTO angesprungen werden kann. Eine Kleinigkeit
sollte noch berücksichtigt werden:

Erfolgt eine Betätigung der <Cursor hoch>-Taste, während ge-
rade das erste Datenfeld (Name) bedient wird, soll der Cursor in
das unterste Eingabefeld (Geburtsdatum) springen, vom unter-
sten soll mit <Cursor runter> in das erste Eingabefeld gesprun-
sen werden. Damit wäre auch die Eingabeprozedur fertiggestellt.
Um gleich zwei Fliegen mit einer Klappe zu schlagen, wird ihr
eine (lokale) Variable als Parameter übergeben, die bestimmt in
welchen Eintrag des Feldes die erfaßten Daten abgelegt werden
sollen. Wird die Eingaberoutine vom Unterprogramm "Adressen

korrigieren" angesprungen, stellt dieser Parameter dann die

Nummer des zu korrigierenden Eintrages dar.

Doch in welchem Eintrag des Arrays soll ein neuer Datensatz

abgelegt werden? Ganz einfach, in das nächste freie, d.h. nicht
schon mit einer Adresse belegte Feld. Eine Schleife erhöht eine
Zählvariable solange, bis ein freier Eintrag im Array gefunden
ist. Halt! Was geschieht, wenn das gesamte Variablenfeld bereits
bis zum Kragen vollgepackt, also kein freier Eintrag mehr vor-
handen ist? |

Dann verabschiedet sich der Computer! Also heißt es, diesen

Fehler abzufangen: Eine Erfassung der Daten ist nur solange
möglich, wie freie Einträge im Array vorhanden und die Ge-
samtgröße (aus der Dimensionierung ersichtlich und in der Va-
riablen <Groesse> festgehalten) noch nicht überschritten ist:

<Zaehler> = 1

WHILE <Array(<Zaehler>)> <> "" AND <Zaehler> < <Groesse>

<Zaehler> = <Zaehler> + 1

WEND

Vor Schleifeneintritt wird wird eine Zählvariable namens
<Zaehler> auf den Wert 1 gesetzt, dies entspricht dem zweiten
Eintrag im Array. Der erste Eintrag, mit dem Feldindex 0,
bleibt unbenutzt. In ihm werden später die Daten erfaßt, nach
denen das Feld durchsucht werden soll. Anschließend wird in
der abweisenden WHILE-Schleife geprüft, ob dieser Eintrag

 168 Das große ST-BASIC-Buch ——

schon belegt ist. Gleichzeitig darf das Feldende (<Groesse>) noch
nicht erreicht sein. Sind beide Bedingungen erfüllt, wird der
Zaehler um 1 erhöht, der nächste Eintrag wird überprüft. Dies

wiederholt sich solange, bis ein freier Eintrag im Array gefun-
den, oder das gesamte Feld bereits durchsucht wurde. Wird kein

freier Datensatz im Feld ermittelt, so gibt das Programm den
letzten Eintrag - der zwar schon belegt ist, aber was soll man |
machen? - auf dem Monitor aus.

Der nächste Menüpunkt lautet "Korrektur". An Korrekturarbei-

ten können zwei Dinge anfallen:

- Tippfehler in einem Datensatz ausbessern

- kompletten Datensatz aus dem Array entfernen

Es wäre ein äußerst komfortabler Zug des Programms, nach ei-
nem bestimmten Eintrag suchen zu lassen, der dann abgeändert

werden könnte. Ich habe mich allerdings für eine etwas andere

Form der Korrektur entschieden.

Der Benutzer erhält den ersten Eintrag im Array vorgesetzt, und
kann dann das gesamte Feld durchblättern. Mit der Taste <K>
wird die Prozedur Erfassen angesprungen, eine Korrektur ist
möglich. Mit <E> kann der soeben auf dem Bildschirm stehende
Datensatz getilgt werden. Um für den Benutzer die Auswahl zu
erleichern, wurden zwei Feinheiten in das Programm eingebaut:

- In der unteren Bildschirmhälfte wird ein Untermenü
angezeigt, anhand dessen die weitere Programmkontrolle

erfolgt.

- Der erste (invers dargestellte) Buchstabe wählt die ent-
sprechende Funktion.

- Damit die Funktion auch ausgeführt wird, wenn der
Benutzer zwar den richtigen Buchstaben, jedoch in

Großschrift statt ın Kleinschreibweise, getippt hat,
wandelt das Programm den Character (um auch diesen
Namen wieder einmal zu verwenden) gleich mit UP-
PER$() in Großschrift um.

 ——— §T-BASIC Grundkurs 169

Das Blättern innerhalb des Arrays müßte eigentlich verständlich
sein. Es muß lediglich darauf geachtet werden, daß die untere
Grenze (erster Datensatz mit Index 1), sowie die obere Grenze
(Datensatz mit Index Groesse bzw. wenn Feld noch freie Ein-
träge enthält, der letzte belegte Datensatz) nicht unter- bzw.

überschritten werden.

Interessannter wird das Eliminieren eines Eintrages aus dem

Array. Theoretisch können zwei Situationen auftreten:

- Der letzte Datensatz des Feldes soll entfernt werden. Dies ist
nicht weiter tragisch, man ersetzt in diesem Fall einfach die
Elemente mit dem entsprechenden Index durch einen Leerst-

ring.

- Schwieriger wird es, wenn (was der Normalfall sein dürfte)
sich der zu löschende Datensatz inmitten des Feldes befindet:

Damit keine leeren Einträge innerhalb des Variablenfeldes

entstehen (täte unserer Funktion Blättern gar nicht gut!),
müssen die folgenden Einträge ab dem zu löschenden Da-
tensatz um eine Indexposition nach unten verfrachtet werden.

Der letzte Eintrag mit Index n ist dann in diesem Feld zwei-
mal vorhanden (nämlich an Position n und an Position n-1),
und kann einmal entfernt werden (logischerweise aus Position
n, weil andernfalls wieder ein leerer Eintrag innerhalb der
Liste entstehen würde!). Da dies etwas kompliziert erscheint,

vergleichen Sie bitte Abbildung 2.3.

Enthält die Liste nur ein einziges Element das entfernt werden
soll, stellt dies lediglich einen Spezialfall der ersten Variante dar.

In einer einelementigen Liste ist das Element nämlich gleichzei-
.tig der erste und letzte Datensatz. Und letzte Datensatz kann aus

der Liste entfernt werden.

Der letzte (vorläufig) noch verbleibende Menü-Eintrag ist das
Auffinden eines bestimmten Namens innerhalb der Liste. Dazu
wird über ein eigenständiges INPUT USING der Name eingele-
sen, in das Array an Indexposition 0 geschrieben und mit Hilfe
einer Schleife das gesamte Feld durchsucht.

 170 Das groBe ST-BASIC-Buch ———

Element lL

letztes Elenent

\ Z entfernen
Elenent/2

“ Element

/ N i

Elenent 3 Element

2

Element 4 ETengn

U.S.A, > <=
Abb. 2.3: Element aus der Liste entfernen

Als Abbruchbedingung gilt:

<Suchbegriff> = <Arrayinhalt>

bzw. fir die Schleifenbedingung negativ formuliert:

<Zaehler> = 1

WHILE <Suchbegriff> <> <Arrayinhalt>

<Zaehler> = <Zaehler> + 1

WEND

Ein Vorgeschmack auf GEM

Sicher sind sie Ihnen schon einmal untergekommen. Jene
freundlichen, mit einem Verkehrszeichen ähnlichen Symbol ge-
schmückten Warnmeldungen, die der Atari immer dann zu ser-
vieren pflegt, wenn ein Bedienungsfehler aufgetreten ist oder

 ——— ST-BASIC Grundkurs 171

eine Sicherheitsabfrage durchgeführt werden soll. Der Fachmann
nennt sie Alert-Boxen, und im ST-BASIC ist ein entsprechender

Befehl für ihren Aufruf gleich mit eingebaut:

FORM ALERT

ruft eine Alert-Box auf. Die Syntax tritt in zwei Erscheinungs-
formen auf:

FORM_ALERT(<Default>, <Text>)

bzw.

FORM_ALERT(<Default>, <Text>, <Button>)

<Default> enthält die Nummer des Buttons (1-3), der auch durch
eine Betätigung der <Return>-Taste selektiert werden kann.
Wird als Defaultwert die 0 angegeben, so bedeutet dies, daß kein
Button mit Return selektiert werden kann. <Text> besteht aus
einer Zeichenkette, die sich wie folgt zusammensetzt:

"[<Nummer>] [<Zeile 1>!<Zeile 2>!<Zeile 3>][<Button 1>1<Button
2> 1<Button 3>]"

<Nummer> gibt an, welches Symbol (Piktogramm) die Alert-Box

tragen soll:

0: Kein Symbol
1: Achtung (!)
2: Fragezeichen (?)
3: Stop

In den zweiten eckigen Klammern, die mit eingegeben werden
müssen, steht der Text, der in der Box erscheinen soll. Er darf

aus maximal fünf Zeilen bestehen, die voneinander durch das

Zeichen | getrennt werden müssen. Das Zeichen | erreichen Sie
durch gleichzeitiges Drücken der Tasten <Shift> und <-> (gleich
links neben der Taste <Return>). Zu beachten ist dabei, daß die
maximale Länge einer Zeile 40 Zeichen nicht überschreiten darf.

 172 Das große ST-BASIC-Buch ——

Als letztes muß der String noch den Text für die einzelnen
Knöpfe enthalten, die dem Benutzer angeboten werden sollen.
Diese sind ebenfalls durch das Zeichen | voneinander zu trennen.
Es sind maximal drei Buttons erlaubt, der Button <Nummer>
kann auch per <Return> selektiert werden. Optisch wird dies
durch eine stärkere Umrahmung des Buttons dargestellt. Wird
zusätzlich noch <Button> mit angegeben, enthält diese Variable
die Nummer des Quittierungsknopfes, der zum Verlassen der
Alert-Box geführt hat:

erster Knopf

zweiter Knopf

dritter Knopf

1.
2.
3

Standen mehrere Möglichkeiten zur Auswahl, kann nach Ab-
bruch der Box der Button abgecheckt werden, der das Verlassen

bewirkt hat. Mit FORM_ ALERT steht uns ein mächtiges
Werkzeug zur Verfügung, um Fehlermeldungen auf den Monitor
zu projizieren. Ein paar Beispiele zu ihrer Anwendung:

FORM_ALERT(1, [2] [Was soll der Quatsch?) [Abbruch] ")

FORM_ALERT(1, [3] [Das sollten Sie!nie wieder tun!] [Ende] ")

FORM_ALERT(2,[1] [Möchten Sie den Datensatz!wirklich léschen?][Ja
| I Nein ! Weiß nicht]", exit)

In <Exit> finden Sie nach dem Verlassen der Box die Nummer
des Buttons vor, mit dem die Meldung verlassen wurde.

Moment! Irgendetwas stimmt da noch nicht ganz! Es kann näm-
lich nur der Button selektiert werden, der über Return verlassen

werden kann. Die übrigen beiden Knöpfe können nicht selek-
tiert werden, da kein Mauszeiger vorhanden ist! Dieser muß
nämlich vor Aufruf der Funktion im Handbetrieb mit

MOUSEON

 ——— ST-BASIC Grundkurs 173

eingeschaltet, und nach Beendigung der Funktion mit

MOUSEOFF

wieder ausgeschaltet werden. Aber jetzt klappt die Sache! Noch

eine Anmerkung: Der Atari ST merkt sich, wie oft die Befehle
MOUSEON und MOUSEOFF aufgerufen wurden. Wird bei-
spielsweise zweimal der Befehl MOUSEOFF ausgeführt, sind

wieder zwei Befehle MOUSEON vonnöten, um den Mauspfeil

auf dem Bildschirm erscheinen zu lassen.

Die beiden Menüpunkte "Daten abspeichern" und "Daten laden"

werden Gegenstand des nächsten Kapitel dieses Buches sein. In

dem jetzt folgenden Listing, sind zwei leere Unterprogramme
eingefügt, damit das Programm nicht aussteigt, wenn einer die-
ser beiden Punkte aufgerufen wird. Aber jetzt endlich das Li-
sting:

0 IKARKKKKKKKKKKHK TI KK TI CK CK KT KT TH KK I IK KT TH TR IT TH TE TI KT NK)

1 '* MINIDATA.BAS . *

2 ERnw nn nn nn nn nn nn nn nn nn nn nn un nn nn nm nun nn mm nm nn *

3 '* Autor: Michael Maier Version: 1.00 Datum: 15.08.1988 *

4 18 Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH! *

5 tk (C) 1988 by DATA BECKER GmbH Diisseldorf *
6 PHRASE

7 4

8 I

9 MODE "D"

10 DEF FN Screen$(X$)= CHR$(27)+X$

11° |

12 Groesse%L=100' falls nétig einfach andern

13 DIM Name$(GroesseZL) , Vorname$(GroesseZL), Strasse$(Groesse%L)

14 DIM Plz$(GroesseZL),Ort$(GroesseZL), Tel $(GroesseZL) , Geb$(GroesseZL)

15 !

16 Fehler$="[3] [Diese Funktion ist leider! nicht möglich! !!] [Sorry]"
1 7 t .

18 REPEAT

19 CLS

20 PRINT a(0,1);"*"*78

21 FOR Y%=1 TO 5: PRINT ACY%,1)3"*"saCY%, 78);"*": NEXT Y%

22 ~—s PRINT (6,1); "*"*78 |
23 PRINT @(2,28);"MINIDATEI - Hauptmenü"

24 = PRINT @(3,28);"'---------------------- "
25 PRINT 9(4,16);"Ein Demoprogramm aus dem grossen ST-BASIC Buch"

 174 Das große ST-BASIC-Buch ——

26 PRINT 9(9,28);"1. Name erfassen"

27 PRINT 9C11,28);"2. Name korrigieren!

28 PRINT 9(13,28);"3. Name suchen"

29 PRINT 9(15,28);"4. Datei abspeichern!

30 PRINT 9(17,28);"5. Datei laden"

31 PRINT aC19,28);"6. Programm verlassen!

32 PRINT (22,29); FN Screen$("'p");" Bitte waehlen Sie! ";FN

Screen$("q"') Ä

33 PRINT FN Screen$("f")' Cursor ausschalten

34 '

35 A%L=O

36 REPEAT

37 A$= INKEY$

38 IF A$S<>"" THEN

39 A%L= ASCC RIGHTCA,1))-48

40 ENDIF

41 UNTIL A%L>O AND AAL<7

42 PRINT FN Screen$("e!!)! Cursor wieder einschalten

43 ON A%L GOSUB Erfassen,Korrigieren, Suchen, Speichern, Laden

44 UNTIL A%L=6' Schleife wiederholen, bis '6' gedrückt

45 CLS

46 END

47

48-Erfassen

49 CLS
50 Header $=1" KHK RAR Name erfassen KRKKKKKKKKAKKKHN

51 ı zuerst einmal den ersten freien Eintrag suchen!

52 TH=1

53. WHILE Name$(T%)<>""" AND T%<Groesse%

54 T%=T%+1

55 WEND

56 Formular(Header$)

57 REPEAT

58 Eingabe(T%) |

59 PRINT FN Screen$("f")' Cursor stort hier bloB!

60 PRINT 9C19,15);FN Screen$("p!');"N";FN Screen$("q");

61 PRINT "ächster Name "=FN Screen$l"p');"K";FN Screen$("q");

62 PRINT "orrektur ";FN Screen$("p");"Z";FN Screen$("q");

63 PRINT "urück ins Hauptmenü!

64 | A$="": INPUT " "2AS USING "+n+z+ku>",Ret%L,1,32

65 PRINT FN Screen$("e"")'Cursor wieder einschalten

66 IF AS="K" THEN

67 Formular (Headers)

68 Anzeige(T%)

69 ELSE

70 IF A$="N" AND T%<Groesse%L THEN

 ——— §T-BASIC Grundkurs 175

71 T%=T%+1

72 Formular(Header$)

73 Anzeige(T%)

74 ENDIF

75 ENDIF

16 UNTIL A$S="Z"

77 RETURN

8 !

79-Korrigieren
80 Header Pat xereaeeeKKeKKKKE Name korrigieren KRKRAKKKKEEKKKEEEEI

81 PRINT FN Screen$("'f")

82 T%=1

83 Formular(Header$)

84 REPEAT

8 Anzeige(T%)

86 PRINT aC19,4);FN Screen$C"p");"N";FN Screen$("q");"ächster Name ";

87 PRINT FN Screen$("p");"L";FN Screen$("q");"etzter Name ";

88 PRINT FN Screen$("p");"K";FN Screen$("q");"orrektur ";

89 PRINT FN Screen$("p");"E":FN Screen$("q"):"ntfernen ";

90 PRINT FN Screen$("p"):"Z":FN Screen$("q");"urück ins Hauptment"

91 '
92 Az"

93 REPEAT

94 AS= INKEYS

95 IF A$<>"" THEN

96 A$= UPPER$C RIGHTCA,1))
97 ENDIF

98 UNTIL AS="N" OR AS="L" OR AS="K" OR AS="E" OR AS="Z"

99 I

100 IF CAS="N") AND (T%<Groesse%L) AND (Name$(T%+1)<>"") THEN

101 T%=T%+1

102 ELSE
103 IF AS="N" THEN Ä
104 FORM_ALERT (1,Fehler$)
105 ENDIF
106 ENDIF
107 IF A$="L" AND T%>1 THEN

108 T%=T%- 1

109 ELSE

110 IF AS="L" THEN

111 FORM_ALERT (1,Fehler$)

112 ENDIF

113. ENDIF

114 IF AS="K" THEN

115 PRINT FN Screen$("e")

116 PRINT &(19,1):" "*78

 176 — Das groBe ST-BASIC-Buch ————

117 Eingabe(T%)

118 PRINT FN ScreenS("f")

119 ENDIF

120 IF A$="E" THEN

121 MOUSEON

122 FORM_ALERT (2,"[2] [Datensatz wirklich löschen?] [JalNein]",But%)

123 MOUSEOFF

124 IF But%=1 THEN

125 Delete(T%)

126 ENDIF

127 ENDIF

128 UNTIL A$="Z"

129 RETURN

130 !

131-Suchen
132 Header rere eaeek reek e Name suchen KERN

133 Name$(0)="":Vorname$(O)="":Strasse$(0O)="":Plz$(0)=""

134 Ort$(O)="";Tel$(0)="":Geb$(0)=""

135 T%=0 |

136 Formular(Header$)

137 PRINT FN Screen$(!e")

138 INPUT a(7,21);Name$(0) USING "at +-u" Ret%L,15

139 PRINT FN Screen$("f")

140 T%=1

141 REPEAT

142 WHILE Name$(T%)<>Name$(0) AND T%<GroesseAL

143 T%=T%+1

144 WEND Ä

145 IF Name$(T%)=Name$(0) THEN

146 Anzeige(T%)

147 ELSE

148 FORM_ALERT (1,"[1] [Name nicht vorhanden!][Was soll's]")

149 ENDIF | |
150 PRINT @(19,15);FN Screen$("p"'):"W't: FN Screen$("q"');
151 PRINT “eitersuchen ">EN ScreenS("p"):"N"-FN Screen$("q");

152 PRINT "eueingabe "?FN ScreenS("p""):"Z2"2FN Screen$("q'"');

153 PRINT "urück ins Hauptmenü"

154 Ags" |

155 REPEAT

156 AS= INKEYS

157 IF A$S<>"" THEN

158 A$= UPPER$C RIGHT$(A$,1))

159 ENDIF

160 UNTIL AS="W" OR AS="N" OR AS="Z"

161 IF AS="W"" AND T%<Groesse&%L THEN

162 T%=T%+1

 ——— §T-BASIC Grundkurs

163 ENDIF

164 IF AS="N" THEN

165 EXIT TO Suchen

166 ENDIF

167 UNTIL A$S="2"

168 RETURN

169 !

170-Speichern

171 ' diese Routine folgt noch ...

172 RETURN

173 !

174-Laden

175 ' diese Routine folgt noch ...

176 RETURN

177

178 !

179 DEF PROC Formular(Text$)

180 LOCAL T%

181 CLS

182 PRINT 9(2,(78- LEN(Text$))/2);Text$

183 PRINT @(5, 10) :"*"*60

177

184 FOR T%=1 TO 9: PRINT (5+T%, 10); "*"2a(5+T%, 69) 24%": NEXT T%
185 PRINT 9(15, 10); "*""*60

186 PRINT 9(7,15);'"Name: Vorname:

187 PRINT &(9,15);'"Strasse: "

188 PRINT O¢11,15);"PLZ: ___ Ort:

189 PRINT 9(13,15);"Telefon: Geb.: "

190 RETURN

191 !

192 DEF PROC Anzeige(Nummer%)

193 PRINT 9(7,21);Name$(Nummer%);

194 PRINT STRING$C15- LENCName$(Nummer%)) ,"_")

195 PRINT (7,50): VornameS(Nummer%) ;

196 PRINT STRINGS(15- LENCVorname$S(Nummer%)),"_")

197 PRINT &(9,24);Strasse$(Nummer%);

198 PRINT STRINGS(32- LEN(Strasse$(Nummer%)),"_")

199 PRINT 9(11,20);Plz$(Nummer%);

200 PRINT STRING$(C4- LEN(PlZ$(Nummer%)),"_")

201 PRINT 9(11,32);Ort$(Nummer%);

202 PRINT STRINGS(30- LENCOrt$(Nummer%)),"_")

203 PRINT 9(13,24);Tel$(Nummer%);

204 PRINT STRINGS(11- LENCTelS(Nummer%)),"_")

205 PRINT 0(13,44);Geb$(Nummer%);

206 PRINT STRINGS(10- LEN(Geb$(Nummer%)),"_")

207 RETURN |

208 !

 178 Das große ST-BASIC-Buch -————

209 DEF PROC Eingabe(Nummer%)

210 LOCAL Back$="s!+ CHRECTE)H"S"+ CHR$(80)

211 -Nam

212 INPUT %(7,21);Name$(Nummer%) USING "a+ +-u'+Back$,RetAL, 15

213 IF (Ret%L AND $FF0000)=$480000 THEN

214 GOTO Geb
215 ENDIF _
216 -Vorname

217 INPUT %&(7,50);Vorname$(Nummer%) USING "a+ +-"+Back$,Ret%L, 15

218 IF (Ret%L AND $FFO000)=$480000 THEN

219 GOTO Nam

220 ENDIF

221 -Street

222 INPUT 9(9,24);Strasse$(Nummer%) USING "Oat +-+."+Back$,RetA%L,32

223 IF (Ret%L AND $FF0000)=$480000 THEN

224 GOTO Vorname

225 ENDIF

226 -Plz

227 INPUT aC11,20);Plz$(Nummer%) USING "0>"+Back$,Ret%L,4

228 IF (Ret%L AND $FF0000)=$480000 THEN

229 GOTO Street

230 ENDIF

231 -Ort

232 INPUT 9(11,32);Ort$(Nummer%) USING "a0+/+-"+Back$,Ret%L,30

233 IF (Ret%L AND $FF0000)=$480000 THEN

234 GOTO Plz

235 ENDIF

236 -Telefon

237 INPUT 9(13,24);Tel$(Nummer%) USING "O+-+/c-/"+Back$,Ret%L, 11

238 IF (Ret%L AND $FF0000)=$480000 THEN

239 GOTO Ort

240 ENDIF

241 -Geb

242 INPUT 9(13,44);Geb$(Nummer%) USING "0+.'+Back$,Ret%L, 10

243 IF (Ret%L AND $FF0000)=$480000 THEN

244 GOTO Telefon

245 ELSE

246 IF (Ret%L AND $FF0000)=$500000 THEN

247 GOTO Nam

248 ELSE

249 ENDIF

250 ENDIF

251 RETURN

252 '

253 DEF PROC Delete(Nummer%)

254 LOCAL Anzahl%=1

 —— ST-BASIC Grundkurs 179

255 ! Anzahl der vorhandenen Datensätze ermitteln

256 WHILE (Name$(Anzahl%+1))<>"" AND Anzahl%<Groesse‘L

257 Anzahl%=Anzahl%+1

258 WEND

259 IF Nummer%=Anzahl% THEN

260 Loesche(Nummer%)

261 ELSE

262 WHILE (Nummer%<>Anzahl%)

263 Name$(Nummer%)=Name$(Nummer%+1)

264 Vorname$ (Nummer%)=Vorname$(Nummer%+1)

265 Strasse$(Nummer%)=Strasse$(Nummer%+1)

266 Ort$(Nummer%)=Ort$(Nummer%+1)

267 Plz$(Nummer%)=Plz$(Nummer%+1)

268 Tel$(Nummer%)=Tel$(Nummer%t+1)

269 Geb$(Nummer%)=Geb$(Nummer%+1)

270 Nummer%=Nummer%+1

271 WEND

272 _Loesche(Nummer”%)

273 ENDIF

274 RETURN

275

276 DEF PROC Loesche(Nummer%)

277 = Name$(Nummer%)="": Vorname$(Nummer%)="": Strasse$(Nummer’)=""278

Plz$(Nummer%)="":Ort$(Nummer%)="":Tel$(Nummer%)=""

279 Geb$(Nummer%)=""

280 RETURN

 180 Das große ST-BASIC-Buch ——

 —— Dateiverwaltung 181

3. Dateiverwaltung

Daten erfassen ist die eine, sie auch nach dem Abschalten des

Computers nicht zu verlieren die andere Sache. Eine Möglichkeit
ein Programm mit Daten zu versorgen, kennen Sie bereits:
READ und DATA. Doch für die Erstellung einer Adreßverwal-
tung ist diese Methode denkbar ungeeignet.

Diese Daten legt man am besten auf Diskette in sogenannten
Dateien (Files, gesprochen: "Feils") ab. Von dort können Sie bei

Bedarf eingelesen, verarbeitet, und wieder abgespeichert wer-
den.Zwei Arten der Datenspeicherung sind hierbei besonders zu
unterscheiden: |

- Sequentielle Dateien -
- Relative Dateien

sowie eine Mischform aus sequentieller und relativer Dateiver-
waltung, die

- Indexsequentiellen Dateien (ISAM)

3.1 Dateien auf Diskette

Bis jetzt war schon eine ganze Menge von sequentiellen Dateien
die Rede, was dahinter steckt habe ich allerdings noch nicht
verraten. Das wird jetzt nachgeholt:

Sequentielle Dateien

In sequentiellen Dateien werden die Daten einfach hintereinan-

der abgelegt. Damit die einzelnen Elemente bei einem späteren
Einlesen voneinander unterschieden werden können, trennt sie
der Computer durch ein Carriage Return, das bekanntlich den
ASCH-Wert 13 besitzt. Die einzelnen Elemente können unter-

 182 Das groBe ST-BASIC-Buch -———

schiedliche Längen besitzen, ja sogar unterschiedliche Vari-
ablentypen können in beliebiger Reihenfolge in eine solche Datei
geschrieben werden.

Diese Art der Datenspeicherung hat natürlich auch einen Haken:
Da die einzelnen Elemente in der Datei unterschiedlich lang sein
können, muß die Datei stets komplett in den Speicher des Com-

puters gelesen werden. Förner sollte man sich genau merken,

welche Daten man in diese Datei geschrieben hat, sonst könnte
es bei einem späteren Einlesen Probleme geben. (Stellen Sie sich
vor, in einer Datei sind 50 Adreßen gespeichert, und als näch-

ster Wert wurde das Datum der Erfassung in die Datei geschrie-
ben!)

Ändern sich bestimmte Daten, muß die Datei komplett neu auf
Diskette geschrieben werden, da einzelne Einträge nicht einfach
abgeändert werden können.

Random-access-Dateien (relative Dateien)

Im Gegensatz zur Speicherung in sequentieller Form werden die

zu speichernden Daten in relativen Dateien in einzelnen

Datensätzen (Records) festgehalten. Ein solcher Datensatz kann
mehrere Elemente enthalten (z.B. Name, Vorname, Straße, ...),

die Länge eines Records darf von einem zuvor festgelegten Wert
jedoch nicht abweichen. Dafür ist es dann möglich, einen ganz
bestimmten Datensatz innerhalb der Datei anzusprechen und
einzulesen, was bei sequentiellen Dateien nicht der Fall ist.

Auch diese Form der Datenspeicherung ist nicht ohne Nachteile:
Jeder Record besitzt innerhalb der Datei die angegebene Länge,

unabhängig davon, wie lang die in ihm enthaltenen Daten
tatsächlich sind. Deshalb benötigt eine Random-access-Datei im
Normalfall wesentlich mehr Speicherplatz als ihre Artgenossin,

die sequentielle Datei. Ferner sollte eine relative Datei vor ihrer

Benutzung eingerichtet werden, das heißt alle Datensätze werden
bereits auf der Diskette angelegt, die einzelnen Records enthal-
ten jedoch nur Leerzeichen (Spaces).

 ——— Dateiverwaltung 183

Fazit: Eine relative Datei erfordert wesentlich mehr Vor-
überlegungen, einen etwas größeren Programmier-
aufwand und mehr Speicherplatz auf Diskette. Dafür

kann ein einzelner Datensatz gezielt angesprochen
werden.

ISAM-Dateien

Bei der indexsequentiellen (abgekürzt ISAM) Dateiverwaltung
werden die beiden Formen - sequentielle und relative Dateien -
geschickt kombiniert. Die Idee, die hinter diesem Verfahren
steckt, ist folgende:

Sequentielle Dateien werden komplett in den Computer gelesen,

ehe sie bearbeitet werden können; in relativen Dateien werden
lediglich bestimmte Datensätze eingelesen. Was geschieht nun,
wenn Daten in einer Datei gesucht werden müssen? Bei der se-
quentiellen Datei, die sich bereits komplett im Computer befin-

det, geht dies unheimlich schnell. Die Suche in relativen Dateien
dauert dagegen sehr lange, da Datensatz für Datensatz eingelesen
werden muß, bis die betreffenden Daten gefunden sind. Und
der Zugriff auf Diskette benötigt seine Zeit, da erst die Mecha-
nik in der Diskettenstation in Gang gesetzt werden muß.

Nun könnte man natürlich die gesamte Datei in den Speicher
holen, aber was wäre dabei gewonnen? In diesem Fall könnte

man gleich eine sequentielle Datei bemühen!

Folglich greift man zu einem Trick: Die gesamte Datei wird in
relativer Form abgespeichert. Gleichzeitig werden die Suchbe-

griffe, nach denen die Datei durchstöbert werden soll, in einer

sequentiellen Datei abgelegt, die Indexdatei genannt wird. Jeder
Eintrag in dieser Indexdatei besteht aus zwei Teilen:

<Suchbegriff> + <Datensatznummer>

Die Indexdatei liest man (zu Programmbeginn) komplett in den
Speicher. Werden jetzt bestimmte Daten benötigt, durchsucht

man einfach die Indexdatei im Computer. Wird der Suchbegriff
gefunden, muß nur noch der Record eingelesen werden, dessen

 184 Das große ST-BASIC-Buch ——

Nummer hinter dem Suchbegriff vermerkt ist. Und schon hat
man die gewünschten Daten ım Speicher. Dadurch erspart man

sich das zeitraubende Einlesen eines jeden Datensatzes, bis der
gewünschte Suchbegriff gefunden ist.

Werden neue Daten erfaßt, muß die Indexdatei erweitert werden

und zwar um den neuen Suchbegriff und die Nummer, unter der
der neue Record in der Random-access-Datei zu finden ist.

Wird ein Record aus der Datei gelöscht, muß die Indexdatei
ebenfalls um den entsprechenden Suchbegriff gekürzt werden.

Im Extremfall können natürlich mehrere Indexdateien (eine für
Namen, eine für Geburtsdatum ...) zu einer relativen Datei ge-
hören. Dann ist es möglich, die Datei nach den unterschiedlich-

sten Daten zu durchforsten.

3.2 Ohne Kanäle geht gar nichts

Ehe auch nur ein einziges Byte auf Diskette oder Harddisk ge-
speichert werden kann, muß erst ein Kanal geöffnet werden,

über den der weitere Datenaustausch zwischen dem Computer
und dem gewünschten Speichermedium abgewickelt werden
kann. Einen solchen Kanal kann man sich wie eine Telefonlei-
tung zwischen dem Computer und der Diskettenstation vorstel-
len, die Verbindung zwischen beiden wird über den Befehl

OPEN

hergestellt. OPEN besitzt folgende Syntax:

OPEN <"Dateimodus">, <Kanalnumner>, <"Dateiname">

Der erste Parameter, den der Interpreter hinter einem OPEN er-

wartet ist der Dateimodus. Zur Verfügung stehen dabei:

 ——— Dateiverwaltung 185

Dateimodus Bedeutung

"I" (Input) sequentielle Datei lesen
"O" (Output) sequentielle Datei schreiben
"A" (Append) an bestehende sequentielle Datei anhängen

"F" (Files) Inhaltsverzeichnis
"P" (Printer) Drucker
"R" Random-Acess-Zugriff (relative Datei)
"Cc" Konsole, Bildschirm und Tastatur

"K" (Keyboard) Befehle an Tastaturprozessor

"M" (Midi) MIDI-Port
"v" RS232-Schnittstelle

Keine Angst, für unsere Zwecke reichen die ersten drei Datei-
typen erst einmal völlig aus, später kommen dann die übrigen
Spielarten hinzu.

Um einen Kanal zu Öffnen, dessen Sinn und Zweck das Schrei-

ben in eine sequentielle Dateı ist, muß der Parameter "O" als

Dateityp angegeben werden. Ein auf diese Weise geöffneter Ka-
nal kann später dann nur zum Erstellen einer sequentiellen Datei

benutzt werden, es ist also nicht möglich, über diesen Kanal

Daten aus einer Datei einzulesen.

Ein Kanal wird also stets mit einer spezifischen Aufgabe (Lesen
einer sequentiellen Datei, Schreiben einer sequentiellen Datei,
Ausgabe der Daten an den MIDI-Port ...) betraut. Da es möglich
ist, innerhalb eines Programms mehrere Kanäle zu öffnen, muß
ein Kriterium existieren, anhand dessen die einzelnen Kanäle
unterschieden werden können. Deshalb wird als nächster Para-
meter eine Kanalnummer beim Befehl OPEN angegeben. Diese
Nummer, anhand der die Daten dann sicher auf die Reise ge-

schickt werden können, ist eine Zahl im Bereich von 1 bıs 16,

die beliebig (aber nicht doppelt!) vergeben werden kann.

OPEN "O",1 öffnet einen Kanal mit der Nummer 1, der die

Aufgabe besitzt, die Daten in sequentieller Form einer Datei
anzuvertrauen. Gleichzeitig kann ein Kanal über OPEN "T",2 ge-
öffnet werden. Seine Aufgabe besteht darin, Daten einzulesen.

Möchten Sie innerhalb des Programms Daten einlesen, muß der
Kanal mit der logischen Dateinummer 2, zum Speichern von
Daten der Kanal mit der Nummer 1 benutzt werden.

186 Das große ST-BASIC-Buch

Damit die in einer Datei gespeicherten Daten zu einem späteren

Zeitpunkt auch wieder eingelesen werden können, muß als drit-
ter Parameter hinter OPEN noch ein Dateiname angegeben wer-
den. Dieser darf maximal aus acht Buchstaben bestehen, wobei

zusätzlich noch eine sogenannte Extension (bestehend aus drei

Buchstaben) angehängt wird. Der eigentliche Dateiname und die
Extension sind durch einen Punkt voneinander getrennt. Im Ge-

gensatz zu den Befehlen LOAD, SAVE, und NEW wird die Ex-
tension jedoch nicht selbstständig vom Computer vergeben, son-
dern muß im Dateinamen mit enthalten sein.Fassen wir noch
einmal zusammen:

OPEN Öffnet einen Kanal, über den der Datenverkehr abgewi-
ckelt werden kann. Drei Parameter müssen angegeben werden:

Dateimodus: Gibt die Aufgabe des Kanals an (Lesen,
Schreiben, ...)

Kanalnummer: Dient der Identifizierung und dem Ansprechen
des Kanals, sie besteht aus einer Zahl im Be-

reich von 1 bis 16.

Dateiname: Unter diesem Namen werden die Daten auf

Diskette abgelegt. Er darf aus maximal acht
Buchstaben bestehen, wobei zusätlich noch drei

Buchstaben für eine Extension erlaubt sind.

3.3 Noch ein Print, aber mit Write geht’s auch

Ein Kanal wäre jetzt also geöffnet, dıe Daten können auf die
Reise geschickt werden. Aber welchen Befehl kann dazu benut-
zen? PRINT gibt die ihm anvertrauten Daten auf dem Bild-
schirm aus, doch da wollen wir sie in diesem Fall nicht haben.

Ein anderer Vertreter der Gattung PRINT kann diese Aufgabe
jedoch bestens erledigen:

PRINT#<Kanalnummer>, <Daten>

 ———. Dateiverwaltung 187

PRINT# arbeitet genauso wie Print, nur schreibt er die Daten
nicht auf den Monitor (das geht zwar auch ...), sondern in den
unter <Kanalnummer> angegebenen Kanal. Wurde eine Datei

zum Schreiben geöffnet, kann sie per PRINT# mit Daten ver-
sorgt werden. Die Kanalnummer ist in jedem Fall anzugeben:

OPEN "0", 1,"BEISPIEL.DAT"

PRINT#1, "irgendwas!

entspricht:

OPEN "0" 5 ,"BEISPIEL.DAT"

PRINT#5, "irgendwas"

Sie sehen schon, welche Kanalnummer Sie bei OPEN auch ver-
wenden, die Ausgabe muß unbedingt auf den richten Kanal er-
folgen. Wird versucht, die Ausgabe auf einen nicht geöffneten
Kanal zu leiten, ernten Sie eine Fehlermeldung!

WRITE#

Write# besitzt die gleiche Syntax wie PRINT#, und gibt eben-
falls Daten auf dem angegebenen Kanal aus. Im Unterschied zu
PRINT# werden bei WRITE# jedoch die ausgegebenen Zei-
chenketten in Anführungszeichen gesetzt. Dies birgt einen ge-
waltigen Vorteil in sich: Das Komma dient bei einem INPUT als
Trennzeichen, d.h. für den INPUT-Befehl ist dıe Eingabe dann

beendet, wenn es auf ein Komma stößt (vgl. INPUT A,B!). Ent-
hält ein String nun Kommata, so wird bei einem Input die Zei-
chenkette lediglich bis zum ersten Komma angenommen.Bei ei-
nem in Anführungszeichen stehenden String werden Kommata
jedoch nicht als Trennzeichen angesehen! Folglich kann mit ei-
nem Input die gesamte Zeichenkette eingelesen werden, auch

wenn sie Kommata enthält.

Ferner schreibt WRITE# beı Daten, die durch Komma vonein-
ander getrennt sind, das Komma auch wirklich auf den angege-
benen Kanal (Input macht dies nicht!). Somit können mehrere
Variablen mit nur einem einzigen WRITE# abgespeichert wer-

 188 Das groBe ST-BASIC-Buch ———

den. Ein INPUT-Befehl kann sie zu einem späteren Zeitpunkt
wieder problemlos einlesen, da für ihn ein Komma als Trenn-
zeichen gilt:

OPEN "0", 1, "NAME .BAS"

A=14:B=20:C=77:D=14

WRITE #1, A,B,C,D

Ergibt in der Datei NAME.DAT:

14,20,77,14

Von dort können Sie dann mit einem Input-Befehl wieder abge-
holt werden. So, die Daten können wir jetzt in eine Datei
schreiben. Doch ehe das Programm verlassen wird, muß die ge-

öffnete Datei wieder geschlossen werden. Andernfalls sind die

Daten verloren. Zum Schließen einer Datei dient der Befehl

CLOSE <Dateinummer>,<Dateinummer>,...

Dabei werden die Dateien mit der Nummer <Dateinummer>
wieder geschlossen. Wird keine Dateinummer hinter dem CLOSE
angegeben, schließt ST-BASIC sämtliche Dateien, die zu diesem
Zeitpunkt geöffnet sind.

3.4 Sequentielle Dateien einlesen

Die Daten sind jetzt auf der Diskette, doch eines Tages benöti-
gen wir sie wieder. Zum Einlesen von Daten wird ein naher
Verwandter des INPUT-Befehls benutzt:

INPUT #<Kanalnummer>, <Variable(nliste)>

arbeitet wie INPUT, holt sich seine Eingabe jedoch nicht von
der Tastatur, sondern aus dem Kanal <Kanalnummer>. Das Ein-

lesen ist fiir den Interpreter beendet, sobald er auf ein Carriage
Return (CHR$(13)) bzw. ein Komma stößt.

 ——— Dateiverwaltung 189

OPEN "I", 1, "NAME.DAT"
INPUT #1,A,B,C,D
CLOSE 1

liest die mit WRITE# auf Diskette geschriebene Datei wieder in
den Speicher des Computers. Ubrigens, es existiert auch ein
LINE INPUT#-Befehl, der Kommata erlaubt und nur Carrige
Return als Ende der Eingabe betrachtet.

Soweit ist noch alles klar. Schwieriger wird es, wenn man nicht
mehr wei, wie viele Daten in die Datei geschrieben wurden.

Will man nämlich in einer Schleife mittels INPUT# solange Da-
ten von Diskette einlesen, bis sich die Datei komplett im Spei-
cher des Atarı ST befindet (bis Input# einen Leerstring ("") lie-
fert, da keine weiteren Daten mehr vorhanden sind), meldet sıch

der Interpreter zu Wort, sobald das Ende der Datei überschritten
wurde.

Zum Einlesen einer Datei, von der man nicht mehr weiß, wie

viele Elemente man in ıhr bereits erfaßt hat, scheidet diese Me-

thode folglich aus. Da man sich allerdings unmöglich merken
kann, wie viele Einträge in einer Datei vorhanden sind (in die-
sem Fall könnte man die Daten in einer FOR...NEXT-Schleife
einlesen), existiert in ST-BASIC eine eigene Funktion, die mit-
teilt, wann das File-Ende (Datei-Ende) erreicht ist. Diese Funk-
tion lautet:

EOF(<Dateinummer>)

EOF() (End Of File: Datei-Ende) liefert den Wahrheitswert

falsch, solange das File-Ende der Datei, die über

<Dateinummer> angesprochen wird noch nicht erreicht ist. An-
dernfalls erhält man den Wahrheitswert wahr.

Für die Konstruktion einer Abbruchbedingung ist diese Funk-
tion augenblicklich noch nicht brauchbar. Sie liefert nämlich
immer dann den Wert falsch (0) und führt dadurch zu einem
Verlassen der Schleife, wenn die Schleife noch ein weiteres Mal
durchlaufen werden müßte, weil das Datei-Ende noch nicht er-
reicht ist. Deshalb muß der von dieser Funktion gelieferte

 190 Das große ST-BASIC-Buch ——

Wahrheitswert erst einmal umgedreht, d.h. negiert werden, ehe
er als Abbruchkriterium in die Schleife eingebaut werden kann.
Dies erledigt die Funktion NOT:

OPEN "I" 1,"DATEI.NAM"

WHILE NOT EOF(1)' bis zum Datei-Ende wiederholen

INPUT #1, Name$

WEND

CLOSE 1

Das soeben Gesagte gilt zumindest für sequentielle Dateien, bei
relativer Dateiverwaltung ist das Verfahren etwas anders. Aber
dazu kommen wir später noch!

Nach diesem theoretischen Teil schreiten wir wieder zur Praxis:
Die Mini-Adreßverwaltung ist noch nicht ganz fertig! Ihr fehlen
noch die Unterroutinen zum Laden und Speichern der Adreßen

auf Diskette. Zuerst einmal zum Abspeichern der Daten: In einer
Schleife wird die gesamte Liste vom ersten bis zum letzten Ein-
trag durchlaufen. Die einzelnen Daten werden dann mit PRINT#
(Komma tauchen nirgends auf, deshalb wird kein Write# benö-
tigt) in die sequentielle Datei verfrachtet. Beim Einlesen werden
dann die Daten (logischerweise wieder in der gleichen Reihen-
folge, wie sie in die Datei geschrieben wurden) in das Feld gela-
den, bis das Abbruchkriterium der Schleife, das Datei-Ende, er-

reicht ist. Anschließend kehrt die Unterroutine wieder in die
Menüauswahl zurück. |

Speichern:

OPEN "0", 1,"MINIADR.DAT"

T%=1

WHILE Name$(T%)<>""

PRINT #1,Name$(T%)

PRINT #1,Vorname$(T%)

PRINT #1,Strasse$(T%)
PRINT #1,Plz$(T%)

PRINT #1,0rt$(T%)
PRINT #1,Tel$(T%)

PRINT #1,Geb$(T%)
T%=T%+1

WEND

 ——— Dateiverwaltung 191

CLOSE 1

RETURN

Laden:

OPEN "I" 5, "MINIADR.DAT"™

T%=1

WHILE NOT EOF(5)

INPUT #5 ,Name$(T%)

INPUT #5 ,Vorname$(T%)

INPUT #5,Strasse$(T%)

INPUT #5 ,Pl2$(T%)

INPUT #5,Ort$(T%)
INPUT #5,Tel$(T%)

INPUT #5 ,Geb$(T%)

T%=T%+1

WEND

CLOSE 5

RETURN

3.5 Files kopieren

Häufig kommt es vor, daß bestimmte Dateien kopiert werden
müssen; sei es, daß Sie eine Sicherheitskopie wünschen, sei es,
daß Sie mit einer RAM-Disk arbeiten, die zuerst mit den ent-

sprechenden Dateien versorgt werden muß.

ST-BASIC besitzt dafür einen eigenen Befehl: COPY. Seine
Syntax lautet:

COPY <Quelldatei> TO <Zieldatei>

Doch wir schreiben uns eine dazu eigene kleine Prozedur!
Warum? Weil ich Ihnen dabei zweı weitere Befehle vorführen

kann!

Der Algorithmus, den wir dafür nutzen, ist denkbar einfach:
Sowohl die Quelldatei als auch die Zieldatei werden als sequen-
tielle Files betracht. Aus der Quelldatei wird nun solange Byte

 192 Das große ST-BASIC-Buch -————

für Byte eingelesen und in die Zieldatei geschrieben, bis das
Ende der Quelldatei erreicht ist. Danach kehrt die Prozedur (in
das Hauptprogramm?) zurück.

Der Input#-Befehl versagt kläglich, wenn man versucht, ein
einzelnes Byte aus einer Datei einzulesen. Das Eingabeende ist
für ihn erst mit Erreichen eines Carriage Return bzw. eines
Kommas gegeben. Was geschieht nun, wenn im ganzen File kein

einziges Komma oder Carriage Return vorkommt? Der Inter-
preter wird sich unter Umständen verabschieden, da ein String

aus maximal 32000 Zeichen bestehen darf. Und wenn die Datei
länger war, ja dann ...

Der Input#-Befehl ist für unsere Zwecke also nicht brauchbar.

Ein anderer Befehl zu Einlesen von Daten muß her! Hier ist er:

INPUT$(<Anzahl Zeichen>, <Dateinummer>)

lieBt genau <Anzahl Zeichen> aus der Datei mit dem Kanal
<Dateinummer> ein. Wird als <Anzahl Zeichen> der Wert 1 an-
gegeben, so erhält man genau 1 Byte aus der entsprechenden

Dateı.

An dieser Stelle möchte ich gleich das fehlerhafte Listing im
Handbuch zu ST-BASIC (Omikron.-BASIC Version 3.00, Seite
81) korrigieren. Die nachfolgende Prozedur gibt den gesamten
Inhalt einer Datei Name$ auf dem Bildschirm aus:

1000 DEF PROC Type(Name$)
1010 OPEN "1",1,Name$
1020 WHILE NOT EOF(1)
1030 PRINT INPUT$(1,1);
1040 WEND
1050 CLOSE 1
1060 RETURN

In Zeile 1010 wird eine sequentielle Datei mit der Kanalnummer

l zum Lesen geöffnet. Zeile 1030 liest genau ein Byte ein (IN-
PUT$) und gibt es mit PRINT gleich wieder auf dem Monitor
aus. Die Schleife sorgt dafür, daß die gesamte Datei Byte für
Byte ausgegeben wird, bis das File-Ende erreicht ist. An-

 ——— Dateiverwaltung | 193

schließend wird der Kanal wieder geschlosssen und die Prozedur
verlassen. So ähnlich muß auch unsere Prozedur zum Kopieren

einer Datei aufgebaut werden. Nur darf hier die Ausgabe der
einzelnen Daten nicht an den Monitor erfolgen, sondern gleich

in eine andere Datei. Diese muß zum (sequentiellen) Schreiben
geöffnet werden und eine andere Dateinummer tragen:

DEF PROC Filecopy(Von$,Nach$)

OPEN "I",1,Von$

OPEN "0", 2,Nach$

WHILE NOT EOF(1)

PRINT #2, INPUTS(1,1);

WEND

CLOSE 2

CLOSE 1

RETURN

Aber diese Routine arbeitet viel zu langsam! Wesentlich schneller

geht es, wenn größere Datenmengen auf einmal eingelesen wer-

den können. Klingt paradox? Die Erklärung dafür ist aber ganz
einfach: Die Diskettenstation arbeitet mit einer aufwendigen
Mechanik. Ein Tonkopf (bzw. zwei Tonköpfe bei einer doppel-

seitigen Floppy) wird an die Spur gefahren, auf der das ge-
wünschte Byte aufgezeichnet wurde. Da sich die Diskette dreht,

muß er solange warten, bis sich das Byte gerade unter dem Ton-

kopf befindet, dann erst kann es eingelesen werden. Werden

gleich mehrere Bytes auf einmal eingelesen, geht dies wesentlich
schneller von statten, da sich der Tonkopf sowieso schon an der

richtigen Stelle befindet, er muß die nächsten Bytes nur noch
"mitnehmen". Zugegeben, dies ist eine stark stilisierte Erklärung,
aber ich hoffe, sie ist dafür leicht verständlich.

Die maximale Größe für einen Einlesevorgang beträgt 32000

Byte, da ein String nicht mehr Buchstaben fassen kann. Doch
schon bekommen wir wieder Schwierigkeiten! Die Funktion
EOF() hilft uns jetzt nämlich nicht mehr weiter. Bei einem
gleichzeitigen Einlesen von mehreren Bytes kann das Datei-Ende
überschritten werden, ohne daß dies von der Funktion EOFf()
abgefangen werden könnte. Stellen Sie sich nur einmal vor, ın

der Datei sind noch 2000 Bytes einzulesen. EOF() bzw. NOT

 194 Das große ST-BASIC-Buch ———

EOF() liefert als Ergebnis wahr, d.h. das File-Ende ist noch
nicht erreicht - aber für INPUT$(32000,1) sind nicht mehr ge-
nug Daten vorhanden! Was tun?

Ein Lösungsweg führt über die Länge der Datei, d.h. die in
diesem File enthaltenen Bytes. Könnte man diese Länge ermit-
teln, bräuchte man nur in einer (abweisenden) Schleife solange
jeweils 32000 Bytes einlesen, bis keine 32000 Bytes mehr bis
zum Datei-Ende übrig bleiben. Diese könnte man dann noch auf
einen Schlag kopieren, und schon ist die gesamte Datei kopiert.

Auch zum Ermitteln der Länge eines bestimmten Files gibt es
eine Funktion:

LOF(<Dateinummer>)

LOF() (Length Of File) liefert bei sequentiellen Dateien, die
zum Lesen geöffnet sind, die Länge der Datei in Bytes. Das
Datei-Endezeichen EOF wird dabei mitgerechnet. Deshalb muß
ein Byte von der Länge abgezogen werden, das in unserem Fall
nicht mitkopiert zu werden braucht. |

Ist eine sequentielle Datei zum Schreiben geöffnet, liefert die
Funktion LOF() die Länge der Daten zurück, die bereits auf
Diskette geschrieben wurden. Befinden sich noch Daten im Dis-
kettenpuffer (der Computer speichert die Daten erst einmal im

Diskettenpuffer, ehe sie auf Diskette verfrachtet werden, damit

bei einem Diskettenzugriff gleich größere Datenpakete auf die
Reise geschickt werden können), so werden diese nicht berück-
sichtigt. Handelt es sich um eine relative Datei, liefert LOF() als

Ergebnis die Anzahl der in dieser Datei gespeicherten Datensätze
zurück.

Mit LOF() kann also die Länge der Datei ermittelt werden.
Diese wird in einer Variablen (L) festgehalten. Befinden sich
mehr als 32000 Bytes in der Datei, werden in einer Schleife
32000 Bytes eingelesen und gleich wieder in die Zieldatei ge-
schrieben (die Datei wird also häppchenweise kopiert). An-
schließend wird die Länge (L) um die bereits eingelesene Anzahl
von Bytes erniedrigt und die Schleifenbedingung erneut über-
prüft.

 —— Dateiverwaltung 195

Erst wenn die Datei weniger als 32000 noch zu kopierende Bytes
enthält, wird die Schleife verlassen (bzw. gar nicht abgearbeitet),
und die restlichen Bytes (in der Variablen L enthalten) werden
kopiert. Hier nun die kleine Prozedur:

0 DHAKA HA AAAI ATA AKHTAR

1 '* FILECOPY.BAS *
2 Kew ewe mew mem mem meme mew mmm www enema meme mmc ema wee eee meee woman *

3 '* Autor: Michael Maier Version: 1.00 Datum: 10.06.1988 *

4 * Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH' *

5 ı%* (C) 1988 by DATA BECKER GmbH Dusseldorf . *
6 Lkkkkkkkkekkeee RRA KR RRR RRR aI

7 8

8 4

9 ' die folgende Routine kopiert ein File

10 §

11 ' Aufruf: Filecopy("A:\DATEI_1.BAS", "D:\DATEI_2.BAS")

12 * ..von.. ..nach..

13 !

14 DEF PROC Filecopy(Von$,Nach$)

15 LOCAL L

16 OPEN "]",1,Von$

17 OPEN "0" ,2,Nach$

18 L= LOF(1)

19 WHILE L>32000' mehr passt in keinen String

20 PRINT #2, INPUT$(32000,1);

21 L=L-32000

22 WEND

23 ' EOF nicht mitkopieren => L-1

24 PRINT #2, INPUTS(L-1,1);

25 CLOSE 2

26 CLOSE 1

27 RETURN

3.6 Die File-Selector-Box und deren Verwaltung

Die kleine Adreßdatei, die wir entwickelt haben, kann jetzt die
erfassten Daten:auf Diskette schreiben, und von dort auch wie-
der einlesen. Diese Datei, in der sich die Adreßen befinden,
trägt den Namen MINIADR.DAT.

 196 Das große ST-BASIC-Buch ——

Jetzt könnte man auf die Idee kommen, mehrere Adreßdateien

anzulegen (z.B. für Freunde, Geschäftspartner usw.), die allesamt
von dem Programm verwaltet werden sollen. Dann muß aber der

Name für die Datei abgeändert werden können, damit mehrere
Adreßdateien mit der Minidatei verwaltet werden können. Die
einfachste Möglichkeit, dies zu bewerkstelligen, besteht darin,
mit einem INPUT nach dem Dateinamen zu fragen, dann die
entsprechende Datei ganz normal mit OPEN zu Öffnen und die
darin enthaltenen Adreßen auszulesen.

INPUT "Welche Datei möchten Sie einlesen? "»Name$

OPEN "1",1, Name$

So oder ähnlich würde dieses Problem auf anderen Computern

gelöst werden, nicht jedoch auf dem Atari ST und schon gar
nicht in ST-BASIC! Wozu besitzen wir schließlich GEM? GEM
bietet eine äußerst komfortable Möglichkeit zur Eingabe bzw.
der Auswahl eines schon bestehenden Dateinamens vor dem

Einlesen oder Abspeichern einer Dateı an: Die File-Selector-Box

(Dateiauswahlbox).

In der ersten Zeile dieser Box steht unter INDEX der sogenannte

Pfadname. Was aber ist ein Pfad? Er gibt wie ein normaler Pfad
auch den Weg zu einem Ziel an, in unserem Fall ist dies der
Weg zu einer Datei. Moderne Computer gestatten es nämlich,
den Inhalt einer Diskette in Ordner zu unterteilen. In diesen
Ordnern können dann entweder weitere Ordner, oder die ge-
wünschten Dateien angelegt werden. Damit der Computer - oder
besser gesagt das Betriebssystem - eine entsprechende Datei le-

sen kann, muß es wissen, in welchem Ordner sie sich befindet.

Und dafür gibt es den Pfadnamen. Aber das ist noch nicht alles!
Der Pfad besteht noch aus weiteren Komponenten:

<Laufwerksbezeichnung>:\<Ordner 1>\<Ordner 2>*.BAS

 ——— Dateiverwaltung 197

ann Parameter Dienst

TERCHER| OBJEKT AUSHAHL

BADER Michaela INDEX:

BIELMEIER Fritz A:\NOTES. TEA*. NOT

HUBER Michael ti Auswahl:

LANGMETER Birgit 18C_RE 1 NOT

MAIER Michael

SCHILLER Peter

Klasse: 18C

ABBRUCH
Abb. 3.1: Die File-Selector-Box

Der erste Buchstabe des Pfades gibt das gerade aktive Laufwerk
an. Im Normalfall wird die Laufwerkskennung A sein (das ist

die eingebaute Diskettenstation), aber auch B, C, D (üblicher-

weise die RAM-Disk) usw. sind möglich.

Von der Laufwerksbezeichnung durch einen Doppelpunkt abge-
trennt, folgt der eigentliche Pfad, d.h. die Ordnerverschachte-
lung. Im einfachsten Fall (die Datei befindet sich in keinem
Ordner, sondern im Hauptdirectory) lautet der Pfad dann:

<Laufwerksbezeichnung>:*.*

A:*.*

Mochten Sie dagegen eine Datei einladen, die sich im Ordner
DOKUMENT.SDO befindet, muß der Pfad erweitert werden:

A: \DOKUMENT.SDO*.*

 198 Das große ST-BASIC-Buch ———

Jetzt erhalten Sie sämtliche Dateien, die sich im Ordner DO-

KUMENT.SDO befinden. Aber auch ein Ordner im Ordner ist
möglich. Dann muß der Weg vom Hauptdirectory zum innersten
Ordner im Pfad angegeben werden. Die einzelnen Ordnernamen
werden wieder durch den Querstrich "\" (Backslash) voneinander
getrennt:

A:\DOKUMENT .SDO\FORMULAR .SDO* .*

gibt sämtliche Dateien im Ordner FORMULAR.SDO, der sich

im Ordner DOKUMENT.SDO befindet aus. Der letzte Teil des
Pfades gibt den Namen an. Dieser besteht wiederum aus zwei

Teilen: dem eigentlichen Namen und einem Extender (Exten-
sion), der durch den Punkt vom eigentlichen Namen getrennt ist.
Üblichweise gibt der Extender den Dateityp an:

 Extender Typ

BAS BASIC-Programm

PRG ausführbaren GEM-Programm

Aber davon war schon einmal die Rede! Neu ist dagegen, daß

der Name im Indexfeld (die erste Eingabezeile der Fileselector-
Box) durch sogenannte Wildcards (Joker) ersetzt werden kann.
Dies sind Platzhalter, die entweder einen Buchstaben, oder gar

einen kompletten Namen ersetzen. Mit ihrer Hilfe wird es mög-

lich, eine Auswahl verschiedener Dateien anzuzeigen. Dazu be-
nutzt man die beiden Zeichen * und ?.

Das Fragezeichen ? steht als Platzhalter genau für einen Buch-
staben oder genau ein beliebiges Zeichen, während der Stern *

eine ganze Zeichenkette ersetzt. Ein paar Beispiele zur Veran-

schaulichung:

H?’MMEL.PRG Zeigt alle (Programm-)Dateien an, die die an-
gegebenen Buchstaben enthalten, wobei das
zweite Zeichen (repräsentiert durch das Fra-
gezeichen) beliebig ist. Zum Beispiel HIM-
MEL.PRG, HUMMEL.PRG, HAMMEL.PRG
usw.

 —— Dateiverwaltung - 199

H*.PRG Zeigt alle (Programm-)dateien an, die mit ei-
nem H beginnen, wobei die restlichen Buchsta-
ben bis zum Beginn der Extension beliebig
sind. Zum Beispiel HALLO.PRG, HIL-
BERT.PRG usw. a

* BAS Zeigt simtliche Dateien an, die mit der Exten-
sion BAS ausgestattet sind.

* * Zeigt gänzlich alle Dateien an, egal welche
Extension sie besitzen.

ST-BASIC bietet einen eigenen Befehl, um die File-Selector-Box
auf den Bildschirm zu bringen: |

FILESELECT(<Pfadname>, <Dateiname>, <Flag>)

In der Stringvariablen <Pfadname> muß der Pfadname angege-
ben werden, der zu Beginn des Aufrufes im Indexfeld der Box
angezeigt werden soll. Auf jeden Fall muß darin ein korrekter
Pfad enthalten sein! Der "Minimalpfad" lautet: A:*.*. Möchten
Sie nur BASIC-Programme in der Box zur Auswahl stellen, so
erreichen Sie dies durch Abändern des Extenders: A:*.BAS. Als

Dateiname kann - muß jedoch nicht - ein Name angegeben

werden, der dann nach dem Aufruf der Box ım Eingabefeld
unter AUSWAHL: erscheint. Auf diese Weise kann z.B. ein
Vorschlag des Dateinamens angegeben werden. Wurde vom Be-
nutzer ein File ausgewählt, so enthält diese Stringvariable den
ausgewählen Dateinamen.

In der Variablen <Flag> wird nach Beendigung der Auswahl
vom Computer mitgeteilt, ob der Benutzer OK, oder Abbruch

angeklickt hat. Im ersten Fall enthält <Flag> dann der Wert 1,
im letzeren den Wert 0. Damit der Benutzer auch mit der Maus
arbeiten kann, muß sie vor Aufruf der Funktion ein- und an-
schließend wieder ausgeschaltet werden. Hier nun ein ganz ein-
faches Beispielprogramm zum Aufruf der Box:

' Minimalpfad vor Aufruf der Box angeben

PfadS="A:* Fu

MOUSEON' Maus einschalten

 200 Das große ST-BASIC-Buch ———

FILESELECT (Pfad$,Name$, Button)

MOUSEOFF

IF Button THEN

PRINT "Datei ";Name$;" ausgewählt"

ELSE
PRINT "Abbruch wurde angeklickt!"

ENDIF

Nachdem der Benutzer seine Auswahl getätigt hat, kann die Da-
tei Name$ mit OPEN geöffnet und die entsprechenden Daten

können eingelesen oder abgespeichert werden.

Eine etwas komfortablere Verwaltung der Fileselector-Box ge-

stattet die folgende Prozedur:

C
O
N

O
U

EP

W
D

|]
©

26

27

ERAKEKKEKKEKEKREEREKEEREREKERREKREEREKEKREEEEKEREEEREEEREREREKKKEK

x DO _FILE.BAS *
Vin nn mn nn u nun nn nm nn nn nn ann nn nn mn nn nn nn nn nun nenn mm nm nm *

'* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *

'* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *

x (C) 1988 by DATA BECKER GmbH Dusseldorf *

DHAKA KKK AKER KEEKEKEKEREREKEEREKEKEKKKKK KKK KKK

8

ı die hier aufgeführte Prozedur DO_FILE kann in eigene Programme

eingebaut werden, und dient der Verwaltung der FILESELECTOR.BOX
i

F_Name$=":F_Pfad$="":Extgaum ku
Do_File(F_Name$,F_Pfad$,Ext$,F_Name$, F_Pfad$,Ext$, Taste%)

' Just for Info ... (für den der's wissen will)

IF Taste%=0 THEN

FORM_ALERT (1,"[1J [Taste ABBRUCH gedrückt!) [Abbruch]")

ELSE
FORM_ALERT (1,"[1] [Taste OK gedrückt] [Weiter]")

ENDIF

END

ı jetzt folgt die eigentliche Prozedur
8 .

DEF PROC Do_File(Name$,Path$,Post$,R Name$,R Path$,R Post$,R Tas%)

! Lokale Variablen verwenden, damit die Prozedur auch

ı in anderen Programmen einsetzbar ist.

 ——— Dateiverwaltung | 201

28 LOCAL R_Path$=Path$, R_Name$=Name$, T%,Drive%,Pointer‘%L ,‚Ret%L

29 IF Path$="" THEN ' kein Pfad angegeben, dann einen basteln

30 Path$="""*64' GEMDOS Konvention Folge leisten

31 Pointer%L= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)

32 ı anschließend aktuellen Pfadnamen holen

33 GEMDOS (,71, HIGH(Pointer%L), LOW(CPointer‘L),O)

34 ' und zurechtstutzen

35 Path$= LEFTS(Path$, INSTR(Path$+ CHR$(0), CHRS(0))-1)

36 GEMDOS (Drive%,25)' aktuelles Laufwerk ermitteln
37 Path$= CHR$(65+Drive%)+":"+Path$+!!\"

38 ENDIF Ä

39 IF Post$="" THEN ! ohne Extension kann man schlecht arbeiten

40 Path$=Path$+"*, *ıı Pauschalextension anhängen

41 ELSE

42 Path$=Path$+Post$

43 ENDIF

44 PRINT CHR$(27);"f"! Cursor aus- und Maus einschalten

45 MOUSEON

46 FILESELECT (Path$,Name$,Ret”%L)
47 MOUSEOFF |

48 PRINT CHRS(27);"e"" Cursor wieder einschalten

49 IF Ret%L=0 THEN '! Abbruch angeklickt

50 Path$=R_Path$' alte Vorgaben zurückkopieren

51 Name$=R_Name$

52 Tas%=0

53 ELSE

54 ' letzten Backslash '\' suchen

55 T%= LEN(Path$)

56 WHILE T%>0 AND MID$(Path$,T%,1)<>"\"
57 T%=T%- 1

58 WEND

59 Path$= LEFT$(Path$,T%)

60 Tas%=1

61 ENDIF

62 RETURN

Die jetzt folgenden Erklärungen zur Funktionsweise der Proze-
dur Do_File erfordern etwas weiterreichende Kenntnisse, als Sie
sie bis jetzt besitzen, vor allem über das Betriebssystem. Den-

noch sollten Sie sich nicht entmutigen lassen und die folgenden
Zeilen lesen. Zudem erfahren Sie darin auch gleich, wie die
Prozedur angewendet werden kann. |

 202 Das große ST-BASIC-Buch ———

Der Prozedur werden drei Stringvariablen bei ihrem Aufruf
übergeben, die restlichen Parameter sind lediglich Rückgabe-
werte. Die zu übergebenden Stringvariablen lauten (in korrekter
Reihenfolge): |

1. Pfadname

2. Dateiname (ohne Extender)
3. Extender für den Dateinamen

Gleich nach dem Aufruf der Prozedur werden der Pfadname
und der Dateiname in zwei lokale Variablen gerettet. ST-BASIC
gestattet die Deklaration einer lokalen Variable mit der Zuwei-
sung eines Wertes zu verbinden. Von diesem Effekt wurde hier
Gebrauch gemacht. Im nächsten Schritt wird überprüft, ob beim
Aufruf der Prozedur ein Pfadname übergeben wurde. Ist dies
nicht der Fall, muß die Prozedur einen eigenen Pfadnamen zu-
sammenbasteln. Und dazu wird das Betriebssystem des Atari ST

mißbraucht.

Die Funktion GEMDOS() (mit Parameter 71) liefert den aktuel-
len Pfadnamen. Sie weist diesen jedoch nicht einfach einer Va-
riablen zu, sondern erwartet einen Zeiger auf einen bestimmten

Speicherbereich, ın den der Pfad dann geschrieben wird. Eine

GEMDOS-Konvention sagt aus, daß dieser Pfadname maximal
64 Zeichen lang sein kann. Also füllen wir zuerst einmal einen
String (Path$) mit 64 Leerzeichen. Im nächsten Schritt muß noch
ermittelt werden, wo sich der String im Speicher befindet. Die
auf diese Weise erhaltene Adreße (Zeiger) kann der GEMDOS-
Routine übergeben werden und schon enthält die Stringvariable
Pfad$ den aktuellen Pfadnamen (die Laufwerkskennung ist darin
noch nicht enthalten!).

Dieser wird durch ein Nullbyte (CHR$(0)) abgeschlossen. Wäh-
rend es aber in der Sprache C üblich ist, eine Zeichenkette mit

einem Nullbyte zu beenden, kann ST-BASIC mit diesem Null-
byte überhaupt nichts anfangen. Also muß es aus dem String
entfernt werden! Dies geht am besten, indem man seine Position
mit INSTR(sucht, und mit LEFT$ alle links von dieser Position
(deshalb das -1) abschneidet.

 ——— Dateiverwaltung 203

Die nächste GEMDOS-Funktion (Nr. 25) weist der Variablen
Drive% die Nummer des gerade aktiven Laufwerks zu. Dabei
gilt:

Inhalt von Drive% entspricht Laufwerk

0 A

1 B

2 C

Als Integer nützt uns das aktuelle Laufwerk aber überhaupt

nichts! Im Pfadnamen benötigen wir einen Buchstaben. Der
ASCII-Code hilft uns auch hier wieder einmal aus der Patsche:

CHR$(65) liefert den Buchstaben ’A’, CHR$(66) den Buchstaben
B. Addieren wir zu dem Argument dieser Funktion einfach das
ermittelte Laufwerk (Drive%), resultiert daraus eine Laufwerks-
bezeichnung von A bis ..., je nach Inhalt der Variablen Drive%:
CHR$(65+Drive%). Jetzt kann der (fast) entgültig Pfad zusam-
mengesetzt werden:

CHR$(65+Dri ve%)+":"+Path$+r"'\ u

Auch um den letzten Backslash (\) müssen wir uns selbst küm-
mern. Mit String-Addition ist dies aber kein Problem. An den
auf diese Weise erhaltenen Pfadnamen muß noch die Extension
angehängt werden. Ist kein Extender als Parameter übergeben

worden, so wird einfach die Pauschal-Extension *.* an den Pfad
gehängt. Vor dem Aufruf der File-Selector-Box noch den Cursor
aus- aber die Maus einschalten! Wurde vom Benutzer Abbruch
angeklickt, so werden die ursprünglichen Parameter wiederher-
gestellt und an das aufrufende Hauptprogramm zurückgegeben.

Ebenso wird das Flag auf 0 gesetzt und zurückgegeben. Hat der

Benutzer dagegen den Button OK. angeklickt, so muß der letzte

Teil des Pfadnamens (die zuvor an diesen gehängte Extension)
wieder entfernt werden. Dies wird in einer Schleife erledigt.
Angefangen vom Stringende wird jedes Zeichen untersucht, bis
der erste Backslash entdeckt wird. Nach diesem wird der Pfad

dann abgeschnitten.

 204 Das groBe ST-BASIC-Buch ———

Ein Algorithmus zum Abschneiden der Extension, der mir gut
gefallen hat, findet sich im Programmierhandbuch zum ST-BA-
SIC: Die Funktion INSTR sucht ein beliebiges Zeichen innerhalb
eines Strings und gibt seine Position zurück. Dabei beginnt sie
mit der Suche beim ersten Zeichen. In diesem Fall muß jedoch
ab dem Stringende gesucht werden! Deshalb wird der String mit
MIRROR$ einfach umgedreht, und schon kann INSTR zum
Suchen des letzten Backslash verwendet werden:

Path$= LEFT$(Path$,LENCPATH$)- INSTRCMIRROR$(Path$)+"\","\")

Der auf diese Weise ermittelte Pfad, der Dateiname incl. Exten-
der, sowie der Wert I für den OK-Button werden noch zurück-

gegeben. Fertig! Möchten Sie jetzt die ausgewählte Datei öffnen
(z.B. um sie einzulesen), geschieht dies mit:

OPEN "I",1, F_Pfad$+F_Name$

Was geschieht aber, wenn die zurückgegebene Datei gar nicht
auf der Diskette existiert? Dann erhält man prompt eine Fehler-

meldung! Diese wäre ja noch zu verkraften, schlimmer ist je-
doch, daß sich der Interpreter dabeı verabschiedet. Gute Pro-

gramme machen dies nıcht! Folglich muß der Fehler abgefangen

werden. ST-BASIC bietet dafür eine Möglichkeit an:

3.7 Fehler abfangen

Tritt während der Programmabarbeitung ein Fehler auf, kann
statt der Ausgabe der Fehlermeldung und des Programmabbruchs
in eine eigene Fehlerbehandlungsroutine gesprungen werden.

Dort ist es dann möglich nachzufragen, welcher Fehler aufge-
treten ist, und eine entsprechende Meldung auszugeben. Die
Anweisung für ST-BASIC bei Auftreten eines Fehlers an ein
vorbestimmtes Ziel (Marke, Zeilennummer) zu springen lautet:

ON ERROR GOTO <Ziel>

und wird normalerweise an den Programmanfang gesetzt. Möch-
ten Sie die Fehlerbehandlung abschalten, genügt der Befehl:

 —— Dateiverwaltung 205

ON ERROR GOTO 0

d.h. nach einem Fehler wird das Programm wieder wie gewohnt
abgebrochen. Auch ein CLEAR (Löschen aller Variableninhalte),
RUN oder NEW schaltet die Fehlerbehandlung mit ON ERROR

GOTO wieder ab. Eine Änderung des Programmcodes bewirkt
ebenfalls ein Abschalten dieser Funktion.

Um innerhalb der Fehlerbehandlungsroutine überhaupt prüfen
zu können, welcher Fehler aufgetreten ist, existiert eine System-

variable (Variable, die vom Computer verwaltet wird) namens

ERR

in der die Nummer des Fehlers festgehalten wird, sowie

ERR$

die den Text der Fehlermeldung enthält, der ohne ein ON

ERROR GOTO ausgegeben worden wäre. In

ERL

wird schließlich noch die Nummer der Zeile festgehalten, in der

der Fehler aufgetreten ist. Eine Liste der einzelnen Fehlermel-
dungen und der dazugehörigen Nummern finden Sie im Anhang
dieses Buches.

Die Meldung File not found (Datei auf der Diskette nicht vor-
handen) trägt die Nummer 53. Besitzt die Variable ERR also den
Inhalt 53, handelt es sich bei dem aufgetretenen Fehler um eine
nicht gefundene Datei:

ON ERROR GOTO Fehler

Do_File(Pfad$,Name$,Ext$,Pfad$,Name$,Ext$, Flag%)

IF Flag% THEN

OPEN "I" 1,Pfad$+Name$

WHILE NOT EOF(1)

 206 - Das große ST-BASIC-Buch ——

IF ERR=53 THEN

' Angegebene Datei nicht vorhanden!

FORM_ALERT(1,"[3] [Ich kann die Datei nicht lesen!] [Abbruch]")

ELSE

' war anscheinend ein anderer Fehler ...

ENDIF

RESUME NEXT

Tritt ein Fehler auf, so springt der Computer in die Routine
Fehler. Dort wird zuerst gepriift, ob es sich bei diesem Fehler
um eine nicht gefundene Datei handelt (Fehlernummer 53 in der
Systemvariablen ERR). Ist dies der Fall, wird eine Alertbox mit
einer Fehlermeldung ausgegeben. Ansonsten müßte noch eine
Fehlermeldung hinter ELSE folgen (es können ja noch andere
Fehlerquellen auftreten!),. Der Befehl RESUME veranlaßt den

Computer schließlich, mit der Programmabarbeitung fortzufah-:

ren: |

RESUME

Den Befehl RESUME gibt es in drei Variationen:

1. RESUME <Ziel> VerlaBt die Fehlerbehandlungsroutine
und setzt die Programmausführung bei
<Ziel> fort. |

2. RESUME NEXT VerlaBt die Fehlerbehandlungsroutine

und setzt die Programmausführung hinter
der Zeile fort, in der der Fehler aufge-
treten ist.

 ——— Dateiverwaltung 207

3. RESUME Verläßt ebenfalls die Fehlerbehandlungs-
| routine, versucht dann allerdings noch .

einmal, den Befehl auszuführen, der den
Sprung in die Fehlerroutine verursacht
hat.

Möchten Sie die Fehlerroutine testen, kann ein Fehler auch auf
Befehl ausgelöst werden: |

ERROR <Fehlernummer>

erzeugt einen Fehler mit der angegebenen Fehlernummer. Dabei
ist zu beachten, daß ERROR innerhalb des Programms stehen

muß, damit die Fehlerbehandlungsroutine angesprungen wird,
andernfalls (im Direktmodus) werden die erzeugten Fehler im-
mer auf dem Monitor ausgegeben.

3.8 Backup-Dateien

Mit den bisher besprochenen Werkzeugen können auf einfachste
Weise mehrere Dateien mit der Adreßverwaltung bearbeitet wer-
den. Man wählt dazu einfach die gewünschte Datei ın der File-
Selector-Box aus, liest sie ın den Speicher und ändert sıe bei Be-
darf ab. Vor dem Verlassen des Programms muß dann diese Da-

tei noch auf Diskette zurückgeschrieben werden.

Dabei wird jedoch die alte Datei zerstört, da sie vom Programm

einfach mit dem neuen Inhalt überschrieben wird. (Innerhalb ei-
nes Directories können keine zwei Dateien den gleichen Namen
tragen). Möchte man beide Dateien behalten, muß die alte
Adreßdatei umbenannt werden. Es hat sich eingebürgert, vor

dem Überschreiben der Datei erst eine sogenannte BACKUP-
Datei anzufertigen. Diese trägt zwar den gleichen Dateinamen,
ihr Extender wird jedoch in BAK (Abkürzung für BACKUP)
umgetauft. Wird nun die Adreßdatei zurückgeschrieben, wird die

alte Datei nicht zerstört, da sie einen anderen Namen besitzt (der
sich zwar nur in der Extension unterscheidet, aber das macht ja
nichts!).

 208 Das große ST-BASIC-Buch ———

Da bereits eine BACKUP-Datei auf der Diskette vorhanden sein
kann (von einem früheren Zurückschreiben der Datei), muß
diese erst noch entfernt werden. Hier die benötigten Befehle:

KILL <Name>

Löscht die Datei <Name> von der Diskette. Gehen Sie deshalb
schon in Ihrem eigenen Interesse mit diesem Befehl sorgsam um,
denn eine einmal gelöschte Dateı ist in den meisten Fällen un-

wiederbringlich verloren. Befindet sich die zu löschende Datei in
einem Ordner, so muß der Pfad mit angegeben werden.

NAME AS

Dient zum Umbenennen einer Datei. Die Syntax lautet:

NAME <alter Name> AS <neuer Name>

NAME "OM_ BASIC.PRG" AS "ST_BASIC.PRG" tauft die Datei
OM_BASIC.PRG in ST_BASIC.PRG um. Auch hier muß der
Pfad vor dem Dateinamen angegeben werden, wenn sich die
umzubenennende Datei in einem Ordner befindet.

copy

kopiert eine Datei, und war nach der Syntax:

COPY <Quelldatei> TO <Zieldatei>

COPY "A:\ST_BASIC.PRG" TO "D:\ST_BASIC.PRG" kopiert
die Datei ST_BASIC von Laufwerk A in Laufwerk D (Ram-
disk). COPY akzeptiert auch Wildcards (*, ?) im Namen
<Quelldatei>, nicht jedoch in der <Zieldatei>!

_ BACKUP

Als letzer Vertreter der Kopierbefehle, hier der Befehl, der eine
Kopie von der angegebenen Datei anfertigt, die dann den Ex-
tender BAK tragt.

BACKUP "MINIADR.DAT"

 ——— Dateiverwaltung 209

Fertigt eine Kopie der Datei MINIADR.DAT mit dem Namen
MINIADR.BAK.

Ehe eine Backupdatei angefertigt wird, muß erst geprüft wer-

den, ob sich eine Datei mit dem angegebenen Namen auf Dis-
kette befindet (andernfalls kann man sich die Arbeit sparen.
Wovon sollte man auch ein Backup erstellen?). Ist dies der Fall,

wird eine evtl. von dieser Datei schon bestehende Backupdatei
gelöscht und anschließend die neue Backupdatei gezogen.

Die folgende Prozedur übernimmt die Anferigung einer Backup-
datei. Sie benötigt jedoch eine Funktion, die feststellt, ob eine
bestimmte Datei auf Diskette vorhanden ist. Da ST-BASIC keine
derartige Funktion bereitstellt, habe ich selbst eine entwickelt:

FN EXIST(Filename$) liefert als Ergebnis den Wert -1 (wahr),
wenn die angegebene Dateı auf der Diskette vorhanden ist, an-
dernfalls schreibt sie den Wert O (falsch) zurück. Die genaue Er-
klärung dieser Funktion erfolgt zu einem späteren Zeitpunkt, da

weitergehende Kenntnisse zu ihrem Verständnis nötig sind!

Zuerst die Prozedur "Rename", die bei Bedarf eine BACKUP-

Datei anfertigt:

VKKKRKKKKKTTK TC TITTEN

‘

0 EMH KKH KKK KAKA AKAIKE AERA KT KT TI KT KT TI KT CH

1 '* RENAME.BAS *
2 CKNe cw w mmm eee ewww wm we nw ern new e ewe we we ee c nee enw wn mews ww wre awwnnewe *

3 '* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *

4 '* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *

5 '* (C) 1988 by DATA BECKER GmbH Düsseldorf *

6

7

8

9 ! Die hier aufgeführte Prozedur benötigt die Funktion EXIST.BAS

10 ! Ist ein File mit dem angegebenen Namen auf der Diskette vor-

11 ' handen, so wird eine BACKUP-Datei erstellt. Eine bereits

12 '! existierende BACKUP-Datei wird zuvor gelöscht.

13!

14 ' Aufruf der Prozedur: Rename(<Filename>)

15 !

16 !

17 DEF PROC Rename(Filename$)

18 IF FN Exist%L(Filename$) THEN

19 I! Datei existiert bereits => BACKUP auch schon vorhanden?

 210 Das groBe ST-BASIC-Buch ———_

20 IF FN Exist%L(LEFTS(FilenameS, INSTR(Filenames, "."))+"BAK")

21 ı dann BACKUP einfach löschen ...

22 THEN KILL LEFT$CFilename$, INSTRCFilename$,"."))+r"BAK"

23 ENDIF

24 ı jetzt BACKUP anfertigen

25 BACKUP (Filename$)

26 ENDIF

27 RETURN

Der Vollständigkeit halber hier auch gleich das Listing der
Funktion EXIST, ohne die obige Prozedur nicht arbeitet! (Er-

klärung folgt später!)

0 8 HHH KH KH HH KEKE RITE EERE

1 '* EXIST.BAS *
2 DK we www mm www wee wee ewww mew nn nn nn nn nn nn mn nn nn nn nem mn. *

3 '* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *
4 '* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *

5 i* -(C) 1988 by DATA BECKER GmbH Düsseldorf *
6 DPHKKHKAKKKKAKEEKKEK AKERS

fo
8 t

' Die folgende Funktion überprüft, ob ein File 'Name$! auf der |

10 ' Diskette vorhanden ist

11 ' File vorhanden => Returnwert ist '-1' ('wahr')

12 ' File nicht vorhanden => Returnwert ist '0! ('falsch')

13! |

14 IF NOT FN Exist%LC("EXIST.BAS") THEN

15 FORM_ALERT (1,"{(3] (Datei nicht vorhanden!] [Abbruch]")

16 ELSE |

17 FORM_ALERT (1,"(1] [Alles in Ordnung] [OK J")

18 ENDIF

19 END

20 ! |

21 DEF FN Exist%L(Name$)

22 LOCAL T%

23 '

24 OPEN "F",1,Name$,55

25 IF EOF(1) THEN

26 ' Keine Files auf der Diskette vorhanden

27 "=> Fehlermeldung (0) zurückgeben

28 CLOSE 1 |
29 RETURN (0)

30 ELSE

31 ' DTA-Buffer bereitstellen

 ——— Dateiverwaltung 211

32 FIELD 1,30 AS Buffer$,14 AS File$

33 GET 1,0

34 'ı Datei vorhanden => !-1! zurückgeben

35 IF Name$= LEFT$(File$, INSTRCFile$, CHR$CO))-1) THEN

36 CLOSE 1

37 RETURN (-1)

38 ENDIF

39 ENDIF

40 CLOSE 1

41 ' File war nicht auf der Diskette

42 RETURN (0)

3.9 Wir sorgen für Ordnung auf der Diskette

Bei der Verwaltung der File-Selector-Box war schon einmal die
Rede von ihnen, den Ordnern, die mithelfen, bei dem ganzen

Wust von Dateien auf einer Diskette nicht den Überblick zu
verlieren. Doch einen Ordner vom Programm aus zu erzeugen,

war für uns bis jetzt nicht möglich. Dem soll in diesem Kapitel
abgeholfen werden!

Ordner erzeugen

Um einen Ordner zu erzeugen, wird in ST-BASIC der Befehl

MKDIR <Ordnername>

benutzt. Er erstellt einen Ordner mit der Bezeichnung
<Ördnername> auf dem aktuellen Laufwerk.

Ein Ordner stellt zunächst einmal einen Eintrag im Inhaltsver-

zeichnis der Diskette, dem Directory, dar. Wird der Ordner ge-

öffnet bzw. der Pfad um einen Ordner erweitert, erscheint ein

Unterinhaltsverzeichnis (Subdirectory), in dem die in diesem
Ordner enthaltenen Dateien aufgeführt sind.

 212 Das große ST-BASIC-Buch ——

Ordner löschen

Ein Ordner kann natürlich auch wieder von der Diskette ge-
löscht werden! Dazu dient der Befehl

RMDIR <Ordnername>

Das Subdirectory (Unterinhaltsverzeichnis) wird aus dem
(Haupt-)Directory entfernt.

Immer auf dem richtigen Pfade

Existieren auf einer Diskette mehrere Ordner und somit logi-
scherweise auch mehrere Unterinhaltsverzeichnisse (Subdirecto-
ries), muß mit Hilfe eines entsprechenden Pfades jedes Unter-
verzeichnis angesprochen werden können, um die gewünschte

Datei aus einem Ordner einzulesen.

Enthält der Ordner DOKUMENT.SDO die Datei BRIEF.SDO, so

schlägt jeder Versuch fehl, die Datei mit

OPEN "I",1,"BRIEF.SDO"

einzulesen, solange Sie sich noch im Hauptinhaltsverzeichnis be-
finden. Wird dagegen der Pfadname mit angegeben, wird der In-
halt des Subdirectories erreicht und kann eingelesen werden:

- OPEN "1", 1,'"A: \DOKUMENT „SDO\BRIEF .SDO"

Um diese doch recht umständliche Prozedur abzukürzen (stellen

Sie sich einmal vor, Sie möchten im Ordner DOKUMENT.SDO,
den Ordner BRIEFE.SDO, der sich wiederum im Ordner GE-
SCHAEFT.SDO befindet, ansprechen, um daraus verschiedene

Dateien zu lesen, und Sie müßten jedesmal den vollen Datein-
amen als Pfad angeben!) kann ein Unterinhaltsverzeichnis zum
aktuellen Verzeichnis ernannt werden. Alle Operationen beziehen
sich dann ab sofort auf dieses Verzeichnis, obgleich kein Pfad
angegeben wird. |

 ——— Dateiverwaltung 213

Zum Umstellen auf ein Subdirectory dient der Befehl

CHDIR <Ordnername>

~CHDIR "DOKUMENT.SDO" erklart den Inhalt des Subdirecto-

ries DOKUMENT.SDO zum aktuellen Verzeichnis, auf das sich

dann ab sofort alle Diskettenbefehle beziehen. Ein SAVE spei-

chert die ihm anvertraute Programmdatei in diesen Ordner, der

Befehl FILES (Inhalsverzeichnis ausgeben) gibt nur noch den In-
halt dieses Ordners aus. Möchten Sie wieder in das Hauptdirec-

tory zurückkehren, so genügt als <Ordnername> die Angage
zweier Punkte gefolgt von einem Backslash:

CHDIR "..\"

und schon befinden Sie sich wieder im Hauptdirectory. Gleich-
zeitig kann das aktuelle Laufwerk mit CHDIR umgestellt wer-

den, indem der Pfad um die Laufwerkskennung

CHDIR “A:\DOKUMENT:SDO"

erweitert oder nur die Laufwerkskennung alleine angegeben
wird:

CHDIR "D:"

setzt das Defaultlaufwerk (aktuelles Laufwerk). Ab sofort wird
bei einem Diskettenzugriff das Laufwerk (Ramdisk) D ange-
sprochen.

3.10 Relative Dateien

Eine relative oder Random-access-Datei besteht, wie Sie bereits

wissen, aus einzelnen Datensätzen. Ähnlich wie sich eine Kartei
aus mehreren Karteikarten, die wiederum verschiedene Daten

tragen, zusammensetzt, enthält auch ein Datensatz verschiedene

Angaben:

Name + Vorname + Straße + Plz + Ort + Telefon

 214 Das groBe ST-BASIC-Buch ———

ergibt z.B. einen Datensatz fiir eine AdreBdatei. Damit einzelne
Datensätze (Records) anschließend eingelesen werden können,

müssen alle Records einer Datei die gleiche Länge besitzen.
Diese Datensatzlänge wird als vierter Parameter beim Befehl
OPEN angegeben. Der Dateimodus ist jetzt nicht mehr "T" oder
"O", sondern "R". Dies gilt sowohl für das Lesen als auch für das
Schreiben der Datei:

OPEN "R",1,"MINIDDR.REL", <Datensatzlange>

Datensatz einrichten

Zum Einrichten eines Datensatzes existiert der Befehl

FIELD <Dateinummer>,<Lange> AS <Buffervariable>,...

Der erste Parameter hinter FIELD ist die Dateinummer, die auch

beim Befehl OPEN angegeben wurde. AnschlieBend werden die
einzelnen Puffervariablen (Zwischenspeicher), aus denen sich
wiederum der gesamte Record zusammensetzt, sowie die Anzahl
der Zeichen, die jede einzelne Puffervariable enthalten soll, an-
gegeben. Die Gesamtlänge der Puffervariablen darf die beim
OPEN angegebene Datensatzlänge nicht überschreiten. Ein Bei-
spiel verdeutlicht das soeben Gesagte wohl am besten.

Ein Datensatz soll aus folgenden Daten bestehen:

Daten Länge

Name 15

Vorname 15

Strasse 20

Ort 20

Die Datensatzlänge beträgt 70, folglich muß der Befehl zum
Öffnen der Datei lauten:

OPEN "R",1,"MINIADR.REL", 70

 ——— Dateiverwaltung 215

AnschlieBend wird der Record mit FIELD eingerichtet:

FIELD 1,15 AS Na$, 15 AS Vorna$, 20 AS Stra$, 20 AS Ort$

Die einzelnen Puffervarıablen können (nach dem Einlesen eines
Datensatzes, ansonsten ergibt es natürlich keinen Sinn!) wie
normale Variablen auch abgefragt werden (in IF, Schleifen,
usw.), oder mit PRINT ausgegeben werden:

IF NaS = "Arthur" THEN

WHILE NaS <>

WEND

PRINT Na$,Vorna$,Stra$,OrtS

Die Zuweisung eines Wertes an eine Puffervariable darf nur mit

MID$()=, LSET oder RSET erfolgen. Zumindest die Zuweisung
mit MID$()= müßte Ihnen mittlerweile geläufig sein. Die zwei
anderen Zuweisungsformen werden wir jetzt besprechen:

LSET und RSET

Die Syntax entspricht der von LET , im Gegensatz zu LET ist
ein LSET bzw. RSET aber unbedingt nötig, wenn eine Puffer-
variable mit einem Wert versorgt werden soll:

LSET Na$ = "MAIER"

weist der Variablen Na$ den Inhalt MAIER zu. Das Besondere
dabei ist, daß der Stringausdruck in die Variable linksbündig

eingesetzt wird. Nicht benutzte Zeichen (Differenz zwischen der
Länge der Puffervariable und der zugewiesenen Zeichenkette)
werden mit Leerzeichen aufgefüllt (Na$ = "MAIER" + CHR$
(32)*(15-LEN("MAIER"))). Enthält die Zeichenkette mehr
Buchstaben, als die Puffervariable aufnehmen kann, so werden
die überhängenden Buchstaben einfach abgeschnitten.

Im Gegensatz zu LEST setzt RSET den Stringausdruck nicht
links-, sondern rechtsbiindig in die Puffervariable ein. Auch
hier werden überflüssige (nicht benötigte) Zeichen der Puffer-

 216 Das große ST-BASIC-Buch ———

variable mit Leerzeichen aufgefüllt. Ein zu langer Stringaus-
druck wird ebenfalls abgeschnitten. Sobald der Record mit den
nötigen Daten versorgt ist, kann er auf Diskette geschrieben
werden. Zum Lesen und Schreiben des Puffers gibt es zwei ei-
gene Befehle. |

Puffer auf Diskette schreiben und wieder lesen

PUT <Dateinummer>, <Datensatznummer>

schreibt die sich im Puffer befindenden Daten in die geöffnete
Datei, und zwar an die Position <Datensatznummer>.

GET <Dateinummer>, <Datensatznummer>

Liest die an der Position <Datensatznummer> stehenden Daten

aus der Datei mit der Kanalnummer <Dateinummer> in den

Puffer. Dort können sıe dann aus den einzelnen Puffervariablen

abgeholt werden.

Ehe die graue Theorie an einem Beispiel anschaulich dargestellt

werden soll, muß noch ein Problem abgeklärt werden. Sollen
nämlich neben Zeichen auch noch Zahlen in einer relativen Da-

tei abgespeichert werden, müssen diese erst auf eine genau vor-
gegebene Länge gebracht werden (für die Puffervariable). Zu-
dem handelt es sich bei dem Puffer um Stringvariablen, denen
keine Zahlen zugewiesen werden können. Deshalb gibt es in ST-
BASIC Funktionen, die Zahlen in einen String mit 2, 4, 6, oder

10 Bytes umwandeln. Die so umgewandelten Zahlen können
dann einer Puffervariablen mit LSET bzw. RSET zugewiesen
werden.

Funktion konvertiert in eine in einen

MKI$(Zahl) 16 Bit Integerzahl 2 Byte String
MKIL$(Zahl) 32 Bit Integerzahl 4 Byte String

MKS$(Zahl) Single-Float | 6 Byte String
MKD$(Zahl) Double-Float 10 Byte String

und andersherum geht’s mit CVx:

 ——— Dateiverwaltung © 217

Funktion konvertiert einen in eine

CVI(String) 2 Byte String 16 Bit Integer

CVIL(String) 4 Byte String 32 Bit Integer

CVS(String) 6 Byte String Single-Float

CVD(String) 10 Byte String Double-Float

Die beiden Funktionen X$ = MKI$(Zahl) und Zahl = CVI(X$)
heben sich also wieder auf.

3.11 Minidatei - diesmal relativ

Ich habe die Ihnen bereits aus dem zweiten Teil dieses Buches

bestens bekannte Miniadreßverwaltung noch ein weiteres Mal

umgearbeitet, diesmal jedoch für relative Datenspeicherung!

Ein Record setzt sich aus den Komponenten

 Daten _ Länge

Name 15

Vorname 15

Strasse 32

Plz 4

Ort 30

Tel 11

Geb 10

zusammen und erhält folglich die Datensatzlänge 117. Ehe
Adreßen erfasst werden können, muß eine (leere) Adreßdatei
eingerichtet werden. Diese Aufgabe übernimmt Menüpunkt 4.
Die Auswahl, bzw. Neueingabe eines Dateinamens erfolgt über
die File-Selector-Box, die in der Do_File-Routine verwaltet
wird. Befindet sich bereits eine Datei mit dem angegebenen Na-
men auf der Diskette, sorgt die Prozedur Rename dafür, daß vor
dem Einrichten der neuen Datei erst einmal ein Backup ange-
fertigt wird. Sicher ist sicher!

Anschließend wird der Pfad gesetzt (falls die Datei in einem
Ordner angelegt werden soll) und der von der Prozedur Do_ File

zurückgegebene Dateiname (Name$) als Filename verwendet. Die

 218 Das große ST-BASIC-Buch ——

Datei enthält so viele Datensätze, wie ın der Variablen "Gro",

mit der auch die einzelnen Felder dimensioniert wurden, ange-

geben ist.

Neu ist auch die Prozedur Speichern(Nummer%), die den Vari-
ableninhalt des Index Nummer% auf Diskette schreibt. Nach
dem Öffnen der Datei Name$ wird erst einmal der Datensatz mit
FIELD eingerichtet. Da sämtliche Variablen, aus denen sich der

Puffer zusammensetzt, in einer Anweisung untergebracht werden
müssen, aus drucktechnischen Gründen jedoch maximal 72
Zeichen in einer Zeile stehen dürfen, müssen die letzten beiden
Puffervariablen zwei verschiedene Datensatzkomponenten auf-

nehmen. Doch das macht gar nichts! Auf diese Weise kann ich
Ihnen wenigstens demonstrieren, mit welchen Befehlen eine
Puffervariable gefüllt werden darf.

So, der Puffer wäre definiert, jetzt muß er noch mit den Daten

versorgt werden, die auf Diskette geschrieben werden sollen.

LSET und MID$()= erledigen diese Aufgabe. Anschließend wird
der komplette Record auf der Diskette abgespeichert und der

Kanal geschlosssen, damit es keine Konflikte mit anderen geöff-
neten Kanälen gibt. Da in relativen Dateien einzelne Records
abgespeichert werden können, wird dies gleich beim Erfassen
bzw. Korrigieren von Adreßen erledigt.

Und weil wir gerade von der Adreßerfassung sprechen: Damit

ein Aufruf der Prozedur Speichern(Nummer%) erfolgen kann,
wird ein Dateiname benötigt. Deshalb wird zuerst einmal eine
Unterroutine "Taufe" aufgerufen, die abklärt, ob in Name$ be-
reits ein Dateiname gespeichert ist (vom Anlegen oder Einlesen
einer Datei). Ansonsten erscheint die File-Selectorbox, und ein

Dateiname kann angegeben werden. Auch die Routine zum Ein-

lesen einer Datei mußte geändert werden. Zuerst werden sämt-

liche Variableninhalte gelöscht, damit nicht zwei Dateien mit-
einander vermischt werden. Dies könnte man durchaus einer

FOR...NEXT-Schleife

FOR T%=1 TO Gro ' Dimensionierung

_Loesche(T%)

NEXT T%

 ——— Dateiverwaltung 219

überlassen, die dann allerdings mit Sicherheit unnötige Arbeit
verrichten würde. Enthält eine Variable nämlich keine Daten
mehr, so ist das Datei-Ende bereits erreicht, und die Schleife

kann verlassen werden. Deshalb wurde hier einer (abweisende)
WHILE...WEND-Schleife der Vorzug gegeben. In einer RE-
PEAT...UNTIL-Schleife werden dann - beginnend vom ersten
Record - alle Datensätze eingelesen, bis ein nicht belegter Da-
tensatz im Puffer steht. Dies ist das Zeichen dafür, daß die Da-
teı schon komplett eingelesen ist. Die Schleife kann abgebrochen
und der letzte (leere) Datensatz gelöscht werden. Das Einlesen

der gesamten Datei erfolgt deshalb, da in einer relativen Datei,

die sich auf Diskette befindet, die Suche eines Namens relativ
lange dauert.

Ist eine Datei eingelesen, besitzen alle Variablen ihre maximal

erlaubten Längen, da die nicht benötigten Stellen im Puffer mit
Leerzeichen aufgefüllt wurden. Um bei der Suche nach einem
bestimmten Namen nicht in Teufels Küche zu geraten (MÜL-
LER <> MÜLLER), wird die Suchvorgabe ebenfalls bis zur ma-
ximal erlaubten Länge (15 Zeichen) mit Leerzeichen aufgefüllt.
Eine äußerst noble Geste wäre es natürlich, wenn die Leerzei-

chen am Ende einer Variablen gleich nach dem Einlesen abge-
schnitten würden. Möchten Sie das Programm in dieser Richtung
ergänzen, sollten Sie folgendes beachten:

- Im Prinzip kann mit INSTR() die Position des ersten Leer-
zeichens ermittelt und mit LEFT$ die Zeichenkette zurecht-
gestutzt werden. Dieses Verfahren funktioniert aber nur

dann, wenn der Datensatz auch wirklich belegt war. Ein
Eintrag, der nur Leerzeichen enthält, führt zu einem Rück-
gabewert der Funktion INSTR() von 1. Das Leerzeichen muß
aber abgeschnitten werden, also LEFT$(...,INSTRÜO-1), und

daraus resultiert dann ein Wert 0, der auch prompt zu einer

Fehlermeldung führt.

- Enthält andererseits der Datensatz kein einziges Leerzeichen,
weil sein Inhalt alle Stellen in Beschlag nimmt, sieht es übel
aus! INSTR() liefert den Wert 0 und siehe da, eine Fehler-
meldung auf dem Monitor!

 220 Das große ST-BASIC-Buch ——

Ferner können einzelne Datensätze durchaus rechtmäßiger-
weise Leerzeichen enthalten, die nur als Trennzeichen die-
nen, z.B. ein Straßenname: "Am Sonnenhang 99" enthält
gleich zwei Leerzeichen, hinter denen dann allerdings noch
wichtige Daten folgen. Die Anweisung

Strasse$ = LEFT$(Strasse$, INSTR(Strasse$,CHR$(32))-1)

würde den Straßennamen verstümmeln. Übrig bliebe ledig-
lich das Wörtchen "Am", mit dem ein Postbote herzlich wenig
anfang kann, muß er einen Brief mit dieser Adreße zustellen.

Abhilfe kann hier wieder - wenn es schon unbedingt die
Funktion INSTR() sein muß - ein Umdrehen der Zeichen-
kette mit MIRROR$ schaffen. Dann müssen Sie allerdings

noch die von INSTR() ermittelte Position von der maximalen
Variablenlänge subtrahieren, um sie in LEFT$() als Parame-
ter benutzen zu können.

Sie sehen schon, es ist gar nicht so einfach, die Leerzeichen

wieder aus dem Variableninhalt zu entfernen, da geht es schon

wesentlich schneller, bei einem Vergleich die nicht mit Leer-
zeichen aufgefüllte Variable mit Spaces aufzublasen. Und wenn
die Leerzeichen nicht anderweitig stören oder gar Fehler verur-
sachen, warum sollte man sıe dann entfernen? Aber versuchen

Sie es ruhig! Übung macht bekanntlich den Meister!

Und hier nun das Listing der relativen Adreßverwaltung, die
übrigens nicht hundertprozentig gegen mögliche Fehlbedienung
geschützt ist; schließlich soll sie nur als Beispiel dienen, und
keiner Datenbank Konkurrenz machen:

0

1

2

3
4

5

6

7

8

9

1

IKKKKKHTKTHTTTTTTTTTT HT KKK

i | MINIDATR.BAS *
OMe eee eee wee ee wee eee ee ee we wee wwe we ween wwe *

'* Autor: Michael Maier Version: 1.00 Datum: 15.08.1988 *

ix Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *

* (C) 1988 by DATA BECKER GmbH Düsseldorf *
BHA HH HAH HH KH AIH KAI KAA KKK A KEAN AAAI ARATE TH N TH TH N N

t

1

MODE ""pD"!

O DEF FN Screen$(X$)= CHR$(27)+X$

 ——— Dateiverwaltung 221

11!

12 Gro%L=100'! falls nötig einfach ändern

13 DIM Name$(Gro%L),Vorname$(Gro%L) ,Strasse$(GroAL)

14 DIM Plz$(Gro%L),Ort$(Gro%L),Tel$(Gro%L),Geb$(Gro%L)

15 !

16 Fehler$="[3] [Diese Funktion ist leider! nicht möglich! !!] [Sorry]"

17 Mel$=""[1] [Diese Datei enthdlt"+ STR$(Gro%L)+"! Datensatze!] [OK]"

18 Fehler_2$="[3] [Ich kann die Datei! nicht finden!] [Sorry]"
19

20 REPEAT

21 CLS

22 PRINT a(0,1);"*1"%*78

23 = FOR Y%=1 TO 5: PRINT QCY%, 1); "*"2aCY%, 78) "*": NEXT Y%
24 PRINT 8(6,1);"*'*78

25 PRINT 9(2,28);'"MINIDATEI - Hauptmenü!

26 PRINT 903,28) ;"---------------------- "
27 PRINT 9(4,16);"Ein Demoprogramm aus dem grossen ST-BASIC Buch"

28 PRINT 9(9,28);"1. Name erfassen"

29 PRINT 9(11,28);"2. Name korrigieren"

30 PRINT 9(13,28);"3. Name suchen"

31 PRINT 9(15,28);"4. Datei anlegen!"

32 PRINT 8(17,28);"5. Datei laden"

33 PRINT 9(19,28);"6. Programm verlassen!"

34 PRINT 8(22,29);FN Screen$("p");" Bitte waehlen Sie! ";FN

Screen$("q'"")

35 PRINT FN Screen$("f")' Cursor ausschalten

36 '

37 AZ%L=0

38 REPEAT

39 AS= INKEYS

40 IF A$S<>"" THEN

41 A%L= ASCC RIGHTCA,1))-48

42 ENDIF

43 -UNTIL A%XL>O AND A%AL<7

44 PRINT FN Screen$("e")! Cursor wieder einschalten

45 ON A%L GOSUB Erfassen,Korrigieren, Suchen, Anlegen, Laden

46 UNTIL A%L=6' Schleife wiederholen, bis '6' gedrückt

47 CLS

48 END

49 !

50-Erfassen

51 CLS

52 ! einen Namen braucht die Datei auch noch

53 Taufe(Button%)

54 .* bei 'Abbruch' oder fehlendem Namen zurück zum Hauptmenü

55 IF Button%=0 OR Name$="!" THEN

 222 Das groBe ST-BASIC-Buch ———

56 RETURN

57 ENDIF
58 Header =" KHK RAR RR Name erfassen KREKKKKKEKKAKEEEU

59 ' zuerst einmal den ersten freien Eintrag suchen!

60 Tx=1

61 WHILE Name$(T%)<>"" AND T%<Gro%L

62 T%=T%+1

63 _WEND

64 Formular(Header$)

65 REPEAT

66 Eingabe(T%)

67 PRINT FN Screen$("f'")" Cursor stört hier bloß!

68 PRINT aC19,15);FN Screen$("p");"N";FN Screen$l"a");

69 PRINT "ächster Name ">FN Screen$("p");"K":FN Screen$("q");

70 PRINT "orrektur ";FN Screen$("p"):"Z2":2FN Screen$("q!');

71 PRINT "urück ins Hauptmenü"

72 A$="": INPUT " "sAS USING "+n+z+ku>",Ret%L,1,32

73 PRINT FN Screen$("e")'Cursor wieder einschalten

74 IF A$S="K"" THEN

75 Formular(Header$)

76 Anzeige(T%)

77 ELSE

18 IF A$S="N" AND T%<Gro%L THEN

19 Speichern(T%)

80 T%=T%+1

81 Formular(Header$)

82 Anzeige(T%)

83 ENDIF

84 ENDIF

85 UNTIL AS="Z"

86 Speichern(T%)' damit auch keine Daten verloren gehen

87 RETURN

88 !

89-Korrigieren
90 Header $=" KARA RAR RE Name korrigieren KEKKRKKKRKKKKCKKCKN

91 PRINT FN Screen$("f")

92 T%=1 |
93 Formular(Header$)

94 REPEAT

95 Anzeige(T%)

96 PRINT aC19,4);FN Screen$("p");"N";FN Screen$("q");"ächster Name ";

97 PRINT FN Screen$("p");"L";FN Screen$("q");"etzter Name ";

98 PRINT FN Screen$("p");"K";FN Screen$("q");"orrektur ";

99 PRINT FN Screen$("p"):"E":FN Screen$("q"):"ntfernen ";

100. PRINT FN Screen$("p");"Z2":FN Screen$("q"):"urdck ins Hauptment"

101 !

 ——— Dateiverwaltung 223

102 Ag$=""

103 REPEAT

104 A$= INKEY$

105 IF AS<>""' THEN

106 AS= UPPERS(RIGHTS(AS,1))

107 ENDIF

108 UNTIL AS="N" OR AS="L" OR AS="K" OR AS="E" OR AS="Z"

109 —!

110 IF (A$="N") AND (T%<Gro%L) AND (Name$(T%+1)<>"") THEN

111 T%=T%+1

112 ELSE

113 IF AS="N" THEN

114 FORM_ALERT (1,Fehler$)

115 ENDIF

116 ENDIF

117 IF AS="L" AND T%>1 THEN

118 T%=T%-1

119 ELSE

120 IF A$="L" THEN

121 FORM_ALERT (1,Fehler$)

122 ENDIF |
123 ENDIF

124 IF A$="K" THEN

125 PRINT FN Screen$("e")

126 PRINT 9C19,1);" "*78

127 Eingabe(T%)

128 Speichern(T%)

129 PRINT FN Screen$("f")

130 ENDIF

131 IF AS="E" THEN

132 MOUSEON

133 FORM_ALERT (2,"[2] [Datensatz wirklich löschen?] [LJalNein]",But%)
134 MOUSEOFF

135 IF But%=1 THEN

136 Delete(T%)
137 ENDIF

138 ENDIF

139 UNTIL AS="2"

140 RETURN

141 !

142-Suchen .
143 Header Ga xxrxk kak rk kk kk x Name suchen HKEKKKKKKEKEKKEEM

144 Name$(0)="": Vorname$(0)="":Strasse$(0)="sPLz$(O)=""

145 Ort$(0)="":Tel$(0)="":Geb$(0)=""
146 T%=0

147 Formular(Header$)

224 Das große ST-BASIC-Buch

148 PRINT FN Screen$("e")

149 INPUT 9(7,21);Name$(0) USING "a+ +-u" Ret%L,15

150 PRINT FN Screen$("f!')

151 T%=1

152 REPEAT

153. WHILE Name$(1T%)<>(Name$(0)+ SPACE$CI5- LENCName$(0)))) AND

T%<Gro%AL

154 T%=T%+1

155 _WEND

156 IF Name$(T4)=Name$(0)+ SPACES(15- LEN(Name$(0))) THEN

157 Anzeige(T%)

158 ELSE

159 FORM_ALERT (1,"(1] [Name nicht vorhanden!][Was soll's]")

160 ENDIF

161 PRINT @¢€19,15);FN Screen$("p"):"W":FN Screen$("q'"");

162 PRINT “eitersuchen "FN Screen$("p"");"N'": FN Screen$("g");

163 PRINT “eueingabe WEN Screen$("p"):"Z"2FN Screen$("q!");

164 PRINT "urück ins Hauptmenü"

165 Ags"

166 REPEAT

167 A$= INKEY$

168 IF A$S<>"" THEN

169 A$= UPPER$C RIGHT$(A$,1))

170. ENDIF

171 UNTIL A$="W OR AS="N" OR AS="2"

172 IF AS="W"" AND T%<Gro%L THEN

173 T%=T%+1 |

174 ENDIF

175 IF AS="N" THEN

176 EXIT TO Suchen

177 ENDIF

178 UNTIL A$="Z"

179 RETURN

180 !

181-Anlegen

182 CLS

183 PfadS="A:\":NameS="MINIDAT.REL":Ext$="* REL"

184 Do_File(Name$,Pfad$,Ext$,Name$,Pfad$,Ext$,Taste%)

185 IF Taste% AND Name$<>!" THEN

186

187

188

189

190

191

192

CLS

ı aktuellen Pfad zum Directory machen

CHDIR (Pfad$)

' und überprüfen, ob schon eine solche Datei vorhanden

Rename(Name$)

ı dann Datei mit dem angegeben Namen anlegen

OPEN "R", 1,Name$, 117

 ——— Dateiverwaltung | 225

193 FIELD 1,117 AS Buffer$

194 LSET Buffer$= SPACE$(117)

195 FOR T%=1 TO GroAL

196 PUT 1,T%

197 NEXT T%

198 . CLOSE 1

199 FORM_ALERT (1,Mel$)
200 ENDIF

201 RETURN

202 !

203-Laden

204 CLS

205 IF Pfad$S=""" THEN

206 ' noch kein Pfad verhanden => Pfad zuweisen

207 Pfad$="A:\":Name$="MINIDAT.REL":EXt$="*.REL"

208 ENDIF

209 Do_File(Name$,Pfad$,Ext$,Name$,Pfad$,Ext$,Taste%)

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

210 IF Taste% AND Name$<>"""" THEN

CLS |

CHDIR (Pfad$)' neues Hauptdirectory

IF NOT FN Exist%L(Name$) THEN

FORM_ALERT (1,Fehler_2$)

ELSE

Reset_All' vorhandene Daten löschen

OPEN "r",1,Name$, 117

FIELD 1,15 AS Na$,15 AS Vo$,32 AS St$,34 AS Ort$,21 AS Rest$

' aus drucktechnischen Gruinden muBten die letzten Daten

' leider in je einer Buffervariable zusammengefasst werden

'Ort$ => PLZ$ (4 Stellen) und Ort$(30 Stellen)

'Rest$ => 11 Stellen Telefon$, 10 Stellen Geb$

T%=0

REPEAT

T%=T%+1

GET 1,1%

Name$(T%)=Na$

Vorname$(T%)=Vo$

Strasse$(T%)=St$

Plz$(T%)= LEFT$(COrt$,4)

Ort$(T%)= MID$(Ort$,5)
Tel$(T%)= LEFT$(Rest$, 11)

Geb$(T%)= MID$(Rest$, 12)

UNTIL Name$(T%)= SPACE$(15) OR T%=GroALl

Loesche(T%)

CLOSE 1

ENDIF

238 ENDIF

 226 Das groBe ST-BASIC-Buch ————

239 RETURN

240 !

241 DEF PROC Formular(Text$)

242 LOCAL T%

243 CLS

244 PRINT @(2,(78- LEN(Text$))/2);Text$
245 PRINT (5,10); "*"*60

246 FOR TH=1 TO 9: PRINT @(5+T%, 10) 7 *"29(54+7TK%, 69) 2"*": NEXT TH

247 PRINT @(15,10);"*"*60

248 PRINT @(7,15);"Name: Vorname: "

249 PRINT (9, 15);"Strasse: "

250 PRINT (11,15);"PLZ: __ Ort: "
251 PRINT @(13,15);"Telefon: Geb.: "

252 RETURN

253 !

254 DEF PROC Anzeige(Nummer%)

255 PRINT @(7,21);Name$(Nummer%);

256 PRINT STRINGS(15- LEN(Name$(Nummer%)),"_")

257 PRINT (7,50);Vorname$(Nummer%);

258 PRINT STRING$C15- LENCVorname$(Nummer%)),"_")

259 PRINT 9(9,24);Strasse$(Nummer%);

260 PRINT STRING$(32- LEN(Strasse$(Nummer%)) ,"_")

261 PRINT 9C11,20);Plz$(Nummer%);

262 PRINT STRINGS(4- LENCPlZ$(Nummer%)),"_")

263 PRINT 9(11,32);Ort$(Nummer%);

264 PRINT STRINGS(30- LENCOrtS(Nummer%)),"_")

265 PRINT @(13,24);TelS(Nummer%):

266 PRINT STRINGSC(11- LENCTelS(Nummer%)),"_"')

267 PRINT @(13,44);GebS(Nummer%);

268 PRINT STRINGS(10- LEN(Geb$(Nummer%)),"_")

269 RETURN

270 !

271 DEF PROC Eingabe(Nummer%)

272 LOCAL Back$="s"+ CHRS$(72)+"s"+ CHRS(80)

273 -Nam

274 INPUT 8(7,21);Name$(Nummer%) USING "a+ +-u'!+Back$, Ret%L, 15

275 IF (Ret%L AND $FF0000)=$480000 THEN

276 GOTO Geb

277 ENDIF

278 -Vorname

279 INPUT 9(7,50);Vorname$(Nummer%) USING "a+ +-"+Back$,Ret%L, 15

280 IF (Ret%L AND $FF0000)=$480000 THEN

281 GOTO Nam

282 ENDIF

283 -Street

284 INPUT 9(9,24);Strasse$(Nummer%) USING "Oat +-+."+Back$,Ret%L,32

 ——— Dateiverwaltung 227

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

IF (Ret%L AND $FFO000)=$480000 THEN

GOTO Vorname

ENDIF

-Plz

INPUT @C11,20);Plz$(CNummer%) USING "0>"+Back$,Ret%L,4

IF (Ret%L AND $FFO000)=$480000 THEN

GOTO Street

ENDIF

-Ort

INPUT 8(11,32);OrtS(Nummer%) USING "a0+/+-"+Back$,RetZL ,30

IF (Ret%L AND $FFO000)=$480000 THEN

GOTO Plz

ENDIF

-Telefon

INPUT @(13,24);Tel$(Nummer%) USING "0+-+/c-/"+Back$,RetZL, 11

IF (Ret%L AND $FF0000)=$480000 THEN

GOTO Ort

ENDIF

-Geb

INPUT (13,44) ;Geb$(Nummer%) USING "0O+."+Back$,Ret%L, 10

IF (Ret%L AND $FF0000)=$480000 THEN

GOTO Telefon

ELSE

IF (Ret%L AND $FF0000)=$500000 THEN

GOTO Nam

ELSE

ENDIF

ENDIF

RETURN
I

DEF PROC Delete(Nummer%)

LOCAL Anzahl%=1,T%,Dummy%=Nummer%' zu löschenden Record merken

ı Anzahl der vorhandenen Datensätze ermitteln

WHILE (Name$(Anzahl%+1))<>"" AND Anzahl%<GroAL

Anzahl%=Anzahl%+1

WEND

IF Nummer%=Anzahl% THEN

Loesche(Nummer%)

Speichern(Nummer%)

ELSE

WHILE (Nummer%<>Anzahl%)

Name$ (Nummer%)=Name$(Nummer%+1)

Vorname$(Nummer%)=Vorname$(Nummer%+1)
Strasse$(Nummer%)=Strasse$(Nummer%+1)

OrtS(Nummer%)=Ort$(Nummer%+1)

- Plz$(Nummer%)=Plz$(Nummer%+1)

 228 - Dasgroße ST-BASIC-Buch ——

331 Tel$(Nummer%)=Tel$(Nummer%+1)

332 Geb$(Nummer%)=Geb$(Nummer%+1)

333 Nummer%=Nummer%+ 1

334 WEND

335 Loesche(Nummer%)

336 FOR T%=Dummy% TO Nummer%

337 Speichern(T%)

338 NEXT T%

339 ENDIF

340 RETURN

341 !

342 DEF PROC Loesche(Nummer%)

343 Name$(Nummer%)="":Vorname$(Nummer%)="":Strasse$(Nummer%)=""

344 Plz$CNummer%)="":Ort$(Nummer%)="":Tel$(Nummer%)=""

345 GebS(Nummer%)=""

346 RETURN

347 ! .

348 DEF PROC Reset_All' löscht sämtliche Datensätze im RAM

349 LOCAL T%=1

350 WHILE Name$(T%)<>"" AND T%<GroALl

351 Loesche(T%)

352 T%=T%+1

353 WEND

354 RETURN

355"

356 DEF PROC Do_File(Name$,Path$,Post$,R Name$,R Path$,R Post$,R Tas%)

357 ' Lokale Variablen verwenden, damit die Prozedur auch

358 ' in anderen Programmen einsetzbar ist.

359 LOCAL R_Path$=Path$, R_Name$=Name$, T%,Drive%,Pointer‘L,Ret%L

360 IF Path$="" THEN ! kein Pfad angegeben, dann einen basteln

361 Path$=" "%64' GEMDOS Konvention Folge leisten

362 Pointer%L= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)

363 ı anschließend aktuellen Pfadnamen holen

364 GEMDOS (,71, HIGHCPointer%L), LOW(CPointer%L),0)

365 ' und zurechtstutzen

366 Path$= LEFT$(Path$, INSTR(Path$+ CHR$CO), CHR$CO))-1)

367 GEMDOS (Drive%,25)' aktuelles Laufwerk ermitteln

368 Path$= CHR$(65+Drive%)+":"+Pathgr\

369 ENDIF

370 IF Post$="" THEN ! ohne Extension kann man schlecht arbeiten

371 _ Path$=Path$+"*.*"ı Pauschalextension anhängen

372 ELSE

373 Path$=Path$+Post$

374 ENDIF

375 PRINT CHR$(27);"f"" Cursor aus- und Maus einschalten

376 MOUSEON

 ——— Dateiverwaltung 229

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

FILESELECT (Path$,Name$,Ret%L)

MOUSEOFF

PRINT CHRS(27);"e"" Cursor wieder einschalten

IF Ret%L=0 THEN ! Abbruch angeklickt

Path$=R_Path$' alte Vorgaben zurückkopieren

Name$=R_Name$ |

Tas%=0

ELSE

' ersten Backslash '\' suchen

T%= LEN(Path$)

WHILE T%>O0 AND MID$(Path$, T%, 1)<>"\"

T%=T%-1

WEND

Path$= LEFT$(Path$,T%)

Tas%=1

ENDIF

RETURN

DEF PROC Speichern(Nummer%)

' schreibt Datensatz 'Nummer%' auf Diskette

OPEN "R") 1,Name$, 117

FIELD 1,15 AS Na$,15 AS Vo$,32 AS St$,34 AS PI$, 21 AS Rest$
' auch hier wieder aus drucktechnischen Gründen die

ı Zusammenfassung mehrerer Daten in eine Buffervariable

LSET Na$=Name$(Nummer%)

LSET Vo$=Vorname$(Nummer%)

LSET St$=Strasse$(Nummer%)
LSET PL$=Plz$(Nummer%)

leider nicht anders zu machen ...

MID$ (P1$,5)=Ort$(Nummer%)

LSET Rest$=Tel$(Nummer%)

MID$ (Rest$, 12)=Geb$(Nummer%)

' und auf Diskette schreiben

PUT 1,Nummer%

CLOSE 1

RETURN

DEF PROC Taufe(R Taste%)

IF Name$="" THEN

Name$="MINIDAT.REL"

Pfad$="A:\":Ext$="*.REL"

Do_File(Name$,Pfad$,Ext$,Name$,Pfad$,Ext$,Taste%)

IF Taste% AND Name$<>"" THEN

CHDIR Pfad

- ENDIF

ELSE

 230 Das große ST-BASIC-Buch ——

423 Taste%=1

424 ENDIF

425 RETURN

426 '

427 DEF FN Exist%L(Name$)

428 LOCAL T%

429 '

430 OPEN "F",1,Name$,4

431 IF EOF(1) THEN

432 ' Keine Files auf der Diskette vorhanden

433 ' => Fehlermeldung (0) zurückgeben

434 CLOSE 1

435 RETURN (0)

436 ELSE

437 ı DTA-Buffer bereitstellen

438 FIELD 1,30 AS Buffer$,14 AS File$

439 GET 1,0

440 ' Datei vorhanden => '-1' zurückgeben

441 IF Name$= LEFT$(CFile$, INSTRCFile$, CHR$CO)J-1) THEN

442 CLOSE 1

443 RETURN (-1)

444 ENDIF

445 ENDIF

446 CLOSE 1

447 ' File war nicht auf der Diskette

448 RETURN (0)

449 DEF PROC Rename(Filename$)

450 IF FN Exist%L(Filename$) THEN

451 ı Datei existiert bereits => BACKUP auch schon vorhanden?

452 IF FN Exist%L(LEFT$CFilename$, INSTRCFilename$,"."))+"BAK")

453 ı dann BACKUP einfach löschen ...

454 THEN KILL LEFT$(CFilename$, INSTR(Filename$, "."))+r"BAK!"

455 ENDIF

456 ı jetzt BACKUP anfertigen

457 BACKUP (Filename$)

458 ENDIF

459 RETURN

3.12 Warum das Rad noch einmal erfinden?

Programmieren ist mit Sicherheit eine schöne Sache, aber warum

soll man sich den Kopf über Probleme zerbrechen, die andere
schon lange gelöst haben? Oder warum soll man für jedes neue
Programm wieder die gleichen Funktionen schreiben, die man

 ——— Dateiverwaltung 231

schon einmal entwickelt hat, und die sıch prächtig bewährt ha-

ben? Ist es nicht viel sinnvoller, bestimmte Funktionen, die man

für ein professionelles Programm nun einmal benötigt, in einer
eigenen Datei unterzubringen, die einfach an das Programm an-
gehängt werden kann? Auf diese Weise erspart man sich eine
Menge Arbeit!

Solche Dateien, in denen alle möglichen Funktionen vorhanden
sind, die bei Bedarf dann nur noch aufgerufen werden müssen,
heißen Libraries.

Library bedeutet zunächst einmal nichts anderes, als Bibliothek.

In Compilersprachen sind sie gang und gebe, was wäre z.B. C

ohne eine Library? Nichts, denn dann gäbe es nicht einmal
einen Befehl zur Datenein- oder -ausgabe! Und obwohl ST-
BASIC durch eine Vielzahl von Befehlen glänzen kann, wird es
durch die Verwendung von Befehlsbibliotheken noch einfacher,

gute Programme zu entwickelen. Im Lieferumfang des Interpre-
ters befindet sich beispielsweise eine GEM-Library, mit deren

Hilfe GEM-Funktionen - wir werden darauf später noch einmal
ausführlich zu sprechen kommen - aufgerufen werden können.
Sie als Programmierer müssen sich keine Gedanken mehr ma-
chen, wie GEM-Funktionen zu programmieren sind, da sie -

bedingt durch die Library - nur noch aufgerufen werden müs-
sen! |

Zum Abschluß dieses Kapitels über Dateiverwaltung möchte
auch ich Ihnen eine äußerst nützliche Library servieren, mit

deren Hilfe die File-Selector-Box verwaltet, eine Backup-Datei

erstellt und überprüft werden kann, ob sich die angegebene Da-

teı auf der Diskette befindet.

Wie arbeitet man nun mit einer solchen Library? Ganz einfach:

- Sie erstellen zunächst einmal ihr Programm, wobei Sie die
Funktionen, die Ihnen die Library zur Verfügung stellt, be-
reits aufrufen können.

 232 Das groBe ST-BASIC-Buch ———

- Da sie vom Interpreter während der Programmabarbeitung
jedoch benötigt werden, wird die gesamte Library einfach an
das Programm gehängt. Jetzt sind die Funktionen definiert,
und können ausgeführt werden.

- Das auf diese Weise erhaltene Programm wird - zusammen
mit der Library - auf Diskette abgespeichert. Von nun an
kann es ganz normal geladen und sofort ausgeführt werden.

Beim Zusammenbasteln der beiden Programmteile sınd folgende

Regeln zu beachten:

- Der Befehl, mit dessen Hilfe zwei Programme zusammenge-
hängt werden können, lautet MERGE <Programmname>. Ein
Programmteil (dies wird im Normalfall Ihr selbstgeschriebe-
nes Programm sein, das noch die Funktionen der Library
benötigt) muß sich bereits im Speicher des Computers befin-
den.

- Der Befehl MERGE <Programmname> sorgt nun dafür, daß
das genannte Programm (Name der Library) an das schon
bestehende Programm gehängt wird.

- Zusammengehängt ist eigentlich der falsche Ausdruck, da
beide Teile miteinander verschmolzen werden. MERGE fügt
nämlich das (übrigens im ASCII-Code, also mit SAVE,A ab-
gespeicherte) Programm so in das Programm im Speicher ein,
wie es die Zeilennummern erfordern. Ein Beispiel macht dies

sofort anschaulicher:

Folgendes Programm befinde sich im Speicher:

10 <Zeile 1>

20 <Zeile 2>

44 <Zeile 3>

50 <Zeile 4>

60 END

 ——— Dateiverwaltung 233

Auf der Diskette befindet sich das Programm <Datei.BAS>:

1 <Datei.BAS, Zeile 1>

2 <Datei.BAS, Zeile 2>

11 <Datei.BAS, Zeile 3>

22 <Datei.BAS, Zeile 4>

51 <Datei.BAS, Zeile 5>

ergibt "zusammengemerged":

1 <Datei.BAS, Zeile 1>

2 <Datei.BAS, Zeile 2>

10 <Zeile 1>

11 <Datei.BAS, Zeile 3>

20 <Zeile 2>

22 <Datei.BAS, Zeile 4>

44 <Zeile 3>

50 <Zeile 4>

51 <Datei.BAS, Zeile 5>

60 END

Deshalb diirfen in beiden Programm keine gleichen Zeilennum-
mern vorkommen! Die Library ’DAT_LIB.BAS’ beginnt mit
Zeile 1000. Soll Sie an Programme angehängt werden, die Zei-
lennummern von größer 1000 besitzen, muß zuerst ein RENUM
durchführt werden, ehe die Library neu abgespeichert wird.
Vergessen Sie dabei aber auf keinen Fall, daß das Programm auf
Diskette im ASCII-Format vorliegen muß, damit der Befehl
MERGE benutzt werden kann.Hier nun die versprochende Li-

brary, deren Funktionen Sie schon kennen:

1000 UIA A AI IIIA AIA III ARR III INARI IIS SAIS SANA AAI NSA IAIN SSN ANA IAIN NSAI

1010 '* DAT_LIB.BAS *

1020 !*#---------- crn nnn rrr nn nnn nnn nnn nnn nnn rrr ner enne *

1030 '* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *

1040 '* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH' *

1050 '* (C) 1988 by DATA BECKER GmbH Diisseldorf *
1060 ERHMKKHKRKAKKKKKEKCEEAKREKKKEEAAKKET TREES

1070 !

1080 '

1090 ' Die hier aufgefthrten Prozeduren und Funktionen kénnen in eigene

1100 ' Programme eingebaut werden, damit Sie das Rad nicht noch einmal

1110 ' erfinden müssen:
0 1120

 234 | Das große ST-BASIC-Buch ——

1130 ' Prozedur DO_FILEC): verwaltet die FILE-SELECTORBOX

1140! -- una.

1150 !
1160 ' benötigte Parameter: Name$: Dateiname, der nach dem Aufruf

1170 ! der Funktion im Eingabefeld

1180 ! "AUSWAHL! stehen soll.

1190 ' Path$: gewünschter Pfadname, wird kein

1200 ! Name angegeben, benutzt die

1210 ! Funktion den aktuellen Pfad.

1220 ! Post$: Extension fiir den Pfad: ("*.*")

1230 ' Die nächten drei Parameter geben die

1240 ! ausgewählten Zeichenketten zurück

1250 ! Tas%: Nummer des Buttons, der ange-

1260 ! klickt wurde.

1270 ! '0' => "ABBRUCH!

1280 ' 111 => 'OK!

1290 !

1300 !

1310 DEF PROC Do_File(Name$,Path$,Post$,R Name$,R Path$,R Post$,R Tas%)

1320 ı Lokale Variablen verwenden, damit die Prozedur auch

1330 ı in anderen Programmen einsetzbar ist.

1340 LOCAL R_Path$=Path$,R_Name$=Name$,1%,Drive%,Pointeral ,RetaL

1350 IF Path$=""" THEN ' kein Pfad angegeben, dann einen basteln

1360 Path$=""_"*64' GEMDOS Konvention Folge leisten

1370 Pointer%L= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)

1380 ı anschließend aktuellen Pfadnamen holen

1390 GEMDOS (,71, HIGH(Pointer%L), LOW(PointerZL) ,0)

1400 ' und zurechtstutzen |
1410 Path$= LEFT$(Path$, INSTR(Path$+ CHR$CO), CHR$CO))-1)

1420 GEMDOS (Drive%,25)' aktuelles Laufwerk ermitteln

1430 Path$= CHR$(65+Drive%)+":"+Path$+r"\"

1440 ENDIF

1450 IF Post$="" THEN ' ohne Extension kann man schlecht arbeiten

1460 Path$=Path$+"* .*"! Pauschalextension anhängen

1470 ELSE

1480 Path$=Path$+Post$

1490 ENDIF |
1500 PRINT CHRS$(27);"f"" Cursor aus- und Maus einschalten

1510 MOUSEON Ä

1520 FILESELECT (Path$,Name$,Ret%L)
1530 MOUSEOFF

1540 PRINT CHR$(27);"e"" Cursor wieder einschalten

1550 IF Ret%L=0 THEN ! Abbruch angeklickt

1560 Path$=R_Path$' alte Vorgaben zurückkopieren

1570 Name$=R_Name$

1580 Tas%=0

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010

 Dateiverwaltung Ä 235

ELSE

' ersten Backslash '\' suchen

T%= LEN(Path$)

WHILE T%>O AND MID$(Path$,T%, 1)<>"\"

T%=T%- 1 Ä

WEND |
Path$= LEFT$(Path$, T%)
Tas%=1

ENDIF

RETURN

KERNE ER

Funktion: FN EXIST(<Dateiname>) ©

Die folgende Funktion überprüft, ob ein File 'Name$' auf der

Diskette vorhanden ist |
File vorhanden => Returnwert ist '-1' ('wahr') »
File nicht vorhanden => Returnwert ist 'O0' ('falsch')1790 !

Aufruf: [<Variable>] = FN EXIST(<Dateiname>)

DEF FN Exist%L(Name$)

LOCAL T%
8

OPEN "F",1,Name$,55

IF EOFC1) THEN

' Keine Files auf der Diskette vorhanden

ı => Fehlermeldung (0) zurückgeben

CLOSE 1

RETURN (0)

ELSE |
' DTA-Buffer bereitstellen

FIELD 1,30 AS Buffer$,14 AS File$

GET 1,0

' Datei vorhanden => '-1' zurtickgeben

IF Name$= LEFTS(File$, INSTR(File$, CHR$(O))-1) THEN
CLOSE 1

RETURN (-1)

ENDIF

ENDIF

2020 CLOSE 1

2030 ' File war nicht auf der Diskette

2040 RETURN (0)

2050

 236 | | Das große ST-BASIC-Buch ———

2060 BP RHKKKKKKEKEKKEEREEREKEEEHEEEREEEEEEREEEEEEEREEEERERKEEEEEEREKRKERES

2070 ' Ä | |

2080 !' Prozedur: RENAME(<Dateiname>)

2090 ! ------ nun -..- |

2110 ' Die Prozedur RENAME Uberpriift, ob ein File mit dem | angegebenen

2120 ' Namen auf der Diskette vorhanden ist.

I

I

I

2130 ' Dann wird davon eine BACKUP- Datei gezogen, eine schon vorhandene
a

4

I

2140 ' BACKUP-Datei wird von der Diskette gelöscht.

2150 . |
2160 ' ACHTUNG: Diese Prozedur benötigt die Funktion EXIST(), aus

2170 ! ======== dieser Library!!

2180 ! |

2190 ' Aufruf der Prozedur: Rename(<Filename>)

2200 ! wn nr nnn rrr rrr rrr ener enn nnn etn nn nn

2210 ! |

2220 DEF PROC Rename(Filename$)

2230 IF FN Exist&L(Filename$) THEN

2240 ı Datei existiert bereits => BACKUP auch schon vorhanden?

2250 IF FN Exist%LC LEFT$CFilename$, INSTR(Filename$,".!"))+"BAK!)

2260 ı dann BACKUP einfach löschen ...

2270 THEN KILL LEFT$CFilename$, INSTR(CFilename$, "."))+"BAK!"

2280 ENDIF

2290 ı jetzt BACKUP anfertigen

2300 BACKUP (Filename$)

2310 ENDIF

2320 RETURN

3.13 Schwarz auf Weiß - Druckerausgabe

Bis jetzt wurden sämliche Ausgaben entweder auf den Monitor
geleitet oder über einen mit OPEN geöffneten Kanal auf Dis-
kette geschrieben. Oft ist es jedoch wünschenswert, die Ausga-
ben schwarz auf weiß auf einem Blatt Papier vorliegen zu ha-
ben, sie also auf einem Drucker auszugeben. Wie muß man dies
nun anstellen?

Wenn Sie noch einmal ein paar Seiten zurück, an den Anfang
dieses Kapitels blättern, so werden Sie feststellen, daß mit

OPEN "Pl! <Kanalnummer>

 — Dateiverwaltung 237

ein Kanal geöffnet werden kann, der die Daten, die auf diesen

Kanal geleitet werden, an den Drucker schickt:

OPEN "PP" ,4
PRINT #4,"Diese Zeile erscheint auf dem Drucker!"

CLOSE 4

Mehr wäre zu diesem Thema fast nicht zu sagen! Oder doch? Es
gibt nämlich noch ein paar weitere Befehle, die eine Ausgabe

auf dem Drucker ermöglichen:

LPRINT

Entspricht dem Befehl PRINT, sendet die Ausgaben jedoch so-
fort an den Drucker:

LPRINT "Diese Zeile erscheint auf dem Drucker!"

Um diesen Befehl benutzen zu können, muß zuvor kein OPEN
erfolgen, da die Ausgabe stets auf dem Druckerport (Anschluß
für den Drucker) landet. Noch einen Vorteil bringt dieser Befehl
mit sich:

Epson-Drucker und Epson-kompatible weigern sich normaler-
weise standhaft die Umlaute des Atrai ST korrekt auf das Papier
zu bringen, sie werden vom Computer einfach verschluckt! Da-
für erscheinen sie immer dann, wenn eigentlich eine geschweifte
Klammer ausgedruckt werden soll. Ein Textverarbeitungspro-

gramm löst dieses Problem, indem die ASCII-Werte der proble-
matischen Zeichen vor der Ausgabe an den Drucker bei Bedarf
entsprechend umgewandelt werden. Nur Sie arbeiten in BASIC
und nicht mit einem Textverarbeitungsprogramm! Auch die Idee,
sämtiche Ausgaben statt auf den Druckerkanal in eine
Diskettendatei zu lenken, um sie dann mit einem
Textverarbeitungsprogramm einzulesen und auszudrucken, wird
Sie mit Sicherheit nicht sehr begeistern können. Also was tun?
Die Lösung findet sich im Handbuch zum ST-BASIC:. Man
nehme den Befehl MODE LPRINT, und sorge dafür, daß der

Modus auf DEUTSCH gestellt wird. Dies geschieht mit

MODE LPRINT "D"

 238 Das große ST-BASIC-Buch ———

und bewirkt, daß Umlaute für Epson-Drucker vor der Ausgabe

erst einmal in den richtigen ASCII-Code gewandelt werden.
Wohlgemerkt, dieser Befehl hat nur auf LPRINT Einfluß, eine

Ausgabe, die mittels PRINT# an den Adreßaten gelangt, wird
nicht umgesetzt. Sollte Ihr Drucker dagegen ab sofort, d.h. nach
Verwendung dieses Befehls, den Ausdruck verstümmeln,
empfiehlt es sich, einen anderen Modus für LPRINT zu

verwenden. Zur Auswahl stehen ja noch GB und USA.

CMD <Kanalnummer>

sorgt dafür, das alle Daten, die ausgegeben werden (z.B. mit
PRINT oder LPRINT) in die Datei <Kanalnummer> umgeleitet
werden. Möchten Sie beispielsweise dem Anwender die Wahl
einräumen, ob er die da kommenden Ausgaben auf dem Monitor

(spart Papier und Farbband) oder lieber auf dem Drucker

wünscht, müßten eigentlich zwei getrennte Routinen zur
Ausgabe entwickelt werden: Eine für die Ausgabe auf dem
Bildschirm, in der PRINT-Befehle verwendet werden, und eine
für die Druckerausgabe, die sich des Befehls LPRINT bedient.

PRINT "Hallo"

läßt Hallo auf dem Monitor erscheinen, sobald die Ausgabe je-
doch umgeleitet wird, erscheint sie auf dem Papier:

OPEN "Pp" 1! Kanal zum Drucker öffnen

PRINT "Hallo"! Es lebe der Monitor

CMD 1! Ab sofort alles auf den Drucker

PRINT "Hallo"! erscheint auf dem Drucker

CLOSE 1

Mit CMD kann ein Listing auch in eine Diskettendatei geschrie-
ben werden, um sie später in ein Textverarbeitungsprogramm
einzubinden. Dazu lenkt man LLIST (arbeitet wie LIST, gibt
seine Daten jedoch an den Drucker weiter!), in eine zum Schrei-
ben geöffnete Datei:

OPEN "0" ,4 "DATEI .BAS"

CMD 4

LLIST '100-200 wenn nur ein Teillisting gewünscht

CLOSE 4 .

 ——.— Dateiverwaltung — 239

Für die Ausgabe sollten Sie deshalb LLIST und nicht das ge-
wöhnliche LIST bemühen, da LLIST keine Steuerzeichen für den

Monitor in die Ausgabedatei schreibt, die das Textverarbei-
tungsprogramm, mit dem der ganze Sermon weiterverarbeitet
werden soll, verärgern könnten. Gleiches gilt auch für die an-
deren Befehle, deren vorangestelltes L dafür Sorge trägt, daß die
Ausgabe auf den Drucker gelenkt wird (DUMP - LDUMP)

PRINT @(Zeile, Spalte) ermöglicht die genaue Positionierung ei-
nes Textes auf dem Bildschirm. Der Klammeraffe bewirkt das
Erzeugen eines Steuerzeichens für den Monitor, der dem Cursor

Beine macht und ihn an die entsprechende Stelle springen läßt.

LPRINT @() funktioniert dagegen nicht, da der Drucker die
Steuerzeichen des Monitors nicht kennt. Aber auch er verwendet
Steuerzeichen, die für die Gestaltung des Ausdrucks von enor-
mer Wichtigkeit sınd.

Alle Steuerzeichen für den Drucker beginnen, sofern es sich um
einen Epson- oder kompatiblen Drucker handelt, mit einer Es-

cape-Sequenz. Dies ist für den Drucker gleichsam das Achtung,
daß jetzt interessante Daten zu erwarten sind, die z.B. eine Um-

stellung der Schriftart auslösen.

Zum Einschalten der Eliteschrift (mein NEC behält seine Schrift
bei, ändert dafür jedoch die Zeichenbreite auf 12 cpi (Zeichen
pro Zoll) ab, während ein FX-80/85 direkt auf Elite (ebenfalls
mit einer Breite von 12 cpi) umstellt), lautet der Steuercode

CHR$(27);CHR$(77);

bzw.

CHR$(27) ;""M";

der an den Drucker weiterzuleiten (LPRINT, PRINT#, ...) ist.

240 - Das groBe ST-BASIC-Buch ———

3.14 Mehrzeilige Suchvorgaben mit OR mit AND

Mit dieser Version unserer Adreßverwaltung ist es nur möglich
eine Adreßdatei nach dem Familiennamen zu durchsuchen. Sind
in einer Datei aber mehrere Datensätze enthalten, die den glei-
chen Namen tragen (z.M. MAIER, weil er so selten ist), müssen

Sie Eintrag für Eintrag weiterblättern, bis der richtige Datensatz
endlich gefunden ist. Professioneller wäre es auf jeden Fall,
auch den Vornamen bei der Suche mitangeben zu können, wobei
die Datei dann auch nach dem Vornamen durchsucht wird.
Stimmen Familien- und Vorname eines Datensatzes überein,

scheint der richtige Eintrag gefunden worden zu sein und kann
auf dem Monitor ausgegeben werden.

REPEAT

UNTIL Name$(0) = Name$(T%) AND Vorname$(0) = Vorname$(T%)

Auch die andere Alternative der Datensuche kann bisweilen ganz
nützlich sein: Sie möchten alle Einträge herausfischen, die mit

Familiennamen Huber oder mit Vornamen Peter heißen. Dann
muß OR heran: |

REPEAT

 ——— Das Betriebssystem des Atari ST 241

4. Das Betriebssystem des Atari ST

Obwohl ST-BASIC an sich eine Unmenge von Befehlen zur
Verfügung stellt, kommt man als Programmierer nicht um das
Betriebssystem des Atari ST herum. Möchte man nämlich inner-
halb eines Programms eine Diskette formatieren oder das In-
haltsverzeichnis einer solchen einlesen, läßt sich dies nur über
das Betriebssystem (Operating System) bewerkstelligen.

Ferner existieren in ST-BASIC bestimmte Variablen, deren

Werte nur abgefragt werden können (eine Zuweisung ist nicht
möglich!) und die Auskunft über die Position des Mauszeigers,
das Datum, die Uhrzeit, die Cursorzeile, usw. geben. Auch von

ihnen werden Sie in diesem Kapitel hören.

4.1 Systemvariablen

Systemvariablen stellen in ST-BASIC Variablen dar, deren Na-
men reserviert sind, und denen - im Gegensatz zu anderen Va-
riablen kein Wert zugewiesen werden kann. Häufig kann man in
diesem Zusammenhang auch von Funktionen lesen, da System-
varıablen einen Wert liefern (auch Funktionen machen dies).
Während man Funktionen jedoch ein Argument - das in Klam-
mern hinter dem Funktionsnamen stehende Funktionsargument -
übergibt, erhalten Systemvariablen kein Argument, auf Grund
dessen sie ihre Berechnungen durchführen können.

MOUSEX

Diese Variable enthält die X-Koordinate der momentanen
Mausposition. Eine Bewegung der Maus in horizontale (X-)
Richtung bewirkt eine automatische Anderung des Variablenin-
halts.

 242 Das groBe ST-BASIC-Buch -———

MOUSEY

In MOUSEY legt der Interpreter die Position des mauszeigers in
vertikaler Richtung (Y-Koordinate) ab.

MOUSEBUT

Neben den Koordinaten des Mauszeigers besitzt die Maus auf
ihrer Oberseite noch zwei Tasten, die Maustasten oder Mouse-
buttons. Die Systemvariable MOUSEBUT gibt Aufschluß über
den Zustand dieser beiden Tasten. Ihr Inhalt im einzelnen:

Inhalt von MOUSEBUT Bedeutung

0 kein Kopf gedrückt

1 linker Knopf gedriickt

2 = rechter Knopf gedrückt

3 beide Knöpfe (gleichzeitig) gedrückt.

Wie lassen sich diese Informationen nun nutzen? Stellen Sie sıch
einmal vor, Sie haben ein Bild mit einem Zeichenprogramm er-

stellt, das als Maske für ein Programm dienen soll. In dieser

Maske sind - in Anlehnung an GEM - Rechtecke mit Symbolen
vorhanden, die angeklickt werden müssen, damit die gewünschte

Reaktion seitens des Programms ausgelöst wird. Um nun fest-
stellen zu können, welches Rechteck angeklickt wurde, müssen

die Systemvariablen herangezogen werden. In einer Schleife kann
zunächst auf einen Knopfdruck der linken Maustaste gewartet
werden:

REPEAT

UNTIL MOUSEBUT=1

Die leere Schleife würde an sich schon genügen, da die Koordi-
natenposition der Maus problemlos auch noch später mit

MOUSEX und MOUSEY abgefragt werden kann. Doch was ge-
schieht, wenn der Benutzer nur schnell eine Box anklickt und
anschließend die Maus auf eine ganz andere Position setzt? Die
Systemvariablen liefern falsche Koordinaten. Deshalb sollte man

 —— Das Betriebssystem des Atari ST 243

die Koordinaten gleich innerhalb der Schleife einer anderen Va-
riablen anvertrauen. Zudem ist ein X bzw. Y schneller in einer
Abfrage hingeschrieben, als der Name der Systemvariablen.

REPEAT

Y%=MOUSEY

X%=MOUSEX

UNTIL MOUSEBUT=1

und anschlieBend die Abfrage auf ein bestimmtes Rechteck, hier

mit den X-Koordinaten 100,150 und den Y-Koordinaten 30, 90,

d.h. die Eckpunkte besitzen die Koordinaten:

linke obere Ecke: (100,30)
rechte obere Ecke: (150,30)
linke untere Ecke: | (100,90)
rechte untere Ecke: (150,90)

IF X% >= 100 AND X% <= 150 THEN

IF Y% >= 30 AND Y% <= 90 THEN

GOSUB Unterroutine

ENDIF

ENDIF

In der IF-Abfrage wird also geprüft, ob sich die Mauskoordina-
ten innerhalb des betreffenden Rechtecks befinden. Innerhalb

bedeutet, daß die X-Position der Maus zwar größer gleich der

linken Begrenzungslinie des Rechtecks ist, zugleich jedoch klei-
ner gleich der Begrenzungslinie der rechten Rechteckseite sein
muß (deshalb wieder das logische AND). Das soeben Gesagte
muß natürlich auch noch auf die Y-Position der Maus zutreffen,
damit eindeutig feststeht, ob sich die Maus auch wirklich ın
diesem Rechteck befand.

TIMER

Timer enthält die Zeit seit dem Einschalten des Computers, und

zwar in 1/200 Sekunden. Möchten Sie z.B. die Laufzeit für eine
bestimmte Berechnung stoppen, so gelingt dies mit dieser Vari-

ablen: |

 244 Das groBe ST-BASIC-Buch ———-

Zeit=TIMER' aktuellen Stand merken

FOR T%=1 TO 30000

PRINT T%

NEXT T%

PRINT (TIMER-Zeit)/200' Zeit in Sekunden

TIME$

Systemvariablen kann man keine Werte zuweisen! Doch keine
Regel ohne eine Ausnahme, wie Sie gleich sehen werden: TIME$
liefert die aktuelle Uhrzeit im Format "HH:MM:SS", also Stunden

(HH) im 24-Stunden Format, Minuten und Sekunden, wobei die
einzelnen Komponenten durch einen Doppelpunkt voneinander

getrennt werden.

PRINT TIMES

Ergibt auf dem Bildschirm die aktuelle Uhrzeit. Wer jedoch
nicht im Besitze eines neuen MEGA ST ist, der mit einer Batta-
riegepufferten Echtzeituhr aufzuwarten vermag, muß nach je-
dem Einschalten des Rechners die Uhrzeit neu stellen. Die
Uhrzeit wird nämlich beim Abspeichern einer Datei auf Diskette
oder Harddisk im Inhaltsverzeichnis festgehalten, und wenn die
Uhrzeit nicht richtig eingestellt ist, steht darin dann das falsche

Datum mit der falschen Zeit.

Aus diesem Grund kann der Systemvariablen TIME$ (ebenso wie
ihrer Schwester DATE$) die aktuelle Zeit zugewiesen werden.
Möchten Sie die Zeit beispielsweise auf 10.30 Uhr stellen, geben
Sie einfach die Zeichenkette |

TIME$="10:30:00"

ein, und die Uhrzeit ist richtig eingestellt. Der Inhalt von TI-
MER wird durch eine solche Zuweisung nicht berührt.

 ——— Das Betriebssystem des Atari ST 245

DATE$

Während TIMES$ die Uhrzeit ergibt, liefert DATE$ das jeweilige
Datum. Das Format wird von dem jeweils eingestellten Modus
beeinflußt: Modus "D" ergibt das Format TT.MM.JJ, während
MODUS "USA" das Format TT/MM/JJ erzwingt. T steht dabei

für Tag, M für Monat, und J für Jahr. Auch DATE$ kann das

aktuelle Datum einfach zugewiesen werden.

PI

Die Konstante PI () steht für die in der Mathematik gebräuch-
liche Kreiszahl 3.14159265...... Dabei wird die Konstante PI als
Fließkommaazahl mit doppelter Genauigkeit behandelt. Wün-
schen Sie lediglich einfache Genauigkeit, so kann die Konstante

entweder einer Single-Float

PI!=PI

zugewiesen und mit PI! weitergerechnet werden, oder es kann
ein PI mit einfacher Genauigkeit definiert werden:

CSNG(PI)

CSRLIN

Diese Variable enthält die Zeile, in der sich der Cursor momen-
tan befindet. Die oberste Zeile ist die Nummer I, die unterste

Zeile die Nummer 25.

ERR,ERL,ERR$

kennen Sie bereits! Sie werden zum Errorhandling (Fehlerbe-
handlung) in ST-BASIC herangezogen, und liefern die Fehler-
nummer (ERR), die Zeile, in der der Fehler aufgetreten ist
(ERL), und schließlich die Fehlermeldung im Klartext: ERR$.

 246 | Das große ST-BASIC-Buch ———

4.2 TOS, GEMDOS, BIOS und XBIOS

Obwohl die Überschrift einen Ausschnitt aus einem chinesischen
Telefonbuch vermuten lassen könnte, handelt es sich nicht um
einen solchen. Vielmehr sind mit diesen zugegebenermaßen auf
den ersten Blick gar wunderlich anmutenden Namen oder besser
gesagt Abkürzungen die Bezeichnungen für das Betriebssystem
des Atarı ST gemeint. Aber was ist ein Betriebssystem? Für
einen Einsteiger, der seinen Computer das erste Mal in Betrieb

nimmt, scheint es eine Selbstverständlichkeit zu sein, daß auf

Tastendruck bestimmte Reaktionen ausgelöst werden und mit der
Maus quer über den Bildschirm gefahren werden kann, daß sich

- wie im Falle des Atarı ST - Fenster öffnen, verschieben, ver-
größern oder wieder verkleinern lassen.

Der Prozessor, also das Herz des Computers, kann zwar seine

Bits und Bytes durch den Arbeitsspeicher jonglieren, da er ıhn
auf mannigfache Weise zu adressieren versteht, er beherrscht
auch die Manipulation einzelner Bits oder gar arithmetische

Operationen. Bei allen Ein- und Ausgaben muß er sich jedoch
auf die Hilfe anderer Peripheriebausteine stützen, wie auf einen

Floppycontroller für den Datenverkehr mit dem Medium
Floppy-Disk sowie andere Bausteine, die für ihn die Daten be-

sorgen und wieder auf die Reise schicken.

Die Formalitäten, die dabei abzuwickeln sind, müssen dem
Computer erst beigebracht werden. Er muß wissen, wie er eine
bestimmte Schnittstelle ansprechen kann, und wie er wiederum

eine bestimmte Reaktion seitens der Peripheriebausteine zu be-
antworten hat. Diese Aufgabe übernimmt für den Computer das
Betriebssystem, das nach dem Chef von Atarı - Jack Tramiel -
TOS (Tramiel Operating System) getauft wurde.

Dieses Betriebssystem befindet sich - zumindest in neueren
Computern der ST-Reihe - in ROMs, dabei handelt es sich um
Datenspeicher, die 1m Computer Platz finden und ihren Inhalt
nie vergessen. Selbst dann nicht, wenn der Strom abgestellt wird.
TOS selbst setzt sich aus einem CP/M-68K-Derivat (was für ein
Name!), und einem GEM (Graphics Environment Manager)-Teil
zusammen. Das Derivat wickelt dabei die Kommunikation mit

 ——— Das Betriebssystem des Atari ST 247

der Außenwelt ab - und selbst die Tastatur zählt dabei zur Peri-
pherie. Im Gegensatz zu seinem Vorbild, dem CP/M-68K,
wurde es jedoch um einige Funktionen erweitert, da die Ver-
waltung der MIDI-Schnittstelle sowie die Steuerung der Maus
ebenfalls vom Computer gewährleistet sein müssen.

Wie andere Betriebssysteme auch - man denke dabei an MS-

DOS, das Betriebssystem der IBM-kompatiblen Computerwelt -

unterteilt sich das Betriebssystem in einen allgemeinen und eine
gerätespezifischen Teil. Der allgemeine Teil im ST trägt den
Namen GEMDOS (GEM/Disk-Operating-System; dieser Name
ist jedoch irreführend, da er mit GEM absolut nichts am Hut
hat), während BIOS (Basic Input-Output System) mit den gerä-
tespezifischen Aufgaben betraut ist. Die zusätzlichen Funktionen
des Atari ST sind in einem dritten Modul des TOS unterge-
bracht, dem XBIOS (eXtended BASIC Input-Output System).

Der GEM-Teil des Betriebssystems besteht aus dem GEM-Dek-
top (neudeutsch: Benutzeroberfläche) mitsamt den dazugehören-
den Hilfsprogrammen, den Accessories, sowie dem GEM-VDI

(Virtual Device Interface) und dem GEM-AES (Application En-
vironment System). Dem VDI obliegen sämtlichen elementaren
Grafikfunktionen, wie das Zeichnen von Linien oder Kreisen,
das Einstellen der Strichstärke und des Füllmusters usw.

AES ist dagegen für die grafische Kommunikation zwischen
Mensch und Maschine zuständig. Es sind AES-Routinen, die das

Dektop (Benutzeroberfläche) aufbauen, das nach dem Einschal-
ten des Atari sichtbar wird. GEM, die aufgesetzte Benutze-
roberfläche des TOS, setzt die Befehle des Benutzers in eine für

TOS verständliche Sprache um. Innerhalb von TOS wird das
GEMDOS, das den Vorsitz im Triumvirat der drei Teilmodule |

hat, mit der Ausführung des entsprechenden Befehls betraut.

Und GEMDOS wiederum beschäftigt seine beiden Knechte BIOS
und XBIOS. Soviel zur Theorie und dem Aufbau des Betriebssy-
stems (vgl. Abbildung 4.1). In diesem Kapitel wird es vor allem
das TOS sein, das uns beschäftigt. GEM kommt zu einem späte-
ren Zeitpunkt an die Reihe.

 248 Das große ST-BASIC-Buch ————

GE
M

K3
9

GERPWS

 TOS

so
l

2 | Bi

Abb.: 4.1 Das Betriebssystem des Atari ST

4.3 GEMDOS

Um eine GEMDOS-Funktion aufzurufen, wird der Befehl

GEMDOS([RUckgabewert] , <Funkt ionsnummer>, [Paranmeter])

benutzt. Da GEMDOS eine ganze Palette von Routinen anbietet,
wird jede Routine durch eine Funktionsnummer, die sich von 0

bis 87 erstreckt, gekennzeichnet. Auch ein oder mehrere Para-
meter können bei Bedarf (durch Komma getrennt) angegeben
werden. Die einzelnen Funktionen, die unter ST-BASIC einge-
setzt werden können (R bezeichnet den Rückgabewert):

 ——— Das Betriebssystem des Atari ST 249

GEMDOS(R,2,Zeichen) Cconout
Diese Routine gibt ein Zeichen auf dem Monitor aus. Auch
hierfür ist der PRINT-Befehl besser geeignet.

GEMDOS(R,3) Cauxin
Liest ein Zeichen von der seriellen Schnittstelle (RS232) ein.

GEMDOS(R,4,Zeichen) Cauxout
Gibt ein Zeichen auf der seriellen Schnittstelle aus.

GEMDOS(R,5,Zeichen) | | Cprnout
Gibt ein Zeichen auf dem Drucker aus.

GEMDOS(R,10,HIGH(Buf fer), LOW(Buf fer)) Cconrs
Gestattet, eine Zeile in den Puffer zu lesen. Puffer ist dabei ein

Zeiger auf den eigentlichen Puffer fiir die Eingabe. Die ersten
beiden Bytes dieses Puffer enthalten die maximale Eingabelänge,
sowie die tatsächlich eingegebe Zeichenzahl. Die Tastenkombi-
nation <Contro>l<C> bewirkt einen Programmabbruch während
der Funktionsausführung. Ein Beispiel für den Einsatz:

Eingabe(10, Inhalt$)

END

DEF PROC Eingabe (Laenge%,R Text$)

Local Adr

' maximale Eingabelänge, sowie Rest der Zeichenkette

Text$=CHR$(Laenge%)+CHRS(0)*(Laenge%+2)

' berechnet die Adresse der Zeichenkette | Adr =
Lpeek(VARPTR(Text$))+ Lpeek(SEGPTR+28)

GEMDOS(, 10, HIGH(Adr), LOW(Adr))
Text$=MID$(Text$,3, ASC(MID$(Text$,2)))

RETURN

Die kleine Procedure liest einen String mit der maximalen Ein-
gabelänge von 10 Zeichen ein und gibt ihn an das aufrufende
Hauptprogramm zurück. Vor dem ersten Zeichen stehen be-

kanntlich die maximale Eingabelänge sowie als zweites Byte die
tatsächlich eingegebene Anzahl von Zeichen. Die maximale Ein-
gabelänge wird vor dem Aufruf der Routine als erstes Byte im
String abgelegt, die restlichen Zeichen (2 + maximale Eingabe-
länge) werden einfach mit einem Füllbyte vorbelegt, damit nicht

250 Das große ST-BASIC-Buch ——

anschließend wichtige Speicherbereiche versehentlich überschrie-
ben werden. Da die Routine einen Zeiger auf den String erwar-
tet, wird dieser berechnet und in Adr festgehalten. Nach der

Eingabe wird ab der dritten Position die im 2. Byte angegebene

Buchstabenzahl aus dem String herausgeschnitten und zurückge-
geben.

GEMDOS(R,14,Laufwerk) Dsetdrv
Setzt das aktuelle Laufwerk, wobei Laufwerk folgende Werte
annehmen kann:

0 Laufwerk A

] Laufwerk B

2 Laufwerk C

In R ist die Nummer des Laufwerks enthalten, das vor dem

Aufruf der Funktion aktiv war. Entspricht dem Befehl:

CHDIR CHR$(65+Laufwerk)+":"

GEMDOS(R,16) | Cconos
Ermittelt, ob der Bildschirm Daten ausgeben kann. Ist dies der- -
Fall (immer!!) so steht in R der Wert $FFFF, ansonsten wird der

Wert 0 zurückgegeben (nie!).

GEMDOS(R,17) | Cprnos
Ermittelt, ob der Drucker bereit ist, ansonsten wird als Ergebnis
der Wert 0 geliefert.

GEMDOS(R,18) Cauxis
Ergibt den Wert 0, wenn kein Zeichen an der seriellen Schnitt-
stelle anliegt.

GEMDOS(R,19) Cauxos
Ergibt den Wert 0, wenn keine Daten über die serielle Schnitt-
stelle geschickt werden können.

GEMDOS(R,25) Degetdrv
Ermittelt die Nummer (vgl. Dsetdrv) des aktuellen Laufwerks.

 ——— Das Betriebssystem des Atari ST 251

GEMDOS(,26,HIGH(Buf fer),LOW(Buf fer)) Fsetdta
Setzt die Adresse des DTA-Buffers (Disk-Transfer-Adress).
Dieser 44-Byte groBe Puffer dient als Zwischenspeicher fiir Dis-
kettenoperationen (z.B. Directory einlesen). Sein Aufbau im
einzelnen:

Byte Inhalt

1-21 fiir GEMDOS reserviert

22 Datei-Attribut

23-24 Uhrzeit der Erstellung

25-26 Datum der Erstellung

27-30 Größe der Datei in Bytes

31-44 Name der Datei

Auch bei OPEN "F",1,"*.*" erhält man mit GET 1,Datensatz die
oben angegebenen 44 Bytes, dann muß jedoch ein entsprechen-

der Puffer mit FIELD |1,... angelegt werden, aus dem die Daten
abgeholt werden können. Diese Methode ist für ST-BASIC we-
sentlich praktischer.

GEMDOS(R,47) Fgetdta
Diese Funktion ermittelt die Adresse des DTA -Puffers.

GEMDOS(R,48) — -Sversion
Ermittelt die Versionsnummer des Betriebssystems.

GEMDOS(R,54,HIGH(Buf fer), LOW(Buf fer),Drv) Dfree
Entspricht im wesentlichen dem Befehl FRE(CHR$(65+Drv) +":")
(freier Speicherplatz auf der Diskette in Laufwerk Drv ermit-
teln) und liefert als Ergebnis des Funktionsaufrufs einen Zeiger
auf einen aus vier Langworten bestehenden Puffer:

- Anzahl der freien Cluster (b_free)
- Gesamtclusterzahl der Diskette (b_ total)

- Anzahl Bytes eines Sektors (b-secsize)

- Zahl der Sektoren je Cluster (2) (b_clsize)

 252 Das groBe ST-BASIC-Buch ———

Damit kann dann sowohl der freie, als auch der belegte Spei-

cherplatz auf der Diskette ermittelt werden:

Freier Speicherplatz: b_free * b_secsize * b_clsize
Diskettenkapazität: b_total * b_secsize * b_clsize
Belegter Platz: Diskettenkapazität - freier Platz

Drv enthält die Nummer des Laufwerks, von dem der freie
Speicherplatz ermittelt werden soll:

0 aktuelles Laufwerk (Defaultlaufwerk) benutzen

l Laufwerk A

2 Laufwerk B

GEMDOS(R,57,HIGH(Adresse),LOW(Adresse)) Dcreate
Legt ein Subdirectory (Ordner) auf der Diskette an. Der Name
des Ordners darf aus maxımal 8 Zeichen zuzüglich 3 Zeichen für
die Extension (durch Punkt vom Namen abgetrennt) bestehen.
Der Pfadname eines bereits existierenden Ordners kann ebenfalls
angegeben werden. Dann erzeugt die Funktion Decreate einen
Ordner innerhalb des anderen. Adresse verweist auf einen
String, der nach C-Manier mit einem Nullbyte abgeschlossen
sein muß, und den Ordnernamen enthält. Die Adresse kann wie-

der mit

Adresse = LPEEK(VARPTR(STRING$)) + LPEEK(SEGPTR+28)

ermittelt werden. Entspricht dem Befehl MKDIR in ST-BASIC

GEMDOS(R,58,HIGH(Adresse), LOW(Adresse) Ddelete
Entfernt das Subdirectory von der Diskette, dessen Name in dem
String, auf den der Zeiger Adresse verweist, durch ein Nullbyte
‚abgeschlossen steht. Sind in dem zu löschenden Ordner noch
Dateien vorhanden, wird eine Fehlermeldung zurückgegeben. In
diesem Fall sind alle in diesem Subdirectory existierenden Da-
teien vor dem Löschen des Ordners zu entfernen. Entspricht
RMDIM

 ——— Das Betriebssystem des Atari ST 253

GEMDOS(R,59,HIGH(Adresse), LOW(Adresse) Dsetpath
Diese Funktion ernennt einen Ordner (Folder) zum aktuellen
Directory. Der neue Pfadname steht ab Adresse in einem String,
und wird durch ein Nullbyte abgeschlosssen. Entspricht dem
Befehl CHDIR. |

GEMDOS(R,60,HIGH(Adresse),LOW(Adresse),Atr) Fcreate
Legt eine neue Datei an, wobei der Name ab Adresse in einem
String stehen muß (Nullbytel!). Der Rückgabewert ist ein soge-
nanntes File-Handle, das bei folgenden Schreib- und Lesebe-

fehlen anzugeben ist. Konnte die neue Datei erzeugt werden, so

ist die Handle-Nummer >= 6, ansonsten wird eine negative Zahl
zurückgegeben. Der Fehlercode -36 kann darauf hindeuten, daß
keine weiteren Dateien angelegt werden können, da das Inhalts-
verzeichnis bereits voll ist. Dieser Befehl entspricht dem OPEN

"O",... ın St-BASIC. Als Attribut Atr können folgende Werte an-
gegeben werden:

0 Datei kann gelesen und beschrieben werden.

] Datei kann nach dem SchlieBen nur noch gelesen werden.

2 Es wird eine versteckte Datei (Hidden-File) erzeugt, die
im Directory nicht erscheint.

4 System-Datei erzeugen.

8 Diskettenname schreiben.

Eine bereits auf der Diskette vorhandene Datei erhält die Länge
0, d.h. ihr Inhalt wird gelöscht. Zum Anlegen eines Ordners
(Attribut 16) muß die Funktion Dcreate verwendet werden.

GEMDOS(R,61,HIGH(Adresse), LOW(Adresse),Mod) Fopen
Öffnet eine Datei. Ein Modus Mod von 0 entspricht einem Open
"I", Mod = 1 entspricht OPEN "A", (Schreiben) und MOD = 2

bewirkt ein Öffnen zum gleichzeitigen Lesen und Schreiben der
Datei. Ansonsten vgl. die Parameter bei Fcreate.

GEMDOS(R,62,Handle) Fclose
Schließt die Datei mit der Nummer Handle, dem Rückgabepa-
rameter bei Erzeugen (Fcreate) oder Offnen (Fopen) einer Datei.

 254 Das große ST-BASIC-Buch ———

GEMDOS(R,63,Handle,HIGH(Anzahl), LOW(Anzahl), HIGH

(Adresse), LOW(Adresse)) ' Fread
Liest Anzahl Bytes aus der Datei mit der Nummer Handle und

legt diese ab Adresse in einem Puffer (String) ab. R enthält an-
schließend entweder die gelesenen Bytes oder aber eine Fehler-
meldung, falls dies nicht geglückt ist.

GEMDOS(R,64,Handle,HIGH(Anzahl), LOW(Anzahl), HIGH
(Adresse), LOW(Adresse)) Fwrite

Schreibt die Anzahl Bytes auf dem Puffer (String), auf den der
Zeiger Adresse weist, in die Datei mit der Nummer Handle.

GEMDOS(R,65,HIGH(Adresse), LOW(Adresse)) Fdelete
Löscht eine Datei von der Diskette. R enthält eine Fehlernum-

mer bzw. 0, falls alles geklappt hat. Entspricht dem Befehl KILL

"<Datei>".

GEMDOS(R,66 IGEN Anzat) LOW ANzAR),
Handle,Modus) F seek
Während üblicherweise eine Datei nur sequentiell geschrieben
werden kann, gestattet diese Funktion einen Zeiger innerhalb ei-
ner Dateı an eine bestimmte Position zu setzen. Drei Parameter
werden benötigt:

- Anzahl der Bytes, um die der Zeiger verschoben wird.

- Handle-Nummer der Datei von Fopen (Fcreate).

- Modus, wobei hier drei Modi méglich sind:

0 - Vom Dateianfang aus verschieben.
1 - Von der aktuellen Position aus verschieben.

2 - Vom Datei-Ende rückwärts verschieben.

Bei Modus I muß Anzahl positiv, bei Modus 2 negativ oder po-

sitv (je nach Richtung) und bei Modus 3 schließlich stets negativ
sein, da vom Datei-Ende aus zurückgegangen wird. Wird über
das Datei-Ende hinausgegangen, enthält R eine Fehlermeldung.

 ——— Das Betriebssystem des Atari ST 255

GEMDOS(R,67,HIGH(Adresse), LOW(Adresse), Modus,
Attribut) Fattrib
Diese Funktion gestattet es, das Attribut einer Datei zu lesen
oder zu ändern. Man übergibt ihr die Adresse des Dateinamens,
den Modus (0 => Attribut ermitteln, 1 => Attribut setzen) und
das neue Attribut:

Datei les- und beschreibbar.

Datei nur lesbar, kann jedoch nicht beschrieben werden.

Datei ist verborgen (Hidden-File).

Systemdatei.

Diskettenname (Disk Label).

16 Ordner.

on

D
D

-

©

Die Attribute von Ordnern und Diskettennamen können mit
dieser Funktion nicht geändert werden. Ein Bespiel für die An-

wendung:

DEF PROC Attribut(Datei$,Attribut%)

LOCAL Dummy%, Adr

Datei$=Datei$+CHR$(0)' damit er nicht abstürzt

Adr= LPEEK(SEGPTR+28)+ LPEEK(VARPTR(Datei$))

GEMDOS(Dummy%, HIGH(Adr), LOW(Adr),1,Attribut%)

IF Dummy% < 0 THEN ' hat nicht ganz geklappt!

FORM _ALERT(1,"(31C Fehler!][Abbruch]")

ENDIF
RETURN

GEMDOS(R,69,Device) Fdup

GEMDOS(R,70,Device,Handle) | F fcorce

Beide Routinen leiten eine Ein- oder Ausgabe von GEMDOS-

Routinen auf den Standard-Ausgabekanal um. Device bezeichnet
dabei:

1 Tastatur und Bildschirm.

2 Serielle Schnittstelle.

3 Drucker.

 256 Das große ST-BASIC-Buch ————

GEMDOS(R,71,HIGH(Adresse), LOW(Adresse),Drv) Dgetpath

Schreibt in einen 64 Byte großen Puffer, der ab Adresse zu fin-
den ist, den aktuellen Pfadnamen für das Laufwerk Drv. Die

Laufwerksbezeichnung am Pfadanfang selbst wird nicht in den
Puffer geschrieben, sondern muß selbst hinzugefügt werden.

GEMDOS(R,72,HIGH(Anzahl), LOW(Anzahl)) Malloc
Diese Funktion fordert Anzahl von Bytes Speicherplatz an. In R
wird die Adresse des reservierten Speicherbereichs zurückgege-
ben. Diese Funktion entspricht im wesentlichen dem Befehl
MEMORY, wobei mit Malloc angeforderte Speicherbereiche

nicht durch ein CLEAR gelöscht werden.

GEMDOS(R,73,HIGH(Adresse), LOW(Adresse)) M free
Gibt den mit Malloc angeforderten Speicherblock wieder frei.

GEMDOS(R,78,HIGH(Adresse), LOW(Adresse),Atr) Fs first
Sucht den ersten Eintrag im Directory mit dem Attribut Atr.
Dieser wird in den DTA-Puffer tibertragen und kann dort abge-
holt werden. Diese Funktion sollte in ST-BASIC stets durch ein
OPEN "F",... umgangen werden.

GEMDOS(R,79) Fsnext
Sucht den nach Aufruf von Fsfirst nachsten Eintrag im Direc-
tory. Auch dieser Befehl kann durch OPEN "F",... umgangen
werden.

GEMDOS(R,86,0,HIGH(alt), LOW(alt),HIGH(neu),
LOW(neu)) Frename

Benennt eine Datei um. Durch NAME ... AS ersetzten!

GEMDOS(R,87 HIGH(Adresse), LOW(Adresse), |

Handle,Modus) Fdattime
Diese Routine gestattet das Andern des Datums und der Zeit ei-
ner Datei. Dazu übergibt man dem Aufruf die Handle-Nummer
des geöffneten Files (Fopen), sowie die Adresse eines 4 Byte
großen Puffers (String), in den die Daten geschrieben (Modus=0)
oder dessen Inhalt die alten Daten ersetzen sollen (Modus=1).

 —— Das Betriebssystem des Atari ST | 257

4.4 Das BIOS

Das Bios (BASIC Input- Output System) ist für die normalen
Ein- und Ausgaberoutinen zuständig und wird über die Funk-

tion

BIOS([Rückgabewert] ‚<Funktionsnummer> [,Parameter])

aufgerufen. Folgende BIOS-Routinen sind im Betriebssystem des
Atari ST implementiert:

BIOS(,0,HIGH(Adresse), LOW(Adresse)) Getmpb
Diese Routinen führt die Speicherverwaltung des GEMDOS
durch. Sie liefert eine Adresse auf einen Speicherblock, mit dem

Memory-Parameterblock (MPB). Dieser Block wiederum enthält
drei weitere Zeiger, die jeweils auf eine weitere Struktur ver-
weisen. Ohne genaue Betriebssystemkenntnisse geht hier gar

nichts!

BIOS(R,1,Device) Bconstat
Die Funktion prüft, ob ein Zeichen vom jeweiligen Device an-
liegt. Folgende Werte sind für Device anzugeben:

l Serielle Schnittstelle (AUX, RS232).

2 Tastatur und Bildschirm (nicht in ST-BASIC verwenden!).

3 MIDI-Port.

BIOS(R,2,Device) Bconin
Liest ein Zeichen vom Gerät Device ein. In ST-BASIC sollte
diese Funktion nicht für die Tastatur verwendet werden.

0 Parallele Schnittstelle (Centronics-Port, Drucker!).

l Serielle Schnittstelle (RS232).

2 Tastatur und Bildschirm.

3 MIDI-Schnittstelle.

BIOS(,3,Device,Zeichen) Bconout
Gibt ein Zeichen auf dem jeweiligen Gerät aus. Zur Zeichen-
ausgabe sollte in ST-BASIC der Bildschirm gemieden werden.

 258 Das große ST-BASIC-Buch ————

Parallele Schnittstelle (Centronics-Port, Drucker!).

serielle Schnittstelle (RS232).

Tastatur und Bildschirm.

MIDI-Schnittstelle.

Tastaturprozessor (Vorsicht!). R
D

„
©

BIOS(R,4,Flag,HIGH(Adresse), LOW(Adresse),Sektorzahl,
Sektornummer,Drive) Rwabs

Für Flag = 0 werden Sektorzahl Sektoren ab dem logischen Sek-
tor Sektornummer in den ab Adresse stehenden Puffer geschrie-
ben. Flag = 1 sorgt dafür, daß der Pufferinhalt auf Diskette ge-
schrieben wird, Flag = 2 bzw. Flag = 3 arbeiten wie 1 und 2,

ignorieren jedoch einen erfolgten Diskettenwechsel.

BIOS(R,5,Nummer,HIGH(Adresse), LOW(Adresse)) Setexc
Diese Funktion ändert einen Exeptionvektor um. Nummer bein-
haltet dabei die Nummer des zu ändernden Vektors. Die Adresse
der Routine, die den alten Vektor ersetzten soll, muß ab Adresse

stehen. Möchten Sie einen der 256 Exeption-Vektoren des
68000-Prozessors oder einen der 8 GEM-Vektoren lesen, muß
als Nummer der Wert -] angegeben werden.

BIOS(R6) | Tickcal
Liefert die Zeit in Millisekunden, die zwischen zwei Timerauf-
rufen vergangen ist.

BIOS(R,7,Drive) Getbpb
Ermittelt die Adresse des BIOS- Parameter- Blocks fiir das ange-
gebene Laufwerk. Der Block besteht aus 9 Integerzahlen:

Recsiz Sektorgröße in Bytes.
Clsiz Cluster-Größe in Sektoren.
Clsizb Cluster-Größe in Bytes.
Rdlen Lange des Directories in Sektoren.
Fsiz Größe der File-Allocation-Table (FAT) in Sektoren.

Die FAT gibt Auskunft, in welchen Clustern eine
Datei abgespeichert wurde und dient dazu, die fol-
genden Cluster zu finden.

Fatrec Sektornummer der FAT-Kopie.

 ——— Das Betriebssystem des Atari ST 259

Datrec - Sektornummer der ersten Daten-Clusters.

Numcl Gesamtzahl der Datencluster auf der Diskette.

Bflags Diverse Flags.

Für Drive gelten dabei wıeder folgende Werte:

0 Laufwerk A.

1 Laufwerk B.

2 Laufwerk C (Festplatte).

BIOS(R,8,Device) Bcostat
Stellt fest, ob das Ausgabegerät bereit ist, das nächste Zeichen
zu empfangen. Die Rückgabewerte sind dabeı:

l Das Gerät ist zur Ausgabe bereit.

0 Das Gerät ist (noch) nicht bereit.

Folgende Devices können angesprochen werden:

0 Parallele Schnittstelle (Centronics-Port, Drucker!).

1 Serielle Schnittstelle (RS232).

2 Tastatur und Bildschirm.

3 MIDI-Schnittstelle.

4 Tastaturprozessor.

BIOS(R,9,Drive) Mediach
Stellt fest, ob ein Wechsel der Diskette auf dem angegebenen

Laufwerk erfolgt ist. Rückgabewerte:

0 Die Diskette wurde sicher nicht gewechselt. ©

l Diskettenwechsel könnte erfolgt sein.

2 Diskettenwechsel ist mit Sicherheit erfolgt

BIOS(R,10) | | oe Drvmap
Ermittelt die Laufwerkskonfiguration, wobei ein Bitvektor in R
resultiert, in dem jedes gesetzte Bit für ein jeweils angeschlos-

senes Laufwerk steht:

 260 | Das groBe ST-BASIC-Buch ——

Bit 0 => Laufwerk A angeschlossen
Bit 1 => Laufwerk B angeschlossen
Bit 2 => Laufwerk C angeschlossen

BIOS(R,11,Status) Kbshift
Ermittelt bzw. verändert den Status der Tastatur-Sondertasten.

Ist die Variable Status nicht negativ, so werden die Sondertasten
gemäß dem Bitmuster von Status neu gesetzt, ein Status von -1

liefert einen Bitvektor nach folgender Tabelle:

Bit 0 => Rechte Shift-Taste.

Bit 1 => Linke Shift-Taste.

Bit 2 => <CONTROL>-Taste.

Bit 3 => Alt-Taste.

Bit 4 => Caps-Lock aktiv.

Bit 5 => CLR/HOME (rechte Maustaste).

Bit 6 => INSERT (linke Maustaste).

Bit 7 => Nicht verwendet, immer 0.

4.5 Das XBIOS

Das XBIOS (eXtended Basic Input-Output System) gestattet die
zusätzlichen Funktionen, die der Atari ST beinhaltet. Der Bild-

schirmspeicher, die Verwaltung der MIDI-Schnitt-stelle und der

Maus oder das Setzen der Bildschirmfarben, all diese Dinge ge-
hen auf das Konto des erweiterten BIOS. Sein Aufruf erfolgt
über:

- XBIOS([Rückgabewert] ‚<Funktionsnummer> [,Parameter])

 ——- Das Betriebssystem des Atari ST 261

XBIOS(,0....) Initmous
Diese Routine initialisiert die Mausroutinen, wobei die Funktion
nicht unbedingt mit GEM verträglich ist.

XBIOS(R,1,Menge) " Ssbrk
Reserviert Speicherplatz fiir ROM-Module

XBIOS(R,2) Physbase
Ermittelt die Adresse des Bildschirms, der gerade aktiv ist.

XBIOS(R,3) Logbase
Ermittelt die Adresse des Bildschirms, auf den gerade ausgege-
ben wird. |

XBIOS(R,4) | Getrez
Ermittelt die Auflösung des Bildschirms:

0 Niedrige Auflösung (Lores) 320*200 Pixel, 16 Farben.

1 Mittlere Auflüsung (Midres) 640*200 Pixel, 4 Farben.

2 Hohe Auflösung (Hires) 640*400 Pixel, 2 Farben.

 XBIOS(,5,HIGH(log_ _adr),LOW(log__adr), HIGH
(pys__adr),LOW(pys _adr), Auflösung) Setscreen
Diese Funktion gestattet das Abändern der Bildschirmparameter.

Log_adr, sowie Pys-adr enthalten die Adressen des logischen
und physikalischen Bildschirms, die über XBIOS(2) und
XBIOS(3) ermittelt werden können. Über Auflösung können fol-
gende Auflösungen eingestellt werden:

0 Niedrige Auflösung (Lores) 320*200 Pixel, 16 Farben.

1 Mittlere Auflösung (Midres) 640*200 Pixel, 4 Farben.

2 Hohe Auflösung (Hires) 640*400 Pixel, 2 Farben.

XBIOS(,6,HIGH(Adresse), LOW(Adresse)) Setpalette
Adresse verweist auf die (gerade) Anfangsadresse einer Farbta-
belle mit 16 Farben. Für jede Farbe enthält diese Tabelle eine
Integer-Zahl (Word). Vgl. PALETTE in ST-BASIC

 262 Das groBe ST-BASIC-Buch ———

XBIOS(R,7,Farbe,Farbwert) Setcolor
Mit dieser Funktion kann eine Farbe gezielt geändert werden.
Dem Parameter Farbe ist die Farbnummer (1-15) zu übergeben,
der Farbwert kann mit 0 bis $777 neu gesetzt werden. Möchte
man den Farbwert einer einzelnen Farbe ausgeben, so ist dem

Parameter Farbe der negative Wert -1 zu übergeben.

XBIOS(R,8,HIGH(Adresse), LOW(Adresse),0,0,Drv,Sektor,
Spur,Seite,Anzahl) Floprd
Diese Funktion liest einzelne Sektoren vom Laufwerk A (Drv =
0) usw. in den Puffer, auf den der Zeiger Adresse weist. Als
Sektor ist der erste zu lesende Sektor (0-9) anzugeben, die Spur
reicht von 0-79 bei 80-Spur-Laufwerken (bzw. darüber hinaus
bei "fett" formatierten Disketten bis max. 82). Seite enthält den
Wert 0 fiir Seite 1 bzw. 1 fir Seite 2 (nur 720 KByte Floppies:
SF 314). Mit Anzahl kann die Zahl der nacheinander zu lesenden
Sektoren angegeben werden.

XBIOS(R,9,...:) Flopwr
Die Parameter dieser Funktion entsprechen der von XBIOS(8),
hierbei werden die Pufferdaten jedoch auf Diskette geschrieben.

XBIOS(R,10,HIGH(Adresse), LOW(Adresse),0,0,Drv,Sektor
zahl ,S pur ‚Seite, Interleave,8-789B,54321,Formatwert)

Ffopfmt
Diese Funktion formatiert eine Spur. Das Formatieren einer Dis-
kette ist deshalb wichtig, damit anschließend Daten auf die Dis-
kette aufgezeichnet und auch wieder eingelesen werden können.
Folgende Parameter sind anzugeben:

Parameter Bedeutung

Adresse Zeigt auf einen Buffer (String), der die Daten zum Forma-

tieren einer Spur (Track) enthalt. Fiir 9 Sektoren muB dieser
Buffer zumindest 8 Kbyte groß sein.

Drv Nummer des Laufwerkes (0 = A, 1 = B)

Sektorzahl Anzahl der Sektoren je Spur. Normalerweise 9, ein Wert von

10 sollte allerdings immer möglich sein.

Spur Nummer der zu formatierenden Spur

Seite Diskettenseite (0 bzw. 1) |

Interleave bestimmt die Reihenfolge, in der die einzelnen Sektoren auf

Diskette aufgezeichnet werden. Interleave = 1 => Reihen

 —— Das Betriebssystem des Atari ST 263

Parameter Bedeutung

folge der Sektoren: 1-2-3-4-5-6-7-8-9. Interleave = 2 =>

Reihenfolge: 1-3-5-7-9-2-4-6-8. Üblicherweise wird ein

Interleavefaktor von ’1’ benutzt.

Formatwert Dieser Wert wird als Datenbytes auf die Diskette

geschrieben. Atari empfiehlt $E5E5, der Wert FO bis F5

dürfen nicht benutzt werden, da der Floppy- -Disk- Controller

diese als Befehle interpretiert,

Als Rückgabewert erhält man eine 0, wenn die Formatierung
ohne Fehler durchgeführt werden konnte. Ist der Rückgabewert

negativ (z.B. -16: Bad Sectors), so ist während der Formatierung
ein Fehler aufgetreten. Im Puffer findet sich dann eine Liste,
die alle defekten Sektoren in diesem Track enthält.

XBIOS(R,11) Getdsb
Nicht benutzt, liefert stets den Wert 0.

XBIOS(,12 ‚Länge, HIGH(Adresse), LOW(Adresse)) Midiws

Schreibt die in dem ab Adresse abgelegten Daten (String!) auf
den Midi-Port.

XBIOS(R,14,Device) - Torec
Diese Funktion ermittelt einen Zeiger auf den Puffer-Datensatz
für die Ein- und Ausgabe auf dem Device:

0 RS232 Eingabe- und Ausgabepuffer.

] Tastatur.

2 MIDI.

Der Puffer selbst besitzt folgende Struktur (bis auf Ibuf besteht
der Puffer aus Integerzahlen):

Variable Bedeutung

Ibuf (Long!) Zeiger auf den Eingabebuffer

Ibufsize Größe des Eingabebuffers in Bytes

Ibufhdl nächste Schreibposition im Buffer

Ibuftl Adresse, ab der man den Buffer lesen kann

 264 | Das groBe ST-BASIC-Buch ———

Variable Bedeutung

Ibuflow Solange Bufferinhalt kleiner als diese Variable können Daten

empfangen werden.

Ibufhi Eingabebuffer voll, es können keine weiteren Daten

empfangen werden.

XBIOS(,15,Baud,Kom_Par,Usart-
Reg,Empf_Stat,Trans_Stat,Sysnchr_ Stat) Rsconf
Mit dieser Funktion kann die RS232 (serielle) Schnittstelle kon-
figuriert werden. Die Bedeutung der Parameter:

Parameter Bedeutung |

Baud Baudrate (0-15). Zur Verfiigung stehen:
19200,9600,4800,3600,2400,2000,1800,

1200,600,300,200,150,134,110,75,50

Kom_ Par Kommunikationsparameter, mit den Modi:

0 - kein Handshake

1 - XON/XOFF

2 - RTS/CTS |

3 - XON/XOFF u. RTS/CTS (Modi 1 und 2)

Usart_ Reg Wert des USART-Registers im MFP:

Bit 1: 0 = odd,

1 = even parity

Bit 2: 0 = no parity,

1 = parity

Bit 3,4: 0-3:synchron, 1 Stopbit,

.1.5 Stopbits, 2 Stopbits

Bit 5,6: 0-3: 8,7,6,5 Bits

Bit 7: 0: Frequenz nicht teilen,

1: Frequenz teilen

Empf_ Stat Bit 0: 1 = RS232-Empfänger ein.

Bit 1: SCR-Zeichen übertragen

Trans_ Stat Bit 0: 1 = RS232-Sender ein

Bit 1,2: 0 = Ausgang hochohmig,

1=H,

2=L,

3 = Ausgang auf Eingang

Bit 3: 1 = Break senden

Bit 5: 1 = Empfänger nach

Zeichenempfang einschalten

 ——— Das Betriebssystem des Atari ST 265

XBIOS(R,16,HIGH(Norm),LOW(Norm),HIGH(Shift),
LOW(Shift), HIGH(Lock),LOW(Lock)) Keytbl
Mit dieser Funktion kann die Tastaturbelegung des Atari ST
geändert werden. Das TOS verwaltet drei Tabellen, in denen die

Scancodes der einzelnen Tasten, sowie die dazugehörigen ASCII-
Werte verzeichnet sind. Eine Tabelle für Tasten ohne Shift-Ta-
ste, eine für Tastenbelegung mit Shift-Taste, sowie eine Tabelle

für aktiviertes Caps-Lock. Jede dieser Tabellen enthält 128 By-
tes. Oben angegebene Parameter sind Zeiger auf die entspre-
chenden Tabellen. Wird statt der Adresse der Wert -1 übergeben,

bedeutet dies, daß die entsprechende Tabelle nicht geändert

wird. Möchten Sie die Tastaturbelegung ändern, müssen nur drei
Strings, die die neuen Tabellen enthalten, angelegt werden und
die Zeiger auf diese Strings mit XBIOS(R,16...) dem Betriebssy-
stem untergeschoben werden. Die Umbelegung kann mit
XBIOS(,14) wieder rückgängig gemacht werden.

XBIOS(R,17) Random
Diese Funktion gibt in R eine 24-Bit Zufallszahl zurück.

XBIOS(,18,HIGH(Adresse), LOW(Adresse), HIGH(Ser),

LOW(Ser),Typ,Exec) Protobt
Diese Funktion erzeugt oder ändert einen Bootsektor. Adresse
gibt an, wo der Bootsektor im Speicher zu finden ist (Größe: 512
Bytes). Ser ist die neue 24-Bit-Seriennummer der Diskette bzw.
-] wenn die Nummer nicht geändert werden soll.

Als Diskettentyp sind folgende Parameter relevant:

40 Spuren, einseitig (180 KByte)

40 Spuren, zweiseitig (360 KByte) (IBM-Format)

80 Spuren, einseitig (360 KByte) (SF 354)

80 Spuren, zweiseitig (720 KByte) (SF 314)

-1 => Diskettentyp wird nicht geändert

W
N

=

©

 266 — Das groBe ST-BASIC-Buch ———

Exec gibt an, ob der Bootsektor ausführbar sein soll:

0 Bootsektor ist nicht ausführbar

1 Bootsektor ist ausführbar

-1 => Bootsektor wird nicht geändert

Der Bootsektor einer Systemdiskette trägt folgenden Aufbau:

Byte - Inhalt 40 SS 40 DS 80SS 80DS

1-2 Sprung zum Bootprogramm

3-8 "LOADER"

9-11 Seriennummer

12-13 BPS 512 512 512 512

14 SPC 1 2 2 2

15-16 RES 1 1 1 1

17 NFATS 2 2 2 2

18-19 NDIRS 64 112 112 112

20-21 NSECTS 360 720 720 1440

22 MEDIA 252 253 248 249

23-24 SPF 2 2 5 5

25-26 SPT 9 9. 9 9

27-28 NSIDES 1 2 1 2

Dabei haben die Abkürzungen folgende Bedeutungen:

BPS In einem Sektor vorhandene Bytes.

SPC Sektoren je Cluster.
RES Anzahl der reservierten Sektoren am Disk- Anfang.

NFATS Anzahl der FATs auf der Diskette.

NDIRS Erlaubte Zahl der Directoy-Einträge.
MEDIA Media Descriptor Byte, nicht benutzt.
SPF Anzahl der Sektoren in jeder FAT.
SPT Anzahl der Sektoren je Spur (9).
NSIDES Anzahl der Diskettenseiten.

Nachdem eine Diskette formatiert wurde, muß mittels dieser

Funktion ein Bootsektor erzeugt und anschließend mit der
Funktion Flopwr auf die Diskette geschrieben werden. Siehe
dazu auch die Routine Format, die anschließend besprochen
wird.

 ———— Das Betriebssystem des Atari ST 267

XBIOS(R,19,HIGH(Adresse), LOW(Adresse),0,0,Laufwerk,
Sektor,S pur,Seite,Anzahl) Flopver
Prift Sektoren auf deren Lesbarkeit. Die Syntax entspricht der
Funktion Floprd.

XBIOS(R,,20) Scrdmp
Erstellt eine Hardcopy des Bildschirminhalts |

XBIOS(R,21,Funktion,Geschwindigkeit)
Schaltet den Cursor aus und ein, ferner kann die Blinkrate ein-
gestellt werden:

Funktion bewirkt

“0 Cursor ausschalten

Cursor einschalten

Cursor blinkend

Cursor nicht blinkend

Blinkrate setzen

Blinkgeschwindigkeit erfragen OO

mm

DD

pe

XBIOS(,22,HIGH(Zeit), LOW(Zeit)) Settime
Setzt die Uhrzeit und das Datum. Das Format setzt sich wie folgt
zusammen:

Bits Inhalt

0-4 Sekunden in Zweierschritten (0-29)
5-10 Minuten (0-59)
11-15 Stunden (0-23)
16-20 Tag (1-31)
21-24 Monat (1-12)
25-31 Jahr (+ 1980) (0-119)

XBIOS(R,23) -Gettime
Holt die Uhrzeit und das Datum in obigem Format.

XBIOS(,24) _ Bioskeys
Die mit der Funktion XBIOS(16) vorgenommenen Anderungen
werden wieder rückgängig gemacht.

 268 Das große ST-BASIC-Buch ——

XBIOS(,25,Länge,HIGH(Adresse), LOW(Adresse) Ikbytedws

Leitet Befehle, die ab Adresse in einem Puffer stehen, an den

Tastaturprozessor weiter. Länge ist die Anzahl der im Puffer
vorhandenen Daten minus 1.

XBIOS(,26,Nummer) Jidisint
Sperrt einen Interrupt des MFP.

XBIOS(,27,Nummer) Jenabit
Gibt einen Interrupt des MFP wieder frei.

XBIOS(R,28,Daten,Registernummer) Giaccess

Schreibt in das angegebene Register des Soundchips bzw. liest
das Register aus. Die Registernummer umspannt die Werte von 0

bis 15, ist zusätzlich Bit 7 in der Registernummer gesetzt, han-

delt des sich um einen schreibenden Zugriff.

XBIOS(,‚29,Bitnummer) Offgibit
Löscht ein Bit im Port A des Soundchips.

XBIOS(,30,Bitnummer) Ongibit
Setzt ein Bit im Prot A des Soundchips

XBIOS(,32,HIGH(Adresse), LOW(Adresse)) Dosound
Spielt eine Klangfolge, die sich in einer Tabelle ab Adresse im
Speicher befindet, ab.

XBIOS(,33,Einstellung) Setprt

Stellt die Druckerdaten ein:

Bit nicht gesetzt gesetzt

0 Matrix- Typenraddrucker

1 Farb- SW -Drucker

2 ATARI- EPSON- Drucker

3 Draft- NLQ-Modus

4 Centronics RS232 _

5 Endlos- Einzelblattpapier

 ——— Das Betriebssystem des Atari ST 269

XBIOS(R,34) Kbdvbase
Liefert einen Zeiger auf eine Tabelle von Zeigern:

- Midi-Eingabe
- Tastatur-Fehler

- Midi-Fehler

- IKBD-Status
- Maus-Routinen

- Uhrzeit-Routine

- Joystick-Routine

XBIOS(R,35,Verzögerung Geschwindigkeit) Kbrate
Diese Routine stellt - sofern nicht der Wert -1 angegeben wird -
die Verzögerungszeit und die Wiederholgeschwindigkeit der Ta-
sten-Repeat-Funktion ein. In R liefert die Funktion die bisher
aktiven Werte zurück: In den Bits 0-7 die Wiederholgeschwin-
digkeit, in 8-15 die bisherige Verzögerung.

XBIOS(,26,HIGH(Adresse),LOW(Adresse)) Prtblk
Eine weitere Routine zur Hardcopy-Erstellung, in der Handha-

bung jedoch auch um einiges komplizierter.

X BIOS(,37) Vsync

Wartet auf einen vertikalen Bildrücklauf (vertical blank)

XBIOS(,38,HIGH(Adresse), LOW(Adresse)) Supexec
Führt ein Maschinenprogramm, das sich ab Adresse im Speicher

befindet, im Supervisormodus aus.

XBIOS(,39) Puntaes
Löscht bei von Diskette gebooteten Betriebssystemen das AES.

Der Befehl muß aus dem AUTO-Ordner heraus aufgerufen wer-
den.

 270 | Das groBe ST-BASIC-Buch ———

4.6 Betriebssystemprogrammierung

Anhand zweier Beispiele möchte ich Ihnen nun den Einsatz der

verschiedenen Betriebssystemroutinen einmal näher verdeutli-
chen. Darüber hinaus erfahren Sie noch ein paar nützliche In-
formationen.

Diskette formatieren

Ehe man auf einer Diskette Daten speichern kann, muß diese

erst formatiert werden. Dabei wird ein Gerüst auf die Diskette
gebracht, in das die Daten später eingetragen werden. Nach der
Formatierung besteht die Diskette aus einzelnen Spuren (Tracks),
die sich als Untereinheit noch einmal in logische Sektoren unter-
gliedern lassen. Da eine Diskette mit einer unterschiedlichen
Zahl von Spuren und Sektoren, einseitig und zweiseitig forma-
tiert werden kann, gibt es noch eine Instanz auf jeder Diskette,
die Bootsektor genannt wird. Schließlich werden in die FAT
(File Allocation Table), die übrigens gleich zweimal auf jeder
Diskette vorhanden ist, noch die bereits belegten Diskettenteile

eingetragen, damit nicht ein bestimmter Sektor zweimal be-
schrieben wird (wäre peinlich!).

GEM, die grafische Benutzeroberfläche des Atarı ST, bietet eine
komfortable Möglichkeit die Diskette zu formatieren, solange
man sich im Desktop befindet. Möchte man eine Diskette von

einem Anwenderprogramm aus formatieren, hat man den Aufruf
der dafür benötigten Routinen im Betriebssystem. schon selbst
vorzunehmen! Also schreiten wir zur Tat!

Der erste Schritt, den die neue Procedure auszuführen hat, ist

das Anlegen eines Puffers. Dieser Puffer wird vom TOS zum

Formatieren der Diskette benötigt. Sein Inhalt ist nicht weiter
interessant. Zu beachten ist jedoch, daß der Puffer auf keinen

Fall zu kein sein darf. Für unsere Zwecke sollte eine Größe von
11 KByte vollkommen ausreichen. Im nächsten Schritt müssen
wir dafür Sorge tragen, daß der so angelegte Puffer auf keinen
Fall wieder verschoben wird. Wieso sollte dies geschehen?

 ——— Das Betriebssystem des Atari ST 271

Stellen Sie sich dazu einmal den Speicher des Computers vor, der

als eine eindimensionale Liste aufgefaßt werden kann. Eindi-
mensional deshalb, weil alle Bytes hintereinander angeordnet
sind. Irgendwo in diesem Speicher legt der Computer seine Zei-
chenketten ab. Damit aber nicht unnötig Speicherplatz vergeudet

wird, werden die verschiedenen Strings auch hintereinander ab-
gelegt. Weist man einer Zeichenkette nun einen neuen Inhalt zu,
der die bisherige Länge übersteigt, müßte der Computer eigent-
lich drei Schritte ausführen:

1. Die nachfolgenden Zeichenketten nach hinten schieben,
um Platz für die zusätzlichen Zeichen zu schaffen.

2. Die alte durch die neue Zeichenkette ersetzen.

3. Da sich durch diese Aktion auch die Adressen aller ande-

ren Zeichenketten geändert haben, müßten auch diese an

die neuen Werte angepaßt werden.

Das macht natürlich kein Computer, da der Arbeitsaufwand da-

für viel zu groß ist! Also wird die neue Zeichenkette einfach an
das Ende des Stringspeichers gesetzt. Die alte Zeichenkette ver-
bleibt weiterhin im Speicher, ist jedoch nur noch Makulatur, da
sie nicht mehr benötigt wird (die neue steht ja in einem separa-
ten Speicherbereich).

Doch irgendwann ist auch der größte Speicherplatz aufge-
braucht, wenn man in irgendeiner Form manipulierte Zeichen-
ketten einfach neu im Speicher anlegt. Dann heißt es aufräumen,

und die ganzen nicht mehr benötigten String-Leichen zu entfer-
nen. Diesen Aufräumvorgang, der äußerst zeitintensiv sein kann,

nennt der Fachmann Garbage Collection. Eine vom ST-BASIC
durchgeführte Garbage Collection können wird jedoch hier ab-
solut nicht gebrauchen, da die Adresse des geschaffenen Puffers
dem Betriebssystem übergeben werden muß. Und wehe, diese
Adresse stimmt nicht mehr. Ä

 272 Das große ST-BASIC-Buch ———

Ein Trick hilft uns aus der Patsche: Wir erzwingen eine Garbage
Colletion. Dann muß der Interpreter seinen Speicher aufräumen,

und die Adresse des Puffers wird vom Interpreter anschließend

nicht mehr angetastet. Eine Garbage Collection erzwingen läßt
sich mit dem Befehl |

FREC'"")

wobei ein Ergebnis zurückgeliefert wird (der nach dem Aufräu-
men des Stringspeichers zur Verfügung stehende Speicherplatz),
das wir getrost ignorieren können. Deshalb die Zuweisung an die
Variable Dummy. Der Rest ist Routine, und das im wahrsten
Sinne des Wortes! Mit der XBIOS-Routine 10 formatieren wir
die gesamte Diskette, und zwar Spur für Spur. Dabei erschien es

mir sinnvoll, bei einer zweiseitigen Diskette nicht beide Seiten
nacheinander, sondern abwechselnd zu formatieren. Deshalb die
beiden ineinander verschachtelten FOR...NEXT-Schleifen.

Konnte eine Spur nicht korrekt formatiert werden (soll ja vor-
kommen), liefert die Funktion einen Fehlercode zurück, der als

negativer Wert kenntlich ist. Der Benutzer soll auch etwas davon
haben, deshalb drucken wir eine entsprechende Fehlermeldung
auf den Monitor.

Der nächste Schritt gilt der Erstellung des Bootsektors. Da das
Betriebssystem die verschiedenen Disketten anhand einer Serien-
nummer unterscheidet, sollte eine Zufallszahl, bestehend aus 24-

Bit, diese neue Seriennummer bilden. Auch das erledigt wieder
eine XBIOS-Routine für uns! Mit der so gewonnenen Serien-
nummer läßt sich der Bootsektor mittels der XBIOS-Funktion 19
(Protobt) erstellen. Dabei wird ein Pauschal-Bootsektor kreiert
und anschließend (den genauen Aufbau eines Bootsektors kennen
wir ja) auf unser Format abgeändert. |

Den Befehl MKI$() kennen Sie bereits aus dem Kapitel über die
Dateiverwaltung. Er wandelt ein Integer-Wort in eine zwei Byte
lange Zeichenkette. Somit war es uns möglich, auch Zahlen in
einer relativen Datei zu verwenden. Wie wird nun die Zahl in
einen zwei Byte langen String gewandelt?

 ——— Das Betriebssystem des Atari ST 273

Der Computer arbeitet im Dualsystem. Dieses Dualsystem setzt

sich aus digitalen Informationseinheiten, die Bits genannt wer-
den, zusammen. Acht solcher Bits faßt man wiederum zu einem

Byte zusammen. Damit lassen sich Zahlen von 0 bis 255 darstel-
len. Was nun, wenn der benötigte Zahlenbereich diesen Wert
überschreitet? Dann muß ein zweites Byte herhalten, das die
Wertigkeit 256 besitzt. Da dieses Byte um jeweils eine Einheit
erhöht wird, wenn die Kapazität des anderen Bytes ausgeschöpft
ist, nennt man es auch High-Byte, im Gegensatz zu seinem
Kollegen, das konsequenterweise mit Low-Byte bezeichnet wird.
Und genau in dieses Format (man möchte es nicht glauben!)
wandelt MKI$ die ihm anvertraute Zahl.

Also noch mal: MKI$ wandelt ein Integer-Word in einen 2 Byte
langen String, der folgendes Format trägt: -

HIGHBYTE LOWBYTE

Testen Sie es einmal selbst, indem Sie eine Zahl konvertieren,
den resultierenden String zerlegen (Left$(..,1) bzw. Right$(..,1))
und den jeweiligen ASCII-Wert ermitteln. Mit der Formel

ASCCHIGHBYTE) * 256 + ASC(LOWBYTE)

erhalten Sie dann wieder Ihre ursprüngliche Zahl. Genau in
dieser Form legt der Computer nun seine Zahlen ab, deshalb
kann diese Funktion samt ihren Verwandten und Bekannten
auch anderweitig eingesetzt werden. Ein Beispiel finden Sie in
der Formatier-Routine, in der mit ihrer Hilfe die Zahl der Dis-

kettenseiten, sowie die Zahl der Sektoren auf der Diskette in den
Puffer des Bootsektors geschrieben wird.

Eine nicht unwesentliche Kleinigkeit fehlt noch! MKI$ wandelt
seine Argumente in das Format HIGH-LOW-Byte. Dies ist das
Format, in dem auch der 68000-Prozessor seine Daten ablegt.
Doch nicht alle Prozessoren arbeiten nach diesem Strickmuster.

Tja, während ATARI zumindest bei der Wahl des Betriebssy-

stems mit TOS ihr eigenes Süppchen gekocht hat, hat es ein zur
Welt der MS-DOS-Rechner kompatibles Aufzeichnungsformat

- 180

 274 Das große ST-BASIC-Buch ——

gewählt. Dies bedeutet, daß der ST Disketten, die mit einem

MS-DOS-Rechner aufgezeichnet wurden, zumindest lesen kann.

Der umgekehrte Vorgang ist nicht möglich! (Versuchen Sie jetzt
aber nicht mit Gewalt eine 54"-Diskette eines IBM-kompatiblen

PCs in das 33"-Laufwerk des ST zu pressen! Das geht unter Ga-
rantie schief! Die Diskettengrößen müssen schon übereinstim-
men, wenn die Geschichte auch funktionieren soll.)

Die in MS-DOS-Rechnern verwendeten Prozessoren (Intel läßt
grüßen) bevorzugen ein anderes Datenformat, als dies der 68000
des Atarı ST tut: LOW-HIGH-Byte. Die Konsequenz daraus: Der
Prozessor des Atarı ST muß alle Daten erst einmal umdrehen,

ehe sie auf Diskette geschrieben werden können, und bei einem
Lesevorgang wiederholt sich dieses Spielchen (Der Prozessor des
ST kann ja das Format, mit dem die Daten auf Diskette ge-
schrieben werden, nicht gebrauchen!). Deshalb wird mittels
MIRRORS die Reihenfolge der beiden Bytes vor dem Eintrag in
den Puffer erst einmal umgedreht. |

Ist der Bootsektor erst einmal erstellt, kann er an seine Position
auf die Diskette geschrieben werden! Die Arbeit ist beendet, und

somit auch die Erklärung der Procedure. Die benötigten Para-
meter entnehmen Sie bitte dem Listing. Mit dieser Routine kön-

nen Sie übrigens auch eine Diskette fett formatieren, das heißt
mit 82 oder gar 83 Tracks und 10 Sektoren je Spur (vorausge-
setzt Ihr Laufwerk macht das mit!).

100 ERERAEKKKEKKKEEKEKEEKERREREEKEREREREEEEREEEEEKERERERKRERERERREEEAIEE

110 '* FORMAT .BAS 8
120 nn nn nn nenn m nun en mn une *

130 '* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *

140 '* Ein Programm aus dem 'GROSSEN ST-BASIC-BUCH! *

150 '* (C) 1988 by DATA BECKER GmbH Düsseldorf *
160 IRRE RT TITTEN

170

.200 210 !

220 ! Aufruf: Format (drv%, sides%, tracks’, spt%)

230 ! ======

240 !

250 ! Parameter: drv%: Nummer der Laufwerks

I

8

190 ! = Die folgende Procedure formatiert eine Diskette =
8

t

 ———— Das Betriebssystem des Atari ST 275

670

690

700

710

I ze====2=2=2= 0 => Laufwerk A

! 1 => Laufwerk B

' sides% 1 => einseitige Disk (SF 354)

' . 2 => zweiseitige Disk (SF 314)

' tracks% Anzahl der Spuren (80 - 83)

' spt% Sektoren je Spur (9 bzw. 10)
‚

I

DEF PROC Format(De%,Sid%,Trk%,St%)
LOCAL T%,S%,DuAL „AXL,Nsects% ,Buffer$

ı genügend Platz für 10 Sektoren reservieren
J

Buf fer$= SPACE$(11000)

' Damit der Buffer nicht mehr verschoben wird !
' .

Du%L= FREC"")

ı jetzt die Adresse berechnen
4

A%L= LPEEKC VARPTR(Buffer$))+ LPEEK(SEGPTR +28)

FOR T%=0 TO Trk%-1

FOR S%=0 TO Sid%-1

' Spur formatieren, und zwar abwechselnd Seite 1 / Seite 2

XBIOS(Du%, 10, HIGH(A) , LOW(A) ,0,0,De%, St%, 1%, S%, 1, $- 789B , $4321, 0)

' negative Zahl als Rückgabeparameter => Fehler ist aufgetreten

IF Du%<O THEN
PRINT

PRINT "Formatierfehler auf Seite:";S%;" Track:";T%

ENDIF |
NEXT S%

NEXT T%
I

' Anzahl der Sectoren auf dieser Diskette mach der Formel

' Anzahl = Anzahl Tracks * Anzahl Seiten * Steps je Track
\ .

Nsects%=Trk%*Sid%*St%
a

ı 24-Bit Zufallszahl für Seriennummer
1

XBIOS (Du%L, 17)

' Bootsektor im Buffer erzeugen
0

Buffer$= SPACE$(513)

 276 Das groBe ST-BASIC-Buch ————

720 A%L= LPEEK(SEGPTR +28)+ LPEEK(VARPTR(Buffer$))

730 XBIOS (,18, HIGH(A%XL), LOWCAXL), HIGH(DUAL), LOWCDUAL),3,0)740 "!

750 ' auf unsere Werte abändern, jedoch in LOW-, HIGH-Byte!

760 =!

770 MID$ (Buffer$,20,2)= MIRROR$C MKI$(Nsects%))

780 MID$ (Buffer$,25,2)= MIRROR$(C MKI$(Sid%))

790 =!

800 ' und auf die Diskette schreiben, fertig

810 !

820 XBIOS (,9, HIGHCAAL), LOWCAXL),O,0,0,1,0,0,1)

830 =!

840 RETURN

Inhaltsverzeichnis einer Diskette einlesen

Es gibt zwei Wege in ST-BASIC, das Inhaltsverzeichnis einer
Diskette innerhalb eines eigenen Programms einzulesen. Einmal
über die Verwendung der beiden Betriebssystemroutinen

FSFIRST

und

FSNEXT

sowie über den Befehl OPEN "F", der zwar eigentlich nichts mit
dem Betriebssystem am Hut hat, dennoch aber in ähnlicher
Weise funktioniert. Die Verwendung der beiden Routinen FS-
FIRST und FSNEXT ist ım Kapitel über die GEM-Program-
mierung bei der eigenen File-Selector-Box realisiert. Hier geht
es nun vornehmlich darum - das Handbuch schweigt sich zu
diesem Thema nämlich aus -, wie mit OPEN "F" ein Directory
eingelesen werden kann.

Obwohl nach OPEN "F" der Befehl GET benutzt wird, um die
einzelnen Einträge einzulesen, hat die beim OPEN als Schußlicht
angegebene Zahl 63 nichts mit der Datensatzlänge zu tun, wie
man vielleicht vermuten könnte. Sie ist vielmehr das Ergebnis
einer Kombination der möglichen Dateiattribute, die bei der
Suche berücksichtigt werden sollen:

 ——— Das Betriebssystem des Atari ST 277

Dateityp Wert

schreibgeschützte Dateien 1

verborgene Dateien (hidden files) 2
Systemdateien | 4

Diskettenname | 8

Ordner 16

Datei korrekt geschlossen 32

(ohne Bedeutung)

Mochten Sie nach dem Diskettennamen fahnden, so brauchen Sie

nur die Zahl 8 anzugeben. Auch eine Kombination verschiedener
Dateitypen ist durch Addition der dazugehörigen Werte möglich.
Der Dateiname wird üblicherweise durch die beiden Jokerzei-
chen *.* ersetzt. Dadurch werden alle Einträge ausgeworfen, die
die angegebenen Attribute tragen. Möchten Sie dagegen nur Pro-
gramme mit der Endung .BAS angezeigt wissen, so ist als Da-
teiname *.BAS einzusetzen.

Die erste Aufgabe, die das Programm zu erledigen hat, besteht
darin, zu überprüfen, ob überhaupt Dateien (mit den passenden

Attributen bzw. Namen) auf dieser Diskette vorhanden sind.
Dies kann geschehen, indem man testet, ob das Datei-Ende (die

Diskettennamen werden zu einer Datei gehörig aufgefaßt) noch
nicht erreicht ist:

NOT EOF(<Kanal>)

Jetzt liest man (am besten in einer Endlosschleife) Eintrag für
Eintrag mit GET ein. Solange nach einem GET das File-Ende
nicht überschritten ist, handelt es sich um einen gültigen Da-
teinamen, der ausgegeben werden kann. Andernfalls ‚sollte man
die Endlosschleif e mit EXIT verlassen.

GET wiederum legt die Daten in einem mit FIELD definierten
Puffer ab. Dieser muß 44 Byte groß sein. Sein Aufbau entspricht
dem des DTA-Puffers, in den FSFIRST und FSNEXT ihre Da-

ten verfrachten. Also steht ab Byte 31 der Dateiname, abge-

schlossen von einem Nullbyte, das vor der Ausgabe mit PRINT
noch entfernt wird. Fertig!

 278 Das große ST-BASIC-Buch
O
O
N

A
U
S

W
D
M

=]
©

a
a
a

a

V
F

W
N

=|]
©

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

EHH EKER KEEKEREEREREREREEREREEEEREEEREEEREEREKEEEE

'* DIR_1.BAS *
Kew | nn nn nn nn nn nm num *

ı* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *

ı* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *

ı* (C) 1988 by DATA BECKER GmbH Düsseldorf *
VERKEHRT TEE

' Inhaltsverzeichnis einer Diskette lesen
Q KkkkkkRKKKK Raa aR Kk I

‘ Zuerst einmal die 'Datei' öffnen

OPEN "FW, 1 ' ne u 63

ı sind überhaupt Einträge vorhanden?

IF NOT EOF(1) THEN

' Feld zum Einlesen mit GET dimensionieren

' der Dateiname steht ab Byte 31, und wird mit einem

' Nullbyte 'CHR$(0)' abgeschlossen ('C! läßt grüßen!)

FIELD 1,30 AS Buffer$,14 AS Name$

T%=0

REPEAT

GET 1,1%
ı Wenn eingelesener Datensatz gültig, dann ausgeben

IF NOT EOF(1) THEN

' String nur bis zum Nullbyte beriicksichtigen

PRINT LEFT$CName$, INSTR(Name$, CHR$(CO))-1)

ELSE

ı Ende des Directories erreicht => Schleife beenden

EXIT

ENDIF

ı nächsten Eintrag einlesen

T%=T%+1

UNTIL O

ENDIF

CLOSE 1

 —— Grafikprogrammierung 279

5. Grafikprogrammierung

Grafik ist ein Thema, das fast jeden Computerfan irgendwann

einmal beschäftigt, besonders dann, wenn sein Rechner auch
noch mit einer gestochen scharfen Auflösung glänzen kann. Je-
der von Ihnen wird wohl schon ein Malprogramm in der Hand
gehalten haben, mit dessen Hilfe der Atari als Zeichenmaschine

eingesetzt werden kann. Solche Malprogramme arbeiten im Ge-
gensatz zu Zeichenprogrammen im Normalfall pixelorientiert,

d.h. sie manipulieren in irgendeiner Form den Bildschirminhalt.
Diese Manipulation - einmal durchgeführt - kann anschließend
nicht mehr rückgängig gemacht werden.

Im Gegensatz zu den pixelorientierten Programmen gibt es ob-
jektorientierte Programme die alle Objekte in zweifacher Hin-
sicht verwalten. Einmal - wie ihre Kollegen auch - in pixelo-
rientierter Form, ein zweites Mal in Form einer Objektbeschrei-
bung. Eine so gefertigte Grafik kann dann editiert werden, ohne
dabei andere Objektinhalte zu beinflussen. Der Haken an der
Sache ist, daß solche Programme schwieriger zu programmieren
sind. Ohne Vektoren und Matrizen geht es nicht! Deshalb finden
Sie auch ein wenig Matrizenrechnung in diesem Kapitel. Aber
fangen wir ganz einfach an:

5.1 Einfache Grafikbefehle

Es ist nicht mein Ansinnen, an dieser Stelle das Handbuch des

ST-BASIC in irgendeiner Form wiederzukauen. Vielmehr sollen
ein paar Befehle zur Grafikprogrammierung exemplarisch her-

ausgegriffen werden.

280 Das große ST-BASIC-Buch ——

Die Grafik-Auflösungen des Atari ST

Je nachdem, welcher Monitor an den Computer angeschlossen

(Farbe oder Schwarz-Weiß) und welche Grafikstufe gerade ein-
gestellt ist, besitzt der Computer eine andere Auflösung. Unter
Auflösung versteht man die Anzahl der Punkte, die auf dem

Bildschirm dargestellt werden. Der Atari ST verfügt über drei
verschiedene Auflösungsstufen:

640*400 Punkte in HIRES (s/w)

640*200 Punkte in 4 Farben

320*200 Punkte in 16 Farben

Während Sie also im Farbbetrieb zwischen zwei Auflösungen
wählen können, ist dies beim Anschluß eines Schwarz-Weiß-

Monitor nicht möglich. Ihm ist die höchste Stufe der Grafik, die
High RESolution (Hires) vorbehalten. Jeder dieser Punkte bean-
sprucht im einfachsten Fall - das ist in Hires - genau ein Bit,
womit wir bei einer Bildschirmgröße von 32000 Byte angelangt
wären. Zur Farbdarstellung sind nun zusätzlich Informationen
über die einzelnen Farben nötig, die dann auf Kosten der Auf-
lösung gehen (deshalb auch die geringere Auflösung im Farbbe-
trieb). |

Die obere linke Ecke des Bildschirms hat dann die Koordinaten
(0,0), die rechte untere Ecke - in HIRES - (639,399). Ausnahme:
Bei einem geöffneten Fenster ist die linke obere Ecke des Fen-
sters der (logische) Nullpunkt. Diese Koordinaten werden für
alle weiteren Befehle benötigt. Ich selbst beziehe mich bei fol-
genden Überlegungen - zumindest was die Koordinaten angeht -
stets auf die höchste Auflösungsstufe des Schwarz-Weiß-Moni-
tors.

Jede Grafik besteht aus einem Raster einzelner Punkte, die ent-
weder gesetzt (schwarz) oder nicht gesetzt (hell) sind. Ein beson-
derer Effekt ist durch verschiedene Dichten möglich: Graustu-
fen, die mit der Anzahl der gesetzten Punkte immer dunkler
werden. Deshalb setzt sich eine Linie ebenso wie ein Drei- oder
Viereck aus Punkten zusammen, die nur eng genug aneinander-
gereiht werden müssen.

 —— Grafikprogrammierung 281

Punkte, Linien und Rechtecke

Ein Punkt wird an der Koordinate (X,Y) mit Befehl

DRAW X,Y

gesetzt. Als konsequente Folgerung aus obigen Uberlegungen

kann mit DRAW auch gleich eine Linie (bestehend aus einzelnen
Punkten) gezogen werden:

DRAW X0,YO TO X1,Y1

Dabei ist zu beachten, daß DRAW die über

MODE =
LINE COLOR

LINE STYLE

eingestellten Werte heranzieht, um die Arbeit auszuführen.
Möchte man ein Rechteck (Quadrat) auf dem Bildschirm dar-
stellen, so können über DRAW die vier Eckpunkte verbunden
werden. Einfacher geht es aber auf alle Fälle mit:

BOX X0,YO TO X1,Y1

und dessen Vetter:

BOX X,Y,Breite,Höhe

Beide Befehle zeichnen ein Rechteck (Quadrat, wenn alle vier
Seiten die gleiche Länge besitzen) auf den Bildschirm. Im erste-
ren Fall werden zwei schräg (diagonal) gegenüber liegenden Ec-
ken angegeben, im letzteren die linke obere des Rechtecks, so-
wie dessen Breite und Höhe. Dies entspricht (ausgedrückt in der

ersten Syntax):

BOX X,Y TO X+Höhe,Y+Breite

 282 Das große ST-BASIC-Buch ——

Eine umschlossene Fläche kann auch mit einem Muster oder ei-

ner Farbe ausgefüllt werden. Dazu dient der Befehl:

FILL X,Y,Grenzfarbe

Die Wirkung kann man sich wie einen Farbeimer vorstellen, der
an einer innerhalb der Begrenzung liegenden Stelle (X,Y) ausge-
gossen wird und die umrahmte Fläche füllt. Eine Lücke in der
Begrenzung führt zu einem Zerstören des restlichen Bildschirm-
inhaltes, da auch er ausgefüllt wird. Als Grenzfarbe wird der

Wert -1 empfohlen, da GEM ansonsten nicht immer zufrieden-

stellende Ergebnisse liefert. Da der ausfüllende Algorithmus eine
gewisse Zeit benötigt, bis er eine Fläche gefüllt hat, hat man
einen Befehl implementiert, der Rechtecke gleich bei deren

Darstellung mit einer Füllfarbe versieht:

PBOX X0,YO TO X1,Y1
PBOX X,Y,Breite,Höhe

Auch ein Rechteck mit abgerundeten Ecken (runde Ecken?) ist
möglich:

RBOX X0,YO TO X1,Y1
RBOX X,Y,Breite,Höhe

und dessen gefülltes Pendant:

PRBOX X0,YO TO X1,Y1
PRBOX X,Y,Breite,Höhe

Das Füllmuster und die Füllfarbe legen die beiden Befehle

FILL STYLE

FILL COLOR

fest.

 — Grafikprogrammierung 283

5.2 BITBLT

Dieser Befehl, der übrigens "Bit-Blit" gesprochen wird, kopiert
Speicherbereiche, d.h. Bildschirmausschnitte. Folgende Varianten

sind möglich:

1 Vom Bildschirm auf den Bildschirm (kopieren).

2 Vom Bildschirm in den Speicher. |

3. Vom Speicher auf den Bildschirm.

4 Vom Speicher in den Speicher.

Fangen wir von oben an. Um einen Ausschnitt (Rechteck) von

einer Bildschirmposition an eine andere Position zu kopieren,

muß zuerst einmal der betreffende Bildschirmausschnitt festge-

legt werden, dessen Inhalt an die neue Position kopiert werden

soll: |

BITBLT X0,Y0,Breite0,HoheO TO X1,Y1,Breite1,Hohel

kopiert das Rechteck mit den Koordinaten der linken oberen

Ecke (X0,Y0), der Breite0, sowie der HöheO an die hinter TO

angegebene Position. Beide Rechtecke müssen dazu nicht unbe-

dingt die gleiche Größe besitzen. Kopiert wird immer das klein-
ste Rechteck, das u.U. auch die Hohe 0 aber die Breite 1. haben

kann. Zusätzlich kann noch ein Modus angegeben werden, der

vorschreibt, wie ein Punkt im Quellrechteck (S) mit einem Punkt
des Zielrechtecks (D) (logisch) verknüpft werden soll: BITBLT
X0,Y0,B0,HO TO X1,Y1,B1,H1,Modus

Folgende Modi sind möglich:

Modus resultierende Verknüpfung

0 =0

S AND D

S AND (NOT D)

S (Standardmodus) replace

(NOT S) AND D

D

S XOR D

S ORD “
I
O

o
m

Aa
&

DD

m
i

 284 Das große ST-BASIC-Buch ———

Modus resultierende Verknüpfung

8 NOT (S OR D)
9 NOT (S XOR D)

10 OT D
11 OR (NOT D)
12 OTS
13 NOT S) OR D
14 OT (S OR D)
15 1

BITBLT kann aber nicht nur Bildschirmbereiche an eine andere
Position kopieren, sondern diese auch vor Uberschreiben in den

Speicher des Computers retten. Dieser Befehl ist von enormer
Bedeutung, gerade bei der im nächsten Kapitel folgenden GEM-
Programmierung. Die durch Formulare und sonstigen Objekte
überdeckten Flächen werden einfach vor dem Uberschreibe-
Vorgang in den Speicher gehieft. Dazu muß jedoch erst einmal
Speicherplatz angefordert werden. Dies übernimmt die Funktion

Adresse = MEMORY(<Anzahl Byte>)

Es wird die angegebene Anzahl Byte reserviert. Als Ergebnis
liefert die Funktion dann die Adresse, ab der der reservierte
Bereich zu finden ist. Bliebe noch zu klären, wie ermittelt wer-
den kann, wie viele Byte für einen BITBLT-Block im Speicher
reserviert werden müssen. Ganz einfach, das berechnet sich nach
der Formel:

Benötigte Byte = (Breite+15) SHR 4 * Höhe * 2 + 6

Jetzt kann der Block in den reservierten Bereich transferiert
werden:

BITBLT X,Y,Breite,Höhe TO Adresse

 ——— Grafikprogrammierung 285

Wird der Bildschirm in diesem Bereich durch irgendwelche Vor-

gänge zerstört (z.B. ein Fenster wird geöffnet und überschreibt
dadurch den bisherigen Inhalt), kann der Bildschirm später wie-
der problemlos restauriert werden, indem man die Byte ab

Adresse im Speicher wieder auf den Bildschirm kopiert:

BITBLT Adresse TO X,Y,Breite,Höhe [,Modus]

Zusätzlich kann diese Syntax dazu verwendet werden, im Spei-

cher Grafiken zu erstellen und diese dann auf dem Bildschirm
zu bringen. Dabei ist jedoch das von BITBLT verwendetete
Format -zu berücksichtigen, in dem Speicherbereiche abgelegt
werden. Die ersten Worte ab Beginn des reservierten Bereichs
enthalten nämlich drei Worte:

Anzahl der Planes*2 (Ebenen)

Breite des Ausschnitts in Pixel -

Höhe des Ausschnitts in Pixel

Diese Daten müssen jedoch nur von Hand gesetzt werden, wenn
eine Grafik manuell im Speicher aufgebaut wird. Ansonsten er-

ledigt diese Arbeit der BITBLT-Befehl für Sie, der die Daten in

den Speicher manövriert. Mit der letzten Syntaxvariation kann
auch vom Speicher in den Speicher kopiert werden. Der Sınn der
ganzen Angelegenheit liegt darin, Bilder oder Bildschirmteile,
die im HIRES-Modus, also in Schwarz-Weiß erstellt worden

sind, in einen Farbbildschirm zu kopieren:

BITBLT Bereich1 TO Bereich2,COLOR Farbe

Die Farbe,die als Parameter anzugeben ist, ist die Farbe, die ein
gesetzter Bildschirmpunkt im Farbbildschirm erhalten soll.

5.3 Bildschirm laden und speichern

Wie Sie seit dem letzten Kapitel wissen, kann ein bestimmter
Bildschirmbereich oder auch der gesamte Bildschirminhalt in den
Speicher kopiert, und dort archiviert werden. Zumindest bis zum
Ausschalten des Computers. Dann ist er leider verloren. Ab zu
und kommt es jedoch vor, daß man den Bildschirminhalt auf

 286 Das große ST-BASIC-Buch ——

Diskette abspeichern und ihn zu einem späteren Zeitpunkt wie-

der laden möchte. Dies kann z.B. sein, weil man gerade eine
tolle Grafik auf dem Monitor erstellt hat, die man ganz gerne
vor der Vernichtung bewahren möchte.

Auf der anderen Seite kommt es natürlich auch vor, daß ein mit
einem Malprogramm erstelltes Bild als Vorspann in ein eigenes
Programm integriert werden soll. Dazu speichert man den Bild-
schirm als 32000-Byte (also nicht komprimiert) ab, und lädt ıhn
mit einem entsprechenden Befehl am Programmstart ein. Es ist
ganz einfach, den aktuellen Bildschirminhalt auf Diskette abzu-
speichern:

BSAVE "Dateiname!"

speichert den Bildschirm (32000 Byte) unter Dateiname auf Dis-
kette ab. Möchte man ihn wieder einladen, genügt der Befehl:

BLOAD "Dateiname"

und die in der Datei Dateiname abgelegte Grafik (Bildschirmin-
halt) wird wieder geladen. Übrigens: Das Zeichenprogramm

DOODLE speichert seine Bilder in unkomprimierter Form ab, so

daß Bilder, die mit DOODLE abgespeichert wurden, einfach mit
BLOAD eingeladen werden können. Jetzt darf ich Ihnen natür-
lich nicht verschweigen, daß bei BLOAD und BSAVE noch zu-
sätzliche Parameter angegeben werden können, die dann erwei-
terte Möglichkeiten bieten:

BLOAD "Dateiname", <Adresse>

lädt die Datei Dateiname an die angegebene Adresse. Der da-
durch überschriebene Speicherplatz wurde hoffentlich zuerst mit

MEMORY

 —— Grafikprogrammierung | 287

reserviert, damit kein Unglück geschieht. Auch BSAVE kann die
ab einer gewissen Adresse folgenden Daten in eine Datei schrei-
ben. Dann muß jedoch noch angegeben werden, wie viele Byte
abgespeichert werden sollen:

BSAVE "Dateiname! ‚<Adresse> ‚<Anzahl>

Mit BLOAD und BSAVE ist es möglich, Maschinenprogramme
in den Speicher an eine bestimme Adresse zu laden., man kann

Variableninhalte auf Diskette speichern, indem man gleich den
ganzen Speicherbereich auf Diskette auslagert usw.

5.4 Objekte verschieben und drehen

Gehen wir bei den folgenden Überlegungen einmal von einem
Punkt aus, da es sich hierbei um die einfachte Art eines grafi-
schen Objekts handelt. Statt des einzelnen Punktes können Sie
natürlich auch die Eckpunkte eines Rechtecks oder den Mittel-

punkt eines Kreises für folgenden Operationen heranziehen.

Objekt verschieben

Da jeder Punkt durch seine Koordinaten (X,Y) genau bestimmt
ist, kann er durch einfache Addition bzw. Subtraktion verscho-

ben werden (vgl. Abbildung 5.1).

In einer Formel ausgedrückt lautet das:

Xneu = Xalt + Weite

Yneu = Yalt + Weite

Nach der Verschiebung (Translation) besitzt der Punkt
(Xalt,Yalt) die Koordinaten (Xneu,Yneu). Man kann dieses
Verschieben nun auf die Spitze treiben und das Objekt erst ein-
mal zum Ursprung hin verschieben, ehe es im zweiten Schritt
dann an seine neue Position gesetzt wird. Somit dürfte es kei-

 288 Das große ST-BASIC-Buch -————

nerlei Schwierigkeiten mehr machen, ein Rechteck mit dem
Mauszeiger an eine neue Position zu verschieben oder eine son-
stige Translation durchzuführen.

Objekt drehen

Um ein Objekt drehen zu können (Rotation), werden trigono-
metrische Funktionen eingesetzt. Während wir bei der Verschie-
bung einen bestimmten Punkt mittels Addition an seine neue
Position verfrachtet haben, muß er bei der Rotation um einen

bestimmten Winkel gedreht werden (vgl. Abbildung 5.2).

i Punkt verschieben

«Xneu, Yneu)

+ Weite

(Xalt,Yalt)

+ Weite

Ursprung x

Abb. 5.1: Punkt verschieben

 —— Grafikprogrammierung 289

Ich möchte Ihnen und mir die mathematische Herleitung der nun
folgenden Rotationsgleichung ersparen. Deshalb hier einfach die
benötigte Formel:

Xneu = Xalt * cos(B) - Yalt * sin(ß)
Yneu = Xalt * sin(B) + Yalt * cos(ß)

„f Punkt drehen

Kalt%cos(ß) -Yalt*sin(P)
Xalt#sin(p) +¥al t#cos (fp)

Xneu
Yneu

 CXneu, Yneu)

CXalt, Val t)

 Ursprung | X

Abb. 5.2: Punkt drehen

290 Das groBe ST-BASIC-Buch ———

 —— GEM 291

6. GEM

GEM, der Graphics Environment Manager im Atari ST, stellt

eine Vielzahl verschiedener Routinen zur Verfügung, die von
einfachen Grafikbefehlen (im VDI) bis zur komfortablen Arbeit
mit Ressourcen (RCS) reichen. Solche Resourcen sind Dateien,
in denen verschiedene Objekte enthalten sind, die auf dem
Bildschirm sichtbar gemacht werden können. GEM übernimmt
dann die vollständige Kontrolle über ein solches Formular (be-
stehend aus mehreren Objekten) und gestattet das Selektieren
einzelner Objekte (z.B. Boxen) mit der Maus oder die Eingabe
von Text in das Formular. Erst wenn ein bestimmtes Abbruch-
kriterium erfüllt ist (z.B. Abbruch angeklickt), erhält das eigent-
liche Programm die Kontrolle zurück. Von dort aus läßt sich
dann überprüfen, welche Eingaben der Benutzer ım Formular

getätigt hat. |

Damit GEM die Kontrolle über ein solches Formular überneh-
men kann, müssen bestimmte Konventionen eingehalten werden.
Der Computer muß wissen, in welcher Beziehung die einzelnen
Objekte zueinander stehen oder wie die einzelnen Objekte bzw.
das aus diesen resultierende Formular auszusehen hat. Deshalb
besitzt jedes Element einen 24 Byte großen Eintrag in einer So-
genannten Objektliste, in dem das letzte bzw. nächste Objekt,
die Koordinaten (X,Y bzw. Breite und Höhe) des Objekts, sowie
andere Informationen festgehalten werden. Diese Objektliste
wiederum kann als Datei auf Diskette ausgelagert und bei Bedarf
(zum Programmstart) wieder eingelesen werden. Da es relativ
mühsam und vor allem äußerst umständlich ist, solche Objektli-

sten zu erstellen, kann man diese Aufgabe auch von einem Res-
source Construction Set erledigen lassen. Um all diese Dinge
wird es in diesem Kapitel gehen. |

 292 Das große ST-BASIC-Buch ——

61 Arbeiten mit dem RCS

Die einzelnen Objekte innerhalb eines Formulars werden in ei-
ner Objektliste zusammengefaßt, wobei jedes Objekt einen Ein-
trag von 24 Byte Größe in Anspruch nimmt, in dem sämtlichen
Informationen über dieses Objekt enthalten sind. Diese Objekt-
liste wird als Baumstruktur im Speicher verwaltet.

Informatiker nennen diese Listenform deshalb Baum, da sie sich

- ähnlich einem (echten) Baum - in verschiedene Ebenen
untergliedern läßt, nämlich in eine Wurzel (Root), in Äste, sowie
als deren Ausläufer in Zweige. Ein Beispiel macht dies sehr
schnell deutlich:

Stellen Sie sich einmal eine große Box vor, die zwei kleinere Bo-
xen enthält. In der rechten der beiden kleineren Boxen, sei eine
weitere Box enthalten. Dieses Gebilde besteht aus drei verschie-
denen Ebenen: |

- Große Box (erste Ebene),

- die beiden kleineren Boxen (zweite Ebene),.

- die Box, in der kleinen Box (dritte Ebene).

Die erste Ebene bezeichnet man als Wurzel, da auf ihr alle wei-
tere Ebenen aufbauen, sie ist gleichsam der Grundstock für das
gesamte Formular. Als Äste sind die beiden kleineren Boxen
anzusehen, die sich innerhalb der großen Box befinden, und in

der gleichen Ebene liegen. Diese beiden Objekte werden auch als
Kinder (Children) bezüglich der großen Box der ersten Ebene,
die sinnigerweise dann Eltern- (Parent) Objekt genannt wird.

Wie lassen sich derartige Familienverhältnise nun ermittel?
Ganz einfach! Ein Objekt, das sich innerhalb eines anderen Ob-
jekts befindet, dessen Ränder also nicht überschreitet, ist diesem
(Eltern-)Objekt untergeordnet. Verschiebt man ein solches EI-
ternobjekt, führt dies logischerweise auch zu einer Verschiebung
des Kindes! Der ganze Sachverhalt noch einmal als Picture:

 ——— GEM 293

Ebene $

Abb. 6.1: Ein Objektbaum mit drei Ebenen

Einen solchen Objektbaum selbst durchzurechnen, ist wirklich
der reinste Horror! Aber mit einem Resource Construction Set,
das quasi einen Werkzeugkasten für geplagte GEM-Program-
mierer darstellt, wird das Erstellen von Formularen zu einem

echten Kinderspiel. Ein solches Programm sollten Sie sich also
auf alle Fälle besorgen, wenn Sie Ihre Programme mit GEM-
Formularen schmücken möchten. Das RCS von Digital Research

aus dem Entwicklungspaket gib’s fast umsonst. Nerven Sie dies-
bezüglich einmal Ihren Atari-Fachhändler!

Andererseits wissen auch die Firmen um die Nöte beim Erstellen
von Resourcen, und legen deshalb manchen Programmierspra-
chen gleich ein RCS bei. So können Sie selbstverständlich auch
das RCS des Megamax-C-Compilers "mißbrauchen". Ich persön-
lich - nein, jetzt kommt keine Schleichwerbung - benutze bei
meiner täglichen Arbeit verschiedene RCS, die gegeneinander
ausgespielt werden können. Auf diese Weise können dann Ob-

jektbäume konstruiert werden, die es eigentlich gar nicht geben
kann!

 294 Das große ST-BASIC-Buch ———

Für Besitzer eines MEGA-ST ist das RCS von Digital Research
in der alten Version (1.xx) übrigens nicht geeignet, da es mit
Blitter-TOS nicht zusammenarbeitet (oder das Blitter-TOS nicht
mit dem Programm, das Ergebnis bleibt gleich). Abhilfe kann
hier nur das Booten der älteren TOS-Version von Diskette
schaffen. |

Nun aber zum Umgang mit dem RCS von Digital Research, da
es wohl das preiswerteste und deshalb am weitesten verbreitete

Programm zur Resourceerstellung sein dürfte. Nach dem Laden
des Programm finden Sie in der ersten Zeile die Menüpunkte
DESK, FILE, OPTIONS und GLOBAL. Am rechten Rand be-

finden sich das Klemmbrett (Clipboard) zum Zwischenspeichern
und der Mülleimer (Trash) zum Löschen von Objekten. Diese
beiden Piktogramme werden im Fachchinesisch auch Icons ge-
nannt. Ferner erscheinen auf dem Monitor noch zwei Fenster.
Das obere, längliche Fenster enthält die verschiedenen Baumar-
ten, die mittels des RCS konstruiert werden können, und sollen

deshalb ab sofort Objektfenster genannt werden. Das untere
Window (Fenster) dient der Bearbeitung eines Formulars, des-
halb soll es Arbeitsfenster heißen. Um ein bestimmten Objekt

innerhalb des Arbeitsfensters verändern zu können, muß es erst

einmal mit der Maus aus dem OÖbjektfenster transportiert wer-

den. Klicken Sie dazu das entsprechende Symbol an (z.B.

FREE), und ziehen bei gedrückter linker Maustaste das Pikto-

gramm in das Arbeitsfenster. Dieser Vorgang heißt übrigens
Draggen.

Jetzt öffnet sich eine Box, mittels der Sie dem Objekt einen

(neuen) Namen verleihen können. (Treel ist absolut nichtssa-
gend!) Wozu der Aufwand mit dem Benennen eines Objekts?

Jedes Objekt trägt innerhalb der Objektliste eine Nummer, an-
hand der es eindeutig identifiziert werden kann. Um nun ein
Objekt aus dem Programm heraus ansprechen bzw. abfragen zu
können, welches Objekt der Benutzer selektiert (angeklickt) hat
(der Computer kann Ihnen ja nicht mitteilen, daß das kleine
schraffierte und schattierte Rechteck, das sich in der linken
oberen Hälfte des Wurzelobjekts befindet, angeklickt wurde),

 —— GEM | 295

muß sich der Computer einer Variante bedienen, die für ihn im

Bereich des Möglichen liegt; der Übergabe einer Zahl (Num-
mer), die das betreffende Objekt kennzeichnet.

Wird ein Objektbaum nachträglich bearbeitet, kann es vorkom-
men, daß sich dabei auch die Eltern-Kind-Beziehungen ändern,

oder andersherum ausgedrückt, daß Objekte neue Nummern zur
Identifikation zugewiesen bekommen. Doch dies kann zu ernst-
haften Problemen führen. Möchten Sie nämlich überprüfen, ob
beispielsweise Objekt Nummer 2 angeklickt wurde, und Sie be-
werkstelligen dies mit einer IF... THEN-Abfrage (Ret% enthalte
die Nummer des selektierten Objekts)

IF Ret% = 2 THEN

geht das solange gut, wie das betreffende Objekt keine neue
Nummer zugewiesen bekommt. Aber wehe, Sıe ändern den Ob-

 jektbaum ab! Dann wird ihr schönes Programm nichts anderes
als Makulatur, da die Nummern in den IF-THEN-Abfragen
nicht mehr mit den neuen Nummern im Baum übereinstimmen.
Als einziger Ausweg bleibt Ihnen das umständliche Ändern der
Abfragen im Programmtext. Viel Spaß!

In der Programmiersprache C - und GEM ist auch ein Produkt
dieser Sprache! - gibt es eine praktische Einrichtung, den soge-
nannten Präprozessor. Dieser durchsucht - ehe der Compiler das
Programm zu Gesicht bekommt - den gesamten Quelltext und
ersetzt bestimmte Ausdrücke durch zuvor definierte Anweisun-
gen. Die Präprozessor-Anweisung

#define Treei 0

bewirkt ein Ersetzen innerhalb des Programmtextes von Treel
durch eine Null 0. Überall, wo der Präprozessor auf die Zei-
chenkette Treel stößt, entfernt er diese und plaziert statt dessen

den neuen Text (die Null) in das Programm. Das RCS wiederum
- und deshalb erzähle ich Ihnen das Ganze - nutzt diese Eigen-

 296 Das große ST-BASIC-Buch ———

schaft des Preprozessor und generiert ein HEADER-File, das

mit dem Extender .h geschmückt ist. Diese Datei enthält - raten
Sie mal! - Präprozessor-Anweisungen in Form von #define.
Hinter jedem #define steht der Name des Objekts und die dazu-
gehörende Objektnummer. Maßgeschneidert für C-Programmie-
rer! Diese können nämlich dann einfach den Namen, der dem

Objekt verpaßt wurde, im Programm verwenden, um ein be-
_ stimmtes Objekt anzusprechen. Und genau diesen Namen - da-
mit schließt sich der Kreis wieder - können Sie in obiger Dia-
logbox des RCS angeben.

Doch eine derart komfortable Einrichtung wie einen Preprozes-
sor haben wir in BASIC leider nicht zur Verfügung. Also muß
man sich anderweitig helfen. Man weist die Objektnummer ein-
fach einer Variablen zu, und den Variablennamen gibt man in

der Dialogbox des RCS an.

Sollten Sie also mit einem RCS arbeiten, das eine Datei für einen

C-Präprozessor generiert, muß diese Datei entsprechend umge-
wandelt und in das Programm eingebaut werden. (Möglichst an

den Anfang, damit die Variablen gleich am Programmstart mit
den korrekten Werten versorgt werden und nicht das gesamte

Formular aus Wurzelobjekten besteht): |

#define Tree1 55

wird in BASIC zu

Treei = 55

Ab sofort kann dann das Objekt über den Variablenaufruf Treel
angesprochen werden, da dort die Objektnummer gespeichert ist.

Für alle diejenigen, die zufällig ein RCS besitzen, das die HEA-
DER-Dateien nicht nur in eine für C, sondern auch für GfA-
BASIC verständliche Form bringen können (ein solches RCS
liegt dem GfA-BASIC 3.00 bei, aber auch Application Systems
Heidelberg hat dem Megamax C-Compiler (?!?) ein RCS spen-

diert, das diese Ausgabevariante bietet), sei das Einbinden der

Datei in das Programm über LOAD Block *.* in der Menüleiste

 —— GEM 297

empfohlen. Der Extender im Pfad muß dann allerdings in .LST
abgeändert werden, damit die Datei in der File-Selektor-Box des
ST-BASIC angezeigt wird.

Verpassen Sie also dem Objekt einen (sinnvollen) Namen und
drücken Return, oder klicken auf OK. Jetzt kann das entspre-

chende Objekt ım Arbeitsfenster weiter bearbeitet werden. Im
Obektfenster stehen folgende Objekte zur weiteren Verarbeitung
zur Verfügung (von links nach rechts):

Unknown (Fragezeichen)

Bei diesem Objekt handelt es sich um keine richtige Baumart,

sondern vielmehr um eine unbekannte Objektstruktur! Diese tritt
immer dann auf, wenn das zu einer RCS-Datei gehörende DEF-
File, in dem die Arten der Objekte festgelegt sind, vom RCS
nicht geladen werden kann. In diesem Fall wird das Objekt als
unbekannt tituliert und muß vor einer weiteren Bearbeitung erst
einmal in eine andere Art umbenannt werden.

Free

Dieses Objekt stellt den Grundbaustein für Formulare aller Art
dar. Die einzelnen Kinder dieses Objekts sind dabei in ihrer Po-
sitionierung frei wählbar. Dies hat den Nachteil, daß Baum-
strukturen, die in hoher Auflösung erstellt wurden, bei einer an-
deren Auflösungsstufe vollkommen verschoben aussehen können.

Möchten Sie, daß die Objekte in ein bestimmtes Raster positio-

niert werden, so müssen Sie

Dialog

wählen. Das dabei verwendete Raster ist von der augenblicklich
benutzten Grafikauflösung abhängig. Bei hoher Auflösung wer-
den die Objekte so plaziert, daß die X-Koordinate durch acht

und die Y-Koordinate durch sechzehn teilbar ist.

 298 Das große ST-BASIC-Buch ——

Menu

Die Baumart wird zur Konstruktion der Pull-Down-Menüs be-

nutzt, die vom oberen Bildschirmrand herunterklappen.

Alertbox

Mit dieser Objekt lassen sich Alertboxen (Alarmboxen) kreieren,
die Warnmeldungen oder Rückfragen ausgeben können (vgl.
auch FORM_ ALERT in ST-BASIC).

Möchten Sie jetzt ein eigenes Objekt erstellen, draggen Sie zu-
erst einmal die gewünschte Baumart vom Objekt- in das Ar-
beitsfenster. Sobald dies geschehen ist, stehen im Objektfenster
die einzelnen Objekte zur Verfügung, die in dieser Baumart be-
nutzt werden können. Auch diese müssen wieder in das Parent-
Objekt gezogen werden. Dort können Sie dann vergrößert (linke
untere Ecke anklicken, Maustaste gedrückt halten und Maus
verschieben) bzw. verkleinert werden. Aber auch ein Neuposi-
tionieren ist möglich, indem Sie den Mauszeiger inmitten des
Objekts fahren, die Maustaste drücken und das Objekt verschie-

ben. Vorsicht! Befindet sich das betreffende Objekt innerhalb
der Umrandung eines anderen, so ändert sich die gesamte

Baumstruktur, wenn der Rahmen verlassen wird! Innerhalb des

Vater-Objekts kann es dagegen problemlos hin- und hergescho-

ben werden. Nun zu den einzelnen Objektarten, die benutzt
werden können:

Button (Taste)

Dieses Objekt funktioniert wie eine Taste. Es kann mit der Maus
angeklickt bzw. unter bestimmten Umständen auch via
<Return>-Taste selektiert werden.

 —— GEM 299

String (Zeichernfeld)

Dieses Objekt kann einen Text speichern, und sollte benutzt

werden, wenn man Text in einer Dialogbox benutzen will (z.B.
eine Uberschrift).

Ftext (EDIT:)

Dieser Text kann später (vom Benutzer) editiert werden.

Fboxtext

Wie Ftext, jedoch wird der Text in einer Box präsentiert, die bei
Bedarf auch ein Füllmuster enthalten kann.

Ibox

Diese Box wird als Vaterobjekt für andere Objekte benutzt, die
dann in einer eigenen Ebene (innerhalb der Ibox) liegen.

Box

Box verleiht anderen Objekten einen entsprechenden Rahmen,
wobei die Box auch mit einem Muster ausgefüllt werden kann.

Text

Es handelt sich um einen Text, der im Gegensatz zu Ftext je-
doch nicht editierbar ist.

Boxchar

Dieses Objekt beinhaltet einen Buchstaben, und kann mit der
Maus (oder mit <Return>) selektiert werden. Gerade für die
Symbole <Pfeil hoch> oder <Pfeil runter> ist diese Objektform
geradezu prädestiniert.

 300 Das groBe ST-BASIC-Buch ———

Boxtext

Jetzt dürfen Sie dreimal raten, was dieses Objekt darstellt! Rich-
tig, einen Text, der von einer Box umschlossen wird. Ä

Icon

Icons - über diesen Namen sind wir schon einmal gestolpert -
werden beispielsweise auf dem Desktop dargestellt, wo sie die

Gestalt einer Diskettenstation oder eines Abfalleimers annehmen.

Aber auch im RCS selbst finden sie sich: als Clipboard (Klemm-
brett) und Abfalleimer.

Image

Wird zur optischen Gestaltung von Bäumen benutzt und kann im
Gegensatz zu Icons nicht selektiert werden! |

Title (Menütitel)

Diese Objektart ist nur innerhalb eines Menübaumes zugelassen
und erscheint deshalb auch nur im Objektfenster, wenn ein
Menübaum editiert wird. Ehe eine weitere Baumstruktur bear-
beitet werden kann, muß das Arbeitsfenster erst wieder ge-

schlossen werden. Dazu klicken Sie in die linke obere Ecke des
Arbeitsfenster, das Schließfeld (Closer) einmal kurz und kräftig
an. Im Objektfenster erscheinen nun wieder die einzelnen
Baumarten.

Auch das Duplizieren einzelner Objekte ist möglich. Drücken Sie
dazu die Shift-Taste, ehe Sie das gewünschte Objekt im Ar-
beitsfenster anklicken. Mit gedrückter Maustaste ziehen Sie eine
Kopie des entsprechenden Objekts. Die einzelnen Objekte kön-
nen auch noch anderweitig manipuliert werden, indem Sie durch
Anklicken geöffnet und ihre Objektattribute abgeändert werden.
Die einzelnen Attribute und deren Wirkungsweisen sollen an
dieser Stelle jedoch nicht weiter besprochen werden, da Sie im
nächsten Kapitel, wenn es um die interne Struktur der Resour-

cen geht, noch einmal ausführlichst behandelt werden.

 —— GEM 301

Mit diesem Wissen ausgestattet dürfte es eigentlich keinerlei
Probleme mehr machen, eigene Resourcen mit dem RCS zu er-
stellen. Spielen Sie ein bißchen mit dem RCS herum. Auch an-
dere Programme (z.B. K-Resource) arbeiten ähnlich. Es ist je-
doch unmöglich, alle RCS, die auf dem Markt erhältlich sind,

ausführlich zu beschreiben. ©

Im Lieferumfang des ST-BASIC bzw. des Omikron.BASIC be-
findet sich übrigens auch ein RCS, das allerdings (zumindest auf

meiner Diskette) immer noch nicht vollständig fertiggestellt und
deshalb mehr oder weniger unbrauchbar ist (eher mehr!).

6.2 GEM-Programmierung unter ST-BASIC

In diesem Kapiel - das kann ich Ihnen schon jetzt versprechen,

wird es ziemlich rund gehen! Aber lassen Sie sich davon ja nicht
abschrecken, denn hat man sich erst einmal an diese Art der

Programmierung gewöhnt, möchte man sie um nichts in der Welt
mehr vermissen (ehrlich!).

Application anmelden

Die Vorgehensweise ist immer die gleiche: Zuerst muß einmal
das GEM - die grafische Benutzeroberfläche des TOS - aktiviert
werden. Dies wäre ım Prinzip relatıv aufwendig, gäbe es nicht
eine Library auf der ST-BASIC-Diskette, die die Programmie-
rung unter GEM stark vereinfacht. Möchten Sie also unter GEM
programmieren, muß zuerst einmal die Datei

GEMLIB.BAS

geladen werden. Jetzt steht Ihnen eine Fülle von Befehlen zum
GEM-Handling zur Verfügung. Der erste Befehl, mit dem eine
Application angemeldet wird lautet:

Appl_Init

Mit diesem Befehl wird GEM aktiviert. Ehe das Programm wie-
der seine Arbeit beendet, muß GEM wieder verlassen werden,

 302 | Das große ST-BASIC-Buch ———

möchten Sie nicht (unangenehme) Systemabstürze riskieren.
Auch dazu stellt die Library GEMLIB.BAS einen Befehl zur
Verfügung: |

Appl_Exit

Nachdem GEM aktiviert wurde, kann es losgehen:

GEM aktivieren

Schritt: RCS-Datei von Diskette laden

Schritt: Adresse des Baumes besorgen

Schritt: Form_ Dial aufrufen (Speicher retten)

Schritt: Formular auf dem Bildschirm darstellen

Schritt: Kontrolle über das Formular an GEM übergeben.

A
v

F
Y

N
O

Schritt: Form_ Dial aufrufen (Speicher freigeben)

GEM deaktivieren

Dieses "Schema F" sollten Sie sich genau einprägen, da eine Pro-
grammierung von Dialogboxen stets in dieser Reihenfolge ab-
läuft.

Als Programmierprojekt habe ich mir in diesem Kapitel zum
Ziel gesetzt, eine eigene File-Selector-Box zu erstellen, die Sie
dann auch in Ihre eigenen Programme einbinden können. Dazu
muß natürlich erst einmal eine entsprechendes Resource-Datei
mit Hilfe eines RCS erstellt werden. Also ran, schnappen Sie

sich ein Resource Construction Set, und basteln die Box zusam-

men (vgl. Abbildung 6.2).

Zuerst müssen wir uns einmal im klaren sein, welche Baum-
struktur für die File-Selector-Box verwendet werden soll. Dialog
drängt sich förmlich auf, aber auch Free ist bestimmt nicht ver-
kehrt. Draggen Sie also das Icon Dialog aus dem Objektfenster
in das Arbeitsfenster, und verpassen Sie ihm anschließend gleich
den sinnigen Namen FILSEL. Damit ein Name eingegeben wer-

 ——— GEM 303

den kann, muß die Shift-Taste bei gleichzeitiger Betätigung der
Buchstaben-Taste gedrückt werden. Das Programm mag bei der
Eingabe von Resource-Namen eben nur Großbuchstaben.

Fsinfo Die Objekte der File-Selseetor-Boz

aN

.

EIN DEMOPROGRAMM AUS DEM GROSSEN ST-BASIC BUCH
PFAD 1 AUTOR: MICHAEL MAIER ic) 1955 BY DATA BECKER GMBH

8

Fspfad—
Fst loser a Fsextend |

8 12345678 im DATEINAME: _------- Lao Fsnane

8 12345678.123 exrenser, ___Fsslider
0 12Eaae 78. 125 | Exti | Ext2 | *.BAK | | Ext

Fsdatei €— g 12345678, 123 1*.105| *.6 | *, DOC
8-39 8 12345678.123 ; ---Fsdrva

nenn | erreeren |
8 12345678.123 || | Ip Fservs

8 12345678123 12 | ABBRUCH || OK,

|
Fsabbruc Fsreturn

Abb. 6.2: Die einzelnen Objekte der Dialogbox

Somit ist unsere Dialogbox schon einmal geöffnet. Jetzt müssen
die einzelnen Objekte eingetragen werden. Fangen wir dazu ganz
oben an: Im oberen Boxbereich soll die Infoanzeige erfolgen. Als
Objekttyp benutzen wir BOXTEXT, und taufen unseren Schütz-
ling in Anlehnung an seine Funktion Fsinfo. Sobald sich das
Objekt in der Dialogbox befindet, richten Sie es nach Abbildung
6.2 aus. Mit einem Doppelklick auf das Objekt kann eine Dia-
logbox des Resource Construction Set geöffnet werden, in der
die einzelnen Flags und Parameter für dieses Objekt gesetzt
werden können. Für die Infoanzeige werden keinerlei Flags
benötigt. Trotzdem muß unter Justify (Ausrichtung des Textes
innerhalb der Box) das Feld C angeklickt werden. Dadurch er-
reichen Sie, daß der Text genau in die Mitte zwischen den lin-

ken und rechten Rand des Objekts gesetzt wird. In diesem Zu-
sammenhang spricht man auch von zentrieren oder englisch

 304 Das große ST-BASIC-Buch -————

center, woher auch die Abkürzung C in der Dialogbox herrührt.
Mit Border kann dann die Stärke der Umrahmung eingestellt
werden, Background sorgt für den richtigen Hintergrund. Sie
können selbstverständlich ein beliebiges Füllmuster verwenden,

oder auch den weißen Hintergrund belassen.

In der letzten Zeile muß dann hinter PTEXT noch der Text ein-
getragen werden, der in der Box erscheinen soll. Nun werden Sie
natürlich entgegnen, daß Sie im Augenblick noch gar keine

Vorstellung darüber haben, welcher Text in diesem Objekt er-

scheinen soll bzw. der Text ja je nach Bedarf umgeändert wer-
den soll. (Datei laden, Datei Speichern, usw.). Wozu also bereits

jetzt einen Text in die Resource-Datei eintragen? Ganz einfach:
Der jetzt eingetragene Text dient lediglich als Platzhalter, er
wird dann vor dem Aufruf durch den aktuellen Text ersetzt.
Dies mag zwar paradox klingen, hat aber einen tieferen Sinn:
versucht man nämlich, einen Text in ein Objekt zu plazieren,
der länger als der in diesem Objekt reservierte Platz ist, werden
dadurch unweigerlich andere Daten überschrieben (schütten Sie
einmal zwei Liter Wasser in einen Topf, der nur einen Liter

Fassungsvermögen besitzt). Und das führt im Normalfall zu ei-
nem Systemabsturz. Um dem vorzubeugen, trägt man einfach

einen genügend langen Text als Füllstring in ein Objekt, und
schon ist die Gefahr gebannt. Tragen Sie also einen Füllstring
hinter PTEXT ein. Mein Vorschlag wäre, entweder 30 mal ein
beliebiger. Buchstabe, oder - gleich zum Mitzählen - die Ziffern
0 bis 9. Ein Klick auf OK oder eine Betätigung der Return-Ta-
ste sorgt dafür, daß die Dialogbox wieder verlassen werden
kann.

Jetzt ist das Objekt Pfad an der Reihe. Es hat keine weiterge-
henden Funktionen und steht quasi nur zur Zierde in der Dia-
logbox. Draggen Sie dazu das Objekt Text in das Arbeitsfenster
und ändern den Text (Objekt zweimal anklicken) in PFAD um.
Wichtiger ist die Eingabezeile für den Pfadnamen, der als Ob-
jektnamen Fspfad tragen soll. Er besteht aus einem Objekt

 —— GEM 305

Ftext, das als Flag Editable spendiert bekommt. Hinter Text ist

50 mal ein Zeichen als Platzhalter für den Pfadnamen einzuge-
ben, hinter Template 50 mal der Buchstabe P.

Danach geht’s ans Konstruieren des Fensters, in dem die einzel-
nen Dateinamen angezeigt werden sollen. Dazu nehmen Sie sich
erst mal ein Objekt Box und ziehen dieses in das Arbeitsfenster.
Anschließend fahren Sie den Mauspfeil zur rechten unteren
Ecke der Box, drücken die linke Maustaste und vergrößern das
Objekt nach Ihrem Geschmack (in Abbildung 6.2 ist dieses Ob-
jekt etwas größer gezeichnet). Anschließend sind folgende Ob-
jekte als Kinder dieser Box einzutragen.

Art Name Flags _ Sonstiges

Boxchar Fscloser Touchexit Als Buchstabe hinter CHAR

den ’Closer’ (Control E)
Boxtext Fsextend Touchexit Justify: Center

Background: gepunktet

PTEXT: 12345678.123

Boxchar Fsup Touchexit CHAR: Pfeil nach oben (Con-

trol A)
Boxchar Fsdown Touchexit CHAR: Pfeil nach unten

(Control B)
Box Fschiene Touchexit Background: gepunktet, reicht

von ’Fsup’ bis ’Fsdown’

Box Fsslider Touchexit Kind von ’Fschiene’ Die Größe

stellt das Programm ein

Text Fsdatei0 Selectable PTEXT: '0 12345678.123’

bis Radio Button

Fsdatei9 Touchexit

Sind alle Objekte richtig plaziert, bringen Sie das Vaterobjekt
auf die richtige Größe, so daß es eine Umrahmung für sämtliche
darin enthaltenen Objekte darstellt. Somit wäre der schwierigste
Teil bereits geschafft. Die übrigen Objekte sind reine Formsa-
che.

In der nachfolgenden Abbildung ist der schrittweise Aufbau der

File-Selector-Box verdeutlicht:

306 Das große ST-BASIC-Buch

PFAD:
AUTORS MICHREL MAIER ccs

_FILSEL

EIN DEMOPROGRAMM AUS DEM GROSSEN ST-BASIC BUCH

1986 BY DATA BECKER GMBH

a
ui

 8 12345678.123
8 12345678.123
8 12345678.123
@ 12345678.123
B 12345678.,123

Abb. 6.3: Die File-Selector-Box nimmt Gestalt an

Art Name Flags Sonstiges

Text --- --- PTEXT: Dateiname:

Ftext Fsname Editable TEXT: 12345678.123

Template: ’pppppppp.ppp’
Box --- --- umschließt die einzelnen Knöpfe |

zur Auswahl des Laufwerkes.

Normal nicht sichtbar, Border

| Color: 0

Boxchar Fsdrva Selectable CHAR: A bis F

bis Radio Button

Fsdrvf Kinder von obiger Box!

Box --- --- umschließt die einzelnen Knöpfe

zur Auswahl eines Extenders

Boxtext Extl Selectable Enthält die einzelnen Extender

bis Radio Button

Ext8 Touchexit letztes Objekt muB unbedingt 5

Zeichen lang sein, da es vom

Programm aus geändert wird.

Button Fsabbruc Selectable Ptext: Abbruch

Exit

Button Fsreturn Selectable Ptext: OK

Exit

 —— GEM | 307

Desk File Options Global

DIALOG PARTBOX
BUTTON] STRING EDIT:_ — _] ID] 1er [LE]

OPROGRAMM AUS DEM GROSSEN ST-BASIC

RUTOR: MICHREL MAIER £C) 1988 BY DATA BECKER GMBH

PFAD:

DATEINAME: -------- —

@ 12345678.123
@ 12345678.123 |_
@ 12345678.123 | | Bremen:
B 12345678 125 %.BAS | %, BAK | ¥, PRG

ae TOS] #.c_|*.Doc |#. TAT
é ate 33 AKTUELLES LAUFWERK:

123 DIEIF
B 12345678.123 | alplelnIElf
0 12345678.123 Lin

12) R ABBRUCH

Abb. 6.4: Die fertige File-Selector-Box

Ist die Dialogbox fertig erstellt, so speichern Sie diese auf Dis-

kette ab, und binden anschließend die vom Resource erstellte

HEADER-Datei in das Programm ein. Wenn Sie die in obiger
Tabelle angegebenen Objektnamen übernommen haben, so ge-

nügt ein Ausbessern der verschiedenen Objektnummern im Li-
sting zur File-Selector-Box, falls einzelne Nummern abweichen
sollten.

Aufbau eines Objektbaumes

Gehen wir für unsere weiteren Überlegungen einmal davon aus,
daß die Resourcedatei bereits geladen ist und sich im Speicher

des Computers befindet. Da jedes Objekt einen 24-Byte langen
Eintrag sein Eigen nennt, und die Objekte der Reihe nach
durchnummeriert werden, wobei das Wurzelobjekt (Root) die
Nummer Null zugewiesen bekommt, können die Daten eines
einzelnen Objekts nach der Formel:

Wurzelobjekt + 24 * Objektnummer

 308 Das große ST-BASIC-Buch -————

errechnet werden. Zum Ermitteln der Adresse des Wurzelobjekts

stellt die GEM-Library wieder eine Funktion bereit. Sie lautet:

Rsrc_Gaddr(re_gtype,re_gindex,re_gaddr)

Der Übergabeparameter re_gindex repräsentiert dabei die
Nummer des Objekts, in re_gaddr befindet sich nach dem
Aufruf der Procedure die Adresse des Wurzelobjekts (re_gtype
= 0), die für alle weiteren Schritte von enormer Bedeutung ist
(z.B. um die Adresse des Eintrags für ein bestimmten Objekts zu
berechnen). Wurde der Objektbaum bzw. das Wurzelobjekt bei-
spielsweise Filsel getauft, wird die Adresse dieses Objekts mit
dem Aufruf von

Rsrc_Gaddr(0, Filsel,Tree)

ermittelt. Die Variable Tree (Baum) enthält nach dem Aufruf
die Objektadresse. Nachdem nun also die Adresse eines Eintra-
ges in der Objektliste ermittelt werden kann, wäre es nicht un-
interessant zu erfahren wie ein derartiger Eintrag überhaupt
aussieht. Voila, da ist er:

Offset Inhalt

+0 nächstes Objekt

+2 _ Anfangsobjekt

+4 Endobjekt

+6 Objekttyp

+8 Objektflags

+10 Objektstatus

+12 Objektspezifikation

+16 X-Koordinate des Objekts

+18 Y-Koordinate des Objekts
+20 Objektbreite

+22 Objekthöhe

Um also den Objekttyp eines Objekts zu ermitteln oder gar
umzubiegen, addiert man (daher die Bezeichnung Offset) zur
Adresse des Objekts (errechenbar aus Adresse des Wurzelobjekts
+ 24 * Objektnummer) den angegebenen Offset, der hier den
Wert 6 beträgt:

(Tree + 24 * Objektnummer) + 6

 —— GEM 309

Auf diese Weise kann problemlos jedes Objekt manipuliert wer-
den. Von wegen manipulieren! Dazu benötigt man wieder ein
paar Befehle, die ich Ihnen hier vorstellen möchte.

Peek, Pokeq und deren Verwandte (Speicheroperationen)

Möchten Sie ein Byte aus einer bestimmten Speicherzelle des
Computers lesen, muß dies mit

Inhalt = PEEK(Adresse)

geschehen, wobei Adresse die Adresse des Byte angibt, das der
Variablen Inhalt zugewiesen werden soll. Im Gegensatz dazu ist
es auch möglich eine bestimmte Speicherstelle mit einem Wert zu
versorgen. Das geht mit:

POKE Adresse ‚Wert

wobei Wert in die Speicherstelle Adresse verfrachtet wird. Peek

und Poke lesen bzw. schreiben jeweils ein Byte. Zum Lesen und
Schreiben von Worten (zwei Byte!) sind sie nicht geeignet und
müssen das Feld für

Inhalt = WPEEK(Adresse)

zum Lesen eines Wortes und

WPOKE Adresse,Wert

zum Schreiben eines Wortes (= 16 Bit, d.h. in zwei aufeinander-
folgende Byte) räumen. Dabei ist zu beachten, daß die Adresse
bei WPOKE unbedingt gerade sein muß, da ansonsten die CPU
(der Prozessor des Atari ST) einen Adreßfehler meldet, der Ih-
nen 3 Bomben auf dem Monitor beschert.

Keine Angst, der Computer legt seine Worte schon so im
Speicher ab, daß sie stets mit einer geraden Adresse beginnen.

Solange Sie also keinen Fehler machen, bleiben Sie von den
Bomben verschont!

 310 Das große ST-BASIC-Buch ——

Als dritte Alternative kann noch ein Langwort (4 Byte) auftre-
ten, das ebenfalls in den Speicher gepackt und von dort wieder

gelesen werden kann. Dazu dient der Befehl

Inhalt = LPEEK(Adresse)

Zum Schreiben wird

LPOKE Adresse ‚Wert

benutzt. Auch diese Adresse muß wieder gerade sein, damit kein
Adreßfehler gemeldet wird. Nachdem wir schon die Adresse ei-
nes Objekteintrages in der Baumstruktur der Resource ermitteln
können, ist nun auch deren Manipulation Tür und Tor geöffnet.
Der Inhalt eines Objekteintrages setzt sich aus Worten (mit Aus-
nahme der 4-Byte langen Objektspezifikation) zusammen, kann
also mit WPEEK und WPOKE abgeändert werden.

Möchten Sie also den Objekttyp ermitteln, lesen Sie einfach die
entsprechende Speicherstelle (Verzeihung: Speicherstellen, da ein
Wort in zwei aufeinanderfolgenden Byte plaziert wird):

Inhalt = WPEEK((Tree + 24 * Objektnummer) + 6)

liefert in der Variablen Inhalt den Objekttyp. Die verschiedenen
Objekttypen haben Sie schon alle bei der Beschreibung des RCS
kennengelernt. Deshalb hier nur eine Tabelle, die die Typen-
nummern (den Inhalt) der verschiedenen Objektarten enthält:

 ——— GEM 311

Objekttypennummer Objekt

20 Box

21 Text

22 Boxtext

23 Image

24 Progdef (Ein Objekt das vom
Programmierer selbst definiert

werden kann)
25 Ibox

26 Button

27 Boxchar

28 String

29 Ftext

30 Fboxtext

31 Icon

32 Title

Auch die tbrigen Daten eines Objekteintrages in der Baum-

struktur sind codiert. Deshalb hier der Reihe nach ihre Bedeu-

tung:

Objektflags

Die Objektflags entscheiden darüber, welche Eigenschaften ein
Objekt besitzen soll. Jedes Bit repräsentiert dabei den Zustand
eines bestimmten Flags:

Zustand

SELECTABLE

DEFAULT

EXIT

EDITABLE

RADIO-BUTTON

LASTOB

TOUCHEXIT

HIDETREE

INDIRECT

=

O
N

O
n

fF
W
O
N

&

©

Da Sie sehr wahrscheinlich mit den verschiedenen Zuständen
nicht allzuviel anzufangen wissen, kommt gleich eine kurze Er-
klärung der einzelnen Bedeutungen: |

312 Das große ST-BASIC-Buch ——

SELECTABLE

Dieses Objekt kann vom Benutzer mit der Maus angeklickt wer-
den, wobei es daraufhin invertiert (schwarz) erscheint.

DEFAULT

Dieses Objekt kann auch durch eine Betätigung der <Return>-
Taste selektiert werden. Innerhalb einer Baumstruktur ist jedoch
darauf zu achten, daß maximal ein Objekt als Default gekenn-
zeichnet werden darf. Im allgemeinen wird ein Knopf, der das

Verlassen des Formulares ermöglicht, dieses Attribut tragen.

EXIT

Wird ein Knopf, den dieses Attribut schmückt, angeklickt, so
erhält das Programm die Kontrolle über das Formular zurück,
die zuvor beim AES lag (Details folgen noch).

EDITABLE

Dieses Objekt kann in irgendeiner Form vom Benutzer editiert
werden (bei Text der Fall).

RADIO-BUTTON

Radio-Buttons bestehen aus Gruppen von Knöpfen (mindestens

zwei Knöpfe sind notwendig), die in der gleichen Ebene liegen
müssen und eine ganz besondere Eigenschaft an den Tag legen:
Sobald ein Knopf aus dieser Gruppe angeklickt wird, wird der
zuvor invertierte (schwarze) Knopf wieder in normale Darstel-
lungsart gebracht. Es kann also nur jeweils ein Knopf aus der
ganze an Gruppe selektiert werden. |

 ——— GEM 313

LASTOB

Dieses Flag zeigt an, daB es sich um das letzte Element in der
Baumstruktur (sequentielle Liste) handelt. Je Baum ist nur ein

solches Objekt gestattet.

TOUCHEXIT

Dieses Flag sorgt dafiir, daB die Kontrolle an das Programm
(Application) zuriickgegeben wird, sobald sich der Mauszeiger
auf dem betreffenden Objekt befindet und die Maustaste ge-
driickt wird. Im Gegensatz zu EXIT braucht die Maustaste je-
doch nicht erst losgelassen zu werden, um die Kontrolle zu-

rückzugeben. |

HIDETREE

Ein mit diesem Attribut versehenes Objekt wird unsichtbar ge-
macht. Bei einer erneuten Darstellung dieser Objekte auf dem
Monitor sind sie nicht mehr im Formular sichtbar, sind aber

wohl noch vorhanden! Ein Löschen des Flags bewirkt, daß das
entsprechende Objekt ab sofort wieder sichtbar ist (nach Auf ruf
der Funktion OBJC_DRAW versteht sich!).

INDIRECT

Dieses Flag gibt an, daß die Objektspezifikation nicht der
tatsächliche Wert, sondern lediglich ein Zeiger auf diesen Wert
darstellt.

Objektstatus

Der Objektstatus bestimmt die Gestalt und die Darstellung eines
Objekts. Die Bedeutung der einzelnen Bits:

 314 Das groBe ST-BASIC-Buch ————

Bit Bedeutung

0 SELECTED
1 CROSSED
2 CHECKED
3 DISABLED
4 OUTLINED
5 SHADOWED

SELECTED

Ist Bit 0 gesetzt, so wird das Objekt als vorbelegt gekennzeich-
net, d.h. der Zustand des Objekts ist bereits aktiv. Auf diese
Weise können Objekte invers dargestellt werden, ehe Sie mit der
Maus angeklickt werden.

CROSSED

Dieses Flag kann nur bei ...BOX...-Objekten verwendet werden
und bewirkt, daß ein X in das Objekt gezeichnet wird.

CHECKED

In das Objekt wird ein kleines Häckchen (vgl. Menüleiste, ın der
Einträge als abgehakt gekennzeichnet werden können) gezeich-

net.

DISABLED

Das Objekt wird schwach gezeichnet, um anzuzeigen, daß der
Benutzer es ab sofort nicht mehr anwählen kann (bei Text und
in Menüleisten).

OUTLINED

Um das Objekt wird ein weiterer Rahmen gesetzt.

 ——— GEM 315

SHADOWED

Das Objekt wird an der rechten unteren Ecke mit einem Schat-
ten verziert.

Objektspezifikation

Die Objektspezifikation ist (für uns) immer dann interessant,
wenn ein Text- bzw. ein sonstiges Eingabeobjekt vorliegt. In
diesen Fällen enthält die Objektspezifikation einen Zeiger auf
eine objektspezifische Datenstruktur, die TEDINFO-Struktur
genannt wird. Für andere Objekttypen enthält sie entweder Zei-
ger auf verschiedenartige Datenstrukturen, die hier nicht weiter
interessieren sollen, oder sonstige Informationen über die Farbe
und die Dicke des Randes.

Die TEDINFO-Struktur

Diese Datenstruktur beinhaltet Informationen, die von GEM für

die Ein- und Ausgabe eines Textes benötigt werden. Sie findet
bei den Objekttypen

TEXT

BOXTEXT

FTEXT

FBOXTEXT

Verwendung, wobei ihre Adresse innerhalb des Objekteintrages
in der Objektspezifikation abgeholt werden kann. Da es sich bei
der Objektspezifikation um einen Long-Wert handelt, lautet der
Befehl zum Lesen der Adresse LPEEK(). Doch nun zum Aufbau
der TEDINFO-Struktur:

 316 Das große ST-BASIC-Buch ———

Offset Inhalt

+0 - te ptext

+4 te_ptmplt

+8 te_pvalid

+12 te_font

+14 nicht benutzt (reserviert)
+16 te_ just

+18 te_ color

+20 nicht benutzt (reserviert)
+22 te_thickness _
+24 te_txtlen

+26 te_tmplen

te_ptext

Beinhaltet einen Zeiger, der auf den auszugebenden Text ver-
weist (Adresse des Textes). Ist das erste Zeichen ein Klammer-
affe (@), so werden die nachfolgenden Zeichen als Leerzeichen
angesehen.

te_ptmplt

enthält die Adresse eines Textes, der als Schablone bzw. als Ein-

gabemaske fungiert. Eine Eingabeposition, die der Benutzer edi-

tieren können soll, muß das Zeichen "_ " tragen. An Stelle des
" " kann dann der Benutzer ein anderes Zeichen eingeben, wo-
bei die Auswahl der eingebbaren Zeichen durch te_pvalid
eingeschränkt werden kann, um. z.B. nur Großbuchstaben oder
Ziffern zuzulassen.

te_pvalid

Adresse eines Strings, der die Eingabe einschränkt, und somit
bestimmt, welche Zeichen bei der Eingabe zugelassen sind. Die
erlaubten Zeichen werden für jede Eingabeposition durch einen
Code bestimmt:

 —— GEM Ä 317

Code erlaubt sind

9 nur Ziffern

A GroBbuchstaben und Leerzeichen

a GroB- Kleinbuchstaben und Leerzeichen

N Ziffern, GroBbuchstaben und Leerzeichen

n Ziffern, GroB- Kleinbuchstaben und Leerzeichen

F TOS-Filenamen, sowie ’?’, ’*’, ’:’

p TOS-Filenamen, sowie ’?’, '*’, ’:’, ’\’

P TOS-Filenamen, sowie '\’, ’:’

X alle Zeichen

te_font

enthält die Nummer des Zeichensatzes, der verwendet werden

soll:

3 => normaler Zeichensatz

5 => verkleinerter Zeichensatz

te_just

gibt die Ausrichtung an, mit der der Text formatiert werden
soll:

0 => linksbündig

1 => rechtsbündig

2 => zentriert (Mitte)

te_color

bestimmt die Farbe, nach folgender Tabelle:

= A Farbe

weiß

schwarz

rot

grün

blau

cyan

gelb

magenta. N
O

M
D

IN
D

HM
©

318 Das große ST-BASIC-Buch

Wert Farbe

8 weiß

9 schwarz

10 hellrot

11 hellgrün

12 hellblau

13 hellcyan

14 hellgelb

15 hellmagenta

wobei folgende Bitmaske verwendet wird:

($) rrrr zzzz smmm ffff

Dabei bedeutet:

r: Randfarbe

z: Zeichenfarbe

s: Schreibmodus

0 => transparent

1 => deckend

m: Füllmodus

0 => keine Füllung

7 => deckende Füllung

1-6 => Füllstufen mit steigender Dichte

f: Füllfarbe

te_thickness

Legt die Dicke der Rechteckumrandung fest. Es gilt:

0

1-127

128-

kein Rand

Dicke des inneren Randes

Dicke des äußeren Randes, als negative Zahl

zu interpretieren: -1 bis -127.

 —— GEM — 319

te _txtlen

Enthalt die Lange des Strings, auf den te_ptext verweist. Da das

den String abschließende Nullbyte (CHR$(0)) mitgerechnet wird,
muß die Länge um eins größer als die tatsächliche Zeichenzahl

angegeben werden.

te_tmplen

enthält die Länge des Strings, auf den die in te_ptmplt abge-
legte Adresse verweist. Auch hier muß das Nullbyte am Strin-
gende mitgezählt werden.

Ein kleines Beispiel soll noch einmal die Funktion der ersten

drei Langworte verdeutlichen:

te_ptext zeige auf '1522'+CHR$(0)

te_ptmplt zeige auf 'Preis ÖS __.__'+CHR$(0)
te_pvalid zeige auf '9999'+CHR$(0)

so wird bei der Darstellung des Objektes der Text mit der Scha-
blone gemischt:

Preis ÖS 15.22

Vom Benutzer können lediglich Ziffern eingegeben werden, da

die zugelassenen Zeichen durch te_pvalid ("9999") auf Ziffern
eingeschränkt werden.

EDIT-Objekte

Mit diesem Wissen ausgestattet, werden wir zwei Prozeduren
entwickeln, die das Eintragen eines Strings in ein Objekt bzw.
das Auslesen eines solchen ermöglichen. Dabei ist natürlich zu
beachten, daß die Routinen nur auf die Objekte TEXT, BOX-
TEXT, FTEXT und schließlich FBOXTEXT angewendet wer-
den, da nur bei ihnen die Objektspezifikation auf eine

TEDINFO-Struktur verweist. Als Übergabeparameter soll einmal

 320 Das große ST-BASIC-Buch ———

die Nummer des Objekts, ın das der String geschrieben bzw. aus

dem der String abgeholt werden soll sowie der eigentliche String
angegeben werden:

Put_Text(Objektnummer, "Text")

zum Schreiben eines Textes, sowie

Get_Text(Objektnummer, Variable$)

zum Lesen eines (eingegeben) Textes, der im Rückgabeparameter
Variable$ zu finden sein wird.

Wie kommt man nun an den Text bzw. an dessen Adresse heran?
Dazu wird zuerst einmal die Adresse des Eintrages in der Ob-
jektliste für das gewünschte Objekt ermittelt. Dies sollte keiner-
lei Schwierigkeiten bereiten (wurde ja schon oft genug vorge-
führt!), da jeder Eintrag 24 Byte umfaßt, und die Adresse des
Wurzelobjekts in der Variablen Tree gespeichert sein sollte.
Diese Adresse ermittelt die Funktion RSRC_GADDR(0,0,Tree).

Die Formel zur Adreßermittlung lautet dann:

Adresse = Tree + 24 * Objektnummer

Zu der auf diese Weise ermittelten Adresse muß noch der Offset
für die Objektspezifikation addiert werden. Dieser Offset beträgt
- wenn Sie noch einmal um ein paar Seiten zurückblättern - 12.
In der Objektspezifikation (einem Lang-Wert), findet sich die
Adresse der Tedinfostruktur. Mit LPEEK() kann diese ermittelt
werden:

Tedinfo= LPEEK(Adresse+12)

wobei Adresse mit obiger Formel ermittelt wurde. Die ersten
vier Byte (wieder ein Lang-Wert) der TEDINFO-Struktur ver-
weist auf die Adresse, an der der eigentliche Text zu finden ist.

Text_Adresse= LPEEK(Tedinfo + 0)

 —— GEM - 321

wobei (strenggenommen) der Offset von 0 hinzuaddiert wurde,
der jedoch völlig bedeutungslos ist, und deshalb auch weggelas-
sen werden kann.

Jetzt erst findet sich in der Variablen Text_Adresse die eigent-
liche Adresse des Textes. Von dort kann dieser nun abgeholt
werden. Mit PEEK() wird Zeichen für Zeichen gelesen. Als Ab-
bruchkriterium für unsere Schleife (in der Peek() steht) dient das
Nullbyte, das nach guter alter C-Konvention und GEM-Manier
einen String abzuschließen hat. Das Nullbyte kann wahlweise an
den (ST-BASIC-)String gehängt, aber auch weggelassen werden.
Für die Stringmanipulation eher störend, wird das Nullbyte doch
immer dann benötigt, wenn dieser String in irgendeiner Form an
das Betriebssystem übergeben werden soll. Die folgende Schleife
erhöht einen Schleifenzähler T% solange, bis das Nullbyte er-
reicht ist, hängt dieses Nullbyte jedoch nicht an den String:

Text$=""t enthält den Text

T%= 0' Die Zählvariable

U Schleife wiederholen,. solange das Nullbyte

"noch nicht erreicht ist (abweisende Schleife!)

WHILE PEEK(Text_Adresse+T%) <> 0

Text$=Text$+ CHR$C PEEK(Text_Adresse+T%))

T%=T%+1 |

WEND

Damit der zeichenweise ermittelte String an den aufrufenden
Programmteil zurückgegeben wird, definieren wir den Parameter
als Rückgabewert durch ein vorangestelltes R:

DEF PROC Get_Text(Nummer%, R Text$)

LOCAL Adr=Tree+24*Nummer%

LOCAL Tedinfo= LPEEK(Adr+12)
LOCAL Text_Adr= LPEEK(Tedinfo)

LOCAL T%=0 |

hier steht die Schleife von oben

RETURN

 322 — Das groBe ST-BASIC-Buch ————

Ähnlich aufbauen müssen wir auch die zweite Procedure, die

einen Text in ein Objekt eintragen soll. In diesem Fall muß je-
doch (falls noch nicht vorhanden) ein Nullbyte an das Stringende
gehängt werden. Dieses Nullbyte soll bereits in der als Parameter
übergebenen Zeichenkette enthalten sein.

Tip: Fehlt das Nullbyte am Stringende, können Sie mit einer
an Sicherheit grenzenden Wahrscheinlichkeit mit einen
Systemabsturz rechnen. Um dies zu verhindern, kann

eine Sicherheitsabfrage in die Procedure integriert wer-
den, die - bei Bedarf - ein Nullbyte an das Stringende
hängt:

IF RIGHT$CText$,1) <> CHR$(O)

Text$=Text$+ CHR$(O)

ENDIF

hier folgt dann die Schleife zum Eintragen der

Zeichenkette in das gewünschte Objekt

Das Schreiben eines Strings in das Objekt verläuft analog, im
Gegensatz zum Lesen wird hier Zeichen für Zeichen in eine
Zahl (ASCII-Code) konvertiert und mit POKE in die ab Adresse
folgenden Speicherstellen abgelegt:

DEF PROC Put_Text(Nummer%, Text$)

LOCAL Adr=Tree+24*Nummer%

LOCAL Tedinfo= LPEEK(Adr+12)

LOCAL Text_Adr= LPEEK(Tedinfo)

LOCAL T%=0

' solange das Stringende noch nicht erreicht ist

' Zeichen fiir Zeichen mit POKE schreiben

WHILE T% < LEN(Text$)

POKE Text_Adr+T%, ASC(MID$(Text$,T%+1,1))

T%=T%+1

WEND

RETURN

 —— GEM Ä 323

Damit Sie nicht eine böse Überraschung durch einem Systemab-
sturz erleben, darf die so eingetragene Zeichenkette keinesfalls
länger als der im RCS für diesen Eintrag vorbelegte String sein,
da ansonsten unter Umständen wichtige Daten im RCS-File ver-
nichtet werden können!

Formularverwaltung

Was bisher nur kurz angerissen wurde und dann einer Unmenge
Theorie weichen mußte, soll in diesem Kapitel zu seinem Recht
kommen: die Formularverwaltung, d.h. jenes "Schema F", nach
dem die Verwaltung von Formularen abgewickelt wird. Hier
noch einmal - zur Erinnerung - die einzelnen Schritte:

l. Das auf Diskette abgelegte RCS-File wird geladen. Dazu
dient die Routine RSRC_ LOAD, die im AES implemen-

tiert ist.

2. Die Adresse des gerade geladenen Objektbaumes wird mit
einem Aufruf von RSRC_GADDR ermittelt.

3. Optional, also wahlweise, kann jetzt der Aufruf von
FORM_CENTER erfolgen, der dafiir Sorge trägt, daß die
Koordinaten des Formulars so bestimmt werden, daß es

sich in der Mitte des Bildschirms befindet.

4, FORM_DIAL sorgt. dafür, daß Bildschirmspeicherplatz

reserviert wird. |

5. _FORM_DIAL wird ein zweites Mal aufgerufen. Im Un-
terschied zum ersten Aufruf bewirkt ein geänderter Para-
meter, daß ein sich ausdehnendes Rechteck auf den Bild-

schirm gezeichnet wird (rein optischer Effekt!).

6. Jetzt kann das Formular mit OBJC_DRAW gezeichnet

werden.

324 Das große ST-BASIC-Buch ——

Nachdem das Formular vollständig auf dem Bildschirm
dargestellt ist, übergibt man die Kontrolle über das ganze
Formular an das AES mit der Funktion FORM_DO. Erst
wenn ein mit dem Attribut EXIT, TOUCHEXIT oder DE-

FAULT tituliertes Objekt durch ein Betätigen von Return
oder Anklicken mit der Maus selektiert wird, gibt das AES

die Kontrolle an die Application zurück, dıe nun zu ent-

scheiden hat, was weiter geschehen soll. Dies ist möglich,

indem der Code, d.h. die Objektnummer des zum Abbruch
führenden Objekts zurückgegeben wird, die von der Ap-
plication genau zu analisieren ist.

Hat das Formular seine Pflicht und Schuldigkeit getan,
können die ersten Schritte zur Demontage des selbigen an-
laufen: FORM_DIAL sorgt dafür, daß der Eindruck eines
kleiner werdenden Rechtecks auf dem Monitor erscheint.

Schließlich wird mit FORM_DIAL noch der beim ersten
Aufruf der Funktion occupierte Speicherbereich für den
Bildschirm freigegeben. Da GEM keinerlei Restauration
der. vom Formular während seines Aufrufes bedeckten
Fläche vorsieht, muß die Application den Bildschirm neu
aufbauen. Dies kann durch ein Zwischenspeichern des be-

troffenen Bildschirmbereichs mittels BITBLT (Bit-Blit)
geschehen, der nach Beendigung der Arbeit mit dem For-
mular wieder auf den Bildschirm gebracht wird.

Die zur Formularverwaltung benötigten Routinen im einzelnen:

Rsrc_Load(Re_Lname$,Re_Lreturn)

Diese Funktion lädt eine Resource-Datei in den Speicher des

Computers, wobei in der Variablen Re_Lname$ der Name der
Resourcedatei stehen muß. In der Variablen Re_Lreturn teilt
der Computer mit, ob der Ladevorgang erfolgreich durchgeführt
werden konnte. Enthält diese Variable den Wert 0, so ist ein
Fehler beim Laden der Datei aufgetreten, konnte die Datei
ordnungsgemäß geladen werden, so enthält die Variable eine |.

 —— GEM 325

Es empfiehlt sich, nach dem Funktionsaufruf erst einmal die
Variable zu überprüfen, und wenn die Dateı nicht ordnungsge-
mäß geladen werden konnte, das Programm zu beeenden:

Rsrc_Load(Name$,Ret)

IF RET = O THEN

' Fehlermeldung ausgeben

FORM_ALERT(1, [31 [Fatal-Error] [Sorry]")
! GEM wieder abmelden!

Appl_Exit

END

ENDIF

Rsrc_Gaddr(Re_Gtype,Re_Gindex,Re_Gaddr)

Diese Funktion - aber das wissen Sie ja bereits - ermittelt die
Adresse einer Datenstruktur bzw. eines Objekts im Speicher.
Re_Gtype kennzeichnet die Art der Struktur, die gesucht wer-
den soll. Es bedeuten dabei:

0 => Baumstruktur

1 => Objekt

Unter Re Gindex wird die Nummer des gesuchten Objekts
übergeben. Die Rückantwort des Funktionsaufrufs ist die
Adresse der gesuchten Objektstruktur in Re_Gaddr, die für ein
Wurzelobjekt üblicherweise in der Variablen Tree gespeichert
wird. Mit der Adresse des Wurzeleintrages (Root) können dann
die einzelnen Objektstrukturen errechnet werden.

Form_Center(Tree,X_Obj,Y Obj,W Obj,H_Obj)

Berechnet die Koordinaten für ein Formular, damit die Dialog-
box genau in der Bildschirmmitte erscheint. Die Adresse des
Objektbaumes ist in der Variablen Tree anzugeben, als

Rückantwort liefert die Funktion:

 326 | Das große ST-BASIC-Buch ———

X_Obj X-Koordinate der linken oberen Ecke,

Y_Obj Y_Koordinate der linken oberen Ecke,

W Obj enthält die Breite der Dialogbox,

H_ Obj enthält die Höhe der Dialogbox.

Form_Dial(Flag,X_Obj,Y_Obj,W Obj,H_Obj)

Diese Funktion ist ein wahres Multitalent, und erledigt gleich
vier verschiedene Arbeiten, die sich nach dem Inhalt von Flag
richten:

0 => Bildschirmspeicherplatz reservieren,

1 => ausdehnendes Rechteck zeichnen,

2 => schrumpfendes Rechteck zeichnen,

3 => Speicherplatz wieder freigeben.

Die übrigen vier Parameter besitzen die gleichen Bedeutungen,
wie in obiger Funktion, nämlich die Koordinaten der linken
oberen Ecke, sowie die Breite und Höhe der Dialogbox.

Objc_Draw(Start,Tiefe,X Obj,Y_Obj,W_Obj,H_Obj, Tree)

Stellt ein Formular auf dem Bildschirm dar, wobei

Start den Index des ersten zu zeichnenden Objekts,

Tiefe die Anzahl der zu zeichnenden Ebenen (max: 8),

X__Obj die X_Koordinate der linken oberen Ecke,

Y_Obj die Y_Koordinate der linken oberen Ecke,

W_Obj die Breite des Formulars,

H_Obj die Höhe des Formulars,

Tree die Adresse der Baumstruktur,

enthält. Dabei ist zu beachten, daß Bildschirmbereiche, die

durch den Aufbau des Formulars überschrieben werden, von
GEM nicht selbstständig gerettet werden! Dies muß vom Pro-
grammierer selbst in die Hand genommen werden.

 —— GEM _ 327

Form Do(Start, Tree,Return)

Mit dem Aufruf dieser Funktion wird die Kontrolle des Formu-
lars der Application entzogen und an AES übergeben. Start ent-

hält den Index des Objekts, auf das der Cursor (senkrechter
Strich innerhalb eines Eingabefeldes!) positioniert werden soll.

Enthält das Formular keine editierbaren Textfelder, muß der
Wert auf Null gesetzt werden. Tree ist wieder die Adresse un-
seres Objektbaumes, in der Variablen Return wird die Nummer
(Index) des Objekts zurückgeliefert, das den Exit bewirkte.
Dementsprechend kann dann innerhalb des Programms fortge-

fahren werden. |

Vorsicht: Ehe diese Funktion aufgerufen wird, sollten Sie sich
vergewissern, ob es innerhalb des Objektbaumes
mindestens ein Objekt gibt, mit dem die Kontrolle
an die Application zurückgegeben werden kann, das
also mit einem der drei Attribute EXIT,

TOUCHEXIT oder DEFAULT geschmückt ist. An-
dernfalls gibt es keine Möglichkeit, dem AES die
Kontrolle über das Formular wieder zu entziehen
(peinlich, denn dann hilft nur noch ein Ausschalten
des Computers, und das Programm im Speicher ist

futsch, es sei denn Sie haben es in weiser Voraus-
sicht zuvor abgespeichert).

Objekt-Attribute abfragen und setzen

Ehe AES die Kontrolle nach einem Aufruf von FORM_DO
wieder an die Applikation zurückgibt, kann der Benutzer Text
in Edit-Felder eingeben, er kann verschiedene Objekte anklic-
ken (z.B. Radio-Boxen) und auf diese Weise verschiedene Ein-
stellungen vornehmen. Es liegt nun am Programm, nach der Ak-

tivierung eines Exit-Objekts die verschiedenen Einstellungen zu
überprüfen und die getätigten Eingaben abzuholen, ehe das
Formular wieder in der Versenkung verschwindet.

Solange sämtliche Boxen, die angeklickt werden können das zie-
rende Attribut eines irgendwie gearteten Exit tragen, kann eine
weitergehende Überprüfung entfallen. Trotzdem müssen alle se-

 328 Das groBe ST-BASIC-Buch ————

lektierten (schwarzen) Objekte wieder in den Ausgangszustand
gebracht werden, damit sie bei einem erneuten Aufruf des For-
mulars wieder angeklickt werden können und nicht schon von
vornherein selektiert sind. (Wird z.B. das Objekt Fertig zum
Verlassen des Formulars angeklickt, so führt dies unweigerlich
zu einem Invertieren der Box. Würde das Formular erneut auf-
gerufen, so bliebe das zuvor selektierte Objekt dank des gesetz-

ten Bits Null (= SELECTED) im Objektstatus schwarz, und das
Formular könnte nur durch zweimaliges Anklicken erneut ver-
lassen werden.) Demzufolge müssen alle Objekte nach einem
Aufruf des Formulars wieder restauriert und in den Ausgangs-
zustand gebracht werden. Die Theorie dazu wurde schon einmal
an anderer Stelle in diesem Buch dargestellt. Aus diesem Grund
kann ich hier gleich auf die Praxis eingehen:

Ein gesetztes Bit 0 im Objektstatus sorgt dafür, daß das ent-
sprechende Objekt im Formular invertiert dargestellt wird.
Möchte man ein solches Objekt wieder in den Ausgangszustand
bringen (deselektieren), muß lediglich dieses verflixte Bit aus-
maskiert werden. Zum Ausmaskieren eines Bits dient die logi-
sche Verknüpfung AND. Da die restlichen Bits nicht angetastet
werden dürfen, setzen wir sie in der Maske einfach auf den
Wert 1, nur das erste Bit enthält eine 0 und trägt dafür Sorge,

daß als Ergebnis der Undierung dieses Bit stets den Wert 0 be-
sitzt:

Irgendetwas AND %11111110

setzt das erste Bit (Bit 0) in jedem Fall auf den Wert 0, die üb-
rige Bitmaske bleibt dabei unverändert. Der Übersichtlichkeit
halber wandelt man die Dualzahl noch in das uns besser ver-

traute Dezimalsystem und erhält den Wert 254.

Genau umgekehrt verhält es sich, wenn ein Objekt von der Ap-

plikation aus den Status SELECTED erhalten soll. In diesem Fall
muß dieses Bit - ungeachtet seines bisherigen Inhalts - auf den
Wert 1 gesetzt werden. Mit einer Undierung gelangt man dabei
jedoch nicht zum Ziel, vielmehr heißt es logisch Odieren.

Irgendetwas OR %00000001

— GEM 329

Vorsicht: Während bei AND in der Maske nur Bit 0 nicht ge-
setzt sein durfte, würde dies bei OR zu einer mit-

telschweren Katastrophe führen, da alle Bits, nur

nicht das gewünschte gesetzt würden. Also müssen
die Bits umgedreht, d.h. negiert werden, ehe die
Oder-Verknüpfung iher Pflicht tun darf.

Nach diesen Vorüberlegungen kann gezielt der Objektstatus ei-
nes Eintrages im Formular manipuliert werden. Und da dies
häufiger geschehen muß, schreibt man am besten gleich eine
kleine Procedure, die diese Aufgabe für uns erledigt. Über ein
Flag als Parameter wird ihr mitgeteilt, ob das entsprechende

Objekt selektiert oder deselektiert werden soll:

1 => Objekt selektieren

0 => Objekt deselektieren

Der Parameter Nummer% enthält wieder die Objektnummer des
betreffenden Objekts in der Liste.

DEF PROC Select(Nummer%, Flag%)

LOCAL Adr%L=TreeX%L+24*Nummer%

IF Flag4=1 THEN

LOCAL Ob State“L= WPEEK(Adr%L+10) OR 1

ELSE .

LOCAL Ob_State%L= WPEEK(Adr%L+10) AND 254

ENDIF

Objc_Change(Nummer%,Ob_State%L ‚Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

RETURN

Nachdem die Adresse des Objektstatus für das gewünschte Ob-
jekt berechnet ist, besorgt sich das Programm den Objektstatus
mittels WPEEK() und kümmert sich um das Bit 0, indem es
einmal gesetzt (OR) und einmal ausmaskiert wird (AND). Das
Ergebnis wird in der lokalen Variablen Ob_ State%L zwischen-
gespeichert. Doch damit ist erst die halbe Arbeit getan. Schließ-
lich muß der neue Status noch in die Objektstruktur eingetragen
werden. Eine Funktion des GEM nimmt uns auch diese Arbeit
ab. Sıe lautet:

Objc_Change(Index,Neuer_Status,X_Obj,Y_Obj,W_Obj,H_Obj, Tree)

 330 Das große ST-BASIC-Buch ——

Wobei unter Index die Nummer des Objekts einzusetzen ist,

dessen Status in Neuer _Status geändert werden soll. Die restli-
chen Parameter geben die Ausmaße des Begrenzungsrechtecks,
innerhalb dessen eine Änderung durchgeführt werden soll, sowie

das Wurzelobjekt Tree an. Es existiert noch eine zweite Variante
dieser Funktion, die bei ihrem Aufruf keinerlei Begrenzungsko-
ordinaten benötigt, wohl aber das Wurzelobjekt:

Objc_Change(Index,Neuer_Status,Tree)

ändert den Status des Objekts mit der Nummer Index in
Neuen_ Status um.

Anhand eines zweiten Beispiels möchte ich Ihnen noch das En-

ablen und Disablen eines Objekts zeigen. Unter diesen beiden
Begriffen versteht man das Ver- und Entriegeln eines Objekts,
das dann ab sofort nicht mehr mit der Maus selektiert werden
kann. Gleichzeitig soll durch eine hellere Darstellung des Objek-
tinhaltes kenntlich gemacht werden, daß dieses Objekt mit der
Maus nicht (mehr) selektiert werden kann.

Fir diese Operation sind sowohl der Objektstatus als auch die
einzelnen Objektflags von Bedeutung. Der Status ist nämlich für
das Flag Disabled (Bit 3) verantwortlich, wahrend sich in den
Objektflags die Bits befinden, die ein Anwahlen und Verlassen

eines Objekts gestatten.

DEF PROC Enable(NuZ, Flag%)

LOCAL Adr=Tree+24*Nu%

IF Flag%=1 THEN

WPOKE Adr+8, WPEEK(Adr+8) OR 1

Objc_Change(Nu%, WPEEK(Adr+10) AND

247,Xobj , Yobj ,Wobj, Hobj, Tree)

ELSE

WPOKE Adr+8, WPEEK(Adr+8) AND 254

Objc_Change(Nu%, WPEEK(Adr+10) OR 8,Xobj, Yobj,Wobj ,Hobj, Tree)
ENDIF |
RETURN

Zuerst einmal zu den Objektflags. Bit 0 ist innerhalb der Flags
dafiir verantwortlich, daB ein Objekt mit der Maus selektiert
werden kann. Ein Ausmaskieren dieses Bits bewirkt, daß dieses

 ——— GEM 331

ab sofort nicht mehr selektiert werden kann. Andererseits ver-

hilft ein gesetztes Bit dem Objekt zur Selektierbarkeit mit dem
Mauspfeil. Mit

WPOKE Adr+8, WPEEK(Adr+8) OR 1 [AND 254]

werden die Objektflags gelesen, logisch verknüpft und gleich
wieder zurückgeschrieben. Der nächte Schritt hat dem Objekt-
status zu gelten. Dort wird es noch einmal um eine Kleinigkeit
komplizierter:

Das relevante Bit ist hier Bit 3. Ein gesetztes Bit 3 verkörpert
den Wert 8 (2*3). Möchte man andererseits alle Bits bis auf das
dritte Bit setzen, muß die Zahl 8 negiert werden. Diese Negation
bewirkt ein Umdrehen der Bitwerte und somit die Zahl 247
(255-2*3). Den so erhaltenen neuen Objektstaus dürfen wir wie-

der getrost der Funktion OBJC_CHANGE anvertrauen, sie wird
ein weiters Mal dafür Sorge tragen, daß der Objektstatus ent-
sprechend geändert wird.

Ruft man also die Funktion Enable() auf, wird das angegebene
Objekt je nach dem Zustand des Flags Ä

0 => Disabled

1 => Enabled

Gleichzeitig bewirkt ein Aufruf dieser Funktion, daß der Text,
den das Objekt beinhaltet, heller dargestellt wird, um optisch zu

kennzeichnen, daß dieses Objekt nicht angewählt werden kann.
Eine etwas abgewandelte Variante dieser Funktion werden wir
auch in der eigenen File-Selektor-Box verwenden. Dort wird sie
uns gute Dienste beim Verriegeln der Umschaltknöpfe von nicht

angeschlossenen Laufwerken leisten. Dennoch müssen ein paar

Kleinigkeiten geändert werden, um eine universelle Einsetzbar-
keit für alle Bereiche der Selektor-Box zu gewährleisten.

332 Das groBe ST-BASIC-Buch ————

6.3 Schieberegler (Slider)

GEM erlaubt die Benutzung von Schiebereglern, sogenannten
Slidern. Ein solcher Slider besteht zunächst aus zwei Kompo-
nenten: einem übergeordneten Boxobjekt (Parent), innerhalb
dessen sich ein kleineres Boxobjekt (Child) befindet, das dann
innerhalb des übergeordneten Objekt, verschoben werden kann.

Der eigentliche Schieber muß dabei das Attrıbut TOUCHEXIT
tragen, auch ein TOUCHEXIT für das Parent-Objekt ist mit
Sicherheit nicht verkehrt. Würde dies nämlich unterlassen, ließe

sich..der Schieber nicht einen Deut bewegen. Sind beide Objekte
- Vater und Kind - erst einmal konstruiert, stellt der Rest der

Slider-Programmierung eine reine Formsache dar.

Die Funktion Graf _Slidebox, die im AES für unsere Zwecke
bereitgestellt wird, gestattet das Verschieben eines Objekts in-
nerhalb eines anderen. Die innere Box kann dabei solange ver-

schoben werden, wie die Maustaste gedrückt bleibt. Als Para-
meter erwartet die Funktion:

Graf_Slidebox(Parent,Child,Richtung, Position)

Parent: Index des übergeordneten Objekts

Child: Index des untergeordneten Objekts

Richtung: Gibt die erlaubte Verschieberichtung an:

| 0 => waagrecht

1 => senkrecht

Position: Rückantwort, gibt die Position des verschieb-

baren Rechtecks relativ zum übergeordneten
Objekt an. Ein Rückgabewert von 0 entspricht
ganz links (bzw. oben) ein Wert von 1000 ganz
rechts (unten).

Da die Position relativ gemeldet wird, muß sie erst noch in das
richtige Verhältnis umgerechnet werden. Dies wird bewerkstel-
ligt, indem man zuerst einmal die Breite der inneren Box (des
eigentlichen Schiebers) von der Breite der äußeren Box subtra-

 —— GEM 333

hiert. Das so gewonnene Ergebnis muß noch mit dem Rückgabe-
parameter (Position) multipliziert und anschließend durch 1000
dividiert werden. Daraus läßt sich dann folgende Formel zusam-
menstellen:

Position = (Außenbreite- Innenbreite)*Position/1000

Der Schieberegler wird von GEM verwaltet. Worum wir uns je-
doch selbst kümmern müssen, ist die richtige Größe des Reglers
innerhalb der Leiste. Da die Reglergröße und damit die mögli-
che Strecke, um die der Regler bewegt werden können soll, stark
davon abhängig ist, wie viele Einträge im Inhaltsverzeichnis ei-
ner Diskette vorhanden sind, müssen diese Werte als Grundlage
für die Berechnung der Größe des Schiebereglers herangezogen

werden: |

- Können alle Einträge angezeigt werden, so soll der Regler
die Größe des Vaterobjekts (Schiebestrecke) erhalten, um ein
(sinnloses) Verschieben des Reglers zu verhindern.

- Je mehr Dateien auf der Diskette vorhanden sind, desto klei-

ner werden die Ausmaße des Sliders, damit er einen ent-
sprechend größeren Aktionsradius eingeräumt bekommt.

Ferner muß noch die Breite des Reglers der Breite des Vater-
Objekts angepaßt werden, da dies vom RCS aus nur bedingt
möglich ist. Alle diese Daten finden sich im Eintrag des ent-
sprechenden Objekts in der Objektliste und können manipuliert

werden. Als praktisches Beispiel sei hier auf die eigene File-Se-

lector-Box verwiesen, in der ein Slider nach obigen Überlegun-
gen verwaltet wird.

6.4 Pull-Down-Menüs

Längst hat man sich an jene Menüleisten gewöhnt, die bei einer
Berührung mit dem Mauspfeil herunterklappen und ihre ver-
schiedenen Funktionen zur Auswahl stellen. Auch sie sind eine
Errungenschaft des GEM und können somit mit einem Resource
Construction Set erstellt werden.

334 Das große ST-BASIC-Buch ———

Der erste Titel (von links), der üblicherweise als Desk bezeichnet
wird, birgt die verschiedenen, beim Rechnerstart oder nach ei-

nem Reset gebooteten Accessories. Der erste Eintrag ist jedoch

für die Infomeldung des gerade aktiven Programmes reserviert.
Eine Menüleiste zu konstruieren ist relativ trivial, da sie aus nur

wenigen Teilen zusammengebastelt wird:

TITLE Eintrag in der Menüleiste

ENTRY Eintrag innerhalb des Pull-Down-Menüs

Ferner steht noch eine getrichelte Linie, die zum Abtrennen der
einzelnen Einträge untereinander dient und nicht angewählt
werden kann, und eine Box, die als Platzhalter für einen späte-

ren Eintrag (während des Programmlaufes) zur Verfügung steht.
Um eine neue Zeile in das Menü einzufügen, muß zuerst einmal
der Rahmen entsprechend vergrößert werden. In diesen werden

dann die gewünschten Teile transportiert.

Ferner sollte - damit ein Häkchen vor einem Menü-Eintrag dar-
gestellt werden kann - mindestens ein, besser (die gängige Me-
thode) sind zwei Leerzeichen, vor jeden Eintrag gesetzt werden.
Anhand eines keinen Demoprogrammes möchte ich Ihnen erklä-

ren, wie solche Menüleisten in eigenen Programmen eingesetzt
werden können.

Laden Sie zunächst Ihr Resource Construction Set und bauen
eine Menü-Baumstruktur nach folgender Rezeptur zusammen:
Draggen Sie zuerst das Icon Menu in das Arbeitsfenster und
nennen die neue Baumstruktur Leiste. Der erste Eintrag im er-
sten Menüpunkt unter Desk soll Info getauft werden. Klicken
Sie dazu einmal auf DESK, worauf sıch das dazugehörige Un-
termenü Öffnen sollte. Sie finden darın die Einträge Your mes-
sage here (Ihre Mitteilung hier) und Desk Accessory 1-6. DESK
entspricht dabei der Objektart TITLE, während ein Eintrag
(Your message here) die Objektart ENTRY benutzt.

Öffnen Sie nun das Objekt Your Message here mit einem Dop-
pelklick und taufen es in Info um. Die ersten beiden Zeichen

sollten wie gesagt stets aus Leerzeichen bestehen. Einen Namen

müssen wir unserem Eintrag natürlich auch noch verpassen:

 —— GEM : 335

MINFO. AnschlieBend benennen Sie noch FILE nach der glei-
chen Methode in Datei um. Wir sind schlieBlich in Deutschland!
Wenn Sie nun das Untermenü des neugeschaffenen Menüpunktes

Datei ansehen, werden Sie feststellen, daß bisher lediglich der
Eintrag Quit darin vorhanden ist.

Damit weitere Einträge in das Untermenü aufgenommen werden

können, muß zuerst einmal die Box, die dafür viel zu klein ist,

entsprechend vergrößert werden. Mit einem Mausklick auf die
rechte untere Ecke müßte dies gleich bewerkstelligt sein. Von
wegen! Sie erwischen nämlich bei der ganzen Aktion stets die
rechte untere Ecke des Eintrages. Ein Taschenspieler-Trick hilft
uns aus der Patsche: Verkleinern Sie zuerst die Box des Menü-
Eintrages, dann kann die eigentliche Box problemlos vergrößert
werden. Den bereits vorhandenen Eintrag taufen Sie nun in la-
den um, und geben ihm den Namen Mload. Anschließend drag-
gen Sie die restlichen Untermenüs (Objekt ENTRY im Objekt-
fenster verwenden) nach folgender Abbildung in das Untermenü.

Fertig!

Der Aufbau der Nenllleiste

Mload Minfo —— Info
speichern Msave

Accessory 1
Accessory 2 Haken Mhaken
Accessory $
Accessory 4
Accessory 5
Accessory 6

Mquit

Abb. 6.5: Die Meniileiste

336 Das groBe ST-BASIC-Buch ———_

Sobald Sie eine komplette Menileiste mit dem RCS erstellt, und

sämtlichen Einträge (Entry) benannt haben, speichern Sie diese

Datei auf Diskette ab. Von dort aus kann sie dann wieder in den
Computer geladen werden. Zum Laden einer Resource-Datei
verwendet man den altbekannten Befehl

Rsrc_Load(Datei$,Antwort)

Dieser darf jedoch erst angewendet werden, wenn die Applica-

tion beim GEM mittels

Appl_Init

angemeldet wurde. Die fast schon zum Einleitungszerimoniell ei-
nes GEM-Programmes gehörende Abfrage, ob die RCS-Datei
auch korrekt geladen werden konnte, sollte ebenfalls nicht ver-
gessen werden. Jetzt erst kommen die eigentlichen Befehle zur
Verwaltung der Menüleiste: Ä |

Damit eine Menüleiste dargestellt werden kann, benötigt die be-
treffende Funktion einen Zeiger auf eine Baumstruktur, das
Wurzelobjekt der Menüleiste, das hier ausnahmsweise nicht Tree,

sondern Menu_Adr tituliert werden soll. Die Funktion, die fir
uns diese Adresse besorgt, sollte Ihnen bereits aus dem zweiten

Kapitel bestens vertraut sein:

Rsrc_Gaddr()

So, die Adresse der Baumstruktur hätten wir, was fehlt ist noch

die Routine, die unsere Menüleiste auf den Monitor bringt. Sie
lautet: |

Menu_Bar(Menu_Adr)

Jetzt wird es ein wenig komplizierter. Zur Verwaltung eines
Formulares sieht GEM die im AES implementierte Routine
FORM_DO vor, zur Verwaltung von Menüleisten ist diese
Funktion jedoch nicht zu gebrauchen. Vielmehr existieren im
Betriebssystem - genauer im GEM - des Atari ST bestimmte
Funktionen, die warten, bis ein bestimmtes Ereignis (Event) ein-
getreten ist. Sobald dies der Fall ist, wird der Application mit-

 —— GEM 337

geteilt, welches Ereignis eingetreten ist, die dann daraus ihre
Folgerungen zu ziehen hat. Wie gesagt, es stehen eine ganze
Menge verschiedener Funktionen zur Verfügung, die auf das
Eintreten bestimmter Ereignisse warten. Zur Verwaltung von
Menüleisten wird eine Event-Funktion aus dieser Sammlung
verwendet, die eine Nachricht in Stringform hinterläßt, welches

Ereignis gerade eingetreten ist. Sie lautet:

Evnt_ Mesag(Nachricht$)

Ist ein Ereignis aufgetreten, so hinterläßt das AES eine entspre-
chende Nachricht im Rückgabeparameter Nachricht$ (Message
Pipe). Dieser hat bei einem Menü-Ereignis folgenden Aufbau:

Byte Inhalt

1+2 Wert ’10’ als Identifikationsnummer für

ein Menü-Ereignis (Mn_ Selected)
7+8 Objektnummer der Meniititels

9+10 Objektnummer des angewählten Eintrages

Der Einfachheit halber wandeln wir nach dem Vorliegen des

Ereignisses die Nachrichtenzeichenkette in ein Array, das die
einzelnen Punkte der Message festhält. Das Umwandeln ıst kein
Problem, da das Format der Nachricht in einer wie für CVI()
geschaffenen Form vorliegt. Mit einer FOR...NEXT-Schleife
können wir die jeweils zwei Byte in Anspruch nehmenden Da-
tenpakete in einen Integerwert wandeln: Ä

FOR T%= 0 TO 4

Ereignis(T%)= CVIC MID$(Nachricht$,T%*2+1,2))

NEXT T%

Jetzt geht es ans Vergleichen! Zuerst ist einmal zu überprüfen,
ob überhaupt ein Menü-Ereignis vorliegt, da die Funktion auch
noch andere Ereignisse auswerten kann. Als Identifikation eines
solchen Events dient der Wert 10, der im ersten Eintrag (Index
0) des Ereignis-Arrys festgehalten wird: |

IF Ereignis(0) = 10 THEN (Meniereignis!)

 338 Das große ST-BASIC-Buch -————

Steht zweifelsfrei fest, daB es sich um das gewiinschte Ereignis
handelt, können die einzelnen Menü-Einträge abgefragt werden.
Die Objektnummer des angeklickten Eintrages steht ebenfalls im
Ereignisarray, jedoch an Position 5 (Index 4). Für die einzelnen
Vergleiche empfiehlt es sich wieder die vom RCS gelieferte
Header-Datei in das Programm einzubinden und anschließend
die Variablennamen zur Abfrage heranzuziehen:

IF Ereignis(0) = 10 THEN

IF Ereignis(4) = Minfo THEN

<Reaktion auf dieses Ereignis>

<z.B. Sprung in ein Unterprogramm>

ENDIF

IF Ereignis(4) = Mquit THEN

Da der Eintrag in der Menüleiste nach einem erfolgten Menü-
Aufruf selektiert bleibt, muß er von uns noch zurückgesetzt
werden. Auch dazu existiert in ST-BASIC ein GEM-Aufruf:

Menu_Tnormal (Objektnummer , 1)

versetzt den entsprechenden Titel wieder in einen nicht selek-
tierten Zustand. Die Objektnummer des zum aufgerufenen Ein-
trag gehörenden Titels steht im Ereignisarray an vierter Position
(Index 3):

Menu_Tnormal(Ereignis(3),1)

Die Verwaltung mitsamt der Menü-Auswahl wird wieder in eine
Schleife eingebunden, damit auch mehrmalige Menü-Aufrufe
möglich sind. Da es sich um eine nichtabweisende Schleife han-
deln muß (zumindest ein Menü-Aufruf muß ja gestattet sein),
verwendet man dazu die REPEAT...UNTIL-Schleife, deren Ab-

bruchbedingung dann erfüllt sein muß, wenn der Menü-Eintrag
Beenden oder Programm verlassen aktiviert wurde:

 —— GEM 339

Ende = 0

REPEAT

< warten bis Nachricht im Buffer vorliegt)

IF Ereignis(0) = 10' Menü-Eintrag angewählt?

IF Ereignis(4) = Mquit "Schleife verlassen

Ende = 1

ENDIF

! Menütitel wieder in Normaldarstellung bringen

Menu_Tnormal (Ereignis(3),1)

ENDIF

UNTIL Ende ' wiederhole bis Ende = '1'

Üblicherweise wird vorm endgültigen Programmabbruch noch

eine Sicherheitsabfrage in das Programm eingebaut, damit das
Programm nicht ungewollt verlassen wird und Daten verloren
gehen können. Form__Alert liefert eine solche Sicherheitsabfrage:

Möchten Sie das Programm wirklich verlassen? (J/N)

In einer Variablen (z.B. Ret%) wird nach Aufruf der Alertbox
zurückgegeben, welcher Button vom Benutzer angeklickt wurde.
Demzufolge könnte die Abfrage dann lauten: |

IF Ret% = 1 THEN

Ende = 1

ELSE

Ende = 0

ENDIF

Besser und kirzer ist aber in jedem Fall die folgende Abfrage:

Ende = Ret% = 1

Die liefert das gleiche Ergebnis, besteht jedoch aus nur einer
Zeile! Wie funktioniert diese Zeile? Schauen wir uns dazu
(zunächst) einmal die rechte Hälfte an: Das rechte Gleichheitsz-
eichen wird als Vergleichsoperator eingesetzt. Und der als Er-
gebnis dieses Vergleichs (Ret% = 1?) resultierende Wahrheitswert

 340 Das große ST-BASIC-Buch ———

wird der Variablen Ende zugewiesen, also falsch wenn Ret% un-
gleich 1 und wahr wenn Ret% gleich | war. Dort ist er gut auf-
gehoben, da sein Inhalt die Bedingung für das Schleifenende
darstellt. Tja, man kann eben so oder so an ein Problem heran-
gehen! Aber eleganter als mit der zweiten Methode geht es be-
stimmt nicht mehr!

Ein Eintrag innerhalb des Pull-Down-Menüs kann auch mit ei-
nem vorangestellten Haken versehen werden. Auf diese Weise

kann z.B. angezeigt werden, daß bestimmte Einstellungen (z.B.
Einfügemodus in einem Texteditor) aktiv sind. Um einen Ein-
trag mit einem solchen schmückenden Beiwerk zu versehen, ge-
nügt der Aufruf der Funktion:

Menu_Icheck(Nummer%, Flag)

Nummer% bezeichnet die Nummer des Menü-Eintrages inner-
halb der Baumstruktur, Flag kann zwei Werte annehmen: |

0 Ein voranstehender Haken wird gelöscht.

| Haken vor diesen Menü-Eintrag setzen

Ferner sollte es möglich sein, bestimmte Menüeinträge zu disab-

len, also vor einer Aktivierung zu bewahren. Es gäbe nämlich
keinerlei Sinn, eine Datei bearbeiten zu wollen, die noch gar

nicht geladen worden ist! Das übernimmt die Funktion

Menu_Ienable(Nummer%, Flag)

wobei Nummer% wieder den Eintrag innerhalb der Ob-
jektstruktur bezeichnet und Flag bestimmt, ob der betreffende
Eintrag aktiviert oder deaktiviert werden soll:

0 Menü-Eintrag deaktivieren (helle Darstellung)

]l Menü-Eintrag aktivieren

Jetzt aber das Beispielprogramm, anhand dessen Sie die Verwal-

tung von Pull-Down-Menüs leicht nachvollziehen können. Es
wird die Resourcedatei MENUE.RSC benötigt, in der die
Baumstruktur des Menüs enthalten ist:

——— GEM
C
O
N

OO

V
I
R

W
N

DO
—_
=

ad

=
r

=o
2@

=

-
2
 G

O

O
U
R

W
N

=

©

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

PHKKKHKKKKKKKKKEKREEKEREREREREREEEEEEEEEEEREREEEREREEREEEREEEEEEEEKK

'* MENUE .BAS *
VÜS n n n nn nn nn nn mn ne *

'* Autor: Michael Maier Version: 1.00 Datum: 16.09.1988 *

ix Ein Programm aus dem 'GROSSEN ST-BASIC BUCH! *

* (C) 1988 by DATA BECKER GmbH Dusseldorf *
VKH HK IIH I I IH IAAI IAIN IAAI ATA ATI AIT AIS AS AIAN ANAS AIAAAI IAI AI III

5

ı Rumpfprogramm zur Demonstration der Menüleistenprogrammierung

' in ST-BASIC
IT KIRIN RAIA AAAI AAA AISA ASIII AAT AAITIIS

5

i .

‘ zuerst einmal die Variablen mit Werten versorgen ...
4

Leiste%L=0

Minfo%L=7' STRING in tree LEISTE

Mload%L=16' STRING in tree LEISTE

Msave%L=17' STRING in tree LEISTE

Mhaken%L=19' STRING in tree LEISTE

Mquit%L=21' STRING in tree LEISTE

6

ı Variable für Schleifenende auf den Wert Null setzen

" und Array für Ereignis dimensionieren
J

Ende%L=0

DIM EreignisAéL(4)

' dann die Ubliche GEM-Zeremonie
i

Appl_Init

Rsrc_Load("MENUE .RSC", Ret%)

IF Ret%=0 THEN

FORM_ALERT (1,"[3] [Fatal Error!][Abbruch]")
Appl_Exit

END

ENDIF

ı Wurzeladresse des Objektbaumes (Menu) bestimmen
J

Rsrc_Gaddr(0,0,Menu_AdrZL)

' und die Menüleiste darstellen
§

Menu_Bar(Menu_Adr%L)

341

 342 - Das große ST-BASIC-Buch ————

46 Graf_Mouse(0)' Maus in Pfeilform (sicher ist sicher!)

47 !

48 ' Die nun folgende Schleife kümmert sich um die Verwaltung

49 ! der soeben dargestellten Menüleiste

50

51 REPEAT

52 '

53 ! warten bis ein Ereignis im sogenannten 'Message-Buffer'

54 ! vorliegt. Wurde die Menüleiste in irgendeiner Form an-

55 ! gewählt, so besitzt der resultierende String folgenden

56 ' Aufbau:

57! Wort 0 => '10' (im Format LOW-HIGHbyte)

58 ! Wort 3 => Nummer der Leiste, in der sich der an-

59 ! | gewählte Eintrag befindet

60 ! Wort 4 => Objektnummer des angewählten Eintrages

61!

62 Evnt_Mesag(Me$)

63 !

64 ' Jetzt das aufgetretene Ereignis auswerten

65 !

66 FOR T%=0 TO 4

67 Ereignis%L(T%)= CVIC MIDCMe,T%*2+1,2))

68 NEXT T%A

69 =!

70 ' Ereignis in der Menüleiste ?

71 '

72 IF Ereignis%L(0)=10 THEN
73 t

74 ' Die Objektnummer befindet sich dann in 'Ereignis(4)!

75 '

16 IF Ereignis%L(4)=Minfo%L THEN

77 FORM_ALERT (1,"(1] [Ein Demo von!Michael Maier] [OK 1")

78 ENDIF

79 '

80 IF Ereignis%L(4)=Mload%L THEN

81 FORM_ALERT (1,"T1] [Dann tun Sie's doch!) [OK]")

82 ENDIF |
83 '

84 IF Ereignis%L(4)=Msave%L THEN

85 FORM ALERT (1,"[2] [Welche Datei?][Keine!]")

86 ENDIF

87 '

88 IF Ereignis%L(4)=Mhaken%L THEN

89 ' Inhalt der Variablen "!umdrehen!

90 IF Haken%=1 THEN

91 Haken%=0

 ——— GEM 343

ELSE

Haken%=1

ENDIF

" und den Haken entsprechend setzen bzw. löschen
§

Menu_Icheck(MhakenZL , Haken%)

ENDIF
I

IF Ereignis%L(4)=MquitXL THEN

FORM_ALERT (2,"[2] [Programm beenden?] [JalNein]",Ret%)
' ein bißchen zaubern ist erlaubt ...

" zuerst wird nämlich einmal überprüft, ob in Ret% der

' Wert '!1' enthalten ist. Der Wahrheitswert dieser

' Operation wird der Variablen 'Ende' zugewiesen, die

ı für den Schleifenabbruch verantwortlich ist.

Ende%L=Ret%=1

hier können weitere Abfragen nach angewählten

Menüeinträgen erfolgen

Menütitel wieder in Normaldarstellung bringen

Menu_Tnormal(Ereignis%L(3),1)
8

ENDIF

UNTIL Ende#%L

' GEM wieder abmelden und Programm beenden
1

Appl_Exit

END

t

EHH K KIRKE K KEKE KEK IRI IK

* hier folgt dann die Libery GEMLIB.BAS *
EMAAR MAAR MARR RIK

 344 Das groBe ST-BASIC-Buch ———

6.5 Eine eigene File-Selector-Box

Obwohl die GEM-eigene File-Selector-Box eine ganze Reihe

von Möglichkeiten bietet, ist sie dennoch relativ umständlich zu

bedienen. Möchten Sie nur das Laufwerk wechseln, ist dazu zu-

erst einmal das Abändern der Laufwerksbezeichnung im Pfad
notwendig. Anschließend muß noch das Schließfeld mit der
Maus angeklickt werden, damit die soeben durchgeführte Än-
derung auch übernommen wird. Ähnlich ergeht es jedem, der
die angezeigten Dateien begrenzen will, indem er den Such-Ex-

tender ändert.

Desk EISEN Korrekturprogrammn Parameter Dienst

lt EACHE DBJEKT AUSMAHL |/bearbeiten
ee

BADER Michaela INDEX:

BIELMEIER Fritz A:\NOTES, TEA\S. NOT

HUBER Michael in ; %, HOT 5 Auswahl:

LANGMEIER Birgit iBC_RE .HOT

MATER Micheel

SCHILLER Peter
 Klasse: 18C

: | ABBRUCH
Abb. 6.6: File-Selector-Box

Ferner wäre auch eine Infozeile nicht zu mißachten, in der der

Benutzer erfährt, wozu er überhaupt eine Datei auswählt: Datei

laden ..., Datei speichern ... usw. machen ein Programm wesent-

lich anwendungsfreundlicher. All diese Dinge sollen bei der ei-
genen File-Selector-Box berücksichtigt werden. Beim Aufruf der
Funktion sind folgende Parameter anzugeben:

 —— GEM 345

Pfadname mit vorangestellter Laufwerksbezeichnung,

Dateiname, der als Voreinstellung erscheinen soll,

Infozeile der Box (Datei laden ...).

Als Rückgabewerte liefert dıe Box:

neuen Pfadnamen,

ausgewähler Dateiname,

Extender,

gedrückte Taste (Abbruch oder OK).

Da das Listing hinreichend ausführlich dokumentiert ist, erüb-
rigt sich eigentlich eine nochmalige Erklärung an dieser Stelle.
Trotzdem möchte ich ihre Bedienung noch einmal kurz erläutern:

Es können nur angeschlossene Laufwerke (Betriebssystem-
routine!) angeklickt werden. Dann wird der Pfadname ent-
sprechend korrigiert und neu gesetzt.

Zum Ändern des Extenders kann einer, der acht zur Auswahl
stehenden Boxen angeklickt werden. Der Inhalt im Fenster
wird entsprechend korrigiert. Benötigen Sie einen nicht vor-
handenen Extender, so ändern Sie bitte den Extender im

Pfadnamen und klicken in das Feld oberhalb der Auswahl-
box, in dem die aktuelle Extension angezeigt wird. Die neue
Extension wird übernommen und gleichzeitig in den letzten
der Extension-Buttons eingetragen. Dort steht er dann für
weitere Aufrufe zur Verfügung. Dies funktioniert jedoch nur
solange, wie die Länge der Extension 5 Zeichen nicht über-

steigt: (*.BAK ,*.DOC,*.H).

Da ein Fehler im Betriebssystem vorliegt, sollte die Benut-
zung des Unterstrichs im Pfadnamen tunlichst vermieden
werden, damit der Computer nicht abstürzt. Beim Blitter-

TOS wurde dieser Fehler jedoch schon behoben! |

Um die ganze Sache nicht noch komplizierter zu machen, als
sie ohnehin schon ist, werden in Unterverzeichnissen Ordner
- ähnlich wie beim Befehl FILES des ST-BASICs - durch

 346 Das groBe ST-BASIC-Buch

So, nachdem die Bedienung der Box jetzt geklärt sein dürfte,

folgt das Listing. Die einzelnen Routinen wurden entweder
schon einmal behandelt oder sie werden innerhalb des Listings -

ein, bzw. zwei Punkte statt des Ordnernamens dargestellt; sıe

können jedoch nicht ausgewählt werden, da Sie sich bereits
in diesem Ordner befinden.

sofern Sie etwas komplizierter sind - kommentiert:

SR CH TH TRIERER TEEN

1% | FILSEL.BAS *
Ke eww em em wm we www wee ewww ewww wee ee eee eee ee ew eee ee *

'* Autor: Michael Maier Version: 1.00 Datum: 01.10.1988 *

ı* Ein Programm aus dem 'GROSSEN ST-BASIC BUCH' *

1% (C) 1988 by DATA BECKER GmbH Düsseldorf *
HHI HH HHH HH KKH HK I IK II I IAAI ATER IRI TE KK

' ** Dieses Programm verwaltet die eigene File-Selector-Box **
' HAAR A AAA KARAT AAA:

ı zuerst das Hauptprogramm ...

DIM Name$(130)' enthält die Directoryeinträge

ı die einzelnen Variablen des RSC initialisieren ...
4

Filsel%L=0

FsinfoAL=1' BOXTEXT in tree FILSEL

Fspfad%L=3' FTEXT in tree FILSEL

Fscloser%L=5 BOXCHAR in tree FILSEL

Fsextend%L=6' BOXTEXT in tree FILSEL

Fsup%L=7' BOXCHAR in tree FILSEL

FsdownAL=8! BOXCHAR in tree FILSEL

FschieneZL=9' BOX in tree FILSEL

Fsslider%L=10' BOX in tree FILSEL

Fsdatei0%L=11' TEXT in tree FILSEL

Fsdatei1%L=12' TEXT in tree FILSEL
Fsdatei2%L=13' TEXT in tree FILSEL

Fsdatei3%L=14' TEXT in tree FILSEL

Fsdatei4%L=15' TEXT in tree FILSEL

Fsdatei5%L=16' TEXT in tree FILSEL

Fsdatei6%L=17' TEXT in tree FILSEL

Fsdatei7%L=18' TEXT in tree FILSEL

Fsdatei8%L=19' TEXT in tree FILSEL

Fsdatei9%L=20' TEXT in tree FILSEL

——— GEM

37

38

39

40

41

42

43

44

45

46

47

48

49

>0

51

52

53

54

55

56

57

58

59

60

61

62

63

65

67

68

69

70

71

72

14

75

76

77

78

79

80

81

82

Fsname%L=22' TEXT in tree FILSEL

Fsdrva%L=24' BOXCHAR in tree FILSEL

FsdrvbAL=25' BOXCHAR in tree FILSEL

FsdrvckL=26' BOXCHAR in tree FILSEL

Fsdrvd&L=27' | BOXCHAR in tree FILSEL

Fsdrve4L=28' BOXCHAR in tree FILSEL

Fsdrvf%L=29' BOXCHAR in tree FILSEL

Ext1%L=31' BOXTEXT in tree FILSEL

Ext2%L=32! BOXTEXT in tree FILSEL

Ext3%L=33 '! BOXTEXT in tree FILSEL

Ext4%L=34 ! BOXTEXT in tree FILSEL

Ext5%L=35 ! BOXTEXT in tree FILSEL

Ext6%L=36! BOXTEXT in tree FILSEL

Ext/AL=37' BOXTEXT in tree FILSEL

Ext8%L=38' BOXTEXT in tree FILSEL

Fsabbruc%L=44' BUTTON in tree FILSEL

Fsreturn%L=45'! BUTTON in tree FILSEL
8

I

Appl_Init

PRINT 9(0,30);"File-Selector-Box!

' Ressource laden

Rsrc_Load("FSELECT.RSC" ‚Dummy%)

ı alles in Ordnung ?

IF Dummy%=0 THEN
FORM_ALERT (1,"[3] IRSC konnte nicht!geladen werden !!] [Ende] '")
Appl_Exit

END

ENDIF

' dann Adresse ermitteln

Rsrc_Gaddr(0,0,Tree%L)
4

Info$=" Datei laden .„.. "

Fil Sel¢("C:\","TEST.PRG", Info$,Path$,Name$,Post$, Taste%)
q

Appl_Exit

END
i

DEF PROC Fil _Sel(Path$,Name$, Inf$,R Path$,R Na$,R Ext$,R Key%)

LOCAL T%,Anzahl%,Anker%,Ret%
Ext$=t%* Ku

5

Form_Center(Tree%L ‚Xobj%L,Yobj%L ,Wobj%L,HobjXL)

Form Dial(0,Xobj%L,Yobj%L,Wobj%L,Hobj%L)

Form_Dial(0,Xobj%L,Yobj%L,Wobj%L,Hobj%L)

347

 348 Das große ST-BASIC-Buch ———

83 !

84 Put_Text(Fsinfo%L,Info$+ CHR$(0))

85 Put_Text(FspfadAL ‚Path$+Ext$+ CHR$(0))

86 CHDIR Path$

87 Pos%= INSTR(Name$,".")

88 IF Pos%<>0 AND Pos%<9 THEN

89 Name$S= LEFT$(Name$,Pos%-1)+ SPACE$(9-Pos%)+ MIDS(Name$, Pos%+1)

90 ENDIF

91 Put_Text(Fsname4ZL ,Name$+ CHR$(0))

92 Put_Text(FsextendAL, CHR$(32)+Ext$+ CHR$C32)+ CHR$(O))

93!

94 FOR T%=0 TO 7

95 IF FN Proof_SelX%L(Ext1%L+T%) THEN

96 Get_Text(Ext1%L+T%,Ext$)

97 Put_Text(Fspfad%L ‚Path$+Ext$+ CHR$(0))

98 EXIT

99 ENDIF

100 NEXT T%

101 °

102 ' Directory einlesen und Filezahl zurtickgeben

103 ! |

104 Anker%=1

105 Directory(Ext$,Anzahl%)

106 Inhalt(Anker%,Anzahl%)

107 *

108 Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

109 !

110 ! Jetzt die nicht angeschlossenen Laufwerke disablen

111

112 BIOS (Dummy%, 10)

113 FOR T%=0 TO 5

114 ı Bit in Drive-Map gesetzt? nein => BIT(..) = 0:

115 IF BIT(T%,Dummy%)=0 THEN
116 ' dann Box disablen

117 Enable(Fsdrva&%L+T%, 0)

118 Disable(Fsdrva%L+T%,0)

119 ELSE

120 ı enablen (sicher ist sicher)

121 Enable(Fsdrva%L+T%, 1)

122 Disable(Fsdrva%L+T%,1)

123 ENDIF

124 NEXT T%

125 ' zuerst vorsichtshalber alle Laufwerke deselektieren

126 FOR T%=0 TO 5 |

127 Select(Fsdrva%L+T%,0)

128 NEXT T%

 —— GEM 349

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ı dann aktuelles Laufwerk laut Pfad selektieren

Select(Fsdrva%L+ ASC(Path$)-65,1)

CHDIR Path$

das Laufwerk könnte auch mit dieser GEMDOS-Funktion

umgestellt werden, aber der liebe Pfad...

GEMDOS (,14, ASC(Path$)-65)

REPEAT

' Kontrolle des Formulars an GEM Ubergeben

Form_Do(FsnameaL , Tree. ,Ret%)

' Doppelklick verhindern

Ret%=Ret% AND $7FFF

ı Datei angeklickt
i

IF Ret%>=Fsdatei0%L AND Ret%<=Fsdatei9%L THEN

Get_Text(Ret%,Datei$)

IF Datei$<>"" THEN

IF ASC(Datei$)=/7 THEN

' Ordner entsprechend behandeln

Get_Text(Fspfad%L,Path$)
Pos%= INSTR(C MIRROR$(Path$) ,"\")

Path$= LEFT$(Path$, LEN(Path$)-Pos%+1)

Datei$= MID$(Datei$,3, INSTR(Datei$, CHR$(0))-3)

ı Spaces aus dem Ordnernamen entfernen

WHILE INSTR(Datei$, CHR$(32))

Pos%= INSTR(Datei$, CHR$(32))

Datei$= LEFT$(Datei$,Pos%-1)+ MID$(Datei$,Pos%+1)

WEND

ı korrekter Pfad schließt mit einem Backslash: '\!

Path$=Path$+Datei$+"\"

ı Pfad setzen und in Box eintragen

CHDIR Path$ |

Put_Text(Fspfad%L ‚Path$+Ext$+ CHR$(0))

ı neues Inhaltsverzeichnis ermitteln

Directory(Ext$,Anzahl%)

Inhalt(Anker%,Anzahl%)

Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)
8

ELSE

' normale Datei => in Feld 'Dateiname' kopieren

Pos%= INSTR(Datei$,".")

' der Punkt macht Schwierigkeiten, also weg damit!

IF Pos%<>0 THEN |

Datei$= LEFT$(Datei$,Pos%-1)+ MID$(Datei$,Pos%+1)

 350 Das große ST-BASIC-Buch -————

175 ENDIF

176 Put_Text(FsnameXL, MID$(Datei$,3))

177 Objc_Draw(Fsname#%L ,0,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

178 ENDIF

179 ENDIF

180 ENDIF

181 '

182 ' Laufwerk umstellen

183!

184 IF Ret%>=FsdrvadL AND Ret%<=Fsdrvf“%L THEN ©

185 Get_Text(Fspfad&L , Path$)

186 Path$= LEFT$(Path$, LEN(Path$)- INSTRC MIRRORS(Path$),"\")+1)

187 Path$= CHR$(65+Ret%-Fsdrva%L)+ MID$(Path$, 2)

188 Put_Text(Fspfad%L ,Path$+Ext$+ CHR$(0))

189 CHDIR Path$

190 ı statt 'CHDIR Path$'! kann auch eine GEMDOS-Funktion

191 ı aufgerufen werden: Dsetdrv. Als Argument muß ihr dann

192 ı die Nummer des neuen Laufwerks übergeben werden:

193 ' GEMDOS (,14, ASC(Path$)-65)
194 Directory(Ext$,Anzahl%)

195 Anker%=1

196 Inhalt(Anker%,Anzahl’%)

197 Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

198 ENDIF

199!

200 ' Neue Extension

201 '

202 IF Ret%>=Ext1%L AND Ret%<=Ext8%L THEN

203 Get_Text(Ret%,Ext$)

204 Ext$= LEFTSCExt$, LENCExt$)-1)
205 Get_Text(Fspfad%L ,Path$)

206 Path$= LEFT$(Path$, LEN(Path$)- INSTR(MIRROR$(Path$), "\1)+1)

207 Put_Text(Fspfad%L ‚Path$+Ext$+ CHR$(O0))

208 Put_Text(Fsextend%L, CHR$C32)+EXt$+ CHR$C32)+ CHR$(O))

209 CHDIR Path$

210 Directory(Ext$,Anzahl%)

211 Anker%=1

212 Inhalt(Anker%,Anzahl%)

213 Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L ,Hobj%L,Tree%L)

214 ENDIF

215 =!

216 ' Slider angeklickt?

217 _—S

218 IF Ret%=Fsslider%L THEN

219 Graf_Slidebox(Fschiene%L,Fsslider%L,1,Tree%L,Pos%)

220 Pos%=Pos%+500\ (Anzahl %-10)

 —— GEM 351

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

Anker%=((Anzahl%- 10)*Pos%\1000)+1

Inhalt(Anker%, Anzahl %)

Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

ENDIF

" Directory scrollen (Pfeil nach oben)
8

IF Ret%=FsupX%L THEN

IF Anker%>1 THEN

Anker%=Anker‘%- 1

Inhalt(Anker%,Anzahl%) |

Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,TreeAL)

ENDIF

ENDIF

' Directory scrollen (Pfeil nach unten)
8

IF Ret%=Fsdown%L THEN

IF Anker%<Anzahl%-9 THEN

Anker%=Anker%+1

Inhalt(Anker%,Anzahl%)

Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,TreeXL)

ENDIF

ENDIF

t Schiene angeklickt => Slider verschieben
a

IF Ret%=FschienedsL THEN

Graf_Mkstate(Dummy4Z, Pos%, Dummy“, Dummy’)

Objc_Offset(Fsslider%L, TreesL,Ob Ofx%L,Ob OfyZL)

IF Pos%>Ob_OfyXL THEN

Anker%=Anker%+10

IF Anker%>Anzahl%-9 THEN

Anker%=Anzahl%-9

ENDIF

ELSE

Anker%=Anker%- 10

IF Anker%<1 THEN

Anker%=1

ENDIF

ENDIF

Inhalt(Anker%,Anzahl%)

Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

ENDIF

ı Subdirectory verlassen (falls möglich)

 352 Das groBe ST-BASIC-Buch ———

267 ~— I

268 IF Ret%=FscloserX%L THEN

269 Get_Text(Fspfad%L ,Path$)

270 Pos%= INSTRC MIRROR$(Path$) ,"\")

271 IF Pos%<>0 THEN

272 Path$= LEFT$(Path$, LEN(Path$)-Pos%)

273 Pos%= INSTRC MIRROR$(Path$) ,"\")

274 | IF Pos%<>0 AND Pos%<>3 THEN Ä

275 Path$= LEFT$(Path$, LEN(Path$)-Pos%)+"\"

276 CHDIR Path$

277 Put_Text(Fspfad%L ‚Path$+Ext$+ CHR$(O0))

278 Anker%=1

279 Directory(Ext$,Anzahl%)

280 Inhalt (Anker%,Anzahl’%)

281 Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

282 ENDIF

283 ENDIF

284 ENDIF

285 =!

286 ' neue Extension in letzte Extender-Box

287 "

288 IF Ret%=Fsextend%L THEN

289 Get_Text(Fspfad%L,Path$)

290 Path$= LEFT$(Path$, LEN(Path$)- INSTRC MIRROR$(CPath$),CHR$(O)))

291 Pos%= INSTRC MIRROR$(Path$) ,"\")

292 ' nicht Backslash am Pfadende!

293 IF Pos%< LENCPath$) THEN

294 Ext$= MID$(Path$, LEN(Path$)-Pos%+2)

295 FOR T%=0 TO 7

296 Select(Ext1%L+T%,0)

297 NEXT T%

298 IF LENCExt$)<6 THEN

299 Put_Text(FsextendZL, CHR$(32)+Ext$+ CHR$(32)+ CHR$(O))

300 Put_Text(Ext8%L,Ext$+ CHR$(0))

301 Select(Ext8%L,1)

302 Directory(Ext$,Anzahl%)

303 Anker%=1

304 Inhalt (Anker%,Anzahl%)

305 ELSE |

306 Ext$="* | *" .

307 Path$= LEFT$(Path$, LEN(Path$)-Pos%+1)

308 Put_Text(Fspfad%L ,Path$+Ext$+ CHR$(0))

309 Put_Text(Fsextend%L, CHR$(32)+ExXt$+ CHR$C32)+ CHR$CO))
310 Select(Ext1%L,1)

311 ENDIF

312 ENDIF

 —— GEM - 353

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

Objc_Draw(0,8,Xobj%L,Yobj%L,Wobj%L,HobjXL,Tree%L)

ENDIF

UNTIL Ret%=Fsabbruc%L OR Ret%=FsreturnAL
I

Get_Text(Fspfad%L,Path$)

Path$= LEFT$(Path$, LEN(Path$)- INSTRC MIRROR$(Path$), CHR$(O)))
|

IF Ret4=FsabbrucdéL THEN
Na$=

Key%=0

ELSE

Key%=1

Get_Text(FsnameZl ,Na$)

Pos%= INSTR(Na$, CHR$(0))

ı falls kein Name vorhanden ist => Leerstring zurück

IF Pos%=1 THEN
Na$=

ELSE

Na$= LEFT$(CNa$, LEN(Na$)-1)

' Ein Punkt als Extenderseperator darf nicht fehlen

IF LEN(NaS)>8 THEN

Na$= LEFT$(CNa$,8)+"."+ MID$CNa$,9)

ENDIF

WHILE INSTR(Na$, CHR$(32))

Pos%= INSTR(Na$, CHR$(32))

Na$= LEFT$(Na$,Pos%-1)+ MID$(Na$,Pos%+1)

WEND

ENDIF

ENDIF
i

RETURN

DEF PROC Directory(Extender$,R Anzahl%)

LOCAL T%,Buffer$= SPACE$(44) ,Buf_Adr%L ,Ext_Adr%L ‚Dummy%

LOCAL Pos%,Post$

FOR T%=0 TO 125

Name$(T%)=""

NEXT T%

T%=0

' Adresse des DTA-Buffers

Buf_Adr%L= LPEEK(VARPTR(Buffer$))+ LPEEK(SEGPTR +28)

GEMDOS (,26, HIGHCBuf_Adr%L), LOW(Buf_Adr%L))

Ext_Adr%L= LPEEK(VARPTR(Extender$))+ LPEEK(SEGPTR +28)

 354 Das große ST-BASIC-Buch ———

359 ! und jetzt den ersten Directoryeintrag holen

360 '

361 GEMDOS (Dummy%,78, HIGH(Ext_Adr%L), LOW(Ext_Adr%L), 16)
362 IF Dummy%<0O THEN ! kein einziger Eintrag verhanden

363 Anzahl %=0

364 RETURN

365 ENDIF

366 ' Dateityp feststellen und im Array festhalten

367 IF ASC(MID$(Buffer$,22,1))=16 THEN ' Ordner kennzeichnen!

368 Name$(T%)= CHR$(7)+ CHRS(32)+ MIDS$(Buffer$, 31,13)

369 ELSE

370 Name$(T%)= CHR$(32)*2+ MID$(CBuffer$,31,13)

371 ENDIF

372 ' bis zum Nullyte übernehmen ... (für GEM !!ı)

373 Name$(T%)= LEFT$CName$(T%), INSTR(Name$(T%), CHR$(0)))

374 !

375 REPEAT

376 T%=T%+1

377 _GEMDOS (Dummy%, 79)

378 ' erst wenn kein Eintrag mehr vorhanden => Schleife verlassen

379 IF Dummy%<O THEN

380 EXIT

381 ENDIF

382 IF ASC(MIDS(Buffer$,22,1))=16 THEN ' Ordner kennzeichnen!

383 Name$(T%)= CHRS(7)+ CHR$(32)+ MIDS(Buf fer$,31, 13)

384 ELSE

385 Name$(T%)= CHR$(32)*2+ MID$(Buffer$,31,13)

386 ENDIF

387 ' Name bis zum Nullyte Ubernehmen (fiir GEM !!!)

388 Name$(T%)= LEFT$CName$(T%), INSTR(Name$(T%), CHR$(0)))

389 UNTIL 0

390 Anzahl%=T%

391 !' jetzt noch sämtliche Einträge auf die richtige Länge bringen

392 FOR T%=0 TO Anzahl%-1

393 Pos%= INSTR(Name$(T%) ,".")

394 ı Punkt vorhanden, aber Position nicht korrekt?

395 IF Pos%<>0 AND Pos%<11 AND Pos%>3 THEN

396 Post$= MID$(Name$(T%) ,Pos%)

397 ı dann Leerzeichen zwischen Name und Extender einfügen

398 Name$(T%)= LEFT$(Name$(T%),Pos%-1)+ SPACE$(10-Pos%+t1)

399 Name$(T%)=Name$(T%)+Post$

400 ENDIF

401 NEXT T%

402 RETURN

403 !

404 !

 —— GEM 355

405 DEF PROC Select(Nummer%, Flag%)

406 LOCAL Adr%L=Tree%L+24*Nummer%

407 IF Flag%=1 THEN

408 LOCAL Ob_State%L= WPEEK(Adr%L+10) OR 1

409 ELSE

410 LOCAL Ob_State%L= WPEEK(AdrXL+10) AND 254

411 ENDIF

412 Objc_Change(Nummer%,Ob_StateXL,Xobj%L,Yobj%L,Wobj%L,Hobj%L,Tree%L)

413 RETURN

414 !

415 !

416 DEF PROC Enable(Nummer%, Flag%)

417 LOCAL Adr%L=-Tree%L+24*Nummer%

418 IF Flag%=1 THEN

419 WPOKE Adr%L+8, WPEEK(Adr%L+8) OR 65

420 ELSE

421 WPOKE Adr%L+8, WPEEK(Adr%L+8) AND 190

422 ENDIF

423 RETURN

424 !

425 !

426 DEF PROC Disable(NuZ, Flag%)

427 LOCAL Adr“%L=(Tree”L+24*NuX%)+10

428 IF Flag%=1 THEN

429 Objc_Change(Nu%, WPEEK(Adr%L) AND

247 ,Xobj%L, Yobj%L ,Wobj%L , Hobj%L, Tree%L)

430 ELSE

431 Objc_Change(Nu%, WPEEK(Adr%L) OR

8,Xobj%L,Yobj%L ,‚Wobj%L,Hobj%L,Tree%L)

432 ENDIF

433 RETURN

434 '

435 !

436 DEF PROC Put_Text(Nummer%, Text$)

437 ' zwerst einmal die Adresse des Textes ermitteln ...

438 LOCAL Adr%L=Tree%L+24*Nummer%

439 LOCAL Tedinfo%L= LPEEK(Adr%L+12)

440 „LOCAL Text_Adr%L= LPEEK(TedinfoAL)

441 LOCAL T%=0

442 ı und dann zeichenweise eintragen ...

443 WHILE T%< LEN(Text$)

444 POKE Text_Adr%L+T%, ASC(MID$(Text$,T%+1,1))

445 T%=T%+1

446 WEND

447 RETURN

448 !

 356 Das große ST-BASIC-Buch ————

449

450 DEF PROC Get_Text(Nummer%,R Text$)

451 LOCAL Adr%L=Tree%L+24*Nummer%

452 LOCAL Tedinfo%L= LPEEK(Adr%L+12)

453 LOCAL Text_Adr%L= LPEEK(TedinfoXL)

454 LOCAL T%=-1

455 Text$="

456 ' alle Zeichen bis zum Nullbyte abholen

457 ' und in String 'Text$' eintragen ...

458 REPEAT

459 T%=T%+1

460 ° Text$=Text$+ CHR$C PEEK(Text_AdrAiL+T%))

461 UNTIL PEEK(Text_Adr%L+T%)=0

462 '

463 RETURN

464 !

465 !

466 DEF PROC Inhalt(Start%,Zahl%)

467 LOCAL T%,Note_1%L

468 IF Zahl%<=10 THEN

469 WPOKE (Tree%L+24*Fsslider%L)+18,0

470 WPOKE Tree%L+24*Fsslider%L+22, WPEEK(Tree%L+24*Fschiene%L+22)

471 FOR T%=0 TO Zahl%-1

472 Put_Text(Fsdatei0%L+T%,Name$(T%))

473 IF MID$(Name$(T%),3,1)="." THEN
474 Enable(Fsdatei0%L+T%,0)

475 ELSE

476 Enable(fsdatei0%L+T%, 1)

477 ENDIF

478 Select(Fsdatei0%L+T%,0)

479 NEXT T%

480 FOR T%=Zahl% TO 9

481 Put_Text(Fsdatei0%AL+T%, CHR$(0))

482 Enable(Fsdatei0%L+T%,0)

483 Select(Fsdatei0%L+T%,0)

484 NEXT T%

485 ELSE

486 Note_1%L= WPEEK(Tree%L+24*FschieneXL+22)

487 WPOKE Tree%L+24*Fsslider%L+18,(Note_1%L*(Start%-1))/Zahl%

488 WPOKE TreeX%L+24*Fsslider“L+22, (Note_14L*10)/Zahl%

489 FOR T%=0 TO 9

490 IF Name$(Start%+T%)=""" THEN

491 Put_Text(Fsdatei0%L+T%, CHR$(0))
492 Enable(Fsdatei0%L+T%,0)

493 Select(Fsdatei0%L+T%,0)

494 ELSE

 —— GEM 357

495 Put_Text(Fsdatei0%L+T%,Name$(Start%+T%))

496 IF MID$CName$(Start%+T%) ,3,1)="." THEN

497 Enable(Fsdatei0%L+T%,0)

498 ELSE

499 Enable(Fsdatei0%L+T%,1)

500 ENDIF
501 Select(Fsdatei0%L+T%,0)

502 ENDIF

503 NEXT T%

504 ENDIF

505 RETURN

506 !

507 !

508 DEF FN Proof Sel%L(Nummer%)

509 LOCAL Adr%L=Tree%L+24*Nummer%

510 IF WPEEK(Adr%L+10) AND 1=1 THEN

511 RETURN (-1)

512 ENDIF

513 RETURN (0)
514 !

6.6 Fenstertechnik

Eine der zweifellos überragensten Errungenschaften des GEM
(also wird für die da kommenden Dinge die GEMLIB.BAS-Li-
brary benötigt!) ist die Möglichkeit zur Verwendung von Fen-
stern, die auch als Windows bezeichnet werden. Ob es sich um
ein Textverarbeitungsprogramm oder eine Tabellenkalkulation
handeln mag, stets können verschiedene Daten gleichzeitig im
Speicher gehalten und auf dem Monitor dargestellt werden.

Da ein Fenster aus mehreren Elementen zusammengesetzt ist
(zwei Slider für horizontale und vertikale Verschiebung, ein
Schließ-, Maximalgrößen- und Größeneinstellfeld, die sich je-

weils in einer Fensterecke finden lassen) muß ein Programm, das
in irgendeiner Form mit Fenstern hantiert, in der Lage sein,
verschiedene Ergeignisse - da ist dieses Wort schon wieder! - zu
registrieren und entsprechend zu reagieren.

 358 Das große ST-BASIC-Buch ———

Zu diesem Zweck wird eine GEM-Routine eingesetzt, die schon
einmal zu Ehren kam, als es darum ging, die Menüleiste zu ver-
walten:

Evnt_Mesag(Ereignis$)

Die auf den ersten Blick vielleicht unscheinbar anmutende
Funktion hat es in sich: Sie ist nämlich (Gott sei Dank!) in der
Lage, die unterschiedlichsten Ereignisse, die aufgetreten sind
(Benutzer hat z.B. ein Fenster verschoben), an die Application zu

melden. Doch ehe sie ihre Pflicht und Schuldigkeit tun darf,
muß sich das Programm erst einmal um die Erstellung eines
Fensters kümmern.

Fensterkomponenten

Ein Fenster besteht aus den verschiedensten Komponenten, die

alle in der folgenden Abbildung beschriftet sind:

Fensterkomponenten

Schließfeld Fensternane Maximalgrößenfeld

| Jul/7 bytes IN so

OD

 DI
Arbeitsbereich

|] Rol lbalken

MITTEL .BAS SIEB.BAS ERATOS.

| “Slider
— en

Größeneinstellfeld
Abb. 6.7: Bestandteile eines Fensters

 — GEM 359

Da ein Fenster nicht unbedingt alle möglichen Bausteine besitzen
muß (z.B. kein Schließ- oder Größeneinstellfeld), wird ein Fen-
ster vor seiner ersten Darstellung auf dem Monitor erst einmal
genauer spezifiziert. Dies geschieht über den Befehl

Wind_Create(kind, xmax, ymax , wmax, hmax, handle)

Kind trägt dabei die einzelnen Bestandteile des Fensters in sich,

indem für jedes Element ein Bit reserviert ist. Je nachdem, ob
dieses Bit gesetzt oder nicht gesetzt ist, wird das zugehörige
Element im Window enthalten sein:

Bit verantwortlich für Name Wert

0 Titelbalken Name 1

1 Léschfeld Close | 2

2 Maximalgrößenfeld Full 4

3 Fenster verschiebbar Move 8

4 Infozeile vorhanden Info 16

5 Größeneinstellfeld Size 32

6 Pfeil hoch Uparrow 64

7 Pfeil runter Dnarrow 128

8 Vertikaler Schieber Vslide 256

9 Pfeil links Ffarrow 512

10 feil rechts Rtarrow 1024

11 horizontaler Schieber Hslide 2048

Die einzelnen Komponenten, aus denen sich das Window zu-

sammensetzen soll, können laut obiger Tabelle einfach zusam-
mengestellt werden, indem die einzelnen Werte der rechten

Spalte addiert werden, und das resultierende Ergebnis für Kind

eingesetzt wird. Möchten Sie einem Fenster alle Komponenten
spendieren, erreichen Sie das auch mit der headezimalen

Schreibweise für Kind

$FFF

wobei alle Bits (sogar noch ein paar mehr, aber das stört nicht!)
gesetzt sind. -

Die nächsten vier Parameter, nämlich xmax, ymax, hmax und

wmax geben die maxımale Größe an, die das Fenster annehmen
kann. Diese sınd abhängig von der Bildschirmauflösung. Aus

 360 Das große ST-BASIC-Buch ———

diesem Grund empfiehlt es sich, zuerst einmal die maximale

Größe des Bildschirms abzufragen. Da der Monitor des Atari ST
gleich einem Fenster behandelt wird, kann dies mit einen GEM-
Befehl geschehen, der die gesuchten Werte liefert:

Wind_Get(Handle, Gfield, xmax, ymax, wmax, hmax)

Als Handle (darauf kommen wir später noch einmal zurück)
muß der Wert 0 eingesetzt werden, damit die maximale Größe
des Bildschirms (Fenster 0, deshalb auch dieser Wert als Handle)
zurückgegeben wird. Zusätzlich können mittels dieser Funktion
die verschiedensten Parameter abgefragt werden. Welchen Para-
meter Sie wünschen, muß in Gfield angegeben werden:

Gfield liefert als Ergebnis die Koordinaten

4 des Arbeitsbereichs auf dem Bildschirm

5 der Gesamtfenstergröße

6 des vorhergehenden Fensters

7 in der maximalen Fenstergröße

11 des ersten Rechtecks innerhalb des Fensters

12 des nächsten Rechtecks innerhalb des Fensters

Für unsere Zecke möchten wir die Koordinaten des Arbeitsbe-
reiches auf dem Monitor erfragen und geben deshalb als Para-
meter in Gfield den Wert 4 an, so daß der gesamte Funktions-
aufruf nun lautet:

Wind_Get(0,4,xmax, ymax ‚wmax,hmax)

Nach dem Funktionsaufruf findet sich die maximal erlaubte
Fenstergröße, die wie gesagt von der Bildschirmauflösung ab-
hängig ist, in den letzten vier Variablen wieder. Diese setzt man

jetzt beim Aufruf von Wind_Create() ein.

Der letzte Parameter ist das sogenannte Window-Handle oder
einfach nur Handle. Was hat es damit auf sich? Jedes Fenster
muß vom GEM eindeutig identifizierbar sein, da mehrere Fen-
ster gleichzeitig geöffnet werden können. Zur Identifikation er-
hält nun jedes Fenster eine bestimmte Nummer, das Handle, an-
hand dessen dann ein bestimmtes Fenster angesprochen werden

 —— GEM 361

kann. Dieses Handle teilt GEM der Application nach dem Auf-
ruf des Create-Befehls mit und wird fiir so ziemlich alle folgen-
‘den Funktionsaufrufe immer wieder bendtigt.

So, ein Fenster ware damit - fast - fertig definiert. Eine Klei-

nigkeit fehlt noch: Jedes Fenster kann einen Namen und eine ©
Infozeile tragen. Mit den bisherigen Befehlen ist es uns jedoch
nicht möglich, diese einem Fenster zu verpassen. Dazu wird ein

anderer Befehl benötigt:

Wind_Set(Handle,Sflied,Sline$,Adresse)

Unter Handle hat die Identifikationsnummer des Fensters zu ste-

hen, dem die Daten draufgedrückt werden sollen. Sfield be-

stimmt den Paramter, der gesetzt werden soll:

Sfield setzt Parameter

2 Fenstername

3 Infozeile

Der Inhalt, den die Infozeile oder der Fenstername bekommen

soll, besteht aus einer Zeichenkette, die in Sline$ vom Computer
erwartet wird. Da GEM seine Eigentümlichkeiten hat, wird zu-
sätzlich noch eine Adresse benötigt, in der der Name des Fen-

sters sowie die (neue) Infozeile abgelegt werden kann. Diese
Adresse besorgt man sich am besten dadurch, daß man einen

Speicherplatz mit dem Befehl

Adresse = MEMORY(Anzahl-Byte)

in gewünschter Menge reservieren läßt. Der so reservierte Platz -
dessen kann man sich sicher sein - wird ab sofort nicht mehr
vom Computer in irgendeiner Form angetastet. Gleichzeitig lie-
fert die Funktion auch noch (wie schön!) die Adresse, ab der der
reservierte Platz zu sinden ist. 70 Byte sollten für’s erste einmal
reichen: | |

Adresse = MEMORY(70)

Wind_Set(Handle,2,"Fenstername", Adresse)

 362 Das groBe ST-BASIC-Buch ————

Diese beiden Zeilen sorgen nun dafür, daß zuerst einmal Spei-
cherplatz (in Hülle und Fülle) bereitgestellt und anschließend der
Name dort eingetragen wird. Das Fenster hat somit einen Namen
erhalten. Wind_Set existiert in ST-BASIC noch öfters, jedoch

mit unterschiedlicher Parameterzahl:

Wind_Set(Handle,Sfield,Sw1)

legt die Fenster-Parameter fest:

Sfield ändert Parameter |

1 legt die bei ’Wind_ Create’ angegebenen

Komponenten neu fest

8 ändert die Position von Hslide

9 ändert die Position von Vslide

15 ändert die relative Größe von Hslide ©

16 ändert die relative Größe von Vslide

Die benötigten Daten werden jeweils in der Variablen Swl über-
geben. Da GEM nur jeweils ein Fenster in einem aktıvierten
Zustand verwalten kann, kann ein neues Fenster per

Wind_Set(Handle)

aktiviert werden. Das bisher aktive Fenster wird inaktiv. -

Ereignisse überprüfen

Nach all dieses Vorreden ist es soweit, der Befehl Evnt_Mesag()
darf in Aktion treten. Auch diesmal wieder befindet er sich in

einer Schleife:

REPEAT

Evnt_Mesag(Ereignis$)

UNTIL <Abbruchbedingung erfüllt>

 ——— GEM 363

Nachdem GEM den Befehl Evnt_Mesage erhalten hat, wird es
warten, bis irgendein Ereignis auftritt, und dieses dann in Er-
eignis$ melden. Da hier jedoch eine Vielzahl verschiedener
Events auftreten können, reicht eine Zerlegung des Message-
Buffers in 5 Ereignisindices nicht mehr aus. Der Buffer muß bis
zum 8. Integer-Wort (Index 7) aufgespalten werden:

DIM Ereignis(7)

REPEAT

Evnt_Mesag(Me$)

FOR T%= 0 T0 7

Ereignis(T%)= CVIC MID$(Me$, T%*2+1,2))

NEXT T%

UNTIL <Abbruchbedingung erfüllt>

Wieder steht im ersten Eintrag (Index 0) der Identifikationscode
des Ereignisses. Mögliche Events, die eingetreten sind, können
sein: |

Code Name eingetretenes Ereignis (Index’ =>)

10 Mn_Selected Menüeintrag angeklickt (alter Hut!)

20 Mw_Redraw Bereich muß neu gezeichnet werden

3 => Window-Handle

4 => X-Koordinate des Bereichs

5 => Y-Koordinate des Bereichs

6 => Breite des Bereichs

7 => Höhe des Bereichs

21 Wm_Topped Fenster soll aktiviert werden

3 => Handle des Fensters

22 Wm_ Closed Schließfeld wurde angeklickt

3 => Handle des Fensters

23 Wm _Fulled Maximalgrößenfeld wurde angeklickt

24 Wm_Arrowed Ein Pfeil wurde angeklickt

3 => Handle des Fensters

4 => angeklicktes Objekt:

0 = Seite nach oben

1 = Seite nach unten

2 = Zeile nach oben

3 = Zeile nach unten

4 = Seite nach links

 364 Das große ST-BASIC-Buch

Code Name eingetretenes Ereignis (’Index’ =>)

5 = Seite nach rechts

6 = Spalte nach links

7 = Spalte nach rechts

25 Wm_Hslid Horizontaler Schieber verschoben

3 => Handle des Fensters

4 => relative Schieberposition:

= ganz links

1000 = ganz rechts

26 Wm_Vslid Vertikaler Schieber verschoben

3 => Handle des Fensters

4 => relative Schieberposition

0 = ganz oben

1000 = ganz unten

27 Wm_ Sized Fenster in seiner Größe verändert

| 3 => Handle des Fensters

4 => neue X-Koordinate

5 => neue Y-Koordinate

6 => neue Fensterbreite

7 => neue Fensterhöhe

28 Wm_Moved Fenster wurde verschoben

3 => Handle des Fensters

4 => neue X-Koordinate

5 => neue Y-Koordinate

6 => neue Fensterbreite

7 => neue Fensterhöhe

29 Wm_Topped Ein Fenster wurde aktiviert

3 => Handle des Fensters

30 Ac_Open Accessory wurde angeklickt

3 => Meniiidentifikationsnummer

31 Ac_ Close - Accessory soll gelöscht werden

3 => Meniiidentifikationsnummer

Ermittelt die Application beispielsweise, daß ein Fenster geöff-

net werden soll (muß natürlich zuvor definiert worden sein,

sonst klappt die Geschichte nicht!), so wird einfach die Proce-
dure

Wind_Open(Handle, xmax, ymax, wmax , hmax)

 — GEM | 365

aufgerufen, um das Fenster auf dem Bildschirm darzustellen. Ein

kleiner Befehl (abfragen, ob das Schließfeld des aktiven Fensters
angeklickt wurde!) genügt, um das Fenster wieder verschwinden
zu lassen:

Wind_Close(Handle)

Dabei wird das Fenster zwar vom Monitor verbannt, bleibt aber

gemäß seiner Definition auch noch weiterhin intern vorhanden.
Zum endültigen Vernichten dient der Befehl

Wind_Delete(Handle)

Mit diesem Wissen ausgetattet, diirfte es im Prinzip keine

Schwierigkeiten mehr mit der Fensterprogrammierung geben.
Ein ausführliches Beispielprogramm finden Sie diesmal auf der
ST-BASIC-Diskette in der Datei GEMDEMO.BAS, in dem alle

hier dargestellten Grundlagen in der Praxis vorgeführt werden.

 366 Das große ST-BASIC-Buch ———

 ——— Multitasking 367

7. Multitasking

Multitasking - jene Errungenschaft, die es ermöglicht, mehrere
Programme gleichzeitig im Speicher zu behalten und scheinbar
gleichzeitig abarbeiten zu lassen - ist auf dem Atari nur bedingt
möglich. Das liegt allerdings nicht an dem eingebauten Mikro-
prozessor, sondern vielmehr an dem Betriebssystem, das dieses
Feature nicht vorsieht.

Wenn es nun so aussieht, daß ein Computer zwei Programme
gleichzeitig abarbeiten kann, so ist dies nur deshalb möglich,
weil der Computer geschickt zwischen beiden Programmen hin-
und herwechselt. Kein Mensch - und auch kein Computer - ist
in der Lage, zwei Dinge auf einmal zu erledigen. Arbeitet man
aber jeweils nur einen Programmschritt von dem einen, dann
einen vom dem anderen Programm ab, so entsteht - wenn man
nur schnell genug zwischen beiden Programmen wechselt -
tatsächlich der Eindruck, der Computer können zwei oder sogar
mehrere Programme auf einmal abarbeiten.

Unter die bedingte Multitaskingfähigkeit des Atari ST fällt zum
Beispiei der Event-Aufruf des GEM, mit dessen Hilfe auf ver-

schiedene Ereignisse gewartet und entsprechend reagiert werden
kann. Doch davon soll in diesem Kapitel nicht die Rede sein.

Vielmehr geht es hier um die eingebauten Befehle des ST-
BASICs, mit deren Hilfe während des Programmablaufs ein be-
stimmtes Ereignis (bestimmte Taste gedrückt) gemeldet werden
kann. Dabei arbeiten diese Befehle stets nach dem gleichen

Schema:

- Am Programmbeginn wird der Befehl gegeben, daß ST-
BASIC in ein bestimmtes Unterprogramm verzweigen soll,
wenn das angegebene Ereignis eintritt

- ST-BASIC arbeitet das Programm nun ganz normal ab.

 368 Das große ST-BASIC-Buch ———

- Tritt das Ereignis ein, verzweigt ST-BASIC - wie vorge-
schrieben - in das entsprechende Unterprogramm und arbei-

tet dieses ab. Anschließend stetzt es seine Arbeit im Haupt-

programm an der Stelle fort, an der der Einsprung in das
Unterprogramm erfolgte. |

Die verschiedenen Multitasking-Befehle des ST-BASIC lauten:

ON KEY GOSUB <Ziel>

Springt in die Unterroutine <Ziel>, sobald eine Taste gedrückt
wurde. Am Anfang des Unterprogramms muß die Unterbre-
chungsbedingung (Taste gedrückt) erst einmal mit

ON KEY GOSUB 0

zurückgesetzt werden, ehe das Unterprogramm abgearbeitet wer-

den kann:

ON KEY GOSUB Eingabe

-Eingabe

ON KEY GOSUB 0

RETURN

Soll das Progranmm unterbrochen werden, wenn eine Maustaste

gedrückt wurde, muß der Befehl

ON MOUSEBUT GOSUB <Ziel>

verwendet werden. Auch dieser Befehl wird wieder ausgeschal-
tet, wenn als <Ziel> eine Null angegeben wird:

ON MOUSEBUT GOSUB 0

ON HELP GOSUB <Ziel>

 ——— Multitasking | 369

springt in das Unterprogramm, sobald die Taste <HELP> (im
Mittelfeld der Tastatur zu finden) gedrückt wurde. Auch hier
wird der Befehl wieder mit

ON HELP GOSUB 0

beendet. Der Tastencode für <HELP> wird übrigens aus dem
Tastaturbuffer entfernt.

ON TIMER <Zeitspanne> GOSUB <Ziel>

Mit diesem Befehl wird immer dann in das Unterprogramm
<Ziel> verzweigt, wenn die <Zeitspanne> (angegeben in Sekun-
den) verstrichen ist. Die Abstufung dieser Zeitspanne ist in
Schritten zu 1/200 Sekunden möglich, wird jedoch bei Bedarf
von ST-BASIC selbstständig gerundet. Um diesen Befehl auszu-
schalten, genügt:

ON TIMER GOSUB #0

 370 Das große ST-BASIC-Buch ——

 ——— Der Compiler - 371

8. Der Compiler

Bisher war in diesem Buch von Interpreter und bisweilen auch
von Compiler die Rede. Diese beiden Worte habe ich in den

Raum gestellt, ohne genauer auf sie einzugehen. Dafür wird es
jetzt aber höchste Zeit!

Zunächst einmal zum Begriff Interpreter. Der Prozessor des
Atari ST spricht seine eigene Sprache, die aus lauter Nullen und

Einsen besteht. BASIC versteht er so wenig, wie Sie "Japanisch".
Wenn es nun trotzdem möglich ist, einen Computer in BASIC zu

programmieren, dann nur deshalb, weil es eine Instanz im Rech-

ner gibt, die zwischen dem BASIC-Programm und dem Prozessor
(Maschinensprache) dolmetscht. Diese Instanz heißt Interpreter,
und ist das ST-BASIC-Programm, das vor Beginn jeder Sitzung
erst einmal geladen werden muß, ehe man in BASIC program-

mieren kann.

Ein solcher Interpreter arbeitet - da wir gerade bei diesem Be-
griff angelangt sind - wie ein Sıimultandolmetscher, d.h. er holt
sich einen BASIC-Befehl nach dem anderen aus dem Pro-

grammtext und übersetzt ihn für den Prozessor. Dies hat natür-
lich einen gewaltigen Nachteil: der Übersetzungsvorgang benötigt

seine Zeit, und der übersetzte Code wird nie optimal sein (Ha-

ben Sie schon einmal die Übersetzung eines Simultandolmet-
schers im Fernsehen gehört?). Dies hat unweigerlich eine gerin-
gere Verarbeitungsgeschindigkeit des Programms zur Folge.

Ein Compiler arbeitet ebenfalls wie ein Dolmetscher, nur er legt
seine Arbeit schriftlich nieder, in eine Datei, dıe später keinen

Interpreter mehr benötigt. Es entsteht ein eigenes Programm. Da
sich damit dann die Zwischenschaltung eines Interpreters erüb-

rigt, laufen compilierte Programme wesentlich schneller ab, als
wenn sie von einem Interpreter ausgeführt würden. Der Ge-
schwindigkeitsvorteil beträgt im Falle des Omikron.-Compilers -

darf man den Angaben des Hersteller glauben - Faktor 9,5.

 372 Das große ST-BASIC-Buch ———

8.1 Die Bedienung des Compilers

Die Bedienung des Compilers ist sehr einfach:

- Starten Sie den Compiler von Diskette, indem Sie die Datei

Compiler.prg zweimal anklicken.

- Der Compiler meldet sich mit einer File-Selector-Box, in die

der Name des Programms eingetragen werden muß, das Sie
compiliren möchten. Dieses BASIC-Programm muß in ko-
dierter Form (also nicht als ASCII-File mit SAVE,A oder
<F8> gespeichert) auf Diskette vorliegen. Ansonsten müssen
Sie erst den Editor starten und das Programm erneut im
korrekten Format abspeichern.

- Der Compiler verrichtet seine Arbeit in drei Durchgängen,

sogenannten Passes. Im zweiten und dritten Durchgang kön-
nen Sie den Fortgang der Arbeit auf dem Bildschirm beob-
achten, da die gerade bearbeitete Zeilennummer ausgegeben

wird.

- Hat der Compiler seine Arbeit getan, steht ein direkt aus-
führbares Programm auf der Diskette, das den gleichen Na-
men, jedoch die Extension ".Prg" trägt (Demo.bas =>
Demo.prg). Beachten Sie bitte, daß auf der Diskette noch ge-
nügend freier Speicherplatz vorhanden ist, da die compilierte

Programmversion bis zu 2-mal so groß werden kann. Der
Omikron.Compiler meldet sich erneut mit der File-Selector-

Box, ein weiteres Programm könnte compiliert werden.

- Auf jeder Diskette, die compilierte Programme enthält, muß
die Datei Baslib abgespeichert werden, da sie von den Com-

pilaten nachgeladen wird (Ausnahme: Cutilib!).

- Das Programm kann ab sofort geladen und gestartet werden,
ohne weiterhin den Interpreter bemühen zu müssen.

 ——— Der Compiler 373

8.2 Compiler-Steuerworte

Der Compiler versteht gewisse Steuerworte, die er bei der Bear-
beitung des Programms berücksichtigt. Damit der Interpreter
nicht darüber "stolpert" wird das Steuerwort als Prozedurdefini-

tion in den Programmtext eingeschmuggelt:

DEF PROC <Steuerwort>: RETURN

Somit ist gewährleistet, daß sich der Interpreter nicht an dem
Steuerwort, das er nicht versteht, stört. Für ihn ist es nur eine

Definition, der Compiler weiß aber sehr wohl etwas damit an-

zufangen. Die beiden folgenden TRACE-Befehle können auf in
eine IF...THEN-Abfrage integriert werden, für die beiden fol-
genden Befehle gilt dies jedoch nicht:

MA (MULTITASKING ALWAYS)

MBS (MULTITASKING BETWEEN_STATEMENTS)

Ebenso können die TRACE-Statements von der Erfüllung einer
Bedingung abhängig gemacht werden, bei den beiden Multitas-
king-Befehlen ist dies nicht möglich.

TRACE_ON

Dieser Befehl sorgt dafür, daß zwischen der Ausführung von
Befehlen auf

- CTRL-C (Break)
- Interrupts

- die Tastatur

geachtet wird. Befehle wie ON_MOUSEBUT oder auch
ON _KEY werden somit ausgeführt. Der für die Befehle ON
ERROR und RESUM wichtige Stapelzeiger wird gespeichert.

TRACE_OFF

 374 Das große ST-BASIC-Buch ———

Eine Abfrage der Tasten

- CTRL-C (Break)
- Interrupts
- der Tastatur

wird unterbunden. Daher werden die Befehle zum Multitasking
außer Gefecht gesetzt. Ferner erhält die Systemvariable ERL
stets den Wert 0, RESUME ist nicht möglich! Ä

MULTITASKING_ALWAYS (MA)

Selbst wenn kein Steuerwort TRACE_ON im Quelltext zu fin-
den ist, prüft das compilierte Programm immer, ob CTRL-C ge-

drückt wurde oder .eine Multitasking-Bedingung eingetreten ist.
Jetzt ist es allerding auch möglich, mitten in einem Befehl die
Programmausführung zu unterbrechen (z.B. SORT), solange der
Computer nicht gerade mit der Ausführung einer Betriebssy-
stemroutine beschäftigt ist. Die Routinen, die über Multitasking-
Befehle aufgerufen wurden, dürfen keine Stringmanipulation
ausführen.

MULTITASKING_BETWEEN_STATEMENTS

Die zu ST- und Omikron.BASIC kompatible Unterbrechungs-
form. Alle Unterbrechungen sind - falls überhaupt gestattet

(Trace _On) - nur an Befehlsgrenzen möglich.

Diese beiden Befehle müssen nach einem CLEAR erneut aufge-

rufen werden, und dürfen wie gesagt, nicht innerhalb von IF-
THEN-Abfragen benutzt werden. Des weiteren existieren noch
Kombinationen der verschiedenen Steuerbefehle:

MA & TRACE_OFF

Dies ist die Standardeinstellung: RESUME arbeitet nicht, ERL
enthält stets den Wert 0. In Multitasking-Routinen sind keine
Befehle zum String-Handling, zur Dimensionierung eines Arrays
(DIM) und Offnen einer Datei (OPEN) erlaubt.

MBS & TRACE _OFF

 — Der Compiler 375

RESUME funktioniert nicht, in ERL steht immer der Wert 0
und Multitasking gibt es auch nicht!

MA & TRACE_ON

In Multitasking-Routinen sind Befehle zur Stringverwaltung so-
wie OPEN und DIM nicht erlaubt.

MBS & TRACE_ON

Die volle Kompatibilität zum Interpreter bleibt gewahrt.

8.3 BASIC-Programme auf dem Compiler

Der Compiler ist in der Behandlung der Syntax im allgemeinen
wesentlich pingeliger als der Interpreter . Deshalb lassen sich

gewisse Anpassungen nicht vermeiden: |

- Der Compiler dimensioniert - im Gegensatz zum Interpreter

- nicht automatisch. Jedes Array muß am Programmbeginn
und nach einem erfolgten CLEAR neu dimensioniert werden.
Erfolgt dennoch ein Zugriff auf eine solche Variable, führt

dies zu einem "? BUS-ERROR" Ein Dimensionieren in
Prozeduren und Funktionen ist verboten, wenn diese Proze-
duren lokale Variablen oder Parameter benutzen.

- Ein Variablenfeld kann vom Compiler verkleinert werden,
wenn es redimensioniert wird. Der Interpreter strukturiert
ein solches Feld nur um.

- Flags (%F) dürfen nicht lokal benutzt werden, sie können
auch nicht als Rückgabeparameter in Funktionen und Proze-
duren benutzt werden.

- Bei Verwendung lokaler Variabeln, die nicht im
GARBAGE-Segment, sondern im String-Segment und dem
Prozessorstapel gehalten werden, ist besondere Vorsicht ange-
bracht. Nötigenfalls muß der Stack über "CLEAR, X" ver-
größert werden.

- Funktionen sind so zu definieren, daß sie stets das Postfix

376 Das groBe ST-BASIC-Buch ————

(Endung) der Variablen tragen, die sie zurückgeben. Gibt
eine Funktion also eine Float-Variable zurück, muß sie als
Endung ein "!" oder "#" besitzen, je nach verwendeter Ge-
nauigkeit. Mit CSNG und CINT können die Formate jedoch
innerhalb der Funktion gewandelt werden.

Stringvariablen, die in FIELD-Anweisungen stehen, dürfen
nicht lokal benutzt werden, bis die FIELD-Anweisung durch
die Zuweisung eines Wertes mit LET aufgehoben wurde. |
Ebenso wird die FIELD-Anweisung aufgehoben, wenn ein
CLOSE des entsprechenden Kanals erfolgt.

Werden zwei Integerzahlen dividiert, resultiert dabei immer
ein Fließkommawert, ungeachtet, ob nun Nachkommastellen

angefallen sind oder nicht. Deshalb sollte man besser für In-
tegerdivisionen die Ganzzahldivision "\" benutzen.

Der Variablentyp einer DATA-Zeile muß mit der entspre-

chenden READ-Anweisung übereinstimmen. Möchten Sie die
Integerzahl "1" in die Float-Variable "G!" einlesen, ist dies
nur möglich, wenn die Integerzahl als Fließkommazahl in die
Data-Zeile eingesetzt wird. Dies geschieht, indem man einen
Dezimalpunkt an die Zahl hängt: 1.

Tauchen im Programmtext Befehle zum Multitasking auf,
sollten die Compiler-Steuerworte TRACE_ON und MSB
darin enthalten sein. Besonders der Aufruf von CALL ver-
langt nach einem MSB.* INPUT$ und INPUT USING wer-
den sebst dann durch ON TIMER GOSUB unterbrochen,
wenn als Befehlswort MSB in den Programmtext eingestreut
ist.

Durch den Einsprung in eine Fehlerroutine kann der End-
wert einer Integer FOR-NEXT-Schleife verloren gehen. In
diesem Fall muß die Fehlerroutine den Schleifenzähler wie-
derherstellen. Eine Idee zur Problemlösung stammt aus dem
Handbuch zum Omikron.Compiler:

 ———— Der Compiler 377

8.4

100 FOR M=0 TO Nummer

110 <hier steht der Schleifeninhalt>

120 NEXT M

1000 Fehlerroutine

1010 IF ERL=110 THEN FOR M=0 TO Nummer :RESUME NEXT: NEXT M

1020 RESUME NEXT

Die ASC-Funktion ASC("") liefert den Wert 0.

Bei Integer-Arithmetik wird nicht auf OVERFLOW geachtet,
deshalb können falsche Ergebnisse entstehen, wenn die Zahl

den eigentlichen Wert nicht mehr aufnehmen kann. Der In-
terpreter kann eine entsprechende Typentransformation

durchführen, beim Compiler ist dieser Vorgang jedoch nicht

möglich.

EXIT arbeitet im Compiler nur ohne Zielangabe bzw. mit
EXIT -1. EXIT TO darf nur verwendet werden, um eine
Schleife zu verlassen.

Programme optimieren

Möchten Sie das Letzte aus ihren Programmen herausholen, so

sollten Sie folgende Tips beherzigen:

Da Integer-Operationen am effektivsten übersetzt werden
können, sollten Sie alle in diesem Typus ausführbaren Be-

rechnungen auch in Integer durchführen.

Vermeiden Sie es, Zeichenketten zwischenzuspeichern, da
Stringfunktionen an sich eine Menge Zeit erfordern.

Je mehr Klammern in eine IF... THEN-Abfrage gepackt wer-
den, desto langsamer wird das Compilat werden. Ebenso las-
sen sich normale IF... THEN-Ausdrücke recht gut übersetzen.
Je mehr Sie diese allerdings verschachteln, desto mehr Zeit
wird für ihre Bearbeitung benötigt.* Verwenden Sie bei in-
einander geschachtelten Schleifen die am häufigsten durch-
laufene Schleife nach Möglichkeit als innerste Schleife.

 378 Das groBe ST-BASIC-Buch ———

- Manche Berechnungen (Division, Wurzelberechnung, ...) er-

zwingen eine Berechnung im Fließkommaformat, obwohl nur
Integer dazu benutzt werden. Werden diese Nachkommastel-
len anschließend nicht benötigt, sollten Sie entweder bei Di-
vision die Integerdivision (\) benutzen oder mit CINT eine
Bearbeitung im Integerformat erzwingen.

8.5 Fehlermeldungen des Compilers

Bad exit

Der Compiler gestattet die Benutzung von EXIT nur als EXIT
und EXIT -1. Zum Verlassen von Schleifen darf auch EXIT TO

herangezogen werden.

Out of memory

Es ist nicht genug freier Speicherplatz vorhanden. Abhilfe:
Verkeinern Sie die RAM-Disk oder zerstückeln Sie das Pro-
gramm in mehrere kleine Teile, die dann nachgeladen werden
können. |

Structure too long |
Eine in einer IF...THEN-Abfrage oder Schleife verwendete
Struktur erweist sich als zu lang, d.h größer als 32 KByte Com-
pilat. Bringen Sie deshalb den Inhalt der Schleife zumindest
teilweise in einem Unterprogramm unter.

Too many variables

Der Speicherbedarf für alle Variablen außer Arrays darf die ma-
ximale Größe von 64 KByte nicht übersteigen.

Type Mismatch |
Eine Variable des falschen Typs wird an eine Funktion oder
Prozedur übergeben.

Undefined statement(s) or DIM
Dafür können folgende Ursachen verantwortlich sein:

1. Sprünge verweisen auf nicht (mehr) vorhandene Ziele.

2. Es wurde vergessen, ein Array zu dimensionieren.

 —— Der Compiler 379

Warning: RETURN type mismatch

Eine Funktion, die sich über mehrere Zeilen erstreckt, muß den

Variablentyp zurückgeben, den sie im Namen trägt. Dies ist je-

doch nicht der Fall! |

Warning: Unused Statement(s)

Der Compiler ist während seiner Arbeit auf Label-Definitionen

und Prozeduren gestoßen, die nicht benutzt werden. Diese kön-

nen entfernt werden, wenn Sie Speicherplatz einsparen möchten.

8.6 Verarbeitungstypen der Funktionen

Die folgende Liste gibt an, welche Variablentypen von den ein-
zelnen Funktionen zurückgegeben werden. Tritt ein Type mis-
match Error auf, so lohnt es sich, einmal einen Blick in diese
Übersicht zu werfen:

Integer:

AND, ASC, BIT, CINT, CINTL, CRSLIN, CVI, CVIL, EOS, EQV, ERL, ERR,

FRE, HIGH, IMP, INSTR, LEN, LOC, LOF, LOW, LPEEK, LPOS, MEMORY,

MOUSEBUT, MOUSEX, MOUSEY, NAND, NOR, NOT, OR, PEEK, POINT,

POS, SEGPTR, SGN, SHL, SHR, TIMER, USR, VARPTR, WPEEK, XOR, =, >

>=, <=, <>

Float (Single und Double):

ARCCOS, ARCCOT, ARCCOTH, ARCSIN, ARCSINH, ATN, COS, COSEC,
COSH, COT, COTH, DET, EXP, FACT, LN, LOG, SEC, SECH, SIN, SINH, SQR,
TAN, TANH, *, /

Single-Float:

CSNG, CVS, RND

Double-Float:

CDBL, CVS, PI, VAL

 380 Das große ST-BASIC-Buch ————

String:

BIN$, CHR$, DATE$, ERR$, HEX$, INKEY$, INPUT$, LEFT$, LOWER$, MID$,
MIRROR$, MKD$, MKIL$, MKS$, OCT$, RIGHT$, SPACE$, SPC, STR$,
STRING$, TIME$, UPPER$, @

Vom Typ des Arguments abhängig:

ABS, FIX, FRAC, INT, MAX, MIN, MOD, +,-, *, \, (), +1, -1, *2

8.7 Hilfsprogramme auf der Compilerdiskette

CUTLIB.PRG

Das Programm CUTLIB.PRG wird verwendet, um die BASLIB-
Library zu kürzen und an das Programm anzuhängen. Dadurch
wird das Programm alleine lauffähig und nicht mehr benötigt.

Nach dem Programmstart erscheint eine File-Selector-Box, in

der der Name des Programmes einzutragen ist, für das die Datei
BASLIB gekürzt werden soll. Ferner können Sie folgende Optio-
nen einstellen: | |

- CTRL-C erlauben (J/N)

- Zeicheneingabe unter Omikron.-BASIC (J/N)

- Zeichenausgabe unter Omikron.-BASIC (J/N)

Werden die beiden letzteren Fragen mit "J" beantwortet, verlän-
gert sich zwar das Programm etwas, dafür stehen Ihnen die
Omikron.-typischen Möglichkeiten bei der Ein- und Ausgabe
von Zeichen zur Verfügung. Vom Programm benötigte Routinen
werden aber auf alle Fälle eingebunden! CUTLIB ist auch im
Batch-Betrieb ausführbar, die Syntax dafür lautet:

CUTLIB Name [,Name,Name ...] [-Antwort]

"Name" gibt das Programm an, das bearbeitet werden soll. Wer-
den von diesem andere Programmteile nachgeladen, müssen diese
durch Komma getrennt ebenfalls angegeben werden. Unter

"Antwort" werden die drei Fragen von CUTLIB beantwortet.

 —— Der Compiler 381

Dabei steht ein großes J für ja, ein großes N für nein. Wahl-
weise kann auch 999 angegeben werden. Dann wird die ganze
BASLIB in das Programm eingearbeitet.

SHELL.PRG

Das Programm SHELL ist ein textorientierter Kommando-Inter-
preter, der folgende Befehle versteht:

Befehl bewirkt

DIR Ausgabe des Inhaltsverzeichnisses

CHDIR Pfad Wechsel des Inhaltsverzeichnisses

MKDIR Pfad Anlegen eines neuen Ordners

RMDIR Pfad LÖschen eines Ordners

COPY Quelle Ziel Kopieren der Datei von ’Quelle’ nach ’Ziel’

REN Alt Neu Umbenennen einer Datei

DEL Name Löschen der Datei

DATE Datum Setzen des Datums

TIME Zeit Einstellen der Uhrzeit

PAUSE Wartet auf Tastendruck

REM Anmerkung (REMark)
PROMPT Zeichenkette Stellt das Prompt ein:

$p aktuellen Pfad anzeigen
$d Datum ausgeben
$g >-Zeichen

$n Aktuelles Laufwerk

TYPE Name Gibt eine Datei auf dem Monitor aus

VER Liefert Versionsnummer des TOS

Programmname [Parameter]

Batchname [Parameter]

ECHO ON

ECHO OFF

EXIT

Startet das Programm

Startet eine BATCH-Datei

Bildschirmausgabe bei Batchdatei einschalten

Bildschirmausgabe bei Batchdatei ausschalten

verläßt den Kommando-Interpreter

Die Dateitypen .BAT und .PRG müssen bei Dateinamen nicht
mit angegeben werden.

 382 Das große ST-BASIC-Buch ————

——— Anhang

Anhang

Anhang A: ASCII-Tabelle

 383

Der folgenden Tabelle können Sie den ASCII-Zeichensatz des
Atarı ST in Dezimal- und Hexadezimalnotation entnehmen:

v
V
O
N
I
A
U

B
W
I
N

P
O

—
—
u

W
W
N
H
N
N
N
N
N
N
N
N
N
P

P
P
E

P
P
P

P
P

P
O
U
O
D
N
I
H
U
P
F
W
N
P
O
U
D
N
A
U
P
R
W
N
E
O

® S

Hex

|
00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F

r

n
A

E
r

A
V

*Xe
o
a

O
B
:

P
o

Ce
9

©
t

I
>

eo
1

e
>

Er
f

Dez.

Zeichen |

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Hex '
20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

Zeichen r

+
F
N

=
|

HW 0
%

=
V
I
A

ec
V
O

N
A
V
I

P
W
H
R

O
N

*

Dez.

|
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Hex

40
41
42
43
44
45
46
47
48
49
4A
4B
ac
4D
4E
4F
50
51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

4’
 _

I
N
K

M
SI

S
C
A
C
H
h
H
H
N

V
O

H
N
O

Z
E
Z
S
E
r

K
U
H

E
A

H
HH

OU
N
W

P
D

Dez.

| Zeichen | r

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Hex

|
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
TE
7F

Zeichen r

te

-
-
A
N
K
K
E
<
I
E
F
U
N
H
A
V
T
O
S
E

FR

K
F
U
F
R
B
U
O
R
H
R
P
E
N
n
D
T

m

384

Dez.

|
128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Hex

|
80

8l

82

83

84

85

86

87

88

89

8A

8B

sc

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

oF “yh
 S
O
K

hh
CG:

O
r
:

>
O
O
:

O
BY

BW
Eh

De

D
B

b
e
:

OD

0:

D
O

M
e

PM:

ow
Dm
E
4
4

Dez.

Zeichen

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF J)

L
E

e
e

e
e

oS

t
t

a

Das groBe ST-BASIC-Buch

Hex

Dez.

[Zeichen

co L 224
ci + 225
C2 + 226
c3 - 227
C4 - 228
c5 + 229
c6 F 230
ct 231
ce E 232
Co fF 233

cA = 234
CB 7 235
cc | 236
cCD= 237
cE + 238
CF = 239
Do 4 240
Dl = 241
D2 7 242
D3 U 243
DA E 244
D5 F 245
D6 rn 246
D7 + 247
D8 + 248
D9 ! 249
DA r 250
DB Mf 251
DC m 252
DD J 253
DE || 254
DF @ 255

|
Hex

|
EO
El
E2
E3
E4
E5
E6
E7
E8

E9
EA
EB
EC
ED
EE
EF
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

I
—
-
—
-
A
V
H
M
I
D
A
S
B
E
H
I
D
A
H
A
T
A

M
A
I

H
D
R
-

Zeichen

.
o

Y

Y
i

4
;

——— Anhang

Anhang B: Scancodes des Atari ST

Der folgenden Grafik können Sie die Scancodes
Tasten entnehmen:

385

der einzelnen

SCANCODES ATARI ST

vs | 79 7A

04

76

7c 7D

07

7E 7F

839
31

s2 | 83

 2s lee 62 | 61 66

MAR

OF | 18 | ii 1213 14115

B |

ıslız 18113 11A |1B

ıD

te Fl Al a1 lza|2s|24|25 |26| 27128| ic

53]
2B

32 48 47 4A

4B
74

4D 4E

 2¢| 20 ZE 2F|30 a1 {32 [33134 [3 5 |

 33 3A

Alle Angaben in Hexadezimalzahlen

- Die kleinen Zahlen uber der Ziffernreihe entstehen
durch gleichzeitiges Drücken von ALTERNATE

 72

 386

Anhang C: Verzeichnis aller VT-52-Sequenzen

In der folgenden Tabelle wird CHR$(27) durch ESC ersetzt:

Sequenz bewirkt

ESC A Cursor eine Zeile nach oben

ESC B Cursor eine Zeile nach unten

ESC C Cursor nach rechts

ESC D Cursor nach links

ESC E Löscht Bildschirm (CLS)
ESCH Setzt Cursor in linke obere Bildschirmecke

ESCI Cursor hoch

ESC J Bis Bildschirmende alles löschen

ESCK Ab Cursor bis Zeilenende alles löschen

ESCL Leerzeile einfügen |

ESCM Zeile löschen, Rest rückt auf

ESC Ysz PRINT @(Spalte,Zeile)

s = CHR$(Spalte+32)
z = CHR$(Zeile+32)

ESC bn Wählt Schriftfarbe <n>

ESCen Wählt Schrifthintergrund <n>

ESC d Léscht Bildschirm bis zum Cursor

ESC e Cursor einschalten

ESC f Cursor ausschalten

ESC j Cursorposition speichern

ESC k Setzt Cursor an gespeicherte Position -

ESC 1 Zeile léschen

ESC o Zeile bis Cursor léschen

ESC p Invers ein

ESC q Invers aus

ESC v Automatischer Zeileniiberlauf (NICHT SCREEN 0)

ESC w Zeilentiberlauf ausschalten (NICHT SCREEN 0)

Das groBe ST-BASIC-Buch ————

 —— Anhang 387

Anhang D: Fehlermeldungen des Interpreters

I Structure too long

Zwischen zwei Strukturwörtern (FOR...NEXT, WHILE
WEND) befinden sich mehr als 64 KB Programmcode. Zur
Abhilfe sollte der Inhalt zumindest teilweise in ein Unter-
programm transportiert werden.

2 Syntax Error |

ST-BASIC kann mit diesem Befehl nichts anfangen. Sehr
wahrscheinlich liegt ein Tippfehler vor.

3 RETURN without GOSUB
Der Interpreter ist auf ein RETURN gestoßen, ohne daß
ein Einsprung in eine Unterroutine mit GOSUB erfolgte.

4 Out of DATA
Der DATA-Zeiger verweist bereits hinter das letzte Ele-
ment. Deshalb konnte ein READ keine Daten mehr lesen.
Abhilfe: Anzahl der DATAs korrigieren.

5 Illegal function call
Ein Befehl oder eine Funktion wurde in einer Art und
Weise aufgerufen, in der er nicht verwendet werden darf.

6 Overflow
Der Rechenbereich des Variablentyps wurde überschritten.

7 Out of memory

Es ist entweder kein Speicherplatz für weitere Variablen

vorhanden oder aber kein Platz mehr auf dem Prozessor-
Stapel.

 388 Das große ST-BASIC-Buch ——

8 Undefined Statement
Das Sprungziel existiert nicht.

9 Subscript out of range

Der angesprochene Variablenindex ist größer als die im
DIM festgelegte Dimension.

10 Duplicate definition
Ein Funktions- oder Prozedurname wurde doppelt verge-
ben.

Il Division by zero
Es wurde versucht, durch Null zu teilen.

12 TIllegal direct |
Der Befehl ist im Direktmodus nicht erlaubt.

13 Type mismatch
Eine Variable sollte mit einem falschen Inhalt versorgt
werden.

14 RETURN without funktion
Der Interpreter hat ein RETURN entdeckt, ohne daß zu-
vor eine Funktion aufgerufen worden wäre.

15 String too long

Eine Zeichenkette darf maximal 32766 Zeichen enthalten.

16 Formula too complex
Eine Berechnung ist zu sehr verschachtelt (haben Sie wie-
der einmal übertrieben?) und verbraucht zu viel Stack-
Bereich.

17 Cant’t continue

Ein CONT ist nicht möglich.

 ——— Anhang | 389

18

19

20

21

22

23

24

25

26

27

Undefined user function
Es existiert keine Funktion mit diesem Namen.

No RESUME u
In einer Fehlerroutine (ON ERROR) fehlt RESUME.

RESUME without error

Der Interpreter soll ein RESUME ausführen, ohne daß er

mit ON ERROR in die Fehlerroutine gesprungen ist.

Use EXIT

Schleifen dürfen nur mit EXIT verlassen werden.

Missing operand

Ein Operand wurde vergessen anzugeben.

Line buffer over flow
Eine Programmzeile ist zu lang (bei der Eingabe: 255
Zeichen, beim Auflisten: 512 Zeichen erlaubt).

REPEAT without UNTIL

Eine REPEAT-Schleife wurde geöffnet, ohne daß ein

UNTIL vorhanden ist.

UNTIL without REPEAT

Ein UNTIL wurde entdeckt, ohne daß ein REPEAT vor-

handen ist. |

FOR without NEXT
Eine FOR-Schleife wurde geöffnet. Im Programmtext kann
aber kein NEXT gefunden werden.

NEXT without FOR

Der Interpreter ist auf ein NEXT gestoßen, ohen daß ein

FOR dafür vorhanden ist. |

 390 Das große ST-BASIC-Buch ——

28 IF without THEN or ENDIF
Entweder Sie haben bei einem IF-Befehl das THEN ver-
gessen, oder aber es fehlt ein ENDIF (bzw. ist überflüssig).

29 WHILE wihout WEND

Zu WHILE existiert kein WEND.

30 WEND without WHILE

Zu WEND existiert kein WHILE.

31 THEN, ELSE or ENDIF without THEN
Zu einem THEN, ELSE oder ENDIF fehlt das zugehörige
IF bzw. für ein ELSE oder ein ENDIF ist ein THEN zu-

wenig vorhanden.

33 Reset

Sie haben den Reset-Knopf gedrückt, alle Variableninhalte

sind verloren, das Programm ist nicht gelöscht.

34 Bus Error

Ein BUS-Fehler ist aufgetreten (verursacht durch ein von
CALL oder USR aufgerufenes Programm).

35 Adress error
Ein Adreßfehler ist aufgetreten.

36 Unknown opcode
Ein unbekannter Maschinenbefehl steht in einem mit
CALL oder USR aufgerufenen Programm.

45 EXIT without Structure
EXIT wurde entdeckt, obwohl kein Unterprogramm oder
Schleife vorhanden ist, das mit EXIT verlassen werden
könnte.

 ——— Anhang 391

46

47

50

52

53

54

55

56

57

61

USE EXIT TO in functions
In einer mehrzeiligen Funktion ist nur EXIT TO erlaubt.

Not regular Matrix
Zu dieser Matrix existiert keine Inverse (Gegenprobe:
Wenn die Determinate Null ist => nicht invertierbar).

Field overflow
In einer FIELD-Anweisung wurden zu viele Daten ange-
geben.

Bad file number
Es sind nur die Kanalnummern von l bis 16 erlaubt.

File not found

Die Datei ist auf der Diskette nicht vorhanden.

Bad file mode

Eine nicht erlaubte Operation sollte mit der Datei ausge-
führt werden.

File already open
Die Datei ist bereits einmal an anderer Stelle geöffnet
worden. Abhilfe: andere Kanalnummer verwenden oder die

offene Datei zuerst schließen.

File not open

Sie haben vergessen die Datei vor dem Zugriff zu öffnen.

TOS error #XX

Ein TOS-Fehler ist aufgetreten (siehe Anhang E).

Disk full

Es ist auf der Diskette kein Speicherplatz mehr vorhanden,
der belegt werden könnte.

 392 Ä Ä Das große ST-BASIC-Buch ——

62 Input past end
Es wurde versucht in einer sequentiellen Datei über das

Datei-Ende hinauszulesen. Fragen Sie mit EOF das Datei-

Ende ab.

63 Bad record number

Es wurde versucht in einer relativen Datei auf einen Da-

tensatz zuzugreifen, der nicht existiert.

64 Bad file name
Der Dateiname enthält unerlaubte Zeichen: Punkt, Komma,

Doppelpunkt, Semikolon usw.

65 Direct statement in file
Ein Programm, das geladen werden soll, beseitzt keine
Zeilennummern. Abhilfe: LOAD BLOCK *.* benutzen.

66 Too many files |

Das Inhaltsverzeichnis kann keine weiteren Dateien mehr

aufnehmen. Abhilfe: Mit KILL Programme von der Dis-
kette entfernen.

Anhang 393

Anhang E: TOS Fehlermeldungen:

Fehlernummer Beschreibung des Fehlers

1 Allgemeiner Fehler

2 Laufwerk nicht bereit

3 Unbekannter Befehl

4 Priifsummen-Fehler

5 Falsche Rückmeldung (Befehl ungültig)
6 Sektor nicht gefunden

7 Fehler im Bootsektor

8 Sektor nicht gefunden

9 Druckerfehler (Paper out)
10 Fehler beim Schreiben

11 Fehler beim Lesen

12 Allgemeiner Fehler

13 Diskette schreibgeschützt

14 Diskette wurde gewechselt

15 Gerät unbekannt

16 Priiffehler |

17 Keine Diskette vorhanden

32 Ungiiltige Funktionsnummer

33 Datei nicht gefunden

34 Pfad nicht gefunden |

35 Zu viele Dateien geöffnet

36 Zugriff nicht möglich

37 Ungültige Handle-Nummer

39 Zu wenig freier Speicherplatz

40 Speicherblockadresse ungültig

46 Laufwerksbezeichnung ungültig

Pa

©
 Keine weiteren Dateien vorhanden

 394 Das große ST-BASIC-Buch ———

Anhang F: GfA-BASIC-Programme umschreiben.

Zuerst sollte Sie das GFA-BASIC-Programm einmal als ASCII-
File auf Diskette abspeichern. Laden Sıe dann den ST-BASIC-
Interpreter und laden das soeben abgespeicherte Programm mit

LOAD BLOCK *.* ein. Bitte nicht mit LOAD, da andernfalls
eine Fehlermeldung ausgegeben würde. Jetzt müssen Sie noch
Zeile für Zeile durchgehen, und die Befehle, die sich unter-
scheiden, entsprechend in eine für ST-BASIC verständliche

Syntax wandelt.

Vergessen Sie bitte nicht, daß in GfA-BASIC alle nicht ander-
weitig deklarierten Variablen FLOAT-Variablen sind, während
ST-BASIC diese als Long-Integers interpretiert. Abhilfe kann
hier der Befehl DEFSNG A-Z in der ersten Programmzeile
schaffen.

Beim Umschreiben des Programms können Ihnen auch die bei-
den DATA BECKER Führer zu GfA- und Omikron.BASIC eine
große Hilfe sein, mit denen Sie gezielt die Syntax eines Befehls
nachschlagen können.

 ——— Index | 395

Index

ACCESSOLYscccseccsvsccescscccscecsctesconsccnsccescececcssessceseeescescceceeceessenes 31

AITAY ccscceccseccsccnnccnscenccscccnccsccsccecenscesconccescecessesscssessceeceeeseeceeoees 90

ASC. uuu. ccccssccsccssccsscescccsceccusccnccsccescesccesscsccccseccesccessectesecscessesesessescs 149

ASCH ...ccccccccccccceccscccccsscccscvcnsvccscesccscesscescceccsccesseusesceessescescseseecescs 48

ASCTI-COdeccccecccscsecceccccccccscceccscssccscnscccesteccsscessesescs 154, 232

ASCTI-Datelcccececsccecessccsccsccnscccccssccsccsccececsscscecsseseescescescescsens 37

ASCTI-Tabelle ccc ccececccccsscsscesccccescecesccecescescesccseecsesesceeeees 69

Backslashcccccesccsecescccscceccssccscecscsccscessccsccsccsceecsessascesseeseoses 213

BACK UP. .uiiiicic cc ccc ccsccseccceccsccsccsscecccssccccecceescevesecsesescessesesescesscess 208

BAK oii ccc cccccscseccecceccsccceccccesccscscesceccuccssesccccssceeceeeseseuceeces 56, 207

Baslib ce eseccseccsscccssccssccssccssccecccscccsceescceseevseesceeseesssssceescescees 372

BCOMIN.ccecceeccescscscseccnsccsccscccaccscccsccscecccsscsscescceseesscucsecessseccoscs 257

BCOMOULccccecsecsscsscsccecsccsccecssceccecscsccscscteccsceccssesseccssessecees 257

Bconstateccensessssesensnnnnnennonunnnnnnunennnensnnnnnsnennsensennnenn enensonnsnenenn 257

Bcostat ...eeeenseessensnssessnnsnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnsnssnnnnsnsensensennsnnnnen 259

Benutzeroberfläche.cussenseossenssonnnnnnnnnsnnnnnennunnennennnnsnnnennnnn 247

Betriebssystemcccccccscsccsescccssccccscecuscceaseccesseceescesssccesccescees 68
Bildschirm ladenccccscssccseccsscccscccscccsccsccseceescesccsscsescescess 285

Bildschirm-Eitor .0..........cccccccscsccscccseccceccccscccssccescevcscscccesceessceses 16

Bildschirm-Aufteilumg cc cecccccsscccesesecsceescccecscecceseeseesceseees 38
BING occ. ccecccccceececesesessssssscseccccncccsccscecesececceeeeeceseeseeeseceeecesseeseeseeoss 89

Binärzalhl .0....... cect ceccesscccescccscccescccsscccscccssccesscccscecsccesecesccessccosceeecs 43

BIOSccccscccssccsccesccsccccccscccsccsccecccsccsccsssescesccecescesscescesscssesscouce 247

Bioskey .u......ccccceeccesscccescccssccescccsscceseccesccesccccsccescsccceccesessscesscesseees 267

Bitceccsccesccsccceccccscccscccscccscccsccescccsccssccsscesccssccesceesccsccssesescosseess 43

BITBLT0000000seessenseensonsnnnnonsnnnnnnnnnnnnnennussnnnnonnnnsnnnnnnnnn 283

BLOAD2u0sssassenseonssonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsensnsnnsnnnnsnnnnnnnnnnn 286

BIOCK .0..........ccccseccsscseccsccccsccsccsccscccsccecccscesccecconcceccecssccsecescesecesceceess 25

Blockoperationccsesccsscccssccsscccssccescccsscceccccescesscessccesccseceeuscs 35

BOX oui... cccccccsscceccesccssccecccsccsccsscscesscscccscesscescescescscscsscescseccescceseses 281

BSAVE oii... cccccscccscccsccccscccsccesccesccescceccssccccesccssccsccssccessceccoeccesees 286

 396 Das große ST-BASIC-Buch ——

Carriage Returneossessssesssnnenennsunnseonnnnnnnnonnnnnensonsnnnsnnsnsssnensennnn 70
CAUXIN ceeeeeenenessessnnnsnnnnnnnnnnnnnnnnnsnnnnnsensnunsnssnnnsnunsnnsnssnnnnnnnsnssnnnneene 249

CAUXIS ceeeeeseasensensennnnnnnnnonnnensnnnannennnnnnnnsnnnnssnnsnnnnnsnsensnssnnssnssnensensenn 250

CAUXOScccscceccescescnscecsenes Lescuecercccceccscsecesccecseccescocceccecaursncesccecesees 250

CAUXOUL oi... ec tccecsecssccsccccevcescvensccscsscsccseescescescessesteccesescesceeseees 249

CCOMOS ..cccseccsecessccnsccsscccscccsccnsccsscccsccnsseusecssccesesecesrseccsessescsesececees 250
CCOMOUL ou... ce ecceececcecsscesceccececesccscsseecncescesescesseccecsscecescscessecoess 249

CCONTScceccscessseeceeesseeseceesseeeccesenseeeceesseeeeseesseeeeesesessanseeeesenenees 249
Change SIZ€cccsssscsecssccesccscccssccecccessccscecsesccesceestesceesceesenecoeces 28

Char .o.ccceccecccecceccceccsccssccssccsccecccscesccsccescescsesesseseceeseesccsccscesceeceeseesce 46
Characterecenssnssesssensesnnnnsnnsnnnnennennnnsnnne nn duccerceccccccscesccsscecsoscnsens 46

CHDIR oiieecccc cc cecccseccscccsccsccsscescescccscessceseecceesesscceseeess sevesccecseseess 213
CHECKED cocci eccceceescceccsccsscceccssecscceseescesseessescesceecsesseseeses 314
CINT ouiie ccc ccc eeccscccsccssccscecscevccsccsscescssccesceeseeneesceessencesceeseeseosseecs 376
CLEAR oii.ecccecceeccssccssccsscccscessccnscessccscceevecsccesveesces 96, 205, 374, 375
Clipboard ou... ccc csecssecsscceccssccsccscccsccessccescessccscesscessesceesssceeseeses 294

©) OS) Sa 188
CLS oie e ccc ccceeccsccssccscccsccssccsccsscsccsccsscuscessccscesccescevccessescesceseeessesseseess 52
Cluster .o........ cece ccecsecseccsccevenccsccsccscceccscesctesescencescteccecescescessesseeeecs 251

CMD. oii... cccececessccssccseccssccssecevccsscesccesccessccscececcescessseescuesesscseceeesees 238
Compiler cece cesccssccsscceccescccsccescceeccssscessccccessceesseesseceseseeecses 371

COMP er. Prgccsseccsssccsvcccscccsccccsccccssecsccessceccveesscessssscceaseceess 372

COPY .ui.ccccccceccseccsccecccscccscceccsceseccsccssceccesccssceseessesecesceeseeees 191, 208
CPS cc cccseseceeceecceeeeeees seceececcecescsccesssceccucesceccscecesceseecsesssress 250

CPrnOut ou... cc ceccecceccscescsccscccceccscesesceecescvccsccssecsscsecssecesseeceeeess 249

CROSSED oui. ccecceccsecceccsccecccsccsscesceesccccesccessessescesseessccuseneces 314
CONG. oiieecccscccccssccccccsccceccccceececcccececcccccsecaccesccsscssscscsssssccsscccescecesees 376
CSRLINsesssensesssensesnsonsonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnsnsnnnnnnernnnne 245
CTRL-Csseessessssenssonsnonsennennnnnnnnnssnnnennnnnnnsnnnsnsenessennsnnensenene 373
Cutiliboccuneseenessnsesnonssonnennnnnnnnennnnnnnnnnnnnnnnnnnnnnnnsnensnnonnnnnannnnnnnen 372
CUTLIB.PRG20022000s0sssensnensnonsnsnnnennnnnnnnnnnnnnonnonnnnsnnnnnnnennn 380

DATA. uuu... cccccccssccesccsccscccsceesccccsccssccsccsscsccescesccscssscsscesececseccesoeses 140
DATES wiiceicc ee cccccseccssccsscccsccccessccscccuscessccssccssccscesscecscevssecseeseeecees 245
Datei-AuSWah box wo....c ec eeeecscccscccsscccsccessccsscceseccsscessscsscseseseeee 196

Date-AVverwaltung oi... ccccceccsccssccsccsscesccsscssccssesceeseescescesceeseuccs 181

Datensatzcccceccecsccsceccscsccccscsccscscssescssccceccsceccceseeecscecssescsseoess 182

Dereate Kenssunsnsnssssnosssssnssssennssssnnsssensnssssnnssssensssssnsssnensnsnen 252
Ddeletecscccssccsccsscccscccccessccsscesscesscecsececesscecscecsecsssescessseveees 252

 ——— Index 397

Dezimalkommaccsceeccccccecscsscceccecssssscceeceees Vecccccesessecececeeees 5]
DeZimalSySteMS cccccsccescceccnscceccsecsccceccsccsececsceecesscescecoeconss 43

DECCc ccc cecceccevccscesccccccccsccnccscccccecescceccesesccsseseeeteccecesccecsscescees 251

Det ry .u......ccccsssccceesseccccsncccecnssccessccecasccccasscceuesccseescesuesesseseceness 250
Dgetpath ou... ccccccssscccsecccnssccesscccasscceescceescceeseccusceseesecaeeseaecesaeoes 256
DIM oui... ccccecceesccssccssccesccssccscecsccsscessccsscceceesceesesessesesevetesceeseusceesceecs 91
DIMEMSION o.oo. ce ceecceeccescsccescccccsccsscevsescsescencesceess sevccescescescessceceess .91

Directory ..ensseesssnesnsnonssnonnennnnnnnnnonnnnnnsnnnnensnnnnsnnnsnsnnsnsssnnnsssnnsnnnsnnn 22
DirekKtMoOdusccccscccsccscsccscsscccccscnscevcescessescessesenceecesces 19, 207

DISABLED. ..u.ce ccc iececccceccsscceccscccsccsccuscesccnecscseccceceeceessescosceeseees 314
Diskette formaticrenccccccccsccccccccccccccccceccccceccccsesssceescsceseceess 270
DO _ FILE222sssssnnsesssssnsnsnnnnnsnsnnnsnnsssssnsnsssssssssnnnnennnsnssnnenen 200
DOODLE oonii cee. cc ce csccesccesccsccsccssccsccsscesccecsescscesceecsescescesceesseseescs 286
DOSOUNGccceeccsscscccscceccecceccscceceucceccsceecesccsscssestesseseecesccsccscees 268

Double Precisionccccccccseccscccsccnccsvccscesscsscscesscessascescencesscesens 45

Dragecccccssccccsccccsccesscccescescscesccesceeesceesetsscseeesonsceesceescenes 294
DRAW oui sec cccccssccssccsscccsstcesccscccsccsscecscessceuscesseescesscsessescseseseseeeces 281
Drucker ouiccc..c cc ceeccsecssccscceccecceccsccscceccsccsceeccscesscsssssesseesessecescescees 236

DIViMaPcccescceccssccsccceccsccesccsscesceecessseccceceescesccessessescesesecenscess 259

DsetdrvV .u......ccccssccescceccssccscccsccsccscsscseeceescesccesseseesccsccecesseescesceessess 250

Dsetpath sesecsscecececcscceccsccsccecsseevccsseeccsssseessessscesesecesecsce 253

Dualsystem .0...........cccceeccsscsccecccecceccecccsceeccasscsccesceccescceccescesees 43, 88

EDIT uci cece ceeccseccssccsccsccsccecccuccssccsccssesssescenceeccsscceseessevsescesceecees 32
EDITABLE ooeeec cece cece cc cccccccccsccsscceseccccesccssccceceeccesecesecessecasceeees 312
ECitOrcccccscccseccessccssccssccsssccscccsccsscescccscesscessccescecsssccsescenseesceessees 15

EinftiQeMoOdusS .u..........cccccseccsesccssccnssceccceevcececscesccesceesescesceesesessteecs 27

Eimzeilige FUnKtionc.cccssccccssscsccsscccecesccccsseccesscceeecsseeeeseees 135

ELSE oui... cc scccsscsccceccssccsccscceccessccsccsscecceecesscescesecesssccscesceescscens 101
Enable()ccsssccsscccsssccsscccssccsscccessessccesscensceescseesceesceecssecseees 331
ENDIF oui... cc ccecceeccsscceccnscsccescnccsccssecsccnccesccscsessessescescsecseccess 103
Endlosschleifeecccccscccesccssccsssceccescenscccseescnecsseceseees 116, 119

EOF wii. cccccccsccssccscccsccssecsccccceccescnccssccsscescecscescesecscsessecsesscsseussess 189
ERL wii... ees ccsccscccescceccsscceccescceccssccsscssssvccscesssesccsceecseceescceccnsseseoses 205
ERR oui... .ccsccseccsscscccscvscccsccssccccccscesscuscsscesseesccsceeseeseescescescsssceseuse 205
ERR oui... cesscccsvecesecccscecescescccssceuscscsscecsccesssessceescecssesecsescees 205
ERROR uuu... eccccesccsscccecccsscccssccsssccesccecsscusccessccesccescesscssescoesces 207
Exec *.Prg eceeeeeeeneennennenssennennnn sesececccecccsecscsssscsescecesscecssesscesseeeusees 31
EXIT ou... cc eccsssccseccsssccssccesccesccesccesccsssscsevceeseeesceeceesceescees 117, 312
Extender222sssssnsessnsnsssnnnnnennennsssnnsssssnnnnnsnnsennensensnnenen 198, 345

 398 Das große ST-BASIC-Buch ———

FACT ouii.ccccccccccsccssccesccscccssccssccsccssscnscecscessccesccescesseesceesceeses seseeeees 139
Fattribcccccccsccseccsccevcecceccsccscccccscssccscesccesescssesssteeceeteccscescs 255

Fceloseccccsccssccscccsccsscscecccceccsccsscccscescesccuccesceecsecssecesccescescescesce 253

Fcreatecccecseccsccccscccccscssceccsccscsccscccesceuccsccseeccsecseeccscesescesosseseecs 253

FO atti me cc ccceescceccececcecccccsccsccscseccsccscesccsseeccsccsccscessessesceceees 256

Fdeletecccccccccccccccccccccscsscsccecceccecscccccssssssscceccecceseesccscsesceseceees 254
FUP cccessccssccssccssccseccssccscccescccccccsccecccsseecccesctesccesccestescceseessons 255
Fehlermeldunngccccecccesccscccecccecccecccsecescccscensccsscescsssceeons 387
Fensterkomponenteccccecceesceseeeeee Neccccssccscccsccescesccevecsees 358
Femstertech ikccccssscsecssccesccscceccssccsccesceseceseesecscesscescescesce 357

Ffcorce .u..c.c tec ceccecceccescsccscceccscceccsccessscevccsccvcesscesescescessessescesseceecs 255

FEOPL Mt oo... ec eccsecceccnsccescsscceccsscsscccceeccecscescescesseessesccscseseeeneece 262

Fetdta oo... ccccssscesccsscnscceceestcsccesecsccescescceeceeceseceseesceeceecceseessones 251

FIELD oiecccccsessssssssssseseseesesescsessesesesceseeess sessesesseseseaeaseesseseaeseseesees 214
Filecccccecceccsscssccsccecceccecceccsccsccsccssecscscescessessesseecesccsceseessescesees 21

File-Selector-BoXccccccseccsccesccsccssccsccesccscesseescescesceesee 195, 344

FILES cocci cece ces csccseccscccscccscesccsccesccsccsccesceeccececsceesecssescevessceeceesce 213
FileS KOPIe rencsccessccesccecccscccccessccssccescsecceesceesccessescceseeece 191

FILESELECT.22000s0s2sensensssessnnsnnnnnnnnnnonnennnnnnnnnnnonnennennnen 199
FILL..........ocssessesssesnssensesnnnnnnonnsnnnnnnnnnnnnnnnnnnnnnnnnonsnnnnnnsnnsnensnennen 282
FIND00020022sesssesssnnssnnnennsnnnnennennnnnnnnnnnnensennennnnrnnsnnsnonennnennnn 23
FIND ERROReesssessensssansennsnonsnonssnnnnnnnnnnnennnnnnnnnnnnnnneen 25, 30
FIND NEXTssessenssensnnssnnsenssnnnnnsennnnnnnnnnnnsonsnnnenennsnonsnssnenene 24
FIND TOKEN ouiiiiiccc ccc ccc ceeccsccsccesccsccssccscccsccsccescessescesceeeees 23, 25
FIX oie ccc cccccceccssccscccsccesccsccccccsccsccsccesccsccesccuccesecsccsceessescevcescesseeceess 64
FIAGSccccescccecceccesccsccusccecceccesccescesceecesscescceseesececeessescesccsceesescess 48

FlieBkommavariableccccssccssccssccesccssccesccssccsccesccesccescesccess 45

FlieBkommazah 0.0.00... ceccecccecccscccsccesccesccescessccssccescevccsscceseesceess 44

Floatcccccscccscecsccccccccccscacscsccccccecscscscsaccsecscecscsccccessceccccccscssscceecs 45

FLOP rd .u...cc ccc cececcscecceccccscccceccccscsccccscsccscscesceccscessssececsscscesccescecess 262

FIOP Vercccsscssccsccsscccccasccecccscssccecccscceccescccececessecscccecesceseeseescs 267

FIOPWY .u....cccc ec ccssccesccssccscccesccesccesccscccssccsccesccescecscccceescceces aevsceceees 262
Fopencccccssceccsceccscceccecsccecceccececcsccscecceccecscescescesseccscecseccseecees 253

FOR..NEXT2000sssssesssensnonsnnnsnnnnnnnnnnnnnnnnnnennnnnnnnsnnnnsnonnnnnnn 110
Form_Centerusssssssssssssensnnnnnnnnsnnenennnnnnnnnnssnsnsnnssnnonnnssssnsssnnnnne 325

Form_Dialesesnnsnseesssssnnnnnnnnnnnnnnnnnensnnnnnnnnnnnnennnnnnnnenssnennnnnnn 326
Form_Doeeesssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnssnnnennnnnnnennnnnnnnn seseeeseneeees 327
Formatierte Eingabeccccccsssccccssssscccccessccceeessesceeessscessecsceees 152
Formularscsccscsscscscscsccccscscscscccascececcccsossssecacsccessessecevecesecs 292

 — Index 399

FRAC. wiceccccceccssccsscseccseccsecscccsccsccsssasceecsscsecscecscesecescesssstescceeesceeeee 64
Fre@ad.cccceccsccsccsscesccsccucceccsccscceccecesccccscseseeccecessenccscescseesececenees 254

FreMaMeccecsscsscecceccsccccecccecscecesccccsccveessseseceecestesceceseeceseeees 256

FseekKcccscsccscceccecssccccscccccceeccssscevccssscescceescestsccucscestecescssesceseeces 254

Fsetdta .cecceessseeseensnesonsnnnnnnennnnnnnnnnnnnnnnnnnnnsnnennnnsnnsnonsnsnnensensensensene 251

Fsfirst ceercceaeeeeeeenenenennsnonsonnnnnnnnnonnnnnnnonnnsnnnnnnnnnnnnnnssensronsnnsnsenssnsnnnn 256
FSMEXt ceeeseeeseesenesennsnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnnnnnsnssnssnnsonsnsnnssnsnnsnennnene 256

Full-Screen-Editorcsnssenessnsessenssonsnnnnnnnnnnnnnnnnnnennenssnnssnsnensneen 20

Funktionencssenssessssesensnnnnnnsnnnnnnnnsnonsnsennnnnenonsnnenssnnennennsnnsenen 134

Funktionstastenbelegungcccccccesccsccesccesceesccecenscenseeccesceeces 92
Füllbyte oo... eeccceesccnecccnvccscccescceeceeecceesccsssenecceeecensconsccusesones 249
Fwrite .o..c.c ccc cecccecceeceees sesecscaecscssescescescsscecceccesseccssaccescessesceseuseecs 254

Garbage Collection wo... ccccccscccsssscccescesssccseceeeesenesecasscenesees 271
GARBAGE-Se€EMentcccceccescceccescceeceesssscscceccscesssesccsceseseees 375

GEM. oie eee eccceccsscesccssccecccsccsccuscescesccccceecessteveeccescceseeces 196, 246, 291
GEMA-VDI oo e ieee cece cccccceccssccsccecccsccsccsscscecceecesscesecsceeecessecs seseeees 247
GEMDOS0ss2snsenrenernn vennsssonssnnssnnsssnssnsnssnnnssnsssnsssensnnn 2. 247
GET oi ceicccc ccc cesccecccscccssccsscccsccecccecsesseceseusceesseesecsseesccssseccscscceseescees 216
7-5 d 0) 0) 0 258

Getdshccescseccsscccecccsccceccceccescesscesscceseescsesceescceccescesssescceseees 263
GetMpD oui... cece eeecceccescesccscescnscescscensceceecenceecenccssasceseescesseesesseceece 257

Getrez oo. eeccccceccecceccsscescescescsscsscsesccesessseceeceecescescessees Lececcecceceees 261

Gettime ccc cccccesccscccscccsscesscceceessccescssccescessccsseesccesseeseesececeessees 267

GIACCESS oo... ceescssccssccssccsccssccsccescsccscccscescesssesencescescescescescessescuscs 268

Globale Variable oo... cccccsecesccesccsccsccssecscescesceescscceessceesseee 126

GOO wiceiccccccccsccscccsccssccssccccsscescccccescescessecsceseeeesscceeceusescsescesessesceeceess 29
GOTO oii. ccccscccssccssccssccssccssccesccsscccceenscecscesccssccsssscceeseseseesceeseucsses 106

Handle oo... cc cceccscceccsccsscsccsscssccccececcceccseeecceccsscsccscsesscecsscecceccs 361

Hauptdirectoryccccccseccsecccsssesscccssceccccsscssscecssccesccusceesesssceeecs 197
Header ooii..ccececccseccssccsscccsccsscccscccscccscesccescsscsessescsecsescesessssssssesces IL

HEADER-™-}Fille wocecccciccccc eeeessecscscesccecccccsscsscscccececccsscsssscccesceseeees 296
HEX ooo ccc ccccssccesccssccesccccccscccsccsccesccescesscecscescecscesssecssesceesconces 88
Hexadezimalsystemcccccsssccssscessccscccsecccssccescenscecesceesceesceesees 87

Hide ou. ieee eeccessccceccccsccccsscccscccnscessccecscesscecccccssceesccsceesscceseeesesesees 27

HIDETREE once cece cceccesccscecsecscccscccssecsceescecscesceesseeseescees 313
HIRESenessssssssnnnnnnsnssnnnnnnnnsnnennnsnnnnnnnnsnsnnnsnnnnensennsssnnnnne 280

 400 Das groBe ST-BASIC-Buch ————

IF oceeeceessensenssensenssnnnonnsnnnnnnnnnnnnnnnnnnnnnannnnossensnnnnnnsnnssneronsonsnsenssnnsenen 101
Ikbytedwscessesssessensennsnnssnnnnnnnnensennnennennennnsnnesnssnsnnnsnssnnenenenennne 268

Index ..eeceessseeseeessenssennsnnnnnnnnnnnnnnnunnnnnnnnnnnnnnnnnsnnnnenersnnenssnssnenne 91, 196
Inde xdatelccccscssccssccscccssccsscccscessccecceseescerectesecsceevessesevesens 183

Indexsequentielle Dateicccccsssccsscceesccnscereseescccescesesseces 181

INDIRECT ouiiiccecc ccc ccceccescceccscccsvccevccsscccsccssccscccsccescesseeceesseaceecs 313
TMitMOUSccccccssccscccssccecccsccesccosccssccsseeccsesceescsesccsssesccescceesens 261

INK EY$.u....cccccccccsccssccecccssccsccssccsscccsccssccnccsscccecssscsescsessassesssesceess 147
INPUT oii... cc eccceccesccssccscccscccccccsccesccessenseeesecscecscseuceesseecs seceseeseess 58
INPUT USING oii ccc ceeccecceccscccecescceeccsccsscesccescsscsssasceeceecees 152
INPUTS oiceic ccc ceccccssccsccscccsccsscsscesccscscscssccscecsceessescceecesseceessasees 189
INSELcccceccesscnvecesccnsccesecesccesccesccecccesccsseesccesccesceuscceceescenses 26, 27
IMSErthccceccesccsccnsccsccescosccscccscescsssccscceccccesceescesccsccscceceescosees 140
Tnsert—-MoOdusSccccccsscsccescsccsccssescceccssccsceseecceccescscessscessecescs 18

INT. aeccceccsccsscossceeccsscccscccseeececesscuceesceescenscescescesesens 64
Integer-Operationenccccssescscccccccsssscscccceessscsevscceussceceseeeeees 377
INCE GErdiviSiONccsscccseccsccccsscescccssceeevccesscuseccuscsesesesseescseess 378

Intelcccceececceccecccceveccecescescsececcsecssscceecscessecascescecssesceeesceseess 274

Interaktive ProgramMierungcccssccecessecceenscccsnscecnssceceeses 58
Interpreterccccesccescesccsccescusccescesccecsecesccsccescuccecceseeccesens .. 371

InterruptSceessesesessessennsonsnonnnnsnnnnnnnnnnnnnnnnsnnnnsenennunnnnsnnnsussnnsnsenn 373

lorecccccecceecceccccccsscovcccccsscssccesccscescesseescceceescescesccessescesceecseese 263

ISAM ...enssessensenssnssnonnnnennnnnnnnnsnnnnnnnonsnnnsnnsnennonsansunsnonsonsonsnnnsnssnnnen 181
ISAM-Dateıenucssesssesssonsnassnonnnnnnennnnnnnnnannnnnnnsnnnnnnnnnnnnnnnnennne 183

Iterativcccccccssccssccssccssccscccsccssecesccsscccscceseceseesccssccescscccesccecess 134

Jenabiteenseeesesesnnnsnennnnennnnnnnnnnnnnnnennnnennnnnnnnnsnnnnsnnnnnnnnnsnnnssnnnnnnnn 268
Jidisintc.ccccccccccccesssssccccccesssscscccccessesssscccccecssecssscecesessosssssessececs 268
Joker Lececccccecssssccececsceseseeccccseuscsscceccccecscssccecccccscesecceuceseesesees 198

K-RSOULCE oui... ccc ccccscceccescnccescsccsccsccscceccecesesecsecesccsccscescessosscees 301

KDA VDASE ee ecccescesccnscccescnsccssccssccssccesceescecscescenscseseesceesenesees 269

KDrate ou... . ec ccecceecseccesccecceccsccnscecsssvccsccscesscceseessenccsccscesceseesees 269

KDSHIft oo... ccecceecccscccscccsccssccssccsscessccsscescccscccsccecceessssseesees 260

KEY oii... ccccscccsccsccscccecccsccsccsccesccsccescescesccecccscencccccuccessecsecseseevececs 92
KEY LIST cocci eeecceeccscceccssccsccscccsccecccscenceescsscescesceeccesesceoece 93
Keeytbl ou... ccc cecccecccsccceccscccssccssccssccssesessccceeecsesscessessssscescees 265
Kl coe ececcseeccsscccsscccssccscccsccccscccesscescccessecsecesscecsceescees 26, 208

 —— Index 401

Labelcoocceeesseesenssesnnnnnnnonsnnsnnnnnsnnnannnnunnennunsnennnnnnnnnnnanne 94, 108

LASTOB200susssonsenssnnsnensonennsnonnonsonsennnnnnnernssennnsnnnennssenennnen 313

LDUMP0e0sssssessesssaseenensnnnnnnnnnnennnnnnnnnnnensnnnnnnnsennensnnnnnnnnne 96

Leerzeichenuensseseessessessensnnnnnsnnnnnennnnnnnnnnnnnssenunannensnnnsnnsnnennnnnn 72

LEFT S$ucseseeaseeseeensonsensnansnnsennnnnsnnsnnnnnnroneosnnnsnnnnsnnnssnsnenne 75

LEN oii eeeeecceccesccceccscccsccscccsecssceseescccsscsssescesseessaucesstecsesecssceceecees 78, 87

LET oieeceecceccseccsccesccscccsscccccsscscecsessccesseseesceeseessascesccsseussesseecseeseveas 52

Librarycccccceccceesccnssccecccssccensccsceensceseceueccossceuscsessseseeaseseeeenes 231
LINE COLOR ou. cc ccc cecsccceccsccsccecesccsccssescscesetscscsssteceeceeseecess 281

LINE INPUT oiecicec cece ccccsccecccscceeccececssesseccesscesscsceeseuscescescessees 61

‚, LINE INPUTEccsesesessessenesnnsensnnssonsonsnnnnnnnensunsnonnansnssenernene 189

Line Numbersccsessessensansnnsnnsnnnonsensnnnnensnnssnnsnnnssunsnnnnsnnnenersennn 28

LINE STYLE wiceeccec cece ccccsccsccsccsccsccsccesceveessesseacsesceessascesceeseess 281

Line tO BOttOmMcce cece csccsecsccsscceccccsceccscevenseeseecesscecavcesseseesens 30

Lime To Top uu... ccccccccceccecsscsccsccscsscsccecscesccscsseeceseeceessscecssevecscesesees 30

Linienccnssessssessessessenssnnnnannnnnnnnnnnnsnssnannnunnnannnnnnnunsnssnssnssnnnnnene 281

Link-Zeilenccnseesseessenssassensnnnnnnnnnnnnnnonnnnnnnnnnnnnnenssnnsnnannnsensenn 19

LIST TOKEN.cesseereessesneonseneenennnennnn decesseescesceeccsceescascesseecees 25

Listing .o..scecceesccsecccsscccsscccssceccsccescecsscceessencceesceneseessceusetescesscseeseeases 51
LLIST.002.22ssssesessssnnnsenssssssnnnnnnnnsssnsssnnannnssensssssnsnnnnnn 95, 238

LOAD2scsseessenssnnsennsnnnnnnnnnsnnnnnnnnnnunnnonnunsnnnnnnnonsnsnensnnensenunsnnn 57

Load *.* ...acneneeenenenenennnsnnnnnnnnnnsnnnnnennnnnnnnnnnunannnnnnnnnnnnnnnnnnnennnnnnnnn 22
Load Blockessnssessessessssnsnnnnennnnnsnnnnsnnnnnnnnnnnnnnnnnnnnnsenenssnsnnnnnnnn 22

Load Block *.*eesssssssenseenesnnnnunnennnnnnnnnnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnenn 27
| ©) Sn 194

LOGDASEccccscseccecccsscucesscceccecesuccucnsccescceccessesccscteccescessescteseess 261

Logische Verkniipfung oo... ccccecccsscceecceseceeesccscceesseseseeeseees 158

Lokale Variablecc cc cccccccecsccseccecsscsscescsccssccssesceccscsscevcescescecs 124

LONG wii. .ccccccccsscsscsecevcscescceccucscevceecsceeeesccsceseeesenecaesestecesteccsterssceseeees 44

Longinteger oo... eeeccessccessccescccssscenscessecncceessecesceeseeeseseesscsccreseeesss 44

LOWERS .uei.ccec ccc eeecccssccssccssccssccsscesscesscscessceesceuscescescseseeeseeess Seeeee 81

LPEEK.................ccscsesseensensenssonsnnnsonsnnnnnennnnnnennnnnsnenensenannnnensusennen 310

LPOKE220n0ssessenssensnnnsnnsnnnnonnnnnensnnnnnnsnnennnnnnnnsnnnsonnnnsensenen 310

LPRINT.ccsssscesseenseessensensennsnnnnnnnnnnennennnnnsnsnnnnnnnensnnnsnnennen 237

LSET000sssssssassonsnnnssssnnnennnnnnnnnnnnnennennnnonnnnnnssrsenennonsnnnsanssennen 215

 402 Das große ST-BASIC-Buch ————

MallOc ui... ec cccecceccecescesceccucccsccceccsceceesssenseeseseesceseuseccecseseseesecescees 256

Mark Bl. End ooeeec ccc ccc ceccececcscesceccscsscecevccecaseeccsceccesesescessesessecs 27

Mark Bl. Start. sececcececccecsccecceccscesccssescencceceeccecesccscesseuseceecs 26

Marken oui... ccc cc ceecscceccsccecscceccvccccsccseessecusceseecesseesecceseseess 29, 94, 108

Mediach oo... eee ceeccsecceccnscceccnscsscesceessnscesctecccescescsccsccecceceeseesens 259
MEGAGCST .iuiiiccccccccccsccesccceccesccnccessccccccsccusceceseccescessceesceeseesceesees 294
Mehrzeilige Funktion ou... ccc cescceecccsscccescceeetcnscessecescesesceescesees 137

Meni zeile oo... cc cceceesccecceccnscavcceceessuscenceeseeescesseecoecesceesesseeacescs 21

MERGE oie. ceccccccseccsscccccesscceccceccecccssccscsensceesceesceseseecessccesseeceescess 232
Mfree oo... ce ccc eececcescsceecescceceeccecsscesceecsscescecccsceeceecessesccssessessecesccecs 256

MIDS oui... cceccceccseccescccsccecccsccssccnccesccessssscesseeeceascesvecescessseveeeses 76, 77
MII oucc tec eeeceseccesccscccesenscenscesccesssevsessseesceecenssesccesteveeusseeceescens 263
MidiwSccccceseccssccssccceccssccscccscsccccecceescenscuseccesscesceessescensccescescees 263
MIRRORS oie. c ccc eececccceccescccescsccnscesccenccensceesscesececeescsesceesensceesceecs 80
ME DIR oie iiic ccc cecccccccssccsscescccssccucccscccsccsccssecscceesceescsesccecsevenecsenenes 211
ME IB() u.cc cece ccscccssccsccescccssceesceesccssensseesseesceeees secescecssecsccessseseeeees 272
MOD. oui ecceccceccsecccscccssccusccececscecscssccescessccssecesceesccuceescessceesceeseesceecs 54
MOE uuu... ceccesccsscccsccscceescsscescesscesccesccesscessececeesceescseseeucs 27, 81, 281
MODE LPRINT oo... cecccececscscccecscecscscccscscscsseeseusesscesees 237

Modulo-Funktion wi.cicicc eee ecccceccsscesccsccsscesccescesceeccseessessesssevseseees 54

MOUSEX oiceiecc ccc cccccssccssccssccscccssccsccesccssccsceussesscesscencceccessceeseessens 241
MOUSEY .u.iicecc ccc cccccscseccescceccsscsccescesscsssesscseesceuseescescs Lecessccesseecees 242
MOVEcccceccceccseccssccessceecceeccnsseesccecscescessessssesceescsssceeseeecs seseceecacceecs 26
MS-DOS ooeii ccc cccceccscccecceccscccscesscscescecscessescceecsescessescescsesecceeess 273
Multitasking oo... esccceccssccsscccccsecesccsesevecsccsccenscesceesceesceseees 367

NAME AS. ooiiiiiiccceccsccesccsccsscccccsccsscescesscesecsscascescescescescescessessecece 208
NEW eneeeeassenssenssennsonsensenunnsnnnnnnnnnnsnnnnnonsnansensnunssnnsensssnssnnssnnsnnne 23, 56
NEXT. ...eeensensseesennsnnsnnsonnnnnnunennnnnnnnnnennnnnnnnennnsnnsnnnunsnnnsensunnnanen 112
NOTu.nuseeenseessennssnnneensnunnnnnnnnnsnnnnnnnnnnnsnnnnnnsnonsnossnnnsnsnnnnne 161, 190
Nullbyteecseeesseessennssensesnnennennnsunnnonnnnnsnnnnnnnsnnnnonseosensssnnnnessennnenn 202

Objektbaumssessssensseenssennennnenennennnnnonnnnonsnnnnennsneennennnnnnssennnnenn 293
Objektflag seceesecsesceeceusccesccessccesssesseesseescscesseesseececsesscecseees 311
Objektspezifikationcccccscccssssscccssesccessececenesceecescccenscceeesceeees 315
Objektstatus oo... ec ssesccsscccssscccsssccsvcceeseseeasecescceeescussececesceeecss 313
OCTS oi... cceeccessccccseccccsssccescceusscecssscessscsscsseuseccessccuscsseussceussseuceseuss 89
Offgibitnnseeesssssensssennnsnnnnennnnnnunnnnennnnnnnnennnnnennnnsnnnsenensnnnene 268
Oktalsystemccceessenseessensnnnnennnnnnnnnnnnnanennnnnnnnnnneenn essnssnssnnsnssnssnnnen 88

 —— Index | Ä 403

OM_BASICesssssssnnnnnsnssnnnnensennnnsnonsnnsonnnnsnsensnnensennsnsenennennnen 15

Omikron.BASICcccccssssessossssnssannnnnnnnsnannnnennnnsnnnssnnnannnnnnnnrnn 15, 16

ON ERROR GOTDOsessenssesssnsssnsnnsennnnenonennnnnennenonnnseneeenenne 204

ON HELP GOSUBnsessesssssessensensnnnonnonnnnnonensnanennonnnnenernennenn 368

ON KEY GOÖSUBsussessessessonsnnensnnnnsnunsunnennnnnnnnnsnnenssnssnennn 368

ON MOUSEBUT GOSUBuneeeseene Lececcecescsscsscscesececenceeces 368

On TIMER GOSUB uu. ce cceccsecceccecesccesccccceccecsescceccsceeesesees 369

ON TRON GOSUBussessessensnssnnsennenennenernne deccecesseecesceeces veeeeeee 98

ONGIDIt eee cesecccseeccsecccesceseccessceesccsscseeseeesceaseseseceescesseeeeeeeess 268

OReeeeeessessessenssnnsnnnnnnnennensnnnsunnnnnsnnnennnnsenssenensnennenssnsnnnnnnssesennern 160

Ordnereneneesesensesensnnnnnnnennnnnnnnnnnnnnnnnnnnnnnnnnensnnunnnnensunennnenen 196, 252

OUTLINED2u02200sssssnnssonsnnsennunenennnnnennnnennnnnnnnnnnnnnnnnnnnen 314

PBOX.eseunseessesssnnsnssonsnonnonsennnnnnnnsnnnsnnsnnnensnnnnnnsnnnusnnnnnnensennnen 282

Peek .eeeesseeseensennsenannnnnnnnunannenennnnennnnennensnnnenssnnnnnnnosenssnssnnsnnnsessnenen 309

Pfadnameucceseessensessonsnnsnnnennnnnnnnnnnnnnnnennnnsnnsnnensensnnnnanennenenn 196

Physbaseccesseessessesaseneennnnnennennnnnnnnnennennnennensennnnnnsnssnssnonnoneneenn 261

PIoceneerseseensennsnnesnnnnnnnnnnnnnennnnsnnnnnnsnennsnnensennnennnonnnssnnnnnnnnsnesensenn 245

Pokeq cceeseessessessesensnnsonnnnnnnnnnnennnnnnnannnnannnnnnnnnnnnsnnssnnnnsnsnnsnannenensnnenn 309

Postfixe ...ceeseessensensnnesonsnnsnnnnnnnnnnnnnnnnnnennnnnnnenensnennnnnensnnenssnnnennnn 42, 44

PRINT.22222snssenssenssonsensennennnnnsnnnnnnnnnsnnnnonsosnonsnsnenn 39, 42, 186

PRINT @ .u..cccccsscccsssscccsscccesscccessccesscceeesecsesceeeeccenseceasecsucecsuseceaeses 239

PRINT AT) wiciiccci ccc ccccccceccescesccsscesccscessceccesceeseescesssecenscasecsceeceeses 146

Print BIOCK .i.cieec eee cecceeccsccscccsccssccsccscesscesccesessccucescesscessusceeceesencs 27

PRINT# seesecseeecsscescacssoccscssssccccssessessaccecseccscesssccesceccescucescoces 186

Programm laden .u........e ck ccscceeccecccccsccuscceceescesscsccecesssescasceseseseseess 37

PrOSrTAMM SPeCICHELN .oi......ccccessccssscesvccsscccevcessceesscesccevceeseeceseeeseees 37
Programmierhilfenc.cscccssscccesccecescccesssescccescceeesceseseneseceuss 92

PrOtODt cc cccccecssccscsscsceeccscscevccsescevcesseseeceseeceecssescesseces 265, 272

PLOZCCGUSEN 0.0... ccc ceceeccecceccsccsccsccscceccusesceceterseccsccucecsessaceessessecescs 123

PrtDIK cocci ce cecsecsececccccscsccsccsccceccscsseececccscuccessessecesceseseeceess 269

Pull-DOWNn-Mentis oc... cece cccseceeccecescsccscccescscesceceseescesccsccscess 333

PUNKte .o.ie eee ceccecescsscscceccscsccsccscescsscscssescesceseescscssesccsescesseseseees 281

Puntaes_eceesesseessensensensenannonnnennensnunnnnnnennensnnnennnnnnnnennnsnnenssnsenenn 269

PUTceeesesssessessnnsnnsnnnnnnnnnnennnnnnnnnnnnnsnnnnnnnnnnnnsnnnnnsnsnsnsnnnnnenn 216

Query Replaceecssseessssssnnsensnnenonnnnennnennnnensennensnnnnsnnnnsnnnnnsennnnennn 25

QUICKSOSE ceeseeeessensnsseseenonsennnnenenennnnnnnnennennnnnsnenennonsnnensesonsensssennnssne 129
Quit Editueeeceessssnnnnesnnssnnnnnnsnnnsnnnnnnnnnnentnssnnnnnnnsnsnsnssnnnnnnunsnsnenssnn 23

 404 Das große ST-BASIC-Buch ——

RADIO-BUTTONcessesesseensennennsssennnnnnnnenneeonsrenseenenessensnene SLD

Rahmencceasessessessasonsosnnennnnnnnnnnunnnnnonnnensensresnsens nansasesensenennen 20

RAM-DisK.uoseessenssnssnnsnnnennnnnensnnnannnsnnnnnnnsnensseseneseenn vernessnaen 191

Random.sussssessssennesnnnensensnnnnnnnnnsnnnennnnssnnnenssnsnsnsnnenansennnsnnene 265

Random-access-Dateienceeneessenssesseessonsenennnnennnsnnonnnsnnnnnnennennn 182

RCS ..essesseesseesenssonsnnnennsnnennnnnnsensnnnsnnnenssonennsennnenn uannnunnnnnnsossnnsnnenn 292

READceesceassenssossensnnnsnnsnnennnnnnnnnnennnonsnnnnnnnnsssesnsnenssnsenssenennn 140

Rechteckeuss0ssssesssnsnennnnunennnnnnnnnnenensnnnnnnnesnsnnsnnonnannnnnsnnnne 281

Record ...eerenseseessessnenesnennnnnnnnnsennenensnnnnnsnssnsensnnnnnensnsssessensenssssnannnnn 214

Rekursioneeeeseesssesesssnensnnnnnsnnnnnnnnnnnsnnennnnnnonnnnsnennnnnsnennssnsensnen 124

Relative Dateiecncsenacenessenseenssensnnnesnnsennnnonsnnnnennnonsnnererennenenn 181
REMeeensssenssenssossennnnnsnnnunnennnnnennsnnssnnsnnssonssnsssssnssnsen sececeesceeeess 51

Rename Tokencrussessessssnssnennsnnsnnennnnnonnnnnenonenensnnanssnensenennen 25

RENUMn.nnssssssssssssssssnnsnnsenennenssreressnnnnnn sesesecsscesccscessesseeses DIO

RENUMBER. oouiie.ecccccccccceccsccsccsccsccccecscasccsccssccsececsestesccsceeceeseessess 98

RePeatcccccccsecsecsscsecccsscesccscscseceesteseessssseessteeceecseessesceecoeseeeees 37

Repeat..Until oo... cceccscccseccsccessccesscssceesccecteecesseeesseeseeecs u 115

Replace all...cescesenseesessnsnssnsnnnnnnennnnnnnnnnnnenennennnsnnnnnnsnnnnnnnnenennn 25

RESTOREscesssesensesseesnesensnnnnnnnnnnnsnnnnnnnnnnssnnsnnnnsennensnnennenn 140

RESUMEseeseenssensessnnsnnsnnnennennnennnnnsennnnnsnssnnnnnnnnnenensnnnennn 206

RESUME NEXT................ccessssnssessenssonsnnsennnnnnennnnnnnnsennnsnsonsnneneenn 206

RIGHT}0.00000000ssaseesensensennennsnnsnnnnnnnnnnnennnnnnnnnnnenensnenenennnn 76

RMDIR oo... ccc e cece cceccseccsccecscsccsccsccucececenccssesecsseecesceeseucesceecessenss 212

RND. coicic ccc ec ccceccescsscucccscscescscceccsscsscssceseeccsscseesesseeceuseuceeceecessense 137

Rsconf oes c cece ccecceceecscceccecsccsccscsccescscsscscescsscsecscesseceecasensseeeesceeeecs 264

RSET ciciceccceccsscssccscccsccssccsccececsccscesscescescessccsceescscescessssscescesseeseeses 215

Rsre_Gaddreeeseesessssnsnsnsnssssssnnnenannnnnssssnsnsenenen seeceeeeconneaesees 325
Rsre_Loadeeeeseessssssssesnensenenennnnnnsnsnnnnnnnsssnsnsssensnn seeeveeseeeees 324
RUNeassesssessnnssnnsensnnnnnnsennnonsenennenennn seecesecceccesesseescesecectoss 30, 57

Run * Bas oocecccccccccssecccssscccesccccsscccsecccsscacscsccesccccsscecseccsssecescssssscence 31
Rwabs .u..cc cc ceccscecesceccccscsccscscscsccccscsscecsccscsccscecsscsccccssecssecessccseseeess 258

SAVE aekunssussensnnssnssnnsnnssnssunnsnsnnsssnsnossnsnsnnsnnsnsssnsnsssnssnnsessenne 55

SAVE & Compileceaseesessessesensassnnnnsnennnnennnnonnssnnnnsnsnnannnnnnnnnnnnen 31

SAVE & RUN decsececcescsccsececesccecceseuceesessevcescescescesseseseeecess 30

SAVE 7.7 voici eecccseccccssccccsscccsssccsecccsceccssceccscsesscesssseesscsessvenseceees 21

SAVE BLOCK wicceei ccc eeccescceccesceeccsccesccsscececccccsesscessesscscsscesceecesssecs 22

SAVE BIOCK *.* oooiiice eee eeecccssecccsccccssccccsscccsscecacecocsscccsssessscensveeees 27
SAVE Settingsc..cccccccccscccsssccssccsssccescecssceuscecesseeseeesceccseceseeesees 28
Scancode .u......cccscsccscscccscscscscscecccscscscscscscecssscecececscecscuasasavevecesesases 154

 —— Index | 405

Schiebereglerccccceccssccoesceecsseccsecesccesccnscssecascsesccescesseasceseeoes 332

Schleifer ooo... cc ceccecsccscsccscsccccecsvccecccsescsceesecesessscescessccsessecesscees 110

Schleifenzahler oo... cece cecscceccecscceccessceeccsteceesescesoseecesessceceseecs 113

SCLAM) uu... cecescsecsscssceccscccecreccsececsccssetecscesescoeeecescneees seecsccecececees 267

Scrollen cece ccsccececcscsccccecsccecsccecescccscescucecescssecsessecesceescesesescesens 94

SeOKtorcccccccsceccsceccscsccsccccscscsccecsvesccccceesecesenseveesecesestsesssceseseseees 251

SELECTABLE ooueec cece cccceccsccsccsccsscestecceceesseceecesccscescesescesceeeens 312

SELECTED. ooeeee ee eccecccccceccsccsccscceccsccnccssesccsccecevcsccstectescessesseccscess 314

Sequentielle Datel oo... ceecceccseccscceecceccescevcceccecssstssceeccssesesees 181

Set Mark FX wii eccececcecsscscsccscsccscscsccscecesesceceesssssesceseseessccsescseesses 30

SetcolOrceecccccecceccecceccsccccecssccsceccecccsscceccseeccscescecsesscoeceeesesceeees 262

SEtEXC ...ccccccsccecsccsccscsccccsccscvccseecscesesceceesereucescsencescscscessssseesessecesees 258.

Setpalette ...ccencessesssensnssossnnsonnnnnnnnnnnnnnnenonnnennennnnnennensenssossnsnnsnnnn .. 261

SQtPrt ..cccccccccsccssccsccsccscceccsscsccsscecceccsceeseessuseeseesescceceeceecesccssosseseess 268

SECSCTEEN cc ccccscecceccccecsccecsccecscscececessceeeesessececcseecascssessseeenceeess 261

Settime .oicccccccecceccecceccsccsscssccvccscsccnccnseccessessestestesseceeccscescoscess een 267

SHADOWEDeuceaseeseessensnnsnnsnnnnnsnnnnnnnnnunsnnnnsnnnsnnnnnnnnnnsensenene 315

SHELL.PRGenscescesseseenesssensonsenensnnnennnonnnnnnnrnnnnnnnnennnnennene 381

Show ErrorScceeseeensnssssnsnnnnenennnonnnnennnnnnnnennnnnnnnnnsnnnensnnenenenennnnne 28

Single Precisionuceessssesseeseesenessennnnnnsnnnnnnnnnennennnenensnensnensnnnssnnnnen 45

Slidercccceseeseesesessensnnnsnnnnnnnennnnnnnnnnsenennnnenennennonnenssnsnssnsnsnsenennn 332

SPACe cneeeensenensenensennnnnnnnnnnnnsnnnnnnnnsnnsnnnnensnnensnssnenensnnensnsssenssennsnne 53, 72

SPACES woicccccccccccccsccsscceccsscccccsscsscescessccsceestssecscesceestenecsccessesescescees 79

SPC wiccccccccscsscseccsccsccsccescceccscevcesccsccsccssescesceesaecscsscecsesseseeseeseecneseeces 79

Speicheroperationccccsecsssccscccsscescccucsceseesceevccesecessesseesscessasces 309

Split Screen oo... ee ceccceccecccsscceccssccesecssceeseeasccscsesceesseessasceess 27, 28

Sprungstelleesssssesssenenesnnnnnsenonnnnnonnnnsnnnnnnennnnnennsssnnanssnnonnnnnn 108
Ssbrk vic... cc ceccsecsscccscccsccsccoecesscnscescessceesseceevcesseesseseseceeseessescesceecsess 261

Stack cicccccccesccssccseccscccsccssccscesscascesccscevccsssesceescescceccectesesscescessseseess 134

STEP wiccccccccceeccsscssccsccsccscceccescsccsccssceccsscescesceseecenceeceecescescessessesees 114

Str cicceccescceccsscsscccsccsscesccsscesccsscssccsceusseceescessescesseesseseescssceecees 74, 87

StriMG ...cccccecesscccsecccsssccsscccsscccssccssscessceecseescesecseesesecceesceescecescessensecs 46
STRINGS .u.........ccceccssccsccvccsccsscsccsscnsceecescsescceceesescsesceeceecsesees 73, 79

Strukturierte Programmierungeseesesenessnoesonenenensnsennnenonennsnnnnenn 99

Subdirectory ...cnsneeesssssesssennennnnnnnnenennennnnnonnnnonnnennnnnnssonsnssenen 211, 252

Subroutineccensesseesseessensnnsnnsennnnnnnnnnnsnnnnnnnnnnnnnnnnsnnnnsnsasunnnene .. 121

Such-Stringcsesssseenaenennnnnnnenennnnnnnnnnnnnnnnnnnennnenonssnnsnssnsserensrenn 82
Suchenccnessesssesssensnsnsnnsnnnennnnnnnnnnnnnnnnnnnnnnsnsssnnnnssensnssnsernssnnsessnne 23

SUPCXEC .u....cccecccsccsccssccscceccccecescescscessesceecceceecessesccsesteeeesssceecescess 269

SVEISIONccccccsscsccsccsccsccececcsccscescsccecescsccscasceccsceccecssceccecssceccsccees 251

 406 Das groBe ST-BASIC-Buch ————

SWAP. uiiccccccceccsscssccsccsscceccsscescesscssccecenstesseeseestavcesceessessencesceecsecees 131

Switch Screencccccccccscceccecevcsccscssnscscscescesecseeccsescescescsccssesesenes 27

SYSTEMssssssenssnnsnnnnnnnnnensnnnnnnnsnnennnnunsnnnnnnsnssnnsnnnnnsnnennsensnnnenn 38

SYStEMVALIAD]E!ccccesccssccessccescesescsesceesccesscessceesecesscessceeceueees 241

Tastaturcccccsccsvcsccscccccccccecsccsccssenceesenccescesesccecescceccscesceseeseeses 373

Tastaturprozessorcccccsscsscsscsccsccscsscesccecceccscescesccssescnsseesesseseece 67

Tastaturpulfercccccsccseccsccsccsscceccescsccestecsceccsceeseessescceseeceeces 20

TO COOL oo... eeecescccseeeeenesseeseceecceeeeseeeesseeeecsscssseeueueesesesssessneeeeeees 317
Te_fontssesssssensssesssenennenensnnsnnnnnnnnnsnnssssnsnsssssnsrsssnssennnnennnn 317
Te_ justesssssssssnssnsnsnnunsnunsnsnnnsnsnnnnnnnnnsnnsnsnsnensnenesnensnsnenn 317
Te_ptexteeeseseessenensnsnnnsnnnssssnsnnnnnnnnnsnssssennssnonnnnsssssrensnnnanssene 316
Te_ptmplteeeeesssssassssnnsssssnennsnsnnsssnssnssssnnnnnnnssssssssnennssssnne 316

Te_pvalid20ssssesssessssnssssnsnnsnnnnsnsensssnnensssssnsnsnnennnnsssssssnne 316
Te_thicknesscsssssessssnnnnnnnnnnnnensnnnnnnnnnnnnonsennnnnnnennensnnnnnenne 318
Te_tmplen............seeseenesssnsnnnsnssssesnennnnnnnnsssnsnsnennennnonunssssnsssnsnnnnn 319
Te_txtlencecsesssessnessessennenenenennnnnnnsnnnssssssssssnssssensssosensnnnennn 319
TEDINFPFOssssrsesseensensennsnnsennnnnsnnnnsnunnnonnnnnnnnsunsnnnnnnnnsnnssnnenn 315

THEN00004ssensensnensnnsnnnnnsnnnnannennnnnnnnnnnnnnennnnnnnnsnnsnnnnnnunnnennenn 101

Tickcalusscensseensesnsssnsnansnnnsnnnnnnnsnnnnnssnnnsnnnnnnnnnnnnonsnnennsnnnenenn 258

TIMESccccescseccsccccsccsccscesccsscevccsssaceeeceesecsceesssccesceecceseessesce 244

TIMER oii. c ccc cccceccsccsccscceccsccssesccsccacesscscesceeceuccesescescesssseseesesces 243

TO last Mark wu... ec cecceceeccecceccscecccccesccserecceeesccssesecssesseseecseccscess 29

TO Lime...ccccceccscccsccsscesccssccsccscescesccscsasceecesccescesceeseesceseeeesessess 29

TO Mark 2X oiociiiiccccceccecscccceccccsceccscscsscscecceeeccsescescscecsscecssscessseess 30

TOKENS woe eee c ccc cescsecesccsccscceccseescescescccsassececsessccscssesscecesseeccessscess 23

TOS ciiccccccccsscsscceccsecccscceccssccccsscsscescescesssevceeceeusesceecenseseseeseassescesees 246

TOUCHERXIT oivice ccc ccccccsscssccsccsscccccssscsccsscesccsceseesctescescesees 313

TYACE cieecccceccecceccecceccescescssccsccsceccsscnsccssecsccesstecesccecseseecescescessecenceece 96

TRACE OFF oui. eeeeesessssseccceccccenceesessscseeeccecceceeassseseseeeeseasens 373

TRACE_ONenensesensnnnnensnsensensnnnsnnnnnsnsnssnnnsnnnnnnsssssssssnsosansnne 373

Trashcuseeeesensnsensnnensnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnssnnnnnssnnnnnsnnen 294

Tron & Runeeeesessessessessesnesansannesnennnnnnensnnnnnnnnsnnnnnnsnnsnsrnnnernee 30

Unterinhaltsverzeichniscccaeeanseeessssensssenensnannnnnnnnnnnnnnnnnnnnnnnn 211

UPPERBS0csssseeneeenseessennsenssonnnnnnnnnsnnnnennnnnnnnnsnnnnnnnonsnnnnnnenn 80

USING22222ssssssssnnnnnnssennennennnnnnnensnsonsnssssnsssnsnssnsnsssnssssssnsnssnsene 166

 —— Index — : 407

Val ee Leeccscccceecsececcecscrscssseceecsccsssesesseceaccscesescesencesseseecesees 74

VAL) ceeenssseesssenssennnsnonnnnnnnnnnnnnnnsnnnnnnnnnnnssnnnennnnnsonsenssssnssnensennsnnnnn 149
Variable decccceucceeccuscesetsccuccccucenscesesescceceesssesceecseeceesceesceesees 39
Variablenfeldercccccccceccecccsccsccscecsccsccsecescescesssasccsceeseeccascess 90

VDI wieieccccccceecccscccscccesccnsecsccnseesscesscesccesceescescessseescascensceeseseseesens 291
VSYNC ciicccccccsescsecccssccceccesccecssceucceesvensesesecceesesecsseuseeesceeecseesceesessess 269
VTS2-Emulator o.....c.cccccccececcecsscssceccscsccseescescscccescesccscsccsescescscseees 19

WHILE..WENDu022usseseenseeseneennn scaaccnccececacceccescesessccessence 119
Wildcards wc... ccceecesscsscccccsccssccscesscssccecevessseescenseescceceeseaseesseceess 198

Wind_Closezussssssnnonnenennennnnnnnnnn nennen ennnnennnnnsnnsnnssnsssnsnsnsssssnnnnnen 366
Wind Delete seseeccccceccesssseesecececsscceeessssseseeecceeeseessosceseees 366
Wind Open ou... ceececesseceeeceecceccccccceccencnsceeeeessseseeesseseeeeseseeeeeeeees 365
Word oie ceccceccceccescceccscesccesccsccsscesccsscscuscesscescessessesesesceesseceescescsesees 44
WPOKE oui cece cssccscccsccnsccsccsccscccsccecccscesccssseceesctssesscescesccsscevceecs 309
WRITER cicciic ccc cecccseccscccsccsscscccsccssccsccsscnscossescesscecsescesscescescesseecs 187

X-KOOrdimatecccccccesscssscssccscccsscsccsscessceescesscescssseeecseeseevceeces 24]

XBIOScenseensenssenssnnsennnnnsnnennennnennenannnsnnnnnnnennnonsonsnsnenssnnsnssnsnnnnn 247
NOR wiccccsccsscssccssccscccsccsscsccscccscsssesscescescesscesseessesceeceesenceeecessecsens 161

Y-Kooordimate ooo... ccccccseccsssccsscccscceseceecscesscensceeecsesvsessceesscees 242

ZANIENSYSTEMEccsceescessccssccescsccssccasceesecesccssceeetesceesceeseesceescees 87

Zeichenccccesecccsscccssccsscesscccscccsscecsscesscccnscesscecscsesscesceesceuscessceees 46

ZeEiICHEN LOSCHENc sce esscesscssccsccsscesccesceecscesccescesscecssesssevcesscees 17

ZEICHENKE LE 02... ee ceeeccessccseccsscccscccsscesscccsscecscccssccssccsseeseccessseners 46

Zeile einfügen und löschen200022002seensennesnonnennnnnnennnnnnnnnn 18

Zeilennummernescesessssssensnesssnnononnnonsnonennnnnnnnonnnnnsnnennnnnnnennnnnnn 51

ZufallSPemeratorcecscesscessccsscssccsscesccesccesscnscesscecscesssssssesceuss 137

ZUWEISUNESOPETALOLcceccccsecccsscccscecesscecsceecescenescsceesceesccseeseeeeness 40

 408 Das große ST-BASIC-Buch ——

En Bücher zum ST

Nach den ersten gescheiterten Versuchen mit ATARI-BASIC haben Sie

sich bestimmt nach einer besseren VVrsion umgeschaut. Das GFA-BASIc
ist sicherlich eine der leistungsstärksten Programmiersprachen auf dem

ST. Gerade dadurch ist es aber für den Anfänger meist nicht leicht zu ver-

stehen. Genau hier setzt das Buch an. Von der Installation einer Arbeitsko-

pie bis hin zu einfachen GEM-Funktionen wird der Grundwortschatz von

GFA-V3.0 und V2.0 leichtverständlich an vielen Beispielen erklärt.

Aus dem Inhalt:

— Einführung in die Bedienung des

Schumann

GFA-Editors

GEA — Zuweisungen und Variablendeklaration
— Ein- und Ausgaben

BASIC — Schleifenprogrammierung an Beispielen
ee — strukturierte Programmierung

— Grafikprogrammierung mit Minigrafik-
programm

— Diskettenoperationen

— kleines Datenbankprogramm
— Pannenhilfe - Vermeidung von Fehlern
— Konvertierungshinweise GFAV2.0 nach

GFAV3.0 |
— ausführliche Funktionsübersicht zum

schnellen Nachblättern

Schumann
GFA-BASIC für Einsteiger
247 Seiten, DM 29,—
ISBN 3-89011-248-X

Bucher zum Basic 3.0

Endlich gibt es GFA V3.0! Zu diesem umfangreichen BASIC
gehort auch ein umfangreiches Buch, in dem detailliert jeder
Befehl behandelt wird. Dabei liefert es keine nackte Befehls-
übersicht, sondern wirklich brauchbares Material in Hülle und
Fülle. Anhand zahlreicher Beispielprogramme lernen Sie die-
ses leistungsfähige BASIC spielend zu beherrschen.

Aus dem Inhalt:

— Das Editor-Menü
| F — Variablentypen und -organisation
LE a — Diskettenoperationen

| | nun — Strukturierte Programmierung
— Mausabfrage in eigenen Programmen

kan! — Sound-Programmierung Lizkendorf
— Beschreibung des Resource-Construc-

tion-Set
— Verwendung von Multitasking-Befehlen
— Programmieren von Pull-Down-Menüs

an Auen — Abfrage von Ereignissen (Events)

GFA — Window-Programmierung
BASIC 3 Oo — Zugriff auf GEMDOS, BIOS und XBIOS

e — Komplette AES- und VDI-Library-
BASIC Herne und Beschreibung
‘ome — Verwenden eigener Fonts mit GDOS

CT a De — Eine komplette Adressenverwaltung als
a RAM-Kartei

—- Komplette Befehlsübersicht über alle

Befehle des GFA-BASIC

Litzkendorf
Das große GFA BASIC 3.0 Buch
828 Seiten, DM 49,—
ISBN 3-89011-222-6

RE Bücher zum Atari St

Die besten Tips und Tricks zum ATARI ST sind eine wahre
Fundgrube für jeden ATARI-ST-Besitzer. Anhand vieler nützli-
cher Routinen werden die fantastischen Möglichkeiten die-
ses Rechners ausführlich erklärt. Programmier- und Hard-
'waretips vermitteln zusätzlich eine Menge über die Rechner-
struktur und dessen Programmierung in GFA-Basis, C und
Assembler.

Aus dem Inhalt:

— GEM-Starter
en — Uhrzeit resetfest

ee — echtes Multitasking
[oS — Sprite-Programmierung

— schnelle Grafikroutinen

 PS ST, — Dia-Show
ae — Sound-Programmierung

DAS GROSSE — Konvertierungsprogramme
— Floppy-Speeder Ä

ATARI S$ T — Short-Cuts für beliebige Programme

| Accessory-Aufbau

HANDBUCH — Filesearch für Festplatte
— Bildschirmschoner

- Ordner umbennenen
— Einschaltverzögerung für Festplatte

Pauly, Schepers, Schulz
Atari ST
Die besten Tips & Tricks
428 Seiten, DM 59,—
ISBN 3-89011-210-2

eee Sucher zum Atari St

Bei der Arbeit mit dem Atari ST tauchen immer wiéder Pro-
bleme auf. Genau dort setzt dieses Buch an. Es beantwortet
alle Fragen zu den Bereichen Desktop, Massenspeicher,
Drucker, Schnittstellen ... kurz zu allem, was zum Atari ST
gehört. Der gut strukturierte Aufbau des Buches mit zusatzli-
chen Symbolen zum schnellen Finden der Lösungen in lexi-
konähnlicher Form macht dieses Buch zum unentbehrlichen
Nachschlagewerk, das das nötige Hintergrundwissen liefert.

 DATA BECKER

Liesert
Das große Atari ST
Handbuch
370 Seiten, DM 49,—
ISBN 3-89011-273-0

Aus dem Inhalt:

— Desktop: Umgang mit Icons, Menüleiste
und Windows, Bedienung von
Objektauswahlboxen

— Massenspeicher: Schnelles Kopieren
mit einem Laufwerk, Umbenennen von
Ordnern, Tips zu Festplatten

— Drucker: Zeichensätze, DIP-Schalter,
Druckeranpassung

— Schnittstellen: Centronics, RS232, DMA
Datenübertragung

— Computerwissen: Aufbau des
Computers, Zahlensysteme

— Software: Tips & Tricks zu Standardsoft-
ware

— Pflege und Wartung: Einbau von
TOS-Roms, kleine Reparaturen selbst
gemacht

— Glossar

DAS STEHT DRIN:

Wer bisher glaubte, professionelle Programme könne man nur in C oder
gar Assembler entwickeln, wird mit diesem Buch eines Besseren belehrt.
Nach einem ausführlichen Basic-Grundkurs erfahren Sie alles über die
Dateiverwaltung, die Nutzung von Betriebssystemroutinen, die Grafikpro-
grammierung, oder die Programmierung unter GEM. Nützliche Tools und
Libaries runden das Buch ab.

Aus dem Inhalt:

— Variablentypen in ST-Basic
— Strings und Stringmanipulation
— Strukturierte Programmierung
— Rekursionen
— Formatierte Ein- und Ausgabe
— sequentielle und relative Dateiverwaltung
— logische Verknüpfungen
— Betriebssystemprogrammierung
— GEM-Programmierung
— eigene File-Selector-Box
— Multitasking
— Omikron.Compiler
— nützliche Libaries

UND GESCHRIEBEN HAT DIESES BUCH:

Michael Maier, Student der Betriebswirtschaftslehre und Informatik, kann
als Computerfreak der ersten Stunde auf eine langjährige Erfahrung in der
Programmierung zahlreicher Rechner zurückblicken. In diesem Buch
zeigt er, wie man in ST-Basic professionelle Programme schreibt.

ISB N 3-89011-285-8 DM +049.00

DM 49,- Be” uae 04900

sFr 47,-

BECKER 9 '!783890"11283

