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0 Vorwort: Was sollten Sie schon wissen? 

Es gehört beinahe schon zum Einleitungszeremoniell vieler Computer-Bü- 

cher, das Unmögliche zu versprechen: nämlich daß (ein fiktives Beispiel) 
mit dem vorliegenden Buch der absolut blutige Laie, gerade des Lesens und 

Schreibens mächtig, in drei leicht verdaulichen Lektionen auch noch die 
letzten Geheimnisse der Systemprogrammierung beigebracht bekommt. Das 

Buch, das diesen Anspruch einlöst, muß allerdings erst noch geschrieben 

werden. 

Um mich nicht dieser zweifelhaften Praxis anzuschließen, will ich gleich zu 

Beginn das Risiko auf mich nehmen und eventuell ein paar Käufer ver- 

prellen: wenn Sie absoluter EDV-Anfänger sind, "Byte" für ein irrtümlich 
großgeschriebenes englisches Tätigkeitswort halten, bei "Adresse" zuerst mal 

an "Straße" denken und "Diskette" mit "Diskus" und "Olympiade" assoziieren 

- tja, dann sollten Sie sich das Geld für dieses Buch sparen. 

Wer sich jetzt nicht angesprochen fühlte, der möge weiterlesen. Beobachtet 
man den Bücher- und vor allem den Zeitschriften-Markt auf dem EDV- 
Sektor, dann kann man sehen, daß die deutschen Computer-Fans der 

Pubertät zu entwachsen beginnen: das Niveau steigt, und entsprechend ist 
nicht mehr nur alles BASIC, BASIC, BASIC. In Leserbeiträgen von Compu- 
terzeitschriften findet man Programme von oft erstaunlich hohem Niveau, 
und die Zeitschriften würden sowas nicht veröffentlichen, wenn nicht die 

Nachfrage dafür gegeben wäre. Das war nicht immer so; die hunderte von 
BASIC-Bücher mit immer der gleichen Strickart (FOR-Schleife, PRINT 
und als krönender Abschluß ein einfaches Spiel zum Abtippen) belegen es. 

Die Hobbyisten beginnen sich also zu emanzipieren. Das Interesse an mo- 

derneren Entwicklungen innerhalb der Informatik wächst, man ist zuneh- 

mend bereit, sich auch mit anderen Programmiersprachen auseinanderzu- 

setzen. Das Wissen über Computer, deren Funktionsweise und Möslichkei- 

ten hat zugenommen, kurz: der Bildungsgrad ist gestiegen und als Fach- 
autor muß man nicht immer bei Adam und Eva anfangen. 

Diesen EDV-gebildeten Leserkreis möchte ich mit meinem Buch erreichen. 
Der ıdeale Leser sollte die ein- oder andere Fachzeitschrift verfolgen - 

möglichst eine, die sich nicht auf das Abschreiben von Produktankündi- 

gungen beschränkt -, vom Jargon der Branche nicht verschreckt sein, schon 

mal mit einem Computer gearbeitet haben und - das ist das wichtigste - 
neugierig sein. Kenntnisse einer anderen Programmiersprache sind nicht 
unbedingt nötig, wenn auch gelegentlich nützlich. Insbesondere nehme ich
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nicht an, daß Sie bereits einmal mit einer anderen Compilersprache gear- 
beitet haben; was ein Compiler ist, wie er funktioniert und wozu er taugt, 

das wird ausführlich erläutert. Bestimmte Grundkenntnisse der Computerei 

(Was ist eine Variable? Was ist eine Schleife?) sind jedoch sicher von Nut- 
zen. Zwar werde ich alle zum Verständnis nötigen Konzepte einführen, 
aber oft ist es ganz hilfreich, etwas bereits Bekanntes noch einmal in an- 
derer Darstellung zu lesen. 

Gegenstand dieses Buches ist die C-Programmierung. Alle Programmier- 

sprachen verwenden ein dem Englischen entlehntes Vokabular. Auch viele 

Fachausdrücke der Computerwissenschaft sind dem Englischen entlehnt. 

Ein deutscher Autor hat hier zwei Möglichkeiten: die konsequente Ein- 

deutschung der Begriffe, oder die weitgehende Übernahme der englischen 

Original-Ausdrücke. Ich habe mich für den zweiten Weg entschieden. 

Einmal sind die mir bekannten Eindeutschungen meist ziemlich unbeholfen. 

Zum anderen gehen sie an der Realität vorbei: außer deutschen Professoren 
spricht so kein Mensch. Unter Programmierern hat sich ein deutsch-engli- 

scher Slang herausgebildet, eine Art Fliegerdeutsch, das für den Außenste- 

henden oft schwer zu durchschauen ist. Neben der Beherrschung der Pro- 
grammiersprache ist es jedoch wichtig, diesen Slang zu kennen, um mit- 

reden (und mitlesen) zu können. Deshalb bediene ıch mich in diesem Buch 
des Programmierer-Jargons, weise aber bei jedem neu eingeführten Begriff 
auf seine Bedeutung hin; Sie müssen also nicht Englisch können. 

Um das Buch sınnvoll nutzen zu können, benötigen Sie Zugang zu einem 

C-Compiler. Nun ist C eine ziemlich standardisierte Sprache und es dürfte 
keine Rolle spielen, welchen Compiler von welchem Hersteller Sie benut- 

zen. Die Ausführungen über C in diesem Buch sind möglichst allgemein 
gehalten und sollten für eine Vielzahl von Compilern gelten. Zum Zeit- 
punkt der Erstellung dieses Buchs war jedoch ım wesentlichen ein Com- 

_piler für den ATARI ST im Umlauf: der mit dem Entwicklungssystem aus- 

gelieferte C-Compiler von Digital Research. 

Dieser Compiler wies einige (vor allem für den Anfänger) z.T. sehr unan- 
genehme Fehler auf, die in späteren Versionen sicher behoben werden. 

Dennoch werde ich gelegentlich auf die Besonderheiten dieses Compilers 
eingehen, da - wenn Sie mit ihm arbeiten - nicht sicher ist, ob Sie die 

neueste Version besitzen, oder ob auch wirklich alle Fehler aus dem Com- 

piler entfernt wurden. 

Das Buch ist in zwei Teile gegliedert; der erste Teil ist eine vollständige 

und ausführliche Einführung in die Sprache C. In diesem Teil werden alle 

Sprachkonstrukte in Einzelbeispielen besprochen, wie das eben so bei Ein- 

führungen üblich ist. Ich habe besonderen Wert darauf gelegt, auch die
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fortgeschritteneren Konzepte von C (dynamische Datenstrukturen und 

Funktions-Pointer) besonders ausführlich zu behandeln; dies auch deshalb, 
weil nur durch ihr Verständnis die anspruchsvolle GEM-Programmierung, 
der ich ein eigenes Buch widmen werde, angegangen werden kann. 

Aber kurze Einzelbeispiele reichen alleine - auch wenn die Erklärung noch 

so ausführlich ist - nicht aus, um den Umgang mit einer Sprache zu be- 
herrschen. Deshalb der zweite Teil, der aus einem ausführlich dokumen- 

tierten und kommentierten längeren Programm, einem Diskmonitor, be- 
steht. Die Programmierung eines Diskmonitors ist bestens geeignet, um die 

systemnahe Programmierung, das direkte Arbeiten mit den Funktionen des 

Betriebssystems, zu erlernen. Da die Aufgabenstellung verhältnismäßig 
komplex ist, können Sie an ihrer Lösung die Prinzipien modularer struktu- 

rierter Programmentwicklung einüben. 

Sie werden feststellen: C ist eine elegante, professionelle Sprache, mit der 

auf dem ATARI zu arbeiten großen Spaß macht!
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Einführung in C
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1 Zum Warmwerden 

Für viele Leser bedeutet das Erlernen von C auch den ersten Kontakt mit 

einer Compilersprache. Da werden sie feststellen, daB vor die Beherrschung 

der Programmiersprache die Beherrschung des Compilers gestellt ist. Des- 

halb legt dieses Kapitel dar, was ein Compiler ist, worin sein Zweck be- 

steht und wie er funktioniert. Wer das schon alles weıß, der findet darin 

ferner einen Vergleich zwischen C und anderen Compiler-Sprachen. Ab- 

schließend zeige ich Ihnen alles, was Sie für den Umgang mit einem spe- 

ziellen C-Compiler wissen müssen am Beispiel des C-Compilers, der mit 

dem ATARI-Entwicklungssystem ausgeliefert wird. 

1.1 C ist eine Compilersprache 

Sie wissen, daß Computer eigentlich nur in ihrer Muttersprache mit sıch 

reden lassen. Und Sie wissen, daß diese Muttersprache sich eines äußerst 

dürftigen Alphabets bedient, das nur aus zwei Zeichen besteht: ’0’ und °1’. 

Diese Zeichen, auch "Bits" genannt, bilden die Grundlage des unter Com- 
putern gesprochenen "Binärcodes"; weil er so wichtig ist, wird der Binär- 
code Sie später noch etwas mehr beschäftigen. 

Vorerst interessiert jedoch nur die Tatsache, daß die Umgangssprache der 
Computer herzlich wenig mit der des Menschen zu tun hat. Sie basiert auf 

dem Binärcode und wird - wie naheliegend! - "Maschinensprache" genannt. 
Seine Wünsche der Maschine in einer endlosen Folge von Nullen und Ein- 
sen mitteilen zu müssen (so arbeiteten die ersten Programmierer tatsäch- 
lich!) ist nicht nur mühsam, sondern auch fehleranfallig. Der Mensch in 
seiner Faulheit - diese ist eben oft die Triebfeder fiir groBe Erfindungen - 
sann auf Abhilfe. Erstmal brachte er die Maschinensprache in eine etwas 

gefälligere und entschärfte Form, die sogenannte "Assemblersprache". Die 

arbeitet nicht mehr mit dem Binärcode, sondern mit sprechenden Befehls- 

namen. Da aber ihre Befehle völlig auf die ’Denkweise’ der Maschine aus- 
gerichtet sind (sie spiegeln unmittelbar das wieder, was die Maschine 

kann), ist das Arbeiten mit ihr immer noch sehr mühsam und fehlerbehaf- 
tet. 

Dann aber erfand der Mensch die höheren Programmiersprachen. Der Trick 
dabei: man kann den Computer zwar nicht von seiner Maschinensprache 

abbringen, man kann ihm jedoch mittels Maschinensprache beibringen, wie 
er in einem andern Code verfaßte Befehle erstmal in die ihm genehme
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Weise bringen und dann befolgen kann. Zwischen der Sprache, mit der der 

Programmierer arbeitet und der, die der Computer versteht, wird ein 

Übersetzungsprogramm eingeschaltet. 

Dieses Programm spielt also die Rolle eines Dolmetschers zwischen Mensch 
und Maschine. Da es für den Programmierer dank seiner Hilfe so aussieht, 

als würde der Computer jetzt eine andere Sprache sprechen, setzt man 

kurzerhand den Übersetzer mit der Sprache, die er dolmetscht, gleich. Es 

hat sich dafür der Ausdruck "höhere Programmiersprache" eingebürgert. 
"Höher" deshalb, weil diese Sprache sich näher an die menschliche Aus- 

drucksweise anlehnt als die Maschinensprache, die entsprechend eine 

’niedere’ Programmiersprache ist. 

Programmiersprachen gibt es viele; denn die ultimate ’Programmiersprache’, 
die natürliche Umgangssprache des Menschen, kann man bisher noch nicht 

in Maschinensprache übersetzen. Sie ist zu vieldeutig; in ihr bleibt vieles 

ungesagt, was zum Verständnis notwendig ist und was sich die arme Ma- 
schine nicht einfach - wie der Mensch - ’dazudenken’ kann. Deshalb 
schaffen sich die Menschen für verschiedene Zwecke unterschiedlich gear- 
tete Programmiersprachen, von denen C - die Sprache, die Sie interessiert - 

eine ist. 

Aber Sie sollten daran denken, daß eine Programmiersprache letztlich 
nichts anderes ist, als ein Übersetzungsprogramm in die Maschinensprache. 

Bei der Organisation dieses Übersetzungsvorgangs hat man verschiedene 

Wahlmöglichkeiten, die einen unmittelbaren Einfluß auf die Arbeit mit der 

Programmiersprache haben. Dies kann man sich am Beispiel eines mensch- 
lichen Dolmetschers leicht klarmachen. 

1.2 Interpreter vs. Compiler 

Wenn Sie in Japan mit einem Ihrer Sprache nicht mächtigen Geschäftspart- 

ner verhandeln, dann bedienen Sie sich eines Dolmetschers. Die größten 
Könner dieser Zunft sind die Simultandolmetscher, die es verstehen, quasi 

gleichzeitig mit Ihren deutschen Äußerungen eine Übertragung ins Japani- 
sche vorzunehmen. Dies hat für Sie den Vorteil, daß Sie die Wirkung des 
Gesagten unmittelbar an den Reaktionen Ihres Gesprächspartners, an den 

(simultan übersetzten) Antworten, Einwürfen etc. kontrollieren können: der 
Dialog ist wegen des beinahe unmittelbaren Feedbacks natürlicher. 

Aber das Verfahren kann auch Nachteile haben. Hat man es beim Dolmet- 

scher nicht mit einem Könner seines Faches zu tun, der aber dennoch zur 

Simultanarbeit gezwungen ist, dann wird dieser in seiner Not zur wört-
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lichen Ubersetzung greifen. Und das kann katastrophal enden, wie folgen- 

der (nicht erfundene - ich schwör’s!) Ausschnitt aus einer Computer-Be- 
dienungsanleitung zeigt: 

.. Der Microcomputer in der Tastatur führt viele Funktionen 

aus, einschliesslich der Selbstprüfung des Kraftbetriebs wenn 

ersucht vom Systemeinheit. Dies Prüfung prüft den Mikro- 
computer ROM, Erinnerung, und die festsitzten Tasten. Die 
zusätzlichen Funktionen sind: die genaue Prüfung der Tasta- 

tur, der Puffer der Blickscodes, das Erhalten der serien- 

mässigen Kommunikation mit der Systemeinheit, und das 

Ausführen des hand-schüttelnden Protokolls benötigt von je- 

dem Transfer der Blickscodes. 

Diese aus dem Japanischen ’iibersetzte’ Bedienungsanleitung für eine Com- 

puter-Tastatur versteht auch der Spezialist nur nach schärfstem Nachden- 
ken (und wenn der Blick nicht mehr von Lachtränen getrübt ist)! 

Das Problem hierbei ist, daß sich Struktur und Wortschatz einer Sprache 

nicht Eins zu Eins auf eine andere übertragen lassen, sondern daß für die 
Übersetzung komplizierte Umstrukturierungen nötig sind. Der Könner un- 
ter den Dolmetschern nimmt diese wie beiläufig vor; weniger Geübte ge- 
statten oftmals unfreiwillig Einblicke in diesen hochkomplexen Prozeß, was 
dem Verständnis nicht gerade förderlich ist. 

Besonders katastrophal würde sich eine wörtliche Übertragung bei einem 
Gedicht oder einem anderen sprachlichen Kunstwerk auswirken. Über- 

setzer, die solche Aufgaben angehen - beispielsweise das Nibelungenlied ins 
Japanische übertragen - brauchen daher viel Zeit, detaillierte Kenntnis 

beider Sprachen und meterweise Lexika. 

Warum ich Ihnen das erzähle? Weil es auch bei Computern Simultandolmet- 

schern und literarische Übersetzer gibt. Die Simultanarbeiter nennt man 
hier jedoch "Interpreter"; der Kunstwerker heißt "Compiler". 

Ein Interpreter ist ein Übersetzungsprogramm, das Ausdrücke (Programme) 
einer höheren Programmiersprache unmittelbar in die Maschinensprache 
überträgt und zur Ausführung bringt. Der bekannteste Interpreter ist der 
für die auf Home- und Personalcomputern allgegenwärtige Sprache BASIC. 

Etliche unter Ihnen werden BASIC bereits kennen und die Eigenschaft 

schätzen, mit einem einfachen RUN der Maschine sofort ein Ergebnis zu 
entlocken. Für den Programmierer, der in dieser Sprache arbeitet, hat dies 

den Vorteil des unmittelbaren Feedback, und dies kann die Programment- 
wicklung beträchtlich erleichtern. |
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Es gibt jedoch auch Nachteile bei diesem Verfahren. Um bei der Dolmet- 
scher-Analogie zu bleiben: die Ubertragungen, die der Interpreter von 

BASIC in die Maschinensprache vornimmt, sind oft zu wortreich und um- 

ständlich. Das bedeutet: ein in BASIC geschriebenes Programm ist oft viel 
umfangreicher (benötigt mehr Speicherplatz) und wird wesentlich langsamer 
von der Maschine ausgeführt, als das entsprechende Programm in Maschi- 

nensprache oder in Compilersprache. 

Compilersprachen sind die zweite Alternative. Anstatt so früh wie möglich 

loszuübersetzen, bekommt ein Compiler das gesamte Programm vorgesetzt 
und kann dann daraus in aller Ruhe ein möglichst effizientes Maschinen- 
programm bosseln. Das bedeutet nun nicht, daß Sie auf eine Compiler- 
Übersetzung tagelang warten müßten; meist ist der Übersetzungsvorgang in 

einigen Dutzend Sekunden abgeschlossen. Das Ergebnis der Übersetzung, 
das Maschinenprogramm, ist dann direkter auf die ’Denkweise’ des Compu- 
ters zugeschnitten und kann von diesem auch in einem Zug ausgeführt 
werden, ohne daß dauernd ein Übersetzer dazwischenquasseln muß. 

Aber dennoch: zwischen dem Eingeben des Programmes und seiner Aus- 

führung durch die Maschine vergeht Zeit, die Sie sich bei der Arbeit mit 

einem Interpreter sparen. Entwickelt jedoch wird ein Programm nur ein- 

mal, angewendet hingegen (hoffentlich) tausende Male. Und da zeigen sich 
die vom Compiler gelieferten Ergebnisse in ihrem besten Licht, denn sie 

sind in der Regel zehnmal schneller als die Produkte eines Interpreters, 
manchmal ist der Geschwindigkeitsvorteil sogar erheblich höher! 

Compilersprachen haben gegenüber den Interpretersprachen noch einen 

Vorteil, der nicht so offensichtlich ist. Interpretersprachen verführen zum 

Drauflosprogrammieren: kaum haben sich die ersten unscharfen Umrisse 
einer Idee im Kopf gebildet, setzt man sich meist schon hin und hackt das 

Ideen-Fragment in die Maschine. Das mag bei kleineren Problemen ange- 
hen; für umfangreiche Programmieraufgaben ist es jedoch oftmals tödlich. 
Das hat man Ihnen ja schon in der Schule beigebracht, daß man für einen 
längeren Aufsatz erstmal eine Stoffsammlung anlegt, dann eine Gliederung 

entwirft und erst anschließend mit dem Schreiben anfängt. 

Nun ist schon das Schreiben eines einfachen Adressverwaltungs-Programms 
im Vergleich mit einem Schulaufsatz ein Zentnerproblem. Sie können sich 
vorstellen, wie weit man mit der Methode kommt, halbgare Gedanken 

gleich auszuführen. Das entstehende Code-Chaos durchblickt oft nur mehr 

sein Schöpfer, und der nach zwei, drei Wochen auch nicht mehr. 

Darum arbeiten nur mehr die wenigsten Software-Profis in BASIC; und 
wenn, dann erlegen sie sich strengste Disziplin auf. Wenn zeitkritische An- 

wendungen entwickelt werden müssen, dann ist mit BASIC ohnehin nichts
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zu machen. Viele greifen dann zurück zur Maschinensprache und tun damit 
flugs den Schritt zurück in die Computer-Steinzeit; darüber im nächsten 
Kapitel mehr. 

Deshalb spricht alles für Compilersprachen: ihre Modernität, die Geschwin- 

digkeit und Kompaktheit der Programme und die Portabilität. Was "Porta- 
bilität" ist, wird im nächsten Kapitel erklärt; was jedoch bedeutet "Moder- 
nität" im Zusammenhang mit einer Programmiersprache? 

Computerwissenschaftler forschen nun schon seit 30 Jahren darüber, wie 

die optimale Programmiersprache auszusehen hat. Die Erkenntnisse auf 

diesem Gebiet haben besonders in den letzten 20 Jahren drastisch zuge- 
nommen. Als Ergebnis hat sich ein zeitgemäßer Programmierstil entwickelt, 
der unter der Bezeichnung "strukturierte Programmierung" bekannt ist. Um 
diesen als besonders effizient erkannten Stil praktizieren zu können, be- 

dient man sich moderner "strukturierter Programmiersprachen", von denen 

C eine ist. “ 

Die Entwicklung von BASIC datiert jedoch auf den Anfang der sechziger 
Jahre zurück. Alles, was die Wissenschaft seither an Einsichten gewonnen 
hat, insbesondere die Methode der strukturierten Programmierung, ist an 
BASIC spurlos vorübergegangen. So ist BASIC - weil es jeder Mikrocom- 

puter-Hersteller mit seinen Geräten als Dreingabe mitliefert - zwar immer 
noch eine aktuelle, aber alles andere als eine moderne Programmiersprache. 

Die Forschungsergebnisse der Informatiker haben ihren Niederschlag über- 
wiegend in modernen Compilersprachen gefunden. Eine davon ist C; womit 
wir schon angelangt wären bei der 

1.3 Geschichte von C 

In der deutschen Personal- und Heimcomputergemeinde ist C erst seit eini- 
gen Jahren bekannt. Profis (Softwarehäuser) benutzen es seit ca. 4 Jahren, 
die Hobbyisten wurden wohl erst in diesem Jahr (1986) nachhaltig damit 
konfrontiert. Letzteres kann man hauptsächlich auf das Erscheinen der ST- 

Modelle von Atari (Atarı 520 ST+ und 260 ST) zurückführen und die Ent- 
scheidung dieser Firma, C zur Entwicklungssprache zu machen. 

Daraus könnte man die Vermutung ableiten, daß C eine sehr junge Sprache 
ist. Doch dies täuscht. Sie wurde bereits Mitte der siebziger Jahre ent- 

wickelt, und sie ist das Werk eines einzigen Mannes, Dennis M. Ritchie. 

Daß eine Programmiersprache das Werk eines Einzelnen ist, ist nicht selbst- 

verständlich. Sprachen wie COBOL, das hauptsächlich ın der Groß-EDV
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für Verwaltungszwecke eingesetzt wird, Algol, eine Sprache für technisch- 

naturwissenschaftliche Anwendungen, oder neuerdings ADA, ein vom 

amerikanischen Verteidigungsministerium gesponsorter neuer Standard, 

wurden und werden von einem vielköpfigen Komittee entworfen. Doch 
dies tut den Sprachen nicht immer gut. 

So ist auch die wohl bekannteste Programmiersprache, BASIC, das Werk 

zweier Männer. Der Bekanntheitsgrad von BASIC rührt nicht zuletzt daher, 
daß es für Anfänger besonders leicht und schnell zu erlernen ist; und genau 
dies war die Intention von Kemeny und Kurtz, den Vätern von BASIC. 
Nicht immer erfüllen Programmiersprachen in so vollkommener Weise die 

Intentionen ihrer Schöpfer; C ist ein weiterer solcher Glücksfall. 

D. Ritchie war in den siebziger Jahren bei den amerikanischen Bell Labo- 

ratorien mit der Entwicklung des Betriebssystems UNIX beschäftigt. UNIX 

sollte unter anderem Multi-User- und Multi-Tasking-Fähigkeiten haben: 

mehrere Benutzer sollten (scheinbar) gleichzeitig einen Computer benutzen 

können und dabei auch noch mehrere Aufgaben (scheinbar) parallel erledi- 
gen können. Dies zu realisieren ist keine leichte Aufgabe und man kann 
sich vorstellen, daß es bei einem so zeitkritischen System sehr auf die Ge- 

schwindigkeit ankommt. Die einzige Möglichkeit zur Programmierung eines 
solchen Systems schien damals Maschinensprache zu sein. Doch wer Assem- 

bler kennt, der weiß, wie mühselig und umständlich das Arbeiten in dieser 

Sprache ist. Auch erhöht sich die Fehleranfälligkeit eines solchen umfang- 
reichen Projektes durch Benutzung von Maschinensprache beträchtlich. 

D. Ritchie hätte daher ganz gerne eine höhere Programmiersprache mit der 
Möglichkeit zur Systemprogrammierung - der Erstellung maschinen- bzw. 
systemnaher Programme - gehabt. Das gab es damals noch nicht, ja, es 

schien sogar ein Widerspruch zu sein: Systemprogrammierung macht man in 
Assembler und damit Basta! 

Nun, seit den Anstrengungen von D. Ritchie macht man es eben in C. 
Denn dessen Reaktion war, sich nicht mit den bestehenden Verhältnissen 

zufriedenzugeben, sondern sich unverdrossen das Werkzeug zu verfertigen, 

das er brauchte. Und so entstand C, eine Sprache, die zwei bisher unver- 

einbar erscheinende Welten zu vereinen vermochte: die systemnahe, ma- 
schinennahe Programmierung, bis dato eine Domäne der Assembler-Freaks, 
und die abstrakte, strukturierte Programmierung, die modernen höheren 
Programmiersprachen, vor allem Pascal, vorbehalten zu sein schien. 

Erklärungsbedürftig ist noch die Namenswahl; "C" als Name für eine Pro- 
grammiersprache erscheint befremdlich. Der Grund liegt darin, daß es zu C 

einen Vorläufer gab, die Sprache "B", die Ritchie zu C weiterentwickelte. 

Schon wieder ein Einbuchstaben-Name! Dieser ist aber leichter erklärt: B
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hatte nämlich ein Vorbild, die Sprache BCPL. BCPL ist die Abkürzung für 
"Basic Cambridge Programming Language" (zu Deutsch etwa: Elementare 

Programmiersprache aus Cambridge). Die Namenswahl ist nicht nur amü- 

sant; sie ist auch typisch für den C-Programmierstil. C-Programme können 
nämlich verblüffend kurz und kompakt gehalten werden. C bietet dem Pro- 
grammierer die Möglichkeit, sich elegant und prägnant auszudrücken; wer 

diesen eleganten Stil jedoch noch nicht gewohnt ist, tut sich manchmal 

(besonders als Anfänger) schwer mit dem Verstehen. Das hat C das Vorur- 
teil eingebracht, eine ’unverständliche’ Sprache zu sein. Sie werden noch 
selbst sehen, daß dieses Vorurteil unbegründet ist. 

Das Betriebssystem UNIX, das momentan langsam aber sicher auch in die 

PC-Welt einsickert, ıst als Ergebnis der Bemühungen von D. Ritchie zum 

größten Teil in C geschrieben. Von den ca. dreizehntausend Programm- 
zeilen, die der Systemkern benötigt, ist lediglich ein kleiner Kern von etwa 

800 Zeilen in Maschinensprache verfaßt. Alles, was ein Betriebssystem 

sonst noch nützlich macht - die sog. "Utilities" wie z.B. Editoren - ist 
gänzlich in C geschrieben. Zuvor hätte es niemand für möglich gehalten, 
daß so etwas überhaupt möglich ist! 

C ist aber nicht nur gut, um Betriebssysteme damit zu entwickeln. Immer 

mehr Softwarehäuser machen es Zur Haussprache. So hat die Firma Micro- 

Pro, weltweit bekanntgeworden mit ihrem Textprogramm WordStar, eine 

völlig neue Version dieses Programms unter dem Namen Wordstar 2000 auf 
den Mark gebracht, das völlig in C geschrieben ist. Auch Word, der Text- 

programm-Bestseller von Microsoft, ist ein C-Programm. 

Was macht C für diese Firmen so attraktiv? Es ist die Portabilität von C- 
Programmen. Man nennt ein Programm portabel, wenn es ohne Probleme 

von einem Rechner auf einen anderen gebracht werden kann. Dies setzt 
zweierlei voraus: einmal muß sich der Programmierer jeder Hardwareab- 
hängigkeit enthalten. Er darf also in seinem Programm nicht auf Mög- 
lichkeiten zurückgreifen, die nur seine Maschine und sonst keine andere in 
dieser Form zu bieten hat. Die Verlockung zur maschinenabhängigen Pro- 
grammierung ist besonders bei Fragen der Bildschirmausgabe groß. Viele 
Home- und Personal Computer verfügen über ’schlaue’ Bildschirme mit 

einer Menge eingebauter Fähigkeiten (z.B. Zeichen oder Zeilen blinken zu 
lassen, zu unterstreichen oder revers darzustellen), und da übermannt einen 

leicht der Spieltrieb. Aber dies büßt man spätestens dann, wenn man sich 

einen neuen Rechner zulegt und das Programm jetzt auch gern auf diesem 
einsetzen will. Da es die Industrie versteht, so etwas wie Kompatibilität 

(technische Verträglichkeit) unter allen Umständen zu vermeiden, sind die 
Chancen groß, daß das gesamte Programm - oder zumindest der Teil, der 
sich um den Bildschirm kümmert - neugeschrieben werden muß.
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Aber selbst wenn der Programmierer sich diszipliniert: wenn seine Pro- 

grammiersprache nicht portabel ist, dann ist alle Liebesmüh vergeblich. 
Portabel sind Programmiersprachen dann, wenn sie standardisiert sind. Das 

sind aber nur die wenigsten (BASIC ist es nicht). Und auch mit standardi- 
sierten Sprachen hat es so seine Bewandtnis: denn selbst wenn eine Sprache 
standardisiert ist, so tastet man diesen Standard meist nur dann nicht an, 
wenn die Sprache perfekt ist. Hierzu bietet Pascal ein gutes Beispiel. 

Für diese Sprache gibt es einen Quasi-Standard, nämlich das Buch, in dem 
Pascal erstmals einer größeren Öffentlichkeit vorgestellt wurde. Dieser nach 

seinen Autoren Jensen/Wirth-Standard genannte Sprachumfang ist jedoch 
in Punkto Ein-/Ausgabe nicht gerade üppig ausgestattet. Deshalb fühlt sich 

jedes Softwarehaus, das ein Pascal entwickelt, bemüßigt, sein Pascal in 

diesem Punkt etwas aufzumöbeln. Diese Aufmöbelei macht natürlich jeder 
Hersteller etwas anders - und aus ist’s mit der Kompatibilität. 

Bei C sieht der Fall anders aus. Die Sprache ist hinreichend mächtig und 
vollständig, um auch verwöhnte Programmierer zufriedenzustellen; und sie 

ist klein. Dies scheint ein Widerspruch zu sein, der sich jedoch ım weiteren 

Verlauf des Buches auflösen wird. "Klein" bedeutet, daß es nicht allzuviele 

Befehlsworte in C gibt. Das bedeutet aber auch, daß man C relativ leicht 

auf einen neuen Computer bringen kann. Und da C vollständig ist, muß 

man es auch nicht erst aufpolieren. 

Das macht C so attraktiv. Es dürfte wirklich die einzige Sprache sein, die 
in gleicher Weise für ganz kleine Maschinen (wie z.B. den weitverbreiteten 
C64 von Commodore) und für ganz große Maschinen (z.B. die viele Millio- 

nen Dollar teueren Supercomputer von Cray Research) zu haben ist. Wenn 

Sıe also ein Programm in C entwickeln, dann erschließt sich Ihnen damit 
theoretisch der gesamte EDV-Markt. | 

C ist somit eine Sprache mit Vergangenheit, aber auch mit großer Zukunft. 

Denn nicht nur Atari hat sich für C entschieden; auch Commodore ist mit 

seinem Amiga diesen Weg gegangen. 

Aber auch wenn man keine professionellen Ambitionen hat, sondern als 

Hobbyist über gesteigerte Programmiermöglichkeiten verfügen möchte, 

empfiehlt es sich, zu C zu greifen. Bisher war ja BASIC die Leib- und 
Magensprache des kleinen Mannes. Eine Zeitlang kann man mit BASIC 
auch uneingeschränkt glücklich sein. Aber besonders die Neu- und WiB- 
begierigeren unter uns, diejenigen, die der Maschine auf die Schliche 

kommen oder das letzte aus ihr herausholen wollen, stoßen bald an die 

Grenzen von BASIC. Viele greifen dann zur Maschinensprache, legen sich 
damit aber stark auf einen - ihren - Computer fest. Dies ist genau- 
genommen ein bedenklicher Schritt, denn bei der rapiden Entwicklung der
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Computertechnik ist eine Computergeneration nach spätestens vier Jahren 

veraltet. Dann ist man vielleicht firm im Assembler des 6502, aber die 

neueren Entwicklungen gehen an einem vorbei. 

Fir ATARI-Besitzer gibt es noch ein weiteres wichtiges Argument. Die 
Funktions-Vielfalt von GEM - der grafischen Benutzeroberfläche - kann 

bisher nur unter C (und in Maschinensprache) genutzt werden. GEM-Pro- 

gramme sind hinreichend kompliziert, um die Vorteile einer höheren Pro- 
grammiersprache wie C schätzen zu lernen! 

Ein weiterer Grund, sich von BASIC abzuwenden, ist die unbestrittene 

Langsamkeit von BASIC-Programmen. BASIC als Interpretersprache kann 

es an Geschwindigkeit mit keiner Compilersprache - wie es C ist - auf- 

nehmen. Und unter den Compilersprachen - FORTRAN, Algol, COBOL, 

PL/I, Pascal und wie sie alle heißen - ist C beileibe nicht die langsamste. 

1.4 C im Vergleich 

Die Hauptvorteile von C wurden ja bereits angerissen: 

o die Geschwindigkeit und Kompaktheit der Programme, die C als Com- 
pilersprache bietet, 

o die Modernität von C, das eine strukturierte Programmiersprache ist, 

o die Möglichkeit, in C maschinennah zu programmieren, ohne direkt auf 

die Maschinensprache zurückgreifen zu müssen 

o die Portabilität von C-Programmen, weil C auf unterschiedlichsten 
Computern einheitlich verfügbar ist. 

All diese Vorteile - und daß es Spaß machen kann, in C zu programmieren 

- will Ihnen dieses Buch noch näherbringen. Aber C ist nicht die einzige 
Programmiersprache auf der Welt. Der Gerechtigkeit halber soll sie hier 

kurz mit den verbreitetsten Konkurrenten verglichen werden, denn nichts 

auf der Welt ıst vollkommen, und so hat C auch ım Vergleich mit anderen 
Sprachen nicht nur Stärken aufzuweisen. 

1.4.1 BASIC und C 

Der Hauptvorteil, den BASIC gegen C ins Feld zu führen hat: BASIC ist 
eine Interpretersprache. Wie Sie nun wissen, bedeutet dies, daß BASIC- 

Programme schneller getestet werden können, da der Programmierer sie 

unmittelbar ausprobieren und auf Fehler reagieren kann. Man sollte jedoch 
nicht vergessen, daß die Schöpfer von BASIC dieses hauptsächlich deshalb 

als Interpreter konzipierten, weil sie BASIC als ausgesprochene Lehr- und
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Anfängersprache vorsahen. So ist auch unbestritten, daß man sich einen 

minimalen BASIC-Wortschatz schnell aneignen kann. Aber daß BASIC auch 

für größere Programme benutzt wird, ist eher ein historischer Zufall und 
entspricht nicht der ursprünglichen Intention seiner Entwickler: Es war die 
erste höhere Programmiersprache, die für Microcomputer verfügbar war 

und hat sich deshalb zum Quasi-Standard entwickelt. 

1.4.2 FORTRAN und C 

FORTRAN ist die älteste höhere Programmiersprache. Als sie entwickelt 

wurde, wußte man noch nichts über den Bau einer Programmiersprache. Im 
Vergleich zu den stromlinienförmig gestylten modernen Sprachen nimmt 

sich FORTRAN denn auch aus wie ein Sammelsurium erratischer Einfälle. 
Besonders die Theoretiker des strukturierten Programmierens haben mit 

Vorliebe FORTRAN als abschreckendes Beispiel herangezogen. Dennoch: 
im technisch-wissenschaftlichen Bereich, in den Universitäten und Labors 
erfreut sich FORTRAN noch immer großer Beliebtheit. Dies mag zwei 
Gründe haben: einmal die Bequemlichkeit - kann man erst mal eine Spra- 

che, dann bleibt man auch dabei -, dann aber sicher die numerischen 

Fähigkeiten der Sprache. 

Wenn Sie nämlich mit sehr großen Zahlen oder sehr genau rechnen müssen, 

wenn Sie gar mit Exotischem wie z.B. komplexen Zahlen hantieren sollten, 
dann ist FORTRAN noch immer die Sprache der Wahl. Allerdings sieht’s 
bei Microcomputern damit nicht sehr rosig aus; weil FORTRAN doch ein 

ziemliches Sprach-Durcheinander ist, ist der Compiler auch sehr umfang- 

reich und, wenn er den vollen Sprachumfang bieten soll, auch ziemlich 
teuer. 

Das soll nicht heißen, daß man mit C nicht genau rechnen oder komplexe 

Arithmetik treiben könnte. Wie Sie noch sehen werden, ist C durchaus ge- 
eignet, mit sehr großen Zahlen genau zu hantieren. Nur wenn diese Ge- 
nauigkeit für Ihre Zwecke nicht ausreicht, dann können Sie entweder die 
entsprechenden hochgenauen Arithmetik-Routinen in C selbst program- 

mieren, oder zu einem guten FORTRAN greifen, in dem das schon einge- 

baut ist. 

1.4.3 COBOL vs. C 

Eine der größten Schwächen von FORTRAN sind seine Ein-/Ausgabe- 

Möglichkeiten. Das heißt, FORTRAN kann sehr gut mit Daten rechnen, 
aber diese mit einem FORTRAN-Programm in die Maschine zu bekommen 
und ihr anschließend wieder zu entlocken, ist eine Quälerei. Bald nach der 

Entwicklung der Computer begann man ihren Wert für Verwaltungsauf-



Zum Warmwerden 25 

gaben (Personaldaten, Lohnabrechnung, andere Abrechnungen wie Strom, 
Wasser, Gas etc.) zu erkennen, und da wird hauptsächlich ein- und ausge- 

geben; die dazu nötige Rechnerei ist nicht der Rede wert. | 

Weil also FORTRAN diesen Aufgaben nicht gerecht wurde, rief die ameri- 
kanische Regierung im Jahre 1959 ein Komittee in die Welt (unter dem 
Namen CODASYL bekanntgeworden), das COBOL ausbrütete. Dessen Eig- 

nung für das Hin- und Herschaufeln großer Datenmengen ist unbestritten; 
aber ansonsten ist COBOL ein Sprachkoloß, und kein Computerwissen- 

schaftler würde heute noch ernsthaft behaupten, daß man damit etwas an- 

deres als ein Programm zum Ausdrucken von Listen vernünftig program- 

mieren kann. Aber: in der Administration - sei’s staatlich, sei’s pri- 

vatwirtschaftlich - ist COBOL immer noch die Umgangssprache. 

Prinzipiell kann man alles, was in COBOL möglich ist, in C erledigen, das 

meiste sogar besser. Denn viele Merkmale von COBOL sind noch auf die 
Lochkarten-Verarbeitung zugeschnitten; diese umständliche Arbeitsweise 

haben Sie als Microcomputer-Benutzer gottseidank nicht nötig. Aber einige 
Bequemlichkeiten hat COBOL auch dem modernen Menschen zu bieten. So 

sind z.B. Sortierbefehle direkt in die Sprache eingebaut; der C-Program- 
mierer muß sich, wenn er Daten ordnen will, selbst ein Sortierprogramm 

schreiben. Aber wie das geht, erfahren Sie hier ohnehin! 

1.4.4 Pascal vs. C 

Pascal hat auf Microcomputern den Siegeszug der strukturierten Program- 
mierung eingeläutet. Es wurde von dem Schweizer Professor N. Wirth ent- 
wickelt und 1971 publiziert. Pascal wurde als Lehrsprache konzipiert, die 
Studenten mit den Prinzipien moderner Software-Entwicklung vertraut 
machen sollte. Deswegen wurde bei seiner Entwicklung großer Wert auf 
Fehlerprüfung während des Übersetzungsvorganges gelegt. Von den Uni- 
versitäten drang Pascal bald ’nach außen’, in die Wirtschaft und hier be- 

sonders in die Welt der Microcomputer. 

Viele und gute Programme wurden in Pascal geschrieben; doch weil es als 
Studentensprache gedacht war, legte N. Wirth weniger Wert auf Eigen- 
schaften, die in der Profi-Programmierung wichtig sind. Da ist einmal die 
Ein-/Ausgabe, die in Pascal umständlich ist und zum anderen die Möglich- 

keit zur maschinennahen Programmierung, die in Pascal gänzlich fehlt. Da 

die Zahl der Pascal-Fans groß ist, wurden Modifikationen an der Sprache 
vorgenommen, um sie den Bedürfnissen der Programmierer anzupassen. 

Dies ging jedoch sehr zu Lasten der Standardisierung: Pascal-Programme 
sind meist nicht portabel.
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Auch geht dem Fortgeschrittenen die ewige Fehlerprüferei - für den An- 
fanger sicher ein Vorteil - bald auf die Nerven. Verhindert sie doch auch 
bestimmte Programmier-Tricks, die zwar von zweifelhaftem pädagogischen, 
dafür von umso größerem praktischen Nutzen sind. C macht im Vergleich 
zu Pascal keinerlei Fehlerprüfung; dadurch sind äußerst elegante Problem- 

lösungen möglich, bei Anfängern führt dies aber oft zu ausgesprochen 
schwer zu entdeckenden Programmfehlern. Während Pascal eine Studenten- 

sprache sein sollte, war C eben von Anfang an als ’Erwachsenensprache’ 

angelegt. 

1.5 Wie arbeitet man mit C? 

Compiler-Sprachen sind in ihrer Handhabung etwas umständlicher zu be- 

dienen als Interpretersprachen. In der Regel erfolgt die Programmentwick- 
lung in einem (unfreiwilligen) Zyklus, der aus den Schritten Edieren, Com- 
pilieren, Linken, Programmtest, Edieren, Compilieren... usw. besteht, bis 

das Programm fehlerfrei ist oder dafür gehalten wird. 

1.5.1 Edieren des Programmes 

Wenn man in BASIC programmiert, dann ruft man (z.B. mit dem Befehl 
BASIC, oder - bei Homecomputern - durch einfaches Einschalten des 

Computers) den Interpreter und kann dann sofort mit dem Schreiben des 

Programms beginnen. Ihre von der Tastatur eingegeben Zeichen werden 
vom Interpreter gelesen und von diesem im Computer-Speicher als Pro- 

grammtext abgelegt und verwaltet. Der Interpreter gestattet es auch, das 

eingegebene Programm zu Testzwecken wieder anzusehen und zu modifi- 

zieren. Außerdem (und das ist eigentlich das Wichtigste) kümmert sich der 
Interpreter auch noch um die Ausführung Ihres Programms; er ist also 
ziemlich vielseitig. 

Bei Compilersprachen ist das anders. Das Übersetzungsprogramm - der 

Compiler - erwartet, daß der Programmtext bereits vollständig in maschi- 
nenlesbarer Form vorliegt. Dies zu bewerkstelligen hilft er Ihnen jedoch 
nicht! Dazu brauchen Sie einen Editor. 

Text - Programmtext oder anderen - in maschinenlesbarer Form bereit- 
stellen bedeutet, ihn in einer Datei abzulegen. Dateien sind benannte Zu- 

sammenfassungen von (logisch zusammengehörigen) Informationen auf 
einem Datenträger, meist einer Diskette oder Festplatte. In Dateien können 
Texte allgemeiner Art gespeichert sein: Briefe, Berichte, auch die einzelnen 

Kapitel dieses Buches wurden, da es mit Computerhilfe erstellt ist, in 
Dateien gespeichert. Neben Klartext für den Menschen speichert man in
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Dateien aber auch Programme, die die Maschine ausführen kann. Die Frage 
ist nur: wie kriegt man die Informationen in die Datei? 

Dazu gibt es spezielle Programme, die man "Editoren" nennt. Editoren sind 

nützliche Hilfsmittel bei der Textverarbeitung, da sie neben dem normalen 
Erfassen von Texten nach Schreibmaschinen-Manier auch vielfältige Bear- 
beitungsmöglichkeiten erlauben. So können in bereits geschriebenen Text 
Zeichen eingefügt oder daraus wieder gelöscht werden, es können Textaus- 

schnitte (Wörter, Sätze, ganze Absätze und Seiten) im Text verschoben 
werden, es können Wörter oder andere beliebige Zeichenfolgen gesucht 
und/oder durch andere ausgetauscht werden usw. Editoren erleichtern die 
Arbeit eines jeden erheblich, der mit Text zu tun hat; und auch Programme 
sind erstmals nichts anderes als Text, wenn auch Text mit einer besonderen 

Bedeutung für den Computer. 

Sie benötigen für die Arbeit mit C also einen Editor, mit dessen Hilfe Sie 
in Programmform das niederschreiben, was der Computer für Sie tun soll. 

Da man mit einem Editor viel mehr als nur Programme schreiben kann, 
lohnt sich diese Anschaffung in den meisten Fällen. Mit dem Entwick- 
lungssystem des ATARI wird mittlerweise der Editor von Metacomco aus- 
geliefert, der leicht zu erlernen ist, da er die Funktionstasten auf der 
ATARI-Tastatur verwendet. 

Der erste Schritt bei der Programmerstellung besteht also darin, mit einem 
Editor eine Programm-Datei zu erstellen, die Ihr C-Programm enthält. 
Übrigens ist in einem modernen Computersystem fast alles eine Datei. 

Neben dem, was der Prozessor (das ’Gehirn’ Ihres Computers) kann - es ist 

herzlich wenig! - und ein paar sehr elementaren Fähigkeiten, die in ROMs 
(Festwertspeicher) fest verdrahtet sind, muß alles, was den Computer inter- 

essant macht, diesem erst beigebracht werden. Das geht, indem man ein 
Programm schreibt, und dieses Programm liegt in einer Datei. Oder in 
mehreren; denn zwischen der Form, in der ein Computer ein Programm 

verarbeiten kann (Sie erinnern sich: die Maschinensprache) und der Form, 
in der Sie es erstellen (Sie arbeiten mit C, einer höheren Program- 
miersprache) besteht ein Unterschied. Den herauszuarbeiten, hat man sich 

einige Fachbegriffe einfallen lassen: 

Das Programm in der höheren Maschinensprache nennt man "Quellpro- 
gramm". Es ıst in der vorliegenden Form vom Computer noch nicht aus- 

führbar, sondern muß erst durch einen Übersetzer umgewandelt werden. 

Entsprechend bezeichnet man die Datei, in der sich dieses Quellprogramm 

befindet, auch als "Quelldatei". 

Was sich nach der Umwandlung des Quellprogramms ergibt, ist ein "ablauf- 
fähiges Programm". Es liegt nämlich nun in Maschinensprache vor und
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kann so vom Computer verstanden werden. Aus etwas dunklen Gründen 

nennt man dieses ablauffähige Programm auch "Objektprogramm"; die 

Datei, in der das Objektprogramm steht, wird entsprechend als "Objekt- 

datei" bezeichnet. 

1.5.2 Compilieren des Programmes 

Das Programm liegt nun also in der Quelldatei. Damit die Maschine die 
Programmbefehle auch befolgen kann, muß es übersetzt werden (Sie er- 
innern sich noch an das Dolmetscher-Beispiel?). Daß diese Übersetzung 
ebenfalls von einem Programm besorgt wird, wissen Sie bereits. Dieses 

Übersetzer-Programm nennt man im Programmierer-Jargon auch einen 

"Compiler"; dies ist der Grund, warum ich C als "Compiler-Sprache" be- 

zeichnet habe. 

Zum Verständnis des Folgenden sind einige Kenntnisse über die Techniken 
notwendig, die dem Übersetzungsvorgang (auch "Kompilieren" genannt) zu- 
grundeliegen. Dieser ist in drei logische Schritte gegliedert. Im ersten 
Schritt untersucht ein sog. "Scanner" die Quelldatei und versucht das, was 

für ihn erstmals wie ein unorganisierter Strom von Zeichen aussieht, auf- 

zugliedern in bedeutungstragende Einheiten wie z.B. Befehlsworte. 

Auch dies kann man mit den Verhältnissen ın der natürlichen Sprache ver- 

gleichen. Hört man nämlich einer Unterhaltung in einer Sprache zu, die 

‘man nicht versteht, dann hat man meist das Gefühl, daß die Gesprächs- 

partner sich außergewöhnlich schnell unterhalten; besonders beim Italieni- 
schen und anderen südländischen Sprachen drängt sich dieser Eindruck auf. 

Das Gefühl täuscht jedoch, wie psychologische Untersuchungen erwiesen 

haben. Das Phänomen hat seinen Ursprung darin, daß Sie in dem auf Sie 

einstürzenden Schwall an Lauten nicht ausmachen können, wo die Wort- 

grenzen liegen. Ihr auf das Deutsche ’geeichter’ Scanner weiß nicht, wo ein 
Wort aufhört und das nächste anfängt, und deshalb geht alles für ihn zu 
schnell. 

Sie sehen also, daß das Ausfindigmachen von Wörtern (bei Programmier- 

sprachen spricht man nicht von Wörtern, sondern von "Tokens") für das 
weitere Verarbeiten einer Sprache wichtig ist. Dazu gehört auch das Erken- 
nen von Nicht-Wörtern: Ihr eingebauter Deutsch-Scanner weiß z.B., daß es 
sich bei "Tisch" um ein Wort des Deutschen handelt, daß "Gewurbel" hinge- 
gen kein deutsches Wort ist (auch wenn es ein mögliches deutsches Wort 
wäre; ım Unterschied dazu ist "Zphxkrwmpkrt" beim besten Willen kein 

mögliches deutsches Wort - auch das weiß Ihr Scanner!). Der Scanner des 
C-Compiler zerlegt ähnlich wie Ihr angeborener Deutsch-Scanner das
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Quellprogramm in bedeutungstragende Einheiten, die obenerwähnten 

Tokens, und gibt diese weiter an die nächste Instanz. 

Diese nächste Instanz kümmert sich um die "Syntaxanalyse". Mit "Syntax" 
bezeichnet man die Regeln, die angeben, wie Sätze einer Sprache gebildet 
werden. Natürliche Sprachen haben eine Syntax, die für das Deutsche z.B. 
festlegt, daß "Ich lese gerade ein Buch über C" ein deutscher Satz ist, wäh- 
rend "Mich wird gerade ein deutscher Buch gelesen von C" das nicht von 
sich behaupten kann. 

Ein großer Teil der Arbeit beim Erlernen einer neuen Programmiersprache 
- natürliche Sprachen bilden da übrigens keine Ausnahme - wird für die 

Beherrschung der Syntax dieser Sprache aufgewendet. Und die Aufgabe ist 
gar nicht so einfach; selbst alte Hasen, die bereits längere Zeit mit einer 

Programmiersprache arbeiten, machen da gelegentlich noch Fehler. Beim 
Anfänger passiert das entsprechend häufiger. Aber keine Angst: im Erken- 
nen von solchen syntaktischen Fehlern sind die Compiler ziemlich gut. 
Wenn der Parser - dies ein anderer Ausdruck für den Compiler-Teil, der 

die Syntaxanalyse besorgt - einen Syntaxfehler erkennt, dann weist er Sie 
sofort darauf hin. Meist liefert er auch noch eine Fehlerdiagnose, mit der 
Sie leicht den Fehler korrigieren können. Ä 

"Wenn der Parser so schlau ist, warum korrigiert er den Syntaxfehler dann 
nicht gleich selbst?", könnte man nun Fragen. Aber dieses automatische 

Korrigieren geht nicht: denn dazu müßte der Computer ja wissen, was das 

Programm eigentlich bewerkstelligen soll, und dazu müßte es in Maschi- 

nensprache vorliegen und dazu braucht man den Compiler und der kann ja 
gerade deshalb nicht weitermachen, weil ein Syntaxfehler im Programm ist! 

Ist das Programm aber einmal frei von Syntaxfehlern, dann kann der Parser 

seine vollständige syntaktische Struktur ermitteln, welche Voraussetzung für 
den dritten und wichtigsten Schritt beim Kompilieren ist: die Codeerzeu- 

gUNg. 

Die dritte logische Komponente eines Compilers nımmt nämlich das Ana- 

lyseergebnis des Parsers und erzeugt auf dieser Basis die Maschinenbefehle, 
aus denen sich das Objektprogramm zusammensetzt. Man spricht hier von 
"Codegenerierung", wobei der erzeugte Code noch nicht unbedingt in ab- 
lauffähiger Form vorliegen muß; aber darüber mehr im nächsten Unter- 

kapitel. | 

Wenn der Compiler fertig ist, bedeutet das noch nicht, daß Ihr Programm 
jetzt garantiert fehlerfrei ist. Denn auch wenn es allen vom Compiler über- 

prüften formalen Anforderungen genügt, kann das Programm doch immer 

noch logische Fehler enthalten, d.h. es macht zwar etwas, aber nicht das,
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was Sie wollen. Gegen solche logische Fehler gibt es bisher noch kein Heil- 
mittel außer Nachdenken. Syntaktische Fehler können von einem Programm 

- also maschinell - erkannt werden. Aber ob ein Quellprogramm seinen 

vorgesehenen Zweck auch erfüllt, kann nur der Mensch letztgültig bestim- 
men. Die Beseitigung von logischen Fehlern, die im Jargon der Zunft 
"Bugs" (englisch "Wanzen") genannt werden, nimmt daher auch bei der Pro- 

grammierarbeit viel Zeit in Anspruch. 

Sie sollten auf keinen Fall beunruhigt oder gar entmutigt sein, wenn in 
Ihrem Programm noch Bugs sind. Auch Profis passiert das immer wieder. 

Allerdings kann durch einen klaren und disziplinierten Programmierstil die 
Fehleranfälligkeit von Programmen reduziert werden. Wie man diesen Stil 
in C praktiziert, wird ebenfalls Gegenstand der folgenden Kapitel sein. 

Mit den Einzelheiten des Kompilierens habe ich Sie deshalb behelligt, weil 

man als Compiler-Bauer (das ist keine neumodische Agronomen-Variante!) 
die drei logischen Schritte Scanner, Parser und Codegenerator auf verschie- 

dene Weise zusammenspielen lassen kann (weil also verschiedene "Com- 

piler-Architekturen" möglich sind). Einige Compiler sind so konstruiert, 
daß die Schritte hintereinander ablaufen, jeder Schritt als eigenes Pro- 
grammmodul realisiert ist und die drei Instanzen sich Informationen über 
(temporäre) Hilfsdateien aneinander weiterreichen. Weil dadurch drei 
Durchgänge durch das Programm notwendig werden, spricht man in jenem 
unvergleichlichem Gemisch von Deutsch und Englisch, das die EDV-Zunft 

auszeichnet, von einem "Drei-Pass-Compiler" ("pass" = engl. "Durchgang"). 
Dies kann sich auf die Art der Handhabung Ihres Compilers oder auf den 
Speicherplatz-Bedarf auf Diskette oder Festplatte auswirken; lesen Sie dazu 

den entsprechenden Passus in Ihrem Handbuch, für dessen Verständnis Sie 

jetzt gerüstet sind. 

Bei anderen Architekturen arbeiten die drei Instanzen verzahnt: kaum hat 
der Scanner ein Token erkannt, reicht er es an den Parser, der jede gefun- 

dene syntaktische Einheit sofort zur Codeerzeugung weitergibt. Wir haben 
es dann mit einem "Ein-Pass-Compiler" zu tun. 

Das eben Gesagte gilt für jeden Compiler, also auch für einen Pascal-, 

FORTRAN- oder COBOL-Compiler. Bei C gibt es jedoch noch eine Be- 
sonderheit. In C kann man mit Makros arbeiten (darüber später Näheres); 

um diese Makros korrekt verarbeiten zu können, benötigt der Compiler 
noch einen eigenen Durchgang, der den anderen dreien vorgeschoben ist. 

Diese allererste Programmanalyse betreibt der sog. "Makro-Präprozessor".
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1.5.3 Bibliotheken und der Linker 

Zum Programmierer-Jargon, der sich im weiteren Verlauf des Buches noch 

häufen wird, möchte ich ein paar Worte verlieren. Natürlich gibt es für 
alles deutsche Namen; statt "Compiler" können Sie auch "Übersetzer" sagen. 

Und auch das in der Überschrift enthaltene Wort "Linker" hat eine deut- 
sche Entsprechung: "Binder". Aber diese Bezeichnungen haben sich - wie 

alle anderen eingedeutschten Ausdrücke der Computerwissenschaft - nicht 
durchgesetzt. Dies ist verständlich, denn die Befehlsworte aller Program- 

miersprachen (ob BASIC, Pascal oder C) sind ohnehin der englischen 

Sprache entnommen; da gibt es keinen deutschen Ersatz. Weil dies so ist, 

haben sich viele Programmierer einen typischen deutsch-englischen Jargon 
angewöhnt, eine Art Fliegerdeutsch der Computerzunft. Wenn Sie mitreden 

wollen, dann sollten Sie diesen Jargon kennen. Anstatt also mit aller Gewalt 
deutsch zu bleiben, werde ich vielmehr versuchen, Ihnen neben der Pro- 

grammiersprache C auch noch die Sprache zu erläutern, in der man fach- 
gerecht über C spricht. Außerdem: ob das ’deutsche’ "Interpretierer" wirk- 

lich so viel verständlicher ist wie "Interpreter"? 

Jetzt also zum Linker. Das Endprodukt des Compilers (das, was die Code- 

erzeugung abliefert) ist - anders, als man es erwarten würde - noch nicht 

ablauffähig. Obwohl dies unpraktisch erscheint: es hat praktische Gründe. 

Die wurzeln in der Technik des modularen Programmierens. 

Das Wort "Modul" bzw. "modular" kennen Sie vielleicht von der Fernseh- 

und HiFi-Technik. Moderne Geräte sind in einzelne sauber gegliederte 
funktionale Einheiten aufgeteilt, die Module. Die Reparatur eines Fernseh- 

gerätes sieht heutzutage so aus, daß der Techniker mit seinen Meßgeräten 
das fehlerhafte Modul lokalisiert und dann als Ganzes austauscht. Dieses 

Arbeiten mit Moduln ist auch bei der Programmierung möglich. 

In vielen Programmen werden immer wieder die gleichen Verfahren benö- 
tigt. Hierzu drei Programm-Beispiele: Sie haben Ihre Bücher im Computer 
erfaßt und wollen sie nun nach Autoren sortiert ausdrucken; Sie haben ein 

elektronisches Telefonverzeichnis, das Sie sortiert ausdrucken wollen; Sie 
wollen die Sammlung Ihrer im Computer gespeicherten Kochrezepte nach 

Rezeptdauer anordnen. All diese Vorhaben haben eines gemeinsam: es muß 

sortiert werden. 

Sie könnten nun für jedes der drei Programme wieder einen Sortierteil 
schreiben, aber das ist unnütze Mehrarbeit. Die Lösung in C: man verfaßt 
einmal eine Sortiermodul. Das ist ein selbständiges Programm, das, mit 
Daten versorgt, diese sortieren kann. Dieses Modul bewahrt man dann an 

einem Ort auf, an dem es jederzeit herangezogen werden kann, falls es
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benötigt wird. Dieser Ort ist die Modul-Bibliothek, die "Library", wie der 
C-Freak sagt. 

Die Library ist eine Ansammlung von Moduln, die dort in der Form abge- 
legt sind, wie sie der Compiler liefert. Wenn Sie einen C-Compiler kaufen, 
dann gehört zum Lieferumfang mindestens eine Library, in der viele wich- 
tige und nützliche Moduln abgelegt sind. Diese ist als "Standard-Library" 
bekannt. Sie können sich auch eigene Bibliotheken anlegen, in denen Sie 
Module aufbewahren, die für Ihre speziellen Zwecke nützlich und wichtig 
sind. Auch die Erweiterung der Standard-Library um eigene Module ist 
möglich, wenngleich davon abzuraten ist. 

Da man das Rad nicht zweimal erfinden soll, greift so gut wie jedes C- 

Programm auf ein oder mehrere Moduln aus der Library zurück. Um aus- 
geführt werden zu können, müssen diese Moduln mit dem Programm erst 
verknüpft werden. Diesen Prozeß des Verknüpfens nennt man "linken" 

(englisch "to link" = verknüpfen) und er ist Aufgabe des Linkers. 

Wie man den Linker handhabt, also mit welchem Kommando er aufgerufen 

wird und welche Informationen er benötigt, ist von Produkt zu Produkt 

verschieden. Hierzu muß ich Sie wieder auf das Handbuch verweisen; da 
Ihnen Wesen und Wollen eines Linkers jetzt bekannt ist, sollten Sie damit 
keine Probleme haben. 

1.5.4 Ein Zwischenschritt: Assembler-Mnemonics 

Als ob es nicht schon kompliziert genug wäre, schieben manche Compiler 

in den Verarbeitungsprozeß zwischen Kompilieren und Linken noch einen 

Zwischenschritt ein. Hierbei erzeugt der Compiler nämlich noch keine Ob- 
jektdatei, sondern eine Datei in sog. Assemblersprache. Dies ist eine weni- 

ger verschärfte Form der Maschinensprache, in der die binären Befehle des 

Computers durch leichter zu merkende Befehlsworte, sog. Befehlskürzel 
oder "Mnemonics" ersetzt sind. Statt den Befehl zur Addition zweier Werte 
ın der Form 

0100 1101 0001 0101 

zu erteilen, schreibt man in Assembler: 

ADD A,BETRAG 

(dieses Beispiel ist fiktiv und entstammt nicht der Assemblersprache des 

ATARI!) Das Befehlskürzel "ADD" ist nichts anderes als eine einprägsame 
Abkürzung für den Maschinenbefehl "0100 1101". Außerdem sieht man, 
daß die Verwendung von "symbolischen Namen" erlaubt ist. Das bedeutet, 
daß der Programmierer für Daten und Speicherstellen, mit denen er arbei-
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ten will, nicht die tatsächlichen Binärwerte, sondern sinnvolle Abkürzungen 

(wie z.B. "BETRAG") schreiben kann. 

Die Assembler-Programmierung ist zwar wesentlich einfacher als die Arbeit 
mit Maschinensprache. Da aber in Assembler nur Befehle verfügbar sind, 

die der Computer direkt ausführen kann - und das ist nichts besonders 

Komfortables - ist die Assemblerprogrammierung im Vergleich zum Ar- 
beiten mit einer höheren Programmiersprache immer noch mühselig genug. 

Warum aber legt dann der Compiler diesen Zwischenschritt ein? Dies hat 

Gründe, die mit der Optimierung des Programms zusammenhängen. Denn 

das Arbeiten in Assembler ist zwar mühsam, da man in dieser Sprache aber 

den Bedürfnissen der Maschine am meisten entgegenkommt, kann man sehr 

effiziente Programme damit schreiben. Erinnern Sie sich: auch UNIX ist zu 

einem kleinen Teil in Assembler geschrieben. 

Wenn der Compiler Assembler-Mnemonics erzeugt, dann kann der Pro- 

grammierer zeitkritische Teile seines Programms in dieser Assembler-Datei 
untersuchen und gegebenenfalls umschreiben, um sie effizienter zu machen. 

Wer diese Möglichkeit der Handoptimierung nicht nutzen will, der braucht 

sich mit Assembler gar nicht erst herumzuschlagen. Er muß jedoch aus der 
Assembler-Datei eine Objektdatei machen lassen, und diese besorgt ein 
Programm, das man "Assembler" nennt. Hier heißt also der Übersetzer ein- 
mal genauso wie die Sprache, die er übersetzt. 

1.6 Ein Beispiel: das ATARI-C 

Stellvertretend für die anderen auf dem ATARI verfügbaren C-Compiler 
sollen hier die Schritte aufgeführt werden, dıe man bei der Arbeit mit dem 
C des Entwicklungssystems durchzuführen hat. Dieses C stammt von der 

Firma Digital Research, die auch für das Betriebssystem TOS verantwort- 
lich zeichnet. Im folgenden wird es kurz als "ATARI-C" bezeichnet. Beach- 
ten Sie daher: die im folgenden aufgeführten Schritte gelten nur für dieses 
C. Sollten Sie mit einem anderen Compiler arbeiten, dann müßen Sie dessen 

Beschreibung zu Rate ziehen, um zu erfahren, wie es nach dem Edieren 
des Programmes weitergeht. 

Der Compiler des ATARI-C ist ein Drei-Pass-Compiler mit vorgeschal- 
tetem Makro-Präprozessor. Zum Kompilieren eines Programmes müssen 

nacheinander (in der angegebenen Reihenfolge) die folgenden Programme 
bemüht werden:
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1. CP68 der Makro-Präprozessor 

2. C068 Tokenisierer und Syntaxanalyse 
3. C168 Code-Generierung | 

Das Ergebnis von C168 wird an den Assembler weitergegeben: 

4. AS68 

Schließlich kombiniert der Linker das Programm mit allen benötigten Mo- 
dulen; er trägt den Namen 

5. LINK68 

Außerdem benötigen Sie noch drei weitere Programme: 

6. RELMOD wandelt Linker-Ergebnis in lauffähiges Programm 
7. RM zum Löschen nicht mehr benötigter Dateien 
8. BATCH für die Stapel-Verarbeitung. 

Angenommen, Sie haben Ihr erstes C-Programm mit dem Editor ın eine 
Datei mit dem Namen ERSTES.C geschrieben. Quell-Dateien für den C- 
Compiler sollten Sie stets mit dem Namenszusatz (der Extension) ".C" ver- 

sehen. Dann erhalten Sie mit folgenden Schritten ein lauffähiges Programm: 
(die folgenden Ausführungen gehen davon aus, daß Sie ein doppelseitiges 
Laufwerk besitzen und alle hier genannten Programme auf einer Diskette 
unterbringen. Was Besitzer von einseitigen Laufwerken zu tun haben, wird 
weiter unten gesagt.) 

. CP68 ERSTES.C ERSTES.I 

. C068 ERSTES.I ERSTES.1 ERSTES.2 ERSTES.3 -f 

. C168 ERSTES.1 ERSTES.2 ERSTES.S 

AS68 -u ERSTES.S | 

. LINK68 [u] ERSTES.68K=GEMS,APSTART,ERSTES,OSBIND,GEMLIB,LIBF 

. RELMOD ERSTES.68K ERSTES.PRG 

Diese Schritte sollen nun im Einzelnen erläutert werden. Als erstes kommt 
der Präprozessor, der alle Makros expandiert (darüber erfahren Sie später 

mehr). Er erzeugt als Ergebnis eine Datei mit dem Namen ERSTES.I, die 
Eingabe für Scanner und Parser (C068) ist. Dieser Schritt arbeitet mit einer 
Hilfsdatei ERSTES.3 und erzeugt zwei Ergebnisdateien, die die Namen 
ERSTES.1 und ERSTES.2 haben und Eingabe für den nächsten Schritt sind. 
Der Codegenerator C168 erzeugt aus ERSTES.1 und ERSTES.2 eine Datei 
mit Assembler-Mnemonics, die hier ERSTES.S genannt wird. Daraus macht 
der Assembler AS68 eine Datei in dem Format, das mit dem Linker ver- 

träglich ist. Die Datei heißt ERSTES.O, sie scheint jedoch in der Komman- 

dozeile nicht auf.
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Am kompliziertesten ist der Aufruf des Linkers; sein Ergebnis tragt den 

Namen ERSTES.68K und entsteht, indem eine Reihe von Moduln aus ver- 

schiedenen Bibliotheken zusammen mit der Datei ERSTES.O kombiniert 

werden. Voraussetzung dafür ist, daß Sie im Besitz der Modul-Dateien 

bzw. der Bibliotheken sind, die in der Kommandozeile des Linkers aufge- 
führt sind. Im Einzelnen handelt es sich um die Dateien: 

GEMS.O 
APSTART.O 
OSBIND.O 
GEMLIB 
LIBF. 

Die letzten beiden Dateien machen die Standard-Library aus, wobei diese 
getrennt ist nach Funktionen, die mit der Gleitpunkt-Arithmetik zu tun 

haben (die in LIBF untergebracht sind) und allen anderen Funktionen 
(Datei GEMLIB). Die ersten drei Moduln sorgen dafür, daß Ihre Pro- 
gramme unter TOS gelinkt werden. 

Dies bedarf der Erläuterung. Auf dem ATARI können Sie Programme ent- 
wickeln, die die grafischen Möglichkeiten von GEM und die Maus nutzen. 
Windows (Fenster), Icons (Bildsymbole), Menüs, all diese schönen Dinge, 

die Sie vom GEM-Desktop kennen, können aus C heraus programmiert 

werden. Doch die GEM-Programmierung ist eine hohe Kunst; sie setzt die 

vollkommene Beherrschung von C voraus. 

Einfacher ist es, Programme für die unter GEM liegende Schicht des Be- 

triebssystems zu erstellen, für TOS. TOS ist ein kommandoorientiertes 

System. Was unter GEM das Auswählen eines Icons und doppeltes An- 

klicken mit der Maus bewirkt (nämlich das Laufenlassen eines Programms), 
das erreicht man unter TOS, indem man den Namen des Programms ein- 
tippt und dann die Return-Taste betätigt. Was unter GEM durch Öffnen 

einer Diskette bewirkt wird (nämlich die Anzeige des Disketten-Inhalts), 

das erreicht man unter TOS durch das Kommando DIR. Was unter GEM 
durch Verschieben eines Icons von einem Fenster in ein anderes bewirkt 

wird (nämlich das Kopieren von Dateien), das erreicht man unter TOS mit 
dem Kommando COPY (vgl. dazu jedoch das Kapitel 7.7!). 

TOS mag Ihnen als die umständlichere Lösung erscheinen; dies ist jedoch 
Geschmacksfrage. Jedenfalls ist die kommandoorientierte Art des Arbeitens 

die, die auf anderen Micro- und Homecomputern üblich ist. Diejenigen 
unter Ihnen, die bereits mit einem anderen System gearbeitet haben, wer- 
den sich unter TOS zuhause fühlen. Für die Zwecke dieses Buchs ist von 
ausschlaggebender Bedeutung, daß die C-Programmierung unter TOS ein- 
facher ist als unter GEM. Deshalb ist sie für eine Einführung geeigneter.
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Der letzte Schritt (Programm RELMOD) macht aus dem Linker-Ergebnis 

ein ablauffähiges Programm. Die in diesem Schritt vorgenommenen Opera- 

tionen zu erklären, übersteigt den Rahmen des Buches. Ihre Kenntnis ist 

für das Verständnis der C-Programmierung nicht von Bedeutung. 

Sie können natürlich das ATARI-C auch von GEM aus benutzen; wie, das 

verrate ich Ihnen gleich. Aber über eines müßen Sie sich im Klaren sein: 
keines der in diesem Buch vorgestellten Programme arbeitet mit Windows, 

Menüs oder der Maus. Diese Möglichkeiten bleiben fortgeschrittenen C- 
Programmierern vorenthalten. Sie sind Gegenstand eines eigenen Buches. 
Soviel sei jedoch gesagt: soll ein Programm die Möglichkeiten von GEM 
nutzen, dann muß es "unter GEM" gelinkt werden. Der sechste und letzte 

Schritt muß dazu abgeändert werden, da eine Reihe von GEM-spezifischen 

Moduln vom Linker in das Programm einzubinden sind. 

Um mit TOS direkt zu verkehren, benötigen Sie ein Programm mit dem 
Namen COMMAND.PRG. Wenn Sie dieses starten (doppeltes Anklicken mit 
der Maus), dann verschwindet das Desktop und Sie sehen stattdessen die 

Bereitschaftsmeldung - der "Prompt" von TOS, nämlich: 

{a} oder 

{b} 

Je nachdem, welches Laufwerk (Laufwerk A oder B) gerade das aktuelle 

Laufwerk ist, ändert sich der Buchstabe in den geschweiften Klammern. 

Nun ist es äußerst umständlich, zum Übersetzen eines einzigen Programms 
jedesmal sechs nicht gerade kurze Kommandos zu geben. Deshalb gehört 
zum Lieferumfang des Entwicklungssystems auch ein Programm zur Stapel- 
Verarbeitung, das den Namen BATCH.TTP trägst. Ein Stapel ist nichts an- 

deres als eine Datei mit Kommandos, bei denen für einige Angaben Platz- 
halter gelassen wurden. Die Stapel-Datei zur Übersetzung von C-Program- 
men sieht so aus: 

Abb. 1.1: Stapel-Datei für ATARI-C (doppelseitiges Laufwerk)
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In neueren Versionen des Entwicklungssystems ıst eine Batch-Datei mit 
diesem Inhalt unter dem Namen CLOS.BAT enthalten. Ich empfehle Ihnen, 
der Datei den Namen C.BAT zu geben. Der kurze Name erspart Ihnen 

später eine Menge Tipparbeit; die Extension (den Namenszusatz) ".BAT" 

muß die Datei jedoch auf jeden Fall haben, gleichgültig für welchen an- 
deren Namen Sie sich entscheiden. Das Umbenennen von Dateien unter 
GEM erreicht man durch einmaliges Anklicken des Datei-Symbols. An- 

schließend wählen Sie aus der Menü-Zeile das Menü "Datei" und darın 
wieder die Option "Info-Anzeige". Jetzt können Sie den Namen in der 

Dialogbox ändern und mit OK bestätigen. 

Um eine Datei unter TOS umzubenennen, benutzen Sie das Kommando 

REN. Dieses ist in TOS eingebaut und wird wie folgt verwendet: 

REN CLOS.BAT C.BAT <RETURN> 

(Alle TOS-Kommandos werden erst durch Drücken der Return-Taste aus- 
geführt.) Damit haben Sie die Datei von CLOS.BAT in C.BAT umbenannt. 

Sie sehen, daß in der Stapeldatei die bereits bekannten Kommandos ent- 

halten sind, anstelle des Programmnamens ERSTES findet sich jedoch der 
Platzhalter "%". Zusätzlich sind zwischen die einzelnen Schritte jedoch noch 
Aufrufe eines neuen Programms, mit dem Namen RM eingestreut. Auch 
dies gehört zum Entwicklungssystem. Es löscht nicht mehr benötigte Hilfs- 
dateien von der Diskette und sorgt so dafür, daß diese nicht allzu schnell 
voll wird. | | 

Einige der Kommandos sind übrigens mit Optionen versehen (mit einem 
Bindestrich eingeleitete, einbuchstabige Hinweise an die Programme), die 
die Art der Fehlerdiagnose betreffen, welche die Programme durchführen; 
ihre Bedeutung entnehmen Sie dem Handbuch des Compilers. 

Um die Stapeldatei zu benutzen, rufen Sie das Stapelprogramm BATCH. 

TTP auf. Unter GEM miiBen Sie zuerst dieses Programm mit der Option 
"TOS übernimmt Parameter" anmelden (im Menü "Optionen"). Unter TOS 
schreiben Sie 

BATCH.TTP C ERSTES <RETURN> 

Dies hat (beinahe) dieselbe Wirkung wie die sechs ausführlichen Schritte zu 
Beginn dieses Abschnitts; "beinahe" deshalb, weil überflüssige Zwischen- 

dateien gelöscht werden. BATCH setzt in der Stapeldatei namens C für 

jedes "%1" den Namen der Quelldatei ERSTES ein und arbeitet dann die 
einzelnen Kommandos der Reihe nach ab. Sollte bei der Verarbeitung eines 

Kommandos ein Fehler auftreten, so können Sie den Kommandostapel
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durch Driicken der Return-Taste anhalten. BATCH fragt Sie dann, ob Sie 
weitermachen wollen. Durch Eingeben von "N" bricht der Prozeß ab. 

Wenn Sie unter TOS arbeiten, können Sie den Aufruf des Stapelprogramms 

durch Umbenennen beträchtlich vereinfachen. Geben Sie folgendes 

Kommando: 

REN BATCH.TTP B.PRG <RETURN> 

Damit wird das Stapelprogramm BATCH.TTP in B.PRG umbenannt und 

kann künftig unter TOS so aufgerufen werden: 

B C ERSTES <RETURN> 

"B" ist der Name des Stapelprogramms; "C" ist der Name der Stapeldatei, in 

der die Kommandos stehen; ERSTES ist der Name der Quelldatei. Letzterer 
ändert sich natürlich, wenn Sie ein anderes Programm übersetzten lassen 

wollen. Als Ergebnis der ganzen Prozedur erhalten Sie nach ca. 5 Minuten 
(so lange dauert die Abarbeitung des Stapels mit Disketten) ein Programm 
mit dem Namen ERSTES.PRG auf Ihrer Diskette, das Sie unter TOS ein- 

fach dadurch laufenlassen können, daß Sie 

ERSTES <RETURN> 

tippen. Übrigens macht TOS keinen Unterschied zwischen Groß- und 

Kleinschreibung; wenn Ihnen das besser gefällt, können Sıe alle Komman- 

dos und Dateinamen ebensogut mit Kleinbuchstaben schreiben. 

Wer nicht mit doppelseitigen Laufwerken gesegnet ist, der bringt nicht alle 

für die Verarbeitung des Stapels nötigen Programme auf einer Diskette 

unter. In diesem Fall müssen sie wie folgt auf zwei Disketten verteilt wer- 

den. 

Abb. 1.2: Disketten-Inhalt für die Arbeit mit 2 Laufwerken
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Die Batch-Datei, die mit dieser Konfiguration arbeitet, hat folgenden In- 
halt: 

Abb. 1.3: Stapel-Datei fiir ATARI-C (zwei einseitige Laufwerke) 

Diese Batch-Datei bewirkt, daB das fertige Programm auf der Diskette im 
Laufwerk B zu stehen kommt. In der Zusammenstellung der Abbildung 1.2 
sind übrigens fünf Dateien mit der Extension ".H" für das Laufwerk A 
aufgetaucht, zu denen ich Ihnen noch eine Erklarung schuldig bin. 

Die Dateien haben mit dem Makro-Präprozessor zu tun. Ein volles Ver- 

ständnis dieser Materie ist erst möglich, wenn Sie in die Geheimnisse der 

C-Makros eingeweiht wurden. Soviel jedoch sei vorweggenommen: der 

Compiler benötigt für seine Arbeit bestimmte Informationen, die in sog. 
"Include"-Dateien mit der Extension ".H" enthalten sind. Nicht für jedes 
Programm werden alle Informationen benötigt. Doch schadet es nichts, dem 
Compiler jedesmal alle Informationen mitzugeben. Ich empfehle Ihnen des- 
halb, mit Ihrem Editor auf Laufwerk A eine Datei Namens HEADER. H 

zu erstellen ( in der obigen Aufstellung ist sie bereits enthalten), die fol- 
genden Inhalt hat: 

Abb. 1.4: Die Include-Datei HEADER.H 

Jedes Programm, das im folgenden besprochen wird, sollten Sie mit der 
folgenden Zeile beginnen: 

#include <header.h> 

Jedes Beispielprogramm sollte so eingeleitet werden. In den Beispiel-Pro- 
grammen des Buches fehlt diese Zeile jedoch stets, weil es sich dabei um 
ein ausgesprochenes Spezifikum des ATARI-C handelt. Andere Compiler 

benötigen diese Informationen vermutlich nicht. Die Beispielprogramme 
enthalten nur Informationen, die für jedes standardisierte C zutreffen.
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Wenn Sie die #include-Zeile in Ihre C-Programme mit aufnehmen (denken 
Sie daran: es sollte die erste Zeile in Ihrem Programm sein und das #-Zei- 
chen muß in der ersten Spalte dieser Zeile stehen!), dann ist dafür gesorgt, 
daß der ATARI-C-Compiler (genauer: der Makro-Präprozessor) alle benö- 

tigten Informationen findet. Die Dateien STDIO.H, OSBIND.H, PORTAB.H 

und TOSDEFS.H sind Bestandteil des Entwicklungssystems. Wenn Sie in C 

etwas versierter sind, dann können Sie sich diese Dateien ansehen und nur 

mehr das aufnehmen, was für Ihr Programm gerade benötigt wird. Bis da- 
hin jedoch rate ich Ihnen zu dem eben beschriebenen Verfahren. 

1.7_ Zusammenfassung 

In diesem Kapitel haben Sie erfahren 

0 daß Programme in einer höheren Programiersprache erst übersetzt wer- 

den müssen, ehe sie vom Computer verstanden werden; 

o daß es zwei Arten von Übersetzern gibt: Interpreter, die Programme so- 
fort übersetzen und ausführen - analog einem Simultandolmetscher - 

und Compiler, die ein Programm als Ganzes betrachten und übersetzen - 

analog einem literarischen Übersetzer; | 
o daß C eine Compilersprache ist, die von D. Ritchie als strukturierte hö- 

here Programmiersprache entwickelt wurde, mit der auch maschinennahe 
Systemprogrammierung möglich ist; 

o daß ein Compiler in die logischen Arbeitsschritte Scanner, Parser und 

Codegenerator gegliedert ist und daß bei C noch ein Makro-Präprozessor 
vorgeschaltet ist; | 

o daß in C Module in einer Bibliothek oder Library abgelegt sind, die mit 
dem eigentlichen Programm durch einen Linker zusammengebunden 
werden; 

o daß manche C-Compiler noch einen Zwischenschritt einlegen und erst 
Assembler-Mnemonics erzeugen, die vor dem Linken noch durch einen 

Assembler in Objektdateien gewandelt werden müssen; 
o daß Programmierer manchmal recht seltsam daherreden.
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2 Zur Sache 

Nachdem jetzt ziemlich viel über C geredet wurde, wird es Zeit, endlich 
mal C zu reden. Ihr Tatendrang ist vermutlich groß: aber ich muß Sie bit- 
ten, sich noch ein wenig zu gedulden. Denn das erste Programm, das Sie 
kennenlernen werden (Prog. 2.1), tut nichts. Daß auch das zu etwas gut 
sein kann, werden Sie gleich sehen. 

Prog. 2.1: Das leere Programm 

Dieses scheinbar nutzlose Beispiel hat seine Berechtigung darin, daß es 
Ihnen klar zeigt, was man in C mindestens hinschreiben muß, um ein Pro- 
gramm zu bekommen. Sie können daran die minimalen Bestandteile eines 
C-Programmes erkennen: es hat einen Namen (in diesem Falle main( )), 
hinter dem in geschweiften Klammern umschlossen das steht, was das Pro- 
gramm tun soll? Anders ausgedrückt: die geschweiften Klammern enthalten 
die Anweisungen des Programms, oder - noch mal anders gesagt - sie um- 
schließen einen "Anweisungsblock". Diese Erläuterungen sind jetzt natürlich 
noch etwas akademisch, weil das Programm 2.1 ja nichts tun soll. Darum 
steht eben auch nichts zwischen den Klammern; der Anweisungsblock ist 
leer. Für die BASIC-Kundigen unter Ihnen will ich (in Abbildung 2.1) zur 
Erinnerung nochmal zeigen, wie man dasselbe (also nichts) in BASIC tut. 

Abb. 2.1: Nichts in BASIC 

Abb. 2.2: Varianten des Nichts



42 Zur Sache 

Am leeren Programm läßt sich bereits eine nützliche Eigenschaft von C 
demonstrieren, die sog. "Formatfreiheit". Dazu sollten Sie die Abb. 2.2 be- 
trachten. 

Hier sehen Sie vier unterschiedliche aber zulässige Arten, das Programm- 
beispiel 2.1 hinzuschreiben. Sie können daran erkennen, daß C (genauer: 
der C-Compiler) einen freizügigen Umgang mit Leerzeichen (oder Tabula- 

tor-Vorschüben) sowie mit der Plazierung auf einer oder mehreren Zeilen 

erlaubt. Aber nicht alles ist möglich; werfen Sie einen Blick auf Abb. 2.3: 

Abb. 2.3: Nichtswürdige Variante des Nichts 

Hier wurden Leerzeichen in den Programmnamen main eingestreut, und 

das nimmt der Compiler übel. Sie können Leerzeichen in C mit Sprach- 

pausen in der gesprochenen Rede vergleichen: zwischen Worten und Sätzen 

kann man sich beim Reden (beinahe) beliebig viel Zeit lassen; aber inner- 

halb der Worte tut man das nicht, weil die Verständlichkeit des Gesagten 
darunter leidet. Ebenso hält’s der Compiler: zwischen Tokens darf beliebig 

viel leerer Raum sein; aber die Token müssen ungetrennt bleiben. 

Somit haben Sie jetzt bereits ein Token kennengelernt, nämlich main. Die- 
sen Programmnamen habe ich nicht deshab gewählt, weil ich etwa Anwoh- 
ner jenes fränkischen Flusses wäre. Vielmehr ist es der obligatorische Name 
der Hauptfunktion. 

2.1 main: die Basis für alles Weitere 

Keine Angst; so knüppeldick wie im letzten Absatz kommen die Fremd- 
worte so schnell nicht wieder. "Obligatorischer Name der Hauptfunktion" 
bedeutet folgendes: C-Programme sind aus einzelnen Moduln aufgebaut, die 

man im C-Jargon Funktionen nennt. Funktionen sind die elementaren Bau- 
klötzchen von C; und weil das an Lego-Bausteine erinnert, will ich das 
Beispiel noch etwas weiter strapazieren und daran "Hauptfunktion" erklä- 

ren. 

Wenn Kinder mit Lego-Steinchen spielen, dann bauen sie komplexere Ge- 

bilde, indem sie einzelne Steinchen (die Module des Lego-Systems) inein- 
anderstecken. Aber für dieses Ineinanderstecken und Aufeinandertürmen 

brauchen sie einen Anfang; das ist die Grundplatte. Lego benutzt Grund- 

platten, auf denen die Konstruktionen aufgebaut werden. Ähnlich ist es in 

C.
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Ein. größeres C-Programm entsteht, indem Funktionen in geeigneter Weise 
ineinandergeschachtelt werden; dazu gleich noch ein Beispiel. Für das In- 
einanderschachteln muß jedoch in C - ähnlich wie beim Lego-Spiel - ein 
Anfang gegeben sein. Dieser ist die Hauptfunktion main, die also für C 

eine ähnliche Rolle wie die Grundplatte bei Lego spielt. In jedem C-Pro- 
gramm muß die Hauptfunktion vorhanden sein (darum nannte ich sie "obli- 
gatorisch") und sie trägt stets den Namen main (was eine verkürzte Schreib- 

weise für das Englische "main program", zu Deutsch "Hauptprogramm" ist). 
Das versprochene Beispiel für verschachtelte Funktionen finden Sie in 

Programm 2.2. 

Prog. 2.2: Das leere Programm: Haupt funktion mit Unter funktion 

Programm 2.2 unterscheidet sich in seiner Wirkung nicht von Programm 

2.1; es wurde lediglich das gleiche (nämlich: nichts) mit anderen Mitteln 
erreicht. Wie Sie sehen, steht jetzt Text zwischen den geschweiften Klam- 
mern von main: der Anweisungsblock ist nicht mehr leer. Es wurde ja be- 
reits erwähnt, daß in diesen Klammern das steht, was das Programm zu tun 

hat. In diesem Fall wird innerhalb von main eine selbstgemachte Funktion 

aufgerufen, nämlich fue_nichts. (Warum sowohl hinter main als auch hinter 
tue_nichts stets ein Paar ziemlich sinnlos erscheinender Klammern steht, 
wird gleich noch erklärt!) Daß diese Anweisung nach rechts eingerückt im 
Programm niedergeschrieben ist, hat lediglich ästhetische Gründe. Bei um- 

fangreicheren Programmen macht diese Methode der optischen Textgliede- 

rung das Programm lesbarer. Die Vorgehensweise und Wirkung von Pro- 

gramm 2.2 wird in dem BASIC-Beispiel von Abb. 2.4. ziemlich genau 

Abb. 2.4: Warum einfach, wenn’s auch umständlich geht! 

Beachten Sie den Strichpunkt hinter dem Aufruf von fue_nichts in main! 
Wenn man dem Computer in C sagt, was er innerhalb einer bestimmten 

Funktion zu tun hat, dann geschieht das in Form von sogenannten "Anwei- 
sungen". Diese sind vergleichbar den Sätzen der natürlichen Sprache. Bei 
einer einfachen Aufgabe - wie im Programm 2.2 - kommt man mit einer
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Anweisung aus, komplexe Aufgaben erfordern mehrere Anweisungen. Wie 
in der natürlichen Sprache auch, ist es beim Programmieren in C erforder- 
lich, das Ende von Anweisungen zu markieren (man macht dadurch dem 
Compiler das Leben leichter). Im Deutschen benutzen Sie dazu die Satz- 
zeichen Punkt, Ausrufe- und Fragezeichen. In C beendet man eine Anwei- 
sung mit dem Strichpunkt. . 

In main wird eine einzige Anweisung ausgeführt: diese gehört jedoch nicht 
zum Grundwortschatz von C. Kein C-Compiler der Welt kann mit tue_ 
nichts etwas anfangen, es sei denn, man sagt ihm, was darunter zu ver- 
stehen ist. Dies wird dem Computer in Programm 2.2 jedoch beigebracht: 
Hinter der schließenden geschweiften Klammer von main findet er die 
Definition von tue_nichts, also die Festlegung dessen, was bei der Aus- 
führung von tue_nichts zu geschehen hat. Wie Sie wissen, ist das nichts! In 
der Abbildung 2.5 sind die einzelnen Bestandteile des Programms noch ein- 
mal erläutert. 

Abb. 2.5: Die Anatomie des Programms 2.2 

Programm 2.2 demonstriert so das Prinzip der Schachtelung von Funktio- 
nen: innerhalb von main wird tue_nichts aufgerufen, oder - anders gesehen 
- der Aufruf von tue_nichts ist in main eingeschachtelt. Doch beiden Bei- 
spielprogrammen fehlt noch etwas sehr Wesentliches: der Kommentar. 

Nur verantwortungslose Programmierer liefern Programme ab, in denen 
nicht jeder Schritt erklärt ist. Wenn man ein Programm schreibt, steckt man 
noch tief in dessen Logik drin und glaubt deshalb, alles wäre selbst- 
verständlich und -erklärend. Dies ist eine besondere Form der Betriebs- 
blindheit, deren Auswirkungen der Programmierer oft selbst schmerzhaft 
zu spüren bekommt. Wendet man sich nämlich nach längerer Zeit einem 
Programm zu, dann hat man oft die größte Mühe, das zu verstehen, was 
zum Zeitpunkt der Entstehung so selbstverständlich und klar schien. 

Deshalb versieht der Profi seine Programme mit Kommentaren. Diese sind 
lediglich Erläuterungen für den menschlichen Leser des Programms; sie ha- 
ben keinerlei Auswirkungen auf das Programm selbst. Das ist anders als in 
der Interpretersprache BASIC, bei der Kommentare vom Interpreter über-
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lesen werden müssen und so die Ausführungszeit verlangsamen. Eine der 

Aufgaben des C-Scanners ist es jedoch, Kommentare zu überlesen und die 

anderen Instanzen damit gar nicht mehr zu behelligen. 

In C werden Kommentare durch die Zeichenfolge /* eingeleitet und durch 

* / abgeschlossen. Alles, was dazwischen steht, ist Kommentar. Dieser kann 

sich auch über mehrere Zeilen erstrecken. Das Programm 2.3 demonstriert 

dies; es ist lediglich eine kommentierte Variante von Programm 2.2. Aller- 

dings erlaubt C nicht die Verschachtelung von Kommentaren: Kommentare 

innerhalb von Kommentaren bringen den Compiler durcheinander. 

Prog. 2.3: Ein wohldokumentiertes, wenn auch uninteressantes Beispiel 

Da die Wirkung von Programm 2.3 trivial ist, ist auch der Kommentar dazu 
nicht sonderlich erhellend. Sie können Kommentare in Ihrem Programm 
plazieren, wie und wo Sie wollen. Der besseren Lesbarkeit wegen empfiehlt 

es sich jedoch, Kommentare stets an den gleichen Spalten der Zeile begin- 

nen und enden zu lassen. 

2.2 Einfache Ausgabe: printf 

Jetzt ist es aber an der Zeit, ein Programm zu schreiben, das wirklich etwas 

tut! Sie finden es in Programm 2.4. Ähnlich wie im letzten Beispiel wird 
hier in main eine Funktion aufgerufen; sie trägt den Namen printf. Dieser 

Funktionsaufruf ist die einzige Anweisung in main. Wie alle Anweisungen 
wird er mit einem Strichpunkt abgeschlossen. 

| 

Prog. 2.4: Ausgabe in C 

Im Unterschied zu tue nichts im letzten Beispiel ist printf eine System- 
funktion; d.h. sie ist C bereits bekannt (genauer: sie ist Bestandteil der 
Standard-Library) und muß deshalb nicht gesondert definiert werden. Wie 

die anderen Funktionen auch, ist printf mit einem Paar runder Klammern
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dekoriert; doch diesmal sind die Klammern nicht leer. Sie enthalten viel- 

mehr das Argument von printf. 

Die meisten Funktionen in C sind dazu da, um mit Daten etwas zu tun. So 

ist es zum Beispiel die Aufgabe von printf, Botschaften auf dem Bildschirm 

auszugeben. Dazu muß man der Funktion aber mitteilen, welche Botschaft 

sie ausgeben, also mit welchen Informationen sie arbeiten soll. Diese aktuell 

von einer Funktion zu bearbeitenden Informationen werden Argumente ge- 

nannt. Sie werden der Funktion in dem Klammerpaar hinter dem Funk- 

tionsnamen übergeben. Die Meldung "Jetzt geht es los!" ist somit das Argu- 

ment von printf. 

Beachten Sie, daß die Zeichenfolge, die printf ausgeben soll, von Anfüh- 

rungszeichen umschlossen ist. Kenner der Materie sagen hier, daß das 

Argument von printf ein String sein muß; dazu später mehr. Fürs Erste 

sollen Sie sich lediglich merken, daß printf Strings auf dem Bildschirm aus- 

gibt und daß ein String eine Zeichenfolge ist, die von Anführungszeichen 

umrahmt wird. 

Es gibt Funktionen mit einem Argument, wie printf eine ist, aber auch 

solche mit mehreren Argumenten und auch Funktionen ohne jedes Argu- 

ment. Die Beispielsfunktion tue_ nichts fällt in letztere Kategorie, weswegen 

das runde Klammerpaar beim Aufruf dieser Funktion leerbleibt. 

Bei der optischen Gestaltung eines Funktionsaufrufs hat der Programmierer 

wieder mehrere Alternativen, die sich durch Einstreuen von Leerzeichen 

und -zeilen ergeben. Alle in der Abbildung 2.5 aufgeführten Varianten 

sind zulässig. 

Abb. 2.6: Formatmöglichkeiten für Funktionsaufrufe 

Welcher Variante Sie den Vorzug geben, hängt einzig von Fragen des per- 

sönlichen Geschmacks ab. Wenn Sie sich jedoch einmal für einen bestimm- 

ten Stil entschieden haben, dann sollten Sie ihn durchgängig in Ihren Pro- 

grammen praktizieren.
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2.3 Der Compiler muß ran 

Sicher verspüren Sie den Wunsch, das Programm 2.4 auch mal laufen zu 

lassen; dies bedeutet, den Compiler anzuwerfen. Dazu müssen Sie mit 

Ihrem Editor den Programmtext in eine Datei schreiben. Dieser Datei geben 

Sie am besten den Namen BSP24.C, um zu dokumentieren 

a) daß es sich dabei um das C-Beispiel 2.4 handelt, 
b) daß Sie wie alle echten Computer-Fans zu unverständlichen Abkürzun- 

gen neigen. 

Um keine Verwirrung aufkommen zu lassen: der Name, den Sie der Datei 

geben, ist zugleich der Programmname. Wenn Ihr Programm fertig über- 
setzt und gelinkt ist, dann rufen Sie es mit "BSP24" auf. 

Wer mit dem ATARI-C arbeitet und die ım letzten Kapitel enthaltenen 

Ratschläge zur Namensgebung des Batch-Programms und der Stapeldateı 

befolgt hat, der kann den Übersetzungsvorgang unter TOS mit folgendem 

Kommando anstoßen: 

B C BSP24 

Sollten Sie beim Übersetzen Fehlermeldungen erhalten, dann überprüfen 

Sie, ob Sie auch alles richtig abgeschrieben haben. Beim Arbeiten mit der 

Stapeldatei können Sie die Abarbeitung unterbrechen, indem Sie die Re- 
turn-Taste betätigen. Im Fehlerfall meldet Ihnen der Compiler (genauer: der 

Teil mit dem Namen C068) die Nummer der Zeile, in der der Fehler ent- 
halten ist. Sie können jetzt in den Editor gehen und das Programm ver- 

bessern. Allerdings sollten Sie die Zeilenangabe in der Fehlermeldung nicht 

allzu wörtlich nehmen. Der Fehler kann durchaus auch eine oder zwei Zei- 

len vor der gemeldeten lokalisiert sein. Dies sollten Sie sich besonders für 
spätere, längere Programme merken. 

Ist Ihr Programm fehlerfrei, dann können Sie es - wie bereits erwähnt - 

mit "BSP24" aufrufen und sich an der Meldung auf dem Bildschirm erfreu- 
en. 

Wenn Sie unter GEM arbeiten, dann trübt Ihnen leider ein Wermutstropfen 

die Freude: die Programmausgabe erscheint ganz kurz am Bildschirm und 
anschließend wird sie wieder vom Desktop und dem Datei-Fenster über- 

lagert. All dies geht so schnell, daß man keine Chance hat, die Meldung zu 

lesen. Das Problem haben Sie allerdings nicht, wenn Sie unter TOS arbei- 
ten; dies würde ich Ihnen auch für alle praktischen Übungen empfehlen. 

Sollten Sie jedoch aus dem einen oder anderen Grund vorziehen, die 

Ubungs-Programme aus GEM zu starten, dann gibt es eine Möglichkeit zur
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Abhilfe, die jedoch voraussetzt, daß Sie über das Programm WAIT aus dem 

Entwicklungssystem verfügen. Sollte dies nicht der Fall sein, dann finden 

Sie in der Abbildung 2.7 ein C-Programm, das den gleichen Zweck erfüllt 

und das Sie mit dem Namen WAIT übersetzen sollten. Tippen Sıe das Pro- 

gramm einfach wie gezeigt ab; was es macht, wird Ihnen in späteren Kapi- 

teln klar werden. 

Abb. 2.7: Das Programm WAIT 

Erstellen Sie nun mit Ihrem Editor eine Stapel-Datei (bei zwei einseitigen 
Laufwerken: auf Laufwerk A), der Sie den Namen RUN.BAT geben und 
die folgenden Inhalt hat: 

%1 
WAIT 

Von nun an können Sie aus GEM ihre Programme starten, indem Sie das 

Batch-Programm (haben Sie es auch "B" genannt?) anklicken und ihm dann 

folgende Angaben mitgeben: 

RUN BSP24 

bzw. 

RUN B:BSP24 

Die erste Variante setzt voraus, daß sich Batch-Programm, Stapeldatei und 

das Beispielprogramm BSP24 alle auf derselben Diskette befinden. Die 

zweite Variante wenden Sie dann an, wenn sich das Batch-Programm und 
die Stapeldatei auf Laufwerk A befindet, ihr Programm jedoch auf Lauf- 
werk B steht. Letztere Situation ist dann gegeben, wenn Sie - wie im ersten 

Kapitel beschrieben - mit zwei einseitigen Laufwerken arbeiten. 

Wenn Sie Ihre Programme über die Stapeldatei aufrufen, dann sehen Sie 
erst die Ausgabe des Beispielprogramms, gefolgt von einer freundlichen 
Aufforderung, eine Taste zu betätigen. Wenn Sie mit dem Original-WAIT- 
Programm aus dem Entwicklungssystem arbeiten, dann müssen Sie die Re- 
turn-Taste betätigen; beim selbstgestrickten WAIT ist’s egal, welche Taste 

Sıe wählen.
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2.4 Ersatzdarstellung mit Escape-Sequenzen 

Das, was Programm 2.4 bewirkt, kann man auch auf viele andere Arten 

notieren: einige davon sind recht verblüffend. Sehen Sie sich dazu einmal 

das Programm 2.5 an. 

Prog. 2.5: Die Eigenheiten von printf 

Der Anweisungsblock von main enthält jetzt zwei Aufrufe der Funktion 

printf. Aber nicht das ist das Besondere an diesem Beispiel. Ins Auge fällt 

vielmehr die brutale Art, mit der die Meldung "Jetzt geht es los!" entzwei- 

gerissen wurde; Herr Duden würde sich im Grabe umdrehen. Wenn Sie die- 

ses Programm jedoch übersetzen, linken und laufen lassen, dann werden Sie 

feststellen, daß sich sein Ergebnis in keiner Weise vom Programm 2.4 

unterscheidet. 

Vielleicht hätten Sie erwartet, daß die Meldung ebenso zerstückelt und über 

zwei Zeilen verteilt auf dem Bildschirm erscheinen würde, wie sie im Pro- 
gramm steht. Doch nichts dergleichen passiert. 

Daran erkennt man: printf gibt die Zeichen beginnend mit der aktuellen 

Cursorposition der Reihe nach auf dem Bildschirm aus, bis es mit seiner 

Arbeit fertig ist (Zur Erinnerung: der Cursor ist die blinkende Schreib- 

marke am Bildschirm). Dann hält es einfach inne und bewegt nicht etwa 

den Cursor auf den Anfang einer neuen Zeile. Ein nachfolgender printf- 

Aufruf beginnt mit der Zeichenausgabe unmittelbar hinter der Stelle, an 

der das letzte printf innegehalten hat. 

Wenn ich das aber nicht will? Wie schaffe ich es, in C eine über zwei Zei- 

len verteilte Meldung auszugeben? Nun, dazu müssen Sie printf anweisen, 

einen Zeilenvorschub zu erzeugen. Da printf aber nur für die Ausgabe von 

Zeichen zuständig, ein Zeilenvorschub aber kein Zeichen im herkömmli- 

chen Sinne ist, muß es dafür eigene Vorkehrungen geben. 

Prog. 2.6: Ersatzdarstellung für den Zeilenvorschub
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Man ist dazu auf die Idee gekommen, für den Zeilenvorschub und andere 

Steuerzeichen (also ’Zeichen’, die keine Buchstaben oder Ziffern sind, son- 

dern Instruktionen für ein Ausgabegerät darstellen) eine Ersatzdarstellung 

zu verwenden. Wie das geht, sehen Sie in Programm 2.6. Das Argument des 

zweiten printf im Anweisungsblock wird jetzt durch eine seltsame Zeichen- 

folge eingeleitet, nämlich durch 

\n 

Dem liegt folgende Konvention zugrunde. Dem umgekehrten Schrägstrich 

ist eine besondere Aufgabe zuteil geworden. Er signalisiert nämlich, daß 

das auf ihn folgende Zeichen (das "n") etwas besonderes ist und als Steuer- 

zeichen interpretiert werden muß. Die beiden Zeichen bilden zusammen 

eine Ersatzdarstellung für den Zeilenvorschub, der sich direkt nicht hin- 

schreiben läßt. Daß man ausgerechnet diese Zeichenkombination gewählt 

hat, liegt an der englischen Sprache; "n" soll nämlich an das Englische 

"newline" erinnern, das auf Deutsch "Zeilenvorschub" bedeutet. Es gibt 

noch eine Reihe weiterer Ersatzdarstellungen, die in der Abb. 2.7 zu be- 

sichtigen sind. 

Abb. 2.8: Die Ersatzdarstellungen von C. 

Ist in die auszugebende Zeichenfolge die Ersatzdarstellung für den Tabula- 

tor eingestreut, so wird das nächste darauf folgende Zeichen beginnend mit 

der nächsten Tabulatorposition auf dem Bildschirm ausgegeben. Klingt 

kompliziert? Versuchen Sie es einfach einmal mit Programm 2.7. 

Prog. 2.7: Ersatzdarstellung für den Tabulator
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Wie Sie an der Ausgabe des Programms am Bildschirm sehen können, sind 

jetzt die Wörter, vor denen das Tabulator-Zeichen steht, auf die jeweils 

nächste Tabulatorposition gerückt. Das "für" in der zweiten Zeile steht da- 

bei an Tabulatorposition 3, da das erste Wort dieser Zeile ("Beispiel") sich 

bereits über die zweite Position erstreckt. 

Das Prinzip der Ersatzdarstellungen ist eigentlich ganz einfach: etwas, das 

auf normalem Wege nicht dargestellt werden kann, wird einfach durch ein 

Stellvertreterzeichen signalisiert. Als Stellvertreter fungieren in C die klein- 

geschriebenen Abkürzungen der englischen Bezeichnungen für die Funktio- 

nen. Um zu signalisieren, daß diese Abkürzungen nicht für sich selbst 
stehen, braucht es noch ein besonderes Kennzeichen, in diesem Fall den 

umgekehrten Schrägstrich. Solche Kennzeichen, die darauf hinweisen, daß 

das, was nach ihnen kommt, aus der Reihe fällt (nicht wie üblich zu inter- 

pretieren ist), nennt der Programmierer "Escape"-Zeichen (vom engl. "to 

escape" = entkommen). Auf ein Escape-Zeichen folgt stets (mindestens) ein 

weiteres Zeichen, das angibt, was eigentlich passieren soll. Deshalb - weil 

man es also immer mit ganzen Zeichenfolgen zu tun hat - spricht man auch 
von "Escape-Sequenzen". 

Nun kann es gelegentlich erforderlich sein, auch das Escape-Zeichen selbst 

auszugeben. Wie sollte man sonst z.B die Meldung 

Mit "\n" erreicht man einen Zeilenvorschub 

auf den Bildschirm bekommen? Hier stellt sich gleich noch ein zweites 
Problem. Denn diese Meldung enthält die Anführungszeichen, mit denen 
normalerweise das Ende des auszugebenden Textes für printf signalisiert 

wird. Man kann also nicht einfach schreiben: 

printf("Mit "\n" erreicht man einen Zeilenvorschub."); 

weil sonst bereits bei dem Leerzeichen hinter "mit" für printf das Argument 
zuende ist. Anführungszeichen, die von printf ausgegeben werden sollen, 
bedürfen also einer Sonderbehandlung - und schon denken Sie an Ersatz- 
darstellung! Daß Sie sich da nicht geirrt haben, bestätigt das Programm 2.8. 

Prog. 2.8: Die Ersatzdarstellung der Ersatzdarstellung. 

Damit erst mal genug von diesem Thema; die restlichen Escape-Sequenzen 

aus der Abbildung 2.8 werden bei Gelegenheit noch besprochen. Es sollte 

Sie jedoch nichts daran hindern, selbst damit zu experimentieren...
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2.5 Erste Bekanntschaft mit dem Präprozessor 

C-Feinde dichten der Sprache manchmal an, in ihr könne man keine über- 

sichtlichen Programme schreiben. Dabei besitzt C eine einzigartige Mög- 
lichkeit zur übersichtlichen und klaren Programmgestaltung, die man in an- 

deren Programmiersprachen vergeblich sucht: den Makro-Präprozessor. 

Schon wieder so ein furchtbares Fremdwort! Aber schauen Sie mal im Pro- 

gramm 2.9 nach; dann wird die Sache klarer. 

Prog. 2.9: Ein Makro-Beispiel 

Wenn Sie dieses Beispiel laufen lassen, dann sehen Sie - um eine Tabula- 

torposition eingerückt - den Text "Jetzt geht es erst richtig los!" auf Ihrem 
Bildschirm. Dieser ist im Programm jedoch nicht Argument von printf, wie 

es in den bisherigen Beispielen üblich war. Vielmehr steht da ein ge- 
heimnisvolles MELDUNG. Aber C weiß, was das bedeuten soll; denn in der 
ersten Zeile des Programms haben Sie dem Compiler gesagt, was damit ge- 

meint ist. 

Mit #define können Sie beliebige Zeichenfolgen durch andere ersetzen. 

Damit haben Sie die Möglichkeit, für Programmteile selbstgewählte Namen 
zu vergeben. Im Beispiel 2.9 wurde einfach die auszugebende Botschaft auf 
den Namen MELDUNG getauft. Da, wo sonst im Programm der String zu 
stehen käme (in den Argumentklammern von printf), wurde jetzt einfach 
dessen Name verwendet. 

Abb. 2.9: Format für #define-Makros 

Alle #define-Anweisungen folgen in ihrem Aufbau den gleichen Regeln. 
Erst kommt das ’Kennwort’ #define, dann folgt Ihr eigener Name, und da- 

hinter kommt die alte Zeichenfolge, die Sie solcherart umtaufen wollen. 
Programmierer haben eine eigene Art, solche Regeln aufzuschreiben, die 

sie für übersichtlich halten. Sie sehen das in Abbildung 2.9; naja - Ge- 

schmacksache! 

Wenn Sie eigene Namen definieren wollen, dann müssen Sie darauf achten, 

daß das "#" von #define unmittelbar am Anfang der Zeile steht. Nur dann 

wird es von der dafür zuständigen Instanz des Compilers erkannt und rich-
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tig verarbeitet. Diese Instanz ist übrigens der bereits im ersten Kapitel er- 

wähnte Makro-Präprozessor. 

Man nennt ihn "Präprozessor", weil er vor dem eigentlichen Übersetzungs- 

vorgang auf eigene Faust durch das Programm geht und (unter anderem) 

nach #define- Anweisungen sucht. Dann merkt er sich, was Sie umdefiniert 

haben und setzt jedesmal, wenn er Ihren selbstgewählten Namen findet, 

dafür den Text ein, der in der #define-Zeile hinter dem vereinbarten 

Namen kommt. Daß der Präprozessor ein sehr nützliches Merkmal von C 

und die Makros äußerst leistungsfähig sind, werden Sie im Laufe des 

Buches noch feststellen. 

2.6 Der Rechner rechnet 

Rechner’ heißen die Computer im Volksmund; daß sie noch ganz anderes 

können als rechnen haben Sie bereits gesehen: das Ausgeben von Botschaf- 

ten hat mit Arithmetik nichts zu tun. Aber rechnen kann der Computer 

natürlich auch; und das soll er jetzt (Programm 2.10). 

Prog. 2.10: Einfache Arithmetik in C 

Bei diesem Beispiel tut sich im Anweisungsblock von main einiges. Wie 

auch der Kommentar deutlich macht, gliedert sich der Anweisungsblock in 

drei Abschnitte. Der erste Abschnitt erledigt die Variablen-Deklaration; der 

zweite kümmert sich um Wertzuweisung an die Variablen und um die Be- 

rechnung des Ergebnisses; der dritte Abschnitt sorgt dafür, daß der Benut- 

zer die Ergebnisse auch zu sehen bekommt, hat also mit Ausgabe zu tun.



54 Zur Sache 

2.6.1 Variablen: Namen und Deklaration 

Variablen sind in C-Programmen (wie in BASIC auch) dazu da, um Werte 
aufzunehmen. Man kann diesen Variablen frei wählbare Namen geben. Bei 

der ’Taufe’ von Variablen sollten Sie stets Namen wählen, die über den in 

der Variablen abgelegten Wert etwas aussagen. Die Bildung solcher aussage- 

kräftiger ("mnemotechnischer") Namen ist in C besonders leicht. 
men 

Ein Name darf aus Buchstaben, Ziffern und dem Unterstrich "_ " zusam- 

mengesetzt sein. Die Buchstaben können klein- oder großgeschrieben sein, 

wobei C den Unterschied beachtet. Obwohl vom Standard dies nicht aus- 
drücklich gefordert wird, sollten Sıe Ihre Namen stets mit einem (großen 
oder kleinen) Buchstaben beginnen lassen, da einige Compiler auf dieser 

Regelung bestehen. Auch ist für die Namenslänge nichts bestimmtes vorge- 

schrieben. Die in diesem Buch verfolgte Konvention dürfte jedoch bei kei- 

nem Compiler auf Probleme stoßen: Namen können prinzipiell beliebig lang 
sein, sollten jedoch in den ersten 8 Zeichen eindeutig sein. Der Unterstrich 
wird zur optischen Auflockerung in C-Programmen häufig eingesetzt. Da 

in C-Namen keine Leerzeichen enthalten sein dürfen (denken Sie an die 
Abbildung 2.3!), dient er oft als Leerzeichen-Ersatz. 

Es folgen einige Beispiele für richtig und falsch gebildete Namen mit Er- 

läuterung: 

a) varıable 

b) Variable 

c) 1_var 
d) var/name 

e) variable 1 
f) variable 2 

g) do 
h) Do 
1) dodo 

Die Beispiele a, b, h und i sind korrekt gebildet; beachten Sie, daß es sich 

bei a) und b) für C um zwei verschiedene Variablen handelt, da sie sich in 
der Schreibweise des Anfangsbuchstabens unterscheiden. 

Das Beispiel d ist falsch, da der Name ein nicht erlaubtes Zeichen (den 
Schrägstrich) aufweist. Alle anderen Beispiele sind nicht unbedingt falsch, 
aber doch problematisch. Beispiel c beginnt mit einer Ziffer; dies bereitet 

manchen Compilern Kopfzerbrechen, weswegen Sie es vermeiden sollten. 

Die Beispiele e) und f) sind zwar korrekt gebildet, in den ersten 8 Zeichen 

jedoch nicht zu unterscheiden. Kommen diese beiden Variablen in demsel- 
ben Programm vor, dann kann das zu Problemen führen.
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Daß das so harmlos erscheinende Beispiel g) ebenfalls nicht in Ordnung ist, 

läßt sich aus dem bisher Gesagten nicht erkennen. Dennoch: do ist als 

selbstgewählter Name nicht erlaubt, da dieser Name bereits vergeben ist, 

denn do ist eines der Schlüsselworte von C. 

C ist ja eine Programmiersprache; und eine Sprache hat einen Wortschatz. 

Der Wortschatz von C ist ziemlich klein und deshalb verhältnismäßig rasch 

zu erlernen. Sie finden ihn in der Abbildung 2.10. Dies ist eine List der 

Worte, die der C-Compiler versteht, der sogenannten "Schlisselworte" 

(engl.: "keywords"). Die Mächtigkeit von C rührt daher, daß zu diesen ’ein- 

gebauten’ Worten auch selbstdefinierte hinzukommen dürfen. Sie können 

nicht nur Variablen mit Namen belegen, sondern auch eigene Funktionen 

schreiben und diesen einen Namen geben; das Programm 2.2 hat dies be- 

reits gezeigt. 

Abb. 2.10: Schlüsselworte von C 

Aber bei der Wahl aller selbstdefinierten Namen - gleichgültig, ob für 
Funktionen oder Variable - müssen Sie darauf achten, nicht in Konflikt 

mit den Schlüsselworten zu geraten. Wie Sie der Abbildung 2.10 entnehmen 
können, sind alle Schlüsselwörter kleingeschrieben; daran müssen Sie sich 

halten. Wie Sie ebenfalls wissen, unterscheidet C zwischen groß- und klein- 

geschriebenen Namen. Deshalb ist das Beispiel h) aus der obigen Sammlung 

in Ordnung. 

Ebenfalls in Ordnung ist Beispiel i). Es wurde nur mit aufgenommen, weil 
in manchen Programmiersprachen (und auch in einigen BASIC-Dialekten) 

in Variablennamen Schlüsselwörter auch nicht als Teil enthalten sein dür- 
fen. C erlegt Ihnen diese Beschränkung nicht auf. 

In C können Variablen nur verwendet werden, wenn sie zuvor deklariert 

wurden. Prinzipiell könnte diese Deklaration irgendwo im Programm vor 
der erstmaligen Verwendung der Variablen erfolgen. Aber es ist übersicht- 
licher, die Deklaration der in einer Funktion benötigten Variablen an den
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Anfang der Funktion zu setzen. Auch gehen einige Compiler - so auch der 

des ATARI-C - davon aus, daß Sie sich an diese Konvention halten. das 

ATARI-C erlaubt Ihnen nicht, nach der ersten ausführbaren Anweisung im 
Programm noch Variablen zu deklarieren. 

So habe ich mich auch im Programm 2.9 an diese Konvention gehalten: der 
Anweisungsblock beginnt mit drei Deklarationen. 

In einer Variablendeklaration macht man dem Compiler (unter anderem) 
bekannt, welche Namen man für die Variablen zu verwenden gedenkt und 
von welchem Datentyp diese Variablen sein sollen. Das Kapitel "Varia- 

blennamen" wurde eben erschöpfend abgehandelt. Wenn Sie sich von Ihrer 

Erschöpfung erholt haben, dann können wir uns dem Thema "Datentyp" 
zuwenden. 

Daten sind ’Dinge’, mit denen der Computer etwas macht. Mit verschie- 

denen Dingen kann man verschiedenes machen; so kann man mit Zahlen 
rechnen, mit Buchstaben aber nicht. Andererseits kann man aus einem 

großgeschriebenem Buchstaben einen kleingeschriebenen machen; bei Zah- 
len ist dies ein sinnloses Unterfangen. Man faßt in der EDV die Objekte, 
mit denen dieselben Operationen möglich sind, in einem Datentyp zusam- 

men. Die wichtigsten Datentypen von C sind Zahlen, Zeichen und Zeiger 
(hübscher Stabreim!). Um den letzten Datentyp, die Zeiger zu verstehen, ist 

einiges an Vorkenntnissen nötig. Zeiger und alles, was damit zusammen- 

hängt, bleiben daher dem Kapitel 5 vorenthalten. 

Anders ist's mit Zahlen und Zeichen; die kennt jeder. Oder meint es 
jedenfalls. Denn der Zahlen gibt es mehrere. Bereits von klein auf vertraut 
sind uns die ganzen Zahlen (1,2,3 usw.), die auch schon in zwei Spielarten 

"in der Natur’ vorkommen: als positive und als negative Zahlen. Als man 

begann, uns in der Schule mit der Division zu quälen, da wurde es uner- 

läßlich, sich noch mit einer weiteren Zahlengattung vertraut zu machen: die 
Zahlen mit Nachkommastellen (z.B. die allgegenwärtige Kreiszahl 3,1415). 
In einem Computer gehören diese Zahlen jeweils einem eigenen Datentyp 
an. 

Als ob die Materie nicht schon kompliziert genug wäre, unterscheiden 

Computer auch noch Zahlen von unterschiedlicher Größe und Genauigkeit. 

Aber dies wird Sie noch in einem späteren Kapitel (Kapitel 4) beschäf- 

tigen. Die Variablen, die in Programm 2.9 gebraucht werden, sollen nur 

ganz bescheidene ganze Zahlen aufnehmen. Im Englischen ‚heißt eine ganze 

Zahl "integer"; jetzt können Sie sich auch denken, warum im Programm 2.9 
vor den Variablennamen immer int steht! Sie sehen: C neigt zur Kürze und 

schreibt alles klein.
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Programm 29 hebt also mit der Deklaration dreier Integer-Variablen an, die 

die Namen Summe, Zahl_1 und Zahl_2 tragen. Eine Variablen-Deklara- 
tion ist eine Anweisung wie jede andere auch und muß deshalb mit einem 

Strichpunkt abgeschlossen werden. Allerdings ist es keine Anweisung, die 

etwas ’tut’; vielmehr hält sie nur Informationen für den Compiler bereit, 

damit dieser Speicherplatz für die Daten besorgen kann. Dieser Speicher- 

platz kann dann mit Hilfe einer Wertzuweisung mit Informationen vollge- 

schrieben werden; womit wir schon beim nächsten Thema wären... 

2.6.2 Die Wertzuweisung; einfache und zusammengesetzte Ausdrücke 

Anweisungen, die etwas tun, finden sich erst im zweiten Abschnitt des 

Programms 2.9; dort wird auf etwas umständliche Weise die Summe zweier 
Zahlen berechnet. Dazu werden die beiden Summanden 5 und 13 an die 

beiden Variablen Zahl_] und Zahl_2 zugewiesen. Genauer: in den Spei- 
cherplatz, den der Compiler für diese beiden Variablen reserviert hat, wer- 

den diese beiden Werte eingetragen. Da Speicherplätze später noch eine 
große Rolle spielen werden, will ich Ihnen diesen Sachverhalt mit einem 

Speicherdiagramm verdeutlichen; Sie finden es in Abbildung 2.11. 

Wie Sie wissen, ist der Arbeitsspeicher eines Computers in einzelne 
Speicherzellen unterteilt, die fortlaufend durchnumeriert sind. In der Ab- 
bildung 2.11 sind die Speicherzellen durch Kästchen symbolisiert, die zur 
Aufnahme eines Wertes dienen können. Die Nummer einer Speicherzelle 
wird auch deren "Adresse" genannt; über diese Adresse kann eine Spei- 
cherzelle angesprochen werden, um einen Wert in ihr zu speichern oder um 
nachzusehen, welchen Wert sie enthält. Natürlich sind die in der Abbildung 
stehenden Adressen fiktiv; der Compiler wird mit Sicherheit andere Adres- 
sen als die hier gezeigten für die Variablen benutzen (mit Sicherheit des- 
halb, weil sich an dieser Stelle im ATARI wichtige Tabellen des Be- 
triebssystems befinden. Aber das ist eine andere Geschichte...)
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In der Frühzeit der Computerei mußten Programmierer noch mit den 

numerischen Adressen des Arbeitsspeichers umgehen. Dieses Verfahren ist 

ungemein umständlich und fehleranfällig. Einer der Vorteile höherer Pro- 
grammiersprachen besteht darin, anstatt mit numerischen Adressen mit 
symbolischen Adressen arbeiten zu können. Die in einem C-Programm ver- 
einbarten Variablen sind nichts anderes als solche symbolische Adressen. 

Wenn Sie in C eine Variable deklarieren, dann besorgt sich der Compiler 

irgendwo im Arbeitsspeicher des Computers Platz für die Variablen und 

merkt sich, an welchen numerischen Adressen dieser Platz zu finden ist. 

Die Abbildung 2.11 gibt somit einen Ausschnitt aus dem Arbeitsspeicher 
wieder, wie er nach der Deklaration aussehen könnte. Der Compiler hat 

sich für die drei gewünschten Variablen drei aufeinanderfolgende Speicher- 
stellen - beginnend bei der numerischen Adresse 143 - besorgt und hat sich 
gemerkt, daß die Speicherstelle 143 jetzt auf den Namen Summe getauft 

ist, 144 auf Zahl_] usw. Die numerischen Adressen sind völlig willkürlich 
gewählt; der Compiler nimmt eben den nächsten Speicherplatz, der gerade 
frei ist. In der Regel haben Sie als Programmierer auch keinen Einfluß 
darauf, an welchen Adressen Ihre Variablen abgelegt werden (es sei denn, 

Sie arbeiten mit Zeigern; damit können Sie Werte an von Ihnen frei wahl- 
baren Adressen speichern). Wo der Compiler Ihre Variablen hinlegt, müssen 
Sie aber auch gar nicht wissen, denn Sie arbeiten ja mit symbolischen 
Adressen, also mit Ihren selbstgewählten Variablennamen. 

Nach der Deklaration der Variablen enthalten diese noch keinen Wert. Ge- 
nauer: ihr Wert ist undefiniert (denn daß sich an einer Speicherstelle 

tatsächlich nichts befindet, ist nicht möglich). Deswegen stehen in den 
Kästchen der Abbildung 2.11 Fragezeichen. Erst durch Wertzuweisung kann 
man die Kästchen füllen; in Abbildung 2.12 ist dies teilweise geschehen: 

Abb. 2.12: Speicherdiagramm der einfachen Wertzuweisung 

Das Diagramm in dieser Abbildung gibt die Verhältnisse wieder, die nach 
Ausführung der beiden Anweisungen 

Zahl_ 1 = 5; 
Zahl 2 = 13;
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im Speicher herrschen. Diese beiden Anweisungen sind sogenannte "Wert- 
zuweisungen"; sie bewirken, daß einer Variablen ein (definierter) Wert zu- 
gewiesen wird. Wertzuweisungen haben immer den gleichen Aufbau: 

<lvalue> = <ausdruck>; 

Das Gleichheitszeichen "=" signalisiert die Zuweisung. Links vom Gleich- 

heitszeichen muß etwas stehen, dem ein Wert zugewiesen werden kann. Im 

Jargon der C-Programmierer bezeichnet man das als /value (sprich: "Ell- 

Vallju"); Ihr Compiler wird Ihnen gelegentlich Fehlermeldungen präsen- 

tieren, in denen dieser Terminus Technicus auftaucht. Jetzt wissen Sie, was 

das bedeutet. 

Als lvalues kommen bisher nur einfache Variablen in Frage; Sie werden 

aber noch sehen, daß die Gattung der /values äußerst artenreich ist und 

einige exotische Vertreter aufzuweisen hat. 

Rechts vom Zuweisungszeichen "=" muß - so entnehmen Sie dem Dia- 
gramm - ein "Ausdruck" stehen. In der Computerei ist ein Ausdruck alles, 
was einen Wert (z.B. einen Zahlen- oder Zeichenwert) hat bzw. durch 
Ausrechnen einen solchen ergibt. Die Ausdrücke in den beiden obigen An- 
weisungen sind von der einfachsten denkbaren Art, es sind nämlich die 
"Konstanten" 5 und 13. Daß es auch noch andere Ausdrücke gibt, zeigt 

bereits die nächste Anweisung von Programm 2.10. Ihre Wirkung gibt die 
Abbildung 2.13 wieder. 

Abb. 2.13: Speicherdiagramm der arithmetischen Wertzuweisung 

Der Ausdruck 

Summe = Zahl_1 + Zahl 2; 

hat als /value die Variable Summe, weist also an die betreffende Spei- 

cherstelle einen Wert zu. Der zugewiesene Wert ist jedoch diesmal keine 
Konstante, sondern ergibt sich durch Ausrechnen, in diesem Fall durch 

Addition zweier Zahlen; dies signalisiert das wohlvertraute Pluszeichen. Die 
zu addierenden Zahlen sind jedoch nicht direkt - als Konstanten - hin-
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geschrieben. Stattdessen wurden die Variablen angeführt, die als Wert die 

zu addierenden Zahlen enthalten. Natürlich hätte man genausogut 

Summe = 5 + 13; 

schreiben und damit das gleiche bewirken können. Dann hätte ich aller- 

dings nicht demonstrieren können, daß in Ausdrücken neben Konstanten 

auch Variablen vorkommen dürfen und daß zur Berechnung des Ausdrucks 

der in den Variablen gespeicherte Wert herangezogen wird. Natürlich kön- 

nen Sie eine Variable nur dann in Ausdrücken verwenden, wenn sie zuvor 

einen Wert erhalten hat. 

Ausdrücke können einfach sein, wie die ersten beiden im Programm 2.10; 

sie können aber auch zusammengesetzt sein, wie der dritte und eben be- 

sprochene. In zusamengesetzten Ausdrücken gibt es immer einen Operator, 

der zwei oder mehrere andere Ausdrücke miteinander kombiniert, um 

daraus einen neuen Wert zu produzieren. Hier kombiniert der Operator ’+ 

die beiden Ausdrücke Zahl_I und Zahl_2, um deren Summe (18) zu pro- 

duzieren. Weil in dem zusammengesetzten Ausdruck gerechnet wird (oder, 

vornehmer ausgedrückt: weil ’+ ein arithmetischer Operator ist), nennt man 

ihn auch einen arithmetischen Ausdruck. All diese Begriffe versammelt 

noch einmal die Abbildung 2.14. 

Abb. 2.14: Anatomie einer Wertzuweisung 

2.6.3 Ausgabe von Ergebnissen mit printf 

Nachdem die Maschine nun ausgerechnet hat, wieviel 5 plus 13 ist, soll sie 
uns das auch mitteilen. Das Ergebnis muß also ausgegeben werden, und 

dazu ist printf da. Wurde damit aber bisher ausschließlich Meldungen - also 

feststehende Werte oder Konstanten - ausgegeben, so muß printf jetzt 

etwas anzeigen, was zum Zeitpunkt der Programmerstellung noch nicht be- 

kannt ist (nämlich das Ergebnis der Addition). Es tut dies wie folgt: 

printf("\nDie Summe von %d und %d ist %d.",Zahl_1,Zahl_2,Summe);
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So steht das allerdings nicht im Programm 2.10; dort habe ich mir zunutze 

gemacht, daß man in C so gut wie überall Kommentare einstreuen kann. 
Doch darüber später mehr. Obige Version ist jedenfalls für den C-Compi- 

‘ler gleichbedeutend mit der im Programm und soll daher zuerst besprochen 

werden. 

Wenn Sie Programm 2.10 laufen lassen, dann erhalten Sie wie erwartet die 

Meldung 

Die Summe von 5 und 13 ist 18. 

aber der Wortlaut dieser Meldung ist nicht Argument von printf! Dort fin- 

det sich vielmehr dreimal die Zeichenfolge "%d"; außerdem hat printf 
diesmal nicht nur einen String als Argument, sondern es folgen noch die 
drei bereits bekannten Variablen. 

An dem Ergebnis des Programms sehen Sie, daß printf neben konstanten 

Meldungen auch die Werte von Variablen ausgeben kann, und - was noch 

mehr ist - Text und Variablenwerte auf einfache Weise gemischt werden 
können. Dazu schreiben Sie als erstes Argument von printf ganz einfach 
den gewünschten Meldungstext, setzen aber an die Stelle, an der die Varia- 

blen erscheinen sollen, die Zeichenfolge "%d". 

Das Prozentzeichen ist ein weiteres Escape-Zeichen für printf. Wo es steht, 

soll von printf bei der Ausgabe der Wert einer Variablen eingesetzt werden. 
Auf das Prozentzeichen folgt ein Buchstabe, der angibt, von welchem Typ 
die Variable ist: "d" steht für "dezimal" und bedeutet, daß eine Zahl (eine 
Integer) in dezimaler Darstellung (so wie Sie es gewohnt sind) ausgegeben 
werden soll. printf liest sich den String durch und sieht die drei Prozent- 
zeichen; daran erkennt es, daß 3 Variablen ausgegeben werden müssen. Sie 
müssen der Funktion jedoch noch sagen, welche Variablen das sind. Dazu 
geben Sie einfach weitere Argumente in den Argumentklammern von printf 
an. Das erste Argument nach dem String bezieht sich auf das erste "%d" im 
String, das zweite Argument nach dem String auf das zweite "%d" usw. 

Hat eine Funktion mehrere Argumente, so miissen Sie diese durch Kommas 
trennen. Wegen der Formatfreiheit von C ist es jedoch möglich, dazwischen 
auch beliebig viele Leerzeichen, Zeilenvorschübe und sogar Kommentare 
einzustreuen. Genau das habe ich im Programm 2.10 gemacht: jedes print f- 

Argument steht auf einer eigenen Zeile, alle sind sie ordentlich untereinan- 
der aufgereiht und das erhöht die Lesbarkeit.



62 Zur Sache 

Ehe Sie die Anatomie einer erweiterten printf-Anweisung in der Abbildung 

2.15 studieren, will ich noch einmal die Informationen zusammenfassen, die 

Sie bisher über printf erhalten haben: 

O 

O 

O 

printf übernimmt die Ausgabe von Meldungen auf den Bildschirm. 

Die auszugebenden Meldungen müssen in Form eines Strings erstes Ar- 

gument von printf sein; dieser String wird auch "Kontrollstring" genannt. 

Der Kontrollstring kann Escape-Sequenzen für Steuerzeichen enthalten; 

als Escape-Zeichen dient der umgekehrte Schrägstrich; die zulässigen 

Folgezeichen finden Sie in Abbildung 2.8. 

Der Kontrollstring kann Escape-Zeichen für die Ausgabe von Variablen 

enthalten; als Escape-Zeichen dient das Prozentzeichen. Als Folgezeichen 

dient "d" für die Ausgabe von Dezimalzahlen. 

Sollen Variablen ausgegeben werden (der Kontrollstring enthält Prozent- 

zeichen), dann müssen diese als zusätzliche Argumente von printf hinter 

dem Kontrollstring folgen. Achten Sie stets darauf, daß Sie auch eben- 

soviele Variablen angeben, wie im Kontrollstring Prozentzeichen auf- 

tauchen. Wenn Sie zuwenig Argumente liefern, dann tut Ihr Computer 

Seltsames! 

Abb. 2.15: Erweiterte printf-Anweisung
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3 Einfache interaktive Programmierung 

Im letzten Kapitel haben Sie die Möglichkeit zur Ausgabe von Daten mit 

printf kennengelernt. Die mit den bisher vorgestellten Sprachmitteln mög- 

lichen Programme ähneln aber ein wenig der Unterhaltung mit einem Ge- 

hörlosen: der Computer denkt eine Weile vor sich hin und gibt dann was 

aus. Er hört jedoch nicht auf Sie. 

So richtig schön wird die Sache erst, wenn man dem Computer im Dialog 

etwas sagen kann und er dann darauf mit einem Ergebnis reagiert. Dies 

umschreibt man mit dem schönen Fachausdruck "interaktive Programmie- 

rung". Elementare Möglichkeiten dieses Programmierstils werden in diesem 

Kapitel besprochen. 

3.1 Eingabe mit scanf 

"Der Rechner rechnet", hieß es im Kapitel 2.6. Aber was, werden Sie 

sagen, ist das für eine Rechnerei, wenn er immer nur dieselben beiden 
Zahlen zusammenzählt? Die Daten, mit denen das Programm 2.10 arbeitet, 

sind ja als Konstanten im Programm enthalten, sind also gleichsam in die- 

sem ’fest verdrahtet’. Interessanter wird die Sache doch erst, wenn man 

verschiedene Zahlen addieren kann, ohne dazu jedesmal das Programm 
neuschreiben zu müssen. In dieser Situation schafft das Programm 3.1 Ab- 

hilfe. 

Prog. 3.1: Werteingabe durch scanf
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Anmerkung: In der mir verfügbaren Version des ATARI-C funktionierte 
scanf nicht richtig. Sollten Sie mit diesem Compiler arbeiten und feststel- 
len, daß das Programm 3.1 nicht wie gewünscht reagiert, dann ist dieser 

Fehler auch noch in Ihrer Version enthalten. Lesen Sie dann dieses Kapitel 

durch, machen Sie jedoch die Beispiele so, wie im Abschnitt 3.1.1 be- 

schrieben! | 

Im Vergleich zum letzten Programmbeispiel hat sich hier im Mittelteil (dem 
Verarbeitungsteil) etwas geändert. Wenn Sie das Programm laufen lassen, 

werden Sie sehen, daß Sie durch die Meldung "Zahl 1:" zur Eingabe einer 
Zahl aufgefordert werden. Danach hält das Programm inne und der Com- 
puter wartet, daß Sie ihn mit einer Zahl versorgen. Sıe können jetzt eine 

beliebige Zahl eintippen und die Eingabe mit der Return-Taste abschließen. 

Erst dann werden Sie durch eine weitere Meldung aufgefordert, die zweite 

Zahl einzugeben. Sie verfahren wie eben beschrieben und erhalten als Re- 

sultat Ihrer Mühen in der bereits vom letzten Programm bekannten Weise 

das Ergebnis angezeigt. 

Wie die Meldungen erzeugt werden, die zur Eingabe auffordern und das 
Ergebnis darstellen, ist kein Geheimnis mehr: mit printf. Das Einlesen der 
Werte von der Tastatur besorgt jedoch eine neue Funktion, ein naher Ver- 

wandter von printf mit dem Namen scanf. Die Verwandschaft ist zweifach: 
beide Funktionen sind für interaktive Programmierung zuständig; beide 
Funktionen arbeiten mit einem Kontrollstring. 

"Interaktive Programmierung" ist die Würze der Micro-Computerei. Sie er- 
möglicht dem Benutzer einen Dialog mit seinem Gerät: der Computer zeigt 

Informationen an, auf die der Benutzer reagieren kann, diese Reaktionen 

werden vom Programm sofort verarbeitet, das Ergebnis angezeigt, der Be- 

nutzer kann wieder darauf reagieren usw. Paradebeispiel für interaktive 

Programmierung sınd Textprogramme (wie z.B. der Editor, mit dem Sie 
Ihre C-Programme erstellen), die den (von der Tastatur) eingegebenen Text 

auf dem Bildschirm darstellen und je nach Reaktion des Benutzers (Ein- 
gabe weiterer Zeichen oder Kommandos zur Bearbeitung des Textes) in 
aktualisierter Form wieder ausgeben. Bei der interaktiven Programmierung 
muß der Programmierer Ausgabe- und Eingabegeräte bedienen können. 

Das klassische Ausgabegerät für Micro-Computer ist der Bildschirm; von 
dessen Bedienung mit printf wissen Sie schon einiges. Als Eingaberät für 
die interaktive Programmierung dient primär die Tastatur, aber auch fort- 
schrittliche Medien wie z.B. die Maus. Zur Verarbeitung von Tastaturein- 
gaben gibt es scanf; die Verarbeitung von Maus-Informationen erfordert 
im Vergleich dazu sehr fortgeschrittene Kenntnisse und kann in diesem 
Buch noch nicht behandelt werden.
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Wenn Sie Daten von der Tastatur einlesen wollen, dann miissen Sie scanf 

mitteilen, von welchem Typ diese Daten sind und wo Sie sich diese Daten 

aufheben wollen. Ersteres tun Sie mit einem Kontrollstring; letzteres durch 
Angabe einer oder mehrerer Variablenadressen vom passenden Typ. 

scanf ist - wie Sie noch sehen werden - sehr vielseitig und kann Daten 
unterschiedlichen Typs einlesen, darunter Zahlen in verschiedener Dar- 

stellung und Genauigkeit, Zeichen und Zeichenketten. Der Kontrollstring 
sagt der Funktion, auf welche Daten sie sich einzustellen hat. Mit %d wird 
im Programm 3.1 mitgeteilt, daß eine einfache Zahl in Dezimalschreibweise 

erwartet wird. Da %d angibt, welches Format die zu erwartenden Daten 
haben, spricht man in diesem Zusammenhang auch von einer "Formatan- 

weisung". Bei Formatanweisungen ist offensichtlich derselbe Escape- 
Mechanismus am Werk, der bei der Ausgabe mit printf benutzt wird. Der 

Benutzer des Programms muß die Eingabe seiner Informationen übrigens 
mit der Return-Taste abschließen: daran sollten Sie auch beim Testen des 

Programmbeispiels denken. 

Im Kontrollstring erfährt scanf, daß es eine Zahl einlesen soll; jetzt muß es 
nur noch wissen, wo es die gelesene Zahl hintun soll. Dazu benötigst es, 
nein! nicht eine Variable, sondern die Adresse einer Variablen. 

Das ıst eigentlich auch ganz logisch. Denn wenn eine Variable Argument 
einer Funktion ist, dann wird der momentan in der Variablen gespeicherte 

Wert zur Verarbeitung herangezogen. So ist es auch bei der abschließenden 
printf-Anweisung von Programm 3.1: hier wird mit den Argumenten 
Zahl_ 1, Zahl_2, Summe der gerade in diesen Variablen gespeicherte Wert 

angesprochen und ausgegeben. Aber in der Funktion scanf wollen Sie ja 
nicht, daß der Wert der Variablen 'manipuliert wird (die hat zu diesem 
Zeitpunkt ja noch gar keinen!), sondern die Variable selbst, indem sie 
einen solchen Wert erst erhält. Aus der Abbildung 2.12 wissen Sie bereits, 

daß eine Variable nichts anderes als ein frei wählbarer Name für eine 
Speicherstelle - eine Adresse - ist. scanf soll diese Adresse manipulieren 
(soll an ihr etwas ablegen), und deshalb muß man sie scanf mitteilen. Aber 
wie, wenn man sie nicht kennt?! Müssen Sie sich jetzt doch wieder mit 
numerischen Adressen herumschlagen? 

Zum Glück nicht! Denn in C gibt es - darin ist die Sprache einzigartig - 
eine einfache Möglichkeit, sich die Adresse einer Variablen zu besorgen, 
nämlich den &-Operator. Schreiben Sie & vor eine Variable, dann hat dies 

im Programm den Effekt, daß statt der Variablen ihre Adresse benutzt 
wird. 

Sollte Ihnen bei dieser Erklärung etwas mulmig geworden sein, so ist das 
nicht tragisch. Sie werden bald selbst Funktionen schreiben können, die
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Variablenadressen manipulieren und dann werden Ihnen die Zusammenhän- 

ge sicher klar. Merken Sie sich vorerst ganz einfach: die Variablen, in 

denen scanf die eingelesenen Werte ablegen soll, werden in der Argument- 
klammer von scanf mit einem vorgestellten &-Zeichen dekoriert. 

& ist das erste Beispiel für einen einstelligen Operator; mit der Addition (+) 
findet sich im Programm 3.1 auch ein Vertreter der zweistelligen Operatio- 
nen. Das Kapitel 3.2 stellt Ihnen weitere zweistellige Operatoren vor. 

Abb. 3.1: Ein Ersatz für scanf
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3.1.1 Ein Ersatz fiir scanf 

Leser, deren C über ein funktionierendes scanf verfügt, können diesen Ab- 

schnitt beim ersten Durchlesen getrost überspringen. Wenn Sie bereits fort- 

geschrittener in der C-Programmierung sind, dann können Sie ja das Pro- 
gramm in der Abbildung 3.1 studieren. 

Wenn bei Ihrem Exemplar des ATARI-C scanf nicht funktioniert, dann 
haben Sie mit den Informationen in diesem Abschnitt die Möglichkeit, die 
Beispielprogramme sinngemäß nachzuvollziehen. Dazu müssen Sie aber an 
das Ende jedes Beispielprogramms den ’Anhang’ mit Aufnehmen, den Sie 

in der Abbildung 3.1 sehen. Dies ist jedoch kein großes Problem, da alle 

guten Editoren (so auch der METACOMCO-Editor des Entwicklungssy- 

stems) die Möglichkeit vorsehen, in eine Datei andere Dateien einzu- 

mischen. Schreiben Sie also die Anweisungen der Abbildung 3.1 in eine 
eigene Datei (die Sie SCAN.C nennen können) und fügen Sie diese Datei 
dann an das Ende jedes Beispielprogramms des dritten Kapitels an. Auf die 

Kommentare in der Abbildung können Sie natürlich verzichten, um die 

Tipparbeit zu reduzieren. 

Sie müssen dieses umständliche Verfahren zum Glück nur für einige Bei- 

spiele dieses Kapitels anwenden. In den folgenden Kapiteln wird kein Ge- 

brauch von scanf mehr gemacht. 

Die Funktionen iscan und fscan stellen einen - allerdings sehr schwachen - 
Ersatz für die Standard-Funktion scanf dar. Aber Sie können wenigstens 
die Beispiele nachvollziehen. Eine Erklärung dessen, was ın der Abbildung 
3.1 getan wird, ist aus verständlichen Gründen jetzt noch nicht möglich. 
Wenn Sıe jedoch die ersten fünf Kapitel dieses Buches durchgearbeitet 
haben, dann können Sie sich die Abbildung getrost noch einmal zu Gemüte 
führen. 

iscan und fscan sind zwei spezialisierte Funktionen, die in einer Variablen 

einen Integer- bzw. einen Gleitpunktwert ablegen. Sie erhalten als Wert 
eine Variablenadresse und gleichen darin scanf. Sie werten jedoch keinen 
Kontrollstring aus. Wenn Sie mit iscan arbeiten wolle, dann müssen Sie das 
Programm 3.1 an einer Stelle ändern. Statt 

JE WIITTTTITTTITTTRTTERKTK KH | 

printf("\nZahl 1: "); scanf("%d",&Zahl_ 1); /* Wertzuweisung an die */ 
printf(""\nZahl 2: "); scanf("%d",&Zahl_ 2); /* Variablen durch Benut- */
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schreiben Sie: 

printfC"\nzahl 1: "); iscan(&Zahl_1); /* Wertzuweisung an die */ 
printf("\nZahl 2: "); iscan(&Zahl_2); /* Variablen durch Benut- */ 

Der Rest des Programms kann unverändert übernommen werden. 

3.2 Arithmetische Operatoren 

Natürlich kann man mit zwei Zahlen viel mehr machen, als sie zu addieren. 

Selbstverstandlich können Sie auch in C subtrahieren, multiplizieren und 

dividieren. All diese Operationen führt Ihnen das Programm 3.2 vor. 

Prog. 3.2: Die Grundrechnungsarten 

Anmerkung: Die Leidensgenossen mit defektem scanf müssen für die Ein- 
gabe diesmal die beiden folgenden Anweisungen verwenden: 

printf("\nZahl 1: "); fscan(&Zahl_1); /* Interaktive Wertzuwei- */ 
printf("\nZahl 2: "); fscan(&Zahl_2); /* sung (Gleitpunktzahl!) */
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Die Bildung von Summe, Differenz, Produkt und Quotient bietet keine 

Überraschungen. Wie Sie sehen können, verwendet C dafür die (zweistelli- 
gen) Operatoren +, -, * und /. Daß für Multiplikation ein Stern und für 

Division ein Schrägstrich geschrieben wird, ist bei den meisten Program- 

miersprachen üblich. 

Aber die Variablendeklarationen am Programmanfang und ebenso die Kon- 
trollstrings für printf und scanf haben sich geändert. Programm 3.2 arbeitet 
nicht mehr mit drei Integers, sondern verwendet jetzt Gleitpunktzahlen. 
Diese werden im Englischen "floating point numbers" genannt, weswegen 
bei der Deklaration die Typangabe float steht; C liebt’s eben kurz. - 

Gleitpunktzahlen sind Zahlen mit Nachkommastellen. Computer haben im 

Umgang mit Gleitpunktzahlen eine eigene Art, die sich deutlich von der 
Arbeit mit Ganzzahlen (Integers) unterscheidet. Das geht sogar so weit, daß 

für ganze Zahlen und Gleitpunktzahlen gesonderte Rechenverfahren be- 
nutzt werden; der Fachmann spricht in diesem Zusammenhang von "Inte- 

gerarithmetik" bzw. "Gleitpunktarithmetik". Ich will hier vorerst nicht wei- 
ter ins Detail gehen; Sie können sich jedoch merken, daß Gleitpunktzahlen 

mehr Speicherplatz beanspruchen und daß das Rechnen mit ihnen für den 

Computer aufwendiger ist als bei Integers (Details dazu im Kapitel 4). 

Warum wurde dann in Programm 3.2 dem Computer diese Mehrbelastung 
aufgebürdet? Nun, hätte sich das Programm auf Addition, Subtraktion und 
Multiplikation beschränkt, wäre der Aufwand nicht nötig gewesen. Denn 

diese Operationen erzeugen bei ganzzahligen Argumenten nur ganzzahlige 
Ergebnisse. Anders die Division; dividiert man 2 durch 3, so kann man das 
Ergebnis (1.33333....) nicht mehr als ganze Zahl darstellen (Übrigens: Com- 
puter verwenden statt eines Dezimalkommas - wie im Deutschen üblich - 

stets einen Dezimalpunkt!). Wir brauchen also Gleitpunktarithmetik. 

Deshalb haben ım Programm 3.2 die Variablen den Datentyp gewechselt. 

Sıe können jetzt auch nicht-ganzzahlige Ergebnisse aufnehmen. Damit än- 

dert sich aber auch etwas für die Ein- und Ausgabefunktionen (printf und 
scanf), die sich auf den neuen Datentyp einstellen müssen. Erstmal muß 

scanf angewiesen werden, von der Tastatur Gleitpunktzahlen zu lesen; diese 

dürfen - im Unterschied zu den Integers - auch einen Dezimalpunkt ent- 

halten. Dann muß printf auf die Ausgabe von Ergebnissen mit Nach- 
kommastellen vorbereitet werden. Beides geschieht im Kontrollstring, der 

die Escape-Sequenz %f enthält. Dies ist eine weitere Formatanweisung (%d 

haben Sie schon kennengelernt), wobei "f" die Abkürzung für float ist, 
welches wiederum eine Kurzschreibweise des englischen Wortes für Gleit- 
kommazahl darstellt. Einen Beispiellauf des Programmes sehen Sie in Ab- 
bildung 3.2.



70 Einfache interaktive Programmierung 

Anmerkung: Einige C-Compiler (darunter der GST-C-Compiler) unterstüt- 

zen keine Gleitpunktarithmetik und kennen daher auch nicht den Datentyp 

float. Sollte Sie einen dieser Compiler besitzen, dann können Sie das 

Programmbeispiel 3.2 nicht testen. Doch trösten Sie sich: die Gleit- 

punktarithmetik wird im weiteren Verlauf des Buches keine große Rolle 

mehr spielen. 

Abb. 3.2: Verarbeitung von Gleitpunktzahlen 

Wie Sie sehen können, werden die Ergebnisse mit fünf Stellen nach dem 

Komma ausgegeben. Dieses Ausgabeformat kann jedoch von Compiler zu 

Compiler verschieden sein und läßt sich je nach Bedarf des Programmierers 

steuern. 

3.3 Für Schreibfaule 

Mehrfach schon wurde es angemerkt: C neigt zur Kürze. Nicht nur in der 

Wahl der Schlüsselworte drückt man sich in C knapp aus; auch Programme 

können in unterschiedlichen Varianten geschrieben werden, wobei man 
einen hohen Grad an Schreib-Ökonomie erzielen kann (sprich: weniger 
Tastenanschläge auf der Tastatur; also genau das Richtige für Schreibfaule). 
Dazu ein Beispiel in Programm 3.3. 

Prog. 3.3: Kurzversion von Programm 3.2
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Anmerkung: Mit der selbstgebauten fscan-Funktion ist es nicht möglich, 

mehrere Variablen auf einmal mit Werten zu versorgen. Wenn Sie mit die- 

ser Funktion arbeiten, dann muß Ihr Eingabeteil genauso wie im letzten 

Programm aussehen. | 

In jedem der Verarbeitungs-Schritte des Programmes (Variablendeklaration, 

Eingabe, Verarbeitung mit Ausgabe) hat sich jetzt etwas geändert. Bei der 

Deklaration sehen Sie, daß das Schlüsselwort float nicht für jede Variable 

von diesem Typ gesondert hingeschrieben werden muß. Es ist ebenso mög- 

lich, hinter float eine Liste aller Variablen - durch Komma getrennt - fol- 

gen zu lassen, die von diesem Typ sein sollen. Natürlich muß diese Dekla- 

rations-Anweisung wie jede andere Anweisung auch durch einen Strich- 

punkt abgeschlossen werden. 

Bei der Dateneingabe wurde berücksichtigt, daß scanf ebenso wie printf 
eine beliebige Zahl an Argumenten haben kann. Ebenso, wie man mit 
einem einzigen printf-Aufruf mehrere Zahlen auf einmal ausgeben kann, 
ist es mit scanf möglich, mehrere Werte auf einmal einzulesen. Dazu muß 
man nur im Kontrollstring entsprechend viele Formatanweisungen angeben 
- und natürlich anschließend an den Kontrollstring genügend Variablen- 
adressen bereithalten, an denen die gelesenen Werte abgelegt werden sollen. 
Weil im Programm zwei Zahlen eingelesen werden sollen, findet sich im 
Kontrollstring zweimal die Formatangabe %f und auf diesen Kontrollstring 
folgen zwei Variablenadressen, &Zahl_I sowie &Zahl_2. 

Bei der Eingabe der Daten sollten Sie diese übrigens durch ein (oder meh- 
rere) Leerzeichen trennen, damit scanf den Anfang der einen und das Ende 
der nächsten Zahl auch finden kann. Die Abbildung 3.3 zeigt einen Bei- 

spiellauf dieses Programms. 

Abb. 3.3: Was das Programm 3.3 produziert 

Wenn Sie das Programm 3.3 genauer betrachten, wird Ihnen auffallen, daß 

die Variable Ergebnis weggefallen ist. Statt die Resultate der einzelnen Be- 
rechnungen jedesmal in dieser Variablen zu speichern, sind dafür jetzt die 
Berechnungen in die Argumentenklammern von printf gewandert. Das ist 

möglich, weil printf im Kontrollstring erfährt, daß es eine Gleitpunktzahl 

ausgeben soll; die auszugebenden Werte erwartet es in der Argument- 

klammer hinter dem Kontrollstring. Aber es ist printf gleichgültig, ob diese 
Werte in einer Variablen zur Verfügung gestellt werden, oder ob die Be-
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rechnungen selbst dort zu finden sind. Sie können sich merken: Alles, was 

einen Wert produziert, kann printf als Argument für die Ausgabe über- 

geben werden. Neben Variablen produzieren alle Operationen einen Wert; 
außer den hier vorgestellten arithmetischen Operationen gibt es in C noch 
eine Menge anderer Operationen, die Sie noch kennenlernen werden. 

3.4 Die for-Schleife 

"Wenn der Computer schon rechnet, dann soll er auch was Ordentliches 

machen; addieren, subtrahieren und den ganzen Kram - das kann ich sel- 

ber!" 

Bitte: hier ist Programm 3.4 mit einer Menge Neuigkeiten! 

Prog. 3.4: Quadratzahlen-Tabelle; eine einfache for-Schleife. 

Anmerkung: Für die Eingabe mit iscan schreiben Sie: 

[ RERRRERERERREREEEEREREREREE 7 

printf("\nTabelle von (7): "); /* Anfangs- und Endwert */ 
iscan(&von); /* fuer Tabelle einlesen. */ 
printf("\nbis: "); /* */ 
iscan(&bis); /* */ 

Wie Sie ja wissen, besteht eine der größten Stärken eines Computers darin, 

gleiche oder ähnliche Arbeitsschritte wiederholt auszuführen. Im Programm 
3.4. wurde dieser manische Wiederholungszwang des Computers zur Erzeu- 

gung einer Quadratzahlen-Tabelle ausgenutzt. Das Programm fragt den Be- 

nutzer nach dem Zahlenbereich, für den es die Quadratzahlentabelle erstel- 
len soll und legt dann los, wie z.B. in Abbildung 3.4. 

Das Einlesen der Anfangs- und Endwerte samt Erzeugen der zugehörigen 
Meldungen ist für Sie mittlerweile nichts Neues mehr. Interessanter dürfte
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es schon sein, wie man - im dritten Programmabschnitt - mit lediglich drei 

Programmzeilen die Ausgabe von 15 Tabellen-Zeilen bewerkstelligt. 

Abb. 3.4: Eine Quadratzahlen-Tabelle 

Dazu gibt es die for-Schleife. In einer for-Schleife werden eine oder meh- 

rere Anweisungen wiederholt ausgeführt, wie z.B. die letzte printf-Anwei- 

sung im Programm 3.4. Deshalb muß in der for-Schleife gekennzeichnet 

werden, welche Anweisung wiederholt werden soll. 

Meist ist man nur an einer bestimmten Anzahl von Wiederholungen inter- 

essiert, möchte also nicht, daß die Anweisung endlos wiederholt wird (aber 

auch das gibt’s!). Im Programm 3.4 kann der Benutzer die Anzahl der 

Wiederholungen durch Eingabe von der Tastatur bestimmen; im Beispiel 

von Abbildung 3.4 fanden 15 Wiederholungen statt. Deshalb muß die for- 

Schleife Möglichkeiten haben, die Wiederholungen zu kontrollieren. 

Die Wiederholung immer wieder desselben Arbeitsschrittes ist meist nicht 

sinnvoll (aber auch das gibt’s). In der Regel wünscht man, daß bei jeder 

Wiederholung sich ein oder mehrere Werte ändern. Im Programm 3.4. än- 

dert sich bei jedem Durchgang die Zahl, deren Quadrat berechnet wird 

(und mit ihr natürlich auch das berechnete Quadrat). Deshalb muß die for- 

Schleife Möglichkeiten vorsehen, die sich ändernden Werte anzugeben. 

Wenn sich bei jedem Durchgang einer oder mehrere Werte ändern sollen, 

dann muß man auch angeben, wie sie sich ändern sollen. Im Programm 3.4 

ändert sich die zu berechnende Zahl jedesmal um den Wert 1. Das muß je- 

doch nicht so sein; anstatt nacheinander die Quadrate von 13, 14, 15 usw. 

zu berechnen, könnte man auch vorziehen, die Werte für 13, 23, 33 usw. zu 

bestimmen, also mit einer Schrittweite von 10 zu arbeiten. Deshalb muß die
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for-Schleife Möglichkeiten vorsehen, die Schrittweite(n) der sich ändernden 
Werte zu bestimmen. 

All dies erreicht die for-Schleife mit den Sprachmitteln aus der Abbildung 
3.5. Das ist wieder so ein Syntax-Diagramm, wie es Ihnen in der Abbildung 

2.8 schon einmal vorgekommen ist. Mit diesen Diagrammen beschreibt man 

den Aufbau komplizierterer Sprachmittel, wie die for-Schleife eines ist; 
zum Glück gibt es davon in C nicht allzu viele. Alles, was in diesen Dia- 
grammen in spitzen Klammern steht (wie z.B. "<initialisierung>"), bedarf 

noch weiterer Erläuterung. Alles andere (wie z.B. das Schlüsselwort for, die 
runden Klammern und Strichpunkte) müssen Sie wie im Diagramm aufge- 
führt übernehmen, wenn Sie eine for-Anweisung in eigene Programme 
einbauen wollen. 

Abb. 3.5: Anatomie einer for-Schleife 

Dem Syntax-Diagramm der Abbildung 3.5 entnehmen Sie also folgendes: 

Nach dem Schlüsselwort for muß eine runde Klammer kommen, in der 

durch Strichpunkt getrennt Informationen über die Initialisierung, die 
Kontrolle und die Re-Initialisierung der Schleife zu finden ist (was das ist? 
kommt gleich, kommt gleich!). An diese Steuer-Informationen in der run- 
den Klammer schließt sich die Anweisung an, die in der Schleife wieder- 
holt wird. Im Programm 3.4 entsprechen den einzelnen Bestandteilen fol- 

gende Komponenten: 

<initialisierung> : Zahl = von 

<kontrollbedingung> : Zahl <= bis 

<re-initialisierung> : ++Zahl 

<anweisung> : printf("\nDas Quadrat von %d ist %d",Zahl, Zahl * Zahl); 

Im Initialisierungsteil erhalten innerhalb der Schleife verwendete Variablen 
ihren Anfangswert. Das vorliegende Beispiel arbeitet in der Schleife nur 
mit einer Variablen, nämlich mit Zahl; diese erhält als Anfangswert das, 

was in der Variablen von gespeichert ist und das wiederum wurde mit scanf 
vom Benutzer abgefragt. So kommt es, daß die Quadratzahlentabelle genau 
mit der Zahl beginnt, die Sie eingeben. 

In der Kontrollbedingung wird festgelegt, wie lange die Schleife durch- 
laufen werden soll. Solange die Kontrollbedingung erfüllt ist (d.h. der dort 
stehende Ausdruck den Wert "wahr" hat), wird die von der for-Schleife 
kontrollierte Anweisung ausgeführt. Die Kontrollbedingung des Programm- 
beispiels ist im Klartext so zu lesen: "solange der in Zahl gespeicherte Wert



Einfache interaktive Programmierung 175 

kleiner oder gleich dem in bis gespeichertem Wert ist". In C schreibt man 

das so: 

Zahl <= bis 

und das ist auch gleich ein Beispiel für einen "Vergleichsoperator". So wie + 

zwei Werte nimmt und deren Summe liefert, so nimmt <= zwei Werte, ver- 

gleicht sie miteinander und liefert den Wahrheitswert "wahr", wenn der 

erste Wert kleiner oder gleich dem zweiten ist und ansonsten (wenn also der 

erste Wert größer als der zweite ist) den Wahrheitswert "falsch". 

Im Beispielprogramm hat die Variable bis ihren Wert durch Tastatureingabe 

erhalten; beim ersten Schleifendurchgang hat Zahl den Wert, den von über 

Tastatureingabe erhielt. Ersetzt man die Variablen durch ihre Momentanen 

Werte, dann ergibt sich für den Beispiellauf der Abbildung 3.4 vor dem 

ersten Durchgang: 

13 <= 28 

und weil dies tatsächlich wahr ist, wird die Anweisung durchgeführt. Wie 
jedoch sorgt man dafür, daß die Kontrollbedingung falsch wird und die 
Schleife somit abbricht? 

Durch den Re-Initialisierungsteil (was für ein Wort!) der for-Schleife! Ist 
die Anweisung nämlich einmal ausgeführt, denn tut C das, was in diesem 
Teil steht, ehe es erneut die Kontrollbedingung überprüft und gegebenen- 

falls die Anweisung der Schleife wiederholt. Und was steht da im Beispiel? 

++Zahl 

Womit Sie wieder einen Operator kennengelernt haben. Das unscheinbare 

++ heißt mit vollem Namen "Auto-Prä-Inkrement", und wenn Sie dieses 

Wort so ganz beiläufig auf der nächsten Party fallen lassen, dann sind Sie 
ein für alle mal als der Ober-Computerspezialist legitimiert (wenn man’s 

nicht versehentlich für ein Schimpfwort hält)! 

Abb. 3.6: Speicherdiagramm für +



76 Einfache interaktive Programmierung 

Trotz der furchteinflößenden Bezeichnung ist schnell gesagt, was ++ tut: es 

zählt den Inhalt einer Variablen um Eins hoch. Ist in Zahl der Wert 13 

gespeichert, dann findet sich nach Ausführung von ++Zahl dort der Wert 

14. Das zeigt auch die Abbildung 3.6. Wer’s salopper liebt, kann sagen, daß 

++ eine Variable hochzählt. Der auf Etikette bedachte Freak wird dazu 

(zum Hochzählen) "Inkrementieren" sagen, was einen Teil des Namens er- 
klärt. 

3.5 Inkrement und Dekrement 

Wer BASIC kennt, den wird die knappe Art verblüffen, mit der in C das 

Hochzählen (Inkrementieren) von Variablen möglich ist. Vermutlich hätte 
er erwartet, daß dies mit einer Anweisung wie z.B.: 

Zahl = Zahl + 1; 

bewirkt wird. Wird es auch, liebe BASIC-Bewanderte; die andere Methode 
ist jedoch nicht nur eleganter, sonder auch schneller in der Ausführung! 

Dennoch: der herkömmlichen Methode des Inkrementierens mittels Wertzu- 
weisung muß noch etwas Aufmerksamkeit geschenkt werden. Wer zum er- 
sten mal einen Ausdruck wıe den obigen sieht und dabei an die Schul- 
mathematik denkt, der wird ıhn für baren Unsinn halten. Denn wir sind 

gewohnt, das = als Gleichheitszeichen zu lesen; niemals aber ist eine Zahl 
so groß wie ihr Nachfolger! 

Sie aber wissen bereits, daß = das Zeichen für Zuweisung darstellt; in C ist 
es ein Operator, was bestimmte Folgen hat, zu denen ich noch kommen 
werde. Bei der Zuweisung wird erstmal der (in diesem Fall arithmetische) 
Ausdruck rechts vom = berechnet und dann dessen Ergebnis dem /value 

links vom = zugewiesen. Will man auf eine Variable nicht den Wert 1, son- 
dern beispielsweise 13 draufzählen, dann schreibt man einfach: 

Zahl = Zahl + 13; 

Zum ’runterzählen kann man ebenso mit der Zuweisung arbeiten: 

Zahl = Zahl - 2; 

Dies vermindert (dekrementiert) den Inhalt der Variablen Zahl um 2. Für 
den Spezialfall des Verminderns um Eins gibt es auch wieder eine Kurz- 

schreibweise: 

--Zahl;
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Das hat dieselbe Wirkung wie: 

Zahl = Zahl - 1; 

Das -- ist ein einstelliger Operator, eng verwandt mit ++ und trägt den 
schönen Namen "Auto-Prä-Dekrement". 

Für der Erhöhen bzw. Vermindern einer Variablen gibt es also ++ und --: 
aber C wäre nicht C, wenn es für die anderen Fälle nicht auch eine kür- 
zere Schreibweise gäbe: 

statt: kürzer: 

Zahl = Zahl +5; Zahl += 5; 
Zahl = Zahl - 12; Zahl -= 12; 
Zahl = Zahl * 2; Zahl *= 2; 
Zahl = Zahl / 4; Zahl /= 4; 

Sie sehen: für Zuweisungen, in denen der Wert einer (und nur einer) 
Variablen manipuliert wird (gleichgültig, mit welcher arithmetischen Ope- 
ration) gibt es in C einen spezialisierten Zuweisungs-Operator, der nicht 
nur schneller hingeschrieben ist, sondern auch für schnellere Programme 
sorgt! 

Mit diesen Zutaten ausgestattet, können Sie bereits eine Vielzahl von Pro- 
grammieraufgaben mit der for-Schleife erledigen. In der Abbildung 3.7 
sind verschiedene Varianten der for-Schleife zusamengefaßt, die jeweils 
auf unterschiedliche Art eine Integer-Variable i im Schleifenkörper mani- 
pulieren. Die Beispiele führen auch einen neuen Vergleichsoperator ein: >= 
steht für "größer-gleich". Die Kommentare erläutern die Wirkung der ein- 
zelnen Varianten: 

Abb. 3.7: Varianten der for-Schleife
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3.6 Der Profi sorgt für Sicherheit 

Obwohl das Programm 3.4 nicht sonderlich aufregend ist, lassen sich daran 
doch bereits einige wichtige Prinzipien der Software-Entwicklung demon- 
strieren. Als Programmierer sollte man nämlich stets bedacht sein, in 

seinem Programm vorhersehbare Benutzerfehler so weit als möglich abzu- 
fangen und weitestgehend zu korrigieren. Dadurch wird das Programm ro- 
buster und fehlertoleranter. Halten Sie sich an dieses Prinzip; Ihr Benutzer 
wird’s Ihnen danken. 

Ein möglicher Problempunkt des Programms 3.4 ist die Festlegung der 
Anfangs- und Endwerte der Tabelle durch den Benutzer. Der kann sich ja 
vertun und aus Versehen Anfangs- und Endwert vertauschen. Probieren Sie 
doch mal mit Ihrem Programm aus, was in diesem Fall passiert? Nichts! 
Die Kontrollbedingung der for-Schleife ist nämlich nun schon beim Ein- 
tritt in die Schleife falsch. In diesem Fall wird der Schleifenkörper gar 
nicht erst durchlaufen: die Bedingung wird vor dem erstmaligen Eintritt in 
den Schleifenkörper getestet. Diese Schleifenvariante bezeichnet der Infor- 
matiker übrigens als "abweisende" Schleife (denn es kann sein, daß sie gar 
nicht durchlaufen wird). 

Programm 3.4 wäre ein Stück benutzerfreundlicher, wenn es in diesem 
Fehler-Fall gutwillig reagieren und den kleineren Wert stillschweigend als 
Anfangs-, den größeren als Endwert heranziehen würde. Die nächste Vari- 
ante, Programm 3.5, tut genau dies. 

Prog. 3.5: Qudratzahlen-Tabelle mit Fehlersicherung
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3.6.1 Die if-Anweisung 

Die Überprüfung darauf, ob die eingegebenen Werte plausibel sind, erfolgt 

in einer if-Anweisung. Die Anatomie der if-Anweisung finden Sie in Ab- 
bildung 3.8 

if (<bedingung>) 

<anweisung> 

Abb. 3.8: Anatomie der if-Anweisung 

Mit if kontrolliert man in C-Programmen die Ausführung einer anderen 

Anweisung. Dies ist ähnlich wie bei for, das die - allerdings wiederholte - 
Ausführung einer Anweisung kontrolliert. Die Kontrolle erfolgt bei if, in- 
dem das Vorliegen einer bestimmten Bedingung überprüft wird. Diese Be- 
dingung steht in runden Klammern hinter dem Schlüsselwort if; es muß 
sich dabei um einen wahrheitswertigen Ausdruck handeln. Meist steht hier 
irgendeine Art von Wertevergleich, wie Sie es ja auch schon aus der Kon- 
trollbedingung der for-Schleife kennen. 

Ist die in runden Klammern stehende Bedingung wahr, dann wird die An- 
weisung ausgeführt, die hinter der runden Klammer folgt. Ansonsten (bei 
nicht erfüllter Bedingung) wird diese Anweisung einfach übersprungen und 
C fährt im Programm an der Stelle hinter dem gesamten if-Komplex fort. 

Die Wirkung der if-Anweisung könnte man umgangssprachlich so fassen: 

"Wenn das-und-das der Fall ist (die Bedingung erfüllt) ist, dann tue dieses- 
oder-jenes; ansonsten lasse es bleiben". | 

Übertragen auf das Programmbeispiel 3.5 hieße das: "Wenn der eingegebene 
Anfangswert größer als der eingegebene Endwert ist, dann vertausche diese 

beiden Werte, ehe du die for-Schleife ausführst". Das Zeichen > steht für 

"srößer" und ist ein weiterer Vergleichsoperator. 

Das Vertauschen zweier Variablenwerte erfordert in C drei Schritte. Denn 

würde man einfach schreiben 

von = bis; 

dann wäre der alte Wert der Variablen von verloren und könnte nicht mehr 

an bis zugewiesen werden. Deshalb wird ein Zwischenspeicher benötigt, ın 

diesem Fall die Integer-Variable zwi. Hier noch einmal die gesamte Ver- 
tauschungs-Sequenz mit Erläuterungen: 

zW1 

von 
bis 

Yon; —— Speichere alten Anfangswert 
bis; Jetzt sind Anfangs- und Endwert gleich 
zwi; Der zwischengespeicherte Anfangswert wird nun 

zum neuen Endwert. 
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Jetzt aber zu einem offensichtlichen Widerspruch: der Anatomie des if 
können Sie entnehmen, daß dieses die Ausführung genau einer Anweisung 
steuert; zum Vertauschen werden aber drei Anweisungen benötigt! Damit 
nun wieder alles seine Ordnung hat, muß man diese drei Anweisungen zu 
einer machen, indem man sie zu einem Anweisungsblock zusammenfaßt. 
Dies geschieht mit genau den selben geschweiften Klammern, mit denen 
auch der Anweisungsblock einer Funktion (und von main) umschlossen 
wird. 

Soll also eine Folge von Anweisungen syntaktisch wie eine einzige Anwei- 
sung behandelt werden, dann müssen Sie diese Anweisungsfolge mit ge- 
schweiften Klammern zu einem Block zusammenfassen. Durch diese Block- 
bildung entsteht eine sogenannte "zusammengesetzte Anweisung". Anders als 
die Einzelanweisungen müssen zusammengesetzte Anweisungen nicht mit 
einem Strichpunkt abgeschlossen werden; auch dies können Sie im Pro- 
gramm 3.5 erkennen. 

Prog. 3.6: Zeichenvariable und Zeicheneingabe
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3.6.2 Der Datentyp char: Zeichenvariablen 

Nicht nur fehlertolerant sollte man seine Programme machen; auch für Be- 

quemlichkeit muß der Programmierer sorgen. In diesem Punkt läßt das 

Quadratzahlen-Programm noch einiges zu Wünschen übrig. Denn wenn sich 
der Benutzer eine Tabelle anzeigen läßt, die mehr als 24 Zeilen umfaßt, 
dann gehen ihm wegen der Beschränkung des Bildschirms auf 25 Zeilen die 
ersten Einträge verloren. Auch erfolgt die Ausgabe so schnell, daß man 

keine Chance zum Mitlesen hat. 

Es wäre darum wünschenswert, die Ausgabe der Tabelle nach jeweils 20 
Zeilen anzuhalten, damit die Ergebnisse in aller Ruhe betrachtet werden 

können. Auf Knopf- bzw. Tastendruck sollte das Programm dann mit sei- 

ner Arbeit fortfahren. Dazu wurde das Programm 3.5. nochmals modifiziert 

(siehe Programm 3.6). 

Anmerkung: Wenn Sie mit dem ATARI-C arbeiten, dann sollten Sie - ge- 

mäß den Ausführungen im ersten Kapitel) Ihr Programm mit folgender 
Anweisung beginnen: 

#include <header.h> 

Außerdem ist in sehr frühen Compiler-Versionen die Funktion getchar( ) 
nicht in Ordnung. Sollte Ihr Programm nicht funktionieren, dann müssen 
Sie folgende Vorkehrungen treffen. An den Programmanfang (unter die 
Deklarationen) schreiben Sie 

extern long gemdos(); 

Anstelle von getchar( ) schreiben Sie 

gemdos (0x1); 

Wenn Sie die Funktion get_s aus der Abbildung 3.1 aufmerksam durch- 
gelesen haben, dann werden Ihnen diese Vorkehrungen bekannt vorkom- 

men! 

Dieses Beispiel wartet gleich mit mehreren Neuigkeiten auf. Gleich in der 
ersten Zeile finden Sie einen neue Anweisung für den Makro-Präprozessor, 

kenntlich an dem # am Zeilenanfang. Die include- Anweisung dient dazu, 
den Inhalt einer anderen Datei mit Ihrer Programmdatei zu verknüpfen. 
Sieht der Präprozessor eine include-Anweisung, dann hört er mit der ’Lek- 

türe’ Ihres Programms auf, sucht erst mal die hinter include angegebene 
Datei und liest sich diese durch. Der Dateiname muß dabei (wie im 

Beispielprogramm) mit spitzen Klammern dekoriert werden. Auch doppelte 

Anführungszeichen sind möglich, und einige Compiler reagieren unter- 

schiedlich auf diese verschiedenen Begrenzungszeichen. Im wesentlichen
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geht es hier um die Frage, in welchem Teilverzeichnis der Diskette die 
include-Datei gesucht wird. Um in diesem Punkt letzte Gewißheit zu er- 
halten, sollten Sie in der Dokumentation Ihres Systems nachsehen. 

Durch die include-Datei wird der Compiler über alle darin enthaltenen 

Definitionen informiert. Danach erst setzt er die Abarbeitung Ihres Pro- 

grammes fort. Dieses kann jetzt somit auf alle eben eingeführten Definitio- 

nen zurückgreifen. Eine include- Anweisung hat demnach den Effekt, den 

Inhalt einer anderen Datei in Ihre eigenen Datei mit aufzunehmen (engl. "to 
include" = aufnehmen). 

Anmerkung: Wenn sie in Ermangelung eines funktioneierenden scanf mit 
iscan und fscan arbeiten, dann können Sie künftig einfach die Anweisung 

#include "scanf.c" 

an den Anfang (oder das Ende) Ihres Programms schreiben und so das 
Einlesen der nötigen Definitionen dem Präprozessor überlassen. Sie sparen 
sich damit das händische Einlesen im Editor. 

In C ist es der Brauch, oft benötigte Präprozessor-Definitionen in Dateien 

zusammenzufassen, denen - aus traditionellen Gründen - meist der 

Namenszusatz .h angehängt wird. Sie haben den vollen Leistungsumfang des 

Präprozessors noch nicht kennengelernt, weswegen ich jetzt, was diese De- 

finitionen betrifft, noch nicht ins Detail gehen kann. In jedem C-System 
sind jedoch in der Datei stdio.h einige wesentliche Definitionen enthalten, 
die mit der Ein-/Ausgabe zusammenhängen (stdio ist denn auch die Ab- 

kürzung für "Standard Input/Output"). Die Funktion getchar, die weiter 
unten im Programm benötigt wird, gehört zu den in dieser Datei definier- 
ten Dingen. 

Sie sollten sich zur Gewohnheit machen, diese include-Anweisung in alle 

Ihre Programme aufzunehmen, die mit Ein-/Ausgabe zu tun haben. Das 
war zwar bei den bisherigen Programmbeispielen auch der Fall, ich habe 
jedoch darauf geachtet, nur solche Sprachmittel zu verwenden, die die 
Definitionen in stdio.h nicht benötigen. Ab jetzt jedoch wird diese 
Einleitungszeile in keinem Programm mehr fehlen. 

Es schließen sich zwei Definitionen an, mit denen in bereits bekannter 

Weise im Programm verwendeten Meldungen ein Name gegeben wird. Dies 

geschieht aus Gründen der Übersichtlichkeit. Es ist aber auch ansonsten 
keine üble Praxis, Meldungstexte auf diese Art zu definieren; so haben Sie 

sie alle übersichtlich am Programmanfang versammelt und können sie gege- 
benenfalls leicht ändern.
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Neuigkeiten gibt es auch bei den Variablendeklarationen. Das Programm 
soll ja die Bildschirmausgabe nach jeweils 20 Zeilen anhalten und erst auf 
Tastendruck des Benutzers wieder fortsetzen. In einer späteren Version des 

Programmes wird die vom Benutzer gedrückte Taste (d.h. das von ihm ein- 

gegebene Zeichen) noch weiter ausgewertet. Deshalb speichert das Pro- 

gramm diese Benutzereingabe auch ab. Dazu wird jedoch ein eigener 

Variablentyp benötigt, nämlich eine Zeichenvariable, die im Beispiel- 

programm den Namen "Eingabe" trägt. Variablen dieses Typs deklariert 

man mit dem Schlüsselwort char, einer Abkürzung des Englischen "charac- 

ter", was im Deutschen "Zeichen" bedeutet. Über Zeichen und Zeichen- 
variable werden Sie später noch detailliertere Informationen erhalten. 

Um die Ausgabe zum rechten Zeitpunkt anhalten zu können, wird inner- 

halb der for-Schleife eine Variable (mit dem Namen z/r, was ein typischer 

C-Name für einen Zähler ist) hochgezählt. Bei jedem Schleifendurchgang 
erfolgt (mit if) eine Überprüfung, ob diese Zählvariable bereits den Wert 
20 erreicht hat. Interessant ist, wie diese Abfrage vonstatten geht: 

if (zlr == 20) 

Hier haben Sie einen weiteren Vergleichsoperator. von C: die zwei Gleich- 

heitszeichen (==) dienen nämlich zum Testen auf Gleichheit! Hier liegt eine 
der beliebtesten Fallgruben für C-Anfänger, denn viele andere Sprachen, 

darunter auch BASIC, verwenden für den Gleichheitstest das einfache 

Gleichheitszeichen. Das aber ist in C ausschließlich für die Zuweisung re- 
serviert. Aus Gründen, die jetzt noch nicht dargelegt werden können, ist es 

dem C-Compiler nicht möglich, diesen Fehler durch syntaktische Über- 
prüfung abzufangen. Sollten Sie versehentlich geschrieben haben: 

if (zilr = 20) 

dann erhalten Sie keinen Hinweis bei der Programmübersetzung! Sie kön- 
nen das Programm auch laufen lassen, werden aber feststellen, daß Sıe jetzt 
bei jedem Schleifendurchgang um einen Tastendruck angegangen werden. 
Daran (spätestens) können Sie Ihren Fehler in diesem Fall erkennen. 

Deshalb der gute Rat, bei Gleichheitstest besonders in der Anfangsphase 
der C-Programmierung geradezu höllisch aufzupassen; es lohnt sich! Sollte 
(wie im vorliegenden Beispiel) mit einer Konstante verglichen werden, 
dann können Sie sich behelfen, indem Sie den Vergleich in der Form
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if (20 == zlr) 

notieren, die Konstante also zuerst hinschreiben. Vergessen Sie jetzt ein 
Gleichheitszeichen, dann wird der Fehler bei der Syntaxüberprüfung er- 

kannt, denn 20 = zir ist eine Zuweisung ohne zulässigen /value (Sie er- 
innern sich: links vom Zuweisungszeichen dürfen nur Variablen stehen). 

Ehe wir zu der vom if kontrollierten Anweisung kommen, ist noch die 
runde Klammer der for-Schleife beachtenswert. Hier werden nämlich im 
Initialisierungsteil zwei Variablen initialisiert und auch bei jedem Durch- 
gang im Reinitialisierungsteil zwei Variablen inkrementiert. In jeder der 
drei Klammer-Komponenten einer for-Schleife (also auch bei der Kon- 
trollbedingung) können mehrere Aktionen durchgeführt werden. Diese 
müssen aber dann durch ein Komma voneinander getrennt sein. C garan- 
tiert Ihnen, daß solcherart getrennte Anweisungen von links nach rechts 

berechnet werden. 

Jetzt aber zurück zur if-Anweisung. Bei jeder zwanzigsten Ausgabezeile 
wird der vom if kontrollierte Anweisungsblock ausgeführt. Nach der Aus- 
gabe einer Meldung wartet das Programm hier auf einen Tastendruck des 
Benutzers. Es tut dies, indem es die Funktion getchar( ) aufruft. Diese 
wartet, bis an der Tastatur eine Taste betätigt wurde und liefert dann als 
Wert das entsprechende Zeichen zurück. Natürlich wäre es auch möglich 

gewesen, diese Tastatureingabe über scanf (zusammen mit einer entspre- 
chenden Formatanweisung für Zeicheneingabe) zu erledigen. Doch die 
Lösung mit getchar ist einfacher. 

Anmerkung: Wenn getchar( ) nicht arbeitet, wie es sollte, dann benutzen Sie 
wie weiter oben beschrieben stattdessen gemdos(Oxla)! 

Nach Empfang des Zeichens, das sich das Programm in der Variablen "Ein- 
gabe" aufhebt, wird der Zeilenzähler auf den Wert 1 zurückgesetzt und die 
Schleife fortgesetzt. Innerhalb des Schleifenkörpers müssen jetzt mehrere 
Aktionen wiederholt werden: neben der Ausgabe der Tabellenzeilen mit 
printf eben auch die if-Anweisung zum Anhalten der Ausgabe. Dazu ist es 
wieder nötig, diese Anweisungen mit geschweiften Klammern zu einem 
Anweisungsblock zusammenzufassen. 

Im Programm 3.6. sind jetzt somit drei Anweisungsblöcke ineinanderge- 

schachtelt. Der äußerste macht den Anweisungsteil der Hauptfunktion main: 

aus; darin eingeschachtelt findet sich der Block, den for kontrolliert, inner- 
halb dessen wiederum ein von if kontrollierter Block steckt. Diese Ver- 

schachtelung wird optisch durch die unterschiedlich tiefe Einrückung der
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Blocks akzentuiert; dies ist aber wieder eine Stilfrage und nichts, was Ihnen 
C vorschreiben würde. 

Das Programm 3.7 zeigt eine weitere (und letzte) Steigerung im Komfort 
für den Benutzer. In dieser Version hat er nämlich die Möglichkeit, die 
Programmausgabe durch Betätigen einer speziellen Taste abzubrechen. Das 
kann z.B. immer dann nützlich sein, wenn das Programm mehr Quadrat- 

zahlen erzeugt, als er überhaupt anzusehen Lust hat. 

Prog. 3.7: Reaktion auf Benutzereingabe 

Wie sein Vorgänger wartet auch dieses Programm nach jeder zwanzigsten 
Zeile auf eine Reaktion des Benutzers; anders als sein Vorgänger wertet es 
sie jedoch aus. Denn wenn dieser die "A"-Taste betätigt, dann soll das Pro- 
gramm abgebrochen werden. Jetzt hat es auch einen Sinn, sich das eingege- 
bene Zeichen in einer Variablen aufzuheben, da es für den nachfolgenden 
Vergleich noch verfügbar sein muß.
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Dieser Vergleich wird von if kontrolliert. Falls der Benutzer ein "A" ein- 
gegeben hat, soll die Schleife abgebrochen werden. Nun kann es aber sein, 
daß ein "A" eingegeben wurde, aber daß es sich um den entsprechenden 
Kleinbuchstaben handelt. Da das Programm da nicht so streng sein will, 

wird auch in diesem Fall abgebrochen. Im if muß also überprüft werden, 

ob ein großes oder kleines "A" von getchar geliefert wurde. Dies schreibt 

man in C so: 

if (Eingabe == 'A' || Eingabe == 'a') 

Daran ist zuerst mal der Test auf Gleichheit mit einer Zeichenkonstanten 
interessant. Wie Sie sehen können, werden Zeichenkonstanten in einfache 

Hochkommas eingeschlossen. Dadurch ist es dem C-Compiler möglich, sie 
von einbuchstabigen Variablen zu unterscheiden. Ferner ist die Art neu, in 
der hier zwei Vergleiche miteinander verknüpft werden. Die beiden senk- 

rechten Striche stehen nämlich für das umgangssprachliche "Oder"; die vom 

if kontrollierte Anweisung wird nur ausgeführt, wenn entweder ein kleines 

"a" oder ein großes "A" in der Variablen "Eingabe" gespeichert ist. 

Damit haben Sie eine neue Art von wahrheitswertigem Operator kennenge- 
lernt. Er dient zur Verknüpfung mehrere Wahrheitswerte, im vorliegenden 

Fall für die sog. "Oder"-Verknüpfung. Mehr darüber werden Sie im näch- 
sten Kapitel erfahren. 

Wenn nun aber der Benutzer einen dieser beiden Buchstaben eingegeben 

hat, dann soll die Schleife abgebrochen werden. Wie macht man das in C? 
Ganz einfach mit break (englisch für "unterbrechen" oder "abbrechen")! 
Diese Anweisung führt, wenn sie ausgeführt wird, zum sofortigen Ver- 

lassen der Schleife, in der sie steht. Das Programm wird hinter der Schleife 
fortgesetzt; da im Beispiel 3.7 hinter der for-Schleife nichts mehr kommt, 

entspricht dies einer sofortigen Beendigung des Programms. 

3.7 Benutzerdefinierte Funktionen mit Parametern 

Die große Attraktivität von C für professionelle Programmierung rührt 

hauptsächlich von der Möglichkeit zum modularen Programmieren her. Dies 
wiederum basiert hauptsächlich auf der Verschachtelung von Funktionen. 

Neben "vorgefertigten" Systemfunktionen wie printf, scanf und getchar 

können Sie sich auch eigene Funktionen definieren. Das zweite Kapitel 
deutete dies bereits an (Programm 2.2); zu diesem Zeitpunkt war aber das
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Definieren von einigermaßen nützlichen eigenen Funktionen noch nicht 

möglich. 

Jetzt aber sind Sie so weit; Sie haben genügend Kenntnisse von C, um sich 

an diese Materie heranzuwagen. Und ganz so kompliziert ist es ja auch 
wieder nicht! 

3.7.1 Die while-Schleife 

Es wird öfter vorkommen, daß Sie - wie im Programm 3.7 - auf einen 
Tastendruck des Benutzers reagieren müssen. Viele Programme konfron- 
tieren den Anwender mit Ja/Nein-Auswahlmöglichkeiten und verfahren 
entsprechend, je nachdem, ob ein ’J oder eine andere Taste gedrückt 

wurde. Nun kann man vom Benutzer nicht verlangen, immer nur in Groß- 
buchstaben mit seinem Programm zu verkehren. Eine Lösung dieses Pro- 
blems zeigt Programm 3.7: man überprüft eben immer beide Fälle. 

Übersichtlicher aber wäre es, die Benutzereingabe erstmal (falls es nötig ist) 
in einen Großbuchstaben umzuwandeln und dann diesen für weitere Ent- 
scheidungen im Programm heranzuziehen. Sowas kann öfter gebraucht wer- 
den, und deshalb macht man es in einer Funktion. 

Die Aufgabenstellung lautet: eine Funktion zu schreiben, die ein Zeichen 
nimmt und es entweder unverändert zurückgibt, falls es sich um einen 
Großbuchstaben handelt, oder dieses Zeichen in den entsprechenden 

Großbuchstaben verwandelt und diesen zurückgibt. Programm 3.7 tut genau 
dies. 

Dieses Programm bietet eine ganze Menge an Neuigkeiten. Wenn Sie es 
laufen lassen, dann werden Sie feststellen, daß es alle Zeichen, die Sie von 

der Tastatur eingeben, in Großschreibung zurückgibt (sofern das möglich 
ist; Zahlen und Sonderzeichen passieren das Programm natürlich unverän- 
dert), bis Sie ein großes "E" eingeben. Dies ıst für das Programm das Ende- 
signal. 

Als erstes muß die Hauptfunktion main analysiert werden, da sie das allge- 
meine Verhalten des Programms bestimmt. Es sollen fortgesetzt Zeichen 
eingelesen und - in veränderter Form - wieder ausgegeben werden. Die 
fortgesetzte Wiederholung von Verarbeitungsschritten erledigt man in C be- 
kanntlich mit einer Schleife. In diesem Fall ist es jedoch nicht nötig, inner- 

halb der Schleife irgendwelche Variablen hoch- oder niederzuzählen. 
Lediglich eine Kontrollbedingung muß angegeben werden, die darüber 
wacht, daß solange mit der Schleife fortgefahren wird, bis der Benutzer ein 

großes "E" tippt.
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Prog. 3.8: Umwandlung in Großbuchstaben: toupper 

Für diese Fälle ist die for-Schleife viel zu ausdrucksstark, weswegen C 

dafür eine eigene Schleife bereithält, die while-Schleife. Eine Aufgaben- 
stellung, die sich allgemein so umreißen läßt: 

solange eine Bedingung wahr ist 

tue dieses-oder- jenes 

wird am elegantesten mit diesem Schleifentyp formuliert. Eine Problem- 
beschreibung wie die obige, die zwar im Klartext gehalten, aber bereits an 

die Programmstruktur angelehnt ist, nennt man übrigens "Pseudocode"-Be- 
schreibung. Man kann diesen Pseudocode schrittweise verfeinern, ihn im- 
mer enger an des endgültige Programm anlehnen. Die Pseudocode-Be- 
schreibung der main-Funktion von Programm 3.8 lautet etwas detaillierter: 

solange (das eingelesene Zeichen ungleich 'E' ist) 

gib das Zeichen in Großschreibung aus 

Ähnlich wie bei der while-Schleife steht hier die Kontrollbedingung bereits 
in runden Klammern; das, was die Schleife kontrolliert, steht eingerückt 

eine Zeile tiefer.
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Die Kontrollbedingung der while-Schleife hat’s in sich; in ihr ist nämlich 
das Einlesen eines Zeichens, das Zuweisen an eine Variable und der Ver- 
gleich mit einer Zeichenkonstante in sehr kompakter Form integriert. Wie 
bereits im Programm 3.7 wird das Zeichen von der Tastatur mit getchar 
eingelesen. Da es später noch gebraucht wird (zum Ausgeben nämlich), 

wird es auch gleich an eine Variable c zugewiesen (C-Programmierer lieben 
es, Variablen gelegentlich kurz und knapp zu benamsen!). 

Die Zuweisung aber ist in C ein Operator. 

Sie erinnern sıch: Operatoren produzieren Werte. Am klarsten wird dies bei 

den Paradebeispielen für Operatoren, der Addition, Subtraktion etc. Die 

Addition nimmt zwei Zahlen und produziert daraus eine neue, nämlich 

deren Summe. Diese (die Summe) ist der Wert der Operation, und dieser 

Wert kann weiterverwendet werden. Weiterverwendet wurde er bisher meist 

für eine Zuweisung. 

Doch auch diese produziert einen Wert. In C ist der Wert einer Zuwei- 

sungsoperation das, was an den /value zugewiesen wird. Hierzu ein Beispiel: 

in dem C-Ausdruck 

a=3+4; 

produziert der arithmetische Operator + den Wert 7, welcher weiterverwen- 

det und an die Variable (den /value) a zugewiesen wird. Dies besorgt - wie 
Sie bereits wissen - der Zuweisungsoperator =; aber auch = produziert 

einen Wert, nämlich ebenfalls 7, und diesen könnte ich weiterverwenden, 

etwa in folgender Weise: 

b = (a = 3 + 4); 

Diese Mehrfachzuweisung, in der a und 5 in einer einzigen Anweisung der 

Wert 7 zugewiesen wird, ist nur deshab möglich, weil C die Zuweisung als 
Operator behandelt und dieses deshalb wertbehaftet ist. Das unterscheidet 

sich von den Konventionen, die in BASIC oder Pascal befolgt werden, in 

denen die Zuweisung ’wertlos’ ist. 

Noch ein weiteres Beispiel: 

c= (1+ (b= (1+ (a = 3 + 4)))); 

Hier erhält - wie bereits in den letzten beiden Beispielen - a den Wert 7 

durch Addition. Der Wert der Zuweisung wird jetzt aber nicht sofort für 
eine weitere Zuweisung herangezogen. Vielmehr geht er in eine Addition 
ein, die das Ergebnis 8 liefert, welches b zugewiesen wird. Die Zuweisung 
an b hat ebenfalls einen Wert (nämlich 8), der wieder für eine Addition 
verwendet wird, die das Ergebnis 9 liefert, welches nun c zugewiesen wird.
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Ich habe in diesen Beispielen freizügigen Gebrauch von runden Klammern 

gemacht, um die Verhältnisse für Sie etwas durchsichtiger zu gestalten: jede 

Zuweisung hat ihr eigenes Klammerpaar. C legt Ihnen beim Gebrauch der 

Klammern keine Beschränkung auf; gerade für den Anfang würde ich 

Ihnen raten, lieber zu viel als zu wenig Klammern zu verwenden. Wer 

gerne ohne Klammern programmiert, der muß die Ausführungen im Kapi- 

tel 4 abwarten. 

Nach Ausführung dieser Anweisung liegen somit folgende Verhältnisse vor: 

a hat den Wert 7 

b hat den Wert 8 

c hat den Wert 9 

Zurück zum Programm 3.8; auch hier wird der Wert einer Zuweisung 

weiterverwendet, diesmal jedoch für einen Vergleich. Mit c = getchar() 

bewirkt man ja, daß c als Wert das eingelesene Zeichen erhält; wie Sie jetzt 

wissen, ist dieses eingelesene Zeichen zugleich auch Wert der Zuweisung. 

Deshalb kann man den folgenden C-Ausdruck 

(c = getchar()) != 'E! 

so lesen: 

das eingelesene (und in C gespeicherte Zeichen) ist ungleich dem Buchstaben "E" 

vorausgesetzt, man weiß, daß in C für das Testen auf Ungleichheit der 

Operator /= geschrieben wird. Noch ein Wort zu den Klammern: die Zu- 

weisung ist eingeklammert (und muß es in diesem Fall auch sein; warum, 

wird später noch erklärt). Ein weiteres Klammerpaar wird durch getchar 

eingeführt, das eine Funktion ist und deshalb stets als Zeichen seines Stan- 

des mit Klammern geschmückt sein muß (auch wenn in denen nichts drin- 

steht!). Die Abbildung 3.9 legt noch einmal die Bestandteile dieser kom- 

Abb. 3.9: Anatomie einer komplexen Kontrollbedingung 

Ebenso wie die for-Schleife kontrolliert auch die while-Schleife eine An- 

weisung (oder, falls nötig, einen Anweisungsblock). Die Anweisung im 

Programm 3.8 soll dafür sorgen, daß das soeben eingelesene Zeichen in
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Großschreibung wieder ausgegeben wird. Dazu braucht’s zwei Ingredien- 
zien: etwas, das das Zeichen in Großschreibung umwandelt und etwas, das 

das Umwandlungs-Ergebnis ausgibt. 

Für die zweite dieser Aufgaben hält C (genauer: die C-Bibliothek) die Sy- 

stemfunktion putchar bereit. Dieser gibt man ein Zeichen, und sie bringt es 

auf den Bildschirm. Schreiben Sie also in einem Programm 

putchar('!0'); 

dann sehen Sie als Wirkung dieser Anweisung ein großes "O" auf Ihrem 
Bildschirm. Wohlgemerkt: putchar kann nur mit Zeichen etwas anfangen. Es 

hat keinen Sinn (und zeitigt im Programm die seltsamsten Ergebnisse), ihm 

eine Zeichenkette (einen String) zum Ausgeben vorzulegen. Schreiben Sie 
also keinesfalls etwas wıe das Folgende: 

putchar("OTTO"); /* FALSCH!!! */ 

Hierfür (zum Ausgeben eines Strings) müssen Sie vorläufig - Sie werden 
auch dafür etwas anderes kennenlernen - das altbewährte printf heran- 

ziehen. 

Im Programm 3.8 soll aber nicht irgendein Zeichen ausgegeben werden, 
sondern das umgewandelte Eingabezeichen. Dazu basteln wir uns eine eige- 

nen Umwandlungsfunktion (mit dem sinnfalligen Namen toupper); wie das 

~ geht, wird im nächsten Abschnitt beschrieben. 

Aber was soll das sein: putchar(toupper(c))? 

Es ıst ein Beispiel für die Verschachtelung von Funktionen. 

3.7.2 Was ist eine Funktion? 

Dies ist der rechte Augenblick, nochmal vom Wesen und Wirken der Funk- 
tionen zu reden. Vielleicht geht es Ihnen wie mir: bei dem Wort "Funktion" 
fühlte ich mich lange an schmerzhafte Erfahrungen mit der Schulmathe- 
matik erinnert, dachte an endlose Rumrechnereien, Differentiale und Inte- 

grale und was der Unerfreulichkeiten mehr sind. Doch dabei sind Funktio- 
nen etwas ganz harmloses. 

Dem Mathematiker ist alles eine Funktion, was aus einem oder mehreren 

Dingen ein anders macht. Genaugenommen ist also sogar ein Backofen eine 
Funktion, denn er macht aus einem bläßlichen Stück Teig einen duftenden 

Kuchen. Oder: eine (berufliche) Beförderung ist eine Funktion, denn sie 
macht aus einem armen Menschen einen weniger armen Menschen. Leider 

beschäftigt sich der Mathematiker meist nicht mit so handfesten Dingen; er
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liebt die Zahlen und betrachtet deshalb hauptsächlich Funktionen, die aus 

einer oder mehreren Zahlen eine neue Zahl machen, darunter so gräßliche 

(oder nützliche Dinge; je nachdem, wie man’s sieht), wie die Sinus-Funk- 

tion, die aus einem Winkel eine Verhältniszahl zweier Strecken macht - 

aber sprechen wir nicht mehr davon! 

Für den Funktionsbegriff, wie er in der C-Programmierung verwendet 

wird, sind ohnehin die "Äußerlichkeiten" der Funktionen wichtiger: sie tun 

Dingen ’etwas an’ (sprich: haben Argumente) und sie liefern ein Ergebnis 

(sprich: haben einen Wert). 

Das tun jedenfalls die normalen Angehörigen der Funktionsfamilie. Natür- 

lich gibt es auch hier Abweichler: Funktionen, die keine Argumente haben 

(getchar ist ein Beispiel dafür), solche, die keinen Wert zurückliefern 

(printf gehört zu ihnen) und solche, die weder Argument noch Wert auf- 

weisen (wie das läppische fue_nichts aus dem zweiten Kapitel). 

Aber die normale Funktion mit Argument(en) und Wert kann man sich 

graphisch mit dem berühmten schwarzen Kästchen veranschaulichen: es hat 

einen oder mehrere Eingänge und (höchstens) einen Ausgang. Die Abbil- 

dung 3.10 zeigt das Beispiel einer Funktion mit drei Eingängen (drei Ar- 

gumenten). 

Abb. 3.10: Black-Box-Diagramm einer Funktion 

Möchte man das Diagramm einer bestimmten Funktion zeichnen, dann gibt 

man an, was sie an ihrem Eingang (bzw. ihren Eingängen) erwartet und 

was sie am Ausgang liefert. In Abbildung 3.11 sehen Sie das "Black-Box"- 

Diagramm für die Funktion toupper. Sie hat als Argument und Wert Daten 

vom Typ "Zeichen" (char); dies steht unter den Ein- bzw. Ausgangspfeilen. 

Die Beschriftung auf den Pfeilen gibt nochmal genauer an, um was für 

Zeichen es sich dabei handelt. 

Abb. 3.11: Black-Box-Diagramm der Funktion toupper
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Etwas anders verhält es sich mit den Funktionen getchar und putchar. Die 
erste hat kein Argument und nur einen Wert, die zweite hat ein Argument, 
aber keinen Wert. Wenn Sie also putchar anwenden, dann erzeugen Sie da- 

mit zwar eine Bildschirmausgabe, bekommen aber von dieser Funktionen 

keinen weiterverwendbaren Wert zuriickgeliefert. Dies verdeutlicht noch 
einmal die Abbildung 3.12. | 

Abb. 3.12: Black-Box-Diagramm von getchar und putchar 

Hat man mehrere dieser schwarzen Kästchen und stimmen die Ein- und 

Ausgänge der Funktionen in ihrem Typ überein, dann hindert einen nichts 

daran, diese ’hintereinanderzuhängen’ oder ’zusammenzuschalten’. So kann 

man durch Zusammenschalten von toupper und putchar die Ausgabe eines 

in Großschreibung umgewandelten Zeichens bewirken. Dies veranschaulicht 

die Abbildung 3.13. 

Abb. 3.13: Hintereinanderschalten von Funktionen 

Genau dieses Hintereinanderschalten von Funktionen geschieht auch in der 

while-Schleife des Programms 3.8. Nur schreibt man es da anders. Was in 
der Grafik durch Hintereinanderschalten ausgedrückt ist, bewirkt man ın C 

durch Ineinanderschachteln der Funktionen: mit 

putchar(toupper(c)) 

drückt man also aus, daß die Funktion putchar das ausgeben soll, was ihr 

die Funktion toupper liefert, dies ıst das Argument von putchar. toupper 
wiederum hat als Argument ganz einfach eine Variable (die ihren Wert 

durch Zuweisung erhalten hat). 

3.7.3 Der Aufbau einer Funktionsdefinition 

Systemfunktionen - also solche Funktionen, die Sie als Programmierer mit 

Ihrem C-Compiler hinzuerworben haben und die in der Standardbibliothek 

enthalten sind, wie etwa printf, getchar und putchar - sind aus Pro- 

grammierersicht wirklich Black Boxes: Sie müssen nur wissen, welche
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Argumente sie verlangen und welchen Wert sie produzieren. Aber wie sie 

ihre Arbeit tun, das kann Ihnen gleichgültig sein. 

Anders bei selbstgeschriebenen Funktionen; da muß das schwarze Kästchen 

von Ihnen zusammengeschraubt werden, Sie müssen also über das Funktio- 

nieren der Funktion Bescheid wissen. Wie man so etwas macht, zeist Ihnen 

Programm 3.8. 

Sie wissen ja bereits aus Kapitel 2, daß man sich in C eigene Funktionen 

definieren kann. Hier haben Sie das erste Beispiel einer vollwertigen Funk- 

tion, die ein Argument hat und einen Wert zurückgibt. Die Definition einer 

solchen Funktion folgt dem Aufbau, wie er in Abbildung 3.14 zu sehen ist; 

nicht erschrecken! 

Abb. 3.14: Anatomie einer Funktionsdefinition 

Ich habe die einzelnen Komponenten der Abbildung numeriert und werde 

sie nun einzeln durchsprechen. 

1. Funktionen geben im Normalfall einen Wert zurück; dieser Wert ist von 

einem bestimmten Datentyp (char im Beispiel toupper) und das muß dem 

Compiler mitgeteilt werden. Deshalb werden Funktionsdefinitionen mit 

einer Datentyp-Deklaration begonnen, ähnlich wie bei Variablen eben- 

falls der Typ deklariert werden muß. 

2. Dann hat eine Funktion natürlich auch einen Namen; für die Bildung 

von Funktionsnamen gelten dieselben Gesetzmäßigkeiten wie für die 

Variablennamen. 

3. Funktionen tun Daten etwas an, oder, vornehmer: sie haben Argumente. 

Bei der Definition der Funktion müssen Sie natürlich angeben, wieviele 

Argumente die Funktion haben soll. Sie tun das, indem sie in der Defi- 

nition für die zu erwartenden Argumente Namen vergeben; diese Argu- 

mentname der Definition nennt man auch "formale Parameter". Hat eine
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Funktion mehrere Argumente, so müssen Sie auch mehrere formale 

Parameter angeben, die dann durch Komma zu trennen sınd. Im Bei- 
spielprogramm habe ich für den formalen Parameter von foupper den 
Namen zei gewählt (was an "Zeichen" erinnern soll). Für Parameter- 

namen gelten dieselben Gesetzmäßigkeiten wie für alle Namen ın C. 

4. Formale Parameter haben viel mit Variablen gemeinsam: sie sind die- 
jenigen Speicherstellen, in denen eine Funktion bei ihrem Aufruf die 

Daten empfängt, mit denen sie arbeiten soll. Ähnlich wie Variablen 
müssen sie daher auch deklariert werden. Im vierten Teil einer Funkti- 
onsdefinition teilen Sie deshalb dem Compiler mit, von welchem Daten- 

typ die Argumente sind, die die Funktion in ihrem formalen Parameter 
empfängt. Die Deklaration der Parameter muß vor dem Anweisungs- 

block der Funktion hingeschrieben werden. 

Die Parameter einer Funktion sind streng lokal. Das bedeutet, daß - 

gleichgültig, wie sie heißen - niemals ein Namenskonflikt mit Variablen 

auftreten kann, die in einer anderen Funktion deklariert sind. Ich hätte 

statt des Namens zei ebensogut c verwenden können, obwohl es auch in 

der Hauptfunktion main eine Variable mit diesem Namen gibt. Der 

Compiler wäre dadurch nicht durcheinandergekommen: das c in der 
Funktion toupper wäre für ihn eine völlig andere Variable als das c in 
main. Ein Beispiel dafür bietet die zweite selbstdefinierte Funktion is- 

lower. Genaueres über diese Materie finden Sie im Kapitel 6.1 

5. Natürlich muß eine Funktion auch was tun. Was sie tut, steht im An- 
weisungsblock. Dem Anweisungsblock von foupper gilt jetzt die Auf- 
merksamkeit des nächsten Unterkapitels. 

3.7.4 Von Zeichen und Zahlen 

In Pseudocode ausgedrückt, sieht die Aufgabe der Funktion foupper so aus: 

wenn (das Argument Zei ist ein Kleinbuchstabe) 

wandle es um in Großschreibung und gib es zurück; 
ansonsten 

gib es unverändert zurück; 

Die Aufgabe, einen Kleinbuchstaben zu erkennen, wird in bester arbeits- 
teiliger Manier auf eine weitere selbstgeschriebene Funktion islower ab- 
geschoben, zu der ich noch kommen werde. 

Daß das umgangssprachliche "wenn...dann" in C mit if ausgedrückt wird, 

ist bereits bekannt. Die erste Zeile des Pseudocodes kann daher so neu- 

formuliert werden: 

if (islower(zei))
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Aber hier hat man es ja nicht alleine mit "wenn...dann" zu tun. Vielmehr 

muß in der Funktion eine (und nur eine) von zwei möglichen Aktionen 

ausgewählt werden; die andere muß unterbleiben. Dieses "wenn ... dann ... 
ansonsten" heißt in C if...else; der Pseudocode kann also wie folgt ver- 

feinert werden: 

if Cislower(ze1)) 
"wandle es um in Großschreibung und gib es zurück"; 

“else 
"gib es unverändert zurück"; 

(Anmerkung: Was noch nicht fertiger C-Code ist, habe ıch in Anführungs- 
zeichen geschrieben). Von den verbleibenden zwei Schritten ist am leich- 
testen der zweite erklärt. Hier geht es um die Frage, wie man dafür sorgen 
kann. daß eine Funktion einen bestimmten Wert zurückgibt. "Zurückgeben" 
heißt im Englischen "return", und ebenso nennt sich auch die entsprechende 

Anweisung: 

if Cislower(zei)) 
"twandle es um in Großschreibung und gib es zurück!" 

else 

return (zei); 

Die return-Anweisung hat eine zweifache Wirkung. Wird sie bei der Pro- 
grammausführung erreicht, dann wird sofort die gerade ausgeführte Funk- 
tion (im Beispiel toupper) verlassen und die Kontrolle über die Programm- 
ausführung geht an die Stelle 1m Programm zurück, die die Funktion ge- 
rufen hat (im Beispiel putchar innerhalb von main). Außerdem wird das, 
was in den Klammern hinter return steht, als Wert an die aufrufende Stelle 

übergeben. | 

In den Klammern kann einfach eine Variable stehen, aber auch ein beliebig 

komplexer Ausdruck, der einen Wert produziert. Ein Beispiel dafür finden 

Sie im if-Zweig der Funktion toupper. Um dies zu verstehen, sind ein paar 

Worte darüber nötig, was in C ein Zeichen ist. 

Im Inneren des Computers gibt es nur Zahlen; nichts anderes kann er ver- 

arbeiten. Um dennoch mit Zeichen umgehen zu können, greift man zu 

einem Trick: man codiert die Zeichen, faßt sie in einer Codetabelle zu- 

sammen, in der jedes Zeichen seinen Platz hat, so daß man sie über die 
Platznummer identifizieren kann - und schon hat man die benötigten Zah- 

len. 

Wie die allermeisten Home- und Personalcomputer arbeitet der ATARI mit 

einer genormten Codetabelle, dem American Standard Code for Information 

Interchange (ASCII-Code). Die ASCII-Norm definiert 128 Zeichen: Zif- 
fern, Sonderzeichen, Groß- und Kleinbuchstaben und einige Steuerzeichen
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für periphere Geräte. Darüber hinaus hält der ATARI weitere 128 Zeichen 

bereit, wie z.B. Grafikzeichen, nationale Sonderzeichen, griechische und 

mathematische Symbole, die jedoch nicht genormt sind. Die interne Code- 
tabelle des Atarı umfaßt somit 256 Zeichen, von denen die ersten 128 Po- 

sitionen international genormt sind. 

Was für den Menschen ein Zeichen ist, ist für den Computer lediglich eine 

Zahl zwischen 0 und 255 (das erste Zeichen der Codetabelle besetzt die 
Position 0; in der EDV liebt man es ohnehin, bei Null zu beginnen). So ist 

es in allen Programmiersprachen; C ist jedoch einzigartig, weil es dem Pro- 

grammierer erlaubt, diese Zeichen-Zahlen mit den üblichen arithmetischen 

Operationen zu traktieren. Zu einem sichtbaren Zeichen werden die Zahlen 

erst wieder, wenn der Computer sie an ein Ausgabegerät schickt (zum 
Beispiel mit putchar an den Bildschirm). Dieses weiß dann, daß es die 
Zahlen umzuwandeln hat in die für den Menschen lesbaren Buchstaben. 

In der ASCII-Tabelle sind die Buchstaben alphabetisch sortiert; außerdem 
kommen die Großbuchstaben vor den Kleinbuchstaben. Die Großbuchsta- 
ben "A" bis "Z" nehmen die Positionen 65 bis 90 ein, die Kleinbuchstaben 

"a" bis "zZ" findet man zwischen 197 und 122. Um von einem Kleinbuchsta- 

ben zu dem entsprechenden Großbuchstaben zu kommen, braucht man da- 

her nur die Distanz zwischen diesen beiden Tabellenausschnitten vom 

Kleinbuchstaben zu subtrahieren. Diese erhält man ganz einfach, indem 
man den Zahlenwert der Zeichenkonstante ’A’ von dem der Konstante ’a’ 

subtrahiert: ’A’ - ’a’. Dies ergibt den negativen Wert -32, weswegen ich 

auch in toupper schreiben könnte: © 

return (zei - 32); 

Aber dann hätten Sie nicht so viel über die Zeichen-Arithmetik gelernt! 

Daß man in C mit Zeichen nicht nur Rechnen, sondern daß man auch die 

üblichen Vergleichsoperationen darauf anwenden kann, zeigt die Funktion 
islower. Die überprüft einfach, ob ihr Argument sich im Tabellenbereich 
für Kleinbuchstaben aufhält. In Pseudocode: 

das Zeichen liegt zwischen 'a' und 'z' 

bzw., in verfeinerter Version: 

das Zeichen ist größer-gleich ‘a! 

UND das Zeichen ist kleiner-gleich 'z! 

UND schreibt man in C mit &&; somit erhält man: 

(c >= !a! && c <= !A')
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Das Resultat dieses Vergleichs (entweder "wahr" oder "falsch") wird als 

Wert der Funktion zurückgegeben. Die Wahrheitswerte haben in C übrigens 

den gleichen Datentyp wie die ganzen Zahlen. Deswegen ist der Typ der 

Funktion islower auch int. 

Noch etwas: die Funktionen foupper und islower müssen bei einigen C- 
Compilern nicht selbst definiert werden. Sie sind in diesen Systemen Be- 
standteil der Standard-Bibliothek. In dem C-Compiler, der Bestandteil des 

ATARI-Entwicklungssystem ist, waren Sie jedoch zum Zeitpunkt der Er- 
stellung dieses Buches (Winter 1985) noch nicht vorhanden. Sie sollten also 

erst einen Blick in Ihre Systemdokumentation werfen, um sich bei der 

praktischen Arbeit unnötigen Mehraufwand zu ersparen.
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4 Datentypen, Operatoren und Kontrollstrukturen 

In den letzten beiden Kapiteln wurde bereits eine Vielzahl von Sprach- 
elementen von C vorgeführt. Das vierte Kapitel hat die Aufgabe, dieses 
Material zu vervollständigen und zu systematisieren. 

4.1 Datentypen 

Variablen und selbstdefinierte Funktionen, die einen Wert zurückgeben, 
müssen hinsichtlich ihres Datentyps deklariert werden. Dazu muß der Pro- 
grammierer wissen, welche elementaren Datentypen es in C gibt. Hierbei 
erscheint das Angebot von C auf den ersten Blick recht karglich, denn die 
Sprache kennt nur Zahlen und Zeichen (und Zeiger auf diese Datentypen; 
aber dies ist Gegenstand eines eigenen Kapitels). Wie sich aber noch zeigen 
wird, ist dies völlig ausreichend für alle Programmieraufgaben. Außerdem 
entspricht es der Philosophie von C, nach der die Sprache möglichst eng an 
die Fähigkeiten der Maschine angelehnt sein soll, um dem Programmierer 
maximale Kontrolle darüber zu erlauben. 

Die Schlüsselworte, mit denen man Daten eines elementaren Datentyps 
deklarieren kann, finden Sie in Abbildung 4.1. Die Tabelle ist in zwei Teile 
gegliedert; im ersten Teil finden Sie die eigentlichen elementaren Daten- 
typen mit dem zugehörigen Schlüsselwort für die Deklaration. Die 
Schlüsselworte im zweiten Teil sind Modifikatoren, mit denen die elemen- 
taren Datentypen genauer bestimmt bzw. eingeschränkt werden können. 



100 Datentypen, Operatoren und Kontrollstrukturen 

Bei jedem dieser Datentypen muß man sich zwei grundsätzliche Fragen 
stellen: wie sehen Angehörige dieses Datentyps für den Menschen aus, und 

wie sieht sie die Maschine? 

4.1.1 Zeichen 

Zeichen sind die elementaren Bausteine unserer Kommunikation mit dem 

Computer. Wir unterteilen die Zeichen in mehrere Kategorien: Buchstaben 

(klein-und großgeschrieben), Ziffern (0,1,2,...9) und Sonderzeichen (für die 

Interpunktion, aber auch Klammern, mathematische Symbole usw.). Das 

sind die Zeichen, die Sie auf der Tastatur Ihres ATARI finden, auf den 

Tasten, die bei Betätigung (alleine oder zusammen mit den Umschalttasten 

Shift und Alternate) ein sichtbares Ergebnis auf dem Bildschirm zeitigen. 

Daneben gibt es aber auch noch Zeichen, die man nicht sehen kann. Diese 

"Zeichen" zu nennen ist etwas ungewöhnlich; genaugenommen sind es sog. 

"Steuerzeichen". Sie dienen der Steuerung peripherer Geräte, sorgen etwa 

dafür, daß Ihr Terminal piepst oder daß am Bildschirm oder Drucker ein 

Zeilen- oder Seitenvorschub erzeugt wird. Als Programmierer müssen Sie 

wissen, wie Sie gewöhnliche Zeichen und Steuerzeichen notieren (um sie als 
Konstanten in Ihren Programmen verwenden zu können). 

Zeichen können als Konstanten in Programmen benötigt werden. Ist ein 

Zeichen darstellbar (also kein Steuerzeichen), so wird es als Konstante ein- 
fach zwischen einfache Anführungszeichen gesetzt; hier einige Beispiele: 

'A' /* Buchstabe */ 

‘7! /* Ziffer */ 

rel /* Semikolon */ 

mo /* Leerzeichen */ 

a /* Unterstrich */ 

Da die einfachen Anführungszeichen als Begrenzer für Zeichenkonstanten 

dienen, ist es nicht ohne weiteres möglich, ein einfaches Anführungs- 

zeichen selbst als Zeichenkonstante hinzuschreiben. Dafür und für die 

nicht-darstellbaren Zeichen benutzt man den bereits im Kapitel 2 im Zu- 

sammenhang mit printf vorgestellten Escape-Mechanismus zur Ersatzdar- 

stellung. Auch hierzu noch einige Beispiele: 

me /* Einfaches Anfuehrungszeichen */ 
\n! /* Neue Zeile */ 

NN /* Der umgekehrte Schraegstrich */ 
'\7! /* Der Atari piepst */ 
‘\101! /* Dasselbe wie 'A! */ 

Die ASCII-Tabelle (siehe Kapitel 3) umfaßt 32 Steuerzeichen; einige dieser 
Steuerzeichen (z.B. Neuzeile, Tabulator) haben in C einen eigenen (ein- 
buchstabigen) Namen; dies zeigt Ihnen die Tabelle der Abbildung 2.7. Die
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meisten Steuerzeichen sind aber anonym. Will man sie dennoch darstellen, 

dann benutzt man die Methode, die das letzte Beispiel illustriert: hinter den 

umgekehrten Schrägstrich schreibt man eine dreistellige Zahl, die die Posi- 

tion des gewünschten Zeichens in der ASCII-Tabelle darstellt. Dummer- 

weise muß man diese Zahl in Oktaldarstellung hinschreiben (das oktale 

Zahlensystem ist der Favorit der UNIX-Hacker). Aber keine Angst: die 

ASCII-Tabelle im Anhang des Buches enthält für jedes Zeichen auch die 

Oktalwerte, die Sie also nur dort nachzusehen brauchen. Durch Angabe 

einer oktalen Tabellenposition erreichen Sie übrigens auch die nicht-stan- 

dardisierten oberen 128 Zeichen (Grafikzeichen etc.) des Atari-Zeichen- 

satzes. Das Programm 4.1 gibt Ihnen ein Beispiel für die Verwendung von 

Zeichenkonstanten und insbesondere für die Ersatzdarstellungen. 

Prog. 4.1: Zeichenkonstanten 

Was für den Menschen ein Zeichen ist, das ist für den Computer eine Zahl; 

im Kapitel 3 wurde dieser Sachverhalt bereits erwähnt. Da es im Zeichen- 

satz des ATARI insgesamt 256 Zeichen gibt, muß der Computer zur Spei- 

cherung eines Zeichens soviel Platz im Arbeitsspeicher reservieren, daß 

Zahlen zwischen 0 und 255 darin dargestellt werden können. Dazu benötigt 
man bekanntermaßen 8 Bits oder ein Byte. Somit kann man zusammenfas- 

sen: zur Speicherung eines Zeichens reserviert der C-Compiler ein Byte; für 

den Computer ist ein Zeichen nichts anderes als eine Zahl zwischen 0 und 

255. Der Zahlenwert bezieht sich auf die Position des Zeichens in der 

Codetabelle. 

Diese enge Verwandschaft zwischen Zahlen und Zeichen geht sogar soweit, 

daß man C anstelle von Zeichen auch Zahlen unterschmuggeln kann (vor- 

ausgesetzt man sorgt dafür, daß sich diese Zahlen im erlaubten Bereich 

zwischen 0 und 255 bewegen). Dies ist der Grund, warum das Programm
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4.2 in einer for-Schleife alle abdruckbaren Zeichen ausgibt (diese beginnen 

ab der Position 32 mit dem Leerzeichen), obwohl in der for-Schleife eine 

Integer-Variable hochgezählt und in der Kontrollbedingung mit einer 

Zahlenkonstante verglichen wird. 

Prog. 4.2: Zusammenhang von Zeichen und Zahlen 

Eine Anmerkung zu diesem Programm ist jedoch nötig: dies ist kein por- 

tabler Programmierstil. Sie können Programme, die mit der absoluten Posi- 

tion von Zeichen in der Codetabelle arbeiten, nur auf solche Rechner 

übertragen, die genau die gleiche Codetabelle wie Ihr Computer verwenden. 

Bezüglich der ersten 128 Zeichen sollte es da wegen der ASCII-Norm je- 

doch keine Schwierigkeiten geben. 

4.1.2 Integers 

Integers sind ganze Zahlen. Sie sind in C in mehreren Geschmacksrichtun- 

gen erhältlich. Mit dem Schlüsselwort int werden vorzeichenbehaftete ganze 

Zahlen deklariert, die sich (auf dem ATARI) im Bereich zwischen - 32768 

und +32767 bewegen. 

Zur Darstellung eines Werts vom Typ int benötigt die Maschine 16 Bit bzw. 
zwei Byte an Speicherplatz. Das höchstwertige Bit (Bit 15) ist dabei für die 

Darstellung des Vorzeichens reserviert (Bit 15 gesetzt bedeutet: die Zahl ist 

negativ; Bit 15 nicht gesetzt signalisiert eine positive Zahl). Die Bits 14 mit 

0 im Byte verbleiben somit für die Darstellung des Zahlenbetrags, wobei 

negative Zahlen im Zweierkomplement dargestellt sind. 

Wenn Sie in einem Programm keine positiven Zahlen benötigen, dann kön- 

nen Sie zu dem Datentyp unsigned int greifen (das Englische unsigned be- 

deutet "vorzeichenlos"). Auch eine unsigned int benötigt 16 Bits (zwei Byte) 

zu ihrer Speicherung, die jedoch allesamt zur Darstellung des Zahlenbe- 

trages verfügbar sind (ein Vorzeichenbit wird ja nicht benötigt). Damit
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können Daten vom Typ unsigned int Werte zwischen 0 und 65535 anneh- 

men. 

Wie ihr Name schon sagt, kann eine unsigned int nicht negativ werden. 

Hierin liegt eine Gefahr, wenn man Variablen dieses Typs in Kontrollbe- 
dingungen von Schleifen benutzt. Was passiert, wenn folgendes Programm- 
fragment ausgeführt wird? 

main() 

{ unsigned int i; 

for (i = 20; i >= 0; --i) 

> 

Man könnte annehmen, daß in diesem Beispiel die for-Schleife insgesamt 

21 mal durchlaufen wird. Aber da ist man einem Irrtum aufgesessen. Zwar 
wird die Schleifenvariable gegen 0 gezählt. Wenn sie jedoch den Wert 0 
erreicht hat und noch einmal dekrementiert wird, dann ist das Ergebnis 
keinesfalls -1 (und das Endekriterium für die Schleife somit erfüllt). Statt- 
dessen wird C versuchen, das sich beim Dekrementieren von 0 ergebende 
Bitmuster (16 binäre Einsen) als positive Zahl zu interpretieren (als den 

Wert 65535): Sie sind in einer Endlosschleife gefangen! 

Wem der Wertevorrat des Datentyps unsigned int immer noch zu wenig ist, 

der sollte mit Jong int arbeiten (englisch Jong bedeutet "lang"). Für eine 

"lange Integer" reserviert der Computer 32 Bits oder 4 Byte und ermöglicht 

Ihnen so einen Wertevorrat von -2.147.483.649 bis +2.147.483.648. 

Die Modifikatoren unsigned und long können auch ohne das Schlüsselwort 

int hingeschrieben werden. Es sind also in einem Programm als Deklaratio- 
nen äquivalent: 

long int und long 

unsigned int und unsigned 
short int und int 

Letzteres ist der Fall, weil C eine Integer ohnehin als short int vereinbart, 

wenn Sie nichts anderes angeben: short ist der Standard-Typ von C. 

Integer-Konstanten können Sie in der gewohnten Manier im Dezimalsystem 
einfach hinschreiben. Übersteigt der Zahlenwert der Konstanten das, was 

noch in eine vorzeichenbehaftete Integer paßt, so weist der Compiler dieser 

Konstanten automatisch den Typ Jong zu. Sie können jedoch - was manch- 

mal ganz praktisch ist - Ihre Konstanten in einem anderen Zahlensystem
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als dem dezimalen notieren. Sie haben hier die Wahl zwischen hexadezi- 

malen und oktalen Konstanten. Beginnt eine Konstante mit der Ziffer 0 
("Null"), so wird sie als Oktalzahl interpretiert (und es sind nur mehr die 
Ziffernzeichen ’0’ mit ’7’ in ihr zugelassen). Beginnt die Konstante mit der 

Zeichenfolge 0x oder 0X, dann stellt sie eine Hexadezimalzahl vor, in der 

neben den Ziffernzeichen ’0’ mit ’9 auch die "Ziffern" ’a’ bzw. ’A’ bis ’f’ 

bzw. ’F’ vorkommen können. 

Manchmal ist es notwendig, einer Konstanten, die ihrem Betrag nach als 

einfache int durchgehen würde, den Datentyp /ong unterzuschmuggeln. Sie 

erreichen dies, indem Sie hinter die Konstante (die dezimal, oktal oder 
hexadezimal notiert sein kann) den Buchstaben ’L’ schreiben (Achtung: 
diese Möglichkeit ist im ATARI-C nicht gegeben!). Hier einige Beispiele: 

99 /* Eine Schnapszahl */ 
0x63 /* dasselbe hexadezimal */ 
0143 /* dasselbe oktal */ 
Ox63L /* die Dezimalzahl 99 als long-Konstante; sie 

beansprucht 4 Byte Speicherplatz */ 

4.1.3 Gleitpunktzahlen 

Zwar stellt der Datentyp Jong int Zahlen von beträchtlicher Größe bereit: 

doch leider kommt man in der Mathematik mit den ganzen Zahlen nicht 

aus. Für alle Zwecke, in denen Zahlen mit Nachkommastellen benötigst 

werden, gibt es in C die Datentypen float und double. 

Leider sind die momentan für den ATARI verfügbaren Compiler bei den 
Gleitpunktzahlen noch etwas schwach auf der Brust (auch der Compiler des 
Entwicklungssystems bildet da keine Ausnahme). Üblicherweise werden zur 
Speicherung einer Gleitpunktzahl vom Typ float 4 Byte und für eine 
double (was eine andere Schreibweise für /ong float ist) 8 Byte reserviert. 
Aber um letzte Aufklärung sollten Sie in dieser Materie das Handbuch 

Ihres Compilers bemühen. 

4.1.4 Wahrheitswerte 

Bei Vergleichen (z.B. mit ==, <=, /= und deren Verwandten), bei logischen 
Verknüpfungen (&& haben Sie bereits kennengelernt) und in der Kontroll- 
bedingung der for und while-Schleife werden Wahrheitswerte benötigt. 
Vergleiche und logische Verknüpfungen liefern die Werte wahr oder 
"falsch", Schleifen werden solange ausgeführt, solange eine Bedingung 

"wahr" ist. 

Was aber ist in C "wahr" oder "falsch"?
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C verfolgt hier einen besonders eleganten Weg. Die Wahrheitswerte "wahr" 

und "falsch" sind Zahlen. Dabei wird nur festgelegt, was "falsch" ist, näm- 

lich die Zahl 0. Alles andere (alles, was ungleich 0 ist) gilt als "wahr". 

Es gibt also nur eine Wahrheitswertkonstante für "falsch", aber beliebig 

viele für "wahr". Es hat sich jedoch eingebürgert, in C mit zwei über de- 

fine engeführten Konstanten zu arbeiten: 

#define TRUE 1 /* wahr */ 

#define FALSE 0 /* falsch */ 

Diese Konvention ermöglicht einige sehr elegante Formulierungen. Benötigt 

man in C aus irgendeinem Grund eine Endlosschleife, so schreibt man 

einfach: 

while(1) 

{ 
/* Endlosschleife */ 

} 

oder, etwas leserlicher: 

whi LeC TRUE) 

{ 
/* Endlosschleife */ 

> 

oder, am saubersten: 

#define FOREVER while(1) 

FOREVER 

{ 
/* Endlosschleife */ 

> 

Die Gleichsetzung des Wahrheitswerts "falsch" mit der Zahl 0 macht es 

außerdem möglich, die Ergebnisse arithmetischer Operationen oder sogar 

nur Integer-Variablen als Kontrollbedingung zu verwenden. Die for- 

Schleife im Programm 4.3 zählt von 10 nach 1; beachten Sie ihre Kontroll- 

bedingung. 

Prog. 4.3: Integer-Variable als Kontrollbedingung einer Schleife
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4.2 Operatoren 

Daten sind Dinge, mit denen der Computer etwas tun kann. Was kann er 
mit ihnen tun? Darüber geben die Operatoren Auskunft, über die eine 

Sprache verfügt. Hier ist das Angebot von C besonders reichlich. 

Alle Operatoren haben eines miteinander gemeinsam, was Sie bereits von 
den arithmetischen Operatoren (und den selbstdefinierten Funktionen) ken- 

nen: sie arbeiten mit einem oder mehreren Datenwerten (den Argumenten) 
und produzieren damit einen neuen Wert. Um Ordnung in das Angebot der 
Operatoren zu bringen, ist es üblich, sie in verschiedene Kategorien zu 

unterteilen. Bei der Kategorisierung ist ausschlaggebend, von welchem 

Datentyp die Argumente und das Ergebnis sind. Damit gelangt man zu fol- 
genden Klassen: den arithmetischen Operatoren, den Vergleichsoperatoren, 

den Bitoperatoren, und den Operatoren für logische Verknüpfungen. 

Außerdem ist - wie Sie bereits erfahren haben - in C auch die Zuweisung 
eine Operation, so daß als fünfte Klasse noch die Zuweisungsoperatoren 

hinzukommen. Als - äußerst praktisches! - Kuriosum, das sich in keiner 

anderen Programmiersprache findet, kennt C auch noch einen dreistelligen 
"Wenn-Dann-Operator", der in eine eigene sechste Kategorie einzuordnen 
ist. 

Abb. 4.2: Die arithmetischen Operatoren von C 

4.2.1 Arithmetische Operatoren 

Arithmetische Operatoren sind Operatoren, die mit Zahlen operieren und 
als Ergebnis wieder eine Zahl liefern. Dabei darf man das nicht so eng se- 
hen; denn in C sind ja auch Zeichen Zahlen und ebenso die Wahrheits- 
werte. Es ist also möglich, mit Daten dieses Typs arithmetische Operationen
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durchzuführen. Allerdings muß der Programmierer dann schon genau wis- 
sen, was er macht! In der Abbildung 4.2 finden Sie eine Tabelle der arith- 
metischen Operatoren in C. 

In dieser Tabelle sind die Operatoren nach ihrer Stelligkeit untergliedert, 

also nach der Anzahl der Argumente, die sie benötigen. Die einstelligen 
Operatoren für Auto-Inkrement und Auto-Dekrement sind Ihnen - wie die 

meisten anderen Einträge in dieser Tabelle - ja bereits bekannt. Neu ist je- 
doch, daß es für diese beiden Operatoren zwei unterschiedliche Schreib- 

weisen gibt, die auch Unterschiedliches bewirken, Dies macht das Pro- 

grammbeispiel 4.4 deutlich. 

Prog. 4.4: Auto-Inkrement und Auto-Dekrement 

Wie Sie sehen, kann man diese beiden Operatoren vor bzw. hinter ihr 

Argument schreiben. Die Wirkung der Operatoren ist in beiden Fällen die 
gleiche: eine Variable wird hoch- bzw. heruntergezählt. Aber ++ und -- 
produzieren auch einen Wert (jeder Operator muß das tun!) und der unter- 
scheidet sich bei den verschiedenen Schreibweisen. Es gelten diese Regeln: 

Steht ++ vor seinem Argument, so ist der Wert der Operation der Inhalt der 

Variablen nach dem Hochzählen. Steht ++ hinter seinem Argument, so ist 
der Wert der Inhalt der Variablen vor dem Hochzählen. Entsprechendes gilt 
für --. Das Programm 4.4 erzeugt somit folgendes Ergebnis: 

a= 11, b= 10 
a= 11, b= 11 

a=9, b= 10 
a=9, b=9
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Das Zeichen "-" führt - in C ebenso wie in der Arithmetik - ein Doppel- 

leben. Als einstelliger Operator dient es zur Kennzeichnung von negativen 
Zahlen. Als zweistelliger Operator bewirkt es die Subtraktion seiner Argu- 
mente. 

Die anderen zweistelligen Operatoren sind Ihnen ja - bis auf % - bereits 
vertraut. Dieser Operator dient zur Bildung des Divisionsrests. Sein Funk- 
tionieren wird durch Programm 4.5 verdeutlicht. Dazu ist zu sagen, daß der 

‘normale’ Divisionsoperator / nur ganzzahlige Divisionsergebnisse liefert, 

wenn er mit Integer-Argumenten arbeitet. Mehr darüber finden Sie im 
Kapitel über die Typumwandlung. 

Prog. 4.5: Division (/) und Divisionsrest (%) 

Das Programm 4.5 erzeugt folgende Ausgabe: 

25 / 1 ist 25 Rest 0 

25 / 2 ist 12 Rest 1 

25 / 3 ist 8 Rest 1 

25 / 4 ist 6 Rest 1 

25 / 5 ist 5 Rest 0 

25 / 6 ist 4 Rest 1 

25 / 7 ist 3 Rest 4 

25 / 8 ist 3 Rest 1 

25 / 9 ist 2 Rest 7 

25 / 10 ist 2 Rest 5 

Abb. 4.3: Die Vergleichsoperatoren von C



Datentypen, Operatoren und Kontrollstrukturen 109 

4.2.2 Vergleichsoperatoren 

Vergleichsoperatoren arbeiten mit Zahlen und/oder Zeichen und produzie- 
ren einen Wahrheitswert. Die Abbildung 4.3 gibt Ihnen einen Uberblick 
über die verfügbaren Vertreter dieser Klasse. 

Alle Vergleichsoperatoren sind - natürlich - zweistellig und bieten weiter 
keine besonderen Überraschungen. Eine Warnung sei jedoch an dieser Stelle 
nochmal eindringlichst wiederholt: den Test auf Gleichheit schreibt man in 
C mit zwei Gleichheitszeichen! Ein beliebter Anfänger-Fehler ist es, für 
den Gleichheitstest die BASIC-Konvention zu verfolgen und zu schreiben: 

a=5 anstatt a == 

Was passiert, wenn Sie sowas in einer Schleife als Kontrollbedingung stehen 
haben? Werfen Sie mal einen Blick auf das folgende falsche Programm: 

Prog. 4.6: Ein beliebter Bug 

Dieses Programm wird eine endlose Folge von Fünfen auf dem Bildschirm 
ausgeben, jede auf einer eigenen Zeile. In der Kontrollbedingung der for- 
Schleife findet sich eine Wertzuweisung und keinesfalls - wie vielleicht 
beabsichtigt - ein Vergleich. Aber C akzeptiert dies; denn die Wertzu- 
weisung hat den Wert 5 und alles, was ungleich 0 ist, wird von C als der 
Wahrheitswert "wahr" aufgefaBt. Bei jedem Schleifendurchgang wird erneut 
5 an 7 zugewiesen, produziert den Wert 5 und somit "wahr" und sorgt so 
dafür, daß die Schleife kein Ende nimmt. Daß im Reinitialisierungs-Teil 
die Variable i inkrementiert wird, hat keinerlei Auswirkung auf das Er- 
gebnis. Denn vor jedem erneuten Eintritt in die Schleife prüft C ja die Be- 
dingung ab, sprich: führt (fälschlich) eine Wertzuweisung durch. 

4.2.3 Bitoperatoren 

Diese Familie von Operatoren wird besonders dann häufig eingesetzt, wenn 
maschinennahe Programmieraufgaben anstehen. Im weiteren Verlauf dieses 
Buches finden sich etliche Beispiele für ihre Anwendung. Für ein Ver- 
ständnis der Bitoperatoren ist es nötig, die elementaren logische Ver- 
knüpfungen UND, ODER, EXKLUSIVES ODER und NEGATION zu ver- 
stehen. Eine Übersicht hierzu finden Sie in der Abbildung 4.4.
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Abb. 4.4: UND, ODER, EXKLUSIVES ODER und NEGATION 

Diese vier Tabellen zeigen Ihnen, wie zwei Bits mit den Operatoren UND, 
ODER bzw. EXKLUSIVES ODER verknüpft werden; in der linken oberen 
Ecke finden Sie auch das in C verwendete Zeichen für die jeweilige Ope- 
ration. Die Negation ist eine einstellige Operation. Sie dreht lediglich den 
Bit-Wert ihres Arguments um. Die Bitoperatoren in C arbeiten jedoch nicht 
auf einzelnen Bits. Vielmehr werden mit ihnen stets zwei 16 Bit lange 
Größen (also ints) verknüpft, wobei die Operatoren alle 16 Bits zugleich 
bearbeiten. Ein Beispiel soll dies deutlich machen. 

Angenommen, die Variablen i und j enthalten die binären Werte, die Sie 
im Speicherdiagramm der Abbildung 4.5 sehen können. Der Inhalt der 
Variablen i entspricht dem dezimalen Zahlenwert 39323 bzw 0x999b in 
Hexadezimalschreibweise. In j ist die Zahl 17524 bzw. 0x4474 gespeichert 
(es wurde vorausgesetzt, daß sowohl i als j vom T yp unsigned sind). 

Abb. 4.5: Bitweise logische Verknüpfung 

Die folgenden Operationen liefern dann das unten aufgeführte Ergebnis 
(jeweils in binärer, dezimaler und hexadezimaler Notation): 

Ro
 

1101110111111111 
1101110111101111 
0110011001100100 
1011101110001011 

56831 = OxDDFF 
56815 = OxDDEF 
26212 = 0x6664 
48011 = OxBB8B 

A
 
e
e
 

A . 

j = 10000 = 16 = 0x10 
J 

J 
-1 

~J 

Es werden also immer die einzelnen Bitpositionen der Variablen i und J 
miteinander verknüpft. Dabei liefert die UND-Verknüpfung nur dann den 
Wert Eins im Ergebnis, wenn beide Bitpositionen Eins sind; ODER liefert 
nur dann Null, wenn beide verknüpften Bitpositionen Null sind; beim EX- 
KLUSIVEN ODER gibt’s dann eine Eins, wenn die verknüpften Positionen
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unterschiedliche Werte haben. Die einstellige NEGATION dreht einfach 
alle Bitpositionen um: aus Eins mach Null und umgekehrt. 

Obwohl bei Bitverknüpfung immer mit 16 Bit auf einmal gearbeitet wird, 
können Sie diese Operatoren natürlich auch zusammen mit char-Variablen 

einsetzten. Diese werden dann für die Dauer der Bitoperation zweitweise 

auf 16 Bit ’ausgedehnt’ (mehr darüber im Kapitel 6). 

Die Bitoperatoren arbeiten zwar immer mit einer ganzen ’Bitleiste’; dennoch 

ist es möglich, mit ihnen den Status eines einzelnen Bits zu testen. Dazu 

bedient man sich sogenannter "Masken", das sind Konstanten, in denen be- 

stimmte den Programmierer interessierende Bitpositionen gesetzt sind. 
Möchte ich etwa herausfinden, ob in einer Variablen das zweite Bit gesetzt 
ist, dann werde ıch zu folgendem Code greifen: 

#define MASKE 0x0002 

if Ci & MASKE) 
printf("\nBit 2 ist gesetzt!); 

Dies funktioniert so: in der hexadezimalen Konstante 0x0002 ist nur das 
zweite Bit gesetzt; alle anderen haben den Wert 0. Wenn ich nun irgendeine 
Variable über UND mit dieser Maske verknüpfe, dann hat das Ergebnis 

nur dann einen Wert ungleich 0, wenn auch in dieser Variablen das zweite 
Bit gesetzt ist. Ein Wert ungleich Null bedeutet in C bekanntermaßen 
"wahr" und die Bedingung im if ist erfüllt. 

In ähnlicher Weise ist es auch möglich, mit dem ODER-Operator ein ein- 

zelnes Bit zu setzen oder über UND-Verknüpfung und mit einer geeignete 
Maske das obere oder untere Byte einer Integer auszumaskieren. In späteren 

Kapiteln dieses Buches finden Sie mehrere Beispiele für den Nutzen dieser 

Techniken. 

Prog. 4.7: Die wundersamen Eigenschaften des EXKLUSIVEN ODER
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Noch eine verblüffende Eigenschaft der EXKLUSIV-ODER-Verknüpfung 
sei erwähnt. Mit ihr ist es möglich, ohne Rückgriff auf eine Hilfsvariable 

den Inhalt zweier Variablen auszutauschen; sehen Sie dazu im Programm 
4.7 nach. 

Neben den Verknüpfungsoperatoren gibt es in C noch zwei Verschiebe- 
Operatoren. Mit ihnen ist es möglich, die Bits eines Zeichens oder einer 
Zahl um eine gegebene Anzahl an Positionen nach links (mit dem Operator 
<<) oder rechts (mit >>) wandern zu lassen. Bezugnehmend auf die Varia- 
blen i und j der Abbildung 4.5 würden sich mit diesen Operatoren fol- 

gende Ergebnisse einstellen: 

2457 = 0x999 
4560 = 0x11D0 

0000100110011001 
0001000111010000 

v Im
 

Ho
ut

 

J << 2 

Bei den Verschiebe-Operatoren gibt also der rechts vom Operator stehende 

Wert an, um wieviele Positionen die Bits nach links bzw. nach rechts wan- 

dern sollen. Rechts vom Operator kann natiirlich auch eine Variable stehen. 

In den Beispielen wurde stillschweigend vorausgesetzt, daß durch die Ver- 

schiebung freiwerdende Bitpositionen mit Nullbits aufgefüllt werden. Dies 
ist jedoch nur dann garantiert, wenn es sıch bei den Variablen, mit denen 

die Verschiebeoperatoren arbeiten, um unsigned int-Variablen handelt. 

4.2.4 Logische Operatoren 

Die soeben vorgestellten Bitoperatoren arbeiten auf allen Bits einer Varia- 
blen zugleich. Sie bedienen sich dabei der (logischen) Verknüpfungen 
UND, ODER, EXKLUSIVES ODER und NICHT, die in der Abbildung 4.4 
definiert sind. Diese Verknüpfungen kann man aber nicht nur für Bitope- 

rationen heranziehen, sondern auch zur Verknüpfung wahrheitswertiger 

Ausdrücke, um damit beispielsweise komplexe Kontrollbedingungen zu 

formulieren. 

Abb. 4.6: Logische Verknüpfungen 

Wenn als Teil einer Problemlösung Formulierungen vorkommen wie etwa 
"wenn Bedingung A UND Bedingung B vorliegt..." oder "solange das ein- 
gelesene Zeichen ein Kleinbuchstabe ODER eine Ziffer ist...", dann werden 
für die Umsetzung in C-Code logische Operatoren gebraucht. In den Bei-
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spielprogrammen haben Sie schon einige kennengelernt; die Abbildung 4.6 
zeigt Ihnen alle in C vorhandenen. 

Der erste Operator (/) ist einstellig; mit ihm wird der Wahrheitswert einer 
Bedingung umgedreht. Sie brauchen ihn, um Formulierungen wie "wenn 
das eingelesene Zeichen NICHT ein Großbuchstabe ist" in C umzusetzen. 
Die beiden anderen Operatoren sind zweistellig und verknüpfen zwei wahr- 

heitswertige Ausdrücke gemäß den in Abbildung 4.4 definierten Regeln. 

Wie Sie sehen können, benutzt C für die Bitoperatoren und die logischen 

Verknüpfungsoperatoren ähnliche Zeichen. Dadurch ist gerade für Anfän- 

ger die Gefahr der Verwechslung geben. Die Bitoperatoren werden ge- 

braucht, um Manipulationen an in binärer Form vorliegender Informa- 

tionen vorzunehmen. Dies ist meist bei sehr maschinennaher Programmie- 
rung nötig, etwa dann, wenn man den Zustand eines einzelnen Bits in einer 
bestimmten Speicherstelle des Computers abfragen oder setzen will. Diese 

Speicherstellen können Ein-Ausgabeports sein, im Speicher liegende "Regi- 
ster" peripherer Geräte oder das Speicherabbild des Bildschirms. Die logi- 

schen Verknüpfungen sind auf einer höheren Ebene angesiedelt; sie dienen 
der Programmsteuerung, tauchen in ifs, in for- und while-Schleifen auf. 
Da C keinerlei Typüberprüfung macht, ist es jedoch ohne weiteres möglich, 

anstelle einer logischen Verknüpfung einen Bitoperator zu schreiben. Der 
Compiler wird Sie auf diesen Lapsus nicht hinweisen (denn eventuell ist 
das ja auch beabsichtigt und gemäß der Philosophie von C darf der Pro- 

grammierer alles machen, was er will). Aber die Wahrscheinlichkeit ist sehr 
groß, daß eine Schleife, deren Kontrollbedingung von einem Bitoperator 

regiert wird, zu der unbeliebten Gattung der Endlosschleifen zu zählen ist. 

Die zweistelligen Verknüpfungsoperatoren weisen noch eine Besonderheit 
auf, die manchmal in Programmen vorteilhaft genutzt werden kann. Wenn 

Sie sich die Abbildung 4.4 noch einmal genauer ansehen, werden Sie fest- 
stellen, daß bei einer UND-Verknüpfung zweier Wahrheitswerte das Er- 

gebnis bereist feststeht, wenn nur einer der beiden verknüpften Werte 
"falsch" (gleich 0) ist. In diesem Fall ist es überhaupt nicht mehr nötig, das 

andere Argument der Verknüpfung zu betrachten: das Ergebnis ist in je- 

dem Fall 0. Ä 

Ähnlich bei der ODER-Verknüpfung. Ist eines der Argumente 1, dann 
spielt der Wert des anderen Arguments keine Rolle mehr. In jedem Fall er- 
gibt sich "wahr" (oder 1). 

Diese Beobachtungen nutzen die logischen Operatoren, um sich das Leben 

zu erleichtern. Die UND-Verknüpfung betrachtet zuerst ihr erstes Argu- 
ment. Ist dies "falsch", dann bricht sie sofort mit dem Wert "falsch" ab, 

ohne ihr zweites Argument noch eines Blickes zu würdigen. Nur für den
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Fall, daß das erste Argument "wahr" ist, untersucht sie auch das zweite 

Argument. 

Bei ODER läuft es gerade umgekehrt: stellt der Operator fest, daß das erste 

Argument "wahr" ist, so gibt er, ohne sich um das zweite zu kümmern, 
einfach "wahr" aus. Die beiden Operatoren machen also keinen Handstrich 

zuviel. 

Das setzt voraus, daß diese Operatoren ihre Argumente immer von links 
nach rechts untersuchen. Jeder C-Compiler garantiert Ihnen das; allerdings 
nur für diese beiden Operatoren. Alle anderen zweistelligen Operatoren, die 

Ihnen in diesem Kapitel vorgestellt werden, können sich ihren Argumenten 

in der Reihenfolge zuwenden, die ihnen gerade angemessen erscheint. Sie 

sollten sich also auf keinen Fall auf eine bestimmte Reihenfolge verlassen! 

Das Auswertungsverhalten der logischen Verknüpfungen kann auch zur 

Falle werden. Denn in C ist es möglich, in Vergleichen Zuweisungen 

unterzubringen; das nächste Programm liefert ein erneutes Beispiel für 
diese Praxis. Ist eine Zuweisung aber zweites Argument eines logischen 
Operators, dann wird sie unter bestimmmten Umständen niemals ausge- 

führt. Hierzu zwei Beispiele: 

if (0 && ((c = getchar()) != 'A') 

if (1 || (Cc = getchar()) != 'E') 

In beiden Fällen unterbleibt die Zuweisung an die Variable c, ja, die 

Funktion getchar wird gar nicht erst aufgerufen. Dieser Teil des Pro- 
gramms wird durch das erste Argument der logischen Verknüpfung (im 
Falle UND der Wert "falsch", im Falle ODER "wahr") gleichsam verdeckt. 

Das folgende Beispielprogramm demonstriert noch einmal die Einsatzmög- 
lichkeiten der Verknüpfungs- und Bitoperatoren. Die Aufgabenstellung ist 
die folgende: eine in einer unsigned int gespeicherte Zahl soll in binärer 
Schreibweise auf den Bildschirm ausgegeben werden (Funktion bin_dump). 
Die zweite Funktion übernimmt es, eine vom Benutzer in binärer Darstel- 

lung eingegeben Zahl (also eine Folge von Nullen und Einsen) in eine un- 
signed int umzuwandeln (Funktion get_bin).
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Prog. 4.8: Ein- und Ausgabe von Binärzahlen 

Die Eingabefunktion get bin liest solange Zeichen von der Tastatur, bis 
der Benutzer ein anderes als die beiden zugelassenen Ziffernzeichen ’0’ und
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’]° eingibt. Das eingelesene Zeichen wird an die Variable c zugewiesen. In 
bewährt knapper C-Manier sind Einlesen, Zuweisen und Test des Zeichens 

auf ’0’ oder ’1’ allesamt in der Kontrollbedingung der while-Schleife unter- 

gebracht. 

Das Ergebnis wird in der mit 0 vorbesetzten (initialisierten) Variable i auf- 

gebaut. Bei jedem Schleifendurchgang wird der numerische Wert der ein- 
gelesenen Ziffer (mit c - ’0’) bestimmt, die bisher bereits aufgebaute Ziffer 
um eine Position nach links verschoben (i << I) und über bitweises ODER 
der eben eingelesene Zahlenwert (eine binäre 0 oder 1) in das niedrigst- 
wertige Bit von i gesetzt. Der Ergebnis wird erneut in 7 gespeichert. 

Zum Ausgeben einer Integer i in Binärschreibweise geht man folgender- 
maßen vor: das Ergebnis wird mit 16 Stellen ausgegeben. Die Funktion 
bin_dump erzeugt nacheinander in einer Schleife 16 Masken, in denen zu- 
erst das höchstwertige Bit (Bit 15), dann Bit 14, dann Bit 13 usw. bis Bit 0 
gesetzt ist. Das bewirkt die Anweisung / << j, wobei j nacheinander die 
Werte von 15 bis 0 durchläuft. Wie Sie sehen, kann auch eine Konstante 

Argument der Verschiebeoperatoren sein. Über bitweise UND-Verknüp- 

fung wird als nächstes getestet, ob das in der Maske gesetzte Bit auch in 

der auszugebenden Zahl gesetzt ist und entsprechend eine °1’ oder °0’ aus- 

gegeben. Das Erzeugen der Maske und Testen des Bits ist in die Bedingung 
der if-Anweisung integriert: (i & (1 << j)). 

Die Hauptfunktion main des Programms 4.8 benutzt die beiden Unterfunk- 
tionen get bin und bin _dump, um Ihnen die Wirkungsweise unterschiedli- 
cher Operatoren auf Bitebene zu verdeutlichen. Dazu kommt eine Variante 

der while-Schleife zum Einsatz, in der die Kontrollbedingung erst am Ende 
der Schleife abgefragt wird. Diese sogenannte do-Schleife wird später in 

diesem Kapitel noch genauer erläutert. 

Interessant ist in diesem Zusammenhang noch die Formulierung der Kon- 
trollbedingung. Mit der vorliegenden Fassung while ((i != 0) && (j != 0)) 
wird die Schleife schon abgebrochen, sobald der Benutzer nur für eine der 
beiden Variablen den Wert 0 eingibt. Es werden zwei Tests auf Ungleich- 
heit über UND verknüpft. Möchte ich erreichen, daß die Schleife nur dann 

verlassen wird, wenn beide Variablen den Wert 0 haben, dann ist das so zu 

formulieren: while (!(i == 0 && j == 0)). Hier werden zwei Gleich- 

heitstests mit UND verknüpft und das Verknüpfungsergebnis negiert. 

Noch zwei Neuigkeiten können Sie dem Hauptprogramm main entnehmen: 
hat eine Funktion einen anderen Datentyp als int zum Wert, dann muß sie 

deklariert werden. In diesem Fall wird in main bekanntgemacht, daß 

get bin eine vorzeichenlose Integer zurückgibt. Die zweite Neuigkeit be- 

trifft die Formatsteuerung für printf bei der Ausgabe von vorzeichenlosen
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Integers. Sie können in diesem Fall nicht mit %d arbeiten, sondern müssen 

mit %u signalisieren, daß das zugehörige Argument als positive Zahl zu 

interpretieren ist. 

4.2.5 Zuweisungsoperatoren 

Die meisten Programmiersprachen kennen nur ein Zeichen für Zuweisung; 

C bietet deren Elf! In den meisten Sprachen verändert die Zuweisung den 

Wert einer Variablen - und sonst nichts. In C sind alle elf Varianten der 

Zuweisung Operatoren, produzieren also einen weiterverwendbaren Wert; 

die Variable ändern sie sowieso! Die Zuweisungsoperatoren und ihre Eigen- 

schaften tragen viel zu dem berühmt-berüchtigten exotischen Aussehen von 

C-Programmen bei. Positiv gesagt: sie erlauben Programme von hoher Inte- 

grationsdichte. Die Abbildung 4.7 versammelt alle Vertreter dieser Gattung. 

Abb. 4.7: Die Zuweisungsoperatoren 

Warum so viele? Eine Analyse herkömmlicher Programmiersprachen hat er- 

bracht, daß sehr oft Zuweisungen auftauchen, an denen nur eine einzige 

Variable beteiligt ist, deren Wert geändert werden soll. Oft liest man also in 

BASIC | 
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Dafür hat der Erfinder von C eine knappere Schreibweise eingeführt. Aber 

nicht nur Schreibfaulheit war ein Motiv für diese Regelung. Denn in her- 

kömmlicher Weise geschriebene Zuweisungen dieser Art werden von Com- 

pilern meist nicht optimal in Maschinencode übersetzt. Der Compiler er- 

kennt nicht, daß zweimal dieselbe Variable beteiligt ist, er wird bei jedem
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Auftauchen dieser Variablen in der Zuweisung von neuem ihren Wert be- 

stimmen. Die in C gebräuchliche Notation stellt hingegen einen deutlichen 

Fingerzeig für den Compiler dar. Programme werden dadurch ef fizienter. 

Prog. 4.9: Umwandlung in Kleinbuchstaben: tolower 

4.2.6 Der Vergleichsoperator 

Ein- und zweistellige Operatoren sind in Programmiersprachen eine Alltäg- 

lichkeit. Aber C ist nicht wie andere Sprachen; es kennt auch einen drei- 

stelligen Operator! Dieser Operator bietet eine Kurzschreibweise für
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if...else in bestimmten Situationen. Am klarsten wird seine Verwendung an 

einem Beispiel, das Sie in Programm 4.9 finden. Es geht um die Funktion 

tolower, die Großbuchstaben in Kleinbuchstaben umwandeln soll. Da die 

Aufgabenstellung dieser Funktion sehr ähnlich zu der von toupper ist, das 

in Programm 3.8 vorgestellt wurde, ist diese Funktion mit ihrer Hilfs- 

funktion islower noch einmal mit aufgeführt. 

Was in der Funktion toupper mit if..else erledigt wurde und vier Zeilen 

beanspruchte, das macht tolower in einer einzigen Zeile, allerdings mit 

einer geheimnisvoll anmutenden Schreibweise. Ein Ausdruck der in der 

Abbildung 4.8 gezeigten Form ist wie folgt zu lesen: wenn die <bedingung> 

erfüllt ist, dann hat das Ganze <ausdruckI> als Wert, ansonsten liefert es 

eben <ausdruck?>. All dies bewirkt ein dreistelliger Operator, der einen 

wahrheitswertigen Ausdruck und zwei beliebige andere Ausdrücke als 

Argument hat und je nach Lage des wahrheitswertigen Ausdrucks einen 

der beiden anderen auswählt. Zum Hinschreiben des Operators benötigt 

man zwei Zeichen: ein Fragezeichen ?, vor das die Bedingung und hinter 

das der erste Ausdruck geschrieben werden muß, sowie einen Doppelpunkt 

:, der den ersten und zweiten Ausdruck trennt. 

Abb. 4.8: Anatomie des Vergleichsoperators 

Wenn in einem Programm einer von zwei Werten für die weitere Verarbei- 

tung ausgewählt werden soll, dann kann man dies mit dem bereits bekann- 

ten if...else tun. Knapper (und effizienter) ist aber oftmals die Formulie- 

rung mit dem Vergleichsoperator. In der Beispielsfunktion tolower wählt er 

aus, was zurückgegeben werden soll: entweder das unveränderte Zeichen, 

wenn dies bereits kleingeschrieben ist (Test mit islower), oder ein nach den 

üblichen Methoden durch Addition eines Versatzwertes (der Zahlenbetrag, 

der Großbuchstaben von Kleinbuchstaben in der ASCII-Tabelle trennt) 

umgewandeltes Zeichen. | 

4.3 Vorrang, Assoziativitat und Typumwandlung 

Häuften sich in einem Programm die Operatoren, dann habe ich bisher 

durch den freizügigen Einsatz von Klammern versucht, klare Verhältnisse 

zu schaffen. Doch allzuviele Klammern erhöhen nicht unbedingt die Leser- 

lichkeit des Programmes. Alle (konventionellen) Programmiersprachen bie-
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ten deshalb die Möglichkeit, in solchen Fällen Klammern einzusparen; C ist 

da keine Ausnahme. 

Abb. 4.9: Vorrang und Assoziativität der C-Operatoren 

Der Trick, mit dem sich Klammern einsparen lassen, ist Ihnen noch aus der 

Schule vertraut; er hat mit dem Vorrang von Operatoren zu tun. Wir alle 

lernten im Mathematikunterricht das Sprüchlein "Punkt vor Strich" und 

wissen seitdem, daß in dem Ausdruck 5 + 2 * 3 - 7 die Multiplikation vor
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der Addition und Subtraktion kommt und sich deshalb das Ergebnis 4 ein- 
stellt. Anders bei (5 + 2) * 3 - 7, denn Klammern werfen alle Vorrang- 
regeln über den Haufen. Hier kommt 14 als Ergebnis ’raus. 

Die Regel "Punkt vor Strich" bringt zum Ausdruck, daß Multiplikation und 

Division Vorrang vor Addition und Subtraktion haben, also in einem zu- 
sammengesetzten Ausdruck vor diesen ausgeführt werden müssen. Die 

Regel unterscheidet - anders ausgedrückt - zwei Vorrangstufen und ordnet 
die Multiplikation in die höhere, die Addition in die niedrigere der beiden 

Stufen ein. Die Vorrangregeln von C sind etwas komplizierter, da es hier 
mehr Operatoren gibt. Insgesamt werden in C 14 Vorrangstufen unterschie- 

den, die in der Tabelle der Abbildung 4.9 dargestellt sind. Je weiter oben 
ein Eintrag in dieser Tabelle zu finden ist, desto größer ist sein Vorrang. 

Nicht alle Operatoren dieser Tabelle wurde Ihnen bereits vorgestellt; für 
die fehlenden müssen erst noch die nötigen Grundlagen gelegt werden. Da 

jedoch die runden Klammern ’Vorfahrt’ vor jeder anderen Vorrangregel 
bekommen müssen, finden sie sich ganz oben in der Tabelle. Was da noch 

so alles steht, wird Ihnen in den nächsten Kapiteln vorgestellt. 

Die nächste Etage der Tabelle wird von den einstelligen Operatoren be- 

wohnt. Wie Sie sehen, führen in C die Zeichen * und & ein Doppelleben, 

da sie auch als einstellige Operatoren vorkommen. Was sie da bewirken, 

erfahren Sie ebenfalls erst in einem der nächsten Kapitel. 

Die Einordnung der zweistelligen Operatoren macht keine Schwierigkeiten 
("Punkt vor Strich"), allerdings ist bei den Operatoren zur Bitverknüpfung 
Vorsicht geboten. Ihre Vorrangstellung ist sehr verwirrend und bei ihnen 

empfiehlt es sich, stets Klammern zu verwenden. Wollen Sie z.B. testen, ob 

in einer Variablen i von den zwei niedrigstwertigen Bits nur das zweite 
gesetzt ist, dann könnten Sie versucht sein, dies als 

1&3 == 

zu schreiben. Aber das ist falsch, da der Vergleich Vorrang vor dem Bit- 

operator hat: es würde 0 (das Ergebnis des Vergleichs) mit i über UND- 

Verknüpft und alle Bits wären im Ergebnis gelöscht. Sie müssen stattdessen 
schreiben: 

(1 & 3) == 

Der erste Eindruck von dieser Vorrangtabelle mag verwirrend sein; sie 
wurde jedoch entwickelt, um bei klammerfreien Ausdrücken der "natür- 
lichen" Lesart den Vorzug zu geben. Der Ausdruck 

at+b<c &d-e>r=c
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hat die "natürliche" Lesart: "a plus b ist kleiner als c und d minus e ist 
größer oder gleich c". Wird Ihnen diese Anweisung z.B. vorgelesen oder 
über Telefon durchgegeben, dann werden Sie sie ziemlich sicher so auffas- 
sen: die beiden Vergleiche sollen vor der UND-Verknüpfung durchgeführt 
werden; vor den Vergleichen soll jedoch noch addiert bzw. subtrahiert 
werden - und genauso wird er, dank der Vorrangregeln, vom C-Compiler 

aufgefaßt! Man sagt auch, daß die Vorrangregeln so gewählt wurden, um 
komplexe Ausdrücke den "Telefon-Test" bestehen zu lassen. 

Im einzelnen liegen der natürlichen Lesart folgende Überlegungen zu- 

grunde: 

O die einstelligen Operatoren kommen vor den zweistelligen. Dies ist auch 
in der Schulmathematik so, wo es allerdings nur das einstellige Minus 
(fir die Kennzeichnung negativer Zahlen) gibt. 

wegen der natürlichen Lesart wird den arithmetischen Operatoren Vor- 

rang vor den Vergleichsoperatoren gegeben (siehe das obige Beispiel). 
Wie in der Schule, erhalten auch in C innerhalb der arithmetischen 

Operatoren die sogenannten multiplikativen Operatoren *, / und % 
Vorrang vor den additiven + und -. 

die Vergleichsoperatoren kommen - wieder wegen der Lesbarkeit - vor 

den Verknüpfungsoperatoren. Auch dies wird durch das letzte Beispiel 

gerechtfertigt. Daß die UND-Verknüpfung Vorrang vor der ODER- 
Verknüpfung hat, ist allerdings höchstens für den geschulten Logiker 

natürlich’. Deshalb: Verknüpfungsketten ("a UND b ODER c UND d") 
vorsichtshalber klammern! 

der dreistellige Entscheidungsoperator kommt vor der Zuweisung. denn 

oft hängt von seinem Ergebnis der Wert der Zuweisung ab. In der Zeile 

1¢+= (a>3?2: -1) 

wird i um 2 erhöht, wenn a größer 2 ist, ansonsten aber um | er- 

niedrigt. 

Die Zuweisung kommt ganz zuletzt. Erst nachdem alle Operatoren an- 

gewendet und deren Ergebnisse bestimmt sind, kann das Resultat zuge- 

wiesen werden. Zuweisungen, die sich in den Argumenten von Öpera- 

toren verbergen, sind deshalb entsprechend zu klammern. Wer glaubt, 

die folgendermaßen formulierte Schleifenbedingung 

while (c = getchar() != 'E')
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würde ihm in der Variablen c das eingelesene Zeichen liefern, der irrt: c 

enthält stets einen Wahrheitswert, "wahr" oder "falsch", je nachdem, ob 

das eingelesene Zeichen ein ’E’ war oder nicht. Möchte man die Be- 

nutzereingabe in c zwischenspeichern, dann muß man klammern: 

while ((c = getchar()) != 'E') 

Die Vorrangstufen regeln also die Verhältnisse in klammerfreien Aus- 
drücken - beinahe! Denn was ist mit einem Ausdruck der Form: 

a-b-c 

Soll erst 5 von a subtrahiert werden und dann davon c? Ginge es nur um 

die Arithmetik, dann wäre das gleichgültig. Aber in den Argumenten von 
Operatoren können sich Zuweisungen verbergen. Betrachten Sie das nächste 

Beispiel: 

b=2; 

c = 3; 

(b= 1) -c- b; 

Wenn nun die Subtraktionen von links nach rechts erfolgen, dann hat der 
letzte Ausdruck den Wert -3. Geht C jedoch umgekehrt vor, dann ergibt 

sich 0. Was macht man, wenn mehrere Operatoren gleichen Vorrangs an- 
einandergereiht sind? Man befolgt die Regeln der Assoziativitat. Auch 
diese können Sie der Abbildung 4.9 entnehmen. "links-rechts"-Assoziativitat 
bedeutet, daß gleichrangige Operatoren von links nach rechts ausgewertet 

werden. Für die arithmetischen Operatoren ist dies die natürliche Reihen- 

folge. Nicht jedoch für die Zuweisung. Bei Mehrfachzuweisungen wie etwa 

a=b=c=1; 
möchte man, daß zuerst die Zuweisung an c, dann an 5 und dann an a er-. 
folgt. Darum haben die Zuweisungsoperatoren "rechts-links"-Assoziativität. 

Daß auch der Wenn-dann-Operator in dieser Richtung assoziiert, ist 

nachrangig, da in guten (also verständlichen) C-Programmen die Schachte- 

lung dieses Operators vermieden wird. 

Das Problem der Typumwandlung betrifft Operationen, bei denen die Ope- 
randen von unterschiedlichem Datentyp sind. Bekanntermaßen ist es mög- 
lich, in C folgendes zu schreiben: 

Durch die Zuweisung von 32 an c enthält diese Zeichenvariable ein Leer- 
zeichen (vgl. ASCI-Tabelle). Wird c um 4 hochgezählt, dann stellt es das 
Zeichen ’$’ dar (Position 36 in der Tabelle). Aber, wohlgemerkt: weder 32



124 Datentypen, Operatoren und Kontrollstrukturen 

noch 4 sind Zeichenkonstanten (diese müssen ja bekanntlich in einfache 

Anführungszeichen eingeschlossen sein). Hier haben wir es also mit zwei 

Operationen zu tun (beide Male Zuweisungen), die mit Argumenten unter- 

schiedlichen Typs (char und int) arbeiten. 

Solche gemischte Operanden kommen auch im Zusammenhang mit der 

Arithmetik häufiger vor. Ein Beispiel: 

float f; 

int i; 

Long 1; 

i = 30000; 

l=3* 1; 

f=i1+ 1; 

In der letzten Zeile sind drei Datentypen beteiligt: eine int und /ong-Varia- 

ble werden addiert. Das Ergebnis wird einer float-Variablen zugewiesen. 

Was passiert in einem solchen Fall? 

Daten unterschiedlichen Typs werden in unterschiedlichen Formaten ge- 

speichert und sind erstmal nicht miteinander verträglich. Bei gemischten 

Operationen ist es daher möglich, zeitweilige Typumwandlungen vorzuneh- 

men. Bei dieser Typumwandlung hat der ATARI seine eigenen Präferen- 
zen, die mit der Struktur des verwendeten Prozessors, des Motorola 68000 

zusammenhängen. 

Dieser Prozessor arbeitet intern mit einer Datenbreite von 32 Bit, verkehrt 

jedoch mit der Außenwelt (und seinem Speicher) in Größen von 16 Bit (da 
der Datenbus nur über 16 Leitungen verfügt). 

Daraus ergibt sich, daß der Prozessor eine natürliche Vorliebe für 32-Bit- 
Größen hat. Auch 16 Bit sind noch angenehm; am unteren Ende der 

Beliebtheits-Skala finden sich die 8-Bit-Zeichen. Damit haben wir die 
Typenhierarchie, die Sie in der Abbildung 4.10 sehen können. Die 
bevorzugten’ Datentypen sind mit einem Pfeil markiert. 

Abb. 4.10: Typenhierarchie des ATARI-C 

Diese Tabelle spiegelt die Verhältnisse wieder, wie sie im C des Entwick- 

lungssystems herrschen. Sollten Sie mit einem anderen C-Compiler arbeiten,
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dann müssen Sie eventuell mit einer leicht geänderten Typenhierarchie 
rechnen. Denn zwischen float und unsigned int kennt C üblicherweise noch 

einen Datentyp, die unsigned long-Werte. Dieser Typ ist im ATARI-C - 

ebenso wie der Typ unsigned char - nicht implementiert (nicht vorhanden) 
und deshalb in der Tabelle eingeklammert. 

Bei der Typumwandlung gelten folgende Regeln. Für die Verarbeitung 
wird jeder Wert eines nicht-bevorzugten Datentyps erstmal in den nächst- 
höheren Datentyp umgewandelt. Das bedeutet: wenn Sie eine char-Variable 
in einem Programm haben, dann benötigt diese Variable zwar im Arbeits- 

speicher nur ein Byte Platz. Aber sobald sie mit dieser Variablen arbeiten, 

ihr irgendetwas antun wollen, dann wird die Variable aus dem Speicher in 

den Prozessor (genauer: in dessen Register) gebracht und dort zu einer 16 

Bit langen Integer ’aufgeblasen’. Dann tut C damit (mit dieser Integer, die 

gleichsam das ursprüngliche Zeichen vertritt), was immer auch zu tun ist. 
Soll das Ergebnis wieder in den Speicher wandeln, dann wird es erst auf 8 

Bit zurechtgestutzt und dann abgelegt. 

Dadurch ist es in C ohne Probleme möglich, auf Zeichen Integerkonstanten 

zu addieren; denn bei der Verarbeitung hat man es durch die Typumwand- 
lung des Zeichens ohnehin mit gleichen Datenformaten zu tun. 

Sind an einer Operation zwei unterschiedliche Operanden beteiligt, dann 
wird der höchstrangige (falls nötig) erstmal in den nächsthöheren bevor- 
zugten Typ umgewandelt. Der niedrigstrangige wird dann ebenfalls in 
ebendiesen Typ gezwungen. Sind also an einer Operation eine Zeichen- 

variable, eine Integer und eine Float beteiligt, dann läuft die gesamte 

Operation (nach Typenhierarchie) im double-Format ab. 

Bei Zuweisungen gilt die Regelung, daß das Ergebnis rechts vom Zuwei- 
sungszeichen in den Datentyp der Variablen links vom Zuweisungszeichen 
umgewandelt wird. 

Für das C des ATARI-Entwicklungssystems sind noch einige Anmerkungen 
erforderlich. Zum Zeitpunkt der Erstellung dieses Buches war im C-Com- 
piler von Digital Research der Datentyp double noch nicht implementiert, 
so daß der "höchste" verfügbare Datentyp float ist. Ein weiteres Problem 

betrifft die Zeichenvariablen. Zwar sieht C einen Type unsigned char vor, 
aber dieser ist ebenfalls nicht implementiert. Versucht man, ein Grafik- 

zeichen (mit einem Zeichencode größer 127) für numerische Operationen 
heranzuziehen, dann stellt man fest, daß der Compiler dies als negative 

Zahl auffaßt. Bei der Umwandlung von char in int wird das gesetzte achte 
Bit der Zeichenvariable als Vorzeichenbit interpretiert und die Integer wird 
negativ. Da hilft es auch nichts, wenn man versucht, in eine unsigned int 
umzuwandeln: dann sieht C die Variable einfach als eine große Zahl im
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Bereich über 65000. Probieren Sie doch einmal das folgende Programm aus; 
dazu muß gesagt werden, daß man in C die Umwandlung einer Variablen 
in einen andern Typ erzwingen kann, indem man den gewünschten Typ in 
Klammern vor die Variable schreibt. Der eingeklammerte Datentyp zählt 
als Operator; er trägt den Namen "Cast". 

Prog. 4.10: Probleme mit vorzeichenbehafteten Zeichen. 

Wie das Programm zeigt, ist die umgekehrte Richtung unproblematisch: die 
Umwandlung eines Integer-Werts in eine Zahl geht wie gewünscht vonstat- 
ten. Sie können dem Programm auch noch einige weitere Format-Zeichen 
für die Ausgabe mit printf entnehmen: %c für Zeichen-Ausgabe, %u für 
Ausgabe von vorzeichenlosen Integers und %ld für die Ausgabe von long- 
Variablen. 

Noch einige Anmerkungen zum Cast-Operator. Er wird meist dann einge- 
setzt, wenn man eine Variable als Argument an eine Funktion übergeben 
will, die Daten von einem anderen Typ erwartet. Dies soll das folgende 
Programmfragment illustrieren: 

int funkt1(i) 

long i; 

int funkt2() 

{ char c; 

funkt1((long)c); 

+ 

Der Parameter von funktl ist als long deklariert. In funkt2 soll dieser 
Funktion aber eine Zeichenvariable übergeben werden. Dies würde norma- 
lerweise zu Problemen führen, wenn nicht durch den Cast-Operator (long) 
zuerst das Zeichen in den richtigen Datentyp umgewandelt wird. Sie sehen 
also: eine Typumwandlung erfolgt in C nur dann automatisch, wenn man
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Operatoren mit gemischten Datentypen verwendet. Passen die Typen der 
Argumente einer Funktion nicht mit den Parameter-Deklarationen zusam- 
men (wie im obigen Fall), dann miissen Sie selbst mit dem Cast-Operator 
fiir die geeigneten Umwandlungen sorgen. 

4.4 Kontrollstrukturen 

Ein C-Programm (oder eine C-Funktion) besteht aus einer Folge von 

Deklarationen und Anweisungen. Deklarationen versorgen den Compiler 
mit Informationen über die im Programm verwendeten Datenelemente (die 
Variablen, aber auch benötigte Funktionen). Anweisungen geben an, was 
mit diesen Daten zu geschehen hat. Zwar können Deklarationen und An- 
weisungen in C-Programmen gemischt werden. Es hat sich jedoch wegen 
der besseren Lesbarkeit eingebürgert, alle Deklarationen an den Anfang des 
Programms zu stellen und diesen die ausführbaren Anweisungen folgen zu 
lassen. 

Eine normale ausführbare Anweisung sieht so aus: 

<ausdruck>; 

Sie muß also mit einem Strichpunkt abgeschlossen sein. Bei dem Ausdruck 

handelt es sich meist um eine Zuweisung oder einen Funktionsaufruf. 

Normalerweise werden die Ausführungen in einem Programm hintereinan- 

der ausgeführt, in der Reihenfolge, in der Sie sie hingeschrieben haben. In 
zwei wichtigen Fällen wünscht man jedoch, daß von dieser normalen 
Reihenfolge der Ausführung abgewichen wird: wenn Programmteile in 
Abhängigkeit von einer Bedingung ausgeführt oder übersprungen werden 
sollen und wenn Programmteile in einer Schleife wiederholt werden sollen. 

Sprachelemente, mit denen die Reihenfolge der Programmausführung be- 

einflußt werden kann, faßt man unter den Sammelbegriff "Kontrollstruk- 
turen". Viele Kontrollstrukturen, wie etwas die bereits bekannten for- und 
while-Schleifen, regeln die Auswertung von genau einer Anweisung. 
Möchte man eine Folge von Anweisungen in eine if-Schleife packen, dann 
muß man aus dieser Anweisungsfolge eine einzige Anweisung machen, eine 
sogenannte "zusammengesetzte Anweisung" Eine zusammengesetzte An- 

weisung sieht so aus: 

{ <anweisung1> 
<anweisung2> 

<anwei sungn>
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Sie wird also mit geschweiften Klammern umschlossen und es ist nicht nö- 
tig, sie mit einem Strichpunkt zu versehen. 

Schließlich ist in manchen Fällen noch eine degenerierte Form der Anwei- 

sung nötig, die sogenannte "leere Anweisung". Ihre Gestalt: 

s 

7 

Die leere Anweisung besteht also aus einem einzelnen Strichpunkt. Obwohl 
es sich dabei um ein Konstrukt von schlagender Sinnlosigkeit zu handeln 
scheint: sowas kommt in C-Programmen öfter vor, als man annehmen 
würde! Jetzt aber zu den ominösen Kontrollstrukturen! | 

4.4.1 Entscheidungen: if und if...else 

Zum Formulieren von Entscheidungen hat man in C zwei Möglichkeiten; 

if (<ausdruck>) <anweisung1> oder 

if (<ausdruck>) <anweisung1> else <anweisung2> 

Der in runden Klammern stehende Ausdruck wird ausgewertet und sollte 
einen Wahrheitswert liefern (kein Problem in C, in dem ohnehin alles eine 
Zahl ist). Liefert er den Wert "wahr" (also eine Zahl ungleich 0), dann wird 
die <anweisungl> ausgeführt. Darin gleichen sich beide Varianten. Die 
Unterschiede kommen ins Spiel, wenn der <ausdruck> in Klammern falsch 
ist. Im ersten Fall fährt C dann mit der Anweisung hinter dem if fort, im 
zweiten Fall wird jedoch <anweisung2> ausgeführt. Dazu in Abbildung 4.11 
ein kleines Beispielprogramm. 

Prog. 4.11: Varianten von if
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Beachten Sie, wie zu Beginn der if-Schleife das passende Zeichen für die 

Ausgabe mittels printf durch den "wenn-dann"-Operator ausgewählt wird. 

Das Programm erzeugt folgende Ausgabe: 

i ist F 

<anweisung> nach dem if 

<anweisung2> im if...else 

<anweisung> nach dem if...else 

i ist W 

<anweisung1> im if 

<anweisung> nach dem if 

<anweisung1> im if...else 

<anweisung> nach dem if...else 

Wie sie sehen können, werden die Anweisungen hinter den beiden ifs in 
jedem Fall ausgeführt. Die im ’Machtbereich’ von if stehenden Anweisun- 
gen kommen im Unterschied dazu nur bedingt zur Ausführung. 

Nun ist die if-Anweisung - wie der Name schon sagt - selbst eine Anwei- 
sung. Daher hindert den Programmierer nichts daran, mehrere i/s oder 
if...else-Anweisungen ineinanderzuschachteln. Um dabei nicht den Über- 
blick zu verlieren, sollten Sie sich angewöhnen, durch Bildung von An- 
weisungsblocks den Geltungsbereich der einzelnen Komponenten zu kenn- 
zeichnen. 

Dies macht das nächste Beispielprogramm klar, welches ein von der Tasta- 

tur eingelesenes Zeichen daraufhin untersucht, ob es sich um eine Ziffer, 

einen Buchstaben oder ein Sonderzeichen handelt. Bei Buchstaben unter- 
scheidet es fernerhin zwischen Groß- und Kleinschreibung und zwischen 
Konsonanten und Vokalen. Das ganze geht solange, bis Sie einen Punkt 
eingeben. 

Die allgemeine Logik des Programmes läßt sich also folgendermaßen in 
Pseudocode fassen: 

while ((c = getchar()) != '.') 

{ wenn (c ist eine Ziffer) 

melde "Ziffer"; 
ansonsten wenn (c ist ein Kleinbuchstabe) 

{ melde "Kleinbuchstabe"; 
untersuche: Vokal oder Konsonant? 

> 
ansonsten wenn (c ist ein Grossbuchstabe) 

{ melde "Grossbuchstabe": 
untersuche: Vokal oder Konsonant? 

> 
ansonsten melde "Sonderzeichen";
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Die Untersuchung, ob man es mit einem Vokal oder Konsonant zu tun hat, 
kann man so ausformulieren: 

wenn (c ist Vokal) 
melde "Vokal"; 

ansonsten 
melde "Konsonant": 

Damit erhält man das Programm 4.12. Im Kommentar zu diesem Programm 
habe ich noch einmal versucht, Ihnen die Verschachtelung der einzelnen ifs 
und elses mit einem Diagramm zu veranschaulichen. (Anmerkung: unter der 
mir verfügbaren Version des ATARI-C-Compilers konnte das Programm - 
obwohl es korrekt ist - nicht übersetzt werden. Vermutlich sind’s dem 
Compiler, genau wie mir, zu viele Verschachtelungen!) 

Prog. 4.12: Analyse von Eingabezeichen 

Bei der Zuordnung von else zu if verfolgt C die Strategie, ein else dem 
letzten else-losen if im Programm zuzuordnen. Sie sollten sich auf die
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Gruppierungsversuche von C allerdings nicht verlassen und stattdessen 

selbst durch Anweisungsblocks klare Verhältnisse schaffen. 

Das Programm 4.12 hält noch eine weitere Besonderheit bereit, die nichts 
mit if zu tun hat. Es benötigt einige Funktionen, die zum Teil bereits be- 

kannt sind, wie etwa islower, isupper, toupper. Aber diese Funktionen wer- 

den diesmal als Makros definiert! Denn der Makro-Präprozessor kann nicht 

nur einfache Textersetzung vornehmen; er kann bei dieser Ersetzung auch 
mit Parametern arbeiten. Wenn im Programm 4.12 die Zeile 

1f Cisupper(c)) 

vorkommt, dann macht der Präprozessor daraus folgendes: 

if ((c >= 'A' && c <= '2')) 

Er ersetzt also den Makro isupper durch den Text, der ihn definiert, 
tauscht dort aber tiberall den Platzhalter z aus der Makrodefinition gegen 
die tatsächlich im Programm verwendete Variable c aus. Daß er dies tun 

muß, weiß der Präprozessor, weil der Makro toupper ein Paar runder 

Klammern aufweist, in denen der Platzhalter steht. 

4.4.2 Mehrfachauswahl mit switch und case. 

Sıe wollen ein Programm schreiben, das Zeichen von der Tastatur liest, für 

jeden Vokal zählt, wie oft er vorkommt, ebenso die Anzahl der gelesenen 
Leerzeichen, der Satzzeichen und die Anzahl der Konsonanten vermerkt. 

Sie könnten dieses Programm mit if...else-Schachtelungen in der Manier 
des letzten Beispiels versuchen. Viel übersichtlicher und eleganter ist je- 

doch die Lösung, die Sie im Programm 4.13 sehen. Sie beenden dieses Pro- 

gramm durch Eingabe eines Kreuzzeichens "#". 

Versuchen Sie es einmal mit diesem Satz, und Sie erhalten als Ergebnis: 

Vokale: 24 Konsonanten 37 

Leerzeichen: 11 Satzzeichen: 2 

Ein Gespann von zwei Anweisungen: switch und case - ermöglicht hier 

eine sehr elegante Formulierung. Die switch-Anweisung berechnet den 

Ausdruck in Klammern, der einen Integer-Wert produzieren sollte (aber in 

C sind ja auch Zeichen Zahlen!). Deren Wert wird nun mit allen Fällen im 
case verglichen. Paßt eine der case-Konstanten, dann werden die zugehöri- 
gen Anweisungen ausgeführt. Hier weist C eine kleine Inkonsistenz auf, da 
es hier nicht nötig ist, die Anweisungen zu einem Block zusammenzufassen. 
Es können beliebig viele Anweisungen beim zugehörigen case stehen. Um 
die Ausführung dieser Anweisungen zu unterbrechen, ist es allerdings not- 
wendig, diese mittels break zu verlassen.
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Prog. 4.13: Zeichentypen zählen mit switch 

Die einzelnen case-Anweisungen dienen nur als Marke, als Einstieg in die 
Anweisungsfolge. Wäre die break-Anweisung nicht vorhanden, dann würde 
mit der nächsten Anweisung im switch fortgefahren. Dies illustriert das 
folgende Programm-Fragment:
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main() 

{ 
int a, b, c; 

for (i = 3; i; --i) 
switch(c = getchar()) 

{ case 'a': +t+a; 

case 'b': ++b; 

case 'c': ++c;5 

} 

printf("\n a = %d, b=%d, c = %dı, a,b, c); 

Dieses Programm liest drei Zeichen von der Tastatur. Gibt man ihm nun 
nacheinander die Zeichen ’a’, ’b’ und ’c’ (auf die Reihenfolge kommt es 

nicht an!), so erhält man keineswegs das Ergebnis a = J, b = 1, c = I! 

Vielmehr sieht das Resultat so aus: 

Was ist passiert? Nehmen wir an, Sie geben als erstes ein ’a’ ein. C findet 

eine passende Marke beim ersten case und zählt die Variable a hoch. Dann 

fährt es mit der nächsten Anweisung fort, ud zählt 5 und anschließend c 
hoch. Denn keiner hat ihm gesagt, daß es mit den Anweisungen im switch 
hinter ++a aufhören soll! Ähnlich verhält es sich bei Eingabe von ’b’, bei 
dem die Variablen b und c hochgezählt werden. Nur das ’c’ wirkt nur auf 
eine Variable, aber nur, weil es zufälligerweise am Ende der Auswahlmög- 
lichkeiten steht. 

Was beabsichtigt war, sieht so aus: 

maind). 

{ 
int a, b, c; 

for (i = 3; i; --i) 
switch(c = getchar()) 

{ case 'a': ++a: 
break; 

case 'b': ++b; | 
break; B 

case 'c': ++c; 

> 

printf("\n a = %d, b = %d, c = Xd", a,b, c); 

Wie Sie sehen, ist eine default-Marke in einer switch-Anweisung nicht er- 
forderlich. Sie dient - wenn Sie vorhanden ist - als "Madchen für alles’: 
wenn keine der anderen Marken greift, dann werden die mit default ver- 
knüpften Anweisungen ausgeführt. So zählt im Programm 4.13 alles als
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Konsonant, was kein Vokal, Leerzeichen oder Satzzeichen ist (also auch - 
fälschlicherweise - die Ziffern!). Das Englische default heißt auf Deutsch 

"Nichterscheinen" (z.B. bei einem Gerichtstermin); man liest es im Zusam- 

menhang mit switch am besten als "in allen anderen Fällen". 

Die Reihenfolge, in der Sie die einzelnen case-Marken hinschreiben, spielt 

keine Rolle. Allerdings dürfen gleiche case-Marken in einem switch nicht 
mehrfach vorkommen. Auch sollten Sie sich angewöhnen, in jedem switch 
eine default-Klausel mit einem break aufzunehmen. Dies mag vielleicht 
nicht immer nötig sein, kann sich aber bei späteren Programmänderungen - 

wenn zusätzliche case-Marken aufgenommen werden - auszahlen. 

4.4.3 Die for-Schleife 

Die letzten beiden Kontrollstrukturen (if und case) dienten der Auswahl 

von Anweisungen. Die folgenden dienen zur Schleifenbildung, bewirken 
also die wiederholte Ausführung von Anweisungen. 

Die Informatiker unterteilen die Gattung der Programmschleifen in ver- 
schiedene Unterabteilungen: Zählschleifen, abweisende und nichtabweisen-. 

de Schleifen. 

Zählschleifen sind solche Schleifen, bei denen mitgezählt wird, wie oft eine 
Anweisung bzw. eine Anweisungsfolge wiederholt werden soll. Zählschlei- 
fen benutzen dazu eine Schleifen- oder Zählvariable, deren Wert bei jedem 
Schleifendurchgang um einen bestimmten Betrag erhöht wird, die also 
"hochgezählt’ wird. Ebenso ist natürlich die umgekehrte Zählrichtung mög- 
lich, also das ’”herunterzählen’ der Schleifenvariable. 

Die Zählschleife von C wird mit for gebildet; for-Schleifen sind Ihnen be- 

reits aus Kapitel 3 bekannt. Der Ubersichtlichkeit halber will ich noch 

einmal aufführen, welche Bestandteile eine for-Schleife enthalten kann: 

for ( <initialisierung> ; <kontrollbedingung> ; <re-initialisierung> ) 

<anweisung> 

"Enthalten kann" sage ich deswegen, weil keineswegs alle Komponenten bei 

einer for-Schleife unbedingt erforderlich sind! So dienen Schleifenkon- 

strukte zwar dazu, Anweisungen zu wiederholen, aber in C können diese zu 

wiederholenden Anweisungen fehlen! Was sich so widersinnig anhört, kann 
durchaus seinen praktischen Nutzen haben. Möchte man etwa in einem 

Programm eine Bildschirmausgabe - beispielsweise eine Copyright-Meldung 
- für eine bestimmte Zeit auf dem Terminal ’festfrieren’, dann bietet es 

sich an, nach Ausgabe des Textes eine "Bremsschleife" in das Programm 

einzubauen, um dessen Fortgang zu verzögern. Solche Bremsschleifen er- 
reicht man, indem man einfach eine Variable hochzählt; etwa so:
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for (i = 0; 1 != 30000; ++i) 

a 

Alles, was hier geschehen soll, wird bereits im Schleifenkopf (in den run- 
den Klammern hinter for) erledigt. Eine zu wiederholende Anweisung ist 
eigentlich gar nicht nötig. Nun erzwingt die Syntax von for jedoch hinter 
dem Schleifenkopf eine Anweisung, weswegen man ganz einfach zu der 

weiter oben vorgestellten "leeren Anweisung" greift. Diese wird unter den 
Schleifenkopf geschrieben und säuberlich eingerückt. Das hat nicht nur 

ästhetische Gründe, sondern kann auch Fehler verhindern helfen. 

Ein beliebter Bug in C ist es nämlich, etwas wie das Folgende zu schreiben: 

int i, J; 

for (1 = 1, J = 0; i != 11; ++1); 
jt i; 

Man meint, damit in j die Summe der Zahlen von 1 bis 10 berechnet zu 
haben. Tatsächlich enthält j aber nach Beendigung der Schleife den Wert 
11! Denn hinter dem Schleifenkopf, auf der selben Zeile wie die runden 

Klammern, verbirgt sich ein unscheinbarer Strichpunkt: dadurch ist die 

Anweisung j += i gar nicht mehr im Geltungsbereich der for-Schleife! 

Durch korrekte Einrückung wird klar, was das Programmfragment eigent- 
lich tut: 

int i, J; 

for (i = 1, j = 0; i != 11; ++i) 

j += i; 

Gewohnen Sie sich also an, niemals einen Strichpunkt auf die selbe Zeile 

wie den Kopf einer for-Schleife zu setzen. 

In einer for-Schleife kann im Extremfall jeder der drei Teile <initialisie- 
rung>, <kontrollbedingung> und <reinitialisierung> weggelassen werden 
(nicht aber die trennenden Strichpunkte!). Damit erhält man: 

for (;;)I 
J 

Das ist eine von vielen Arten, in C eine Endlosschleife zu bauen. Denn 

wenn die Kontrollbedingung fehlt, dann wird einfach angenommen, sie 
wäre dauernd "wahr"! Das folgende Programmfragment zählt denn auch 

munter die Variable i hoch - ohne damit jemals wieder aufzuhören. Also 
nicht ausprobieren, denn Sie müßten zum Reset-Knopf greifen! 

for (i=0; ; ++i) 

i
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Da man in for-Schleifen den Reinitialisierungsteil ebenfalls weglassen 
kann, liegen auch hierin ernstzunehmende Fehlerquellen. Die bereits 
mehrfach benutzte while-Schleife, die Zeichen einliest bis zu einem defi- 
nierten Ende-Zeichen (hier den Punkt): 

while ((c = getchar()) != '.') 

kann man mit for ja auch so ausdrücken: 

for ( ;(c = getchar()) !I= '.'; ) 

Aber Vorsicht! Wehe, man kommt mit den Strichpunkten durcheinander 

und schreibt: 

for (€ ;;(c = getchar()) != '.') 

Wieder stellt sich eine hartnäckige Endlosschleife ein. 

Neben den ’abgemagerten’ for-Schleifen, bei denen Bestandteile wegge- 
lassen wurden, gibt es auch die ’aufgeblasenen’ for-Schleifen, bei denen 
eine oder mehrere Komponenten des Schleifenkopfs mehrfach vertreten 

sind. Daß man auf diese Art mehrere Variablen initialisieren und reinitiali- 
sieren lassen kann, wurde ja bereits wiederholt in den Programmbeispielen 
demonstriert. Dazu müssen die einzelnen Anweisungen lediglich durch 
Komma getrennt werden. 

Dieses trennende Komma ist genaugenommen ein Beispiel für den Einsatz 
eines Operators, den ich Ihnen bisher unterschlagen habe: der "Komma"- 

Operator. In C ist es möglich, mehrere Ausdrücke durch Komma getrennt 

hinzuschreiben. C garantiert Ihnen in diesem Fall, daß diese Ausdrücke von 
links nach rechts berechnet werden. Der Wert des gesamten Ausdrucks ist 

dann der Wert des letzten durch Komma getrennten Ausdrucks. Allerdings 
müssen Sie dabei beachten, daß die Zuweisungsoperatoren in der Vorrang- 
tabelle noch vor dem Komma-Operator rangieren. Betrachten Sie dazu das 

folgende Programm und dessen Ergebnis (Abbildung 4.11; Anmerkung: Der 
ATARI-C-Compiler konnte ın der mir vorliegenden Version den Komma- 

Operator nicht richtig übersetzen und lieferte ein falsches Ergebnis). Den 
Ausdruck i = j++, ++j; faBt C also auf, als wäre er so geklammert: (i = 

J++), +#rjr.
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Abb. 4.11: Der Komma-Operator und seine Wirkung. 

Allerdings: das Komma wird auch noch in einem anderen Zusammenhang 

verwendet, in dem es mit dem Komma-Operator nicht verwechselt werden 

darf. Es trennt die Argumente einer Funktion; aber in diesem Kontext 

kann man sich nicht darauf verlassen, daß die Argumente von links nach 
rechts ausgewertet werden. Der folgende Code 

i=1; 

printf("%d %d", ++i,+ti); 

kann bei einigen Compilern das Ergebnis "2 3" haben, bei anderen (darun- 
ter auch dem Compiler im ATARI-Entwicklungssystem) jedoch "3 2". Über 
die Reihenfolge, in der die Argumente einer Funktion ausgewertet werden, 
legt der C-Standard nichts fest. 

4.4.4 Abweisende und nichtabweisende Schleifen: while und do...while 

Bei diesem Schleifentyp wird eine Anweisung bzw. Anweisungsfolge in 
Abhängigkeit vom Warheitswert einer Bedingung wiederholt. Die abwei- 
sende Variante setzt man immer dann ein, wenn sich ein Problem um- 

gangssprachlich so umreißen läßt: 

solange eine Bedingung wahr ist 

tue dieses-und- jenes 

In C formulieren Sie dies mit der while-Schleife, deren Anatomie Sie in 
der Abbildung 4.12 finden. Dieser Schleifentyp wird "abweisend" genannt, 
weil er die Kontrollbedingung überprüft, ehe er sich an die Ausführung 
der Anweisung macht. Ist diese Bedingung schon zu Beginn falsch, dann 
kommt es gar nicht erst zur Ausführung der Anweisung; C fährt einfach 
hinter der while-Schleife mit der Arbeit fort.
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Abb. 4.12: Anatomie der while-Schleife 

Bei Problemen, die erfordern, daß die Anweisung in der Schleife min- 

destens einmal ausgeführt wird, benötigt man die nicht-abweisende Varian- 

te der while-Schleife. Ihr entspricht die umgangssprachliche Problemformu- 

lierung: 

tue dieses-und- jenes 
solange eine Bedingung wahr ist. 

Da die Kontrollbedingung erst am Ende der Schleife überprüft wird, wird 
die Anweisung in der Schleife auf keinen Fall übergangen. Wie dieser 
Schleifentyp in C gebildet wird, zeigt Ihnen die Abbildung 4.13. 

Abb. 4.13: Anatomie der do...while-Schleife 

Beachten Sie, daß diese Schleife mit einem Strichpunkt hinter der Kon- 

trollbedingung abgeschlossen werden muß. Den Unterschied zwischen ab- 
weisenden und nichtabweisenden Schleifen soll das folgende kurze Beispiel 

zeigen: 

#define FALSCH 0 

main() 

{ while (FALSCH) 
printf("\nAbweisende Schleife!"); 

do 
printf("\nNichtabweisende Schleife!") 

while (FALSCH); 
> 

In beiden Schleifen ist die Kontrollbedingung stets falsch (das heißt in C: 

hat den numerischen Wert 0). Entsprechend wird dieses Programm nur die 
Meldung "Nichtabweisende Schleife!" auf den Bildschirm bringen. 

Auch bei den while-Schleifen gibt es - wie bei den for-Schleifen - wieder 
ein C-typisches Idiom. Oft trifft man while-Schleifen in C-Programmen 
an, bei denen die Wiederholungs-Anweisung fehlt. Möchte man z.B. ein 
Programm schreiben, das Eingaben von der Tastatur akzeptiert, erstmal alle 

Leerzeichen ignoriert und von da an alle eingelesenen Zeichen zählt bis 

zum ersten Leerzeichen, so kann man das wie im Programm 4.14 tun.
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Die while-Schleife zu Beginn des Programms überliest Leerzeichen; dies so 
- also mit einer leeren Anweisung im Schleifenkörper - zu notieren, ist 

gängiger C-Slang. Nach Beendigung der while-Schleife wurde bereits ein 
Nicht-Leerzeichen gelesen, das natürlich mitgezählt werden muß. Deshalb 
erfolgt das Mitzählen in einer do...while-Schleife, die auch dafür sorgt, daß 

das nächste, die Schleife beendende Leerzeichen nicht fälschlich mitgezählt 

wird. : 

Da die eingelesenen Zeichen im Programm in keiner Weise weiterverwendet 
werden, ist es unnötig, sie in einer Zeichenvariablen aufzubewahren. Die 
übliche "Zuweisung im Vergleich" (Muster: ((c = getchar()) ==’ ’)) unter- 
bleibt deshalb. Das von getchar gelieferte Zeichen (vornehmer: der Wert der 
Funktion getchar) wird für den Vergleich benötigt, danach aber sofort 
’vergessen’. | 

Prog. 4.14: Abweisende und nichtabweisende Schlei fe 

Noch einmal möchte ich Sie darauf hinweisen, daß die do...while-Schleife 

mit einem Strichpunkt abgeschlossen werden muß. Zwar steht auch am 
Ende der while-Schleife in diesem Programm ein Strichpunkt; dabei handelt 

es sich jedoch um die leere Anweisung (die von der Schleife kontrollierte 
Anweisung) und nicht um eine Endemarkierung für die Schleife. Da while- 
Schleifen auch Anweisungsblocks kontrollieren können und diese nicht mit 
einem Strichpunkt abgeschlossen werden müssen, sind durchaus while- 
Schleifen möglich, die ohne Strichpunkt enden. Nicht so bei den do...while- 
Schleifen: hier hat stets ein Strichpunkt am Ende zu stehen. |
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4.4.5 Verlassen von Schleifen: break und continue 

Normalerweise kontrolliert der Schleifenkopf die Anzahl der Wiederholun- 
gen in einer Schleife; bei der for-Schleife durch Zählen von Variablen, bei 
den while-Schleifen durch Überprüfen von Bedingungen am Schleifen- 
anfang oder -ende. Manchmal kann es aber erforderlich sein, aus einer 
Schleife ’auszubrechen’, sie zu verlassen in Abhängigkeit von Bedingungen, 
die nicht im Schleifenkopf kontrolliert werden. Für diese Art des vorzeiti- 

gen Ausstiegs aus einer Schleife hält C die Anweisungen break und continue 
bereit. 

Taucht break in einer Schleife auf, dann wird diese sofort verlassen; es er- 
folgt kein erneuter Durchgang durch die Schleife mehr. Alle Anweisungen, 

die im Schleifenkörper auf break folgen, werden ebenfalls ignoriert. Die 

continue- Anweisung bewirkt ebenfalls ein sofortiges Verlassen der Schleife, 
diesmal jedoch für einen erneuten Durchgang. Mit continue kann man also 
lediglich verhindern, daß eine oder mehrere Anweisungen im Schleifenkör- 
per von der Ausführung ausgenommen werden. Dazu ein Beispiel; die bei- 
den folgenden Programmausschnitte bewirken genau das gleiche: 

/* Leerzeichen ueberlesen; Variante 1 */ 

while (1) 

if (Cc = getchar()) != ! ’) 
break; 

/* Leerzeichen ueberlesen; Variante 2 */ 

while ((c = getchar()) == ! !) 
‘ 

Beide Schleifen überlesen Leerzeichen. In der ersten Variante wird dies je- 
doch in einer (potentiellen) Endlosschleife getan: die Kontrollbedingung ist 
eine Konstante, eine, die immer wahr ist. Um jetzt den Computer nicht 

’aufzuhängen’, muß diese Schleife mit Gewalt verlassen werden. Dazu dient 
die break-Anweisung, die jedoch von if kontrolliert wird, um nur bei 
einem Nicht-Leerzeichen aktiviert zu werden. 

Wie in diesem Beispiel ist es in allen Fällen (theoretisch) möglich, auf break 

zu verzichten und eine alternative Problemlösung mit while oder do...while 

zu erreichen. Es gibt jedoch Fälle, in denen break und sein Verwandter 
continue eine ’natürlichere’ Formulierung erlauben. Aber was als ’natürlich’ 

zu gelten hat, ist Geschmackssache - natürlich! 

Im Zusammenhang mit der Mehrfachauswahl (switch und case) ist Ihnen 
break bereits einmal begegnet. Dort diente es zum Verlassen der switch- 
Anweisung. Ist ein switch in eine Schleife eingebettet, dann bewirkt ein
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break im switch nicht, daB damit die Schleife abgebrochen wird. Das Pro- 

gramm 4.13 ist dafür ein Beispiel. 

In dem Beispiel für continue - dem zweiten Schleifenunterbrecher - wird 

auf eine bereits bekannte Problemstellung zurückgegriffen. In einer 
Schleife sollen Leerzeichen und sonstige Zeichen gezählt werden, bis ein 
Punkt eingegeben wird. Auch hierzu werden wieder zwei Formulierungen 
angeboten. 

In der ersten Variante sorgt die continue-Anweisung dafür, daß das Hoch- 
zählen der "andere"-Variablen übersprungen wird; in der zweiten Variante 

wird genau derselbe Effekt mit if...else erreicht. Natürlich ist hier (ebenso 
wie beim break-Beispiel) unter Gesichtspunkten des Stilpurismus der zwei- 

ten Variante der Vorzug zu geben. 

Schleifen können ineinander geschachtelt werden; liegt so etwas vor, dann 
verlassen break und continue immer nur die Schleife, in der sie unmittelbar 
enthalten sind. 

char c; 
int leer, andere; 

leer = andere = 0; 
while ((c = getchar()) != !.'!) 

{ if (ec ==! ') 
{ ++leer; 

continue; 

> 
++andere; 

> 

leer = andere = 0; 

while ((c = getchar()) != '.') 

if (c == ' ') 
++leer; 

else 
++andere; 

4.4.6 Die unbedingte Sprunganweisung: goto 

Aus der schlechten alten Zeit der unstrukturierten Programmierung hat C 

ein Sprachkonstrukt übernommen, das in den siebziger Jahren der Haupt- 

feind der theoretischen Informatik war: der unbedingte Sprung mit goto. 
Dem BASIC-Programmierer wohlvertraut, ist dies das Mittel, mit dem man 
am einfachsten von einem an sich trivialen Problem zu einer völlig unver- 
ständlichen Lösung desselben gelangen kann. Ein bißchen ist dem goto in C 

die Schärfe genommen, da als Sprungmarken keine nichtssagenden Zeilen-
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nummern vorgeschrieben sind (wie in BASIC), sondern (im Rahmen der 
Namenskonventionen von C) frei wählbare Namen. Ähnlich wie die case- 
Marken bei switch müssen auch die Sprungmarken für goto mit einem 
nachgestellten Doppelpunkt gekennzeichnet werden. 

Die goto-Anweisung kann stets vermieden und durch geeignete Schleifen 
ersetzt werden. Während sich bei den - auch schon bedenklichen - break 
und case-Anweisungen gelegentlich Rechtfertigungen für ihre Anwendung 
finden lassen, ist goto stets die schlechteste aller Alternativen. Deshalb 
sollten Sie am besten sofort wieder vergessen, daß es diese Anweisung in C 
gibt. Und deshalb präsentiere ich Ihnen dafür auch kein Beispiel. | 

4.4.7 Die return- Anweisung. 

Auch diese Anweisung ist Ihnen bereits begegnet. Sie dient dazu, bei 

Funktionen einen Wert zurückzugeben. Die return-Anweisung muß zu den 
K.ontrollstrukturen gezählt werden, da sie die normale Reihenfolge der 
Abarbeitung unterbrechen kann. Taucht sie ın einer Funktion auf, dann 
wird die Funktion mit dem hinter return angegebenen Wert sofort verlassen. 
Eventuell nachfolgende Anweisungen in der Funktion kommen nicht mehr 
zur Ausführung.
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5 Arrays und Pointer 

Einzelne Zeichen und Zahlen verarbeiten: das war alles, was die bisherigen 

Programmbeispiele zuwege brachten. Meist ist dies zu wenig; alle Program- 

miersprachen bieten deshalb die Möglichkeit, zusammengesetzte Datenob- 

jekte zu verarbeiten. 

Das natürliche Beispiel für zusammengesetzte Datenobjekte sind Zeichen- 

ketten, unter Programmierern auch als "Strings" bekannt. Strings sind Ihnen 
vertraut, seit Sie Lesen können, denn Strings sınd nichts anderes als An- 

einanderreihungen von Zeichen - Buchstaben und Ziffern, Sonderzeichen 
und Leerzeichen. Auch dieses Buch ist nichts anderes als ein einziger, lan- 
ger String. 

Sieht man das ganze aus einer etwas höheren Perspektive, so ist ein String 

nichts anderes als eine Aneinanderreihung von Objekten der gleichen 
Datenklasse (in diesem Fall von Zeichen bzw. chars) mit einer bestimmten 
Länge. Solche Aneinanderreihungen kann man nicht nur mit Zeichen bil- 

den; auch Aneinanderreihungen von Zahlen sowie von anderen, bisher noch 
nicht besprochenen Datentypen sind möglich. In C werden alle diese For- 

men der Aneinanderreihung als "Array" bezeichnet. 

5.1 Integer-Arrays 

Ein Beispiel soll dies deutlich machen. Das folgende Beispielprogramm liest 

- wieder einmal; aber wir kommen schon noch zu anderen Anwendungen! - 
Zeichen von der Tastatur und zählt, wie oft jeder Buchstabe auftaucht. Mit 
den bisher verfügbaren Sprachmitteln wäre diese Aufgabe nur sehr um- 
ständlich zu lösen. Man könnte sich 26 Integer-Variable definieren, eine 
für jeden Buchstaben des Alphabets, und dann in einem switch mit 26 

case-Marken die jeweils passende Variable hochzählen. Aber es geht ein- 

facher; wie, das steht im Programm 5.1. 

Ich habe angenommen, daß die bereits bekannten Makros zur Zeichenver- 

arbeitung (isupper, islower etc.) in der Datei ctype.h zu finden sind. Im 

Anhang finden Sie diese Makro-Datei ausgedruckt. 

Als erstes begegnet Ihnen in diesem Programm eine Array-Deklaration, 

nämlich 

int buchst [26];
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Deklarationen haben - Sie erinnern sich - den Zweck, Speicherplatz zu 
reservieren, der ausreicht, um Daten eines bestimmten Typs aufzunehmen 
und diesem Platz einen Namen zu geben, unter dem er im Programm ange- 
sprochen werden kann. Diese Aufgaben besorgt auch obige Deklaration, 
allerdings tut sie noch etwas mehr. 

Die Array-Deklaration besorgt im Speicher des Computers eine zusammen- 
hängende Folge von Speicherzellen, "Array" genannt, die groß genug ist, 
um 26 Werte bzw. "Komponenten" vom Typ Integer aufzunehmen. Die 
Größe dieses Speicherbereichs ergibt sich also aus dem Datentyp der Kom- 
ponenten (hier: int) und der Anzahl der gewünschten Komponenten (hier: 
26), die in eckigen Klammern hinter dem Namen des Arrays zu schreiben 
ist. Wie jede andere Anweisung wird die Array-Deklaration mit einem 
Strichpunkt abgeschlossen. 

Prog. 5.1: Zeichen zählen im Array 

Der Array erhält auch einen Namen, in diesem Falle buchst. Aber genauer 
müßte man sagen: die Array-Deklaration vereinbart auf einmal 26 Namen, 
nämlich einen für jede Komponente des Arrays! Die erste Komponente hat 
den Namen buchst[0], die zweite heißt buchst{1] und so weiter bis zur 
letzten, die den Namen buchst[25] trägt. Jede dieser Komponenten kann 
eine Integer speichern, verhält sich also genauso wie eine ’normale’ Integer-
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Variable. Die Verhältnisse, die nach Ausführung der Array-Deklaration im 
Speicher Ihres Computers herrschen könnten, stellt die Abbildung 5.1 dar. 

Abb. 5.1: Speicherdiagramm eines Integer-Arrays 

Links von den Speicherzellen stehen die (hypothetischen) Adressen der 

einzelnen Komponenten; rechts davon finden Sie den Namen, den die ein- 
zelnen Komponenten durch die Array-Deklaration erhalten haben. Da die 
Deklaration nur Speicherplatz zuweist und benennt, aber keinen Wert in 

den Komponenten ablegt, enthalten die Speicherplätze ein Fragezeichen, 

um zu symbolisieren, daß ihr Wert noch nicht bekannt - nicht definiert - 
ist. | 

Natürlich hat der Array buchst im Zusammenhang mit dem Programm 5.1 
auch einen Sachsinn. Die einzelnen Komponenten sollen nämlich dazu die- 

nen, die Vorkommnisse der einzelnen Buchstaben zu zählen. In buchst[0/] 
speichert das Programm die Anzahl der ’A’s, in buchst[ 1], die der ’B’s und 
so fort bis hin zu buchst[25], in dem die ’Z’s gezählt werden. Beachten Sie, 

daß die Zählung bei Null beginnt, daß also die Komponenten eines C- 
Arrays, anders als in den meisten anderen Programmiersprachen, bei Null 

beginnend durchnumeriert sind. 

Um eine Arraykomponente anzusprechen, schreibt man folglich ihre Posi- 
tionsnummer in eckigen Klammern hinter den Array-Namen. Diese Posi-
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tionsangabe heißt im Fachjargon "Array-Index". Ihre gar nicht zu Utber- — 
schätzende praktische Bedeutung gewinnen die Arrays dadurch, daß als 

Array-Index nicht nur Integer-Konstanten, sonder beliebige Ausdrücke mit 
Zahlenwert verwendet werden können. In der Regel sind dies Variablen. 

Der erste ausführbare Schritt im Programm 5.1 demonstriert dies. Der In- 

halt der Variablenkomponenten ist zu Beginn des Programmes undefiniert. 
Da in den Komponenten Werte gezählt werden sollen, ist es erforderlich, 

diese Komponenten mit dem Anfangswert 0 vorzubesetzen. Natürlich 

könnte man schreiben: 

buchst[0] = buchst[1] = ... = buchst[24] = buchst [25] = 0; 

Aber was wäre damit gewonnen? Der übliche Weg ist es, eine Integervaria- 

ble, nennen wir Sie 7, in einer Schleife von 0 bis 25 hochzuzählen und dann 

ın der Schleife mit 

buchst[i] = 0; 

nacheinander die Zuweisung an die einzelnen Komponenten zu veranlassen. 
Im C-Jargon: die Variable i dient als Array-Index. 

Jetzt dürfte sich auch schon abzeichnen, wie das Programm 5.1 die eigent- 

liche Arbeit, nämlich das Zählen der Buchstaben, erledigt. Für jedes ein- 

gelesene Zeichen wird seine Position im Alphabet und damit im Array 
buchst bestimmt und dann die entsprechende Array-Komponente hochge- 
zählt. Die Position von ’A’ ist dabei 0, die von ’B’ ist 1 usw. Da Sie schon 

mehrfach mit Buchstaben gerechnet haben, ist es fiir Sie kein Geheimnis 

mehr, wie man von einem Buchstaben zu seinem Positionswert gelangt: man 

subtrahiert einfach den Positionswert von ’A’. | 

Dies setzt jedoch voraus, daß man es nur mit Großbuchstaben zu tun hat; 
deshalb wird zuerst das eingelesene Zeichen in Großschreibung umgewan- 
delt. Der nächste Schritt bestimmt die Positionsnummer des Zeichens und 
schließlich wird anhand der Positionsnummer die entsprechende Array- 
Komponente hochgezählt. Da Array-Komponenten ganz normale Variablen 

sind, kann man Ihnen auch auf die übliche Art einen Wert zuweisen, kann 

man insbesondere aus dem vollen Angebot der kombinierten Zuweisungs- 
operatoren schöpfen. Hier kommt der Operator, der gleichzeitig zuweist 

und hochzählt, zum Einsatz: 

buchst [position] += 1; 

All dies geschieht in der while-Schleife. Gezählt werden dürfen allerdings 
nur Buchstaben; für Sonderzeichen ist im Array buchst nichts vorgesehen.
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Daher werden diese durch ein vorgeschaltetes if ausgefiltert; der Filter läßt 

nur Zeichen passieren, die entweder Groß- oder Kleinbuchstaben sind. 

Ist die Zählerei zuende, dann soll die Statistik ausgegeben werden. Dazu 
wird wieder in einer for-Schleife der Array durchlaufen, wobei diesmal 
auf den Wert der einzelnen Komponenten zugegriffen wird. Ausgegeben 
werden soll das Zeichen, gefolgt von seiner Häufigkeit. Dazu ist es nötig, 
aus der Zeichenposition (die in der Variablen i gezählt wird) erstmal ein 
Zeichen zu machen. Dies geschieht durch Aufaddieren der Zeichenkonstan- 
te ’A’. Da diese Addition ein Ergebnis vom Typ int liefert (erinnern Sie 

sich an die Regeln der Typumwandlung), printf aber aufgrund der Format- 
anweisung %c ein Zeichen erwartet, muß das Ergebnis mit dem Cast-Ope- 

rator (char) erst in den richtigen Datentyp ’umgebogen’ werden. 

Prog. 5.2: Idiomatische Variante von Programm 5.1 

Aus didaktischen Gründen habe ich das Beispiel 5.1 umständlicher formu- 

liert, als es ein versierter C-Programmierer tun würde. Die C-typische
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Version reiche ich nun in Programm 5.2 nach. Die Hauptunterschiede zwi- 

schen den beiden Varianten liegen in der while-Schleife. Es kommen drei 

neue Makros zum Einsatz; das erste trägt den Namen is_char und soll er- 
kennen, ob das Eingabezeichen ein Buchstabe ist. Es tut dies, indem es 
isupper und islower (beide ebenfalls Makros!) kombiniert. Das zweite 
Makro mit dem Namen pos erzeugt aus einem Zeichen seine Position im 
Array. Das Makro zei schließlich macht aus einer Integer-Variablen ein 
großgeschriebenes Zeichen. Jedesmal passiert nichts prinzipiell Neues, 

außer daß die zuvor ’ausbuchstabierten’ Verarbeitungsschritte jetzt in 
einem Makro zusammengefaßt wurden. 

Ich habe ja bereits erwähnt, daß als Array-Index beliebige Ausdrücke mit 

einem Zahlenwert herhalten können. Das Makro pos ist ein solcher Aus- 
druck (genauer: erzeugt nach Makro-Expansion einen solchen Ausdruck), 
kann also in den eckigen Klammern als Array-Index auftauchen. Fernerhin 
sind alle Array-Komponenten Variablen; zum Hochzählen von Variablen 
schreibt man am bequemsten ++. Somit haben wir: 

++buchst [pos(c)]; 

und diese eine Anweisung ersetzt drei Anweisungen im alten Programm. Da 
der Wert dieser Anweisung nicht weiterverwendet werden soll, ist es 

gleichgültig, ob man mit dem Prä- oder Postinkrement arbeitet. Auch bei 
der Ausgabe des Ergebnisses hat sich etwas geändert; es wird nur für sol- 

che Buchstaben eine Statistik ausgegeben, die einen Zählwert ungleich 0 
haben. Und das Ergebnis wird, weil’s schöner ist, graphisch - als Histo- 

gramm - dargestellt. Die eigens dazu definierte Mini-Funktion hist gibt so- 
viele Sternchen aus, wie für den Buchstaben Einträge gemacht wurden und 

erhält als Argument daher die im buchst-Array gespeicherte Zahl. Ein Bei- 
spiellauf von Programm 5.2 sieht so aus: 

ABC, die Katze liegt im Schnee# 
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5.1.1 Arraygrenzen: Vorsicht, Falle! 

Über einen Punkt müssen Sie sich bei den Arrays im Klaren sein: ihre 
Länge steht fest. Bei der Deklaration des Arrays geben Sie in den eckigen 
Klammern die ’Abmessungen’ des Arrays an. Hier muß eine Konstante ste- 
hen; jeder Versuch, an diese Stelle eine Variable zu schmuggeln, wird vom 
Compiler unbarmherzig mit einer Fehlermeldung geahndet. Das schließt 
natürlich nicht mittels #define eingeführte symbolische Konstanten aus. 

J 

Ihre Längenangabe in der Array-Deklaration legt die Maximallänge des 
Arrays fest. Wenn Sie (wie in den beiden letzten Beispiel-Programmen) 
einen Array mit 26 Komponenten deklariert haben, dann steht es Ihnen 

frei, davon nur die ersten zehn Komponenten zu verwenden. Dem C-Pro- 

gramm macht das nichts aus, Sie haben lediglich Platz verschwendet. 

Anders, wenn Sie über das Ziel hinausschießen und bei einem Array mit 25 

Komponenten versuchen, einen Wert in die sechsundzwanzigste Kompo- 

nente zu schreiben. Wenn Sie bisher mit BASIC oder Pascal gearbeitet 

haben, dann denken Sie vielleicht "Halb so tragisch; gibt’s eben eine Feh- 
lermeldung". Nicht bei C. Weder der Compiler noch Ihr Programm selbst 
überprüft, ob Sie auch die Indexgrenzen Ihrer Arrays eingehalten haben. 
All die folgenden Scheußlichkeiten sind in C also möglich: 

int arr[10]; 

arr[15] = 0; 
arr[127] = 0; 
arr[-2] = 0; 

Daß der Compiler sowas klaglos durchgehen läßt bedeutet keinesfalls, daß 

es Sınn macht! In der Regel legen Programme, die über Array-Grenzen 
schreiben, ein gar seltsames Verhalten an den Tag. Es kann sein, daß sie 

sofort nach dem Start den Rechner ’aufhängen’; dies ist sogar noch das 
kleinere Übel. Denn es kann auch sein, daß sie eine Zeitlang ohne Schwie- 

rigkeiten laufen. Schon freuen Sie sich, glauben, daß alles in Ordnung ist 
und legen des Programm als erledigt zu den Akten. Und plötzlich, meist 
wenn Sie schon längst vergessen haben, wie das Programm funktioniert, 
passieren wundersame Dinge. Das sind die heimtückischsten Fehler, da sie 

zu einem Zeitpunkt auftreten, da der Programmierer sich erst wieder in die 

Logik seines Programmes einarbeiten muß und die deshalb umso mehr Ar- 
beit machen. 

Andere Programmiersprachen machen - entweder, so weit dies möglich ist, 

bereits durch den Compiler, oder zur Laufzeit des Programmes - ausführ- 

liche Überprüfungen auf Einhaltung der Indexgrenzen. Ein fehlerhaftes 
Programm wird auch in diesen Sprachen nicht laufen, aber es verabschiedet
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sich wenigstens gnädig mit einer Fehlermeldung, was das Debugging be- 

trächtlich erleichtert. 

Warum bietet C diesen Komfort nicht? Das liegt in der Philosophie der 

Sprache begründet. C ist eine Sprache für Systemprogrammierung, gehört 
also in die Hand eines Systemprogrammierers, und das sind in der Regel 

Leute, die schon wissen, was sie tun. Das kann so weit gehen, daß eine 

bewußte Überschreitung der Indexgrenzen vorliegt, d.h. daß der Program- 
mierer einen ganz bestimmten Effekt mit voller Absicht herbeiführen will; 
C will ihn daran nicht hindern. Es ist eine Sprache für Erwachsene; BASIC 

und Pascal jedoch sind als ausgesprochene Anfänger- und Lernsprachen 

entwickelt worden. Die Überprüfung zur Laufzeit führt außerdem zusätz- 

lichen Code in Ihr Programm ein, macht es dadurch umfangreicher und 
langsamer. C möchte Ihnen aber gerade die Möglichkeit- geben, möglichst 

kompakte und schnelle Programme zu schreiben. 

Ein weiteres Wort der Warnung ist im Zusammenhang mit den Arrays an- 

gebracht. Bei der Deklaration vereinbaren Sie eine Maximalgröße für Ihre 
Arrays. Wiederum hindert Sie C nicht daran, Arrays zu vereinbaren, die 
größer sind als der gesamte verfügbare Speicher! Im C des ATARI ist es 

möglich, einen Integer-Array mit einer Million Komponenten zu deklarie- 
ren (den zu speichern man runde 490K bräuchte; so viel ist bei einem 
520K -System keinesfalls mehr übrig, wenn das Betriebssystem geladen ist!) 
und dann einen Wert in seine letzte Komponente zu schreiben. Natürlich 

mit dem Ergebnis, daß der Rechner hängt... 

Seien Sie also nicht maßlos in Ihren Speicherplatz- Wünschen! 

Prog. 5.3: Umdrehen der Eingabe mit Zeichen- Array
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5.2 Zeichen-Arrays und Strings 

Natürlich sind Sie in C nicht auf Integer-Arrays beschränkt. Jeder einfache 
Datentyp kann zur Bildung von Arrays herhalten. Es sind also auch Zei- 
chen-Arrays möglich, wie das Beispiel-Programm 5.3 zeigt. Dieses liest in 
einen Zeichen-Array mit einer Maximallänge von 80 Komponenten (defi- 
niert als symbolische Konstante MAX) solange Zeichen, bis entweder die 
Arraygrenze erreicht oder ein Punkt eingegeben wurde. Anschließend wer- 
den die eingelesenen Zeichen in umgekehrter Reihenfolge wieder ausge- 
geben. 

Beachten Sie, wie in der while-Schleife zum Einlesen zugleich die Ein- 
haltung der Array-Grenzen überprüft wird. Das Hochzählen der Index- 
variablen i erfolgt im Schleifenkörper mittels Postinkrement. Das bedeutet, 
daß nach Verlassen der Einlese-Schleife i hinter das zuletzt gespeicherte 
Zeichen weist (der Punkt wird nicht mit abgespeichert!). Deshalb wird in 
der Ausgabeschleife mit Prädekrement gearbeitet. Die do...while-Schleife 
sorgt dafür, daß auch noch das letzte Element mit dem Index 0 ausgegeben 
wird. Hier eine Beispiellauf für dieses Programm: 

Dieser Satz hat weniger als achtzig Zeichen. 

nehcieZ gizthca sla reginew tah ztaS reseiD 

Von den Zeichen-Arrays zu den Strings ist es in C nur ein kleiner Schritt. 
Als Konstanten sind Ihnen die Strings schon begegnet: Meldungen, die Sie 
mit printf ausgeben, genauer: das erste Argument von printf ist ein String. 
Stringkonstanten erkennt man daran, daß sie in doppelte Anfüh- 
rungszeichen ("Gänsefüßchen") eingeschlossen sind. 

Jetzt wissen Sie, wie Stringkonstanten im Programm aussehen; eine andere 
Frage ist, wie Sie der Computer sieht. Strings sind für ihn Zeichen-Arrays, 
die mit einem Null-Byte abgeschlossen sind, also einem Byte, das den 
(hexadezimalen, binären, oktalen, dezimalen - das ist in diesem Fall alles 
Eins) Zahlenwert 0 hat. Die Abbildung 5.2 zeigt Ihnen, wie der String 
"String" im Speicher abgelegt ist: 

Abb. 5.2: Speicherdiagramm eines Strings 

Im Unterschied zu den bisherigen Speicherdiagrammen habe ich die Spei- 
cherzellen diesmal der Übersichtlichkeit wegen horizontal angeordnet. Die 
Werte in den Speicherzellen sind die (dezimalen) ASCII-Werte des ge-
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speicherten Zeichens. Darunter sehen Sie das jeweilige Zeichen als Zei- 

chenkonstante; beachten Sie die Ersatzdarstellung des Null-Bytes. 

Wegen dieses abschließenden Null-Bytes benötigt ein String immer ein Byte 

mehr an Speicherplatz, als er sichtbare Zeichen aufweist. Da Strings Zei- 

chen-Arrays sind und da Sie für die Deklaration von Arrays selbst zustän- 

dig sind, sollten Sie dies beachten. Wenn Sie also in Ihrem Programm mit 

Strings arbeiten wollen, deren Maximallänge 100 Zeichen beträgt, so müs- 

sen Sie einen Zeichenarray mit mindestens 101 Komponenten deklarieren, 

um nicht in Schwierigkeiten zu geraten. 

Das nächste kleine Beispiel (Programm 5.4) liest Zeichen von der Tastatur, 

speichert Sie in einem Array, macht einen String daraus und gibt diesen 

mit printf aus. Das Ende des Eingabestrings erkennt das Programm am Be- 

tätigen der Return-Taste. 

Prog. 5.4: String von der Tastatur lesen. 

Die maximale Stringlänge beträgt in einem C-Programm stets eins weniger 

als die maximale Länge des Zeichenarrays. In bester C-Manier werden des- 

halb zu Beginn des Programms zwei symbolische Konstanten definiert: eine 

für die Arraylänge mit dem vielsagenden Namen ARRLEN und eine, die 

die Stringlänge angibt und STRLEN heißt. 

Den Zeichenarray zur Speicherung des Strings auf den Namen string zu 

taufen: diesen billigen Kalauer konnte ich mir nicht verkneifen. Seine 

Länge wird durch die symbolische Konstante STRLEN (die für den Wert
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81 steht) angegeben. Somit hat ein String mit maximal 80 Zeichen (Kon- 

stante STRLEN) darin Platz. 

Das Programm gibt als erstes eine Eingabeaufforderung (auch "Prompt" ge- 

nannt) aus und liest dann - ähnlich wie Programm 5.3 - in einer while- 

Schleife Zeichen von der Tastatur. Es hört damit auf, wenn die maximale 

Stringlänge erreicht wurde, oder wenn Sie die Return-Taste betätigen. 

An dieser Stelle muß ich auf eine Besonderheit des ATARI-C eingehen. 
Üblicherweise wird bei Betätigen der Return-Taste an C das Zeichen 
"Newline" weitergeleitet, dessen Ersatzdarstellung in C ’\n’ ist. Das 
ATARI-C - genauer: die Funktion getchar - weicht von dieser Konvention 
ab; man erhält "Return". Der Grund liegt darin, daß in der mir vorliegen- 
den Version des C-Compilers getchar umittelbar durch Aufruf einer Be- 
triebssystems-Funktion realisiert wird, die sich nicht um die Einhaltung des 
in C üblichen Protokolls kümmert. Dies kann jedoch in späteren Versionen 
des Compilers und zu dem Zeitpunkt, zu dem Sie dieses Buch lesen, geän- 

dert sein. Sollte das Beispielprogramm bei Ihnen also nicht funktionieren, 
so ändern Sie den Kopf der while-Schleife in: 

while (i < STRLEN && (c = getchar()) != '\n') 

Ist das Endekriterium für die Zeicheneingabe erreicht, dann kommt eine 

kleine aber bedeutungsschwere Anweisung. Hinter das letzte gelesene Zei- 

chen wird ein Null-Byte geschrieben - und so aus einem gewöhnlichen 

Zeichen-Array ein String gemacht. 

Jetzt erst ist string ein passendes Argument für printf, das neben ver- 
schiedensten Zahlen und Zeichen auch Strings ausgeben kann. Es tut dies, 

wenn Sie in den Kontrollstring die Formatangabe %s aufnehmen. Dann er- 
wartet printf als zugehöriges Argument einen String und verläßt sıch dar- 
auf, daß dieser mit dem ominösen Null-Byte abgeschlossen wird. Wehe, er 

ist’s nicht; dann bekommen Sie Ärger mit Ihrem Programm! 

Der printf-Aufruf verdeutlicht auch, wie man einen String - oder, ganz 
allgemein: einen Array - an eine Funktion als Argument tibergeben kann: 

einfach, indem man seinen Namen hinschreibt! 

Jetzt fragt sich nur, wie Funktionen aussehen, die Strings als Argumente 
haben. Das zeigt Ihnen Beispielprogramm 5.5. Es benutzt zwei Stringfunk- 

tionen: get_s zum Einlesen eines Strings von der Tastatur und sir_len zur 
Bestimmung der Länge eines Strings. Im Hauptprogramm werden lediglich 

5 Strings eingelesen und dann zusammen mit Angaben über ihre Länge 
wieder ausgegeben.
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Prog. 5.5: Unterfunktionen, die mit Strings arbeiten 

Das Hauptprogramm bietet keine Neuigkeiten. Es bedient sich zum Lesen 

des Strings der Funktion get_s und läßt sich die Stringlange mit str_len 

anzeigen. Beide Funktionen erhalten Strings als Argumente; an diese Fest- 

stellung schließt sich zwanglos die Frage an, wie denn der Parameter in der 

Funktion zu deklarieren ist.
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Im wesentlichen wie im Hauptprogramm. Wenn Sie die beiden Funktionen 

betrachten, werden Sie feststellen, daß in der Funktions-Deklaration ledig- 

lich die Größenangabe in den eckigen Klammern weggeblieben ist. Um 

dies zu erklären, muß ich Ihnen ein wenig über die Mechanismen der Para- 

meter-Übergabe in C erzählen. 

Wenn eine Funktion mit einem Parameter vom Typ int aufgerufen wird, 
dann -erhält die Funktion in diesem Parameter eine Kopie des Arguments. 
Betrachten Sie dazu folgendes Beispiel: 

Beim Aufruf von fun hat i den Wert 5, d.h. an der mit i bezeichneten 
Speicherstelle ist diese Zahl abgelegt. Die Übergabe des Arguments i an 

den Parameter p erfolgt, indem dieser Wert in die mit p assoziierte Spei- 
cherstelle kopiert wird. Für p wird also ebensoviel Speicherplatz be- 

reitgestellt wie für 7. Wenn p den Wert empfangen hat, dann sind die Ver- 
bindungen zu i abgebrochen: Änderungen an p innerhalb von fun haben 
keinerlei Auswirkungen auf den in 7 gespeicherten Wert. Dies kann man so 
zusammenfassen: eine Funktion empfängt in Ihrem Parameter eine Kopie 
des Werts des Arguments. 

Nicht so bei den Arrays und damit den Strings; denn keine Regel ohne 
Ausnahme. Wenn Sie an str_len einen String mit 50 Zeichen übergeben, 
dann werden keineswegs all diese Zeichen als Kopie an str_len übergeben. 
Stattdessen erhält die Funktion die Anfangsadresse des Strings (das wird im 
nächsten Unterkapitel noch ausführlicher erklärt!) im Parameter übergeben. 
Das bedeutet im Wesentlichen: Modifikationen am Parameter sind auch 
Modifikationen in der aufrufenden Funktion. Der String, der im aufrufen-
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den Programm deklariert ist, wird in der Funktion manipuliert, aber unter 

einem anderen Namen (nämlich dem des Parameters) angesprochen. 

Deshalb muß C in der Parameter-Deklaration über die Array-Länge nichts 
mitgeteilt werden. Denn es reserviert nur Speicherplatz für die Aufnahme 

der Array-Adresse; wieviele Komponenten dieser Array in der rufenden 
Funktion hat, ist uninteressant. 

Die Parameter-Deklaration 

char s[]; 

sagt C, daß ein Parameter mit Namen s deklariert wird und daß dieser 
Parameter die Anfangsadresse eines Zeichen-Arrays, also eines Strings, 

beim Aufruf erhalten wird. Daß es ein Array ist, erkennt der Compiler an 

den (leeren) eckigen Klammern; daß es ein Zeichen-Array ist, wird aus 
dem Datentyp char ersichtlich, der die Deklaration einleitet. 

Auf einen so deklarierten String-Parameter kann dann in der üblichen Art 
durch Angabe eines Index zugegriffen werden. Ebendies machen die beiden 
Funktionen. Die zweite, get_s, ist eigentlich nur eine Kopie von Programm 
5.4. Die erste demonstriert, warum ein Null-Byte als String-Ende gar nicht 
so unpraktisch ist. 

Sie erinnern sich ja noch daran, daß in C ein Null-Wert für den Wahr- 
heitswert "falsch" steht. Deshalb kann man in C-Schleifen den Inhalt eines 
Zeichenarrays zur Kontrollbedingung der Schleife machen. Das demon- 

striert die Funktion strlen. Mit der Anweisung 

while (s[i]) 
++i; 

wird der Index i solange hochgezählt, bis sich an der i-ten Stelle des 

Strings s der Wert 0 einstellt; das aber ist genau am Ende des Strings der 
Fall, da dieser - wie jeder String - durch ein Null-Byte abgeschlossen 
wird. Da die Zählung in Arrays bei 0 beginnt, ist garantiert, daß i nach 
verlassen der while-Schleife die Stringlänge enthält. Es wird als Wert zu- 

rückgegeben. 

Aber für den Umgang mit Strings (und mit Arrays) gibt es in C wesentlich 
elegantere und einfachere Sprachmittel, als bisher vorgestellt. Diese haben 

mit den bereits erwähnten Array-Adressen zu tun, genauer, mit Adressen 
im Allgemeinen.
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5.2.1 Pointer 

Die Entscheidung, C mit einer Fülle von Operatoren und damit mit einem 

mächtigen Inventar an "Wert"-vollen Ausdrücken auszustatten, trägt zum 
sroßen Teil zur Ausdrucksmächtigkeit dieser Sprache bei. Mehrfach habe 
ich Ihnen bereits demonstriert, wie sich damit Problemlösungen in hoch- 
konzentrierter Form darstellen lassen, was nicht nur den künstlerischen 

Ehrgeiz des Programmierers befriedigt, sondern in der Regel auch die 
Effizienz der Programme steigert. 

Den zweiten großen Beitrag, dem C seine einzigartige Stellung als höhere 

Sprache zur Systemprogrammierung verdankt, liefern die "Pointer". Pointer 
haben mit Adressen zu tun, es sind Variablen, deren Werte Adressen sind. 

Aber erst mal schön der Reihe nach: Sie wissen, daß eine Variable nichts 

anderes ist als ein selbstgewählter Name für einen Speicherplatz, an dem 

ein Wert abgelegt werden kann. Sie wissen ferner, daß Ihr Computer Spei- 

cherplätze identifizieren kann, weil er sie mit ’ Hausnummern’ versehen hat, 

den Adressen. Daher hat jede Variable eine Adresse. 

In C können Sıe Variablen vereinbaren, die als Wert Adressen,die Adressen 

von anderen Variablen, erhalten sollen. Dazu ein Beispiel: 

int *adress_variable; /* 1 */ 
int i; * 2 */ 

1 = 5; /* 3 */ 
adress variable = &i; /* & */ 
*adress variable = 6; /* 5 */ 

Ich habe die einzelnen Schritte dieses Programmfragments durchnumeriert, 

um besser erklären zu können, was hier abläuft. 

l. Mit int *adress_ variable; wird eine Variable deklariert, die den Namen 
adress _variable trägt und zur Aufnahme der Adresse einer Integer- 
Variable bestimmt ist. All dies erkennt der Compiler an der Deklaration; 
wie, das werde ich Ihnen noch genauer erklären. Nach Ausführung die- 
ser Anweisung könnte es im Speicher Ihres Computers so aussehen:
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512 adress_variable 

513 

514 

515 

Am linken Rand stehen die (fiktiven) Adressen der Speicherzellen, die 
durch die üblichen Kästchen symbolisiert werden. 

Durch die Deklarationsanweisung angetrieben, sucht sich der Compiler 
den ersten freien Speicherplatz, der zur Aufnahme einer Adresse aus- 

reicht (hier die Speicherzelle 512) und merkt sich, daß Sie ihn auf den 

Namen adress_variable getauft haben. Da die Deklaration über den in 
der Variablen gespeicherten Wert noch nichts festlegt, steht in der 
Speicherstelle ein Fragezeichen: der Wert ist undefiniert. 

2. Was der Compiler beı der Deklaration einer Integer-Variablen macht, ist 
klar; deshalb hier nur das Ergebnis als Grafik: 

512 adress_variable 

513 1 - 

514 

515 

3. Durch die Zuweisung wird i aus seinem undefinierten Zustand erlöst 
und erhält einen Wert. In Bildern: 

512 > adress variable 

513 i 
3 

514 

515 
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4. Jetzt wird’s mysteriös! Ganz offensichtlich haben wir es hier mit einer 
Zuweisung zu tun: adress variable steht links vom Zuweisungszeichen 
=, Auch die rechte Hälfte der Zuweisung wäre in Ordnung, doch 7 ist 
mit einem seltsamen & verunziert! Was soll’s? Dazu erstmal das 
Speicherdiagramm: 

512 adress variable 
913 

513 1 
Fs) 

514 
? 

515 

Jetzt befindet sich in adress variable also die Adresse der Integer- 
Variablen i. Dies ist das Werk des Operators &, den ich Ihnen bisher 

unterschlagen habe. Seine Wirkung in kurzen Worten: er wird angewandt 
auf eine Variable und liefert als Wert die Adresse dieser Variable. Diese 
Adresse - eine Zahl - kann dann im Programm weiterverwendet wer- 
den, etwa fiir eine Zuweisung wie im vorliegenden Fall. 

5. Aber warum sollte jemand so etwas tun wollen? Der Hauptgrund fiir die 

Einführung von Variablen war ja gerade, daß sich die Programmierer 
nicht mehr mit den numerischen Adressen herumschlagen müssen! 

Sehen Sie weiter. Der fünfte Schritt ist wieder eine Anweisung; diesmal 
eine, deren rechter Teil halbwegs zivilisiert aussieht. Dafür verwirrt der 

linke Teile mit einem vorangestellten Sternchen. Sehen Sie sich das Er- 
gebnis an: 

512 adress variable 
943 

513 i 
b 

514 
2 

515 

Der Wert von 7 hat sich geändert! Obwohl in der Anweisung ’ mit kei- 
nem Wort erwähnt wurde! Wie das? Das ist die Wirkung des zweiten 
Operators, den ich bisher unterschlagen habe, des *. Dieser führt ein 

Doppelleben: in seiner zweistelligen Existenz bewirkt er die Multiplika-
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tion. Als einstelliger Operator hingegen weist er C an, die Variable, vor 
der er steht, als Zeiger zu interpretieren. 

In der Zuweisung 

*adress variable = 6; 

wird C angewiesen, nicht etwa den Wert 6 an der Adresse adress_ variable 
abzulegen, sondern vielmehr nachzusehen, welcher Wert in adress variable 
gespeichert ist, diesen Wert als Adresse aufzufassen und an dieser Adresse 

die 6 abzuladen. Da durch die Anweisung /* 4 */ an adress __ variable die 
Adresse von i zugewiesen wurde, läuft das auf eine Veränderung von i 
hinaus. Sie können das auch etwas anders formulieren: durch die Zuwei- 
sung /* 4 */ ist adress_variable zu einem Alias für i geworden. Mit dem 
Alias und dem Operator * ist es möglich, indirekt (ohne sie zu erwähnen, 
gleichsam über einen Strohmann) die Variable i zu manipulieren. 

Daß der Operator * die indirekte Wert-Änderung erlaubt, hat ihm den eng- 

lischen Namen "indirection" eingetragen. Dieser Begriff widersetzt sich bis- 

her hartnäckig einer akzeptablen Eindeutschung, weswegen ich Sie mit 
einem furchtbaren Fachbegriff aus der Informatik behelligen muß. Das, 

was in der Anweisung /* 5 */ abgelaufen ist, nennt der Informatiker 

"Dereferenzierung". 

Der Wert von adress variable verweist auf eine andere Variable; er ist also 
eine "Referenz" (Verweisung). Durch * wird C angewiesen, dieser Referenz 
nachzugehen, sie aufzulösen oder eben: zu "dereferenzieren". 

Da ist mir der Fachbegriff für den Typ der Variablen adress variable 

schon lieber. Man sagt, durch die Deklaration /* 2 */ wird eine Variable 
vom Typ "Zeiger auf Integer" vereinbart, oder, im saloppen C-Jargon: 

"Pointer auf Integer" bzw. "Integer-Pointer". 

Wenn ‘es Integer-Pointer gibt, dann sollte es auch andere Pointer geben. In 
der Tat können Sie in C einen Pointer auf jeden elementaren Datentyp 
vereinbaren. Auch müssen die Pointer nicht ausschließlich links vom Zu- 
weisungszeichen stehen. All dies demonstriert das Programm 5.6. 

Das Programm manipuliert Pointer auf verschiedene Arten und gibt jeweils 
die Anweisungen und deren Ergebnis aus. Es hat rein didaktischen Wert 
und bringt nichts Nützliches zuwege. Sie können sich die mühselige Arbeit 
sparen, das Programm einzugeben, da ich Ihnen auch gleich noch das Er- 
gebnis des Programms dazuliefere (in der Abbildung 5.3)
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Prog. 5.6: Pointer 

Zu Beginn des Programmes sehen Sie, daß die Deklaration von Pointern in 

die Deklaration von ’normalen’ Variablen eingestreut sein Kann. Außerdem 

sagt diese erste Zeile einiges darüber aus, wie der Compiler eine Dekla- 

ration auffaßt. Alle Variablen in der ersten Programmzeile haben etwas mit 

dem Datentyp int zu tun; das erkennt er an dem einleitenden Schlüsselwort 

für den Datentyp. Die Variablen i und j sind einfache Integervariablen, 

d.h., wenn man sie im Programm verwendet, dann liefern sie einen Inte- 

gerwert. Anders steht es mit ip. Wenn man in einem Programm *ip hin- 

schreibt, dann liefert dies ebenfalls einen Integerwert; dies entnimmt der 

Compiler der Deklaration. Deshalb muß ip eine Variable vom Typ "Integer-
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Pointer" sein (das denkt er sich dazu). Sie sehen: die Deklaration von Poin- 

ter-Variablen erfolgt auf ebenso ’indirektem’ Wege wie der Umgang mit 

ihnen! Genaueres über die Deklaration finden Sie im nächsten Kapitel. 

Abb. 5.3: Das Ergebnis von Programm 5.6 

Analog dazu werden die Zeichen-Variablen c und d vereinbart. Bei *cp 

denkt sich der Compiler: "Wenn ich im Programm *cp sehe, dann liefert das 

einen char-Wert. Also muß die Variable cp ein Zeichen-Pointer sein". Für c 

und d reserviert er genügend Platz, um ein Zeichen zu speichern. Für cp 

jedoch stellt er genügend Platz bereit, um eine Adresse zu speichern. 

Der erste Satz ausführbarer Anweisungen macht einfache Wertzuweisung; J 

und j haben jetzt einen definierten Wert. Über die anderen Variablen im 

Programm ist noch nichts bekannt; man kann sich ihren Wert nicht an- 

sehen. 

Der zweite Anweisungssatz macht die Pointervariablen ip und cp zu einem 

Alias für die Variablen i und j. Wenn man sich jetzt mit *ip bzw. *cp auf 

indirektem Wege den Wert holt, auf den die Pointer zeigen, dann sieht 

man, daß dieser mit i und c geteilt wird. 

Im dritten Schritt sehen Sie, daß eine Wertzuweisung an eine Variable auch 

ihr Alias berührt. Der vierte Schritt macht deutlich, daß Pointer auch 

rechts vom Zuweisungszeichen auftreten können. Nach Dereferenzierung 

mit dem *-Operator liefern sie ja einen Wert (wenn man zuvor dafür ge- 

sorgt hat, daß Ihnen ein "Wert"-volles Alias beigesellt wurde!). Dieser kann 

in Zuweisungen auftauchen. 

Der nächste Schritt zeigt, daß zwischen i und ip auf der einen und j auf 

der anderen Seite kein Zusammenhang besteht (gleiches gilt für c, cp und 

d). Änderungen an j lassen i und sein Alias unberührt. Auch das Umge- 

kehrte gilt; dies zeigt der letzte Schritt. Er zeigt auch, daß jeder Zu- 

weisungsoperator für die indirekte Wertzuweisung über Pointer verwendet 

werden kann (im Beispiel: +=).
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Prog. 5.7: Arrays sind Pointer 

5.2.2 Pointer und Arrays 

All dies mag ganz lustig sein. Aber wo liegt der Nutzen? Das soll Ihnen das 
nachste Programm verdeutlichen. Dies tut bereits Bekanntes: einen String 
einlesen und ihn rückwärts wieder ausgeben. Es verwendet dazu auch die
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bereits bekannten Funktionen sir_len und get_s. Aber es macht den Zu- 

sammenhang zwischen Strings und Zeichen-Pointer klar; sehen Sie selbst! 

Im ersten Teil des Programmes passiert nichts Neues. In den Zeichen-Array 
string werden von get_s Zeichen geschrieben und mit dem unverzichtbaren 
Null-Byte abgeschlossen. 

Doch im zweiten Teil wird die Pointer-Variable cp zum Alias von string 
gemacht. Anders als bisher ist dazu der &-Operator nicht nötig, denn eine 
Array-Variable ist in C nichts anderes als die Adresse des Arrays, genauer: 
die Adresse der ersten Komponente des Arrays! Als ıch versuchte, Ihnen 

die Parameterübergabe bei den Funktionen get_s und sir_len zu erklären, 
ist dies bereits angeklungen. Durch seine Deklaration ist cp als Zeiger aus- 
gewiesen, kann also rechtmäßig per Wertzuweisung eine Adresse empfan- 
gen. 

Daß cp und string jetzt ihre Daten teilen, zeigt der restliche Teil des Pro- 
gramms. Hier wird konsequent mit cp weitergearbeitet: zur Bestimmung der 
Stringlänge ebenso wie zur Ausgabe der Zeichen. Besonders pikant ist, daß 
cp ebenso wie ein Array mit Index angesprochen werden kann, obwohl es 

eigentlich gar nicht als Array deklariert ist. Das kommt, weil C zwischen 
Arrays und Pointern keinen Unterschied macht; in C ist beides ein Pointer. 
Die Array-Schreibweise mit Index benutzt man nur, um mehr traditionell 
gesinnten Gemütern entgegenzukommen! 

Der normale Weg, um indirekt an den Wert eines Pointers heranzukommen, 

ist jedoch der *-Operator. Das Programm 5.8 ist eine abgeänderte Version 
von Programm 5.7, in der konsequent alle Pointer mit den ihnen zustehen- 

den Operatoren traktiert werden. 

Die erste Konsequenz aus der Gleichsetzung von Arrays und Pointern sehen 
Sie in den Parameter-Deklarationen der beiden Funktionen get_s und 
str_len. Beide erhalten einen String als Argument, Strings aber sind Zei- 

chen-Pointer und genauso sind auch die Parameter deklariert. Wenn Ihnen 
die Geheimnisse der Deklaration in C noch nicht restlos einleuchten sollten, 

so trösten Sie sich. Dazu kommt noch ein eigenes Kapitel. 

Der C-Programmierer liebt es, seinen Variablen kurze, aber - wie er meint 
- sprechende Namen zu geben. "Zeichen-Pointer" heißt auf Englisch 

"character pointer"; deshalb kriegen Variablen dieses Typs, wenn sie keine 

besonders herausragende Funktion ım Programm haben, mit Vorliebe den 

Namen cp verpaßt. Integer-Pointer haben als häufigsten Namen ip; alles 
klar?
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Prog. 5.8: Elementare Pointer- Arithmetik 

Als erstes will ich mich der Funktion get_s genauer zuwenden. Sie erhält 
(in main) als Argument den String string , empfängt also im Parameter cp
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die Adresse der ersten Komponente. Dazu sollten Sie sich die Abbildung 

5.4 betrachten. 

Abb. 5.4: Ein Zeichen-Pointer weist auf einen String. 

Um Sie nicht länger mit numerischen Adressen zu behelligen, habe ich eine 
in der Informatik übliche graphische Darstellung für Pointer gewählt. Zu 

Beginn der Abbildung sehen Sie die Anweisung oder Anweisungsgruppe, 

deren Wirkung dargestellt werden soll. Dann folgt ein vereinfachtes 
Speicherdiagramm. Immer noch sind die Variablen kleine Kästchen, die für 

Speicherstellen stehen. Aber um zu symbolisieren, daß eine Pointer-Varia- 

ble auf eine bestimmte Adresse verweist, schreibe ich nicht länger diese 

Adresse in die Variable, sondern lasse einfach einen Pfeil auf die Spei- 

cherstelle mit der betreffenden Adresse zeigen. So spart man sich die 

Adressen und die Sache wird übersichtlicher. Zur Übung sehen Sie in Ab- 

bildung 5.5 noch einmal die Vorgänge, die bei den Anweisungen 

int i; /* 1 */ 
int *ip; /* 2 */ 
i= 5; /* 3 */ 
ip = &i; /* & */ 

ablaufen. 

In die Begriffe dieser graphischen Darstellung übersetzt bedeutet der Aus- 
druck *ip dieses: "gehe dem Pfeil nach, der von ip wegführt und nimm den 
Wert an der Stelle, zu der du so gelangst." Mit *ip kann man Werte verän- 

dern, wenn es links von der Zuweisung steht. Steht es rechts von der Zu- 

weisung, so produziert es den Wert, der sich durch Verfolgen des Pointers 

findet. Das Programm 5.6 brachte dafiir ein Beispiel.
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Abb. 5.5: Ein Pointer wird zum Alias einer Integer-Variablen. 

Jetzt aber zurück zur Funktion get_s. Nach ihrem Aufruf, ehe die erste 
ausführbare Anweisung angegangen wird, herrschen im Computer die Ver- 

hältnisse, die die Abbildung 5.4 symbolisiert. Der Array, auf den cp zeigt, 

hat noch keine Werte erhalten, sein Inhalt ist deshalb undefiniert. Aus dem 

eben Gesagten geht hervor, daß man mit *cp in die erste Komponente 
einen Wert schreiben kann. Der Ausdruck: 

*cp = 1A! 

hatte auf die Situation in der Abbildung 5.4 die Auswirkungen, die die 
Abbildung 5.6 wiederspiegelt. In die erste Komponente des Arrays be- 

kommt man also einen Wert. Wie aber kommt man an die nächste Kompo- 

nente heran? 

Dazu muß man sich der Tatsache erinnern, daß Adressen Zahlen und daß 

Pointer Variablen sind. Ist in einer Variablen eine Zahl gespeichert, dann 

kann man diese Variable auch inkrementieren. Ist die Variable ein Poin- 

ter... Ja, was passiert dann? Die Abbildung 5.7 zeigt es: der Zeiger ist um
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eine Position weitergewandert! Der gestrichelte Pfeil erinnert an die Ver- 
hältnisse vor Ausführung der Inkrementierung. 

Abb. 5.7: Inkrementieren eines Pointer. 

Nun fehlt nur noch ein Schritt: die Integration von Wertzuweisung und In- 
krementieren. Um eine Wert - z.B. das Zeichen ’B’ - indirekt (über Poin- 
ter) zu speichern und diesen Pointer dann zu erhöhen, könnte man also 

schreiben: 

*cp = Bi: 

cpt+; 

Aber für C ist typisch, daß es noch kürzer geht. Anstelle der obigen beiden 
Ausdrücke schreibt der versierte C-Programmierer nämlich einfach 

*cpt+ = "Bis 

Wenn Sie sich die Tabelle der Bindungsstärken aus dem letzten Kapitel 
noch einmal ansehen, dann werden Sie feststellen, daß der Operator * 

höhere Präzedenz als der Operator ++ hat. Deswegen liest C den Ausdruck 

*cp++ folgendermaßen: "gehe zuerst dem Zeiger in cp nach, mache die 
Wertzuweisung an die so gefundene Stelle und erhöhe dann den Pointer." 
Dies zeigt die Abbildung 5.8. Für die Wertzuweisung wird die alte Position 
des Zeigers herangezogen (symbolisiert durch den gestrichelten Pfeil). Erst 
anschließend wird der Pointer weiterbewegt. 

Nun dürfte klar sein, wie get_s funktioniert. Die while-Schleife kon- 
trolliert eine Anweisung, in der gleichzeitig über den Pointer Zeichen in 
den Array geschrieben werden und der Pointer weiterbewegt wird. Dieses 
Weiterschieben des Pointers geschieht nach jeder Zuweisung. Ist die 
Schleife beendet, zeigt er folglich hinter das letzte eingelesene Zeichen. 
Nun muß nur noch durch einfache Dereferenzierung dorthin das Null-Byte 

geschrieben werden, das den String abschließt.
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uweisung un nkremeniieren 

Auch die Mechanik von str_len sollte nun klar sein. Diesmal taucht das 
*cp++ in der Kontrollbedingung der while-Schleife auf. Da es hier nicht 
zur Zuweisung benutzt wird, liefert es nur den Wert, auf den der Pointer 

gerade zeigt und inkrementiert den Pointer dann. Dieser Wert wird irgend- 
wann einmal - wenn nur cp weit genug verschoben worden ist - das Null- 

Byte sein, welches den String abschließt. Dann aber bricht die Schleife ab. 
In ihr wird mittels ++i mitgezählt, wie oft dieses Verschieben möglich war. 
Dies ergibt genau die gesuchte String-Lange. 

Bleibt nur noch ein Punkt zu klären. Zeiger können nicht nur in Einer- 

schritten inkrementiert (und dekrementiert) werden. Auch die Erhöhung 
um größere Beträge ist möglich. Möchte man z.B. in einem String nur je- 
den zehnten, zwanzigsten, dreißigsten usw. Buchstaben sehen und zeigt cp 
auf den Anfang dieses Strings, dann kann man mit 

cp += 10; 

eine Verschiebung des Zeigers um 10 Positionen erreichen. Hier wird genau 
genommen mit Adressen gerechnet, weswegen man in diesem Zusammen- 

hang auch von "Adressarithmetik" bzw. "Pointer-Arithmetik" spricht; dar- 
über aber später noch mehr. 

Abb. 5.9: Adreßarithmetik mit Pointern 

Wenn ich nun einen Zeiger auf den Anfang eines Strings habe und ihn in 
einem einzigen Schritt an das Ende des Strings bewegen will, was mache
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ich dann? Sehr richtig: ich besorge mir die String-Länge und addiere die- 

sen Wert auf den Pointer! Dazu noch eine Abbildung (Abb. 5.9). 

In dieser Abbildung ist in der Variablen string bereits ein String ge- 
speichert (nämlich "String"; einfallslos, nicht wahr?). Dieser hat die Länge 6 
und das ist auch der Wert, den der Aufruf str_len(string) liefert. Die Ab- 
bildung zeigt nun, was passiert, wenn man diesen Wert auf die Pointer- 
Variable cp addiert: der Zeiger weist hinter das Ende des Strings (auf das 
Null-Byte). 

Das Programm 5.8 bewahrt sich die von str_len gelieferte Länge noch zu- 
sätzlich in der Variablen /en auf. Es benötigt sie, um das Rückführen des 

Pointers für die umgekehrte Zeichenausgabe zu überwachen. Denn wenn 
man den String von hinten nach vorne durchgeht, dann kommt nicht das 
rettende Null-Byte, an dem man das Ende der Ausgabe (hier: den Anfang 

des Strings) erkennen kann. 

Zuvor jedoch gilt es eins zu bedenken: der Zeiger weist hinter das Ende. 
Ehe man durch Dereferenzieren auf ein String-Zeichen zugreift, muß man 

den Pointer erst noch zurücksetzen. Da kommt folgende Anweisung gerade 

recht: 

*--Cp; 

Das vorangestellte -- dekrementiert zuerst den Pointer; dann erst wird de- 
referenziert. Somit ist wieder alles in Ordnung. Um nicht zu weit zurück- 
zugehen, wird auch die Zählvariable /en mit Prädekrement herabgezählt. 
Hat sie den Wert 0, dann bricht die Schleife ab. 

Es scheint so, als ob Sie jetzt alle Kombinationen von *, cp, ++ und -- 
durchhaben. Aber weit gefehlt! Was könnte z.B. folgende Anweisungs- 
sequenz bewirken? 

char c, *cp; 
cp = &c; 
c = Bis 

--*ep; 

Sehen Sie sich die Abbildung 5.10 an. Deren Unterschrift sagt es schon: 
obwohl die Anweisung --*cp wie Adreßarithmetik aussieht, wird hier tat- 
sächlich der Wert manipuliert, auf den cp zeigt. Denn die Anweisung ist zu 

lesen, als wäre sie so geklammert: | 

-- (*cp); 

Das kommt von der Assoziativität der einstelligen Operatoren (* und -- 
sind beides einstellige Operatoren), die von rechts nach links gruppiert
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werden. Zuerst kommt die Dereferenzierung; sie liefert das Zeichen ’B’. 
Dieses wird dann dekrementiert, es stellt sich also das Ergebnis ’A’ ein. 
Natürlich hätte man das auch billiger haben können; mit --c etwa; aber 

was tut man nicht alles, um C zu lernen! 

Abb. 5.10: Sieht aus wie Adreßarithmetik, ist aber. keine! 

5.3 AdreBarithmetik 

An str_len kann man erkennen, worin der Vorteil des abschließenden 
Null-Bytes bei Strings liegt. Dadurch ist es möglich, die Abarbeitung des 
Strings in die Kontrollbedingung einer Schleife zu integrieren: man ver- 
schiebt einen Pointer so lange über die String-Zeichen, bis dieser einmal 
auf das Null-Byte zeigt und so (für C) den Wahrheitswert "falsch" liefert. 
Verwechseln Sie übrigens nicht ein Null-Byte mit der Ziffer °0’. Letztere 
hat in der ASCII-Tabelle die Position 48 und das ist auch der Zahlenwert, 
mit dem diese Ziffer in C gehandelt wird. Das Null-Byte können Sie als 
Zeichenkonstante nur mit dem Escape-Mechanismus notieren. Hier noch 
einmal beide Konstanten: 

ı\0' /* Null-Byte fuer String-Abschluß */ 

"0! /* Zeichenkonstante */ 

In jedem ernstzunehmenden C-System ist eine Funktion zur Bestimmung 
der Stringlange Bestandteil der Standard-Bibliothek. Nur ist sie da ver- 
mutlich anders programmiert, als ich es Ihnen gezeigt habe. Denn obwohl 
die letzte Version - die Pointer-Version - schon ganz schön C-typisch ist: 
es geht noch um eine Spur professioneller. Die Profi- Version sehen Sie im 
Programmbeispiel 5.9. 

Diese Version funktioniert wie folgt (vgl. Abb. 5.11): bei Eintritt in die 
Funktion zeigt der Parameter s auf den Anfang des Strings, dessen Lange 
zu bestimmen ist. In der Abbildung beginnt der String an der (fiktiven) 
Adresse 500, dies ist also auch der Wert des Parameters s bei Funktions-
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eintritt. Eine zweite Pointer-Variable cp wird (in der Deklaration!) eben- 
falls auf den Stringanfang gesetzt und dann solange weitergeschoben, bis 
das Null-Byte erreicht ist. Die Differenz zwischen den beiden pointern ist 
jetzt um Eins höher als die gesuchte Stringlänge! 

Prog. 5.9: Subtraktion von Pointern 

Abb. 5.11: Längenberechnung von Strings durch Adreß-Subtraktion 

Warum? In der while-Schleife, die den Pointer verschiebt, wird zuerst das 
Zeichen betrachtet, auf das der Pointer verweist und anschließend dieser 
inkrementiert. Ist das Null-Byte erreicht, dann wird also trotzdem noch 
einmal verschoben; deshalb muß von der Adreßdifferenz noch 1 subtrahiert 
werden. Dies funktioniert allerdings nur, weil Strings Arrays sind und die 
Komponenten eines Arrays in aufeinanderfolgenden Speicherzellen unter- 
gebracht werden. 

Es mag den Anschein haben, als kénne der C-Programmierer Pointer (und 
damit Adressen) in beliebiger Weise manipulieren. Da jedoch nur einige 
Formen der Adreßarithmetik in einem Programm sinnvoll sind, läßt der 
Compiler nicht alles zu, was denkbar ist. Die erlaubten Möglichkeiten sind: 

Addieren einer Integer-Konstante zu einem Pointer | 
Subtrahieren einer Integer-Konstante von einem Pointer 
Subtrahieren zweier Pointer 
Vergleiche zweier Pointer
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Alle anderen Operationen sind untersagt. Weder dürfen zwei Pointer ad- 

diert werden, noch dürfen sie multipliziert und dividiert werden. Auch 

sind alle bitweisen logischen Operationen mit Pointern (jedoch nicht mit 

den Werten, auf die sie verweisen!) untersagt. 

Arrays können natürlich nicht nur mit Integern und Zeichen gebildet wer- 

den. Jeder andere Datentyp von C ist erlaubt und somit sind auch Arrays 

aus Gleitpunktzahlen oder aus /ong-Integers möglich. 

Nun ist die Pointer-Arithmetik eine sehr maschinennahe Angelegenheit; 

man könnte daher denken, daß zu ihrer Beherrschung genaue Kenntnisse 

über die verschiedenen Formen der Datenspeicherung im Computer nötig 

sind. Auf vielen Computern, so auch beim Prozessor des ATARI, benötigen 

die meisten elementaren C-Datentypen zu ihrer Speicherung mehr als eine 

Speicherzelle. Der Motorola 68000, der im ATARI die Denkarbeit erledigt, 

arbeitet zwar intern mit 32-Bit-Registern. Sein Verkehr mit dem Speicher 

erfolgt jedoch in kleineren Happen: er hat ’nur’ einen 16-Bit-Datenbus, 

kann also auf einmal nur ein 16 Bit langes Wort in den Speicher trans- 

portieren. Dennoch wird der Speicher nicht in 16-Bit-Worten adressiert; 

was den Speicher betrifft, ist der ATARI eine Byte-Maschine: die Spei- 

cherzellen sind Byte-weise durchnumeriert. 

Das bedeutet, daß im Arbeitsspeicher die Komponenten eines Zeichen-Ar- 

rays an aufeinanderfolgenden Adressen liegen (denn ein Zeichen benötigt 

ein Byte). Integers beanspruchen zwei Bytes oder ein Wort, /ong-Integers 
werden in einem 32 Bit großen Langwort untergebracht und somit über 

vier Speicheradressen verteilt. Um nun einen Pointer über einen Integer- 

Array zu verschieben, muß der numerische Wert der Zeiger-Variablen 

jedesmal um den Wert zwei verändert werden; bei einem long-Array ent- 

sprechend um den Wert vier. 

Aber keine Angst! All dies erfolgt automatisch, ohne daß Sie sich darum zu 

kümmern brauchen. Der C-Compiler weiß nämlich aus der Deklaration 

einer Pointer-Variablen, auf welchen Datentyp sie verweist. Außerdem 

kennt er die Länge jedes Datentyps in Bytes; er kann also die nötigen An- 

passungen vornehmen, ohne daß Sie etwas davon bemerken. Wenn Sie einen 

Zeichen-Pointer inkrementieren, dann wird dieser tatsächlich nur um | 

hochgezählt; inkrementieren Sie jedoch einen Pointer auf eine /ong-Integer, 

dann erfolgt in Wirklichkeit eine Erhöhung des Zahlenwertes um 4. Auch 

bei Adreß-Arithmetik wie etwa der Pointer-Subtraktion werden die entste- 

henden Werte vom Compiler automatisch normiert. 

Lassen Sie - durch einen Fehler im Programm oder infolge eines nicht ganz 

jugendfreien Programmiertricks - einen Integer-Pointer auf einen String 

zeigen und schieben Sie ihn dann durch Inkrementieren über den String,
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dann erhalten Sie folglich nur das erste, dritte, fiinfte... Zeichen des 

Strings! 

5.3.1 Zusammenhang von Arrays und Pointern 

C bietet zwar die übliche Array-Notation (mit Index in eckigen Klam- 
mern), arbeitet intern aber ausschließlich mit Pointern. Angenommen, Sie 

haben einen Integer-Array ia und eine Integer-Variable i wie folgt de- 
finiert: 

int i, 1a[50]; 

Die normalen Zugriffe auf Komponenten über Index übersetzt sich der 
Compiler dann wie folgt in seine eigene Denkweise: 

Array-Notation Dasselbe mit Pointer: 

1 = jaf0]; i = *a; 

ia[0] = 5; *ja = 5; 
1 = 1a[3]; 1 = *(ia + 3); 

1al9] ++; (ia + 9)++: 

Jetzt dürfte auch klarer sein, warum C darauf besteht, seine Arrays mit 0 

beginnen zu lassen: die Umrechnung von Index-Schreibweise in Pointer- 
Arithmetik ist dadurch unmittelbar möglich. 

Beachten Sie die Klammerung im dritten und vierten Beispiel. Es wäre 
falsch, *ia + 3 bzw. *ia + 9 zu schreiben. Dies hätte die Wirkung, auf die 

erste Komponente des Arrays den Wert 3 bzw. 9 zu addieren; keinesfalls 

aber wird damit die vierte bzw. zehnte Komponente (wie beabsichtigt) an- 

gesprochen! Der einstellige *-Operator zum Dereferenzieren bindet eben 

stärker als die Addition. 

Um einen Pointer auf den Anfang eines Arrays zu setzten, brauchen Sie 

nur den Array dem Pointer zuweisen; denn Array-Namen sind ja in C Zei- 
ger auf das erste Array-Element. Ebenso ist es aber auch möglich, einen 
Pointer an eine beliebige andere Stelle im Array zeigen zu lassen: 

int ia[50], *ip; 

ia; 

&Cial20]); 
ip 
ip 

Die erste Anweisung setzt den Integer-Pointer ip auf das erste Element des 

Integer-Arrays ia. Manchmal ist es jedoch praktisch, einen Zeiger mitten in 

einen Array zu setzten. Natürlich könnte man dazu wie in der erste An- 

weisung diesen zuerst auf den Anfang zeigen lassen und ıhn dann entspre- 

chend inkrementieren. Eine andere, direktere Möglichkeit zeigt jedoch die
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zweite Anweisung. Sie setzt den Pointer ip auf das einundzwanzigste 
Array-Element: mit ia/20] wird dieses Element ausgewählt; der &-Opera- 
tor besorgt dessen Adresse, die dann an den Pointer ip zugewiesen werden 

kann. 

Eine Möglichkeit, die Sie von BASIC oder auch Pascal eventuell gewohnt 
sind, ist in C nicht gegeben: die Zuweisung an einen Array. BASIC erlaubt 

Ihnen etwa Folgendes: 

10 A$ = "Das ist ein String!" 

String-Variablen können also in BASIC auf der linken Seite einer Zuwei- 
sung auftauchen. Das geht in C nicht. Es ist also nicht erlaubt (und wird 
auch vom Compiler als Fehler erkannt), zu schreiben: 

char strng[50]; 

strng = "Das ist ein String!"; 

C behandelt Arrays, wie es strng einer ist, in dieser Hinsicht wie Kon- 
stanten. Etwas anderes ist die Zuweisung von Einzelzeichen an Array- 
Komponenten. Daß 

strng [0] 

strng[1] 

i 

faq's 

zulässig ist, haben Sie bereits gesehen. In diesem Punkt herrscht bei man- 
chen C-Programmierern manchmal Verwirrung. Deshalb noch einmal die 
wichtigsten Tatsachen über Arrays in der Zusammenfassung: 

1. Bei der Deklaration eines Arrays reserviert C genügend zusammen- 
hängenden Speicherplatz, um die bei der Deklaration (in den eckigen 
Klammern) angegebene Anzahl an Komponenten unterzubringen. 

2. Der Array-Name ist nichts anderes als ein Zeiger auf die erste Kompo- 
nente. Deshalb können Arrays an Pointer vom passenden Typ zugewie- 

sen werden. 

3. Ansonsten sind Array-Namen für C Konstanten; sie dürfen niemals ın 
einer Zuweisung als /value (also links vom Zuweisungs-Operator) auf- 
tauchen. 

Einen String an einen anderen zuweisen, das ist in BASIC ganz einfach: 

10 A$ = "Das ist ein String" 

20 B$ = A$
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Damit stehen im BASIC-String B$ die gleichen Zeichen wie im String A$. 
Das geht so in C nicht! Um den Inhalt eines Strings in einen anderen String 
zu bekommen, müssen Sie eine Funktion bemühen, die zeichenweise den 
Inhalt des einen Arrays in den anderen kopiert! Betrachten Sie dazu das 
Programm 5.10. 

Prog. 5.10: ’Zuweisen’ von Strings 

Das Hauptprogramm benutzt zum Einiesen des ersten Strings von der 
Tastatur die Funktion gets. Diese ist in der Standard-Bibliothek jedes 
besseren Compilers enthalten: sehen Sie dazu einmal in Ihrem Handbuch 
nach. Sollte sie fehlen, oder sollte sie nicht wie gewünscht funktionieren 
(wie es z.B. bei frühen Versionen des ATARI-C-Compilers der Fall ist), 
dann greifen Sie bitte auf die in den letzten Beispielen verwendete Funk- 
tion get_s zurück. 

Der Zeichen-Array str_J wird somit über Tastatureingaben mit einem Wert 
versehen. Um diesen String auch an str _2 weiterzugeben, wird eigens eine 
Funktion benötigt, die zeichenweise überträgt. Es hat sich eingebürgert, 
den Ziel-Array (in den übertragen werden soll) der Funktion als erstes Ar- 
gument zu übergeben. Der Quell-Array, aus dem die Zeichen kommen, ist 
zweites Argument. Das Hauptprogramm überprüft dann lediglich, ob die 
Kopiererei auch funktioniert hat: es ist nur ein Testrahmen für die Funk- 
tion str_copy, um die sich eigentlich alles dreht.
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Diese macht einen etwas unscheinbaren Eindruck, besteht sie doch im 

wesentlichen aus nur einer Zeile. Dabei demonstriert sie in augenfälliger 
Weise, wie klar man sich in C ausdrücken kann! 

Die Funktion empfängt die Anfangsadresse der beiden Strings in ihren 
Parametern quelle und ziel. Die Einzelheiten des Kopiervorgangs werden 
wohl am schnellsten klar, wenn ich sie zuerst einmal in ’Langform’ hin- 
schreiben. Hier also eine Version von str_copy, die jeden Schritt einzeln 
aufführt: 

[BERREREEREEREREREREREREERER | 

str_copy (ziel, quelle) /* Kopieren von Strings: */ 
char *ziel; /*  Langversion. */ 
char *quelle; [TITTEN ] 

/* */ 
/* */ 

{ char c; /* */ 
/* */ 

while (*quelle != '\Q') /* Bis zum Stringende... */ 

{ c= *quelle; /* Zeichen aus Quelle ho- */ 
*ziel = c; /* ten und in Ziel schrei-*/ 
++quelle; /* ben; Zeiger weiter- */ 

++ziel; /* schieben. */ 
} /* */ 

/* Zuletzt Ziel-String ord-*/ 

*zjel = '!\0'; /* nungsgemaess abschlies-*/ 
/* sen. */ 

} [BERRRRREREREREREREEREREREERE 

Das Vorgehen ist klar: die beiden Pointer werden synchron über die Strings 
verschoben. Das Zeichen, auf das der quelle-Zeiger zeigt, wird geholt 
(durch Dereferenzieren) und dann an die Stelle geschrieben, an die der 
ziel-Zeiger verweist. Dies geht so lange, bis im Quell-String das Null-Byte 
erreicht ist, dieser also vollständig abgearbeitet wurde. Abschließend muß 
die Funktion noch für korrekte Beendigung des ziel-Strings sorgen. 

Nun kann man das Übertragen der Einzelzeichen ohne Hilfe eines Zwi- 
schenspeichers c bewerkstelligen, indem man einfach schreibt: 

*ziel = *quelle; 

Aber - Sie haben es bereits mehrfach gesehen: auch das Inkrementieren der 
beiden Pointer kann in diese Anweisung integriert werden. Da zuerst 
kopiert und dann Inkrementiert werden muß, geht das in der Form 

*ziel++ = *quellet+; 

Dieser Ausdruck hat einen Wert (denn es ist eine Zuweisung und Zuwei- 
sungen haben einen Wert; jaja, ich weiß, ich wiederhole mich...). Sein Wert 
ist das soeben übertragene Zeichen. Handelt es sich dabei um das Null-



178 Arrays und Pointer 

Byte, dann ist dieser Wert für C zugleich der Wahrheitswert "falsch". Des- 
halb kann man den gesamten Ausdruck auch gleich als Kontrollbedingung 
in die while-Schleife stecken! Wegen der Eigenschaften des Postinkrements 
ist gewährleistet, daß auch noch das Null-Byte übertragen wird, ehe die 
Schleife abgebrochen wird. Damit gelangt man zu der hochintegrierten 
Version des Programms 5.10. 

Auch die Funktion zum Kopieren von Strings ist Bestandteil der Standard- 
Bibliothek; sie heißt dort strcopy. 

5.4 Mehrdimensionale Arrays 

Aus anderen Sprachen kennen Sie vielleicht die Möglichkeit, in Tabellen- 

form angeordnete Daten in mehrdimensionalen Arrays zu speichern. Trotz 
seiner Bevorzugung der Pointer verzichtet natürlich auch C nicht darauf, 
insbesondere, da für viele mathematische und naturwissenschaftliche Auf- 

gabenstellungen zwei- und mehrdimensionale Arrays unerläßlich sind. 

Um einen Integer-Array mit 5 Reihen zu jeweils 10 Spalten zu deklarieren, 
scheiben Sie | 

int zwei_dim [5] [10]; 

Die Dimensions-Angabe über die Reihen kommt also vor der Angabe über 
die Spalten. Anders als z.B. in Pascal müssen Sie für jede Angabe ein eige- 
nes Paar eckiger Klammern schreiben. Die Wirkung dieser Deklaration: der 
Compiler reserviert im Speicher einen zusammenhängenden Bereich, der 50 
Variable vom Typ "Integer" aufnehmen kann. Da eine Integer 2 Byte lang 
ist, werden dafür 100 Byte geopfert. Sich diesen Bereich als zweidimensio- 

nale Matrix vorzustellen ist jedoch nur eine Eselsbrücke für den Program- 
mierer: im Speicher ist alles hintereinander angeordnet. Erst kommen die 

Speicherzellen für die erste Spalte, dann die für die zweite Spalte usw. Dies 

zeigt die Abbildung 5.12 für einen Array mit 3 Zeilen und 4 Spalten. In 
den Speicherzellen stehen in eckigen Klammern jeweils die Indizes für die 

einzelnen Komponenten. 

Um sich auf das dritte Element in der fünften Reihe des Arrays zwei_dim 
zu beziehen und ihm den Wert 99 zuzuweisen, schreiben Sie: 

zwei_dim [4] [2] = 99; 

(Denken Sie daran, daß die Zählung der Array-Komponenten in C bei Null 

beginnt!) Nach diesem Muster sind auch Arrays mit mehr als zwei Dimen- 
sionen möglich.
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Soll eine Funktion mit einem mehrdimensionalen Array als Parameter ar- 
beiten, dann müssen Sie C Angaben über die Zeilen-Ausmaße des Argu- 
ments machen. Eine Funktion, die den Beispiels-Array Zwel_dim als Argu- 
ment verarbeiten kann, muß so deklariert werden: 

array_fun (tab) 
int tab[] [10]; 

Der Parameter tab (für "Tabelle") muß also mit Angaben über die Länge 
einer Tabellen-Reihe deklariert werden. Dies braucht der Compiler des- 
wegen, weil er ja für seine eigenen Zwecke Zugriffe auf Array-Kompo- 
nenten über Indizes wieder in Pointer-Arithmetik umwandelt. Wegen der 
reihenweisen Speicherung mehrdimensionaler Arrays (vgl. Abb. 5.12) wer- 
den Angaben über die Reihen-Länge benötigt, um die korrekten Versatz- 
werte für die Zeiger-Manipulation zu erhalten. Die Anzahl der Reihen ist 
für den Compiler an dieser Stelle nicht relevant; er würde sie höchstens 
dann benötigen, wenn er sich um die Einhaltung von Indexgrenzen zu 
kümmern hätte. Das aber tut er bekanntlich nicht. 

5.5 Pointer-Arrays 

Gutgeschriebene Programme stürzen im Fehlerfall nicht sang- und klanglos 
ab; vor ihrem Ableben hauchen Sie vielmehr noch eine Fehlermeldung aus,
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auf daß der Bediener den bösen Fehler nicht noch einmal begehe! Andere 

Fehler kann das Programm abfangen, sich wieder von ihnen erholen; aber 

auch dann sollte man dem Benutzer mit einer Fehlermeldung auf die Fin- 

ger klopfen. 

In diesem Zusammenhang ist eine Funktion sehr nützlich, die eine Fehler- 

nummer als Argument erhält und dann die dieser Nummer entsprechende 

Fehlermeldung ausgibt. Daß mit Fehlernummern gearbeitet wird, zeugt von 

Profi-Arbeit. Denn der Profi rechnet damit, daß seine Programme später 

auch ins Ausland verkauft werden; dann muß er aber alle Fehlermeldungen 

umschreiben. Besser, sie werden an einer einzigen Stelle verwaltet, als daß 

sie weit über das gesamte Programm verstreut immer wieder mal auftau- 

chen - und man bei späteren Änderungen immer mal wieder eine vergißt. 

Eine mögliche Lösung dieses Problems könnte so aussehen, wie dies Pro- 

sramm 5.11 zeigt. Die Auswahl der Fehlermeldungen erfolgt in einer 

switch-Anweisung:; die einzelnen Fehlermeldungen sind als Stringkonstanten 

in der Funktion pr __error festgeschrieben. 

Prog. 5.11: Ausgabe von Fehlermeldungen 

Dies ist zwar eine Lösung des Problems; aber sie macht einen ziemlich un- 

beholfenen, nicht sehr eleganten Eindruck. So etwas wurmt den engagierten 

Programmierer! 

Erinnern wir uns an die Arrays: eigentlich wäre es ja naheliegender, in 

Analogie dazu mit einer Tabelle von Fehlermeldungen zu arbeiten. Die
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Fehlernummer n dient bei dieser Lösung als Index, der aus dieser Tabelle 
die passende Fehlernummer aussucht. 

Wie jedoch erhält der Programmierer in C eine solche Tabelle mit Fehler- 

meldungen? Eine Möglichkeit, an die man nach der Lektüre des letzten 
Kapitels denken könnte, ist ein zweidimensionaler Zeichen-Array. Wenn 

man zehn Fehlermeldungen zu verwalten hat und die längste Meldung 79 
Zeichen lang ist (mehr hat in einer Bildschirmzeile nicht Platz!), dann 

könnte man folgende Variable deklarieren: 

char fehler[10] [80]; 

Die Zeilen dieser Tabelle dienen zur Aufnahme der einzelnen Fehlermel- 

dungen als Strings. Die Zeilenlänge muß mit 80 Zeichen angegeben werden, 
da ja auch noch das abschließende Null-Byte Platz finden soll! 

Aber diese Lösung ist auch nicht ideal. Denn in dem zweidimensionalen 
Array werden jetzt für jede Meldung 80 Zeichen reserviert, auch wenn sie 
nur 10 Zeichen lang ist. Dies ist eine unnötige Platzverschwendung, über 

die man aber bei der enormen Speicherkapazität des ATARI großzügig 
hinwegsehen könnte. 

Ein anderes Problem ist jedoch hartnäckiger: wie bekommt man die Fehler- 
texte in diesen Array? Weil Arrays - was die Zuweisung betrifft - wie 
Konstanten behandelt werden, können Sie nicht einfach schreiben: 

fehler [0] 
fehler [1] 

"\nDas sollten Sie nicht tun!": 

"\nDas verstehe ich auch nicht!"; 

Das erlaubt der Compiler nicht. Die einzige Möglichkeit, den Array fehler 

mit Anfangswerten zu versorgen (zu "initialisieren", wie man auch sagt) 
besteht darin, wieder die Funktion strcopy zu bemühen. Das sieht so aus: 

strepy(&(fehler[0] [0]), "\nDas sollten Sie nicht tun!"); 

strepy(&(fehler[1] [0]), "\nDas verstehe ich auch nicht!"); 

Mit fehler[0] [0] wird das erste Zeichen der ersten Tabellen-Zeile ange- 
sprochen. Die Funktion strcopy möchte jedoch Strings als Argumente, also 
Zeichen-Pointer. Deshalb muß man sich mit dem &-Operator die Adresse 

des über Indexierung angesprochenen Zeichens besorgen. Die gleiche Wir- 
kung hat es aber auch, einfach fehler[0], fehler[1] etc. zu schreiben. Dies 
ergibt sich aus dem Zusammenhang zwischen Arrays und Pointern. Um
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jetzt die dritte Meldung in dem fehler-Array auszugeben, schreiben Sie 
einfach: 

printf(fehler[2]); 

Das Ausgeben der Fehlermeldungen ist jetzt also unproblematisch und 
gegenüber der switch-Version wesentlich vereinfacht. Aber ein großes Pro- 
blem bleibt: das Initialisieren des Arrays. So, wie die Dinge jetzt stehen, 
müssen Sie nämlich die Initialisierung durch wiederholte strcopy-Aufrufe 
in die Funktion pr_error mit aufnehmen; die Abbildung 5.13 zeigt dies an- 
deutungsweise. 

Abb. 5.13: Probleme mit der Initialisierung 

Prog. 5.12: Ein Pointer-Array.
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Das bedeutet: jedesmal, wenn eine Fehlermeldung ausgegeben werden soll, 
wird zuerst der gesamte Arrays mit den Meldungen beschrieben und dann 

die geeignete ausgewählt! Dieses Verfahren ist gänzlich untragbar. 

Es gibt jedoch eine Lösung, die alle Probleme beseitigt. Sie sehen sıe im 
Programm 5.12. 

In diesem Programm-Beispiel sind viele Neuigkeiten enthalten, die später 

noch genauer besprochen werden. Die erste Neuigkeit betrifft die Initiali- 

sierung von Variablen. Dazu sollten sie sich noch einmal einige elementare 
Tatsachen über Strings und Pointer ins Gedächtnis rufen. 

Pointer sind Variablen; Variablen kann - im Unterschied zu Arrays - etwas 
zugewiesen werden. Insbesondere kann man einem Pointer einen String zu- 
weisen. Dieser String kann ebensogut eine Konstante sein! 

Man kann also schreiben: 

char *cp1, *cp2, *cp3; 

"\nDas sollten Sie nicht tun!"; 
"\nDas verstehe ich auch nicht!"; 

cpl 
cp2 

Der nächste Schritt: Arrays sind nichts anderes als zusammenhängende Fol- 

gen von Variablen. Auch Pointer sind Variablen. Also sollte es möglich 

sein, Arrays von Pointern zu bilden. Die Deklaration für einen solchen 
Array hat folgende Gestalt: 

char *pointer_array[50]; 

Damit wird ein Array mit dem Namen pointer_ array definiert, der 50 
Komponenten vom Typ Zeichen-Pointer aufnehmen kann. Jede dieser 
Komponenten kann also ein String sein, wobei über die Maximallange 
nichts ausgesagt ist: jeder in diesen Array ’eingehängte’ String ist nur so 
lange, wie für seine Zeichen Platz benötigt wird. Das ist der eine große 
Vorteil, den diese Lösung vor einem zweidimensionalen Zeichen-Array hat. 

Der andere Vorteil: dieser Array kann initialisiert werden. Dazu muß er je- 

doch ım Programm als globale Variable deklariert sein. 

Eine globale Variable ist eine Variable, die nicht innerhalb einer Funktion 
definiert ist (also nicht in einem Anweisungsblock), sondern außerhalb. Im 
Programm 5.12 ist die Variable Fehler eine globale Variable, denn sie wird
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(als Array von Zeichenpointern) vor der Hauptfunktion main definiert. Zur 

besseren Kennzeichnung verfolge ich die Konvention, globale Variable stets 
mit einem Großbuchstaben beginnen zu lassen. Genaueres über diese Mate- 

rie erfahren Sie im nächsten Kapitel. 

Ein globaler Array (und nur dieser!) kann initialisiert werden. Das Initiali- 
sieren darf man nicht mit der Wertzuweisung verwechseln. Die Wertzuwei- 
sung wird während der Ausführung eines Programmes durchgeführt; das 
Initialisieren jedoch besorgt der Compiler, es wird nur einmal - zum Zeit- 

punkt der Übersetzung des Programmes - erfolgen. Beim Programmstart 
findet das C-Programm dann die Daten ım initialisierten Array bereits vor. 
Um die Details der Initialisierung brauchen Sie sich jetzt noch nicht zu 
kümmern. Es genügt, sich klarzumachen, daß durch die Initialisierung im 
Programm die Verhältnisse herrschen, die Sie in der Abbildung 5.14 sehen 
können. 

Abb. 5.14: Ein initialisierter String- Array 

Wenn Sie einen Pointer-Array gleich durch den C-Compiler initialisieren 
lassen, dann brauchen Sie keine Angaben über die Anzahl der Komponen- 

ten zu machen. Aus den Daten, die Sie für die Initialisierung bereitstellen 
(im Beispiel sind das die in geschweiften Klammern stehenden Strings) er- 
rechnet sich der Compiler selbst alle nötigen Informationen. Wie üblich re- 
serviert der Compiler für jede Stringkonstante Speicherplatz; zusätzlich 
werden jedoch in den Array Fehler Zeiger gesetzt, die auf die einzelnen 
Strings verweisen. Das bedeutet, daß mit Fehler[0] der erste String, mit 

Fehler[1] der zweite String usw. angesprochen werden kann.
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Arraynamen sind Pointer. Ein Zeichen-Array ist ein Zeichen-Pointer; ein 
Array mit Zeichen-Pointern ist folglich ein Pointer auf einen Zeichen- 
Pointer. Wenn man im Programm ein Alias für Fehler benötigt, dann muß 
man dieses so deklarieren, wie es Programm 5.12 in der Funktion main 
zeigt: 

char **cpp; 

Damit wird ausgedrückt, daß cpp ein Pointer auf einen Pointer auf char ist. 

Diesem Pointer kann der Array Fehler demnach zugewiesen werden. Die 

Abbildung 5.14 zeigt bereits den Zustand nach dieser Zuweisung. 

Um den ersten String aus Fehler zu erhalten, brauche ich jetzt nur *cpp zu 
schreiben. Den nächsten String erhalte ich, indem ich zuerst cpp in- 
krementiere und den Pointer dann mit * dereferenziere. Nach diesem Ver- 
fahren druckt die for-Schleife im Hauptprogramm alle im Fehler-Array 

enthaltenen Meldungen aus. In typischer C-Stenografie wird wieder das 

Dereferenzieren und Inkrementieren in eine Anweisung integriert. Aber 
woher weiß die Schleife, wann sie damit aufhören soll? Woher hat das Pro- 

gramm Kenntnis von der Anzahl der Meldungen, mit denen Fehler initia- 
lisiert wurde? 

Dies ist die wundersame Wirkung des sizeof-Operators, den ich Ihnen bis- 

her unterschlagen hatte. Der Operator kann auf eine Variable angewendet 
werden und liefert als Ergebnis die Größe dieser Variablen in Byte. Ist die 
Variable ein Array, dann sagt mir sizeof, wieviele Bytes zur Speicherung 

des Arrays benötigt werden. 

Da jedoch nur Zeichen ein Byte zur Speicherung benötigen, ist die Byte- 
anzahl in der Regel nicht die Anzahl der Komponenten im Array. Wenn 
man jedoch wüßte, wieviele Bytes Speicherplatz eine einzelne Komponente 

des Arrays beansprucht, dann bräuchte man die beiden Zahlen nur zu divi- 

dieren und hätte die gesuchte Komponentenzahl! 

Dazu können Sie die zweite Verwendungsweise von sizeof einsetzen: ange- 
wendet auf einen Typnamen liefert es nämlich den Speicherbedarf eines 
Objektes von diesem Typ. Wenn Sie sizeof einen Typnamen übergeben, 
dann sollten Sie ihn in runde Klammern einschließen. Genaueres über die 
Bildung von Typ-Namen steht im Kapitel 6. Probieren Sie einmal das Pro- 
gramm 5.13 aus! 

Die erste printf-Anweisung gibt den Platzbedarf von Variablen aus (Werte 
ın der Erklärung in runden Klammern). Dabei handelt es sich der Reihe 
nach um ein Einzelzeichen (mit | Byte Länge), einen zehnelementigen Inte- 
ger-Array (20 Bytes), eine /ong-Integer (4 Bytes), einen Zeichen-Pointer (4
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Bytes), einen Integer-Pointer (4 Bytes) und einen zehnelementigen Array 
mit Jong-Integern (40 Bytes). Wie Sie sehen können, beanspruchen Adres- 
sen (Pointer sind Adressen!) 4 Bytes zu ihrer Speicherung. 

Prog. 5.13: Der sizeof-Operator 

Im zweiten printf wird der Platzbedarf einiger Datentypen ausgegeben: 
eines Zeichens (char; 1 Byte), eines Integer-Pointers (int *; 4 Bytes), eines 
Pointers auf Zeichen-Pointer (char ** - von diesem Typ ist Fehler; 4 
Bytes), einer /ong-Integer und einer Gleitpunktzahl (beide 4 Bytes). 

Die Geheimnisse der Typangaben werden im nächsten Kapitel noch einge- 
hend erläutert. Es wird jedoch deutlich, daß man die Komponentenzahl 

eines Arrays ermitteln kann, indem man seinen Platzbedarf durch den 

Platzbedarf einer Einzelkomponente dividiert. Ebendies tut das Programm 
5.12, um die Anzahl der Meldungen festzustellen. 

Dieses Verfahren hat enorme Vorteile: wıll ich eine neue Fehlermeldung 

aufnehmen oder eine bestehende löschen, dann brauche ich nur die Initiali- 

sierung zu ändern (den in geschweiften Klammern stehenden Teil) und das 
Programm neu zu übersetzen. Der sizeof-Operator garantiert mir, daß sich 

alle Funktionen, die mit Fehler arbeiten, über dessen aktuelle Kompo- 

nentenzahl informieren können. 

Es ist jetzt sehr einfach, die zu Eingang dieses Kapitels erwähnte Fehler- 
funktion zu schreiben (Programm 5.14). Die Fehlermeldungen werden in 
einem globalen String-Array abgelegt; die Funktion überprüft lediglich, ob 
die Fehlernummer, die sie als Argument erhalten hat, zulässig ıst und über- 

gibt in diesem Fall die entsprechende Meldung zur Ausgabe. Unzulässige 
Fehlermeldungen quittiert sie mit einer eigenen Fehlermeldung.
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Prog. 5.14: Fehlertabelle und Fehler-Funktion 

Die Funktion empfängt in ihrem Parameter n eine Fehlernummer (bei 0 
beginnend) und überprüft, ob diese zulässig ist. Falls nicht, quittiert 

pr _error dieses Ansinnen mit einer eigenen Fehlermeldung; ansonsten wird 
der geeignete String aus dem Array ausgewählt. Zwar wäre es auch mög- 

lich, dies in der üblichen Index-Schreibweise als 

Fehler [n] 

zu notieren; ich habe mich jedoch fiir die Pointer-Schreibweise entschie- 
den, um Ihnen noch einmal dem Zusammenhang zwischen Arrays und 

Pointern vor Augen zu führen. 

Die Ausgabe eines Strings besorgt nicht, wie bisher stets, die Funktion 

printf. Stattdessen finden Sie im Programm 5.14 eine eigene spezialisierte 
Ausgabefunktion für Strings mit dem Namen put_s. Diese sollte Bestandteil 
der Standard-Bibliothek sein (dort heißt sie puts; bitte in der Doku-
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mentation nachsehen). Für alle Fälle habe ich jedoch die Funktion selbst 
definiert; außerdem sehen Sie daran, wie einfach das geht! put_s greift auf 
die bereits bekannte Funktion putchar zur Zeichen-Ausgabe zurück, die in 

stdio.h definiert wird.
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6 Daten und Deklarationen 

Die strukturierte Programmierung heißt nicht nur deshalb so, weil sie ver- 
nüftige Kontrollstrukturen wie for und while einsetzt. Damit läßt sıch der 
Ablauf eines Programmes klar und übersichtlich - eben strukturiert - ge- 

stalten. Ebenso wichtig ist jedoch die Möglichkeit, die Daten, die das Pro- 

gramm verarbeitet, zu strukturieren, also sogenannte "Datenstrukturen" zu 

bilden. 

Sie haben ja bereits gesehen, um wieviel einfacher die Lösung mancher 
Probleme ist, wenn man anstatt einer Ansammlung von Einzelvariablen 

einen Array einsetzt. Auch die Verwendung von Pointer-Arrays bringt, wie 

im letzten Kapitel demonstriert, Vorteile mit sich, die auf anderem Wege 

nicht zu erreichen wären. Das ist nur möglich, weil C dem Programmierer 
die Bildung von Datenstrukturen erlaubt, ihm die Möglichkeit gibt, sich die 
im Programm verarbeiteten Daten in einer für das zu lösende Problem 

möglichst angemessenen Weise zurechtzulegen. 

Um diese Möglichkeiten voll ausschöpfen zu können, ist ein vertieftes Ver- 

ständnis desjenigen Teils von C erforderlich, der mit Daten zu tun hat. Nur 
beides zusammen: Kontrollstrukturen und Datenstrukturen, ermöglicht 

wirklich professionelle Programmierarbeit, wie man sie in vielen guten C- 
Programmen zu sehen bekommt. 

6.1 Variablen: Gültigkeit und Speicherungsklassen 

Eine Variable ist dazu da, einen Wert zu speichern. Was gibt es darüber 

noch groß zu sagen? Warum ein eigenes Kapitel für dieses so einfache 
Thema? | 

Weil Variablen eine Speicherklasse und einen Gültigkeitsbereich haben 

können, weil sie einfach und zusammengesetzt sein können, weil sie initi- 
alisiert werden können, weil ihr Wert statisch oder dynamisch verwaltet 
werden kann und und und... 

All dies sind Dinge, die in den bisherigen Ausführungen - wenn überhaupt 
- oftmals nur am Rande angeklungen sind. Das sechste Kapitel dient des- 

halb dazu, die bisher über Variablen herumschwirrenden Einzelinfor- 

mationen zusammenzutragen und zu vereinheitlichen.
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6.1.1 Von der Sichtbarkeit der Variablen: Gültigkeitsbereich 

Wenn Sie bisher in BASIC gearbeitet haben, dann wissen Sıe, daß in BA- 

SIC-Programmen jede Variable an jeder Stelle des Programms verfügbar 
ist. Man sagt dazu auch, daß in BASIC alle Variablen global sind. Globale 
Variablen sind ein zweischneidiges Schwert; meistens schneidet man sich als 
Programmierer damit ins eigene Fleisch. Der Vorteil dieses Verfahrens: daß 
alle in Variablen gespeicherten Informationen in allen Teilen eines Pro- 
gramms zugänglich sind, erleichtert dem Programmierer den Informations- 
zugriff. 

Abb. 6.1: Lokale und globale Variablen 

Oft aber kommt es in BASIC vor, daß eine an einer Programmstelle benö- 

tigte Variable an einer anderen Stelle versehentlich verändert wird. So ist es 

ın BASIC-Programmen ohne weiteres möglich, die in einer Zählschleife 
verwendete Zählvarıable an anderer Stelle (z.B. in einem innerhalb der 
Schleife gerufenem Unterprogramm) zu verändern und so die schönsten 
Endlosschleifen zu kreieren, ohne daß man der Schleife selbst den Grund 

für den Fehler ansehen würde: der verhängnisvolle Schritt steht an ganz
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anderer Stelle im Programm. Entsprechend mühsam ist dann die Fehler- 
suche. Dies ist die Kehrseite der Medaille "Globale Variable". 

Die Computerwissenschaftler haben schon lange erkannt, daß die Nachteile 

der globalen Variablen ihre Vorteile bei weitem überwiegen. Deshalb wurde 
in moderne Programmiersprachen das Konzept der lokalen Variablen einge- 

führt. 

Bei der Unterscheidung zwischen "lokal" und "global" geht es um die Frage, 
in welchen Teilen eines größeren Programmes eine Variable bekannt ist. 

Dies wiederum hängt davon, wo die Variable im Programm deklariert ist. 
Betrachten Sie dazu die Abbildung 6.1. 

Da sinnvolle Anwendungen für globale Variable nur im Zusammenhang 

eines größeren Programmes möglich sind (oder im Zusammenhang mit 
Initialisierungen; darauf komme ich bald zu sprechen) muß ich Sie dafür 
auf das nächste Kapitel des Buches vertrösten. 

Eine Variable ist lokal, wenn sie Parameter einer Funktion ist oder in 

einem Anweisungsblock deklariert wurde. In der Abbildung 6.1 werden 
sechs lokale Variable deklariert: eine in main mit Namen x; zwei in funl 
(die beiden Parameter a und 5b) sowie noch einmal drei in fun2: die beiden 
Parameter a und 5b sowie die Integer-Variable x. 

Da tauchen ja die Namen a, b und x gleich mehrfach auf! Das ist aber kein 

Problem, denn es handelt sich um lokale Variable und das bedeutet: sie 
sind nur innerhalb des Blocks, in dem sie deklariert wurden, bekannt. 

Ein Parameter ist nur innerhalb der Funktion, deren Parameter er ist, be- 

kannt und ansprechbar. Es kann anderswo, in einer anderen Funktion, eine 

Variable oder einen Parameter gleichen Namens geben, aber das führt zu 
keinem Konflikt. Jede Funktion kennt nur "ihren" Parameter. Sie bekommt 

gar nicht mit, daß vielleicht eine andere Funktion einen gleichnamigen 
Parameter besitzt und hat auch keinerlei Möglichkeit, darauf zuzugreifen. 

Etwas anders ausgedrückt: a und 5 in fun]! haben nicht das Geringste mit 

dem a und 5 in fun2 zu tun. fun2 hat keinerlei Möglichkeit, die Parameter 

von funl zu verändern (oder wenigstens ihren Inhalt zu Gesicht zu bekom- 
men) und umgekehrt. 

Ganz anders sieht es mit Varl aus. Diese Variable ist außerhalb jeder 
Funktion deklariert. Deshalb ist es eine globale Variable. Eine globale 
Variable ist ab der Stelle im Programm in allen Funktionen bekannt, die 
danach noch definiert werden. Da Var] gleich zu Beginn des Beispiels in 
der Abbildung 6.1 definiert wurde, ist es in main, in funl und in fun be-
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kannt und kann von all diesen Funktionen aus modifiziert werden, ohne 

daß diese Funktionen die Variable erst deklarieren müßten. Darum hat das 
Programm aus der Abbildung das folgende Ergebnis: 

Var1 = 6, x = -1 
Var1 = -4, x = 20 

main weist zwar gleich zu Beginn der Variablen den Wert 10 zu; dann aber 
wird funl gerufen, welches ebenfalls Var! modifiziert (es weist ihm das 
Produkt seiner Parameter zu); so kommt es, daß Varl jetzt den Wert 6 hat. 
Auch der nachfolgende fun2-Aufruf modifiziert Varl. Das teuflische an 
der Sache ist, daß diese Modifikationen in main nicht zu sehen sind. Beim 

Aufruf von funl und fun2 in main deutet nichts darauf hin, daß sich diese 
Funktionen nicht nur brav mit ihren Parametern beschäftigen und einen 
Wert zurückgeben, sondern so nebenbei auch noch eine Variable nachhaltig 
modifizieren. Man sagt deshalb auch, daß fun] und fun2 Funktionen mit 

einem Seiteneffekt sind. 

Seiteneffekte - die stets mit globalen Variablen einhergehen - sind ın 

größeren Programmen schwer zu verfolgen. Das macht solche Funktionen 
zu aussichtsreichen Kandidaten für subtile Fehler. Andererseits können 
globale Variable beträchtliche Arbeitsersparnis herbeiführen. Wird nämlich 
eine bestimmte Information in einer Vielzahl von Funktionen eines Pro- 

gramms benötigt, dann hat man zwei Möglichkeiten: 

1. Diese Information über Parameter weiterzugeben 
2. Die Information in einer globalen Variablen unterzubringen 

Bei der ersten Möglichkeit muß man alle Funktionen um diesen Parameter 
erweitern, was manchmal zu unübersichtlichen Programmen führt. Die 
zweite Möglichkeit ist - bei sorgsamen Umgang mit den globalen Variablen 
- in diesem Falle oft die bessere. 

Es spricht noch ein zweites Argument für die globalen Variablen, nämlich 

daß sie initialisiert werden können. Dazu wird später noch mehr zu sagen 
sein. 

Die Sichtbarkeitsregel für globale Variable lautet: eine globale Variable ist 
ab der Stelle, in der sie im Programm deklariert ist, für alle nachfolgenden 
Funktionen sichtbar. Deshalb ist das Programm in der Abbildung 6.2 nicht 
korrekt. 

Hier wird die Variable Var! in main verwendet, ehe sie deklariert wurde. 

Dies quittiert der Compiler mit einer Fehlermeldung; denn er erlaubt nur 

die Verwendung von Variablen, die zuvor deklariert wurden. Die Funktio- 
nen funl und fun2 können nach wie vor auf Var! zugreifen, denn ihre
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Definition erfolgt hinter der von Varl. Die Regeln für die Sichtbarkeit 
globaler Variablen haben ihre Ursache im Vorgehen des Compilers: beim 

Übersetzten des Quellprogramms geht er dieses von vorne nach hinten 
durch und reserviert für jede deklarierte Variable Speicherplatz. Erst da- 

durch wird die Variable dem Compiler bekannt und erst danach darf sıe in 
Zuweisungen auftauchen. 

Abb. 6.2: Gültigkeitsbereich globaler Variablen 

Die Sichtbarkeit von globalen Variablen ab der Stelle ihrer Deklaration im 
Programm ist nur einer Einschränkung unterworfen: hat eine Funktion 
einen Parameter oder eine lokale Variable mit dem gleichen Namen wie 
eine globale Variable, dann verstellt dieser Parameter bzw. diese lokale 
Variable der Funktion gleichsam die Sicht auf die globale Variable gleichen 

Namens. Aus diesem Grund habe ich mir angewöhnt, globale Variable stets 
mit einem Großbuchstaben beginnen zu lassen, um eine irrtümliche 

Namensgleichheit zwischen globalen und lokalen Variablen (die dann kon- 
sequent kleingeschrieben werden sollten) weitestgehend auszuschließen.
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Dieses ’Verstellen’ von Variablen durch Namensgleichheit demonstriert die 

Abbildung 6.3. Hier ist var] einmal als globale Variable deklariert, dann 

aber auch als lokale Variable der Funktion fun. 

Abb. 6.3: Lokale Variable haben Vorrang vor globalen. 

Wie ein Programmlauf zeigt, haben in solchen Situationen, in denen ein 
Namenskonflikt zwischen globalen und lokalen Variablen besteht, die loka- 
len Variablen den Vorrang. Die Zuweisung des Werts 20 an var! innerhalb 
von fun hat keinerlei Auswirkung auf den Wert der globalen Variablen foo, 
die nur einmal, zu Beginn von main, mit einem Wert versehen wird. Hier 

das Ergebnis des Programms: 

var1 vorher: 10 

vari nachher: 10 

Um es noch einmal zusammenzufassen: der Gültigkeitsbereich einer Varia- 
blen hangt von der Stelle ab, an der sie deklariert wurde. Erfolgt die De- 
klaration außerhalb einer Funktion, so ist die Variable global und von die- 
ser Stelle ab allen nachfolgend definierten Funktionen zugänglich. Erfolgt 
die Deklaration in der Parameterliste einer Funktion oder innerhalb ihres 
Anweisungsblocks, dann ist die Variable lokal und nur in der betreffenden 
Funktion bekannt. 

6.1.2 Vom Leben der Variablen: Speicherungsklassen 

Der Ort der Deklaration einer Variablen gibt Auskunft darüber, wo die 
Variable bekannt ist. Die folgenden Ausführungen befassen sich mit der 
Art und Weise, wie Variablen gespeichert werden, was unter anderem Aus- 
wirkungen auf die ’Lebensdauer’ einer Variablen hat. Dazu kann der C- 
Programmierer seine Variablen neben einem Gültigkeitsbereich auch noch
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mit einem Speicherungsklassen-Attribut (uff!) versehen. Zur Auswahl ste- 
hen hier auto, static, register und extern. 

6.1.2.1 Automatische Variablen 

Funktionen werden aufgerufen, tun ihre Arbeit, liefern gegebenenfalls ein 
Ergebnis und treten dann wieder in den Hintergrund. Dort harren sie eines 
neuerlichen Aufrufs, bis das Programm beendet ist. Dann ’sterben’ sie. Nur 

eine Funktion ist nicht ganz so bescheiden: die Hauptfunktion main. Sie ist 
aktiv, solange das Programm läuft, ja sie ist das Programm. Nun enthalten 
die meisten Funktionen lokale Variablen, speichern darin Daten. Was ist 

mit diesen Daten, wenn die Funktionen ins zweite Glied zurücktreten? 

Verschwinden sie? 

Im Normalfall schon. Der Normalfall einer lokalen Variablen in C ist die 

sogenannte "automatische" Variable. Wenn die Funktion aufgerufen wird, 

dann tauchen diese Variablen wie aus dem Nichts auf, können in der üb- 

lichen Weise manipuliert werden. Ist die Funktion mit ihrer Arbeit fertig, 
dann verschwindet die automatische Variable wieder. Daten, die eben noch 

in ihr gespeichert waren, sind dann plötzlich nicht mehr erreichbar. Wenn 

die Funktion erneut aufgerufen wird, dann werden die automatischen 
Variablen erneut (eben automatisch) ins Leben gerufen und können wieder 
mit Daten versorgt werden. Automatische Variablen sind eine Art Kurz- 

zeitgedächtnis für die Funktion, das Informationen nur solange speichert, 

wie die Funktion aktiv ist. 

Da die Parameter einer Funktion nach deren Verlassen ihren Wert ver- 

lieren, sind auch sie zu den automatischen Variablen zu rechnen. C sieht 

zwar das Schlüsselwort auto vor, um dieses Variablenattribut bei der De- 

klaration zu vergeben. Da der Compiler für lokale Variable aber ohnehin 

automatisch diese Speicherungsklasse verwendet, wenn Sie ihm nichts an- 

deres befehlen, sieht man es in C-Programmen so gut wie nie. 

Nun kann es sein, daß eine Funktion bei ihrem Aufruf wertvolle Erkennt- 
nisse gesammelt hat, die man beim nächsten Aufruf ganz gerne noch ver- 
fügbar hätte. Man bräuchte dazu ein ’Langzeitgedächtnis’, Variablen, die 
ihren Wert zwischen Funktionsaufrufen beibehalten. Dazu gibt es in C die 
statischen Variablen. 

6.1.2.2 Statische Variablen 

Den Nutzen dieser Variablen verdeutlicht das Programm 6.1. Es liest Zei- 
chen von der Tastatur, bis es mit dem Endezeichen ’#’ abgebrochen wird. 

Die gelesenen Zeichen werden wieder ausgegeben, es sei denn, Sie geben
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von der Tastatur mehrfach hintereinander dasselbe Zeichen ein. Das Pro- 

gramm ignoriert diese Wiederholungen: Sie sehen das Zeichen nur einmal. 

Zum Einlesen der Zeichen darf nicht, wie üblich, die Funktion getchar be- 

nutzt werden, da diese die eingelesenen Zeichen nicht stumm an das Pro- 

gramm weitergibt, sondern sie auf den Bildschirm echot. Dieses Echo soll 
aber das Programm selbst übernehmen (und so eben Wiederholungen eines 

Zeichens unterdrücken), weswegen ich für diesen Zweck auf eine Funktion 
Ohne __echo zurückgreife, die sich direkt an das Betriebssystem des ATARI 
wendet. Sie benötigen dazu Zugang zu den TOS-Funktionen (zum Be- 
triebssystem des ATARI). Im ATARI-C erreicht man dies mit der Funk- 
tion gemdos aus der Standard-Bibliothek. Ohne_echo ist am Programm- 
beginn als Makro definiert. Sollten Sie mit einem anderen C-Compiler ar- 
beiten, dann müssen Sie hierfür diejenige Funktion aus der Standardbiblio- 
thek heranziehen, die in Ihrem System Konsoleingabe ohne Echo bewirkt. 

Prog. 6.1: Statische lokale Variable 

Jetzt aber zu dem Trick, mit dem die Unterdrückung mehrfacher Zeichen 
gelingt. Die Filter-Funktion outchar arbeitet mit einer Zeichenvariable, die 
so deklariert ist: 

static char last_c;
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Da last_c innerhalb von outchar deklariert ist, ist es lokal: keine andere 
Funktion kann ihm etwas anhaben. Da es mit dem Attribut static versehen 
ist, ist es jedoch nicht zum Vergessen verdammt. Stattdessen behält es sei- 

nen Wert zwischen den einzelnen Aufrufen von outchar und eignet sich da- 
her hervorragend, um sich das letzte gelesene Zeichen zu merken. 

Die Deklaration von c bietet ein weiteres Beispiel für die Initialisierung, 

die Ihnen bereits im Programmbeispiel zu den Pointer-Arrays begegnet ist. 
Sieht der Compiler eine Variablendeklaration, dann reserviert er Speicher- 

platz für die Variable und - wie wir jetzt wissen - notiert sich, ob die 
Variable global oder lokal ist und ob sie zwischen Funktionsaufrufen erhal- 
ten bleiben soll (also eine statische Variable ist). Er legt jedoch noch kei- 
nerlei Wert in der Variablen ab: nach der Deklaration ist eine Variable un- 
definiert. In Speicherdiagrammen habe ich dies dadurch ausgedrückt, daß 

ich in die Variablenzellen ein Fragezeichen geschrieben habe. 

Nun vergleicht outchar jedes eingelesene Zeichen mit last_c. Beim ersten 

Aufruf der Funktion ist aber deren Wert undefiniert und das bedeutet: 

last "c kann ebensogut zufälligerweise das gerade von der Tastatur einge- 
lesene Zeichen enthalten, das dann unterdrückt würde. "Undefiniert" be- 

deutet nämlich nicht, daß die Variable überhaupt nichts enthält; es läßt 

sich nur nicht sagen, was sie enthält! 

Um zu verhindern, daß das Programm durch einen dummen Zufall das 
allererste Zeichen unterdrückt, muß last _c mit einem harmlosen Startwert 
versorgt werden; hier bietet sich das bekannte Null-Byte an, da dies von 
der Tastatur nicht eingegeben werden kann. Allerdings: per Zuweisung geht 
das Versorgen mit dem Startwert nicht. Denn die Zuweisung würde ja bei 

jedem Aufruf ausgeführt, wodurch das (am Ende von outchar) gespeichert 
letzte Zeichen verlorenginge. Aus dieser Zwickmühle hilft nur eine Initia- 
lisierung. 

Eine Initialisierung ist - es wurde bereits einmal erwähnt - eine Ver- 
sorgung einer Variablen mit einem Startwert, die der Compiler vornimmt. 

Trifft er auf eine Deklaration mit einer Initialisierung, dann reserviert er 

nicht nur Speicherplatz (und merkt sich den ganzen anderen Krimskrams, 

der oben erwähnt wurde), sondern läßt diesen Speicherplatz nicht undefi- 

niert: er wird mit dem in der Initialisierung angegebenen Wert besetzt. 
Dieser Wert wird durch nachfolgende Zuweisungen überschrieben und ist 
dann verloren. Mehr Informationen über die Initialisierung finden Sie im 

Abschnitt 6.4 dieses Kapitels.
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6.1.2.3 Register- Variablen 

Automatische Variablen können mit einem Attribut versehen werden, das 

zwar nichts an ihrer Sichtbarkeit (sie bleiben lokal) und ihrer Lebensdauer 
(ihr Wertverschwindet nach Beendigung der Funktion) ändert, dafür aber 
Auswirkungen auf die Geschwindigkeit des Programmes hat. 

Normalerweise bleibt es dem Compiler überlassen, wo er für eine Variable 

Speicherplatz besorgt. Meist werden diese im Arbeitsspeicher des Compu- 

ters abgelegt; automatische Variablen werden dabei mit Vorliebe auf den 

Stapel gedrückt. Den schnellsten Zugriff auf Variablen hat der Prozessor 
jedoch dann, wenn er sie in seinen Registern vorfindet. Dort werden sie 

letztlich ohnehin verarbeitet; jeder Zugriff auf eine Variable bedeutet 
nämlich, daß ihr Wert aus dem Arbeitsspeicher (vom Stapel) erstmal in ein 

Prozessor-Register transportiert wird, ehe er weiterverarbeitet werden 

kann. Ein Programm wird deshalb umso schneller, je mehr Variablen per- 
manent in den Registern gehalten werden. Da der Prozessor nur über eine 
begrenzte Anzahl von Registern verfügt, können nicht alle Variablen diese 
Sonderbehandlung erfahren. 

Deshalb ist es zumindest wünschenswert, wenn die am häufigsten benützten 
Variablen eines Programmes in Registern untergebracht werden. Aber wo- 
her weiß der arme Compiler, welche Variablen arg in die Pflicht genom- 
men werden und welche nicht so hart arbeiten -miissen? 

Er erfährt es von Ihnen. Automatische Variablen (und nur diese!) können 
mit dem schmückenden Beiwort register versehen werden. Dies ist ein Hin- 

weis an den Compiler, die so deklarierte Variable falls möglich in einem 
Register unterzubringen. Die Abbildung 6.4 zeigt eine neue, optimal ge- 
tunte Variante der bereits mehrfach als Beispiel vorgekommenen Funktion 
strepy. Die Parameter sind Register-Variable, die ganze Arbeit wird in der 
Kontrollbedingung der while-Schleife erledigt: schneller geht’s nicht! 

Abb. 6.4: Register-Variablen 

6.1.2.4 Externe Variablen 

C-Programme müssen nicht vollständig in einer Datei enthalten sein. Sie 
können auf mehrere Module verteilt werden, die separat übersetzt werden



Daten und Deklarationen 199 

können. Es ist Aufgabe des Linkers, sich aus diesen Modulen (die Sie ihm 
natürlich angeben müssen!) alle benötigten Bestandteile eines Programmes 
zusammenzuklauben und daraus das fertige Programm zu montieren. 

In diesem Zusammenhang muß das Thema "globale Varıable" wieder aufge- 

griffen werden. Die Bestimmung, daß eine globale Variable ab der Stelle 

bekannt ist, an der sie deklariert ist, muß nämlich um einen wesentlichen 

Punkt erweitert werden: dies bezieht sich nur auf die Dateı, in der die 

Variable vorkommt. Es ist jedoch möglich, auf globale Varıable aus einem 

Abb. 6.5: Externe Variable 

Die Abbildung zeigt ein fiktives Programm-Fragment, das aus einem 
Hauptprogram und zwei Funktionen fun! und fun2 besteht. Das Programm 
ist auf zwei Module verteilt. Das Hauptprogramm und funJ befinden sich 
in einem Modul (DATEI1), die Funktion fun2 steckt in dem Modul DA- 
TEI2. Übrigens: in jedem C-Programm darf es natürlich nur eine Haupt- 
funktion main geben! 

Im Modul DATER ist eine Variable x als globale Variable deklariert; das 
ist nichts Neues. Neu ist jedoch das, was in main zu sehen ist: 

extern int x; 

Damit wird x als Variable definiert, die in einem anderen Modul vor- 

handen ist. Der Compiler weiß nun, daß es irgendwo eine Integer-Variable 
x gibt, die das Hauptprogramm main anzusprechen wünscht. Er weiß auch, 

daß es sich dabei um eine globale Variable handeln muß. So kommt er 
nicht in Versuchung, das x in funl hierfür heranzuziehen. Dieses x ist 
lokal. Keine Macht der Welt kann an es ’von außen’ heran.
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Wohlgemerkt: x wird in main nicht definiert, sondern lediglich deklariert. 
"Definieren" bedeutet, den Compiler zum Bereitstellen von Speicherplatz zu 

veranlassen. Dies geschieht für x in DATEI2. Eine Deklaration reserviert 
jedoch keinen Platz; sie teilt dem Compiler im Gegenteil mit, daß dies an 

anderer Stelle bereits geschehen ist. Die extern-Deklaration veranlaßt den 

Compiler zu einer Notiz an den Linker, hierfür die richtige Variable ein- 
zusetzen. Dies kann nur der Linker, denn er ist die Instanz, die alle Module 

zu sehen bekommt und sie zusammenmontiert. 

Wäre x am Ende von DATEPR deklariert, dann dürfte es in fun2 nicht 

verwendet werden. In DATEII hat nur main auf dieses x zugriff, da es nur 
hier definiert ist. Es wäre jedoch möglich, x außerhalb jeder Funktion in 

DATEII zu deklarieren, also genauso, wıe eine globale Variable deklariert 

wird. Dann wäre es wieder in allen Funktionen des Moduls DATEII be- 

kannt. Sein Speicherplatz wird jedoch nach wie vor in DATEI2 bereitge- 

stellt. 

Gibt es keine Möglichkeit, eine globale Variable vor dieser Zugänglichkeit 
von außen (also von anderen Modulen) zu schützen? Die gibt es selbstver- 

ständlich schon, sonst hätte ich diese rhetorische Frage ja gar nicht erst 

gestellt! 

Will man die Sichtbarkeit einer globalen Variablen streng auf das Modul 
beschränken, in dem sıe deklariert ıst, dann muß man sie als statische 

Variable deklarieren. Ändert man also die Deklaration zu Beginn des Mo- 
duls DATEI2 aus der Abbildung 6.5 so ab: 

static int x; 

dann steckt der Wurm in dem Programm. Denn das globale x ist jetzt nur 
mehr innerhalb von DATE, nicht aber innerhalb des ganzen Programms 
global. Das Ansinnen von main kann nicht befriedigt werden und Sie er- 
halten eine Fehlermeldung. 

Aber nur vom Linker! Der Compiler, der immer nur eine Quelldatei vor 

Augen hat, kann diesen Umstand nicht bemerken. Erst der Linker findet 

für das von main gewünschte x nichts in den Modulen und reagiert sauer. 
In C-Programmen können also auch Fehler enthalten sein, die erst zum 
Zeitpunkt des Linkens ans Tageslicht kommen. 

Einer dieser Fehler, der sehr beliebt ıst, besteht darin, eine Funktion zu 

verwenden, die ın keinem Modul und in keiner Bibliothek definiert ist. Sie 

sind jetzt in der Lage zu verstehen, was Funktionen für C sind. Sie sind 
zwar keine Variablen (denn sonst könnte man ihnen etwas zuweisen, und 
das ist sinnlos), aber sie sind allesamt global! Eine Funktion, die in einem
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Modul definiert ist, kann aus anderen Modulen heraus gerufen werden; der 
Linker wird’s schon richten! 

Trifft der C-Compiler auf eine Funktion, die in der aktuellen Quelldatei 
nicht definiert ıst, dann denkt er sich: "Wird schon anderswo zu finden 

sein; hinterlasse ich halt mal eine Nachricht an den Linker". Was passiert, 

wenn Sie sich bei einem Funktionsnamen verschreiben und - sagen wir mal 
- anstelle von printf pintf tippen? Den Compiler stört’s nicht; er bemerkt 

die Funktion und hinterläßt eine Notiz an den Linker. Der aber müht sich 
vergeblich: in keiner Bibliothek kann er das Gewünschte finden. Dies 
bringt Ihnen eine Fehlermeldung ein; zwar reichlich spät, aber immerhin... 

Zu Deklaration und Definition von Funktionen gibt es noch mehr zu sagen, 
was an dieser Stelle nur ablenken würde; schlagen Sie dazu den Abschnitt 
6.2.2 dieses Kapitels nach. 

Als Kuriosität sei’s am Rande vermerkt: weil Funktionen global sind (sie 
werden ja nicht innerhalb eines Blocks deklariert!), kann man sie ebenso 

wie globale Variablen durch Zugriffe von außen schützen, indem man sie 
mit der Speicherungsklasse static versieht. Dann sind diese Funktionen nur 
mehr in der Quelldatei bekannt, man kann sie sich aber nicht mehr vom 
Linker in andere Module importieren lassen. Mir ist diese Möglichkeit im- 
mer etwas obskur vorgekommen und ich habe bisher noch kein sinnvolles 
Beispiel für ihren Einsatz gefunden! 

6.2 Deklarationen 

Sie haben gesehen, daß in C alles, was mit Daten zu tun hat - Variablen, 

aber auch Funktionen - mit zwei Attributen versehen ist: der Sichtbarkeit 
und der Speicherungsklasse. Damit ist aber noch nichts über die Art der 
Daten gesagt, mit denen es diese Variablen und Funktionen zu tun haben. 

Darüber muß der Compiler aber Bescheid wissen, um Speicherplatz zu 

reservieren und um einige Buchhaltungsaufgaben (Adressberechnung bei 
Array-Indizierung oder Pointer-Arithmetik) korrekt ausführen zu können. 
Diese Informationen werden ihm in der Deklaration mitgeteilt. Alles, was 
mit Daten zu tun hat, muß also deklariert werden. Mit Daten zu tun haben 

in C: Variablen und Funktionen. Variablen speichern Daten. Funktionen 
werden auf ihre Argumente, also auf Daten, angewendet. Und sie haben 
einen Wert, produzieren also Daten. Deshalb müssen Variable, Funktionen 

und deren Parameter deklariert werden.
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6.2.1 Einfache und zusammengesetzte Datentypen 

Die Daten, mit denen Variable und Funktionen zu tun haben, können ent- 

weder einfach oder zusammengesetzt sein. Einfache Datentypen sind in C: 

Zeichen 

Ganze Zahlen 

Gleitpunktzahlen 

Pointer 

Funktionen O
0
0
0
0
 

Diese Datentypen heißen deshalb "einfach", weil man aus ihnen die zusam- 
mengesetzten Datentypen bilden kann, wie z.B. Arrays, Zeiger auf Funk- 

tionen, Strukturen, Funktionen, die Zeiger auf Strukturen mit Arrays als 

Wert haben... Den Möglichkeiten zur Bildung zusammengesetzter Daten- 
typen sind in C keine Grenzen gesetzt. Sie erfordern aber ein vertieftes 

Verständnis der einfachen Datentypen. 

Wie Sie sehen können, dürfen die einfachen Datentypen nicht mit den ele- 

mentaren Datentypen verwechselt werden, die in Kapitel 4 besprochen 
wurden. Da war nämlich keine Rede von Funktionen und Pointern! 

Die zusamengesetzten Datentypen von C sind 

O Arrays 

o Strukturen 

o Unions 

Bisher tauchten nur die Arrays im Buch auf. Die Strukturen werden 
Gegenstand späterer Abschnitte dieses Kapitels sein. Alles, was es über die 

Deklaration zusammengesetzter Datentypen zu wissen gibt, kann jedoch am 
Beispiel der Arrays klargemacht werden; es entgeht Ihnen also nichts! 

Jede Deklaration, ob für einen einfachen oder einen zusammengesetzten 
Datentyp, führt in C auf einen elementaren Datentyp der Sprache zurück. 

Zur Deklaration der elementaren Datentypen benutzt man, wie Sie bereits 
wissen, die Schlüsselwörter char, int, float und double, wobei für int noch 

die Attribute unsigned und long verfügbar sind. 

Die Deklaration eines einfachen Datentyps und eines Arrays gibt an, wel- 

chen elementaren Datentyp man erhält, wenn man die deklarierte Variable 
im Programm so hinschreibt, wie sıe in der Deklaration steht. Klingt kom- 
pliziert? Dann müssen Beispiele her. 

Die Abbildung 6.6 zeigt einige einfache Deklarationen (was nicht heißt, 
daß einfache Datentypen deklarıert werden, sondern nur, daß sie einfach



Daten und Deklarationen 203 

zu verstehen sind). Die Bedeutung der einzelnen Deklarationen will ich nun 

einzeln durchgehen. 

Abb. 6.6: Einfache Deklarationen 

1. Dies besagt ganz einfach, daß man im Programm eine Integer erhält, 
wenn man i hinschreibt. Deklarationen sind eben Aussagen darüber, auf 
welchen elementaren Datentyp (hier: int) das deklarierte Objekt (hier: 

die Variable 7) führt, wenn man es im Programm hinschreibt. 

Dies besagt, daß man im Programm eine Integer erhält, wenn man ı[0], 
i[1], ... i[9] hinschreibt. Es besagt ferner, daß man dies auf zehnerlei 
Weise tun kann. Damit dies möglich ist. muß i ein Array sein. Deshalb 
wird i mit dieser Deklaration als Integer-Array mit 10 Komponenten 

definiert. Es zeichnet sich schon ab: eine C-Deklaration sagt nicht so 

sehr, was ein Objekt ist, sondern was man mit ihm tun kann. 

Dies besagt, daß man eine Integer erhält, wenn man jf...] hinschreibt. Es 
sagt nicht aus, was alles in den eckigen Klammern stehen kann (des- 

wegen die drei Punkte). Ansonsten aber entspricht die Deklaration der 
letzten, d.h. i wird als Integer-Array mit unbekannter Dimension de- 

klariert. Solche Deklarationen braucht man, wenn i Parameter einer 

Funktion sein soll, oder wenn i eine externe Variable ist, für die ın 

einem andern Modul Speicherplatz reserviert wurde. Beachten Sie, daß 

im Unterschied dazu im Beispiel 2 der Array i definiert (und nicht nur 
deklariert) wurde: da findet sich eine Größenangabe, die dazu führt, 
daß der Compiler Speicherplatz reserviert. 

Nun ist die Deklaration im Beispiel 3 auch noch mit dem Schlüsselwort 

register versehen. Sie wissen, daß dies nur auf automatische Variablen 

angewendet werden kann und diese dann in Prozessorregister legt. Des- 

halb kann 7 nur Parameter einer Funktion sein; und deshalb kann i keine 
externe Variable sein. 

Dies besagt, daß man eine Integer erhält, wen man im Programm *ip 
hinschreibt. Nun wissen Sie, daß der *-Operator sinnvoll nur auf einen 

Pointer angewendet werden kann und dann das Objekt liefert, auf das 
dieser Pointer zeigt. Deshalb muß ip ein Integer-Pointer sein. Hier wird



204 Daten und Deklarationen 

die indirekte Art der Deklarationen in C deutlich: ip liefert eine Integer, 
wenn man es dereferenziert. Daraus folgt: ip ist ein Pointer. Es wird 
dies jedoch nicht direkt mitgeteilt! 
Außerdem findet sich in der Deklaration eine Angabe zur Speicherungs- 
klasse. Mit static wird mitgeteilt, daß ip seinen Wert beibehalten soll, 
falls es eine lokale Variable ist, oder daß es für andere Module unzu- 

gänglich sein soll, falls es eine globale Variable st. 

5. Dies besagt, daß man eine Integer erhält, wenn man fun anwendet. Daß 

fun etwas ’anwendbares’ ist, erkennt man an den runden Klammern in 
der Deklaration (den Funktions-Klammern). Weil fun angewendet wer- 
den kann und dann einen Wert liefert, muß es eine Funktion sein. Denn 

das ist es, was Funktionen so einzigartig macht. Wieder kommt die in- 
direkte Art von C zum Vorschein. 
Keinerlei Aussagen werden in dieser Deklaration darüber gemacht, auf 

wieviele Dinge (Argumente) man die Funktion anwenden kann und von 
welcher Art diese Argumente sind. Das gehört in die Funktionsdefini- 
tion, hier jedoch hat man es mit einer Funktionsdeklaration zu tun. Auf 
den Unterschied zwischen Definition und Deklaration gehe ich später 
noch genauer ein. 

Aus diesen einfachen Beispielen läßt sich schon eine bestimmte Systematik 
der Deklarationen erkennen: 

o Jede Deklaration ’miindet’ in einen elementaren Datentyp von C (int, 
char, float, double). Dieser Datentyp leitet die Deklaration ein. Falls das 
deklarierte Objekt mit einer bestimmten Speicherungsklasse versehen 

werden soll, dann wird das Schlüsselwort für die Speicherungsklasse 

(auto, static, register, extern) vor die Typangabe geschrieben. 

o Deklariert wird stets ein Objekt, das einen bestimmten Namen erhält. 

Dieser Name steht rechts von der Typangabe und kann mit diversem 

schmückendem Beiwerk versehen sein, das rechts oder links davon an- 

gebracht ist. 

o Bei dem ’schmückenden’ Beiwerk, mit dem der Name ausstaffiert wer- 

den kann, handelt es sich um den Stern, die eckigen und geschweiften 
Klammern. 

Der Stern wird links vom Namen hingeschrieben und macht deutlich, 

daß es sich bei dem deklarierten Objekt um einen Pointer handelt. Die 

Klammern werden rechts vom Namen hingeschrieben und drücken aus, 

daß es sich bei dem deklarierten Objekt um einen Array (wenn sie eckig 

sind) oder um eine Funktion handelt (wenn sie rund sind). 
Bleiben die Klammern leer, dann wird der Array bzw. die Funktion nur 

deklariert. Steht etwas ın den Klammern, dann hat man es mit einer 

Definition zu tun.
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Aus diesen Bausteinen können komplexe Deklarationen aufgebaut werden. 
In einer komplexen Deklaration darf es zwar immer nur einen Typ-Be- 
zeichner (char, int, float, double) und eine Angabe zur Speicherungsklasse 

(extern, static, auto, register) geben, dafür dürfen (beinahe) beliebige 
Kombinationen von Sternen, runden und eckigen Klammern vorkommen. 

Erinnern Sie sich an das Problem mit dem Vorrang der Operatoren? Wenn 

Sie noch einmal die Tabelle in der Abbildung 4.9 betrachten, dann werden 

Sie feststellen, daß die runden Funktionsklammern und die eckigen Array- 
Klammern in C Operatoren sind und daß diese höchste Priorität haben. 

Daß * ein Operator ist, ist schon längere Zeit bekannt; der Vorrangtabelle 
entnehmen Sie, daß er hinter den Klammer-Operatoren rangiert. Dies ist 

für das Verständnis der Beispiele in Abbildung 6.7 wichtig, in der Sie ei- 
nige komplexe C-Deklarationen zusammen mit einem Kommentar sehen, 

der sagt, was damit deklariert wird. 

Einige dieser Deklarationen gehen weit über das hinaus, was in diesem 
Buch bisher besprochen wurde. Aber in dem Maße, in dem Ihre Fertigkei- 

ten als C-Programmierer zunehmen, wird auch Ihr Bedürfnis für komplexe 

Datentypen steigen. Dann können Sie sich anhand dieser Erklärungen jeden 
Datentyp - und sei er noch so abartig - selbst zusammensetzen. 

Abb. 6.7: Komplexe Deklarationen 

Hier wieder eine ausführliche Analyse der einzelnen Deklarationen: 

6. Die Array-Klammern binden stärker als der *-Operator; deshalb muß 
ipa ein Array sein. Bleibt die Frage, was er enthält. Der Rest der De- 
klaration besagt, daß die im Array ipa enthaltenen Komponenten eine 

Integer liefern, wenn man sie mit * dereferenziert; also sind es Pointer. 

7. Die runden Funktions-Klammern binden stärker als der *-Operator. 
Also ist ipfun eine Funktion. Was gibt sie zurück? Der Rest der De- 

klaration sagt, daß der Wert von ipfun eine Integer liefert, wenn man 

ihn mit * dereferenziert; also ist es ein Integer-Pointer.
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8. Der Vorrang der runden Funktions-Klammern vor dem * wird hier 
durch Klammerung aufgehoben. Wir müssen uns deshalb zuerst mit dem 
Teil (*funp) beschäftigen. Dieser besagt, daß man durch Dereferenzie- 
ren von funp etwas erhält; also ist funp ein Pointer; aber worauf? Dazu 
muß der Rest der Deklaration betrachtet werden. Jetzt kommen die 
Funktions-Klammern ins Spiel, die besagen: wenn funp dereferenziert 
wird, dann erhält man etwas, das angewendet werden kann, eine Funk- 
tion also. Folglich ist funp eine Pointer auf eine Funktion. Bleibt noch 
zu klären, was diese Funktion zurückgibt, aber das ist einfach: eine In- 
teger. 

9. Wieder wurde durch Klammerung der Vorrang der Funktions-Klam- 
mern aufgehoben. der eingeklammerte Teil sagt aus, daß p_array ein 
Array ist, aber einer, dessen Komponenten erst dereferenziert werden 
müssen; also sind es Pointer. Worauf? Das teilen die Funktionsklammern 
mit: auf Funktionen. Das int zu Beginn der Deklaration macht schließ- 
lich klar, daß diese Funktionen Integers zurückgeben. 

10. Das krönende letzte Beispiel unterscheidet sich nur in einem Punkt von 
der Deklaration 9: es sagt nämlich, daß das, was die im Array fp_arr 
enthaltenen Funktionen zurückgeben, erst dereferenziert werden muß, 
um eine Integer zu liefern. Also ist es ein Pointer, genauer: ein Integer- 
Pointer. 

Der Fantasie sind anscheinend keine Schranken gesetzt. Dennoch müssen 
Sie einige Einschränkungen beim Kreieren komplexer Datentypen beachten: 

o Arrays von Funktionen sind nicht erlaubt; es können jedoch - wie Sie 
gesehen haben - sehr wohl Arrays mit Pointern auf Funktionen dekla- 
riert werden. 

o Funktionen dürfen keine Arrays, Strukturen oder Funktionen als Wert 
zurückgeben. Das verbietet aber nicht die Deklaration von Funktionen, 
die Pointer auf diese Dinge zurückgeben! 

Abb. 6.8: Abgekürzte Schreibweise für Deklarationen.
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Bei der Deklaration mehrer Variablen, die alle in den gleichen elementaren 

Datentyp münden, ist eine abgekürzte Schreibweise möglich, die bereits 

mehrfach in den Beispielen auftauchte. Sie können in einer einzigen An- 

weisung zusammengefaßt werden, wenn die Deklarationen für die einzelnen 

Variablen durch Komma getrennt werden (vgl. Abbildung 6.8). Alle ge- 

meinsam deklarierten Variablen besitzen auch die gleiche Speicherungs- 

klasse: deshalb darf die Deklaration von j, welches ja eine Register-Varia- 

ble sein soll, nicht mit der von i und fip zusammengefaßt werden. 

Noch eine weitere Möglichkeit hält C bereit, um Ihnen bei der Deklara- 

tion/Definition komplizierter Datentypen das Leben zu erleichtern. C kennt 

ein weiters Schlüsselwort - typedef -, das sich syntaktisch wie eine Angabe 

zur Speicherungsklasse (also wie auto, register, static und extern) verhält: es 

wird wie diese vor eine Typdeklaration geschrieben. Aber die Aufgabe von 

typedef ist es nicht, irgendwelchen Speicherplatz zuzuweisen, sondern sie 

besteht im Vereinbaren eines neuen Datentyps! 

Nehmen wir an, Sie arbeiten in einem Programm häufig mit Pointern auf 
Funktionen, die Integer-Pointer als Wert zurückgeben. Wie Sie jetzt wissen, 
ist zur Deklaration einer Variable vom passenden Typ - nennen wir Sie 

functl - folgender Aufwand nötig: | 

int * (*funct1)(); 

Brauchen Sie in Ihrem Programm nun aber nicht nur eines, sondern gleich 
ein ganzes Dutzend Tierchen dieser Art, dann steht Ihnen nicht nur erheb- 

licher Schreibaufwand bevor, sondern das Programm erhält auch ein 

geradezu furchteinflößendes Aussehen. Denn komplexe Deklarationen sind 
nicht gerade besonders leicht zu lesen und verstehen; das geben sogar die 

Entwickler von C zu! 

Man kann sich aber in C einen Datentyp "Pointer auf eine Funktion, die 
Integer-Pointer liefert" selbst bauen, diesen mit einem sprechenden Namen 
versehen und dann Deklarationen unter Verwendung dieses Eigenbau-Typs 

besorgen. Hier steht, wie es geht: 

typedef int *(*PFIP)(); 

PFIP funct1, funct2, funct3; 

Mit der ersten Zeile wird ein neuer Datentyp vereinbart, der den Namen 
PFIP trigt. Das soll schwach an "Pointer auf Funktion mit Integer Pointer 
als Wert" erinnern; es ist großgeschrieben, um daran zu gemahnen, daß es 
sich dabei um etwas Selbstdefiniertes handelt (aus ähnlichen Gründen hat 
sich die Großschreibung bei define-Konstanten eingebürgert).
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Diesen neuen Datentyp kann man nun ebenso wie die "eingebauten" Typen 
(int, char, float und wie sie alle heißen) zur Definition neuer Variablen 
verwenden. In der nächsten Zeile wird das auch gleich gemacht: functl, 
func2 und funct3 werden als "Pointer auf Funktionen, die Integer-Pointer 
zurückgeben" definiert - und zwar Kraft der zuvor erfolgten typedef- 
Vereinbarung. 

Wenn Sie einen neuen Datentyp vereinbaren wollen, dann schreiben Sie also 

typedef, lassen darauf die Typdeklaration folgen, ganz so, als würden Sie 
eine Variable deklarieren, schreiben aber an die Stelle des Variablennamens 

den neuen, selbstvereinbarten Typnamen. Dieser unterliegt den üblichen 

Gesetzmäßigkeiten für C-Namen (keine Sonderzeichen im Namen, Maxi- 

mallänge beachten) und sollte - wenn Sie sich dem Mainstream der C-Pro- 
grammierer anschließen wollen - großgeschrieben sein. 

6.2.2 Deklaration und Definition 

Wird eine Variable in einem Programm verwendet, dann muß sie deklariert 

werden. Dies ist erforderlich, damit der Compiler seine Arbeit korrekt 

verrichten kann. Aber auch Funktionen, die einen Wert zurückgeben. müs- 

sen deklariert werden, falls dieser Wert im Programm weiterverwendet 
werden soll. 

Diese Regel wird allerdings in C nicht sehr streng kontrolliert. Verwenden 
Sie eine Funktion in Ihrem Programm, ohne sie zu deklarieren, dann nimmt 

der Compiler einfach an, daß diese Funktion einen Integer-Wert zurück- 

liefert. Liefert sie einen anderen Wert, dann kann die Deklaration ebenfalls 

unterbleiben, wenn der Wert im Programm nicht weiterverwendet wird. In 
Beispielprogrammen des letzten Kapitels wurden gelegentlich Stringfunk- 
tionen aus der Standard-Bibliothek (strcopy, gets) verwendet, die einen 
Zeichen-Pointer als Wert liefern, die also in den Programmen als 

char *strcopy(), *gets(); 

deklariert werden müßten. Da ich jedoch den Wert niemals weiterverwen- 
dete, d.h., es kam keine Anweisung der Form 

cp2 = gets(cp); 

vor, führte dies zu keinen Problemen. Was aber passiert, wenn man in die- 

ser Situation vergessen hat, gets ordnungsgemäß zu deklarieren? Betrachten 
Sıe dazu die Abbildung 6.9. 

In diesem Programm-Fragment verwendet die Hauptfunktion eine Funktion 
fun, die in main nicht deklariert ist. Darüber sieht der Compiler großzügig 
hinweg; er nimmt einfach an, daß fun eine Integer zurückgibt. Der nach-
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folgenden Definition von fun können Sie jedoch entnehmen, daß der Wert 
der Funktion ein Zeichen ist. Um die Verhältnisse vollends durcheinander 
zu bringen, wird bei der Anwendung von fun in main dessen Wert auch 
noch an einen Zeichen-Pointer zugewiesen. 

Abb. 6.9: Typ-Probleme mit Funktionen 

Hier würde folgendes passieren: der Compiler erwartet von fun eine Inte- 
ger, also 2 Bytes. Er bekommt aber nur ein Byte geliefert (denn fun gibt 
eine Zeichen zurück), deshalb besorgt er sich von irgendwoher das nötige 
zweite Byte! Welchen Wert dies hat, kann man nicht sagen; es ist undefi- 
niert. Die Wahrscheinlichkeit ist jedenfalls sehr groß, daß dadurch ’Schrott’ 
in das Programm eingeführt wird. Dieser Schrott wird an den Zeiger cp zu- 
gewiesen, für diesen Zweck also nach den Regeln der Typumwandlung auf 
vier Bytes ’aufgeblasen’; niemand kann jetzt mehr sagen, auf was der Zei- 
ger cp eigentlich zeigt! 

Soweit läßt es der Compiler in der Situation von Abbildung 6.9 zum Glück 
nicht kommen. Bei der Übersetzung von main macht er sich eine Notiz, 
daß fun vom Typ "Integer" ist (denn er findet in main keine anderslautende 
Deklaration für fun). Dann aber kommt er an die Definition von fun und 
findet dort eine Deklaration als Zeichen-Funktion. Dies widerspricht seinen 
eben gemachten Aufzeichnungen und er reagiert mit einem Fehler (der 
ATARI-Compiler meldet z.B. "redeclaration: fun"). 

Den Widerspruch kann der Compiler allerdings nur aufdecken, wenn die 
Definition der anstößigen Funktion in der selben Datei wie main (bzw. die 
Funktion, die sie verwendet) zu finden ist. Sind Hauptfunktion und Unter- 
funktion fun auf verschiedene Module aufgeteilt, dann bleibt der Compiler 
bei seiner irrigen Annahme über den Typ von fun. Der Fehler bleibt un- 
entdeckt, da sich der Linker - die einzige Instanz, die alle Funktionen des
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Programms zu Gesicht bekommt - um Typenüberprüfung nicht mehr 

kümmert. Erst wenn Ihr Programm anfängt, Seltsames zu tun, werden Sie 

wieder auf den Fehler gestoßen; aber finden Sie ihn dann mal! 

Jetzt kann ich Ihnen auch ein Detail erklären, das Sie bisher vielleicht vor 

Rätsel gestellt hat. Gelegentlich mußte ich in Beispiel-Programmen auf 

TOS-Funktionen direkt zugreifen. Bei der dazu verwendeten Betriebs- 

system-Funktion gemdos handelt es sich um eine Funktion, die einen /ong- 

Wert zurückgibt. Dies muß dem Compiler mitgeteilt werden. Nun hat man 

dazu zwei Möglichkeiten: eine lokale und eine globale Deklaration. 

Will man eine andernorts definierte Funktion, wie es gemdos ist, nur in 

einer einzigen eigenen Funktion verwenden, dann reicht es aus, sie lokal in 

dieser Funktion zu deklarieren. Benötigt man sie jedoch in mehreren Funk- 

tionen, dann müßte sie in jeder dieser Funktionen deklariert werden. Dies 

ist umständlich; stattdessen kann man zu einer globalen Deklaration greifen, 

die die deklarierte Funktion gemdos in allen Funktionen dieses Moduls be- 

kanntmacht. Korrekterweise habe ich die Deklaration noch mit der Spei- 

cherungsklasse extern versehen, da gemdos ja in einem anderen Modul de- 

finiert ist. Deshalb wird also das Programm 6.1 mit der Deklaration 

extern long bdos(); 

eingeleitet. 

All dies zeigt nicht nur, daß man mit Deklarationen in C-Programmen sehr 

sorgfältig umgehen muß. Es zeigt auch, daß ein Unterschied zwischen 

Definition und Deklaration besteht. Die Definition ist der Ort, an dem bei 

einer Variablen Speicherplatz bereitgestellt und bei einer Funktion gesagt 

wird, was sie tut. Eine Definition geht stets auch mit einer Angabe über 

den Datentyp einher. 

Externe Objekte - also globale Variablen und Funktionen - können jedoch 

an Stellen verwendet werden, an .denen sie nicht definiert sind. Dann ist es 

aber immer noch notwendig, den Compiler über eine Deklaration mit den 

notwendigen Typ-Angaben zu versorgen. 

Um nicht länger so theoretisch zu bleiben, will ich das mit einem kleinen 

Beispiel demonstrieren. Das Programm 6.2 zeigt eine weitere Stringfunk- 

tion, die hier str_cat heißt, die jedoch auch in der Standard-Bibliothek 

unter dem Namen sircat enthalten ist. 

Die Funktion verknüpft zwei Strings (der mathematische Fachausdruck für 

das Verknüpfen von Strings ist "Konkatenieren"; daher hat sie ihren selt- 

samen Namen). Der Array für den ersten String muß dabei groß genug 

sein, um auch noch die Zeichen des zweiten Strings aufzunehmen. Die
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Funktion gibt als Wert einen Zeiger auf den Anfang des Ergebnis-Strings 
zurück, der unmittelbar zur Ausgabe verwendet werden kann. 

Prog. 6.2: Definition und Deklaration von Funktionen 

Zum Verknipfen der Strings sucht str_cat zuerst das Ende des ersten 
Strings; dazu verschiebt es den ersten Parameter str] (der ja ein Pointer ist: 
denken Sie an den Zusammenhang zwischen Arrays und Pointern!) solange, 
bis das Null-Byte auftaucht. Dann wird - nach der Manier von strcpy - 
zeichenweise der zweite String einkopiert. Wert der Funktion soll der ver- 
knüpfte String sein, also ein Zeiger auf den Anfang der Zeichenfolge. str] 
kann dazu nicht mehr herhalten, den es wurde bis ans Stringende verscho- 
ben. Aber die erste Aktion der Funktion war zum Gliick, sich diesen An- 
fangs-Zeiger in der Pointer-Variable anfang aufzuheben. Diese wird des- 
halb als Funktionswert zuriickgegeben. Da die beiden Parameter in der 
Funktion die Hauptarbeit leisten, wurden sie als Register-Variablen 
deklariert. 

Im Hauptprogramm sehen Sie, daß str_cat aufgrund seines von int abwei- 
chenden Typs deklariert werden muß. Der Vollständigkeit halber ist auch
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die Funktion gets deklariert, obwohl dies hier nicht nötig ist, da ihr Wert 
nicht weiterverwendet wird. Wenn Sie den Funktionstyp einer Bibliotheks- 

funktion wissen wollen, dann miissen Sie in den Unterlagen zu Ihrem C- 
Compiler nachschlagen. Dort findet sich eine Beschreibung der Bibliotheks- 
funktionen, die den Funktionstyp und natirlich auch die erforderlichen 

Parameter angibt. 

Im Programm 6.2 wird der Datentyp von str_cat zweimal erwähnt: einmal 

in main, wo str _cat jedoch lediglich deklariert wird. Dann findet sich je- 
doch noch die Definition der Funktion, also die Stelle im Programm, an 
der gesagt wird, was die Funktion eigentlich tut. Um es noch einmal zu- 

sammenzufassen: die Definition einer Variable besorgt Speicherplatz, die 
Definition einer Funktion gibt an, was die Funktion tut. Deklarationen, die 
nicht definieren, geben nur Typinformationen an den Compiler weiter. 

6.3 Strukturen 

Im Kapitel über die Deklarationen (6.2) wurde bereits erwähnt, daß es in C 
zur Bildung von zusammengesetzten Datenstrukturen neben den Arrays 
noch andere Möglichkeiten gibt. Von besonderer Bedeutung sind hier die 
Strukturen. 

Arrays sind Aneinanderreihungen von Komponenten gleichen Typs. Viele 
Probleme erfordern es jedoch, Komponenten unterschiedlichen Typs zu 
Einheiten zusammenzufassen. Das naheliegendste Beispiel für derlei Pro- 
bleme sind Personaldaten. 

Abb. 6.10: Strukturdeklaration 

Wer die Daten seiner Angestellten, seiner Freundinnen, seiner Schuldner 
oder Gläubiger oder von wem auch immer verwalten will, der muß sich zu 
jeder Person unterschiedliche Informationen merken. So hat jede Person 
einen Namen und ein Alter. Den Namen eines Menschen muß man im 
Computer als String speichern; das Alter sollte man jedoch als Zahl spei- 
chern, damit numerische Operationen (z.B. Altersvergleiche) damit möglich 
sind. Name und Alter einer Person gehören zusammen; es wäre deshalb 
wünschenswert, wenn sie auch im Computer gemeinsam gespeichert und als 
Einheit behandelt werden könnten.
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Dazu gibt es in C die Strukturen. Die Abbildung 6.10 zeigt, wie eine 
Struktur deklariert werden kann, die alle gewünschten Informationen auf- 
nimmt. 

Diese Deklaration teilt mit, daß die Struktur Person drei Bestandteile hat: 
einen Zeichen-Array zur Aufnahme des Namens (in den maximal 24 Zei- 
chen lange Namen passen), einen Array für den Vornamen und eine Inte- 

ger für das Alter. Hinter dem C-Schlüsselwort struct folgt der Name, den 
Sie der Struktur geben wollen und dann in geschweiften Klammern eine 
Aufzählung der Komponenten, aus denen sich die Struktur zusammensetzen 

soll. Die Komponenten werden ähnlich wie Variable deklariert, sie erhalten 

einen Namen und eine Typangabe. 

Die Deklaration in der Abbildung 6.10 reserviert jedoch noch keinerlei 
Speicherplatz. Sie stellt nur eine Schablone dar, die man für die Definition 

von passenden Variablen benutzen kann. Steht in einem Programm die 
Struktur-Schablone der Abbildung 6.10, dann kann man zwei Variablen mit 

dieser Struktur wie folgt definieren: 

struct Person vater; 

struct Person mutter; 

Damit stehen zwei Variable vater und mutter bereit, die die Struktur auf- 

weisen, welche in Abbildung 6.10 beschrieben wurde. Jede dieser beiden 
Variablen verfügt also über ihre eigene name-Komponente; in jeder ist 
Platz für eine Integer alter und für 20 Zeichen eines Vornamens reserviert. 
In diese Struktur-Variablen können jetzt geeignete Informationen eingetra- 
gen werden. Es wäre auch möglich gewesen, die Deklaration der Variablen 
so zu besorgen: 

struct 
{ char name[25]; 

char vorname [20]; 
int alter; 

} vater, mutter; 

Der Unterschied zwischen diesen beiden Varianten: in der Abbildung 6.10 
wird eine Strukturschablone vereinbart und mit einem Namen (Person) 
versehen. Dieser Name kann später im Programm wiederverwendet werden, 

um Variable mit der gewünschten Struktur zu definieren. Die zweite Mög- 
lichkeit faßt die Strukturerklärung und das Definieren der Variablen zu- 
sammen. Diesmal unterbleibt jedoch die Vereinbarung eines Namens für 
die Struktur. Möchte man an späterer Stelle im Programm erneut Variablen 
mit dieser Struktur definieren, dann muß man dazu die gesamte Struktur- 
schablone wiederholen.
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Eine dritte Möglichkeit ergibt sich, wenn man die Vereinbarung der Struk- 
turschablone, eines Namens dafür und der Variablen dieses Typs zusam- 

menfaßt, also alle Zutaten in einen Topf wirft: 

struct Person 

{ char name[25]; 

char vorname [20] ; 
int alter; 

> vater, mutter; 

Jetzt ist es möglich, an anderer Stelle im Programm weitere Variablen zu 

definieren, etwa mit 

struct Person sohn, tochter; 

Sie sehen: das Schlüsselwort struct wirkt zusammen mit dem selbstgewählten 

Strukturnamen Person als syntaktische Einheit, die in Definitionen ähnlich 

eingesetzt werden kann wie die elementaren Typbezeichnungen int, char, 

float und double. 

Mit der Sichtbarkeit von Strukturnamen verhält es sich übrigens genauso 
wie mit der Sichtbarkeit von Variablen: ist die Struktur global (also nicht 

innerhalb eines Blocks) beschrieben und benannt, dann ist der Name von 
da ab in der gesamten Programmdatei bekannt. Lokal beschrieben Struk- 

turen haben denselben Gültigkeitsbereich wie lokale Variablen. 

Strukturen sind zusammengesetzte Datentypen; da ist die Frage von Bedeu- 

tung, wie man an die einzelnen Komponenten herankommen kann. Um 
beispielsweise die Namens-Komponente der Variablen vater anzusprechen, 

schreibt man: 

vater.name 

Hinter dem Namen der Struktur-Variablen folgt, durch einen Punkt abge- 
trennt, der Name der gewünschten Komponente: Strukturkomponenten 

werden über ihren Namen angesprochen. Der Punkt dient hier als Operator, 

der zur Auswahl einer Komponente der Struktur dient. Wenn Sie die Vor- 

rangtabelle der Abbildung 4.9 betrachten, werden Sie feststellen, daß er 

höchste Priorität genießt. In einer Anweisung würde der Zugriff auf eine 
Strukturkomponente so aussehen: 

strcepy(vater.name, "Aterkant"); 
strcpy(vater.vorname, "Hein W."); 
vater.alter = 27; 

Damit ist die Variable vater mit allen nötigen Daten versorgt. Da die alter- 
Komponente der Person-Struktur eine Integer ist, kann man ihr durch ein- 

fache Zuweisung einen Wert verpassen. Die beiden andern Komponenten
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sind Strings und lieben’s etwas umständlicher; sie bekommen ihren Wert 
mit strcpy einkopiert. 

Prog. 6.3: Funktionen und Strukturen. 

Natürlich können Struktur-Komponenten nicht nur links von der Zuwei- 
sung vorkommen. Um die alter-Komponente der Struktur mutter auf den 
gleichen Wert wie die von vater zu setzten, schreibt man: 

mutter.alter = vater.alter;
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Um bequem mit Person-Strukturen arbeiten zu können, empfiehlt es sich, 

eine Funktion zu schreiben, die sie mit Werten versorgt. Nun ist es in C 

nicht möglich, einer Funktion eine Struktur als Parameter zu übergeben; 
dafür sind Zeiger auf Strukturen erlaubt. Die Situation entspricht der bei 
den Arrays: auch Arrays können nicht an Funktionen übergeben werden, 

sondern nur Zeiger darauf. Wie man mit Pointern auf Strukturen arbeitet, 
zeigt das Programm 6.3. 

Das Hauptprogramm benutzt zwei selbstdefinierte Funktionen: fill_pers, 
um eine Person-Struktur mit Werten zu versorgen und show _pers, um die 
Werte anzuzeigen. Zwei Strukturvariable vater und mutter sind in diesem 
Programm definiert. Da das Strukturschema global vereinbart und benannt 
ist, kann man es in allen nachfolgenden Funktionen verwenden, also auch 
zur Definition der beiden Variablen und der Funktionsparameter. 

Weil Strukturen nicht direkt an Funktionen übergeben werden können, ist 

es nötig, mit & ihre Adresse zu besorgen (die also ein Pointer auf eine 

Person-Struktur ist!). Interessant ist nun, wie die Funktionen mit diesem 

Struktur-Pointer umspringen. 

Betrachten Sie dazu die Funktion fill_pers. Der Deklaration ihres Parame- 
ters pp können Sie unschwer entnehmen, daß es sich dabei um einen Poin- 
ter auf eine Person-Struktur handelt. Um an die Struktur heranzukommen, 
auf die der Pointer verweist, muß man also 

*pp 

schreiben. Um an die name-Komponente heranzukommen, wäre entspre- 

chend 

(*pp) .name 

erforderlich. Die Klammern sind notwendig, da der Punkt-Operator stärker 

bindet als der Stern für die Dereferenzierung. Da in C sehr häufig mit 
Pointern auf Strukturen gearbeitet wird, hat man sich dafür eine kürzere 

- Notation einfallen lassen: 

(*pp).name entspricht pp->name. 

der Operator -> erlaubt es also, bequem die Komponenten von Strukturen 

anzusprechen, auf die ein Pointer verweist. 

Da die ersten beiden Komponenten der Person-Struktur Strings sind, ist es 

möglich, sich ihren Wert mit gets zu besorgen. Beachten Sie jedoch, daß 

gets keinerlei Längenüberprüfung vornimmt. Für die name-Komponente 

sind 25 Zeichen vereinbart; gets wird jedoch bereitwillig mehr als 25 Zei- 
chen von der Tastatur akzeptieren und sie irgendwohin schreiben - bloß
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wohin, das kann man nicht sagen. Es besteht eine gewisse Chance, daß die 

Zeichen in lebenswichtige Teile Ihres Programms oder gar des Betriebs- 
systems geschrieben werden. Das Beispielprogramm ist also alles andere als 
robust! 

Es soll aber auch nur den Umgang mit Strukturen demonstrieren. Die 
alter-Komponente ist laut Deklaration eine Integer. Um eine Integer von 
der Tastatur einzugeben, sind zwei Schritte nötig: einmal, die Ziffern von 
der Tastatur zu lesen und zum zweiten, sie in die intern verwendete Binär- 

darstellung umzuwandeln. In jeder Programmiersprache - auch in BASIC - 
sind diese beiden Schritte nötig. BASIC versteckt mit seiner bequemen IN- 
PUT-Anweisung lediglich den nötigen Aufwand vor dem Benutzer. 

Natürlich wäre es möglich, mit der scanf-Funktion zu arbeiten, um die 
Integer zu erhalten. Aber scanf ist eine sehr leistungsfähige und deshalb 

auch umfangreiche Funktion: sie macht das Programm größer als nötig. Der 
Trend geht in C zu maßgeschneiderten, möglichst kleinen und effizienten 

Funktionen. | 

Die Lösung hier: das Einlesen der Ziffern besorgt die bereits bekannte 
Funktion gets. Da diese einen String benötigt, in dem sie die Zeichen ab- 
legen kann, wird in fill_pers ein lokaler Array buff für diesen Zweck be- 
reitgestellt. Das Umwandeln in eine Zahl besorgt eine Spezialfunktion aus | 

der Standardbibliothek: atoi (Abkürzung für: "ASCII to Integer") wandelt 
einen String von ASCII-Ziffern in eine Integer um. Da gets nicht nur 
Zeichen einliest, sondern - Sie sehen es an seiner Deklaration in fill_pers - 
auch einen Zeiger auf den Anfang des Strings zurückgibt, atoi aber eben- 
diesen Zeiger als Argument erwartet, kann man die beiden Funktionen ein- 
fach ineinanderschachteln. 

6.3.1 Verschachteln von Strukturen 

Mit Arrays und Strukturen ist die Bildung beliebig komplexer Datenstruk- 
turen möglich. Dabei hängt es von der Problemstellung ab, für welche 
Möglichkeit man sich entscheidet. Denn beide haben ihre Stärken und 

Schwächen. In Arrays dürfen nur gleichartige Komponenten enthalten sein; 

das ist eine Einschränkung, die die Arrays dadurch ausgleichen, daß sie 

über Indizes bzw. Pointer, allgemeiner: über berechnete Ausdrücke, den 

Zugriff auf ihre Komponenten gestatten. Die Verarbeitung von Array- 

Komponenten in Schleifen ist dadurch sehr einfach. In Strukturen dürfen 

beliebige Komponenten miteinander gemischt werden; darin sind sie den 
Arrays überlegen. Der Zugriff auf ihre Komponenten erfolgt jedoch über 
Namen und diese können nicht berechnet werden; sie müssen im Programm 
explizit angegeben werden. /
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Oft erreicht man die beste Lösung eines Problems, indem man alle Mög- 

lichkeiten gemischt einsetzt. Daß Strukturen Arrays als Komponenten ent- 

halten können, wurde am Beispiel der Abbildung 6.10 bereits deutlich: 

name und vorname sind Arrays. Es sind jedoch noch weitere Kombinatio- 
nen denkbar, insbesondere: Arrays von Strukturen und Strukturen von 

Strukturen. 

All dies ist einfacher, als es sich anhört. Die Abbildung 6.11 zeigt neben 

der bereits bekannten Person-Struktur die Beschreibung einer weiteren 

Struktur Anschrift, in der eine Adresse gespeichert werden kann. Bis auf 
die Postleitzahl sind alle Komponenten Strings. Es ist sinnvoll, die Post- 
leitzahl als Integer zu speichern, da mit ihr numerische Auswertungen 
möglich sein sollen. Wer Anschriften in solchen Strukturen verwaltet, der 

könnte sie sich dann z.B. nach Postleitzahlen sortiert ausgeben lassen. 

Abb. 6.11: Verschachtelte Strukturen 

Von eigentlichem Interesse ist aber die dritte Struktur in der Abbildung. 
Auch sie hat drei Komponenten, doch die ersten beiden sınd Strukturen! 

Anstatt Namen und Anschrift eines Angestellten noch einmal in allen Ein- 
zelheiten aufzuführen, werden einfach die beiden bereits bekannten Struk- 

turen Person und Anschrift hier eingebunden. Fragt sich wieder, wie man 

einzelne Komponenten anspricht. Dazu muß jedoch zuerst eine Variable 
vom passenden Typ definiert werden: 

struct.Angestellter a1; 

Folgende Ausdrücke sprechen alle Komponenten von al an: 

al.pers.name wählt den Namen 

al.pers.vorname wählt den Vornamen
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al.pers.alter wählt das Alter 

al.ans.strasse wählt die Strasse 

al.ans.plz wählt die Postleitzahl 

al.ans.ort wählt den Ort 

al.dienstalter wählt das Dienstalter 

Während der Zugriff auf Einzelkomponenten über einen zweistufigen 
Namen umständlich erscheint, hat das Verfahren den Vorteil, daß die Teil- 

strukturen von Angestellter als Einheiten behandelt werden können. Um die 

Informationen über Name, Vorname und Alter in die Variable al einzu- 

tragen, kann man die aus dem Programm 6.3 bekannte Funktion fill pers 

benutzen. Der dazu nötige Aufruf sieht so aus: 

fill_pers(&(al.pers)); 

Mit al.pers wird die gesamte Teilstruktur ausgewählt. Eine Struktur kann 
jedoch nicht als Argument an eine Funktion übergeben werden; erlaubt 

sind nur Pointer, also muß zuerst der Adreß-Operator & angewendet 

werden. 

Sie sehen: an verschachtelten Strukturen ist nichts Geheimnisvolles. 

Will ein Betrieb seine Angestellten tatsächlich mit dieser Struktur verwal- 

ten, dann müßte er für jeden Angestellten eine entsprechende Variable 

definieren, in der dann dessen personenbezogene Daten abgelegt werden. 
Bei zehn Angestellten könnte man die Variablen al, a2,... alO definieren, 
aber das ist ein äußerst ungeschicktes Vorgehen. 

Denn man hat es in diesem Fall ja mit einer Ansammlung gleichartiger 
Komponenten zu tun und für diesen Fall sind die Arrays da! Es bietet sich 
daher an, die Daten für die Angestellten in einem Array zusammenzu- 
fassen, der sich aus Strukturen vom Typ Angestellter zusammensetzt. 

Angenommen, eine Firma hat zehn Angestellte; dann könnten deren Daten 
in einem Array aufbewahrt werden, der wie folgt definiert wird: 

struct Angestellter Personal [10]; 

Dies teilt dem Compiler mit, daß Personal ein Array mit 10 Komponenten 

ist, deren jede eine Struktur vom Typ Angestellter ist. Jetzt ist es möglich, 
die Angaben zur Person jedes Angestellten in einer Schleife einzulesen: 

int 1; 

for (i = 0; i < 10; ++1) 
fill_pers(&(Personal [i] .pers));
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Mit Personal[i] erhält man die i-te Komponente des Arrays; diese ist eine 
Struktur, von der die Teilkomponente pers benötigt wird (siehe Struk- 
turbeschreibung von Personal in der Abbildung 6.11!). Diese Teil- 
komponente kann an die Funktion fill_pers zur Datenversorgung weiter- 
gegeben werden, indem man sich mit & ihre Adresse besorgt. 

Erinnern Sie sich: der Name eines Arrays ist in C ein Zeiger auf den An- 

fang des Arrays, genauer: ein Zeiger auf die erste Komponente des Arrays. 
Deshalb funktioniert das Einlesen der Werte in den Personal-Array auch 
auf folgende Weise: 

int i; 

struct Angestellter *ap; 

ap = Personal; 

for (i = 0; i < 10; ++i) 
fill _pers(&apt+->pers); 

Zugegeben: das ist schon die hohe Schule der klammerfreien Schreibweise. 
Aber alles ist ganz logisch, wenn man’s Schritt fiir Schritt betrachtet. Per- 
sonal ist eine Array mit Angestellter-Strukturen, ist also selbst ein Zeiger 
auf eine solche Struktur. Der Pointer ap ist vom gleichen Typ, er kann also 

den Array zugewiesen bekommen; dies ist der erste Schritt. In der for- 
Schleife muß nun über diesen Pointer die Person-Komponente der einzel- 
nen Array-Bestandteile herausgeholt und anschließend der Pointer ap in- 
krementiert werden. Um eine Komponente einer Struktur zu erhalten, auf 

die ein Pointer zeigt, benutzt man den Pfeil-Operator; dies führt zu: 

ap->pers 

Nun nützt diese Teilstruktur der Funktion fill_pers nichts; sie erwartet 
einen Zeiger auf eine Struktur, den man mit & erhält. Damit hat man: 

&ap->pers 

Klammern sind nicht nötig, da der ->-Operator stärker bindet als das 
adreßbeschaffende &. Nun soll jedoch anschließend daran der Pointer 

inkrementiert werden; eine Aufgabe, wie geschaffen für das Postinkrement: 

&apt+->pers 

Wieder braucht’s keine Klammern, denn von allen hier vorkommenden 

Operatoren bindet ++ am schwächsten, kommt also als letztes zum Zuge!
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Prog. 6.4: Array mit Strukturen 

Klar, wenn Sie sowas einem Anfanger zeigen, dann fallt der in Ohnmacht! 
Auch ist es bestens geeignet, bereits vorhandene Vorurteile gegen C massiv 
zu zementieren. Doch in C werden viele clevere Programme von cleveren 

Leuten geschrieben; und die verwenden diese kompakte Ausdrucksweise. Es 
ist ja auch kein schmutziger Programmiertrick, dessen man sich schämen 
müßte, sondern zeigt lediglich, daß man die Sprache vollkommen be- 

herrscht - und darauf kann man auch ein wenig stolz sein! Im Programm 
6.4 sınd alle in diesem Kapitel vorkommenden Einzelinformationen noch 

einmal zusammengetragen. Im Hauptprogramm werden zuerst Daten in den 

Personal-Array eingelesen, wobei die einzelnen Komponenten über Array- 

Index angesprochen sind. Anschließend können Sie die eingelesenen Daten 

zur Kontrolle noch einmal betrachten. Diesmal erfolgt der Zugriff über 
Pointer. 

6.4 Initialisierung 

Die Daten, mit denen Programme arbeiten sollen, stehen manchmal schon 

von Anfang an fest. Oft ist es auch wünschenswert, wenn Variablen einen 
bestimmten Startwert besitzen, wenn sie also bereits zu Beginn eines Pro- 

gramms mit einem definierten Wert versorgt sind. Ein Beispiel für diesen 
Fall haben Sie im Kapitel 5 gesehen. Dort ging es um eine Funktion, die 
Fehlermeldungen verwalten sollte. Die Fehlermeldungen waren in einem 

Array mit Zeichen-Pointern gespeichert. Dessen Inhalt stand schon bei Pro- 

grammbeginn fest. Deshalb wäre es umständlich gewesen, ihn durch An- 
weisungen des Programms erst mit Daten zu t üllen. Die Lösung: der Array 

wurde initialisiert. 

Es gibt zwei grundsätzliche Methoden, mit denen Daten in Programmvaria- 

ble gelangen können: per Zuweisung oder per Initialisierung. Die Zuwei- 

sung speichert die Daten zum Ausführungszeitpunkt des Programmes in 
den Variablen. Sollen Daten berechnet oder erst durch den Benutzer gelie- 
fert werden, dann ist die Zuweisung die Methode der Wahl.
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Bei der Initialisierung besorgt der Compiler die anfangliche Versorgung der 
Variablen mit Daten. Wenn das Programm startet, dann sind diese in den 
Variablen also schon enthalten. Es werden keine zusätzlichen Programm- 
Anweisungen mehr benötigt, um die Daten zu erhalten; dies beschleunigt 
das Programm. Ä 

In C bewerkstelligt man die Initialisierung einer Variablen, indem man bei 
ihrer Deklaration den gewünschten Startwert angibt. Dabei muß man zwi- 
schen einfachen und zusammengesetzten Datentypen unterscheiden. Die 
Abbildung 6.12 stellt die Initialisierung zweier Variablen einer anfänglichen 
Wertzuweisung gegenüber. 

Abb. 6.12: /nitialisierung vs. Wertzuweisung 

Die Initialisierung sieht aus wie eine Zuweisung, die sich direkt an die De- 
klaration der Variable anschließt, die also noch Teil der Deklarations- 
anweisung ist. 

Mit beiden Varianten - Initialisierung oder Zuweisung - wird derselbe 
Effekt erzielt: im restlichen Programm (symbolisiert durch die drei Punkte) 
haben die Variablen c und i einen definierten Anfangswert (das Leer- 
zeichen bzw. die Zahl 42). Doch bei der Initialisierungs-Variante hat sich 
der Compiler darum gekümmert, daß in den Variablen der richtige Wert 
steht: er hat bei ihrer Deklaration nicht nur Speicherplatz reserviert, son- 
dern auch gleich den gewünschten Wert in diesen Platz geschrieben. Ohne 
Initialisierung wäre der Wert der Variablen wie üblich undefiniert (was in 
den mehrfach verwendeten Speicherdiagrammen durch ein Fragezeichen 
symbolisiert wurde). 

Bei der Zuweisungs-Variante starten die beiden Variablen mit einem un- 
definierten Wert. Erst durch die nachfolgende Zuweisung erhalten sie ihren 
Startwert. Jedesmal, wenn das Programm ausgeführt wird, müssen diese 
7uweisungen erst durchlaufen werden. Selbstverständlich können Varıablen,



224 Daten und Deklarationen 

die durch Initialisierung einen Anfangswert erhalten haben, anschließend 
durch Zuweisung geändert werden. 

Es ist möglich, einfache Deklarationen und Initialisierungen zu mischen. Sie 
können also schreiben: 

int 1, J = 2, k; 

Damit werden drei Integer- Variable deklariert, wobei der Wert von i und k 
undefiniert ist; j erhält den Startwert 2. 

Bei der Initialisierung sind Sie nicht auf Konstanten als Werte beschränkt. 
Es ist möglich, auch Variable in der Initialisierung anzugeben, allerdings 
nur solche, die zuvor per Initialisierung mit einem Anfangswert versorgt 
wurden. Somit ist es möglich, mit 

5; 
3*i; 

32 %j; 

int 1 

int j 

int k 

für i, j und k jeweils den Wert 5, 15 und 2 zu vereinbaren. Die Regel lau- 
tet, daß die in der Initialisierung vorkommenden Werte entweder Konstan- 
ten sein oder sich auf Konstanten reduzieren lassen müssen. Deshalb sollten 
Variable, die Sie für Initialisierungen verwenden, ihrerseits initialisiert sein. 

(C erlaubt zwar für automatische Variablen die Verwendung beliebiger - 
auch noch nicht initialisierter - Variablen im Initialisierungs- Ausdruck, 
doch wird dadurch der Wert der initialisierten Variablen undefiniert. Sie 
sollten daher auf diese Möglichkeit verzichten). 

Pointer-Variablen können auch auf die Adresse beliebiger zuvor deklarier- 
ter Variablen gesetzt werden. Das folgende Demonstrations-Programm 
druckt daher den Buchstaben ’A’: 

main() 
{ char c; 

char *cp = &c; 

c= TA’: 

putchar(*cp); 
> 

Der Pointer cp zeigt durch die Initialisierung auf die Zeichen-Variable c; 
diese erhalt ihren Wert per Zuweisung. Der wird durch Dereferenzierung 
über cp auf den Bildschirm gebracht. 

Bei einfachen Datentypen gibt es in C außer den eben genannten keinerlei 

Einschränkungen. Ob lokal oder global, ob automatisch, statisch oder Regi- 
ster-Variable: alle können sie initialisiert werden. Anders ist es bei zu- 
sammengesetzen Datentypen. Für solche Variablen ist die Initialisierung nur
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erlaubt, wenn sie global oder statisch sind. Dies war der Grund, warum im 

Programm 5.15 der Array mit den Fehlermeldungen global deklariert und 

initialisiert wurde (denn C erlaubt keine statischen Arrays). 

Bei der Initialisierung einer zusammengesetzten Variablen (also eines Ar- 
rays oder einer Struktur) geht man folgendermaßen vor: hinter das Initiali- 

sierungs-= schreiben Sie eine öffnende geschweifte Klammer, dann für 
jede Komponente der Struktur einen Initialisierungswert und schließen das 

ganze mit einer schließenden geschweiften Klammer ab. Die einzelnen 
Werte für die Initialisierung im Klammerpaar müssen Sie durch Komma 
trennen. 

Um eine Variable p/ mit der im letzten Abschnitt vorgestellten Person- 
Struktur zu initialisieren, schreibt man also: 

struct Person pi = 
{ "Stechlich", 

"Bernhard", 
45 

+; 

Enthält eine zusammengesetzte Variable Komponenten, die ihrerseits 

zusammengesetzt sind, dann wird die obige Regel einfach wiederum auf 
jede zusammengesetzte Komponente angewandt. Hier ein Beispiel für die 
Initialisierung einer Angestellter-Variablen: 

struct Angestellter al = 

{ € “Aterkant", 
"Hein W." 
35 

{ "Unterm Deich 14", 
2001, 
"Ovel kamp" 

} 

Hieran können Sie nicht nur ersehen, daß Hein W. Aterkant 35 Jahre alt 

ist, sondern auch, wo er wohnt und daß er dem Betrieb, der ihn in dieser 

Struktur im Computer speichert, erst seit einem Jahr angehört. 

(Anmerkung: Die mir vorliegende Fassung des ATARI-Compilers wurde 
mit der Initialisierung verschachtelter Strukturen nicht fertig. Sie können 
also die Beispiele in der vorliegenden Form nicht nachvollziehen, falls Sie 

mit derselben Version des Compilers arbeiten.)
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Bei der Initialisierung von zusammengesetzten Variablen müssen Sie daran 
denken, daß nur globale sowie externe und statische Variablen initialisiert 

werden dürfen. Deshalb ist folgendes Programmfragment falsch: 

main() 

€ char array[80] = "Hallihallo!"; 

+ 

Die Variable array ist - nomen est omen - zusammengesetzt; und sie ist 

eine automatische Variable. Deshalb spielt hier der Compiler nicht mit. 

Allerdings ist folgendes möglich: 

main() 

{ char *array = "Hallihallo!"; 

> 

Die Variable array ist - nix "nomen est omen" - jetzt ein einfacher Pointer. 
Der darf mit einer passenden Konstanten, also mit einer Stringkonstanten, 

initialisiert werden. Wer jetzt glaubt, ein Schlupfloch durch die Initialisie- 
rungs-Einschränkung für Strukturen gefunden zu haben, den muß ich ent- 
täuschen: es gibt keine ’Struktur-Konstanten’ in C, deshalb kann man die- 

sen Trick auch nicht auf einen Struktur-Pointer anwenden! 

Schließlich geht auch noch dieses: 

struct Angestellter a1 = 

{ € "Aterkant", 

"Hein W.", 
35 

"Unterm Deich 14", 
2001, 
"Ovel kamp" 

+; 

main() 

{ char *cp = al.pers.name;
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Denn: al ist initialisiert, al.pers.name ist somit ein String und den kann ich 
per Initialisierung dem Pointer cp zum Drauf-Zeigen verpassen. 

6.5 Dynamische Speicherverwaltung 

Wenn Sie eine Variable definieren, dann reserviert der Compiler Platz da- 

für im Arbeitsspeicher des Computers. Wenn Sie die Variable auch noch 

initialisieren, dann schreibt er an diesen Platz zusätzlich den gewünschten 
Wert. 

Der Platzbedarf einer Struktur-Variablen hängt ab vom Platzbedarf ihrer 

Einzelkomponenten plus einiger protokollarischer Gepflogenheiten, auf 

deren Einhaltung der Prozessor besteht. Hierzu ein Beispiel. Die Struktur 

struct 

{ char strngl[3]; 
int i: 

> stru; 

setzt sich aus einem dreielementigen Zeichen-Array und einer Integer zu- 
sammen. Zeichen sind ein Byte lang, Integers beanspruchen ein Wort (ent- 

spricht zwei Bytes). Also ergibt sich fiir die Variable stru ein Platzbedarf 
von 5 Byte. Dennoch reserviert der Compiler fiir stru 6 Bytes, denn er darf 

eine Wort-Größe (hier: die Integer-Komponente von stru) nicht an einer 

ungeradzahligen Adresse beginnen lassen. Dies liegt in der Adressierungs- 
Technik der M68000 begründet. Zwischen der letzten Komponente des 

Strings und der Integer wird also ein Füll-Byte eingeschoben, um die Inte- 

ger auf eine gerade Adresse zu bringen. 

Eine Variable vom Typ Angestellter wird daher im Speicher des ATARI 

130 Bytes an Platz einnehmen. Nun wurde im letzten Kapitel vorgeschla- 
gen, die Mitarbeiter eines Betriebs in einem Array solcher Strukturen zu 
verwalten. Bei einem Kleinbetrieb mit 10 Mitarbeitern würde dieser Array 
1300 Bytes, bei 100 Mitarbeitern 13000 und bei 1000 Mitarbeitern... aber 
Rechnen können Sie selber! 

Mit den Arrays gibt es nämlich ein Problem: man muß bei ihrer Deklara- 
tion die Maximalgröße angeben und hat danach keine Chance mehr, an 
diesem oberen Grenzwert etwas zu verändern. Nun vermag aber kein eini- 
germaßen optimistisch (oder "gedämpft optimistisch", wie das neuerdings so 

schön heißt) in die Zukunft blickender Betriebsinhaber eine zuverlässige 
Prophezeiung über die Maximalzahl seiner Mitarbeiter anzugeben. Denn das 
Unternehmen könnte, ja sollte sogar, expandieren. Nun einfach eine un- 

wahrscheinlich große Maximalzahl anzugeben ist auch keine Lösung des
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Problems. Denn der Compiler wird Platz für alle angegebenen Komponen- 

ten reservieren und es kümmert ihn nicht, ob sie jemals wirklich benötigt 

werden. 

Damit wird viel Speicherplatz verschwendet, der auch auf einer damit so 

üppig ausgestatteten Maschine wie dem ATARI für Besseres verwendet 

werden könnte. Es wäre deshalb wünschenswert, wenn man sich je nach 
Bedarf zur Laufzeit des Programmes Platz für neue Komponenten besorgen 

könnte. 

Man kann. Es geht hier um den Unterschied zwischen statischer und dyna- 
mischer Speicherverwaltung. Die Speicherverwaltung, die der Compiler 
besorgt, ist statisch. Er weist Variablen einmal Platz zu - und daran ändert 
sich dann nichts mehr. Der Platz bleibt reserviert, unabhängig davon, ob er 
überhaupt noch benötigt wird (was ist zum Beispiel, wenn das Unter- 

nehmen Mitarbeiter entlassen muß?). Auch wenn der zugewiesene Platz 
nicht ausreicht (das Unternehmen stellt Leute ein), dann tut es dem Com- 

piler leid: er kann nichts mehr ändern. Daher das Wörtchen ’statisch’. 

Unter einem dynamischen Verwaltungs-Regime ist es möglich, sich wäh- 
rend der Laufzeit des Programmes Speicherplatz für zusätzliche Variablen 

zu besorgen bzw. den Platz für nicht mehr benötigte Variablen wieder frei- 
zugeben. Die dynamische Speicherverwaltung ist auch in C möglich. Aller- 

dings sind die hierfür einzusetzenden Sprachkonstrukte kein Teil der Pro- 

grammiersprache, sondern Funktionen, die Bestandteil der mit dem Compi- 

ler ausgelieferten Standard-Bibliothek sind. Die Namen der Funktionen 

sind leider nicht in allen Bibliotheken einheitlich. 

Die dynamische Speicherverwaltung erledigen meist zwei Funktionen im 

Zusammenspiel: eine allokiert (weist zu) Speicher für zusätzliche Variable; 
die andere gibt den allokierten Speicher wieder frei. Wahrscheinliche 
Namen für dieses Funktions-Gespann sind alloc und free (wer was macht, 
geht aus den Namen hervor!). Einige Compiler (darunter der des ATARI) 

unterscheiden noch zwischen einer Funktion für die Platzzuweisung von 
Strukturen (genannt malloc) und für die Platzzuweisung von Arrays 
(genannt calloc). 

Ich werde in den nächsten Beispielen mit der Funktion malloc arbeiten. 

Sind Sie mit dieser erst einmal vertraut, dann bereitet Ihnen die Arbeit mit 

calloc keinerlei Probleme mehr. Sollte Ihr Compiler nur über alloc verfü- 

gen, dann wird dieses sich mit sehr hoher Wahrscheinlichkeit genauso wie 
das hier beschriebene malloc verhalten. 

Die Funktion malloc benötigt eine Größenangabe über den zu besorgenden 
Speicherplatz. Diese Größenangabe muß in Bytes erfolgen - aber das ist
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genau die Information, die der sizeof-Operator liefert! Als Wert liefert 
malloc einen Zeiger auf den Anfang der zugewiesenen Speicher-Region. 
Diesen Zeiger kann man einer Pointer-Variablen zuweisen und hat somit 
dauerhaften Zugriff auf den Speicherplatz. Betrachten Sie dazu das fol- 
gende Programm-Fragment: 

main() 

{ struct Angestellter *malloc(); 

struct Angestellter *ap; 

ap = malloc(sizeof (struct Angestellter)); 

> 

Dies hat für den nachfolgenden Programmteil (symbolisiert durch die drei 
Punkte) die gleiche Wirkung, als hätte man folgendes Geschrieben: 

main() 

{ struct Angestellter a; 
struct Angestellter *ap = &a; 

+ 

In beiden Fällen zeigt ap auf einen Speicherblock, der groß genug ist, um 
alle gewünschten Informationen aufzunehmen. Es gibt jedoch einen 

wesentlichen Unterschied: die Funktion malloc kann ich an jeder belie- 

bigen Stelle des Programms und sooft ich will aufrufen und mir damit be- 
liebig viele zusätzliche Variablen besorgen. 

Die Deklaration von malloc im letzten Beispiel bedarf noch der Erläute- 
rung. Da im ATARI alle Zeiger gleich groß sind, empfiehlt es sich, malloc 
in der Funktion, die es verwendet, so zu deklarieren, als lieferte es einen 

Pointer auf den gewünschten Datentyp (hier: auf eine Struktur vom Typ 
Angestellter). Dies erfolgt nur aus Gründen der Dokumentation. Allerdings 
dürfen Sie niemals vergessen, den Typ von malloc zu deklarieren (und stets 

als Zeiger-Typ!). Denn sonst nimmt der Compiler an, daß malloc eine Inte- 
ger zurückgibt (die auf dem ATARI halb so lange wie eine Adresse ist). Da 
das Ergebnis von malloc stets an eine Zeiger-Variable zugewiesen wird, 

erfolgt die Umwandlung dieser Integer in eine Adresse; was dabei heraus- 
kommt, ist mit ziemlicher Sicherheit ein Pointer in lebenswichtige Regio- 
nen des Betriebssystems!
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Mit der Funktion malloc ist es jetzt möglich, das oben aufgeworfene Ange- 
stellten-Problem zu lösen. Statt einen Array mit - sagen wir mal - 1000 
Angestellten zu definieren, reicht es jetzt aus, einen Array mit 1000 Ange- 
stellten-Pointern zu vereinbaren. Da ein Pointer 4 Byte lang ist, ist dessen 
Platzbedarf ungleich geringer. Jedesmal, wenn ein neuer Angestellter hin- 
zukommt, besorgt man sich mit malloc Platz dafür und hängt diesen Spei- 
cherplatz in den Array ein; damit ist der Neue erfaßt. 

Um das Beispiel möglichst einfach zu halten, habe ich mich auf Strukturen 
vom Typ Person beschränkt. Das Prinzip dieser Lösung wird im Programm 
6.5 auch damit erkennbar. Ä 

Prog. 6.5: Dynamische Speicherverwaltung mit malloc 

Im Programm wird ein Array Personal mit Pointern auf Person-Strukturen 
global definiert. Immer noch ist es nötig, für die Komponentenzahl des 
Arrays eine Abschätzung der oberen Grenze der aufzunehmenden Daten 
vorzunehmen (symbolische Konstante MAXIMUM). Eine Komponente im 
Array Personal benötigt jedoch nur vier Byte Speicherplatz; deshalb ist die 
Platzverschwendung lange nicht so groß wie bei der letzten Lösung.
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Das Hauptprogramm trägt solange neue Daten in diesen Array ein, wie es 

der Benutzer wünscht bzw. wie es möglich ist (die Arraygröße MAXIMUM 

darf nicht überschritten werden); dies wird in der Kontrollbedingung der 
do-Schleife überwacht. Die Variable neu gibt die Array-Position an, bei 

der neue Daten eingehängt werden sollen. Da zu Beginn des Programmes 

noch keine Daten vorhanden sind, muß man mit dem Eintragen am Anfang 
des Arrays beginnen: neu erhält den Anfangswert 0 und wird bei jedem 
Schleifendurchgang inkrementiert. 

Sollen neue Daten eingegeben werden, dann besorgt sich das Programm 
über malloc Speicherplatz von passender Größe. Diese wird mit dem size- 

of-Operator bestimmt. Den Zeiger, der von malloc geliefert wird, hängt 

man dann durch Zuweisung in den Array ein - und das war’s schon! Die 

bereits bekannte Funktion fill pers kann jetzt diesem Zeiger nachgehen 
und die von der Tastatur eingegeben Daten eintragen. 

Wenn der Benutzer die Dateneingabe abschließen will, oder wenn der 

Array Personal erschöpft ist, dann wird sein Inhalt ausgegeben. Dies ge- 

schieht, indem show_pers in einer Schleife jedem im Array enthaltenen 
Pointer nachgeht. 

6.6 Rekursive Datenstrukturen 

Die Themen, die in diesem Abschnitt angesprochen werden, sind in der 

Informatik von so großer Bedeutung, daß ganze Bände darüber verfaßt 

wurden. Natürlich ist es im Rahmen dieses Buchs nicht möglich, sie auch 

nur einigermaßen erschöpfend zu behandeln. Sie werden jedoch sehen, daß 

sich hinter dem Begriff "Rekursive Datenstruktur" nichts Geheimnisvolles 
verbirgt und daß ın C das Arbeiten damit sehr einfach ist. Einer eingehen- 
deren Beschäftigung mit dieser wichtigen Materie steht dann nichts mehr 
im Wege. 

Ein Großteil der praktischen Bedeutung der Struturen rührt von dem Um- 

stand her, daß Strukturen ineinander verschachtelt werden können. Sie 

haben in der Struktur Angestellter ein Beispiel dafür gesehen; sie enthält 

zwei Komponente, die selbst Strukturen sind, nämlich Anschrift und Per- 

son. 

Wie weit kann dieses Verschachteln von Strukturen gehen? Insbesondere: 

kann eine Struktur in sich selbst eingeschachtelt sein? Ist also etwas wıe das 
Folgende möglich?
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struct Endlos 

{ char dta[80]; 

struct Endlos next; 
} 

Die Antwort auf diese Frage ist "Nein!". Eine Struktur, die sich selbst ent- 
hält, wäre - wie der Name des Beispiels suggeriert - tatsächlich endlos. 

Beim Zuweisen von Speicherplatz für eine verschachtelte Struktur sieht der 

Compiler bei der Beschreibung jeder Komponente nach, wie sie beschaffen 
ist und wieviel Platz sie daher benötigt. Wenn er dies bei der Struktur 
Endlos versucht, dann wird er in einer endlosen Schleife gefangen. 

Wenn der Compiler für eine Variable dieses Typs Platz besorgen soll, dann 

reserviert er zuerst die 80 Bytes für den String dta. Dann sieht er, daß er 
Platz für eine weitere Struktur Endlos besorgen muß, die in die gerade be- 
trachtete eingeschachtelt ist. Also sucht er die Beschreibung der Struktur 
Endlos auf und reserviert wieder 80 Bytes für den String; dann sieht er, 
daß er Platz für eine weitere Struktur Endlos besorgen muß, die in die ge- 
rade betrachtete eingeschachtelt ist (welche ihrerseits in die Ausgangs- 
struktur eingeschachtelt ist). Also reserviert er erst mal die 80 Bytes für 
den String; dann sieht er... 

Sie sehen: das ginge jetzt endlos so weiter. Darum schiebt der Compiler 
dem einen Riegel vor: Strukturen, die sich selbst enthalten, sind verboten. 

Nicht verboten ist jedoch eine Struktur, die einen Zeiger auf sich selbst 
enthält! Betrachten Sie einmal die Struktur in der Abbildung 6.13. 

Abb. 6.13: Eine rekursive Datenstruktur 

Die Struktur Plist hat zwei Komponenten: eine Person-Struktur, die unter 
dem Namen dta (Abkürzung für "data" = Daten) angesprochen werden kann 
und einen Zeiger auf eine Plist-Struktur, zugänglich unter dem Namen 
next. Wird verlangt, eine Variable - nennen wir sie start - mit dieser 
Struktur zu definieren, dann besorgt der Compiler Platz für die Person-
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Komponente und fiir den Zeiger; mehr ist nicht nötig. Der Zeiger zeigt - 
wenn er nicht initialisiert ist - erstmal ins Nirgendwo. Die Abbildung 6.14 
ist eine graphische Darstellung der Verhältnisse, die nach der Definition 
der Variablen start im Speicher herrschen. 

Abb. 6.14: Aufbau einer Liste; Teil 1 

Die Variable start ist sehr schematisch dargestellt. Die Komponenten der 

Person-Teilstruktur sind mit ihren Namen beschriftet; sie enthalten jeweils 
ein Fragezeichen, um anzuzeigen, daß ihr Wert noch unbestimmt ist. Ins- 

besondere hat der Zeiger next noch keinen sinnvollen Wert. 

Das kann jedoch geändert werden. Es ist in einem Programm ja möglich, 
sich mit malloc eine weiter Plist-Struktur zu besorgen und diese an die 

Variable start anzuhängen. Das erledigt die Anweisung 

start.next = malloc (sizeof (struct Plist)); 

Die Wirkung dieser Anweisung veranschaulicht die Abbildung 6.15. Durch 
malloc wurde eine neue Plist-Struktur ıns Leben gerufen. Der Zeiger dar- 
auf, welcher Wert von malloc ist, wurde in der next-Komponente von start 

abgespeichert, so daß diese also auf die neue Struktur zeigt (dargestellt 
durch den Pointer-Pfeil). Beachten Sie jedoch, daß diese neue Struktur 
namenlos ist: man kommt nur zu ihr, indem man den next-Zeiger von start 
verfolgt. | 

Abb. 6.15: Aufbau einer Liste; Teil 2
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Mit dieser Methode können beliebig viele Strukturen aneinandergekettet 
werden. Man nennt über Zeiger verknüpfte Gebilde dieser Art auch Listen. 
Dies ist der Grund, warum ich für die Struktur den Namen Plist gewählt 
habe (Abkürzung für "Personen-Liste"). Listen sind abstrakte Datenstruk- 
turen, die beliebig verlängert (und auch verkürzt; aber darum kümmern wir 
uns in diesem Kapitel nicht mehr) werden können. Das Verlängern einer 
Liste erreicht man, indem man an ihr Ende (also in die letzte Komponente 
der Liste) eine neue Komponenten-Struktur (eine sogenannten Listen- 
"Knoten") einhängt. In der Terminologie der Informatik besteht eine Liste 
aus "Knoten", die über Zeiger miteinander verkettet sind. Um einen neuen 
Knoten an das Ende der Liste einzuhängen, muß man dieses Ende jedoch 
erst einmal finden. 

Dies geht am besten wie folgt. Man vereinbart einen Zeiger auf eine Plist- 
Struktur (hier plp genannt) und läßt diesen auf den Listenanfang start zei- 
gen: 

struct Plist *plp = &start; 

Die Wirkung dieser Anweisung veranschaulicht die Abbildung 6.16. 

Abb. 6.16: Zeiger über Liste verschieben; Teil 1 

Dann verschiebt man den Zeiger plp zum Nachfolger von start. Dies ist 
möglich, ohne den Namen start überhaupt zu erwähnen und geht mit fol- 
gender Anweisung: 

plp = plp->next; 

Wieder können Sie der Abbildung 6.17 entnehmen, welche Wirkung dies 
hat. Auf die Komponenten-Namen habe ich verzichtet, um mich nur aufs
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Wesentliche zu konzentrieren. Der gestrichelte Pfeil, der von plp ausgeht, 
zeigt den Zustand vor der Zuweisung; der durchgezogene Pfeil zeigt die 
Wirkung der Zuweisung. 

Nach dem Verschieben des Zeigers prüft man, ob dieser bereits das Ende 
der Liste erreicht hat. Aber woran kann man das erkennen? Dafür gibt es 
eine einfache Lösung: in die next-Komponente des letzten Listenelements 
schreibt man einen Zeiger-Wert, der das Listen-Ende signalisiert und der 
als ’echter’ Zeiger-Wert niemals vorkommen kann. Dies ist der Wert 0. C 
garantiert dem Programmierer, daß kein vom Compiler eingeführter Zeiger 
- gleichgültig, ob er über statische oder dynamische Speicherverwaltung 
seinen Wert erhalten hat - jemals auf die Speicherstelle 0 verweist. Ein 
Pointer-Wert von 0 muß daher vom Programmierer gesetzt sein; man kann 
ihn daher verwenden, um eindeutig das Listenende zu markieren. 

Abb. 6.17: Zeiger über Liste verschieben; Teil 2 

Die Abbildung 6.18 zeigt, wie man in der Situation der Abbildung 6.17 
einen neuen Knoten in die Liste einketten und diesen korrekt als Listen- 
ende markieren kann. Die Anweisungen dafür lauten: 

plp->next = malloc (sizeof (struct Plist)); 
plp = plp->next; 
plp->next = (struct Plist*) 0;
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Wie Sie sehen, sind dazu drei Schritte nötig: 

1. neue Komponente besorgen und einhängen, 

2. Listen-Zeiger auf neue Komponente verschieben, 

3. Ende der Komponente markieren. 

Die Ziffern in der Abbildung 6.18 beziehen sich auf diese drei Schritte. 

Beachten Sie, wie im dritten Schritt mit dem cast-Operator aus der Null 

ein Zeiger vom passenden Typ gemacht wird. 

Die Listenstruktur, die hier aufgebaut ist, wird auch "einfach gekettete 

Liste" genannt. Man kann sich nämlich nur in einer Richtung durch die 

Liste bewegen: von vorne nach hinten. Sie sehen das im Beispiel daran, daß 

man von dem neuen (dritten) Listenelement nicht mehr zum zweiten gelan- 

gen kann: es führt kein Pointer zurück. Allerdings hindert den Program- 

mierer nichts daran, den Zeiger plp wieder auf den Listenanfang zu setzen 

(das geht, weil dieser einen Namen hat) und ihn von da aus in gewohnter 

Manier zu verschieben. 

Abb. 6.18: Neues Element ins Listenende einketten. 

Listen sind rekursive Datenstrukturen (daher die Überschrift dieses Kapi- 

tels), denn in der Definition eines Listen-Knotens ist ein Verweis auf 

ebendiesen Knoten enthalten: die Definition von Plist enthält einen Ver- 

weis auf (in Form eines Pointers auf) die Struktur Plist. Die Bedeutung der
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rekursiven Datenstrukturen (neben den Listen vor allem die sogenannten 
"Bäume") für die Programmierung komplexer Probleme ist enorm. Im Rah- 
men dieses Buchs ist es unmöglich, dem Thema gerecht zu werden. Der 

Autor legt aber jedem ambitionierten Leser dringend ans Herz, sich mit der 

Materie zu beschäftigen und dazu eines der zahlreichen Bücher über 

"Datenstrukturen" zur Hand zu nehmen. 

Im Zusammenhang mit dem Leitbeispiel dieses Kapitels - der Verwaltung 
von Personaldaten - stellen die Listen die Lösung des Speicherplatz-Pro- 

blems dar. Denn auch in der letzten Variante, die mit einem Pointer-Array 
arbeitet, ist man immer noch auf die Abschätzung einer Obergrenze für die 
verwaltbaren Daten angewiesen. Der Pointer-Array wird statisch (vom 
Compiler) zugewiesen; sollte er sich später als zu klein erweisen, dann ist 
keine nachträgliche Änderung mehr möglich. Bei Angabe einer unrealistisch 
hoch erscheinenden Obergrenze hat man immer noch das Problem mit dem 

Überhang an Speicherplatz, der für die Pointer vom Compiler reserviert 

wird. 

Gänzlich anders sieht die Lage aus, wenn man mit Listen arbeitet. Hier 
braucht nur bei Bedarf ein neuer Knoten eingehängt zu werden, es wird 
also immer nur genau soviel Platz vom Arbeitsspeicher abgezwackt, wie 
auch benötigt wird. Mit der Funktion free ist es auch möglich, nicht mehr 
benötigte Knoten aus der Liste auszuketten und die Liste ohne Speicher- 

platz-Verschwendung stets auf dem aktuellen Stand zu halten. 

Das Beispiel-Programm 6.6 demonstriert, wie man eine Liste mit Personen- 

daten aufbauen kann. Beim Start des Programmes ist bereits ein Knoten 
definiert; dieser wird Start genannt, da er als Listenanfang dient. Start ist 
eine globale Variable, da der Listenanfang aus allen Funktionen, die mit dr 
Liste zu tun haben, zugänglich sein sollte, 

Eine weitere globale Variable ist der Zeiger End, der stets auf das aktuelle 
Listenende zeigt und so das schnelle Einketten neuer Knoten erlaubt. Da 

bei Programmbeginn erst ein Knoten vorhanden ist, fallen Anfang und 
Ende zusammen; dies können Sie an der Initialisierung von End erkennen. 

Das Hauptprogramm nimmt zuerst Daten in die Liste auf. Dazu wird der 

bereits bestehende Knoten gefüllt und an ihn anschließend ein neuer, leerer 
Knoten eingehängt (Funktion new_node), der mit dem NULL-Pointer als 
Listenende markiert wird. Das Verfahren hat den Nachteil, daß immer ein 
Knoten mehr in der Liste hängt, als Daten in ihr enthalten sind, nämlich 

der letzte Knoten. Dafür ist es einfach zu programmieren! Die Funktion 
new _node besorgt nicht nur einen neuen Knoten, sondern sie verschiebt 
auch den End-Pointer so, daß er auf das neue Ende zeigt. Das funktioniert 
natürlich nur, weil End eine globale Variable ist.
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Prog. 6.6: Rekursive Datenstruktur und rekursive Funktion 

Wenn der Benutzer signalisiert, daß er keine Daten mehr aufnehmen will, 

gibt das Programm die in der Liste gespeicherten Daten aus. Die hierzu 

vorgesehene Funktion show_list demonstriert eine weitere Lieblingstechnik 

der fortgeschrittenen Programmierkunst: eine rekursive Funktion. 

Eine rekursive Funktion ist eine Funktion, die sich selbst aufruft. Das ist 

in C - wie in jeder ordentlichen Programiersprache; BASIC kann’s nicht! - 

ohne weiteres möglich. Rekursive Funktionen sind meist dann am prak- 

tischsten, wenn rekursiv definierte Datenstrukturen (wie hier die Listen) 

verarbeitet werden sollen. 

Die Funktion show __list hangelt sich wie an einer Strickleiter an den Kno- 
ten der Liste entlang und gibt die darin gespeicherten Daten aus. Ihr Argu- 

ment ist ein Zeiger auf einen Listenknoten; ich habe ihn startnode genannt, 

weil mir nichts besseres eingefallen ist. 

Eine rekursive Funktion besteht aus mindestens zwei Zutaten: der Rekur- 

sionsbasis und dem Rekursionsschritt. Die Rekursionsbasis gibt den Ver- 
fahrensschritt an, der durchgefiihrt werden soll, wenn das Endekriterium 

erreicht ist. Im Falle der Funktion show list ist das Ende-Kriterium das 
Erreichen des Listenendes. Dies erkennt die Funktion daran, daß die next- 

Komponente des gerade betrachteten Listenknotens den 0-Pointer enthält. 

Da der letzte Listenknoten keine Daten mehr enthält, kann die Funktion 

einfach mit return verlassen werden. 

Ist der Knoten nicht letzter in der Liste, dann werden seine Daten ange- 

zeigt; anschließend kann der nächste Knoten ausgegeben werden. Den 

nächsten Knoten erreicht man, indem man dem next-Zeiger des aktuellen 

Knotens nachgeht. Was aber wäre besser zur Ausgabe des nächsten Knotens 

geeignet als die Funktion show_list selbst? Dies erkennend, ruft sich die 
Funktion show_list eben selbst - und schon haben wir den Rekursions- 

schritt!
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Sie sehen: auch dies ist keine Hexerei. 

Noch eine wichtige Anmerkung: die Reihenfolge, in der in einer rekursiven 
Funktion der Rekursionsschritt und die Rekursionsbasis hingeschrieben 
werden, macht meist den Unterschied zwischen einer eleganten, effizienten 

Problemlösung und einem Programmabsturz aus. Versuchen Sie, sich dies 
mit show_list deutlich zu machen.
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7 Verkehr mit der Außenwelt - Dateien 

Alle bisherigen Beispiel-Programme empfingen ihre Informationen während 

des Programmlaufs von der Tastatur und gaben ihre Daten auf dem Bild- 
schirm aus. Diese interaktive Programmierung ist für viele Zwecke aus- 
reichend; doch oft möchte man Daten dauerhaft speichern und sie auf an- 

dere Art als durch Tastatureingabe in das Programm bringen. Dazu sind die 

Dateien da. 

Es gibt jedoch noch eine andere Art, wie Daten in das Programm gelangen 
können: man kann dem Programm beim Aufruf bestimmte Informationen 
in der Kommando-Zeile mitgeben. Dieser Möglichkeit möchte ich mich 
zuerst zuwenden. | 

7.1 Parameter von der Kommandozeile 

Um ein C-Programm zu benutzen, ruft man es auf. Das bedeutet (unter 
TOS), daß man den Namen des Programms tippt und anschließend die Re- 

turn-Taste betätigt. Bei der Arbeit unter GEM wird das Bildsymbol des 
Programms (oder sein Name) mit der Maus angewählt und zweimal ange- 
klickt. 

Benötigt das Programm Daten, dann besorgt es sich diese; einzige Mög- 
lichkeit dazu war - wenn man einmal von der Initialisierung von Variablen 
absieht - bisher die Eingabe von der Tastatur. Es ist jedoch auch möglich, 
dem Programm bereits bei seinem Aufruf Informationen mitzugeben. Dies 
soll an einem kleinen Problem verdeutlicht werden. 

Wie Sie in früheren Beispielen gesehen haben, ist es sehr einfach, in C 

Programme zu schreiben, die alle Eingabezeichen in Kleinschreibung bzw. 
in Großschreibung umwandeln. Beide Programme haben die gleiche Struk- 
tur: in einer while-Schleife werden bis zum Erreichen einer Endebedingung 
Zeichen eingelesen und wieder ausgegeben, nachdem sie eine der beiden 
Filterfunktionen (bzw. Makros) toupper oder tolower durchlaufen haben. 

Wegen dieser strukturellen Ähnlichkeit bietet es sich an, beide Funktionen 
in einem Programm zusammenzufassen; der Benutzer muß dann lediglich 
angeben, welche Form der Umwandlung er wünscht. Dies kann das Pro- 
gramm von ihm im Dialog erfragen. Aber in der Regel ist dem Benutzer 
schon beim Starten des Programmes klar, welche der beiden Verwendungs-
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weisen er benötigt. Es wäre deshalb gut, wenn man dem Programm diese 

Information auch bereits beim Start mitgeben Könnte. 

Man kann. Die Hauptfunktion main hat nämlich zwei Argumente. Diese 

dienen genau dem Zweck, Parameter für das Programm in der Kommando- 

zeile zu übergeben. Angenommen, das eben angesprochene Umwandlungs- 

Programm trägt den Namen change; dazu muß bei den meisten Compilern 

lediglich die Programmquelle in einer Datei mit dem Namen change.c ste- 

hen. Assembler und Linker übernehmen dann diesen Namen und ändern 

nur die Extension (den Namensteil hinter dem Punkt) für ihre Zwecke. Um 

das Programm aufzurufen, tippen Sie seinen Namen und drücken die Re- 

turn-Taste: 

change <RETURN> 

Nun ist es aber möglich, C-Programme mit Aufrufargumenten zu versehen. 

Es soll z.B. das Programm change das Argument ’K’ (bzw ’k’) oder ’G’ 

(bzw. ’g’) erhalten, was bedeuten möge, daß eine Umwandlung in Klein- 

schreibung oder Großschreibung erfolgen soll. Ein korrekter change- Aufruf 

sieht dann so aus: 

change k <RETURN> oder: 

change K <RETURN> oder: 

change g <RETURN> oder: 

change G <RETURN> 

Der Buchstabe hinter dem Programmnamen ist ein Argument, das in main 

als Parameter das Verhalten des Programms steuern kann. Jetzt muß man 

aber wissen, wie man dieses Argument in das Programm bekommt, so daß 

es dort ausgewertet werden kann. 

Dazu müssen in der Definition von main zwei Parameter für die Haupt- 

funktion deklariert werden. Die Namen, die Sie für diese Parameter wäh- 

len, sind beliebig (wie das bei Parametern so der Brauch ist); es haben sich 

jedoch die Bezeichnungen aus der Abbildung 7.1 eingebürgert. 

Abb. 7.1: Deklaration der Parameter für main 

Wie Sie der Abbildung entnehmen können, kann main mit zwei Parametern 

deklariert werden. Dies bedeutet jedoch nicht, daß Sie in Ihren Pro-
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grammen auf maximal zwei Argumente beschränkt sind. Vielmehr steckt 
hinter den beiden main-Parametern ein sinnreicher Mechanismus, der die 
Übergabe (theoretisch) beliebig vieler Parameter erlaubt. 

Den Deklarationen entnehmen Sie, daß der erste main-Parameter (argc) 
eine Integer, der zweite (argv) hingegen ein String-Array ist. Beim Start 
des Programmes enthält argc die Anzahl der Argumente, die Sie an Ihr 
Programm übergeben haben plus 1; argc ist denn auch die Abkürzung für 
"argument count" (deutsch "Argumentzähler"). Jedes Programm-Argument, 
das Sie in der Kommandozeile übergeben haben, ist ein Eintrag im zweiten 
Parameter, dem String-Array argv (Abkürzung für "argument vector"). Das 
erste Argument ist der zweite String in argv, das zweite Argument ist der 
dritte String usw. 

Wenn Sie also ein Programm prg wie folgt aufrufen: 

prg Eins zwei 3 VIER 

dann werden damit folgende Werte in die Parameter argc und argv über- 

tragen: 

argc hat als Wert 5 

argv[1] hat als Wert "Eins" 

argv[2] hat als Wert "zwei" 

argv[3] hat als Wert "3" 

argv[4] hat als Wert "VIER" 

Da erhebt sich die Frage: warum hat argc den Wert 5 und was steckt im 
ersten String des argv-Arrays? Der Wert für argc ist leicht erklärt: der Pro- 
grammname (also die Zeichenfolge, mit der das Programm aufgerufen 
wird) zählt mit. Auch wenn Sie ein Programm ohne jegliche Argumente 
aufrufen, hat argc also den Wert 1. 

Die Frage nach dem ersten String in argv ist nicht so leicht zu beantworten. 
Der C-Standard fordert, daß sich dort der Programmname findet. Doch 

dies ist unter TOS anscheinend technisch nicht machbar. Der ATARI-C- 
Compiler plaziert als ersten String in argv die Meldung "C runtime" 
(deutsch: "C-Laufzeitumgebung"). Sie sollten sich daher nicht darauf ver- 
lassen, daß Ihr Compiler in diesem Punkt den Standard erfüllt. 

Jetzt ist das Zusammenspiel der beiden Parameter klar: argc gibt an, wie- 
viele Aufruf-Argumente im String-Array argv enthalten sind. Der Array 
argv enthält die einzelnen Aufruf-Argumente als Strings. Argumente wer- 
den auf der Kommandozeile durch Leerzeichen getrennt; daran erkennt den 
C Anfang und Ende der einzelnen Parameter.
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Mit dem folgenden kleinen Programm können Sie sich die Argumente der 
Kommandozeile anzeigen lassen: 

main(argc, argv) 

int argc; 

char **argv; 

{ while (argc--) 
puts(*argvt+); 

> 

In der Deklaration von argv habe ich mir den Zusammenhang zwischen 
Arrays und Pointern zunutze gemacht. Da das Programm die einzelnen 
Strings nicht über Array-Index, sondern über Pointer erreicht, ist dieser 

Form der Deklaration der Vorzug gegeben worden. Sie sollten sich ange- 

wöhnen, Array-Parameter mit den Array-Klammern zu deklarieren, wenn 
Sie sie im Programm so einsetzen (also über Index auf Komponenten zu- 

greifen) und als Pointer, wenn Sie die (in C in der Regel schnellere!) Me- 
thode mit der Dereferenzierung bevorzugen. 

Die einzelnen Argumente sind als Strings in argv abgelegt; sie werden des- 

halb mit puts ausgegeben. Uber Dereferenzierung mit * erreicht man die 
Einzelstrings; durch Postinkrement wird der argv-Pointer nach der Ausgabe 

weitergeschoben. 

Um einen Punkt zu klären, über den bei manchen C-Programmieren Ver- 
wirrung herrscht: Sie müssen die beiden Parameter nicht argc und argv 
nennen. Dies sind lediglich durch die Tradition institutionalisierte Namen. 
Doch jeder andere zulässige Parameter-Name tut es ebenso, also auch otto 
und emil. Wichtig ist alleine, daß die Parameter richtig deklariert sind (der 
erste als Integer und der zweite als String-Array) und daß Sie sich dann im 

Programm an Ihre Namen auch halten. Wollen Sie ein Programm mit Para- 
metern von GEM heraus starten, dann müssen Sie dafür sorgen, daß die 
Argumente auch übergeben werden. Dazu ist es nötig, mit der Option "An- 

wendung anmelden" aus dem "Optionen"-Menü das Programm als "TOS 
übernimmt Parameter" dem System bekanntzumachen. 

Jetzt aber zurück zum Ausgangsproblem: Zeichenumwandlung in Abhän- 
gigkeit von einem Kommando-Zeilen-Argument. Programme, die Argu- 
mente von der Kommando-Zeile bekommen, sind vor allem unter UNIX 

sehr häufig anzutreffen. Da der UNIX-Stil vor allem erfahrene C-Pro- 
grammierer bereits ’verdorben’ hat, ist anzunehmen, daß sich diese Tradi- 

tion auf dem ATARI fortsetzten wird. Zu einem guten Programm gehört 
eine Überprüfung der Parameter aus der Kommando-Zeile. Im Programm 
7.1 ist dies ansatzweise demonstriert.
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Prog. 7.1: Übernahme von Argumenten aus der Kommandozeile
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Da das Programm einen Parameter benötigt, wird zuerst überprüft, ob der 

Benutzer überhaupt ein Argument mit übergeben hat. Im switch wird dann 
fernerhin dafür gesorgt, daß nur korrekte Parameter akzeptiert werden. Im 

Fehlerfall bemüht das Programm eine Fehlerfunktion usage, die dem Be- 

nutzer den korrekten Gebrauch (englisch usage) des Programmes mitteilt 
und anschließend die Programmausführung abbricht. Dazu wird die Funk- 
tion exit aus der Standard-Bibliothek bemüht. 

Zur Auswertung des Arguments ım switch braucht nur ein einzelnes Zei- 
chen betrachtet werden: das erste (und einzige) Zeichen des ersten Argu- 

mentstrings. Den ersten Argument-String erhält man durch Inkrementieren 

des argv-Pointers (denn zu Beginn zeigt argv ja auf den Programmnamen 
(oder was immer das Betriebssystem an seiner Stelle liefert!): daher ++argv. 
Den ersten String erreicht man durch Dereferenzieren des inkrementierten 
Pointers; so kommt’s zu *++rargv. Jetzt brauchen wir nur noch das erste 
Zeichen im String; da ein String sich ebenso wie ein Zeichen-Pointer ver- 
hält, kommt man da durch nochmaliges Dereferenzieren ’ran. Der krönende 

Abschluß also: **+rargv. 

Dies ist ein weiteres Beispiel für den Zusammenhang zwischen der Dekla- 

ration einer Variablen und ihrer Verwendung. Die Deklaration 

char **argv; 

sagt ja aus, daß man durch zweimaliges Dereferenzieren der Variablen argv 

ein Zeichen erhält. Fernerhin gibt mir das Programm 7.1 die willkommene 

Gelegenheit, die im letzten Kapitel mehrfach angeklungenen ominösen 

"Zeiger auf Funktionen" zu erklären. 

Ähnlich, wie der Name eines Arrays ein Zeiger auf das erste Element im 
Array ist, ist der Name einer Funktion ein Zeiger auf diese Funktion!. 
Ähnlich, wie ein Array-Name in C eine Konstante ist, ist auch ein Funk- 
tionsname eine Konstante: beiden kann nichts zugewiesen werden. 

Aber sie können auf der rechten Seite von Zuweisungen auftreten. Beiden 

- Arrays und Funktionen - können passenden Pointern zugewiesen werden. 

Doch warum sollte man das bei den Funktionen tun wollen? Natürlich aus 
Gründen der Eleganz; und um seine Programme vor den neugierigen Blik- 
ken von C-Dilettanten zu schützen. Aber Spaß beiseite: einige Probleme 

lassen sich wirklich mit Funktions-Pointern eleganter formulieren. Pro- 

gramm 7.1 ist dafür, wie ich hoffe, ein Beispiel. 

Die Haupt-Schleife des Programms 7.1 kann so beschrieben werden (siehe 
auch den Kommentar zum Programm): lies ein Zeichen ein und gib es ge- 

filtert wieder aus. Das Filtern übernimmt eine der beiden Funktionen to-
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upper oder tolower, je nachdem, welchen Parameter der Benutzer gewählt 

hat. Natürlich könnte man in der Schleife mit einem if anhand des Para- 

meters die jeweils benötigte Filterfunktion auswählen, etwa so: 

char option; 

option = toupper(**argv); 

while ((c = getchar()) != '#') 

putchar ( option == 'G' ? toupper(c) : tolower(c)); 

Aber mit diesem Verfahren wird eine Entscheidung, die bereits zu Beginn 
des Programmlaufs feststeht, überflüssigerweise bei jedem Schleifendurch- 
gang erneut getroffen. Wenn das Programm einmal bei der while-Schleife 
angelangt ist, dann steht fest, welche der beiden Filter-Funktionen der Be- 
nutzer wünscht. 

Als Filter-Funktion kommt einer von zwei ’Werten’ in Frage. Varıablen 
sind Dinge, die Werte haben können. Funktions-Pointer sind Variablen, die 
Funktionen (genauer: Zeiger darauf) als Werte haben können. Deshalb liegt 
es nahe, die gewünschte Filterfunktion über einen Funktions-Pointer an- 
zusprechen, den man beim Programmanfang auf die gewünschte Funktion 
zeigen läßt. Dies erledigt das Programm 7.1 in dem switch, der die Para- 
meter aus der Kommandozeile auswertet. Dem Pointer chfun wird entweder 

der Filter up oder low zugewiesen. Soll die Funktion dann tatsächlich an- 

gewendet werden, dann muß erst die Variable chfun dereferenziert werden, 

indem man ihr einen Stern verpaßt und dann dahinter in die Funktions- 

klammern das Argument schreibt. Da die Funktionsklammern stärker bin- 

den als der *-Operator, ist ein zusätzliches Klammerpaar nötig, wodurch 

sich der Ausdruck | 

(*chfun) (c) 

für die Funktions-Anwendung ergibt. 

Die beiden Filterfunktionen up und low sind nichts anders, als die bereits 
bekannten Umwandlungs-Makros toupper und tolower im Funktionsgewand. 

Dies ist nötig, weil Makros keine Funktionen sind. Einige Makros werden 
vielleicht vom Präprozessor ın Funktionsaufrufe expandiert; andere aber - 

und dazu zählen toupper und tolower - expandieren zu Operator-Anwen- 

dungen (erinnern Sie sich: beide sind mit dem dreistelligen ? ... : ...-Ope- 
rator definiert!). Auf einen Operator kann man jedoch keinen Funktions- 

Pointer zeigen lassen.
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Wer jetzt einwendet, daß man dadurch zwar einen überflüssigen Test in der 
Schleife eingespart, dafür aber zwei neue unnötige Funktionen eingeführt 

hat, der hat keinen Sinn für Schönheit! 

Die Filter-Funktion up wird übrigens bereits im swiich eingesetzt, der die 
Parameter-Auswertung steuert (und dazu das Argument einheitlich in 
Großschreibung umwandelt). Es wäre falsch gewesen, hier den Makro to- 

upper einzusetzen. Die Gründe dafür sind subtil; doch dies ist ohnedies ein 
Kapitel, das subtiler Materie gewidmet ist. Sehen wir uns also einmal an, 

was der Makro-Präprozessor aus 

toupper (**++argv) 

macht. Dazu wiederhole ich noch einmal die nötigen Makro-Definitionen: 

#define toupper(c) Cislower(c) ? c + 'A' - ‘al: c) 
#define islower(c) (c >= !a! && c <= 'z') 

Als erstes wird toupper expandiert (zur Erinnerung: die Ersetzung eines 
Makros durch den Text, der ihn definiert, nennt man Makro-Expansion). 
Dazu muß lediglich der Makro-Parameter c durch das tatsächliche Makro- 
Argument **++argv ersetzt werden; man erhält: 

Cislower(**++argv) ? **++argv + !A! - ‘al: **++argv) 

Nun ist nach Expansion von toupper immer noch der Makro islower übrig, 
der ebenfalls expandiert werden muß. Dies führt zu: 

((*+trargv >= !a! && *++argv <= '2') ? **++argv + !A! - ‘al: **++argv) 

Dies ist der Ausdruck, den der Compiler nach vollständiger Expansion 

durch den Präprozessor erhält. In diesem Ausdruck wird der Pointer argv 
insgesamt dreimal (Zwischenfrage: warum nicht viermal?) inkrementiert! 
Wir wissen jedoch, daß argv im Falle des vorliegenden Programms nur zwei 
Strings enthält: den Programmnamen und das Programm-Argument. Nach 
dem zweiten Inkrementieren (es wird ja auch mit Präinkrement gearbeitet) 
zeigt argv also ins Pointer-Nirwana. Diesem Verweis geht das Programm 
aber freudig nach, um das Ergebnis (den gewünschten Großbuchstaben) zu 
produzieren; das Unheil nimmt seinen Lauf! 

Moral: Makroexpansion ist etwas anderes als ein Funktionsaufruf; es ist 
bloße Textersetzung. Arbeitet der Ersetzungstext mit Seiteneffekten (hier: 
dem Inkrementieren eines Pointers), dann können sich die hübschesten 

Fehler einstellen. Fehler, die schwer zu finden sind, da man den Makro 

meist schon als erledigt und fehlerfrei abgebucht hat.
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7.2 Umlenkung der Ein-/Ausgabe. 

Es gibt noch eine andere Art von Argumenten, die Sie Ihren Programmen 

in der Kommandozeile mitgeben können. Zu deren Erklärung greift man 
am besten zu der sattsam bekannten Zeichen-Kopier-Schleife, die die Ab- 

bildung 7.2 noch einmal wiederholt. Beachten Sie jedoch, daß als Endekri- 
terium für die Schleife diesmal das Dollarzeichen ’$’ gewählt wurde. In der 
Abbildung wird angenommen, daß das Programm den Namen cpy erhalten 

hat und bereits fertig übersetzt ist. Unter dem Quelltext des Programms 
sehen Sie in der Abbildung einen Aufruf des Programms. 

Abb. 7.2: Umlenkung der Ein-/ Ausgabe 

Wie Sie sehen, wurde dem Programm in der Kommandozeile ein Argument 
mitgegeben. Dieses ist in zweifacher Hinsicht merkwürdig. Einmal ist das 
Argument (bei dem es sich um einen Dateinamen zu handeln scheint; dafür 
spricht jedenfalls die Extension ".txt") mit einer spitzen Klammer dekoriert. 
Dann aber sind im Programm gar keine argc- und argv-Parameter de- 
klariert. Das bedeutet, daß das Programm die Argumente aus der Kom- 

mandozeile gar nicht auswertet! 

Kann es auch nicht. Denn den Parameter >outdat.txt würde das Programm 
nie zu sehen bekommen; den schnappt sich bereits das Betriebssystem. 
Denn ein mit einer öffnenden spitzen Klammer eingeleiteter Parameter ist 
eine Anweisung an das Betriebssystem, die Ausgabe bestimmter C-Funk- 
tionen auf einen anderen Kanal als den Bildschirm umzulenken. 

Das Betriebssystem ist diejenige Instanz des Computers, die sich um den 
Verkehr mit der Außenwelt kümmert; zu seinen vielen Aufgaben gehört 
unter anderem: Lesen von der Tastatur, Ausgeben auf dem Bildschirm oder 

Drucker, Ein-/Ausgabe auf Dateien und Verwaltung von Disketten. Zur 
Kommunikation mit der Außenwelt bedient sich das Betriebssystem soge-
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nannter "Kanäle". Einige Kanäle führen nur in eine Richtung: von der 
Außenwelt in den Computer (wie z.B. die Tastatur; von der kann man nur 
empfangen, aber nichts an sie senden) oder vom Computer zur Außenwelt 

(wie z.B. der Drucker; der kann nur empfangen aber nichts an den Compu- 
ter senden). Neben diesen Kommunikations-Einbahnstraßen (den "unidirek- 
tionalen Kanälen"; das für die Freunde der Fremdworte) gibt es auch 
Kanäle, die in beiden Richtungen (vom und zum Computer) nutzbar sind. 

Zu diesen "bidirektionalen Kanälen" zählen insbesondere Diskettendateien; 
aus ihnen können Informationen gelesen, in sie können Informationen ge- 
schrieben werden. 

Neben dem Begriff des "Kanals" ist für ein Verständnis der Vorgänge, die 

mit der Kommandozeile in Abbildung 7.2 ausgelöst werden, noch der Be- 

griff des "Standard-Kanals" von Bedeutung. Das Betriebssystem geht davon 
aus, daß in der Standard-Anwendungssituation eines Programms der 
Mensch mit seinem Computer interaktiv in Verbindung treten möchte. Das 
bedeutet für ıhn: die Eingaben an das System kommen normalerweise von 
der Tastatur; die Ausgaben des Systems erfolgen normalerweise auf dem 
Bildschirm. Anders ausgedrückt: die Tastatur ist Standard-Eingabekanal, 
der Bildschirm ist Standard-Ausgabekanal für das Betriebssystem. 

Aber es läßt sich gerne eines Besseren belehren. Denn der Anwender kann 

den Wunsch haben, andere Kanäle zu Standard-Ein-/Ausgabekanälen zu 

machen. Er kann es vorziehen, die Ausgabe von Programmen auf den 

Drucker, in eine Datei, auf die serielle Schnittstelle etc. zu legen. Ebenso 

kann er das Bedürfnis haben, die Eingabe von Programmen aus einer Datei 

oder von der seriellen Schnittstelle zu empfangen. 

Um jetzt nicht für jede Kombination von Ein- und Ausgabekanälen eige- 
ne, spezialisierte Programme schreiben zu müssen, bedient sich das Be- 

triebssystem des ATARI einer Technik, die erstmals mit dem Betriebs- 
system UNIX weite Verbreitung fand: die Standard-Kanäle können umge- 
lenkt werden. 

In bisherigen Beispielsprogrammen wurde davon ausgegangen, daß getchar 
von der Tastatur liest und putchar auf den Bildschirm schreibt. Doch dies 
entspricht nicht ganz den Tatsachen. Richtig muß es heißen: getchar em- 

pfängt ein Zeichen vom Standard-Eingabekanal; putchar schreibt ein Zei- 
chen auf den Standard-Ausgabekanal. Was gerade als Standard-Kanal ver- 

einbart ist, darum kümmert sich das Betriebssystem. 

Normalerweise ist die Tastatur Standard-Eingabe und der Bildschirm Stan- 
dard-Ausgabe. Deshalb funktionieren im Normalfall die Funktionen getchar 
und putchar (und alle, die sich darauf stützen) wie oben angenommen. Ab- 
weichungen vom Normalfall teilt der Benutzer dem Betriebssystem in der
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Kommandozeile seines Programmes mit. Womit wir wieder bei der Abbil- 

dung wären. 

Sieht das Betriebssystem in der Kommandozeile ein Argument, das mit > 
beginnt, dann faßt es dies als Anweisung auf, die Standard- Ausgabe umzu- 

lenken. Umgelenkt wird auf den Kanal, der hinter dem > angegeben ist; in 
diesem Fall ist es eine Disketten-Datei mit dem Namen "outdat.txt". Wenn 
Sie das Programm in der Abbildung 7.2 wie angegeben starten, dann sehen 
Sie seine Ausgabe also nicht auf dem Bildschirm. Stattdessen werden alle 
ausgegebenen Zeichen vom Betriebssystem in eine Datei Namens "out- 
dat.txt" umgelenkt. Nach Beendigung des Programms können Sie sich die 
Datei dann (mit dem Betriebssystems-Kommando type oder unter GEM 

durch Anklicken mit der Maus) ansehen. 

Anmerkung: Die Betriebssystems-Version des ATARI, die zum Zeitpunkt 
der Erstellung dieses Buchs im Umlauf war, konnte die Umlenkung der 
Ausgabe nicht rıchtig verarbeiten. 

Ebenso wie die Standard-Eingabe kann auch die Standard-Ausgabe umge- 

lenkt werden. Wenn Sie dies wünschen, so teilen Sie es dem Betriebssystem 

durch einen schließenden spitzen Pfeil gefolgt von dem Eingabe-Kanal 
ihrer Wahl mit. Somit ist es möglich, mit dem selbstgeschriebenem Pro- 
gramm cpy den Inhalt einer Datei (ähnlich wie mit dem eingebauten type- 
Kommando) auf dem Bildschirm anzusehen. Dazu schreiben Sie: 

cpy. <cpy.c 

Mit dieser Programm-Zeile können Sie sich somit den Quellcode des Pro- 
gramms ansehen, das gerade läuft. 

Doch halt! Sie sehen nicht alles! Denn Endekriterium für die while-Schleife 
ist das Dollarzeichen. An der Stelle, an der in der Datei "cpy.c" dieses 

Zeichen steht, bricht die Ausgabe ab - der Rest geht verloren. Jetzt verste- 

hen Sie auch, warum ich als Endekriterium das Dollarzeichen und nicht, 
wie sonst üblich, den ’Gartenzaun’ # einsetzte: dieser Taucht in der Quelle 
cpy.c gleich zu Beginn in der include-Anweisung auf. Wenn Sie dann das 
Beispiel wie beschrieben nachvollziehen, bekommen Sie nichts zu sehen! 

Es wäre nun schon wünschenswert, die Datei bis zu ihrem Ende ansehen zu 

können. Dazu aber muß das Programm cpy das Dateiende erkennen, um die 

Schleife korrekt zu beenden. Woran jedoch soll man das Dateiende er- 
kennen können? 

Dazu befolgt die Funktion getchar eine bestimmte Konvention: wenn Sie 
das Dateiende erreicht hat, dann gibt sie einen eindeutigen Wert zurück, 
der nicht mit einem Zeichen verwechselt werden kann. Meist verwenden
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die C-Compiler den Wert -1 als Signal für das Dateiende. Normalerweise 
brauchen Sie sich jedoch nicht darum zu kümmern, welcher Wert nun da- 
für herhält. In einer include-Datei mit dem Namen "stdio.h" ist bei allen 
ernstzunehmenden Compilern eine Konstante Namens EOF (Abkürzung für 
"End of File", also "Dateiende") als Makro vereinbart. Um also auch 
Dateien als Standard-Eingabe verarbeiten zu können, muß das cpy-Pro- 
gramm so umgeschrieben werden: 

#include <stdio.h> 

main () 

{ char c; 

while ((c = getchar()) != EOF) 

putchar(c); 
> 

Anmerkung: Das getchar des ATARI-Compilers konnte in der mir verfüg- 
baren Version das Dateiende nicht erkennen. Wenn Sie ebenfalls mit einer 

frühen Compiler-Version arbeiten, dann sollten Sie darauf verzichten, die 

Umlenkungs-Beispiele auszuprobieren. 

Schließlich können beide Möglichkeiten kombiniert werden: Ein- und Aus- 
gabe eines Programmes können beide umgelenkt werden. Mit der 

Kommandozeile | 

cpy <cpy.c >cpy.bat 

werden Zeichen aus der Datei "cpy.c" gelesen und in die Datei "cpy.bat" 

geschrieben; es wird also eine Kopie der Datei "cpy.c" mit Namen "cpy.bat" 

erstellt. Das Programm cpy eignet sich - so unscheinbar es ist - auch zum 
Kopieren von Dateien; daher auch der Name (kopieren heißt "copy" auf 

englisch). 

7.3. Gepufferte Ein-/Ausgabe 

Die Verarbeitung von Dateien ist, wie im letzten Kapitel beschrieben, 

durch Umlenkung der Ein-/Ausgabe möglich. Doch geschieht dies nur 

zeichenweise: getchar und putchar lesen bzw. schreiben immer nur ein 
Zeichen vom bzw. auf den jeweiligen Kanal. Nicht für alle Anwendungen 
ist diese zeichenweise Verarbeitung angemessen. Auch reicht es nicht für 
alle Anwendungen aus, wenn lediglich zwei Dateien - eine für die Eingabe, 
eine für die Ausgabe - bearbeitet werden können. Schließlich kann es auch 
noch notwendig sein, die Namen der Dateien nicht von der Kommandozeile 
zu empfangen, sondern erst während des Programmlaufs zu erhalten, sei es
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durch Benutzereingaben, sei es durch Berechnungen, die das Programm 

selbst anstellt. 

Für diese Anwendungsfälle stellt C andere Möglichkeiten der Ein-/Ausgabe 

bereit. Dazu muß man wissen, wie in C eine Kommunikation über andere 

Kanäle als den Standard-Ein- und Ausgabekanal erfolgen kann. 

Neben den beiden vom Betriebssystem verwalteten Kanälen kann sich ein 

C-Programm auch eigene Kanäle einrichten und diese mit Geräten (Bild- 
schirm, Tastatur, Drucker, vor allem aber: Dateien) verbinden. Zu diesem 

Zweck muß das Programm den Kanal bzw. die Kanäle eröffnen, über die 

es mit der Außenwelt in Verbindung treten will. 

Das Öffnen eines Kanals bedeutet, eine Verbindung zwischen dem Pro- 

gramm und einem externen Gerät oder einer Datei herzustellen. Außerdem 
wird mit dem Öffnen des Kanals dem Programm die Kanal-Identifikation 
mitgeteilt. Nur zum Öffnen des Kanals benötigt das Programm den Datei- 
namen. Von da ab werden alle Transaktionen, die den Kanal betreffen, 

über die Identifikation abgewickelt (wenn Ihnen das jetzt zu abstrakt er- 
scheint, dann lesen Sie einfach weiter; später wird Ihnen dann klarwerden, 
warum ich so allgemein von "Kanal" und "Kanalidentifikation" gesprochen 
habe). 

Bei den folgenden Ausführungen sollten Sie beachten, daß alles, was mit 
Ein- und Ausgabe zusammenhängt, strenggenommen nicht mehr zum 
Sprachumfang von C gehört. In der Sprache C gibt es keinerlei Anwei- 
sungen oder Operatoren, die mit Ein-/Ausgabe zu tun haben. Alle für die 

Ein-/Ausgabe nötigen Schritte werden vielmehr über Funktionen abge- 
wickelt, die in C geschrieben sind. Diese Funktionen sind in der Standard- 
Bibliothek enthalten und weitestgehend standardisiert. Der Compiler küm- 
mert sich also nicht im Geringsten um die Ein-/Ausgabe. Die Funktionen, 
die damit zusammenhängen, müssen stattdessen vom Linker aus der Biblio- 

thek geholt werden. 

Dies mag unnötig umständlich erscheinen. Tatsächlich gewinnt der Pro- 
grammierer dadurch jedoch an Flexibilität: denn wenn er mit den vorgefer- 
tigten Ein-/Ausgabe-Routinen aus der Bibliothek nicht zufrieden ist, dann 

kann er sich eben eigene - vielleicht bessere, vielleicht spezialisiertere - 

Funktionen schreiben. 

Die Bibliothek, in der die E-/A-Funktionen liegen, wird zwar "Standard"- 
Bibliothek genannt; doch als erfahrener Programmierer sollten Sıe allen Be- 
hauptungen, etwas sei standardisiert, mit vorsichtigem Mißtrauen begegnen. 
Die folgenden Ausführungen über die Standard-Bibliothek werden mit 
sroßer Wahrscheinlichkeit auch für Ihr C-System zutreffen. Aber es ist
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möglich, daß in untergeordneten Details kleine Abweichungen bestehen; 

wenn also etwas nieht so funktioniert, wie es sollte, ziehen Sie am besten 

Ihr Handbuch zu Rate. 

Kanäle können in C entweder gepuffert oder ungepuffert sein. Die Bedeu- 

tung dieser Ausdrücke wird später noch klar werden. Fürs erste wenden 
wir uns den gepufferten Kanälen zu. 

Ein gepufferter Kanal ist in C eine Struktur; diese ist in der Include-Datei 
"stdio.h" definiert und trägt den Namen FILE (muß großgeschrieben wer- 

den!). Der Name deutet schon darauf hin, daß die gepufferte Ein-/Ausgabe 
hauptsächlich für die Kommunikation mit Dateien gedacht ist ("Datei" heißt 
englisch "file"). Die Identifikation eines gepufferten Kanals ist ein Zeiger 
auf eine FILE-Struktur, unter C-Programmieren kurz und salopp "FILE- 

Pointer" genannt. Auch für den Ausdruck "gepufferte Ein-/Ausgabe" ist 
noch ein anderer Begriff im Umlauf: man nennt einen gepufferten Ein- 
gabekanal kurz einen "Eingabe-Strom" ("input stream") und einen gepuffer- 
ten Ausgabekanal entsprechend eine "Ausgabe-Strom" ("output stream"). 

Das Öffnen einer Datei (sprich: die Verknüpfung eines Dateinamens mit 

einem FILE-Pointer) übernimmt die Funktion fopen. Die folgenden An- 
weisungen zeigen, wie eine Datei EINGABE.DAT geöffnet wird: 

FILE *ein, *fopen(); 

ein = fopen( "EINGABE .DAT","r"); 

Die Funktion fopen hat zwei Argumente und beide sind Strings. Das erste 
Argument ist der Name der zu Öffnenden Datei. Das zweite Argument ist 
der Modus, in dem die Datei geöffnet werden soll. Das ATARI-C kennt 
hier drei Möglichkeiten: "r", "w" und "a". Die Bedeutung dieser Optionen: 

"r": die Datei wird zum Lesen geöffnet 
"w": die Datei wird zum Schreiben geöffnet 
"a" die Datei wird zum Anfügen geöffnet. 

tit Öffnen Sie eine Datei mit dem Modus "r", dann ist der zugehörige Kanal 
unidirektional: Sie könne nur daraus Lesen, aber nichts darauf schreiben. 

Die Modi "w" und "a" eröffnen bidirektionale Kanäle. Falls eine Datei des 

angegebenen Namens noch nicht existiert, wird sie im Modus "w" kreiert. 
Existiert sie bereits, dann können mit "a" neue Daten an das Ende der Datei
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(also hinter bereits in der Datei enthaltene andere Daten) geschrieben wer- 
den. Im Modus "w" wird mit dem Schreiben am Dateianfang begonnen; das 
bedeutet, daß eventuell bereits vorhandenen Daten durch Öffnen im Modus 

"r" verlorengehen. (Über die Modi und ihre verschiedenen Auswirkungen 
herrscht bei unterschiedlichen Compilern nicht immer Einigkeit; also im 
Handbuch nachschlagen). 

7.3.1 Zeichenweise gepufferte Ein-/Ausgabe: getc und putc. 

Nun möchten Sie natürlich auch wissen, wie man mit einem gepufferten 
Kanal kommuniziert, wie man also Zeichen von ihm empfängt oder an ıhn 

schreibt. Dazu gibt es zwei Funktionen, die Ihnen vermutlich bekannt vor- 
kommen werden: getc und putc. Beide lesen bzw. schreiben zeichenweise 

von einem Kanal. Dies ist jedoch nicht einer der vom Betriebssystem ver- 

walteten Standard-Kanäle, sondern ein im Programm eröffneter Ein-/Aus- 

gabe-Strom. Um zu wissen, welcher Strom gemeint ist, benötigen die 
Funktionen also den FILE-Pointer (denn dieser identifiziert den Kanal) als 
zusätzliches Argument. 

Das kleine Programm 7.2 kopiert die Datei EIN.DAT in die Datei AUS. 
DAT. Als erstes werden im Programm zwei Kanäle geöffnet: einer zur Ein- 
gabe, einer zur Ausgabe. Das geschieht mit fopen, welches als Wert einen 
FILE-Pointer zurückgibt (die Kanal-Identifikation), den sich das Pro- 
gramm in passenden Pointer-Variablen aufhebt, weil es mit diesen Kanälen 

ja noch arbeiten will. 

Prog. 7.2: Datei kopieren mit gepufferter Ein-/ Ausgabe
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Sind die Kanäle offen, kann das Kopieren beginnen. getc liest ein Zeichen 

von dem Kanal, der sein Argument ist und gibt es zurück. Bei Erreichen 
des Datei-Endes signalisiert gets diese durch den (in "stdio.h" definierten) 
Wert EOF; da dieser Wert kein Zeichen iat, darf die Variable c auch nicht 
als char deklariert werden. Meist speichert man die Werte von getc in einer 
int-Variablen; so auch hier. 

Das gelesene Zeichen wird von putc auf den Ausgabekanal ausgegeben. Da- 
zu muß die Funktion neben dem Ausgabezeichen (als erstes Argument) 
auch noch den FILE-Pointer des Ausgabe-Stroms als zweites Argument er- 

halten. 

Nach Beendigung der Kopierschleife dürfen Sie das Programm nicht ein- 
fach verlassen. Gepufferte Kanäle müssen nämlich - mit der Funktion 

fclose - geschlossen werden. Warum? Weil sie gepuffert sind! 

Denken Sie daran, daß man gepufferte Ein-/Ausgabe meist für das Arbei- 

ten mit Disketten (oder Festplatten, so man hat) benutzt. Die Ein-/Ausgabe 

von Disketten mag dem Menschen zwar schnell erscheinen; aber für den 
Prozessor dauert sie eine Ewigkeit. Disketten sind mechanische Speicher- 
geräte und die Mechanik kann mit der Elektronik nicht mithalten. Denn 
was passiert, wenn der Computer ein Zeichen von der Diskette lesen will? 

Vereinfacht gesagt folgendes: die Steuer-Elektronik des Laufwerks sagt 
dem Lese-/Schreibkopf (den Sie sich ähnlich wie den Tonarm eines Plat- 
tenspielers vorstellen Können), an welcher Position auf der Diskette das ge- 

wünschte Zeichen zu finden ist; dann wird der Tonarm dorthin bewegt, 
anschließend wartet die Steuerelektronik, bis das Zeichen sich unter dem 
Tonarm befindet (die Diskette rotiert ja), liest es und gibt es an den Pro- 
zessor weiter. 

In der Zwischenzeit vergeht der Prozessor schier vor Langeweile! Seine Ar- 
beitsgeschwindigkeit ist ungleich größer als das Tempo, mit dem die Dis- 
kette arbeitet. Würde für jedes vom Prozessor gewünschte Zeichen ein 
eigener Diskettenzugriff in der oben geschilderten Manier erfolgen, dann 
wäre der Computer zu nichts mehr zu gebrauchen. 

Darum werden die Informationen gepuffert. Die Funktion zur gepufferten 
Ein-/Ausgabe legen zwischen den Prozessor mit seinem Informationsbe- 
dürfnis und der langsamen Diskette eine Zwischenstation zur Informations- 
vermittlung ein. Irgendwo im Arbeitsspeicher reservieren sie sich einen 
größeren Speicherbereich für eigene Zwecke. Wenn nun der Rechner ein 
Zeichen von der Diskette haben will, dann lesen diese Funktionen einen 

ganzen Schwung Daten aus der Umgebung des gewünschten Zeichens von 
der Diskette und legen sie zur Zwischenspeicherung in den Puffer. Darun- 

ter befindet sich natürlich auch das gewünschte Zeichen, das an den Com-
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puter und somit an Ihr Programm aus dem Puffer weitergereicht wird. 
Beim nächsten Zeichen, das Ihr Programm wünscht, ist die Wahrscheinlich- 
keit sehr groß, daß es beim letzten Lesevorgang bereits mit eingelesen 
wurde und sich daher schon im Puffer befindet. Ein Zugriff auf die Dis- 
kette entfällt; das Zeichen muß lediglich vom Puffer an das Programm 
weitergeleitet werden. Solange der Computer also die Daten in der Rei- 
henfolge wünscht, wie Sie auf der Diskette gespeichert sind, bietet die ge- 
pufferte Eingabe einen beträchtlichen Zeitgewinn gegenüber dem direkten 
Disketten-Zugriffe. Der Fachmann sagt: durch die Pufferung wird die 
Anzahl der Disketten-Zugriffe minimiert. 

Die gepufferte Ausgabe funktioniert ähnlich. Zeichen, die Ihr Programm 
ausgibt, werden nicht sofort auf die Diskette geschrieben, sondern erst in 
einem Puffer aufgesammelt. Erst wenn dieser Puffer voll ist, wird er als 
Ganzes auf die Diskette geschrieben und ist somit für den Empfang neuer 
Zeichen bereit. Dieses "Auf-die-Diskette-Schreiben" (auch "rausschreiben" 
genannt) eines Puffers bezeichnet man mit dem englischen Fachausdruck 
"to flush a buffer". 

Es gibt also Lese- und Schreibpuffer. Lese-Puffer werden gefüllt, wenn 

vom Programm ein Zeichen gewünscht wird, das sie nicht enthalten. 
Schreib-Puffer werden rausgeschrieben, wenn sie voll sind. | 

Was aber, wenn das Kopierprogramm 7.2. fertig ist, ehe sein Schreibpuffer 

voll ist? Die Funktion putc, die die Pufferverwaltung übernimmt, hat noch 
keinen Anlaß, den Puffer rauszuschreiben. Würden jetzt die beiden fclose- 

Anweisungen fehlen, dann würde das Programm abbrechen, ohne daß der 

Ausgabepuffer in die Ausgabedatei geleert wird: die Datei ist unvollständig! 

Dieses Leeren der Puffer (sowie das korrekte Aktualisieren des Disketten- 
Inhaltsverzeichnisses) übernimmt die fclose-Funktion. Einige Compiler 
führen beim Verlassen eines Programms automatisch für jeden geöffneten 

Kanal ein fclose durch; ebenso ist es üblich, daß auch exit offene Kanäle 

schließt. Aber Sie sollten sich darauf nicht unbedingt verlassen und besser 

selbst dafür sorgen, daß Ihre Kanäle geschlossen werden. 

Sie sehen: mit einem Kanal ist eine Vielzahl an Informationen verknüpft. 

Die gepufferten Ein-/Ausgabe-Funktionen müssen unter anderem wissen, 

wo der Puffer für die Zwischenspeicherung zu finden ist, wie groß er ist, 
wieviele Zeichen bereits in ihn geschrieben wurden etc. All diese Informa- 
tionen sind in der FILE-Struktur enthalten. Diese können Sie sich in der 
Datei "stdio.h" ansehen; nach den eben erfolgten Ausführungen sollten Sie 
ihren Aufbau in groben Zügen verstehen können.



258 Verkehr mit der Außenwelt - Dateien 

Beim Öffnen von Kanälen können Fehler auftreten. Eine Datei zum Lesen 

zu eröffenen, die nicht existiert oder eine Datei auf einer Diskette zu kre- 

ieren, auf der kein Platz ist - das sind Fehlersituationen, die ein Öffnen 

des Kanals unmöglich machen. Die fopen-Funktion muß diese dem Pro- 

gramm mitteilen, damit es angemessen reagieren kann. Sie tut es, indem sie 

anstelle eines FILE-Pointers den Wert 0 zurückgibt. Im Programm 7.3 se- 

hen Sie eine Funktion f open, die das Öffnen von Dateien mit Fehler- 

überprüfung übernimmt. 

Prog. 7.3: Öffnen von Kanälen mit Fehlerüberprüfung. 

Diese Funktion können Sie einsetzen, um ein Programm zu schreiben, das 

eine Datei kopiert und den Namen der Quell- und Zieldatei als Argument 
von der Kommandozeile erhält: 

main(argc, argv) 

int argc; 

char **argv; 

{ FILE *in, *out, *f_open(); 
int c; 

if (argce < 3) 

{  puts("\nBitte zwei Dateien angeben!"); 

exit); 

> 

= f open(*t++argv,"r"); 
out = f_open(*++argv,"w"); 

while ((c = getc(in)) != EOF) 

putc(c,out); 

fclose(in); 

fclose(out);
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Kanäle können nicht nur zu Dateien eröffnet werden. Auch andere Ein-/ 
Ausgabe-Geräte sind als erster Parameter für open (und entsprechend für 
f_open) zulässig. Über die verwendete Bezeichnungen müssen Sie sich je- 
doch im Handbuch versichern (bei der Beschreibung der fopen-Funktion). 
Üblich sind folgende Namen: 

CON: für den Bildschirm 

LST: oder PRN: für den Drucker 

AUX: für die serielle Schnittstelle 

Wenn Sie das letzte kleine Programm mit dem Namen fcpy versehen haben, 

dann können Sie mit dem Aufruf: 

fcpy fcpy.c CON: 

die Quelle des Programms am Bildschirm anzeigen lassen. 

7.3.2 Andere gepufferte Ein-/Ausgabe-Funktionen 

Nicht nur die Funktionen getchar und putchar haben in getc und putc ein 
gepuffertes Aquivalent. Auch andere Ein-/Ausgabe-Funktionen wirken 

nicht nur auf die Standard-Kanäle, sondern in einer gepufferten Version 
auf beliebige andere Kanäle. Da hier die Konventionen bei den Compilern 

unterschiedlich sind, werde ich auf die einzelnen Funktionen nicht näher 

eingehen, sondern lediglich ihre Namen erwähnen; Sie müssen die Einzel- 
heiten dann im Handbuch nachschlagen. 

Zum Schreiben und Lesen von Strings gıbt es neben puts und gets auch die 
gepufferten Varianten fgets und fputs. Für die formatierte Ausgabe steht 

neben printf auch fprintf zur Verfügung. Auch scanf, die formatierte Ein- 
gabe-Funktion, hat ein gepuffertes Äquivalent in fscanf. All diese Funk- 
tionen arbeiten mit einem FILE-Pointer als zusätzlichem Parameter. 

Will man außer Zeichen und Strings auch andere Größen in der Ein-/Aus- 
gabe verarbeiten oder ist man an einer Transaktion mit den Kanälen inter- 
essiert, die in größeren Einheiten vor sich geht, dann benutzt man die bei- 
den Funktionen fread und fwrite. 

Für die Eingabe dient fread; es hat 4 Parameter: 

1. einen Puffer, in dem die gelesenen Daten abgelegt werden, 

2. die Größe der zu übertragenden Einheiten, 
3. die Anzahl der zu übertragenden Einheiten und 
4. einen FILE-Pointer, der den zu lesenden Kanal bestimmt.
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Der Puffer ist ein im Programm deklarierter Puffer und darf nicht mit dem 

internen Puffer verwechselt werden, den alle gepufferten Ein-/Ausgabe- 
Funktionen benutzen und selbsttätig verwalten. 

Der Puffer, den Sie als erstes Argument übergeben, kann ein Zeichen- 

Array sein, wenn Sie die Übertragung von Zeichen wünschen. In diesem 

Fall würde man die Funktion fread so einsetzten: 

char buff [512]; 
file *in, *f_open(); 
int nread; 

in = f_open("EIN.DAT","r"); 

nread = fread(buff, sizeof(char), sizeof(buff), in); 

Damit wird mit einer einzigen Anweisung der gesamte Puffer buff gefüllt 

- vorausgesetzt, die Datei EIN.DAT enthält genügend Daten (in diesem Fall 

mindestens 512 Bytes). Um herauszufinden, wieviele Zeichen tatsächlich 
übertragen wurden, gibt fread die Anzahl der übertragenen Einheiten zu- 
rück (die im Programmfragment in der Variablen nread vermerkt wird). 
Enthält die Datei keine Daten mehr, dann ist der Wert von fread gleich 0, 

so daß fread sıch gut zur Integration in die Kontrollbedingung von Schlei- 
fen eignet. 

Es ist aber ebensogut möglich, einen Integer-Array zu füllen; angenommen, 

die Datei EIN.DAT enthält einen Array mit Integers; dann kann man diese 
Integers aus der Datei wie folgt in einen programminternen Array trans- 

portieren: 

int iarr [512]; 
file *in, *f_open(); 
int nread; 

in = f_open("EIN.DAT","r"); | 

nread = fread(iarr, sizeof(int), sizeof(iarr), in); 

Je nachdem, welche Daten eine Datei enthält, können mit fread nicht nur 

einfache Datentypen, sondern z.B. auch Strukturen übertragen werden.
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Dazu muß man fread als ersten Parameter einen Struktur-Array übergeben, 

als zweiten die Größe der Strukturen im Array und als dritten die Anzahl 

der zu lesenden Strukturen. 

Da erhebt sich die Frage, wie man diese Strukturen aus dem Programm in 

eine Datei schreiben kann. Dazu dient die Komplementär-Funktion von 

fread, die den Namen fwrite trägt. Sie hat ebenfalls vier Parameter, die 

dieselbe Bedeutung wie bei fread haben, nur daß in ihrem Fall Daten aus 

dem Puffer (erster Parameter) in die Datei übertragen werden, deren 

FILE-Pointer letzter Parameter von fwrite ist. Wieviele Daten zu übertragen 

sind, gibt wieder der dritte Parameter an. 

Das Programm 7.4 zeigt eine weitere Variante der Kopier-Routine, die mit 

fread und fwrite arbeitet. Wie bereits erwähnt, hat fread den Wert 0, wenn 

keine Daten mehr gelesen werden konnten und wurde deswegen gleich zur 

Kontrollbedingung der while-Schleife gemacht. 

Prog. 7.4: Kopieren von Dateien mit fread und fwrite



262 Verkehr mit der Außenwelt - Dateien 

Da fwrite als Wert die Anzahl der geschriebenen Zeichen zurückgibt, ist es 

möglich, den Erfolg des Schreibvorgangs zu überprüfen. In der Kopier- 

schleife wird die Anzahl gelesener mit der Anzahl geschriebener Zeichen 

verglichen und bei Unstimmigkeiten die Schleife mit break verlassen. | 

7.4 Ungepufferte Ein-/Ausgabe 

Neben der gepufferten Ein-/Ausgabe gibt es in C auch die Möglichkeit, 

Daten ohne Zwischenschaltung eines Puffers zwischen Dateien (oder ande- 

ren Geräten) und dem Programm zu übertragen. Dazu müssen Kanäle für 

die ungepufferte Ein-/Ausgabe geöffnet werden. Dies besorgt die Funktion 

open. Sie erhält - ähnlich wie fopen - als Argumente den Dateinamen und 

eine Angabe über den Modus, in dem die Datei geöffnet werden soll. Als 

Wert gibt sie eine Kanal-Identifikation zurück, die jedoch nicht so auf- 

wendig gestaltet ist wie bei der gepufferten Ein-/Ausgabe. Da für die un- 

gepufferte Kommunikation - wie der Name schon sagt - keine Puffer und 

damit zusammenhängende Verwaltungsaufgaben benötigt werden, reicht 

eine einfache Kanalnummer. Wert von open ist daher eine Integer, die die 

Kanalnummer (auch "file handle" genannt) darstellt. Drei ungepufferte 

Kanäle sind übrigens in jedem C-Programm schon bei Programmbeginn 

geöffnet und mit Kanal-Nummern versehen. Es sind dies 

der Standard-Eingabe-Kanal mit Nummer 0 
der Standard-Ausgabe-Kanal mit Nummer | 
der Standard-Fehler-Kanal mit Nummer 2 

Bei jedem besseren C-Compiler sind in "stdio.h" für diese drei Kanäle be- 

reits Namen vereinbart, und zwar 

stdin für Kanal 0 

stdout für Kanal 1 

stderr für Kanal 2 

Die ersten beiden Kanäle sind alte Bekannte; sie sind Ihnen bereits im Ka- 

pitel über die Umlenkung der Ein-/Ausgabe begegnet. Der dritte Kanal ist 
neu und hat folgende Berechtigung: stdout kann - ebenso wie stdin - be- 
kanntlich umgelenkt werden. Üblicherweise führt stdout zum Bildschirm, 
aber ebensogut kann Dateiausgabe oder Ausgabe auf einen Drucker durch 
Umlenkung damit bewirkt werden. Tritt nun ein Fehler auf, den Sie in 
Ihrem Programm mit einer Fehlermeldung abfangen und würde die Fehler- 

meldung über stdout ausgegeben, dann kann es sein, daß der Benutzer sie 

niemals zu Gesicht bekommt.
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Stellen Sie sich folgendes Szenario vor: Ihr Programm legt sämtliche Ausga- 

ben auf den Kanal stdout - also normalerweise auf den Bildschirm. Nun 

wird stdout vom Benutzer in eine Diskettendatei umgelenkt. Aber die Dis- 

kette mit dieser Datei ist voll; beim Schreiben tritt deswegen ein Fehler 
auf. Ihr Programm registriert diesen Fehler zwar und will ihn ausgeben - 
doch die Fehlerausgabe erfolgt ebenfalls in die volle Datei, was natürlich 

nicht geht! Die Folge: das Programm stürzt ab und Sie wissen nicht, warum. 

Deshalb reserviert C noch einen dritten Kanal stderr, der für die Fehler- 

ausgabe vorgesehen ist und der stets zum Bildschirm führt. stderr kann 

auch nicht umgelenkt werden, so daß: garantiert ist, daß Fehlermeldungen 

stets zu sehen sind. 

Bleibt noch zu klären, wie man ungepufferte Kanäle öffnet und wie man 
Daten auf ihnen liest bzw. schreibt. 

Zum Öffnen gibt es eine Funktion open mit zwei Parametern. Der erste ist 
der Dateiname (ein String), der zweite ist - anders als bei fopen - eine In- 
teger, die den Öffnungs-Modus angibt. Die Angabe zum Öffnungs-Modus 
sind sehr compilerabhängig, weswegen Sie die folgenden Ausführungen auf 
jeden Fall mit Ihrem Handbuch abgleichen sollten. Die hier gemachten An- 

gaben beziehen sich wie üblich auf das ATARI-C. Die Bedeutung der 
Werte für den zweiten Parameter: 

0 Datei zum Lesen öffnen 

1 Datei zum Schreiben öffnen 

2 Datei zum Anfügen Öffnen. 

Unglücklicherweise setzt das open des ATARI-C bei allen drei Modi vor- 
aus, daß die zu 6ffnende Datei bereits vorhanden ist. Deswegen habe ich 

eine eigene Funktion d_open definiert, die als zweiten Parameter auch den 
Wert 3 akzeptiert und die in diesem Fall eine Datei mit dem gewünschten 
Namen kreiert. Sie bedient sich dazu der Funktion creatb aus der Standard- 
Bibliothek (die in Ihrem System eventuell auch den Namen creat trägt; 
Handbuch!), die ebenso wie open als Wert eine Kanalnummer zurückgibt 
oder -1, wenn das Kreieren nicht möglich war. Zum Öffnen bereits beste- 
hender Dateien verwende ich nicht das beschrieben open, sondern eine 
Variante mit dem Namen openb, die die Datei als Binär-Datei eröffnet und 
so auch das Kopieren von Programmen erlaubt. 

Das Programm 7.5 führt eine weitere Variante der Datei-Kopier-Routine 
vor, die jedoch mit ungepufferter Ein-Ausgabe arbeitet. Diesem Beispiel 
können Sie auch entnehmen, welche Funktionen in C die Ein-/Ausgabe bei 

ungepufferten Kanälen übernehmen.
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Prog. 7.5: Datei kopieren mit read und write
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Die Transaktion mit den ungepufferten Kanälen wird mit read und write 
abgewickelt. Diese Funktionen übertragen stets byteweise und benötigen 
daher nur drei Parameter: die Kanalnummer, die Anzahl zu übertragender 
Bytes und den internen Programmpuffer (einen Zeichen-Array), aus dem 
die Daten kommen bzw. in den sie geschrieben werden sollen. Als Kanal- 

nummer sind neben selbstgeöffneten Kanälen selbstverständlich auch 0, 1 
und 2 bzw. stdin, stdout und stderr möglich. Bedenken Sie jedoch: bei stdin 
und stdout gehen Sie das Risiko einer Umlenkung durch den Benutzer ein. 

Die ungepufferte Ein-Ausgabe kann durchaus gegenüber der gepufferten 

Ein-/Ausgabe Geschwindigkeitsvorteile bringen, wenn die Puffer-Größe 
geschickt gewählt wird und stets ganze Puffer übertragen werden. Die in 
den Beispielprogrammen vereinbarte Puffer-Größe (Konstante BUFSIZ) 
entspricht auf dem ATARI einem Diskettensektor und ermöglicht somit 

sehr effizienten Zugriff. 

7.5 Random-Zugriff auf Dateien 

Über die Techniken der Dateiverwaltung müßte eigentlich ein eigenes Buch 
geschrieben werden. Ähnlich wie das Thema "Datenstrukturen" ist auch das 
Gebiet der Dateiverwaltung schier unerschöpflich und kann in diesem Buch 
nur an der Oberfläche angekratzt werden. Deshalb gebe ich mehr der Voll- 
ständigkeit wegen an, wie man in C im Random-Zugriff mit Dateien ar- 
beitet. Sinnvolle Beispiele würden den Rahmen dieses Buchs sprengen. 

In C erlauben zwei Funktionen den direkten Zugriff auf jedes einzelne 
Byte in einer Datei: eine für gepufferte und die andere für ungepufferte 
Kanäle. Die Funktionen heißen /seek und fseek; letztere ist die gepufferte 

Version. 

Beide Funktionen haben drei Parameter: 

1. eine Kanalidentifikation, 

2. eine Byte-Position, 
3. eine Modus-Angabe. 

Bei /seek muß die Kanal-Identifikation eine Kanalnummer ("file handle") 
sein; fseek erwartet hier einen FILE-Pointer. Die beiden restlichen Para- 
meter haben bei beiden Funktionen gleiche Bedeutung. 

Um die Funktionsweise des Random-Zugriffs zu verstehen, können Sie 
sich vorstellen, daß alle Ein-/Ausgabe-Funktionen von C für die Arbeit 
mit Disketten-Dateien einen Zeiger benutzen, der auf die Dateiposition 

weist, an der die nächste Operation stattfinden soll. Beim Öffnen einer
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Datei wird dieser Zeiger auf den Dateianfang gesetzt, es sei denn, die Datei 

wird zum Anhängen von Daten (Modus "a" bei fopen bzw. 2 bei open) ge- 

öffnet: dann wird der Zeiger hinter das letzte Byte ın der Datei gesetzt. 

Jedesmal, wenn Daten aus einer Datei gelesen oder in sie geschrieben wer- 

den, wird dieser Zeiger um die Anzahl der gelesenen Bytes weiterbewegt. 

Auf diese Art realisieren die E-/A-Funktionen die sequentielle Verarbei- 

tung von Dateien. 

Mit den Funktionen /seek und fseek ist es jedoch möglich, diesen Datei- 
Zeiger an jede gewünschte Stelle innerhalb einer Datei zu verschieben und 
so Abweichungen von der normalen sequentiellen Verarbeitungsweise zu 
erreichen. Nachfolgende E-/A-Operationen arbeiten dann ab dieser Stelle, 
so daß ein Random-Zugriff auf die Dateien möglich wird. 

Der zweite Parameter von /seek und fseek muß eine Jong-Integer sein und 

gibt die Position des gewünschten Bytes an. Der dritte Parameter bestimmt, 
von wo ab die Angabe im zweiten Parameter gerechnet werden soll. Fir 

den dritten Parameter sind folgende Werte zulässig: 

Wert Bedeutung 
0 Positioniere vom Dateianfang 

1 Positioniere ab der aktuellen Position 

2 Positioniere vom Dateiende 

Hier einige Beispiele: 

lseekCout, (long) 20, 0); 

damit wird in der Datei, die durch die Kanalnummer out bezeichnet ist, 
der Dateizeiger auf das zwanzigste Byte gesetzt. Wird unmittelbar daran die 
Anweisung | 

lseek(out, (long) 25, 1); 

durchgeführt, dann steht der Dateizeiger jetzt an Position 45 in der Datei, 
denn beim Modus | wird die Positionsangabe ab der aktuellen Position des 

Dateizeigers gerechnet. Um den Dateizeiger an das Ende der Datei zu be- 
wegen, schreiben Sie 

lseek(out, (long) 0, 2); 

Mit der Anweisung 

lseek(out, (long) -34, 2); 

bekommen Sie den Dateizeiger 34 Bytes vor das Ende der Datei gesetzt; es 
sind also auch negative Positionier-Werte erlaubt.
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Nach dem Positionieren mit /seek oder fseek können Sie mit den passenden 

E-/A-Funktionen (da kennen Sie ja jetzt schon eine ganze Menge: read, 
write, fread, fwrite, getc, putc, gets, puts) auf die Daten zugreifen. Aber 

Vorsicht! Jede E-/A-Operation modifiziert ihrerseits den Dateizeiger, 
schiebt ihn um die Anzahl der gelesenen oder geschriebenen Zeichen weiter 
nach hinten. Deshalb muß bei relativer Positionierung (Modus 2) mit Um- 

sicht zu Werke gegangen werden. 

Übrigens ist es auch möglich, sich die aktuelle Position des Dateizeigers 

anzeigen zu lassen. Mit ftell bzw. tell erhalten Sie diesen Wert (als /ong- 
Integer; bei der Deklaration beachten!) im ersten Fall für gepufferte, im 

zweiten für ungepufferte Kanäle. 

7.6 Zum Ausklang: Kopieren mit Namensmuster 

Zum Ausklang des ersten Teils und als Überleitung zum zweiten Teil 
möchte ich Ihnen die Programmierung einer Utility zeigen, die nicht nur 
nützlich für die praktische Arbeit ist, sondern auch einige Routinen von 

TOS (dem Betriebssystem des ATARI) benutzt. 

Ich ziehe es für die Programmierung unter C vor, nicht mit der grafischen 
Benutzeroberfläche von GEM zu arbeiten, sondern unter TOS den gewohn- 

ten kommandoorientierten Dialog mit dem Rechner zu führen. Dies geht, 

indem die zum Entwicklungssystem gehörende Routine COMMAND.PRG 
ausgeführt wird. Dabei handelt es sich um einen Kommandointerpreter, der 
- jedenfalls nach Beschreibung - ähnlich wie der Kommando-Interpreter 
unter MS-DOS (dem Betriebssystem des IBM PC und seiner vielen nahen 
und fernen Verwandten) funktioniert. 

Er tut dies jedoch leider nur in begrenztem Umfang. Unter MS-DOS. gibt 
es ein Kommando COPY, mit dem eine oder mehrere Dateien kopiert wer- 

den können. Die Syntax des Kommandos ist wie folgt: 

COPY <quelle> [<ziel>] 

Um z.B. die Datei OTTO.TXT vom Laufwerk A auf das Laufwerk B zu 

kopieren, schreibt man: 

COPY A:OTTO.TXT B: 

Beachten Sie, daß die Laufwerks-Angabe mit einem Doppelpunkt abge- 

schlossen wird. Wenn Laufwerk A ohnehin das aktuelle Laufwerk ist, dann 

reicht auch dieses aus: 

COPY OTTO.TXT B:
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Nun werden Sie einwenden, daß sich dies ebenso gut, ja sogar bequemer 
mit dem Kopierverfahren von GEM (Datei-Symbol mit MAUS anwählen 
und einfach Verschieben) erledigen läßt. Doch warten Sie ab: 

COPY OTTO.TXT B:EMIL.DAT 

Dies kopiert die Datei OTTO.TXT nicht nur auf das Laufwerk B, sondern 

gibt der Kopie auch einen neuen Namen, nämlich EMIL.DAT. Das können 
Sie unter GEM nur in 2 Schritten bewerkstelligen: erst mit der Maus 

kopieren, dann die Kopie anklicken und umbenennen. Das ist schon 
wesentlich umständlicher, da neben der Mausoperation ja doch noch ein 

Tastatur-Dialog nötig ist. | 

Es gibt jedoch auch diese Möglichkeit: 

COPY ??DAT.* B: 

Damit werden alle Dateien vom Laufwerk A nach B kopiert, deren Namen 
auf DAT endet, eine beliebige Extension besitzt und mit zwei beliebigen 
Buchstaben beginnt. Wenn auf Laufwerk A die Dateien 

' ABDAT.TXT 

XYDAT.C 

MYDAT .ASM 

A2DAT .PRG 

enthalten sind, dann werden all diese Dateien in einem Schwung mit nur 
einem Kommando kopiert. Unter GEM dürften Sie da mit der Maus unter 

Umständen ganz schön herumfummeln; denn GEM erlaubt Ihnen zwar, 
Dateien, die sich grafisch nebeneinander gruppieren lassen, mit dem 

Gummiband-Cursor gemeinsam zu kopieren. Aber zum Zusammengruppie- 

ren gibt’s unter GEM nur das Sortieren: nach Namen und nach Extension. 

Und da streuen die obigen Dateinamen ganz schön auseinander. 

Kurz und gut: COPY mit Wildcards ist oftmals praktischer als Kopieren mit 
der Maus. Wildcards (oder zu deutsch: Jokerzeichen) nennt man übrigens 
die Zeichen ? und *. Diese sind Platzhalter; ? für genau ein Zeichen, * für 
beliebig viele Zeichen. 

"Was verschwendet er denn bloß so viele Worte auf das COPY, wenn es 

unter TOS ’eh da ist?", werden Sie jetzt denken. Ganz einfach: weil es 

nicht funktioniert. Jedenfalls nicht in der Version, die ich zur Verfügung 
hatte. Vielleicht hat sich das ja geändert, wenn Sie dieses Buch lesen. Aber 

vielleicht möchten Sie gar nicht unter TOS arbeiten, die Vorteile eines 
solchen COPY-Kommandos aber auch unter GEM genießen. Dann brau- 

chen Sie nur das folgende Beispielprogramm abzutippen. Geben Sie Ihm je- 
doch nicht den Namen COPY (weil sonst TOS durcheinanderkommt und es
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mit seinem eigenen, eingebauten, aber nicht funktionierenden COPY ver- 
wechselt). 

Das Kopieren von Einzeldateien ist für Sie jetzt ja kein Problem mehr. 
Mittlerweile haben Sie die Auswahl zwischen drei Routinen, die Dateien 
kopieren (zeichenweise, gepuffert und ungepuffert). Das eigentliche Pro- 
blem sind die Wildcards. 

Glücklicherweise ist unter TOS alles halb so schlimm. Das Betriebssystem 
des ATARI stellt nämlich zwei sehr komfortable Funktionen zur Verfü- 

gung, die das Auffinden von Dateien auf einer Diskette, die auf ein 
Namensmuster passen, sehr erleichtern. Beide Funktionen durchsuchen dazu 

das Inhaltsverzeichnis der Diskette nach passenden Dateien. 

Die erste Funktion (hier Fsfirst genannt) erhält ein Namensmuster als Ar- 

gument (also einen Dateinamen, der eventuell eines oder mehrere Joker- 
zeichen enthält) und liefert als Ergebnis den Namen der ersten Datei auf 
der Diskette ab, die auf dieses Muster paßt. Die nächste Funktion (Fsnext) 

benötigt kein Argument; sie wird lediglich aufgerufen und liefert dann die 
nächste passende Datei ab. Fsnext - obwohl argumentlos - weiß, nach 
welchen Dateien es suchen soll, weil es Informationen benutzt, die von Fs- 

first hinterlassen wurden. Es ist also unbedingt notwendig, die beiden 
Funktionen in der beschriebenen Reihenfolge aufzurufen. 

Der Platz, an dem Fsfirst seine Botschaft an Fsnext hinterläßt ist übrigens 
derselbe, an dem es auch die gefundene Datei zurückgibt. Fsfirst und Fs- 
next kommunizieren miteinander und mit aufrufenden Funktionen nicht 
über Argumente und Parameter, sondern über einen Informations-Block, 

einer Struktur mit Namen DTA (Abkürzung für "Disk Transfer Address"), 

deren Deklaration Sie zu Beginn des Programms 7.6 sehen können. Dazu 

müssen beide Funktionen jedoch erfahren, wo sie diesen Informationsblock 
finden können; für diesen Zweck braucht’s eine dritte Funktion Fsetdta, 
die die Adresse der DTA-Struktur beiden Funktionen bekanntmacht. 

Das Programm 7.6 realisiert eine Funktion step, die ein Namensmuster als 
erstes Argument (Parameter muster) erhält und bei jedem Aufruf die näch- 
ste auf das Muster passende Datei in einen Argument-Puffer (Parameter 
buff) kopiert, die auf das Muster paßt - wenn sich eine finden läßt. Wenn 
nicht, wird der Wert 0 zurückgegeben. Das Hauptprogramm zeigt, wie man 

step benutzen kann, um sich alle auf der Diskette enthalten Dateien anzu- 
sehen, die auf ein Namensmuster (als Argument von der Kommandozeile 

eingegeben) passen. Das Programm funktioniert also genauso wie das TOS- 
Kommando DIR!
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Prog. 7.6: Durchsuchen des Inhaltsverzeichnisses einer Diskette.



Verkehr mit der Außenwelt - Dateien 271 

Der Datenblock für den Informationsaustausch (die DTA) ist ein 41 Byte 
langer Bereich, bei dem die ersten 30 Bytes für unsere Zwecke nicht inter- 

essieren (daher auch der etwas despektierliche Name für diese Komponen- 
te). Daran schließt sich ein String mit dem gefundenen Dateinamen an. Fs- 
first und Fsnext sind beide so freundlich, auch das abschließende Null- 

Byte an den Namen anzuhängen: ganz so, wie’s C mag. 

Natürlich findet sich in der DTA nur dann ein Name, wenn auf der Dis- 

kette (genauer: im Inhaltsverzeichnis) auch ein Namens-Eintrag steht, der 
auf das Muster paßt. Fsfirst und Fsnext signalisieren ihren Erfolg, indem 
sie den Wert 0 zurückgeben (das ist nicht so ganz die feine C-Art); andere 
Werte signalisieren eine Fehlanzeige. Für das seltsame Verhalten dieser 
Funktionen (0 bedeutet Erfolg, Ergebnisse werden nicht als Werte zurück- 
gegeben, sondern über globale Variable) bin ich nicht verantwortlich; sie 

sind Teil des Betriebssystems und das haben die Jungs von Digital Research 
ihrem Schöpfer gegenüber zu vertreten... Um diese Funktionen benutzen zu 
können, müssen Sie lediglich in Ihrer Bibliothek eine Funktion gemdos fin- 
den (oder eine andere, die Ihnen den Zugriff auf Betriebssystems-Funktio- 
nen erlaubt). Zu Beginn des Programms 7.6 sehen Sie die nötigen Makro- 
Definitionen. Da gemdos in der Regel eine /ong-Integer zurückgibt, muß es 
deklariert werden. 

Die Funktion step, die schrittweise das Inhaltsverzeichnis nach passenden 

Dateinamen durchsucht, befolgt hingegen - schließlich ist sie selbstgemacht 
- das C-Protokoll: findet sie etwas, dann gibt sie den Wahrheitswert "wahr" 

(Konstante TRUE) zurück; ansonsten ist ihr Wert "falsch" (Konstante 
FALSE). Das, was sie findet, kopiert sie in das zweite Argument, einen 

String, der lange genug sein muß, um einen Dateinamen aufzunehmen. 

Nun muß step ein anderes Verhalten an den Tag legen, je nachdem, ob es 

mit einem Namensmuster zum ersten Mal aufgerufen wurde, oder ob es 
sich um einen Folgeaufruf handelt. Dazu macht die Funktion von einem 
internen Schalter Gebrauch, der sie darüber informiert. Die Variable first 
ist eine statische Integer und dient dazu, step von einem Aufruf zum näch- 
sten darüber zu informieren, ob es bereits einmal benutzt wurde oder ob es 

sich um den ersten Aufruf (daher der Name) handelt. 

Beim ersten Aufruf muß die DTA-Adresse gesetzt und die Suche mit Fs- 
first eingeleitet werden. Findet Fsfirst einen passenden Eintrag, dann kann 

die Suche weitergehen, first wird also auf FALSE gesetzt. Außerdem 
kopiert step den gefundenen Namen aus der DTA, wo ihn F'sfirst ablegt, in 
den Argumentstring, über den es das Ergebnis an die aufrufende Funktion 

weitergibt.
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Bei einem Folgeaufruf von step wird die Suche mit Fsnext fortgesetzt. Im 

Erfolgsfall wird wie soeben beschrieben verfahren. Kann kein weiterer 
Eintrag mehr gefunden werden, dann muß step nicht nur dies an die ru- 
fende Funktion melden (indem es FALSE zurückgibt), sondern auch den 
internen Schalter first wieder auf TRUE setzen, damit es für einen er- 
neuten Aufruf mit einem anderen Namensmuster bereit ist. 

Jetzt sind alle Zutaten für das Kopier-Kommando beisammen: eine Funk- 

tion, die Dateien kopiert und eine, die bei wiederholter Anwendung alle 

Dateien liefert, die auf ein vorgegebenes Namensmuster passen. Bleibt nur 

noch, diese beiden Funktionen in geeigneter Weise zu kopieren. 

Doch Halt! So einfach darf man es sich nicht machen. Denn das Programm 
soll wie ein Kommando des Betriebssystems eingesetzt werden, und da muß 
man einigermaßen verantwortungsbewußt vorgehen, sprich: Benutzerfehler 

so weit als möglich abfangen. Deshalb nimmt die Fehlerüberprüfung im 
abschließenden Programm 7.7 beinahe die Hälfte des gesamten Quelltexts 
ein. | 

Nicht alle Verwendungen des Kommandos (nennen wir es KOPY) sind 

sinnvoll. Für die folgenden Darstellungen gehe ich davon aus, daß A das 
aktuelle Laufwerk ist. Der erste und einfachste Fall einer fehlerhaften An- 
wendung sieht so aus: 

KOPY 

Hier hat der Benutzer einfach zu sagen vergessen, was wohin kopiert wer- 

den soll. In diesem Fall sollte das Programm mit einem dezenten Hinweis 

auf die beabsichtigte Verwendungsweise reagieren. 

KOPY kann nun mit einem oder mit zwei Parametern auf gerufen werden. 
Eine Anwendung mit einem Parameter wäre etwa: 

KOPY B:OTTO.DAT 

Dies kann man am besten als den Wunsch interpretieren, die Datei 

OTTO.DAT vom Laufwerk B auf das aktuelle Laufwerk (welches nach 
Annahme Laufwerk A ist) zu kopieren. Soweit ist das Ganze in Ordnung. 
Nicht in Ordnung ist jedoch dieses: 

. KOPY A:OTTO.DAT 

Da A das aktuelle Laufwerk ist, müßte das als der Versuch aufgefaßt wer- 
den, eine Datei auf sich selbst zu kopieren; das darf KOPY nicht zulassen. 
Das kann man auf Parameter mit Namensmuster ausdehnen. So sollte 

KOPY B:*.C
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als der Wunsch interpretiert werden, alle C-Dateien vom Laufwerk B auf 

das aktuelle zu kopieren; ebenso muß 

KOPY A:*.C 

als unsinnig zurückgewiesen werden, wenn A das aktuelle Laufwerk ist. 

Für die folgenden Ausführung tue ich mich etwas leichter, wenn Sie mir 
die Einführung von zwei Fachbegriffen erlauben: ein "vollqualifizierter 
Dateiname" ist einer, der keinerlei Wildcard- (Joker-)-Zeichen enthält 
(indem also weder ein ? noch ein * vorkommt). Dateinamen mit Wildcards 
nennt man hingegen "teilqualifiziert" (weil da noch was fehlt). 

Wird KOPY nun mit 2 Parametern aufgerufen, dann muß man unterschei- 
den, ob beides vollqualifizierte Dateinamen sind oder nicht. Der Aufruf 

KOPY A:OTTO.DAT B:EMIL.C 

bedeutet, die Datei OTTO.DAT vom Laufwerk A nach B zu kopieren und 

dort mit dem neuen Namen EMIL.C zu versehen. Das ist in Ordnung; nicht 
in Ordnung ist jedoch: 

KOPY OTTO.DAT OTTO.DAT 

Wieder soll eine Datei auf sıch selbst kopiert werden; das erlaubt KOPY 

nicht. | 

Dieses ist OK: 

KOPY A:*.C B: 

Alle C-Dateien werden von A nach B kopiert. Falsch ist aber dieser Auf- 

ruf: 

KOPY A:*.C B:ALLE.C 

KOPY sträubt sich dagegen, mehrere Dateien in eine zu kopieren (obwohl 
es so erweitert werden kann, daß es auch dies beherrscht - doch das sei 
dem Leser als Übung überlassen). KOPY befolgt hier folgende Regel: wenn 
der erste Parameter teilqualifiziert ist, dann ist als zweiter Parameter nur 

mehr eine Laufwerks-Angabe zulässig. Schließlich ist noch eine Verwen- 
dung von KOPY auf jeden Fall verkehrt: 

KOPY OTTO.DAT *.* 

Gleichgiltig, ob der erste Parameter voll- oder teilqualifiziert ist, der 

zweite darf niemals teilqualifiziert sein.
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All diese Fehler fängt das Programm 7.7 ab. Dazu bedient es sich einiger 
Hilfsfunktionen: die Funktion log bestimmt das aktuelle Laufwerk; sie be- 
nutzt dazu eine Betriebssystems-Funktion Dgetdrv, die zu Beginn des Pro- 
gramms als Makro definiert ist und die eine Laufwerks-Nummer liefert (0 
bedeutet A, 1 bedeutet B und schon haben Sie den Dreh...), welche von log 

in einen Buchstaben verwandelt wird. 

Eine weitere Funktion has _drive überprüft, ob in einem Namensmuster 

eine Dateiangabe enthalten ist; dies ist der Fall, wenn das erste Zeichen der 
Angabe ein Buchstabe ist (Makro ischar) und das zweite ein Doppelpunkt. 

Die Funktion drive of liefert die Laufwerksangabe (das erste Zeichen in 
Großschreibung gewandelt); sie wurde nur der besseren Lesbarkeit wegen 
mit aufgenommen. Wichtig ist noch die Funktion is_wild, die überprüft, 
ob eine Angabe teil- oder vollqualifiziert ıst. Dazu sucht sie nach den 

Zeichen * oder ? mit einer Bibliotheks-Funktion index, die als ersten Para- 

meter eine String und als zweiten ein darin zu suchendes Zeichen hat. Wird 
das Zeichen gefunden, so liefert index den Wert "wahr" (siehe Handbuch). 

Die Hauptfunktion bestimmt zuerst das aktuelle Laufwerk und beginnt 
dann mit einer Fehlerüberprüfung, die von der Anzahl der Parameter ab- 

hängt; deshalb ein switch. Kein Parameter ist ein Fehler; dies wird ge- 
meldet. Bei einem Parameter muß das Programm sich überzeugen, daß 
dessen Laufwerksangabe ungleich dem aktuellen Laufwerk ist. Ist das der 
Fall, wird für die nachfolgende Verarbeitung das Quell- und Ziellaufwerk 
vermerkt und registriert, ob es sich um Kopieren mit Wildcard handelt. 

Bei zwei Parametern ist die Fehlerüberprüfung schwieriger. Zuerst wird bei 
jedem Parameter die Laufwerks-Angabe mit set_drive extrahiert. Dies ist 
entweder das, was der Benutzer angegeben hat, oder das aktuelle Laufwerk, 

wenn keine Angabe erfolgte (siehe Definition von set_drive!). Der erste 
Fehler, der abgefangen wird, ist die Angabe eines teilqualifizierten Datei- 
namens als zweiter Parameter. Anschließend wird bestimmt, ob Kopieren 

mit Wildcard gewünscht ist, da davon die weitere Fehlerbehandlung ab- 
hängt. Bei Kopieren mit Wildcard darf der zweite Parameter nur eine 
Laufwerksangabe sein (nächste Überprüfung) und Quell- und Ziellaufwerk 
müssen voneinander abweichen. Sınd beide Angaben vollqualifiziert, dann 

dürfen sie nicht gleich sein. Dazu wird die Funktion strcmp bemiht,die 
zwei Strings vergleicht und 0 zurückgibt, wenn sie gleich sind (Handbuch!). 
SchlieBlich sind alle Fehler abgefangen, das eigentliche Kopieren kann be- 
ginnen. 

Die Funktion fcopy erledigt die Kopierarbeit, sie benötigt zwei Dateinamen 
für das Kopieren. Diese werden in zwei Strings mit Namen source (enthält 
die Quell-Datei) und dest (enthält die Zieldatei) aufgebaut. Waren zwei
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vollqualifizierte Dateinamen angegeben, dann ist dies überflüssig und man 

kann ganz einfach die Parameter aus der Kommandozeile übernehmen. In 
allen anderen Fällen jedoch muß der Name für die Quell- und die Ziel- 
datei erst bestimmt werden. Das Quell- und Ziellaufwerk kennen wir ja 
bereits (es ist im Laufe der Fehleranalyse angefallen). Es kann also bereits 
in die beiden Strings source und dest geschrieben werden. Was folgt, ist 

von der gewünschten Kopierart abhängig; jedenfalls setzten wir uns schon 

mal zwei Pointer sp und dp an die Stelle, an die die nächsten Informa- 
tionen geschrieben werden. 

Für das Kopieren verbleiben jetzt drei Fälle: zwei Parameter und beide 
vollqualifiziert, ein Parameter ohne Wildcard und schließlich zwei Parame- 
ter und Kopieren mit Wildcard. Der erste Fall ist der einfachste: die beiden 

Parameter aus der Kommandozeile werden lediglich an fcopy übergeben; 
das Programm ist fertig. 

Im zweiten Fall ist der Name für das Kopier-Ziel nicht gegeben; er muß 
erst aufgebaut werden, kann jedoch vom ersten Parameter file 1 über- 

nommen werden. 

Im dritten Fall werden die Namen der Quell-Dateien erst von step in einer 
Schleife geliefert. Durch Kopieren erhält man auch hier den Ziel-Namen. 

Das Programm ist so angelegt, daß der Ziel-Name jeder kopierten Datei 

auf dem Bildschirm ausgegeben wird. Somit hat der Benutzer noch eine 
letzte Kontrolle. 

Sie können das Programm in der gewohnten Weise aus TOS aufrufen, oder 
es unter GEM als "TOS übernimmt Parameter" installieren. Bei meiner Ver- 
sion des C-Compilers ergab sich leider, daß Parameter mit Wildcards nur 
dann korrekt an das Programm übergeben wurden, wenn sie in Anfüh- 
rungszeichen eingeschlossen waren. Ich mußte also schreiben: 

KOPY "*.C" A: 

Sollte das Programm bei Ihnen abstürzen, dann kann dieser Fehler auch 
noch in Ihrem System enthalten sein.
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Prog. 7.7: Kopieren mit Wildcard.



Teil Il: 

TOS-Programmierung
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3 Das Betriebssystem des Atari 

Dem Titel "C-Programmierung unter TOS" wurde das Buch bisher nur zum 
Teil gerecht. Zwar ist viel von C-Programmierung die Rede, wenig jedoch 
und nur marginal haben Sie bisher über TOS erfahren. Dies will ich nun 
nachholen. Der zweite Teil des Buches wendet sich deshalb der TOS-Pro- 
grammierung, das heißt: der Systemprogrammierung zu. Krönender Ab- 

schluß (ich weiß: Bescheidenheit ist eine Zier...) dieses Teils und des 
Buches ist ein Diskmonitor (oder Disketteneditor oder Diskdoktor oder wie 
auch immer Sie ein Programm zu nennen gewohnt sind, mit dem Sie auf 
jedes Byte Ihrer Disketten zugreifen und es auch ändern können). 

Dieses Programm demonstriert Mehreres: zum einen ersehen Sie daran, wie 
einfach die Systemprogrammierung in C unter TOS geht. Kein Wunder, ist. 
ja TOS der Sprache C geradezu auf den Leib geschneidert. Dann aber 

demonstriert Ihnen das Programm auch die Technik (und den Stil), mit 
dem ein umfangreicheres Programmierprojekt in C angegangen werden soll, 
die sogenannte "Top-Down-Programmierung". Das Programm ist verhältnis- 
mäßig umfangreich, da ich großen Wert auf eine vernünftige Bediener- 
führung und Benutzeroberfläche gelegt habe. 

Apropos "Benutzeroberfläche" mit diesem neudeutschen (und m.E. nicht 

sonderlich glücklich gewählten) Wort sind die ’Umgangsformen’ gemeint, 
die ein Programm seinem Benutzer gegenüber an den Tag legt; es hat dies 

nichts damit zu tun, ob sich der Benutzer gewaschen hat oder nicht... 

Zum Verständnis des Diskmonitors und der Systemprogrammierung im All- 
gemeinen sind einige Kenntnisse über Aufbau und Funktionsweise des Be- 
triebssystems erforderlich. Ich kann Ihnen diese Kenntnisse hier nicht in 
vollem Umfang vermitteln; dann würde nämlich dieses ohnehin schon um- 
fangreiche Buch aufgrund seines schieren Gewichtes untragbar werden. 
Dafür gibt es auch Spezialbücher, die sich nur diesem Thema widmen, wie 
z.B. das "ATARI Systemhandbuch" von I. und P. Lüke. 

Anstatt Ihnen hier eine vollständige Liste aller Systemfunktionen und 
-variablen mit allen Einzelheiten zu geben, beschränke ich mich darauf, im 

Anhang eine kurze Übersicht über die für den Diskmonitor benötigten 
Teile des Systems (GEMDOS und BIOS) zu geben und einzelne, für das 
Programm besonders wichtige Funktionen ausführlicher zu erläutern. Sinn 
und Zweck dieses Teils ist es, Ihnen die Benutzung der Systemfunktionen 
exemplarisch vorzuführen, so daß Sie zur Entwicklung eigener Programme,
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die andere Funktionen nutzen, in der Lage sind. Und er soll Ihnen den 

letzten Schliff als C-Programmierer geben. 

Ehe wir uns jedoch auf die Programmierung des Editors stürzen, sind eini- 
ge grundlegende Informationen über die Anatomie des Betriebssystems nö- 
tig. 

8.1 TOS: Die Anatomie des Betriebssystems 

Dem Computer-Anfänger erscheint es selbstverständlich, daß seine Maschi- 

ne auf Tastendruck reagiert, Zeichen auf dem Bildschirm ausgeben und - 
im Falle des ATARI - seine Maus-Bewegungen auf der Tischplatte in 

Cursorbewegungen auf dem Bildschirm verwandeln, Fenster öffnen und 
schließen, vergrößern, verkleinern und verschieben und noch vieles andere 

mehr kann. Er vermutet hinter dieser Fähigkeit, mit der Außenwelt ın 

Kontakt zu treten, meist eine ’angeborene’ Fähigkeit des Computers. Aber 

"den Computer" als geschlossene Einheit, wie er vielleicht in der Vorstel- 

lung eines naiven Neulings existieren mag, gibt es gar nicht. Es gibt den 
Prozessor, aber dessen Fähigkeiten haben herzlich wenig mit Außenkontak- 
ten zu tun. Der kann in erster Linie einige geradezu lächerlich einfach er- 
scheinende logische und arithmetische Operationen mit Bits und Bytes 
ausführen, kann seinen Arbeitsspeicher auf vielfältige Weise adressieren, 
beschreiben und lesen und die Ausführung von Programmen kontrollieren. 
Aber er kann - im übertragenen Sinn - nicht sprechen und hören. 

Dazu ist er mit speziellen Geräten verbunden - eben den peripheren Ge- 

räten - die die Schnittstelle zur Umgebung darstellen. Es muß ihm beige- 
bogen werden, wie er sich dieser Schnittstelle bedienen kann. Das machen 
Programme. 

Was wie ein elementarer Vorgang erscheinen mag: Sie drücken auf eine 

Buchstaben-Taste Ihres Computers und der betreffende Buchstabe erscheint 

auf dem Bildschirm - das ist in Wahrheit Ergebnis eines gar nicht so tri- 
vialen programmgesteuerten Prozesses. Das Programm muß unter anderem 

überprüfen, ob die Tastatur gedrückt wurde, muß herausfinden, welche 

Taste Sie betätigten, muß diesen Tastendruck in einen entsprechenden Code 

umwandeln und diesen Code schließlich an den Programmteil weitergeben, 
der sich um die Bildschirmausgabe kümmert. Dieser Programmteil muß nun 
nachsehen, welches Punktemuster dem gewünschten Buchstaben auf dem 

Bildschirm entspricht und muß dafür sorgen, daß das Muster an der richti- 

gen Stelle dort aufgebaut wird.
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Die Dienste, die man unter dem Stichwort "Kommunikation mit der Peri- 

pherie" zusammenfaßt, stellt das Betriebssystem bereit. Diese Sammlung von 

fundamentalen Software-Diensten trägt auf dem ATARI den Namen TOS. 
TOS überwacht die Ein- und Ausgabe von Zeichen von der Tastatur und 

auf den Bildschirm bzw. auf andere Ausgabekanäle (wie z.B. den Drucker 
oder die serielle Schnittstelle). Sie können also TOS ein einzelnes Zeichen 

geben und verlangen, daß es dieses Zeichen an der aktuellen Cursorposition 
ausgibt. 

Ganz besonders bedeutsam sind die TOS-Dienste, die mit der Diskettenver- 

waltung zu tun haben. TOS ist diejenige Instanz des Computers, die über 

Dateien sowie Inhalts- und Teilverzeichnisse (in der Terminologie von 
GEM "Ordner" genannt) Bescheid weiß. Man kann von ihm verlangen, ein 
Teilverzeichnis (einen Ordner) einzurichten bzw. zu schließen, das aktuelle 
Verzeichnis zu wechseln (einen Ordner zu verlassen und dafür einen ande- 
ren zu öffnen) und natürlich Dateien in diesen Verzeichnissen unterzubrin- 
gen. Auch das Lesen und Schreiben von Dateiinformationen wird über TOS 
abgewickelt. | 

Schließlich kümmert sich TOS noch um die Speicherverwaltung. Der ATA- 
RI ST ist ja unter anderem aufgrund des üppigen Angebots an Arbeits- 
speicher in begrenztem Umfang zum Multitasking fähig, d.h. es können 
mehrere Programme gleichzeitig im Speicher koexistieren und die Kontrolle 
kann diesen Programmen abwechselnd übergeben werden. Wird dies nur 
schnell genug gemacht, so hat der Benutzer den Eindruck, daß diese Pro- 

gramme auf seinem Computer gleichzeitig ablaufen. Außerdem können auf 

dem ATARI Programme andere Programme aufrufen und nach deren Be- 

endigung die Kontrolle wieder übernehmen ("Programm-Chaining"). Das 
Betriebssystem hat die Aufgabe, für Programme Speicherplatz zu besorgen 

und diesen - falls er nicht mehr benötigt wird - wieder für andere Pro- 

gramme freizugeben. Auch läßt es Programme laufen, übergibt ihnen also 
die Kontrolle über den Prozessor und sorgt dafür, daß diese die von ihnen 

benötigte Arbeitsumgebung ("Base Page" und "Environment") vorfindet. 
Auch die Beendigung von Programmen und die Kontrollübergabe an die 
rufende Instanz werden von TOS überwacht. 

All diese Dienste werden arbeitsteilig geleistet. Denn um Betriebssysteme 
nicht allzu maschinenabhängig werden zu lassen (dann müßte ein Hersteller 

sein System für jeden neuen Computer, ja schon für jede neue Hardware- 
erweiterung komplett umschreiben), verfolgt man bei ihrer Entwicklung die 
Strategie, sie in einen allgemeinen Teil und einen gerätespezifischen Teil zu 
gliedern.
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Der gerätespezifische Teil ist diejenige Instanz, die wirklich weiß, wie man 
mit den Geräten zu reden hat. Diese Instanz trägt traditionell den Namen 

BIOS ("Basic Input Output System", zu Deutsch "Elementares Ein-/Aus- 
gabe-System). Auch die Betriebssysteme CP/M und MS-DOS, die für 8- 

Bit-Computer bzw. IBM-kompatible 16-Bitter zum Standard geworden 

sind, nennen ihre ’Hardwareknechte’ so. 

Aber der ATARI ist wesentlich besser ausgestattet als diese Maschinen; 

eine Maus ist bei ihm serienmäßig enthalten. Seine Bildschirmauflösung ist 
sensationell und mit ihr seine Grafikfahigkeiten (auch in Farbe). Ebenfalls 
einzigartig ist, daß er mit einer MIDI-Schnittstelle zur Synthesizer-Steue- 
rung versehen ist. Um all diese Extras nutzen zu können, hat man den ST 
mit einem zusätzlichen XBIOS versehen; dies ist die Abkürzung für "eX- 
tended BIOS", also "erweitertes BIOS" zu Deutsch. 

Diese beiden Module, die mit der Hardware direkt zusammenarbeiten, wer- 

den von einem übergeordneten Modul aufgerufen, in dem die ’Logik’ des 

Betriebssystems steckt; es trägt den Namen GEMDOS (GEM, Abkürzung 

für "Graphics Environment Manager", ist die vertraute Benutzeroberfläche 

mit Menüs, Fenstern, Bildsymbolen; "DOS" ist die Abkürzung für "Disk 
Operating System", was soviel wie "Diskettenbetriebssystem" bedeutet). Die 
Modalitäten des Verkehrs mit der Außenwelt, die Organisation der Diskette 

und der Dateien und die Strategien der Speicherverwaltung sind GEMDOS 
bekannt. Es setzt diese mehr abstrakte Denkweise um in Kommandos an 

die BIOS- und XBIOS-Funktionen. Wie man sich dieses Zusammenspiel 

zwischen Betriebssystems-Logik (in GEMDOS) und hardwarenahen Funk- 
tionen (in BIOS und XBIOS) vorzustellen hat, wird das Kapitel über den 

Aufbau der Diskette und von Dateien noch genauer erläutern. 

Das Betriebssystem des ATARI gliedert sich also in drei Module: GEM- 
DOS, BIOS und XBIOS, wobei das Modul GEMDOS in diesem Triumvirat 

den Vorsitz hat. Diese drei Module sind das Betriebssystem; alle zusammen 
werden Sie mit dem überbegriff TOS bezeichnet. 

Ist nun das also TOS, was Sie beim Einschalten des Computers zu sehen 

bekommen? Mitnichten! Es ist die Benutzeroberfläche von TOS (da haben 

wir das Wort schon wieder!), und die ist auswechselbar. | 

TOS hat nämlich alle Fähigkeiten, um zwischen dem Menschen und der 
Maschine mit all ihren Bestandteilen zu vermitteln, aber es tut dies nicht 

von selbst. Dazu ist ein weiteres Programm nötig, eines, das die Wünsche 

des Benutzers entgegennimmt und sie in Anweisungen an TOS übersetzt. 

Dies wiederum bedeutet, daß aufgrund der Benutzerwünsche GEMDOS- 

Funktionen angestoßen werden, die wiederum BIOS- oder XBIOS-Aufrufe
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nach sich ziehen, welche wiederum dafür sorgen, daß die Hardware das 
tut, wozu sie da ist. 

Dieses Entgegennehmen von Benutzerwünschen besorgt - wie sollte es an- 
ders sein - ein Programm. Beim Entwurf dieses Programms kann der Pro- 
grammierer seiner Fantasie die Zügel schießen lassen, sprich: er kann die 

Benutzeroberfläche ganz nach eigenem Geschmack gestalten. 

Ein Forschungsteam, das in dieser Beziehung mit besonders viel Geschmack 
ausgestattet war, arbeitete Anfang der 70er Jahre am Palo Alto Research 

Center (PARC) der Firma XEROX und war da mit der Entwicklung eines 
Personal Computers beschäftigt - also lange bevor es die Dinger tatsächlich 
auf dem Markt gab. In diesem Projekt wurde alles neu entwickelt: Hard- 
ware, Software ja sogar eine eigene Programmiersprache ("Smalltalk"), die 
ideal für nichtprofessionelle Computerbenutzer geeignet sein sollte. Dabei 
machte man sich auch grundlegende Gedanken über die Beschaffenheit der 
Benutzeroberefläche eines solchen Systems - und erfand die Windows, 
Menüs, Rollbalken usw. sowie das passende Gerät zum Umgang mit diesen: 

die Maus. Das, was die PARC-Forschungsgruppe sich ausgedacht hat, ist 

als objektorientierte grafische Benutzeroberfläche bekanntgeworden und die 
Programmierung unter Smalltalk, der Sprache, für die diese Grafik-Ober- 
fläche erfunden wurde, nennt man "objektorientiertes Programmieren". Die 
Ideen der PARC-Gruppe waren so revolutionär, daß sie erst gute zehn 

Jahre später ihren Niederschlag in der Computer-Industrie fanden. 

Zuerst war da Apple mit seiner Lisa und dem MaclIntosh; dann zog die 

Firma Digital Research (DR), Schöpfer des ersten Industriestandard-Be- 
triebssystems CP/M nach und entwickelte GEM. Dies finden Sie auch auf 
Ihrem ATARI. Doch weder Apple noch DR sind die Erfinder der grafi- 

schen Benutzeroberfläche; diese Ehre gebührt dem PARC-Team. 

GEM ist ein sehr umfangreiches und komplexes Programmsystem, das je- 
doch letztendlich nur die Aufgabe hat, Benutzerwünsche in TOS-Komman- 
dos umzusetzen, also als Vermittler zwischen dem Menschen und dem Be- 
triebssystem aufzutreten. GEM ist aber beileibe nicht die einzige Lösung 
dieses Vermittler-Problems. Vor der Entwicklung der objektorientierten 
grafischen Benutzeroberfläche verkehrte man mit seinem Computer nicht 
wie die alten Ägypter via Hieroglyphen (auch ’Pictogramme’ genannt), son- 
dern durch über die Tastatur eingegebene Kommandos. Dieser etwas anti- 

quierte, aber eingefleischten Programmierern - darunter auch mir - ans 
Herz gewachsene kommandoorientierte Zugang zur Maschine ist auf dem 
ATARI auch zu haben. Dazu benötigen Sie das Programm COMMAND, das 
Sie aus GEM anklicken und so dieses System durch einen konventionellen 

Kommando-Interpreter ersetzten können.



286 Das Betriebssystem des Atari 

Das Zusammenspiel aller eben erwähnten Module soll noch einmal die Ab- 

bildung 8.1 verdeutlichen. In der obersten Schicht dieser Grafik sehen Sie 

die Benutzeroberfläche; hier haben Sie die Wahl zwischen COMMAND, 

GEM oder einem selbstgeschriebenem Programm. 

Darunter folgt TOS mit seinen drei Modulen GEMDOS, BIOS und XBIOS; 

deren hierarchische Organisation ist auch optisch kenntlich gemacht. Dann 

erst - ganz unten - kommt die Hardware. Oder etwa nicht? . 

Abb. 8.1: Zwischen Benutzer und Hardware: das Betriebssystem 

Die rhetorische Frage legt nahe, daß da noch etwas fehlt; es sind dies die 

sogenannten "Systemvariablen". Die drei Module des TOS müssen sich für 

ihre Arbeit bestimmte Informationen merken und benötigen Datenbereiche, 

über die sie miteinander kommunizieren können. Im Arbeitsspeicher des 

ATARI sind deshalb in einem geschützten Speicherbereich einige dedizierte 

Adressen vereinbart. Hierzu nur ein kleines Beispiel. 

Der Arbeitsspeicher des ATARI kann erweitert werden; neben dem ST mit 

512 KB gibt es ja bereits den ST+ mit einem Megabyte Arbeitsspeicher; 

aber theoretisch ist es denkbar, den ATARI auf bis zu 4 Megabyte aufzu-



Das Betriebssystem des Atari 287 

blasen. Derjenige Teil von TOS, der sich um die Speicherverwaltung kiim- 
mert, muß natürlich wissen, wieviel Speicher gerade verfügbar ist, um 

korrekt arbeiten zu können. Diese Information findet er und alle Teile, die 

es sonst noch angeht, an der Adresse 0x42e des ATARI. Die Entwickler des 

Systems garantieren, daß diese Information an genau dieser Stelle steht; 
deshalb habe ich gerade eben von "dedizierten" Speicherstellen gesprochen. 

Die Systemvariablen und ihr Inhalt sind von vitaler Bedeutung für das Be- 
triebssystems; deshalb muß verhindert werden, daß ihr Inhalt irrtümlich 

verändert wird und sich so eventuell ein fataler Programm-Absturz ereignet 
(z.B. einer, bei dem schnell noch die Diskette im Laufwerk gelöscht wird). 
Deshalb sind auf dem ATARI alle Systemvariablen in dem Speicherbereich 
zwischen den Adressen 0x000 bis 0x800 untergebracht, denn mit diesen 

Adressen hat es eine besondere Bewandtnis. 

Der Prozessor kann nämlich auf diesen Speicherbereich nur zugreifen, 

wenn er sich in einem besonders privilegierten Modus (dem "Supervisor"- 

Modus) befindet. Ein normales Anwender-Programm läuft nicht unter die- 
sem Modus, sondern im sogenannten "User"-Modus für die Unterprivile- 

gierten. Das garantiert, daß Anwendungsprogramme nicht versehentlich 

(z.B. durch Verbiegen eines C-Pointers) die Systemvariablen korrumpieren 
können. Sie werden jedoch noch eine Methode kennenlernen, um - auf 

eigene Verantwortung - an die Systemvariablen heranzukommen. 

0.2 Das Dateisystem 

Auf Disketten werden Daten in Dateien gespeichert; das wissen Sie ja. 

Dateien haben einen Namen, über den sie angesprochen werden können. 

Und sie enthalten Informationen; das ist ja gerade der Witz an der Sache. 

Wenn Sie sich mit reiner Anwendungsprogrammierung beschäftigen wollen, 
dann ist das alles, was Sie über Dateien jemals wissen müssen. 

Doch in Wirklichkeit sind die Verhältnisse nicht so einfach. Was dem 
naiven’ Benutzer als Einheit erscheinen mag (Dateiname und Dateiinfor- 
mation), wird erst durch Vermittlung des Betriebssystems und unter An- 
wendung einer verhältnismäßig komplexen Logik für den Benutzer so ein- 
fach zu handhaben. Die Betriebssystems-Funktionen, die mit der Diskette 

zu tun haben und die Verwaltungslogik, welche sie realisieren, faßt man 
unter dem Namen "Dateisystem" zusammen. Da das Verständnis des Datei- 

systems für die Programmierung eines Diskettenmonitors Voraussetzung ist, 
will ich mich diesem jetzt zuwenden.
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8.2.1 Der Aufbau einer Diskette: das Grundgerüst 

Auch die unterste Ebene in der Verarbeitungshierarchie kommt nicht ohne 

Struktur aus. Um auf einer Diskette Informationen unterbringen zu können 
ist es nötig, ein einfaches Grundgerüst für die Informationsspeicherung auf 
der Diskette festzulegen, in das dann die Informationen eingefügt werden 
können. Stellen Sie sich das ähnlich wie bei einer Bibliothek vor, in der Sie 

Ihre Bücher organisieren wollen. Sie könnten natürlich alle Bücher auf 
einen großen Haufen schmeißen; aber dann wäre der Zugriff auf die ein- 
zelnen Bücher sehr langsam, wenn er überhaupt möglich ist. Denn jedes- 
mal, wenn Sie ein Buch suchen, müssen Sie den ganzen Haufen danach 
durchwühlen. 

Das macht wohl keiner so; vielmehr überlegt man sich ein Organisations- 
schema, das einen schnelleren Zugriff ermöglicht. Dieses Schema erfordert 

eine bestimmte Struktur (z.B. die Anordnung der Bücher nach Autoren- 
namen) und um diese Struktur effizient verwirklichen zu können sind 
Voraussetzungen nötig. Die Voraussetzungen für eine effiziente Biblio- 

theks-Organisation sind Regale. 

Die Voraussetzung für effiziente Informationsspeicherung auf Diskette ist 
ein Disketten-Format, eine Unterteilung der Diskette in Spuren und Sek- 

toren. Die Disketten-Sektoren entsprechen den Bücherregalen im Biblio- 
theks-Beispiel. 

Durch das Formatieren wird diese Unterteilung auf der Diskette installiert. 
Es wird ihr also eine bestimmte Strukturierung aufgeprägt, die hersteller- 
seitig noch nicht auf dem Datenträger vorhanden ist. Dies ist Aufgabe eines 
eigenen Formatier-Programmes; es versieht beim Formatieren die Diskette 
mit allen nötigen Informationen, die die Steuerelektronik für das Laufwerk 
benötigt, um die Untergliederung in Spuren und Sektoren wahrzunehmen. 

Spuren sind konzentrische Kreise auf der Diskette; legt man über diese 
konzentrischen Kreise noch radiale Schnitte, vergleichbar Kuchenstücken 

bei einer Geburtstagstorte, so erhält man die endgültige Untergliederung 

(vgl. Abbildung 8.2). Die Oberfläche der Diskette wird durch diese zwei- 
dimensionale Gliederung in einzelne Abschnitte unterteilt, die man in der 
Terminologie von GEMDOS "logische Sektoren" oder ganz einfach "Sekto- 
ren" nennt, und die von Null beginnend durchnumeriert werden. 

Die Gliederung der Diskettenoberfläche in Sektoren ist keine Erfindung 
von ATARI; auch andere Computer, die mit Disketten arbeiten, bedienen 

sich ihrer. Die Formate unterschiedlicher Computer (Anzahl der Spuren 

und Sektoren, Lange der Sektoren usw.) unterscheiden sich jedoch vonein- 

ander; deshalb können Disketten nicht zwischen verschiedenen Geräten frei
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ausgetauscht werden. Auch bei ATARI gibt es Unterschiede, ja nachdem, 
ob Sie mit 40 oder 80 Spuren, mit einseitigen oder doppelseitigen Laufwer- 

ken arbeiten. Die Zahl der logischen Sektoren auf einer ATARI-Diskette 

kann daher unterschiedlich sein. Alle ATARI-Laufwerke bringen jedoch 
pro Spur der Diskette 9 logische Sektoren unter. Auch die Sektorgröße ist 

bei ATARI für Disketten einheitlich; Sie beträgt stets 512 Bytes. 

Abb. 8.2: Unterteilung der Diskette in logische Sektoren. 

Das durch die logischen Sektoren vorgegebene Grundraster wird für die 
Zwecke des GEMDOS nun in 3 logische Bereiche unterteilt: 

1. Der Boot-Sektor 

Er ist stets der erste Sektor auf der Diskette (Nummer 0) und enthält In- 
formationen über die Diskette (Anzahl der Sektoren, Seiten usw.). Soll beim 
Urstart des Computers (Einschalten oder Betätigen des Reset-Knopfs) ein 
bestimmtes, auf der Diskette gespeichertes Programm ausgeführt werden, so 
ist auch dies im Boot-Sektor vermerkt. 

2. Der Verwaltungsbereich 

Dieser Bereich schließt sich an den Boot-Sektor an und wird von GEMDOS 
dazu benötigt, gewisse buchhalterische Informationen über die Dateien auf 
der Diskette zu verwalten. Seinem Aufbau ist das folgende Unterkapitel
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gewidmet. Auf einer typischen Diskette belegt der Verwaltungsbereich die 
Sektoren | mit 17. 

3. Der Datenbereich © 

Hier sind die eigentlichen Informationen untergebracht, also die Daten, die 
Sie auf der Diskette gespeichert haben. Der Datenbereich nimmt auf der 
Diskette den weitaus größten Platz ein. Auf einer einseitigen Diskette be- 
legt er die Sektoren 18 bis 720, auf einer zweiseitigen Diskette die Num- 
mern 18 bis 1440. 

8.2.2 Der Aufbau des Verwaltungsteils 

Eine Datei hat zwei Komponenten: einen Namen, unter dem sıe angespro- 

chen werden kann und Daten, die in ihr gespeichert sınd. Im Verwaltungs- 
bereich führt GEMDOS Buch über die Dateinamen und darüber, wo im 

Datenbereich die zur Datei gehörigen Informationen zu finden sind. Um 
bei dem Bibliotheksbeispiel zu bleiben: der Verwaltungsbereich ist so etwas 
wie ein Bibliothekskatalog. Er sagt, welche Bücher vorhanden sind (ent- 

spricht dem Verzeichnis der Dateinamen) und wo man sie finden kann 

(entspricht dem Verweis auf den Datenbereich). 

Wird eine Datei neu eingerichtet und mit Daten beschrieben, dann legt 
GEMDOS in einem speziellen Bereich des Verwaltungsteils - das sog. 
"Inhaltsverzeichnis" oder "Directory" - Informationen darüber ab, wie die 
Datei heißt (Name und Extension). Außerdem besorgt es im Datenbereich 
Platz für die Informationen in der Datei. 

Dieses Verfügbarmachen von Platz aus dem Datenbereich nennt man fach- 
männisch auch "allokieren"; dazu sind einige Erklärungen nötig. Ange- 
nommen, Sie haben eine leere Diskette und wollen jetzt Informationen in 
einer neuen Datei namens DATEII speichern. Dann besorgt GEMDOS den 

nächsten freien Platz im Datenbereich und weist ihn der Datei zu. Wird 
jetzt diese Datei geschlossen und eine andere - nennen wir sie DATER - 
geöffnet und beschrieben, dann wird wiederum der nächste freie Platz im 
Datenbereich für DATEI2 allokiert. Erneutes Beschreiben von DATEII 
führt nun dazu, daß auf der Diskette die Daten für DATEI von den 

Daten für DATEII ’umrahmt’ sind, oder - anders ausgedrückt: die logisch 

zusamengehörigen Informationen zu DATEII sind physikalisch auf der 
Diskette verstreut (vgl. Abbildung 8.3). 

Dagegen läßt sich nichts machen, da GEMDOS ja nicht von vorneherein 
den maximalen Platzbedarf jeder einzelnen Datei kennt. Um dennoch die 
Dateiinhalte richtig zusammenklauben zu können, muß sich GEMDOS ir- 
gendwie merken, was wo steht.
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Hierbei kommt es wesentlich darauf an, in welchen Einheiten (Größenord- 

nungen) Platz im Datenbereich allokiert wird. Theoretisch könnte man, da 
Dateien byteweise beschrieben werden, immer nur ein Byte auf einmal 
allokieren. Im schlimmsten Fall würde das aber dazu führen, daß lauter ein 
Byte lange Fragmente der Datei über die Diskette verstreut sind und man 
sich den Ort all dieser Bytes merken muß. In diesem Fall ist der Verwal- 
tungsaufwand enorm, ja, man würde für die Verwaltung der Informationen 

ebensoviel Platz benötigen wıe für ihre Speicherung (ein Zustand, den 
manche real existierende Verwaltungen angeblich bereits erreicht haben)! 

2
 

ve 

LOC CS & 
ER RR x 

Abb. 8.3: Gestreute Speicherung logisch zusammengehöriger Informationen 

Deshalb haben die Entwickler von GEMDOS einen anderen Weg beschrit- 
ten. Der Datenbereich wird in Zuweisungseinheiten von jeweils 2 Sektoren 
verwaltet. Diese Zuweisungseinheiten nennt man auch "Cluster". Jedesmal, 

wenn für Informationsspeicherung in einer Datei Platz benötigt wird, wird 

der Datei ein Cluster (also 1024 Byte = 1K) zugewiesen. Dies geschieht 
auch dann, wenn die Datei tatsächlich nur 100 Byte an Informationen ent- 
halten soll. Die restlichen 924 Byte sind dann verschwendeter Platz, soge- 

nannter "Verschnitt".
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GEMDOS merkt sich beim Einrichten der Datei den Anfangscluster und 
füllt ihn beim Beschreiben solange mit Informationen auf, bis er erschöpft 

ist. Dann wird der Datei irgendwo im Datenbereich ein neuer Cluster zuge- 
wiesen und es stehen wieder 1024 Byte zur Verfügung. Natürlich muß sich 

GEMDOS aber auch merken, wo dieser zweite und alle folgenden Daten- 
cluster der Datei zu finden ist. 

Dafür gibt es die FAT. Die FAT ("file allocation table") ist eine Liste, die 
darüber Auskunft gibt, welche Datencluster den einzelnen Dateien zuge- 
wiesen sind. Den ersten Cluster einer Datei findet man im Directory. Sucht 
man die Folgecluster, so muß man in der FAT nachsehen, die also eine Art 

Wegweiser durch den verstreuten Datenbereich ist. 

All dies, Directory und FAT, ist im Verwaltungsbereich der Diskette un- 

tergebracht. Wegen seiner Bedeutung führt GEMDOS auf der Diskette stets 
eine zweite Kopie der FAT mit, um im Fehlerfall mit dieser weiterzuar- 

beiten. Damit ergibt sich die folgende Gliederung einer Diskette: 

Bootsektor 

FAT Nr. 1 

FAT Nr. 2 

Directory 

Datenbereich 

8.2.3 Das Directory aus der Nähe betrachtet. 

Im Directory hält sich das GEMDOS die Dateinamen samt Extension und 
einen Verweis auf den ersten Datencluster der Dateı. Es gibt jedoch auch 
noch andere Informationen im Directory. GEMDOS versieht nämlich jede 
Datei mit einer Zeit- und Datumsmarkierung, die Auskunft darüber gibt, 

wann auf die Datei zum letzten Mal schreibend zugegriffen wurde. Dies 
setzt natürlich voraus, daß Sie bei der Arbeit durch Stellen der internen 

Uhr (im Kontrollfeld des Desktop oder indem Sie sich mit GEMDOS- 
Funktionen ein eigenes Programm dafür schreiben) dem Computer stets die 

richtige Vorstellung von Zeit und Datum beigebracht haben. Außerdem ist 
es möglich, eine Datei mit bestimmten Attributen zu versehen. Man kann 
sie als schreibgeschützt kennzeichnen, kann sie von der normalen Anzeige 
des Inhaltsverzeichnisses (beim Öffnen einer Diskette im GEM oder mit 
dem DIR-Befehl unter COMMAND) ausschließen (und somit ’verstecken’) 
und noch einiges mehr. 

Und dann gibt es da noch zwei besondere Arten von Dateien. Beim Forma- 
tieren einer Diskette können Sie eine (maximal 11 Zeichen lange) Disket- 
tenkennung vergeben. Diese Diskettenkennung speichert GEMDOS im 
Directory. Da aber mit einer Kennung keine verwendbaren Informationen
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verknüpft sind, muß man den Verzeichnis-Eintrag für die Kennung geson- 
dert markieren. 

Die zweite Kategorie der Einträge wird durch die hierarchische Datei- 
struktur von GEMDOS eingeführt. Sie können nämlich im Desktop nicht 
nur Dateien einrichten, sondern auch Unterverzeichnisse, die in der GEM- 

Terminologie "Ordner" genannt werden. Aus der Sicht des Betriebssystems 
sind Ordner nichts anderes als Dateien, die jedoch nicht mit Daten begin- 
nen, sondern an deren Anfang ein eigenes Directory für das Unterver- 

zeichnis steht. Diese Unterverzeichnisse können wiederum auf weitere Un- 
terverzeichnisse verweisen usw. Ein Verweis auf ein Unterverzeichnis steht 
- ähnlich wie ein normaler Datei-Eintrag - in einem Directory, ist jedoch 
gesondert gekennzeichnet, damit er nicht mit einem normalen Dateieintrag 
verwechselt werden kann. 

Da Unterverzeichnisse auch Dateien sind, kann es vorkommen, daß im 

Datenbereich einer Diskette Records zu finden sind, deren Aufbau einem 

Directory entspricht. 

8.2.4 Der Aufbau eines Directory-Eintrags 

Wer sich schon einmal näher mit MS-DOS beschäftigt hat, dem Betriebs- 
systems-Standard für Personal Computer, die auf den Prozessoren von Intel 

basieren, dem wird das soeben Gesagte über den Aufbau des Directory sehr 

vertraut vorkommen. Tatsächlich entspricht die Struktur des Directory und 
der FAT einer Diskette beim Atari völlig der von MS-DOS. Das geht sogar 
so weit, daß die Directory-Einträge auf der Diskette in der für die Intel- 
Prozessoren typischen Weise gespeichert werden: bei einem 16-Bit-Wort 

kommt zuerst das niedrigstwertige und dann erst das höchstwertige Byte. 
Eine "long integer" müßte daher - auf die Verhältnisse auf dem Motorola 
68000 übertragen - ’von hinten’ gelesen werden, um richtig interpretiert zu 
werden. 

Daher sind für die Ausgabe eines Directory-Eintrags durch ein C-Pro- 
gramm eine Menge an maschinennahen Byte-Fummeleien erforderlich, um 
alles wieder wie gewohnt hinzubiegen. C kann hier ın seiner Eigenschaft 
als Quasi-Assembler im vollen Lichte erstrahlen! 

Jeder Directory-Eintrag ist 32 Byte lang; in einem ATARI-Sektor haben 
somit 32 Directory-Einträge Platz. Der Directory-Eintrag gibt, wie bereits 
erwähnt, Auskunft darüber: 

o welchen Namen und welche Extension die Datei hat 

o wie groß sie ist
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O 

10) 

O 

6) 

ob es sich um eine normale Datei, ein Teilverzeichnis (Ordner) oder die 
Diskettenkennung handelt 
wo auf der Diskette die zugehörigen Daten zu finden sind (die Anfangs- 
clusternummer) 

welche Attribute gesetzt sind (z.B. "nur Lesezugriff") 
welche Datums- und Zeitinformation der Datei zugeordnet sind 

All dies ist in folgender Datenstruktur untergebracht: 

Adresse 0 bis 7: 

Der Dateiname; auf normalem Weg (von GEM oder COMMAND) ange- 
legte Dateinamen sind maximal 8 Zeichen lang und setzen sich aus- 
schließlich aus Großbuchstaben zusammen. Eine Ausnahme bilden Dis- 
kettenkennungen, die auch Null-Bytes enthalten. Mit dem Diskmonitor 
ist es natürlich möglich, ’seltsame’ Dateinamen zu erzeugen, die z.B. 
Kleinbuchstaben oder Grafikzeichen enthalten. Wozu das gut sein soll, 
müssen Sie allerdings schon selber wissen. 

Das erste Byte im Directory-Eintrag hat jedoch noch eine spezielle Be- 
deutung. Es kann die Werte 0x00, Ox2e und Oxe5 annehmen. Die Be- 

deutung dieser Werte: 

Byte 0 ist 0x00: Es handelt sich um einen unbenutzten (und völlig lee- 
ren) Direetory-Eintrag. Dies macht GEMDOS, um die Suche im Direc- 
tory nach freien Einträgen zu beschleunigen. 

Byte 0 ist Oxe5: Die Datei ist gelöscht. Daran kann man ersehen, daß 

"Löschen von Daten" auch unter GEMDOS erstmal nur ein logisches 

Löschen ist. Das Betriebssystem markiert lediglich das erste Byte im 

Namen der Datei, tut aber sonst noch nichts mit den Daten. 

Byte 0 ist Ox2e (also die Zeichenkonstante ’.’): Der vorliegende Record 

ist ein Teilverzeichnis. Teilverzeichnisse beginnen stets mit den beiden 
Namenseinträgen "." und ".."; weitere Informationen finden Sie in den 
Erläuterungen zur Clusternummer (Adressen Oxla und Ox1b). 

Teilverzeichnisse sind ja nichts anderes als Dateien, allerdings solche, 

die nicht mit Daten anfangen, sondern erstmal mit weiteren Inhaltsver- 

zeichnis-Einträgen. Die Clusternummer (s.u.) im Verzeichniseintrag sagt 
Ihnen, wo auf der Diskette das Teilverzeichnis zu finden ist. Die ersten 

beiden Einträge in einem Teilverzeichnis sind üblicherweise wieder 
Teilverzeichnis-Records. Einer zeigt auf das Teilverzeichnis selbst, der 
zweite (bei dem Byte 0 und Byte | den Wert Ox2e haben) zeigt auf das 

Elternverzeichnis des aktuellen Teilverzeichnisses.
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Adresse 8 - Oxa 

Extension der Datei; entweder lauter Leerzeichen oder Großbuchstaben. 

Adresse Oxb: 

Dateiattribut. Hierbei handelt es sich um einen Bitvektor; die einzelnen 

Bitpositionen sind wie folgt zu interpretieren: 

Bit 0 gesetzt: Auf die Datei darf nur schreibend zugegriffen werden. 

Bit 1 gesetzt: Die Datei ist unsichtbar (wird im Inhaltsverzeichnis nicht 
angezeigt) 

Bit 2 gesetzt: Systemdatei; ebenfalls keine Anzeige im Inhaltsverzeichnis 

Bit 3 gesetzt: Der Eintrag ist die Diskettenkennung; außer dem Namen 
und dem Attribut enthält dieser Eintrag keine sinnvolle Information 
mehr 

Bit 4 gesetzt: Der Eintrag ist für ein Teilverzeichnis 

Bit 5 gesetzt: Das sog. "Archiv"-Bit. GEMDOS nutzt diese Möglichkeit 
nicht, Sie können aber ın diesem Bit kennzeichnen, ob die Datei be- 

schrieben wurde und dies zum Sichern von Dateien benutzen. 

Adresse Oxc - 0x15 

Reserviert; wird von GEMDOS augenscheinlich nicht benutzt. 

Adresse 0x16 - 0x17 

Datumsinformation. Es handelt sich hierbei um ein 16 Bit langes Bitfeld, 
dessen einzelne Bitpositionen wie folgt zu interpretieren sind: 

Bit 15 Bit 0 
HHHHHMMMMMMSSSSS 

| | 
Adresse 0x17 Adresse 0x16 

Die Bits 15 bis 11 sind als die Binärzahl für die Stunde (0 - 23) zu in- 
terpretieren; die Bits 10 bis 5 liefern, als Binärzahl gelesen, die Minuten 

(0 - 59) und die Bits 4 bis 0 enthalten die Sekundeninformationen (in 2- 
Sekunden-Schritten).



296 Das Betriebssystem des Atari 

Adresse 0x18 - 0x19 

Zeitinformation; auch dies ist ein Bitfeld 4hnlich dem obigen. Es ist wie 
folgt zu interpretieren: 

Bit 15 Bit 0 

JJJJJJJMMMMDDDDD 

| | 
Adresse 0x19 Adresse 0x18 

Bit 15 bis 9: das Jahr, beginnend mit 1980 gezählt 
Bit 8 bis 5: der Monat (1 - 12) 
Bit 4 bis 0: der Tag (1 - 31) 

Adresse Oxla - Oxlb 

Anfangscluster der Dateiinformation; aufgrund der Struktur der FAT 
hat der erste Datencluster die Nummer 2. 

Die Clusternummer eines Teilverzeichnisses verweist auf den Anfang 
desselben im Datenbereich. Dies beginnt erstmal selbst mit einem Direc- 
tory mit dem hier beschriebenen Aufbau, dessen erste beide Einträge 
stets auch Verweise auf Directories sind, die die Namen "." und ".." (Sie 

haben schon richtig gelesen!) tragen. 

verweist in der Cluster-Nummer auf sich selbst (warum?) 
.. verweist in der Cluster-Nummer auf das Elternverzeichnis (steht hier 
die Clusternummer 00, so ist das Elternverzeichnis die Wurzel des Teil- 

verzeichnis-Baumes). Mit dem Eintrag "." ist es z.B. dem DIR-Kom- 
mando möglich, den Anfang für die Anzeige zu finden; mit ".." kann 
man aus einem Teilverzeichnis um eine Stufe ’nach oben’ steigen. 

Hinter diesen beiden Einträgen mit Sonderfunktion kommen bei den 
Teilverzeichnissen die Einträge für Dateien und eventuelle weitere Un- 
terverzeichnisse, die ganz normal aufgebaut sind. 

Adresse OxIc - OxIf 

Dateigröße in Bytes. 

Sie sehen: in einem Directory-Sektor stecken eine ganze Menge Informatio- 
nen, die nicht auf dem üblichen Weg interpretiert werden können. Deshalb 
wird der Diskmonitor für die Ausgabe eines Directory-Eintrags für jedes 
Teilfeld eine spezialisierte Sub-Funktion anstoßen, die weıß, wie das ent- 

sprechende Feld aufzufassen ist. Aber ehe Sie sich dem Listing des Disk- 
monitors zuwenden, sind noch einige Präliminarien nötig.
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8.3 Zugriff auf Systemvariablen 

Einige Seiten zuvor habe ich Ihnen eine Methode angekündigt, um auf die 
geschützten Systemvariablen zugreifen zu können. Dieses Versprechen will 
ich nun einlösen. Im Diskmonitor habe ich für den Zugriff auf System- 
variable keine Verwendung; deshalb steht das folgende Beispielprogramm 
alleine da - gleichsam zum Warmwerden. 

Von den vielen Systemvariablen des ATARI habe ich mir für das Beispiel 
eine ausgesucht, die Ihnen vielleicht nicht sonderlich nützlich erscheinen 

mag, die mir jedoch gut in mein didaktisches Konzept paßt. Zeigt sie doch, 

daß rekursive Strukturen, speziell über Zeiger verknüpfte Listenstrukturen, 

keinesfalls eine exotische Angelegenheit für ein paar Spinnerte sind, son- 
dern daß sie aus der modernen Informatik nicht mehr wegzudenken sind. 

Beim Studium der Systemunterlagen des ATARI stellt man nämlich fest, 
daß TOS verhältnismäßig oft von Listenstrukturen Gebrauch macht. Eine 
dieser Strukturen, der sogenannte "Buffer Control Block" oder BCB, wird 

zur Pufferung von Ein-/Ausgabedaten benutzt. Das folgende Beispielpro- 

gramm geht ihr nach. — 

Abb. 8.4: Struktur der Diskettenpuf fer
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Macht der ATARI Disketten-Ein-/Ausgaben, dann werden die zu übertra- 

genden Daten im Speicher gepuffert, um die Anzahl der Disketten-Zu- 

griffe gering zu halten. Die BCB’s sagen dem System unter anderem, an 
welchen Stellen im Speicher es die zugehörigen Puffer finden kann und 

welche Daten darin gespeichert sind. In der Abbildung 8.4 finden Sie eine 
Grafik der Struktur, die die BCB’s haben. 

An den Systemadressen 0x4B2 und 0x4B6 finden sich zwei Zeiger auf sol- 
che BCB-Strukturen. Jeder BCB zeigt unter anderem auf seinen Nachfolger 

und auf einen Puffer, der die Daten enthält. Diese Puffer als Liste zu or- 

ganisieren hat unter anderem den Vorteil, daß das System sich nach Bedarf 
weitere Puffer (mit zugehörigen BCB’s) irgendwo im Speicher besorgen 

kann, wo es gerade Platz findet. 

Im Beispielprogramm 8.1 sehen Sie, wie man in C absolute Adressen der 

Maschine manipulieren kann. Mit der Deklaration 

struct BCB *zeiger; 

wird zu Beginn von main ein Pointer auf eine BCB-Struktur vereinbart. 
Diesen Pointer setzt das Programm gleich zu Beginn auf die Adresse 0x4B2, 

indem ihm dieser konstante Wert zugewiesen wird. Der Wert an der 

Adresse 0x4B2 ist seinerseits ein Pointer, der auf den Anfang der ersten 
BCB-Liste zeigt. Wenn man ıhn dereferenziert, kann man also die in der 
Struktur gespeicherten Daten ansehen. 

Nun ist das Dereferenzieren des Pointers an der Adresse 0x4B2 nicht ganz 
so einfach, weil er sich nämlich im geschützten Teil des Speichers befindet. 

Die Anweisungsfolge: 

zeiger 

zeiger 

Ox4B2; 

*zeiger; 

würde zu einem Systemfehler (einem sogenannten Bus-Fehler) führen, weil 

mit *zeiger einer geschützten Systemadresse nachgegangen wird. Ehe man 

das tun kann, muß man also erst den Supervisor-Modus betreten, wozu es 

eine eigene Funktion im BDOS gibt. 

Im Hauptprogramm wird daher der Anfang der ersten BCB-Liste im 

Supervisor-Modus bestimmt. Ich gehe davon aus, daß diese Adresse (also 
die BCB-Liste selbst und die Puffer, auf die die BCB’s verweisen) nicht im 

geschützten Adressbereich liegt, so daß es anschließend möglich ist, den 

Supervisor-Modus wieder zu verlassen. Bei meinen Testläufen mit diesem 

Programm hat diese Annahme bisher nie zu Problemen geführt. Sollte aber 

das Programm bei Ihnen abstürzen (und dabei 2 kleine Bömbchen auf den 
Bildschirm zeichnen; dies ist das Kennzeichen für einen Bus-Fehler), so
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müssen Sie eventuell die gesamte main-Funktion im Supervisor-Modus ab- 

laufen lassen. 

Das Programm gibt jeden in der Liste eingehängten Datenpuffer in hexa- 
dezimaler Darstellung auf dem Bildschirm aus. Es tut dies unter Zuhilfe- 

nahme einer Technik, von der auch der Diskmonitor ausgiebigen Gebrauch 
macht: mit direkter Cursor-Steuerung. 

Der Bildschirm des ATARI ist nämlich in begrenztem Umfang intelligent, 
d.h. er kann eine Anzahl von Befehlen ausführen. Befehle, die der Bild- 

schirm versteht, sind zum Beispiel "Bildschirm löschen", "Zeile ab der aktu- 

ellen Cursor-Position bis zum Ende löschen", "Zeile einfügen" oder "Cursor 

an eine bestimmte Stelle des Bildschirms setzten". Das ist ganz praktisch 
und in C sehr leicht zu haben. Man erteilt die Befehle an den Bildschirm 
nämlich durch die übliche Zeichen-Ausgabe, z.B. mit putchar. Allerdings 
muß man kenntlichmachen, daß es sich bei den ausgegebenen Zeichen um 

Kommandos an den Bildschirm handelt. Dies besorgt der bereits von printf 
geläufige Escape-Mechanismus, nur daß das Escape-Zeichen für den Bild- 

schirm nicht der umgekehrte Schrägstrich von C ist, sondern das ASCII- 

Zeichen mit dem Hexadezimalcode Ox1B (das sinnigerweise den Namen 
Escape trägt!). Es ist somit sehr einfach, sich die Bildschirm-Befehle als C- 
Makros zu definieren. das Programm 8.1 zeigt zu Beginn, wie dies gemacht 
wird. 

Da der Inhalt der Datenpuffer nicht unbedingt lesbar sein muß, habe ich 

mich für hexadezimale Ausgabe des Puffers entschieden. Um einen Daten- 

puffer hexadezimal auszugeben, positioniert die Funktion hex_out den 

Cursor erst einmal in Zeile 4 und Spalte 8 des Bildschirms (mit dem Bild- 
schirm-Kommando GOTO, das als C-Makro definiert ist) und beginnt 

dann, einzelne Zeichen des Puffers hexadezimal darzustellen. Um Ihnen das 

Zurückblättern zu ersparen, habe ich die Funktion zur hexadezimalen Aus- 

gabe eines Zeichens hier noch einmal wiederholt. 

Der Anfang des Beispielprogramms zeigt auch, wie die Einbindung von 
Betriebssystems-Routinen im ATARI-C über die Bibliotheks-Funktion 
gemdos erfolgt. Im nächsten Kapitel finden Sie zu diesem Thema genauere 

Informationen.
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Prog. 8.1: Zugriff auf Systemvariable
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9 Der Diskmonitor 

9.1 Die Bedienung des Programms 

Um zu verstehen, wie ein Programm funktioniert, ist es wichtig zu wissen, 
wie es sich verhält. Das Verhalten des Programms wird nachhaltig von sei- 
nem Zweck diktiert. Der Zweck eines Diskettenmonitors ist schnell gesagt: 

mit ihm soll es möglich sein, jeden Sektor auf einer Diskette anzusehen 

und - falls gewünscht - zu verändern. 

Schon die Beschreibung des Zweckes macht klar, daß sich diese Aufgabe 

nicht ausschließlich mit GEMDOS-Funktionen erledigen läßt; denn GEM- 

DOS denkt in Dateien. Diskettensektoren, die keiner Datei angehören (ent- 
weder, weil sie noch unbenutzt sind oder - was interessanter ist - weil sie 

einer gelöschten und damit aus dem Bewußtsein von GEMDOS gestriche- 

nen Datei gehören) sind auf diesem Wege völlig unzugänglich. Das Kern- 
stück des Editors wird deshalb vom BIOS zu erledigen sein; aber sehen wir 
weiter. 

Aus der Aufgabenstellung folgt, daß ein Diskettenmonitor dem Benutzer 
erlauben muß, den Inhalt eines Sektors zu analysieren und ihn zu ändern. 

Da kommt schon das erste Problem ins Spiel. Diskettensektoren enthalten 

Bytes. Diese Bytes können - wenn der Sektor nicht leer ist - Teile einer 
Textdatei sein, sie können jedoch auch einem Programm angehören. Text- 
dateien enthalten fast ausschließlich abdruckbare Zeichen, also Klartext, 

weswegen es möglich sein sollte, einen Textsektor auch im Klartext zu be- 

trachten. Mit anderen Worten: der Editor muß Sektoren als ASCII-Text 
ausgeben und bearbeiten können. 

Die Bytes, aus denen die Programme bestehen, beschränken sich nicht auf 
die abdruckbaren Zeichen (siehe die ASCII-Tabelle im Anhang). Vielmehr 
ist jedes der 255 rechnerisch möglichen Bitmuster in einem Byte möglich; 
da hat eine ASCII- Anzeige nicht viel Sinn. Deswegen muß der Editor auch 

in der Lage sein, einen Programmsektor in hexadezimaler Darstellung an- 
zuzeigen. 

Wie Sie jetzt wissen, gibt es eine weitere Art von Sektoren, die über eine 
bestimmte Struktur verfügen: die Directory-Einträge. Da das Speicherungs- 
format von Directory-Einträgen etwas seltsam ist, sollte der Monitor noch 

über ein drittes Anzeigeformat für Directory-Einträge verfügen. Theore- 
tisch könnte sich der Benutzer des Monitors diese Informationen auch aus
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der hexadezimalen Darstellung zusammenklauben, doch dies ist schwierig. 
Nur Name und Extension einer Datei werden im Directory als Klartext ge- 
speichert; alle anderen Informationen müssen interpretiert werden, wobei 
das besonders bei den Bitfeldern für Datum und Uhrzeit etwas mühselig 
ist. Hinzu kommt, daß wegen des im letzten Kapitel bereits erwähnten 
Intel-Speicherformats alle über Bytelänge hinausgehenden Informationen 
erst umgedreht werden müssen; das soll besser der Computer besorgen! | 

Dieses Directory-Format ist dasjenige, in dem sich der Monitor beim Auf- 
ruf. meldet (vgl. Abbildung 9.1). Er zeigt dem Benutzer stets als erstes das 
Directory der Diskette an, von der er geladen wurde. In der Abbildung 
sehen Sie übrigens eine Diskette, auf der neben dem Monitor-Programm 
(DISKEDT.PRG) noch die Include-Dateien und C-Quellen enthalten sind, 
die den Monitor ausmachen. | 

Abb. 9.1: So meldet sich der Monitor 

In der Mitte des Bildschirms sieht man das Anzeige-Fenster, in dem die 
Sektor-Information im gewählten Format dargestellt wird. Die oberste 
Bildschirmzeile ist eine Menüzeile; sie sagt dem Benutzer, welche Kom- 
mandos er zur Verfügung hat. Er kann ein Kommando auswählen, indem 
er den (in der Menüzeile revers dargestellten) Anfangsbuchstaben des 
Kommandos tippt. Dazu muß er jedoch im Kommandomodus sein; dies er-
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kennt er an der vorletzten Zeile des Bildschirms, die ihn mit der Meldung 

"Ihr Kommando?" zur Eingabe eines Kommando-Buchstabens auffordert. 

Drückt der Benutzer übrigens in dieser Situation auf die Esc-Taste, dann 

wird das Monitor-Programm beendet. 

Die letzte Zeile des Bildschirms ist eine Statuszeile. Sie gibt dem Bediener 

unter anderem darüber Aufschluß, von welchem Laufwerk der angezeigte 

Sektor stammt, welche logische Nummer er hat und in welchen Bereich der 

Diskette er fällt. Weitere Informationen in der Statuszeile werden erst beim 

Edieren im ASCII- oder Hexadezimalmodus angezeigt. 

Ein Beispiel für das Arbeiten im ASCII-Modus finden Sie in der Abbil- 

dung 9.2. Der in der Abbildung bearbeitet Sektor ist übrigens der Anfang 

der Quelldatei für den Diskmonitor - der Monitor betrachtet sich selbst! 

Wie Sie sehen können, sind jetzt in der Statuszeile zwei Einträge hinzuge- 

kommen; sie betreffen die sogenannte "Alternativanzeige". 

Abb. 9.2: Sektor im ASCII-Format edieren 

Neben der ASCII- und der Hexadezimaldarstellung spielen in der EDV ja 

noch die Binärdarstellung und manchmal auch die Dezimaldarstellung eine 

Rolle. Gerade wenn man sich einen Sektor hexadezimal anzeigen läßt und 

man nicht so besonders fit im Hexadezimalsystem ist, kann es nützlich sein,
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zusätzlich noch den Binär- und Dezimalwert eines Zeichens zu erfahren. 

Deshalb weist der Monitor folgende Bequemlichkeit auf: ein Sektor wird in 

einem gewählten Anzeigeformat auf dem Bildschirm dargestellt (im Direc- 

tory-Format, hexadezimal oder im ASCII-Format); zusätzlich dazu wird das 

Zeichen, auf dem sich der Cursor gerade befindet, in der Statuszeile in 

Binärdarstellung angezeigt. Außerdem gibt es zu den Anzeigemodi "Hexa- 

dezimal" und "ASCII" jeweils einen Alternativmodus (für ASCII ist dies 

hexadezimal, für hexadezimal ist es dezimal) in dem das Zeichen unter dem 

Cursor ebenfalls in der Statuszeile angezeigt wird. 

In der Abbildung 9.2 arbeitet der Editor im ASCII-Modus; die Alternativ- 

anzeige ist in diesem Modus die Hexadezimal-Darstellung. Daneben sehen 

Sie in der Statuszeile auch noch den Binärwert des aktuellen Zeichens. 

Welches das aktuelle Zeichen ist, können Sie der Abbildung ebenfalls ent- 

nehmen: der Cursor (der in der Abbildung leider nicht sichtbar ist), befin- 

det sich auf dem 163ten Byte des Sektors; wer es ganz genau wissen will, 

der erfährt dies auch noch hexadezimal (vorletzte Bildschirmzeile). 

Abb. 9.3: Sektor im Hex-Format edieren 

Diese Positionsangaben sind besonders im Hex-Modus nützlich, für den die 
Abbildung 9.3 ein Beispiel bietet. Wie Sie sehen können, ist die Alternativ- 

darstellung in diesem Modus die dezimale Schreibweise. Der (in dieser Ab-
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bildung sichtbare; der Kerl blinkt eben!) Cursor befindet sich im Byte Nr. 

34 des Sektors. Bei der Arbeit im Hex-Modus ist noch zu beachten, daß ein 

Byte in Hexadezimal-Schreibweise zwei Ziffern benötigt. 

Abb. 9.4: Der Editor im Kommando-Modus 

Wenn Sie einen Sektor bearbeiten, dann können Sie den Cursor mit den 
Pfeiltasten der ATARI-Tastatur beliebig herumbewegen (probieren Sie mal 
aus, was am Zeilen-Anfang und -Ende passiert), Sie können ihn mit der 
Home-Taste in die linke obere Ecke bewegen und Sie können den Sektor- 
Inhalt verändern, indem Sie den Cursor an die gewünschte Stelle bewegen 

und dort die entsprechenden Zeichen tippen. Allerdings können Sie im 

Hex-Modus nur Hexadezimal-Ziffern (Ziffern 0 bis 9 und Buchstaben ’A’ 

mit ’F’) eingeben; andere Zeichen akzeptiert der Monitor in diesem Modus 

nicht. Im ASCII-Modus können alle auf der Tastatur vorhandenen Zeichen 

eingegeben werden. Der Directory-Modus erlaubt keine Änderungen; man 

kann ihn nur zum Analysieren eines Sektors benutzen. Haben Sie einen 

Sektor geändert und wollen wieder den Urzustand vor der Änderung her- 

stellen, dann können Sie dies durch Betätigen der Taste Undo erreichen. 

Schließlich erlaubt Ihnen die Taste Help, den Sektor zu löschen, ihn mit 

binären Nullen vollzuschreiben.
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Um einen anderen Sektor zu bearbeiten oder den Anzeige-Modus bzw. das 

Laufwerk zu wechseln, müssen Sie erst einmal in den Kommando-Modus 

kommen. Dies geschieht ganz einfach durch Drücken der Taste Esc. Dar- 

aufhin verschwindet die Positionsanzeige aus der vorletzten Bildschirmzeile 

und es erscheint stattdessen eine Eingabeanforderung. Die Abbildung 9.4 

zeigt dies für den Fall, daß sich der Editor gerade im ASCII-Modus befin- 

det. 

Kommandos werden ausgewählt, indem man den Anfangsbuchstaben des 
Kommandos eingibt; welche Kommandos verfügbar sind, kann der Benut- 
zer aus der Menüzeile erfahren. Um etwa auf eine beliebige Stelle auf der 

Diskette zu springen, benutzt man das Positioniere-Kommando. Die Abbil- 
dung 9.5 zeigt, wie der Monitor auf die Auswahl dieses Kommandos rea- 
giert: mit einem Hilfstext. 

Der Cursor steht in dem Eingabefeld hinter dem Kommando in der Menü- 

zeile und der Benutzer kann eine Sektornummer eingeben. Natürlich muß 
der Monitor verhindern, daß der Benutzer auf einen nicht existierenden 

Sektor zu positionieren versucht. Will man sich lediglich um einen Sektor 
auf der Diskette vorwärts- oder zurückbewegen, dann ist es einfacher, mit 

dem Blättere-Kommando zu arbeiten. Hier kann man sich einfach durch
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Betätigen der "+" oder "-"-Taste in Einerschritten durch die Sektoren bewe- 
gen. Auch das Vergrößern der Schrittweite ist möglich: dazu muß der Be- 
nutzer lediglich die Shift-Taste zusammen mit der "+"- oder "-"-Taste be- 
tätigen. Die Schrittweite ändert sich zur nächsten Zweierpotenz hin (also 1, 
2, 4, 8, 16 usw.), nimmt aber niemals einen Wert an, mit dem man über 

den Bereich der vorhandenen Sektoren hinausblättern könnte. 

Abb. 9.6: Anzeige-Modus ändern 

Nach dem gleichen Schema funktioniert die Änderung des aktuellen Lauf- 
werks und des Anzeigemodus. Für die Anderung des Anzeigemodus finden 

Sie ein Beispiel in der Abbildung 9.6. 

Der Hauptnutzen des Monitors besteht jedoch darin, beliebige Änderungen 
des Disketten-Inhalts vornehmen zu können. Dazu müssen Sie in einem 

Sektor durch Überschreiben den Inhalt modifizieren und dann im Kom- 
mando-Modus (den Sie mit Esc erreichen) das Schreibe-Kommando anwäh- 
len. Die Funktion bestätigt Ihnen, daß sie etwas getan hat, indem sie die 

Nummer des geschriebenen Sektors anzeigt. Dies sehen Sie in der Abbil- 
dung 9.7.
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Abb. 9.7: Gednderten Sektor auf Diskette schreiben
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9.2 Das Programm 

Das Programm setzt sich aus drei groBen Modulen zusammen. Das Haupt- 
modul DISKEDT realisiert die Benutzeroberflache: es ist fiir die Inter- 
pretation und Ausfithrung der Benutzer-Kommandos verantwortlich, wobei 

die meisten Kommandos interne Parameter setzen (Z.B. die Nummer des 
angezeigten Sektors, den Anzeigemodus, das aktuelle Laufwerk usw.). 

Das zweite Modul trägt den Namen RECEDIT und enthält denjenigen Teil 

des Programms, der die Bearbeitung eines Sektors im ASCH-Modus oder 

ım Hex-Modus auf dem Bildschirm erlaubt. 

Im dritten Modul mit dem Namen UTILITY sind einige Hilfsfunktionen 
enthalten, die von den anderen Moduln benötigt werden. Darunter finden 
sich auch alle Funktionen, die zur Ausgabe eines Sektors im Directory- 

Format (vgl. Abbildung 9.1) benötigt werden. Ich habe versucht, den Disk- 
monitor so weit wie möglich unabhängig von der Standard-Bibliothek zu 
machen: alle verwendeten Funktionen werden selbst definiert oder werden 
auf Leistungen des Betriebssystems zurückgeführt. Wenn Ihr Compiler also 
einigermaßen standardisiert ist und Ihnen Zugriff auf GEMDOS und BIOS 
erlaubt, dann sollten Sie mit dem Programm keine Schwierigkeiten haben. 

Alle drei Module sind ausführlich kommentiert, so daß auf Details des Pro- 
gramms nicht mehr eingegangen werden muß. Ich werde mich daher ledig- 
lich auf die Darstellung der allgemeinen Programmlogik und die wichtig- 
sten Fein- und Besonderheiten beschränken. 

Das Modul DISKEDT ist dafür zuständig, die Kommandos auszuführen, 
die der Benutzer in der Menüzeile vorfindet. Außerdem muß es den Bild- 
schirm aufbauen, d.h. Menü- und Statuszeile (soweit zu Programmbeginn 
möglich) auf einen zuvor gelöschten und somit gesäuberten Bildschirm 
schreiben. Das Modul arbeitet mit fünf globalen Variablen, in denen es 
sich den aktuellen Editor-Modus (ASCII, Hex oder Directory) merkt, die 
Nummer des Sektors, den der Benutzer bearbeiten will, die Nummer des 

vom Benutzer gewählten Laufwerks und die Nummer des Disketten-Be- 
reichs, in dem sich der aktuelle Sektor befindet. Eine weitere globale 

Variable enthält den gerade bearbeiteten Disketten-Sektor. Wie dieser von 
der Diskette ins Programm kommt, werden Sie gleich erfahren. 

Die Hauptfunktion main zaubert zuerst alle nötigen Beschriftungen auf den 
Bildschirm und initialisiert dann die Diskette. Dazu wird die Funktion 
drv_get aus dem Modul UTILITY benutzt, die als Wert die Nummer des 
aktuellen Laufwerks zurückgibt, welche auch gleich (mit drv_ _out) angezeigt 
wird.
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Der Monitor startet mit der Anzeige des Inhaltsverzeichnisses der aktuellen 
Diskette. Deshalb erfrägt das Programm die Sektornummer des Directory 
über eine UTILITY-Funktion und - jetzt kommt’s: liest den betreffenden 
Diskettensektor in den internen Sektor-Puffer. 

Wer jetzt glaubt, daß dazu jede Menge Programmieraufwand nötig wäre, 
der sieht sich angenehm überrascht: die BIOS-Funktion Rwabs (vgl. den 

Anhang) erledigt nämlich alle nötigen Aufgaben. Mir ist kein anderes Be- 
triebssystem bekannt, in dem der direkte Zugriff auf die Diskette ähnlich 
einfach zu erreichen wäre! 

Nachdem der Directory-Sektor eingelesen ist, wird er in lesbarer Form an- 

gezeigt; dies übernimmt die UTILITY-Funktion dir_out, die als Argument 
den Puffer mit den Daten und die Bildschirmzeile erhält, an der sie mit der 

Anzeige beginnen soll. 

Dann beginnt etwas, was Ihnen in diesem Programm noch öfter begegnen 

wird: eine Endlosschleife (FOREVER), hinter der sich ein Kommando- 
interpreter verbirgt. In der Endlosschleife wird die Funktion interpret ge- 
rufen, die Benutzerkommandos empfängt und ihre Ausführung veranlaBt. 

Sie teilt der rufenden Stelle - also main lediglich mit, ob der Benutzer das 

Programm verlassen oder den Modus ändern will. 

Die interessanten Einzelheiten passieren also in interpret, das deshalb ge- 
nauer unter die Lupe genommen werden soll. Auch diese Funktion besteht 

im wesentlichen aus einer Endlosschleife, die folgende Struktur hat: Zei- 

chen von der Konsole lesen; überprüfen, ob es sich um einen zulässigen 
Kommando-Buchstaben handelt und falls ja, das Kommando ausführen; 

ansonsten erneuter Schleifendurchlauf. 

Von den verfügbaren Kommandos sind drei Positionier-Kommandos: L än- 
dert das Laufwerk, B blättert um einen oder mehrere Sektoren weiter nach 

vorne oder hinten und P erlaubt das direkte Positionieren auf der Diskette. 
Diese Kommandos werden in interpret durch Aufruf einer eigenen Funk- 
tion pro Kommando ausgeführt. Meist zieht dies die Änderung interner 
Parameter nach sich. Nach Ausführung des Kommandos muß stets der 
Sektor-Puffer auf den neuesten Stand gebracht werden, es muß also wieder 

mit Rwabs absolut von der Diskette gelesen werden. 

Die Funktion Rwabs kann aber auch Schreiben; dies demonstriert das 
Kommando S. Alle zu seiner Ausführung nötigen Schritte sind in der 
Funktion interpret enthalten: zuerst wird der aktuelle Inhalt des Puffers 
Sectbuff geschrieben (kenntlich an der Eins als erstem Parameter), dann 

wird an der entsprechenden Position der Menüzeile die Nummer des ge- 
schriebenen Sektors angezeigt (dez_dump stammt aus UTILITY) und
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schlieBlich wird der rufenden Stelle (also main) mitgeteilt, daB sie weiter- 

machen - und das bedeutet, erneut den Kommandointerpreter aufrufen - 

soll. 

Etwas komplizierter ist die Verarbeitung der B-Option. Das eigentliche 

Blättern besorgt die Funktion ch_ sector (Abkürzung für change sector), die 

für das Setzen der internen Parameter zuständig ist und der ich mich gleich 

zuwenden werde. Nach Ausführung von ch_ sector steht jedenfalls fest, 
welchen Disk-Sektor der Benutzer bearbeiten möchte; dieser wird mit 
Rwabs in den internen Puffer gebracht, wo er dann - im zuletzt gewählten 

Modus, also ASCH, Hex oder Directory - bearbeitet werden kann. 

Nun jedoch zu ch_sector selbst. Hier ist - hauptsächlich aus Gründen der 
Verspieltheit des Programmierers - ein zusätzliches Feature eingebaut. 

Durch Betätigen der "+"- oder "-"-Taste kann man auf der Diskette vor- 

wärts- bzw. rückwärtsblättern. Drückt man jedoch zugleich die Shift-Taste, 

dann ändert sich dadurch die Schrittweite, mit der geblättert wird. Mal se- 
hen, wie man das programmtechnisch realisiert. 

Die Höflichkeit gebietet es, dem Benutzer erst mal einen passenden Hilfs- 

text zu präsentieren (Funktion help_2). Dann aber kommt schon wieder 

eine Endlosschleife: das hat den Effekt, daß der Benutzer für schnelles 

Blättern auch den Finger einfach auf der "+"- oder "-"-Taste liegen lassen 
kann. Nach jedem Blättern wird die Anzeige in der Statuszeile aktualisiert; 
dies besorgt der Code zu Beginn der Endlosschleife. Er schaltet auch den 
Cursor ein (dies ıst eine reine Vorsichtsmaßnahme; vermutlich ist er bei 
Betreten der Funktion ohnehin schon eingeschaltet), damit der Benutzer 
eine optische Kontrolle hat, welche Funktion (Blättern) er gerade benutzt. 

Als nächstes wird eine Zeichen von der Tastatur ohne Echo gelesen; dies 
besorgt die GEMDOS-Funktion Crawcin. Nun kann es sein, daß der Benut- 

zer auch eine Shift-Taste gedrückt hat. Mit der BIOS-Funktion Getshift 
kann dies ganz leicht überprüft werden, da diese einen Bit-Vektor liefert, 

in dem die ersten beiden Bits gesetzt sind, wenn eine der beiden Shift- 
Tasten betätigt worden war. Dies läßt sich ganz einfach durch Ausmas- 
kieren feststellen. | 

Bei gedrückter Shift-Taste wird die Schrittweite für das Blättern (ge- 
speichert in der Variablen increment) um die nächste Zweierpotenz verän- 

dert, wenn nicht dadurch über das physikalische Diskettenende hinausge- 
blättert wird. Das Diskende liefert die UTILITY-Funktion data_end; die 
nächste Zweierpotenz erreicht man im Binärsystem durch Shiften (ebenso 
wie man im Zehnersystem die nächste Zehnerpotenz durch Anhängen einer 

Null erreicht!).
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Der Rest der Endlosschleife ist einfach: je nach gedriickter Taste wird der 

aktuelle Sektor hoch-oder niedergezählt. Gerät man dabei über den zulässi- 
gen Wertebereich, so wird einfach auf den Diskettenanfang oder das Ende 
positioniert. Drücken der Return-Taste durch den Benutzer schließt die 

Funktion ab. 

Nach dem eben Gesagten sollte es Ihnen möglich sein, die anderen Kom- 

mandos von interpret und die damit assoziierten Funktionen zu verstehen. 
Ich kann mich also dem zweiten großen Modul zuwenden, das einen Sektor 

auf dem Bildschirm ediert. 

Auch edit, die Hauptfunktion dieses Moduls, ist im wesentlichen wieder 

ein Kommando-Interpreter (und wenn Sie jetzt "Endlosschleife" denken, 

dann liegen Sie ganz richtig!) Er reagiert auf Tastendruck, um den Cursor 
über den Bildschirm wandern zu lassen oder Änderungen in einem Sektor 
entgegenzunehmen. Etwas kompliziert wird die Angelegenheit jedoch da- 
durch, daß der Editor zwei Modi - Hexadezimal und ASCII - beherrschen 

muß und daß ich es mir in den Kopf gesetzt habe, jedes Zeichen auch 

noch ın einem Alternativ-Format in der Statuszeile anzuzeigen. Aber da- 
durch kommt die Würze in das Programm. 

Und die besteht in den ominösen Funktions-Pointern, von denen es in edit 

gleich ganze vier gibt, wobei einer sogar noch global deklariert ist. Warum 
der Aufwand? 

Nun, je nach Modus muß edit den Sektor in einem anderen Format anzei- 
gen (braucht also unterschiedliche Funktionen zur Bildschirmdarstellung des 
Sektors), muß eine andere Alternativ-Anzeige benutzen, darf nur be- 

stimmte Zeichen einfügen (im Hex-Modus nur die Hexadezimalziffern, im 
ASCH-Modus hingegen jedes von der Tastatur erzeugbare Zeichen) und 
muß sich beim Einfügen der Zeichen anders verhalten. 

Ohne die Möglichkeit, mit Funktions-Pointern zu arbeiten, hätte ich ver- 
mutlich zwei Edierfunktionen geschrieben, eine für jeden Modus. Die hät- 

ten sich allerdings in weiten Strecken geglichen und das beleidigt das 
Schönheitsempfinden des Programmierers. Mit Funktions-Pointern aber ist 
es ganz einfach. Alle vom Edier-Modus abhängigen Eigenschaften werden 

von unterschiedlichen Funktionen realisiert; edit ruft jedoch keine dieser 
Funktionen direkt, sondern benutzt Funktions-Pointer, denen als Wert je 
nach Modus dann die passenden Funktionen zugewiesen werden. Dazu ein 
einfaches Beispiel: im ASCII-Modus soll die Alternativdarstellung hexadezi- 
mal, im Hex-Modus dezimal erfolgen. Deshalb benutzt edit einen Funk- 
tions-Pointer Alternate (Großschreibung, weil dies eine globale Variable ist) 
und weist zu Beginn an Alternate entweder hex_d zur hexadezimalen Aus- 
gabe eines Bytes zu, oder dez_d, um das Byte in Dezimalschreibweise



Der Diskmonitor 315 

darzustellen. Ebenso verhält es sich mit show fun, der Funktion, die den 
zu bearbeitenden Sektor auf dem Bildschirm anzeigt. Im Hex-Modus ist 
dies hex out, im ASCH-Modus ist es. asc_out; beide Funktionen finden Sie 
im Modul UTILITY. 

Im Hex-Modus darf der Benutzer nur Hexadezimalziffern eingeben; der 
Editor braucht also eine Funktion, die überprüft, ob Eingabezeichen legal 
sind; diese ist Wert des Funktionspointers legal, der im Hex-Modus die 

Funktion is hex zugewiesen bekommt. Im ASCII-Modus sind alle Zeichen 
legal; deshalb hat legal in diesem Modus als Wert eine Funktion true, die 
stets den Wahrheitswert "wahr" zurückliefert. 

Der Editor soll den Cursor über den Bildschirm wandern lassen, aber auch 

legale Eingabezeichen auf dem Bildschirm darstellen und sie ın den Sektor- 
Puffer einfügen. Im ASCII-Modus ist dies kein Problem; im Hex-Modus 
bereitet es jedoch einige Schwierigkeiten, auf die ich noch zu sprechen 

kommen werde. Aus der Sicht von edit ist jedenfalls alles halb so schlimm: 
um das Einfügen von Zeichen in den Puffer und deren Darstellung am 
Bildschirm kümmert sich eine Funktion, die an den Pointer insert gebunden 
ist. Zu Beginn von edit wird in Abhängigkeit vom Modus eben einfach die 
passende Funktion hier eingehängt. 

Was aber - außer Initialisieren - macht die Funktion edit sonst noch; was 
geschieht in der ominösen Endlosschleife? Diese ist wieder ein Komman- 
dointerpreter nach bewährtem Strickmuster. Diesmal reicht es jedoch nicht 
aus, ein Zeichen von der Tastatur zu lesen. Der Benutzer kann nämlich 

auch Funktionstasten betätigen (die Pfeiltasten sowie Undo und Home) und 

diese liefern kein Zeichen. Wie kann man dann im Programm erkennen, ob 
sie gedrückt wurden? 

Dies geht mit Hilfe des sogenannten Scancodes. Jeder Taste der ATARI- 
Tastatur ist eine eindeutige Nummer zugeordnet - eben der "Scancode" 
dieser Taste - und es gibt eine TOS-Funktion (Bconin aus dem BIOS mit 
Parameter 2), die bei Betätigen der Taste nicht nur das zugehörige Zeichen, 
sondern auch den Scancode zurückliefert. Die UTILITY-Funktion scan 

greift auf diese Betriebssystems-Funktion zurück, liefert als Wert das gele- 

sene Zeichen (oder 0, falls eine Funktionstaste betätigt wurde) und schreibt 

in den Integer-Pointer, der ihr Argument ist, den Scancode der Taste. Nach 

Aufruf von scan steht also in character das Zeichen, falls der Benutzer eine 

Buchstaben-Taste betätigte, auf jeden Fall aber in der Integer scancode der 

Scancode der Taste. Die Scancodes der Funktionstasten sind als symbolische 
Konstanten zu Beginn des Programmes vereinbart. Somit ist es edit jetzt 
möglich, je nach gedrückter Taste die entsprechenden Kommandos zu ge- 
ben.
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Hat der Benutzer ein Zeichen eingegeben, so kann es entweder Escape sein, 
welches ein Verlassen des Editors bewirkt, oder es ist irgend ein darstell- 

bares Zeichen. Ist es ein im aktuellen Modus legales Eingabezeichen, dann 

wird es mit der aktuellen Einfügefunktion in den Sektorpuffer eingefügt 
und am Bildschirm angezeigt. Sehen Sie sich einmal an, wie das - zu Be- 
ginn der FOREVER-Schleife - in edit gemacht wird: jetzt können Sie se- 
hen, welche enormen Möglichkeiten im Konzept der Funktions-Pointer 

verborgen sind! 

Hat der Benutzer kein Zeichen eingegeben, dann wird er wohl eine Funk- 
tionstaste betätigt haben; im folgenden switch werden deshalb die Scancodes 
ausgewertet. Bei den Funktionen zur Cursorbewegung besteht der gesamte 
Aufwand darin, die entsprechende Bewegungs-Funktion aufzurufen und 

dann einen erneuten Schleifendurchgang anzustoßen. 

Bei der Funktion, mit der der alte Pufferinhalt wiederhergestellt werden 

kann (case-Marke UNDO), wird in edit etwas mehr Aufwand betrieben. 
Beim ersten Aufruf hat sich edit wohlweislich den Anfangszustand des 

Puffers an einem sicheren Ort (dem Array savebuf) gemerkt. Dieser An- 

fangszustand wird nun durch Kopieren wieder in den Arbeitspuffer über- 

tragen, der neue Pufferinhalt mit der aktuellen Anzeigefunktion (Hex oder 
ASCII) angezeigt und dann der Cursor an den Sektor-Anfang gesetzt. 

Vielleicht haben Sie sich schon gefragt, wie das Programm das Zusammen- 
spiel zwischen der am Bildschirm angezeigten Information und dem Inhalt 
des Sektorpuffers organisiert. Denn alles, was der Benutzer auf dem Bild- 

schirm sieht und alle Veränderungen, die er dort durch Bewegen des Cur- 

sors oder durch Überschreiben von alter Information vornimmt, muß sei- 

nen Niederschlag ja auch in den im Programm gespeicherten Daten finden. 

Zu diesem Zweck unterhält der Editor einen Zeiger in den Sektor-Puffer, 
einen char-Pointer, der bezeichnenderweise den Namen Cursor trägt und 
der immer genau auf das Zeichen im Puffer zeigt, über dem sich der auf 
dem Bildschirm sichtbare blinkende Cursor gerade befindet. Jede Funktion, 

die den Bildschirm-Cursor verändert, ıst dafür verantwortlich, daß auch 

der interne Puffer-Zeiger wieder auf den richtigen Stand gebracht wird. 

Im ASCH-Modus ist dies kein großes Problem, da die Entsprechung zwi- 
schen Bildschirm-Anzeige und Pufferinhalt eindeutig ist: ein Zeichen auf 
dem Bildschirm entspricht in der ASCII-Anzeige einem Byte im Sektor- 
Puffer. Bewegt sich der Bildschirm-Cursor nach rechts, so reicht es aus, 
dem Sektor-Pointer mit ++Cursor nachzuziehen. 

Anders liegen die Verhältnisse im ASCII-Modus. Ein Byte des Puffers ent- 
spricht hier zwei Zeichen in der Bildschirmanzeige. Bildschirm-Cursor und
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Sektor-Pointer können nun nicht mehr synchron bewegt werden. Um nur 

ein Beispiel zu geben: Bewegt sich der Bildschirm-Cursor nach rechts, so 

darf der Sektor-Pointer nur inkrementiert werden, wenn sich der Cursor im 

niederwertigen Halbbyte eines angezeigten Bytes befand. Bei den anderen 
Bewegungsvorgängen sind die Vorgänge ebenso kompliziert. Genaueres er- 
fahren Sie, wenn Sie die Bewegungsfunktionen up, left, right und wie sie 
alle heißen eingehender studieren. 

Auch das Eingeben von Zeichen zum Zweck der Veränderung eines Sektors 
hat so seine Tücken. Nicht im ASCII-Modus: da braucht man lediglich das 
eingelesene Zeichen an die Stelle im Sektorpuffer zu schreiben, auf die der 

Pointer Cursor zeigt. Was aber ist im Hex-Modus? Hier ändert ein Ein- 

gabezeichen ja stets nur ein Halbbyte und im Sektor-Puffer ist dazu einige 

Bitfummelei nötig, die auch noch unterschiedlich ausfällt, je nachdem, ob 

das höher- oder niederwertige Halbbyte geändert werden soll. Sehen Sie 

sich dazu die Funktion hex_in an. | 

Ein Wort noch zu den Bewegungsfunktionen. Sie sind für einen automati- 
schen Zeilensprung ausgelegt. Ein Beispiel: will der Benutzer nach rechts 
(Funktion right), steht der Cursor jedoch bereits am Ende der Zeile, dann 
springt er in den Anfang der nächsten Zeile. Steht der Cursor am Ende des 
Sektors, dann springt er ganz an den Anfang des Sektors. Ähnlich verhalten 
sich die anderen Bewegungsfunktionen. 

Das dritte große Modul trägt den Namen UTILITY und enthält vermischte 
Funktionen, die für andere Funktionen Hilfsdienste verrichten, aber auch 

den Teil des Editors, der die Ausgabe eines Directory-Sektors übernimmt. 

Um diesen Teil zu verstehen, müssen Sie sich nur die Darstellungen im 

Kapitel 8 vor Augen halten. 

Noch eine Anmerkung zu den Listings, ehe Sie sich ins Vergnügen stürzen. 
Alle drei Module werden mit der Zeile #include <header.h> eingeleitet. In 
der Datei header.h stehen lediglich weitere, systemspezifische include- 

Direktiven für den Makro-Präprozessor, mit denen Dateien, die der Com- 

piler benötigen, wie z.B. stdio.h mit in das Programm gezogen werden. 
Welche Dateien Sie mit header einschließen lassen, ist Systemabhängig; es 

empfiehlt sich jedoch, eine Datei mit aufzunehmen, die die C-Namen der 

Betriebssystems-Funktionen enthält, welche in der ATARI-Dokumentation 

und in diesem Buch verwendet werden (siehe die Anhänge zu GEMDOS 
und BIOS). Im Unterkapitel 9.5 sehen Sie, wie eine solche include-Datei 

(die bei mir den Namen cnames.h trägt) für das ATARI-C aussieht. 

Die Datei screen.h, die vom UTILITY-Modul gebraucht wird, enthält C- 
Makros zur Bildschirmsteuerung. Ihren Inhalt finden Sie im Unterkapitel 

9.6. In der Datei ctype.h befinden sich die üblichen, mehrfach im Buch
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verwendeten Makros zur Klassifikation von Zeichen. Sie ist im Unter- 
kapitel 9.7 noch einmal aufgeführt. Sollten Sie Fragen zu den GEMDOS- 

und BIOS-Funktionen haben, die über die im Anhang gegebenen Informa- 

tionen hinausgehen, so empfehle ich Ihnen, dazu ein spezielles System- 

handbuch zu Rate zu ziehen. 

Und jetzt bleibt mir nur noch, Ihnen viel Spaß mit den Listings zu wün- 

schen!
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9.3 Listing des Moduls DISKEDT 
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9.4 Listing des Moduls RECEDIT 
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9.5 Listing des Moduls UTILITY 
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9.6 Die Datei screen.h 
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Anhang A: Die GEMDOS-Funktionen 

00 

Ol 

02 

03 

04 

05 

06 

PtermO () 
Prozeß beenden; gibt Kontrolle an rufendes Programm zurück (mit 

Return-Code 0) 

Cconin() 
Liefert Zeichen vom Standard-Eingabekanal; gelesenes Zeichen wird 

an Standard-Ausgabekanal geechot. 

Wert von Cconin ist eine long int, bei der im unteren Wort das Zei- 

chen, im oberen Wort der Scan-Code der betätigten Taste steht. 

Cconout (chr) 
char chr; 
Schreibt ein Zeichen auf den Standard-Ausgabekanal 

Cauxin () 
Holt ein Zeichen von der seriellen Schnittstelle (RS232-Schnittstelle) 

Cauxout (chr) 
char chr; 

Gibt ein Zeichen an der seriellen Schnittstelle aus. 

Cprnout (chr) 
char chr; 
Schickt ein Zeichen an den Drucker (Parallelschnittstelle). Kann das 

Zeichen nicht gesendet werden, so hat die Funktion den Wert 0. 

Crawio(wrd) 
int wrd; 
Allgemeine zeichenweise Ein-/Ausgabe-Funktion für die Standard- 
Kanäle. Falls wrd den Wert Ox00ff hat, wird ein Zeichen (ohne 
Echo) vom Standard-Eingabekanal gelesen und als Wert zurückgege- 

ben; ist kein Zeichen verfügbar, dann liefert die Funktion den Wert 

0. 

Hat wrd einen anderen Wert als 0x00ff, dann wird dieser Wert als 

ASCII-Zeichen interpretiert, das am Standard-Ausgabekanal ausgege- 

ben wird.
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07 

08 

09 

0a 

Ob 

de 

10 

11 

Crawcin() 
Zeichen ohne Echo vom Standard-Eingabekanal lesen. Steuerzeichen 

wie z.B. Control-C oder Control-S werden nicht interpretiert. 

Cnecin() 
Zeichen ohne Echo vom Standard-Eingabekanal lesen. Steuerzeichen 

wie z.B. Control-C oder Control-S werden im Unterschied zu Craw- 

cin interpretiert. 

Cconws(str) 
char *str; 
Schreibt einen String auf den Standard-Ausgabekanal; der String muß 
C-Konventionen genügen, also mit einem Null-Byte abgeschlossen 
sein. 

Cconrs (buf) 
char *buf; 

Liest eine Zeile vom Standard-Eingabekanal. Beim Aufruf der Funk- 
tion gibt *buf die Länge des Puffers abzüglich 1 ab; nach Verlassen 
der Funktion enthält *(buf+ 1) die Anzahl der gelesenen Zeichen; die 

Daten beginnen an der Position *(buf + 2). | 

Die Funktion erlaubt das Edieren der Eingabezeichen (z.B. Zeichen 
löschen mit Backspace). 

Cconis() 
Überprüft den Status des Standard-Eingabekanals; hat den Wert 0, 

falls kein Zeichen verfiigbar ist und einen von Null verschiedenen 
Wert sonst. 

Dsetdrv (drv) 
int drv; 

Aktuelles Laufwerk setzen; dry ist die Laufwerksnummer (0 = A, 1 = 
B, ...). Wert von Dsetdrv ist ein Bitvektor der dem System bekannten 
Laufwerke (Bit 0 = A, Bit 1 = B, ...). 

Cconos () 

Überprüft den Ausgabestatus der Konsole; hat den Wert 0, wenn die 

Konsole kein Zeichen empfangen kann und einen von 0 verschie- 
denen Wert sonst. 

Cprnos() 

Überprüft den Ausgabestatus des Druckers; hat den Wert 0, wenn der 
Drucker kein Zeichen empfangen kann und einen von 0 verschie- 
denen Wert sonst.
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12 

13 

19 

1a 

20 

2a 

2b 

Cauxis() 
Überprüft den Eingabestatus der seriellen Schnittstelle; hat den Wert 

0, wenn kein Zeichen an der RS232-Schnittstelle verfügbar ist und 
einen von 0 verschiedenen Wert sonst. 

Cauxos () 
Überprüft den Ausgabestatus der seriellen Schnittstelle; hat den Wert 
0, wenn die RS232-Schnittstelle kein Zeichen empfangen kann und 

einen von 0 verschiedenen Wert sonst. 

Dgetdrv () 
Liefert die Laufwerksnummer des aktuellen Laufwerks. 

Fsetdta(ptr) 
long ptr; 
Setzt die DTA (Disk-Transfer-Adresse) fiir nachfolgende Aufrufe 
von Fsfirst und Fsnext. 

Super (stack) 
long stack; 
Versetzt den Prozessor in User- bzw. Supervisor-Modus. Wenn sich 

der Prozessor beim Aufruf von Super im User-Modus befindet, dann 
wird der Supervisor-Modus eingeschaltet, wobei stack als Supervisor- 

Stack benutzt wird. Hat stack den Wert 0, dann wird der aktuelle 

User-Stack als Supervisor-Stack benutzt. 

Befindet sich der Prozessor beim Aufruf von Super im Supervisor- 
Modus, dann kehrt er in den User-Modus zuriick. Wert von Super ist 

der alte Wert des Supervisor-Stacks. 

Tgetdate () 
Liefert das Systemdatum; Wert von T’getdate ist eine Bitvektor, der 
wie folgt interpretiert werden muß: Ä 

Bits 

4 Tag 1..31 0 

5..8 Monat 1..12 

9..15 Jahr 0..119 (gerechnet ab 1980!) 

Tsetdate (date) 
int date; 
Setzt das Systemdatum; date muß in dem bei Tgetdate beschriebenen 
Format sein.
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2C 

2d 

2f 

30 

31 

36 

39 

Tgettime () 
Liefert die Systemzeit als Bitvektor, der wie folgt interpretiert wer- 

| den muß: 

Bits 

0..4 Sekunden 0..59 

5..10 Minuten 0..59 

11..15 Stunden 0. .23 

Tsettime (time) 
int time; 
Setzt die Systemzeit; time muß in dem bei Tgettime beschriebenen 
Format sein. 

Fgetdta () 
Liefert die Adresse der aktuellen DTA (siehe Funktion Fsetdta, Fs- 

next und Fsfirst). 

Sversion() 
Liefert die Versionsnummer von GEMDOS. 

Pternres (keep, ret) 
long keep; 
int ret; 
Beendet den aktuellen Prozeß, ohne ihn aus dem Speicher zu entfer- 

nen (hält ihn also resident). ret ist der Return-Code, der an den ru- 
fenden Prozeß übergeben wird; keep ist die Anzahl der Bytes, die im 
Speicher behalten werden sollen. 

Dfree(buf, drv) 
struct info *ip; 
int drv; 
Liefert Informationen über das Laufwerk, dessen Nummer in drv 

übergeben wird. Die Information wird in einer Struktur übergeben, 
auf die ip zeigt. Die info-Struktur ist wie folgt aufgebaut: 

struct info 
{ long b free; /* Anzahl freier Cluster auf dem Laufwerk */ 

long b total; /* Gesamtzahl der Cluster */ 
long b secsiz; /* Anzahl Bytes pro Sektor */ 
long b clsiz; /* Anzahl Sektoren pro Cluster */ 

} 

Dcreate (path) 
char *path; 
Richtet ein Teilverzeichnis ein; path enthält den (MS-DOS-kompati- 
blen) Zugriffspfad auf das einzurichtende Teilverzeichnis. path ist ein 
String, der der C-Konvention gehorcht.
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3a 

3b 

3c 

3d 

3e 

Ddelete (path) 
char *path; 
Löscht ein Teilverzeichnis; zur Beschreibung von path siehe Dcreate. 

Dsetpath (path) 
char *path; 
Wechselt das aktuelle Teilverzeichnis; zur Beschreibung von path 

siehe Dcreate. 

Fcreate(name, attr) 
char *name; 
int attr; 
Richtet eine Datei ein; name ist der Dateiname, der entweder ohne 
Zugriffspfad angegeben werden kann, womit die Datei im aktuellen 
(Unter)-Verzeichnis eingerichtet wird, oder mit einem Pfad versehen 
ist, wobei das angegebene Unterverzeichnis jedoch bereits auf der 
Diskette existieren muß. 

Wert von Fcreate ist entweder eine Kanalnummer oder eine negative 
Fehlernummer. 

Im Parameter attr - ein Bitvektor - können Datei-Attribute gesetzt 
werden; die einzelnen Bits haben folgende Bedeutung: 

01 nur lesender Zugriff auf Datei erlaubt 

02 versteckte Datei; wird nicht angezeigt 

04 Systemdatei; ist ebenfalls versteckt 
08 Diskettenkennung (11 Zeichen lang) 

Fopen (name, mode) 
char *name;; 
int mode; 
Öffnet eine Datei mit Namen name; mode hat den Wert 0, 1 oder 2, 
je nachdem, ob lesender, schreibender oder uneingeschränkter Zu- 
griff verlangt wird. Wert der Funktion ist eine Dateinummer ("File 
Handle"), wobei mit 6 begonnen wird, da die ersten 5 Nummern be- 
reits für die Standard-Kanäle vergeben sind, nämlich 

für Standard-Eingabe (Tastatur) 

für Standard-Ausgabe (Bildschirm) 

für Standard-Fehlerkanal (Bildschirm) 

für die serielle Schnittstelle 

für den Drucker E
W
N
]
 
©
 

Fclose (handle) 
int handle; 
Schließt die Datei mit der Nummer handle.
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3f 

40 

4l 

42 

Fread(handle, count, buf) 
int handle; 
long count; 
char *buf; 
Überträgt count Bytes aus der Datei mit der Kanalnummer handle in 
den Puffer buf. Wert ist die Anzahl der tatsächlich gelesenen Bytes 
oder eine negative Fehlernummer (vgl. dazu read aus der Standard- 

Bibliothek und das Kapitel 7!). 

Fwrite(handle, count, buf) 
int handle; 
long count; 
char *buf; 
Schreibt count Bytes in die Datei mit der Kanalnummer handle aus 

dem Puffer buf. Wert ist die Anzahl der tatsächlich geschriebenen 
Bytes oder eine negative Fehlernummer (vgl. dazu write aus der Stan- 
dard-Bibliothek und das Kapitel 7!). 

Fdelete (name) 
char *name; 
Löscht die Datei mit dem angegebenen Namen. 

Fseek(offset, handle, mode) 
long offset; 
int handle; 
int mode; 

Setz den Dateizeiger fiir Lese-/Schreibzugriffe in der Datei mit 
Kanalnummer handle. offset ist der Versatzwert, der je nach dem 
Wert von mode unterschiedlich interpretiert wird. Zulässige Werte für 
mode sind: 

0 Positionieren ab Dateianfang 

1 Positionieren ab aktueller Position 

2 Positionieren ab Dateiende 

(Vergleiche Kapitel 7).
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43 

45 

46 

47 

48 

Fattrib(path, mode, attr) 
char *path; 
int mode; . 
int attr; 
Falls mode gleich 0, liefert die Funktion die Attribute der mit path 
bezeichneten Datei. Hat mode den Wert 1, so werden die Attribute 
auf den Wert von attr gesetzt. Attribute sind in einem Bit-Vektor 

gespeichert, der wie folgt zu interpretieren ist: 

01 nur Lesezugriff erlaubt 

02 versteckte Datei 

04 Systemdatei (ganz besonders versteckt!) 
08 Diskettenkennung 

10 Teilverzeichnis 

20 Archiv-Bit: Datei wurde beschrieben 

Fdup (stdhandle) 
int stdhandle; 
Liefert als Wert eine Kanalnummer, die einen Standard-Kanal (den 
Sie mit stdhandle auswählen; siehe die Funktion Fopen) bezeichnet; 
man hat somit zwei Nummern für dieselbe Datei zur Verfügung. 
Wird mit Fseek der Dateizeiger für den einen Kanal verändert, so 
ändert sich damit auch die Position im anderen Kanal. 

Fforce (stdhandle, nonstdhandle) [6] 
int stdhandle; 
int nonstdhandle; 
Erzwingt, daß stdhandle denselben Kanal wie nonstdhandle bezeich- 

net. Damit können die Standard-Kanäle umgelenkt werden. Ist 
nonstdhandle z.B. die Nummer einer Programmdatei, in die ausgege- 
ben wird und stdhandle hat den Wert 1 (Bildschirmausgabe), dann 
werden die Bildschirm-Ausgaben in die datei gelenkt. 

Dgetpath (pathbuf, drv) 
char *pathbuf; 
int drv; 
Schreibt den aktuellen Zugriffspfad für das Laufwerk drv (Lauf- 
werksnummer angeben!) in den Puffer pathbuf. Der Puffer muß min- 
destens 64 Bytes lang sein. 

Malloc (amount) 
long amount; 
Allociert Speicherplatz; amount gibt die Anzahl der zuzuweisenden 
Bytes an. Wert von Malloc ist ein Pointer auf den Anfang des allo- 
kierten Speicherplatzes oder 0, falls ein Fehler auftrat.
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49 

4a 

Ab 

4c 

Mfree (addr) 
char *addr; | 
Gibt den Speicherblock, auf den addr zeigt, wieder frei (siehe 

Malloc). 

Mshrink(zero, mem, size) [12] 
int zero; 
char *men; 
long size; 
Verkürzt einen bereits zugewiesenen Speicherblock (siehe Malloc). 
Der Parameter zero muß den Wert 0 haben, mem ist ein Pointer auf 

den Anfang des Blocks und size gibt die Anzahl Bytes an, die im 
Block gehalten werden sollen. Ein von Null verschiedener Funktions- 

wert zeigt einen Fehler an. 

Pexec (mode, path, commandline, environment) [16] 
int mode; 
char *path; 
char *commandline; 
char *environment; 
Mit dieser Funktion kann das Laden und Nachladen von Programmen 
bewirkt werden. path enthält den Pfadnamen des Programms, com- 
mandline eine Kommandozeile, die an dieses Programm übergeben 

werden soll, environment ıst der aktuelle (MS-DOS-kompatible) 

Umgebungsblock; hat er den Wert 0, so erbt das gerufene Programm 
die Umgebung des rufenden Prozesses. mode gibt Auskunft über den 
Lade-Modus; zulässige Werte sind: 

Programm laden und. Starten 

Programm nur läden 

Base-Page für Programm einrichtenbasepage 

Programm starten W
k
s
 
W
O
 

Im Modus 0 hat die Funktion als Wert den Return-Code des gerufe- 
nen Programms (siehe Pterm0, Pterm und Ptermres); ein negativer 
Funktionswert signalisiert in allen Modi einen Fehler. 

Pterm (code) 
int code; 
Aktuellen Prozeß beenden und Return-Code code an rufenden Prozeß 

zurückgeben.
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4e 

Af 

56 

57 

Fsfirst(spec, attr) [8] 
char *spec; 
int attr; 
Directory durchsuchen nach einer Datei, deren Name auf das in spec 
gespeicherte Muster paBt. Mit attr kann die Suche auf Dateien mit 
bestimmten Attribut-Kombinationen beschränkt werden. Fsfirst lie- 

fert sein Ergebnis in der aktuellen DTA ab. (Genaueres finden Sie im 
Kapitel 7). 

Fsnext() 
Directory nach nächstem passenden Eintrag durchsuchen (s. Kapitel 

7). 

Frename(zero, old, new) [12] 
int zero; 
char *old; 

char *new; 

Datei umbenennen. zero muß immer 0 sein; old enthält den alten, 
new den neuen Dateinamen. 

Fdatime(handle, buf, set) [10] 
int handle; 
char *buf; 

int set; 
Liefert oder setzt das Datei-Datum fiir die Datei mit der Kanalnum- 

mer handle im Directory. Falls set den Wert 0 hat, liefert die Funk- 

tion Datum und Zeit im Puffer buf ab. Hat set den Wert 1, dann 

wird der Directory-Eintrag mit dem in buf gespeicherten Wert mar- 
kiert.
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Anhang B: Die BlOS-Funktionen 

(0) 

(1) 

Getmpb 
Getmpb(p mpb) 
long p _mpb; 
p_mpb ist die Adresse eines Speicherblocks von der Größe size- 
of(MPB), der zur Aufnahme des anfänglichen Speicher-Parameter- 
blocks ("MPB" ist die Abkiirzung fiir "Memory Parameter Block") des 
Systems bestimmt ist und der von der Funktion mit Informationen 

gefüllt wird. Der Parameter-Block hat folgende Struktur: 

define MPB struct mpb 
define MD struct md 
define PD struct pd 

MPB 

{ MD *mp_nfl; /* Freispeicher-Liste */ 
MD *mp mal; /* Liste zugewiesener Speicherbereiche */ 
MD *mp_ rover; /* roving ptr */ 

+; 
MD 

{ MD *m_link; /* naechster MD (oder NULL) */ 
long m_start; /* Startaddresse des Blocks */ 
long m_length; /* Anzahl der Bytes im Block */ 

PD *m_own; /* Prozeß-Deskriptor */ 
7, 

Bconstat 
int Bconstat (dev) 
int dev; 
Liefert den Eingabestatus eines zeichenorientierten Geräts. Wert ist 
entweder 0, wenn kein Zeichen verfügbar ist, oder -1 (Oxfff), wenn 
am Gerät (mindestens) ein Zeichen ansteht. 

Zulässige Werte für den Parameter dev sind: 

PRT: (Drucker; Parallelport) 
AUX: (serielle RS232-Schnittstelle) 
CON: (Bildschirm) 
MIDI port 

Keyboard port (intelligente Tastatur des Atari) E
W
N
 

=]
 

©
 

Die folgende Ubersicht gibt an, welche Operationen mit den einzel- 
nen Geräten erlaubt sind.
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(2) 

(3) 

(4) 

(0) (1) (2) (3) (4) 
Operation PRT AUX CON MIDI KBD 

bconstat() nein ja ja ja nein 

bceonin() ja ja ja ja nein 
bconout() ja ja ja ja ja 
bcostat() | Ja ja Ja Ja ja 

Bconin 
long Bconin(dev) 
int dev; 
Der Parameter dev gibt die Gerätenummer gemäß obiger Tabelle 

(Funktion bconstat). 

Die Funktion liefert im niedrigstwertigen Byte des Ergebnisses (Byte 

0) ein Zeichen vom angegebenen Gerät; sie wartet auf das Zeichen - 

eine gute Möglichkeit, das Programm aufzuhängen, wenn der betref- 

fende Port nicht bereit ist! 

Hat der Parameter dev den Wert 2 (Konsol-Eingabe), dann wird im 
niedrigwertigen Byte des Ergebnisses (Byte 0) der Tastatur-Scancode 
geliefert; das niedrigstwertige Byte des höherwertigen Worts (uff; 
Byte 2 eben!) enthält das ASCII-Zeichen. 

Ist das dritte Bit der Systemvariable conterm gesetzt, dann enthält 
Byte 3 des Ergebnisses den Wert der Systemvariablen kbshif2. 

Bconout 

Bconout (dev, c) 
int dev, c; 
dev ist die Gerätenummer entsprechend der Tabelle unter Funktion 1. 

Das Zeichen c wird an das gewählte Gerät ausgegeben. Die Funktion 

wartet so lange, bis das Zeichen erfolgreich geschrieben werden 
konnte. 

Rwabs 
long Rwabs(rwflag, buf, count, recno, dev) 
int rwflag; | 
long buf; 
int count, recno, dev; 
Liest oder schreibt logische Sektoren auf der Diskette oder Harddisk. 
Zulässige Werte für rwflag sind: 

Lesen 

Schreiben 

Lesen, Diskettenwechsel nicht beachten 

Schreiben, Diskettenwechsel nicht beachten W
N
 

= 
©
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_(5) 

(6) 

(7) 

(8) 

buf zeigt auf einen Puffer, aus dem gelsen bzw. in den geschrieben 

werden soll. 

count ist die Anzahl Sektoren, die übertragen werden sollen. 

recno ist die logische Sektoren-Nummer, bei der die Übertragung be- 

gonnen werden soll. 

dev ist die Gerätenummer; zulässige werte sind hier: 

0 Floppy-Laufwerk A: 
1  Floppy-Laufwerk B: 
2 (und grösser: Harddisk, RAM-Disk etc) 

Hat die Funktion den Wert 0, dann war die Ubertragung erfolgreich. 
Ein negativer Wert signalisiert einen Fehler. 

Setexc 

long Setexc(vecnum, vec) 
int vecnun; 
long vec; 
vecnum ist die Nummer des Vektors, der geholt oder gesetzt werden 

soll. vec ist die Vektor-Adresse, die den alten Vektor ersetzen soll. 
Falls hier der Wert (long) -1 steht, nimmt die Funktion keine Ver- 

änderungen vor, sondern gibt lediglich den alten Wert des Vektors 
zurück. 

Tickcal 
long Tickcal() 
Liefert die zwischen zwei Aufrufen des System-Timers verstrichene 
Zeit, aufgerundet auf Millisekunden. 

Getbpb 
BPB *Getbpb (dev) 
int dev; 
dev ist eine Gerätenummer (0 für Laufwerk A, 1 für Laufwerk B 
etc). Die Funktion liefert einen Zeiger auf einen BIOS-Parameter- 
Block für das gewählte Gerät zurück. 

Bcostat 
long Bcostat (dev) 
dev ist die Nummer eines zeichenorientierten Geräts (vgl. "Funktion 
1); die Funktion liefert den Ausgabe-Status des Geräts zurück. Dieser 
ist wie folgt zu interpretieren: 

-1 Gerät ist ausgabebereit. 
0 Gerät ist nicht bereit.



362 Anhang B: Die BIOS-Funktionen 

(9) Mediach | 
long Mediach (dev) 
int dev; 
dev ist eine Laufwerks-Nummer. Die Funktion überprüft (soweit dies 
möglich ist) ob in dem angegebene Laufwerk die Diskette gewechselt 
wurde. Mögliche Werte sind: 

0 Mit Sicherheit kein Wechsel. 

1 Wechsel ist eventuell erfolgt. 

2 Diskettenwechsel konnte mit Sicherheit festgestellt werden 

(10) Drvmap 
long Drvmap() 
Liefert einen Bitvektor, in dem ein gesetztes Bit signalisiert, daß das 
entsprechende Gerät angeschlossen ist. Bit 0 steht für Laufwerk 0, 
Bit 1 für Laufwerk 1 etc. 

(11) Kbshift 
long Kbshift (mode) 
int mode; 
Falls mode nicht negativ ist, werden die Shift-Bits der Tastatur wie 

angegeben gesetzt. Bei einem negativen mode-Wert wird der Zustand 
dieser Bits als Bitvektor zurückgegeben. Die einzelnene Bitpositionen 

im Vektor haben folgende Bedeutung: 

Rechte Shift-Taste 
Linke Shift-Taste 

Control -Taste 

ALT-Taste 

CapsLock-Taste 
Rechter Mausknopf (CLR/HOME) 
Linker Mausknopf (INSERT) 
(momentan nicht benutzt; auf 0 setzen) N

O
U
R
 

W
N
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Anhang C: ASCII-Tabelle 

Dezinal Hexadezinal üktal Binär ASCII 

uuu gg gug uguguauY 
B61 Gi O81 66886081 ? 
002 UL Uz duogugLa db 
083 03 803 DBBHBBlI ? 
804 84 084 88806188 ¢ 

808 gd Gu | guoguLoL 
666 06 686 BBABALIA Fi 
HH dr 007 GuDOGLLL a 
088 08 BB 06881888 Y 
009 the HH ogee eel & 
818 Ba #12 86081618 4 
HH Un Gio Goguload « 
i2 c 014 96691108 F 

813 Bd 015 06081181 ke 
14 de dl BOGGLLLB A 

015 Of Bi? BBBBL1II Ih 
nic in non nnaninann rm 
ULO LU ULU UUULGUUU rt) 

O17 il 021 BBBLHBRI ‘ 
gig i? ULL OooLogL é 
819 13 823 BABLBiL 3 
Uz i4 024 00910160 M 
O71 15 025 60610101 5 
D22 16 G26 Hag18110 5 
023 1? 027 BBGLBiiLL # 
024 id 030 06011060 G 
025 19 03 66811061 5 
025 la 032 06911018 d 
Ge ib Gad gauıllgll 5 
028 ic a4 08911188 Mn 
gig ld Gud BDGLIIGL - 
838 le 836 BB811118 
n71 1x n77 nnnıtıı 13 # 
Gul Li Udi UUOLLALL
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n 
VEL LIMGL 

032 
633 
O54 
od 

nye 
uu 
ny 
Gd 
n7Q0 
Us 

035 
nan 
ONG 

B41 
042 
043 
Naa 
gu 

845 
nic 
040 

047 
849 
nig 
us 

058 
nei 
OSL 

052 
nett 
Us 

054 
nEE 
UJ 

836 
37 

neo 
Us 

053 
nen 
OU 

bl 
nen 
O04 

663 

06186088 
n GG LG88di 

60180818 
O01888i1 
nninninan 
UULUQULUU 

90108101 
naınnıın 
UULUULLU 

BEER 
nnininnn 
UULULUUG 

66101001 
Gibi8id 

00181811 
nniniinan 
UULULLUU 

68181181 
nmAniniiin 
DULULLLU 

BBiB11il 
681109668 
antıannt 
UULLUOUUL 

661106168 
nniinnd i 
GULLIOULL 

60118108 
Aniininid 
GOLLULUL 

68118118 
nasınııı 
UULLULLL 

00111000 
ngiiiea! 
08111818 
O6iiibil 
mnniiiian 
BUOLLLLUU 

BB1l11B1 © 
anıııaın 
UULLLLIU 

BA11111i 

e
e
 
G
S
 i
 

FE
 

E
U
 

ow
s 

Af
 

oT
 
A
w
e
 

D
E
 

n
d
 

EN
 

E
N
 

ee
 

6 
a
 
e
n
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vezifal hexadezimäl Oktal Binär ASLLL 

064 ag 188 1000088 g 
865 di 1801 61080081 A 
G65 a2 182 AGE CTA D 
667 43 183 01088811 C 
060 44 104 DIBBDLOO D 
069 45 185 BLHBH1AI E 
079 46 186 bibsaiis F 
Bi a? 187 HH G 
072 48 118 81081888 H 
Dis 49 ill o1ggieel I 
O74 da 112 81881018 J 
Gig 4b 113 BlBGiGli K 
076 4c iid 81881188 L 
077 dd 115 81901181 H 
073 de 116 61001118 N 
879 df 117 B1HB81111 0 
038 58 178 61016888 p 
081 51 171 81818081 0 
Gud Sz iz? HEHE R 
083 53 123 61610811 5 
034 54 174 BLOLB1B8 T 
085 55 | 125 81018181 1 
006 56 176 g1gieiis y 
007 57 177 Bisidlil H 
088 ca 38 81011008 x 
089 59 131 01011001 Y 
858 Sa 132 01011810 é 
B91 5b 133 B1011B11 [ 
892 Sc 13 01811188 \ 

093 5d 135 ogi ial ] 
094 Se 13 BiBLiLis A 
095 whi i3? Ogi
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ausm] n 
VELLINGL 

096 
na7 
Osi 

098 
nag 
uss 

168 
181 
ın 
LO 

183 
ind 
us 

185 
166 
187? 
ı1n29 
LOU 

199 
in 
LU 

iii 
44° 
Lid 
117 
Lid 

114 
Lis 
116 
4117 
ili 

118 
444 
ahd 

128 
i7t 
122 
123 
194 
4.4 

125 
INNE 
Lig 

12? 

81180888 
neinanni 
ULLUUUUL 

61186018 
nainanii 
ULLUUULA 

01188188 
91186181 
naanniin 
HE 

aliBnliil 
nianinnn 
ULLGLOUU 

61181881 
OLi8i6ia 
B11B1B1l 
G1101188 
B11B11Bi 
1181118 

BLisiiil 
Bii16888 

 B1110081 
gi118610 
niiinaniis 
GLLi0011 

01110188 
nııınını 
ULLLULUL 

61110110 
Gililil 
Biliibed ~ 
Biliieei 
G1111610 
Biiiieil 
GiLii 166 
Biiii101 
nmiqgiiiin 
Giiiiiis 

aliiiili m
 
e
e
 

IE
 

KR
 
E
c
o
 

A
N
 

TI
 

AD
 

DI
 

OO
 

FI
 

DB
 

ew
 

a
 

S
T
 

A
h
 

M
I
 
o
e
s
 

2 
/
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A . 1 1 = 
HeXadez ifial ai Din inar ASCII 
88 208 10868888 h 
81 201 108888R1 ; 
2 | 282 0686818 F 
as 203 18800811 ; 
us 204 16868188 ; 
85 285 19900101 ; 
86 286 18888118 ; 
i 287 10908111 R 
88 210 10801088 ; 
g 21 10881081 : 
da 212 18881018 N 
ot 213 10981811 ; 
dc 214 10801188 : 
ad 215 10961181 ; 
de 216 10801110 Ä 
af 217 10881111 ; 
3 22 10810888 £ 
al 22 16910081 2 
3 222 18810018 f 

3 23 10018811 j 
34 224 18818188 i 
95 225 18818101 3 
36 226 18818118 i 
97 227 18810111 i 
9 238 18811088 i 
39 231 10011001 i 
9a 232 18811818 j 
9b 233 10811811 ¢ 
Ic 23 1881118 £ 
3d 235 18811181 y 
de 23 10811118 A 
7 237 18841111 f
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DEZINMGL neXauezinal Urtal Dinar 

168 a 248 18108888 
16! al 2al 18108081 
162 az 242 18188818 

163 a3 243 18108811 
164 a4 244 18188188 

165 a5 245 18108101 
166 ag 246 18160118 
16? a7 247 18188111 
166 ag 250 10101868 
169 a9 251 18181881 
170 dä 252 15101016 
171 ab 253 10181811 

iii ac 254 10101100 
173 ad 255 19181181 
174 de 256 19181118 
175 at 257 He 
176 ba 268 18118808 
177 bi 761 18118081 

175 h? 262 18116816 
179 b3 263 18118011 
188 hi | 264 18118186 
13 b5 265 18118101 
13? b6 266 18118118 
133 b? 267 18118111 
184 ba 278 18111088 
155 59 271 18111881 
186 ba 272 18111818 

197 bb 273 18111611 
138 bc 274 18111188 
139 bd 75 18111101 
198 be 27 10111118 
131 bf 27 18111111 

3
 

D
u
 

Sa
b?
 
S
e
 

Ge
y 

Ca
s 

me
, 

Da
n 

F
A
R
B
 
m
e
e
e
 

SY
 
h
e
 
B
i
d
 

1 
o
e
 

P
O
D
 

CQ
 

4 
4
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z
n
 

Hy
 

A
a
 

e
e
 

r
e
 

OS
 
-
h
 

fD
 
C
L
M
 

e
r
g
 

„D
O 

6
0
 

»
J
 

OF
 

er
n 

Se
 

C4
 

P
S
 

pe
 

C
S
 

="
 

a]
 

Ed
 

Os ae 

uiid 

iinnannn 
LLUUUUUU 

11808881 
11668816 
11888811 
sınnnınn 
LLUUULUU 

11888181 
vsannnıın 
11006110 

11888111 
11661008 
11001001 
1661618 
qinnini 
LLUULULL 

11881188 
sannıını 
L1UULLUL 

11881118 
110n1 1 11 
ZLUULLLL 

11818888 
11618881 
11818818 
11610011 
11818188 
11818181 
sanınıın 
LLGLOLIO 

11818111 
sanııann 
LL2ULLUUU 

11811881 
Lisiisl 
11811811 
saınııın 
LLGLLILG 

11811181 
11n1339 
ALULLLE 

11811111 2 
> 

(6
5 

af
 

2 
ed
 

wd
 

ow
 
S
P
E
 

m
a
 

bi
 

IE
 

ka
 

I 
be
 
D
E
T
 

8 
E
d
 

Ei
 

be
d 

St
 
R
E
:
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=Q 

m
 

m
 

m
 

m
 

rn
 

1 
c
r
y
 

OF
 

as
 

u 

EL 

ef 

Binär 

11168888 
ssannanı 
LLLGUUUL 

11188818 
ıl16081l 
11188188 
LiiGGiGl 
11188118 
11108111 
11161888 
ı11B1BB1 
11181018 
41101011 
31310110 
LLLULLIG 

11181181 
11161110 
111Q1111 
ı12ıınnn 
LLLLUUU 

11118881 
444innINn 
Z2LLUULU 

11118811 
11119160 
11118181 
11116118 
{iiisiil 
11111888 
saıaıannı 
LSLLLLUUL 

11111818 
Liliidil 
11111188 
111111 
11111118 
11111111 

OS 
V
D
 

fe
 
S
e
s
,
 
A
r
 
D
N
A
 

DD
 
D
H
 

HA
 

ES
 
M
A
M
I
 

DS
 

NR
 

I
a
n
 

3 
% 
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Stichwortverzeichnis 

I, 112 

l=, 90 

#define, 52, 149, 207 

#include, 81 

%, 61, 108 

&, 65, 121, 159, 164 

&&, 97 

’._ 100 

+, 59, 69 

++, 75, 107 

-, 69 

--, 77, 107 

/, 69, 108 

?:, 119 

<<, 112 

=, 59 

==, 83 

>=, 77 

>>, 112 

*, 121, 159ff., 189, 203, 204 

ADA, 20 

Adreßarithmetik, 171 

Adreßoperationen, 172 

Adresse, 65, 66 

Algol, 20, 23 

Alıas, 162, 164, 167 

Amiga, 22 
Anführungszeichen, 100, 151 

Anweisung, leere, 128 
Anweisung, zusammengesetzte, 127 
Anweisungsblock, 41 
Arbeitsspeicher, 286 

argc, 242ff. 
Argumente, 245 

argv, 242ff. 

Arıthmetik, 53 

Array, 143ff., 162, 174, 202 
Array, mehrdimensionaler, 178 

Array-Initialisierung, 184 
Array-Name, 175 

Arraydeklaration, 143ff., 175 

Arraygrenzen, 149 

ASCII, 96 
ASCII-Tabelle, 363 
Assembler-Mnemonics, 32 

Assemblersprache, 15 

Assoziativität, 119ff. 

ATARI-Entwicklungssystem, 15 
Ausdruck, 59 

Ausgabe, 45, 60 

Auswertungsverhalten, ‚114 

auto, 195 

Auto-Dekrement, 107 

Auto-Inkrement, 107 

Auto-Prä-Dekrement, 75, 77 

B, 20 

BASIC, 17, 20, 23, 26 

BATCH.TTP, 36, 37 

Baum, 237 

BCB, 297, 298 

Bconin, 315 

BCPL, 21 

BDOS, 298 

Betriebssystem, 281ff. 

Bibliothek, 31, 91, 253 

Binärcodes, 15 

Binärzahlen, 115 

BIOS, 281, 284, 286 

BIOS-Funktionen, 359 

Bit, 15 

Bitoperator, 109 

bitweise Verknüpfung, 110 
Block, 80 

Boot-Sektor, 289 

break, 86, 131ff., 140 

buffer control block, 297 

bugs, 30
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C64, 22 

calloc, 228 

case, 131ff. 

Cast, 126 

char, 81, 83, 111 

CLOS.BAT, 37 

Cluster, 291 

cnames.h, 317, 346 

COBOL, 19, 23, 24 

CODASYL, 24 

Codegenerierung, 29, 34 

COMMAND.PRG, 36, 267 

Commodore, 22 

Compiler, 16, 18, 26, 47 

Compiler-Architektur, 30 

Compilersprache, 15, 26 

continue, 140 

COPY, 267, 268 

Cray, 22 

ctype.h, 143, 317, 348 

Datei, 241 

Dateigröße, 296 

Dateisystem, 287 
Datenbereich, 290 
Datenstruktur, 189 

Datenstruktur, rekursive, 231f. 

Datentypen, 99, 202 

default, 133, 134 

define, 52, 149, 207 
Definition, 208 
Deklaration, 54, 116 
Deklaration, komplexe, 205 
Deklarationen, 201 
Dekrement, 76, 77 

Dereferenzierung, 160 
Dgetdrv, 274 

Directory, 290, 292 

Directory-Eintrag, 293, 294, 295, 
303 

Disk Transfer Adress, 269 

DISKEDT, 311, 319 

Disketten-Format, 288 

Diskettenaufbau, 288 
Diskettenaufteilung, 38, 289 

Diskettenmonitor, 303ff. 

Diskettenpuffer, 297 

Diskmonitor, 297, 302ff. 

Divisionsoperator, 108 

Divisionsrest, 108 

do...while, 137, 138, 139 

double, 104, 125 

DTA, 269 

Edieren, 26 

Editor, 27, 47 
Ein-/Ausgabe, 82, 262 
Ein-/Ausgabe, gepufferte, 252 
Ein-/Ausgabe-Funktionen, 259 
Ein-/Ausgabe-Umlenkung, 249 

Ein-/Ausgabekanäle, 250 
Eingabe, 63, 85 

else, 130 

Endlosschleife, 105, 135ff. 

EOF, 256 
Ersatzdarstellung, 49ff. 
Escape-Sequenz, 49, 51, 62, 69 

exit, 257 

EXKLUSIV ODER, 109, 110 
extern, 198ff. 

falsch, 104, 105 

FAT, 292 

fclose, 256, 257 

Fehler, 30 

Fehlermeldung, 47, 180 

fgets, 259 

FILE, 254 

file allocation table, 292 

FILE-Pointer, 254ff., 265 

float, 71, 104, 125 

fopen, 254, 255 

for, 72, 134ff.
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Formatfreiheit, 42 

Formatmöglichkeiten, 46 

FORTRAN, 23, 24 
fprintf, 259 

fputs, 259 

fread, 259 

fscan, 67 

fscanf, 259 

fseek, 265ff. 

Fsetdta, 269 

Fsfirst, 269ff. 

Fsnext, 269ff. 

ftell, 267 
Funktion, 43, 86, 91f., 215 

Funktion, rekursive, 239 

Funktionen, Schachtelung, 44 

Funktionsdefinition, 93, 94 

fwrite, 259, 261 

Gänsefüßchen, 151 

GEM, 23, 35, 47, 268 
GEM-Desktop, 35 

gemdos, 210, 271, 281ff., 303 

GEMDOS-Funktionen, 349 

GEMLIB, 35 
getc, 255 | 

getchar, 84, 93 

Gleichheitstest, 83 
Gleichheitszeichen, 59 
Gleitpunktarithmetik, 69 
Gleitpunktzahl, 69, 70, 104 

globale Variable, 190, 191 

goto, 141, 142 

GroBbuchstabenwandlung, 88 

Grundrechnungsarten, 68 

GST, 70 
Giltigkeit von Variablen, 189 

Gültigkeitsbereich, 193 

HEADER.H, 39, 317 

Hexadezimalzahl, 104 

Icons, 35 

if, 79, 84, 128, 129 

if...else, 128, 129 

include, 81 

Include-Datei, 39 

indirection, 160 
Inhaltsverzeichnis, 270, 290 

Initialisierung, 222, 223 

Inkrement, 76 

int, 102, 103 

Integer, 102 

Integer-Array, 143, 145 

Integer-Pointer, 160 
Integer-Variablen, 57 

Interpreter, 16 

iscan, 67 

islower, 98 

is_char, 148 

Jensen, 22 

Jokerzeichen, 273 

Kanal, 250 

Kemeny, 20 
Kleinbuchstabenwandlung, 118 

Komma-Operator, 137 

Kommandozeile, 241, 245 

Kommentar, 45 

Kompatibilität, 21 

Konstanten, 100 

Kontrollbedingung, 74, 89, 90 

Kontrollstring, 62, 65 

Kontrollstruktur, 99, 127 

Kopier-Programm, 264, 267, 278 

Kopier-Routine, 261 

KOPY, 272, 278 
Kurtz, 20
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Leerzeichen, 42, 69 

Lego, 42 

LIBF, 35 

Library, 32 

Linker, 31, 34, 200, 201, 209 

Lisa, 285 

Liste, 233ff. 

Liste, gekettete, 236 

Listenstruktur, 236 

logische Verknüpfung, 112 
lokale Variable, 190, 191 

long, 103 

long int, 103 

Iseek, 265ff. 

Lüke, I.u.P., 281 

Ivalue, 89 

Maclntosh, 285 

main, 4lff., 242 

Makro, 52, 148 

Makro-Präprozessor, 30, 34, 39, 52 

Makroexpansion, 248 

Makros, 30 

malloc, 228ff. 

Maschinensprache, 15 

Maske, 111 

Mehrfachauswahl, 131 

Metacomco, 67 

MicroPro, 21 

Microsoft, 21 

MIDI, 284 

Modul, 31 

Multitasking, 283 

Namen, 54 

Namensmuster, 267 

NEGATION, 109, 110 

Newline, 50 

NICHT, 112 

Null-Byte, 152, 156 

Objektdatei, 28 

Objektprogramm, 28 
ODER, 109, 110 

Oder-Verknüpfung, 86 

oktale Zahlendarstellung, 101 

open, 262, 263 

Operator, 60, 89, 99, 106, 120 

Operator, arıthmetischer, 106 

Operator, logischer, 112 

Operatoren, arıthmetische, 68 

Parameter, 86, 241 

Parameter, formaler, 94, 95 

Parameter, lokaler, 95 

Parameter-Übergabe, 155 
PARC, 285 
Parser, 29 

Pascal, 22, 23, 25 

PL/I, 23 
Pluszeichen, 59 

Pointer, 143, 157, 160ff., 174 

Pointer-Arithmetik, 165 

Pointer-Array, 179, 182, 184 

Pointer-Deklaration, 161 

Portabilität, 21. 
pos, 148 

Prä-Dekrement, 75, 77 

Praprozessor, 52 

printf, 45, 46, 49, 60ff., 116, 126 
Programm- Datei, 27 
Programmiersprache, 15 

Programmierung, interaktive, 63 

Programmierung, strukturierte, 19 

Prozentzeichen, 61 

Puffer, 260 

putc, 255 
putchar, 91, 93 

Quadratzahlen-Tabelle, 72, 73 

Quelldatei, 27 
Quellprogramm, 27
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Random-Zugriff, 265 

RECEDIT, 311, 327 
Register-Variable, 198 
rekursive Datenstruktur, 231, 232 

rekursive Funktion, 239 

RELMOD, 36 
return, 96, 142 

Ritchie, Dennis M., 19, 20 

Scancode, 315 

scanf, 63, 64, 66, 67 

Scanner, 28 

Schleife, 137 

Schleife, abweisende, 137, 139 

Schleife, nichtabweisende, 139 

Schleifen, 78 
Schlüsselworte, 55, 99 

Schrägstrich, 50 

Schrittweite, 74 

screen.h, 317, 345 

Seiteneffekte, 192 

Sichtbarkeit von Variablen, 190 

sizeof, 185, 186, 229 

Speicherdiagramm, 58 
Speicherung, gestreute, 291 
Speicherungsklassen, 189, 194 

Speicherverwaltung, 227ff. 
Standard-Ausgabe, 250, 251, 262 

Standard-Eingabe, 250, 251, 262 

Standard-Library, 32 
Stapeldatei, 36, 38, 39 

Stapelverarbeitung, 36 

static, 196 

stderr, 262, 263 

stdin, 262 

stdio.h, 82, 252, 257, 317 
stdout, 262 

Steuerzeichen, 100 

String, 151, 152, 154 
String-Array, 184 
String-Initialisierung, 182 
String-Zuweisung, 176 

struct, 212, 213, 214 

Struktur, 202, 212ff. 

Strukturarray, 222 
Strukturdeklaration, 212 

Strukturverschachtelung, 217, 218 
Supervisor-Modus, 287, 298 

switch, 131, 132 

Syntax-Diagramm, 74 

Syntaxanalyse, 29, 34 

Systemhandbuch, 281 

Systemprogrammierung, 281 

Systemvariable, 286, 287, 297, 301 

Tabulator, 50 

tauschen, 112 

tell, 267 

Token, 28 

Tokenisierer, 34 

tolower, 118 

TOS, 35, 268, 281ff., 315 

toupper, 88, 92 

typedef, 207 

Typenhierarchie, 124, 125 

Typüberprüfung, 113, 210 

Typumwandlung, 119, 124, 125 

Umlenkung der Ein-/Ausgabe, 249 

UND, 109, 110 
Und-Operator, 97 

Union, 202 

UNIX, 20, 33 
unsigned char, 125 

unsigned int, 102 

User-Modus, 287 
UTILITY, 311ff., 335 

Variable, 54, 190 

Variable, automatische, 195 

Variable, externe, 198, 199 

Variable, globale, 199
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Variable, statische, 195, 196 Zahlensystem, oktales, 101 

Variablendeklaration, 57, 69, 83 Zählschleife, 134 

Variablennamen, 54 zei, 148 

Vergleich, 104 Zeichen, 100 
Vergleichsoperator, 77, 83, 108f., Zeichen-Pointer, 160, 166 

118 Zeichenarray, 151 
Verknüpfung, bitweise, 110 Zeicheneingabe, 80 
Verknüpfung, logische, 112 Zeichenkonstante, 86, 100, 101 
Verknüpfungsoperator, 113 Zeichenvariable, 80, 81 

Verschachteln von Strukturen, 217, Zeilenvorschub, 49 

218 Zuweisung, 89 
Verschachtelung, 91 Zuweisungsoperator, 117 
Verschiebeoperator, 112 Zuweisungszeichen, 59 
Vertauschen, 79, 112 

Verwaltungsbereich, 289 

Vorrang, 119, 120 

wahr, 104, 105 

Wahrheitswerte, 104 

WAIT, 48 
Wenn-Dann-Operator, 106 

Werteingabe, 63 

Wertzuweisung, 57, 58, 60, 109, 223 

while, 87, 88, 137, 138, 139 
Wiederholung, 73 
Wildcard, 273, 278 
Windows, 35 
Wirth, N., 22, 25 
Word, 21 

WordStar, 21 

XBIOS, 284, 286 

Xerox, 285
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sie dieses Buch liefert, zu 
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Marz 1986, 376 Seiten 

Erst durch das Programmieren in C kann der 

stolze Besitzer alle Fähigkeiten seines ATARI 
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kungsvoller eingesetzt wer- 
den kann. Der zweite Teil ent- 

hält eine Reihe ausführlich er- 

klärter C-Funktionen als wert- 

volle Ergänzung Ihrer Pro- 
grammbibliothek. Dazu ge- 

hören unter anderem ein Ter- 

minalinstallationsprogramm, 

mehrere Sortier-Algorithmen 

und ein Satz ISAM-Funktio- 

nen. 
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C-Programmierung unter TOS 

Mit den Computern der ST-Reihe 

von ATARI eröffnen sich fur Home- 

computer neue Dimensionen. Die 

Grenze zu den Personal Compu- 

tern - in der letzten Zeit ohnehin 

im Wanken begriffen - wurde end- 

gültig niedergerissen, der Lei- 

stungsabstand zu den Mini-Com- 

putern wurde geringer; kurz: die 

Systeme wurden professioneller. 

Dies bringt jedoch auch eine 

wachsende Komplexität mit sich. 

An der Oberfläche merkt der Be- 

nutzer davon nichts: GEM ist die 

Freundlichkeit in Person. 

Doch wer sich an die Programmie- 

rung dieses Computers heran- 

wagt und einen Blick hinter die 

Kulissen wirft, der wird bald fest- 

stellen, daß dieses System hohe 

Anforderungen an ihn stellt. Der 

erstaunliche Leistungsumfang 

der ST-Computer läßt sich näm- 

lich nur mit einer mächtigen Pro- 

grammiersprache wie C in den 

Griff bekommen. 

C ist deshalb auch offizielle Ent- 

wicklungssprache von ATARI. Da- 

mit ist dieser Computer der erste, 

ATARI ST 
auf dem einer auch im professio- 

nellen Bereich weitverbreiteten 

Sprache der Vorzug vor der 

Einsteiger- und Hobbyistenspra- 

che BASIC gegeben wurde. Dies 

ist eine Herausforderung für den 

Hobbyisten, bringt ihn mit seinen 

Fähigkeiten jedoch auch näher an 

den Arbeitsmarkt, auf dem C viel 

stärker gefragt ist als BASIC. 

Für Leser mit elementaren EDV- 

Vorkenntnissen stellt dieses 

Buch eine gründliche und leicht 

lesbare Einführung in das Pro- 

grammieren mit dieser wichtigen 

und vielseitigen Sprache dar. An 

aussagekräftigen und in allen Ein- 

zelheiten erklärten Beispielen 

werden auch die fortgeschritte- 

nen Aspekte der Sprache (Datei- 

verwaltung, Structures, dynami- 

sche Speicherverwaltung, Rekur- 

sion) ebenso ausführlich wie die 

Grundlagen des Arbeitens in C 

besprochen, so daß man auch 

nach längerer Beschäftigung mit 

dieser faszinierenden Sprache 

immer wieder wertvolle Anregun- 

gen für die praktische Arbeit fin- 

den wird. Der Autor versäumt es 

nicht, den Leser in den typischen 

Jargon der C-Programmierer ein- 

zuweihen und ihm wichtige Maß- 

regeln für einen - in C besonders 

wichtigen - guten Programmier- 

stil mit auf den Weg zu geben. 

Besonderes Gewicht wurde dem 

Programmieren auf Systemebene 

eingeräumt (Schnittstelle zum Be- 

triebssystem TOS, Benutzung 

von GEMDOS, BIOS und XBIOS), 

so daß der Leser in der Lage ist, 

auch systemnahe Programme auf 

seinem ATARI ST zu erarbeiten. 

Die Technik des systemnahen, 

aber auch des professionellen 

strukturierten Programmierens 

wird dem Leser an einem umfang- 

reichen und ausführlich kom- 

mentierten Beispiel - einem Dis- 

kettenmonitor - vorgeführt. Eine 

nicht nur lehrreiche, sondern 

auch für die praktische Arbeit 

nützliche Anwendung. 
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