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Vorwort

Assembler ist keine Programmiersprache fiir Computer-Neulinge. Wenn Sie
bei "ROM" ausschlieBlich an eine siidliche Stadt denken und "Byte" fiir ein irr-
tiimlich groRgeschriebenes englisches Tétigkeitswort halten — dann sind Sie
nicht nur mit diesem Buch, sondern auch mit Assembler und Maschinenspra-
che allgemein falsch beraten. Sie sollten also zumindest schon einmal mit ei-
nem Computer gearbeitet und auch einige Grundkenntnisse iiber die Pro-
grammierung von Computern haben. Erfahrungen mit einer beliebigen Pro-
grammiersprache sind zwar nicht unbedingt notig, kénnen aber niitzlich sein.
Insbesondere gehe ich nicht davon aus, daR Sie schon einmal mit einem Assem-
bler gearbeitet haben; dessen Bedienung und Funktionsweise werden ausfithr-
lich erklart.

Mit den ST-Computern hat es die Firma ATARI fertiggebracht, den Personal-
Computer-Markt fiir einige Zeit in Aufregung zu halten. Die Griinde dafiir
sind vielféltig. Zum einen schlug das sensationelle Preis-/Leistungs-Verhaltnis
ein, zum anderen setzte die konsequent verwendete grafische Benutzeroberfli-
che Mafistéibe. Mit der leistungsfahigen Hardware kam auch der Trend zur h-
heren Programmiersprache: Selbst professionelle Programme sind nur selten
in Assembler geschrieben, denn der ST macht mit seiner Geschwindigkeit die
geringe Geschwindigkeit so mancher hoheren Programmiersprache wett. Nun
stellt sich die Frage: Warum sollte man ein solches System in Maschinenspra-
che bzw. Assembler programmieren?

Tatsache ist, daB} es auch auf einem Computer wie dem ATARI ST eine Reihe
von Aufgaben gibt, die man nur in Assembler programmieren kann oder die
in Assembler zumindest besser als in irgend einer héheren Programmierspra-
che machbar sind. Es gibt in der Hauptsache zwei Griinde, aus denen die Ma-
schinensprache interessant ist: Zum einen finden sich in fast jedem groferen
Programm Funktionen, die die Geduld des Benutzers auf die Probe stellen.
Hier kann die Maschinensprache Abhilfe schaffen, denn ihre Geschwindigkeit
ist noch immer von keiner hdheren Programmiersprache zu erreichen. Zum
anderen gibt es bei jedem Computer Aufgaben, die nur in Assembler machbar
sind.

Wenn es um das vollstindige Ausnutzen der Hardware geht, kommt keine ho-
here Programmiersprache mehr mit.
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Assembler ist eine Programmiersprache fiir Praktiker. Im Grunde sind die
Befehle der Maschinensprache nicht auferordentlich kompliziert; mindestens
ebenso wichtig wie das Wissen iiber die Funktionsweise der einzelnen Befehle
ist das Wissen iiber ihr Zusammenspiel und die Zusammenarbeit des Pro-
gramms mit der Hardware. Deshalb zichen sich Beispiele durch das ganze
Buch. Der erste Teil befafit sich damit, Schritt fiir Schritt die einzelnen Befeh-
le und ihre Verwendung zu erkldren. Darauf folgt ein genaues Verzeichnis
samtlicher Maschinensprachebefehle, das auch als Nachschlagewerk geeignet
ist. Dann geht es in die Praxis.

Der Umgang mit dem Betriebssystem von Maschinensprache aus wird aus-
fithrlich erklért, und es werden viele speziell auf den ATARI ST zugeschnitte-
ne, niitzliche Routinen angegeben. SchlieBlich geht es um die zwei wichtigsten
Einsatzgebiete der Assemblerprogrammierung: Hardware-nahe Programmie-
rung und Hochstgeschwindigkeit. An einigen Programmen wird demonstriert,
wie man die leistungsfahige Hardware des ATARI ST zu Hochstleistungen ani-
miert. Als besondere Zugabe wird auflerdem ein eigenes Kapitel der Optimie-
rung von Assemblerprogrammen gewidmet, denn fast immer ist es wiin-
schenswert, die hochstmogliche Geschwindigkeit zu erreichen.

Um dieses Buch sinnvoll nutzen zu kénnen, brauchen Sie einen Assembler.
Davon gibt eine Vielzahl auf dem Markt, und sie unterscheiden sich sowohl in
der Leistungsfahigkeit als auch im Preis voneinander. Leider ist die Assem-
blersprache nicht in allen Punkten genormt. Um den somit anstehenden Anpas-
sungsproblemen vorzubeugen, befinden sich auf der beiliegenden Diskette an
alle marktgéngigen Assembler angepafte Versionen der Listings aus diesem
Buch. So werden Sie hoffentlich keine Probleme mit Threm Assembler haben.
Dariiber hinaus werden in Anhang B die besonderen Eigenheiten aller zum
Zeitpunkt des Erscheinens des Buches fiir den ATARI ST verfiigbaren Assem-
bler besprochen. Auch sonst wird auf die praktische Programmierung einge-
gangen; so werden etwa Methoden zur Fehlersuche erldutert, oder es wird der
eine oder andere Trick gezeigt, der die Arbeit mit einem Assembler erleich-
tern kann.

Auf einem System wie dem ATARI ST spielt die Verbindung von Assembler
mit einer héheren Programmiersprache eine grofie Rolle — schlieflich stellt
die Entwicklung von Assemblerprogrammen noch immer einen erheblich hé-
heren Aufwand dar als die Programmierung in einer Hochsprache. Deshalb
geht man oft den Mittelweg: Nur die Operationen, bei denen Assembler seine
Féhigkeiten wirklich ausspielen kann, werden auch in dieser Sprache pro-
grammiert — alles andere wird in einer hoheren Programmiersprache ge-
schrieben. Es ist nur manchmal problematisch, die beiden miteinander zu
verbinden. Deshalb wird auf die Verbindung von Assembler mit den verbrei-
tetsten hoheren Programmiersprachen besonders eingegangen.
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Gegenstand dieses Buches ist die Assembler-Programmierung. Wie fast alle
Programmiersprachen leitet Assembler sein Vokabular von der englischen
Sprache ab. Die Fachausdriicke werden bei ihrem ersten Auftreten erklart und
koénnen auch im Begriffsregister nachgeschlagen werden. Sie brauchen also
nicht Englisch zu kénnen, um dieses Buch zu verstehen.

Sie werden sehen: Es macht Spaf}, aus dem Computer Hochstleistungen heraus-
zuholen, wie es nur in Maschinensprache méglich ist!
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Kapitel 1

Was ist Maschinensprache?

Im folgenden Kapitel werden jene Grundlagen iiber Hardware und die Pro-
grammierung allgemein dargelegt, die zum Verstidndnis der Maschinenspra-
che unbedingt notwendig sind. Sollten Sie allerdings schon zu jenen Fortge-
schrittenen zédhlen, die Erfahrungen mit Maschinensprache auf anderen Pro-
zessoren haben, so konnen Sie das erste Kapitel bedenkenlos iiberspringen.

Der Aufbau eines Computers

Unter Maschinensprache versteht man den Befehlssatz, der vom Mikroprozes-
sor direkt verstanden und ausgefiihrt wird, dhnlich wie etwa in der Program-
miersprache BASIC Befehle wie PRINT, GOTO oder INPUT direkt verstan-
den werden.

Maschinensprache unterscheidet sich jedoch grundlegend von allen anderen
Programmiersprachen, denn sie stellt die unterste Ebene der Program-
mierung dar. Nur sie wird vom Prozessor wirklich verstanden. Alle anderen
Sprachen, die sogenannten Hochsprachen, miissen erst auf die eine oder andere
Art in Maschinensprache iibersetzt werden. Es wird spéter in diesem Kapitel
noch darauf eingegangen. Im Vergleich zu den zitierten Hochsprachen-Befeh-
len sind Maschinensprachebefehle viel primitiver; so bewirkt oft ein Hoch-
sprachebefehl die Ausfilthrung vieler hundert Maschinensprachebefehle.

Es liegt einfach in der Struktur der heutigen Hardware, dal Maschinenspra-
chebefehle so wenig méchtig sind. Stark vereinfacht besteht ein Mikrocompu-
ter aus der Zentraleinheit (CPU, Central Processing Unit), dem Speicher und
den Chips fiir bestimmte Aufgaben wie zum Beispiel Ein-/Ausgabe oder die
Erzeugung des Monitorbildes. Verbunden wird das Ganze durch ein Bussy-
stem, das den Informationsaustausch zwischen den einzelnen Chips regelt (sie-
he Abb. 1.1).

Zunichst einmal zum Aufbau des Speichers: Er enthélt den Programmcode
und die Daten. Informationen kénnen darin abgelegt und spéter wieder gelesen
werden. Der Speicher ist aus einer grofen Zahl von Zellen aufgebaut, die ih-
rerseits aus mehreren Bits bestehen (Abb. 1.2). Jedes Bit kann nur zwei Zu-
stinde annehmen, die man beispielsweise mit An und Aus bezeichnet. Man
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kann die Zustande allerdings auch als die Ziffern O und 1 interpretieren. Fiigt
man nun mehrere Bits zusammen, wobei die Stelle jedes Bits festliegen muS8,
so kann man mit ihnen eine bindre Zahl darstellen. Mit 8 Bits lassen sich so
ganze Zahlen von 0 bis 255 darstellen, mit 16 Bits schon Zahlen von 0 bis
65535.

Gewohnlich besteht eine Speicherzelle aus 8 Bits, da viele Computer 8 Bits ne-
beneinander verarbeiten. Die Zusammenfassung von 8 Bits wird Byte genannt.
Mehr iiber das binére Zahlensystem finden Sie in Anhang A.

spezielle Bausteine
| E/A

Grafik
Chip

Datenbus

CPU

Speicher

Abb. 1.1: Der allgemeine Aufbau eines Computers

Bit 7 S S 4 3 2 1 0
0101|1011
Wert 128 64 32 16 = 8 4 2 1

Abb. 12: Bindre Darstellung der Zahl 91
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Im Grunde ist es aber nur eine von vielen méglichen Interpretationen, die Bits
als Ziffern einer bindren Zahl zu betrachten. Auf unterster Ebene handelt es
sich ja nur um Gruppen von Transistoren, die zwei verschiedene Zustinde an-
nehmen konnen.

Oft genug wird eine Gruppe von Bits tatséchlich als eine binir dargestellte
Zahl] interpretiert; ein anderes Mal kann sie jedoch auch fiir einige Buchstaben
aus einem Text stehen, und noch ein anderes Mal kann sie als ein paar Punkte
auf dem Bildschirm interpretiert werden. Es gibt viele mogliche Bedeutungen
fiir eine Gruppe von Bits. Um den Inhalt von Speicherstellen darzustellen,
werden in den meisten Fillen allerdings Zahlen verwendet, weil sie die iiber-
sichtlichste und allgemeingiiltigste Art der Darstellung von Bitmustern bieten.

Eine Art der Interpretation von Bitmustern haben wir noch nicht erwéhnt:
Maschinenbefehle. Es handelt sich dabei um ein begrenztes Repertoire von
einfachen Operationen, die der Prozessor auf seine Art "versteht" und ausfiih-
ren kann. Damit auf die einzelnen Speicherstellen in verniinftiger Weise zu-
gegriffen werden kann, sind sie mit 0 beginnend durchnumeriert. Man kann
sich diese Nummern als "Hausnummern" vorstellen, wobei der "Bewohner"
des "Hauses" der Wert der Speicherzelle ist. So wird die Nummer einer Spei-
cherzelle auch als Adresse bezeichnet.

Der Hauptspeicher des Computers kann beschrieben und gelesen werden. Es
handelt sich dabei um das sogenannte RAM, was fiir "Random Access Memo-
ry", also "Speicher mit wahlfreiem Zugriff" steht. Das RAM hat jedoch einen
Nachteil: Sobald die Stromversorgung abgeschaltet wird, ist der gesamte In-
halt des RAM unwiederbringlich verloren. Um dies zu umgehen und stéindig
gebrauchte Programme immer im Speicher verfiigbar zu haben, ohne daR die-
se bei jedem Systemstart neu geladen werden miifiten, hat man das ROM ent-
wickelt. ROM steht fiir "Read Only Memory", also Nur-lese-Speicher. Des-
halb befindet sich bei den meisten Computern das Betriebssystem (das Pro-
gramm, welches die Hardware dem Benutzer und den Anwendungsprogram-
men zugénglich macht) im ROM.

Die Zentraleinheit (CPU) kann man sich als Gehirn des Computers vorstellen:
Mit ihr werden alle Berechnungen durchgefiihrt und das gesamte System ge-
steuert. Die CPU hat die Moglichkeit, Speicherzellen zu beschreiben und aus-
zulesen. Was geschieht nun, wenn sie ein Programm ausfiihrt? Die CPU holt
sich Befehlscode fiir Befehlscode aus dem Speicher, analysiert ihn und fiihrt
die gewiinschte Aktion durch. Falls notwendig, holt sie dafiir benétigte Daten
auch noch aus dem Speicher. Wo sie diese Daten zu suchen hat, weif} sie durch
die Adresse, die Teil des Befehls ist.

Eine CPU verfiigt immer iiber mehrere Register. Ein Register ist eine Art
Speicherzelle, die innerhalb der CPU liegt und mit der verschiedene mathema-



16 ATARI ST - Programmieren in Maschinensprache

tische und logische Operationen durchgefiihrt werden kénnen. Bei vielen
CPU's konnen Berechnungen nur in Registern ausgefiihrt werden. Der Ablauf
der Manipulation eines Speicherplatzes wird dann oft so aussehen, daf} die Da-
ten zunédchst vom Speicher in ein Register geladen, dort den gewiinschten Ope-
rationen unterzogen und danach wieder in den Speicher zuriickgeschrieben
werden.

Beispiel:

Im Laufe der Programmausfithrung trifft die CPU auf ein Bitmuster mit der
bindren Darstellung

10010110

oder dezimal 150. Sie stellt fest, daR dies der Befehl ist, den Inhalt eines Spei-
cherplatzes zu lesen und in ein Register zu laden. (Dieses Beispiel ist fiktiv und
entstammt nicht der Maschinensprache des MC68000.) Die Adresse, aus der
gelesen werden soll, steht in den beiden darauffolgenden Bytes.

Nehmen wir an, diese Bytes enthalten bindr 00000011 und 11110100, also 3
und 232. Gewohnlich findet eine Adresse nicht in einem Byte Platz, da man da-
mit nur 256 Speicherplitze unterscheiden konnte. Deshalb werden Adressen je
nach der Grofle des Arbeitsspeichers in 2, 3 oder sogar 4 Bytes dargestellt.
Unser fiktiver Prozessor soll diese beiden 8-Bit-Zahlen deshalb zu einer 16-
Bit-Adresse zusammenfiigen, wobei das erste Byte die oberen 8, das zweite die
unteren 8 Bits liefert.

Es entsteht die Adresse
0000001111110100

oder dezimal 1000. Auf dieses Ergebnis kommt man auch, wenn man 3 * 256
+ 232 * 1 berechnet. Das ergibt sich daraus, daf die Wertigkeit des oberen
Bytes 256, die des unteren nur 1 betrigt. Das Ganze lduft also darauf hinaus,
daf} der Inhalt des Speicherplatzes 1000 (dezimal) in ein Register kopiert wird.
Nach der Ausfiihrung dieses Befehls nimmt der Prozessor den im Speicher
darauffolgenden Befehl in Angriff. Normalerweise werden die Befehle also li-
near hintereinander abgearbeitet.

Natiirlich besteht ein Computer nicht nur aus CPU, ROM und RAM, denn
sonst hétte er ja keinerlei Moglichkeit, mit der Aulenwelt in Verbindung zu
treten, also zum Beispiel Zeichen auf dem Drucker auszugeben oder ein Bild
auf dem Monitor zu erzeugen. Fiir diese Funktionen verfiigt jeder Computer
iiber spezialisierte Chips, die die Schnittstellen bedienen, den Monitor ansteu-
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ern oder die Tastatur abfragen. Natiirlich mufl die CPU mit diesen Chips auch
kommunizieren kénnen, um beispielsweise Parameter fiir eine Schnittstelle
einzustellen oder die Bildschirmauflésung zu wihlen. Auch dieser Datenaus-
tausch erfolgt iiber den Datenbus. Die Spezialchips verfiigen — dhnlich wie die
CPU - iiber Register, die von der CPU wie Speicherzellen angesteuert werden.
Das Bussystem sorgt dafiir, daR die Informationen den richtigen Adressaten
erreichen.

Wie sage ich's meinem Computer

Nun werden Sie sich sicher fragen, wie man den Maschinencode erzeugt. Die
primitivste Form der Eingabe wire sicherlich, den Code binér Byte fiir Byte
einzugeben. Falls Sie jetzt meinen, dies wire eine ausgesprochen umsténdliche
Methode, haben Sie nicht unrecht.

Allerdings wurde in der Anfangszeit der Computerei tatsiachlich so program-
miert. Die Eingabe von Programmen bestand darin, in einer Reihe von 8
Schaltern binédre Zahlen einzugeben und auf einen Knopf zu driicken, sobald
die richtige Kombination eingestellt war und in den Speicher gebracht werden
sollte. Dann erfolgte die gleiche Prozedur fiir den néchsten Speicherplatz, und
SO weiter...

Logisch, dafl diese Art der Eingabe nicht nur sehr zeitaufwendig und umstind-
lich (schlieflich mufite man stidndig mit Befehlstabellen arbeiten), sondern
auch duferst fehleranfallig war, denn es ist sehr schwierig, mit binidren Zahlen
zu arbeiten, ohne sie durcheinanderzubringen.

Der néchste Schritt, eine Eingabe mit Zehner- oder Hexadezimaltastatur, war
auch noch nicht das wahre Vergniigen, mufite man doch immer noch mit unan-
schaulichen Zahlen statt mit einigermafien verstdndlichen Befehlsworten
arbeiten, wie sie heute in allen Hochsprachen iiblich sind. Den Durchbruch
brachten daher erst die sogenannten Mnemonics, Abkiirzungen, die die Funk-
tionen der Befehle wiedergeben. So wiirde etwa der oben beschriebene Befehl,
den Inhalt eines Speicherplatzes in ein Register zu laden, so lauten:

MOVE 1000,DO

MOVE (engl. fiir "bewege") sagt dabei, was der Befehl tun soll, namlich Daten
von einem Platz zum anderen bewegen. MOVE ist zwar ein Mnemonic, aber
ausnahmsweise keine Abkiirzung. Nur dort, wo die Arbeitsweise eines Befehls
mit komplizierteren Worten beschrieben werden muf}, werden Abkiirzungen
von hochstens fiinf Buchstaben Lénge verwendet.
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Auf das Mnemonic folgen die Operanden, die mitteilen, womit die Operation
durchgefiihrt werden soll: 1000 steht fiir die Quelle, also die Speicherzelle, aus
der die Daten geholt werden sollen. Der zweite Operand ist das Ziel, also der
Ort, wohin die Daten geschrieben werden sollen. Quelle und Ziel werden im-
mer durch ein Komma getrennt. In diesem Fall ist das Ziel ein Prozessorregi-
ster namens DO.

Fiir die Programmierung mit Mnemonics braucht man natiirlich schon ein
komplexeres Eingabeprogramm: Es muf3 den Befehlscode und die Operanden
analysieren, daraus mit Hilfe einer im Computer gespeicherten Befehlstabelle
den Befehlscode errechnen und in einem gewiinschten Speicherbereich ab-
legen. Solche Programme, sogenannte Direkt-Assembler, werden heute auch
noch oft verwendet, allerdings nicht zur eigentlichen Eingabe von Program-
men, sondern zum Austesten und zur Fehlersuche in halbfertigen Program-
men, wobei man oft noch kleine Verinderungen vornehmen will.

Mit Hilfe der Mnemonics kann schon recht gut programmiert werden. Nur
eine Tatsache erweist sich noch als stérend: Jedes Programm muB auf eine An-
zahl von Variablen zugreifen, um so mehr, je grofler es ist. In Maschinenspra-
che sind Variablen nichts anderes als bestimmte Speicherplitze, die vom Pro-
grammierer eben als Variablen benutzt werden. Wenn diese Variablen jedoch
nur mit ihren Adressen identifizierbar sind, also durch abstrakte Zahlen dar-
gestellt werden, ist es recht schwierig, ohne Verwechslungen mit ihnen umzu-
gehen. Dariiber hinaus ist der Dokumentationswert dieser Adressen gleich
null, es ist also sehr schwierig, an einem solchen Programm nachtréiglich noch
Verdnderungen vorzunehmen. Deshalb ist es viel angenehmer, wenn man be-
stimmte Adressen mit anschaulichen, vom Programmierer gewihlten Namen
bezeichnen kann, die fiir AuBenstehende verstindlich sind. Diese Namen miis-
sen nur einmal im Programm festgelegt werden, und die dazugehérigen
Adressen konnen an allen anderen Stellen iiber ihren Namen angesprochen
werden. Es gibt tatsdchlich Programme, die dies ermdglichen: Es handelt sich
um sogenannte Assembler (engl. "Zusammensetzer"). Die Namen, die fiir be-
stimmte Zahlen stehen, werden Symbole genannt.

Wenn sich in Speicherzelle 1000 eine Zihlvariable befindet, wiirde obiges Bei-
spiel unter einem Assembler etwa so aussehen:
ZAHLER EQU 1000

[andere Befehle]

MOVE ZAHLER, DO
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Die Anweisung "ZAHLER EQU 1000" legt fest, daB kiinftig das Wort "ZAH-
LER" fiir die Adresse 1000 steht. Diese Anweisung ist eine sogenannte Sym-
boldefinition. Der Befehl "MOVE ZAHLER,DO" hat also fiir den Computer
die gleiche Bedeutung und erzeugt den gleichen Code wie "MOVE 1000,D0",
er ist nur fiir Menschen leichter zu verstehen. Erst durch die Verwendung ei-
nes Assemblers konnen wirklich lesbare Programme erzeugt werden. Natiir-
lich ist es hierbei nicht mehr moglich, Befehl fiir Befehl einzugeben und sofort
fertig fiir die Ausfithrung im Speicher abzulegen, da der Assembler alle An-
weisungen auf einmal im Blickfeld haben muf, um die Symbole durch ihre
Werte zu ersetzen.

Und so sieht der Umgang mit einem Assembler aus: Zunichst miissen mit ei-
nem Editor alle Befehle und Symboldefinitionen in der gewiinschten Reihen-
folge eingegeben werden. Dann bearbeitet der Assembler den so entstandenen
Text. Er versucht nun, alle Symbole durch ihre Werte zu ersetzen und die
Mnemonics in Maschinencode umzurechnen. Wenn alles korrekt ist, erzeugt
er den ausfithrbaren Code im Speicher oder als Datei auf der Diskette.

Der Assembler stellt wohl die letzte Stufe in der Linie der Maschinensprache-
programmierung dar. Den néchsten Schritt in Richtung hoherem Program-
mierkomfort stellen die Hochsprachen dar, wobei jedoch die einfachere Pro-
grammierung mit weniger effizienten Programmen erkauft werden muS8.

Und was kommt nach Assembler?

Trotz der symbolorientierten Programmierung mit einem Assembler stellt
diese Form des Programmentwurfs noch einen erheblichen Arbeitsaufwand
dar. Da die Maschinensprachebefehle nur so elementare Aktionen bewirken,
wie sie eben ein Prozessor auf einmal erledigen kann, benétigen selbst kleine
Programme schon relativ viele Befehle. Das erschwert die Fehlersuche natiir-
lich gewaltig.

Es wire viel schoner, wenn sich der Programmierer weniger auf irgendwel-
che Hardware-Eigenheiten und mehr auf das eigentliche Problem, das sein
Programm 16sen soll, konzentrieren konnte. Mit anderen Worten, eine Pro-
grammiersprache ist gefragt, die weniger auf die Maschine, aber mehr auf den
Menschen eingeht.

Das Prinzip der hoheren Programmiersprachen ist, tibliche Schreibweisen wie
zum Beispiel geklammerte mathematische Ausdriicke zu verstehen und aufer-
dem héufig gebrauchte Unterprogramme wie Ein- und Ausgabe von Text di-
rekt als Befehle zur Verfiigung zu stellen. Natiirlich kann der Mikroprozessor
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eine solche Sprache nicht direkt verstehen. Man braucht daher ein Programm,
das als Mittler zwischen Mensch und Maschine dient, also die Hochsprache in
Maschinensprache iibersetzt. Es gibt dafiir nun zwei Moglichkeiten, die beide
ihre Vor- und Nachteile haben: Interpreter und Compiler.

Falls Sie bei Interpreter (engl. Dolmetscher) an einen Interpreten, also einen
"life" auftretenden Kiinstler denken, liegen Sie gar nicht so falsch. Ein Inter-
preter ist tatséchlich ein wihrend der Programmausfiihrung, also gewisserma-
Ren "life" arbeitendes Programm. Es analysiert den Programmcode, unter-
sucht ihn auf Befehlsworter und ruft entsprechende Routinen sofort auf.

Gewdhnlich verfiigt ein Interpreter iiber einen integrierten Editor, der auch
interaktives Arbeiten gestattet. Man kann Programmroutinen direkt aufrufen
und vielfach auch Befehle direkt eingeben und ausfiihren lassen und daher sehr
schnell Anderungen am Programmcode vornehmen.

Das bekannteste Beispiel fiir Interpretersprachen ist BASIC. Weniger bekannt
sind dagegen beispielsweise Logo und LISP. Der bedeutende Nachteil der In-
terpretersprachen ist die Ausfiihrungsgeschwindigkeit: Da der Interpreter ei-
nen groBen Teil der Rechenzeit mit Organisation wie etwa der Analyse des
Codes oder dem Suchen von bestimmten Codesegmenten zubringt, sind die
entstehenden Programme nicht sehr effizient. Sicherlich haben Sie schon so
manches BASIC-Programm erlebt, das selbst mit der Initialisierung schon ge-
raume Zeit zubrachte. Dies ist auch der Grund, weshalb es relativ wenige In-
terpretersprachen gibt: Sie sind nur da gefragt, wo es auf eine sehr schnelle
Programmentwicklung, aber nicht auf die Ausfithrungszeit ankommt.

BASIC war urspriinglich als Lernsprache konzipiert, die durch die interaktive
Arbeitsweise einen leichten Einstieg in die Computerei erméglichen sollte. Bei
LISP liegt es dagegen am ungewdhnlichen Konzept, daf diese Sprache nur
sehr schwierig anders denn als Interpreter zu verwirklichen ist. Logo, eine re-
lativ junge Programmiersprache, dient heute noch in erster Linie als Lern-
sprache, bietet jedoch durch die enge Anlehnung an LISP auch Méglichkeiten
fiir die Programmierung von kiinstlicher Intelligenz.

Die zweite Moglichkeit, eine hohere Programmiersprache zu verwirklichen,
besteht darin, das Programm nicht stiickchenweise Befehl fiir Befehl in Ma-
schinensprache umzusetzen, sondern sich den gesamten Code auf einmal vor-
zunehmen und ihn in ein eigenstdndiges Maschinenspracheprogramm zu iiber-
setzen. Das ist das Prinzip der Compiler (engl. Zusammensteller). Da die
Ubersetzung vor dem eigentlichen Programmlauf erfolgt kann sich der Com-
piler dabei natiirlich Zeit lassen und versuchen, einen moglichst effizienten
Code zu erzeugen.
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Wenn Sie sich den Interpreter als einen Simultaniibersetzer vorstellen, dann
wire der Compiler ein Literat, der sich in sein stilles Kémmerlein zuriick-
zieht, um dort eine moglichst kunstvolle Ubersetzung eines fremdsprachigen
Romans zu liefern. Somit erzeugt der Compiler Programme, die ein wesent-
lich besseres Laufzeitverhalten aufweisen als interpretierte.

Um Thnen einen Anhaltspunkt zu geben: Je nach Programmiersprache, Ver-
sion und Programm sind compilierte Programme etwa um den Faktor 3 bis 15
schneller als interpretierte. Allerdings muf} dieser Vorteil, wie so oft in Tech-
nik und Wissenschaft, mit Nachteilen an anderer Stelle erkauft werden: Der
Programmiervorgang gestaltet sich wesentlich aufwendiger, und die Vorteile
der interaktiven Arbeitsweise sind dahin. Und so sieht die Arbeit mit einem
Compiler aus:

1) Der Programmcode wird im allgemeinen mit Hilfe eines separaten Edi-
tors erstellt und als Textdatei abgespeichert. (Es handelt sich um den soge-
nannten Quellcode.)

2) Alsdann wird der Compiler aufgerufen, um sich mit dem Code zu befas-
sen. (Meist muR der entstehende Maschinencode auch noch durch einen
Linker geschickt werden. Was das ist, wird im nichsten Abschnitt er-
kldrt.) Falls hierbei Fehler auftreten, gehe zuriick zu 1, sonst fahre fort
mit 3.

3) Endlich kann das Programm ausgetestet werden. Falls noch Fehler logi-
scher Art im Programm sind, die der Compiler nicht aufspiiren konnte,
zuriick zu 1 ...

Sie sehen also, dal man laufend zwischen verschiedenen Programmen hin- und
herspringen muB. Hier erleichtert ein schnelles Speichermedium die Arbeit
ganz gewaltig. Schritt 2 kann, wenn alles iiber die Diskettenstation 14uft,
durchaus fiinf Minuten oder mehr dauern. Wenn das System allerdings groR
genug ist, daB alle Programmteile gleichzeitig im Speicher Platz finden, so
kann man auf Compilierzeiten von weniger als 30 Sekunden kommen. Dies er-
klart auch, warum Compilersprachen im unteren Heimcomputerbereich, also
auf 8-Bit-Mikrocomputern mit hochstens 64K Speicher, kaum Verwendung
finden. Die Arbeit damit gestaltet sich einfach viel zu langwierig und umstind-
lich.

Die meisten Programmiersprachen sind Compilersprachen: Pascal, Modula II,
C, FORTRAN usw. Es gibt sie fiir den militarischen Bereich sowie als Lern-
sprachen und auch als hochspezialisierte Sprachen fiir kiinstliche Intelligenz
oder Robotersteuerung.
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Obwohl sie interpretierten Programmen weit iiberlegen sind, kommen compi-
lierte Programme in der Ausfithrungsgeschwindigkeit doch niemals an ein
gutes Assemblerprogramm heran. Der Grund ist darin zu suchen, daf oft in
viel groRerer Genauigkeit gerechnet wird, als es fiir das Programm eigentlich
erforderlich wire, oder aber Programmteile sind deshalb ineffektiv, weil sie
schon im Quellcode umstiandlich formuliert waren. Letzteres kommt daher,
daf} das Sprachkonzept von Hochsprachen maschinennahe — und somit effekti-
ve — Formulierung oft nicht zulafit. In Assembler hingegen hindert nichts den
Programmierer daran, besonders zeitkritische Teile eines Programms mit
Blick auf eine Tabelle der Ausfithrungszeiten der einzelnen Befehle zu opti-
mieren.

Vielleicht werden Sie sich inzwischen fragen, was eine Beschreibung von In-
terpreter- und Compilersprachen in einem Maschinensprachebuch zu suchen
hat. Nun, es geht um folgendes: Auf einem leistungsfidhigen System wie dem
ATARI ST, das geniigend Speicherplatz bietet, werden grofere Programme
sicherlich nur selten vollstindig in Assembler geschrieben. Vielmehr wird
man versuchen, besonders zeitkritische Passagen von hochsprachlich formu-
lierten Programmen durch entsprechende Maschinenspracheroutinen zu erset-
zen. Daher wird in diesem Buch auch darauf eingegangen, wie Sie Maschi-
nenspracheroutinen zusammen mit den verbreitetsten Hochsprachen verwen-
den konnen.

Was tut ein Linker?

Linker heifit auf deutsch "Binder". Er fiigt (bindet) Programmteile in Form
von Maschinencode zusammen. Und das ist das Prinzip: Der Compiler (oder
Assembler) erzeugt keinen direkt ausfithrbaren Code. Statt dessen wird noch
eine weitere Instanz dazwischengeschaltet: der Linker. Dies mag zunéchst un-
praktisch erscheinen, hat aber durchaus praktische Griinde. Die Wurzeln lie-
gen in der Technik des modularen Programmierens.

Das Wort "Modul" ist Ihnen vielleicht schon von der Unterhaltungselektronik
in Form von Fernseh- und HiFi-Geréten bekannt. Moderne Geréte sind in sau-
ber getrennte und oft auf vielfaltige Weise kombinierbare, unabhéngige funk-
tionale Einheiten gegliedert. Falls nun ein solches Gerit ausfillt, so hat der
Servicetechniker nur noch das defekte Modul zu lokalisieren und als Ganzes
auszutauschen. Das Arbeiten mit Modulen ist auch bei der Programmierung
moglich.

Beispiel:

Nehmen wir an, Sie wollen ein Spiel mit bewegter Grafik und ein Zeichenpro-
gramm erstellen, die beide eine Funktion zu Linienziehen brauchen. Sie kénn-
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ten nun fiir jedes der Programme eine eigene Funktion programmieren. Ratio-
neller und eleganter wire es jedoch, die Funktion als eigenes Modul nur ein-
mal zu schreiben und zu compilieren. Dieses Modul miifite dann nur noch mit
den beiden Programmen verbunden werden. Und genau das ist die Aufgabe
des Linkers.

Im einzelnen funktioniert das so:

Der Compiler oder Assembler hinterldft im Objektcode, den er produziert
(also dem Maschinensprachemodul), nicht nur den Programmcode, sondern
auch Informationen iiber bestimmte Symbole, die entweder speziell markiert
worden sind oder einfach im Quellcode nicht definiert sind. In letzterem Fall
nimmt der Compiler an, es waren damit Symbole in irgend einem anderen
Modul gemeint. Nun wird der Linker mit der Information, welche Module er
zusammenbinden soll, aufgerufen. Fiir jedes undefinierte Symbol, das in
einem Modul auftritt, durchsucht er alle anderen Module in der Hoffnung, daf
es in einem von ihnen definiert ist. Zu einer korrekt aufgelésten Referenz ge-
horen also immer zwei: Ein Modul, in dem das Symbol definiert ist, und ein
anderes, in dem es aufgerufen (= referenziert) wird. Das Ganze bewirkt, daf§
Sie Symbole aus anderen Modulen in Threm Programm benutzen konnen, als
wiren sie dort definiert.

Ein Linker erlaubt in Threr Programmierumgebung auch groftmogliche Fle-
xibilitdt: So ist es beispielsweise ein leichtes, eine einfach zu bedienende
Schnittstelle zu den Betriebssystemfunktionen als Modul zu schreiben, die
fortan von jedem Programm genutzt werden kann.

Ein Linker erweist sich auch durch einen weiteren Umstand als niitzlich: Er
ermoglicht es, Programmteile, die in verschiedenen Programmiersprachen
geschrieben sind, zu verbinden. Voraussetzung ist allerdings, da} die verschie-
denen Compiler und Assembler das gleiche Format fiir ihre Objektmodule
verwenden, also auf denselben Linker zugeschnitten sind. Leider trifft dies oft
nur dann zu, wenn sie vom gleichen Softwarehaus stammen. Dann allerdings
konnen Sie ein Programm teilweise in BASIC (compiliert), teils in Pascal, C
und Assembler schreiben. Ob das unbedingt so sinnvoll ist, ist eine andere Fra-
ge. Eines ist jedoch ganz gewil sinnvoll: ndmlich Assembler mit einer Hoch-
sprache zu verbinden.

Es wire sehr miihselig, groBere Programme vollstindig in Assembler zu
schreiben, denn trotz des relativen Komforts eines Assemblers ist das Zusam-
mensetzen von grofien Programmen aus den vergleichsweise primitiven Be-
fehlen, die der Computer direkt versteht, eine duBerst zeitraubende Beschifti-
gung. So ist es doch viel einfacher, nur jene Programmiteile, die entweder zeit-
kritisch sind oder eine maschinennahe Programmierung erfordern, in Assem-
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bler zu schreiben und andere Dinge, wie beispielsweise den Aufbau von Meniis
und die Kommunikation mit dem Benutzer, in einer Hochsprache zu formulie-
ren.

Bei vielen Compilersprachen — C, Pascal und Modula I mégen hier als Bei-
spiele dienen — bietet sich bei der Verwendung eines Linkers sogar die Mog-
lichkeit, die Standardbibliotheken (jene Module, die die Standardfunktionen
dieser Sprachen enthalten) um eigene in Assembler geschriebene Funktionen
zu erweitern. Auf diese Art konnen Sie praktisch Thre eigene Befehlserweite-
rung schreiben.

Da somit die Einbindung von Assemblermodulen in Hochsprachen gerade auf
einem System wie dem ATARI ST eine groe Rolle spielt, wird darauf in An-
hang D eingegangen.
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Kapitel 2

Einfiihrung in Maschinensprache

Im Gegensatz zu den meisten héheren Programmiersprachen ist Assembler
keine Sprache, mit der man vom ersten Moment an arbeiten kann, etwa wie in
BASIC

10 PRINT "HALLO"

Vielmehr muf man schon einen gewissen Anteil der Maschinensprachebefehle
beherrschen, um iiberhaupt ein lauffdhiges Programm schreiben zu koénnen.
Am Anfang werden wir Thnen daher nur Ausschnitte aus Programmen vor-
fithren, die nicht dazu gedacht sind, fiir sich allein ausprobiert zu werden. Be-
denken Sie folgendes: Beim Erlernen von Maschinensprache liegt die Schwie-
rigkeit nicht so sehr darin, die Befehle zu beherrschen — die sind relativ schnell
gelernt —, sondern vielmehr darin, aus so kleinen Bausteinen wie ein paar
arithmethischen und logischen Operationen, Vergleichsoperationen und be-
dingten Verzweigungen das Geb4ude des Programms zusammenzusetzen.

Der innere Aufbau des MC68000

Fir den Maschinenspracheprogrammierer stellt sich der MC68000, die CPU
des ATARI ST, "von innen" wie in Abb. 2.1 dar. Wie jeder Mikroprozessor
verfiigt er liber eine Anzahl von Registern. Beim 68000 fallt sofort ins Auge,
daB er damit besonders reichlich ausgestattet ist: 15 Register stehen dem Pro-
grammierer frei zur Verfiigung. Doch befassen wir uns zunéchst mit den Re-
gistern, die bestimmten Aufgaben vorbehalten sind.

Da wire zunéchst der Programmzdhler (engl. program counter, abgekiirzt
PC). Er enthilt immer die Adresse des nichsten auszufithrenden Befehls. Er
umfaft 32 Bits, von denen allerdings die oberen 8 Bits in der gegenwirtigen
Version des MC68000 brachliegen. Uberhaupt ist das mit der Adressierung so
eine Sache: Adressen sind grundsitzlich 32 Bits lang. Man konnte damit also
rein theoretisch 2% = ca. 4,29 Milliarden Bytes adressieren. Tatsache ist je-
doch, daR eine solche Masse Speicher selbst heute noch ein kleines Vermogen
kosten wiirde. Deshalb hielten es die Entwickler des MC68000 nicht fiir not-
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wendig, tatsichlich alle Bits zu verwenden. Dies schlégt sich darin nieder, dafl
nur 24 der 32 AdreBleitungen herausgefithrt wurden. Die restlichen Bits wer-
den einfach ignoriert. Deshalb schadet es auch nichts, wenn etwa in den oberen
8 Bits einer AdreRvariable irgendwelche zusétzlichen Informationen stehen.

Datenregister Adressregister
rn Brcs) 3{7 oJ !31 Klﬁé ol
‘31 BT 15 8 l? o’ [3‘1 R 1115 o]
!31 5:15 si7 oi if§1 st o’
i31 Bré 8’7 0! I[31 16 !15 0’
f - [ | I
M/ A I U B
31 15 8|7 0] 31 16 15 0]
| Bs T " RE |
f I i
|31 Blg 8{7 D’ I31 K]“é 0‘
?al BF? i j i System—s1t6 1lipointer ’ -L A7
31 16 15 0 f
User — Stackpointer J
System - User —~
135}49 87 2 0 131 1815 0
L__.__WSMLBW__ IL Programmzaehler PC ;

Abb. 2.1: Das Register des MC68000-Prozessors

Lange Rede, kurzer Sinn: Sie haben nur 24 Bit zur Adressierung zur Verfii-
gung, womit genau 16 Megabytes, also 16777216 Bytes adressiert werden
konnen. Ubrigens ist der Speicher trotz der 16-Bit-Architektur des MC68000
byteweise aufgebaut, man hat es also mit Einheiten von 8 Bit zu tun. Doch da-
mit werden wir uns spater noch eingehender auseinandersetzen.

Jetzt also zuriick zum Programmzéhler: Er kann iiber einige Befehle direkt
angesprochen werden. Als Programmierer braucht man sich jedoch nur selten
um die Berechnung der Adressen von Programmteilen zu kiimmern: Das ist
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Aufgabe des Assemblers. Daher ist es nicht zu empfehlen, den Programmzih-
ler direkt zu manipulieren.

Interessanter ist hier schon das Statusregister (SR), das 16 Bit umfaft. Wie der
Name schon sagt, enthilt es Informationen iiber den Status des Systems. Beim
68000 wird es in zwei Teile unterteilt: Die oberen 8 Bit werden Systembyte
genannt, die unteren 8 Bit Userbyte. Das Systembyte enthilt eher vom laufen-
den Programm unabhéngige Informationen iiber den gegenwirtigen Zustand
der Hardware, wiahrend das Userbyte von jedem Programm laufend benutzt
wird. Im Userbyte werden Informationen iiber das Ergebnis der letzten
durchgefiihrten arithmetischen, logischen oder Vergleichsoperationen aufbe-
wahrt. Genauer wird das Userbyte in Kapitel 2.3 beschrieben.

Von grofier Bedeutung ist auch der Stackpointer (SP, deutsch: Stapelzeiger).
Eigentlich miifite man sagen "die Stackpointer”, denn der MC68000 hat zwei
davon. Um dieses "Doppelte Lottchen” zu erklaren, muf ich etwas weiter aus-
holen: Der 68000 kann Programme in zwei unterschiedlichen Modi ausfiihren,
dem Supervisormodus und dem Usermodus. Im Supervisormodus ist wirklich
alles erlaubt. Im Usermodus (dem Modus, in dem die meisten Programme lau-
fen) ist man hingegen etwas eingeschrankt: Auf bestimmte Speicherbereiche
darf nicht zugegriffen werden, und bestimmte Maschinensprachebefehle diir-
fen nicht ausgefiihrt werden. Es handelt sich dabei um sogenannte privilegierte
Befehle.

Jetzt werden Sie sich vielleicht fragen, warum man sich solche Miihe macht,
um Sie als Assemblerprogrammierer jener absoluten Freiheit (und der damit
verbundenen Verantwortung) zu berauben, die der Assemblerprogrammie-
rung doch sonst auf Microcomputern zu eigen ist. Der Grund ist darin zu su-
chen, dafl der MC68000 urspriinglich fiir Mehrplatzsysteme konzipiert war.

In einem Mehrplatzsystem (ein Computer, der mehrere Terminals bedient)
mulf etwas anders organisiert werden, damit nicht jedes Programm die Mog-
lichkeit hat, die Systemvariablen zu manipulieren. Dies konnte sonst leicht zu
unerwiinschten Nebenwirkungen auf anderen Terminals fithren oder gar das
gesamte System zum Absturz bringen. Dem hat man von der Hardwareseite
einen Riegel in Form des Usermodus vorgeschoben. Andererseits muf das Be-
triebssystem und meist auch der Bediener der Systemkonsole die Moglichkeit
haben, alle laufenden Programme gleichzeitig zu kontrollieren und auch die
Systemvariablen zu dndern. Dafiir wurde der Supervisormodus eingerichtet.

In einem Einplatzsystem, das nicht einmal fiir Multitasking vorgesehen ist,
verlieren diese Dinge natiirlich ihre Bedeutung. Doch offenbar wollten die
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Entwickler des ATARI ST jene Hardwareféhigkeit nicht verschenken und ent-
schlossen sich, nur das Betriebssystem im Supervisormodus laufen zu lassen,
wihrend Programmen der Usermodus zugeteilt wird. Dies hat den Sinn, daf
ein abstiirzendes Programm nicht unbedingt das ganze System mitreifit, da es
die vom Betriebssystem benutzten Speicherbereiche nicht beeinflussen kann.
Leider lehrt die Erfahrung, daf es trotzdem noch oft genug geschieht, aber
manchmal funktioniert es eben...

Fiir Supervisor- und Usermodus stehen also zwei getrennte Stackpointer zur
Verfiigung. Der Stack (deutsch: fiir Stapel) ist ein reservierter Speicherbe-
reich, der hauptsichlich dem Aufruf von Unterprogrammen und der Parame-
teriibergabe von einer Funktion zur anderen dient. Es handelt sich dabei um
einen sogenannten LIFO-Stack (engl. Last In — First Out, zuletzt hinein — zu-
erst heraus). Man kann sich diesen in etwa wie einen Tellerstapel vorstellen,
auf den der Tellerwischer einen Teller nach dem anderen legt und von dem
der Ober immer den obersten, also den zuletzt hinaufgelegten, herunter-
nimmt. Auch auf den Stack wird spéter noch ausfiihrlicher eingegangen.

Kommen wir zu dem zunichst wichtigsten: den frei verwendbaren Prozessor-
Registern. Der 68000 bietet 15 davon. Die ersten 8 werden Datenregister ge-
nannt und mit DO bis D7 bezeichnet, die restlichen 7, AO bis A6, sind die
Adrefiregister.

Wie schon der Name sagt, dienen die Adrefregister zum Adressieren, wih-
rend die Datenregister zum Rechnen verwendet werden. Allerdings ist diese
Aufteilung nicht ohne Ausnahmen: In begrenztem Mafe kann auch mit den
Adrefregistern gerechnet werden, und gelegentlich werden sogar die Daten-
register zum Adressieren verwendet.

Durch die zahlreichen Register bietet es sich beim 68000 geradezu an, einen
groBen Teil der Berechnungen in einem Programm nur in den internen Regi-
stern ablaufen zu lassen. Dies spart nicht nur Zeit — es sind ja keine aufwendi-
gen Speicherzugriffe mehr nétig, da die Daten gewissermaBen "vor der Tiir"
liegen —, sondern es spart auch Speicherplatz, da Maschinensprachebefehle, die
die Register ansprechen, immer kiirzer sind als solche, die Daten im Speicher
adressieren.

Die Register sind allesamt 32 Bit lang. Je nach Befehl werden davon allerdings
oft nicht alle Bits angesprochen: Es ist moglich, nur die ersten 16 oder die er-
sten 8 Bit anzusprechen. Weil der MC68000 eine Datenbusbreite von 16 Bits
(= ein Wort) hat, ist dies der Standardwert fiir die Verarbeitungsbreite.
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Erste Schritte

Zu den héaufigsten Aufgaben der CPU zéhlt es, Daten zu bewegen: innerhalb
des Speichers, vom Speicher in ein Prozessorregister oder umgekehrt, oder
von Register zu Register. Dies wird mit dem MOVE-Befehl ermoglicht (engl.
to move: bewegen).

Ein Beispiel:
MOVE 1000,DO

steht fiir "bewege den Inhalt des Speicherplatzes mit der Adresse 1000 in das
Datenregister DO".

Zunéchst etwas Allgemeines zu den Befehlen des 68000: Die meisten Befehle
haben zwei Operanden. Der erste folgt dem Mnemonic, der zweite wird vom
ersten durch ein Komma getrennt. Der erste Operand stellt gewohnlich die
Quelle (engl. source) dar; er wird nicht veréndert, sondern gibt nur an, wo die
Daten hergeholt werden sollen. Der zweite Operand ist das Ziel (engl.: desti-
nation): Dort wird das Ergebnis hingeschrieben. In unserem Beispiel ist also
"MOVE" das Mnemonic, "1000" die Quelle und "D0" das Ziel.

Genau genommen bewegt dieser Befehl die Inhalte der Speicherzellen 1000
und 1001 nach DO, denn die Verarbeitungsbreite ist ja 16 Bit, also ein Wort.
Dabei werden die 8 Bit des Speicherplatzes 1000 als die oberen, die aus 1001
als die unteren 8 Bit interpretiert. Wenn also in Adresse 1000 (jetzt als Byte
betrachtet) eine 1 steht und in 1001 eine 44, dann steht nach dem Befehl im Re-
gister DO 1 * 256 + 44 = 300 (Abb. 2.2).

: : N 1 s o
Speicher‘i DO | xx [ XX l 1 | 44 I
to00 1
1001 44
! ! 2 16 0
! : DO XXXX 300

Abb. 2.2: Die Ausfiihrung des Befehls MOVE 1000,D0
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Falls Sie vorher auf Prozessoren wie 6502, 6510, Z80 oder 8086 program-
miert haben, werden Sie damit vermutlich noch einige Schwierigkeiten haben:
Dort werden die Bytes ndmlich im Speicher genau andersherum abgelegt. Als
Faustregel kann man sich merken, dafl es beim MC68000 genau so ist wie bei
unserer Zahlendarstellung: zuerst die hochwertigen, dann die niederwertigen
Ziffern.

Vielleicht fragen Sie sich inzwischen, warum man denn den Speicher nicht
gleich in 16-Bit-Einheiten gliedert, wo doch ohnehin 16 Bits auf einmal be-
wegt werden. Nun, das kommt daher, daf ein Computer nicht nur mit Zahlen
umgeht, sondern auch viel mit Texten zu tun hat. Da ein Zeichen im ASCII-
Code 8 Bits fiillt, ist es sinnvoll, wenn weiterhin jedes Byte im Speicher einzeln
erreicht werden kann.

Auflerdem ist es ja manchmal auch durchaus sinnvoll, nur 8 Bit lange Zahlen
zu verwenden. Deshalb verfiigt der 68000 auch iiber die Moglichkeit, seine
Verarbeitungsbreite auf 8 Bit zu beschranken, um somit jedes Byte im Spei-
cher einzeln ansprechen zu konnen. Dies tun Sie, indem Sie an das Mnemonic
einen Punkt und an den Buchstaben ein B anhingen. Wenn Sie also nur das
Byte Nummer 1000 nach DO bewegen wollten, miifiten Sie schreiben

MOVE.B 1000,DO

Obwohl hier weniger Bits bewegt werden, ergibt sich kein Geschwindigkeits-
vorteil, da die oberen 8 Bit der iiblichen Verarbeitungsbreite von 16 Bit
brachliegen. Das Ergebnis dieses Befehls ist, daB die Bits Nummer 8 bis 31 des
Registers DO (es handelt sich ja um 32-Bit-Register) unverindert bleiben. Nur
die unteren 8 Bit, also Nummer 0 bis 7, werden von obigem Befehl iiber-
schrieben.

Da der 68000 durch die AdreRbildung viel mit 32-Bit-Zahlen, sogenannten
Langworten (engl. longwords), zu tun hat, bietet er auch die Moglichkeit, mit
einem Befehl 32 Bit auf einmal zu verarbeiten. Diesmal wird ein Punkt und
der Buchstabe L (fiir longword) angehéngt. Der Befehl

MOVE.L 1000,DO

bewegt somit 4 Bytes ab Speicherstelle 1000 in das Datenregister DO. Wie iib-
lich kommen die hochstwertigsten Bits zuerst. Nach der Operation steht also
der Inhalt von Speicherzelle 1000 in den hochwertigsten 8 Bits des Datenregi-
sters DO, der von 1001 in den darauffolgenden 8 Bit, dann kommen die 8 Bits
aus 1002 und zuletzt der Inhalt von 1003.
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Fir Langwort-Operationen braucht der Prozessor deutlich langer als fiir
Wort- oder Byte-Operationen, da er einen solchen Befehl in zwei Schritten zu
16 Bit ausfithren mufl: Durch die 16-Bit-Architektur des Datenbusses kénnen
natiirlich nicht 32 Bit auf einmal vom Speicher zur CPU iibertragen werden.
Allerdings geht es immer noch schneller als mit 2 MOVE-Befehlen, die je-
weils ein Wort bewegen.

Ubrigens gibt es auch fiir Wort-Operationen einen sogenannten Extender
(deutsch: Anhéingsel) wie ".B" oder ".L" : Es ist logischerweise ".W". Ich bin
nur deshalb noch nicht darauf eingegangen, weil er bei den meisten Assem-
blern iiberfliissig ist. Sie nehmen automatisch einen Wortzugriff an, wenn an
einem Mnemonic kein Extender hangt. Es steht Ihnen allerdings frei, trotzdem
zu schreiben

MOVE.W 1000,D0
was vollig Aquivalent ist zu

MOVE 1000,DO

Die Extender gelten nicht nur fiir den MOVE-Befehl, sondern ebenso fiir alle
arithmetischen und logischen Befehle.

Bekanntlich werden bei der Assemblerprogrammierung auch gerne hexadezi-
male Zahlen verwendet (siche Anhang A). Damit die hexadezimalen Zahlen
nicht mit Dezimalzahlen verwechselt werden kdnnen, miissen sie irgendwie
identifiziert werden. Die iibliche Konvention verlangt, daff Hexadezimalzahlen
mit einem vorangestellten Dollar-Zeichen ($) kenntlich gemacht werden. Da
dezimal 1000 der hexadezimalen Darstellung 3E8 entspricht, kann man besag-
ten MOVE-Befehl also auch so formulieren:

MOVE $3ES8,DO0

Damit wird genau der gleiche Code erzeugt.

Da oftmals auch binére Zahlen praktisch sein konnen, kann jede beliebige Zahl
auch als eine Folge von Nullen und Einsen eingegeben werden. Das spezielle
Kennzeichen fiir eine Binirzahl ist das Prozentzeichen:

MOVE %1111101000,D0

Noch eine gleichwertige Darstellung, da 1111101000 die bindre Darstellung
von dezimal 1000 ist.
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Die Addition in Maschinensprache und das Userbyte

Natiirlich ist es ist auf die Dauer langweilig, den Rechner nur Daten im Spei-
cher herumschieben zu lassen. Daher wollen wir ihn jetzt zwei Zahlen addie-
ren lassen. Nehmen wir an, die erste Zahl steht ab Zelle 1000 im Speicher, die
zweite ab 2000. Der Inhalt von 1000 soll zu dem in Speicherzelle 2000 addiert
werden. Leider ist man in der Wahl von Quelle und Ziel nicht so frei, da man
einfach schreiben konnte

ADD 1000,2000 nicht erlaubt!

Mindestens einer der beider Operanden, also Quelle oder Ziel, muf ein Regi-
ster sein. Deshalb miissen wir das Ganze etwas umstindlicher formulieren;

MOVE 1000,DO0
ADD DO, 2000

Das Mnemonic ADD (engl. to add: addieren) steht hier fiir den Additionsbe-
fehl. Sie sehen, da man nicht nur Register als Ziel verwenden kann, sondern
auch Speicheradressen. Bei arithmetischen und logischen Operationen wird
immer die Quelle mit dem Ziel verkniipft (also in diesem Fall addiert) und das
Ergebnis im Ziel abgelegt, wihrend die Quelle unverindert bleibt.

Obiger Befehl addiert zwei Worte — es war ja kein Extender angegeben.
Manchmal will man jedoch auch nur Byte-Werte addieren. Die Befehlsfolge
dazu wire

MOVE.B 1000,D0
ADD.B DO, 2000

Damit wird nur das Byte 1000 zum Byte 2000 addiert. Natiirlich bezieht sich
die angegebene Verarbeitungsbreite ebenso auf das Ziel wie auf die Quelle; in
unserem Beispiel wiirde also die Speicherzelle 2001 auf jeden Fall unveréndert
bleiben.

Auch hier kann die Langwort-Adressierung verwendet werden. Dazu dienen
folgende Befehle:

MOVE.L 1000,DO
ADD.L DO0,2000

Es werden 4 Bytes ab Nummer 1000 zu 4 Bytes ab Nummer 2000 addiert.

Bevor wir uns mit weiteren Befehlen beschiftigen, ist es wichtig, sich mit der
Zahlendarstellung im Computer auseinanderzusetzen.
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Bei positiven Zahlen gibt es kein Problem: Die Bitfolge wird direkt als binire
Zahl behandelt. Doch wie werden negative Zahlen dargestellt? Es gibt mehre-
re Moglichkeiten dafiir. Die vielleicht naheliegendste wire, ein Bit zu reser-
vieren, das nichts weiter als das Vorzeichen darstellt. Tatséichlich wird es auch
bei einigen Anwendungen so gemacht. Die Methode hat nur einen Nachteil:
Die Addition von so dargestellten vorzeichenbehafteten Zahlen gestaltet sich
aufwendig, da das Resultat ganz vom Vorzeichen der beiden Zahlen abhéngt
und aulerdem das Vorzeichenbit auf recht komplizierte Weise neu errechnet
werden muB.

Um die Arbeit zu erleichtern, wendet man die Zweierkomplementdarstellung
an. Dabei wird der darstellbare Zahlenbereich — jetzt von vorzeichenlosen
Zahlen — genau in der Mitte geteilt. Die darunterliegenden Zahlen werden wei-
terhin als positiv betrachtet, jene dariiber als negativ. Die negativen Zahlen er-
geben sich, wenn man die eigentlichen (vorzeichenlosen) Zahlen von der héch-
sten darstellbaren Zahl plus eins abzieht und vor das Ergebnis ein Minuszei-
chen setzt. In unserem Beispiel miiiten Sie also die entsprechende Zahl von
7 + 1 = 8 abziehen. Versuchen wir es mit der Zahl 7:

8-T7=1,ergibt-1

Bei 8 Bit ergibt sich fiir die vorzeichenlosen Zahlen ein Bereich von 0 bis 255.

Die Zahlen ab 128 haben dabei ihr negatives Aquivalent: Sie stehen fiir den Be-
reich von —128 bis —1. Dabei entspricht die 128 der —128, 129 steht fiir —127,

und so weiter bis 255, die fiir —1 steht. Fiir 16 Bit ergeben sich entsprechend
Bereiche von 0 bis 65536 oder von —-32768 bis +32767, fiir 32 Bit von
—2.147.483.648 bis +2.147.483.647 oder von 0 bis 4.294.967.295.

Ich habe noch nicht erwidhnt, warum die Zweierkomplementdarstellung besser

ist als die Methode mit dem Vorzeichenbit. Der Grund ist, dal Zweierkomple-

mentzahlen bei Addition und Subtraktion auf vollig gleiche Art behandelt wer-
" den kénnen wie vorzeichenlose Zahlen: Das Ergebnis stimmt in jedem Fall!

Beispiel: Addieren wir zwei 8-Bit-Zahlen:

00101010 = 42 dezimal
+ 11110100 = -12
(100011110 = 30

Der entstehende Ubertrag hat nur bei der vorzeichenlosen Betrachtung einen
Sinn und wird deshalb hier einfach ignoriert.
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Jetzt noch einmal das Gleiche als vorzeichenlose Zahlen betrachtet:

00101010
+ 11110100

42 dezimal
244

100011110 = 256 +30=286

Bei diesem Beispiel muB allerdings der Ubertrag ausgewertet werden, damit
das Ergebnis stimmt. Sie sehen, dafl Sie bei Subtraktion und Addition nicht
darauf achten miissen, ob die Zahlen mit oder ohne Vorzeichen sind; es hingt
ganz von der Interpretation ab, ob den Bitmustern ein Vorzeichen zugeschrie-
ben wird oder nicht. Mehr iiber die Zahlendarstellung im Computer finden Sie
in Anhang A.

Das User —Byte

000 X|NZV|C

Wert 128 64 32 16 8 4 2 1

Abb. 2.3: Aufbau des CCR (Condition Code Register)

Nun zuriick zur Addition: Bei dieser Operation wird nicht nur das Ziel verin-
dert, sondern es werden auch die Statusflags neu gesetzt. Es handelt sich dabei
um bestimmte Bits im weiter oben beschriebenen Statusregister, die je nach
bestimmten Eigenschaften des Ergebnisses von logischen und arithmetischen
Operationen gesetzt oder geloscht werden. Die Flags befinden sich im unteren
Byte des 16 Bit langen Statusregisters, dem sogenannten Userbyte oder Condi-
tion Code Register (CCR). Abbildung 2.3 zeigt die Anordnung der Flags.

Die Bedeutung der Flags:

~ Das C-Bit (Carry-Flag) wird auf eins gesetzt, wenn bei einer Addition oder
Subtraktion ein Ubertrag bei positiven Zahlen auftritt. Bei Operationen mit
Zweierkomplementzahlen braucht der Carry allein nicht beachtet zu wer-
den. Das C-Bit wird auch von Schiebeoperationen geéndert.
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— Das N-Bit (Negative-Flag) wird eingeschaltet, wenn das Ergebnis in Zwei-
erkomplementdarstellung eine negative Zahl ist. Erinnern wir uns, daf§ eine
Zahl genau dann negativ ist, wenn das oberste Bit auf 1 gesetzt ist. Das N-Bit
stimmt also mit dem obersten Bit des Ergebnisses iiberein.

— Das Z-Bit (Zero-Flag) wird genau dann auf 1 gesetzt, wenn das Ergebnis ei-
ner Operation Null ist.

— Das V-Bit (Overflow-Flag) wird eingeschaltet, wenn bei einer Operation
mit Zweierkomplementzahlen ein Uberlauf auftritt, also der Bereich der
darstellbaren Zahlen verlassen wird. Solange man mit positiven Zahlen ar-
beitet, braucht man sich um das V-Flag nicht zu kiimmern.

— Das X-Bit (Extend-Flag) hat weitgehend die gleiche Bedeutung wie das C-
Bit (Carry-Flag): Beide zeigen an, ob ein Uberlauf bei Addition oder Sub-
traktion auftrat. Der Unterschied besteht einzig und allein darin, dafl das C-
Flag auch von zahlreichen Operationen beeinflufit wird, die nicht arithmeti-
scher oder logischer Natur sind, wie zum Beispiel dem MOVE-Befehl. Das
X-Flag ist also "haltbarer".

Wozu dienen diese Flags nun? Sie kénnen abgefragt werden, damit abhéngig
von ihrem Zustand verschiedene Aktionen durchgefiihrt werden. Dazu dienen
die sogenannten bedingten Verzweigungen, mit denen wir uns spéter noch aus-
einandersetzen werden. Das X-Flag nimmt allerdings eine Sonderstellung ein:
Es gibt Rechenbefehle, die das X-Flag direkt in ihre Rechnungen einbeziehen.

Ubrigens konnen die Flags nicht nur von arithmetischen Befehlen beeinflufit
‘werden, sondern sie kénnen auch gezielt mittels MOVE beschrieben werden.
Hierfiir gibt es den Befehl

MOVE wert,CCR

CCR steht dabei fiir "Condition Code Register”, also Bedingungs-Code-Regi-
ster, eben das Register, das die Flags enthilt. Ein 8-Bit-Wert wird in dieses Re-
gister geschrieben, wobei die oberen 3 Bits keine Bedeutung haben und igno-
riert werden. Wenn beispielsweise nur das X-Bit gesetzt und alle anderen
Flags geloscht werden sollen, schreibt man

MOVE #%00010000,CCR

Betrachten Sie dazu noch einmal Abbildung 2.3. Erinnern wir uns, daB8 das
Prozent-Zeichen eine Binérzahl einleitet.



36 , ATARI ST — Programmieren in Maschinensprache

Hier begegnet uns gleich etwas Neues: die unmittelbare Adressierung. Das be-
deutet nichts weiter, als dafl ein Operand nicht erst von woanders geholt wer-
den muf, sondern gleich im Befehl enthalten ist. In unserem Beispiel bezeich-
net das Doppelkreuz (#), daf die folgende Zahl nicht als Adresse eines Spei-
cherplatzes gemeint ist, sondern einfach fiir sich selbst steht. Es soll nicht der
Inhalt von Speicherplatz 16 (gleich 00010000 binir) ins CCR bewegt werden,
sondern die Zahl 16 selbst. Natiirlich ist die unmittelbare Adressierung nur bei
der Quelle sinnvoll und erlaubt.

Stiirzen wir uns gleich wieder in die Praxis: Nehmen wir an, Sie brauchen fiir
eine bestimmte Anwendung besonders grofie Zahlen, so dal 32 Bit zu deren
Darstellung nicht mehr ausreichen. Deshalb wollen Sie 64-Bit-Zahlen verwen-
den. (Zugegeben, das ist etwas an den Haaren herbeigezogen, da man ja mit 32
Bit auch schon Zahlen bis iiber 4 Milliarden darstellen kann. Aber dies ist nun
einmal die einfachste Methode, den Gebrauch des X-Flags zu zeigen.) Dabei
stellt sich nun das Problem, wie man denn mit solchen Zahlen rechnet, da ja
fiir den Umgang mit so groflen Zahlen keine speziellen Befehle vorgesehen
sind.

Zum Beispiel die Addition: Die erste Idee wire, die Operation in zwei Schrit-
ten zu 32 Bit auszufithren. Problematisch ist dabei nur, daf ja aus der Addition
der unteren 32 Bit ein Ubertrag auftreten kann, der korrekt behandelt werden
muQB. Hier hilft uns nun das X-Flag weiter. Nehmen wir an, eine 64-Bit-Zahl
ab 1000 soll zu einer weiteren ab 2000 addiert werden:

MOVE.L 1004,DO0
ADD.L DO, 2004
MOVE.L 1000,DO0
MOVE.L 2000,D1
ADDX.L DO,D1
MOVE.L D1,2000

Es wird dabei angenommen, daR die Zahlen im 68000er-iiblichen Format an-
geordnet werden, also zuerst die oberen, danach die unteren Bits.

Zuerst werden also wie iiblich die beiden unteren Hilften der Zahlen addiert.
Mit dem Befehl ADD werden gleichzeitig alle Flags entsprechend gesetzt.
Dann folgt ADDX, ein bisher unbekannter Befehl: Dieser fiihrt eine Addition
durch, bei der der Ubertrag einer eventuell vorhergehenden Addition richtig
behandelt wird. Genauer gesagt, ADDX wirkt wie ADD, nur daf zum Ergeb-
nis noch Eins addiert wird, wenn das X-Flag gesetzt ist. Andernfalls wird das
Ergebnis der Addition unveréndert gelassen. Man kann es auch so ausdriicken:

ADDX: Ziel := Ziel + Quelle + X-Flag
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Das Zeichen ":=" steht hier fiir die Zuweisung, wie es etwa in der Program-
miersprache Pascal iiblich ist.

Vielleicht wundern Sie sich, daR die ADDX-Operation auf so umstindliche
Weise ausgefiihrt werden mufl. Der Grund ist, daB ADDX in seinen Adressie-
rungsarten sehr beschrankt ist; hier kommt deshalb nur die Form "Register zu
Register" in Frage. Deshalb miissen beide Operanden zuerst in Register gela-
den und das Ergebnis in den Zieloperanden zuriickgeschrieben werden.

Der ADDX-Befehl addiert also die oberen 32 Bit der beiden Zahlen unter Be-
achtung des Ubertrags der unteren 32 Bit. Die Befehle ADD und ADDX sind
genau fiir diese Verwendung bestimmt. Natiirlich braucht man sich nicht auf
64-Bit-Zahlen zu beschrénken, denn der ADDX-Befehl setzt ja seinerseits wie-
der das X-Flag. Indem also weitere ADDX-Befehle angehingt werden, konnen
beliebig lange Zahlen addiert werden.

Eine Variante des ADD-Befehles soll nicht unerwéhnt bleiben: ADDQ. Dieses
Kiirzel steht fiir "Add Quick" und fiihrt die schnelle Addition einer kleinen
Konstanten zum Zieloperanden aus. Die Konstante darf nur 3 Bit lang sein,
wobei allerdings die Bitkombination 000 als 8 interpretiert wird. Somit kann
der Wert von 1 bis 8 reichen. Der Zieloperand kann in Byte-, Wort- und
Langwortbreite bearbeitet werden. So kénnen Sie anstatt

ADD.L #2,DO0
also besser folgendes schreiben:

ADDQ.L #2,D0

Letztere Variante braucht nicht nur weniger Speicherplatz, sondern wird auch
schneller ausgefiihrt.

Die Substraktion in Maschinensprache

Das Mnemonik fiir die Substraktion ist logischerweise SUB. Um zwei Worte
voneinander abzuziehen, schreiben Sie also:

MOVE 1000,D0
SUB DO, 2000

Achtung! Die Operanden liegen hier in einer Reihenfolge, die genau anders-
herum ist, als man es gewohnt ist: Die Quelle wird hier vom Ziel abgezogen,
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also der erste Operand vom zweiten. Das kommt daher, da der Befehl als eine
Kurzschreibweise fiir "Ziehe den Inhalt von DO vom Inhalt von 2000 ab" ge-
dacht ist. Das Ergebnis der Subtraktion wird wie iiblich im Ziel abgelegt, also
in 2000. Natiirlich gibt es auch den SUB-Befehl in verschiedenen Verarbei-
tungsbreiten, also fiir Bytes:

MOVE.B 1000,DO0
SUB.B D0,2000

oder fiir Langworte:

MOVE.L 1000,DO0
SUB.L DO0,2000

Der SUB-Befehl setzt die Statusflags auf die gleiche Weise wie der ADD-Be-
fehl. Deshalb konnen auch unsere 64-Bit-Zahlen voneinander abgezogen wer-
den:

MOVE.L 1004,DO0
SUB.L DO0,2004
MOVE.L 1000,DO0
MOVE.L 2000,D1
SUBX.L DO,D1

MOVE.L D1,2000

Beim SUB-Befehl wird das X-Flag genau dann auf 1 gesetzt, wenn ein Borgen
des obersten Bits erforderlich ist. Der SUBX-Befehl beriicksichtigt genau die-
sen Fall: Wenn das X-Flag gesetzt ist, wird das Ergebnis der Subtraktion um
eins vermindert. In formaler Schreibweise:

SUBX: Ziel := Ziel - Quelle - X-Flag
Fiir den SUBX-Befehl gilt genauso wie fiir ADDX — wenigstens darin liegt
Konsequenz —, daf} als Operanden entweder nur Datenregister oder nur Spei-
cheradressen verwendet werden diirfen, aber keine Mischformen.

Auch hier gibt es wieder die Quick-Variante SUBQ, die eine 3-Bit-Konstante
von 1 bis 8 vom Zieloperanden abzieht.

Die Multiplikation

Als nichstes wollen wir uns mit der Multiplikation befassen. Der 68000 kann
immerhin mit einem einzigen Befehl zwei Zahlen multiplizieren, was fiir eine
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CPU iiberhaupt nicht selbstverstindlich ist, denn auf den meisten Prozessoren
muf dafiir extra ein Programm geschrieben werden, das die Multiplikation
auf die Addition zuriickfiihrt.

Wir wollen uns ab jetzt angewohnen, in den Beispielprogrammen keine direk-
ten Speicheradressen zu verwenden, sondern Symbole. Es wird angenommen,
daf am Anfang eines Assemblerprogramms diese Symbole definiert werden,
etwa in der Form

OP1 EQU 1000
OP2 EQU 2000

Hierbei handelt es sich um eine Anweisung an den Assembler, ein Symbol mit
einer Konstante oder einer Speicheradresse zu identifizieren. Immer wenn
fortan das Symbol benutzt wird, setzt der Assembler dafiir den ihm nunmehr
zugewiesenen Wert ein. Die Verwendung von Symbolen macht die Program-
me iibersichtlicher, da die Namen zur Dokumentation beitragen.

Jetzt also zuriick zur Multiplikation: Den Befehl zur Multiplikation gibt es in
wesentlich weniger Ausfithrungen als die Befehle ADD und SUB. Als Operan-
den koénnen nur zwei Worte verwendet werden, und das Ziel mu8 in jedem
Fall ein Datenregister sein. Das Ergebnis ist dabei 32 Bit lang, denn das Pro-
dukt von zwei 16-Bit-Zahlen kann ja hochstens 32 Bit umfassen. Das sieht etwa
SO aus:

MOVE OP2,D0
MULU OP1,DO0
MOVE.L DO, ERG

Das Mnemonik MULU steht fiir "multiply unsigned”, also multipliziere vor-
zeichenlos. Bei der Multiplikation mufl im Gegensatz zur Subtraktion und Ad-
dition zwischen vorzeichenlosen und vorzeichenbehafteten Zahlen unterschie-
den werden. Deshalb gibt es auch noch eine Variante fiir Zweierkomplement-
zahlen:

MOVE OP2,DO0
MULS OP1,DO
MOVE.L DO,ERG

Ubrigens gehéren MULU und MULS zu den Befehlen, deren Ausfiihrung am
langsten dauert: Eine Multiplikation nimmt ungeféhr zehnmal so viel Zeit in
Anspruch wie eine Addition, denn im Gegensatz zu letzterer ist sie nicht ein-
fach mit ein paar Logikelementen zu realisieren.

Da die Multiplikation von Bytes nicht implementiert ist, miissen auch hierfiir
die Befehle MULU und MULS verwendet werden. Vorher miissen die Bytes
allerdings auf Worte erweitert werden.
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Fiir vorzeichenlose Zahlen sieht das folgendermafien aus:

CLR DO

CLR D1

MOVE.B OP1,DO0
MOVE.B OP2,D1
MULU DO, D1
MOVE D1, ERG

Hier begegnet uns ein neuer Befehl: CLR, was fiir "CLeaR" (deutsch: 16schen)
steht. Dieser Befehl 16scht den angegebenen Operanden, schreibt also eine 0
hinein. Auch diesen Befehl gibt es in Byte-, Wort- und Langwortbreite. Ubri-
gens hétte man statt "CLR DO" ebensogut schreiben konnen

MOVE #0,DO0

Noch einmal zuriick zu unserer Byte-Multiplikation: Zunéchst werden die Re-
gister DO und D1 geldscht (Wortbreite). Dann werden die beiden Byte-Ope-
randen hineinkopiert. Bedenken Sie dabei, dall dadurch nur Bits 0 bis 7 beein-
flufit werden, wihrend Bits 8 bis 15 weiterhin auf 0 bleiben. Die Operanden
sind also korrekt erweitert worden. Dann erfolgt die Multiplikation und die
Abspeicherung des Ergebnisses. Beachten Sie, daf das Ergebnis nur in Wort-
breite bewegt wird, denn das Produkt von zwei 8-Bit-Zahlen kann h6chstens
16 Bit umfassen.

Natiirlich kann die Multiplikation auch mit vorzeichenbehafteten Bytes durch-
gefiihrt werden:

MOVE.B OP1,DO0
MOVE.B OP2,D1
EXT DO

EXT D1

MULS DO, D1
MOVE D1,ERG

Zuerst werden die beiden Operanden in die Register DO und D1 kopiert. Mit
dem neuen Befehl EXT, der fiir EXTend (engl. erweitern) steht, werden die
Bytes vorzeichenrichtig auf Worte erweitert. Erinnern wir uns, daf§ das Vor-
zeichen einer Zahl gleichwertig mit deren oberstem Bit ist. Ist dieses Bit 1, so
ist sie negativ, sonst positiv. Der Befehl EXT iibertrigt nun den Inhalt von Bit
7 in die Bits 8 bis 15. Wenn die Zahl also positiv ist, so werden dort lauter Nul-
len hineingeschrieben, bei einer negativen Zahl Einsen. EXT gibt es in Wort-
und Langwortbreite. Bei letzterer Variante wird ein Wort vorzeichenrichtig
zu einem Langwort erweitert.

Nach den EXT-Befehlen folgt die Multiplikation mit Vorzeichen und die Ab-
speicherung des Ergebnisses. Auch hier sind nur 16 Bit des Ergebnisses rele-
vant.
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Will man zwei 32-Bit-Zahlen multiplizieren, so wird das Ganze schon schwie-
riger, denn auch diese Operation muf} auf 16-Bit-Multiplikationen zuriickge-
fithrt werden. Um das Prinzip zu verstehen, iiberlegen wir uns zunichst ein-
mal, wie eine schriftliche Multiplikation durchgefiihrt wird:

42 * 87
14 =7 * 2, Stellenwert 1
28 =7 * 4, Stellenwert 10
16 = 8 * 2, Stellenwert 10
32 =8 * 4, Stellenwert 100
3654

Das Prinzip ist also, dafl man die Multiplikation von grofien Zahlen in die Mul-
tiplikation von Zahlen zwischen 0 und 9 aufteilt und so die gesamte Multipli-
kation vereinfacht. Bei der Multiplikation von 32-Bit-Zahlen geschieht im
Prinzip nichts anderes, nur daf} das Einmaleins des Rechners eben nicht nur bis
9* 9, sondern bis 65535 * 65535 reicht (Abb. 2.4).

OP1H | OP1L l X | op2H | opaL .
OP1L ¥ OP2L .
+ OP1H % OP2L I
+ OP1L X OP2H .
+ OP1H X OP2H .
ERGEBNIS .
ERG ERG + 2 ERG + 4 ERG + 6

Abb. 2 4: Die Langwortmultiplikation
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Nun muB das Ganze nur noch formuliert werden:

MOVE OP1+2,DO0

MOVE OP1,DO
MULU OP2+2,D0
ADD.L DO,ERG+2
ADDX D2,D1

MOVE.L D1,ERG

OP1 High x OP2 Low

Stellenwert 2 hoch 16
Ubertrag!
oberstes Wort schreiben

* OP1 Low x OP2 Low
MULU OP2+2,D0 *
MOVE.L DO,ERG+4 * Stellenwert O
MOVE OP1,DO * OP1 High x OP2 High
MULU OP2,DO0 *
MOVE.L DO,ERG * Stellenwert 2 hoch 32
MOVE OP1+2,DO0 * OP1 Low x OP2 High
MULU OP2,DO0 *
ADD.L DO,ERG+2 * Stellenwert 2 hoch 16
MOVE ERG,D1 * oberstes Wort holen
CLR D2 * fiir ADDX l&schen
ADDX D2,D1 * Ubertrag addieren

*

*

*

*

*

Hier haben wir es erstmals mit einer etwas komplizierteren Anweisungsfolge
zu tun. Sie ist jedoch nicht schwer zu verstehen, da sie vollig geradlinig ab-
lauft.

Die ersten vier Befehle multiplizieren die niederwertigen 16 Bits der beiden
Operanden (OP1 + 2, OP2 + 2) miteinander und legen das Ergebnis in den
Bytes 4 bis 7 des Gesamtergebnisses ERG ab. Beachten Sie, daB auch hier die
beiden Operanden vom Typ Wort sind, das Ergebnis hingegen ein Langwort
ist.

Die néchsten drei Befehle bewirken das gleiche mit den oberen 16 Bits der
Operanden. Hier wird das Resultat in den Bytes 0 bis 3 des Gesamtergebnisses
abgelegt. Es ist wichtig, daB dabei keine Uberschneidung entsteht, sonst konnte
das Ergebnis nicht einfach mit dem MOVE-Befehl hineingeschrieben werden.
Deshalb wurde auch genau diese Reihenfolge fiir die Berechnung der vier
Teilergebnisse verwendet.

Nun zu den restlichen zwei Teilergebnissen: Zunichst wird das Produkt des
niederwertigen Worts des ersten Operanden (OP1 + 2) mit dem hochwertigen
Wort des zweiten (OP2) berechnet. Dieses muB jetzt "in der Mitte", also von
Byte 2 bis 5 des Gesamtergebnisses, addiert werden. Hier entsteht schon eine
Falle, die leicht iibersehen werden kann: Bei der Addition von zwei Langwor-
ten kann ein Ubertrag von einem Bit entstehen, der dem Gesamtergebnis der
Bytes 0 und 1 hinzugezéhlt werden muf. Da es in der Maschinensprache des
68000 keinen Befehl gibt, um direkt das Ubertragsbit einem Operanden hinzu-
zuzghlen, behilft man sich mit der folgenden Befehlsfolge:
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MOVE ERG,D1
CLR D2
ADDX D2,ERG

Es wird also eine Null mit Ubertrag addiert. Wir miissen hier diesen Umweg
benutzen statt "ADDX #0,ERG", da ADDX fiir uns nur in der Adressierungs-
art "Register zu Register" in Frage kommt. Erinnern wir uns: Das X-Flag
wird dann angeschaltet, wenn ein vorhergehender ADD-Befehl einen Uber-
trag produziert. In diesem Fall fiigt ein darauffolgender ADDX-Befehl zur
Summe der beiden Operanden Eins hinzu. Obige Befehlsfolge bewirkt also ge-
nau das, was wir wollen.

Die niichste Befehlsgruppe multipliziert die oberen zwei Bytes des ersten Ope-
randen (OP1) mit den unteren des zweiten (OP2 + 2). Sie ist also genau kom-
plementir zu der vorherigen Befehlsgruppe. Auch hier muB3 das Ergebnis zu
den Bytes 2 bis 5 des Gesamtergebnisses addiert werden, und es folgt wieder
der gleiche Vorgang mit dem Ubertrag und schlieBlich das Zuriickschreiben
des Wertes aus D1 nach ERG.

Diese Art der Multiplikation kann auch auf Zahlen angewandt werden, die lin-
ger als 32 Bit sind. Es miissen nur alle Teilergebnisse mit der richtigen Wer-
tigkeit addiert und die Ubertrige beachtet werden. Wenn Sie wollen, versu-
chen Sie einmal, die notigen Teilergebnisse fiir ¢ine 64-Bit-Multiplikation zu
bestimmen.

Die Division

Nun fehlt uns nur noch die vierte Grundrechenart: Die Division. Auch dafiir
gibt es einen Maschinensprachebefehl. Da die Division komplementér zur
Multiplikation ist, werden durch sie nicht wie bei der Multiplikation zwei
Wort-Operanden zu einem Langwort verkettet, sondern ein Langwort wird
durch ein Wort geteilt, wobei das Ergebnis seinerseits ein Wort ist. Fiir die
vorzeichenlose Division sieht dies dann etwa folgendermaBen aus:

MOVE.L OP1,DO
DIVU  OP2,DO
MOVE DO,ERG

DIVU steht hier fiir "DIVide Unsigned", also teile vorzeichenlos. Auch beim
DIVU-Befehl darf — genau wie bei den Multiplikationsbefehlen — nur ein Da-
tenregister als Ziel angegeben werden. Beachten Sie, da3 auch hier die Regel
gilt, daB3 der Quelloperand mit dem Zieloperanden verkettet wird und das Er-
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gebnis im Zieloperanden abgelegt wird. Die Operanden werden also auch hier,
ebenso wie schon beim SUB-Befehl, genau andersherum geschrieben, als man
es gewohnt ist.

Auch DIVU hat sein Pendant fiir die Division mit Vorzeichen. Es heifit DIVS
und steht fiir "divide signed". Es wird genauso angewandt wie DIVU:

MOVE.L OP1,DO0
DIVS OP2,D0
MOVE DO, ERG

Leider kann die Division einer ganzen Zahl durch eine andere nicht so sauber
behandelt werden wie die Multiplikation. Zunichst einmal gilt, daB das Ergeb-
nis der Division ebenfalls nur ganzzahlig sein kann und deshalb immer abge-
rundet wird. Ein Problem stellt der Fall dar, daB das Ergebnis der Division ei-
nes Langwortes durch ein Wort nicht unbedingt in einem Wort darstellbar ist,
etwa wenn eine grofle Zahl durch 1 dividiert wird. In diesem Fall ist das Er-
gebnis undefiniert, und das Overflow-Flag wird auf 1 gesetzt. Wenn also die-
ser Fall auftreten kann, sollten Sie immer den Zustand des V-Flags iiberprii-
fen.

Was schon Generationen von Mathematikern Kopfzerbrechen bereitete, mufl
auch hier eine Sonderbehandlung erfahren: die Division durch Null. Es liegt
normalerweise in der Verantwortung des Programmierers, es nicht dazu kom-
men zu lassen. Sollte es doch einmal geschehen, dann 16st der Prozessor eine
Art Ausnahmezustand aus, mit dessen Varianten wir uns spiter noch ausfiihr-
lich befassen werden. Wenn Sie sichergehen wollen, sollten Sie also vor der
Division den zweiten Operanden testen.

Will man kleinere Zahlen teilen, zum Beispiel ein Wort durch ein Byte, so
mufl man die Operanden wieder erweitern. Fiir eine vorzeichenlose Division
sieht das so aus:

CLR.L DO

MOVE OP1,DO0
CLR D1
MOVE.B OP2,D1
DIVU D1,DO
MOVE DO, ERG

Zunichst wird das Register DO geloscht und daraufhin der erste Operand in
Wortbreite hineingeschrieben, wobei die oberen 16 Bit nicht verdndert wer-
den und somit den Wert Null behalten. Aus dem Wort ist also ein Langwort
geworden. Mit dem zweiten Operanden wird im Prinzip genauso verfahren,
nur daf hier ein Byte in ein Wort verwandelt wird. SchlieBlich wird die Divi-
sion durchgefiihrt und das Ergebnis abgespeichert.
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Nun noch einmal der gleiche Vorgang fiir die Division mit Vorzeichen:

MOVE OP1,DO0
EXT.L DO
MOVE.B OP2,D1
EXT D1

DIVS D1,DO0
MOVE DO, ERG

Hier wird zunichst der erste Operand in das Register DO bewegt und dort mit
dem EXT-Befehl vorzeichenrichtig auf Langwortbreite erweitert. Danach ge-
schieht das gleiche mit dem zweiten Operand, der allerdings von Byte- auf
Wortbreite erweitert wird. Dann erfolgt die iibliche Division.

Bei den Befehlen DIVU und DIVS gibt es noch eine Besonderheit: Es wird
nicht nur das Ergebnis der Division berechnet, sondern auch der Rest. Dieser
wird in den oberen 16 Bits des Zielregisters abgelegt. Nun fragen Sie sich viel-
leicht, wie man dort herankommt, da man mit den Verarbeitungsbreiten Wort
und Byte ja nur an die unteren Bits kommt. Nun, dafiir gibt es den SWAP-Be-
fehl. Er kann nur auf ein Datenregister angewendet werden und vertauscht die
oberen 16 Bits mit den unteren 16 Bits. Wenn Sie also bei einer Division auch
den Rest ermitteln wollen, miifte das so aussehen:

MOVE.L OP1,DO0
DIVU OP2,DO0
MOVE DO, ERG
SWAP DO

MOVE DO,REST

Zuerst wird also wie iiblich die Division durchgefiihrt und das Ergebnis abge-
speichert. Darauf folgt der SWAP-Befehl, der die untere Hilfte des Langwor-
tes DO mit der oberen Hélfte vertauscht. Die neue untere Hilfte wird dann als
Rest in den Speicher bewegt.

SHIFT und ROTATE

Manchmal ist es durchaus sinnvoll, die Bits einer Speicherzelle um einige Stel-
len zu verschieben. Dafiir ist eine ganze Gruppe von Befehlen zustindig, die
alle moglichen Fille behandeln.

SHIFT-Befehle

Shift steht fiir Verschieben. Die Wirkung eines solchen Befehls ist die, daf alle
Bits um (zunichst) eine Stelle nach rechts oder links verschoben werden. Da-
bei riickt eine Null nach, und das herausgeschobene Bit landet im X-Flag und
Carry-Flag (Abb. 2.5).
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logisches Schieben nach rechts (LSR)

wree 1 11110(0/110]1/1 0

~w0/1]1]0/0][1]0[1] [1

wree | 111/0/0/10]1]1 0

LSS v
o [1]0]0[1]0[1]1]0] [1

Abb. 2.5: Logisches Schieben nach rechts und links (LSR/LSL)

So gibt es zunichst einmal zwei Befehle, die diese Aufgabe iibernehmen: LSL
(Logical Shift Left, logisches Verschieben nach links) und LSR (Logical Shift
Right, logisches Verschieben nach rechts). "Links" steht hier fiir ein Verschie-
ben auf die hoherwertigen Bits zu, "rechts" auf die niederwertigen, entspre-
chend der Reihenfolge, wie man die Ziffern einer Zahl auf ein Blatt Papier
schreiben wiirde.

Allerdings sind noch andere Verschiebebefehle notwendig: Wenn mit Zahlen
im Zweierkomplement gearbeitet wird, wird ja irgend ein Bit ins Vorzeichen
hireingeschoben und somit unter Umstéinden das Vorzeichen der Zahl verin-
dert. Um dies zu vermeiden, hat man auch SHIFT-Befehle fiir vorzeichenbe-
haftete Zahlen implementiert: Der ASR-Befehl (Arithmetic Shift Right, arith-
metisches Verschieben nach rechts) 148t einfach das Vorzeichen unverindert
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und schiebt nur die restlichen Bits um eine Stelle nach rechts, wobei das Vor-
zeichen auch in das ihm folgende Bit iibertragen wird (Abb. 2.6). Der ASL-
Befehl (Arithmetic Shift Left, arithmetisches Schieben nach links) ist jedoch
genaugenommen nur eine Attrappe, denn seine Wirkungsweise ist genau iden-
tisch mit der von LSL.

arithmetisches Schieben nach rechts (ASR)

w1 11110]0]1/0/1]1 0

- 111/1]0/0]1]0]1] |1

Abb. 2.6: Arithmetsches Schieben nach rechts (ASR)

Wenn Sie eine dezimale Zahl mit 100 multiplizieren wollen, so werden Sie
nicht erst zum Taschenrechner oder zu Bleistift und Papier greifen, sondern
einfach zwei Nullen anhéingen. Genau das gleiche macht der Prozessor bei den
Verschiebeoperationen, nur daB er eben im Binirsystem rechnet. So entspricht
das Verschieben um eine Stelle nach links (also das Anhingen eines Nullbits)
einer Multiplikation mit 2, das Verschieben nach rechts einer Division durch
2. Bei letzterem landet der Rest im Carry-Bit, denn der Prozessor kennt nun
einmal keine Nachkommastellen. Eine solche Verschiebeoperation ist fiir den
Prozessor wesentlich einfacher und schneller auszufiihren als eine echte Mul-
tiplikation mittels MULU oder MULS.

Hieraus ergibt sich nun auch, warum ASL und LSL identisch sind: Damit bei
ASL das Vorzeichen verdndert wird, ist es notwendig, daB das Bit rechts neben
dem Vorzeichenbit ungleich dem Vorzeichenbit selbst ist. In diesem Fall muB
es sich ohnehin um eine recht groBe (oder, wenn sie negativ ist, sehr kleine)
Zahl gehandelt haben, deren Multiplikation mit 2 ein Ergebnis liefert, das au-
Berhalb des darstellbaren Bereichs liegt. Da das reelle Ergebnis also sowieso
falsch wire, spielt es auch keine Rolle mehr, ob das Vorzeichenbit verdndert
wird. Beispielsweise fiir 8 Bit miifte eine solche Zahl im Bereich von —128 bis
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—65 oder +64 bis +127 liegen, deren Multiplikation mit zwei eine Zahl von
—256 bis —130 oder +128 bis +254 liefert, was die Grenzen einer 8-Bit-Zwei-
erkomplementzahl sprengt.

Jetzt zur Praxis: Nehmen wir an, Sie wollen die Variable OP1 vorzeichenlos
mit zwei multiplizieren. Sofern es sich um ein Wort handelt, schreiben Sie ein-
fach

ASL OprPl

Wie Sie sehen, kann ASL (und ebenso die anderen Schiebebefehle) direkt auf
eine Speicherzelle angewendet werden. In diesem Fall ist nur Wortlénge er-
laubt. Es gibt jedoch noch eine zweite Variante, bei der sich der Zieloperand in
einem Datenregister befinden muf. In diesem Fall kann man nicht nur in
Langwort- und Byte-Breite verschieben, sondern auch um mehrere Stellen auf
einmal. Dafiir ist natiirlich noch ein zweiter Operand notwendig, der die An-
zahl der Stellen angibt, um die verschoben werden soll. Wenn ein Operand
beispielsweise mit 8 multipliziert werden soll, muB} er um 3 Stellen nach links
verschoben werden (2 * 2 * 2 = 8):

MOVE OP1,D0
ASL  #3,D0
MOVE DO, OP1

Wichtig fiir das Verschieben um mehrere Stellen ist folgendes: Die Wirkung
ist die gleiche, als ob mehrere Male hintereinander um eine Stelle verschoben
wird. Das heiBt, fiir ASL werden von rechts Nullen nachgeschoben, wihrend
nur das zuletzt hinausgeschobene Bit im Carry landet. Ubrigens darf der di-
rekte Zihler nur von 1 bis 8 reichen. Ein Verschieben um mehr Stellen ist
auch moglich, doch muB8 dann der Quelloperand ein Datenregister sein, das die
Anzahl der Stellen enthilt. Dabei konnen Werte bis zu 64 angegeben werden.
Das ist eigentlich schon zuviel des Guten, denn selbst von einem Langwort
bleiben in jedem Fall nur noch Nullen iibrig, wenn es um mehr als 31 Stellen
verschoben wird.

Wenn ein Langwortoperand um 16 Stellen verschoben werden soll, sieht das
SO aus:

MOVE.L OP1,DO0
MOVE  #16,D1
ASL.L D1,DO0
MOVE.L DO,OP1

Auch hier konnen groBere Einheiten als 32 Bit auf einmal verschoben werden.
Dabei hilft uns wieder das Extend-Flag, denn es gibt auch Varianten der Ver-
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schiebebefehle, die dieses Bit mit einbeziehen. So steht ROXL fiir "ROtate Left
through X-Flag", also "rotiere nach links durch das Extend-Flag", und ROXR
fiir die entsprechende Rotation nach rechts.

In der ersten Verwendungsart, in der ein Wort im Speicher um eine Stelle ver-
schoben wird, gleicht ROXL dem Befehl ASL bis auf den Umstand, daR statt
einer Null von rechts der Inhalt des Extend-Flags nachgeschoben wird (Abb.
2.7).

rotieren nach rechts durch X — Flag (ROXR)

wrer | 11110/0/1]0]1]1 1

- 1|1/1]0/0]1]0]1] [1

e | 111/0/0]1/0(1 /1 1

e [ 11]0]0]1]0[1]1]1] [1

Abb.2.7: Rotieren nach rechts und links durch X-Flag (ROXR/ROXL)
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Um eine 64-Bit-Zahl nach links zu schieben, miifiten Sie also schreiben

ASL OP1+6
ROXL OP1+4
ROXL OP1+2
ROXL OP1

Hier machen wir uns den Umstand zunutze, da ROXL seinerseits das heraus-
geschobene Bit im X-Flag plaziert und daher beliebig oft aneinandergereiht
werden kann. Beachten Sie, da mit den niederwertigsten Bytes (OP1 + 6) be-
gonnen wurde. Dies ist notwendig, da ja die hoherwertigeren Bytes auf das
herausgeschobene Bit ihrer Vorganger angewiesen sind.

Auch in der oben beschriebenen zweiten Variante, bei der ein Datenregister
um mehrere Stellen auf einmal verschoben wird, kénnen die ROXL- und
ROXR-Befehle verwendet werden. Dies ist jedoch nur selten sinnvoll, da sich
die CPU im Extend-Flag ja nur ein Bit "merken" kann. Sie kénnten also eine
64-Bit-Zahl nicht korrekt um drei Stellen verschieben, indem Sie einfach ASL
und ROXL benutzen, da ja nur eines der drei hinausgeschobenen Bits im ho-
herwertigen Teil der Zahl ankommt. Hier behilft man sich am einfachsten, in-
dem man drei Verschiebungen um eine Stelle vornimmt. Wegen dieser Pro-
bleme wollen wir hier nur die Verschiebung um eine Stelle benutzen. Unter
Verwendung der Datenregister hitte man obige Befehlssequenz auch so for-
mulieren kénnen:

MOVE.L OP1+4,DO0
ASL.L #1,D0
MOVE.L DO,OP1l+4
MOVE.L OP1,DO
ROXL.L #1,DO0
MOVE.L DO,OP1

Hierbei wird der Operand nicht in 4 Einheiten zu 2 Byte, sondern in 2 Einhei-
ten zu 4 Byte rotiert — was auf das gleiche hinausléuft.

Ubrigens gilt alles, was iiber den ASL-Befehl gesagt wurde, ebenso fiir ASR,
LSL und LSR - schlieRlich ist der 68000 Prozessor allgemein so aufgebaut,
daf dhnliche Befehle auch in dhnlichen Varianten existieren. Nur eines sollten
Sie beachten, wenn Sie nach rechts schieben: Im Gegensatz zum Verschieben
nach links miissen sie dabei mit den hochstwertigen Bytes beginnen, denn dies-
mal miissen die herausgeschobenen Bits in die niachstniedrigen Bytes hineinge-
schoben werden. Um eine 64-Bit-Zahl ein Bit nach rechts zu schieben (also
durch zwei zu teilen), schreibt man:

ASR OP1

ROXR OP1+2
ROXR OP1+4
ROXR OP1+6
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Die ROTATE-Befehle

rotieren nach rechts (ROR)

w1 11110/0/1/0/111 0

AN N e
mere1111]1/0/0/1/0/1] | |1

wre | 1/1/0{0/1/0/1]1 0

S LSS xr
e [ [1]0]0[1]0]1]1]1] |1

Abb. 2.8: Rotieren nach rechts und links (ROR/ROL)

Der Vollstindigkeit halber sollen hier auch die Befehle ROL (ROtate Left, ro-
tiere nach links) und ROR (ROtate Right, rotiere nach rechts) erwihnt wer-
den, auch wenn sie nur sehr selten benutzt werden. Thre Wirkungsweise ist der
von LSL und LSR é&hnlich, nur daf das herausgeschobene Bit nicht nur in Car-
ry und X-Flag erscheint, sondern auch an der anderen Seite des Operanden
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wieder hineingeschoben wird (Abb. 2.8). Auch hier gibt es zwei Varianten:
Bei der ersten muB der Operand im Speicher liegen, ist auf Wortlédnge be-
schrinkt und darf nur um eine Stelle verschoben werden, wihrend die zweite
nur auf Datenregister angewendet werden kann, aber dafiir eine Verschiebung
um bis zu 64 Stellen erlaubt.

Wenn das Register DO den hexadezimalen Wert 4321 enthilt und der Befehl
ROL.W #4,D0

ausgefiihrt wird, so befindet sich danach in DO die Zahl 3214, denn die Ver-
schiebung um vier Binérstellen entspricht einer Verschiebung um eine hexade-
zimale Stelle. Die vier Bits der 4 sind also nach links hinausgeschoben worden
und gleichzeitig rechts wieder angehingt worden.

Die Rotate-Befehle verwendet man allgemein sehr selten. Dies kommt nicht
zuletzt daher, daf die Rotation von Bits vom mathematischen oder logischen
Standpunkt her nicht besonders sinnvoll ist. Deshalb gibt es sie in dieser Form
auch kaum auf anderen Prozessoren. Eine denkbare Anwendung wire folgen-
de: Man mochte auf das obere Byte eines Langwortes im Byte-Modus zugrei-
fen. Man konnte natiirlich schreiben

MOVE  #24,D1
LSR.L D1,DO0
MOVE.B DO, Ziel

wobei der uns interessierende Wert in DO steht (Beachten Sie, daB die Anzahl
der Verschiebungen in einem Datenregister stehen muB). Eleganter, kiirzer
und schneller auszufijhren wire aber

ROL.L #8,D0
MOVE.B DO, Ziel

Logische Operationen

Neben den bekannten arithmetischen Operationen gibt es auch noch andere
Arten, wie man Zahlen miteinander verkniipfen kann: mit den logischen Ope-
rationen AND, OR und EOR. Bei Computern dienen diese Operationen nur
selten dazu, Wahrheitswerte zu verkniipfen, sondern vielmehr zum Verindern
bestimmter Bits. Gemeinsam ist diesen Befehlen, daB sie alle bitweise wirken:
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Es wird immer ein Bit aus der Quelle mit dem Bit der entsprechenden Stelle
des Zieloperanden verkniipft und das daraus resultierende Bit wird wieder im
Ziel abgelegt.

Der AND-Befehl

Die AND-Operation entspricht in etwa dem umgangssprachlichen "und". Zwei
Zahlen werden bitweise miteinander verkniipft: Es werden jeweils gleichwer-
tige Bits aus der Quelle und dem Ziel untersucht. Im Ergebnis wird das ent-
sprechende Bit nur dann gesetzt, wenn beide Bits Eins sind, in allen anderen
Fillen steht dort eine Null. Um es in einer Wahrheitstafel wiederzugeben:

Quelle Ziel Ergebnis

_——0 O
—_—O = O
-0 O

Der AND-Befehl kann in praktisch allen Adressierungsarten und Byte-, Wort-
und Langwortbreite benutzt werden. Z- und N-Bit werden entsprechend dem
Gesamtergebnis gesetzt. Um ein Beispiel zu geben:

MOVE.B #%10101010,D0
AND.B #%00001111,D0

Um die bitweise Wirkung des AND-Befehls deutlicher zu machen, werden die
Operanden hier in bindrer Schreibweise angegeben. Schreiben wir die beiden
Operanden untereinander:

10101010

AND 00001111
00001010

Im Register DO steht also nach der Operation der Wert 1010, dezimal 10. Wie
unser Beispiel zeigt, kann man den AND-Befehl dazu verwenden, bestimmte
Bits bedingungslos auf 0 zu setzen, wihrend andere Bits nicht beeinflufit wer-
den. Dies ist beispielsweise bei bestimmten Hardwareregistern sinnvoll, in de-
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nen jedem Bit eine Bedeutung zugeschneben ist. Bei allen Bits, die in dem Re-
gister geloscht werden sollen, wird im Quelloperanden eine Null stehen, bei
den zu erhaltenden Bits eine Eins. Bei einer Null kann ja im Ergebms auf kei-
nen Fall mehr eine Eins erscheinen, wihrend bei einer Eins in einem Operan-
den direkt der Wert aus dem anderen Operanden iibernommen wird.

Der OR-Befehl

Sinnvollerweise zeigt der OR-Befehl Parallelen zum umgangssprachlichen
"oder": Der OR-Befehl wirkt dhnlich wie AND, nur wird hier ein Bit genau
dann gesetzt, wenn das Bit in der Quelle oder im Ziel gesetzt war. Die Wahr-
heitsafel der OR-Verkniipfung sieht so aus:

Quelle Ziel Ergebnis

—_——-0 O
—O = O
ket O

Hier steht im Ergebnis also nur dann eine Null, wenn beide Bits zuvor Null
waren. Als Gegenstiick zu AND wird OR dazu benutzt, bestimmte Bits bedin-
gungslos zu setzen. Uberall dort, wo in einem Operanden ein Bit gesetzt ist,
wird im Ergebnis auch ein Bit gesetzt sein. Ist das Bit hingegen im ersten Ope-
randen geldscht, so ergibt sich das Resultat direkt aus dem Bit des zweiten
Operanden. Betrachten wir hierzu wieder ein Programmfragment:

MOVE.B #%10101010,D0
OR.B #%00001111,D0

Hier bewirkt der OR-Befehl, daB die unteren vier Bits in DO auf jeden Fall ge-
setzt werden, wihrend die oberen vier Bits erhalten bleiben. Somit entsteht
folgendes Ergebnis:

10101010
OR 00001111
10101111
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Der EOR-Befehl

EOR, in anderen Zusammenhingen auch oft mit XOR bezeichnet, steht fiir
"eXclusive OR", also "ausschlieBendes oder", was soviel bedeutet wie "das eine
oder das andere, aber nicht beides". So ist die Wirkung von EOR denn auch,
daf ein Bit im Ergebnis genau dann gesetzt ist, wenn das Bit im ersten oder im
zweiten Operanden gesetzt ist, aber nicht, wenn es in beiden gesetzt ist. Eine
Wahrheitstafel macht das deutlicher:

Quelle Ziel Ergebnis

——0 O
—_Oo O
O =O

In der Praxis dient EOR dazu, bestimmte Bits zu invertieren. Wenn in einem
Operanden eine Eins steht, so wird das Ergebnis genau der Gegenwert des Bits
aus dem zweiten Operanden sein: Eine Null wird zu einer Eins und umgekehrt.
Ist jedoch das Bit eines Operanden geloscht, so wird der Wert des zweiten
Operanden unverindert iibernommen. Betrachten wir die Wirkung der fol-
genden Befehle:

MOVE.B #%10101010,DO0
EOR.B #%00001111,D0

Nach der Ausfithrung steht in DO

10101010
EOR 00001111
10100101

Die invertierende Eigenschaft des EOR kann beispielsweise benutzt werden,
um ein Unterprogramm jedes zweite Mal etwas Bestimmtes ausfiihren zu las-
sen:

CLR.B wechsel Unser Wert muB initialisiert
werden
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unter EOR.B #$FF, wechsel
BNE markel

[was hier steht, wird nur]
[jedes 2. Mal ausgefiihrt]

markel

BNE steht fiir "Branch if Not Equal”. Dieser Befehl verzweigt genau dann
zum Speicherplatz "markel”, wenn das Ergebnis der EOR-Operation Null ist.
Genauer wird dieser Befehl in diesem Kapitel unter dem Abschnitt "Bedingte
Verzweigungen" erklart.

Hier wird die Variable "wechsel" also bei jedem Aufruf invertiert, und ein
Programmteil wird nur ausgefiihrt, wenn sie auf 0 steht. Schlieflich entspricht
der hexadezimale Wert $FF einem Byte von 8 Einsen. Dabei wiire es in diesem
Fall vollig egal, welchen Wert man statt $FF nimmt, solange er nur verschie-
den von 0 ist, denn die einzelnen Bits sind ja vollig unabhingig voneinander.
Daraus kann man erkennen, daf} es eine der Eigenschaften von EOR ist, daf
eine Zahl mit sich selbst "EXKLUSIV-ODER" immer 0 ergibt.

Der NOT-Befehl

Da es oft vorkommt, daB eine Zahl vollstindig invertiert werden soll, stellt der
Prozessor 68000 dafiir noch extra einen Befehl namens NOT zur Verfiigung.
Seine Wirkung ist genau die gleiche wie die eines EOR, bei dem der erste Ope-
rand aus lauter Einsen besteht. Statt

EOR.B #SFF,DO

kann man also auch schreiben

NOT.B DO

Manchmal will man auch das Vorzeichen einer Zahl in Zweierkomplement-
darstellung dndern. Eine Vorzeicheninderung nimmt der Prozessor vor, in-
dem er alle Bits der Zahl invertiert und 1 hinzuzahlt (siche Anhang A). Um das
Vorzeichen eines Wortes in DO zu 4ndern, miiRte man schreiben:

EOR #$FFFF,DO
ADD #1,DO
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oder, wie wir eben gesehen haben:

NOT DO
ADD #1,DO

Da die Anderung des Vorzeichens einer Zahl in Zwelerkomplementdarstel-
lung ziemlich oft vorkommt, haben die Entwickler des 68000 auch dafiir einen
Befehl zur Verfiigung gestellt: Er nennt sich NEG (von engl. negate, negiere).
Der Befehl

NEG DO

hat genau die gleiche Wirkung wie obige Befehlsfolge, auch das Carry-Bit
wird genauso gesetzt.

Bedingte Verzweigungen

Es kommt recht oft vor, dafl man einen Speicherbereich mit einem bestimmten
Wert fiillen will — etwa, um den Bildschirm auf eine bestimmte Farbe zu setzen
oder um Variablenfelder zu initialisieren. Entwickeln wir also eine Routine,
die einen Speicherbereich byteweise mit einem bestimmten Wert fiillt.

fuelll
MOVE.B wert,DO * Wert ins Register laden
MOVE.L anfang,A0 * Anfang in A0

loop
MOVE.B DO, (A0)
ADDQ.L #1,A0
CMP.L ende, A0
BNE loop

Byte schreiben

Adresse um 1 erh&hen
Ende erreicht?

noch nicht, also weiter

XX Xk

An diesem Beispiel lernen Sie sowohl eine neue Adressierungsart als auch den
BNE-Befehl kennen. Doch gehen wir systematisch vor: Zuerst wird der Wert,
mit dem der Speicherbereich gefiillt werden soll, ins Register DO geladen, und
die Anfangsadresse wird in Register AQ geschrieben. Dann kommt das Pro-
gramm in eine Schleife (engl. loop), in der immer ein Byte an die Adresse, die
in AO steht, geschrieben wird und dann die Adresse in AQ erh6ht wird. Beach-
ten Sie, daB hier die Quick-Variante des ADD-Befehls Verwendung fand. Dar-
aufhin wird untersucht, ob die Endadresse schon erreicht ist. Solange dies
nicht der Fall ist, werden die Schritte der Schleife wiederholt. Ubrigens fiillt
diese Schleife den Bereich einschlieflich Anfangsadresse, jedoch ausschlief-
lich Endadresse.

Hier haben wir die Methode verwendet, eine berechnete Adresse zu verwen-
den, die sogenannte indirekte Adressierung.



8 ATARI ST - Programmieren in Maschinensprache

Mit
MOVE.B DO, (A0)

ist gemeint, daf} der Inhalt von A0 die Adresse bezeichnet, an die der Wert ge-
schrieben wird. Beachten Sie den Unterschied zu

MOVE.B DO, A0

was einfach den Wert aus DO nach AOQ iibertrdgt. Die Klammern bedeuten so-
mit eine "Indirektion" mehr, das heifit, der Prozessor wird angewiesen, nicht
gleich die angegebene Stelle zum Schreiben oder Lesen zu verwenden, sondern
nachzuschauen, was fiir ein Wert dort steht, und den Wert als Adresse zu ver-
wenden. Natiirlich kann diese Adressierungsart auch beim Quelloperanden
verwendet werden:

MOVE.B (A0),DO
iibertrdgt die Daten in der umgekehrten Richtung.

Nach dem Erhéhen der Adresse um Eins — Eins deshalb, weil es sich ja hier um
Byte-Adressierung handelt — taucht schon wieder ein neuer Befehl auf: der
CMP-Befehl. Er steht fiir "CoMPare" (vergleichen) und vergleicht Quell- und
Zieloperand miteinander, woraufhin die System-Flags entsprechend gesetzt
werden. Die Operanden werden jedoch nicht verandert. Intern geschieht dies,
indem der Zieloperand vom Quelloperand abgezogen wird und die Flags ent-
sprechend dem Ergebnis gesetzt werden. Somit kann man CMP mit dem SUB-
Befehl vergleichen, allerdings sind die Funktionen von Quelle und Ziel ver-
tauscht.

Natiirlich existiert CMP auch in den Verarbeitungsbreiten Byte, Wort und
Langwort. Da kein Ergebnis berechnet wird, ist der CMP-Befehl nur sinnvoll,
wenn bald danach die System-Flags ausgewertet werden. Und damit sind wir
bei der Gruppe der Branch-Befehle, den bedingten Verzweigungen.

BNE steht fiir "Branch if Not Equal”, also "verzweige, wenn nicht gleich".
Das bedeutet, der Programmfluf soll verzweigen, wenn das Zero-Flag nicht
gesetzt ist. Allgemein priifen die Branch-Befehle bestimmte System-Flags ab,
ob sie gesetzt oder nicht gesetzt sind. Ist — je nach Befehl — die Bedingung nicht
erfiillt, so geschieht nichts weiter, und das Programm wird mit dem néchsten
Befehl fortgesetzt. Ist die Bedingung jedoch erfiillt, so wird zu dem angegebe-
nen Label verzweigt. In unserem Beispiel funktioniert das so: Der CMP-Be-
fehl vergleicht die aktuelle Adresse mit der Endadresse. Sind beide gleich, so
wird das Z-Bit gesetzt, andernfalls geloscht. Natiirlich werden auch die ande-
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ren Flags gesetzt, die uns allerdings hier nicht weiter interessieren. Als niich-
stes wird BNE ausgefiihrt, der nur dann wieder zum Label "loop” verzweigt,
wenn das Zero-Flag nicht gesetzt ist, solange aktuelle Adresse und Endadresse
ungleich sind.

Da unser BNE-Befehl nur einer aus einer ganzen Gruppe von Branch-Befeh-
len ist, betrachten wir nun die anderen Branch-Befehle. Jeder Branch-Befehl
besteht aus zwei Teilen. Der erste — bezeichnet durch die zwei hinteren Buch-
staben des Mnemoniks — gibt die Bedingung an, die gepriift werden soll, der
zweite das Label, zu dem verzweigt wird, wenn die Bedingung wahr ist.

Flags als Verzweigungsbedingung

Die einfachste Bedingung, die wir iiberpriifen konnen, ist der Zustand der vier
Flags Carry, Overflow, Zero und Negative. Da wir bei jedem den Zustand
"gesetzt" oder "geloscht” priifen kénnen, ergeben sich acht Bedingungen.

Carry

BCS  Branch if Carry Set Springe, wenn C=1

BCC  Branch if Carry Clear Springe, wenn C=0

Overflow

BVS  Branch if oVerflow Set Springe, wenn V=1

BVC Branch if oVerflow Clear ~ Springe, wenn V=0

Zero

BEQ Branch if EQual Springe, wenn Z=1

BNE Branch if Not Equal Springe, wenn Z=0

Negative :

BMI  Branch if MInus Springe, wenn N=1

BPL Branch if PLus Springe, wenn N=0
Verzweigungen nach CMP

Oft werden die Branch-Befehle dazu verwendet, je nach dem Ergebnis des
CMP-Befehls bestimmte Aktionen zu veranlassen. Mit CMP sollen zwei Zah-
len miteinander verglichen werden in der Form

CMP B,A
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wobei A und B fiir beliebige Register oder Speicherzellen stehen. Beachten
Sie, daB hier die Schreibweise genau umgekehrt zur algebraischen Notation
ist, wo man etwa schreiben wiirde "A < B". Der zweite Operand muf also hier
vorangestellt werden.

Es sind sechs Bedingungen vorgesehen, nach denen verzweigt werden kann:

A= B
A< B
A> B
A< B
A>=B
A<=B

SNk L=

Die Fille 1 und 2 sind mit den erwihnten Bedingungen schon abgedeckt, denn
A =B und A <> B werden mit BEQ und BNE behandelt. Bedenken Sie, daf§
A = B gleichbedeutend ist mit B — A = 0, und daR der CMP-Befehl genau den
Ausdruck B — A intern berechnet.

Fiir die restlichen Fille miissen wir unterscheiden, ob es sich um vorzeichenlo-
se Zahlen oder Zahlen in der Zweierkomplementdarstellung handelt. Ein Bei-
spiel zeigt, daB beim Vergleichen von Zahlen darauf geachtet werden muB, ob
sie vorzeichenbehaftet sind oder nicht:
Bei vorzeichenlosen Bytes ist (binir)

11100011 > 00000011

wihrend bei vorzeichenbehafteten Zahlen die erste der beiden negativ wiire
und somit

11100011 < 00000011

Betrachten wir zunéchst die vorzeichenlosen Zahlen.

Vergleich vorzeichenloser Zahlen

Es gibt vier Moglichkeiten zu unterscheiden:

BHI Branch if HIgher
Verzweige, wenn A > B
erfiillt, wenn (COR Z) =0
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BCS Branch if Carry Set
Verzweige, wenn A < B
Diese Bedingung ist erfiillt, wenn C=1.
BCS hat somit zwei Bedeutungen.

BCC  Branch if Carry Clear
Verzweige, wenn A >= B.
Diese Bedingung ist erfiillt, wenn C=1.
Auch BCC hat zwei Bedeutungen.

BLS Branch if Lower or Same
Verzweige, wenn A <= B erfiillt,
wenn C=1 OR Z=1

Zu jeder der Bedingungen ist auch angegeben, wie sie sich aus den Flags erge-
ben. In den meisten Fallen kann es dem Assemblerprogrammierer jedoch egal
sein, wie die Relation der beiden Zahlen intern festgestellt wird.

Will man mit vorzeichenbehafteten Zahlen arbeiten, so kann die Verwendung
der eben besprochenen Bedingungen — wie wir oben gesehen haben — zu einem
falschen Ergebnis fithren. Daher gibt es von diesen vier Relationen auch Aus-
gaben fiir die Zweierkomplementzahlen.

Vergleich von vorzeichenbehafteten Zahlen
Auch hier gibt es wieder vier Bedingungen:

BLT Branch if Less Than
Verzweige, wenn A < B
erfiillt, wenn (NEOR V) =1

BGT Branch if Greater Than
Verzweige, wenn A > B erfiillt,
wenn (ZAND (NEORV)) =1

BLE  Branch if Less or Equal
Verzweige, wenn A <= B erfiillt,
wenn (ZOR(NEORV)) =1

BGE  Branch if Greater or Equal
Verzweige, wenn A >= B erfiillt,
wenn (NEOR V) =0
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Auch hier gilt, daB die Art, in der die Bedingungen festgestellt werden, im all-
gemeinen nicht weiter interessiert.

Sonstige Verzweigungen
Es gibt noch andere Verzweigungen auBer den bisher beschriebenen. Es sind:

BT Branch if True  verzweige in jedem Fall

BF Branch if False  verzweige niemals

Statt BT kann auch BRA fiir "branch” geschrieben werden, da dies eigentlich
keine bedingte Verzweigung mehr ist, sondern ein unbedingter Sprung.

BF erscheint génzlich sinnlos, da dieser Befehl niemals verzweigt und somit
iiberhaupt nichts tut. Er wurde nur der Vollstindigkeit halber in den Befehls-
satz aufgenommen. Wie wir aber spéter noch sehen werden, kann die Bedin-
gung F fiir "False" in anderen Befehlen durchaus sinnvoll verwendet werden.

Die DBcc-Befehle

Betrachten wir noch einmal unsere Fiill-Schleife. Eine andere Moglichkeit wi-
re, eine zusitzliche Variable zu verwenden, die die Differenz zwischen End-
und Anfangsadresse enthilt, und diese herunterzuzihlen. Legen wir die Diffe-
renz ins Register D1:

Fuell2:
MOVE.B Wert,DO
MOVE.L Anfang,A0
MOVE.L Ende,D1
SUB.L Anfang,Dl
loop MOVE.B DO, (A0)
ADDQ.L #1,A0
SUBQ.L #1,D1
BNE loop

Wert ins Register laden
Anfang in AO
Differenz=Ende-Anfang

in D1 berechnen

Byte schreiben

Adresse um 1 erh&hen
Differenz herunterzdhlen
noch nicht Null, weiter

* % Kk O ¥ % Ok %

Diese Version der Fiill-Schleife diirfte sogar etwas schneller sein als die erste.

Es kommt oft vor, daB® ein Wert am Ende einer Schleife dekrementiert (um
eins verringert) wird und je nach dem Ergebnis — Null oder nicht Null — ver-
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zweigt wird. Deshalb haben die Konstrukteure des MC68000 auch dafiir einen
Befehl — oder vielmehr eine ganze Gruppe von Befehlen — vorgesehen, die die-
se beiden Aufgaben auf einmal bewiltigen. Es handelt sich dabei um die DBcc-
Befehle. "DB" steht fiir "Decrement and Branch", also dekrementiere (verrin-
gere um eins) und verzweige. "cc" bedeutet "condition code", also Bedin-
gungs-Abkiirzungen, und steht stellvertretend fiir alle Buchstabenkombinati-
onen, die man erhélt, wenn man von den besprochenen Branch-Befehlen das B
weglaflt (nicht zu verwechseln mit CC, dem Code fiir "Carry Clear").

Diese Befehlsgruppe hat zwei Operanden: Der erste ist ein Datenregister (D0 —
D7), der zweite ein Label. So haben die DBcc-Befehle die Form

DBcc Dn, Label
fir n=0,1,2,...,7

Die Ausfithrungsweise ist folgende: Zunéchst wird die angegebene Bedingung
gepriift. Trifft sie zu, so wird nichts weiter getan und mit dem néchsten Befehl
fortgefahren. Wenn sie nicht zutrifft, dann wird zunéchst das angegebene Da-
tenregister in Wortbreite dekrementiert. Ist der Inhalt danach verschieden von
-1, so wird zum Label verzweigt und somit eine Schleife ein weiteres Mal wie-
derholt. Ist jedoch -1 erreicht, so wird mit dem néchsten Befehl fortgefahren.
Die Flags werden in keinem Fall beeinflufit. Betrachten Sie dazu Abb. 2.9.

Man kann sich das Verhalten von DBcc veranschaulichen, indem man eine Be-
fehlsfolge aus schon bekannten Befehlen aufschreibt:

DBcc Dn,Schleife
Weiter:\ [ndchster befehl]
ist dquivalent zu

Bcce Weiter

SUBQ.W  #1,Dn

CMP.W #-1,Dn

BNE Schleife
Weiter: [ndchster befehl]
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Schieifen—
Rumpf

Abbruch -
Bedingung
erfuelit ?

Zashler = —-17?

Abb. 2.9: Logischer Aufbau einer DBcc-Schleife

Tatséchlich werden so zwei Bedingungen auf einmal gepriift, die zum Verlas-
sen der Schleife filhren. So sind die meisten DBcc-Befehle nur sinnvoll, wenn
direkt davor ein CMP-Befehl oder eine andere Operation steht, die die Flags
beeinfluflit und eine extra-Bedingung zum Verlassen der Schleife liefert. Da
dies nicht oft der Fall ist, ist DBF bei weitem der am haufigsten verwendete
Befehl dieser Gruppe. Wenn Sie "F" als "condition code” oben einsetzen, wer-
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den Sie merken, daR damit die Schleife nur noch verlassen werden kann, wenn
der Zihler -1 ist. Beachten Sie, daB8 in dieser Beziehung die Wirkung des
DBcc-Befehls genau entgegengesetzt zu der von Bec ist: Bei DBcc wird dann
verzweigt (solange der Zihler noch nicht -1 ist), wenn die angegebene Bedin-
gung nicht erfiillt ist. Daher hier auch die Verwendung von DBF.

Ubrigens — in einem Punkt stimmt die Wirkung der Ersatz-Befehlsfolge nicht
mit der von DBcc iiberein, ndmlich darin, daB bei dieser Version die Flags
verdndert werden, was ja bei DBcc nicht der Fall ist.

Nun wieder zuriick zu unserer Fiillroutine. Hier konnen wir DBF gut verwen-
den:

Fuell3:
MOVE.B Wert,DO
MOVE.L Anfang,A0
MOVE.L Ende, D1
SUB.L anfang,D1
SUBQ.W #1,D1
Loop MOVE.B DO, (AO)
ADDQ.L #1,A0
DBF D1, Loop

Wert ins Register laden
Anfang in A0
Differenz=Ende-Anfang
in D1 berechnen

eins abziehen

Byte schreiben

Adresse um 1 erh&hen
dekrementieren und
verzweigen

* % O % 3k X ¥ ¥ F

Diese Version ist noch um einiges schneller. Die Verwendung von DBF bringt
allerdings auch Nachteile mit sich: Wir kénnen mit dieser Routine keine Spei-
cherbereiche mehr fiillen, die grofer als 64K sind, denn DBF behandelt ja nur
16 Bit der Differenz. AuRerdem muB man darauf achten, daR DBF die Schleife
bei —1 abbricht und nicht wie die bisherigen Versionen der Fiillroutine bei 0.
Dies ist eigentlich dafiir gedacht, daf eine Schleife mit allen Werten vom An-
fangswert bis hinunter zu 0 einschlieBlich durchlaufen wird. In vielen Fillen
mag dies ja sinnvoll sein, aber wir konnen es hier nun gerade nicht gebrau-
chen. Deshalb wird der Differenzwert vor dem Eintritt in die Schleife um 1
vermindert.

Adref3berechnung bei Verzweigungsbefehlen

Noch ein Wort zur Darstellung der Adressen bei den Branch-Befehlen: Bei
den Bcc- und DBcc-Befehlen wird die Adresse normalerweise als 16-Bit-
Adrefdistanz angegeben. Das heifit, da nicht die absolute Adresse abgespei-
chert wird, sondern die Differenz zwischen der Adresse, zu der gesprungen
werden soll, und der Adresse, an der der Branch-Befehl steht. Vorteil dieser
Methode ist es, daB8 Speicher gespart wird, da ja fiir die Adresse nur ein Wort
statt zweien notig ist. Auerdem kann dieser Befehl auch in relozierbaren Pro-
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grammen verwendet werden, da ja die AdreBdifferenz zwischen zwei Befeh-
len immer gleich ist, egal, wo das Programm nun gerade steht. Bei der Aus-
fithrung wird die absolute Adresse errechnet, indem die AdreBdistanz zum ak-
tuellen Stand des PC addiert wird (genaugenommen ist das die Adresse des Bec
plus zwei, da der PC bei der Analyse des Befehlswortes schon ein Wort weiter-
geschoben worden ist).

Wenn es sich um kurze Spriinge im Bereich —126 bis +129 handelt, kann fiir
die AdreBdifferenz auch nur ein Byte angegeben werden, was wiederum ein
Wort und etwas Rechenzeit spart. Kenntlich gemacht wird dies durch den Ex-
tender ".S" nach dem Befehl:

ewig BRA.S ewig

Manche Assembler nehmen — zumindest optional — diese Optimierung aller-
dings selbstindig vor, sofern die AdreBdifferenz entsprechend gering ist.

Nachteil dieser Methode der AdreBberechnung ist aber, daB nur Adressen in
der Umgebung des Branch-Befehls erreicht werden konnen, bei 16 Bit von
—32766 bis +32769. Will man iiber diesen Bereich hinaus, so muf3 der JMP-
Befehl verwendet werden, der bedingungslos an eine Adresse verzweigt, die
mit einem Langwort angegeben wird:

JMP irgendwohin

Mit diesem Befehl kann jeder Punkt des Speichers erreicht werden.

Die Adressierungsarten des MC68000

Bisher haben wir immer von Operanden gesprochen, ohne genauer darauf ein-
zugehen, was ein Operand eigentlich alles sein kann. Da der MC68000 hier
eine Vielzahl von Varianten bietet, sind diese es wert, daB man ihnen einen ei-
genen Abschnitt widmet.

Die vielfdltigen Adressierungsarten kann man sechs Hauptgruppen zuordnen:

1. Register direkt

2. Konstanten-Adressierung

3. Absolute Adressierung des Speichers

4, Indirekte Adressierung des Speichers

5. Implizite Adressierung eines Registers
6. Programmzihler-relative Adressierung
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In praktisch allen Fillen sind sdmtliche Adressierungsarten auf die Verarbei-
tungsbreiten Byte, Wort und Langwort anwendbar. Befassen wir uns zunéchst
mit der bisher schon oft verwendeten Adressierungsart, die Register direkt an-
spricht.

Register-direkte Adressierung
Dies heift nichts weiter, als daB ein Operand sich in einem Register befindet.
Dazu ein Beispiel:

CLR.W DO

Mit Registern sind Datenregister und AdreBregister gemeint. Es ist nur zu be-
achten, dafB3 bei AdreBregistern keine Byte-Befehle zulédssig sind. Auch Wort-
Befehle verhalten sich auf AdreBregistern etwas anders. Wihrend bei einem
Wortzugriff auf ein Datenregister die oberen 16 Bits unverdndert bleiben,
wird ein Wort, das in ein AdreBregister geschrieben wird, automatisch vorzei-
chenrichtig erweitert. Dies hat den Sinn, daB} zur Adressierung in den unteren
32K, in denen sich die Systemvariablen befinden, oder in den oberen 32K, wo
die Hardware-Register liegen, nur ein Wort reserviert werden mu8.

Konstanten-Adressierung

Konstanten-Adressierung ist das, was wir immer mit einem Doppelkreuz (#)
kenntlich gemacht haben: Der Operand folgt direkt dem Befehl. Dazu ein Bei-
spiel:

MOVE.L #$314159,D0

Dazu konnte man einwenden, daf es sich in Wirklichkeit um Registeradressie-
rung handelt, denn schlieflich ist ja DO betroffen. Ganz unberechtigt ist dieser
Einwand nicht: Beim Prozessor 68000 mufl man immer zwischen Adressie-
rung von Quelle und Ziel unterscheiden. Um es also ganz exakt auszudriicken:
Die Adressierungsart der Quelle ist "unmittelbar”, die des Ziels ist "Register-
direkt". Diese unmittelbare Adressierungsart ist natiirlich nur fiir die Quelle
sinnvoll und erlaubt.

Je nach der Verarbeitungsbreite des Befehls ist der direkt hinter dem Befehls-
wort abgespeicherte Operand 8, 16 oder 32 Bit lang. Ausnahme: Bei ADDQ
und SUBQ ist der konstante Operand in jeder Verarbeitungsbreite nur 3 Bit
breit. Bei MOVEQ sind es 8 Bit.
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Absolute Adressierung

Absolute Adressierung bedeutet nichts anderes, als daB die Adresse einer Spei-
cherzelle direkt angegeben wird. Es gibt allerdings zwei Arten, die Adresse
anzugeben:

Absolut lang

Hier wird die Adresse in einem Langwort (32 Bit) angegeben. Wenn dieses
Langwort im Speicher steht, gibt das erste Wort (das mit der niedrigeren
Adresse) den hoherwertigen Teil, das zweite den niederwertigen Teil der
Adresse an. Beim 68000 werden allerdings nur die unteren 24 Bit der Adresse
genutzt. Die restlichen 8 Bit werden ignoriert.

Beispiel:

CLR.W $20000

Absolut kurz

Hier gibt nur ein Wort die Adresse an. Um die vollstindige Adresse zu erhal-
ten, wird das Wort intern auf 32 Bit vorzeichenrichtig erweitert. Die Verwen-
dung von kurzen Adressen spart Speicherplatz und Rechenzeit, ist aber nur bei
Zugriffen auf die untersten oder obersten 32K des Speicherbereiches anwend-
bar.

Beispiel:

CLR.L $200

Indirekte Adressierung des Speichers

Bei allen hier aufgefithrten Adressierungsarten ist die Adresse des Speicher-
platzes, auf den zugegriffen werden soll, in einem oder in mehreren Registern
enthalten. Indirekte Adressierung wird durch Klammern um das oder die Re-
gister kenntlich gemacht, worin die Adresse enthalten ist.

Register-Indirekte Adressierung

Hier steht die absolute Adresse eines Operanden in den vollen 32 Bit eines
Adrefiregisters. Ausgedriickt wird dies dadurch, daf man um die Bezeichnung
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des AdreBregisters Klammern setzt. Die folgende Befehlsfolge dient dazu,
Speicherstelle 1000 zu 16schen:

MOVE.L #1000,A0
CLR.L (AO0)

Dies liduft so ab, daB der Prozessor, nachdem er einen solchen Befehl erkannt
hat, den Wert aus dem angegebenen AdreBregister ausliest und diesen wieder-
um als Operandenadresse verwertet.

Adrefiregister indirekt mit Postinkrement

"Postinkrement" bedeutet soviel wie "Erhohen nach der Operation". Die Wir-
kungsweise dhnelt jener der Register-indirekten-Adressierung. Auch hier ent-
hilt ein AdreBregister die Adresse des Operanden im Speicher. Der Unter-
schied ist jedoch, daB nach der Ausfiihrung des Befehls die Adresse im Regi-
ster erhéht wird, und zwar um die Anzahl der bearbeiteten Bytes. Das heif3t:
Bei Bytes um 1, bei Wortbreite um 2 und bei Langworten um 4. Diese Adres-
sierungsart ist dazu gedacht, Felder schnell und ohne viel Mitzéhlen vom er-
sten bis zum letzten Element durchgehen zu koénnen. Notiert wird das Ganze
durch die iiblichen Klammern um das AdreBregister und ein nachgestelltes
"+". Ein besonders gutes Beispiel dafiir liefert die Fiillroutine aus dem vorher-
gehenden Kapitel: ’

Fuelld4: MOVE.B Wert,DO Wert in DO laden

*
MOVE.L Anfang,A0 * Anfang in A0
MOVE.L Ende,D1l * Differenz=Ende-Anfang
SUB.L Anfang,Dl1 * in D1 berechnen
SUBQ.W #1,D1 * eins abziehen

Loop: MOVE.B DO, (AQ) + * Byte schreiben und Adresse erhdhen
DBF D1, Loop * dekrementieren und verzweigen

Das ist mittlerweise schon die vierte Version, die wieder etwas schneller und
eleganter als ihr Vorgénger ist. Hitten Sie gedacht, da man eine so simple
Routine auf so viele (sinnvolle) Arten formulieren kann? Dabei wird im sieb-
ten Kapitel demonstriert, wie man eine solche Schleife noch schneller machen
kann.

Der Befehl MOVE.B DO0,(A0)+ ersetzt hier die MOVE- und die ADDQ-An-
weisung aus der dritten Version. Somit besteht die eigentliche Schleife jetzt
nur noch aus zwei Befehlen!

Es ibst natiirlich auch erlaubt und durchaus sinnvoll, fiir Quell- und Zielope-
rand gleichzeitig diese Adressierungsart zu verwenden, etwa in

MOVE.L (AO0)+, (Al)+
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eine Anweisung, die, sofern sie in einer Schleife steht, bequem Speicherberei-
che kopieren kann.

Adrefiregister indirekt mit Predekrement

"Predekrement"”, was fiir "verringern vor der Operation” steht, kann man als
Gegenstiick zum Postinkrement betrachten. Hier wird zuerst die Adresse im
Register je nach Verarbeitungsbreite um 1, 2 oder 4 verringert und dann auf
diese Adresse zugegriffen. Dargestellt wird das, indem man ein Minus vor die
Klammer um das Adrefiregister setzt. Die Adressierungsarten mit Postinkre-
ment und Predekrement bieten sich dazu an, einen Stack (Stapel) zu realisieren
(die Verwendungs von Stacks wird im néchsten Kapitel noch ausfiihrlich be-
handelt).

Auf dem ATARI ST wachsen die Stacks nach unten, also von den héheren
Adressen zu den niedrigeren. Erinnern Sie sich noch, da man den System-
Stackpointer mit SP bezeichnet und es sich dabei in Wirklichkeit um Register
A7 handelt? Eine Methode, den Inhalt von Register DO nach D1 zu iibertragen,
konnte man so realisieren.

MOVE.L DO, - (SP)
MOVE.L (SP)+,D1

Nach Ausfithrung dieser Befehle enthélt D1 den gleichen Wert wie DO.
Deshalb mufl das Dekrementieren vor und das Inkrementieren nach dem Be-
fehl ausgefiihrt werden.

Adrefiregister indirekt mit Adref3distanz

Auch hier steht wieder eine Adresse in einem Adrefregister. Doch vor die
Klammer um die Bezeichnung des Adrefiregisters kann man noch eine 16-Bit-
Konstante schreiben, die intern zum Inhalt des Registers addiert wird, um die
Adresse des Operanden zu bestimmen: Es handelt sich dabei um die AdreRdi-
stanz. Der Inhalt des AdreBregisters wird dabei nicht verdndert.

Beispiel:

MOVE.L #1000,A0
CLR.B 2(A0)

Nach der Ausfithrung dieser Befehlsfolge ist Speicherplatz 1002 geldscht, und
in A0 steht noch immer die Adresse 1000.
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Gehen wir den Vorgang einmal Schritt fiir Schritt durch: Nachdem der Befehl
von der CPU erkannt worden ist, wird die Adresse aus dem angegebenen Regi-
ster geholt und der 16-Bit-Index, der hinter dem Befehlswort abgespeichert
ist, vorzeichenrichtig auf Langwortbreite erweitert. Danach werden beide
Werte intern addiert, und das Ergebnis ist schlieflich die Adresse des Operan-
den. Der Index kann von —32768 bis +32767 reichen.

Adrefiregister indirekt mit Index und Adrefidistanz

Dies ist wohl die komplizierteste Adressierungsart. Jedoch im Grunde besteht
sie aus nichts weiter als ein paar Additionen. Hier wird in den Klammern zu-
nichst einmal wieder ein Adrefiregister angegeben. Ebenfalls innerhalb der
Klammern folgt, durch ein Komma getrennt, der sogenannte Index. Es handelt
sich dabei um ein weiteres Register, das diesmal nicht nur ein AdreBregister,
sondern auch ein Datenregister sein darf. Fiir den Index kann ein Extender
".W" oder ".L" angegeben werden, der die Verarbeitungsbreite dieses Regi-
sters angibt. Wird keiner angegeben, so nimmt der Assembler automatisch
".W" an. Nun kommt die dritte Komponente: Vor der Klammer steht noch
eine vorzeichenbehaftete 8-Bit-Konstante, die AdreRdistanz. Die Adresse er-
gibt sich als Summe aller drei Komponenten, wobei alles, was kiirzer als ein
Langwort ist, zunédchst vorzeichenrichtig auf Langwortbreite erweitert wird.

Beispiel:
CLR.L -8(A2,D0.W)

Nehmen wir an, daf in A2 die Adresse $1000 steht, wihrend DO $410 enthilt.
(Die oberen 16 Bit von DO interessieren uns dabei nicht.) Die Adresse wird
nun folgendermafen errechnet (hexadezimal):

A2: 00001000
DO: 00000410
Konstante: FFFFFFF8

(1)00001408

FFFFFFF8 ist die Zweierkomplementdarstellung von —8. Wie iiblich werden
bei der Addition von Zweierkomplementzahlen Ubertrage ignoriert. Der In-
halt von Speicherplatz $1408 wird nun von obigem Befehl geldscht.

In der Praxis kommt es oft vor, daB man keine Adrefdistanz braucht, wohl
aber den Index. In diesem Fall schreibt man fiir die AdreRdistanz einfach Null.
Sie merken es schon — es gibt keine Adressierungsart nur mit Index, aber ohne
Adrefdistanz.
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Implizite Adressierung eines Registers

"Implizite Adressierung" heift nichts anderes, als dal Register von einem Be-
fehl beeinflufit werden, obwohl sie dort nicht ausdriicklich erwihnt werden.
Betroffen sind davon nur der Programmzihler PC und der Stapelzeiger SP. So
wird etwa der PC von jedem Befehl veridndert, in dem er einfach weiterge-
schoben wird, wihrend manche Befehle ihn auf kompliziertere Weise beein-
flussen, wie etwa die Branch-Befehle. Es gibt noch eine ganze Reihe anderer
Befehle, die sich dhnlich auf PC oder SP auswirken, aber bei ihnen geht schon
aus der Funktion hervor, wie die Register beeinflult werden.

Programmzihler-relative Adressierung

Die meisten Programme sind grundsitzlich auf eine bestimmte Position im
Speicher angewiesen, um laufen zu kénnen. Doch manchmal ist es wiinschens-
wert, dal Programme an jedem Platz im Speicher lauffihig sind, etwa wenn
man bestimmte Routinen zu jedem Zeitpunkt zur Verfiigung haben will, die
aber andere Programme nicht an der Ausfithrung hindern sollen (beispiels-
weise einen speziell angepaften Druckertreiber). Mit der Programmzéhler-
relativen Adressierungsart wurde die Moglichkeit geschaffen, solche Pro-
gramme zu schreiben. Die Grundidee dabei ist, daB beim Zugriff auf Pro-
gramm-eigene Daten nicht die absolute Adresse der Daten angegeben wird,
sondern die Differenz zwischen der Adresse des Operanden und der Adresse
des darauf zugreifenden Befehls. Diese Differenz kann der Assembler wih-
rend des Assemblierens ausrechnen. Bei der Ausfiihrung des Befehls wird
dann die Adresse des Befehls — also der aktuelle Inhalt der Programmzihlers —
wieder addiert, um die eigentliche Adresse zu erzeugen. Auf diese Art ist das
Programm nicht auf eine bestimmte Position der Daten angewiesen: Die Daten
wandern mit, wenn der Programmcode im Speicher verschoben wird.

Der fiir die AdreBberechnung benutzte Programmzihlerstand ist die Adresse
des ersten Wortes nach dem Befehlscode, da der Programmzéhler bei der
AdreBberechnung eben auf diesen Wert zeigt.

Leider reicht die PC-relative Adressierungsart allein nicht aus, um Program-
me gleichzeitig relozierbar und effizient zu machen, da sie einerseits nicht bei
allen Befehlen implementiert ist, andererseits praktisch nur beim Quellope-
randen verwendet werden darf. Wir werden aber noch sehen, daB das Be-
triebssystem des ATARI ST trotzdem dafiir sorgt, da Programme an jeder
beliebigen Position im Speicher laufen kénnen. Bei der PC-relativen Adressie-
rung gibt es zwei Varianten, die genauso aufgebaut sind wie "AdreBregister
indirekt mit AdreBdistanz" und "AdreBregister indirekt mit Index und AdreB-
distanz".



Einfijhrung in Maschinensprache 73

Programmzdhler-relativ mit Adrefidistanz

Hier wird die Summe aus dem Inhalt des Programmzihlers und der vorzei-
chenerweiterten AdreBdistanz gebildet. Die Distanz kann wieder von —32768
bis +32767 reichen. Beachten Sie, daB bei groferen Distanzen diese Adressie-
rungsart nicht mehr verwendet werden kann.

Beispiel:
Befehl: MOVE DO, 24 (PC)

Dieser Befehl bewegt den Inhalt des Wortes aus der Speicherstelle
(Befehl + 26) nach DO. Warum 26? Weil ja der PC im Moment der Adref3be-
rechnung auf (Befehl + 2) zeigt.

Normalerweise brauchen Sie solche AdreBdistanzen nicht selbst zu berechnen,
denn dazu ist ja der Assembler da. Bei vielen Assemblern kénnen Sie statt ei-
ner Zahl auch einfach ein Label verwenden, der natiirlich irgendwo definiert
sein muf}. Der Assembler iibernimmt dann die Berechnung der Adre3distanz:

MOVE DO, Z&dhler (PC)

Zahler: DS.W 1

Dieser Befehl wird auf die Speicherstelle "Zihler" zugreifen.

Manche Assembler verwenden sogar, wo immer es moglich ist, PC-relative
Adressierung. Das heift, diese Adressierungsart wird immer da verwendet,
wo Label als Operanden benutzt werden. Da jedoch viele Befehle die Moglich-
keit der PC-relativen Adressierung vermissen lassen und andere sie nur beim
Zieloperanden erlauben, kann diese Methode zu groBen Problemen fiihren.
Wenn man wirklich vom Code her relozierbare Programme schreiben will,
bleibt in vielen Fillen nur noch die Adreberechnung mittels LEA.

Programmazdihler-relativ mit Index und Adrefdistanz
Hier berechnet sich die Operandenadresse aus drei Komponenten:
1. dem aktuellen Stand des PC

2. dem Inhalt des Indexregisters
3. der 8-Bit-AdreBdistanz
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Wie iiblich werden alle Werte, die kiirzer als ein Langwort sind, zuvor vorzei-
chenrichtig erweitert.

Beispiel;
CLR.L 24 (PC,DO.W)

Auch hier kann anstelle der Zahl ein Symbol angegeben werden, wobei der
Assembler dafiir die Differenz zwischen der Befehlsadresse +2 und dem Sym-
bol einsetzt:

CLR.L Tab (PC,D0.W)

Sinnvoll ist diese Adressierungsart dann, wenn das Indexregister den Index in
einer Tabelle enthdlt und die Adrefdistanz die Entfernung zum Tabellenan-
fang zeigt. Problematisch ist dabei nur, dall das angegebene Symbol im Be-
reich —128 bis +127 Bytes vom Befehl liegen muR. Wegen dieser Einschrin-
kung findet diese Adressierungsart recht selten Verwendung.

Stackorganisation und Programmspriinge

Bis jetzt haben wir uns immer nur mit kleinen Routinen beschiftigt. Program-
me bestehen jedoch im allgemeinen aus vielen Routinen, die sich gegenseitig —
auch verschachtelt — aufrufen kénnen. Wie sich spéter noch zeigen wird, bené-
tigt man dafiir einen sogenannten Stack (engl. fiir Stapel).

Der Stack

Der Stack ist ein reservierter Speicherbereich, in dem Daten abgelegt und spi-
ter wiedergeholt werden konnen. Die Daten werden immer nur ans Ende ge-
schrieben und von dort auch wieder gelesen. Daher brauchen wir einen Zeiger
auf das Ende des Stacks. Dieser ist auf der Hardware des MC68000 in Form
des Stackpointers SP realisiert, was im Grunde ein Deckname fiir das Adref-
register A7 ist.

Eigentlich gibt es zwei Stackpointer: einen fiir den Usermodus und einen An-
deren fiir den Supervisormodus. Im jeweiligen Modus ist immer nur der dazu-
gehorende Stackpointer erreichbar. Ubrigens konnen aufgrund der Vielzahl
der Adressierungsarten des 68000 alle Adrefiregister vom Programmierer als
Stackpointer benutzt werden. Nur wird eben A7 von allen Befehlen benutzt,
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die implizit auf den Stack zugreifen. Auf dem ST wichst der Stack von oben
nach unten. Die Adresse in A7 zeigt immer auf die unterste Adresse des letzten
Wertes, der dort abgelegt wurde.

Wiirde man folgendermafien einen Wert auf dem Stack ablegen:

MOVE.L Wert,-(SP)

so wird der Stackpointer vor dem Schreiben des Wertes um die Anzahl der zu
schreibenden Bytes verringert. Nach dem Schreiben zeigt er also wieder auf
dem Stack die untere Adresse des neuen Wertes. Ubrigens diirfen auf dem
Stack nur Worte und Langworte abgelegt werden, denn wiirde ein Befehl aus-
gefithrt werden wie

MOVE.B Chaos, - (SP)

dann wiirde zwar bei der Ausfilhrung dieses Befehls alles gut gehen. Wenn
aber irgendwann spéter im Programm wieder ein Wort oder Langwort auf
dem Stack abgelegt werden soll, dann zeigt der Stackpointer auf eine ungerade
Adresse, und das Resultat wire ein Absturz des ATARI ST.

Um einen Wert vom Stack wieder herunterzuholen, geht man so vor:

MOVE.L (SP)+,DO

Damit wird der Wert, auf den der Stackpointer gerade zeigt, heruntergeholt,
und danach wird der Stackpointer um die Anzahl der gelesenen Bytes hochge-
zghlt.

Da es recht oft vorkommt, daB mehrere Register auf den Stack gesichert wer-
den miissen — etwa, wenn ein umfangreiches Unterprogramm aufgerufen
wird, das wichtige Register verdndert —, haben die Konstrukteure des
MC68000 auch dafiir etwas vorgesehen: den MOVEM-Befehl (MOVE Mul-
tiple — bewege mehrfach).

Ein Beispiel:
MOVEM D0-D4, - (SP)
bewegt die Inhalte der Register DO bis D4 auf den Stack. Bei diesem Befehl,

der in Wort- und Langwortbreite arbeitet, kann eine Liste von Registern ange-
geben werden, die in nach ihrer Nummer aufsteigender Reihenfolge auf dem
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Stack abgelegt werden (Datenregister immer vor AdreBregistern). Auch so et-
was ist moglich:

MOVEM.L A3-A5/D0-D2/D5/A0, - (SP)

Hier werden die Register DO bis D2 ,D5, AO und A3 bis AS als Langworte ab-
gelegt. Wie Sie sehen, konnen die Register beliebig ausgewihlt werden. Intern
funktioniert das so, daB dieser Befehl ein Wort mitbekommt, in dem jedes Bit
fiir ein Register steht. Es legt fest, ob das entsprechende Register abgelegt wer-
den soll oder nicht. Die Umsetzung der Registerliste in dieses Wort iibernimmt
der Assembler.

Um die so gesicherten Register wiederzuholen, schreibt man
MOVEM (SP)+,D0-D4

beziehungsweise
MOVEM.L (SP)+,A3-A5/D0-D2/D5/A0

Damit gelangen — sofern der Stackpointer nicht verindert worden ist — wieder
die alten Inhalte in die Register.

Eines sollten Sie bei der intensiven Benutzung des Stacks beriicksichtigen: Es
wird bei Stack-Zugriffen nicht gepriift, ob etwa irgendwelche Grenzen iiber-
schritten werden. Normalerweise sollte das nicht zu Problemen fiihren, da der
Stack gewohnlich mindestens 4K Platz zum Wachsen hat. Kritisch wird es nur
dann, wenn irgendwelche Routinen Reste auf dem Stack zuriicklassen, die mit
der Zeit immer mehr anwachsen. Das Resultat eines Stackiiberlaufs ist selten
ein Absturz, sondern eher ein Programm, das sich merkwiirdig benimmt.
Achten Sie daher immer darauf, daB nirgendwo etwas auf dem Stack zuriick-
gelassen wird.

Unterprogramme

Die wichtigste Funktion des Stacks besteht darin, die Aufrufe von Unterpro-
grammen zu verwalten. Wie Sie es vielleicht von anderen Programmierspra-
chen kennen, ist es sehr komfortabel, wenn man Codesequenzen mit einem ein-
zigen Befehl aufrufen kann — wie etwa mit dem GOSUB in BASIC. Der Ablauf
ist dabei folgender: Aus dem Hauptprogramm findet ein Sprung zum Unter-
programm statt, das mit seinem Namen, seiner Adresse oder — wie in BASIC -
mit einer Zeilennummer identifiziert wird. Dort werden nun die Befehle so
lange abgearbeitet, bis der Befehl erkannt wird, der den Riicksprung ins auf-
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muB irgendwo vermerkt werden, an welcher Stelle im aufrufenden Programm
fortgefahren werden soll. Die moglicherweise naheliegendste Moglichkeit, die
Adresse, von der das Unterprogramm aufgerufen wurde, in einem festen Spei-
cherplatz abzulegen, kdnnen wir gleich wieder verwerfen, denn dies wiirde
keine geschachtelten Unterprogramme erlauben: Beim zweiten geschachtelten
Aufruf eines Unterprogramms wire der erste Wert der Riicksprungadresse
verschwunden. Deshalb wird hier eine Datenstruktur gebraucht, die Werte,
die darauf abgelegt wurden, so lange behilt, bis sie wieder gelesen werden.
Und genau diese Voraussetzungen erfiillt der Stack.

Mit dem Stack funktioniert der Unterprogrammaufruf folgendermafien:

Der Sprung zu einem Unterprogramm erfolgt mit den Befehlen JSR (Jump to
SubRoutine) oder BSR (Branch to SubRoutine), deren Operand die Adresse
des Unterprogramms ist. Daraufhin wird der aktuelle Wert des Befehlszahlers
PC auf den Stack gesichert und der PC danach mit der angegebenen Adresse
geladen — was auf einen Sprung zum Unterprogramm hinausléuft. Das Unter-
programm wird nun so lange ausgefiihrt, bis der Prozessor auf die Anweisung
RTS (ReTurn from Subroutine) trifft. Dieser Befehl holt den gesicherten
Wert des PC wieder vom Stack und fihrt mit dem Befehl fort, der dem JSR
oder BSR folgt.

Beispiel:

linie_ziehen:

JSR punkt
MOVE #1000,DO0

punkt: .
[Befehle des Unterprogramms]

RTS

Bei dieser angedeuteten Befehlsfolge wird, sobald der JSR-Befehl ausgefiihrt
wird, zum Label "punkt” gesprungen, und die dortigen Befehle werden ausge-
fithrt. Bei der Ausfithrung des RTS wird die Kontrolle wieder dem Hauptpro-
gramm iibergeben und der dem JSR folgende Befehl ausgefiihrt, also in diesem
Fall MOVE #1000,DO0.

Die Befehle JSR und BSR gleichen sich in ihrer Wirkung. Der Unterschied
liegt nur in der Art, wie die Adresse des Unterprogramms angegeben wird.
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Bei BSR wird — genau wie bei allen Branch-Befehlen — die Adresse als 16-Bit-
oder 8-Bit-Adrefidistanz angegeben, das heifit, die Differenz zwischen der
Adresse des Unterprogramms und der Adresse, an dem das BSR steht. Diese
Art, Adressen anzugeben, ermdoglicht relozierbare Programme, da ja die
Adrefdistanz zweier Befehle des gleichen Programms immer gleich ist, egal,
wo das Programm nun gerade steht. Bei der Ausfithrung addiert der Prozessor
die angegebene AdreBdistanz zum aktuellen Stand des PC, um die Adresse des
Unterprogramms zu erhalten.

Nachteil dieser Methode ist jedoch, daf der Bereich, der mittels BSR erreicht
werden kann, begrenzt ist. Will man iiber -32766 bis +32769 Bytes vom Be-
fehl aus gemessen hinaus, so mufl JSR verwendet werden. Bei diesem Befehl
wird — entsprechend dem JMP-Befehl — meistens die absolute Adresse des Un-
terprogramms als Langwort angegeben. Allerdings verfiigt JSR auch iiber die
PC-relativen Adressierungsarten und noch einige andere.

Eine Alternative zu RTS stellt der Befehl RTR (return from subroutine and
restore CCR) dar. Er bewirkt, daB vor dem Riicksprung aus dem Unterpro-
gramm das CCR vom Stack geholt wird. So werden im aufrufenden Pro-
gramm, durch die Abarbeitung des Unterprogramms, die Flags nicht verdn-
dert. Da das CCR beim Aufruf des Unterprogramms nicht automatisch auf den
Stack gesichert wird, muf bei der Verwendung dieses Befehls der erste Befehl
des Unterprogramms das CCR sichern:

Unterprog: MOVE.W SR, - (SP)

Beachten Sie, daB das gesamte SR gesichert werden mufl (wovon das CCR ja
das untere Byte ist), da es keinen Befehl gibt, um allein das CCR-Byte zu lesen.
Bei der Ausfithrung des RTR werden allerdings nur die unteren 8 Bit des gesi-
cherten Wortes ins SR geschrieben, damit das System-Byte unverdndert bleibt
(Man konnte ja vorher das Wort auf dem Stack manipuliert haben). Also auch
hier keine Moglichkeit, vom User-Modus in den Supervisormodus zu gelan-
gen!

Mit Hilfe des Userstacks, der mit Register A7 verwaltet wird, fiihrt der Pro-
zessor die Aufbewahrung der Riicksprungadressen praktisch automatisch
durch. Doch um eines muf sich der Programmierer kiimmern: Die Ubergabe
von Parametern zum Unterprogramm.

Parameteriibergabe an Unterprogramme

Bei kurzen Unterprogrammen, die keine weiteren Unterprogramme aufrufen,
ist wohl die sinnvollste Form der Parameteriibergabe, diese einfach in be-
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stimmte Register zu laden und dann das Programm aufzurufen. Wir kénnen
diese Methode nur dann nicht verwenden, wenn entweder die Anzahl der Para-
meter die Anzahl der Register iibersteigt oder mehrere Unterprogramme ge-
schachtelt werden sollen. Auch hier bietet sich deshalb die Benutzung des
Stacks an. Zum Ablegen eines Wortes auf den Stack benutzt man einen Befehl
in der Form

MOVE DO, - (SP)
oder, vollig dquivalent
MOVE DO, - (A7)
Leider kann das Unterprogramm die Werte nicht einfach in der Form

MOVE (SP)+,D2

herunterholen, da ja der oberste Eintrag auf dem Stack die Riicksprungadresse
des JSR wire und der Stackpointer im Unterprogramm nicht verandert wer-
den darf. Andernfalls kann der Prozessor die Riicksprungadresse nicht wie-
derfinden. Deshalb greift man am besten mit der Adressierungsart " AdreBre-
gister indirekt mit Adrefdistanz" auf die Parameter zu:

MOVE 4 (Sp),D2

Der Stackpointer zeigt nach dem Aufruf des Unterprogramms direkt auf das
erste Byte der gesicherten Riicksprungadresse. Da diese ein Langwort umfaft,
erreicht man vier Bytes hoher genau das erste Byte des ersten Parameters. Die
Adresse der folgenden Parameter errechnet sich je nach der Lange der vor-
hergehenden. Nehmen wir an, es sollen ein Wort, ein Langwort und noch ein
Wort iibergeben werden:

dritter Parameter
zweiter Parameter
erster Parameter
UP aufrufen

Stack korrigieren

MOVE parameter3, - (SP)
MOVE.L parameter2, - (SP)
MOVE parameterl, - (SP)
JSR routine

ADDQ.L #8,SP

* % % ok %

routine: MOVE 4 (Sp),DO * Parameter 1 in DO
MOVE.L 6(SP),D1 Parameter 2 in D1
MOVE 10(sSp),D2 * Parameter 3 in D2

*
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- Parameter3 A
«—— 10(SP)
— Parameter 2 —
+«—— B(SP)
- Parameter1 A
- 4(SP)
; Rueckkehr — _—
| Adresse
- Stackpointer

Abb. 2.10: Anordnung der Parameter auf dem Stack

Abbildung 2.10 zeigt die Anordnung der Parameter auf dem Stack nach dem
Aufruf des Unterprogramms. Bei dieser Form der Parameteriibergabe ist es
wichtig, nach der Riickkehr aus dem Unterprogramm den Stack wieder zu
korrigieren, das heiflt, ihn auf den Stand zu setzen, den er vor dem Ablegen
der Parameter hatte. Schlieflich wird ja der Stackpointer im Unterprogramm
nicht verdndert. Deshalb addieren wir zum Stackpointer die Gesamtanzahl von
Bytes, die wir als Parameter hinaufgeschoben haben. Die Riicksprungadresse
muf dabei nicht mehr beachtet werden, da diese ja schon mit dem RTS-Befehl
vom Stack geholt wurde.

Beachten Sie auch, dafl der Parameter, der zuletzt auf den Stack geschoben
wird, nachher an unterster Stelle steht. Es ist reine Konvention, den letzten
Parameter zuerst auf den Stack abzulegen, zumal ja die Reihenfolge und
Bedeutung der Parameter ohnehin vom Unterprogramm abhéngt. Erwahnens-
wert sei noch, daBl innerhalb eines C-Programms die Parameter ebenfalls ge-
nau in dieser Art und Reihenfolge iibergeben werden. Dies ist auch deshalb in-
teressant, da die Betriebssystemprozeduren in dhnlicher Weise aufgerufen
werden. Doch darauf wird im Kapitel 4 noch ausfiihrlich eingegangen.
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Beachten Sie, dal bei der hier vorgestellten Parameteriibergabekonvention
nur Worte oder Langworte iiberreicht werden konnen, aber keine groBeren
Datenobjekte wie Zeichenketten oder Felder. Will man Prozeduren, die solche
Objekte als Eingabe erhalten, trotzdem flexibel gestalten, so empfiehlt sich die
Ubergabe von Zeigern. Dabei legt der aufrufende Code die Adresse eines sol-
chen Datenobjekts auf dem Stack ab, die vom Unterprogramm wiederum als
Zeiger auf den eigentlichen Parameter verwendet wird.

Kontrollstrukturen in Assembler

Der folgende Abschnitt zéigt Thnen die wichtigsten Kontrollstrukturen der
strukturierten Programmierung und wie sie angewendet werden.

IF-THEN-ELSE

In Assembler sind alle Bedingungsabfragen mit Programmspriingen verbun-
den. Wir wollen einen Programmteil umsetzen, der in einigen BASIC-Dialek-
ten oder in Pascal etwa so aussieht (Worte in eckigen Klammern stehen natiir-
lich nicht fiir sich selbst, sondern sind durch entsprechende Befehlsfolgen oder
Ausdriicke zu ersetzen):

IF [Bedingung] THEN [Befehlsfolge 3]
ELSE [Befehlsfolge B]
ENDIF

Wenn die Bedingung wabhr ist, wird Befehlsfolge A ausgefiihrt, andernfalls
Befehlsfolge B.

In Assembler wird das so realisiert:

IF [Bedingung testen]

Bcc ELSE * Bedingung Falsch
THEN .
[Befehlsfolge A]

BRA ENDIF
ELSE .
[Befehlsfolge B]

ENDIF .
[Weiter im Programm]
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Fiir "Bec" ist der Branch-Befehl einzutragen, der dann ausgefiihrt wird, wenn
die Bedingung nicht wahr ist. Nehmen wir an, man wollte folgende Befehlsfol-
ge in Assembler umsetzen:

Beispiel:

IF a>b THEN b:=a
ELSE b:=0
ENDIF

Nach obigem Schema erhalten wir dann:

IF MOVE b, DO * in Register
CMP DO,a *a ?b
BLE ELSE * Wenn a<=b
THEN MOVE a,b * b:=a
BRA ENDIF * weiter im Programm
ELSE CLR b * b:=0
ENDIF

Natiirlich kann der ELSE-Teil auch weggelassen werden. In diesem Fall wird
statt zum ELSE-Teil gleich zum ENDIF verzweigt.

Ubrigens ist ENDIF kein giiltiges Label, da es mit der spiter besprochenen
END-Anweisung kollidiert. Es wurde hier nur der Klarheit halber verwendet.

Realisierung von Schieifen

Fangen wir mit der REPEAT-UNTIL-Schleife an:

REPEAT [Befehlsfolge] UNTIL [Bedingung]

Die Befehlsfolge wird so lange ausgefiihrt, bis die Bedingung zutrifft, jedoch
mindestens einmal. Nun das gleiche in Assembler:

REPEAT .
[Befehlsfolge]

UNTIL [Bedingung testen]

Bcc  REPEAT * Wenn Bedingung falsch
REPEND

[Weiter im Programm]

Wieder muR die Negation der Bedingung abgefragt werden; die Verzweigung
Bcc darf nur dann ausgefiihrt werden, wenn die Bedingung falsch ist.
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Wenn man zwischendurch die Schleife verlassen will, kann man das einfach
mit einem

BRA REPEND

tun — was natiirlich nicht strukturiert ist, aber praktisch sein kann.

Die néchste Schleifenform ist die WHILE-Schleife:
WHILE [Bedingung] DO [Befehlsfolge] WEND

Solange die Bedingung wahr ist, wird die Befehlsfolge wiederholt. Der Unter-
schied zur REPEAT-UNTIL-Schleife besteht darin, da WHILE-Schleifen ab-
weisend sind. Das heifit, daf§ die Befehlsfolge iiberhaupt nicht ausgefiihrt wird,
wenn die Bedingung nicht gleich am Anfang zutrifft. In Assembler:

WHILE BRA entry

DO .
[Befehlsfolge]

entry [Bedingung testen]

Bcc DO * Wenn Bedingung wahr
WEND .
[Weiter im Programm]

Diesmal muf} das Bcc dann ausgefiihrt werden, wenn die Bedingung wabhr ist.
Die Abfrage der Bedingung steht hier immer noch physisch am Ende der
Schleife. Man kénnte sie auch an den Anfang stellen; unser Verfahren hat je-
doch den Vorteil, dal dadurch in jedem Schleifendurchlauf ein BRA-Befehl
eingespart wird. Auch hier kann natiirlich die Schleife jederzeit mit

BRA WEND
abgebrochen werden.

Nun noch zu einer recht spezialisierten Schleife: der FOR-Schleife. In den
meisten BASIC-Dialekten sieht sie so aus:

FOR [Z&hler]=[Anfang] TO [Ende]
[Befehlsfolge]
NEXT [Z&hler]

Sicher ist es manchmal praktisch, wenn diese Schleife abweisend ist, d.h. wenn
der Anfangswert gleich beim Eintritt in die Schleife grofer ist als der End-
wert, wird die Befehlsfolge iiberhaupt nicht durchlaufen.
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Man konnte die FOR-Schleife folgendermafen in eine WHILE-Schleife um-
wandeln:

[Z&hler]=[Anfang]
WHILE [Z&hler]<=[Ende]
DO
[Befehlsfolge]
[Z&hler]=[Z&hler]+1
WEND

Dementsprechend wird auch die Umsetzung in Assembler vorgenommen, wo-
bei der Zihler sich in DO befinden soll:

FOR MOVE [Anfang],DO

WHILE BRA TEST

DO .
[Befehlsfolge]
ADDQ #1,DO

TEST CMP [Ende],DO
BLE DO

WEND .

Natiirlich kénnte man hier leicht die Schrittweite von 1 auf einen anderen
Wert verdndern. Nur bei der Verwendung einer negativen Schrittweite gilt es
zu beachten, daR entsprechend auch Ende kleiner als Anfang ist und der Ver-
zweigungsbefehl BLE deshalb durch BGE ersetzt werden muR.

Bei diesem Skelett einer FOR-Schleife wurde davon ausgegangen, daf Anfang
und Ende Werte sind, die direkt in bestimmten Variablen stehen. Handelt es
sich jedoch um Ausdriicke, so sollten sie vor dem Eintritt in die Schleife be-
rechnet und irgendwo abgelegt werden, denn es wire unpraktisch, den Aus-
druck fiir jede Abfrage neu zu berechnen.

Organisation von ATARI ST-Programmen

Anders als bei vielen kleineren Computern haben ausfiihrbare Programme auf
dem ATARI ST eine klar gegliederte Struktur: Jedes Programm ist in drei so-
genannte Segmente (Sections) unterteilt, die unterschiedliche Funktionen ha-
ben (Abb. 2.11). Zunichst wire da die "Text Section”. Dies hat nichts mit les-
barem Text zu tun, sondern steht fiir den eigentlichen Programmcode. Natiir-
lich braucht jedes Programm auch Variablen — also Daten. Hier wird zwischen
initialisierten und nicht initialisierten Daten unterschieden. Die initialisierten
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Daten, also Konstanten oder Variablen, deren Anfangswert schon vor dem
Start des Programms feststehen muB, werden in der "Data Section" abgespei-
chert. Andere Daten, deren Wert sich erst im Laufe des Programms ergibt,
sollten in der "BSS Section” (BSS: Block Storage Section) abgespeichert wer-
den. Die Unterteilung der drei Segmente wird im Quellcode vom Program-
mierer angegeben.

<«— Endedes TPA (p_hitpa)
Anfangswert des Stackpointers

Application
User
Area

<+<— Anfang des TPA (p_lowtpa)

Abb. 2.11: Gliederung eines Programms und GEMDOS

Die Aufteilung in Daten- und Textsegment erscheint wirklich nicht sehr sinn-
voll, da die beiden Bereiche véllig gleich behandelt werden. Auch der Assem-
bler bringt keine Fehlermeldungen, wenn man Daten ins Textsegment oder
Befehle ins Datensegment schreibt. Man braucht die Aufteilung in Daten- und
Textsegment nicht unbedingt vorzunehmen, aber weil dazu wenig Aufwand
nétig ist, kann man es genausogut tun.

Die Einfithrung der BSS-Section ist aber ganz gewiR sinnvoll, da dieses Seg-
ment nicht zusammen mit den anderen beiden Segmenten im Programmfile
abgespeichert wird. Ein anderes Argument fiir die Benutzung der BSS-Section
ist, dal dadurch der Programmcode etwas iibersichtlicher wird.
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Einen Bereich aus Abb. 2.11 haben wir noch nicht besprochen: die Basepage.
Hier merkt sich das Betriebssystem Informationen iiber das Programm. So
wird die Moglichkeit geschaffen, daf ein Programm ein anderes aufruft, um
nach der Beendigung seines Unterprogramms normal weiterarbeiten zu kon-
nen. Diese Informationen werden in 256 Bytes direkt vor dem Anfang des
Textsegments abgelegt. Welche Informationen dort stehen, darauf wird spéter
in diesem Abschnitt noch eingegangen.

Wenn ein Programm gestartet wird, dann wird der gesamte restliche Speicher
als "Application User Area" deklariert, also als Speicher, mit dem das Pro-
gramm irgend etwas anfangen kann. Der Stackpointer wird auf das letzte Byte
dieses Speicherbereiches gesetzt, von wo aus er nach unten erweitert werden

kann.
N \ < Ende der Datei

+—— Anfang der Datei

Abb. 2.12: Format einer ausfiihrbaren Datei unter GEMDOS

Als Programmdatei auf der Diskette sieht das Ganze etwas anders aus (Abb.
2.12). Hier finden wir zwar auch Text- und Datensegment. Jedoch zusétzlich
am Anfang, im sogenannten Header, befinden sich noch einige Informationen
iiber das Programm, womit hauptséchlich die Langen der 3 Segmente gemeint
sind. Nach dem Text- und Datensegment folgt noch ein Abschnitt: die Relozie-
rungs-Daten. Wie schon oben gezeigt, mufl es moglich sein, mehrere Pro-
gramme gleichzeitig im Speicher zu halten. Daraus ergibt sich, daB ein Pro-
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gramm nicht immer an die gleiche Adresse geladen wird. Da aber der Code
des 68000 nicht von sich aus relozierbar ist und es durch die gravierenden Ein-
schrankungen der PC-relativen Adressierungsart auch nicht sein kann, mufl
eben das Betriebssystem direkt nach dem Laden des Programms alle Adressen,
die nicht von vornherein PC-relativ sind, neu berechnen. Somit stellen die Re-
lozierungs-Daten eine vom Assembler erzeugte Liste von Adressen dar, die all
jene Speicherplitze ausweist, fiir die eine absolute Adresse berechnet werden
muf}. Um deren Aufbau und Funktion braucht sich der Programmierer jedoch
nicht weiter zu kiimmern. Wichtig ist nur, da der vom Assembler erzeugte
Code, wie er im Assemblerlisting erscheint, an der logischen Adresse Null be-
ginnt. Die Umrechnung auf physikalische Adressen erfolgt erst direkt vor der
Ausfiihrung.

Wahlweise kann den Relozierungsdaten noch eine Symboltabelle folgen, die
alle definierten Labels, ihre Art und ihren Wert enthilt. Diese wird nur dann
angelegt, wenn beim Linken eine bestimmte Option angegeben wird. Bei der
Ausfiihrung des Programms hat diese Tabelle keine Bedeutung. Nur ein De-
bugger kann damit etwas anfangen.

Was geschieht nun, wenn ein Programm unter TOS gestartet wird?

Zunichst schaut das Betriebssystem im Fileheader der Programmdatei nach,
wie lang das Programm ist, und teilt dem Programm den gesamten verfiigba-
ren Speicherbereich zu. Dann wird der Programmcode, also Text- und Daten-
segment, geladen, und die Adressen werden nach den Relozierungsdaten um-
gerechnet: Das Programm wird reloziert. Nun muB nur noch die Basepage
eingerichtet und der Stackpointer initialisiert werden. Beim Start des Pro-
gramms wird der Userstackpointer auf das obere Ende des freien Speicherbe-
reiches gesetzt. Die Adresse der Basepage wird als Langwort auf dem Stack
abgelegt. Dariiber wird noch ein weiteres Langwort abgelegt, auf das wir hier
aber nicht weiter eingehen. Der Befehl, um an die Adresse der Basepage zu ge-
langen, wiirde also so aussehen:

progstart: MOVE.L 4 (SP),A5

Somit steht die Adresse der Basepage in AS.

Organisation der Basepage

Die folgende Tabelle gibt fiir jeden Eintrag in der Basepage die dezimale Di-
stanz in Bytes zum Anfang, den offiziell dokumentierten Namen und die Be-
deutung an (es handelt sich ausnahmslos um Langworte):
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Distanz Name Beschreibung
00 _lowtpa Anfangsadresse des TPA
o4 _hitpa Endadresse des TPA + 1
08 _tbase Anfangsadresse des Textsegments
12 p_tlen Linge des Textsegments in Bytes
16 _dbase Anfangsadresse des Datensegments
20 _dlen Linge des Datensegments in Bytes
4 _bbase Anfangsadresse des BSS-Segments
28 p_blen Linge des BSS-Segments in Bytes
32 )_env Pointer auf den Environment-String

Mit TPA ist der "Transient Program Area" gemeint, also ein Bereich fiir nicht
fest im Betriebssystem verankerte Programme". Somit steht TPA letztlich fiir
nichts anderes als den gesamten Speicherplatz, der nicht vom Betriebssystem
oder von vorher schon gelaufenen Programmen belegt wird: also der Spei-
cher, der vor dem Laden eines Programms noch frei ist.

Sicher haben Sie schon einmal ein Programm vom Typ TTP (Tos Takes Para-
meters) aufgerufen, bei dem die Benutzeroberfliche die Moglichkeit bot, dem
Programmaufruf Parameter mitzugeben. Der String, den Sie dort eingeben,
‘mufl dem Programm nun irgendwie zugénglich gemacht werden. Er wird ein-
fach in der Basepage ab Distanz 128 (hexadezimal $80) abgelegt, wo er in der
C-iiblichen Konvention mit einem Nullbyte abgeschlossen wird. Daraus ergibt
sich, da} Parameter-Strings bis zu 127 Zeichen lang sein kénnen.

Dem gestarteten Programm sémtlichen verfiigbaren Speicherplatz zuzuordnen
hat einige Nachteile:

— Da kein Speicher mehr verfiigbar ist, kann das Programm keine anderen
Programme mehr aufrufen.

— Accessories oder Hintergrundprogramme wie etwa Druckerspooler funk-
tionieren unter Umstéinden nicht mehr.

— Es konnen keine Speicherblocks mit der Betriebssystemfunktion malloc()
reserviert werden.

— Das Programm konnte bei zukiinftigen, eventuell Multitasking-fihigen Ver-
sionen des TOS nicht mehr korrekt laufen.

Deshalb ist es fiir jedes gréBere Programm empfehlenswert, nur den Teil des
Speichers zu reservieren, der wirklich gebraucht wird. Dazu stellt das Be-
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triebssystem eine Routine namens "setblock” zur Verfiigung, die einen Spei-
cherbereich fiir das Programm reserviert, der durch seine Anfangsadresse
und seine Linge in Bytes definiert wird. Genaugenommen wird vor dem Start
ein Block, der eben den gesamten freien Bereich umfaBt, fiir das Programm
reserviert. Wird nun besagte Funktion "setblock" mit der Adresse eines Blocks
aufgerufen, der schon existiert, dann wird damit gleichzeitig die vorherige
Reservierung riickgéngig gemacht und die neue Lénge als Linge des Blocks
eingesetzt. Deshalb sollten Sie an den Anfang groerer Programme eine Initia-
lisierung dieser Art voranstellen, die die Programmlidnge berechnet, den un-
benutzten Speicherplatz freigibt und den Stackpointer auf einen korrekten
Wert setzt:

start:
MOVE.L 4 (SP),AS5 * Basepageadresse in A5
MOVE.L 12 (A5),D0 * Linge des Textsegments...
ADD.L 20(A5),D0 * + L&nge des Datensegments...
ADD.L 28(A5),D0 * + lange des BSS-Segments...
ADD.L #$1100,D0 * + 4K (=$1000) fiir den Stack...
* + 256 (=$100) Bytes fir die
* Basepage
MOVE.L A5,D1 * neuer SP = Basepageadresse...
ADD.L DO,D1 * + berechnete Lé&nge...
AND.L #-2,D1 * auf gerade Adresse abrunden
MOVE.L D1,SP * in den Stackpointer damit
MOVE.L DO, - (SP) * Lange des reservierten Bereichs
MOVE.L A5, - (SP) * Anfangsadresse des Bereichs
CLR -(SP) * {iberfliissiger Parameter (Dummy)
MOVE.W #$4A,~(SP) * GEMDOS Funktion setblock
TRAP #1 * Aufruf des GEMDOS
ADD.L #12,SP * Stack wiederherstellen

init: . * hier kann es mit dem
* Programm richtig losgehen

Zu diesem Programmsegment sind sicher einige Erkldrungen erforderlich.
Zunichst wird die Adresse der Basepage — wie oben beschrieben — vom Stack
geholt. Dann stellt das Programm die Gesamtlidnge des Speichers, die benétigt
wird, fest. Dieser Wert mu8 vom Programm folgendermaBen errechnet wer-
den:

256 (=$100) Bytes fiir die Basepage

+ Lénge des Textsegments

+ Liénge des Datensegments

+ Linge des BSS-Segments

+ ein beliebig gewahlter Wert fiir den Stackbereich, der hier auf 4 Kilo-
bytes gesetzt wurde

Daraufhin wird der Userstackpointer (das Programm befindet sich beim Start
immer im User-Modus) auf das Ende dieses Bereiches gesetzt und die Be-
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triebssystemfunktion setblock aufgerufen, um den Programmspeicherbereich
zu reservieren. Wiirde man die Funktion "setblock" von einer héheren Pro-
grammiersprache wie etwa C oder Pascal aus aufrufen, so wiirde das etwa so
aussehen:

setblock (dummy, Adresse, Ldnge)

wobei "dummy" ein Wort ist, dem keine Bedeutung zukommt, das aber trotz-
dem vorhanden sein muf, "Adresse” die Anfangsadresse des Blocks ist und
"Lénge" eben die Lange des Blocks als Langwort. Die Parameteriibergabe
funktioniert genauso, wie es im vorherigen Abschnitt besprochen wurde, nur
der Aufruf des GEMDOS wird hier etwas anders durchgefiihrt, nimlich mit
dem TRAP-Befehl.

Man kann den TRAP-Befehl mit dem JSR-Befehl vergleichen, nur daf hier
nicht die Zieladresse im Befehl angegeben wird, sondern nur die Nummer ei-
nes Zeigers, in dem die Zieladresse steht. Der Zeiger steht am Anfang des
Speichers und wird bei der Imtlahslerung des Betriebssystems dort hinge-
schrieben. So wird auch im Fall einer Anderung der Betriebssystemadressen
sichergestellt, daB die Program<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>