
u

E
E
E

_

zaiIM BUCH

Systemprogrammierung

i DISKETTE

Pauly

Atari ST Intern Bd. 2

Systemprogrammierung

DATA BECKER

1. Auflage 1989

_ ISBN 3-89011-324-9

Copyright © 1989

DATA BECKER GmbH
Merowingerstr. 30
4000 Dusseldorf

Text verarbeitet mit Word 4.0, Microsoft

Ausgedruckt mit Hewlett Packard LaserJet Il

Druck und Verarbeitung Mohndruck, Gutersloh

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in irgendeiner Form (Druck, Fotokopie oder

einem anderen Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH reproduziert

oder unter Verwendung elektronischer Systeme verarbeitet, vervielfaltigt oder verbreitet werden.

Wichtiger Hinweis:

Die in diesem Buch wiedergegebenen Verfahren und Programme werden ohne Rucksicht auf die

Patentlage mitgeteilt. Sie sind ausschließlich fur Amateur- und Lehrzwecke bestimmt und dürfen

nicht gewerblich genutzt werden.

Alle technischen Angaben und Programme in diesem Buch wurden vom Autor mit größter Sorgfalt

erarbeitet bzw. zusammengestellt und unter Einschaltung wirksamer Kontrollmaßnahmen reprodu-

ziert. Trotzdem sind Fehler nicht ganz auszuschließen. DATA BECKER sieht sich deshalb gezwun-

gen, darauf hinzuweisen, daß weder eine Garantie noch die juristische Verantwortung oder irgend-

eine Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen, übernommen werden kann. Für

die Mitteilung eventueller Fehler ist der Autor jederzeit dankbar.

Vorwort

Intern Band 2 - was dürfen Sie von einem solchen Buch erwarten? Neue,

bisher unbekannte Informationen über das Betriebssystem? Noch tiefer-

gehende Beschreibungen der Hardware Ihres Ataris? Die Antwort ist
nein. Denn alle Fakten, die Sie zur professionellen Programmierung des
Rechners benötigen, sind bereits im "alten" Intern enthalten.

Dieser erste Intern-Band konnte jedoch nicht Nachschlagewerk und

Lehrbuch in einem sein. Die Möglichkeiten eines Rechners wie des Atari

ST sind so komplex, daß nicht nur Einsteiger, sondern auch bereits com-

putererfahrene Aufsteiger Schwierigkeiten haben, den Rechner richtig zu

nutzen, selbst mit einer so guten Systemdokumentation wie sie das Intern

I bietet. Deshalb gibt es nun auch den zweiten Intern-Band. Er vermittelt
Ihnen nicht nur den Einstieg in diese Materie, sondern wird Sie lange bei
Ihrer Arbeit begleiten (man kann ihn nicht in ein paar Wochen durchar-

beiten). Voraussetzung zum Verständnis ist allerdings das Intern I oder
ein ähnliches Buch (der Data-Becker-Führer Atarı ST reicht auch).

Fünf wichtige Themen werden behandelt: TOS-Programmierung, Grafik,

Interrupts, Sound-Programmierung und GEM-Programme. Sie sollten die

Lektüre mit dem ersten Kapitel beginnen; danach können Sie frei zwi-

schen den Themen wählen. Weil man viele Dinge am besten verstehen

kann, wenn sie in Betrieb sind, beinhaltet das Buch sehr viele Beispiel-
programme. Bitte nutzen Sie die Gelegenheit, und machen Sie auch Ihre

eigenen Experimente (kleine Veränderungen der Beispielprogramme ge-

nügen); denn was man selbst herausfindet, sieht man sofort ein und be-
hält es viel besser als alles, was man fertig vorgesetzt bekommt.

Ich wünsche Ihnen nun viel Spaß beim Lesen und Erfolg bei der Pro-
grammierung Ihres Rechners! |

Martin Pauly Nettetal, im Februar 1989

Wichtig!

Die Beispielprogramme dieses Buches, die Sie alle auf der beiliegenden

Diskette finden, sind für folgende Interpreter und Compiler gedacht:

» GFA-BASIC Version 3.03 (Sollten Sie die Versionen 3.01 oder 3.02

besitzen, so können Sie diese bei der Firma GFA updaten. Die älteren

Versionen laufen nicht immer fehlerfrei!)

> Omikron-BASIC Version 3.0 und Omikron-Compiler

> Megamax Laser C

> Profimat-Assembler

In der Regel ist jedoch die Verwendung anderer C-Compiler oder
Assembler kein Problem.

Die große Zahl der Programme machte es leider erforderlich, eine dop-

pelseitige Diskette zu verwenden. Dies scheint vertretbar, weil die mei-

sten ST-Besitzer ohnehin ein doppelseitiges Diskettenlaufwerk besitzen.

Jedes Kapitel (1 bis 5) hat einen eigenen Ordner auf der Diskette. Die
GEM-Demoprogramme (Kapitel 5.11) sind in einem separaten Ordner
untergebracht (DEMOS.511). Im Anhang E finden Sie eine Liste aller
Programme.

Inhaltsverzeichnis

ee

ee

ee

ee

e
e
)

pe
ek
.

C
I
A
K
N
A

B
R
A
W
N

u
D

v
u

3.3
3.3.1
3.3.2

TOS - Das Betriebssystem des Atari ST 11

Funktionsaufrufecccccccccceccsceccsccsccsccsccccsccecscescsceseecesees 12

Zeichen-Ein und-Ausgabe tiber BIOScccessceeeeceeees 15

Ein- und Ausgabe mit GEMDOS2zs22er0nesnenennnonnernenn 24
Dateienccccccscsccscsscsccsccsccscsccccecssceccececcscecssceccsescccescscsececs 29

Lesen und Schreibenccccccscsccscsecccceccsccscssceveecscscesces 29

DTA - Disk Transfer Adrescccccececcececescsseecsceseees 35

Speicherverwaltungccccscssscccsssccessccescensecessceesceeseeeuscs 47
Umlenken der Ein-und Ausgabecccccecsssccssscceeceecs 50

Nachladen von Programmenccccceccssccssccsscesscesscenscees 58

Von Tracks und Sektorenc.reruaressssesossnnennnnnnenenennnnnennernnnen 67

Grafikeeseseseasesssssensonnennnnnononnnnnnnnunnnnnnnannnnnnnanennnnnnnnnssnnnnnee 177

Zwei BildschirmSpeicherrccccecsscseccescssccccecsessascescesees 77

Spritescccccsecsssccesceesscesccesseescesceescenceescesecescesccsscescesseesceess 89

Interruptsccccssccsccsscescceccsecescsecsecesccecencossensesscssonssescesees 101

Die VBL-Queulessscsscccccssssseccceeessesceceeaseecccseseseceeaneess 103
Der Timer A deS MEP. .u.......cccccccececcscscscsscsceccccccsceccccscscsceeecs 111

Rasterzeileninterruptcccccccsscsscceccsccscnsceeccesseccecseceecees 117

Sound-ProgrammMicrungccccsscoeccscceccscceccsccescsscsscesens 127

GruNClagenccccccssccesccesccescsccesccescnscceccesccesensceecesscaeceess 127

SOUND in GFA-BASIC.nscosessssenesonsnnsonnnsnennensnnnnnnnennennn 129

Sound im allgemeinenccccccsescccsescecessceesceesescesesceeees 131
Sound im Interrupt ce ccecseccecsecceceeccsccescssceceeseeseesees 142

GEM-Programmierungcscccssscsssecesseeesseessseesseeseeeens 149

TOS - und GEM-Programme .0............cccesccssccesncceesceesvenenes 150
FunktionsSaufrufecccccsccsccsscesccsccsccsccsccsscsccsscscssscescesees 152

GEM in verschiedenen Sprachenccccssccsscssccsscsceess 154

GFA-BASIC oo... ccc ccceccscceccsccsccsccsccsccscscescsscecescesceccssesceccsceecs 154

5.3.4 Assemblerccccnseseessessessssnnsnnnnnnnnnnennnnnnnnnnnnnennnonunnennnnennnnnnnnnn 157

5.4 Die erste Applikation.esssesseessesssenennenonnnnnnnnennennnnnnnnnnnnnenn 161

5.5 VDI-Aufrufeccccceseeseeesessessensensnnsnsnnensnnnnnnnnnnnnnnnssnnsnnennnennen 166

5.5.1 Zeichnen mit dem VDI.....................20ss0sssonennnenneenennnnnnnnnnnnnnen 172

5.5.2 Die Attribut-Funktionenec0sessessonsonsensnnsunsnsnensnnnnnennnn 178

5.5.3 Die Raster-Funktionenuu2su02s0ssessennsnnsnnnnnnennnnnnsnnnnnnnen 185

5.6 Ereignisseccccesccessccssccessccasecossceescasscosscensessscesscesscesscoseeues 190

5.7 Die File-Selector-Boxcccccccccsccsccsscsccnsccscsecscescescesceeeees 204

5.8 Fensterccccecceccsccscsscsscsscsccecceceeceeccecseeceeccecsssesescsscevessescasens 213

5.8.1 Fenster in AKtion .0..........ccccceccsscecccscceccsccscesccesessesccscessessensencs 223

5.8.2 Mehrere Fensterccccccsssecceccsccscccesccscsscecescescssesseesacens 244

5.9 Resource-Filesc..ccccceccessccsecscescesccevscescceescesccessessseeceesesees 276
5.9.1 Die Menilleistecccccceccssccssccscessccsscesceecensceessesseessesceecs 278

5.9.2 DialOgecccccescssscccesccnscccscccnsceesescscceesceecececseuceeesceucceeeseesees 305
5.10 ACCESSOTIES .neeeesannnnnenssssnnnnnnnnnsnensnnssnnnnnnnnnssssssssssnssnnnnnsnsssensnnn 386
5.11 Beispie lprogramMMecccccseccescccsccsesccsccoesccesceesceescescsenceuss 395

5.11.1 Accessory: Anzeige einer ASCII-Tabelle................un........ 396
5.11.2 Applikation: Quelltext-Listereennceesssseessneeennnenennenennneeennn 405

5.11.3 Applikation: Balken-/Tortendiagramme.uu.n. 414

5.11.4 Accessory: Programm-Kommunikationceesseesesesseeneeenseenn 432

5.11.5 Applikation: Dateien codierenernsnsssessessnensensennenenennenen 436

Anhanguscssssossensensnsnnennonannnnnnsunensennnnsnnonnnnnnssnnnnesnnnunsunnnsnnnnnnnnn 449

Anhang Aeessesssesssensnsnsonsnnnnennennnnonsnnsnennsunnnnnnnnnnnnsnnnnnssnnsnnssensnnnsnsnnnsne 449

AnhangBeeerseerssonessnssnnononnennnnnonnnnnensnnenonennsssnnsnnnennnsnnansnnnnsssensnnsen 450

Anhang Ceseassssssssessensnnsnnnnnnnnnnnnnnensensennnnsnssnnnnsnssunsnnnnenssnsnnnsnensennnnn 452

AnhangDzsssssseenosenonenonnnnnonnnnnensnneonnnnnnnnnnnnnnnnnsnnnnnensnnnsnnennennnnn 454

Anhang E..........ssasessossosenennensonnnnnnensnnnnunnnnsnnennonsnnnensnnsnssnnunnnnnnunnanenennnnen 456

Stichwortverzeichniscccccecscsscscscscscscscccsccscccscscscscscscscecscecccececs 459

 TOS - Das Betriebssystem des Atari ST 11

1. TOS - Das Betriebssystem des

Atari ST

In einem Computerlexikon aus dem Jahre 1983 fand ich neulich eine Er-

klärung für die Abkürzung TOS: Tape Operating System, also ein Mag-

netband-Betriebssystem. Glücklicherweise sind die Zeiten, zu denen noch

Kassettenrekorder an den Home-Computern hingen, vorbei. In unserem

ST heißt TOS auch etwas anderes, nämlich Tramiel Operating System.

Die beiden letzten Worte bedeuten wieder Betriebssystem, und Tramiel
heißt der Chef der Firma Atarı, der, bescheiden wie er ist, der

Systemsoftware seines Rechners seinen eigenen Namen geben ließ.

TOS ist also das Betriebssystem des Atarı ST. Es ist eine Sammlung von
Routinen, die die Verbindung zwischen einem Anwenderprogramm und

der Peripherie ermöglichen. Bei diesen Routinen gibt es, ähnlich wie bei

Programmiersprachen, problemorientierte und maschinenorientierte Teile.

Nehmen wir als Beispiel die Diskettenverwaltung: Ein Programm möchte

Daten in eine Datei schreiben. Nun gibt es aber auf der Diskette

zunächst einmal gar keine Dateien, sondern nur Tracks (Spuren) und
Sektoren, vielleicht auch noch Diskettenseiten. Der systemnahe Teil des
TOS muß also solche Sektoren schreiben und lesen können, während der

problemorientierte Teil mit Hilfe der systemnahen Routinen Dateien
verwaltet. Man könnte auch von zwei Ebenen des Systems sprechen: der

eine Teil auf einem niedrigen und der andere auf einem hohen Level.

Diese Teile haben unterschiedliche Namen: Der problemorientierte Be-

reich heißt GEMDOS (hat nichts mit GEM zu tun) und der systemnahe
Teil nennt sich BIOS (BASIC Input/Output System = allgemeines Ein-

/Ausgabe-System). Dieses BIOS hat noch eine Unterabteilung namens

XBIOS. Das X steht für extended, es ist also ein erweitertes BIOS. Das
bedeutet lediglich, daß dieser Teil des BIOS die besonderen Fähigkeiten

des Atari versorgt, während das normale BIOS nur für gängige Dinge

zuständig ist, über die jeder Computer verfügen sollte.

Wenn nun eine Anwendung eine GEMDOS-Routine aufruft, um eine
bestimmte problemorientierte Aktion durchzuführen, dann übersetzt

GEMDOS diese Aktion in eine oder mehrere systemnahe Funktionen und
gibt diese an BIOS oder XBIOS weiter, wo sie schließlich ausgeführt

werden. GEMDOS hat folglich keinen Kontakt zur Hardware des Rech-
ners (abgesehen vom Hauptspeicher). Bei Diskettenoperationen wird sogar

 12 Atari ST Intern 2

noch ein Zwischenschritt eingelegt: GEMDOS ruft BIOS, BIOS ruft

XBIOS und erst hier wird die Hardware aktiviert. Folgendes Bild zeigt
noch einmal den Zusammenhang:

ANWENDUNG

{
BETRIEBSSYSTEM

' ! +
GEMDOS ——

B1l0OS 7,
ABIOS

IHARDWARE |

Selbstverstandlich darf sich eine Anwendung auch direkt an BIOS und

XBIOS wenden. Sie kann theoretisch auch sofort die Hardware anspre-

chen, aber das ist nur im äußersten Notfall zu empfehlen (also dann,

wenn die "offiziellen" Routinen eine unbedingt bendtigte Funktion nicht
anbieten).

1.1 Funktionsaufrufe

Nachdem wir diese allgemeinen Dinge geklärt haben, können wir in me-
dias res gehen, also die Funktionsaufrufe unter die Lupe nehmen. Ent-
scheiden Sie sich bitte für eine Programmiersprache, und lesen Sie da

weiter, wo der entsprechende Aufruf beschrieben wird.

GFA-BASIC

In GFA-BASIC bedient man sich der Funktionen GEMDOS, BIOS und

XBIOS. Da Funktionen stets einen Wert zurückgeben, müssen wir die

Funktionsergebnisse einer Variablen zuweisen oder direkt verarbeiten:

 TOS - Das Betriebssystem des Atari ST 13

A=Gemdos(...)

If Bios(...)<O ...

Print Xbios(...)

Wird der Rückgabewert nicht benötigt, kann man auch schreiben: Void
Gemdos(...)

Den Funktionen sind in Klammern die Funktionsnummer und, falls er-

forderlich, Parameter zu übergeben. Wenn nicht anders vereinbart, sind
die angegebenen Parameter Worte (= 2 Bytes). Wollen Sie Langworte (= 4
Bytes) übergeben, so müssen Sie dem Wert oder der Variablen ein L für

Langwort und einen Doppelpunkt voranstellen.

Omikron-BASIC

In Omikron-BASIC gibt es die Befehle GEMDOS, BIOS und XBIOS. Den

Befehlen wird in Klammern folgender Ausdruck nachgestellt:

(RUckgabevariable, Funktionsnummer ,Parameter1,Parameter2...)

Rückgabevarıable und Parameter sind optional. Wenn Sie keine Rückga-
bevariable angeben möchten (d.h. wenn die Funktion keinen für Sie

wichtigen Wert zurückgibt), so müssen Sıe trotzdem das Komma zwischen
der nicht vorhandenen Variablen und der Funktionsnummer angeben.

Beachten Sie bitte, daß die Variable auch wirklich eine solche sein muß

(keine Zahlen oder Ausdrücke). In Omikron-BASIC sınd leider alle Pa-
rameter automatisch ein Wort groß. Wenn eine Funktion ein Langwort als
Parameter erwartet, müssen Sie daher erst das high-word (die oberen 16

Bit) und dann das low-word (die unteren 16 Bit) des gewünschten Wertes
übergeben. Das machen Sie am besten mit den BASIC-Funktionen HIGH

und LOW. Beispiele dazu finden Sie weiter unten.

C

Jeder C-Compiler verfiigt tiber ein Include-File, mit dem alle TOS-
Funktionen über ihre Namen aufgerufen werden können. Sie müssen sich
also keine Funktionsnummern mehr merken. Dieses Include-File heißt
gewöhnlich OSBIND.H (Operating System Bindings). Es wird durch
folgende Zeile am Anfang eines Programms geladen:

#include <osbind.h>

 14 Atari ST Intern 2

Es gibt aber auch in C die Funktionen gemdos(...), bios(...) und xbios(...).

In Klammern werden Funktionsnummer und, wenn nötig, die Parameter

übergeben. Wenn Sie von dieser Methode Gebrauch machen, sollten Sie

jedoch im Programm die Funktionen als long-Funktionen definieren:

extern long gemdos();

extern long bios();

extern long xbios();

Zu sagen ist noch, daß die Funktion (wie in C üblich) auch als Befehl
geschrieben werden kann. Also:

ergebnis = gemdos(...);

aber auch:

gemdos(...);

Assembler

Für die TOS-Aufrufe in Assembler werden drei Trap-Befehle verwendet:

trap #1 ; GEMDOS-Aufruf

trap #13 ; BIOS-Aufruf

trap #14 ; XBIOS-Aufruf

Den Funktionswert findet man nach dem Aufruf im Register DO. Die

Funktionsnummer ist vor dem Trap-Befehl als Wort auf dem Stack ab-

zulegen. Parameter können vor der Funktionsnummer ebenfalls auf den
Stack gebracht werden, und zwar in umgekehrter Reihenfolge (verglichen

mit C oder BASIC). Nach dem Trap muß der Programmierer eine Stack-
Korrektur durchführen, das heißt: er muß so viele Bytes zum

Stackpointer addieren, wie er vor dem Aufruf für die Übergabe von Pa-
rametern und Funktionsnummer benötigt hat. Ein Beispiel:

move.w parameteri,-(sp) ; -(sp) = auf den Stack

move.|l parameter2,-(sp) ‚ Ein Wort und ein Langwort

move.w #funktionsnummer,,- (sp)

trap #1 | ; #1 -> GEMDOS-Aufruf

addq.l #8,sp ; Stackkorrektur

Wir haben 2 Worte und ein Langwort auf den Stack gelegt, was zusam-
men 8 Bytes benötigte. Diese 8 Bytes müssen wir durch den addaq.l-Be-
fehl kompensieren.

 TOS - Das Betriebssystem des Atari ST 15

1.2 Zeichen-Ein und-Ausgabe uber BIOS

Als erstes möchte ich Ihnen die Eingabe und Ausgabe von Zeichen vor-

stellen, weil dies sicher die am einfachsten anzuwendenden Systemrouti-
nen sind.

Prinzipiell können Sie Zeichen auf zwei Ebenen ein- und ausgeben: über
GEMDOS- und über BIOS-Funktionen. Beides hat seine Vor- und Nach-
teile: Während die BIOS-Funktionen schneller sind, verwaltet GEMDOS

logische Peripheriegeräte, die beliebigen physikalischen Geräten zugeord-
net werden können. Wenn Sie den Sinn dieses Vorgehens nicht verstehen,

so seien Sie unbesorgt - etwas später gebe ich Ihnen ein paar anschauli-
che Beispiele dafür.

Beginnen wir mit den BIOS-Routinen. Wir benötigen folgende Routinen:

Funktions-

C-Aufruf Nummer Beschreibung

Bconin(dev) 2 Holt ein Zeichen vom Gerät dev

Bconout(dev,zeichen) 3 Gibt zeichen auf Gerät dev aus

Bconstat(dev) 1 Liefert Status von Eingabegerät dev

Bcostat(dev) 8 Liefert Status von Ausgabegerät dev

Dev (Device = Gerät) kann folgende Werte annehmen:

Dev Gerät Ausgabe Eingabe

0 Centronics-Schnittstelle ja ja

1 RS232-Schnittstelle ja ja

2 Tastatur und Bildschirm ja ja
3 Midi-Schnittstelle | ja ja
4 Tastaturprozessor ja nein

5 Bildschirm (ASCIl-Kanal) ja nein

Wohlgemerkt: Man kann über die Centronics-Schnittstelle Daten einlesen.
Das ist natürlich unsinnig, solange ein Drucker an diesem Port hängt,
weil der gar keine Daten zum Rechner schickt, aber man könnte hiermit
z.B. eine schnelle parallele Schnittstelle realisieren, die Daten zwischen
zwei ST’s austauschen kann.

Der Unterschied zwischen den beiden mit "Bildschirm" bezeichneten
Geräten (2 und 5) liegt übrigens darin, daß bei einer Ausgabe über
Nummer 2 Steuerzeichen (Return, Zeilenvorschub, Tab und VT-52-Se-

 16 Atari ST Intern 2

quenzen) erkannt und ausgeführt werden. Deshalb kann dieses Gerät
auch nicht alle Zeichen des Atari-Zeichensatzes ausgeben (z.B. keine

LED-Ziffern). Dies kann nur der Kanal 5, der wiederum keine Steuer-

zeichen auswertet.

Das folgende Beispielprogramm nutzt nun den ASCII-Kanal, um den

kompletten Zeichensatz des ST am Bildschirm darzustellen:

GFA-BASIC

i

' Ausgabe des gesamten Zeichensatzes mit Bconout

' GFA-BASIC MP 07-10-88 FONTOUT.GFA
t

VOID BIOS(3,2,27) ! Steuerzeichen mit verarbeiten: 2VOID

BIOS(3,2,ASC("E")) ı ESC (27) + E --> Bildschirm löschen

FOR char%=0 TO 255

IF char% MOD 16=0 ı nach jeweils 16 Zeichen eine

VOID BIOS(3,2,13) I neue Zeile anfangen (13 = Carriage

VOID BIOS(3,2, 10) I Return, 10 = Line Feed; Steuerzeichen!)
ENDIF

VOID BIOS(3,5,char%) ! Eigentliches Zeichen ausgeben plus ein

VOID BIOS(3,5,32) ! Leerzeichen (5: keine Steuerzeichen)
NEXT char%

PRINT AT(2,20);'"Der Zeichensatz des Atari ST"
END

Omikron-BASIC

Ausgabe des gesamten Zeichensatzes mit Bconout

Omikron-BASIC MP 06-09-88 FONTOUT .BAS

BIOS (,3,2,27): BIOS (,3,2, ASCC"E")): REM Escape E = Bildschirm löschen
t

FOR Char%=0 TO 255

IF Char% MOD 16=0

THEN BIOS (,3,2,13): REM 13 + 10 = Return + Zeilenvorschub

BIOS (,3,2,10)

ENDIF |

BIOS (,3,5,Char%): REM Funktion 3 (Bconout), Gerät 5 (ASCII-Kanal)
BIOS (,3,5,32): REM Leerzeichen

NEXT Char%

PRINT &(20,1);"Der Zeichensatz des Atari ST"
END

 TOS - Das Betriebssystem des Atari ST 17

C
[BERR REREREREREREEREREEREREREREREEEEEEEREREREEREEE /

/* Ausgabe des gesamten Zeichensatzes mit Bconout */

/* Megamax Laser C MP 07-09-88 FONTOUT.C */
NIIT TITTEN]

#include <osbind.h> /* Definitionen für GEMDOS, BIOS und XBIOS */

#define console 2

#define ascii 5

int i;

main()

{

for (i=0; i<256; i++r)

{
if (i % 16 == 0) /* neue Zeile alle 16 Zeichen */

{
Bconout (console, 13); /* Carriage Return */

Bconout (console, 10); /* Linefeed */

>
Bconout (ascii, 1); /* eigentliche Zeichenausgabe */

Bconout (ascii, ' '); /* Leerzeichen dazwischen */

>

printf ("\n\n\nder Zeichensatz des Atari ST\n");

Bconin (console); /* Warten auf Tastendruck... */

Assembler

Ausgabe des gesamten Zeichensatzes mit Bconout

if

u

S
e

W
e

M
e

Assembler MP 07-09-88 FONTOUT .Q

console 2

ascii = 5

bconout = 3

bconin = 2

gemdos = 1

bios = 13

TEXT

clr.w d3 ‚Zähler für Zeichen

move .W #S ff ,d4 ‚zähler für Schleife

 18 Atari ST Intern 2

Loop: move.b d3,d5 ;‚Test auf Teilbar durch 16

andi.b #%11110000,d5

cmp.b d5,d3

bne.s no_crlf

move .wW #13,-(sp) ;Carriage Return

move .W #console,-(sp) ;Ausgabegerät

move .W #bconout,-(sp) ;Funktionsnummer

trap #bios

addq. l #6,Sp

move .W #10,-(sp) ;‚Linefeed

move .w #console, -(sp)

move .W #bconout, - (sp)

trap #bios

addq. | #6,sp

no_crlf: move.w d3,-(sp) ;Auszugebendes Zeichen

move.W #ascii,-(sp) ‚Ausgabegerät ist ASCII-Kanal

move.wW #bconout,-(sp) ;Funktionsnummer

trap #bios .

addq. l #6,Sp

move .W #' ' | -(sp) ;Leerzeichen

move.W #ascii,-(sp) ‚Ausgabegerät

move.W #bconout,-(sp) ;Funktionsnummer

trap #bios

addq. l #6,Sp

addq.w #1 ,d3 ‚nächstes Zeichen

dbra d4, loop

move .W #console,-(sp) ;Warten auf Tastendruck

move.wW #bconin, - (sp)

trap #bios

addq. l #4 ,sp

clr.w -(sp)

trap #gemdos

END

Betrachten wir nun den Eingabe- bzw. Ausgabestatus, also die Funk-
tionen Bconstat und Bcostat. Ein Eingabestatus von -1 bedeutet, daß

mindestens ein Zeichen von einem Eingabegerat, z.B. der Tastatur, be-

reitsteht und mit Bcönin abgeholt werden kann. Ist der Status 0, so war-

 TOS - Das Betriebssystem des Atari ST 19

tet kein Zeichen mehr. Entsprechend ist der Ausgabestatus -1, wenn das

Ausgabegerät bereit ist, ein Zeichen auszugeben, und 0, wenn es nicht
bereit ist.

Was können wir nun mit diesem Status anfangen? Nun, stellen Sie sich

einmal vor, Sie möchten ein selbstlaufendes Demo-Programm schreiben,

das solange läuft, bis es durch eine bestimmte Taste abgebrochen wird,

z.B. durch die Leertaste. Dazu müssen Sie nur ab und zu den Eingabe-

status der Konsole (Tastatur) abfragen. Ist der Status 0, führen Sie Ihre

Demonstration fort. Ist er aber -1, dann hat der Anwender inzwischen

eine Taste betätigt. Welche Taste er gedrückt hat, erfahren Sıe aber erst

durch die Funktion Bconin. War es die Leertaste, dann beenden Sie das

Programm, ansonsten ignorieren Sie den Tastendruck und machen weiter.

Ein Beispiel soll das zeigen:

GFA-BASIC

ı

' Selbstlaufende Demo (Abbruch durch Tastendruck)

' GFA-BASIC MP 08-10-88 TASTDEMO.GFA
i

I

i

Solange keine Taste gedrückt wurde...

WHILE BIOS(1,2)=0
ausgabe("DEMONSTRATION. Taste = ENDE... ")

PAUSE 2

WEND
i

' Der Tastendruck, der den Abbruch verursachte, muß noch

' toffiziell! abgeholt (= aus dem Tastaturpuffer entfernt)

' werden --> Bconin

VOID BIOS(2,2)
1

END
1

'

PROCEDURE ausgabe(a$)

' Ausgabe Uber BIOS-Funktion Bconout
t

FOR i%=1 TO LEN(a$)

VOID BIOS(3,2,ASC(MID$(a$, i%,1)))

NEXT i%

 20 Atari ST Intern 2

' (PRINT ginge natürlich auch, aber wir wollen

ı schließlich mit BIOS-Routinen arbeiten...)
8

RETURN

Omikron-BASIC

An dieser Stelle habe ich vielleicht eine kleine Enttäuschung für Sie:
Omikron-BASIC erlaubt es oft nicht, diese BIOS-Funktion einzusetzen.

Oft heißt, daß Sie es im Zweifelsfall am besten selbst ausprobieren. Mein

Testprogramm brachte jedenfalls recht merkwürdige Ausgaben auf den
Bildschirm. Auch die Bildschirm-Ausgabe bzw. Tastatur-Eingabe unter
GEMDOS ist manchmal nicht möglich, wie Sie noch sehen werden. Hier
müssen Sie auf BASIC-Befehle und -Funktionen zurückgreifen oder ganz
einfach ausprobieren.

Cc

[ERR AKI IKIREEKII EKA KIRK IERERERIEEEEREKREEAEEEEREEE /

/* Selbstlaufende Demo (Abbruch durch Tastendruck) */

/* Megamax Laser C MP 16-09-88 TASTDEMO.C */
RITTER]

#include <osbind.h>

#define CONSOLE 2

int i;

ausgabe (string)

char *string;

{

while (*string != 0)

Bconout (CONSOLE, *(string++));

}

main()

{

while (!Bconstat (CONSOLE)) /* Ausführen, solange keine Taste */

/* gedrückt wird */

. ausgabe ("DEMONSTRATION. Taste = ENDE... ");

for (i=0; i<9999; i++) /* Verzögerungsschleife */

) :

Bconin (CONSOLE); /* Das wartende Zeichen muB aus dem */

/* Tastaturpuffer geholt werden. */

 TOS - Das Betriebssystem.des Atari ST 21

Assembler

Assembler

u
=
e

n
n

S
e

B
e

gemdos 1

BIOSc

BCONSTATc

BCONINC

BCONOUT=

TEXT-

cLR1wD3-

LooP+LeaausgaßBe

a3;stringaufbildschirmausgeben-*-*

outloop: tst.b (a3)

beq.s outfin

move .b (a3)+,d3

move .W d3,-(sp)

move.W #2,-(sp)

move .W #bconout, - (sp)

trap #bios

addq. l #6,Sp

bra.s out loop

outfin: moveq.l #-1,d0

wait: dbra dO, wait

move.w #2,-(sp)

move .wW #bconstat, - (sp)

trap #bios

addq. l #4,Sp

tst.w do

beq.s loop

move .W #2,-(sp)

move.wW #bconin, - (sp)

trap #bios

addq. | #4 ,Sp

clr.w -(sp)

trap #gemdos

DATA

Selbstlaufende Demo (Abbruch durch Tastendruck)

MP 22-09-88 TASTDEMO.Q

sstringende erreicht?-*

‚dann zur warteschleife-*-*

‚Sonst Zeichen ausgeben

‚Als Wort erweitert auf Stack

‚2 für Konsole (Bildschirm)

‚Nächstes Zeichen...

‚Verzögerungsschleife

‚Inzwischen Taste gedrückt?

‚Nein, dann weiter...

‚Sonst Zeichen aus Tastatur-

;puffer holen...

5... und Programm beenden

 22 Atari ST Intern 2

ausgabe: DC.b 'DEMONSTRATION. Taste = Ende... "0

END

In unserem Beispielen haben wir auf eine beliebige Taste gewartet. Ver-

suchen Sie einmal, ein Programm so zu ändern, daß nur bei einer Leer-

taste das Programm verlassen wird.

Auch für den Ausgabestatus gibt es sinnvolle Anwendungen,um zum
Beispiel zu überprüfen, ob der Drucker angeschlossen ist und auf ON

LINE steht:

GFA-BASIC

8

' Test ob Drucker empfangsbereit mit Bcostat

' GFA-BASIC MP 07-10-88 = ONLINE.GFA
8

IF BIOS(8,0)
PRINT "Der Drucker ist bereit!"

ELSE

PRINT "Der Drucker ist nicht bereit!"

ENDIF

END

Omikron-BASIC

' Test ob Drucker empfangsbereit mit Bcostat

© OMIKRON-BASIC MP 08-09-88 ONLINE.BAS
8

BIOS (Status,8,0)

IF Status=-1

THEN PRINT "Der Drucker ist bereit!"

ELSE PRINT "Der Drucker ist nicht bereit!"

ENDIF
END

C

[RRRRRREERIREER ERE ERE RETR ETEREREREREEREAREEERERERERE |

/* Test ob Drucker empfangsbereit (mit Bcostat) */

/* Megamax Laser C MP 08-09-88 ONLINE C */
[RRR RRIRI ITAA EIR IAEINEEREREREREEEERERREREKRERER |

#include <osbind.h>

#define drucker 0

#define console 2

TOS - Das Betriebssystem des Atari ST

int status;

main()

{

status = Bcostat (drucker);

if (status ==

printf ("Der Drucker ist bereit!\n");

else

printf ("Der Drucker ist nicht bereit!\n");

Bconin (console); /* Warten auf Taste */

; Test ob Drucker empfangsbereit mit Bcostat

; Assembler

>

Assembler

drucker = 0

console = 2

bconin = 2

bcostat = 8

cconws = 9

gemdos = 1

bios = 13

TEXT

move .wW

move .w

trap

addq. l

tst.b

beq.s

pea

bra.s

not_ok: pea

cont: move .W

trap

addq. l

MP 08-09-88 ONLINE.Q

#drucker,-(sp) ;Ist Drucker bereit?

#bcostat,-(sp)

#bios

#4 ,Sp

do

not_ok

ok_text

cont

err_text

#cconws,

#gemdos

#6,Sp

‚Dann ist dO = -1

‚Nicht bereit, dann dO = Oready:

Meldung ausgeben

-(sp)

23

 24 Atari ST Intern 2

move.w #console,-(sp) ;Warten auf Tastendruck

move.W #bconin, -(sp)

trap #bios

addq. l #4 ,sp

clr.w -(sp) | ‚Programm beenden

trap #gemdos

DATA

ok_text: DC.b "Der Drucker ist bereit!",0

err_text: DC.b "Der Drucker ist nicht bereit!",0

END

1.3. Ejin- und Ausgabe mit GEMDOS

Mit den GEMDOS-Funktionen zur Zeichen-Ein-und-Ausgabe kann man
im Prinzip genau dasselbe machen wie mit den BIOS-Routinen. Und um
es gleich zu sagen: Die GEMDOS-Funktionen sind um einiges langsamer
als ihre Kollegen vom BIOS. Sie werden aber bald sehen, daß es sich oft
lohnen kann, den Geschwindigkeitnachteil in Kauf zu nehmen.

Als auffälligster Unterschied wäre zu bemerken, daß es nicht mehr die
Funktion zur Ein- oder Ausgabe gibt, sondern daß jedes Gerät dafür ei-
gene Routinen erhalten hat. Betrachten wir einmal die Funktionen, die
die Konsole (Bildschirm und Tastatur) bedienen:

Funktions-

C-Aufruf Nummer Beschreibung

Cconin() 1 Wartet auf ein Zeichen von der Tastatur

und gibt Scan- und ASCII-Code zurück.

Cconout(zeichen) 2 Gibt Zeichen auf Bildschirm aus.
Crawein() 7 Wie Cconin(), gibt Zeichen aber nicht auf Bildschirm aus.

Cconws(string) 9 Gibt einen ganzen String auf dem Bildschirm aus.

Steuerzeichen werden ausgewertet. Stringende: Nullbyte

Cconis() 11 dez. -1 = Zeichen von Tastatur verfiigbar

oder |

0 = kein Zeichen verfügbar.

Bemerkung:

Die BASIC- und Assembler-Programmierer müssen beachten, daß ein
String, der mit der Funktion Cconws(string) ausgegeben werden soll, mit

 TOS - Das Betriebssystem des Atari ST | 25

einem Nullbyte abgeschlossen sein muß. Das gilt auch für alle folgenden
TOS-Funktionen, denen eine Zeichenkette als Parameter zu übergeben
ist. In BASIC schreiben Sie daher z.B.

AS="Das ist ein Satz."+CHR$(O)

In Assembler sähe es so aus:

string: DC.B 'Das ist ein Satz'!,O

Der C-Compiler hängt die Null automatisch an eine Stringkonstante. In C
und Assembler steht der Name eines Strings für seine Startadresse. In

BASIC muß diese mit VARPTR und ggf. SEGPTR (Omikron) bestimmt
werden. Noch eleganter geht es in Omikron-BASIC mit der MEMORY-
Funktion (bitte mal im Handbuch nachschauen). Beispiele zu beiden
Verfahren finden Sie in zahlreichen Listings.

Übrigens werten auch die GEMDOS-Ausgabefunktionen Steuerzeichen
aus. Oft werde ich sie für den Zeilenvorschub einsetzen, manchmal aber

auch für die VT-52-Kommandos. Eine Liste dieser Kommandos finden

Sie im Intern Band 1. Erkennen können Sie sie am Dezimalcode 27

(Escape) oder, in C-Programmen, am Octalcode "\33" (= 27 dezimal) in-
nerhalb eines Strings. |

Zurück zu unseren GEMDOS-Ausgabe-Funktionen. Vielleicht schauen
Sie sich einmal meine Beispielprogramme an, die die Anwendung der

Routinen verdeutlichen. Das erste gibt Zeichen ein bzw. aus, während

das zweite einen String auf den Bildschirm bringt:

GFA-BASIC

' Ein- und Ausgabe von Zeichen unter GEMDOS

" GFA-BASIC MP 08-10-88 CHROUT.GFA
i

PRINT “Ausgabe von Scan- und ASCII-Codes (Ende = SPACE)"

PRINT

REPEAT
I

ı Cconin aufrufen (wartet auf Taste und liefert Scan-

ı und ASCII-Code der gedrückten Taste). Das Zeichen wird

" dabei gleich auf dem Bildschirm ausgegeben

code%=GEMDOS(1)

 26 | Atari ST Intern 2

PRINT ,"ASCII = "scode% AND 255,"Scan = ";SHR(code%, 16)
t

UNTIL (code% AND 255)=32
END

' String-Ausgabe Uber die GEMDOS-Funktion Cconws

' GFA-BASIC MP 08-10-88 STROUT.GFA

esc$=CHR$(27)

a$=esc$+"pINVERSE SCHRIFT"+esc$+"q ist mit GEMDOS kein Problem!!!

' Ausgabe von a$ mit Cconws:
8

VOID GEMDOS(9,L:VARPTR(a$))

' Warten auf Tastendruck (Crawcin):
J

VOID GEMDOS(7)

END

Omikron-BASIC

Wie bereits erwähnt, sind sämtliche oben aufgeführten GEMDOS-Funk-
tionen in Omikron-BASIC leider oft nicht einzusetzen. So erging es mir
auch bei dem Versuch, die beiden Demo-Programme für Omikron-BA-
SIC umzusetzen.

C

[RERRHH RIKKI KKREEREERERKREEREEERERERERRERKEREREREE /

/* Ein- und Ausgabe von Zeichen unter GEMDOS */

/* Megamax Laser C MP 09-09-88 CHROUT.C */
[BERRREREEKREKEKKEEREREEEKREEEREREREREREEEEREREEEEEE /

#include <osbind.h>

char zeichen;

int scancode;

int ascii;

long funktionswert;

main()

{

 TOS - Das Betriebssystem des Atari ST 27

printf ("Ausgabe von Scan- und ASCII-Codes (Ende = SPACE)\n\n");

do

funktionswert = Cconin();

ascii = (int) funktionswert;

zeichen = (char) funktionswert && 255; /* Ergebnis aufteilen in */

scancode = funktionswert >> 16; /* ASCII- und Scancode */

Cconout (zeichen);

printf ("\t ASCII = 4d \t Scan=%d\n", ascii,

scancode);

>
while (ascii != 32);

>

[RRRRRRERERREREREEIEREREREREEREREEEERERERERRERREEEREREE |

/* String-Ausgabe Uber die GEMDOS-Funktion Cconws */

/* Megamax Laser C MP 09-09-88 STROUT.C */
NT TITTEN

#include <osbind.h>

char string[255];

main()

{
strcpy (string, "\33pINVERSE SCHRIFT\33q "); /* ESC p = Revers */

strcat (string, "ist mit GEMDOS kein Problem!"); /* ESC q = Normal */

Cconws (string); /* Ausgabe des vorbereiteten Textes */

Cconin (); /* Warten auf Tastendruck */

}

Assembler

» Ein- und Ausgabe von Zeichen unter GEMDOS

: Assembler MP 09-09-88 CHROUT.Q

gemdos = |

crawcin =7

cconout = 2

: Das Programm läßt Sie einen Text am

 Atari ST Intern 2

s(wird nicht am Bildschirm

‚nicht, dann Zeichen ausgeben...

28

; Bildschirm eingeben. Ende: RETURN

TEXT

Loop: move.W #crawcin,-(sp) ;Zeichen holen

trap #gemdos

adda. l #2,sp ausgegeben)

cmpi.b #13 ,d0 Return gedrückt?

beq.s quitloop

move .W d0,-(sp)

move .W #cconout, - (sp)

trap #gemdos

addq. lt #4,Sp

bra.s Loop 5... und neues holen

quitloop: clr.w -(sp) ‚Programm beenden

trap #gemdos

END

Und last but not least:

; String-Ausgabe Uber die GEMDOS-Funktion Cconws

; Assembler

gemdos u —_

cconin

cconws

i

©

—

TEXT

move.W

trap

addq. |

move .W

trap

addq. |

clr.w

trap

ausgabe

#cconws, - (sp)

#gemdos

#6, Sp

#cconin,-(sp)

#gemdos

#2,Sp

-(sp)

#gemdos

MP 09-09-88 STROUT .Q

‚Funktion zur String-Ausgabe

‚(String muß mit Nullbyte

‚abgeschlossen sein)

‚Warten auf Tastendruck...

»;Programmende

 TOS - Das Betriebssystem des Atari ST 29

DATA

ausgabe: DC.b 27, 'pINVERSE SCHRIFT! ,27,'q'

DC.b ' ist mit GEMDOS kein Problem! '!,O

END

Ein ganz wichtiger Unterschied zwischen der GEMDOS- und der BIOS-
Zeichen-Ausgabe ist bisher nicht erwähnt worden: GEMDOS arbeitet mit
logischen Geräten, BIOS mit physikalischen. Das dürfen Sie sich so vor-

stellen: Wenn ein Programm das BIOS aufruft, um ein Zeichen am Bild-
schirm auszugeben, dann kommt es auch zum Bildschirm. Wendet sıch

die Applikation dagegen ans GEMDOS, dann geht das Zeichen an die so-
genannte Standard-Ausgabe-Einheit. Diese Einheit ıst zwar gewöhnlich
auch der Bildschirm, doch kann der logische Standard-Kanal auch auf

andere physikalische Geräte geschaltet werden. Der dazu nötige Verwal-

tungsaufwand erklärt auch, warum die GEMDOS-Ausgaben langsamer
vonstatten gehen. Die Anwendung werde ich allerdings erst etwas später
mit einem Beispiel erläutern, wenn Sie die nötigen Vorkenntnisse des

nächsten Abschnitts hinter sich gebracht haben.

1.4 Dateien

1.4.1 Lesen und Schreiben

Jeder weiß es: Dateien dienen dazu, Daten beliebiger Art auf einem
nicht-flüchtigen Massenspeicher festzuhalten. Wie können wir als An-
wenderprogramm nun solche Dateien benutzen?

Zunächst dürfte klar sein, daß die Datei einen Namen haben muß, der

den üblichen Beschränkungen unterliegt (8 Zeichen, danach optional

Punkt und drei Zeichen Extension). Zu diesem Namen gehört, wenn sie
sich nicht im aktuellen Unterverzeichnis (Ordner) befindet, die Lauf-
werksbezeichnung und der Pfad. Beispiel: B\ORDNER.FOL\DATEI

Wenn Sie einen Namen für die Datei gefunden haben, dann können Sie
die Datei öffnen, d.h. zur Bearbeitung anmelden. Sie müssen dazu erst
einmal entscheiden, diese Datei neu anlegen möchten oder ob Sie nur
eine schon bestehende Datei zum Bearbeiten der gespeicherten Daten
öffnen möchten. Ersteres besorgt die Funktion Fcreate, letzteres Fopen.

Gemeinsam ist beiden Funktionen, daß sie als Parameter den Dateinamen
erwarten und als Funktionswert eine Zahl zurückgeben. Unterschiedlich
ist der zweite Parameter, der neben dem Dateinamen übergeben wird.

 30 Atari ST Intern 2

Übrigens: Alle TOS-Funktionen, die mit Dateien zu tun haben, gehören
zur Gruppe der GEMDOS-Routinen, d.h. zur höchsten Systemroutinen-

Klasse.

C-Aufruf Nummer Funktions-Beschreibung

_ Fereate (filename, attribut) $3C Legt neue Datei an

Fopen (filename, modus) $3D Offnet bestehende Datei

Die zurückgegebene Zahl kann zwei Bedeutungen haben: Ist sıe negativ,

dann gab es irgendwo Probleme (keine Diskette eingelegt, bei Fopen

wurde die Datei nicht gefunden etc.). Ist sie positiv, dann nennt man die
Zahl das File-Handle. Dieses File-Handle ist ab sofort ein Synonym für
den Dateinamen und wird bei allen folgenden Zugriffen auf diese Datei
angegeben, denn mit Zahlen kann GEMDOS viel besser hantieren als mit
ganzen Datei- oder sogar Pfadnamen. |

Zurück zu Fcreate und Fopen: Jede der Funktionen verlangt noch einen

Parameter, der von der Funktion abhängt. Bei Fcreate gibt dieser be-

stimmte Eigenschaften der Datei an, der Parameter heißt deshalb Datei-
Attribut:

0 "Normale" Datei;

l Datei erhält nach dem Schließen den Status read-only (nurlesbar).

2 Datei erscheint nicht im Inhaltsverzeichnis, kann aber normal bear-

beitet werden (versteckte Datei).

Fopen hingegen erwartet ein sogenanntes Modus-Wort. Dieses bestimmt

das Zugriffsrecht auf die Datei:

0 Datei kann nur gelesen werden.

l Datei kann nur beschrieben werden.

2 Datei kann gelesen und beschrieben werden.

Nehmen wir an, Sie haben eine Datei mit Fcreate neu eröffnet und wol-

len nun Daten in diese Datei schreiben. Dazu dient die Funktion Fwrite:

C-Aufruf Nummer Funktions-Beschreibung

Fwrite (handle, anz, start) $40 Speichert anz Bytes ab start

in der Datei handle.

 TOS - Das Betriebssystem des Atari ST 31

Mit Fwrite können Sie also einen beliebigen Speicherbereich auf einer

Diskette oder Festplatte sichern. Deshalb sollten Sie vor dem Aufruf auch

dafür sorgen, daß die Daten, die Sie abspeichern möchten, sich an einem

Stück im Speicher befinden. Wenn nicht, dann können Sie Fwrite auch

mehrfach aufrufen - es wird dann jedesmal am Ende der Datei weiter-
geschrieben. Das dauert natürlich länger, als wenn Sie alles in einem

Rutsch erledigen lassen.

Das letzte, was Sie noch tun müssen, ist, die Datei wieder zu schließen.

Damit stellen Sie "Ihr" File-Handle wieder der Allgemeinheit zur Verfü-
gung. Außerdem wird dabei die Dateilänge im Inhaltsverzeichnis aktuali-
siert. Erst wenn eine neu angelegte Datei geschlossen wurde, kann sie
später problemlos zur Bearbeitung geöffnet werden. Das Schließen der

Datei besorgt für uns die GEMDOS-Funktion Fclose:

C-Aufruf Nummer Funktions-Beschreibung

Felose (handle) $3e Schließt eine Datei ordnungsgemäß.

Mit diesen Vorgaben können wir nun ein Programm erstellen, das einen
kurzen Text in eine Datei schreibt, den Sıe sich anschließend im Desktop

mit einem Doppelklick anzeigen lassen können ("Diese Dateı kann nur

angezeigt..."). Die Datei soll den bezeichnenden Namen READ.ME tragen
und eine Nur-Lesen-Datei sein. Das Programm sieht so aus:

GFA-BASIC

Beispielprogramm für Dateien unter GEMDOS

GFA-BASIC MP 08-10-88 FILES.GFA

zeile$="Das ist der Text, der in die Datei kommt."

filename$="READ .ME"+CHR$CO)

nurlesen%=]
i

' Datei mit Fcreate eröffnen:
1

handl e4=GEMDOS(&H3C, L: VARPTR(fi lename$) , nurlesen%)
I

IF handle%<0

PRINT "Fehler beim Offnen der Datei!"

ELSE

' Zeile$ in Datei schreiben
t

VOID GEMDOS(&H40, handle%, L: LEN(zeile$),L:VARPTR(zei le$))

 32 Atari ST Intern 2

' Datei schließen
i

VOID GEMDOS(&H3E , handle%)
ENDIF

END

Omikron-BASIC

' Beispielprogramm fiir Dateien unter GEMDOS

' OMIKRON-BASIC MP 16-09-88 — FILES.BAS
4

Fi lLenameS="READ .ME"+ CHR$(0)

Zeile$="Das ist der Text, der in die Datei kommt."
4

' Adresse der STRINGS ausrechnen:

Nameptr= LPEEK(VARPTR(Filename$))+ LPEEK(SEGPTR +28)

Zptr= LPEEK(VARPTR(Zeile$))+ LPEEK(SEGPTR +28)
8

' Datei anlegen:

GEMDOS (Handle,$3C, HIGH(Nameptr), LOW(Nameptr), 1)

IF Handle<O

THEN PRINT "Fehler beim Öffnen der Datei!"

REPEAT : UNTIL INKEY$ <>""

ELSE ' Text in Datei schreiben

Anz= LEN(Zeile$)

GEMDOS (,$40,Handle, HIGH(Anz), LOW(Anz), HIGH(Zptr), LOW(Zptr))

' Datei schlieBen

GEMDOS (,$3E, Handle)

ENDIF

END

Cc
[RRR IRR IRIE REHEAT EKRE RIERA RREERREEEE /

/* Beispielprogramm fiir Dateien unter GEMDOS */

/* Megamax Laser C MP 15-09-88 FILES.C */
[RRR RAEI IIR ERE EHH IIREEE RAIA ER EEEEAAAAEEE I

#define NUR_LESEN 1

#include <osbind.h>

int handle;

char *zeile = {"Das ist der Text, der in die Datei komnt.");

main()

{

handle = Fcreate ("READ.ME", NUR_LESEN);

 TOS - Das Betriebssystem des Atari ST 33

if (handle < 0)

printf ("Fehler beim Öffnen der Datei!\n");

else

{
Fwrite (handle, (long) strlen (zeile), zeile);

Fclose (handle);

>
}

Assembler

; Beispielprogramm für Dateien unter GEMDOS

: Assembler MP 16-09-88 FILES.Q

gemdos = |

crawcin = 7

cconws = 9

fcreate = $3c

fclose = $3e

fwrite = $40

TEXT

move .wW #1,-(sp) :Nur-Lesen-Attribut

pea filename

move .w #fcreate,-(sp) ;Datei anlegen

trap #gemdos

addq. | #8, Sp

tst.w do :dO negativ?

bmi.s error ‚dann Fehlermeldung

move .W d0 ,handle ‚sonst als Handle merken

pea anfang sTextzeile schreiben

move. l #schluss-anfang, - (sp) ‚Länge

move.W d0,-(sp) :File-Handle

move .wW #fwrite,- (sp)

trap #gemdos

adda. l #12,sp

move.W handle, -(sp) ‚Datei schließen

MOVe.W #fclose,-(sp)

trap #gemdos

addq. l #4,Sp

ende: clr.w -(sp) ;Programmende

 34 Atari ST Intern 2

trap #gemdos

error: pea errtext :Fehlermeldung ausgeben

move .W #cconws, - (sp)

trap #gemdos

addq. | #6,Sp

move .wW #crawcin,-(sp) ;Warten auf Taste

trap #gemdos

addq. | #2,sp

bra.s ende

DATA

filename: DC.b 'READ.ME',0

anfang: DC.b ‘Das ist der Text, der in die Datei kommt.'

schluss:

errtext: DC.b 'Fehler beim Offnen der Datei',13,10,0

BSS

|

handle: DS.w 1

END

Nun ist es zwar ganz nett, sich einen Text vom Desktop aus anzeigen zu
lassen, doch sollen die Daten auch wieder in eigenen Programmen einge-
lesen werden können. Abgesehen davon, daß eine solche Datei statt mit
Fcreate natürlich mit Fopen geöffnet werden muß, benötigen wir auch

noch das Gegenstück zu Fwrite. Diese Funktion, die Daten aus einer
Datei wieder zurück in den Hauptspeicher des Rechners holt, heißt

Fread:

C-Aufruf ‘Nummer Funktions-Beschreibung

Fread (handle, anz, start) $3f Liest anz Bytes aus Datei in

Speicher (ab Start).

Auch hierzu möchte ich Ihnen eigentlich ein kleines Beispiel geben,

nämlich die Ausgabe eines Textes aus einer Datei - genau das Gegenteil
von dem, was unser letztes Programm gemacht hat. Was ist zu tun? Wir
lesen die ganze Datei in den Speicher und geben sie mit der GEMDOS-
Funktion Cconws auf dem Bildschirm aus. Das Problem dabei liegt nun
darin, das GEMDOS schon vor dem Lesen aufs Byte genau wissen
möchte, wie viele Zeichen es beschaffen soll (Parameter anz bei Fread).

 TOS - Das Betriebssystem des Atari ST 35

Im Klartext heißt das, daß wir die Größe der Datei herausfinden müssen,

bevor wir sie laden können. Wie das geht, wird im nächsten Abschnitt

erklärt. Das Beispiel zum Lesen aus einer Datei folgt dann sofort nach!

1.4.2 DTA - Disk Transfer Address

Vorweg ein Hinweis: Im folgenden Abschnitt kommen eine Menge In-
formationen auf Sie zu, die - scheinbar - unabhängig voneinander sind.

Leider sind diese Funktionen nur im Zusammenhang zu verstehen, also

lesen Sie bei Unklarheiten alles Folgende am besten zweimal.

Oft kommt es vor, daß Sie das Inhaltsverzeichnis eines Laufwerks benö-

tigen, sei es, um es auf dem Drucker auszugeben oder um eine neue
File-Selector-Box (Datei-Auswahl-Fenster) zu programmieren.

Nehmen wir an, Sie brauchen eine Liste aller C-Programme. Diese Da-
teien enden bekanntlich mit der Extension .C. Unser Betriebssystem kann
nun alle Dateinamen suchen, die auf .C enden. Dazu benötigt es lediglich
eine sogenannte Namens-Maske. Eine solche Maske haben Sie bestimmt
schon einmal gesehen; sie enthält meist Sternchen (*) oder auch

Fragezeichen. GEMDOS legt bei Suche die von Ihnen vorgegebene Maske

über jeden Dateinamen, den es im Inhaltsverzeichnis findet, und über-

prüft, ob die Maske auf diesen Namen paßt. Wenn ja, dann wird der

Name als gefunden gemeldet; wenn nicht, so wird weitergesucht.

Bleibt zu klären, wann eine Maske auf einen Dateinamen paßt. Der ein-

fachste Fall ıst der, daß Maske und Name identisch sind. Dann paßt die

Maske selbstverständlich auf den Namen. Allerdings ist einzusehen, daß
der Befehl "Suche alle Dateien, die ASSEMBLER.PRG heißen!" nicht

sehr sinnvoll erscheint. Was wir brauchen, ist eine allgemeinere Maske,

die auf mehrere Dateinamen zutreffen kann.

Diesem Zweck dienen die sogenannten Wildcards, auch Joker genannt. So
besagt ein Fragezeichen (?) in der Maske, daß an der gleichen Stelle im
Dateinamen ein beliebiger Buchstabe stehen darf. Der Asterisk (*) geht
noch weiter: Er sagt dem System, daß ab der Position, an der er in der

Maske zu finden ist, beliebig viele (also auch gar keine) Zeichen stehen
dürfen. Dabei ist allerdings zu beachten, daß ein Asterisk im maximal

achtstelligen Dateinamen nicht auch für die dreistellige Extension gilt.
Die allgemeinste Maske, die es gibt, lautet demnach *.* und paßt auf alle
nur denkbaren Dateinamen.

 36 Atari ST Intern 2

So, jetzt haben wir also eine Maske. Bleiben wir beim Beispiel der C-
Programme von vorhin, so lautet sie *.C. Diese Maske übergeben wir an
die GEMDOS-Funktion Fsfirst (steht für File-Funktion Search First), die
bereitwillig das ganze Inhaltsverzeichnis durchsuchen wird, bis sie einen
Dateinamen gefunden hat, der auf C endet. Der Rückgabewert der
Funktion ist entweder Null, dann konnte ein Name gefunden werden,

oder er ist negativ, dann war die Diskette defekt oder der Name ganz
einfach nicht vorhanden.

Ihr berechtigter Einwand wird nun lauten: Was bringt mir das, wenn ich
nur weiß, daß auf der Diskette ein C-Programm ist? Ich wollte doch den
Namen erfragen. Seien Sie unbesorgt - den vollständigen Dateinamen
(also ohne * und ?) hat Fsfirst schon herausgefunden und sicher depo-
niert. Wo,das können Sie selbst bestimmen, indem Sie - Sie erinnern sich

an die Überschrift dieses Abschnitts - eine Disk Transfer Address festle-
gen. Womit sich der Kreis meiner Erklärungen schließt.

Die DTA ist der Beginn eines 44 Bytes großen Speicherbereichs, in dem
Sie wichtige Angaben über die letzte mit Sfirst gefundene Datei
vorfinden. Dieser Bereich ist wie folgt organisiert:

Offset Größe Bedeutung

0 21 Bytes reserviert, keine Bedeutung.

21 1 Byte Datei-Attribut (nur-lesen, ...)

22 2 Bytes Uhrzeit

24 2 Bytes Datum

26 4 Bytes Dateilange in Bytes

30 variabel volistandiger Name mit Extension

(mit Nullbyte abgeschlossen)

Das ist doch schon einiges an Informationen! Am Rande: Uhrzeit und
Datum liegen in einem speziellen Format vor, das im Intern I beschrieben

steht (suchen Sie dazu am besten die Funktionen zum Setzen/Lesen von
Datum und Zeit).

Nun sollte unser Inhaltsverzeichnis natürlich nicht nur aus dem ersten
Dateinamen bestehen, sondern aus allen, auf die die vorgegebene Maske
paßt. Eine nochmalige Anwendung der Funktion Fsfirst würde wieder

den gleichen, bereits gefundenen Namen ergeben (wie der Name Search
First schon sagt). Zum Glück gibt es da noch die Funktion Fsnext (steht
für Search Next = Suche nächsten Namen). Fsnext hält sich an die
gleiche Maske, die Sie bei Fsfirst angegeben haben. Das bedeutet, daß
einem Fsnext-Aufruf ein Fsfirst vorangehen muß. Fsnext sucht also den
nächsten Dateinamen im Directory und legt Informationen darüber

 TOS - Das Betriebssystem des Atari ST 37

ebenfalls im DTA-Puffer ab. Sie können Fsnext so oft aufrufen, bis es

einen negativen Funktionswert liefert. Dann wurden bereits alle Da-
teinamen gefunden.

Was bisher noch nicht erwähnt wurde: Fsfirst benötigt nicht nur eine
Maske, sondern auch einen Attribut-Wert als Parameter. Die Funktion

sucht dann automatisch nur solche Dateien, die der Attribut-Wert angibt.
Folgende Werte sind möglich:

Normale Datei.

Nur-Lesen- Datei.

0

1

2 Versteckte Datei.

8 Name der Diskette (eigentlich nur sinnvoll bei einer Maske von
* *),

16 Unterverzeichnis (Ordner).

Das ist so zu verstehen, daß z.B. ein Attribut-Wert von 0 alle Dateinamen
findet, die normal sind oder Nur-Lesen-Status haben. Die 1 findet alle
versteckten und nicht versteckten Dateien, die nicht auf Nur-Lesen ge-
schaltet sind, und eine 2 schließlich findet alle Dateien. Wird als Attribut

aber 8 oder 16 angegeben, so werden nur die dadurch ausdrücklich ge-
wünschten Informationen (also Name der Diskette oder der Ordner) ge-

liefert.

Abschließend noch einmal beide Funktionen in der Übersicht:

C-Aufruf Nummer Funktions-Beschreibung

Fsfirst (name, attribut) $4e Suche ersten Dateinamen.

Fsnext | $4f Suche nachsten Dateinamen.

Das letzte, was Sie noch wissen müssen, ist die Festlegung der DTA ‚Sie

müssen dem Betriebssystem sagen, ab welcher Adresse es die Daten über

gefundene Dateien ablegen soll. Die dazu bestimmte GEMDOS-Funktion
heißt Fsetdta:

C-Aufruf Nummer Funktions-Beschreibung

Fsetdta (adresse) $1a Setzt Startadresse des DTA-Puffers für

Fsfirst und Fsnext.

Nach all diesen Erläuterungen wird es Zeit für ein Beispielprogramm, das

Licht in eventuell vorhandenes Dunkel bringt. Zunächst möchte ich das

 38 Atari ST Intern 2

Lesen einer Datei nachholen; Sie erinnern sich sicher an unser Problem
im vorigen Abschnitt, die Lange einer Datei zu bestimmen. Mit unserem
jetzigen Wissen ist das kein besonderes Problem:

GFA-BASIC

In diesem Programm werden zum ersten Mal die Funktionen MALLOC
und MFREE verwendet. Sie dienen dazu, einen Speicherbereich be-

stimmter Größe, die hinter MALLOC in Klammern angegeben wird, zu

reservieren und dessen Adresse zu ermitteln. In diesem Bereich können

wir uns dann beliebig austoben. Es ist also dem MEMORY-Befehl des
Omikron-BASIC ähnlich. Mit MFREE müssen wir diesen Bereich wieder

zurückgeben, wenn er nicht mehr gebraucht wird. MALLOC und
MFREE sind übrigens direkte Systemaufrufe des GEMDOS, nur sparen

Sie sich das Schreiben der Funktionsnummer. Zum besseren Verständnis

lesen Sie bitte das Kapitel 1.5 über die Speicherverwaltung.

N

'ı Ermitteln der Dateilänge und Anzeigen der Datei

' GFA-BASIC MP 07-10-88 SHOWFILE.GFA
8

" Speicherbereich für DTA-Puffer reservieren:
q

dta%=MALLOC(44)

" Speicherbereich für eigentlichen Text:
|

puffer%=MALLOC(1000)
a

f i Lename$="READ .ME"+CHR$(0) I CHR$CO) als Stringende-Kennungnurlesen%=0

U DTA festlegen:

VOID GEMDOS(&HIA,L:dta%)

' Fsfirst aufrufen für Dateilänge:
I

IF GEMDOS(&H4E ,L:VARPTR(Cfilename$) ‚nurlesen%)<O

PRINT "Datei wurde nicht gefunden!"

ELSE

Lang%=LPEEK(dta%+26) I Länge in Bytes

' Datei öffnen, lesen und schließen:
8

handl e%=GEMDOS(&H3D,L:VARPTR(filename$),0)

VOID GEMDOS(C&H3F ,handle%,L:lang%,L:puffer%)

VOID GEMDOS(&H3E ,handle%)

 TOS - Das Betriebssystem des Atari ST

ı Ausgabe der Daten:

VOID GEMDOS(9,L:puffer%)

ENDIF

' Warten auf Tastendruck:
J

VOID GEMDOS(7)
8

CLS
:

' Speicherbereiche wieder freigeben
q

VOID MFREE(dta%)

VOID MFREE(puffer%)
8

END

Omikron-BASIC

¢

' Ermitteln der Dateiladnge und Anzeigen der Datei

' OMIKRON-BASIC MP 21-09-88 SHOWFILE.BAS
§

' Speicherbereiche reservieren:

Dta= MEMORY(44)' fur DTA-Puffer

Puffer= MEMORY(1000)' und fur den eigentlichen Text

Filename= MEMORY("READ.ME")' als Dateiname
‘

ı Löschen des VT-52 Bildschirms

BIOS (,3,2,27)' Escape

BIOS (,3,2, ASC("E"))' + E = Schirm löschen
‘

' Festlegen der DTA:

GEMDOS (,$1A, HIGH(Dta), LOW(Dta))
t

' Fsfirst anwenden, um Dateilänge zu ermitteln:
GEMDOS (Back%,$4E, HIGH(Filename), LOW(Filename) ,Nurlesen%)

IF Back%<0

THEN PRINT "Datei wurde nicht gefunden!"

ELSE Lang= LPEEK(Dta+26)' Länge in Bytes

ı öffnen, lesen und schließen

GEMDOS (Handle%,$3D, HIGH(Filename), LOW(Filename),0)

GEMDOS (,$3F,Handle%, HIGH(Lang), LOW(Lang),...

.. HIGH(Puffer), LOW(Puffer))

GEMDOS (,$3E ,Handle%)

' Ausgabe der Daten:

39

 40 Atari ST Intern 2

GEMDOS (,9, HIGH(Puffer), LOW(Puffer))

ENDIF

GEMDOS (,7)' Warten auf Tastendruck

CLS
END

C

NETT |

/* Ermitteln der Dateilänge und Anzeigen der Datei */

/* Megamax Laser C MP 20-09-88 SHOWFILE.C */
NETTER]

#include <osbind.h>

#define NUR_LESEN 1

struct infoblock /* Ein struct bietet sich als */

{ short int reserviert[21]; /* Datentyp für den DTA-Puffer */

short int attribut; /* an */

int uhrzeit;

int datum;

long groesse; /* Für uns wichtig: Größe in Bytes */

char name [14] ;

> dta_puffer;

int handle;

char puffer[1000]; /* Hierhin werden die Daten gelesen */

main()

{ .

Fsetdta (&dta_puffer); /* Startadresse des DTA-Puffers festlegen */

if (Fsfirst ("READ.ME", NUR_LESEN) < 0) /* Wir müssen die */

printf ("Datei wurde nicht gefunden!\n"); /* Dateilänge heraus- */

else /* finden */

{

handle = Fopen ("READ.ME", 0); /* Datei zum (0=) Lesen öffnen */

Fread (handle, dta_puffer.groesse, puffer); /* Daten lesen */

Fclose (handle);

Cconws (puffer); /* Alle Daten auf einen Schlag ausgeben */

>

Cconin (); /* Warten auf Taste */

 TOS - Das Betriebssystem des Atari ST 41

Assembler

nurlesen

gemdos

crawcin

cconws

fsetdta

fopen

fclose

fread

fsfirst

.

a

: Ermitteln der Dateilänge und Anzeigen der Datei

; Assembler MP 12-09-88 SHOWFILE.Q

=1

= 1

= 7

= 9

= $la

= $3d

= $3e

= $3f

= $4e

TEXT

pea dta_puf ;Startadresse DTA-Puffer festlegen

move .w #fsetdta, -(sp)

trap #gemdos

addq. l #6,Sp

move .wW #nurlesen,-(sp) ;Fsfirst-Aufruf (normale und

pea filename ‚nur lesen-Dateien suchen)

move .W #fsfirst,-(sp)

trap #gemdos

addq. | #8, sp

tst.w do ‚Fehler?

bmi.s error ‚Ja, dann bitte melden...

clr.w -(sp) ‚Datei zum Lesen öffnen

pea filename

move .W #f open, - (sp)

trap #gemdos

addq. l #8, Sp

_ move.w dO, handle

pea puffer ;Datei komplett einladen

move. | groesse, - (sp) ‚Länge ist von Fsfirst bekannt

move .W handle, -(sp)

move .wW #fread,-(sp)

trap #gemdos

adda. | #12,sp

MOVe.W handle,-(sp) ‚Datei schließen

move.W #fclose,-(sp)

trap #gemdos

 42

error:

print_on:

err_text:

filename:

handle:

dta_puf:

attribut:

zeit:

datum:

groesse:

name:

puffer:

Atari ST Intern 2

addq. l #4,sSp

pea puffer ‚Text am Bildschirm ausgeben...

bra.s print_on

pea err_text ;... Oder Fehlermeldung

move .W #cconws, - (Sp)

trap #gemdos

addq. l #6,Sp

move .wW #crawcin,-(sp) ;Warten auf Tastendruck...

trap #gemdos

addq. | #2,sp

clr.w -(sp) ‚und Ende des Programms

trap #gemdos

DATA

DC.b 'Datei wurde nicht gefunden! ',0

DC.b 'READ.ME',0

BSS

DS.w 1

DS.b 21

DS.b 1

DS.w 1

DS.w 1

DS.L 1

DS.b 14

DS.b 1000

END

Ein zweites Beispiel soll die Verwendung der Funktion Fsnext verdeut-
lichen. Es handelt sich dabei um eine Ausgabe des Inhaltsverzeichnisses
einer Diskette in Laufwerk A. Dabei gehen wir so vor, daß erst einmal
Fsfirst mit der Maske *.* und einer Null als Attributwert (für normale
Dateien) aufgerufen und der so (hoffentlich) gefundene Dateiname aus-
gegeben wird. Anschließend wird in einer Schleife solange Fsnext auf-
gerufen und der jeweils erhaltene Name angezeigt, bis der Rückgabewert
dieser Funktion negativ ist, sprich: keine weiteren Dateien vorhanden
sind.

 TOS - Das Betriebssystem des Atari ST 43

GFA-BASIC

t

' Anzeigen des aktuellen Inhaltsverzeichnisses

' GFA-BASIC MP 07-10-88 DIR.GFA
4 .

' Speicherbereich fir DTA reservieren:
,

dta%=MALLOC(44)
t

maske$=""* , *"+CHRS(0) I Diese Maske findet alle!

I Dateien

' DTA einstellen:
ß

VOID GEMDOS(&H1A,L:dta%)

' Aufruf von Fsfirst:
4

IF GEMDOS(&H4E,L:VARPTR(maske$),1)<0 1! 1: Normale und Nur-Lesen-

PRINT "Keine Dateien gefunden!" ! Dateien suchen

ELSE

REPEAT

VOID GEMDOS(9,L:dta%+30) I Dateinamen ausgeben

PRINT I Neue Zeile

ı Fsnext aufrufen (gleichzeitig Abbruchbedingung):

UNTIL GEMDOS(&H4F)<O

ENDIF

1

VOID GEMDOS(7) ı Auf Taste warten

VOID MFREE(dtax) ! Speicher wieder freigeben
8

END

Omikron-BASIC

a

' Anzeigen des aktuellen Inhaltsverzeichnisses

' OMIKRON-BASIC MP 21-09-88 DIR.BAS
0

A Speicherbereiche reservieren:

Dta= MEMORY(44)' fiir DTA-Puffer

Nameptr=Dta+30' Offset für Dateiname: 30 Bytes
Maske= MEMORY("*.*")!' als Suchmaske

Crif= MEMORY(CHR$(13)+ CHRS$(10))' fur Zeilenvorschub
Q

' Léschen des VT-52 Bildschirms
BIOS (,3,2,27)' Escape
BIOS (,3,2, ASC("E"))' + E = Schirm loschen

 44 Atari ST Intern 2

ı Festlegen der DTA:

GEMDOS (,$iA, HIGH(Dta), LOW(Dta))
5

' Fsfirst aufrufen:

GEMDOS (Back%,$4E, HIGH(Maske), LOW(Maske),Nurlesenz%)

IF Back%<0

THEN PRINT "Keine Dateien gefunden! "

ELSE ' Ersten gefundenen Dateinamen ausgeben

GEMDOS (,9, HIGH(Nameptr), LOW(Nameptr))

GEMDOS (,9, HIGH(Crif), LOW(Crlf))
8

' Solange weitersuchen, bis Fsnext<0:

WHILE 1' Scheinbare Endlosschleife

GEMDOS (Back%,$4F)

IF Back%<O THEN EXIT

GEMDOS (,9, HIGH(Nameptr), LOW(Nameptr))

GEMDOS (,9, HIGH(Crif), LOW(Crif))

WEND
ENDIF
GEMDOS (,7)
CLS
END

Cc

NIIT TITTEN |

/

/

/

* Ausgabe des aktuellen Inhaltsverzeichnisses */

* Megamax Laser C MP 20-09-88 DIR.C */
RER TRITT TITTEN]

#include <osbind.h>

#define NUR_LESEN 1

struct infoblock /* Wie gehabt - ein struct */

{ short int reserviert [21]; /* für den DTA-Puffer */

short int attribut;

int uhrzeit;

int datum;

long groesse;

char name [14] ;

>} dta_puffer;

char *cr_lf = C"\15\12\0"); /* Sequenz fir Zeilenvorschub */

ausgabe()

{

Cconws (dta_puffer.name); /* Ausgabe des Dateinamens und */

Cconws (cr_lf); /* des Zeilenvorschubs */

}

 TOS - Das Betriebssystem des Atari ST

main()

{

Fsetdta (&dta_puffer); /* Startadresse des DTA-Puffers festlegen */

if (Fsfirst ("*.*", NUR_LESEN) < 0) /* normale und nur-lesen- */

Cconws ("Keine Dateien gefunden! '"); /* Dateien suchen */

else

{ /* Namen gefunden? */

ausgabe(); /* Dann diesen ausgeben... */

while (Fsnext() == 0) /* ... und alle folgenden (solange */

ausgabe(); /* welche gefunden werden) */

>

Cconin (); | /* Warten auf Taste */

>

Assembler

; Ausgabe des aktuellen Inhaltsverzeichnisses

; Assembler MP 12-09-88 DIR.Q

nurlesen = 1

gemdos = 1

crawcin = 7

cconws = 9

fsetdta = $la

fsfirst = $4e

fsnext = $4f

TEXT

pea dta_puf ;Startadresse DTA-Puffer festlegen

move .w #fsetdta, -(sp)

trap #gemdos

adda. l #6,Sp

move .W #nurlesen,-(sp) ;Fsfirst-Aufruf (normale und

pea maske ‚nur-lesen-Dateien suchen)

move.W #fsfirst,-(sp)

trap #gemdos

addq. | #8,sp

tst.w do ;Fehler?

bmi.s error ‚Ja, dann gibt's keine Dateien

45

 46

loop:

error:

taste:

ausgabe:

err_text:
maske:

crlf:

dta_puf:

attribut:

zeit:

datum:

groesse:

name:

bsr.s

move.W

trap

addq. |

tst.

bmi.

bsr.

bra. n
n
n
 £

pea

move .w

trap

addq. |

move .W

trap

addq. |

clr.w

trap

pea

move .W

trap

addq. |

pea

move .wW

trap

addq. |

rts

DATA

ausgabe

#fsnext,-(sp)

#gemdos

#2,Sp

do

taste

ausgabe

Loop

err_text

#cconws,-(sp)

#gemdos

#6 ,sp

#crawcin,-(sp)

#gemdos

#2,sp

-(sp)

#gemdos

name

#cconws,- (sp)

#gemdos

#6,Sp

crlf

#cconws, ~(Sp)

#gemdos

#6,Sp

Atari ST Intern 2

‚Sonst den Dateinamen ausgeben

;Nach weiteren Namen suchen

‚Fehler?

‚Dann abbrechen

‚Sonst Namen ausgeben...

5... und weitermachen

‚Meldung ausgeben

‚Warten auf Taste...

;Programmende

‚Ausgabe des gefundenen Namens

;Zeilenvorschub ausgeben

DC.b 'Keine Dateien gefunden! ',0

DC.b '*.*!' 0

DC.b 13,10,0

BSS

DS.b 21

DS.b 1

DS.w 1

DS.w 1

DS.l 1

DS.b 14

END

 TOS - Das Betriebssystem des Atari ST 47

1.5 Speicherverwaltung

An dieser Stelle stecke ich in einer Art Zwickmühle. Einerseits kann ich

Ihnen zu diesem Thema jetzt noch keine sinnvollen Beispielprogramme

geben; andererseits werden Sie im folgenden einige Informationen da-

rüber benötigen. Um diese nicht stückchenweise liefern zu müssen,

schiebe ich sie hier ein.

Wenn in einem Computer immer nur ein Programm zur gleichen Zeit
läuft, dann kann es sich eigentlich selbst aussuchen, welchen Speicher-

platz es für sich selbst und für seine Daten beansprucht - zu Konflikten

mit anderen Programmen kann es nicht kommen, weil die ja gar nicht
vorhanden sind. In unserem Atari sieht die Sache allerdings anders aus:

Kontrollfeld, Spooler, RAM-Disk und was der schönen Dinge mehr sind,

wollen alle zusammen mit einer Anwendung, z.B. einer Textverarbeitung,
unter einem Dach im Rechner wohnen. Würde jetzt jedes Programm

seine Daten irgendwo in die erstbesten Speicherzellen schreiben, dann

können Sie sich vorstellen, wie schnell es zu Zusammenstößen kommt.

Das gilt natürlich nicht nur für die Daten der einzelnen Programme; auch
die Programme selbst dürfen nicht miteinander und mit Daten eines an-

deren Programms kollidieren.

Aus diesem Grund "gehört" der gesamte Speicher des Atarıs dem TOS,
also dem Betriebssystem. Etwas genauer: Es ist GEMDOS, ein Teil von

TOS, der sich um die Speicherverwaltung kümmert. Weil GEMDOS aber

mit dem vielen Speicher gar nichts anfangen kann, gibt es gerne auf
Anfrage Teile davon an Programme zurück. GEMDOS merkt sich je-
weils, welche Speicherbereiche noch frei und welche schon vergeben

sind, um kein Byte zweimal zu verteilen.

Wenn ein Programm vom Desktop aus gestartet wird, dann geschieht fol-
gendes: GEMDOS sucht den größten noch freien Speicherbereich und

kennzeichnet ıhn als belegt. Dieses als belegt kennzeichnen heißt übrigens
allokieren. Dann lädt es die Programmdatei in diesen Speicherbereich und
gibt die Kontrolle an das so geladene Programm ab. GEMDOS erledigt
dabei gleich noch ein paar andere Kleinigkeiten, doch die interessieren

uns im Moment nicht.

Die erste Amtshandlung des Programms sollte nun sein, den eigenen
Speicherbedarf zu ermitteln und, wenn dieser geringer als der von
GEMDOS allokierte Bereich ist, letzteren zu verkleinern, um soviel wie
möglich Platz für die anderen Programme freizuhalten.

 48 AtariSTIntern? ———-

Stellt das Programm nun später fest, daß es doch mehr Platz benötigt, als

ursprünglich angenommen wurde, dann kann es sich an GEMDOS wen-

den und um einen zusätzlichen Bereich bitten. Auch ein solcher erst spä-

ter zugeteilter Bereich kann, wenn er nicht mehr gebraucht wird, zu-
rückgegeben werden.

Dieses Prinzip funktioniert natürlich nur dann, wenn sich auch alle an-

deren Programme an die Spielregeln halten und nur soviel Platz in An-
spruch nehmen, wıe sie unbedingt benötigen. Das gilt übrigens auch,

wenn Sie Programme nachladen möchten. GEMDOS reserviert nämlich

fiir das nachzuladende (genau wie fiir das nachladende) Programm den

größten Speicherbereich, der gerade frei ist. Und wenn keiner mehr frei

ist, kann folglich auch nichts nachgeladen werden. |

Vielleicht werden Sie jetzt fragen, warum wir uns denn bisher in den

Beispielprogrammen nicht um die Speicherverwaltung kümmern mußten.

Die Antwort ist einfach: Es war nicht nötig, d.h. unsere Programme lie-

fen alleine im Speicher (jedenfalls hätte man Accessories nicht aufrufen
können), wir wollten keine anderen Programme nachladen und auch nicht

nachträglich Speicherplatz anfordern. Das wird sıch aber in den folgen-

den Kapiteln ändern, so daß ich Ihnen hier für jede Programmiersprache

kurz das Wichtigste erkläre. Unabhängig davon sollten Sie sich ım ersten

Band des Intern einmal kurz über die Befehle Malloc, Mfree und

Mshrink (auch SETBLOCK genannt) informieren.

GFA-BASIC

Wenn Sie den Interpreter laden, so "behält" dieser fast den ganzen ihm

zugeteilten Speicher, um möglichst große Programme und viele Variablen

zu erlauben. Sıe können aber durch die Anweisung RESERVE einen Teil

des Speichers zurückgeben. Dieser zurückgegebene Bereich steht dann

dem Interpreter nicht mehr direkt zur Verfügung. Er kann aber mit

GEMDOS-Funktionen vom Programm verwendet werden.RESERVE ohne

Parameter setzt die Ausgangseinstellung, d.h. 16 KByte des Speichers ste-
hen GEMDOS zur Verfügung, der Rest dem Interpreter. Wird eine nega-
tive Zahl übergeben, so wird der BASIC-Arbeitsspeicher um den Betrag

dieser Zahl vermindert und der freie GEMDOS-Speicher erhöht. Schließ-

lich kann mit einem positiven Parameter hinter RESERVE die Größe des
BASIC-Arbeitsspeichers eingestellt werden.

Omikron-BASIC

Die Ausgangssituation ist die gleiche wie in GFA-BASIC. Allerdings
wird die Größe des GEMDOS-Speichers über den CLEAR-Befehl be-

 TOS - Das Betriebssystem des Atari ST 49

stimmt. CLEAR anzahl besagt, daß der GEMDOS-Speicher ab sofort

anzahl Bytes groß sein soll. Nach dem Laden des Interpreters sind 64
KByte für GEMDOS bestimmt.

C

In C sieht die Sache anders aus: Wird ein C-Programm geladen, so steht
der Speicherbedarf fiir den Programmcode und die Variablen bereits fest.
Deshalb wird automatisch der gesamte nicht benötigte Speicher an
GEMDOS zurückgegeben. Automatisch heißt, daß der C-Compiler den

Code zur Berechnung des Speicherbedarfs generiert.

Assembler

Hier geht es im Prinzip so wie auch in C, nur wird die Berechnung nicht
automatisch vorgenommen. Um dies von Hand zu machen, müssen Sie

wissen, daß beim Start eines Programms das zweite Langwort auf dem

Stapel (über 4(sp) zu erreichen) auf die sogenannte Basepage zeigt. Diese

enthält unter anderem die Größen des Programms und dessen Daten. Den

genauen Aufbau der Basepage entnehmen Sie bitte dem Intern Band 1.

Die Berechnung selbst ist ein Standard-Verfahren, das ın fast jedem Pro-

gramm zu Anfang verwendet wird. Bei dieser Gelegenheit wird meist
auch gleich ein größerer Prozessor-Stapel (Stack) eingerichtet. Zusammen

kann das z.B. so aussehen (mit 4 KByte Stack):

gemdos = 1

mshrink = $4a

movea.l 4(sp),a5 :4(sp) ist Start der Basepage

move. l 12(¢a5),d0 ‚Länge des Programmcodes

add. l 20(a5),d0 + Länge des Data-Segments

add. | 28(a5),dO + Länge des BSS-Segments

addi. l #$1100,d0 ‚+ Basepage (256 Bytes) + Stack (4 KB)

move. lt d0,d1 ‚Länge plus

add. l a5,di ;Startadresse

andi. l #-2,d1 ; (gerundet)

movea.l di,sp ‚ergibt Stackpointer

move. l d0,- (sp) ‚Länge des benötigten Speichers

move. | a5,-(sp) ‚Startadresse des Bereichs

clr.w -(sp) sdumny-Byte ohne Bedeutung

move .W #mshr ink, - (sp)
trap #gemdos

adda. | #12,sp

 50 Atari ST Intern 2

Mehr ist zu diesem Thema im Moment nicht zu sagen. Und weil in ei-
nem Demo-Programm die Speicherverwaltung ganz alleine wenig Sinn
macht, bekommen Sie hierzu auch kein eigenes Beispielprogramm.

1.6 | Umlenken der Ein-und Ausgabe

Erinnern Sie sich noch an das, was ich tiber den Unterschied zwischen
den GEMDOS- und BIOS-Routinen zur Bildschirm-Ausgabe bzw. Tasta-

tur-Eingabe gesagt habe? Da war von logischen und physikalischen Ge-
räten die Rede und von der Möglichkeit, physikalische Geräte logischen

zuzuordnen. Darum wird es jetzt gehen.

Genauso wie jede geöffnete Datei ein File-Handle besitzt, so haben auch
Tastatur, Bildschirm, Drucker und die serielle Schnittstelle jeweils ein

Handle. Weil diese Handles festgelegt, das heißt Geräten fest zugeordnet
sind und nicht erst durch einen Fopen-Befehl erfragt werden müssen,

spricht man von Standard-Handles. Alles andere (also Handles von

Diskettendateien) heißt demnach Non-Standard-Handle.

Folgende Standard-Handles kennt der Atari:

0 Konsol-Eingabe (Tastatur)

1 Konsol-Ausgabe (Bildschirm)

2 RS232-Schnittstelle (Modem)

3 Centronics-Schnittstelle (Drucker)

Die Funktion Cconout (Zeichen) zur Ausgabe eines Zeichens kann man
sich also als Fwrite-Aufruf vorstellen, der in die Datei mit dem Handle 1

(also Bildschirm-Ausgabe) ein einzelnes Byte schreibt, nämlich das Zei-
chen, das Cconout als Parameter übergeben wird - wobei einsichtig sein
sollte, daß für den Programmierer der Cconout-Aufruf viel bequemer ist

als der Fwrite-Aufruf. Intern geht aber auch Cconout über eine Art
Fwrite, und zwar mit dem Standard-Handle 1.

Übrigens gibt es noch die Standard-Handles 4 und 5, die allerdings im
Atari keine Funktion haben. Sie wurden von MS-DOS übernommen, wo

sie implementiert sind. Wenn Sie MS-DOS kennen (den internen Aufbau,
also nicht nur Kommandos wie DIR oder COPY), so werden Sie schon

bemerkt haben, daß das GEMDOS mit dem BDOS von MS-DOS ver-

wandt ist. Wichtig fiir Sie ist aber noch, daß alle Handles ab 6 Non-Stan-
dard-Handles sind und vom TOS bei Bedarf vergeben werden.

 TOS - Das Betriebssystem des Atari ST 51

Doch jetzt zu unserem eigentlichen Problem. Denken wir uns ein Pro-
gramm, das eine String-Eingabe vornehmen soll. Dabei wissen wir aber
noch nicht, von welchem Eingabegerät der String später einmal kommen
soll (Tastatur, RS232 oder Datei sind möglich). Deshalb schreiben wir das
Eingabe-Unterprogramm einfach so, als ob die Zeichen von der Tastatur

kämen, weil dies die wohl einfachste Methode ist (bequeme Cconin-

Aufrufe). Bei Bedarf wollen wir dann die Tastatur-Eingabe (Standard-
Handle 0) auf z.B. eine geöffnete Datei umleiten. Alle Zeichen-Einga-
befunktionen des GEMDOS warten dann nicht mehr auf einen Tasten-
druck, sondern bedienen sich aus der Datei!

Die GEMDOS-Funktion, die solche Wunderdinge leistet, heißt Fforce.

Sie hat die Funktionsnummer $46. Der genaue Aufruf lautet:

Fforce (Standard-Handle, Non-Standard-Handle)

Nach diesem Aufruf gehen alle Ein- bzw. Ausgaben, die bisher über das

Standard-Handle erfolgten, über das Non-Standard-Handle. Das betrifft

auch Funktionen wıe Cconin oder Cconout; die einzige Ausnahme be-

trifft die Funktionen zum Überprüfen auf Sende- und Empfangsbereit-
schaft, also z.B. zur Überprüfung, ob ein Zeichen im Tastaturpuffer be-
reitliegt (Cconis); diese Funktionen können nicht umgeleitet werden.

Zurück zu unserer Aufgabe: Wir müssen also erst eine Datei zum Lesen
eröffnen. Das Handle dieser Datei ist natürlich ein Non-Standard-Handle.
Wir "forcen" es auf die Konsol-Eingabe (Standard-Handle 0). An-
schließend lesen wir die Datei mit Cconin-Aufrufen aus. In unserem
Beispiel wollen wir dabei so vorgehen, daß eine Zeile gelesen wird, bis

zum Erreichen des Codes 13 (Return). Zur Kontrolle geben wir den so
erhaltenen String auf dem Bildschirm aus. Die Datei können wir wieder
schließen, und als einziges Problem bleibt, die Standard-Eingabe wieder
auf die Tastatur zurückzuleiten. Der Aufruf Force (0,0) hilft hier nicht
weiter, und zwar aus zwei Gründen:

1. Das Standard-Handle O0 ist ja immer noch auf die Datei geschaltet
(erster Fforce-Aufruf). Wenn wir also als neu zu schaltende Quelle
der Standard-Eingabe die 0 angeben, so muß der Rechner ganz
konsequent annehmen, daß wir auch die Datei meinen.

2. Wie Sie oben lesen konnten, muß der zweite Parameter des Fforce-

Aufrufs ein Non-Standard-Handle sein.

Ein Non-Standard-Handle für den Bildschirm existiert aber doch gar
nicht!

 52 Atari ST Intern 2

Glücklicherweise gibt es da noch die Funktion Fdup, der ein Standard-
Handle als einziger Parameter übergeben wird. Dup steht für Duplizieren.

Diese Funktion fertigt nämlich eine gleichwertige Kopie des angegebenen
Standard-Handles an und gibt sie zurück. Die Kopie selbst ist aber ein

Non-Standard-Handle, ein Handle also, das größer oder gleich 6 ist, wie
wir es für den Fforce-Aufruf benötigen! Deshalb duplizieren wir ganz zu

Anfang das Handle 0 und forcen am Ende die Standard-Eingabe auf die
Kopie von 0. Ganz zu Anfang übrigens deshalb, weil ja nach dem ersten

Fforce die Standard-Eingabe unsere Datei ist, und auch die Kopie würde

sich auf die Datei beziehen. Daraus können Sie auch entnehmen, daß ein

Fforce-Aufruf keine Auswirkung auf die Kopie eines Standard-Handles
hat. |

Und das soll einer verstehen, werden Sie sagen. Nun, auch ich hatte an-

fangs meine Probleme mit diesem schwierigen Thema, aber es hat sich
gelohnt - halten Sie durch!

Fassen wir die einzelnen Schritte einmal zusammen:

l. Das Standard-Handle 0 wird mit Fdup dupliziert, so daß wir ein
Non-Standard-Handle erhalten, welches eine exakte Kopie der
Standard-Eingabe darstellt (nicht nur eine Kopie des Standard-Ein-

gabe-Handles).

2. Eine Datei wird zum Lesen eröffnet.

3. Die Standard-Eingabe wird mit Fforce auf das Non-Standard-
Handle dieser Datei umgeleitet.

4. Die Eingabe kann vorgenommen werden. Dabei benutzen wir die
Funktion Cconin, die gewöhnlich von der Tastatur liest.

5. Die Datei wird wieder geschlossen. |

6. Die Umleitung wird mit einem zweiten Fforce-Aufruf rückgängig
gemacht, d.h. wir forcen die Standard-Eingabe auf das in Schritt 1

kopierte Non-Standard-Handle, das von dem Fforce in Schritt 3
nicht betroffen war, denn (siehe unter 1) wir haben ja die Stan-
dard-Eingabe dupliziert und nicht etwa nur ein synonymes Non-
Standard-Handle erzeugt.

Nach einer so langen Vorrede haben Sie sich ein Programm zur Demon-
stration des oben gesagten redlich verdient:

 TOS - Das Betriebssystem des Atari ST

GFA-BASIC

' Umleiten der Eingabe von Tastatur auf Datei

' GFA-BASIC MP 08-10-88 UMLEITEN.GFA
I

filename$="UMLEITEN.DAT'"+CHR$(O)

stdin%=0 I Standard-Eingabehandle

lesenz=0 I Parameter für Fopen-Funktion
|

' Datei mit Fopen zum Lesen öffnen:
6

handl eX=GEMDOS(&H3D , L: VARPTR(fi lename$), lesen%)
'

IF handle%<0

' PRINT "Datei nicht gefunden!"

ELSE

' Standard-Eingabe (Tastatur) duplizieren:

non_std_handle=GEMDOS(&H45,stdin%)

ı Standard-Eingabe auf Datei 'forcen':

VOID GEMDOS(&H46, stdinz, handle%)

leseroutine(a$) I Unterprogramm liest von Tastatur
I

PRINT a$ I Kontroll -Ausgabe

ı Standard-Eingabe zurück umleiten (auf Kopie):
§

VOID GEMDOS(&H46, stdin%,non_std_handle%)

ENDIF

END

PROCEDURE leseroutine(VAR a$)
a$= su

DO

zeichen%=GEMDOS(1) I Cconin für Tastatur-Eingabe

EXIT IF (zeichen% AND 255)=13 ! RETURN gedrückt?
a$=a$+CHR$(zeichen%) I nein, dann Zeichen anhängen LOOP

RETURN

Omikron-BASIC!

' Umleiten der Eingabe von Tastatur auf Datei

' OMIKRON-BASIC MP 25-09-88 UMLEITEN.BAS

Nameptr= MEMORY ("UMLEITEN.DAT")
‘

53

 54 Atari ST Intern 2

' Datei UMLEITEN.DAT zum Lesen öffnen
8

GEMDOS (Handle%,$3D, HIGH(Nameptr), LOW(Nameptr),0)

IF Handle%<0

THEN

PRINT "Datei nicht gefunden!"

ELSE

' Standard-Eingabe-Handle (0) duplizieren:

GEMDOS (Non_Std_Handle%, $45, 0)

' Umleiten: Standard-Eingabe (0) auf Datei (Handle%)

GEMDOS (,$46,0,Handlex)
8

Eingabe(Zeile$)' Eingabe von Datei

PRINT Zeile$! und anschließend Kontroll-Ausgabe

ı Umleitung rückgängig machen: Standard (0) auf Non_std

GEMDOS (,$46,0,Non_Std_Handle%)

' SchlieBen der Datei:
8

GEMDOS (,$3E, Handle“)

ENDIF

END
§

DEF PROC Eingabe(R A$)' Unterprogramm: GEMDOS-Tastatur-EingabeLOCAL Zeichen%
A$=" oe ,

REPEAT

GEMDOS (Zeichen%,1)' Cconin = Zeichen-Eingabe

IF Zeichen%=13 THEN EXIT ENDIF ' Abbruch, wenn Return

A$=A$+ CHR$CZeichen‘)

UNTIL O° Endlosschleife

RETURN

Cc

ER,

/* _Umleiten der Eingabe von Tastatur auf Datei */

/* Megamax Laser C MP 25-09-88 UMLEITEN.C */
[RERERRHRREREREREEEEREREEEEREERERERRERERERERRERERERE /

#include <osbind.h>

#define FILENAME "UMLEITEN.DAT"

#define STDIN 0 /* Standard-Eingabehandle */.

TOS - Das Betriebssystem des Atari ST 55

#define LESEN 0

int non_std_handle;

int handle;

char string[80];

eingabe (string) /* Kleine Eingaberoutine für String */

char string(];

{
int i;

1 = -1;

do

{

string[++i] = Cconin(); /* Zeichen von Standard-Eingabe lesen */

if (stringl[i] == 13) /* bis Return (=13) gedrückt wurde; */

stringli] = 0; /* Return wird durch Nullbyte ersetzt */

>
while (string[li] != 0);

>

main()

{ :

handle = Fopen (FILENAME, LESEN); /* Aus dieser Datei sollen */

if (handle < 0) /* gleich die Eingaben kommen */

Cconws ("Datei nicht gefunden!");

else

{
non_std_handle = Fdup (STDIN); /* Tastatur-Handle duplizieren */

Fforce (STDIN, handle); /* Umleiten der Standard-Eingabe */

/* auf die Datei <handle> */

eingabe (string); /* Die Eingabe kommt aus der Datei... */

Cconws (string); /* Kontroll-Ausgabe auf dem Bildschirm */

Fforce (STDIN, non_std_handle); . /* Zurück umleiten */

Fclose (handle); /* und Datei schließen */

>

Crawcin(); /* Taste beendet */
>

Assembler

Umleiten der Eingabe von Tastatur auf Datei

Assembler MP 25-09-88 UMLEITEN.Q

=
e

R
e

S
O

 96

gemdos

cconin

crawcin

cconws

fopen

fclose

fdup

fforce

1

_

“
e
n
w

su

o
n

$3d
£ a

Atari ST Intern 2

-(sp) ‚Datei zum Lesen öffnen

filename

 #fopen, - (sp)

#gemdos

#8,sp

do Fehler beim Öffnen?

error Dann meiden...

d0, handle ‚Sonst Wert als handle merken

-(sp) ‚0 ist Standard-Eingabe-Handle

#fdup, - (sp) ‚und wird mit Fdup dupliziert

#gemdos

#4 ,sp

dO,non_std ‚Ergebnis ist non-standard-handle

handle, -(sp)

-(sp)
#fforce,-(sp)
#gemdos

#6,Sp

‚Umleitung: Bisherige Standard-

‚Eingabe (Tastatur) wird auf Datei

gelegt

eingabe ;‚Unterprogramm für Eingabe

string Kontroll -Ausgabe

#cconws, - (sp)

#gemdos

#6,Sp

non_std,~-(sp) ;Nochmalige Umleitung der

-(sp) ;Standard-Eingabe (auf alte

#f force, -(sp) ;Standard-Eingabe)

#gemdos

#6,Sp

handle, -(sp)

#close,-(sp)

#gemdos

Datei schließen

ende:

11:

l2:

error:

eingabe:

Loop:

finish:

filename:

 TOS - Das Betriebssystem des Atari ST 57

addq. i

move .W

trap

addq. |

moved. l

moved. |

dbra

dbra

move .W

move .W

trap

addq. |

clr.w

trap

pea

move .W

trap

addq. |

bra.s

lea

clr.w

move .W

trap

addq. |

cmpi.b

beq.s

move .b

addi .w

bra.s

clr.b

rts

DATA

#4 ,sp

#crawcin,-(sp)

#gemdos

#2,sp

#20, dO
#-1,d0
di, l2
do, U1

#2,-(sp)

#2,-(sp)

#13

#4 ,sp

-(sp)
#gemdos

errtext

#cconws,-(sp)

#gemdos

#6,Sp

ende

string,a3

d3

#cconin,-(sp)

#gemdos

#2,sp

#13,d0

finish

d0,0(a3,d3.w)

#1,d3

Loop

0(a3,d3.w)

DC.b 'UMLEITEN.DAT',O

‚Warten auf Taste

‚Programm beenden

‚Fehlermeldung ausgeben

‚Eingaberoutine für eine Zeile

;d3 ist Index für nächstes Zeichen

Zeichen von Standard-Eingabegerät

‚holen

;Return betätigt?

Dann sind wir fertig

‚Sonst Zeichen in String schreiben

und Index erhöhen

‚String mit Nullbyte abschließen

 58 Atari ST Intern 2

errtext: DC.b 'Datei nicht gefunden! '!,O

BSS

handle: DS.w 1

non_std: DS.w 1

string: DS.b 80

END

1.7 Nachladen von Programmen

Wenn GEMDOS es auch nicht erlaubt, mehrere Programme gleichzeitig
laufen zu lassen (Multitasking), so kann ein Programm doch immerhin
ein anderes vom Massenspeicher nachladen und starten lassen. Ist dieses

zweite Programm beendet, so wird das erste an der Stelle fortgesetzt, wo
es durch das zweite unterbrochen wurde. Im Prinzip funktioniert das also
genauso wie der Aufruf von Unterprogrammen oder Funktionen, nur daß
sie jeweils nachgeladen werden müssen.

Damit dürfte auch klar sein, wann sich ein solches Vorgehen lohnt, näm-
lich nur bei sehr großen Unterprogrammen, die nicht allzuoft aufgerufen
werden, also z.B. nicht innerhalb einer Schleife. Ein Beispiel: Die Benut-

zeroberfläche (Shell) eines C-Entwicklungssystems ist ein Programm, das
Editor, Compiler und Linker als sehr große Unterprogramme aufruft.

- Ein Programm wird durch die GEMDOS-Funktion Pexec (Nummer $4B)
geladen. Der Aufruf sieht so aus: |

Pexec (Modus, P1, P2, P3)

Pl, P2 und P3 sind Zeiger, also Long-Werte. Die Tatsache, daß ein Mo-
dus angegeben werden muß, läßt vermuten, daß Nachladen nicht gleich

Nachladen ist. So ist es denn auch: Sie können wählen, ob das Programm
geladen und sofort gestartet werden soll (Modus = 0) oder ob es nur in
den Speicher geholt werden soll (Modus = 3), um es später besonders
schnell starten zu können. In beiden Fällen werden die Zeiger Pl bis P3
wie folgt verwendet:

P1: Pfad-/Dateiname des Programms

P2: Parameter, die an das Programm übergeben werden sollen, und die
gewöhnlich bei *.TTP-Programmen beim Start eingegeben werden

 TOS - Das Betriebssystem des Atari ST 59

P3: Environment-String. Spielt unter MS-DOS eine wichtige Rolle.
Beim Atari wird er eigentlich nie verwendet. Mein Tip: Vergessen
Sie ihn wieder.

Pexec gibt auch einen Wert zurück. Bei einem Modus von 0 ist der
Funktionswert vom Typ Integer (2 Bytes) und enthält den sogenannten
Return-Code, also eine Art Funktionswert des nachgeladenen Programms.
Dieser Wert wird am Ende des nachgeladenen Programms bestimmt: Wird
es normal beendet, so ist der Return-Code 0; wird es aber mit der Funk-

tion Pterm(retcode) (Nummer $4C) abgeschlossen, so wird der Parameter
retcode an den Aufrufer zurückgegeben. Damit ist es z.B. möglich zu
melden, daß das nachgeladene Programm auf Grund eines Fehlers (Datei
nicht gefunden etc.) nicht korrekt arbeiten konnte.

Im Modus 3 wird hingegen ein Langwort zurückgegeben. Es ist die
Startadresse der Basepage, die bei der Speicherverwaltung schon einmal

kurz erwähnt wurde. Diese Startadresse merken Sie sıch für die nächste
Betriebsart der Pexec-Funktion: den Modus 4.

Im Modus 4 kann ein mit Modus 3 geladenes Programm gestartet werden.

Dazu benötigt GEMDOS die Adresse der Basepage, die beim Laden er-
mittelt wurde. Diese Adresse übergeben Sie im Zeiger P2; Pl und P3 sind
in diesem Modus ohne Bedeutung. Der Rückgabewert ist, wie schon im

Modus 0, der Return-Code des Programms.

Zwei Programme sollen nun das gerade Gelernte demonstrieren, je eins
für Modus 0 und Modus 3 und 4. Wir nehmen an, daß sich auf der Dis-

kette ein Programm namens ZULADEN.TOS befindet. BASIC-Program-
mierer müssen, wie in Kapitel 1.6 erklärt, den GEMDOS-Speicher erhö-

hen und ihren eigenen etwas verkleinern. Die Assembler-Fans müssen
erstmals ihren Speicherbedarf berechnen und außerdem einen großen
Stack einrichten.

Eines ist noch wichtig für die Omikron- und GFA-BASIC-Besitzer: Das
zweite Beispielprogramm (Laden und späteres Starten) läßt sich nur ein-
mal problemlos starten - danach ist ein erneutes Laden des Interpreters

nötig. Wenn Sie das Programm jedoch compilieren, so läuft es beliebig
oft fehlerfrei.

GFA-BASIC

ı Nachladen eines Programms und sofort starten mit Pexec

' GFA-BASIC MP 08-10-88 NACHLAD .GFA

 60 Atari ST Intern 2

Q

' 2000 Bytes fiir nachzuladendes Programm vom

' BASIC-Arbeitsspeicher abziehen:
a

RESERVE -2000
8

filename$="ZULADEN. TOS"+CHR$(O)

parameter$=CHR$(0)

envi ronment$=CHR$(0)
8

filename%=VARPTR(filename$)

parameter%=VARPTR(parameter$)

environment%=VARPTR(environment$)
!

PRINT "Das ist das aufrufende Programm."
PRINT
a .

.

IF GEMDOS(&H4B,0,L:filename%,L:parameter%,L:environment%)<0

PRINT "Irgend ein Fehler ist aufgetaucht!!!"

PRINT

ENDIF

PRINT "Hier ist wieder das aufrufende Programm!"
t .

ı Speicherveränderung wieder rückgängig machen:
4

RESERVE

END

Nachladen eines Programms und Start zu späterem Zeitpunkt

GFA-BASIC MP 08-10-88 NACHLAD2.GFA

2000 Bytes für nachzuladendes Programm vom

BASIC-Arbeitsspeicher abziehen:

RESERVE -2000
I

filename$="ZULADEN. TOS"+CHR$(O)

parameter$=CHR$(0)

environment$=CHR$(0)
i

filename%=VARPTR(filename$)

parameter%=VARPTR(parameter$)

environment%=VARPTR(envirorment$)
§

PRINT "Das ist das aufrufende Programm."

PRINT

 TOS - Das Betriebssystem des Atari ST 61

' Modus 3: Programm laden
8

basepge%=GEMDOS (&H4B,3,L:filename%,L:parameter%,L:environment%)

IF basepge%<0

PRINT "Irgend ein Fehler ist aufgetaucht!!!"

PRINT

ELSE
i

PRINT "Programm wurde geladen. TASTE zum Start!"

PRINT

VOID GEMDOS(7) ! Crawcin wartet auf Taste

' Modus 4: Programm starten
i

VOID GEMDOS(&H4B,4,L:0,L:basepge%, L:0)

ENDIF

PRINT "Hier ist wieder das aufrufende Programm!"
8

' Speicherveranderung wieder rUckgangig machen:

' (funktioniert im Interpreter nicht so ganz...)
8

RESERVE

END

Omikron-BASIC

t

' Programm nachladen und sofort starten mit Pexec

' OMIKRON-BASIC MP 25-09-88 NACHLAD .BAS
i

CLEAR 10000:' 10000 Bytes fur nachzuladendes Programm
i

Nameptr= MEMORY("ZULADEN.TOS")

Parameter= MEMORY ("")

Environment=Parameter
i

GEMDOS (,2,27)' Umständlich, muß aber sein:

GEMDOS (,2, ASC("H"))' Der Cursor wird mit VT-52-Sequenzen

GEMDOS (,2,10)' in die dritte Zeile gebracht (ESC+H

GEMDOS (,2,10)' für Home und 2mal 10 für Zeilenvorschub)

CLS :' Bildschirm löschen
A

PRINT "Das ist das aufrufende Programm.": PRINT

' GEMDOS-Aufruf zum Laden und Starten:

 62 Atari ST Intern 2

GEMDOS (Ret%,$4B,0, HIGH(Nameptr), LOW(Nameptr), HIGH(Parameter),...

..-LOW(Parameter), HIGHCEnrironment), LOW(CEnvironment))
8

IF Ret%<0

THEN PRINT “Irgendein Fehler ist aufgetaucht!!!"

ENDIF
8

PRINT : PRINT

PRINT "Hier ist wieder das aufrufende Programm!
§

GEMDOS (,7):' Warten auf Taste (Crawcin)

END

8

' Programm nachladen und später starten mit Pexec

' OMIKRON-BASIC MP 25-09-88 NACHLAD2.BAS
8

CLEAR 10000:' 10000 Bytes für nachzuladendes Programm
0

Nameptr= MEMORY ("ZULADEN.TOS")

PFarameter= MEMORY ("!')

Environment=Parameter
6

GEMDOS (,2,27)' Wie gehabt, aber der Cursor wird in

GEMDOS (,2, ASCC("H"))' Zeile 5 gesetzt

FOR 1%=1 TO 4: GEMDOS (,2,10): NEXT 1%

CLS :' Bildschirm löschen
A

PRINT "Das ist das aufrufende Programm.": PRINT

" GEMDOS-Aufruf zum Laden ohne Starten (Modus 3):
Q

GEMDOS (Basepage,$4B,3, HIGH(Nameptr), LOW(Nameptr),...

...HIGH(Parameter), LOW(Parameter), HIGH(Environment),...

...LOW(Environment))
6

IF Basepage<0

THEN PRINT “Irgendein Fehler ist aufgetaucht!!!"

ELSE

' .

PRINT "Programm wurde geladen. TASTE zum Start!": PRINT

GEMDOS (,7):'! Crawcin wartet auf Taste

'ı Programm starten (Modus 4):

GEMDOS (,$4B8,4,0,0, HIGH(Basepage), LOW(Basepage) ,0,0)

 TOS - Das Betriebssystem des Atari ST

ENDIF

0

PRINT : PRINT

PRINT "Hier ist wieder das aufrufende Programm! "
t

GEMDOS (,7):' Warten auf Taste (Crawcin)
END

C
[RERREREREREERREREEERERERREEEREREEEEEREEREREEREREEEEEREE

/* Programm nachladen und sofort starten mit Pexec */

/* Megamax Laser C MP 24-09-88 NACHLAD.C */
NAHEN /

#include <osbind.h>

#define LADEN_UND_STARTEN 0

#define FILENAME "ZULADEN.TOS"

#define PARAMETER ""

#define ENVIRONMENT ""

main()

{

Cconws ("Das ist das aufrufende Programm. \15\12\12");

if (Pexec (LADEN_UND_STARTEN, FILENAME, PARAMETER, ENVIRONMENT) < 0)

Cconws ("Irgendein Fehler ist aufgetaucht! !1\15\12\12");

Cconws ("Hier ist wieder das aufrufende Programm! \15\12");

Crawcin(); /* Ende mit Tastendruck */

>

NIT |

/* Nachladen eines Programms und Start zu späterem Zeitpunkt */

/* Megamax Laser C MP 24-09-88 NACHLAD2.C */
[RARER EREEREREREEREEEEEEEREEEREERERERERERUEREEREREERERREREEREEE /

#include <osbind.h>

#define LADEN 3

#define STARTEN 4

#define FILENAME "ZULADEN. TOS"

#define PARAMETER ""

#define ENVIRONMENT "u

long basepage;

63

 64 Atari ST Intern 2

main()

{

Cconws ("Das ist das aufrufende Programm. \15\12\12");

basepage = Pexec (LADEN, FILENAME, PARAMETER, ENVIRONMENT);

if (basepage < 0)

Cconws ("Irgendein Fehler ist aufgetaucht! \15\12\12"):

else

{

Cconws ("Programm wurde geladen. TASTE zum Start!\15\12\12"); Crawcin();

Pexec (STARTEN, OL, basepage, OL);

Cconws ("Jetzt ist wieder das alte Programmm da! \15\12\12");

>

Crawcin();

Assembler

;Programm nachladen und sofort starten mit Pexec

‚Assembler MP 25-09-88 NACHLAD .Q

gemdos = 1

crawcin =7

cconws = 9

mshrink = $4a

pexec = $4b

TEXT

movea.l 4(sp),a5 ;Speicherbedarf ermitteln

move. l 12¢a5),d0 ‚Länge des Programmcodes

add. l 20(a5),d0 3+ Lange des Data-Segments

add. | 28(a5),dO _ a+ Lange des BSS-Segments +

addi. | #$1100,d0 ‚Basepage (256 Bytes)+Stack (4KB)

move. | do, di ‚Länge plus

add. | a5,d1 ;Startadresse

andi. lt #-2,d1 : (gerundet)

movea.l di,sp sergibt Stackpointer

move. l d0,-(sp) ‚Länge des benötigten Speichers

move.L a5,-(sp) ‚Startadresse des Bereichs

clr.w -(sp) sdummy-Byte ohne Bedeutung

move .W #mshr ink, - (sp)

error:

ende:

text1:

text2:

errtext:

filename:

params:

environ:

 TOS - Das Betriebssystem des Atari ST 65

trap

adda. t

clr.w

move .wW

trap

adda. lt

tst.w

bmi.s

pea

bra.s

move .W

trap

addq. |

move .wW

trap

addq. |

cir.w

trap

DATA

#gemdos

#12,sp

text1

#cconws, - (sp)

#gemdos

#6,Sp

environ

params

fi Lename

-(sp)

#pexec, - (sp)

#gemdos

#16,sp

do

error

text2

ende

errtext

#cconws, - (sp)

#gemdos

#6,Sp

#crawcin,-(sp)

#gemdos

#2 ,sp

-(sp)

#gemdos

‚Meldung am Bildschirm ausgeben

‚Programm nachladen

Null -> Laden und sofort starten

;Fehler aufgetreten?

‚noch eine Meldung...

‚Fehlermeldung ausgeben

‚Warten auf Taste...

5... und Programm beenden

DC.b 'Das ist das aufrufende Programm. ',13,10,10,0

DC.b 'Hier ist wieder das aufrufende Programm! !,13,10,0

DC.b 'Irgendein Fehler ist aufgetaucht!!!',13,10,10,0

DC.b 'ZULADEN.TOS',O

DC.b 0 ;keine Parameter und

DC.b 0 ;keine Umgebung

END

:
;Programm nachladen und später starten mit Pexec

‚Assembler MP 25-09-88 NACHLAD2.Q

 66

gemdos

crawcin

cconws

mshr ink

pexec

u oO

= $4a

$4b

TEXT

movea. |

move. |

add. |

add. |

addi. l

move. L

add. l

andi. l

movea. l

move. |

move. |

clr.w

move .W

trap

adda. l

move .W

trap

addq. l

4(sp),a5

- 12(a5),d0
20(a5),d0

28(a5),d0

#31100, d0

d0,d1

a5,d1

#-2,d1

di,sp

d0,-(sp)

a5,-(sp)

-(sp)

#mshrink, -(sp)

#gemdos

#12,sp

text]

#cconws, - (sp)

#gemdos

#6,Sp

environ

params

filename

#3,-(Ssp)

#pexec, - (sp)

#gemdos

#16,sp

do

error

d0,start_adr

text2

#cconws, - (sp)

#gemdos

#6,Sp

Atari ST Intern 2

‚Speicherbedarf ermitteln

‚Länge des Programmcodes

‚+ Lange des Data-Segments

‚+ Lange des BSS-Segments +

‚Basepage (256 Bytes)+Stack (4KB)

‚Länge plus

‚Startadresse

(gerundet)

‚ergibt Stackpointer

‚Länge des benötigten Speichers

;Startadresse des Bereichs

:dummy-Byte ohne Bedeutung

‚Meldung am Bildschirm ausgeben

Programm nachladen

;3 -> nur laden und Startadresse

zurückgeben

;Fehler aufgetreten?

‚dann Meldung ausgeben...

‚sonst Startadresse merken

‚Melden: Programm ist

sbereit zum Start

error:

ende:

text1:

text2:

text3:

errtext:

filename:

params:

environ:

start_adr:

1.8

 TOS - Das Betriebssystem des Atari ST 67

move .W

trap

adda. l

clr.

move. |

clr.l

move .wW

move .W

trap

adda. l

pea

bra.s

pea

move.W

trap

addq. l

move .W

trap

addq. l

clr.w

trap

DATA

DC.

DC.

DC.

#crawcin,-(sp)

#gemdos

#2,Sp

-(sp)
start_adr,-(sp)

-(sp)

#4,-(sp)

#pexec, - (sp)

#gemdos

#16,sp

text3

ende

errtext

#cconws, - (sp)

#gemdos

#6,Sp

#crawcin, -(sp)

#gemdos

#2,Sp

-(sp)
#gemdos

DC.b 'ZULADEN.TOS',0O

DC.b 0

DC.b 0

BSS

DS.t 1

END

‚Warten auf Taste...

‚Programm jetzt erst starten

:Startadresse haben wir vom

‚ersten Pexec-Aufruf

‚4 -> Programm starten

‚noch eine Meldung...

‚Fehlermeldung ausgeben

‚Warten auf Taste...

5... und Programm beenden

b 'Das ist das aufrufende Programm. ',13,10,10,0

b 'Programm wurde geladen. Taste zum Start!',13,10,10,0

DC.b 'Jetzt ist wieder das alte Programm da!',13,10,10,0

b 'Irgend etn Fehler ist aufgetaucht!!!',13,10,10,0

‚keine Parameter und

keine Umgebung

Von Tracks und Sektoren

Ich glaube eigentlich nicht, daß Sie sich oft mit Tracks und Sektoren
auseinandersetzen müssen (es sei denn, Sie wollten einen Disketten-Mo-

 68 Atari ST Intern 2

nitor programmieren). Trotzdem möchte ich Ihnen ein paar Dinge über
die Diskettenverwaltung erzählen, weil dies erstens einen sehr schönen
Überblick über das ganze TOS (also GEMDOS, BIOS und XBIOS) gibt,
und zweitens, weil man es früher oder später doch einmal kennenlernen

muß, z.B. um eine RAM-Disk oder ähnliches zu erstellen. Wahrscheinlich

ist Ihnen vieles schon bekannt, doch in diesem Fall ist der Zusammen-

hang wichtig.

GEMDOS, das wissen Sie, kennt Dateien und Ordner (Unterverzeich-

nisse). Jede Datei wird durch einen Pfadnamen charakterisiert, der aus

dem Laufwerksnamen, evtl. dem Weg durch verschiedene Ordner und
schließlich aus dem Dateinamen selbst besteht. Wenn auf eine bestimmte
Information zugegriffen werden soll, so benötigt GEMDOS nur diesen
Pfadnamen und den Offset der Information, also deren Lage innerhalb

der Datei. Was für Sie so selbstverständlich klingt, erfordert in Wirklich-
keit eine sehr aufwendige Verwaltung - denken Sie nur daran, daß je
nach Laufwerksname auf völlig unterschiedliche Peripheriegeräte zuge-

griffen werden muß (Diskette, Festplatte, RAM-Disk...). Mit dieser Ver-

waltung ist GEMDOS überfordert. Sie wird deshalb teilweise vom BIOS

und auch vom XBIOS übernommen. Wie hat man sich das vorzustellen?

Nun, das Anwenderprogramm gibt GEMDOS wie eben beschrieben einen

Pfadnamen. GEMDOS rechnet nun aus, in welchem logischen Sektor die

gesuchte Information gespeichert ıst. Ein logischer Sektor ist ein Block
von 512 Bytes. Der ganze Massenspeicher besteht aus durchnumerierten

logischen Sektoren; eine gewöhnliche einseitige Diskette besitzt z.B. 720
Sektoren mit den Nummern 0 bis 719. Und damit wären wir bereits beim
BIOS. BIOS kennt keine Dateien mehr, auch keine Laufwerksnamen. Statt

dessen arbeitet man mit Laufwerksnummern (0 = Laufwerk A, 1 = Lauf-

werk B usw.) und logischen Sektornummern. BIOS hat nun die Aufgabe,
anhand der Laufwerksnummer den Gerätetreiber für das gewünschte

Laufwerk (z.B. einen Harddisk-Treiber) zu aktivieren, der dann - end-
lich - die Daten auch wirklich liest. Nur, wenn ein Diskettenlaufwerk (A
oder B) gefragt ist, muß BIOS noch etwas tun: Es muß die logische Sek-

tornummer so verarbeiten, daß am Ende der Rechnung eine Tracknum-

mer, eine Sektornummer und bei doppelseitigen Disketten eine Disket-

tenseite herauskommt. Diese drei Werte ergeben schließlich den physika-
lischen Sektor. Schließlich ruft BIOS noch eine XBIOS-Routine auf, die

den physikalischen Sektor von der Diskette liest.

Ich hoffe, die Erklärungen waren nicht allzu trocken. Es gehört ganz
einfach in den Bereich der Systemprogrammierung, sich mit solchen Din-

 TOS - Das Betriebssystem des Atari ST 69

gen auseinanderzusetzen. Damit das Ganze nicht nur Theorie bleibt, soll-
ten Sie sich im Intern 1 einmal die BIOS-Funktion Rwabs sowie die

XBIOS-Funktionen Floprd, Flopwr und Flopfmt anschauen.

Nun möchte ıch noch ein kleines Beispielprogramm geben. Es ist nicht

nur für Demonstrationszwecke gedacht, sondern kann möglicherweise le-

bensrettend für Ihre Daten sein. Ich rede von einem Virus-Detektor.

Halt, bevor Sie das Buch wieder zuschlagen, möchte ich gleich sagen, daß

ich nicht das Programm geschrieben habe, das alle Viren vernichtet, wie
es manch einer von seinen Programmen behauptet. Mein Virus-Detektor
prüft lediglich den Bootsektor einer Diskette auf dessen Ausführbarkeit.
Dazu müssen Sie wissen, daß jeder Bootsektor (das ist übrigens der erste

Sektor auf dem ersten Track einer jeden Diskette) ein kleines Programm

enthalten kann, das der Rechner beim Booten (daher der Name Boot-

Sektor) automatisch ausführt, und zwar viel schneller als ein Auto-
Ordner-Programm. Deshalb ist er auch bei den Virus-Programmiern so
beliebt - die Zeit, die er braucht, um gestartet zu werden, ist minimal,

und er benötigt weder einen Eintrag im Inhaltsverzeichnis noch Speicher-
platz auf der Diskette.

Dieses Programm wird beim Booten jedoch nur ausgeführt, wenn die
Checksumme des Bootsektors (das ist die Summe aller 256 Worte(!), was

bekanntlich den 512 Bytes in einem Sektor entspricht) $1234 (dezimal:
4660) beträgt, wobei diese Zahl willkürlich von den Entwicklern des TOS
gewählt wurde. Unser Virus-Detektor wird also den Bootsektor einer

Diskette lesen und die Checksumme berechnen. Beträgt diese $1234, dann
besteht akute Virus-Gefahr! Es könnte allerdings auch sein, daß es sich

um ein freundlich gesinntes Bootsektor-Programm handelt, z.B. um den
Loader eines Spiels, aber auch um das Ladeprogramm für Ihr Be-

triebssystem, falls Sie mit einem Disketten-TOS arbeiten (der Bootsektor

auf einer Systemdiskette ist stets ausführbar). Bei Anwendersoftware oder

gar Ihren eigenen Datendisketten ist das aber auszuschließen, so daß es

sich wahrscheinlich um einen echten Virus handelt. Um ihn zu deakti-
vieren, müssen wir lediglich ein Byte des Bootsektors so abändern, daß
die Checksumme nicht mehr $1234 beträgt. Dazu bietet sich das letzte
Wort eines Bootsektors an; es wurde speziell dafür reserviert, die

Checksumme falls gewünscht auf $1234 bringen zu können.

Folgendes Programm macht das automatisch (der Sektor wird mit den

XBIOS-Funktionen Floprd und Flopwr gelesen und geschrieben; siehe

Intern 1): |

 70 Atari ST Intern 2

GFA-BASIC

!

' Virus-Detektor (sucht ausführbaren Bootsektor)

' GFA-BASIC MP 07-10-88 VIRUS .BAS
8

puffer%=MALLOC(512)
J

PRINT "Bitte legen Sie eine Diskette in Laufwerk A ein!"

VOID GEMDOS(7)

' Track 0 Sektor 1 (Bootsektor) lesen
i

IF XBIOS(8,L:puffer%,L:0,0,1,0,0,1)<O

PRINT "Diskette fehlerhaft!"

ELSE

summe%=0
8

FOR i%=0 TO 510 STEP 2

ADD summe%, DPEEK(puf fer%+1%)

NEXT 1%

summe%=summe% AND 65535
ß

IF summe%=&H 1234

PRINT "Der Bootsektor ist ausführbar!"

PRINT "Soll ich das ändern? ";
8

IF UPPERSC(INPUTS(1))="U"

PRINT "Ja"
PRINT
0

' Ein Byte ändern, so daß die Checksumme nicht mehr stimmt: '
POKE pufferx+511, (PEEK(puf fer%+511)+1) AND 255
a

ı Puffer zurückschreiben:
8

ret%=XBIOS(9,L:puffer%,L:0,0,1,0,0,1)<O
i

IF ret%=-13

PRINT "Disk war schreibgeschützt"

ELSE

IF ret%<O

PRINT "Disk-Error"

ENDIF

ENDIF

ENDIF

ELSE

PRINT "Der Bootsektor ist nicht ausführbar!"

 TOS - Das Betriebssystem des Atari ST 71

ENDIF

ENDIF

END

Omikron-BASIC

' Virus-Detektor (sucht ausführbaren Bootsektor)

" OMIKRON-BASIC MP 28-09-88 VIRUS .BAS
1

Puffer$= STRING$(512,0)' Hierhin wird der Bootsektor geladen

Puffer= LPEEK(VARPTR(Puffer$))+ LPEEK(SEGPTR +28)' Adresse berechnen
1

CLS

PRINT "Bitte legen Sie eine Diskette in Laufwerk A: ein!"

REPEAT : UNTIL INKEY$ >!"

' Track O Sektor 1 (Bootsektor) lesen
J

XBIOS (Ret,8, HIGH(Puffer), LOW(Puffer),0,0,0,1,0,0,1)

IF NOT (Ret<0) THEN

' Bilden der Checksumme
i

Summe=0

FOR 1=0 TO 510 STEP 2

_ Summe=Summe+ WPEEK(Puf fer+])
NEXT |

Summe=Summe AND 65535! Nur 16 Bit berücksichtigen
‘

IF Summe=$1234

THEN PRINT "Der Bootsektor ist ausfUhrbar!"

PRINT "Soll ich das ändern? ";

IF UPPERS(INPUT$(1))="J"

THEN PRINT "Ja": PRINT

ı Ein Byte ändern

POKE (Puffer+511),C PEEK(Puffer+511)+1) AND 255

' Puffer zuruckschreiben
1

XBIOS (Ret,9, HIGH(Puffer), LOW(Puffer),...

...0,0,0,1,0,0,1)

IF Ret=-13 THEN

PRINT "Disk war schreibgeschützt!' ELSE

IF Ret<O THEN PRINT "Disk-Error": ENDIF : ENDIF

ENDIF

 72 Atari ST Intern 2

ELSE PRINT "Der Bootsektor ist nicht ausführbar!"
ENDIF
0

ELSE PRINT "Diskette fehlerhaft!"

ENDIF
END

C
TRITT TITTEN |

/* Virus-Detektor (prüft, ob Bootsektor ausführbar ist */

/* Megamax Laser C MP 29-09-88 VIRUS.C */
[RRRRRERRRERREEEEEEREEEERE EAE EEEREREREEREREERREEEREREEREREREE |

#include <osbind.h>

#define TRACK 0

#define SEKTOR 1

#define DEVICE 0

#define SIDE 0

int puffer [256]; /* 512 Bytes für einen Sektor */

int summe = 0;

int back;

int i;

char janein;

main()

{

Cconws ("Bitte legen Sie eine Diskette in Laufwerk A: ein!\15\12");

Crawcin(); /* Warten auf Tastendruck */

/* Bootsektor lesen (1 = nur einen Sektor lesen) */

back = Floprd (puffer, OL, DEVICE, SEKTOR, TRACK, SIDE, 1);

if (back < 0)

Cconws ("Diskette fehlerhaft! \15\12");
else

{

for (i = 0; i < 256; i++)
summe += puffer[i];

if (summe == 0x1234) /* $1234 --> ausführbar */

{

Cconws ("Der Bootsektor ist ausführbar.\15\12");

Cconws ("Soll ich das ändern? ");

do

janein = Crawcin();

 TOS - Das Betriebssystem des Atari ST 73

while (!(janein=="j' |! janein=='n'));

if (janein=='"j')

{

Cconws ("Ja\15\12");

++puffer [255]; /* letztes Wort um eins erhöhen */

/* Sektor zurückschreiben */

back = Flopwr (puffer, OL, DEVICE, SEKTOR, TRACK, SIDE, 1);

if (back == -13)

Cconws ("Disk war schreibgeschitzt\15\12");

else

if (back < 0)
Cconws ("Disk-Error\15\12");

}

>
else

Cconws ("Bootsektor nicht ausführbar!\15\12");

>

Cconws ("\15\12\12Taste = Ende...");

Crawcin(); /* Nochmal warten auf Taste */

>

Assembler

; Virus-Detektor (pruft, ob Bootsektor ausführbar ist)

: Assembler MP 29-09-88 VIRUS.Q

gemdos = 1

xbios = 14

crawcin =7

cconws = 9

floprd = 8

f Lopwr = 9

TEXT

lea text1,a0 Meldung: Bitte Diskette einlegen

bsr print

bsr taste

; Track O0 Sektor 1 lesen

move .W #1,-(sp) ‚einen Sektor lesen

 74

Loop:

inloop:

clr.w -(sp)

clr.w -(sp)

move .W #1,-(sp)

clr.w -(sp)

‚clr.| -(sp)

pea puffer

move .wW #floprd, -(sp)

trap #xbios

adda. l #20,sp

tst.w dod

bmi readerr

; Checksumme berechnen

clr.w do

lea puffer, a0

move .wW #255 ,d1

add.w (a0)+,d0

dbra d1, loop

cmpi .wW #51234 ,dO

bne.s not_ex

lea frage, a0

bsr print

bsr.s taste

cmpi.b #'n' , dd

beq.s ende

cmpi.b #'j',d0

bne.s inloop

lea ok, a0

bsr.s print

addi.b #1,puffer+511

; Sektor zurückschreiben

move.w #1,-(sp)

clr.w -(sp)

clr.w -(sp)

move.W #1,-(sp)

clr.w -(sp)

clr.l -(sp)

pea . puffer

move.W #flopwr,-(sp)

trap #xbios

Atari ST Intern 2

‚Seite 0

Track O

‚Sektor 1

Laufwerk A:

;Filler, ohne Bedeutung

sda soll er hin

; Funkt ionsnummer

;Fehler?

‚256 Worte addieren

‚ausführbar?

‚ja, dann fragen, ob Bootsektor

‚nicht ausführbar werden soll

sn gedrückt?

‚oder j?

‚beides nicht, dann nochmal

‚letztes Byte verändern

‚einen Sektor schreiben

‚Seite 0

sTrack 0

‚Sektor 1

‚Laufwerk A:

;Filler, ohne Bedeutung

‚da steht er im Speicher

»Funkt ionsnummer

schutz:

not_ex:

readerr:

errcont:

ende:

taste:

print:

text1:

text2:

frage:

ok:

 TOS - Das Betriebssystem des Atari ST 75

‚adda.|

cmpi.W

beq.s

tst.w

bpl.s

lea

bra.s

lea

bra.s

lea

bra.s

lea

bsr

lea

bsr.s

bsr

clr.w

trap

move .W

trap

addq. |

rts

pea
move .W
trap

rts

DATA

#20,sp

#-13,d0

schutz

do

ende

disktxt,a0

errcont

sch_txt,a0

errcont

text2,a0

errcont

retext, a0

print

endtext, a0

print

taste

-(sp)

#gemdos

#crawcin,-(sp)

#gemdos

#2,Sp

(a0)
#cconws, - (sp)

#gemdos

#6,Sp

‚Disk schreibgeschützt?

‚sonst irgend ein Fehler?

‚nicht, dann Ende

:Programm-Ende

eWarten auf Tastendruck

sText ausgeben, auf den

;a0 zeigt

DC.b 'Bitte legen Sie eine Diskette in Laufwerk A: ein!'

DC.b 13,10,0

DC.b 'Bootsektor nicht ausfUhrbar!',13,10,0

DC.b 'Der Bootsektor ist ausfihrbar.',13,10

DC.b 'Soll ich das ändern?

DC.b 'Ja',13,10,0

0

76

disktxt:

sch_txt:

retext:

endtext:

puffer:

DC.b

DC.b

DC.b

DC.b

BSS

Atari ST Intern 2

'Disk-Error',13,10,0

'Disk war schreibgeschitzt!',13,10,0

‘Diskette fehlerhaft!',13,10,0

13,10,10,' Taste = Ende...',0

DS.b 512

END

 Grafik 77

2. Grafik

Die Überschrift dieses Kapitels könnte vermuten lassen, ich wollte auf

den folgenden Seiten erklären, wie Sie den Bildschirm Ihres Rechners mit
Linien, Kreisen oder anderen Objekten füllen können. Falsche Vermu-
tung! Erstens ist diese Grafik-Programmierung stark von der benutzen
Programmiersprache abhängig, und zweitens hat sie - je nach Program-
miersprache - mit unserem Thema, der Systemprogrammierung, nicht
mehr viel zu tun.

Wir wollen vielmehr zwei ausgewählte Themen näher erläutern: das Ar-

beiten mit zwei verschiedenen Bildschirm-Speichern und die Program-
mierung von Sprites. Die Ausgabe von grafischen Objekten wird ohnehin
im Kapitel 5 (GEM-Programmierung) ausführlich behandelt.

2.1 Zwei Bildschirmspeicher

Zunächst möchte ich einige grundsätzliche Dinge erklären, die man nicht

unbedingt als allgemein bekannt voraussetzen kann. Eine für den An-

wender selbstverständliche Sache, nämlich die Darstellung von Buchsta-

ben, Ziffern und Bildern auf einem Monitor, ist bei näherer Betrachtung

gar nicht mehr so selbstverständlich. Woher weiß denn dieser Monitor
überhaupt, was er wo darstellen soll?

Betrachten wir die Sache doch von ihrem Ursprung her: vom Rechner.
Ein Programm will z.B. ein bestimmtes Zeichen an einer bestimmten
Stelle des Bildschirms ausgeben. Der Prozessor in unserem Rechner muß

dieses Problem lösen; denn er allein ist für die Abarbeitung dieses Pro-
gramms, also auch für die Ausgabe des Zeichens, verantwortlich. Nun

gibt es aber weder einen Befehl des Prozessors, mit dem das Programm

den Bildschirm steuern kann, noch sind an den Prozessor Leitungen an-

geschlossen, die einem Monitor die zur Darstellung eines Bildes nötigen
Sıgnale liefern können.

Deshalb gibt es in jedem Rechner einen Zwischenschritt: Das Bindeglied
zwischen dem Prozessor und dem Monitor ist ein spezialisierter Chip, der

sich ausschließlich um die Bildwiedergabe kümmert; er heißt deshalb Vi-
deo-Chip. Im Atari ST trägt der Video-Chip zusätzlich noch den Namen

Shifter. Der Shifter kann einen Monitor direkt ansteuern, ist also mit der

Video-Buchse des Computers verbunden. Übrigens, das gilt für andere

 78 Atari ST Intern 2

Peripheriegeräte des Rechners gleichermaßen: Floppy, Hard-Disk,

Drucker, Maus...alle sind über einen solchen Zwischenschritt mit dem

Prozessor verbunden. Man nennt einen Chip wie den Shifter deshalb auch

Peripherie-Baustein. Ich bleibe hier jedoch (stellvertretend für alle an-
deren) beim Shifter, schon alleine, weil er zu unserem Thema Grafik ge-

hört.

Die Kommunikation zwischen dem Chip und dem Prozessor ist über so-

genannte Register gewährleistet. Die können Sie sich als Mini-Speicher
(1, 2 oder 4 Bytes) vorstellen, auf die der Prozessor etwa mit move-Be-
fehlen (in BASIC: POKE) zugreifen kann, die aber nicht zum Haupt-
speicher (RAM) des Rechners gehören, sondern im Chip gespeichert
werden. Der hat nun ebenfalls Zugriff auf diese Speicher, und so kann
über diese Register eine Kommunikation zwischen Chip und Prozessor
erfolgen.

Die Register haben genau festgelegte Aufgaben. Aus diesen Aufgaben er-
gibt sich zum Teil auch, daß bestimmte Register nur gelesen, andere nur

beschrieben werden dürfen, während einige gleichermaßen gelesen und

beschrieben werden können. Das ergibt sich daraus, daß Register teil-

weise dazu verwendet werden, die Befehle des Prozessors an den Chip
weiterzuleiten, teilweise aber auch dem Prozessor den Zustand des Peri-

pheriebausteins mitteilen, also eventuelle Fehler melden (nicht beim

Shifter, aber z.B. beim Floppy-Disk-Controller).

Die folgenden Informationen beziehen sich wieder nur auf den Shifter;
alle anderen Peripheriebausteine sind natürlich im ersten Band des Intern

dokumentiert. Nun könnte man annehmen, daß der Prozessor dem Shifter

über diese Register die Aufgabe gibt, das gewünschte Zeichen an die

gewünschte Stelle des Bildschirms zu schreiben. Diese Aufgabe ist jedoch
viel zu komplex für den Chip. Der weiß nämlich gar nicht, wie Buchsta-

ben oder Ziffern aussehen. Jeden einzelnen Punkt des Bildschirms
möchte er vom Prozessor gemeldet bekommen, das heißt jedes Zeichen
auf dem Bildschirm ist eigentlich nur eine Kombination von Punkten, die
ihre Farbe, schwarz oder weiß, vom Prozessor erhalten. Der Shifter sorgt

dann nur noch dafür, daß die entsprechenden Punkte auf dem Bildschirm

ebenfalls schwarz bzw. weiß erscheinen.

Nun macht es die Technik eines Monitors allerdings erforderlich, daß der
gesamte Bildschirminhalt in kurzen Abständen immer neu auf den Mo-
nitor geschrieben wird. Beim Monochrom-Monitor des ST geschieht das
immerhin 7lmal in der Sekunde. Nur deshalb steht das Bild ruhig und
flackert nicht. Der Shifter hat nun die Aufgabe, jede Sekunde diese 71
Bilder nach den Wünschen des Prozessors herzustellen. Im Monochrom-

 Grafik 79

Betrieb hat jedes Bild eine Auflösung von 640 x 400 Punkten, besteht

also aus 256.000 einzelnen Punkten. Schwarz und weiß läßt sich durch
ein Bit ausdrücken (gesetzt = schwarz, nicht gesetzt = weiß), also können

wir diese Bildinformation ın 256.000 durch 8 = 32.000 Bytes ausdrücken.

Statten wir also den Shifter mit 32.000 Registern aus, und er hat alle In-

formationen, die er braucht...

Allerdings existiert ein Peripheriebaustein mit 32.000 Registern noch
nicht, jedenfalls nicht für Rechner, die die Dimensionen eines Atarı ST
aufweisen. Da man aber um die 32.000 Bytes nicht herumkommt, werden

sie aus dem Video-Chip ausgelagert und vom normalen Hauptspeicher

des Rechners "geliehen". Über ein paar Register kann der Prozessor dann

dem Chip mitteilen, an welcher Adresse des Hauptspeichers dieser 32.000

Bytes große Block steht. Diesen Block bezeichnet man als Bild-Wieder-

hol-Speicher, der bequemere Ausdruck ıst Bildschirmspeicher oder auch

kurz: Video-RAM.

In diesem Video-RAM findet der Shifter also all die Informationen, aus

denen er ein Bild für den Monitor machen kann. Die Startadresse für

diesen Speicherbereich kann jedoch, das wurde eben schon einmal ange-
deutet, vom Prozessor, also von einem Programm, selbst bestimmt wer-

den, indem diese Adresse in Registern des Shifters untergebracht wird.
Die einzige Spielregel, die es dabei zu beachten gibt, ist, daß die 32.000

Bytes an einer sogenannten Pagegrenze beginnen muß. Dazu sollten Sie

wissen, daß man den gesamten Speicher eines Rechners in Pages (engl.

Seiten) aufteilt, wobei jede Seite eine Größe von 256 (= $100) Bytes hat.
Eine Pagegrenze ist nun die Startadresse einer solchen Seite, also eine
Adresse, die durch 256 ($100) teilbar ist. Im Hexadezimalsystem erkennt
man solche Adressen ganz einfach daran, daß die letzten beiden Ziffern

der Adresse 0 sind.

Nun könnte man auf die Idee kommen, einen zweiten Bildschirmspeicher

einzurichten. Wir hätten dann immer einen Block, der vom Shifter auf

den Monitor projiziert wird, und einen, auf den der Rechner bei der

Ausgabe von Grafik und Text zugreift. So wird es beim Atari gemacht.
Allerdings merken Sie in der Regel nichts davon, weil gewöhnlich beide
Bildschirmspeicher identisch sind. Theoretisch gibt es aber auch dann
einen Unterschied zwischen dem sog. physikalischem Video-RAM (das
der Shifter zum Monitor schickt) und dem logischen Video-RAM (das
der Prozessor für seine Ausgaben verwendet).

Logisches und physikalisches Video-RAM müssen aber nicht unbedingt
übereinstimmen. Ein Programm kann jederzeit vom Betriebssystem einen
Speicherbereich anfordern, der als zweites Video-RAM dienen kann. Ha-

 80 Atari ST Intern 2

ben wir also unterschiedliche Bereiche fiir den logischen und den physi-
kalischen Bildschirm, dann macht der Rechner womöglich Ausgaben, die

für den Benutzer überhaupt nicht sichtbar werden, weil der Shifter brav

den physikalischen Bildschirm abbildet.

Für diese scheinbar sinnlos versteckte Ausgabe gibt es durchaus genügend

Anwendungsmöglichkeiten, z.B. im Bereich der bewegten Computergra-
fik, also der Computer-Animation. Stellen Sie sıch z.B. ein kleines
Strichmännchen vor, das sich von links nach rechts über den Bildschirm

bewegen soll. Das läßt sich in einem Programm in einer Schleife lösen:
Bildschirm löschen, Männchen zeichnen, Bildschirm löschen, Männchen

etwas weiter rechts zeigen, Bildschirm löschen, Männchen noch weiter

rechts zeigen...

Wenn Sie das machen, so ist die gestellte Aufgabe zwar gelöst, doch wer-
den Sie vom Ergebnis wahrscheinlich enttäuscht sein: das Bild flackert,
weil unser Auge nicht nur die Bewegung der Figur, sondern auch das
ständige Löschen und Neuzeichnen registriert. Hier hilft uns aber die
Methode mit den beiden getrennten Bildschirmspeichern weiter: Wir 16-
schen also Bildschirm A und zeichnen das Männchen hinein; anschlie-
ßend wird dieser Bildschirm zum physikalischen Bildschirm ernannt - das
Männchen erscheint auf dem Monitor. Sogleich definieren wir Bild-
schirmspeicher B als logischen Bildschirm und löschen diesen, ohne das

Bild auf dem Monitor zu verändern (steht ja im Video-RAM A). Dann

zeichnen wir noch das Männchen in den Speicher B, diesmal aber etwas

weiter rechts. Schließlich sagen wir dem Shifter, daß ab sofort B der
physikalische Bildschirmspeicher sein soll, und das Männchen erscheint

in der zweiten Position auf dem Bildschirm. Bildschirm A wird nun zum
logischen Bildschirm, und das Spiel beginnt von vorne.

Diesmal flackert das Bild nicht, weil der Anwender den leeren Bild-

schirm ohne Männchen nicht mehr sehen kann; dieses Bild existiert nur

ım logischen Bildschirmspeicher, nicht aber auf dem Monitor.

Prinzipiell läßt sich dieses Verfahren immer dann praktisch einsetzen,

wenn der Rechner für den Bildaufbau viel Zeit benötigt, das Bild aber

erst dann auf dem Monitor erscheinen soll, wenn es ganz fertig ist. Ein
weiteres Beispiel wäre also eine Diashow, die mehrere Bilder nacheinan-

der anzeigen soll, ohne ein neues Bild beim Laden Stück für Stück auf
den Bildschirm zu bringen.

Um keine Mißverständnisse aufkommen zu lassen: Man könnte diese
Probleme natürlich auch dadurch lösen, einfach einen logischen Bild-
schirmspeicher zu installieren und nach der Fertigstellung eines Bildes

 Grafik 81

den kompletten Inhalt dieses Speichers in das physikalische Video-RAM

zu kopieren. Aber das ist nicht Sinn der Sache; wir wollen wirklich die

Funktionen zweier Speicherbereiche (nämlich physikalischer bzw. logi-

scher Bildschirm zu sein) austauschen.

Auf dem Atari gibt es mehrere Möglichkeiten, den Beginn des logischen
und des physikalischen Bildschirmspeichers zu bestimmen. Die "legalste"
Methode ist wohl die über die XBIOS-Routine Setscreen (Nummer 5). Sie
bekommt von uns drei Parameter: zwei Langwörter, die die Startadresse

des logischen/physikalischen Video-RAMs angeben, und ein Wort für die
Bildschirmauflösung. Letztere sollten Sie allerdings nicht so ohne weiteres
ändern... Übrigens, wenn Sie einen oder zwei der Werte nicht ändern
wollen, so können Sie eine -1 übergeben. Bei den Langwörtern achten Sie

aber bitte darauf, die -1 auch wirklich als 4-Byte-Wert zu übergeben. Sie

können auch die Startadresse des logischen/physikalischen Bildschirm-

speichers erfragen, und zwar mit den XBIOS-Funktionen Physbase (2)

und Logbase (3).

Bevor wir zum Beispielprogramm kommen, habe ich leider eine schlechte

Nachricht für GFA-BASIC-Programmierer: Der Interpreter weigerte sich
strikt, Ausgaben auf unterschiedlichen logischen und physikalische Bild-
schirme bei allen Ausgaben zu akzeptieren. Einige Ausgabebefehl bezo-
gen sich auf den logischen, andere auf den physikalischen Bildschirm.
Anscheinend wurde das System manchmal aus Geschwindigkeitsgründen

umgangen.

Das Programm soll einen kurzen Text über den Bildschirm bewegen las-

sen: "Hallo!" Das Wort soll sich von oben links nach unten rechts bewe-

gen. Das Programm sollte nun nicht mehr schwer zu verstehen sein. Nur
den Trick, wie man den zweiten Bildschirmspeicher an eine Pagegrenze
bekommt, möchte ich Ihnen noch verraten: Dazu fordert man vom

System einfach einen Speicherbereich an, der 256 ($100) Bytes größer ist

als der tatsächlich benötigte. Innerhalb dieses Bereichs muß es dann
zwangsläufig einen Bereich geben, der an einer Pagegrenze liegt und
auch noch groß genug ist. Die Startadresse dieses Bereichs wird nun so
verändert, daß die beiden letzten Ziffern (im Hexadezimalsystem ge-
schrieben) 0 werden. Im Programm macht das die Verknüpfung AND
$FFFFFF00. Weil die so erhaltene Adresse aber wahrscheinlich außerhalb.
unserer "Spielzone" liegt, addieren wir noch 256 ($100) und erhalten da-
bei natürlich wieder eine Pagegrenze (eine Page ist ja gerade 256 Bytes
groß).

In Omikron-BASIC wird die Text-Ausgabe über die TEXT-Anweisung
vorgenommen. In C mußte ich leider auf eine VDI-Funktion des GEM

 82 Atari ST Intern 2

zurückgreifen, die erst im Kapitel 5 erläutert wird. Ihr Name ist eben-

falls text. Sie benötigen für dieses Programm noch das Include-File
GEM_INEX.C aus dem Ordner GEM der Diskette zum Buch; diese Da-
tei wird ebenfalls im Kapitel 5 besprochen werden.

Die Grafik ist nun mit diesem Programm zwar flackerfrei, aber leider

noch nicht ruckfrei. Das liegt daran, daß die Ausgabe von Text und das
Löschen des ganzen Bildschirms ziemlich langsam ausgeführt werden.

Deshalb habe ich in Assembler einmal in die Trickkiste gegriffen und die
Text-Ausgabe "persönlich" vorgenommen. Trotzdem arbeitet auch dieses
Programm natürlich mit zwei Bildschirmen. Das Assemblerprogramm ar-
beitet leider nur auf dem Monochrom-Monitor, ist dafür aber auch
schnell und bewegt den Text mit 71 Bildern pro Sekunde auch wirklich
ruckfrei. Zum Prinzip nur soviel: Die meiste Zeit wird bei der Ausgabe
eines Textes gewöhnlich damit verbracht, die einzelnen Punkte der
Buchstaben bitweise nach rechts oder links zu verschieben. Diese Arbeit
macht mein Programm einmal zu Anfang, und kann dann später direkt

auf 8 horizontal verschiedene Positionen des Strings zugreifen. Das ist

aber wirklich eine Sache für Grafik-Profis; der BASIC-Fan ist mit sei-
nem TEXT-Befehl besser bedient.

Spaßeshalber habe ich im Omikron-Programm zwei Zeilen innerhalb ei-
ner FOR-Schleife markiert, die Sie einmal entfernen sollten. Dann sehen

Sie sehr deutlich den Unterschied zwischen nur-ruckend und flackernd-

und-ruckend.

Omikron-BASIC

Mehrere logische Bildschirme (flackerfreie Grafik)

Q

q

' OMIKRON MP 23-12-88 MULTISCR.BAS

CLEAR 33000! Speicher an GEMDOS zurückgeben
nu

DIM Scr(1)

ı Adresse des Bildschirms erfragen.

ı Platz für zweiten Bildschirm schaffen.
8

Scr(0)=FN Logbase
Free= MEMORY (32256)
1

IF Free=0 THEN

FORM_ALERT (1,"[3] [Zu wenig Speicher!) (Schade!]")
ELSE

 Grafik 83

' Scr(1) muß an Page-Grenze beginnen:
8

Scr(1)=(Free+256) AND $FFFFOO
Q

FOR I=20 TO 300

Setphys(Scr(I MOD 2))' * Diese beiden Zeilen können Sie mal

Setlog(Scr(1-(I MOD 2)))' * zum Spaß löschen; dann sehen Sie
' den Unterschied!

CLS

TEXT I,1,"Hallo!"

XBIOS (,37)' Warten auf Bildrücklauf

NEXT I

GEMDOS (,7)' Crawcin wartet auf Taste
i

Setlog(Scr(0))! alten Zustand wiederherstellen

Setphys(Scr(0))
'

ENDIF
‘

END
'

DEF FN Logbase

XBIOS (Logbase, 3)

RETURN (Logbase)
8

DEF PROC Setlog(X)

XBIOS (,5, HIGH(X), LOW(X),-1,-1,-1)

RETURN
a

DEF PROC Setphys(X) ©
XBIOS (,5,-1,-1, HIGH(X), LOW(X),-1)

RETURN

C

[BRRRRRRERERRRERERRER EERE IIIT IIIT SII III III III III ITI STAIR |

/* Mehrere logische Bildschirme (flackerfreie Grafik) */

/* Megamax Laser C MP 23-12-88 MULTISCR.C */
[BERRA /

#include <osbind.h> /* Betriebssystem-Definitionen */

#include "gem_inex.c" /* Erläutert im Kapitel 5 */

long screen],

 84 Atari ST Intern 2

screen?,

memory,

malloc ();

init_screens()

{
screen! = Logbase(); /* Startadresse Video-RAM */

if (Cmemory = malloc (32256)) == OL) /* Neuen Speicher anfordern */

{
printf ("Der Speicherplatz reicht nicht! \n"); /* Fehlermeldung */

Crawcin(); /* Warten auf Taste */

Pterm0(); /* Programm beenden */

>
screen2 = (memory & Oxffffff00) + 256; /* muß an Pagegrenze liegen */

swap_screens() /* Umschalten: screeni/2 */

{
if (Logbase () == screen!)

Setscreen (screen2, screeni, -1);

else

Setscreen (screeni, screen2, -1);

>

main)

{
int i;

init_screens (); /* Initialisierung des zweiten Bildschirms */

gem_init(); /* Steht in der Include-Datei GEM_INEX.C */

v_hide_c (handle); /* Mauszeiger ausschalten */

for (i=20; i<=300; i++)

{

Cconws ("\335E"): /* Bildschirm löschen */

v_gtext (handle, i, i, "Hallo!"); /* GEM-Text-Ausgabe */

Swap_screens (); /* Wechsel log./phys. Bildschirme */

Vsync(); /* Warten auf Bildrücklauf */

>

Crawcin(); /* Warten auf Tastendruck */

Setscreen (screeni, screent, -1); /* Bildschirm wieder normal */

v_show_c (handle, 1); |. /* Mauszeiger an */

 Grafik

gem_exit();
>

Assembler

85

(nur für Monochrom-Monitor)
.

i

; Arbeiten mit zwei logischen Bildschirmen (flackerfreie Grafik)

; Assembler MP 23-12-88 MULTISCR.Q

gemdos =

xbios = 14

logbase 3

setscreen =5

cconws = 9

vsync = 37

TEXT

DC.w $a00a ‚Mauszeiger abschalten

pea clrscr ‚Bildschirm löschen

move.w #cconws,- (sp)

trap #gemdos

addq.l #6,sp

move.w #logbase, -(sp) ;Bildschirmadresse holen

trap #xbios

addq.l| #2,sp

movea.| d0,a6

move.| dO,savescr ;und retten

move. #freemem,dO ;2. Bildschirmspeicher löschen

addi.l #256,d0 ‚muß an Pagegrenze beginnen

andi.l #$ffffff00,d0

movea.l d0,a4

lea (a4) ,a3

move.w #32000/4-1,d0 ‚Bildschirm löschen

clrloop: clr.l (a3)+

dbra d0, clrloop

; Die Zeichen, die ab char_pt definiert sind, müssen kopiert und

: horizontal verschoben werden:

lea

lea

char_pt,a0 ;Originalzeichen kopieren

characters, al

loop1:

Loop2:

lLoop4:

; Diese neue Zeile um

move .W

move .b

dora

moved. l

lea

moved. l

moveg. |

move .b

dbra

andi.b

roxr.w

FOXT.W

FOXT.W

FOXT.W

addq. l

addq. l

dora

dbra

Atari ST Intern 2

#16*8-1,d0

(a0)+,(a1)+
dO, loop1

#7-1,d0 ;7 Variationen bilden

characters, a0 ;'Original!'-Zeile

#16-1,d2 3:16 Pixelzeilen pro Zeichenloop3:

#8-1,d1 ‚8 Bytes pro Pixel-Zeile

0¢a0,d1.w) ,0(al,d1.w)

d1, loop4

ein Pixel nach links schieben

#411101111,ccr »X-Bit löschen

(al) ‚Bytes nach rechts schieben

2(al) :üÜberträge im X-Bit

4(al)

6(al)

#8 , a0 ‚nächste Pixelzeile

#8, a1

d2, loop3

d0, loop2

; Physikalischen und logischen Bildschirm angeben:

move.W

pea

pea

move.W

trap

adda. l

; Text darstellen:

mainloop:

move .W

lea

lea

#-1,-(sp) ‚Auflösung nicht ändern

(a4) ‚physikalisch

(a6) logisch

#setscreen, - (sp)

#xbios

#12,sp

#20 ,d2 Anfangs x- und y-Koordinate

(a6),a5

characters, a0

; d2*80 ist Offset für Zeile / x*80 entspricht (x*4+1)*16

clr.

move .wW

asl .w

add.w

asl.w

adda.ı

d3

d2,d3

#2,d3 sa

d2,d3 ‚+1

#4 ,d3 3*16 |

d3,a5 ‚Startadresse der Bildschirmzeile

 Grafik 87

; Horizontal-Variation: d2 mod 8 (=d2 and 7)

move.w d2,d3

andi.w #7,d3

> *128 ist Offset auf Charcter-Tabelle

asl.w #7,d3 ‚*128

adda.l d3,a0 ‚Startadresse des Charactersatzes

; Spalte: d2 div 8

move.w d2,d3

asr.w #3,d3

adda.l d3,a5 ‚Adresse im Video-RAM

; Schreiben der Zeichen:

moveq.| #16-1,d1 ‚16 Pixelzeilen

LopO: moveq.| #8-1,d0

lop1: move.b 0(a0,d0.w),0(a5,d0.w)

dbra d0, lop

adda.l #80,a5 ‚nächste Bildschirmzeile

addq.l #8,a0 ‚nächste Characterzeile

dbra d1, lop0

: Umschalten der Bildschirme:

exg.l a4,a6

move.w #-1,-(sp) ‚Auflösung nicht ändern

pea (a4) ‚physikalisch

pea (a6) ‚logisch

move.w #setscreen, - (sp)

trap #xbios

adda.l #12,sp

move.w #vsync,-(sp) ;Warten auf Bildrücklauf

trap #xbios

addq.i #2,sp

addq.w #1,d2 ‚nächste Position

cmpi.w #300,d2 ‚Ende?

ble mainloop

move.w #7,-(sp)

trap #gemdos

addq.l #6,sp

move.w #-1,-(sp) ‚Auflösung nicht ändern

move.|l savescr,-(sp) ‚alten Zustand wiederherstellen

clrscr:

char_pt:

Savescr:

freemem:

Atari ST Intern 2

move.l savescr, - (sp)

move.w #setscreen, -(sp)

trap #xbios

adda.l #12,sp

DC.w $a00a ‚Mauszeiger wieder einschalten

clr.w -(sp)

trap #gemdos

DATA

DC.b 27,'E',0

DC.b 0

DC.b 0

DC.b 0, ,24,0 ;Bildschirm-Codes fur

DC.b O, ,24,0 ;den String 'Hallo!'

DC.b 0,102,0,24,24,0,24,0

DC.b 0,102,60,24,24,60,24,0

DC.b 0,126,62,24,24,126,24,0

DC.b 0,126,6,24,24,102,24,0

DC.b 0,102,62,24,24,102,24,0

DC.b 0,102,126,24,24,102,24,0

DC.b 0,102,102,24,24,102,0,0

DC.b 0,102,102,24,24,102,0,0

DC.b 0,102,126,60,60,126,24,0

DC.b 0,102,62,60,60,60,24,0

DC.b 0,0,0,0,0,0,0,0

DC.b 0,0,0,0,0,0,0,0

BSS

DS. 1

DS.b 32256 ‚Platz für zweiten Bildschirm

; Platz für 8 Buchstaben mit je 12 Bytes

» in 8 verschiedenen horizontalen Ausrichtungen:

characters: DS.b 8*16*8

END

 Grafik 89

2.2 Sprites

Sprites sind grafische Objekte, die sich programmgesteuert über den

Bildschirm bewegen können. Gewöhnlich werden Sprites von der Hard-

ware, also vom Video-Chip eines Computers in das normale Bild einge-

blendet. Der Shifter des Atari verfügt über diese Möglichkeit jedoch

nicht, so daß die Sprites per Software auf den Bildschirm kommen und

auch wieder verschwinden. Gewöhnlich nennt man solche Software-

Sprites Shapes. Nun, beim Atari heißen sie weiterhin Sprites, und deshalb

will ich mich an diesen Namen halten.

Ein Sprite wird immer dann benötigt, wenn kleine Objekte auf dem
Bildschirm bewegt werden sollen. Bestes Beispiel: Der Mauszeiger ist ein
solches Grafik-Objekt, das zwar nicht für ein Anwendungsprogramm,
aber doch für das Betriebssystem nichts weiter als ein Sprite ist.

Jedes Sprite besteht auf dem Atari aus einer Matrix von 16*16 Punkten.

Diese Größe ist von der Bildschirmauflösung unabhängig. Deshalb ist ein
einzelnes Sprite, besonders bei Verwendung eines monochromen Monitors

in der höchsten Auflösung, meist klein. Deshalb werden größere Objekte
in mehrere neben- oder übereinanderliegende Sprites aufgeteilt, die ko-

ordiniert bewegt werden. Auf dem Bildschirm sehen sıe nachher wie ein

normales kleines Sprite aus.

Wenn sich so ein Sprite bewegen soll, dann wird es vom Programm ge-

zeichnet, kurz danach wieder gelöscht und sofort an einer neuen Position
erneut gezeichnet usw., bis der Zielpunkt erreicht ist. Wenn das Sprite

gelöscht wird, dann ist es natürlich erforderlich, daß die darunterliegende
Fläche nicht einfach weiß erscheint, sondern ihren alten Inhalt wiederer-

hält. Deshalb werden wir einen Speicherplatz bereithalten müssen, in dem

der Hintergrund vor dem Zeichnen des Sprites gerettet werden kann.

Zum Löschen des Objekts muß dann nur der gerettete Bereich wieder
auf den Bildschirm zurück kopiert werden.

Dann benötigen wir noch einen Aktionspunkt für das Sprite. Darunter ist
folgendes zu verstehen: Wenn das Sprite auf dem Bildschirm erscheinen

soll, so müssen Sie als Programmierer natürlich die Koordinaten des
Punktes angeben, an dem das Objekt gewünscht wird. Aber was heißt
hier Punkt: Eın Sprite ist schließlich eine Fläche, und die soll auf einem
Punkt liegen? Eben dazu gibt es den Aktionspunkt. Der gibt die Koordi-
nate relativ zur linken oberen Ecke des Sprites an, auf den sich alle spä-

teren Bildschirmkoordinaten beziehen. Diese Aktionspunkt-Koordinaten

dürfen Werte zwischen 0 und 15 annehmen. Ein Aktionspunkt von 8,8

besagt also, daß die Mitte des Sprites der Bezugspunkt für das Sprite sein

 90 Atari ST Intern 2

soll. Zeichnen wir später an die Koordinate 100,100 dieses Sprite, dann

wird genau an dieser Stelle des Bildschirms der Mittelpunkt des Objekts
erscheinen.

Das Wichtigste fehlt noch: Wie soll es denn überhaupt aussehen, unser

Sprite? Wir müssen das 16*16-Raster definieren. Das machen wir mit 16
Zahlen von je 16 Bit Breite. Jede Zeile des Rasters entspricht einer der
16 Zahlen, und jeder Punkt innerhalb einer Zeile entspricht einem Bit
innerhalb der entsprechenden Zahl. Dabei ist das höchstwertige Bit (Nr.
15) der linke Punkt einer Zeile, das Bit 0 der rechte Punkt einer Zeile.
Ein gesetztes Bit heißt: Punkt an. Da das Konstruieren eines Sprites mit
diesen Zahlen aber nicht sehr angenehm und anfällıg für Fehler ist, defi-
nieren wir lieber ein paar Strings im Programm mit Sternchen und Stri-
chen. Die entsprechenden Zahlenwerte errechnet dann ein Unterpro-

gramm zur Laufzeit. In Assembler können wir diese Werte auch im

DATA-Segment als Konstanten ablegen und die Zahlen direkt im Binär-
system schreiben; dazu ist den Ziffern lediglich ein Prozentzeichen vor-
anzustellen.

Zu diesen Sprite-Daten benötigen wir aber noch eine Maske, die
ebenfalls in einem 16*16-Raster untergebracht wird. Diese ist erforder-
lich, wenn ein solches Sprite über einem Hintergrund gezeichnet wird:

Alle Punkte des Hintergrundes, deren Bits in der Maske gesetzt sind,

werden vor dem Zeichnen des eigentlichen Sprites gelöscht. Wenn die
Maske immer etwas größer ıst als das Sprite selbst, dann erscheint also

selbst auf einem ganz schwarzen Hintergrund immer noch ein dünner

Rand um das Objekt; andernfalls könnten Sie es ja gar nicht erkennen.
Die Figur, die eine solche Maske darstellt, ist gewöhnlich ganz ausgefüllt,
damit man später nicht nur die Umrisse, sondern auch das Muster des

Sprites oder ein Bild erkennen kann.

Schließlich müssen Sie noch Vorder- und Hintergrundfarbe festlegen. Die
Hintergrundfarbe ist die Farbe, mit der die Maske auf den Bildschirm
geschrieben wird. Gewöhnlich wird man hierfür den Farbindex 0 wählen,
um den Maskenbereich zu löschen. Die Vordergrundfarbe ist dann ent-
sprechend die Farbe, mit der das eigentliche Sprite gezeichnet wird. Zu-
letzt ist noch die Angabe eines Modus-Wortes erforderlich. Man unter-
scheidet zwischen dem normalen Modus, auch VDI-Modus genannt (Mo-
dus-Wort 0) und dem XOR-Modus (1). Der Unterschied liegt in der Be-
handlung eines Sonderfalls: Wenn ein Bit im eigentlichen Sprite gesetzt,
in der Maske aber gelöscht wird, dann wird im VDI-Modus die Vorder-
grundfarbe geschrieben, während der Bildschirmpunkt im XOR-Modus
logisch mit der Hintergrundfarbe XOR-verknüpft wird. Fragen Sie mich
nicht, wozu das gut sein sollte (die Hintergrundfarbe ist gewöhnlich 0);

 Grafik 91

eine sinnvolle Anwendung dieser Unterscheidung wäre höchstens im
Farbbetrieb des Rechners denkbar. Wir arbeiten deshalb im VDI-Modus.

Die letzte Frage betrifft die Größe des Speicherbereichs, in dem der

Hintergrund eines Sprites gerettet werden soll. In den müssen auch 16
Zeilen des Bildschirms (die Höhe eines Sprites) passen, aber nicht nur 16,
sondern 32 Bildpunkte für jede Zeile. Aus Geschwindigkeitsgründen wird
nämlich immer gleich ein Langwort pro Zeile gerettet, was umständliches
und langsames Bitgeschiebe vermeidet. Allerdings müssen Sie auch noch
beachten, daß im Farbbetrieb auf jeden Bildpunkt nicht mehr nur ein Bit
im Speicher kommt; statt dessen benötigt der Rechner jetzt zwei (mittlere
Auflösung) oder sogar vier Bits (niedrige Auflösung), um einen Bild-
punkt mit seiner Farbinformation darzustellen. Und all diese Bits müssen
selbstverständlich gerettet werden. Deshalb genügen in der hohen Auflö-

sung 64 Bytes (16 Langworte) als Rettungsspeicher, während es in der
mittleren Auflösung schon 128 Bytes und in der niedrigen gar 256 Bytes
sein müssen. In C und Assembler müssen Sie dazu noch einmal 10 Bytes
addieren, die für die interne Verwaltung benötigt werden.

So, das waren die allgemeinen Informationen. Jetzt betrachten wir noch,
was es in den einzelnen Programmiersprachen zu beachten gibt.

GFA-BASIC

In GFA-BASIC müssen Sie alle Informationen tiber ein Sprite in einen
String packen, der der Anweisung Sprite zu übergeben ist. Maske und

Sprite-Daten werden 5 Angaben vorangestellt, die Sie am besten mit der

Funktion MKI$ erzeugen, die aus einem Wort einen Zwei-Byte-String
macht.

Der Sprite-Definitions-String ist folgendermaßen aufgebaut:

X-Koordinate des Aktionspunktes

Y-Koordinate des Aktionspunktes

Modus (0=VDI, 1=XOR)
Farbe der Maske (gewohnlich 0=Hintergrund)
Farbe des Sprite- Vordergrundes

Daran schlieBen sich, immer abwechselnd, die je 16 Worte der Maske

und des Sprites an. Insgesamt kommen wir also auf 37 Worte bzw. in
BASIC auf einen String von 37*2=74 Bytes Lange.

Die Angabe eines Rettungsspeichers fiir den Hintergrund ist nicht erfor-
derlich, das macht der Interpreter fiir uns. Wenn Sie das Sprite anzeigen

 92 Atari ST Intern 2

lassen wollen, dann geben Sie noch eine x- und eine y-Koordinate nach
dem Definitions-String an; wenn Sie es aber löschen wollen, so lassen Sie
die Koordinaten weg.

Omikron-BASIC

Omikron-BASIC bietet eine leicht abgewandelte Form der Sprite-Pro-
grammierung. Hier gibt es zwei Sprite-Größen (groß und klein), die je-
doch in den verschiedenen Auflösungsstufen unterschiedlich sind. Ich
empfehle Ihnen dringend, einmal im Handbuch zum BASIC unter Sprite

nachzuschlagen. Grundsätzlich gelten die oben angegebenen Informatio-
nen jedoch auch für Omikron.

C

Im Standard-C gibt es keine Sprites, doch im Megamax Laser C sind sie

enthalten. Dort gibt es eine Line-A-Bibliothek mit einem entsprechenden
Header-File. Line-A bezeichnet Grafik-Routinen, die auf einer sehr

niedrigen Ebene im System angeordnet sind. Darunter befinden sich auch
zwei Routinen fiir Sprites: a_drawsprite und a_undrawsprite. Unter

anderem bietet das Header-File auch einen struct namens sprite (klein-

geschrieben!) an, der alle Informationen über ein Sprite aufnimmt und an

die Line-A-Routinen übergeben werden kann. Bei der mir vorliegenden
Version waren jedoch die Einträge für die Vordergrund- und die Hinter-
grundfarbe vertauscht (Fehler im Header-File). Das können Sie leicht
selbst überprüfen: Im Header-File sollte der Eintrag der Hintergrund-
farbe vor der Sprite-Farbe (Vordergrund) stehen; bei mir war es anders-
herum. Ansonsten entspricht dieser struct genau den Daten, die schon
unter GFA-BASIC als Sprite-Definitions-String beschrieben wurden.

Um ein Rechteck auf den Bildschirm zu bringen, mußte ich (wie schon
im vorigen Abschnitt 2.1) Gebrauch von ein paar VDI-Funktionen des
GEM machen. Dazu gehört auch das Include-File GEM_INEX.C, das Sie

im Ordner GEM.S auf der Diskette im Buch finden. Alle Erklärungen
dazu und zu den verwendeten Funktionen ın Kapitel 5.

Assembler

Hier geht im Prinzip alles so wie in C,nur können wir die beiden Routi-
nen drawsprite und undrawsprite nicht über Namen aufrufen. Statt des-

sen benutzen wir den sogenannten Line-A-Emulator. Der 68000 hat
nämlich die Eigenschaft, bei einem Opcode, dessen ersten vier Bits die

- Hex-Ziffer $A ergeben (also bei allen Codes $Axxx), eine Ausnahmebe-
handlung auszulösen und dem Betriebssystem die Kontrolle zu übergeben.

 Grafik 93

Dieses prüft nun das untere Byte dieses Opcdes, mit dem es zwischen 16

verschiedenen grafischen Operationen unterscheidet. Darunter sind nun
auch unsere beiden Routinen: drawsprite wird über den Opcode $A00D
aufgerufen, undrawsprite über $A00C. Parameter: Bei undrawsprite ist

die Adresse des Hintergrund-Sicherungsbereichs in A2 zu übergeben. Bei
drawsprite sind zusätzlich in dO und di die Koordinaten des Punktes

anzugeben, an dem das Sprite erscheinen soll, sowie in a0 die Adresse ei-

nes Sprite-Definitions-Blocks, der genauso aussieht wie unter GFA-BA-

SIC bechrieben.

Nach soviel Theorie nun endlich ein Beispielprogramm. Es zeichnet ein

Rechteck auf den Bildschirm, um die Wirkung der Maske zu demon-
strieren. Dann bewegt sich ein Sprite von links nach rechts über den
Bildschirm. Das Sprite soll eine Diskette darstellen:

GFA-BASIC

Sprites SPRITE.GFA

8

8

' GFA-BASIC MP 27-12-88
8

' Einlesen der Sprite-Daten aus Data-Zeilen:
I

READ x_aktion,y_aktion,modus ‚maskenfarbe,spritefarbe
a

spriteS=MKI$(x_aktion)+MKI$(y_aktion)+MKI$(modus)

sprite$=spr i te$+MK1$(maskenfarbe)+MKI$(spritefarbe)

FOR i=1 TO 16

READ m$,s$ I Je ein Wort für Maske und Sprite

sprite$=sprite$+MKI$(CFN zahl(m$))+MKISCFN zahl(s$))

NEXT i

' Jetzt soll sich das Sprite Uber den Bildschirm bewegen:
q

PRBOX 140,100,500, 200 ! Rahmen als Hintergrund zeichnen
4

FOR x=20 TO 620

SPRITE sprite$,x, 150

VSYNC 1! Nächste Zeichnung beim Bildrücklauf, da stört's niemanden
NEXT x

' Sprite vom Bildschirm entfernen:
a

SPRITE sprite$
8

' Sprite-Daten:

 94 Atari ST intern 2

DATA 8,8,0,0,1

KRRARERKEUREKEERK Crewe eee eee wenn DATA ,
DATA RARER CREEKS Q

a

HREKRERKERKERRERE KOK ae ewe KWH Ke DATA ,
KERR CK Kee ewe eK Ke DATA ,
HMAC KWAK nn eK Ke DATA ,
KAKA HK. _RRRKRRKREE . Ke DATA ,

DATA Krk Oe --- 2-28 He *.

DATA Kr nn ke

DATA WRITE RT ~ % -

DATA WERTE RK - - Ke

DATA RHHAKKARAHKREREK | ke KKK. -K-K-

DATA WERTET | KEK wee wenn x_%.

DATA ee ER RK

DATA WR RR iR

DATA RREKKKKKKERRRRREK | KKKKKKKREEREREE -

DATA VRR we ww eee eee eee

a

t

FUNCTION zahl(a$) =! Macht aus 16 Nullen/Einsen eine Zahl
LOCAL i,z
z=0

FOR i=0 TO 15

IF MID$(a$, 16-1,1)<>"-" I 'Bit! gesetzt?

ADD z,2i I Dann entsprechenden Wert addieren
ENDIF

NEXT i

RETURN z

ENDFUNC
ß

Omikron-BASIC

a

' Sprites SPRITE.BAS
' Omikron MP 27-12-88

ı Einlesen der Sprite-Daten aus Data-Zeilen:
8

FOR I=1 TO 16

READ M$,S$' Je ein Wort flr Maske und Sprite

Sprite$=Sprite$+FN Zahl$(M$)+FN Zahl$(S$)

NEXT I

DEF SPRITE 1,5, MEMORY(64) ' Nummer 1, Typ 5

' Jetzt soll sich das Sprite über den Bildschirm bewegen:

 Grafik

PRBOX 140,100 TO 500,200! Rahmen als Hintergrund zeichnen'

FOR X=20 TO 620

SPRITE 1,X,150, LPEEK(VARPTR(Sprite$))+ LPEEK(SEGPTR +28),0,1 XBIOS (,37)'
Nächste Zeichnung beim Bildrücklauf, da stört's niemanden

NEXT X

' Sprite vom Bildschirm entfernen:
I

DEF SPRITE 1,0
'

END
‘

1

' Sprite-Daten:
I

DATA URKKKKKKKEKRRRREEU Woo we ee eee ee ee "
‘

DATA UHHH UK KKK OU
g

NRARKRKKHKKK KK HK KK IN N UK. KW KOKO DATA ,
HRKREKAKKEEKREKEEM UK. WK eee eK UKM DATA ,
NRRKRKKKKKKKHKHH HK KK NN U KK con na KK 01 DATA ,

DATA NARUKRKKRKTK KHK KH TI N NUN RR KATH KH. KS NM
a

UKKKKKKAKKEKEEEK UK. cece ecw cc one * ul DATA ,
NERKKKKKKKKHK KK KK N N Km wee ewww ewe x;.u DATA ,

DATA NRRRARRKKKKKKKT KINN U.K. KRHA KLM
a

UKRKKKAKKKEKKKEKEE UK Kee KOKA DATA ,
NAKKKKHKKH HH KK HK KK FIN N KK. - AK RK. kN DATA '
HARKKRKKKKKKK KK TH HIN UA KKK. Wee ew *“.% DATA ,
NRAARKKKKKKHKH HK KK KK FINN UA KEK. KKK. KAKA DATA ,
NRRKHRKKU KK TH TH KH KH HI N N N KR - K- - - - - - FR 1 DATA ,

DATA NARKKKKKKKKKHHH KT N N KIRCHE KT N N
a

NAAKKKRKKKKKKKKK KINN UW cw we meme wwe wee " DATA ,
J

DEF FN ZahlS(A$)! Macht aus 16 Nullen/Einsen einen String

LOCAL 1,2

2=0

FOR I=0 TO 15

IF MIDSCA$,16-1,1)<>"-"" Bit! gesetzt?

THEN 2=2+2°1' Dann entsprechenden Wert addieren

ENDIF

NEXT I

RETURN RIGHTS(MKIL$(Z),2)

C

NT |

/* Sprites SPRITE.C */
/* Laser C MP 27-12-88 */
[BERRA EEEERAEREEEEEEEEEEERER /

96

#include <linea.h>

#include "gem_inex.c"

char *daten[] = ¢
BEITRETEN

’

NAKA HAAR Nn RARER EEREE

BR NR * .-..... kl

RETTEN N WR

RE RR .-..... “kN

RK RR RN

EEE Me ..--......... wuu

REN eeu

URKRKRRERRERREREEN We RRR EERE 1.22 21 5

RUHR RR “rl

ERRICHTEN EEE KK. KK

ek ..-.-..... “rl,

BR RR,

RT ER Kr

NEAAKAAAKHAAAKREEN UW - KHRKHHHRAREAEEE —

URNARKKKEARRERAKEKEEN N
’

+;

int

int

int

int

sprite _data[32];

1;
pxyarray(4];

save_area[74];

sprite sprite_info;

get_sprite_data()

{

int

for (i=0; i<32; i++)

sprite_data[i] = bin (daten[i]);

int bin (zeile)

char *zeile;

{
int i, z;

z=0;

for (i=0; 1<16; i++)
z= ((z << 1) | ((*(zeileti) == '*') & 1));

Atari ST Intern 2

/* Siehe Beschreibung im Buch */

/* Calles fUr Mono-Monitor) */

/* struct aus linea.h */

 Grafik 97

return (zZ);

>

main()

{
gem_init(); /* Siehe Beschreibung... */

v_hide_c (handle); /* Mauszeiger ausschalten */

v_clrwk (handle); /* Bildschirm loschen */

pxyarray[0] = 140; pxyarray[1]= 50; /* Rechteck zeichnen */

pxyarray[2] = 500; pxyarray[3]= 150;

vsf_interior (handle, 1); /* ganz ausfüllen */

v_rfbox (handle, pxyarray); /* "Rundes Rechteck" zeichnen */

v_show_c (handle, 1); /* Mauszeiger wieder zeigen */

get_sprite_data();

sprite_info.x = 8; /* Aktionspunkt */

sprite_info.y = 8;

sprite_info.format = 0; /* Normales Sprite */

sprite_info.forecolor = 0; /* Hintergrundfarbe */

sprite_info.backcolor = 1; /* Sprite-Farbe */

for (i=0; i<32; i++)

sprite_info.image[i] = sprite_datafi]; | /* Maske und Sprite */

for (i=20; i1<620; i++)

{

if (i>20) a_undrawsprite (save_area);

a_drawsprite (i, 100, &sprite_info, save_area);

xbios (37); /* Bildrücklauf abwarten */

>

a_undrawsprite (save_area);

gem_exit();

Assembler

; Sprites SPRITES.Q

; Assembler MP 27-12-88

98

gemdos

xbios

vsync

main:

1

14

37

INCLUDE

TEXT

jsr

move .W

clr.w

clr.w

clriw

clr.w

move .W

jsr

move .W

clr.w

clr.w

clr.w

clr.w

move .W

jsr

move.W

clr.w

clr.w

move.W

move .wW

move .W

jsr

move .wW

move.wW

clr.w

clr.w

clr.w

move .W

Move .W

move .W

move .W

move .W

move .W

jsr

Atari ST Intern 2

'GEM_INEX.Q'

gem_init ‚Wir brauchen GEM für ein Rechteck

#123,contrl ;v_hide_c, versteckt Mauszeiger

contri+2

contrl+4

contrl+6

contrl+8

handle, contrl+12

vdi

#3, contrl

contrl+2

contri+4

contrl+6

contrl+8

handle, contrl+12

vdi

;VDI Clear Workstation

:Löscht den Bildschirm

‚(näheres in Kapitel 5)

#23 ,contrl

contrl+2

contrl+4

#1,contrl+6

#1,contrl+8

#1,intin

vdi

‚vsf_interior (setzt Füllmuster)

‚ganz ausfüllen mit Vordergrundfarbe

#11,contrl ;Gefülltes, rundes Rechteck

#2,contrl+2 ;(v_rfbox)

contrl+4

contri+6

contri+8

#9, contrl+10

handle, contrl+12

#140,ptsin ;Koordinaten

#50, ptsint2

#500, ptsint4

#150, ptsinté6

vdi

Loop:

entry:

ende:

sprite:

Grafik

move.W

clr.w

clr.w

move .w

clr.w

move .wW

move .w

jsr

moveq.|

bra

lea

DC.w

cmpi.W

beq

addq.w

move .wW

move .W

lea

lea

DC.w

move .W

trap

addq. |

bra

jsr

clr.w

trap

DATA

DC.w 8,8

DC.wO;

DC.w 0,1

99

#122,contrl ;v_show_c, Mauszeiger wieder zeigen

contrl+2

contrl+4

#1,contrl+6

contr l+8

handle, contrl+12

#1,intin

vdi

#20,d5 sLaufvariable

entry

save_area,a2

$a00c :Undraw Sprite -> Sprite loschen

#620,d5 ‚rechts angekommen?

ende

#1,d5 ‚nein, dann weiter

d5,d0 »x-Koordinate

#100,d1 ‚y-Koordinate

sprite,a0

save_area,a2

$a00d ‚Draw Sprite

#vsync,-(sp) ;Warten auf Bildrücklauf

#xbios

#2,Sp

Loop

gem_exit

-(sp)

#gemdos

‚Aktionspunkt

normales Format

:Hinter-/Vordergrundfarbe

 100 Ä Atari ST Intern 2

DC.w %1111111111111111,%0000000000000000

DC.w 41111111111111111,40111111111111110

DC.w 41111111111111111,%40100100000010010

DC.w 41111111111111111,%0100100000010010

DC.w 41111111111111111,%0100100000010010

DC.w 41111111111111111,40100111111110010

DC.w 41111111111111111, %40100000000000010

DC.w 41111111111111111, 40100000000000010

DC.w 41111111111111111,40101111111111010

DC.w %1111111111111111,%0101000000001010

DC.w %1111111111111111,%0101010111001010

DC.w %1111111111111111,%0111000000001010

DC.w %1111111111111111,%0111001101001010

DC.w %1111111111111111,%0101000000001010

DC.w %1111111111111111,%0111111111111110

DC.w %1111111111111111,%0000000000000000

BSS

save_area: DS.w 32 ‚Platz, wm den Hintergrund zu retten

END

 Interrupts 101

3. Interrupts

Wohl kaum ein Gebiet der Systemprogrammierung ist ähnlich reizvoll wie

das der Interrupts. Es gibt eigentlich nichts in unserem Rechner, was
ohne Interrupts funktionieren könnte. Gerade deshalb bieten sich mit

Eingriffen in das Interrupt-System so viele Möglichkeiten, den Rechner
zu beeinflussen.

Die schlechte Nachricht vorweg: BASIC-Fans werden auf Interrupts ver-

zichten müssen; die Struktur der Sprache erlaubt es einfach nicht. Sie

können höchstens auf Interrupt-ähnliche Routinen wie EVERY x GO-
SUB (GFA-BASIC) und ON TIMER x GOSUB (Omrikon-BASIC) zu-
rückgreifen. Das gehört jedoch nicht zum Thema dieses Buches. Aber
vielleicht besteht darin auch ein Anreiz, sich mit den maschinennahen

Programmiersprachen (C und Assembler) zu beschäftigen. Und auch die

C-Programmierer werden in Sachen Interrupts nicht bis zum Ende mit-
halten können; dieses Gebiet ist nun einmal eine Domäne der Assembler-
Programmierung.

Nachdem ich Ihnen nun soviel vorgeschwärmt habe, sollten Sie jetzt er-
fahren, was Interrupts eigentlich sind. Als Interrupt bezeichnet man das

Auslösen einer Unterbrechnung des Programms, das gerade in einem
Rechner läuft. Dieser Auslöser kann entweder durch die Hardware her-
vorgerufen werden, oder das Programm leitet per Software-Befehl ganz

bewußt eine Unterbrechung ein. Während die Unterbrechnung durch die
Hardware dazu dient, das Betriebssystem auf wichtige oder kritische Er-
eignisse im Zusammenhang mit der Peripherie eines Rechners aufmerk-
sam zu machen, wird die Ausnahme durch Software dazu benutzt, Routi-
nen des Betriebssystems aufzurufen. Ein TRAP-Befehl ist nämlich nichts
weiter als eine programmgesteuerte Ausnahme-Anforderung.

Bleiben wir aber zunächst bei den Hardware-Interrupts. Da unterscheidet

man ganz grob drei Klassen: MFP, VBL und HBL. Dabeı hat MFP die

höchste Priorität, HBL die niedrigste (keine Angst, wir werden noch
sehen, was das bedeutet). MFP ist die Abkürzung für Multi Functional

Peripheral. Das ist ein Chip im ST, der 16 verschiedene Hardware-

Interrupts überwachen kann und sıe dem Prozessor meldet. Der 68000
alleine wäre nämlich nicht in der Lage, so viele verschiedene Interrupts

zu unterscheiden. Welche Arten von Interrupts der MFP nun im einzel-

nen verwaltet, müssen wir später noch klären.

 102 Atari ST Intern 2

Betrachten wir zunächst noch die beiden anderen Hardware-Interrupts:

VBL und HBL. Die Abkürzungen bedeutet Vertical Blank und Horizontal
Blanc; damit bezeichnet man den Bildrücklauf (VBL) bzw. den Zeilen-
rücklauf (HBL) des Elektronenstrahls im Monitor. Das heißt im Klartext,
daß jedesmal, wenn der Monitor ein komplettes Bild fertiggeschrieben
hat, ein VBL-Interrupt ausgelöst wird, während ein HBL nach Fertig-

stellung jeder einzelnen Pixelzeile, also viel öfter, stattfindet.

Zwei Vektoren des Rechners sind nun für uns wichtig. Über sie springt
nämlich der Rechner in eine Routine, die den Interrupt behandeln soll.

Diese Routine heißt auch Ausnahmebehandlung. Bei jedem VBL springt
der Rechner über den Vektor $70, beim HBL über den Vektor $68; in
diesen Adressen stehen also die Startadressen der Interrupt-Routinen.

Wenn Sie eigene Routinen zur Interruptbehandlung installieren wollen, so

brauchen Sie also nur deren Startadressen in diese Vektoren zu schreiben;
die Routinen selbst müssen mit dem Assembler-Befehl RTE (Return
from Exception = Rückkehr von einer Ausnahmebehandlung) enden.
Zum Verändern des Vektors ist es übrigens erforderlich, daß der Rech-

ner sich im Supervisor-Modus befindet (notfalls mit GEMDOS-Funktion
$20, Super, einschalten).

Nur: Was für Gründe gibt es überhaupt, eine Routine gerade dann auf-

rufen zu lassen, wenn der Elektronenstrahl gerade mal eine Zeile oder
auch ein ganzes Bild zu Ende geschrieben hat? Meistens keine. Es ist nur
so, daß in jedem Computersystem gewisse Aufgaben periodisch erledigt
werden müssen; dazu sind Routinen des Betriebssystems in kurzen Zeit-
abständen immer wieder zu aktivieren. Das macht der VBL. Er ist eine
Art Abfallprodukt des Video-Chips, der dem Rechner eine Uhr erspart;

genausogut könnte ja auch per Stoppuhr (Timer) alle paar Hundertstelse-

kunden eine solche Routine aufgerufen werden. Der VBL liefert für
diese Aufgabe eigentlich sehr gute Zeiten: Je nach angeschlossenem Mo-
nitor wird dieser Interrupt 71 (Monochrom-Monitor) oder 50 bis 60
(Farb-Monitor) Mal in der Sekunde ausgelöst.

Was den HBL betrifft, so kann ich Ihnen von dessen Benutzung nur sehr
abraten. Er tritt furchtbar oft auf, und schon kurze Routinen zur Aus-
nahmebehandlung würden das ganze Computersystem stark bremsen (was
natürlich auch beabsichtigt sein kann -> Software-Zeitlupe). Deshalb
schaltet ihn das Betriebssystem auch ganz einfach ab; alle ankommenden
HBLs werden vom Prozessor ignoriert. Also: Sie müssen den HBL eigent-
lich nie verwenden und sollten nur wissen, daß es ihn gibt und wann er

auftritt. a

 Interrupts 103

3.1 Die VBL-Queue

Zurück zum VBL: Er ist bei allen Programmierern sehr beliebt, und da-
mit bei der Benutzung des VBL-Vektors ($70) kein Streit zwischen den
verschiedenen Programmen auftreten kann, verewigt sich das Betriebs-

system beim Start des Rechners dort; es benutzt den VBL also für eigene
Zwecke. Das heißt aber nicht, daß Sıe als Programmierer auf diesen In-
terrupt verzichten müssen. Eine dieser System-Zwecke ist nämlich die

Abarbeitung der sogenannten VBL-Queue (Queue = Schlange).

In dieser VBL-Queue befinden sich Startadressen von maximal 8 Routi-
nen, die darauf warten, bei einem VBL-Interrupt aufgerufen zu werden,

diesmal allerdings nicht direkt vom Prozessor über den Vektor $70, son-
dern von der VBL-Routine des Betriebssystems, die ihrerseits über den
Vektor $70 aufgerufen wird. Jedes Programm darf sich in dieser Liste
eintragen und wird fortan 50 bis 7lmal in der Sekunde gestartet. Es
dürfte klar sein, daß dadurch keine Textverarbeitung aufgerufen wird;
auch ein Parkprogramm für die Harddisk (SHIP.PRG) 71mal in der Se-
kunde ausführen zu lassen wäre wenig sinnvoll. Aber Routinesachen wie
das Blinken des Cursors (findet halt nicht bei jedem, sondern nur bei je-
dem dreißigsten VBL statt) oder die Anzeige einer Digitaluhr in der

ersten Bildschirmzeile sind Dinge, für die der VBL-Interrupt durchaus
geeignet ist. Zu weiteren Anwendungsbeispielen komme ich noch. —

Für Sie ıst es jetzt natürlich wichtig zu wissen, wie sich ein Programm in
die Liste der VBL-Routinen eintragen kann. Dazu hat unser Rechner

eine Liste mit gewöhnlich acht Langworten, in denen Startadressen von

Routinen stehen dürfen. Die Routinen müssen mit einem RTS-Maschi-
nenbefehl abgeschlossen sein und dürfen alle Register (Ausnahme: User-
Stackpointer) benutzen. (C-Funktionen werden stets mit einem RTS

beendet.) Außerdem dürfte es Sie interessieren, daß solche VBL-Queue-

"Routinen im Supervisor-Modus ablaufen; das gesamte System liegt Ihnen

also ungeschützt zu Füßen.

Nun zur Liste der Startadressen: Hier sind gleich zwei Dinge variabel;
denn die Liste kann an verschiedenen Adressen im Speicher beginnen
und auch unterschiedliche Lange haben. Damit ist auch die Zahl der
möglichen VBL-Interrupt-Routinen unterschiedlich. Um die Adresse der
Liste und ihre Länge herauszufinden, gibt es im Atari zwei Systemvari-
ablen. Das sind Adressen im Speicher, deren Bedeutung unabhängig von

der TOS-Version ist. Diese Systemvariablen haben auch Namen. Für uns
sind folgende wichtig:

 104 Atari ST Intern 2

Name Adresse Größe Bedeutung

nvbis $454 Wort Zahl der möglichen VBL-Routinen.

_vbl queue $456 Langwort Startadresse einer Liste mit
Langworten, die die Adressen der VBL-

Routinen enthalten.

Wir gehen nun folgendermaßen vor: Erst besorgen wir uns die Adresse,
ab der die Startadressen der VBL-Routinen eingetragen sind. Dann über-
prüfen wir ab dieser Adresse die ersten nvbls Langworte. Ist ein Lang-
wort Null, dann bedeutet das, daß dieser Eintrag noch frei ist; wir
schreiben die Startadresse unserer eigenen Routine in dieses Langwort
und beenden die Suche. Finden wir aber in den nvbls Langworten keine
Null, dann ist die Liste voll; wir müssen die Suche erfolglos abbrechen.
Übrigens: Auf die Systemvariablen kann ein Programm nur zugreifen,
wenn es sich im Supervisor-Modus befindet. Das Programm kann mit den

Funktionen Super (GEMDOS, Nr. $20) und Supexec (XBIOS, 38) in diese

Betriebsart umschalten.

Wenn wir uns erfolgreich in die Liste eingetragen haben, dann müssen
wir das Initialisierungsprogramm beenden, damit der Desktop wieder er-
scheint und der Anwender normal weiterarbeiten kann; das Interrupt-
Programm soll ja nur im Hintergrund mitlaufen. Allerdings darf das Pro-
gramm dabei nicht aus dem Speicher entfernt werden, weil die Interrupt-

Routine ja bei jedem VBL aufgerufen werden soll. Die übliche GEM-
DOS-Funktion PtermO (Nr. 0), die bis jetzt all unsere Programme been-
det hat (auch in C, allerdings fügt der Compiler den Funktionsaufruf
automatisch ein), hilft uns also nicht, weil unser Programm gelöscht und

der belegte Speicherplatz wieder freigegeben würde - das nächste zu la-

dende Programm belegt also den gleichen Speicherplatz.Statt dessen müs-

sen wir auf die Funktion Ptermres zurückgreifen (ebenfalls GEMDOS,

Nr. $31). Das res steht für resident und bedeutet, daß das Programm
zwar beendet, aber nicht gelöscht werden soll. Damit nicht das nächste

Programm unsere Interrupt-Routine wieder löscht, müssen wir beim

Aufruf von Ptermres noch angeben, wie viele Bytes ab Programmstart

wir gerne reservieren möchten. Dieser Speicherplatz wird dann für alle

später geladenen Programme tabu sein.

Dabei stellt sich natürlich die Frage, wıe groß denn dieser Speicherbe-
reich sein muß. In Assembler können wir den Bedarf leicht errechnen: Er
setzt sich aus der Größe der Basepage (konstant 256 Bytes), dem TEXT-,
DATA- und aus dem BSS-Segment zusammen, wobei die Größe der drei
letzten Bestandteile aus der Basepage entnommen werden kann. Wie das

geht, ist dem Assembler-Listing des folgenden Beispiel-Programms zu

entnehmen. In C ist die Sache nicht so einfach; am besten ist es wohl, die

 Interrupts 105

Summe aus Programmlänge und dem Bedarf für Strings und globale Va-
riablen zu nehmen und diese Zahl großzügig aufzurunden. Probieren geht
hier über studieren.

Kommen wir zum Beispielprogramm: Ein Programm soll sich in die
VBL-Queue einhängen und resident im Speicher bleiben. Die VBL-Rou-
tine überprüft nun, ob der Benutzer die beiden Shift-Tasten und Alter-

nate gedrückt hat. Wenn ja, so soll der Bildschirminhalt gerettet und ein
Text ausgegeben werden. Drückt der Benutzer dann die Taste Control, so

wird der Bildschirm wiederhergestellt und die Interrupt-Routine beendet.

Während der Text auf dem Bildschirm steht, soll das Hauptprogramm

nicht weiterlaufen. Der Text, den das Programm ausgeben soll, heißt: "Ihr
Auftrag wird bearbeitet - Bitte etwas Geduld!" Das ist sehr praktisch,
wenn man im Büro Schach spielt und der Chef kommt gerade herrein...

Bei der Programmierung dieses Programms gibt es allerdings noch ein
ganz schwerwiegendes Problem: Die Benutzung von Systemfunktionen

(GEMDOS, BIOS und XBIOS) aus einem Interrupt heraus. So ganz legal
ist deren Verwendung in einer VBL-Routine eigentlich nie. Man sagt

zwar, daß BIOS und XBIOS-Routinen gefahrlos aufgerufen werden kön-
nen, doch habe ich auch schon das Gegenteil feststellen müssen. Im
Zweifelsfall sollten Sie also immer ausprobieren, wie der Rechner auf

Ihre VBL-Routine reagiert, wenn diese Systemfunktionen benutzt.

Ich kann Ihnen aber einige Spielregeln geben, bei deren Beachtung ich

bisher keine Probleme hatte. Zunächst: Auf keinen Fall bei jedem VBL

Systemroutinen aufrufen! Wenn Ihr Programm also auf eine Tastenkom-
bination warten muß, wie das in meinem Beispielprogramm der Fall ist,

dann müssen Sie die BIOS-Funktion Kbshift (Nr. 11), die diese Aufgabe
normalerweise übernimmt, umgehen; wie, das zeige ich gleich noch. Auf
keinen Fall dürfen Sie auch mit Funktionen wie Cconin (GEMDOS) oder
Bconin (BIOS) auf den Druck einer Taste warten; denn wenn dieser
Funktionsaufruf ohne Bomben durchkommt, dann wartet die VBL-Rou-

tine wie befohlen auf einen Tastendruck; das Hauptprogramm steht still.

Wenn Sie nun also die gewünschte Tastenkombination vorfinden, dann ist

alles erlaubt: GEMDOS, BIOS und XBIOS. Allerdings nur dann, wenn der

Benutzer Ihr residentes Interrupt-Programm nicht gerade dann aufgeru-
fen hat, wenn schon das Hauptprogramm in einer dieser Funktionen

hing. (Das ganze Problem entsteht ja nur dadurch, daß nicht zwei Pro-
gramme gleichzeitig Systemfunktionen benutzen dürfen.) Weil aber TOS-
Programme in der Regel in GEMDOS- oder anderen Routinen hängen

106 Atari ST Intern 2

bzw. auf diese warten, ist die Verwendung von TOS-Routinen in einer
VBL-Routine immer dann verboten, wenn gerade ein TOS-Programm im
Vordergrund läuft.

Anders bei GEM-Programmen: Immer, wenn ein GEM-Programm auf
etwas wartet (Mausklick, Tastendruck...), können Sie aus dem VBL he-

raus beliebige TOS-Funktionen aufrufen. Und da fast alle Programme
GEM-Applikationen sind und diese Programme meist auf eine Benut-

zeraktion warten, ist die Einschränkung bei den Systemaufrufen aus ei-
nem Interrupt-Programm eigentlich belanglos. Das einzige Problem ist
wirklich das Erkennen des Aufrufs, also die Abfrage bestimmter Tasten.

Zu diesem Zweck müssen meist die Sondertasten wie Shift, Control und
Alternate herhalten. Es ıst möglich, daß ein Programm diese Tasten ab-
fragt. Man erhält dann einen Wert zurück, dessen Bits folgende Bedeu-
tung haben:

Bit Taste

0 Shift (rechts)

1 Shift (links)

2 Control

3 Alternate

Die anderen Bits sind für unser Beispiel nicht interessant; bei der Ab-

frage im Programm werden sie durch eine bitweise AND-Verknüpfung

ignoriert. Aber wie kommen wir überhaupt an den Wert? Nun, die eine

Möglichkeit bietet die BIOS-Funktion Nr. 11 (Kbshift). Da wir aber
keine TOS-Funktionen anwenden wollen, müssen wir die zweite Mög-
lichkeit benutzen: Den direkten Zugriff über eine Adresse. Es gibt näm-
lich ein Byte (!!!) im Rechner, das genau den Zustand der vier Sonder-
tasten anzeigt. Leider hängt die Adresse dieses Bytes von der Betriebs-
system-Version ab: Bevor es das Blitter-TOS gab, konnte man den

Tastenstatus an der Adresse $elb auslesen. Mit dem Blitter-TOS änderte
sich diese Adresse, und sie wird sich möglicherweise mit dem neuen TOS
1.4 abermals ändern. Doch gibt es dann einen Zeiger im ROM auf dieses
Byte, und der steht an einer festgelegten Adresse: $fc0024. Die TOS-
Version selbst entnehmen wir ebenfalls dem ROM: Steht an der Adresse

$FC0002 (Wort) ein Wert größer als $100, dann haben wir es mindestens
mit dem Blitter-TOS zu tun.

Um den Bildschirm zu retten, müssen wir natürlich die Startadresse des

Video-RAM herausfinden. Wieder führen zwei Wege zum Ziel: die
XBIOS-Funktionen Physbase und Logbase (2 und 3) und die Adresse
$44e. Letztere ıst eine Systemvariable, die auf das logische Video-RAM

 Interrupts 107

(siehe auch 2.1) zeigt; ihre Lage im Speicher ist festgelegt, also von der
TOS-Version nicht abhängig. Die eigentliche Text-Ausgabe wird übri-
gens mit der GEMDOS-Funktion Cconws (Nummer 9) vorgenommen.

Nun die Listings: Das C-Programm sieht schlimmer aus als es ist, weil
ich sehr viel mit Pointern arbeiten mußte (das fällt in Assembler nicht so
auf). Im C-Programm wird der Bildschirm in einem Array von 32000
Bytes (= 8000 Langworte) gerettet, und in Assembler sichern wir ihn im
BSS-Segment. Wie ich schon sagte, ist es in C-Programmen nicht mög-
lich, den Speicherbedarf genau zu bestimmen. Deshalb habe ich für das
Programm mit dem 32000-Byte-Array großzügig 64 KByte reservieren
lassen:

Cc
[BERRRHRREEAREERERERRERERERREEREERRERERERERE

/* Interrupt-Programm in der VBL-Queue */

/* Laser C MP 30-12-88 VBLQUEUE.C */
NETTER

#include <osbind.h>

char *shiftptr;

int *nvbls;

long *queue_ptr;

long *vbl_queue;

long save_screen[8000]; /* 32000 Bytes */

rout ine() /* Funktion, die Interrupt-Routine sein soll */

{
int i;

Long *screen;

if ((*shiftptr & 15) == 11) /* Alt + 2x Shift? */
{

screen = (long *) 0x44e; /* Zeiger auf Video-RAM */

screen = (long *) *screen;

for (i=0; i<8000; i++) /* Bildschirm retten */

save_screen[i] = *(screenti);

Cconws ("\33E\12\12"); /* ClrScr und 2 mal LineFeed */

Cconws (" Ihr Auftrag wird bearbeitet.\15\12\12");
Cconws (" Bitte etwas Geduld...");

while ((*shiftptr & 15) != 4); /* Warten auf Control */

 108 Atari ST Intern 2

for (i=0; 1<8000; i++) /* Bildschirm zurückholen */

*(screenti) = save_screenli];

int init_vbl()

{
long *long_ptr,

save_ssp;

int i,

*int_ptr,

gefunden;

save_ssp = Super (OL); /* Supervisor einschalten */

/* Adresse Sondertasten-Status ermitteln: */

shiftptr = (char *) OxeibL; /* Adresse bei altem TOS */
int_ptr = (int *) Oxfc0002; /* Welche TOS-Version? */

if (*int_ptr > 0x100) /* größer als altes TOS? */

{
long_ptr = (long *) Oxfc0024; /* Hier steht die Adresse */

shiftptr = (char *) *long_ptr;

>

/* Eintrag in die VBL-Queue */

nvbls = (int *) Ox454L;

queue_ptr = (long *) Ox456L;

vbl_queue = (long *) *queue_ptr;

1=0; gefunden=0;

do

{
if (*(vbl_queuet+i) == OL)

{
(vbl_queueti) = (long) routine; / Routine installieren */

gefunden = -1;

>
i++:

>
while (!gefunden && i < *nvbls);

Super (save_ssp); /* Wieder USER-Modus */

return (gefunden); .

 Interrupts 109

main()

{

if Cinit_vbl())
Ptermres (65536L, 0);

Assembler

: Interrupt-Programm in der VBL-Queue (Zusatzbildschirm)

: Assembler MP 30-12-88 VBLQUEUE .Q

gemdos 1

xbios = 14

cconws = 9

supexec = 38

ptermres = $31

_V_bas_ad = $44e

nvbls = $454

_vbl queue = $456

TEXT

movea.| 4(sp),a0 ;Speicherbedarf ausrechnen

move.t #%$100,d6 ‚feste Größe der Basepage

add.| 12(a0),d6 7+ Größe des TEXT-Segments
add.| 20Ca0),d6 ‚+ Größe des DATA-Segments

add. 28(a0),d6 ‚+ Größe des BSS-Segments

pea init_vbl ‚Initialisierung muß im

move.w #supexec, -(sp) ; Supervisor -Modus

trap #xbios ‚durchgeführt werden

addq.i #6,sp

tst.w err_flag ;Initialisierung erfolgreich?

beq.s keep ‚ja, dann resident halten

clr.w -(sp) ‚sonst normal beenden

trap #gemdos

keep: clr.w -(sp) keine Fehlermeldung

move.l d6,-(sp) ;Speicherbedarf

move.w #ptermres, -(sp) resident halten

trap #gemdos ‚Ende Hauptprogramm

110 Atari ST Intern 2

; Installierung der Interrupt-Routine in der VBL-Queue:

init_vbl:

vbl_search:

vbl_found:

get_shiftptr:

Adresse für

altes_tos:

move.w nvbls,dO max. Zahl der VBL-Queue-Einträge

isl.w #2,d0 Fa 4

movea.|l _vblqueue,a0 ;Liste der Startadressen

clr.w di

tst.l 0(Ca0,d1.w) ;Eintrag überprüfen

beq vbl_found 20, dann ist der Eintrag frei

addq.w #4,d1 ‚sonst nächstes Langwort überprüfen

cmp.u dO,d1 ‚Ende der Liste?

bne.s vbl_search j;nein, weitersuchen

move.w #-1,err_flag ;Fehler merken

rts zund ins Hauptprogramm zurtick

bsr get_shiftptr

move.l #routine,0(a0,d1.w) :Startadresse eintragen

rts

Sondertasten-Status ermitteln:

cmpi.w #8100,$fc0002 ‚TOS-Version

ble altes_tos

move.l $fc0024,shiftptr ;BlitterTOS: Adresse im ROM

rts

move.l #$eib,shiftptr ‚sonst feste Adresse

rts

; Interrupt-Routine, wird ab sofort bei jedem VBL aufgerufen

routine: movea.l shiftptr,a0 ;Sondertasten abfragen

move.b (a0),d0

andi.b #%1111,d0 snur Sondertasten, kein Caps Lock

cmpi.b #%1011,d0 ;Alternate und beide Shift-Tasten?

bne quit_vbl ‚nein, dann weiter im Hauptprogramm

; Ab hier legt das Hauptprogramm eine Pause ein...

clr.t do ‚physikalischer Bildschirmstart

move.b $ffff8201,d0 ;High-Byte des Video-RAM

isl.w #8,d0 :* $100

move.b $ffff8203,d0 ;+ Mid-Byte des Video-RAM

Ist.l #8,d0 :* $100

move. d0,d/ ‚merken für später

movea.| d0,aé ‚Bildschirm retten

lea buffer ‚al

save_loop:

wait_loop:

rest_loop:

quit_vbl:

err_flag:

meldung:

shiftptr:

buffer:

3.2

 Interrupts 111

move.w #32000/4-1,d0

move.l (a6)+,(al)+

dbra d0,save_loop

pea meldung ‚Text auf dem Bildschirm ausgeben

move.w #cconws,-(sp)

trap #gemdos

addq.| #6,sp

movea.| shiftptr,a0 ;Warten auf Control

move.b (a0),d0

andi.b #%1111,d0

cmpi.b #%100,d0 ‚Control?

bne.s wait_loop

movea.| _v_bas_ad,a6

lea buffer, al ‚Bildschirm wiederherstellen

move.w #32000/4-1,d0

move.l (al)+,(a6)+

dbra d0, rest_loop

rts ‚Ende VBL-Queue-Routine (kein RTE)

DATA

DC.w 0

DC.b 27,'E',10,10 ;Bildschirm ldéschen

DC.b ' Ihr Auftrag wird bearbeitet.',13,10,10,10

DC.b ' Bitte etwas Geduld...',0

BSS

Ds.l 1

DS.w 16000 ‚Platz für den ganzen Bildschirm

END

Der Timer A des MFP

Die VBL-Queue ist eine sehr praktische Einrichtung, die es vielen Pro-
grammen erlaubt, sich bequem in einen Interrupt einzuhängen. Der

Nachteil des VBLs ist aber, daß er je nach angeschlossenem Monitor un-

terschiedlich oft auftritt (zwischen 50 und 71lmal pro Sekunde). Außer-

 112 Atari ST Intern 2

dem kann es durchaus erforderlich sein, daß eine Routine in wesentlich

kürzeren Zeitabständen aufgerufen wird. Diese Flexibilität kann der VBL
nicht liefern.

Da müssen wir uns auf der nächsthöheren Interrupt-Ebene umschauen,

nämlich beim MFP. Zur Erinnerung: Der MFP ist ein Chip, der alle In-

terrupts des Atari außer VBL und HBL verwaltet. Für den Prozessor ist

dieser Baustein dem VBL und dem HBL übergeordnet, das heißt eine

durch den MFP aktivierte Interrupt-Routine hat höchste Priorität und

kann daher nicht durch einen VBL oder HBL unterbrochen werden.

Dieser MFP besitzt unter anderem auch vier programmierbare Timer. Die

können Sie sich als Wecker vorstellen, die dem Prozessor ın bestimmten

Zeitabständen mitteilen, er möge dieses oder jenes Interrupt-Programm

starten. Die Zeitabstände kann das Programm frei bestimmen. Von den

insgesamt vier Timern, die der MFP besitzt, ist allerdings nur einer dafür

gedacht, einem Anwenderprogramm als Wecker zu dienen. Es handelt

sich um den Timer A. Die Timer C und D haben feste Aufgaben im
System; der Timer B wird gewöhnlich für einen anderen Zweck einge-
setzt, den wir noch kennenlernen werden.

Der MFP gehört mit zu den kompliziertesten Bausteinen im Atarı ST. Er

ist auch entsprechend schwierig zu programmieren. Aus diesem Grund

gibt es auch im TOS eine Reihe von Routinen, die die einfache Verwen-

dung der Timer ermöglichen sollen. Nur eine einzige XBIOS-Funktion
benötigen wir, um den Timer in Gang zu setzen: Xbtimer (Nr. 31).

Es werden vier Parameter übergeben: Die Nummer des Timers, auf den

sich der Funktionsaufruf bezieht, ein Kontrollregister, ein Datenregister
und die Adresse der Routine, die beim Interrupt aufgerufen werden soll.

Am einfachsten ist die Timer-Nummer zu erklären: Die Timer A bis D
haben die Nummern 0 bis 3. Für unseren Timer A benötigen wir also die
Null.

Das Kontroliregister hat gleich mehrere Aufgaben: Es schaltet den Timer
ein und aus, es bestimmt die Betriebsart des Timers und regelt den

Vorteiler. Wir machen uns die Sache etwas einfacher, als sie ist: Ist das

Kontrollregister 0, so ist der Timer abgeschaltet. Betriebsarten kennen
wir nicht. Aber mit dem Vorteiler müssen wir uns schon beschäftigen:
Wir wollen ja in bestimmten Zeitabständen einen Interrupt auslösen.
Dazu muß im MFP eine Uhr vorhanden sein. Diese existiert in Form ei-
nes Schwingquarzes, der am MFP angeschlossen und mit 2,4576 MHz ge-

taktet ist. Jede Sekunde liefert dieser Quarz also 2.457.600 Impulse. So-
viele Interrupts kann unser Prozessor aber gar nicht verarbeiten, und

 Interrupts 113

deshalb gibt es den Vorteiler. Wenn wir den nämlich auf 1/64 stellen,
dann beachtet der MFP nur jeden 64. Impuls des Quarzes. Die folgende
Tabelle zeigt, welche Vorteilereinstellungen es gibt und durch welche
K.ontrollregister-Werte sie eingestellt werden können:

Vorteiler Kontrollregister Ergebnisfrequenz

1/4 1 614.400 Hz

1/10 2 245.760 Hz

1/16 3 153.600 Hz

1/50 4 49.152 Hz

1/64 5 38.400 Hz

1/100 6 24.576 Hz

1/200 7 12.288 Hz

Mit diesem Kontrollregister wäre es also schon möglich, die Zahl der In-
terrupts auf gut zwölftausend pro Sekunde zu begrenzen. Dagegen wirken
selbst die 71 Hz des VBLs (im Monochrom-Modus) winzig. Und auch die

12.288 Interrupts werden Sıe wahrscheinlich nıe benötigen. Bedenken Sie:
Interrupt-Routinen schlucken desto mehr Prozessorzeit, je öfter sie auf-
gerufen werden.

Nun, der Vorteiler hieße sicher nicht Vorteiler, wenn nicht noch ein an-

derer Teiler existierte, nämlich das Datenregister. Wenn wir da beispiels-
weise die Zahl 100 hineinschreiben, dann wird der eigentliche Interrupt

erst bei jedem 100. Impuls des Vorteilers geliefert. Das Datenregister
steuert also die zweite Teilerstufe. Der Wert dieses Registers, das eine

Breite von nur 8 Bit aufweist, darf zwischen 1 und 256 liegen, wobei die

256 durch eine Null dargestellt wird. Damit können wir ab sofort Inter-
rupts mit Aufruf-Frequenzen zwischen 48 Hz (Kontrollregister 7, Da-

tenregister 0=256) und 61Z4.400 Hz (Kontrollregister 1, Datenregister 1)
erzeugen.

Nun zur eigentlichen Interrupt-Routine. In der VBL-Queue wurde uns
sämtlicher Verwaltungskram abgenommen; beim Timer müssen wir alles
selbst machen. Aber so schlimm ist es gar nicht: Beim Eintritt ın die
Routine sind sämtliche Register zu retten, die wir möglicherweise verän-
dern könnten. Bevor wir den Interrupt beenden, müssen diese Register

natürlich wiederhergestellt werden. Als letzte Amtshandlung müssen wir
uns beim MFP verabschieden, indem wir ein ganz bestimmtes Bit eines
ganz bestimmten Registers des MFP löschen. Es würde jedoch Seiten
füllen, die Funktion dieses Bits genau zu beschreiben. Deshalb bitte ich

Sie hier nur, sich den bclr-Befehl im folgenden Beispielprogramm anzu-
sehen und mir zu glauben, daß es so funktioniert. Wenn Sie sich näher
für den MFP oder für dieses spezielle Register interessieren, dann sollten

 114 Atari ST Intern 2

Sie sich die Hardware-Beschreibung des Chips im ersten Intern-Band

durchlesen. Wichtig ist noch, daß die Routine mit einem RTE (Return
from Exception, Rückkehr von einer Ausnahmebehandlung) beendet
wird.

Nun zur Implementierung: In Assembler ist die Sache recht einfach zu
lösen. In C kommen wir nicht ohne fünf Zeilen Assembler aus, um die
Register zu retten, eine beliebige C-Funktion aufzurufen, die Register
wieder zurückzuholen, das geheimnisvolle Bit zu löschen und um den
Interrupt mit RTE zu beenden. Die Startadresse der Funktion müssen wir

im Hauptprogramm an Xbtimer übergeben; deshalb ist es erforderlich,
das Label, das den Anfang des Assembler-Teils kennzeichnet, als Funk-

tion zu deklarieren (’static entry()’ im C-Listing).

Das Programm stellt einen Timer auf die niedrigste der möglichen Fre-
quenzen ein: 48 Hz. 48mal in der Sekunde wird dann ein Zeichen aus ei-

nem String mit der BIOS-Funktion Bconout auf dem Bildschirm (Con-
sole) ausgegeben, und zwar im Interrupt. Während das passiert,wartet das

Hauptprogramm gemütlich in einer Warteschleife:

C

NT]

/* Demo für Benutzung der Timer des MFP */

/* Laser C MP 02-01-89 TIMER_A.C */
NIT]

#include <osbind.h>

#define CONSOLE 2

long i;

routine()

{
static char *str = "das ist eine wichtige meldung\15\12\12\12...

. der timer a des mfp im atari st ist...

.. viel\15\12leichter anzuwenden, als...

. die meisten Leute\15\12glauben

... \15\12\12\12 streng geheim ...

eee \15\12 ZSZEE2E=2=2=2=2=2=2=== \15...

. \12\12\12\12\12"; /%* Riesenstring, was? */

if (*str) /* wenn noch nicht Stringende, dann... */

{
Bconout (CONSOLE, *str); /* Zeichen ausgeben */

 str++; /* Zeiger auf nächstes Zeichen */

 Interrupts

static entry();

asm {

entry:

main()

{

/* Einsprung für Interrupt */

movem. | DO-D7/A0-A6, -(A7)

jsr routine

movem. | (A7)+,D0-D7/A0-A6

belr.b #5,0xfffffaf

rte

Cursconf (3,0); /* Cursor soll nicht blinken */

/* Timer anschmeißen: */

/* Timer A (0) mit 48 Hz --> Vorteiler durch 200 (7) */

/* und Datenregister 0=256 */

Xbtimer (0, 7, 0, entry);

/* Verzögerungsschleife: */

for (i=0; i<1100000; i++);

/* Timer wieder abschalten: */

Xbtimer (0, 0, 0, entry);

Assembler

=
s

G
e

“o
s

W
e

gemdos

bios

xbios

console
bconout

cursconf

xbt imer

Demo fiir die Benutzung der Timer des MFP

Assembler MP 02-01-89 TIMER_A.Q

13

= 14

u
n

A

w
m

21

31

115

 116

TEXT

‘: Cursor auf 'nicht bl

move .W

move .wW

trap

addq. |

; Installieren der Int

; Frequenz: 48 Hz. Wir

: und Datenregister 25

pea

clr.w

move .w

clr.w

move .wW

trap

adda. l

; Warteschleife

moved. l

moved. |

inner: dbra

dbra

; Timer wieder abstell

pea

clr.w

clr.w

clr.w

move .W

trap

adda. |

move .W

move . Ww

trap

addq. |

clr.w

trap

routine:

; Einsprung Interrupt:

Atari ST Intern 2

inken' stellen:

#3,-(sp) ‚Funktion: nicht blinken

#cursconf,-(sp)

#xbios

#4 ,Sp

errupt-Routine im Timer A (0).

d gebildet aus Vorteiler durch 200 (7)

6 (=0).

routine ‚Adresse der Interrupt-Routine

-(sp) ‚Datenregister ist 0=256

#7,-(sp) »Kontrollregister mit Vorteiler

-(sp) ;0 fur Timer A

#xbtimer, -(sp)

#xbios

#12,sp

#100,d0 sreicht fur gut 10 Sekundenouter:

#-1,d1

di, inner

dO, outer

en

routine

-(sp) ‚Datenregister

-(sp) :Kontrollregister (0 = ausschalten)

-(sp) 0 für Timer A

#xbtimer,,- (sp)

#xbios

#12,sp

#2,-(sp) Cursor soll wieder blinken

#cursconf,-(sp)

#xbios

#4 ,sp

-(sp) ;Programmende

#gemdos

 Interrupts 117

movem.i dO-d7/a0-a6,-(sp) ;rette sich wer kann!

clr.w do

movea.| pointer,aD ;Zeiger auf nächstes Zeichen

move.b (a0),d0 ;Zeichen holen

beq schluss ‚Null? Dann sind wir fertig...

move.w d0,-(sp) ‚sonst Zeichen ausgeben

move.w #console,-(sp)

move.w #bconout,-(sp)

trap #bios

addq.l #6,sp

addq.| #1,pointer

schluss: movem.| (sp)+,dO-d7/a0-a6 ;Register zurück

belr #,sfffffa0f ;Interrupt in Service löschen

rte ‚End of Exception

DATA

ausgabe: DC.b 'das ist eine wichtige meldung! ,13,10,10,10

DC.b 'der timer a des mfp im atari st ist viel',13,10

DC.b 'leichter anzuwenden, als die meisten Leute',13,10

DC.b 'glauben '

DC.b 13,10,10,10,' streng geheim ',13,10

DC.b ! sz==2========= 1,13,10,10,10,10,0

pointer: DC.| ausgabe

END

Der Timer A ist natürlich nur eine der vielen Möglichkeiten des MFP.
Vielleicht hat das Beispielprogramm Ihr Interesse für diesen Baustein

geweckt, so daß Sie mehr über ihn wissen möchten. Sie sollten in diesem

Fall die Hardware-Beschreibung des MFP (Intern I) durchlesen; außer-
dem empfehle ich Ihnen, sich die Beschreibung der XBIOS-Routinen

Mfpint (Nr. 13), Jdisint (Nr. 26) und Jenabint (Nr. 27) anzuschauen, um
die direkte Programmierung des Chips zu vermeiden. Xbtimer (Nr. 31)
kennen Sie ja bereits.

3.3. Rasterzeileninterrupt

Der letzte Hardware-Interrupt, den ich Ihnen vorstellen möchte, ist der

Rasterzeileninterrupt. Er nutzt eine besondere Eigenschaft des MFP aus:

 118 Atari ST Intern 2

Die Timer A und B können nicht nur nach einer bestimmten Zeit einen
Interrupt auslösen, sondern auch, wenn eine bestimmte Anzahl von Im-

pulsen an einem der Pins des MFP-Gehäuses angekommen sind. Für den

Timer A ist dieser Pin nicht angeschlossen, wohl aber für den Timer B.
Hier meldet sich nämlich der Video-Chip mit jedem Zeilenrücklauf des
Elektronenstrahls im Monitor. Dieser Interrupt ıst also dem normalen

HBL-Interrupt ähnlich.

Der Unterschied zum HBL liegt darin, daß wir mit dem Datenregister
des Timers einstellen können, daß der Interrupt nicht bei jedem HBL,
sondern erst nach einer bestimmten Anzahl von Zeilenrückläufen ausge-
löst wird. Außerdem liegt der MFP, das wissen Sie bereits, auf der
höchsten Interruptebene und hat die größte Priorität. Während also ein
simpler HBL oft keine Chance hat, zum Prozessor "durchzukommen", ha-

ben die Timer Vorrang vor den meisten anderen Dingen.

Jetzt mögen Sie fragen, wozu dieser Interrupt überhaupt nützlicher sein

könnte als ein normaler Timer. Antwort: Immer dann, wenn auf einem

Teil des Bildschirms eine andere Farbpalette (Zuordnung der 512 mögli-
chen Farben zu den max. 16 gleichzeitig darstellbaren) gelten soll als auf
einem zweiten Teil. So kann man mit Hilfe des Rasterzeileninterrupts
nicht nur alle 512 Farben gleichzeitig auf den Bildschirm bringen; man
kann auch die Farben im Randbereich verändern (nützlich für Spiele),
etwa um den Horizont einer Landschaft über die ganze Monitorbreite er-
kennen zu lassen. |

Alles läuft darauf hinaus, die Farbpalette genau dann zu verändern, wenn

der Elektronenstrahl des Monitors gerade eine ganz bestimmte Zeile
schreibt (bzw. zu Ende geschrieben hat). Wenn das ganze Bild fertig ge-
schrieben wurde (also beim VBL), muß die Änderung wieder rückgängig
gemacht werden, damit der obere Teil des Bildschirms wieder normal

erscheint. Damit ist auch klar, daß die Farben nur in vertikaler Richtung
geändert werden können: Es kann einen oberen und einen unteren Be-
reich geben, aber nicht einen linken und einen rechten!

Wie sieht das nun im Programm aus? Wir initialisieren den Timer B mit
der Funktion Xbtimer (XBIOS, Nr. 31), lassen ihn allerdings noch aus-
gechaltet (Kontrollregister ist 0). Dann hängen wir eine Interrupt-Routine
in den VBL, die sich immer dann meldet, wenn das Bild ganz fertig ist.
Allerdings. benutzen wir nicht die VBL-Queue, weil möglicherweise
schon ein oder zwei Rasterzeilen geschrieben wären, bis unser VBL-Pro-

gramm aufgerufen wird (wenn andere VBL-Routinen schon vor uns ein-
getragen waren, werden diese natürlich zuerst bearbeitet). Deshalb hän-

gen wir uns vor die Standard-VBL-Bearbeitung des Betriebssystems, in-

 Interrupts 119

dem wir den Vektor $70 auf unsere Ersatz-VBL-Routine lenken, an de-

ren Ende das Original-VBL-Programm gestartet wird (JMP im Listing;
die Zieladresse wird erst im Programm eingetragen).

Wenn nun ein VBL-Interrupt ausgelöst wird, dann wählen wir zunächst

die normale Hintergrundfarbe (weiß) für den oberen Bereich des Bild-
schirms, indem wir das Hardwareregister für die erste Farbe der Farbpa-
lette mit dem Wert $777 füllen. Anschließend aktivieren wir den Timer
B: Ins Datenregister schreiben wir, nach wie vielen Zeilen der Interrupt
ausgelöst werden soll, und ins Kontrollregister schreiben wir die Zahl 8,

die den Event-Count-Mode kennzeichnet (es werden Ereignisse, HBLs,
gezählt). Einen Vorteiler gibt es in dieser Betriebsart des Timers nicht.

Wenn der Rasterzeileninterrupt nun ausgelöst wird, dann wechseln wir
die Farbe 0, so daß diese z.B. blau statt weiß wird. Schließlich schalten

wir den Interrupt wieder ab (0 ins Kontrollregister) und beenden den

Interrupt (den Interrupt des Timers B müssen wir durch Löschen des Bits

0 im Register $FFFFFAOF offiziell beenden; beim Timer A war es das
Bit 5). Beim nächsten VBL wird der Timer ja wieder aktiviert; der Bild-
schirmhintergrund wird bis dahin in der geänderten Farbe gezeichnet.

Zum Beispielprogramm: Der Rasterzeileninterrupt sollte für grafische
Zwecke nur auf dem Farbmonitor genutzt werden, weil die sehr hohe
Zeilenfrequenz im Monochrom-Betrieb zu Ungenauigkeiten führt. So ist
der Elektronenstrahl nach dem Interrupt zu schnell wieder auf dem Weg,

so daß die Umschaltung der Farben (??? Wir könnten den Bildschirm ja
invertieren...) nicht ganz links am Bildrand geschieht. In der hohen Auf-
lösung kann der Rasterzeileninterrupt höchstens dazu benutzt werden,

festzustellen, wo ungefähr auf dem Bildschirm der Elektronenstrahl ge-

rade steht. Auch dafiir werden Sie noch ein Beispielprogramm finden.Ich
habe jedoch ein Programm fiir den Farbmonitor geschrieben, das resident
im Speicher bleibt. Es teilt den Bildschirm in zwei verschiedenfarbige
Bereiche auf, die ihre Größe ändern, d.h. die Trennlinie zwischen den

Farbbereichen wandert von oben nach unten und zurück. Am besten las-
sen Sie das Programm laufen; es behält seine Wirkung auch dann, wenn
Sie ein anderes Programm starten.;

; Rasterzeileninterrupt mit dem Timer B des MFP

: Assembler MP 02-01-89 TIMER_A.Q

gemdos = 1

xbios = 14

xbtimer = 31

 120 Atari ST Intern 2

super = $20

ptermres = $31

vbl_vec = $70

farbeO = $ffff8240

bcontrol = $fffffaib :Kontrollregister Timer B

bdata = $fffffa2 ;Datenregister Timer B

TEXT

; Installieren der Interrupt-Routine im Timer B (1).

» Event-Count-Mode (16) --> kein Vorteiler.

movea.| 4(sp),a0 ;‚Speicherbedarf errechnen

move. #$100,d6 |
add.| 12(a0),d6

add.t 20(a0),d6

add.l 28(a0),d6

cir.l -(sp) ‚Supervisor einschalten

move.w #super,-(sp)

trap #1

addq.l #6,sp

move.l d0,d7 ;‚SSP merken

pea routine ‚Adresse der Interrupt-Routine

move. #50,-(sp) ‚Datenregister

move.w #0,-(sp) :Kontrollregister (Timer noch aus)

move.w #1,-(sp) 3:1 fur Timer B

move.w #xbtimer,-(sp)

trap #xbios

adda.l #12,sp

move. vbl_vec, jump+2 ;VBL-Routine in Sprungbefehl

move. #new_vbl,vbl_vec ;eigene VBL-Routine davor

move. d’7,-(sp) ‚zurück in den User-Modus

move.w #super,-(sp)

trap #gemdos

addq.l #6,sp

clr.w -(sp) skein Fehler

move.l d6,-(sp) :Programnl ange

move.w #ptermres,-(sp) ;Programm resident halten

trap #gemdos

; Routine zur Farbumschaltung:

 Interrupts 121

routine: move.w #8%700,farbeO ;Rot als Hintergrundfarbe

clr.b bcontrol ;Interrupt aus

belr #0,$fffffa0Of ;Interrupt in Service löschen

rte ‚End of Exception

: Neue VBL-Routine:

new_vbl: move.w #8777,farbeO ;Bildschirmhintergrund weiß

move.w d0,-(sp) ‚Register retten

move.b richtung, dO

add.b dO,hoch ‚Wechsel 1 Zeile später als bisher

tst.b dO sWandert nach oben oder unten?

bmi.s oben

cmpi.b #200,hoch ‚schon bei Zeile 200?

beq.s vbl_change ;dann Richtung wechseln

bra.s vbl_cont

oben: cmpi.b #50,hoch ‚oder wieder ganz oben?

bne.s vbl_cont

vbl_change: eori.b #$ff,richtung ‚Zahl negieren

addq.b #1,richtung ;(Zweierkomplement)

subq.w #1,flag ‚nächste Runde für Hauptprogrammvbl_cont:
move.b hoch,bdata ;Zeilenzahl für Wechsel

move.b #8,bcontrol ;Kontrollregister: Timer wieder an

move.w (sp)+,d0 sRegister zurück

jump: jmp $12345678. ‚zurück in normale VBL-Routine

DATA

flag: DC.w 2

richtung: DC.b 1

hoch: DS.b 50

END

Daß man den Rasterzeileninterrupt auch auf dem Monochrom-Monitor

sinnvoll einsetzen kann, zeigt folgendes Programm. Es blendet einen Text
in den Bildschirm eines laufenden Programms ein. Das Besondere dabei
ist, daB der Rechner davon nichts merkt. Der Text stört also das Haupt-

programm nicht, und auch auf einer Hardcopy würde er nicht erschei-
nen. Wie ist das möglich?

Beim VBL programmieren wir den Timer B auf 100 Zeilen. Wenn der
entsprechende Interrupt ausgelöst wird, dann schreiben wir unseren Text

ab Zeile 110 auf den Bildschirm; vorher müssen wir den Bereich aller-
dings irgendwo retten. Sofort danach wird der Bildschirm wieder restau-
riert, d.h. der alte Inhalt erscheint wieder; dann beenden wir den Inter-
rupt.

 122 Atari ST Intern 2

Zur Erklärung: Im Monochrom-Betrieb ist der Elektronenstrahl so
schnell, daß wir schon 10 Zeilen vor der eigentlichen Text-Ausgabe den
Interrupt auslösen lassen müssen. Beim Schreiben und Retten des Textes

(das erfolgt zeilenweise) überholt uns der Elektronenstrahl. Die Folge:
Wenn wir die letzte Pıixelzeile des Textes geschrieben haben, dann hat der
Video-Chip schon die oberste Zeile abgetastet. Es stört also nicht, wenn

wir sofort nach dem Schreiben den alten Zustand wiederherstellen; denn
auch dabei ist der Elektronenstrahl schneller als wir.

Der eingeblendete Text ist für das Hauptprogramm übrigens deshalb

nicht vorhanden, weil er ja nur während unseres Interrupts überhaupt im

Bildschirmspeicher steht. Übrigens: Das Programm besorgt sich die
Adrese des physikalischen (!) Video-RAM durch die Adressen
$FFFF8201 und $FFFF8203 (beides Bytes). Es sind Hardwareregister des
Shifters. Die Register enthalten immer die Startadresse des gerade darge-
stellten Speicherbereichs. Dabei stehen im Register $FFFF8201 die Bits

16-23 dieser Adresse, im anderen die Bits 8-15. Die restlichen Bits sind

0. Das ist auch der Grund dafür, daß das Video-RAM nur an einer

Pagegrenze beginnen darf (siehe auch 2.1).

Um die Text-Ausgabe zu beschleunigen und die Benutzung von System-
routinen während des Interrupts zu vermeiden, habe ich folgenden Trick

benutzt: Vor der Initialisierung der Interrupts wird der Bildschirm ge-
löscht und der String in der obersten Bildschirmzeile ausgegeben. Dann
kopieren wir pro Pixelzeile 20 Bytes (in meinem Beispielprogramm ist der

String so lang) bzw. fünf Langworte in einen sicheren Bereich. Im In-
terrupt müssen dann nur diese Langworte an die gewünschte Stelle ko-

piert werden.

Rasterzeilen-Interrupt: Demo für Monochrom-Monitor

=
e

B
e

B
e

“e
o

Assembler MP 02-01-88 RASTER2.Q

gemdos = |

xbios = 14

cconws =-9

xbtimer = 31

super = $20

ptermres = $31

vbl_vec = $70

_V_bas_ad = $44e

bcontrol = $fffffaib :Kontrollregister Timer B

 Interrupts 123

bdata

: Ausgabe des

= $fffffa2' sDatenregister Timer B

TEXT

movea.| 4(sp),a0 ;Speicherbedarf errechnen

move.l #$100,d6

add.l 12(a0),d6

add.t 20(a0),d6

add. . 28(a0),d6

Textes auf dem Bildschirm:

pea ausgabe

move.w #cconws, - (sp)

trap #gemdos

addq.l #6,sp

clr.l -(sp) Supervisor einschalten

move.w #super,-(sp)

trap #1

addq.l #6,sp

move.| d0,d7 SSP merken

; Kopieren dieses Textes (Pixel, keine ASCII-Codes mehr):

11:

l2:

movea.| _v_bas ad,a0 ;logisches Video-RAM

lea characters, a1

moveq.| #15,d0 316 Pixelzeilen

moveq.| #20/4-1,d1 ;20 Zeichen = 5 Langworte

move.t (a0)+,(a1)+

dbra d1,l2

lea 60(a0), a0 ‚nächste Zeile (+80-20)

dbra d0,11

; Installieren der Interrupt-Routine im Timer B (1).

 Event-Count-Mode --> kein Vorteiler. Noch ausgeschaltet.

pea routine ‚Adresse der Interrupt-Routine

move.w #0,-(sp) ‚Datenregister

move.w #0,-(sp) sKontrollregister (Timer noch aus)

move.w #1,-(sp) ;1 für Timer B

move.w #xbtimer,-(sp)

trap #xbios \

adda.l #12,sp

move.l vbl_vec, jumpt2 ;VBL-Routine in Sprungbefehl

124

routine:

lop:

lop2:

move. |

move. |

move .W

trap

addq. |

clr.w

move. l

move .w

trap

movem. |

clr.

move .b

asl .w

move .b

asl.

movea. |

lea

movea. |

lea

lea

moved. l

move. |

move. t

move. |

move. |

move. |

move.

move.

move.

move.

move. g
u

g
u

g
u

g
u

g
e
m

lea

dbra

lea

moved. |

move. |

move. l

move. |

#new_vbi, vbl_vec

d7,-(sp)

#super , - (Sp)

#gemdos

#6,Sp

-(sp)
d6,-(sp)
#ptermres, - (sp)

#gemdos

d0-d7/a0-aé, -

do

$f fff8201,d0

#8 , dO

$f fff8203,d0

#8 , d0

d0, a0

110*80(a0), a0

a0,a3

characters, al

save,a2

#15 ,d0

30(a0), (a2)+

34(a0), (a2)+

38(a0),(a2)+

42(a0),(a2)+

46(a0),(a2)+

(a1)+,30(a0)

(al)+,34(a0)

(a1)+,38(a0)

(a1)+,42(a0)

(al)+,46(a0)

80(a0), a0

d0, lop

save,al

#15 , dO

(a1)+,30(a3)

(a1)+,34(a3)

(a1)+,38(a3)

Atari ST Intern 2

seigene VBL-Routine davor

zurück in den User-Modus

skein Fehler

;Programmlänge

Programm resident halten

(sp)

;Bildschirmstart (physikalisch)

‚auf Zeile 110 setzen

merken

‚16 Pixelzeilen

‚retten

‚Text schreiben

‚nächste Zeile

‚16 Pixelzeilen

;Bild zurückschreiben

interrupts

move. l

move. |

lea

dbra

movem. |

clr.b

belr

rte

:; Neue VBL-Routine:

 125

(a1)+,42(a3)

(a1)+,46(a3)
80(a3),a3 ‚nächste Zeile

dO , Lop2

(sp)+,d0-d7/a0-a6

beontrol ;Timer abstellen

#0 ,Sfffffa0f

new_vbl: move.b #100,bdata ;Timer anwerfen (100 Zeilen)

move.b #8,bcontrol ;Kontrollregister: Timer wieder an

jump: jmp $12345678 ‚zurück in normale VBL-Routine

DATA

ausgabe: DC.b 27,'E I LIKE DATA BECKER ',0

BSS

ALIGN

characters: DS.b 20*16

save: DS.b 20*16

END

 126 Atari ST Intern 2

 Sound-Programmierung 127

4. Sound-Programmierung

Der Sound-Chip des Atarı ST heißt YM-2149 und stammt von

YAMAHA (daher das YM). Bis zur Serienproduktion des Computers war
allerdings unklar, ob dieser Chip von YAMAHA oder ein ähnlicher von

General Instruments verwendet werden sollte. Ich sage Ihnen das nur

deshalb, weil die Routine des Betriebssystems, die den Soundchip be-

dient, mit den Buchstaben GI (General Instruments) beginnt. So kommt

wenigstens keine Verwirrung auf.

Der Sound-Chip ist recht leistungsfähig. Auch die Programmierung des
Chips ist an sich nicht schwierig, doch können die wenigsten Program-
mierer die Fähigkeiten voll ausschöpfen. Ich will Ihnen deshalb im fol-
genden sowohl die technischen Möglichkeiten des Chips als auch etwas
Hintergrundwissen über die Tonerzeugung näherbringen.

4.1 Grundlagen

Einige Leser werden die folgenden Bemekungen für überflüssig halten.
Ich wollte sie dennoch nicht als bekannt voraussetzen.

Betrachten wir zunächst einmal die Töne, die Sie z.B. auf einem Klavier

spielen können. Die Klaviatur wird in Oktaven eingeteilt. Eine Oktave ist
ein Bereich von einem C bis zum nächsthöheren H. Die Noten einer
Oktave heißen C, D, E, F, G, A und H. Wenn Sie diese Noten nach-

einander spielen, dann hören Sie das, was im allgemeinen einfach mit
Tonleiter bezeichnet wird. Diese Töne entsprechen den weißen Tasten

auf einem Klavier.

Nun gibt es aber auch noch die schwarzen Tasten, und zwar fünf in je-
der Oktave. Durch die Anordnung dieser schwarzen Tasten kann man
übrigens überhaupt erst erkennen, wo die verschiedenen Noten auf einer

Klaviatur liegen. Spielt man nun eine Tonleiter, die auch die schwarzen
Tasten enthält, dann bezeichnet man das als chromatische Tonleiter.

Töne lassen sıch aber noch auf eine andere Weise bestimmen als über

Oktave und Note, nämlich über die Frequenz. Ein Ton, den Sie hören, ist

nämlich zunächst einmal eine Schwingung des Mediums, das den Ton
weiterleitet (gewöhnlich Luft). Um eine solche Schwingung zu erzeugen,

 128 Atari ST Intern 2

muß sich die Membran eines Lautsprechers sehr schnell hin und her be-

wegen. Das könnte bei einem vom Computer generierten Ton so ausse-

hen:

[

¥

«
—
\

A
m
p
l
i
t
u
d
e

—
—
»

Fa

“
eee “ee”

“—— Periode ———»

Auf der Abzisse ist die Zeit eingetragen, auf der Ordinate der Ausschlag
der Membran relativ zur normalen Lage. Verändert man die Größe der
Membranausschläge, also die Amplitude, dann verändert sich auch die

Lautstärke des Tons. Wichtiger ist aber das, was in der Zeichnung mit
Periode bezeichnet ist. Das ist ein Teil des Graphen, der von einer

Nullstelle über den Tiefpunkt, noch eine Nullstelle und einen Hochpunkt

wieder zur Nullstelle führt (oder umgekehrt). Leger formuliert ist es die
Kombination von Berg und Tal des Graphen.

Ein Ton ist nun umso höher, je mehr solcher Perioden in der gleichen

Zeit vorkommen. Um einen höheren Ton zu erreichen, muß sich die

Membran des Lautsprechers also bei gleicher Amplitude schneller bewe-
gen. Im gleichen Maße wie die Zahl der Perioden pro Zeit zunimmt,

nimmt die zeitliche Ausdehnung einer einzelnen Periode, also die

Periodendauer, ab. Die Zahl der Perioden pro Sekunde bezeichnet man

als Frequenz (Maßeinheit: Hz). Für uns wird jedoch die Periodendauer
wichtiger sein als die Frequenz. Merken Sie sich also diesen Begriff.

Nun müssen wir uns noch um den Lautstärke-Verlauf eines Tones küm-

mern. Stellen Sie sich ein Glockenspiel vor: Wenn hier ein Ton angeschla-
gen wird, dann erklingt er zunächst ganz laut, um dann langsam leiser zu
werden. Oder eine Trompete: Bis der Trompeter den Ton sauber gefun-

den hat, spielt er etwas leiser. Dafür beendet er den Ton abrupt. Dieser

Lautstärkeverlauf ist also einer der Charakteristika eines Instruments.

 Sound-Programmierung 129

Wir können diese Änderung der Lautstärke auch durch den Sound-Chip
unseres Computers durchführen lassen, um bestimmte Effekte zu erzie-
len. Dazu müssen wir eine Hüllkurve angeben. Diese bestimmt den Laut-

stärkeverlauf eines Tones mit der Zeit. Es gibt Hüllkurven, deren Verlauf
periodisch ist, und solche, deren Lautstärke am Ende der Hüllkurve auf

einem bestimmten Punkt bleibt: entweder Null oder ganz laut.

Es ist schwierig, den Verlauf der möglichen Hüllkurven unseres Sound-
Chips in Worte zu fassen. Sehen Sie deshalb folgende Grafik, die auch

schon die Nummern der einzelnen Kurven enthält (brauchen wir erst
später):

Hüllkurven

Nummer | Grafik Beschreibung

1373| N linear fallend

4-7 ya linear steigend, dann B

ö NNNNN.N Sägezahn fallend

18 NN NZ Dreieck, anfangs fallend
N

il N linear fallend, dann laut

12 AVM Sägezahn steigend

13| / linear steigend und laut

14 NN N Dreieck, anfangs steigend
 15 ,\ linear steigend, dann B

4.2 SOUND in GFA-BASIC

SOUND ist die einfachste Anweisung, um dem Rechner unter GFA-
BASIC Töne zu entlocken. Als Parameter müssen Sie den Sound-Kanal,

die Lautstärke (0-15), die Note und die Oktave (1-8) angeben. Optional

 130 Atari ST Intern 2

können Sie eine Wartezeit angeben (in 50stel-Sekunden). Es ist nicht die

Haltedauer des Tons, sondern die Zeit, die gewartet wird, bevor der

nächste BASIC-Befehl ausgeführt wird.

Der Wert für die Note kann zwischen 1 und 12 liegen:

7 _ . Noten in GFA-BASIC:
— tt i. mL

tp ST

1 3 3 6 8118|12/|13 i 3

CIDIE FIG/A|H|C Ci 0D

—- —— | —t

SS =

Das hohe C (ganz rechts auf den Klaviaturen) gehört eigentlich schon zur
nächsten Oktave. Die höheren Oktaven haben übrigens die größeren

Nummern. Der höchste Ton wäre also Oktave 8, Ton 12.

Der Sound-Kanal darf zwischen 1 und 3 liegen. Damit bestimmen Sie,

über welchen der drei Tongeneratoren des Sound-Chips (A, Bund C) der

Ton gespielt werden soll. Mehrstimmig können Sie damit allerdings nicht
spielen; denn wenn Sie für SOUND den Generator A (1) angeben, dann

werden B und C automatisch abgeschaltet. Apropos: Abgeschaltet wird

der Ton dadurch, daß Sie als Lautstärke eine Null angeben (die anderen

Parameter entfallen dann).

Damit können wir schon ein erstes kleines Stück spielen lassen:

ı Sound in GFA-BASIC - Der Sound-Befehl
' GFA-BASIC MP 03-01-89 | SOUND1.GFA
A

ganze=80 I Notenwerte

halbe=ganze/2

viertel=ganze/4

 Sound-Programmierung 131

c=1 ! Noten

d=3

e=5

f=6

g=8
a=10

h=12
I

' Wir spielen:
Q

SOUND 1,15,e,4,viertel

SOUND 1,15,c,4,viertel

SOUND 1,15,d,4,viertel

SOUND 1,15,9,3,halbe+viertel I 3 = eine Oktave tiefer als 4SOUND 1,0,0,0,2

I kurze Pause

SOUND 1,15,9,3,viertel

SOUND 1,15,d,4,viertel

SOUND 1,15,e,4,viertel

SOUND 1,15,c,4,halbe+viertel

SOUND 1,0,0,0 ! Ton abschalten

Die kurze Pause (siehe Kommentar im Listing) ist übrigens deshalb nötig,
weil sonst die beiden gleichen Töne zu einem langen Ton verschmelzen
würden!

4.3 Sound im allgemeinen

In Omrikon-BASIC, C und Assembler kennt der Rechner keine Noten
und Oktaven mehr. Hier werden Töne über die Periodendauer angegeben.

Eine Liste der Frequenzen und der entsprechenden Periodendauern fin-

den Sie im Anhang C. |

Zunächst möchte ich die Hardware-Register des Soundchips vorstellen.

Register 0 und 1:

Diese Register steuern die Periodendauer des Tones, der vom Kanal A
erzeugt werden soll. Dabei stehen im Register 0 die unteren acht Bits
dieses Wertes, während sich im unteren Nibble (4 Bits) des Registers 1

die oberen 4 Bits befinden. Wir haben also zur Steuerung der Tonhöhe
8+4=12 Bits und können folglich Periodendauern zwischen 0 und 4095
angeben. Natürlich ist die Einheit dieser Zahl nicht Sekunden; Sie müssen

 132 Atari ST Intern 2

vielmehr die Konstante 125000 durch die gewünschte Frequenz teilen.
Den gerundeten Wert schreiben Sie ın die Register 0 und 1, und der Ton

wird erzeugt.

Damit Sie nicht soviel rechnen müssen, sind die Periodendauern zusätz-
lich zu den Frequenzen der wichtigen Töne ım Anhang C abgedruckt.
Dort finden Sie auch gleich Low- und High-Byte dieses Wertes.

Register 2 und 3:

Wie 0/1, aber fiir Tongenerator B.

Register 4 und 5:

Wie 0/1 bzw. 2/3, aber für Generator C.

Register 6:

Zusätzlich zu den Tongeneratoren verfügt der Soundchip noch über einen
Rauschgenerator. Das Register 6 beeinflußt das Rauschen. Je kleiner der
Wert, den Sie hier hineinschreiben, desto höher klingt das Rauschen (man

kann nicht wirklich von einer Tonhöhe sprechen). Es werden nur die

unteren 5 Bits benutzt, d.h. es sind Werte zwischen O0 und 31 sinnvoll.

Register 7:

Dieses Register heißt Multifunktionsregister. Die Bits 0 bis 5 sind für uns
von Bedeutung; die Bits 6 und 7 müssen immer auf Eins gesetzt sein!

Mit den Bits 0, 1 und 2 werden die drei Tongeneratoren eingeschaltet
(Bit 0 ıst Generator A usw.). Merkwürdigerweise bedeutet ein gesetztes
Bit, daß der entsprechende Kanal abgeschaltet ist. Die Bits 3, 4 und 5

schalten den Rauschgenerator (siehe Register 6) auf die Kanäle A, B und

C auf. Auch hier gilt: Bit gesetzt = Rauschen aus. Ein Wert von 252 (Bi-

när: 11111100) in diesem Register würde also bedeuten, daß nur die Ge-

neratoren A und B angeschaltet sind.

Register 8:

Hiermit wird die Lautstärke des Kanals A eingestellt; es sind Werte

zwischen 0 und 15 erlaubt. Wenn Sie hier eine 16 hineinschreiben, so be-

deutet dies, daß die Lautstärke von Kanal A nicht über dieses Register 8,

sondern über die gerade eingestellte Hüllkurve (siehe Register 11 bis 13)
gesteuert wird.

 Sound-Programmierung 133

Register 9:

Wie 8, aber fiir Kanal B.

Register 10:

Wie 8 bzw. 9, aber für Kanal C.

Register 11/12:

Erinnern Sie sich an die grafische Darstellung der Hüllkurven? Mit die-
sem Registerpaar können Sie bestimmen, wie steil oder flach die Laut-

stärke, wenn sie durch die Hüllkurve gesteuert wird, ansteigt oder fällt.

Mit anderen Worten: Sie regeln hiermit die Geschwindigkeit der
Lautstärke-Änderung. So kann ein Ton z.B. sehr schnell oder auch lang-

sam ausklingen. Das Register steuert also die zeitliche Ausdehnung einer

Hüllkurvenperiode und wird deshalb ebenfalls Periodendauer genannt.

Passen Sie also auf, daß Sie es nicht mit der Periodendauer aus den Re-
gistern 0 bis 5 verwechseln.

Register 11 enthält das Low-Byte, Register 12 das High-Byte. Es werden
alle 16 Bits genutzt; damit sind Werte zwischen 0 und 65535 möglich.

Register 13:

Hiermit stellen Sie die Hüllkurve ein, die den Lautstärkeverlauf steuert

(allerdings nur, wenn das Lautstärkeregister des entsprechenden Tonka-
nals auf 16 steht; siehe Register 8 bis 10). Die Werte entnehmen Sie bitte
der obenstehenden Abbildung der verschiedenen Hüllkurven. Beachten
Sie, daß einigen Hüllkurven mehr als eine Nummer zugewiesen wurde.
Das ist kein Fehler, sondern hängt von der Codierung der Bits dieses Re-
gisters ab. Näheres finden Sie im Intern Band 1.

Schon jetzt ein Hinweis: Ein Beschreiben dieses Registers führt immer
dazu, daß die Hüllkurve neu begonnen wird (egal ob Sie eine neue oder
die gleiche Hüllkurve noch einmal angegeben haben). Wenn Sie also spä-
ter zwei Töne nacheinander spielen möchten, so müssen Sie, damit der

zweite Ton auch wirklich neu angeschlagen wird, das Register 13 be-
schreiben und nicht die Register, die die Periodendauer des Tons be-
stimmen. |

Die Register 14 und 15 sind für uns nicht von Interesse, weil Sie nicht
für die Sounderzeugung bestimmt sind.

 134 Atari ST Intern 2

Nachdem nun die Bedeutung der Register geklärt ist, benötigen wir eine
Routine, um die Register auslesen und beschreiben zu können. Das ist

die XBIOS-Funktion Giaccess (Nummer 28). Sie wird wie folgt auf-
gerufen:

=XBIOS(28,daten, register) ! GFA-BASIC

XBIOS(x,28,daten, register)’ OMI KRON-BASIC

x = Giaccess (daten, register); /* C */

move.w #register, -(sp) ; Assembler

move.w #daten, - (sp)

move.w #28,-(sp)

trap #14 |
addq.| #6,sp ‚x in DO

Mit register bestimmen Sie, wie der Name schon sagt, auf welches Regi-
ster im Sound-Chip Sie zugreifen möchten, wobei die Registernummer
zwischen 0 und 13 liegen sollte. Wenn zusätzlich das Bit 7 gesetzt ist
(oder zur Registernummer die Zahl 128 addiert wird, was dasselbe ist),
dann wird der Wert daten in dieses Register geschrieben. Bei gelöschtem
Bit 7 wird statt dessen das entsprechende Register ausgelesen und dessen

Inhalt als Funktionswert zurückgegeben.

In BASIC ist die Verwendung dieser Funktion jedoch oft nicht erforder-
lich, weil man mit den Anweisungen SOUND und WAVE (GFA-BASIC)
bzw. TUNE, NOISE und VOLUME die meisten Dinge regeln kann. Das
habe ich dann auch in den beiden folgenden Beispielprogrammen

gemacht. Schauen Sie bitte im Handbuch Ihrer Programmiersprache nach
oder sehen Sie sich die Programmlistings an, aus denen die Verwendung
eigentlich deutlich hervorgeht.

Zunächst ein Programm, das eine Art Sirenenton erzeugt. Es benutzt dazu

(auch in GFA-BASIC) die Periodendauer eines Tones:

GFA-BASIC

I

Sound mit Angabe der Periodendauer

© GFA-BASIC MP 03-01-89 SOUND2.GFA
i

8

FOR a=1 TO 5

FOR i=4000 DOWNTO 500 ! Ton wird höher

SOUND 1,15, #i

NEXT i

 Sound-Programmierung

FOR i=500 TO 4000 ı und wieder niedriger

SOUND 1,15, #i

NEXT i

NEXT a

SOUND 1,0 ! Ton aus
8

Omikron-BASIC

Sound mit Angabe der Periodendauer

OMIKRON MP 03-01-89 SOUND2.BAS

FOR A=1 TO 5
FOR 1=4000 TO 500 STEP -1

TUNE 1,1
NEXT I
8

FOR 1=500 TO 4000
TUNE 1,1

NEXT I
NEXT A

TUNE 1,0' Schaltet Kanal ab
END

C

[RRRREREREREREREREREREEREREEREEEREEEEREREERERERE

/* Sound unter Verwendung der Periodendauer */

/* Laser C MP 03-01-89 SOUND2.C */
[RRREREREREREEEEEERERREEERERERERREREREREEERERERE /

#include <osbind.h>

int i,a;

sound (kanal, periode)

int kanal, periode;

{
Giaccess (periode & 255, 128 + (kanal-1)*2); /* Low-Byte */

Giaccess (periode >> 8, 128 + (kanal-1)*2+1); /* High-Byte */

}

main()

135

 136

Giaccess (254, 128 + 7);

Atari ST Intern 2

/* nur Tonkanal A an */

Giaccess (15, 128 + 8); /* Lautstärke A = 15 */

for (a=0; a<5; att)

* for (i = 4000; i > 500; i--)

sound (1, 1);

for (i = 500; i < 4000; i++)

sound (1,1);

}

sound (1, 0);

Assembler

/* Ton abschalten */

» Sound unter Verwendung der Periodendauer eines Tons

; Assembler

gemdos = 1

xbios = 14

giaccess = 28

TEXT

move.W

move.

move.Ww

trap

addq. |

x

move .wW

move .wW

move .W

trap

moved. |

move .W

bsr

subq.w

cmpi .W

bne.s

loop:

11:

l2: bsr

MP 03-01-89 SOUND2.Q

#128+7,-(sp) ;Kanal A einschalten

#254 ,-(sp)

#giaccess, -(sp)

#xbios

#6, Sp

#128+8,-(sp) ;Lautstärke Kanal A

#15,-(sp) ‚aufdrehen

#giaccess,-(sp)

#xbios

#6 ,sp

#4 ,d7 ‚5 Durchgänge

#4000,,d6 sAnfangswert fur Per iodendauer

play ;Ton spielen

#1,d6 sum eins erniedrigen

#500, d6 Endwert?

1

play ‚spielen

 Sound-Programmierung 137

addq.w #1,d6

cmpi.w #4000,d6 ‚Wieder ganz oben?

bne.s I2

dbra d7, loop sfiinfmal, bitte

clr.w d6 ‚Ton abschalten

bsr play

clr.w -(sp) ‚Ende

trap #gemdos

play: move.w d6,d5 ‚Ton in d6 über Kanal A spielen

move.w #128,-(sp) ;Kanal A low

move.w d5,-(sp)

andi.w #%ff,(sp) ‚nur Bits O0 bis 7

move.w #giaccess,-(sp)

trap #xbios

addq.| #6,sp

move.w #128+1,-(sp) ;Kanal A high

asr.w #8,d5

move.w d5,-(sp)

move.w #giaccess, -(sp)

trap #xbios

addq.| #6,sp

rts

END

Im Assembler- und C-Listing finden Sie auch jeweils ein kleines Unter-
programm zum Einstellen einer bestimmten Periodendauer, das Sie sicher

auch gut in Ihren eigenen Programmen verwenden können.

Ein weiteres Beispielprogramm soll nun demonstrieren, in wie vielfältiger
Weise man ein und denselben Ton durch einen Wechsel der Hüllkurve

und durch verschiedene Hüllkurven-Periodendauern verändern kann.

Hören Sie selbst:

GFA-BASIC

i

ı Hüllkurven SOUND3.GFA

' GFA-BASIC MP 03-01-89
t

SOUND 1,15,1,4 ! Ton einschalten (C)

 Atari ST Intern 2 138

1

WAVE 1,1,14,15,200 ! Dreieck (14) / Periodendauer: 15

WAVE 1,1,14,400,200 1! gleicher Ton, aber längere Periodendauer

WAVE 1,1,14,3000,200 ! nochmal länger...
8

WAVE 1,1,8,3000,200 1! Neue Hüllkurve: Sägezahn fallend (8)

WAVE 1,1,1,40000,200 ! Linear fallend (1), lange Periodendauer
i

SOUND 1,0 I Ton abschalten
5

Omikron-BASIC

' Hol Lkurven SOUND3. BAS

' OMIKRON MP 03-01-89

TUNE 1,478! Irgend ei

VOLUME 1,14,15: WAIT 4!

VOLUME 1,14,400: WAIT 4!

n Ton für unsere Versuche...

Dreieck (14) / Periodendauer: 15

gleicher Ton, aber längere Dauer

VOLUME 1,14,3000: WAIT 4' nochmal länger...

VOLUME 1,8,3000: WAIT 4! Sägezahn fallend (8)

VOLUME 1,1,40000: WAIT 4' Linear fallend (1)

TUNE 1,0

END

Cc

NETTE |

/* hHüllkurven SOUND3.C */

/* Laser C MP 03-01-89 */
[RRREREREEREREREREEREREREREREREREE /

#include <osbind.h>

sound (kanal, periode)

int kanal, periode;

{

Giaccess (periode & 255, 128 + (kanal-1)*2); /* Low-Byte */

Giaccess (periode >> 8, 128 + (kanal-1)*2+1); /* High-Byte */

>

wave (kurve, dauer)

int kurve, dauer;

{

 Sound-Programmierung

Giaccess (kurve, 128 + 13);

Giaccess (dauer & 255, 128 + 11);

Giaccess (dauer >> 8, 128 + 12);

>

warte() /* Verzögerungsschleife */

{

long i;

for (i = 0; i < 500000; i++);

>

main()

{

Giaccess (254, 128 + 7); /* Kanal A einschalten */

Giaccess (16, 128 + 8); /* Lautstärke durch Hüllkurve gesteuert */

sound (1, 478); /* 'Versuchston' anschalten */

wave (14, 15);

warte();

wave (14, 400);

warte();

wave (14, 3000);

warte();

wave (8, 3000);

warte();

wave (1, 40000);

warte();

sound (1, 0); /* Ton abschalten */
>

Assembler

; Hüllkurven SOUND3.Q

; Assembler MP 03-01-89

gemdos = 1

xbios = 14

giaccess = 28

139

140

play:

TEXT

move.W

move .W

move . wW

trap

addq. |

move .w

move .W

move .W

trap

addq. |

move .w

bsr

move .w

move .w

bsr

bsr

move .wW

bsr

bsr

move .W

bsr

bsr

move .W

bsr

bsr

move. Ww

move .w

bsr

bsr

clr.w

bsr

clr.w

trap

move .W

move .W

Atari ST Intern 2

#128+7,-(sp) ;Kanal A einschalten

#254,-(sp)
#giaccess, -(sp)

#xbios

#6,Sp

#128+8,-(sp) ;Lautstarke Kanal A

#16,-(sp) sgesteuert durch Hullkurve

#giaccess,-(sp)

#xbios

#6 ,sp

#478 , db
play

#14,d7

#15 ,d6

kurve

wait

#400, d6

kurve

wait

#3000, d6

kurve

wait

#8 ,d7

kurve

wait

#1,d7

#40000,d6

kurve

wait

dé
play

-(sp)
#gemdos

dé ,d5

#128, -(sp)

;Test-Ton

Dreieck

:Periodendauer

sneue Peri odendauer

‚Sägezahn fallend

;P.-dauer immer noch 3000

;linear fallend

‚ganz schön lang!

‚Ton abschalten

‚Ende

‚Ton in d6 über Kanal A spielen

Kanal A low

kurve:

wait:

11:

l2:

move .W

andi .w

move .W

trap

addq. |

move .W

asr.W

move .W

move .w

trap

addq. |

rts

move .W

move .W

move. Ww

trap

addq. l

move . Ww

move .W

move.W

andi.w

move.W

trap

addq. l

move .W

asr.W

move.W

move .W

trap

addq. |

rts

moved. l

moved. |

dbra

dbra

rts

END

 Sound-Programmierung 141

d5,-(sp)

#$f f, (Sp) snur Bits 0 bis 7

#giaccess, -(sp)

#xbios

#6 ,sp

#128+1,-(sp) ;Kanal A high

#8 ,d5

d5,-(sp)

#giaccess, -(sp)

#xbios

#6,Sp

#128+13,-(sp)

d7’,-(sp)

#giaccess, -(sp)

#xbios

#6 ,sp

;‚Hüllkurve

d6,d5 ;‚Periodendauer in d6

#128+11,-(sp) ; low

d5,-(sp)

#$ff, (sp) snur Bits 0 bis 7

#giaccess, - (sp)

#xbios

#6 ,sp

#128+12,-(sp) ‚high

#8 ,d5

d5,-(sp)

#giaccess, - (sp)

#xbios

#6, Sp

#-1,d0

#30,d1

d1,12

d0,11

 142 Atari ST Intern 2

Es sei noch einmal wiederholt: Wenn Sie Musik machen und dabei eine
Hüllkurve verwenden, die etwas langsamer ist, etwa um den Ton langsam

ausklingen zu lassen, dann müssen Sie für jeden neuen Ton die entspre-
chende Hüllkurvennummer in das Register 13 schreiben!

4.4 Sound im Interrupt

Unser ST besitzt eine außergewöhnliche Routine im XBIOS, die, einmal

aufgerufen, beliebig lange und komplizierte Befehlssequenzen an den
Sound-Chip sendet. Das geschieht während eines Systeminterrupts, so daß

ein Programm normal weiterarbeiten kann, während die Musik läuft. So
wird ın den meisten Spielen das Hauptprogramm geladen, während

gleichzeitig irgendein Titellied gespielt wird. Nur eins sollten Sie beach-
ten: Der Tastenklick beendet die ganze Aktion (Systemvariable $484

(Byte) zum Abschalten des Tastenklicks, siehe Intern 1).

Diese XBIOS-Routine heißt Dosound. Sie hat die Funktionsnummer 32.
Als Parameter ist ein Zeiger auf eine Liste mit Soundbefehlen zu
übergeben.

Diese Soundbefehle sind alle ein Byte lang. Es bedeuten:

0-15: Das folgende Byte wird in das durch das Befehlsbyte bezeich-
nete Register des Sound Chips geschrieben.

255: Das folgende Byte gibt die Wartezeit in 5Ostel Sekunden an, die
der Rechner warten soll, bevor der nächste Sound-Befehl aus-

geführt werden soll. Damit wird jedoch nicht das laufende Pro-
gramm angehalten! Ist das der 255 folgende Byte eine Null, dann
wird die Interrupt-Soundverarbeitung beendet.

Es gibt zwar noch zwei weitere Kommandos, doch die werden so gut wie
nie gebraucht und können immer durch die anderen Kommandos ersetzt
werden. Näheres auch hierzu im Intern 1.

Ein Musikstück läßt sich nun dadurch schreiben, daß die Register des

Soundchips mit bestimmten Werten geladen werden, was einen Ton er-
gibt. Dann wird solange gewartet, bis die erste Änderung eines der Regi-
ster erforderlich ist usw. Sicher können Sie sich vorstellen, daß diese Art
der Komposition nicht gerade komfortabel ist. Deshalb gibt es eine Reihe

von Musikprogrammen, die ein Musikstück nicht nur spielen können,
sondern es optional in Zahlenform für den Dosound-Befehl ausgeben.

 Sound-Programmierung 143

Daß es dennoch ohne ein solches Programm geht, beweist folgende
Demo. Die C- und Assembler-Programmierer beachten bitte, daß das

Programm eigentlich resident im Speicher gehalten werden müßte, um
die Sound-Daten vor Überschreiben zu schützen. Der Einfachheit halber
habe ich im Demoprogramm darauf verzichtet. Falls Sie das Programm

verändern möchten, so beachten Sie bitte, daß aus diesem Grund die
Extension der Programmdatei .TOS heißen muß (nicht .PRG), wenn Sie
das Programm vom Desktop aus starten wollen.

GFA-BASIC

' Interrupt-Musik mit Dosound (XBIOS, Nr. 32)

' GFA-BASIC MP 03-01-89 SOUND4 .GFA
i

s$=" I Befehlsstring basteln
ß

DO

READ befehl

EXIT IF befehl=-1

s$=s$+CHR$Cbefehl)

LOOP

VOID XBIOS(32,L:VARPTR(s$))

END

Musik-Daten:

A

i

ı

' Alle Tongeneratoren auf 0:
8

DATA 0,0,1,0,2,0,3,0,4,0,5,0

' Lautstärke: A und B durch Hüllkurve gesteuert, C O0

DATA 8,16,9,16,10,0

' Hüllkurve: linear fallend, Periodendauer: 8000

DATA 13,1,11,64,12,31

! Generatoren A und B einschalten:
8

DATA 7,252

ı Jetzt kommen die Töne:
8

DATA 0,222,1,1,255,16

 144 Atari ST Intern 2

DATA 0,170, 13,1,255,16
DATA 0, 123,2,222,3,1,13,1,255,32
DATA 13,1,255,46
DATA 0,102,2,170,13,1,255, 16
DATA 0,28,2, 123,13, 1,255, 24
DATA 0,63, 13,1,255,8
DATA 13,1,255,32
DATA 0,123,2,222,13,1,255, 16
DATA 0,63,2, 123,13, 1,255, 16
DATA 2,170,13,1,255,24
DATA 0,102,13,1,255,8
DATA 13,1,255,32
DATA 0,63,2,250, 13, 1,255, 16
DATA 0,102,2,0,3,0,13,1,255, 16
DATA 0,123,2,222,3,1,13,1,255, 64

Ende: Alles wieder auf Null/normal:

DATA 0,0,1,0,2,0,3,0,4,0,5,0,7,255,8,15,9,15, 10,15

Bearbeitung abbrechen:
i

DATA 255,0

DATA -1
8

Omikron-BASIC

I

' Interrupt-Musik mit Dosound (XBIOS, Nr. 32)

" OMIKRON-BASIC MP 03-01-89 SOUND4 .BAS
8

ss="m Befehlsstring basteln
a

WHILE 1' Endlosschleife

READ Befehl

IF Befehl=-1 THEN EXIT

S$=S$+ CHR$(Befehl)
WEND

5

Strptr= LPEEK(VARPTR(S$))+ LPEEK(SEGPTR +28)

XBIOS (,32, HIGH(Strptr), LOW(Strptr))
8

END
8

' Musik-Daten:

 Sound-Programmierung

' Alle Tongeneratoren auf 0:
'

DATA 0,0,1,0,2,0,3,0,4,0,5,0

' Lautstärke: A und B durch Hüllkurve gesteuert, C 0

DATA 8,16,9,16,10,0

ı Hüllkurve: Linear fallend, Periodendauer: 8000

DATA 13,1,11,64,12,31

! Generatoren A und B einschalten:
i

DATA 7,252

' Jetzt kommen die Töne:
I

DATA 0,222,1,1,255,16
DATA 0,170,13,1,255,16
DATA 0,123,2,222,3,1,13,1,255,32
DATA 13,1,255,46
DATA 0,102,2,170,13,1,255,16
DATA 0,28,2,123,13,1,255,24
DATA 0,63,13,1,255,8
DATA 13,1,255,32
DATA 0,123,2,222,13,1,255,16
DATA 0,63,2,123,13,1,255,16
DATA 2,170,13,1,255,24
DATA 0,102,13,1,255,8
DATA 13,1,255,32
DATA 0,63,2,250,13,1,255,16
DATA 0,102,2,0,3,0,13,1,255,16
DATA 0,123,2,222,3,1,13,1,255,64

Ende: Alles wieder auf Null/normal:

DATA 0,0,1,0,2,0,3,0,4,0,5,0,7,255,8,15,9,15,10,15

! Bearbeitung abbrechen:
4

DATA 255,0

DATA -1
t

145

 146 Atari ST Intern 2

C
NR /

/* Interrupt-Musik mit Dosound-Funktion */

/* Laser C MP 03-01-89 SOUND4.C */
[RERERERRRERRERRER EERE REREEEEREREREREREREREEE |

#include <osbind.h>

char daten[] = ¢

0,0,1,0,2,0,3,0,4,0,5,0, /* A, B und C auf 0 */

8,16,9,16,10,0, /* Lautstärke: A und B Hüllk. */

13,1,11,64,12,31, /* linear fallend, P.: 8000 */

7,052, /* A und B anstellen */

0,222,1,1,255,16, /* Hier spielt die Musik... */

0,170,13,1,255,16,

0,123,2,222,3,1,13,1,255,32,

13,1,255,46,

0,102,2,170,13,1,255,16,

0,28,2,123,13,1,255,24,

0,63,13,1,255,8,

13,1,255,32,

0,123,2,222,13,1,255,16,

0,63,2,123,13,1,255,16,

2,170,13,1,255,24,

0,102,13,1,255,8,

13,1,255,32,

0,63,2,250,13,1,255,16,

0,102,2,0,3,0,13,1,255,16,

0,123,2,222,3,1,13,1,255,64,

0,0,1,0,2,0,3,0,4,0,5,0,7,255,8,15,9,15,10,15, /* alles aus */

255,0 /* Soundverarbeitung beenden */

I

main()

{

Dosound (daten);
}

Assembler

; Interrupt-Musik mit Dosound (XBIOS, Nr. 32)

: Assembler MP 03-01-88 SOUND4 .Q

‘

gemdos = 1

 Sound-Programmierung 147

xbios = 14

dosound = 32

TEXT

pea daten

move.w #dosound, - (sp)

trap #xbios

addq.l #6,sp

clr.u -(sp)

trap #gemdos

DATA

daten: DC.b 0,0,1,0,2,0,3,0,4,0,5,0

DC.b 8,16,9,16,10,0

DC.b 13,1,11,64,12,31

DC.b 7,252

DC.b 0,222,1,1,255,16

DC.b 0,170,13,1,255,16

DC.b 0,123,2,222,3,1,13,1,255,32

DC.b 13,1,255,46

DC.b 0,102,2,170,13,1,255,16

DC.b 0,28,2,123,13,1,255,24

DC.b 0,63,13,1,255,8

DC.b 13,1,255,32

DC.b 0,123,2,222,13,1,255,16

DC.b 0,63,2,123,13,1,255,16

DC.b 2,170,13,1,255,24

DC.b 0,102,13,1,255,8

DC.b 13,1,255,32

DC.b 0,63,2,250,13,1,255, 16

DC.b 0,102,2,0,3,0,13,1,255,16

DC.b 0,123,2,222,3,1,13,1,255,64

DC.b 0,0,1,0,2,0,3,0,4,0,5,0,7,255,8,15,9,15,10,15
DC.b 255,0

END

148 Atari ST Intern 2

 GEM-Programmierung 149

5. GEM-Programmierung

GEM hat sich zu einem richtigen Schlagwort entwickelt: Jeder kennt es,
jeder hat es und jeder will damit umgehen können. Nur: Kaum jemand
kann sagen, was GEM wirklich ist. Bevor Sie also lernen, mit GEM
umzugehen, möchte ich Ihnen erst ein wenig "Allgemeinwissen" darüber

vermitteln.

Ein Blick ins Englisch-Wörterbuch verrät: GEM heißt Schmuckstück oder
Juwel, was aber eher Zufall sein dürfte. GEM ist vielmehr eine Abkür-
zung für den Begriff Graphics Environment Manager, auf Deutsch etwa:
Verwalter einer grafischen Umgebung. Halten Sie die Übersetzung ir-
gendwo im Hinterkopf fest.

Manchmal hört man, GEM sei ein Betriebssystem. Das ıst falsch; Sie
wissen bereits, daß das Betriebssystem des Atari TOS heißt. Schwieriger
wird es mit der zweiten Behauptung: GEM seı eine Benutzeroberfläche.

Klären wir kurz diesen Begriff: Eine Benutzeroberfläche ist die Verbin-

dung zwischen dem Benutzer eines Programms und den Funktionen, die

das Programm dem Benutzer bieten möchte. So kann ein Programm
durchaus sehr leistungsfähig sein, doch wenn der Benutzer nicht weiß,
wie er all diese Funktionen verwenden kann oder die Anwendung zu
umständlich ist, so sind sie für ihn nutzlos - es fehlt eine gute Benutzer-
oberfläche. Die Benutzeroberfläche wird praktisch als Schale (englisch:
Shell) um ein Programm herumgebaut. Der Anwender sagt nun dem Pro-
gramm nicht direkt, was er will, sondern teilt der Schale seine Wünsche

mit, die dann ihrerseits das Programm aktiviert. Das gleiche System fin-
det man oft auch bei Compilern: Ein Tastendruck oder Mausklick genügt,
um einen Quelltext zu compilieren und anschließend gleich zu linken.

Dabei geben Sie den Tastendruck an die Schale oder Shell, die dann ih-
rerseits alle benötigten Teilprogramme mit den notwendigen Parametern
oder Kommandozeilen versorgt und aufruft.

GEM ist zwar keine Benutzeroberfläche, aber der Begriff geht schon in
die richtige Richtung. Erinnern wir uns an die deutsche Übersetzung:
Verwalter einer grafischen Umgebung. Die Umgebung ist in diesem Fall
nichts anderes als eine Benutzeroberfläche, nämlich die Schale (Shell), die
ein Programm umgibt. Grafisch will sagen, daß der Benutzer nicht, wie
etwa bei PCs üblich, seine Befehle über die Tastatur (also als Text) ein-
gibt, sondern, Sie kennen es, mit der Maus einen Pfeil auf dem Bild-

schirm bewegt, auf Bildchen zeigt und diese dann schließlich anklickt. So
bleibt nur noch das Wort Verwalter zu klären. Damit ist gemeint, daß

 150 Atari ST Intern 2

GEM selbst keine grafische Benutzeroberfläche ist, sondern nur die Pro-
grammierung einheitlicher grafischer Benutzeroberflächen unterstützt.

Vor allem das Wort einheitlich ist von Bedeutung, denn GEM sorgt da-

für, daß die Bedienung von Programmen zu einem gewissen Grad ge-
normt ist. Es ist zum Beispiel kein Zufall, daß ein Druck auf die Taste

Esc innerhalb einer Dialogbox stets das aktuelle Eingabefeld löscht, daß
die Fenster in jedem Programm fast gleich aussehen und daß Sie in der
obersten Bildschirmzeile fast immer eine Menüzeile finden.

Ein Hinweis noch, bevor es richtig losgeht: GEM ist ein sehr leistungsfä-
higes und daher auch umfangreiches System. Der Umgang damit ist zwar
nicht Experten vorbehalten, doch benötigen Sie einige Grundkenntnisse,
bevor ich Ihnen die ersten Beispielprogramme anbieten kann - das wird

zwar nicht schwer werden, aber solange müssen Sie wohl oder übel
durchhalten. Ja, und noch etwas: Sie werden bald eine Beschreibung der
GEM-Funktionen benötigen, die des großen Umfangs wegen natürlich
nicht in diesem Buch untergebracht werden konnte. Sıe finden Sie in der
neuesten Auflage des ersten Intern-Bandes und im GEM-Buch von
DATA BECKER, aber auch in einigen anderen Büchern. Legen Sie Ihre
Dokumentation ruhig schon einmal bereit!

5.1 TOS- und GEM-Programme

Nachdem ich bisher die Bedeutung von GEM für den Anwender aufge-
zeigt habe, möchte ich dieses System jetzt aus Sicht des Programmierers
darstellen. GEM besteht aus einer sehr umfangreichen Bibliothek von
nützlichen Unterprogrammen, den GEM-Funktionen. Diese Funktionen

nehmen dem eigentlichen Programm lästige Routinearbeiten ab. So kann
die Position des Mauszeigers abgefragt, und mit einem einzigen Funkti-
onsaufruf die File-Selector-Box. auf den Bildschirm gezaubert werden.

Wie diese Unterprogramme aufgerufen werden, erfahren Sie etwas später.
Hier sollen zunächst einmal die prinzipiellen Unterschiede dargelegt wer-
den, die zwischen der reinen TOS-Programmierung und der unter GEM
zu beachten sind. Programme, die unter GEM laufen, nennt man übri-
gens Applikationen (= Anwendungen).

GEM erlaubt einen eingeschränkten Multitasking-Betrieb, das heißt,

mehrere Programme dürfen sich gleichzeitig im Rechner befinden und
auch gleichzeitig laufen. Eingeschränkt ist dieses System deshalb, weil ein
Programm eine wichtigere Stellung einnimmt als alle anderen: die gerade
laufende Applikation. Alle anderen Programme sind Accessories. In ei-

 GEM-Programmierung 151

nem solchen System ist es natürlich sehr wichtig, daß sowohl Speicher-

platz als auch Rechenzeit optimal auf die einzelnen Programme verteilt
werden. Während alle Speicherplatz-Fragen von TOS und nicht von GEM

geklärt werden (Kapitel 1.5), hilft uns GEM bei der Rechenzeit. Wie hat
man sich das vorzustellen?

Nehmen wir an, eine Applikation soll auf einen Tastendruck warten.

Wenn Sie das Kapitel 1 gelesen haben, so könnten Sie auf die Idee kom-

men, die GEMDOS-Funktion Cconin() zu bemühen. Doch unterbricht
diese Funktion (wie übrigens alle TOS-Funktionen) das ganze System
(also alle im Multitasking laufenden Programme), bis das gewünschte
Ereignis, nämlich das Drücken einer Taste, eingetreten ist. Ein Drucker-
Spooler, der vielleicht als Accessroy installiert ist, kann seinen Text in
dieser Zeit also nicht loswerden. Da in GEM-Applikationen auch auf

ganz andere Ereignisse gewartet wird (z.B. Mausklick oder Anklicken ei-
nes Menüpunktes) und eigentlich ständig auf irgendetwas gewartet wer-
den muß, gehört die Ereignisverwaltung zu den wichtigsten Aufgaben
des GEM, mit der wir uns noch sehr ausführlich beschäftigen werden.

Hier gibt es nämlich z.B. eine Funktion, die wie Cconin() auf einen
Tastendruck wartet. Nur ist die GEM-Funktion so schlau und läßt in der
Zeit, die die Applikation auf den Benutzer wartet, ein Accessory arbei-

ten.

Doch bevor ich weiter auf einzelne Funktionen eingehe, sollten Sie
zunächst einmal die grobe Struktur des GEM kennenlernen.

Da gilt es, zwei große Teile zu unterscheiden:

AES: (Application Environment Services)

Hier findet sich alles, was ein Programm zu einer richtigen GEM-Appli-

kation macht: Fenster, Menüzeilen, Alert- und Dialogboxen. Außerdem

ist die Ereignisverwaltung hier untergebracht.

VDI: (Virtual Device Interface)

Hier sind die Grafik-Funktionen des GEM versammelt. Alle Text- und

Grafik-Ausgaben einer Applikation sollten mit VDI-Routinen vorgenom-

men werden. Auch das AES bedient sich dieser Funktionen.

Bevor ich Ihnen ein Beispiel geben kann, muß ich erst noch erklären, wie
die ganzen Funktionen aufgerufen werden.

 152 Atari ST Intern 2

5.2 Funktionsaufrufe

Ich könnte es mir leicht machen und sagen, daß eine GEM-Funktion
über einen Namen aufgerufen wird und Parameter in Klammern erhält,
ähnlich wie das bei den TOS-Funktionen in C der Fall ist. Dann könnten

Sie zwar damit arbeiten, doch sollten Sie (bzw. müssen Sie, falls Sie in
Assembler programmieren) schon etwas mehr über die Aufrufe erfahren.

Wollen Sie eine der vielen GEM-Funktionen aufrufen, so müssen Sie
zunächst wissen, ob es sich um eine AES- oder eine VDI-Funktion han-

delt, was mit der GEM-Dokumentation leicht festzustellen ist. Bevor
GEM aktiviert wird, wird diese Information irgendwo vermerkt. Alle an-
deren Informationen werden in sogenannten Parameter-Arrays hinterlegt.
Das sind verschieden große Speicherbereiche, in denen vor dem Aufruf
Parameter abgelegt werden können und nachher eventuelle Rück-

gabewerte der Funktion zu finden sind. Schauen wir uns einmal diese
Parameter-Arrays bei einem AES-Aufruf an:

control-Array:

Hier wird die Nummer der gewünschten AES-Funktion eingetragen.
Außerdem muß hier vermerkt werden, wie viele Parameter in den ande-

ren Arrays übergeben werden sollen.

global-Array:

(Streng genommen kein Array, sondern ein Feld.) Hier werden keine
Parameter übergeben, sondern nur verschiedene Informationen unterge-
bracht, die aber zum größten Teil uninteressant sind. Ich werde bei Ge-
legenheit auf dieses Feld eingehen.

intin-Array:

Wie die Abkürzung vermuten läßt, werden hier Parameter verstaut, die

zwei Bytes groß sind (Integer = Worte). Die Bedeutung der einzelnen
Worte hängt von der jeweiligen Funktion ab und ist deren Dokumenta-
tion zu entnehmen.

intout-Array:

Hier findet der Programmierer nach Abschluß der Funktion alle Worte,
die von der Funktion zurückgegeben wurden, z.B. wenn Daten wie die

- Mauskoordinaten abgefragt wurden.

GEM-Programmierung 153

addrin-Array:

Wie intin, aber für Parameter, die vier Bytes umfassen (Adressen =

Langworte).

addrout-Array:

Wie intout, aber ebenfalls für Adressen. Dieser Aufstellung können Sie
also entnehmen, daß die gewünschte Funktion durch das control-Array
bestimmt wird, weil dort die Funktionsnummer eingetragen wird. Die
anderen Einträge im control-Array (die Zahl der Parameter in den
anderen Arrays) ist wie die Funktionsnummer in der Regel durch die
gewünschte Funktion vorbestimmt, da eine Funktion fast immer gleich
viele Parameter erwartet. Die eigentlichen Parameter an die Funktion

werden dann je nach Größe entweder im intin- oder im addrin-Array
abgelegt. Funktionswerte bzw. -ergebnisse (GEM-Funktionen geben oft
eine Menge von Werten zurück) findet man nach dem Aufruf in den
Arrays intout und addrout. Das global-Array schließlich dient
hauptsächlich internen Zwecken und wird nur ganz selten von der
Applikation selbst benutzt.

Die Sache hat einen Haken: Das ganze Felder-System ist furchtbar um-
ständlich für den Programmierer. Denken Sie nur daran, wie viele Zu-
weisungen an Array-Elemente im Programmtext stehen müssen, bevor

eine Funktion ordnungsgemäß aufgerufen werden kann. Außerdem müs-
sen Sie jedesmal nachschlagen, in welches Element eines Arrays welcher

Parameter gehört; behalten kann das nämlich niemand. Viel einfacher
wäre es döch, die Funktionen statt über eine Nummer und mit Parame-

ter-Arrays über ihren Namen aufzurufen, dem Parameter folgen können
- Hochsprachen-Unterprogramme werden schließlich auch so aufgerufen!

Die Lösung heißt: Bindings. Was verbirgt sich hinter diesem Begriff?
Bindings (in unserem Fall spricht man von GEM-Bindings) sind kleine
Unterprogramme. Sie haben Namen, die mit denen der GEM-Funktionen
identisch sind. Und ihnen werden Parameter übergeben, die die betref-
fende GEM-Funktion auch benötigt. Die Unterprogramme (die Bindings
also) füllen nun die GEM-Parameter-Arrays mit den übergebenen Para-

metern; außerdem setzen sie die Funktionsnummer und die Zahl der Pa-

rameter im control-Array. Dann rufen Sie das GEM auf, und wenn die-
ses seine Arbeit beendet hat, werden, falls vorhanden, Rückgabewerte an

den Aufrufer zurückgegeben.

 154 Atari ST Intern 2

Dank dieser Bindings ist auch der Aufruf von GEM-Funktionen in den
beiden BASIC-Interpretern und in C fast gleich. Wer sich allerdings fir
Assembler entschieden hat, muß auf diese Annehmlichkeit gewöhnlich
verzichten; die wenigsten Assembler bieten serienmäßig Bindings an, was
wohl einen wichtigen Grund auch in der Sprache selbst hat: In Assembler
gibt es nun mal keine bequemen Unterprogrammaufrufe mit Parametern

und Funktionswert, wie man es von Hochsprachen gewöhnt ist. Nur mit

Makros kann platzsparend gearbeitet werden, doch dann sind Programme
wiederum nicht auf verschiedenen Assemblern assemblierbar.

Betrachten wir noch schnell die Parameter-Arrays, die für einen VDI-

Aufruf erforderlich sind. Da wäre zunächst das contrl-Array (jawohl, das
o fehlt). Es ıst praktisch mit dem control-Array vom AES gleichzusetzen.
Intin und intout gibt es auch im VDI. Addrin und addrout entfallen, statt

dessen gibt es die Arrays ptsin und ptsout. Pts steht für Points, also
Punkte, oder besser gesagt: Koordinaten. Jeder Eintrag in diesen beiden
Arrays ist vier Bytes groß: je zwei Bytes für die x- und die y-
Koordinate eines Bildschirmpunktes.

Jetzt möchte ich Ihnen noch zeigen, welche Unterschiede in den ver-
schiedenen Programmiersprachen zu beachten sind. Danach - ich ver-
spreche es - bekommen Sie dann endlich ein Beispielprogramm.

5.3 _GEMin verschiedenen Sprachen

Grundsätzlich sind die GEM-Aufrufe genormt. Im Klartext heißt das,
daß die C-Aufrufe der Funktionen als Standard gelten. Das schließt je-
doch nicht aus, daß es hier und da einmal Abweichungen von diesem
Standard geben kann. Das gilt besonders für die Parameter der BASIC-
Bindings. Deshalb sollten Sıe bei jeder neu vorgestellten Funktion (falls
Sie in BASIC arbeiten) unbedingt im Handbuch nachschauen, ob es Än-
derungen gegenüber dem C-Standard gibt, an den ich mich bei der Be-
schreibung halten werde. Das wird jedoch nur selten der Fall sein.

Einige grundsätzliche Unterschiede sollen hier jedoch kurz angesprochen
werden:

5.3.1 GFA-BASIC

In GFA-BASIC sınd alle AES-Funktionen über ihren Namen zu errei-
chen. Parameter werden in Klammern übergeben. Bei Zahlen ist zu be-

 GEM-Programmierung 155

achten, daB je nach Bedarf 2-Byte- oder 4-Byte-Integervariablen bzw.

Konstanten übergeben werden: Adressen benötigen 4 Bytes, während In-

tegerwerte (z.B. Indizes) mit 2 Bytes auskommen. Es ıst aber durchaus

zulässig, statt einer 2-Byte-Variablen eine mit 4 Bytes anzugeben, wenn

der Inhalt dieser Variablen auch in eine kleine Variable paßt. Wo Strings
benötigt werden, sollten auch solche übergeben werden und nicht, wie in

C und Assembler, Zeiger auf solche.

Die VDI-Funktionen sind nicht implementiert, jedenfalls nicht direkt.

Doch alles, was Sie mit dem VDI in anderen Sprachen machen können,

ist auch mit den speziellen Grafik- und Text-Ausgaberoutinen des GFA-
BASIC möglich - Sie erinnern Sich daran, daß das AES ein Programm zu
einer GEM-Applikation macht, während das VDI "nur" einige sehr all-

gemeine Ausgabefunktionen bereitstellt. Auch ohne direkten Zugang zu
den VDI-Routinen können Sie also in GFA-BASIC alle Register ziehen.

5.3.2 Omikron-BASIC

Omrikon-BASIC enthält gar keine GEM-Funktionen wie GFA-BASIC.
Statt dessen können Sie die nötigen Bindings bei Bedarf von Diskette la-
den. Jede GEM-Funktion ist dann ein kleines Unterprogramm in Ihrer
Applikation.

Zum Laden geben Sie ein:

LOAD "GEMLIB.BAS"

Anschließend können Sie alle AES- und VDI-Funktionen innerhalb eines
Programms, aber auch im Direktmodus benutzen. Für Parameter gilt das
gleiche wie unter 5.3.1 für GFA-BASIC gesagt.

Das hat einen Nachteil: Speichert man diese Programme wieder ab, so

werden jedesmal die kompletten Bindings mit abgespeichert. Da jedoch
meist nur ein kleiner Teil der Bindings benötigt werden wird, befindet

sich auf der Omikron-Diskette ein Programm namens GEMSEL und eine
Anleitung dazu. Dieses nützliche Programm ist eine Art Linker für BA-
SIC - es schaut nach, welche GEM-Funktionen in einem anzugebenden
Programm aufgerufen werden, und hängt diesem Programm die benötig-
ten Binding-Unterprogramme aus der GEMLIB-Datei an.

In diesem Buch werden aus Platzgriinden keine Bindings mit abgedruckt
und auch nicht in die BASIC-Programme auf der Diskette geschrieben.

 156 Atari ST Intern 2

Bevor Sie die Omikron-Beispiele laufen lassen können, müssen Sie also

entweder im Interpreter das jeweilige Programm mit der Datei "GEM-
LIB.BAS" mischen oder aber GEMSEL vor dem Aufruf des Programms
starten.

Übrigens weichen die Funktionsaufrufe in Omikron-BASIC etwas vom
Standard ab. Zwar heißen die Funktionen genauso wie in C, doch ist es
üblich, daß ein Ergebnis oder Rückgabewert nicht als Funktionswert
zurückgegeben wird, sondern an eine Variable, die als Parameter überge-
ben wird. Streng genommen sind es also keine Funktionen, sondern nur
noch Prozeduren. Auch sind für verschiedene Anwendungsmöglichkeiten
einer Funktion manchmal verschiedene Formen verwendet, die den
Aufruf wesentlich vereinfachen können. Für die Funktion dieser Routi-
nen hat das jedoch keine Bedeutung, es ist lediglich eine andere Syntax,
so daß Sie Ihr BASIC-Handbuch am besten neben Ihr GEM-Buch legen.

5.3.3 C

Jeder gute C-Compiler besitzt eine Library, in der neben den Standard-

C-Funktionen (printf, scanf...) auch GEM-Bindings fiir AES und VDI
enthalten sind. Beim Linken werden diese Bindings automatisch in das

fertige Programm mit eingebunden. Sie können sie daher benutzen, als
wären sie fester Bestandteil des C-Sprachumfangs.

Wenn Ihr Programm VDI-Funktionen benutzen möchte, so müssen Sie
jedoch die VDI-Parameter-Arrays innerhalb Ihrer Applikation selbst de-

klarieren. Die Bindings greifen dann automatisch darauf zu. Das sieht so
aus:

int contrl [12],

intin[128],

ptsin[128],

intout [128],
ptsout [128] ;

Im Buch "C-Know-How", ebenfalls bei DATA BECKER erschienen, fin-

den Sie alle Library-Funktionen der wichtigsten C-Compiler und einiges
mehr beschrieben.

 GEM-Programmierung 157

5.3.4 Assembler

Um mit der Tür ins Haus zu fallen: In Assembler müssen Sie alles von
Hand machen. Das ist nicht schwer, aber umständlich, leider auch lang-
weilig und deshalb ıdeal für schwer zu findende Flüchtigkeitsfehler ge-
eignet. Dafür werden Sie natürlich durch besonders schnelle und kurze

Applikationen entschädigt, was oft sehr wichtig ist.

Kennen Sie noch die Parameter-Arrays aus Kapitel 5.2? Die brauchen
Sie, um in Assembler GEM-Aufrufe durchführen zu können. Parameter,
Funktionsnummer und weitere schöne Dinge müssen Sie mit move-Be-

fehlen in die Arrays kopieren. Der eigentliche Aufruf der GEM-Funk-
tionen ist dagegen ganz einfach; er besteht nur aus einem Befehl:

trap #2

GEM wird also genauso wie GEMDOS, BIOS und XBIOS (Kapitel 1)

über einen Trap aufgerufen. Der Unterschied zu den TOS-Funktionen ist
dabei nur, daß Parameter und Funktionsnummer nicht auf dem Stack,

sondern in den Arrays übergeben werden.

Zwischen dem Füllen der Arrays und dem Trap-Befehl sind allerdings
noch zwei Dinge zu tun:

1. GEM muß wissen, ob die gewünschte Funktion (deren Nummer im
control-Array (AES) bzw. contrl-Array (VDI) steht) zum AES oder
zum VDI gehört. Das ist deshalb nötig, weil VDI und AES nicht
über getrennte Funktionsnummern verfügen. Diese Information
schreibt man ins Register DO (Wortlänge). Dabei gilt: $C8 (=dezimal
200) für AES und $73 (=dezimal 115) für VDI.

2. GEM muß außerdem wissen, wo (d.h. an welcher Adresse im

Speicher) die Parameter-Arrays überhaupt liegen. Dazu gibt es zwei
sogenannte Parameterblöcke: den AES- und den VDI-Para-

meterblock, kurz AESPB und VDIPB. Die Adresse dieses PBs wird

vor dem Trap ins Register DI gebracht (Langwort). Der PB selber
enthalt 6 (AES) bzw. 5 (VDI) Zeiger auf die benutzten Arrays.

Ich glaube, daß Sie gerade den letzten Punkt am besten in einem Pro-

grammlisting nachvollziehen können. Deshalb folgt jetzt der typische Be-
ginn eines GEM-Assembler-Programms, den ich auch ın allen weiteren

Programmen als Include-Datei benutzen werde (allein schon, um Platz zu
sparen). Er enthält die Berechnung des Speicherbedarfs (siehe Kapitel

1.5), die Initialisierung eines ausreichenden Stacks (4 KBytes sollten ei-

 158 Atari ST Intern 2

gentlich immer reichen) und die Unterprogramme aes und vdi. Diese
können im eigentlichen Programm, das übrigens mit dem Label main be-
ginnen muß, aufgerufen werden, nachdem alle nötigen Daten in den Pa-
rameter-Arrays verstaut wurden.

Diese Programmzeilen sollten vor jedes

GEM-Programm gehängt werden. (INCLUDE)

m
e

S
e

“
a

; Assembler MP 09-10-88 GEM_INIT.Q

; erster Schritt: Speicherbedarf des Programms

; berechnen und nicht benötigten Speicher zurückgeben

; dabei gleich einen 4 KB Stack einrichten

movea.l 4(sp),a5 ‚4(sp) ist Start der Basepage

move. l 12(a5),d0 ‚Länge des Programmcodes

add. t 20(a5),dO »+ Länge des Data-Segments

add. l 28(a5),d0 s+ Lange des BSS-Segments +

addi. | #31100, d0 ‚Basepage (256 Bytes)+Stack (4KB)

move.| d0,d1 | ‚Länge plus

add. | a5 ,d1 ‚Startadresse

andi. #-2,d1 ;(gerundet) —
movea.| di,sp ‚ergibt Stackpointer

move.| d0, -(sp) ‚Länge des benötigten Speichers

move. | a5,-(sp) ‚Startadresse des Bereichs

clr.w -(sp) ‚dummy-Byte ohne Bedeutung

move .W #$4a,-(sp) ‚Funktionsnummer mshr ink

trap #1 ‚Trap für GEMDOS

adda. | #12,sp

jmp main ‚Sprung in die Applikation

; Unterprogramme aes und vdi

aes: move. l #aespb, d1 ;AES-Parameterbl ock

move .W #$c8 , dO sMagic-Number fur AES

trap #2 ;GEM-Aufruf

rts

vdi: move. l #vdi pb, d1 ;VDI-Parameterblock

move.w #$73,d0 -sCode fiir VDI
trap #2 ;GEM-Aufruf

rts

;‚ Es folgen die Parameterblöcke:

 GEM-Programmierung 159

„DATA

aespb: DC. control

-DC.t global

-DC.l int_in ;Unterschied zwischen AES- uund

.DC.L int_out ;VDI-Integer-Arrays: _

-DC.l addr_in

-DC.l addr_out

vdipb: .DC.| contrl

.DC.L intin

-DC.l ptsin

.DC.| intout

.DC.| ptsout

; Jetzt kommen die eigentlichen Arrays:

„BSS

global: .DS.w 16 ;AES

control: .DS.w 10

int_in: .DS.w 128
int_out: .DS.w 128

addr_in: .DS.l 128

addr_out: .DS.l 128

contrl: .DS.w 12 ;VDI

intin: .DS.w 128

ptsin: .DS.w 128

intout: .DS.w 128

ptsout: .DS.w 128

- TEXT

„END

Auf eine häufige Fehlerquelle möchte ich hier schon hinweisen: So
schöne Namen wie int_in und intin oder control und contrl verwechselt
man sehr schnell. Wie Sie dem Ende des vorigen Listings entnehmen
können, habe ıch die kritischen (weil leicht zu verwechselnden) Namen
der AES-Felder so gewählt, daß sie immer ein Zeichen länger sind als
die Felder des VDI. Also: contrl = VDI, control = AES.

Die letzte Anmerkung betrifft die Art und Weise, wie auf die Arrays zu-
gegriffen wird. In den GEM-Büchern oder im INTERN Band | steht
nämlich immer, daß z.B. ein Integer-Wert in intin[2] übergeben werden
soll. Diese C-übliche Schreibweise besagt, daß der Wert im dritten (0, 1,
2...!) Element des Arrays zu stehen hat. Da jedes Element zwei Bytes

 160 Atari ST Intern 2

einnimmt (bei Integers), entspricht intin[0] in C also intin in Assembler,
intin[1] entspricht intin+2 und intin[2] ist intin+4. Sie sehen also, daß der
Index (der in den eckigen Klammern steht) mit 2 zu multiplizieren ist
und zur Startadresse des jeweiligen Arrays addiert werden muß. Aus-
nahme: Im addr_in- und addr_out-Array des AES nimmt jedes Element
nicht zwei, sondern vier Bytes ın Anspruch. Deshalb müssen Sie den In-

dex hier auch nicht mit zwei, sondern mit vier multiplizieren. Was da

rauskommt und zur Startadresse addiert wird, nennt man übrigens Offset.

Ein kleines Problem kann auch hier auftauchen: Während in allen mir

bekannten Büchern die VDI-Funktionsaufrufe so beschrieben sind, daß
für jeden Parameter genau angegeben wird, in welches Array und an
welche Stelle (Index) in diesem Array er einzutragen ist, gibt es bei den

AES-Funktionen Ausnahmen. Oft wird nur eine Funktionsnummer ange-
geben. In diesem Falle müssen Sıe den C-Aufruf untersuchen und fest-

stellen, welche Parameter Daten ein- bzw. ausgeben, und welche davon

Integer-Werte und welche Adressen sind. Dann dürfte klar sein, daß z.B.
die Adressen, die von einer Funktion zurückgegeben, also ausgegeben

werden, im addr_out-Array stehen, und zwar in der gleichen Reihen-
folge, wie sie im C-Aufruf angegeben sind (von links nach rechts gele-

sen). Wenn Sie also in C die Integer-Werte a und b an die Funktion
übergeben müßten, so schreiben Sie in Assembler:

move.w a,int_in

move.w b,int_int2

Der erste benutzte Index ıst also die immer Null. Doch auch hier gibt es
eine Ausnahme: Die Rückgabe-Parameter im int_out-Array beginnen

erst bei int_out[1], also int _out+2. Im ersten Element wird nämlich stets
das zurückgegeben, was Sie in C als Funktionswert erhalten würden (und
oft gar nicht brauchen).Eine besondere Aufgabe hat hier noch das
control-Array. Es muß von Ihnen wie folgt gefüllt werden:

control Funktionsnummer

control +2 Anzahl der Werte im int_in-Array
control + 4 Anzahl der Ausgaben im int_out-Array

(einschlieBlich Funktionswert in int_out[0])
control +6 Anzahl der Adressen im addr_in-Array
control +8 Anzahl der Ausgaben im addr_in-Array

Die Funktionsnummer ist in jedem GEM-Buch angegeben, und die Zahl
der Ein- und Ausgabe-Parameter müssen Sie halt zählen.

 GEM-Programmierung 161

Ich empfehle Ihnen, sich einmal in den folgenden Beispielprogrammen

eine AES-Funktion herauszusuchen und das Füllen der Parameter- Arrays

mit der entsprechenden C-Funktion zu vergleichen.

5.4 Die erste Applikation

Sie alle kennen Alert-Boxen. Sie erscheinen meist, um irgendwelche War-
nungen oder Fehlermeldungen abzugeben, also zum Beispiel: "Wollen Sie
dieses Programm wirklich verlassen? Ja .. Nein".

Eine Alertbox hat drei varıable, also vom Programmierer zu bestimmende

Bestandteile: Ein Bild, den eigentlichen Text selber und den oder die
Knöpfe (engl. Buttons), die der Benutzer anklicken kann.

Bei dem Bild darf es sich um ein Stoppschild, ein Fragezeichen und um

ein Ausrufezeichen handeln. Es kann auch ganz weggelassen werden.

Wann welches Bild gebraucht wird, sollte klar sein: Eine Bemerkung, die
der Benutzer lediglich zur Kenntnis nehmen muß, bekommt ein Ausru-
fezeichen, eine Sicherheitsabfrage (oder allgemein eine Frage) ein Fra-
gezeichen und eine Meldung, die einen schwerwiegenden Fehler anzeigt,
der die gewünschte Aktion unterbrochen hat, ein Stopschild.

Der Text darf bis zu 5 Zeilen lang sein; jede Zeile darf 30 Zeichen ent-

halten. Die einzelnen Zeilen müssen beim Aufruf der Funktion, die eine

Alert-Box darstellt, durch den senkrechten Strich (|), die sogenannte

Pipe, getrennt sein. Will man diesen Strich selbst ausgeben, so schreibt

man ihn doppelt (|| gibt | aus). Wenn Sie eine Leerzeile schreiben lassen

wollen, so müssen Sie daher zwischen die beiden, die Zeilen trennenden

Pipes ein Leerzeichen schreiben.

Schließlich können Sie ein bis drei Knöpfe definieren. Jeder Knopf darf

maximal 20 Zeichen Text beinhalten, allerdings nur eine Zeile. Auch
mehrere Knöpfe werden beim Aufruf durch einen senkrechten Strich

getrennt. Ein Knopf darf übrigens der sogenannte Default-Button sein.
Default heißt etwa voreingestellt, d.h. dieser Knopf gilt als angeklickt,

wenn die Return- oder Enter-Taste betätigt wird. Außerdem wird er
dicker umrandet als andere, normale Knöpfe.

Diese Informationen (über Bild, Text und Knöpfe) müssen vom Pro-

grammierer in einem String zusammengefaßt werden, der aus drei Kom-
ponenten besteht. Jede Komponente ist in eckige Klammern eingeschlos-

sen.

 162 Atari ST Intern 2

Die erste Komponente ist nur eine Ziffer zwischen 0 und drei. Es be-

deuten: O=kein Bild, 1=Ausrufezeichen, 2=Fragezeichen und 3=Stopschild.

Die zweite Komponente ist der Text, der wie oben beschrieben angege-
ben werden muß (Zeilen durch | getrennt). Die dritte Komponente bilden
die Knöpfe.

Ein Beispiel: Der String

[1] [Achtung! IBitte beim Lesen aufpassen!] [OK]

ergibt folgende Alert-Box:

Achtung!
Bitte beim Lesen aufpassen!

Was aber, wenn Sie die eckigen Klammern selbst ausgeben wollen? Dazu
hat man folgendes vereinbart: Eine doppelte "Klammer zu" (]]) gibt eine

einzelne Klammer aus (]), das geht also genauso wie die Ausgabe des

senkrechten Strichs, der gewöhnlich die Zeilen trennt. Eine "Klammer
auf” ([) kann dagegen ganz normal (also einfach) in den String eingefügt
werden, da es nur eine Klammerebene gibt und die Sache somit eindeutig
ist.

So, jetzt haben wir den String und brauchen noch die Funktion, an die

wir ihn übergeben können und die uns die Alert-Box auf den Bildschirm
malt. Sie heißt form_alert. Es ist eine AES-Funktion. Die Vorsilbe form
sagt uns, daß sie zur Formularverwaltung gehört - darin ist alles zusam-
mengefaßt, was man für Dialog- und Alert-Boxen benötigt.

Form_alert benötigt aber außer dem String noch einen weiteren Parame-
ter, nämlich die Nummer des Default-Buttons (siehe oben). Dabei gilt:
Alle Knöpfe sind von links nach rechts durchnumeriert (linker Knopf:
1); wenn gar kein Knopf Default-Button sein soll, so übergeben Sie eine

Null.

Die Funktion ist in dem Moment beendet, in dem der Benutzer einen der
Knöpfe angeklickt oder, sofern es einen Default-Button gibt, Return

 GEM-Programmierung 163

oder Enter gedrückt hat. Sie gibt natürlich auch einen Wert zurück -
wenn der Anwender schon zwischen maximal drei Knöpfen wählen kann,

so muß die Applikation nachher auch wissen, für welchen er sıch ent-

schieden hat.

Der Aufruf in C sieht dann folgendermaßen aus:

angeklickt=form_alert(default,box_string)

In GFA-BASIC müssen Sie sich das form _alert großgeschrieben vorstel-
len, ansonsten ist der Aufruf mit der C-Version identisch. In Omikron-

BASIC geht es dagegen so: |

FORM_ALERT(default,box_string,angeklickt)

wobei klar sein sollte, daß angeklickt eine Variable sein muß.

Die Assembler-Programmierer können der GEM-Dokumentation entneh-
men, daß der Opcode der Funktion 52 ist, daß je ein Wert in int _in und

addr_in übergeben und in int _out zurückgegeben wird, daB in int_in[0]
die Nummer des Default-Buttons und in addr_in[0] die Startadresse des
Box-Strings übergeben werden müssen und daß nach dem Aufruf in
int _out[0] der angeklickte Knopf abgefragt werden kann. Für sie sieht
der Aufruf deshalb etwas umfangreicher aus:

move.w #52,control ; Funkt ionsnummer

move.w #1,control+2 ‚control [1]: Anzahl der Parameter im

‚int_in-Array

move.w #1,control+4 ‚control [2]: dto für int_out

move.w #1,control+6 ‚control [3]: für addr_in

clr.w control+8 ‚control [4]: für addr_out (keine)

move.w #default, int_in ;int_in{(0]

move.l #box_string,addr_in ;addr_inL[0]

jsr aes ‚AES-Aufruf in der Include-Datei

;GEM_INIT (siehe 5.3.4)

cmpi.w #...,int_out ‚Verarbeitung des Ergebnisses...

Sie sehen: In BASIC und C geht es komfortabler; dafür sind Sie in As-
sembler schneller (wobei das hier ziemlich egal sein dürfte).

Jetzt könnte man auf die Idee kommen, eine Funktion wie form_alert
einfach mal aufzurufen. Sie haben Glück, form_alert ist eine der

 164 Atari ST Intern 2

Funktionen, die man tatsächlich so aufrufen darf. Dies gilt aber nicht für
alle Funktionen. Wenn Sie dann Glück haben gibt’s ein paar Bomben;
wenn Sie Pech haben, ...

Wie bereits eingangs erwähnt wurde, dürfen in einem GEM-System
mehrere Programme gleichzeitig laufen. Der dazu nötige Verwaltungs-
aufwand erfordert allerdings, daß GEM überhaupt weiß, welche Pro-

gramme denn gerade laufen. Das erreicht man dadurch, daß jedes GEM-
Programm (egal ob Applikation oder Desk-Accessory) sich offiziell an-
und auch wieder abmeldet, wenn es beendet ist. Beim Anmelden ge-

schieht auch gleich noch etwas: Jedes Programm erhält eine Applikations-

Identifikationsnummer. Weil das ein schrecklich langes Wort ist, sagt man
dazu auch kurz ap_id. Diese ap_id wird uns erst später interessieren;

merken Sie sich nur, daß man beim Anmelden eine solche Zahl zugeord-

net bekommt.

Die Funktionen, die das An- und Abmelden besorgen, heißen appl_ init

und appl_exit. Wie Sie sich sicher denken können, dient appl_init zum

Anmelden (initiieren), während appl_exit zum Abmelden (exit = Ende,

Ausgang) benutzt wird (was übrigens nicht Programmende bedeutet).
Parameter werden keine Übergeben. Appl_init gibt die ap_id des
Programms zurück. Beide Funktionen gehören übrigens wie schon
form_alert zum AES.

Unser erstes Programm wird nun aus drei AES-Aufrufen bestehen: Ei-
nem appl_ init, dem form_alert-Aufruf und schlieBlich einem appl _ exit.

Die ap_id brauchen wir in diesem Beispiel genauso wenig wie den

Funktionswert von form_alert, also die Information, welcher Knopf

angeklickt wurde (wir haben nur einen in dieser Box). In GFA-BASIC
werden Sie deshalb vor dem Funktionsnamen ein VOID finden, was

bedeutet, daß der Funktionswert, der eigentlich einer Variable zuge-
wiesen oder ausgegeben werden müßte, einfach weggeschmissen wird.

GFA-BASIC

i

' Mini-GEM-Applikation zur Demonstration
" GFA-BASIC MP 09-10-88 DEMOAPP.GFA
‘

VOID APPL_INITC) 1 Anmeldung beim AES

VOID FORM_ALERT(1,"[1] [Hallo! |Das ist eine GEM-Applikation!] [Aha]")

 GEM-Programmierung

VOID APPL_EXITC) 1! und wieder Abmelden

END

Omikron-BASIC

i

' Mini-GEM-Applikation zur Demonstration

' Omikron-BASIC MP 9-10-88 DEMOAPP.BAS

1

Appl_Init' Anmelden beim AES
8

' Anzeigen der Warnmeldung:
5

FORM_ALERT (1,"(1] (Hallo! !Das ist eine GEM-Applikation.] [Aha] ", Dummy)

Appl_Exit' Abmelden

END

C

[RREREREHEREEEREEEEEREREREREREREREREREEERERERERE 7

/* Mini-GEM-Applikation zur Demonstration */

/* Laser C MP 08-10-88 DEMOAPP.C */
[RERRERRERAEREEAEREEEEEREREREEEREREREEEREREEREER |

char s[80]; /* Hilfs-String; hier wird der von form_alert

/* erwartete String reingeschrieben (muß nicht sein, hier

/* nur, um die Zeilenlänge kurz zu halten

main()

{ |

appl_init(); /* Anmelden beim AES

strcpy (s, "(1] (Hallo! !Das ist eine GEM-Applikation!] [Aha]");

form_alert (1, s); /* Anzeigen einer Alertbox und Warten auf

/* Anklicken des Knopfes

appl_exit(); /* Abmelden beim AES
>

Assembler

Mini-GEM-Applikation zur Demonstration

Assembler MP 09-10-88 DEMOAPP .Q

=
e

S
s

S
e

B
s

*/
*/
*/

*/

*/
*/

*/

165

 166 Atari ST Intern 2

gemdos = 1 „INCLUDE 'GEM_INIT.Q'

‚appl_init

main: move .W #10, control :Funktionsnummer: 10

clr.w control+2 ‚0 Einträge in int_in

move .W #1,control+4 31 Eintrag in int_out

clr.w control+6 ‚0 Einträge in addr_in

clr.w control+8 ‚0 Einträge in addr_out

jsr aes ‚Aufruf der Funktion

(der Rückgabewert ap_id interessiert uns nicht)

;Darstellen einer Alert-Box mit form_alert

move .W

move .wW

move .wW

move .W

clr.w

move .W

move. |

jsr

‚appl_exit

move .wW

clr.w

move .wW

clr.w

clr.w

jsr

clr.w

trap

„DATA

#52,control » Funkt ionsnummer

#1,control+2 Suse

#1,control+4

#1,control+6

control+8

#1, int_in ‚erster Knopf ist default

#al_box,addr_in ;Inhalt der Box

aes

#19, control » Funkt ionsnummer

control +2

#1,control+4

control+6

control+8

aes

-(sp) ;GEMDOS Funktion Pterm0
#gemdos sbeendet das Programm "richtig!

al_box: .DC.b "[1J[Hallo!Das ist eine GEM-Applikation!] [Aha]",0
„END

5.5 VDI!-Aufrufe

Die Parameter-Arrays für VDI-Funktionen wurden ja schon vorgestellt.
Es gibt allerdings auch für das VDI eine Art Initialisierungsfunktion, die
ähnlich wie appl_init vor dem ersten Gebrauch einer VDI-Funktion
aufgerufen werden muß. Dies geschieht allerdings nicht mehr zu dem

 GEM-Programmierung 167

Zweck, der Applikation eine Nummer zur Identifizierung zu geben,

sondern ein Ausgabegerät anzumelden. Die Entwickler von GEM waren
nun nicht unbedingt Anhänger einer ausgeprägten Bürokratie, denn
dieses offizielle An- und Abmelden hat auch seine Vorteile.

Woran denken Sie beim Stichwort Grafik-Ausgabe-Gerät? Doch sicher
zunächst an Ihren Monitor, wobei gleichgültig sein soll, ob es ein mono-

chromer oder farbiger ist. Doch es gibt noch andere Geräte: Drucker,
Plotter, Diabelichter, Datei... Wenn Sie nun einwenden, daß es es für den

ST noch gar keinen Diabelichter gibt, so lassen Sie mich sagen, daß das

komplette GEM nicht etwa auf einem Atarı ST, sondern auf MS-DOS-

Geräten entwickelt wurde. Und für die gibt es solche Geräte durchaus.
Der Vollständigkeit halber sei hier auch bemerkt, daß es ein Programm
namens GDOS.PRG gibt, das Gerätetreiber für beliebige Geräte nachla-

den kann, die dann zumindest theoretisch jeder Applikation zur Verfü-

gung stehen (wird auf dem Atari nur von wenigen Programmen ausge-
nutzt, z.B. GEM-Draw und BeckerPage).

Wie dem auch sei, mit diesem Ballast haben wir uns abzufinden. Bevor

der erste Punkt auf dem Bildschirm (belassen wir es einmal bei diesem
als Ausgabegerät) erscheinen kann, müssen wir ihn beim VDI anmelden.
Wir erhalten, wie schon bei appl_init die Identifikationsnummer, einen

Wert zurück, das sogenannte Grafik-Handle, kurz Handle genannt. Sie

kennen Handles schon aus dem Kapitel 1 über GEMDOS; dort re-

präsentierte ein Handle eine Datei; das Handle erhält man, wenn die Da-

tei geöffnet wird, und man benötigt es bei allen folgenden Zugriffen auf
die Datei. Im VDI ist es ähnlich, dort steht ein Handle für ein Ausgabe-

gerät. Das Handle erhalten Sie beim Öffnen oder Anmelden des Ausga-
begeräts. Und Sie benötigen es ebenfalls bei allen weiteren VDI-Aufru-
fen, die sich auf dieses Ausgabegerät beziehen. Zwar hat das Handle
auch auf dem Atarı eine sehr nützliche Funktion, doch die kann ich Ih-

nen erst am Ende des Kapitels 5.5.2 verraten.

Die Funktion, die ein Ausgabegerät freigibt, das heißt öffnet, heißt
v_opnvwk. Das v steht für VDI, und der Rest bedeutet "OPeN Virtual
screen WorKstation", also etwa "Öffne virtelle Bildschirm-Arbeitsstation".

Da die deutsche Übersetzung schlimmer als die englische Abkürzung
klingt, merken Sie sich am besten nur, daß mit dieser Funktion der
Bildschirm für Grafik-Ausgaben vorbereitet wird. Diese Funktion gibt
das Grafik-Handle zurück. Ä

So wie Sie. Dateien irgendwann einmal schließen müssen, muß auch ein
Grafik-Ausgabegerät vor dem Verlassen einer Applikation geschlossen

 168 Atari ST Intern 2

werden. Die entsprechende Funktion heißt v_clsvwk, was nicht schwer
zu verstehen ist, wenn man weiß, daß schließen auf Englisch to CLoSe

heißt.

Betrachten wir nun noch, wie die beiden Funktionen in verschiedenen

Sprachen benutzt werden.

In GFA-BASIC habe ich es leicht - dort gibt es keine VDI-Funktionen.
Das heißt: Es gibt sie schon, nur ist ihre Anwendung genauso umständ-

lich und unübersichtlich wie in Assembler, und zweitens ist es vollkom-

men unnötig, auf VDI-Routinen zurückzugreifen; alles, was das VDI
kann, können Sie viel einfacher auch mit richtigen BASIC-Anweisungen
machen. Deshalb werden auch in den folgenden Beispielprogrammen kei-
nerlei VDI-Aufrufe in den GFA-BASIC-Programmen zu finden sein. Sie
sollten die Lektüre daher im Kapitel 5.6 fortsetzen.

In Omikron-BASIC haben Sie es leicht - die GEM-Bindings enthalten
die Befehle V_OPNVWK und V_CLSVWK (beide ohne Parameter). Sie

entsprechen in ihrer Funktion den oben genannten Erläuterungen, sind

aber einfacher zu handhaben. Statt bei jedem Aufruf einer VDI-Funk-
tion das Grafik-Handle als Parameter zu übergeben, wird es beim
V_OPNVWK-Aufruf intern gespeichert und bei Bedarf automatisch in
das contrl-Array geschrieben.

In C wird die Sache etwas komplizierter. Auch hier benutzen Sie die bei-

den Funktionen; allerdings müssen Sie zwei Arrays und eine Variable (in

der das Handle zurückgeliefert wird, deshalb schreibt man ein & vor den

Variablennamen) übergeben. Die beiden Arrays heißen work in und

work _out. Sie sollten folgendermaßen deklariert sein:

int work_in[11];

int work_out [57];

Welche Bedeutung die Elemente der Arrays im einzelnen haben, können
Sie dem ersten Band entnehmen. Work _in wird für Parameter benutzt,
die an die Funktion übergeben werden sollen, work_out für Werte, die

die Funktion zurückgibt. Work_in muß von Ihnen vor dem Aufruf in-
itialisiert werden. Dazu setzen Sie die Elemente 0 bis 9 auf 1 und das
Element 10 auf 2. Das Element 10 ist das sogenannte Koordinatenflag:
hier Näheres zu diesen Parametern zu sagen, wäre sinnlos, das können Sie

woanders nachlesen - uns kann hier jedenfalls egal sein, was diese Zah-
len bedeuten. Gleiches gilt auch für die Ausgaben dieser Funktion, die
Sie nach Abschluß der Funktion im Array work __out[] finden werden.

 GEM-Programmierung 169

In Assembler sieht die Sache eigentlich genauso aus wie in C, nur daß

natürlich keine Arrays übergeben werden, sondern brav ein Wert nach

dem anderen direkt in die echten Parameter-Arrays (intin usw.) ge-
schaufelt wird. Wie das genau geht, sehen Sie sich am besten ım bald fol-

genden Programm an.

Für die C-Fans und Assembler-Programmierer habe ich je eine kleine
Include-Datei, die die Unterprogramme gem_init und gem_exit enthält.

Sıe melden das Programm sowohl beim AES als auch beim VDI an bzw.

ab. In globalen Variablen (C) beziehungsweise im .BSS-Segment (As-
sembler) werden folgende Daten festgehalten (Integer bzw. Wortlange):

ap id: Identifikationsnummer der Applikation (von appl _ init)

handle: VDI-Grafik-Handle (von v_opnvwk)

x max: größte x-Koordinate (z.B. 639 bei Mono-Monitor)

y_max: größte y-Koordinate

Die beiden letzten Werte findet man übrigens unter den sehr zahlreichen
Ausgaben der v_opnvwk-Funktion.

Hier nun die Listings:

C
NT

/* Include-Datei fur Standard-Anmeldeverfahren (AES und VDI) */

/* Megamax Laser C MP 13-10-88 GEM_INEX.C */
[RRR HIHI HIHI HIHI HIHI IHR HH UK /

int contrl[12], /* Diese Felder müssen IMMER in Programmen */

intin[128], /* deklariert sein, die VDI-Funktionen */

ptsin[128], /* benutzen wollen */

intout [128],

ptsout [128] ;

int ap_id, /* Werte von allgemeiner Bedeutung */

handle, /* für jede Applikation */

x_max,

y_max;

void gem_init() /* Wird zu Beginn einmal aufgerufen */

{

 170 Atari ST Intern 2

int work_int11], /* Diese Arrays werden fur v_opnvwk

work_out [57], /* benötigt

1; /* Eine Laufvariable brauchen wir auch noch

ap_id = appl_init(); /* Anmeldung beim AES

for (i=0; i<10; work_inlit+t] = 1); /* [0-9] auf 1 setzen

work_in[10] = 2; /* Koordinatenflag, sollte immer 2 sein

v_opnvwk (work_in, &handle, work_out); /* Anmeldung brim VDI

x_max = work_out[0]; /* Auflösung merken

y_max = work_out[1];

>

void gem _exit() /* Diese Funktion einmal am Ende der

{ /* Applikation aufrufen

v_clsvwk (handle);

appl_exit();
>

Assembler

: Include-Datei fur An-/Abmeldung bei AES und VDI

; Assembler MP 13-10-88 GEM_INEX.Q
s
a

;Diese Datei kann in eigenen Applikationen mit Include

sverwendet werden. Die Include-Anweisung sollte der

‚erste Befehl im Assembler-Quelltext sein.

;Ganz zu Anfang wird die Datei GEM_INIT geladen,

‚die nicht benötigten Speicherplatz freigibt und

;Unterroutinen für AES- und VDI-Aufrufe bereitstellt.

Außerdem werden hier die GEM-Parameter-Arrays

‚angelegt.

„INCLUDE 'GEM_INIT.Q'

‚Nach der Initialisierung steht in der Include-Datei ein JMP

‚main. Dieses Label muß vom Programmierer am Beginn der

‚Applikation gesetzt werden. Als erstes ist dann das Unterpro

‚gramm gem init aufzurufen.

- TEXT

*/
*/
*/

*/

*/
a

*/

*/

*/
*/

gem_init:

gi_lp:

gem_exit:

GEM-Programmierung 171

vor dem ersten GEM-Call aufrufen

‚Anmeldung beim AES (appl_init):

move.W

clr.w

move .W

clr.w

clr.w

jsr

move .w

#10, control

control+2

#1,control+4

control+6

control+8

aes

int_out,ap_id

‚appl_init (AES)

‚Identifikation merken

;Bildschirm als Arbeitsstation anmelden (VDI):

moveq.|

lea.l

move .W

subq.w

bpl.s

move .W

move .W

clr.w

move .wW

move .wW

move .wW

jsr

move .wW

move .wW

move .W

rts

#18,d0 sintin vorbereiten

intin, a0

#1,0(a0,d0.w) ‚Element auf 1 setzen

#2,d0 svoriges Element

gi_lp ‚Ende?

#2 ,20(a0) *Koordinatenflag (immer 2)

#100, contrl ;V_opnvwk (VDI)

contrl+2

#12,contri+4

#11,contrl+6

#45 ,contrl+8

vdi

contrl+12,handle ;VDI-Grafik-Handle

intout,x_max

intout+2,y_max

‚Auflösung speichern

‚vor Verlassen des Programms aufrufen

move.W

clr.w

clr.w

clr.w

clr.w

move .wW

jsr

move .W

‘clriw

move .wW

clr.w

clr.w

jsr

#101, contrl

contrl+2

contrl+4

contrl+6

contrl+8

handle, contrl+12

vdi

;v_clsvwk (VDI)

#19, control

control+2

#1, control+4

control+6

control+8

aes

‚appl_exit (AES)

 172 Atari ST Intern 2 ———

rts

„BSS

ap_id: .DS.u 1 ;ap_id, wird von appl_init geliefert

handle: .DS.w 1 ;VDI-Grafik-Handle

x_max: .DS.w 1 ;Bildschirmauflösung, erfährt man

y_max: .DS.u 1 ;bei v_opnvwk

.END

Diese Include-Dateien nehmen uns Routinearbeit ab und werden deshalb

auch in meinen Beispielprogrammen eingesetzt.

5.5.1 Zeichnen mit dem VDI

Jetzt wissen Sie so viel über das VDI, daß einer ersten kleinen Testgrafik
nichts mehr im Weg steht. Dazu schlagen Sie bitte in Ihrer GEM-Doku-
mentation unter VDI-Ausgabe-Funktionen nach. Hier findet der Pro-
grammierer all das, was er an grafischen Grundmitteln benötigt, um be-

liebige Zeichnungen erstellen zu können. Dazu gehören Polyline

(v_pline), Polymarker (v_pmarker), Text (v_gtext), Filled Area

(v_filarea), Contour Fill (v_contourfill), Filled Rectangle (v_recfl) und
die grafischen Grundfunktionen. Letztere enthalten 10 weitere Ausgabe-
Funktionen, die durch eine Unterfunktions-Nummer unterschieden

werden. Die Entwickler des GEM allein wissen, warum diese

Unterteilung vorgenommen wurde, doch davon merken Sie ohnehin nur

dann etwas, wenn Sie die Funktionen in Assembler anwenden möchten.

Ich schlage vor, daß Sie sich die Beschreibung der oben genannten
Funktionen einmal durchlesen, um einen groben Überblick über die
Möglichkeiten der Ausgaberoutinen des VDI zu erhalten.

Fertig? Schön! Bevor wir uns an ein Beispiel heranwagen, muß ich aller-

dings noch auf zwei kleine Dinge hinweisen.

Das erste betrifft die C-Programmierer. Sıe werden vielleicht beim
Durchblättern der Dokumentation schon bemerkt haben, daß dort ab und

zu von einem sogenannten pxyarray die Rede ist. Dieses Array wird
immer dann benutzt, wenn an eine Funktion mehr als ein Koordinaten-

paar zu übergeben ist. Das hat nicht nur den Vorteil, daß die Aufrufe
kurz und übersichtlich bleiben; vielmehr ermöglicht dieses Vorgehen es,
bei einem einheitlichen Aufruf die Zahl der zu übergebenden Koordina-

 GEM-Programmierung 173

ten varıabel zu halten, was zum Beispiel bei der Funktion Polyline
(v_pline) nötig ist. Das Array muß von Ihnen deklariert werden. Ob Sie
es standardgemäß pxyarray oder aber "koordinaten", "punkte" oder sonst

irgendwie nennen, ist dem VDI jedoch gleichgültig.

Der zweite Hinweis betrifft die Text-Ausgabefunktionen unter As-
sembler, und zwar gleichermaßen die Funktion Text (v_gtext) wie die
Funktion Justified Graphics Text (v_justified). Der auszugebende Text

wird Zeichen fiir Zeichen in den jeweils niederwertigen Bytes des intin-

Arrays abgelegt, beginnend bei intin{0] (Funktion v_gtext) bzw. bei

intin[2] (also intin+4 in Assembler, gilt für v_ justified). Der String muB
nicht durch ein Nullbyte abgeschlossen werden; statt dessen ist die Länge
des intin-Arrays wie üblich im contrl-Array zu übergeben; der Unter-
schied zu anderen VDI-Funktionen ist hierbei halt nur, daß die Länge
des intin-Arrays variabel ist. C- und BASIC-Programmierer übergeben

dagegen einen ganz gewöhnlichen String, der in C wie üblich durch ein
Nullbyte abgeschlossen wird. Die GEM-Bindings übertragen diese Strings

automatisch ın das intin-Array, machen also das, was in Assembler ma-

nuell geschieht, automatisch.Jetzt können wir endlich zur Sache kommen.
Es soll eine Ellipse in einem Rechteck mit abgerundeten Kanten gezeich-

net werden. Die Ellipse soll ausgefüllt sein. Ganz unten am Bildschirm

soll auch noch ein kurzer Text erscheinen. Das Ganze bitte so, daß es in

jeder Auflösungsstufe läuft. Das ist jetzt kein Problem mehr:

Omikron-BASIC

5

' VDI-Demonstration fur eine kleine Grafik und Text
' Omikron-BASIC MP 12-11-88 VDI_DEMO.BAS
4

Appl_Init

V_Opnvuk

CLS

ı Auflösung berechnen (mit XBIOS 4 Getrez)

‘ |

X_Max%=640:Y_Max%=400

XBIOS (Rez%,4)

IF Rez%<2 THEN Y_Max%=200

IF Rez%X=0 THEN X_Max%=320
I

V_Rbox(10,10,X_Max%- 10,Y_Max%-30)

V_Ellipse(X_Max%/2,Y_Max%/2-10,X_Max%/2-10,Y_Max%/2-20)
V_Gtext(X_Max%/2-96,Y_Max%-10,"VDI - Grafik ist einfach!")

' Warten auf Taste:
i

 174

GEMDOS (,7)! Crawcin
8

V_Clsvwk

Appl_Exit
END

C
NETTE

/* Kleines Grafik-Demonstrationsprogramm */

/* Laser C MP 12-11-88 VDI_DEMO.C */
[REREREREEREREREREEEREREREERERERERERERERERE /

#include "gem_inex.c"

#include <osbind.h>

int pxyarray[4]; /* Wir benötigen 2 Punkte */

/* = 2 Koordinaten */

main()

{

gem_init();

Cconws ("\33E"); /* Bildschirm löschen mit */

/* Escape-Sequenz */

pxyarray [0] 11;

pxyarray [1] 10;

pxyarray[2] = x_max-10;

pxyarray(3] = y_max-30;

v_rbox (handle, pxyarray);

Atari ST Intern 2

v_ellipse (handle, x_max/2, y_max/2-10, x_max/2-10, y_max/2-20);

v_gtext (handle, x_max/2-96, y_max-10, "VDI - Grafik ist einfach!");

Crawcin(); | /* wartet auf Taste */

gem_exit();

Assembler

Wie ich oben schon sagte, müssen Sie als Assembler-Programmierer den
String Zeichen für Zeichen in das intin-Array kopieren. Im folgenden
Programm besorgt das das Unterprogramm fix_text, dem als Parameter
die Adresse des durch ein Nullbyte abgeschlossenen Strings in AO über-
geben wird.

gemdos

crawcin

print

main:

GEM-Programmierung 175

; Kleines Grafik-Demonstrationsprogramm

: Assembler

n
u

N
.

„INCLUDE 'GEM_INEX.Q'

jsr

pea

move .W

trap

addq. l

; Es soll

move .W

move .wW

clr.w

move.w

clr.w

move .W

move .W

move .wW

move .w

move .w

subi .w

move .wW

move .W

subi .w

move .wW

jsr

gem_init

clrser

#print,-(sp)

#gemdos

#6,Sp

MP 16-11-88 VDI_DEMO.Q

;AES und VDI anmelden

‚Bildschirm löschen (VT-52)

ein Rechteck gezeichnet werden

#11,contrl

#2, contrl+2

contrl+4

#3, contrl+6

contr l+8

#8, contrl+10

handle, contrl+12

#10, ptsin

#10, ptsint2

x_max,dO

#10,d0

d0, ptsint4

y_max,d0

#30, d0

d0, ptsint+6

vdi

:; Zeichnen der Ellipse

move . Ww

move .W

clr.w

move .W

#11,contrl

#2, contrl+2

contrl+4

#3, contrl+6

;Rounded Rectangle (v_rbox)

‚Anzahl der Koordinaten in ptsin

‚Anzahl der Punkte in ptsout

‚Länge des intin-Arrays

‚Zahl der Werte in intout

;Funktions-Unter-Nummer

:VD1-Grafik-Handle

‚Koordinaten für das Rechteck

jeweils maximale Koordinate

‚minus 10 (für unteren rechten)

Punkt)

Rechteck zeichnen

‚Ellipse (v_ellipse)

‚Anzahl der Koordinaten in ptsin

‚Anzahl der Punkte in ptsout

‚Länge des intin-Arrays

176

clr.w

move .W

move .W

clr.l

move .W

divu

move .W

subi .wW

move .wW

clr.l

move .wW

divu

subi.w

move .wW

subi .W

move .wW

jsr

; Text

lea.l

bsr

move .W

move .W

clr.w

clr.w

move .W

clr.l

move .wW

divu

subi .w

move .wW

move .W

subi .wW

move .W

jsr

move .W

trap

Atari ST Intern 2

contrl+8 ‚Zahl der Werte in intout

#5, ,contrl+10 ‚Funktions-Unter-Nummer

handle,contri+12 ;VDI-Grafik-Handle

do Koordinaten berechnen

x_max,d0

#2,d0 sdurch 2 = Bildschirmmitte

dO,ptsin

#10,d0 ‚minus 10 ergibt x_max/2-10

d0,ptsint4 ‚als x-Radius

do

y_max,d0

#2,d0

#10,d0

d0, ptsint2

#10,d0 ‚y_max/2-20 als y-Radius

dO,ptsin+6

vdi ‚Ellipse zeichnen

ausgeben

ausgabe, a0

fix_text ‚String ins intin-Array bringen

#8, contrl ;Text (v_gtext)

#1,contrl+2 ‚Anzahl der Koordinaten in ptsin

contrl+4 ‚Anzahl der Punkte in ptsout

contrl+8 sZahl der Werte in intout

handle, contrl+12 ;VDI-Grafik-Handle

do Koordinaten berechnen

x_max,d0

#2 ,d0

#96 ,dO

d0,ptsin

y_max,d0

#10,d0

d0, ptsint2

vdi

#crawcin,-(sp)

#gemdos

sWarten auf Taste

 GEM-Programmierung 177

addq. l #2,sp

jsr gem_exit ‚Abmelden bei AES und VDI

clr.w -(sp) ‚Programm beenden mit

trap #gemdos ;GEMDOS- Funktion PtermO

fix_text:

; Unterprogramm, das einen String (Startadresse in a0

» zu übergeben) in das intin-Array schreibt, die Länge

; bestimmt und in contrl [3] ablegt

clr.w do ‚Länge

clr.w di sHilfsregister

lea.l intin,al

fix_loop: move.b (a0)+,di ‚ein Byte aus Zielstring holen

tst.b di :Stringende?

beq.s fix_end

move .W d1,(a1)+ ‚nein, dann als Wort ins

addq.w #1,d0 sintin-Arrary schreiben

bra.s fix_loop

fix_end: move.w dO, contrl+6 ‚Länge festhalten

rts

-DATA

clrscr: -DC.b 27,'E',0 ‚Sequenz für Bildschirm löschen

ausgabe: .DC.b 'VDI - Grafik ist einfach!',0

-END

Wie Sie gesehen haben, ist dieses kleine Beispielprogramm in Assembler

doch nicht ganz so klein. Das liegt zum einen an den Berechnungen der
Koordinaten, die sich alle über mehrere Zeilen erstrecken, und natürlich
an dem aufwendigeren Aufrufverfahren der Funktionen. Trotz allem ist
das lauffähige Programm natürlich wieder das kürzeste und das schnell-
ste.

Das Ergebnis des Programms sollte so aussehen:

178 Ä Atari ST Intern 2

UDI - Grafik ist einfach!

5.5.2 Die Attribut-Funktionen

Mit den Attribut-Funktionen können Sie alle Ausgabe-Funktionen, die
Sie ja im vorigen Kapitel kennengelernt haben, beeinflussen. Dazu wer-
den vor dem Aufruf der eigentlichen Ausgabe-Funktionen die Attribut-
Funktionen bemüht und damit eine Art Voreinstellung für die Ausgabe-
Funktionen geschaffen. Die Attribut-Funktionen selbst können also keine

Grafik ausgeben. |

Auch hier empfehle ich Ihnen, zunächst einmal Ihre GEM-Dokumenta-

tion zu durchforsten, damit Sie eine ungefähre Vorstellung von den viel-

fältigen Möglichkeiten bekommen, die Ihnen diese Funktionen bieten.
Anschließend werden wır dann einzelne Funktionen unter die Lupe neh-

men. = |

Zunächst sollte vielleicht etwas zu den scheinbar verwirrenden Funkti-
ons-Namen gesagt werden. Bei näherer Betrachtung stellt man nämlich

fest, daß die Namen der Attribut-Funktionen nach einem einfachen

Schema aufgebaut sind, das sıe nicht nur eindeutig von anderen VDI-

Routinen unterscheidet, sondern auch eine relativ einfache Entschlüsse-
lung zuläßt. Der erste Buchstabe ist wieder das v für VDI. Der zweite
Buchstabe ist ein s für Set ..., was heißt, daß ein Attribut gesetzt werden

soll. Daran schließt sich ein Kürzel an, dem Sie entnehmen können,

 GEM-Programmierung 179

welches Attribut denn eigentlich geändert werden soll, also z.B. f für Fill
(Füllen von Flächen) oder t für Text. Es folgt ein Unterstrich (_) und

diesem eine Ergänzung, die das zu ändernde Attribut noch genauer be-
stimmt. So dient vst_color dazu, die Farbe (Color) für folgende Text-
Ausgabe zu bestimmen, während vsf_style ein Füllmuster auswählt. So
betrachtet, sind die Funktionsnamen trotz ihrer Kürze sogar sehr aussa-

gekräftig.Beginnen wir mit der Funktion Set Writing Mode (vswr_ mode).
Von ihr sind alle Ausgabe-Funktionen betroffen (Writing bedeutet hier

allgemein Bildschirmausgabe). Für diese Ausgabe soll offensichtlich ein
Modus, also eine Betriebsart, bestimmt werden. Davon haben wir, wie

uns die GEM-Dokumentation verrät, vier verschiedene zur Auswahl, die

von | bis 4 durchnumeriert sind:

1. Replace- oder Uberschreib-Modus

Dieser Modus ist zu Beginn eines Programms (das heiBt: nach der
v_opnvwk-Anweisung, also nach dem Offnen des Bildschirms als Gra-
fik-Ausgabegerät) aktiv. To replace heißt auf Deutsch ersetzen. Auf den
Bildschirm übertragen bedeutet das, daß ein alter Bildschirminhalt durch

ein neu zu zeichnendes Objekt ersetzt wird.

Dazu ein Beispiel: Der Bildschirm enthält das GEM-typische graue Mu-

ster, das Desktop. Jetzt könnten Sie mit der Funktion v_gtext einen Text

irgendwo auf diesem Grau ausgeben. Jeder Buchstabe dieses Textes ist
dabei fiir den Rechner als grafisches Objekt nur ein weißes Rechteck mit
einigen schwarzen Punkten, aus denen der Mensch als Betrachter dieser
Punkte nachher wieder einen Buchstaben macht. Bei der Ausgabe dieses

Buchstabes macht der Rechner nun nichts weiter, als das Rechteck in den

Bildschirm zu kopieren. Dabei wird jeder alte Bildpunkt des Ziel-

rechtecks auf dem Bildschirm durch den entsprechenden Punkt des vor-

gegebenen Buchstaben-Rechtecks ersetzt (= replaced), egal, ob der Punkt

dieses Buchstaben-Rechtecks schwarz oder weiß war. (Um eventuellen
Mißverständnissen vorzubeugen: Ersetzt heißt hier nicht gesetzt, ein
weißer Punkt im Buchstaben-Rechteck wird also auch auf dem Bild-
schirm weiß.) Auf dem Bildschirm erscheint dieser Buchstabe also so, als
sei er auf ein weißes Rechteck gezeichnet worden. Das ist etwa so, als
wenn Sie aus einer Zeitung ein Wort ausschneiden und es dann auf ein

Foto kleben. |

2. Transparent-Modus

Greifen wir gleich das Beispiel mit dem Foto, dem Wort und der Zeitung
wieder auf: Im Transparent-Modus müßte unsere Zeitung durchschei-

nend, also transparent sein. Dazu könnten Sie das Wort aus der Zeitung

 180 Atari ST Intern 2

auf eine Overhead-Folie kopieren und diese Folie auf das Foto legen.
Ergebnis: Das weiße Rechteck, das vorher noch scheinbar hinter dem

Wort lag, fehlt. Wenn wir diesen Modus wieder im Computer und bei der

Zeichen- Ausgabe betrachten, so folgt daraus, daß der Rechner nur noch

die schwarzen Punkte des Buchstabens in den Bildschirm kopiert; die
Punkte, die im Buchstaben-Rechteck weiß sind, werden im Bildschirm

nicht verändert. Wenn wir also auf einen schwarzen Hintergrund einen

Text im Transparent-Modus schreiben, so sehen wir gar nichts, denn alle

schwarzen Punkte des Textes waren auf dem Bildschirm ja auch vorher
schon schwarz. Da die weißen Punkte nicht mitkopiert wurden, hat sıch

auf dem Bildschirm überhaupt nichts geändert. Wenn dagegen im Trans-
parent-Modus auf eine ganz weiße Fläche geschrieben wird, so hat dies
den gleichen Effekt, als hätten Sie es im Replace-Modus gemacht.

3. XOR-Modus

XOR steht für Exklusiv-Oder-Verknüpfung. In unserem Fall bedeutet

das, daß der alte Bildpunkt mit dem neu zu setzenden (oder zu löschen-

den) Punkt exklusiv-oder-verknüpft wird. Also: Sind Hintergrund und
neu zu setzender Punkt weiß, so wird auch der neu entstehende Punkt

weiß. Das gleiche passiert, wenn alter und zu setzender Punkt schwarz
sind. Einen schwarzen Punkt erhalten Sie als Ergebnis nur dann, wenn
genau einer der beiden verknüpften Punkte (alter Punkt und zu setzender

Punkt) schwarz ist.

Für den XOR-Modus gibt es zwei typische Anwendungen: Zum einen

eignet er sich hervorragend zur Beschriftung von Zeichnungen. Stellen

wir uns dazu ein schwarzes, ausgefülltes Rechteck auf dem Bildschirm
vor. Nun soll ein Text so auf dem Bildschirm erscheinen, daß die eine

Hälfte neben dem Rechteck und die andere Hälfte in dem Rechteck (also
auf der schwarzen Fläche) liegt. Wenn wir den Text im XOR-Modus
schreiben, dann wird die erste Hälfte schwarz geschrieben, während der

Teil auf dem schwarzen Hintergrund automatisch weiß erscheint.

Die zweite Verwendungsmöglichkeit ist besonders praktisch. Sie beruht
darauf, daß ein zweites Zeichnen desselben Objekts im XOR-Modus die
erste Darstellung des Objekts rückgängig macht, wobei der Hintergrund
komplett wiederhergestellt wird. Deshalb wird dieser Modus meist in
Grafikprogrammen verwendet, z.B. bei der Linienfunktion: Sie klicken
den Startpunkt an und ziehen dann die "Gummi"-Linie bis zum ge-
wünschten Endpunkt. Dabei wird eine Zwischenlinie im XOR-Modus

gezeichnet. Sobald Sie die Maus ein Stück bewegen, wird die Linie
nochmal gezeichnet, sprich: dadurch gelöscht. Dann wird eine neue Linie

 GEM-Programmierung 181

vom Startpunkt zu den aktuellen Mauskoordinaten gezeichnet usw. Auf

diese Weise muß nie der Hintergrund einer "Gummi"-Linie zwischenge-
speichert werden.

4. Invers-Transparent-Modus

Dieser Modus ähnelt dem normalen Transparent-Modus. Allerdings wird
das zu zeichnende Objekt vor der Bildschirm- Ausgabe invertiert, d.h. aus
Schwarz wird Weiß und umgekehrt. In unserem Buchstabenbeispiel ist

das zu zeichnende Objekt wieder das Buchstaben-Rechteck, das komplett

invertiert wird. Der Buchstabe wird also weiß ın einem schwarzen
Rechteck erscheinen.

Ein Beispielprogramm möchte ich Ihnen zu diesem Modus nicht geben.
Fürs erste werden wir auch keinen besonderen Schreibmodus benötigen.

Sie sollten sich jedoch merken, daß es so etwas gibt; bei Bedarf können

Sie dann hier noch einmal nachsehen.

Schauen wir uns noch zwei weitere Attribut-Funktionen an: Set Polyline

End Styles (vsl_ ends) und Set Polyline Line Width (vsl_ width). Letztere
legt die Breite einer Linie fest, während die erste über das Aussehen von
Start- und Endpunkt einer Linie entscheidet, wobei Sie für Start und

Ende unterschiedliche Arten wählen dürfen. Zur Wahl stehen kantig,
rund und Pfeile. Ob das Ende rund oder kantig ist, können Sie natürlich

nur bei etwas dickeren Linien sehen. Die letztgenannte Option bewirkt,
daß am Start- bzw. Endpunkt ein Pfeil aufgesetzt wird; aber sehen Sie
selbst, was folgendes Beispielprogramm bewirkt:

Omikron-BASIC

t Linienbreite und Form des Linienendes verändern

' Omikron-BASIC MP 18-11-88 LINIEN.BAS
a

Appl_Init! Anmelden beim GEM

V_Opnvwk
A

CLS ' Bildschirm löschen

Vsl_Width(33)' Linienbreite: 33 Punkte

FOR 1=0 TO 2

Vsl_Ends(1,1)' Style von 0 bis 2 wechseln

Ptsin%(0,0)=20' Koordinaten müssen bei Omikron

 182 Atari ST Intern 2

Ptsin%(1,0)=20+70*1' in Ptsin%-Array übergeben werden

Ptsin%(0,1)=300

Ptsin%(1,1)=Ptsin%(1,0)

V_Pline(2)"' 2 ist die Anzahl der zu verbindenden Punkte

NEXT I

GEMDOS (,7)' Warten auf Taste

V_Clsvwk' Abmelden vom GEM

Appl_Exit
END

C

[BERRREEERRERKEEREREREREREEREEREEREEEREREREREREEREEREERERE /

/* Linienbreite und Form des Linienendes verändern */
/* Megamax Laser C MP 18-11-88 LINIEN.C */
[RERREREERERREEREEREEREEREREEEREREREREREEREREREREEEREERE /

#include <osbind.h>

#include "gem_inex.c"

int i;

int pxyarray[4]; /* Dieses Array brauchen wir für Koordinaten */

main()
C

gem_init();

Cconws ("\33E"); /* Bildschirm Löschen */

vsl_width (handle, 33); /* Linienbreite einstellen */

for (i=0; i<=2; i++)

{

vsl_ends (handle, i, i); /* Linienenden wechseln */

pxyarray[0] = 20; /* Koordinaten in Hilfs-Array */

pxyarray[1] = 20+70*i;

pxyarray[2] = 300;

pxyarray[(3] = pxyarray[1];

v_pline (handle, 2, pxyarray); /* 2 Punkte verbinden */

>

Crawcin(); /* Warten auf Taste */

gem _exit();

>

 GEM-Programmierung 183

Assembler

gemdos

crawcin

cconws

main:

loop:

n
a

S
e

B
e

G
O

Linienbreite und Form des Linienendes verandern

Assembler -MP 18-11-88 LINIEN.Q

„INCLUDE 'GEM_INEX.Q'

it

a
u
d

move .W

trap

addq. l

gem_init

clrscr Bildschirm löschen

#cconws, - (Sp)

#gemdos

#6,Sp

; Linienbreite einstellen

move .W

move .W

move .w

clr.w

clr.w

move .W

move .W

clr.w

jsr

clr.w

#16,contrl

#1,contrl+2

#1,contrl+4

contrl+6

contrl+8

handle, contrl+12

;Funkt ions-Opcode

#33 ,ptsin

ptsint2

;Linienbreite

vdi

d3 ;‚Laufvariable für Schleife

; Linienanfangs- und -endstyle wählen

move.W

clr.w

clr.w

move .W

clr.w

move .W

move .W

move .W

#108, contrl

contrl+2

contrl+4

#2, contrl+6

contrl+8

handle, contrl+12

: Funktions-Opcode

d3, intin

d3, intint2

;Linienstartpunkt

;Linienendpunkt

 184

jsr

Atari ST Intern 2

vdi

; Zeichnen der Linie

move.W

move.W

clr.w

clr.w

clr.w

move .W

move .W

move .wW

mulu

addi .

move.

move.

move. z
Z
x
E
 x

jsr

Ende

addq.w

cmpi.w

bne

move .W

trap

addq. |

jsr

clr.w

trap

„DATA

#6,contri ;Funktions-Opcode

#2 ,contrl+2 ‚2 Punkte verbinden

contrl+4

contrl+6

contri+8

handle, contrl+12

#20,ptsin Koordinaten

d3,d4

#70,d4

#20 ,d4

d4 ,ptsint+t2

d4 ,ptsin+6

#300, ptsin+4

vdi

der Schleife:

#1 ,d3

#3, d3

loop

#crawcin,-(sp) ;Warten auf Taste

#gemdos

#2,sp

gem_exit

-(sp)

#gemdos

clrscr: .DC.b 27,'E',0

-END

So sieht’s aus:

 GEM-Programmierung 185

An diesen Programmen ist auch die Verwendung der Polyline-Funktion
(v_pline) gut zu erkennen: Zunächst werden die Koordinaten aller benö-

tigten Punkte (Polyline kann ja mehr als zwei Punkte verbinden) ins
Ptsin-Array geschrieben (Omikron-BASIC bzw. Assembler) oder in einem
separaten, selbst zu deklarierenden Array übergeben (C). Die Anzahl der

verwendeten Punkte muß explizit angegeben werden, und zwar als Para-

meter (BASIC und C) oder als Länge des ptsin-Arrays (Assembler).

Ein letzter Hinweis zu den Attribut-Funktionen: Sie dürfen mit gutem
. Gewissen jede nur denkbare Einstellung der Attribute vornehmen, ohne
daß Sıe dadurch Accessories beeinflussen könnten, die vielleicht die

Standardeinstellung für ihre Ausgaben benötigen. Das liegt daran, daß
alle Attribute für jede geöffnete virtuelle Arbeitsstation separat gespei-
chert werden. Wenn Sie also mit v_opnvwk einen Bildschirm geöffnet
haben, so beziehen sich alle folgenden Attribut-Änderungen nur auf den

logischen Bildschirm Ihres Programms. Als Gegenleistung müssen Sie halt
für alle VDI-Aufrufe ein Handle mitgeben. Jetzt wissen Sie auch,

warum.

5.5.3 Die Raster-Funktionen

Die Raster-Funktionen sind sehr komplex und nicht gerade leicht zu
verstehen. Deshalb werde ich nur eine einzige Rasterfunktion vorstellen,

und auch die wird nicht in allen Einzelheiten erläutert. Ich werde Sie
aber so weit führen, daß Sie diese Funktion sinnvoll anwenden können
und daß Sie, falls Sie möchten, die anderen Funktionen alleine erforschen

können.

 186 Atari ST intern 2

Ein Raster ist rechteckiger Grafik-Bereich. Für uns soll zunächst einmal
gelten, daß sich dieser Bereich auf dem Bildschirm befindet. Die
Rasterfunktion, die ich Ihnen vorstellen möchte, erlaubt es nun, ein sol-
ches Raster zu kopieren. Damit sind also Blockoperationen möglich, wie

Sie sie sicher von Grafik-Programmen kennen (Block verschieben, Block
kopieren). Allerdings ist der Ausdruck kopieren nicht sehr gut gewählt.
Eigentlich sollte man sagen: Die Funktion verknüpft ein Quellraster lo-
gisch mit einem Zielraster. Es gibt 16 verschiedene Möglichkeiten dieser

Verknüpfung, die durch ein Modus-Wort (0-15) unterschieden werden.
Die wichtigsten sollen hier kurz vorgestellt werden:

Das Zielraster wird (unabhängig vom Quellraster) gelöscht.

Das Zielraster wird komplett kopiert. Dieser Modus entspricht dem

Replace-Modus (siehe Kapitel 5.5.2, Set Writing Mode).

T: Auch hier wird kopiert, allerdings bleibt der alte Hintergrund des
Zielrasters dort, wo das Quellraster weiß ist, erhalten (entspricht
dem Transparent-Modus bei Set Writing Mode).

10: In diesem Modus wird lediglich das Zielraster invertiert.

15: Dieser Modus färbt das Zielraster schwarz, ist also das Gegenstück

zum Modus 0.

An dieser Liste sehen Sie zwei Dinge: Erstens ist es nicht leicht, die

Auswirkungen der verschiedenen Modi in Worten zu beschreiben, und
zweitens kann diese Funktion auch bequem dazu benutzt werden, Bild-

schirmbereiche zu löschen oder zu invertieren.

Betrachten wir jetzt den Aufruf der Funktion: Sie heißt Copy Raster,

Opaque (vro_cpyfm). Opaque bedeutet nicht transparent, und wie er-
wartet gibt es auch eine zweite Rasterfunktion namens Copy Raster,
Transparent. Der Unterschied liegt darin, daß letztere Funktion zusätzlich

Farbe in ein einfarbiges Quellraster bringen kann. Damit werden wir uns
allerdings nicht weiter aufhalten.

Der Funktion werden eine ganze Reihe von Parametern übergeben: Ko-

ordinaten für Quell- und Zielraster und das Modus-Wort, das die Art der

logischen Verknüpfung bestimmt. Quell- und Zielraster müssen gleich
groß sein, d.h. Vergrößerungen oder Verkleinerungen sind mit dieser
Funktion nicht möglich. Sollten Sie versehentlich unterschiedliche Größen
angeben, so wählt der Rechner die Größe des Zielrasters automatisch

 —— GEM-Programmierung 187

auch als GréBe des Quellrasters. Das ist besonders bei den Modi 0, 10
und 15 niitzlich (siehe oben), weil dort ja gar kein Quellraster angegeben

werden muß.

Zwei weitere Parameter müssen übergeben werden, nämlich Zeiger auf

die sogenannten MFDBs, was soviel wie Memory Form Definition Block
bedeutet. Das einzig Schöne an diesen MFDBs ist für uns eigentlich die
Tatsache, daß wir sie nicht benötigen, solange sich Quell- und Zielraster
auf dem Bildschirm befinden. Um dem Rechner das mitzuteilen, müssen

wir beim Aufruf statt der beiden Zeiger auf MFDBs zwei Zeiger auf ein
Langwort übergeben, das Null ist. Wıe das gemacht wird, entnehmen Sie
am besten dem folgenden Beispielprogramm, das einen String auf den
Bildschirm schreibt und ihn dann kopiert, und zwar einmal im Modus 3
(Replace) und einmal im Modus 7 (Transparent):

Omikron-BASIC

ß

' Demo-Programm für Copy Raster, Opaque (vro_cpyfm)
' Omikron-BASIC MP 19-11-88 COPYRAST .BAS
‘

Appl_Init' Die übliche Anmeldung...

V_Opnvwk
ß

V_Gtext(20,50,"Hallo, das ist der Text")! "Original"-Text180 'Null_Long=O'

ein Langwort 0 (4-Byte-Variable)

Nullptr= VARPTR(Null_Long)' Zeiger auf diese

Null 'Vro_Cpyfm(Nullptr ‚Nullptr,3,20,36,204,52,20,65,204,81)230

' (3 ist Modus-Wort => Replace)
1

Vro_ Cpyfm(Nullptr,Nullptr,7,20,36,204,52,20,90,204, 106)

' (Modus 7 => Transparent)

GEMDOS (,7)! Warten auf Taste
8

V_Clsvwk'! Ende

Appl_Exit
END

C

[RRRRERERREREREREEEEEEEEEIERERE ERE RERIEERE AKER ETRE |

/* Demo-Programm fur Copy Raster, Opaque (vro_cpyfm) */

/* Megamax Laser C MP 19-11-88 COPYRAST.C */
NH]

#include <osbind.h>

 188 Atari ST Intern 2

#include "gem_inex.c"

int pxyarray([8);
long null_long = OL;

main()

{

gem_init(); _

v_gtext (handle, 20, 50, "Hallo, das ist der Text");

/* Vor dem Aufruf der Rasterfunktion müssen die Koordinaten */

/* von Quell- und Zielraster im pxyarray abgelegt werden */

pxyarray[0] = 20; pxyarray[1] = 36; /* Quellraster */

pxyarray[2] = 204; pxyarray[3] = 52;

pxyarray[4] = 20; pxyarray[5] = 65; /* Zielraster */

pxyarray[6] = 204; pxyarray[7] = 81;

vro_cpyfm (handle, 3, pxyarray, &null_long, &null_long);

/* '&variable' liefert Zeiger auf "variable! */

/* Modus 3 ist Replace-Modus */

90; /* Beim zweiten kopieren ändern sich nur */

106; /* die y-Koordinaten des Zielrasters */

pxyarray [5]

pxyarray [7]

vro_cpyfm (handle, 7, pxyarray, &null_long, &null_long);

/* Jetzt wurde Modus 7 benutzt (Transparent) */

Crawcin(); /* Auf Taste warten */

gem _exit();

>

Assembler

’

; Demo-Programm fur Copy Raster, Opaque

; Assembler MP 19-11-88 COPYRAST.Q

‘

~ INCLUDE 'GEM_INEX.Q'

gemdos = 1

crawcin =7

- TEXT

main:

 GEM-Programmierung 189

jsr gem_init

; Text ausgeben

lea.l

bsr

move .wW

move .w

clr.w

clr.w

move .wW

move .W

move .W

jsr

ausgabe, a0

fix_text ‚String ins intin-Array bringen

#8, contrl ;Text (v_gtext)

#1, contrl+2 sAnzahl der Koordinaten in ptsin

contrl+4 ‚Anzahl der Punkte in ptsout

contrl+8 sZaht der Werte in intout

handle, contrl+12 ;VDI-Grafik-Handle

#20,ptsin

#50, ptsint2

Koordinaten

vdi

: Erster Copy Raster-Aufruf (Modus 3 => Replace)

move .W

move .W

clr.w

move .W

clr.w

move .wW

move. l

move. |

move .W

move .W

move .W

move .W

move .W

move .W

move .W

move .W

move .W

jsr

move .W

move .W

#109, contrl ; Funktions-Opcode

#4 ,,contrl+2 ‚4 Koordinaten in ptsin

contrl+4

#1,contrl+6 ‚ein Wert in intin

contri+8

handle, contrl+12

#null,contri+14 ;Zeiger auf Null (MFDB)

#null,contri+18 ;s.o., aber für Ziel

#20,ptsin Koordinaten des Quellrasters

#36, ptsint2

#204, ,ptsint4

#52 ,ptsin+6

#20 ,ptsin+8

#65 ‚ptsin+10

#204, ptsin+12

#81, ptsint+14

‚Koordinaten des Zielrasters

#3,intin ‚Modus 3: Replace

vdi

Für den zweiten Aufruf müssen nur noch die

Koordinaten und der Modus geändert werden

#90 ,ptsin+10

#106, ptsin+14

 190

fix_text:

fix_loop:

fix_end:

null:

ausgabe:

5.6

move.W

jsr

move .W

trap

addq. |

jsr

clr.w

trap

#7,intin

vdi

#crawcin,-(sp)

#gemdos

#2,Sp

gem_exit

-(sp)

#gemdos

Atari ST Intern 2

Warten auf Taste

; Unterprogramm, daß einen String (Startadresse in a0

; zu übergeben) in das intin-Array schreibt, die Länge

; bestimmt und in contrl [3] ablegt

clr.w

clr.w

lea.l

move .b

tst.b

beq.s

move .wW

addq.w

bra.s

move .W

rts

„DATA

-DC.l 0

do

d1

intin,al

(a0)+,d1

d1

fix_end

di,(al)+

#1,d0

fix_loop

d0, contrl+6

‚Länge

;Hilfsregister

sein Byte aus Zielstring holen

;Stringende?

‚nein, dann als Wort ins

;intin-Arrary schreiben

‚Länge festhalten

Das wird unser MFDB (OD für Bildschirm)

-DC.b ‘Hallo, das ist der Text',0

„END

Ereignisse

Mit der Ereignis-Verwaltung sind wir bei einem ganz wichtigen Thema
angelangt. Ein Ereignis ist all das, worauf ein Programm warten kann,
also z.B. das Drücken einer Taste, ein Mausklick oder auch das

Verstreichen einer bestimmten Zeitspanne.

 GEM-Programmierung 191

Wenn eine Applikation auf ein bestimmtes Ereignis warten muß, dann

könnte sie in einer Warteschleife verharren, bis dieses Ereignis eingetre-

ten ist. Gibt es verschiedene Ereignisse, die, wie es in GEM-Applikation

üblich ist, jederzeit eintreten können (also z.B. Maus und Tastatur), so

wird die Sache etwas komplizierter, wır müßten ja in der Warteschleife

gleich mehrere Geräte abfragen. Aber es wäre immerhin möglich, dies in

einer Schleife zu erledigen.

Auch bei der Entwicklung des GEM hat man sıch darüber Gedanken
gemacht. Das Ergebnis dieser Gedanken ist eine höchst komfortable Er-
eignis-Verwaltung, die für den Programmierer sehr einfach zu benutzen
ist, wenn er sie erst einmal verstanden hat.

Sie benötigen zunächst einige Grundkenntnisse. Als erstes wäre zu er-
wähnen, daß GEM zwischen zwei Zuständen eines Programms unter-

scheidet: bereit zu laufen und nicht bereit zu laufen. Im Englischen wird
das kürzer mir ready status und not-ready status bezeichnet. Was bedeu-

tet nun dieser Status, das heißt: wann ist ein Programm bereit zu laufen?
Nun, es ist immer dann bereit zu laufen, wenn es nicht auf irgendein
Ereignis wartet, wenn das Programm also alle Daten für eine Berechnung
oder für eine Ausgabe hat und das tun kann, wofür Computer geschaffen

wurden: arbeiten, nicht warten. Damit ist klar, was not-ready Status be-
deutet: Ist ein Programm in diesem Status, so wartet es, kann also nicht

arbeiten. |

Jetzt kommt ein zweites Programm ins Spiel, das heißt: in den gleichen

Computer. Nehmen wir an, wir hätten einen Drucker-Spooler als Acces-

sory geladen, der einen Text ausgeben möchte. Gleichzeitig läuft die
Textverarbeitung als normale Applikation. Nehmen wir ferner an, daß

Sie dem Spooler aufgetragen haben, einen Text zum Drucker zu schicken.
Wir haben also ein System mit zwei eigenständigen Programmen, die

beide arbeiten wollen. Solange Sie jetzt keine Taste drücken, hat die
Textverarbeitung natürlich nichts zu tun, sie hat not-ready Status, wartet

also. Der Spooler hingegen wartet nicht (allenfalls auf den Drucker, aber
das spielt in diesem Fall keine Rolle). Das erkennt GEM automatisch und
läßt den Spooler ungestört arbeiten. Erst, wenn der Benutzer irgendetwas

tut, was die Textverarbeitung betrifft, diese also ready Status erhält, gibt
es ein kleines Problem, nämlich: Welches der beiden Programme, die ja

beide bereit sind zu laufen, darf denn jetzt arbeiten?

Eine mögliche Lösung wäre zum Beispiel, jedem Programm eine be-
stimmte Zeit zuzuteilen, das heißt der Spooler würde eine Zehntelse-

kunde arbeiten, dann die Textverarbeitung (genauso lange), dann wieder

der Spooler usw. In GEM geht es jedoch anders: Jedesmal, wenn eines

 192 Atari ST Intern 2

der Programme einen AES-Aufruf (also nicht VDI-Aufrufe) tätigt,
schaltet GEM das gerade laufende, also das aufrufende Programm ab und
gibt die Kontrolle an das andere. Beim nächsten AES-Aufruf dieses an-

deren Programms passiert das gleiche: Das jetzt aufrufende, also das

zweite Programm wird stillgelegt und das erste wieder aktiviert. Der Teil
des GEM, der dieses Umschalten besorgt, heißt übrigens Dispatcher.

Fassen wir zusammen: Ein Programm, das gerne arbeiten möchte, hat
ready Status. Gibt es mehrere Programme/Acessories mit ready Status, so

schaltet der Dispatcher des GEM beı jedem AES-Aufruf zwischen den

Programmen um. Wartet aber ein Programm auf ein Ereignis, und be-
nutzt es dazu die Ereignis-Funktionen des AES, dann bekommt dieses

Programm not-ready Status, d.h. es wird solange vom Dispatcher igno-

riert (also nicht mehr aktiviert), bis das geforderte Ereignis eingetreten
ist.

Stellen Sie bitte sicher, daß Sie bis hierhin alles nachvollziehen konnten.

Ich weiß, daß dies ein schwieriges Kapitel ıst, aber ich verspreche Ihnen:

Es lohnt sich, allein schon deshalb, weil kein GEM-Programm ohne die
Ereignis-Verwaltung leben kann.

Eben war von Ereignis-Funktionen die Rede. Ereignis-Funktionen sind
Funktionen des AES. Sie werden von einem Programm immer dann auf-

gerufen, wenn auf ein Ereignis gewartet werden soll. Für unterschiedli-
che Ereignis-Typen gibt es verschiedene Funktionen. Aber welche Ereig-
nis-Typen gibt es eigentlich? Zählen wir sie einmal der Reihe nach auf:

> Tastendruck (evnt_keybd),

> Mausklick (evnt_ button),

> Mausüberwachung. Hiermit kann darauf gewartet werden, daß der
Mauszeiger ein von Ihnen vorgegebenes Rechteck betritt oder ver-
läßt (evnt_ mouse).

> Nachricht. Mit den Nachrichten (weder heute noch Tagesschau)
werden wir uns noch ausführlich beschäftigen. Hier sei nur er-
wähnt, daß ein Programm Mitteilungen vom GEM oder von ande-
ren GEM-Programmen erhalten kann (evnt_ mesag).

> Zeit. Das Programm soll warten, bis eine bestimmte Zeit verstri-
chen ist (evnt_ timer).

 GEM-Programmierung 193

In Klammern habe ich Ihnen schon gleich die Namen der AES-Funktio-
nen gegeben, die Sie aufrufen müssen, wenn Sie auf eines dieser Ereig-
nisse warten wollen. Wie üblich bitte ich Sie nun darum, einen kurzen

Blick in Ihre GEM-Dokumentation zu werfen, damit Sie wieder einen

groben Überblick über die oben genannten Funktionen bekommen. Dabei
sollten Sie vielleicht die Funktion evnt _mesag erst einmal auslassen.

Falls Sie den Zustand völliger Verwirrung genießen sollten, dann
empfehle ich Ihnen die Lektüre der Parameter, die an die Funktion

evnt_ multi übergeben werden; es sind mehr als 20! Allerdings ist diese
große Zahl recht einfach zu erklären: evnt_ multi ist die Ereignisfunk-
tion, die immer dann benutzt wird, wenn das Programm auf verschiedene

Ereignisse reagieren muß, und deshalb benötigt diese Funktion natürlich
die Parameter aller anderen Ereignisfunktionen. In der Tat ist es so, daß

eine GEM-Applikation fast immer mehrere Ereignis-Typen verarbeiten

muß; denn ein Programm muß ja gleichermaßen auf Tastendrücke,
Mausklicks und -bewegungen und auch, wie wir noch sehen werden, auf
Nachrichten reagieren können. Diese Funktion evnt_ multi ist daher die
in GEM-Applikationen meistbenutzte Ereignis-Funktion.

So, jetzt können wir uns an ein erstes Beispielprogramm machen. Ich

habe eine kleine Applikation geschrieben, die auf einen Mausklick wartet

und an der Stelle, wo sich der Mauszeiger zur Zeit des Klicks befindet,

ein kleines x schreibt. Wenn der Klick allerdings ein Doppelklick war,

dann soll statt des kleinen ein großes X ausgegeben werden. Wir benöti-

gen dazu die Funktion evnt button, die automatisch zwischen Klick und
Doppelklick unterscheiden kann. Das Programm soll dann beendet sein,

wenn zusätzlich zur Maustaste auch eine Shift-Taste gedrückt wurde.

Betrachten wir zunächst die Parameter, die evnt__button verlangt: Als er-
stes müssen Sie angeben, ob nur auf normale Klicks (1), Doppelklicks (2)
oder auch n-fach-Klicks (n) gewartet werden soll, wobei Werte über 2
den Benutzer wohl überfordern. Für den alltäglichen Gebrauch kommen

also nur die Werte 1 und 2 in Frage, wobei Sie 2 nur dann angeben soll-
ten, wenn Sie auch wirklich auf Doppelklicks reagieren möchten.

Ferner benötigt die Funktion zwei Werte, mit denen Sie angeben, worauf

ganz genau gewartet werden soll. In der GEM-Dokumentation heißen

dieser Werte ev_bmask und ev__bstate. In beiden sind nur die Bits 0 und
1 relevant; Bit 0 bezieht sich auf die linke Taste, Bit 1 auf die rechte.
Nun, mit diesen Bits können Sie in ev_bmask bestimmen, welche
Maustaste für das Ereignis überprüft werden soll. Ein gesetztes Bit heißt,
daß die entsprechende Taste zu überprüfen ist. In ev_bstate müssen Sie

hingegen für jede abzufragende Taste angeben, ob das Ereignis dann

 194 Atari ST Intern 2

eintreten soll, wenn die Taste gedrückt ist (Bit gesetzt) oder wenn sie

nicht gedrückt ist (Bit gelöscht). Sie sehen, die Funktion kann also auch
darauf warten, daß ein Mausknopf wieder losgelassen wird.

Eines kann die Funktion aber nicht: darauf warten, daß entweder die

linke oder die rechte Maustaste betätigt wird. Wenn Sie sowohl ev_bmask
als auch ev _bstate auf drei setzen, also alle relevanten Bits setzen, dann

gilt das Ereignis erst dann als erfüllt, wenn beide Tasten gleichzeitig ge-
drückt sind.

Die Funktion gibt auch Werte zurück (in GFA-BASIC optional). Dazu

gehören die x- und y-Koordinaten des Mauszeigers zu der Zeit, als das
Ereignis ausgelöst wurde, ferner der Zustand beider Maustasten (Bit 0
und 1 wie gehabt; Bit gesetzt = Maustaste gedrückt) nach (!) Ablauf der
Funktion (damit kann man z.B. feststellen, ob es ein kurzer Klick war
oder ein langer, z.B. um Objekte zu bewegen) und ein Wert, der den
Zustand der Sondertasten (Shift, Control und Alternate) darstellt. Die ge-

naue Zuordnung der Bits zu diesen Tasten entnehmen Sie bitte Ihrer
GEM-Dokumentation.

Für eine so simple Angelegenheit wie die Abfrage eines kleinen Maus-
knopfes ist also eine ganze Menge an Verwaltungsaufwand erforderlich.

Schauen Sie sich das Beispielprogramm an, und sehen Sie auch in Ihren

anderen Büchern noch einmal unter evnt_ button nach.

GFA-BASIC

i

' evnt_button - Demoprogramm (Ereignis-Verwal tung)

' GFA-BASIC MP 22-11-88 BUTTON.GFA
6

VOID APPL_INIT() ! Anmelden bei AES

PRINT "Ende mit Shift und Klick..."

GRAPHMODE 2 I Transparent -Modus
a

DO

klicks%=EVNT_BUTTON(2,1,1,x%,y%,k%,switch%)
a

' Parameter: 2 -> maximal Doppelklick (kein 'Dreifachklick')

' 1 -> Linke Maustaste soll abgefragt werden

' 1 -> Ereignis: die Taste soll gedrückt sein

' x%, Y%* -> Mauskoordinaten nach dem Klick

' k% -> Maustastenstatus beim Klick

‘ switch% -> Sondertastenstatus während des Klicks '

 GEM-Programmierung | 195

EXIT IF switch%>0 I Programm beenden, wenn Shift o.Ä. gedrückt ist
I

IF klicks%=1 !ı einfacher Klick

TEXT x%, y%, "x"!
ELSE

TEXT x%, y%, "X"
ENDIF

LOOP

VOID APPL_EXIT()

END

Omikron-BASIC

evnt_button - Demoprogramm (Ereignis-Verwal tung)

' Omikron-BASIC MP 23-11-88 BUTTON.BAS
‘

Appl_Init

V_Opnvwk
8

CLS

Vswr_Mode(2)' Transparent Write-Mode

PRINT "Ende mit Shift und Klick..."

WHILE 1° Omikron hat keine DO ... LOOP - Schleife

Evnt_Button(2,1,1,Klicks,X,Y,K,Switch)

' Die Parameter wurden im GFA-Listing erldutert. Unterschied:

' Klicks wird als VAR-Parameter übergeben (GFA: Funktionswert)
a

IF Switch>O THEN EXIT ' Ende, wenn zusatzlich zum Klick eine

‘ der Sondertasten gedrückt wurde

IF Klicks=1' einfacher oder doppelter Klick?

THEN V_Gtext(X,Y,"x")
ELSE V_Gtext(X,Y,"X")

ENDIF

WEND

V_Clsvwk

Appl_Exit
END

C

[RRRRRREREEEREREERERER ER EERE ERE REREREEERERREEREREUEREE |

/*

/*

evnt_button - Demoprogramm (Ereignis-Verwaltung) */

Megamax Laser C MP 23-11-88 BUTTON.C */
[RRRRIIRII ARITA IAAI AI IA ITI AISA IAAI I IAIN IIS ISAS SISA IAIAS. |

 196 Atari ST Intern 2

#include <osbind.h>

#include "gem_inex.c"

int x, y, k,

klicks,

swtch; /* abweichender Name, weil 'switch' reserviert ist */main()

{

gem_init();

graf_mouse (0, OL); /* Pfeil statt Biene als Mauszeiger */

/* (Biene ist ja nach dem Laden noch da) */

/* OL ist zunächst ohne Bedeutung für Sie */

Cconws ("\33E"): /* Bildschirm löschen */

vswr_mode (handle,2); /* Transparent-Modus */

do

{
klicks = evnt_button (2, 1, 1, &x, &y, &k, &swtch);

if (klicks == 1) /* wieviele Klicks? */

v_gtext (handle, x, y, "x");

else

v_gtext (handle, x, y, "X");

>

while (swtch == 0);

gem _exit();

>

Assembler

; evnt_button - Demoprogramm (Ereignis-Verwal tung)

; Assembler MP 23-11-88 BUTTON .Q

„INCLUDE 'GEM_INEX.Q'

gemdos = Icconws = 9 - TEXT

main: jsr gem_init

pea clrscr ‚Bildschirm löschen

move.W #cconws,-(sp)

trap #gemdos

addq. l #6,Sp

; Transparent-Modus einschalten

move .W #32,contrl :Opcode

 GEM-Programmierung 197

clr.w contrl+2

clr.w contrl+4

move .w #1,contri+é6

move .W #1,contrl+8

move .W handle, contrl+12

move .W #2,intin ;2 = Transparent

jsr vdi

; Nach dem Laden ist die Biene als Mauszeiger aktiv.

: Das behindert unser Programm jedoch. Deshalb

; schalten wir statt dessen auf den normalen Pfeil um.

; Das macht die AES-Funktion graf_mouse.

move .W #78, control

move .wW #1, control+2

move .W #1,control+4

move .w #1, control+6

clr.w control+8

clr.w int_in ‚0 für Pfeil

clr.L addr_in ‚für uns: Dummy-Null

jsr aes

Loop:

‚ evnt_button - Aufruf

move .W #21,control ‚AES, daher contro(!)l

move.W #3,control+2

move .wW #5, ,control+4

clr.w control+6

clr.w control+é&

move .W #2, int_in ‚maximal Doppelklick registrieren

move.W #1, int_int2 ‚Linken Knopf abfragen

move.W #1, int_int4 ‚Ereignis: Mausknopf gedrückt

jsr aes

tst.w int_out+8 ;Status der Sondertasten

bne ende ‚Ende falls irgendwas gedrückt

cmpi .wW #1, int_out ‚wie viele Klicks?

bne.s l

move.b #'x! dO ‚einer, dann kleines x vormerken

bra.s Ll

l: move .b #'X' dO ‚sonst Doppelklick und großes X

 198

Ul

ende:

fix_text:

fix_loop:

fix_end:

Atari ST Intern 2

; v_gtext aufrufen

move .wW

move .wW

clr.w

clr.w

move .W

move .w

move .W

move .b

lea.l

bsr

jsr

bra

jsr

clr.w

trap

#8, contrl

#1, contrl+2

contrl+4

contr l+8

handle, contrl+12

int_out+2,ptsin

int_out+4,ptsint2

;Koordinaten von evnt_button

d0, ausgabe

ausgabe, a0

fix_text

sZeichen in String umwandeln

‚String in intin-Array schreiben

vdi

Loop

gem_exit

-(sp)

#gemdos

; Unterprogramm, das einen String (Startadresse in a0

; zu Ubergeben) in das intin-Array schreibt, die Lange

; bestimmt und in contrl[3] ablegt

clr.w do ‚Länge

clr.w d1 sHilfsregister

lea. l intin,al

move.b (a0)+,di ‚ein Byte aus Zielstring holen

tst.b di ;Stringende?

beq.s fix_end

move .W di1,(a1)+ ‚nein, dann als Wort ins

addq.w #1,d0 ‚intin-Arrary schreiben

bra.s fix_loop

move.W d0, contrl+6 ‚Länge festhalten

rts

„DATA

 GEM-Programmierung 199

ausgabe: .0C.w 0

clrscr: -DC.b 27,'E',0

„END

Ein anderer Ereignistyp wurde oben schon einmal erwähnt: eine Nach-
richt. Nachricht heißt auf Englisch message, und deshalb können Sie mit
der AES-Funktion evnt _mesag auf eine solche Nachricht warten. Nun
interessiert Sie natürlich, was das für Nachrichten sınd, auf die ein

Programm warten kann. Und hier stehe ich vor einem großen Problem:
Die meisten der möglichen Nachrichten gehören zu Dingen, mit denen
wir uns erst später beschäftigen werden. Andererseits kann ich die Be-

sprechung dieser Dinge auch nicht vorziehen, weil dazu Kenntnisse über
das Nachrichten-System des GEM nötig sind. Deshalb erzähle ich Ihnen

erstmal das nötigste; Beispiele bekommen Sie dann später bei den gewis-
sen anderen Dingen.

Nachrichten kann ein GEM-Programm von zwei verschiedenen Quellen
erhalten: von anderen GEM-Programmen und vom GEM selber. Eine

Nachricht ist dabei ganz konkret ein Speicherbereich von 8 Worten, also

16 Bytes. Wenn ein Programm auf ein Ereignis wartet, so muß es immer
eine Adresse angeben, ab der diese Nachricht abgelegt werden kann.
Wenn das Ereignis eingetreten ist, dann befindet sich im ersten Wort
(Wort 0) immer eine Zahl, die die Art der Nachricht beschreibt. Auf die
möglichen Werte und ihre Bedeutungen gehe ich aber noch nicht ein.

Betrachten wir noch einmal die beiden verschiedenen Quellen, von denen
eine Nachricht ausgehen kann. Die erste Möglichkeit, eine Nachricht von

einem anderen GEM-Programm, ist sehr selten; denn die Programme, die
Nachrichten untereinander austauschen (etwa zwei Accessories unterein-
ander, aber auch ein Accessory und eine Applikation könnten das tun),
müssen aufeinander abgestimmt sein. Im Klartext heißt das, daß Sie das
Empfänger-Programm mit einer Reihe von definierten Kommandos aus-

statten müssen, die es verstehen und verarbeiten kann. Das Kommando

und eventuelle zusätzliche Werte werden dann in den sogenannten
Ereignis-Puffer (das sind die oben erwähnten 8 Worte) des Ziel-Pro-
gramms geschrieben; zu diesem Zweck gibt es eine spezielle AES-Funk-

tion. Es gibt für dieses Vorgehen durchaus sinnvolle Anwendungsmög-
lichkeiten, doch ist ein derartiger Informationsaustausch im Atari nur
gelegentlich zu finden.

Viel wichtiger ist für uns die andere Nachrichtenquelle: GEM selber. Der
Teil, der uns die Nachrichten schickt, heißt Screen-Manager. Wie der

 200 | Atari ST Intern 2

Name vermuten läßt, hat er etwas mit dem Bildschirm zu tun. Und

tatsächlich kontrolliert dieser Screen-Manager all das, was der Benutzer

mit der Maus auf dem Bildschirm eines normalen GEM-Programms ma- .

chen kann. Und hier sind wir bei einem ganz wichtigen Punkt angelangt,
denn wir müssen unterscheiden, wann ein Mausklick als reiner Klick

über die Funktion evnt_ button, die wir ja schon kennen, gemeldet wird,
und wann als Nachricht über die Funktion evnt _mesag. Der Unterschied
mag Ihnen im Moment bedeutungslos erscheinen, doch Sie werden mir

recht geben, daß ein Klick auf einem Menüpunkt eines Pull-Down-

Menüs etwas anderes ist als ein Klick auf irgendeine Stelle im Arbeits-

bereich des Fensters. Ja, es gibt sogar Extremfälle: Denken Sıe wieder

einmal an eine Textverarbeitung. Sie klicken nun einen Menüpunkt ganz
unten in einem ellenlangen Pull-Down-Menü an. Würde die Textverar-
beitung nur die Bestätigung erhalten, daß da an einer bestimmten K.oor-
dinate ein Klick war, dann könnte sie nicht wissen, ob sich an dieser
Koordinate zur Zeit des Klicks ein Pull-Down-Menü befunden hat;
schließlich könnte es ja auch sein, daß der Anwender nur den Cursor an

eine bestimmte Stelle bewegen wollte und dazu an der gleichen Koordi-

nate auf einen Buchstaben geklickt hat.

Damit soll folgendes verdeutlicht werden: Alle Mausaktivitäten des Be-
nutzers werden in zwei Gruppen eingeteilt: Alles, was innerhalb (!) von
Fenstern (also nicht am Fensterrahmen) oder auf dem Desktop (also nicht

in der Menüleiste) angeklickt wird, verursacht eine Benachrichtigung des
Programms über die Funktion evnt_button (natürlich muß das Programm
die Funktion dazu vorher aufgerufen haben). Alles andere, das heißt
Klicks im Fensterrahmen (Fenster vergrößern, scrollen, schließen) und
Klicks auf Meniipunkte von Pull-Down-Meniis sind Nachrichten, die nur

über die Funktion evnt _mesag empfangen werden können. Am Rande sei
bemerkt, daß natürlich beide Arten von Klicks auch mit evnt_ multi ab-
gefangen werden können.

So, wenn Sie Lust haben, dann schauen Sie sich doch einfach mal die

möglichen Ereignisse in einem Ihrer anderen Bücher an. Ich werde diese
erst nach und nach vorstellen, wenn wir sie gerade brauchen. Bitte haben
Sie Verständnis dafür, daß ich dieses Thema nur häppchenweise vorstelle,

aber alle Informationen auf einen Schlag zu bringen, wäre nicht sinnvoll.

Jetzt aber noch ein kleines Beispiel für die Verwendung von evnt_ multi,
damit Sie auch diese Funktion in Zukunft benutzen können. Es handelt
sich um ein Programm, das Sie mit einem Tastendruck beenden können.
Tun Sie das nicht, dann wird es nach drei Sekunden automatisch beendet.

 GEM-Programmierung 201

Wir benötigen also die Kombination der Funktionen evnt _keybd und
evnt_timer. Um evnt_multi das mitzuteilen, wird dieser Funktion ein
Wert übergeben, in dem es für jedes mögliche Ereignis ein Bit gibt. Ein
gesetztes Bit sagt, daß das entsprechende Ereignis eines von denen ist,

auf die wir warten wollen. Beachten Sie übrigens, daß die ursprüngliche

Funktion evnt _mouse (sie überprüft das Eintreten oder Verlassen des
Mauszeigers in einen bzw. aus einem bestimmten Bildschirmbereich)
doppelt vorhanden ist; Sie können also gleichzeitig zwei Bildschirmbe-

reiche aktıv haben. Aber das nur am Rande.

In unserem Fall sind die Bits 0 (für evnt_keybd) und 5 (für evnt_timer)

zu setzen, was einen dezimalen Wert von 33 ergibt. Die Funktion wird

unter anderem einen Wert zurückgeben, der uns anzeigt, welches der

möglichen Ereignisse denn nun wirklich eingetreten ist und den Abbruch
der Funktion (und damit die Wiederaufnahme des Programms) bewirkt
hat. Die Bits haben die gleiche Bedeutung wie oben. Die restlichen Para-
meter sind mit denen der einzelnen Ereignisfunktionen identisch, was
nicht weiter verwunderlich ist, da ja die gleichen Funktionen übernom-
men werden. Informieren Sie sich also dort über die Bedeutung der Pa-
rameter. Übrigens: Auch, wenn Sie nicht alle Parameter benötigen, so

müssen Sie dennoch beim Aufruf alle angeben. Allerdings ist es üblich,
für nicht benutzte Rückgabevariablen den Namen dummy (etwa: bedeu-
tungsloser Ersatz) zu wählen.

Das Programm sieht folgendermaßen aus:

GFA-BASIC

Meherere Ereignisse gleichzeitig abfragen

GFA-BASIC MP 24-11-88 MULTI.GFA

VOID APPL_INITC)
8

PRINT "Drücken Sie eine Taste. Wenn Sie nicht innerhalb von"

PRINT "3 Sekunden eine Taste gedrückt haben, ist das Programm"PRINT "beendet."
4 .

which%=EVNT_MULTI(33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3000, dummy% ,dummy%, . - -

. ..dummy%, dummy%, taste“, dummy’)

PRINT

IF which%=1 ! which% ist 1 (Bit 0) oder 32 (Bit 5)

PRINT "Abbruch mit Taste"

ELSE

PRINT "Abbruch nach 3 Sekunden!"

ENDIF

 202 Atari ST Intern 2

VOID APPL_EXITC)
END

Omikron-BASIC

ı Mehrere Ereignisse gleichzeitig abfragen

' Omikron-BASIC MP 25-11-88 MULTI.BAS
8

Appl_Init

V_Opnvwk
a

CLS
PRINT "Drucken Sie eine Taste. Wenn Sie nicht innerhalb von"
PRINT "3 Sekunden eine Taste gedrückt haben, ist das Programm"PRINT "beendet."
8

Evnt_Multi(33,0,0,0,0,0,0,0,0,0,0,0,0,0,3000,A$,Which,Dummy,...

.. Dummy ,Dummy, Dummy, Taste, Dummy)
§

PRINT

IF Which=1

THEN PRINT "Abbruch mit Taste"

ELSE PRINT "Abbruch nach 3 Sekunden"

ENDIF

GEMDOS (,7)' Warten auf Taste...

V_Clsvwk

Appl_Exit
END

Die Evnt-Multi-Zeile in BASIC (GFA und Omikron) mußte aus druck-
technischen Gründen in zwei Zeilen abgedruckt werden. Lassen Sie bitte
die Punkte weg und geben Sie alles in einer Zeile ein.

C

NETTE]

/* Mehrere Ereignisse gleichzeitig abfragen */

/* Laser C MP 25-11-88 MULTI.C */
NENNT |

#include <osbind.h>

#include "gem_inex.c"

int which,

taste, dummy;

main()

 GEM-Programmierung 203

gem_init();

v_gtext (handle, 0, 14,

"Drucken Sie eine Taste. Wenn Sie nicht innerhalb von");

v_gtext (handle, 0, 30,

"3 Sekunden eine Taste gedrückt haben, ist das Programm");

v_gtext (handle, 0, 46, "beendet.");

which = evnt_multi (33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O,

OL, 3000, 0, &dummy, &dummy, &dummy,

&dummy, &taste, &dummy);

if (which == 1)

v_gtext (handle, 0, 80, "Abbruch mit Taste");

else

v_gtext (handle, 0, 80, "Abbruch nach 3 Sekunden");

Crawcin(); /* Warten auf Taste */

gem_exit();

>

Assembler

‚
; Mehrere Ereignisse gleichzeitig abfragen

; Assembler MP 25-11-88 MULTI .Q

‚

gemdos = 1

crawcin =7

cconws = 9

„INCLUDE 'GEM_INEX.Q@'

.TEXT

main: jsr gem_init

pea meldung +Hinweis ausgeben

move .w #cconws, - (sp)

trap #gemdos

addq. l #6, Sp

; evnt_multi aufrufen

move .W #25, control ;Funkt10ns-Opcode

move .W #16, control+2

move .wW #7, control+4

 204 Atari ST Intern 2

clr.w control+8

move .W #33, int_in ‚Ereigniskombination (Bit 0 und 5)

move .W #3000, int_int28 ;low-Wert fur Timer

clr.w int_in+30 shigh-Wert (in Millisekunden)

jsr aes

cmpi.W #1, int_out ‚Welches Ereignis ist denn nun

bne.s time swirklich eingetreten?

pea a_taste

bra.s l

time: pea a_time

L: move .w #cconws, - (sp)

trap #gemdos

addq. | #6,Sp

move .W #crawcin,-(sp) ;Warten auf Taste...

trap #gemdos

addq. | #2,sp

jsr gem_exit

clr.w -(sp)

trap #gemdos

.DATA

meldung: .DC.b 27,'EDrücken Sie irgendeine Taste. Wenn Sie nicht '

.DC.b "innerhalb von! ,13,10,'3 Sekunden eine Taste gedrückt '!

.DC.b 'haben, ist das Programm! ‚13,10, 'beendet.',13,10,10,0

a_taste: .DC.b "Abbruch mit Taste',13,10,0

a_time: .DC.b 'Abbruch nach 3 Sekunden! ,13,10,0

„END

5.7 Die File-Selector-Box

Nun kommen wir endlich zu einer AES-Funktion, die nicht nur in fast

jedes GEM-Programm gehört, sondern die auch nicht mehr ausschließ-
lich zu Demonstrationszwecken gezeigt wird. Diese Funktion können Sie
in jedem Ihrer Programme verwenden und dabei einiges an Arbeit spa-
ren.Die

 GEM-Programmierung 205

Ich rede von dem Datei-Auswahl-Fenster, vielleicht besser bekannt als

File-Selector-Box. Das ist das Fenster, das immer dann erscheint, wenn

ein Programm Dateien laden oder sichern muß und dazu einen Datein-
amen von Ihnen erfragt. Sie können sich vorstellen, daß dieses ganze
Theater mit Laufwerken, Ordnern und Dateinamen recht umständlich

abzuwickeln ist, und gerade deshalb stellt die File-Selector-Funktion des
GEM eine so große Erleichterung dar: Alles, was Sie als kompliziertes,

standardisiertes Fenster auf dem Bildschirm sehen, kostet den Program-

mierer unter GEM nicht mehr als einen einzigen Funktionsaufruf.

Nun, so ganz richtig ist das nicht, denn mit dem Funktionsaufruf alleine
ist es noch nicht getan. Bevor wir sie aufrufen können, müssen wir eini-
ge Parameter zusammenbasteln. Die Funktion (sie heißt übrigens
fsel_input) möchte nämlich vom Programmierer wissen, auf welchem
Pfad (das heißt: in welchem Ordner auf welchem Laufwerk) sich die
anzugebende Datei voraussichtlich befindet. Wenn Sie sich eine File-Se-

lector-Box einmal ansehen, so werden Sie diesen Pfadnamen dort finden.

Sıe können ihn auch verändern, was besonders dann sinnvoll ist, wenn

Sie eine Datei auf einem anderen Laufwerk als dem voreingestellten an-
geben möchten (zumindest bis TOS 1.2, in der Version 1.4 gibt es ja da-
für endlich spezielle Knöpfe). Kurz und gut: Diesen voreingestellten
Pfadnamen muß das GEM-Programm selbst erstellen. Der zweite Para-

meter, den die Funktion benötigt, ist dann nur noch ein String, der op-

tional einen voreingestellten Dateinamen enthält; dieser erscheint dann

automatisch unter Auswahl neben dem Fenster mit den anderen Datei-
namen. Das ist immer dann sehr praktisch, wenn das Programm eine Da-

tei geladen und bearbeitet hat und sie nun wieder abspeichern möchte.
Dann kann der gleiche Dateiname, der auch beim Laden angegeben

wurde, als Standard-Name (man nennt das auch Default-Name) angege-

ben werden. Der Benutzer muß so nur noch Return drücken oder auf

OK klicken.

Nach Abschluß der Funktion gibt es noch etwas zu tun: Sie bekommen
vom AES nur den eventuell geänderten Pfadnamen und den ausgewählten

Dateinamen zurück, und zwar in zwei verschiedenen Strings. Sie müssen

diese zu einem einzigen verschmelzen, so daß Sie ihn als Dateinamen be-
nutzen können, der den Pfadnamen und den eigentlichen Dateinamen
enthält. Ein Beispiel: Aus

Pfad: A:\ORDNER*.PRG und

Dateiname: BTEXT.PRG

muß das GEM-Programm folgendes machen:

 206 Atari ST Intern 2

Ergebnis: A:\ORDNER\BTEXT .PRG

Dieser Name kann nun einer GEMDOS-Funktion wie Fopen zur Bear-

beitung übergeben werden. Das Verfahren, dieses Ergebnis zu bilden, ist

nicht schwer: Wir suchen im Pfad von hinten nach dem ersten (also nach
dem letzten, weil wir uns vom Ende zum Anfang durchsuchen) Backslash

(\). In unserem Fall wäre das das Zeichen direkt hinter dem Namen

ORDNER. Alles, was nach diesem Backslash noch kommt, wird gelöscht.

Es bleibt also A!\ORDNER\ übrig. Daran hängen wir den Dateinamen an
- fertig!

In GFA-BASIC ist das nicht nötig, es gibt dort nämlich eine etwas

komfortablere Version von fsel_input. Der Befehl heißt Fileselect. Hier
entfällt die Bildung eines Gesamtnamens aus Pfad- und Dateiname; das

macht GFA-BASIC automatisch. Auch in Omrikon-BASIC gibt es einen

gleichlautenden Befehl, dessen Syntax und Funktion jedoch mit

fsel_ input (also der weniger komfortablen Version) identisch ist. Einziger
Unterschied ist, daß Sie für Fileselect die GEM-Library (GEMLIB.BAS)
nicht laden müssen.

Da diese Funktion sehr häufig benutzt wird, möchte ich Ihnen ein klei-
nes Unterprogramm geben, das folgende Schritte selbständig durchführt:

> das Basteln eines Pfadnamens, wobei vom GEMDOS Daten über

das aktuelle Laufwerk und den aktuellen Ordner besorgt werden,

> das Aufrufen von fsel_input bzw. Fileselect (in BASIC) und

> das Zurückführen von Pfad- und Dateinamen auf einen einzigen
kombinierten Pfad- und Dateinamen.

Das GEM-Programm muß dann nur noch das Unterprogramm aufrufen

und erhält als Ergebnis einen kompletten Dateinamen samt Pfad, mit dem

es sofort weiterarbeiten kann.

Wir müssen drei Parameter übergeben, und zwar drei Strings (bzw. in C
und Assembler deren Startadressen; siehe Beispielaufruf im Hauptpro-
gramm). Der erste gibt die Default-Maske an, also z.B. *.* oder
LISTE?.TXT. Der zweite String ist ein Default-Dateiname; das kann auch

ein Leerstring sein. Die Assembler-Programmierer müssen beachten, daß

dieser String jedoch mindestens 13 Bytes lang werden kann (8 Bytes

Name, 1 Byte Punkt, 3 Bytes Extension und ein abschließendes Null-

 GEM-Programmierung 207

byte). Der dritte String dient nur der Ausgabe: Hier wird der kombinierte
Pfad- und Dateiname der Datei hinterlegt, die der Benutzer angeklickt

hat.

Das Unterprogramm ist übrigens eine Funktion. Der Funktionswert ist 0,
wenn der Benutzer den Knopf Abbruch angeklickt hat oder aber sein

OK gegeben hat, obwohl er gar keine Datei angeklickt hat. Wenn aber
ein Dateiname ordnungsgemäß ausgewählt wurde, dann ist der Funkti-
onswert 1. Nur in Omrikon-BASIC mußte ich davon etwas abweichen;

hier wird der Funktionswert als Rückgabeparameter in einer Prozedur
geliefert (das war nötig, weil Omrikon-BASIC keine Funktionsaufrufe
mit Rückgabeparametern erlaubt).

Die Unterprogramme sind natürlich auch eigenständig in Ihren eigenen
GEM-Programmen lauffähig, wenn Sie das wünschen. Betrachten Sie
einfach die Beispiel-Aufrufe der folgenden Programme; Sie werden stau-
nen, wie einfach sich der Aufruf dieser Funktion nunmehr gestaltet!

GFA-BASIC

a

' Dateinamen erfragen mit der File-Selector-Box

' GFA-BASIC MP 27-11-88 FSEL.GFA
'

IF FN filenamec"'*.*") "" dateiname$)

PRINT dateiname$

ELSE

PRINT "ungültige Auswahl!"

ENDIF

END

FUNCTION filename(maske$,default$,VAR ausgabe$)

LOCAL akt_drive%,path$

akt_drive%=GEMDOS(&H19) ! GEMDOS-Funktion bestimmt aktuelles Laufwerk

path$=CHR$CASCC"A")+akt_drive%)+":"+DIRSCO)+"\"+maske$
8

FILESELECT path$,defaul t$, ausgabe$
5

IF ausgabe$="" OR RIGHTS(ausgabe$, 1)="\"

RETURN 0 1! ungültige Auswahl oder Abbruch angeklickt

ELSE

RETURN 1 ı OK, Dateiname wurde angeklickt

ENDIF

ENDFUNC
i

 208 Atari ST Intern 2

Omikron-BASIC

' Dateinamen erfragen mit der File-Selector-Box
' Omikron-BASIC MP 27-11-88 FSEL.BAS
i

! Das Programm benötigt nicht die Libraray GEMLIB.BAS.

' Wir müssen allerdings selber den Textcursor ausschalten

' und den Mauszeiger sichtbar machen.
|

PRINT CHRS$(27);"f";' Cursor aus
MOUSEON

(

Filename(Ret,"*.*","" Dateiname$)

IF Ret
THEN PRINT Dateiname$

ELSE PRINT "unglltige Auswahl!"

ENDIF
§

END
A

DEF PROC Dgetpath(R Path$)' ermittelt aktuelles Directory

Path$= STRING$(64,0)' Platz machen

Adr= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)

GEMDOS (,$47, HIGHCAdr), LOWCAdr),0O)' O=aktuelles Laufwerk

' alle Null-Bytes aus dem String abschneiden:
I

Path$= LEFT$(Path$, INSTR(Path$, CHR$(O))-1)

RETURN
é

DEF PROC Filename(R Back,Maske$,Default$,R Ausgabe$)

LOCAL Akt_Drive,Path$

GEMDOS (Akt_Drive,$19)' aktuelles Laufwerk ermitteln

Dgetpath(Path$)' Pfad des aktuellen Laufwerks bestimmen

Path$= CHR$(ASC("A")+Akt_Drive)+":"+Path$+"\"+Maske$

FILESELECT (Path$,Default$, Flag)

IF Flag=0 OR DefaultS="" THEN Back=0: RETURN
i

Back=1

Ausgabe$= LEFT$(Path$, LEN(Path$)- INSTRC MIRROR$(Path$)+"\" "\"))

. +"\"4Default$
RETURN

 GEM-Programmierung 209

C
NT]

/* Dateinamen erfragen mit der File-Selector-Box */

/* Megamax Laser C MP 27-11-88 FSEL.C */
[ERR AERREEEEERREEEEEERERREREEEEEEERRERERERERREREEER /

#include <osbind.h>

#include "gem_inex.c"

char fname [80] ;

int filename(maske, def, ausgabe) /* def statt default */

{

char maske[], def[], ausgabe[]; /* (in C reserviert) */

char path[64],

fnam(13] ;

int back,

button,

1;

strcepy (fnam, def);

path[0] = 'A' + Dgetdrv(); /* aktuelle Laufwerksbezeichnung */

path[1] = ':';

Dgetpath (&path[2], 0); /* Pfad von aktuellem Laufwerk */ strcat (path,

MAN"); /* \\ entspricht \ */

strcat (path, maske);

back = fsel_input (path, fnam, &button);

if (button == 0 |! fnam[0] == '\0')
return (0); /* Funktion ist 0 wenn Abbruch oder falsche Auswahl */

for (1 = strlen(path) - 1; pathli] != "\\'; pathli--] = '\0');

strcat (path, fnam);

strcpy (ausgabe, path);

return (1);

main()

{

gem_init();
graf_mouse (0, OL); /* normaler Mauszeiger (Pfeil) */

if (filename (ue au uu 6fname))

Cconws (fname); .

else |

 210 Atari ST Intern 2

Cconws ("ungültige Auswahl!");

Crawcin();

gem_exit();
}

Assembler

; Dateinamen erfragen mit der File-Selector-Box

: Assembler MP 28-11-88 FSEL.Q

„INCLUDE 'GEM_INEX.Q!

gemdos =1

crawcin =7

cconws = 9

dgetdrv = $19

dgetpath = $47

TEXT

main: jsr gem_init

pea ausgabe ‚Funktion aufrufen

pea default (mit Parametern wie in C, nur)

pea maske ‚umgekehrte Reihenfolge)

jsr dateiname

adda. | #12,sp ‚auch hier: Stackkorrektur

tst.w do Fehler?

beq.s error

pea ausgabe

bra.s go_on

dateiname:

fsel_lp:

fsel_le:

 GEM-Programmierung 211

clr.w -(sp)

trap #gemdos

: Dieses Unterprogramm ruft die File-Selector-Box auf.

: Folgende Parameter sind auf dem Stack zu Ubergeben:

s -long: Zeiger auf String, in den der komplette Dateiname

: geschrieben wird

> -long: Zeiger auf Default-Dateiname (min. 13 Bytes)

» long: Zeiger auf Default-Dateimaske (z.B. *.*)

; Alle Strings werden mit Nullbyte abgeschlossen.

: Funktionswert in dO: 0 -> Abbruch angeklickt oder Fehler

; 1 -> Alles klar

Link a6, #0 ‚a6 als Basis für Parameter

movem.l di-d7/a0-a5,-(sp)

movea. | 16(a6),a2 ‚Ziel für Ausgabe (1. Parameter)

; Aktuelles Lauswerk erfragen

move.W #dgetdrv,-(sp)

trap #gemdos

addq. t #2,Sp

addi .b #'A' dO ;Funktionsergebnis -> Buchstabe

move.b d0O,(a2)

move.b #':1,1(a2) ;Doppelpunkt hinter Laufwerk

; Pfad des aktuellen Laufwerks erfragen

clr.w -(sp) ‚aktuelles Laufwerk

pea 2(a2)

move.» #dgetpath, -(sp)

trap #gemdos

addq. l #8,Sp

» \ und Maske anhängen

clr.w di ‚Stringlänge ermitteln

tst.b 0(a2,d1.w) ;Nullbyte?

beq.s fsel_le

addgq.w #1,di

bra.s fsel_lp

move.b #'\' OCa2,d1.w)

 celr.w d2

movea.l 8(a6),a3 s;Zeiger auf Maske

 212 Atari ST Intern 2

fsel_l2: move.b 0(a3,d2.w),1(a2,d1.w)

beq.s fsel_e2

addq.w #1, d1

addq.w #1 ,d2

bra.s fsel_l2

fsel_e2:

; Aufruf der GEM-File-Selector-Box

move .wW #90, control ;Funktions-Opcode

clr.w control+2

move .W #2, control+4

move .wW #2, control+6

clr.w control+8

move. | a2,addr_in svorbereiteter Pfadname

move. | 12(a6),addr_in+4 ;und Default-Dateiname

jsr aes

tst.w int_out+2 ‚Abbruch statt OK angeklickt?

bne.s fsel_na

clr.w do sdann mit Fehler abbrechen

bra fsel_q

fsel_na: movea.l 12(a6),a3
tst.b (a3) ‚Dateiname überhaupt ausgewählt?

bne.s fsel_l3

clr.w do snein, dann siehe oben

bra fsel_q

; Jetzt müssen wir nur noch aus dem Pfad- und dem Dateinamen

; einen kombinierten Pfad- und Dateinamen machen:

fsel_l3: tst.b (a2)+ ‚Ende des Pfadnamens suchen

bne.s fsel_t3
fsel_l4: cmpi.b #°'\' -(a2) ;Backslash suchen

bne.s fsel_l4

addq. l #1,a2 ‚Backslash stehen lassen

fsel_l5: move.b (a3)+,(a2)+ ‚Dateiname kopieren

bne.s fsel_L5

move .W #1,d0 ‚Funktionswert: alles OK

fsel_q: movem.l (sp)+,d1-d7/a0-a5

unlk a6

rts

 GEM-Programmierung : 213

; „DATA- und .BSS-Segment werden nur vom Hauptprogramm

; und nicht vom Unterprogramm 'dateiname' benötigt.

„DATA

maske: .DC.b '*.*'1,0

default: .DC.l 0,0,0,0

err_text: .DC.b 'Ungiltige Auswahl!',0

-BSS

ausgabe: .DS.b 64

„END

5.8 Fenster

Bisher habe ich es mir in meinen Beispielprogrammen recht leicht ge-
macht: Eventuelle Bildschirm-Ausgaben wurden entweder mit der VDI-
Funktion v_gtext oder aber mit der GEMDOS-Funktion Cconws ir-
gendwo auf den Bildschirm geschrieben. Das sah nicht besonders schön
aus, da das Desktop-Grau durch ein weißes Rechteck zerstört wurde und

in diesem der Text stand. Außerdem fällt es so schwer zu kennzeichnen,

welche Ausgaben auf dem Bildschirm zusammengehören. Von der Mög-
lichkeit, daß mehrere Programme gleichzeitig Bildschirm-Ausgaben ma-
chen möchten (z.B. GEM-Applikation und Uhr-Accessory), will ich gar

nicht erst reden.

Deshalb gibt es Fenster, oder auf Englisch: Windows. Fenster sind

zunächst einmal nur Rechtecke auf dem Bildschirm, die einen Arbeits-

bereich umschließen. Wie dieser Arbeitsbereich aussieht, ist allein Sache

des Programms, dem das Fenster zugeteilt ist. In GEM ist das jedoch
nicht alles: Der Rand des Fensters, der Fensterrahmen, kann Bedie-

nungselemente enthalten, die es ermöglichen, daß der Benutzer Einfluß
auf das Fenster hat: Er kann zum Beispiel Position und Größe mit Hilfe

der Maus frei bestimmen. Aber das wissen Sie ja bestimmt.

Sie sollten jetzt schon einmal einen Blick in Ihre Dokumentation der
Window-Library werfen. Selbst wenn Sie nicht alles. verstehen, so schadet
Ihnen ein Überblick für die folgenden Erläuterungen sicher nicht.

 214 Atari ST Intern 2

Betrachten wir zuerst einmal die Schritte, die nötig sind, um ein Fenster

auf dem Bildschirm darzustellen. Man nennt das auch das Öffnen eines

Fensters. Beim Öffnen erhalten Sie übrigens eine Zahl, das sogenannte
Window-Handle, zurück, das es ermöglicht, mehrere Fenster voneinander

zu unterscheiden.

Nun, das Öffnen eines Windows geschieht in zwei Schritten: Zuerst

müssen Sie eine Art Antrag stellen, das Fenster öffnen zu dürfen. Dabei
müssen Sie auch schon angeben, welche Bedienungselemente im Fenster-
rahmen erscheinen sollen, wenn es im zweiten Schritt auf dem Bildschirm
erscheint, und wie groß das Fenster maximal werden darf. Das geschieht

mit der AES-Funktion wind_create. Funktionswert ist entweder eine
Fehlernummer oder das Window-Handle. Eine Fehlermeldung (Funkti-
onswert kleiner als Null) bekommen Sie übrigens dann, wenn Sie versu-
chen, das achte Fenster zu öffnen - mehr als sieben geht nicht. Entschei-
dend dafür ist nicht, wie viele Fenster schon sichtbar sind, sondern wie

viele mit wind _create angemeldet wurden.

Nach dem wind_create-Aufruf müssen Sie eine zweite Funktion be-
mühen, die das Fenster auf den Bildschirm bringt: wind open. Koor-

dinaten sind das Window-Handle (das haben Sie von wind create) und
die Koordinaten, an denen das Fenster erscheinen soll (x, y, Breite,
Höhe). Diese Koordinaten beziehen sich übrigens nicht auf den Arbeits-

bereich (also nicht auf den Teil innerhalb des Rahmens), sondern auf das

gesamte Fenster einschließlich des Rahmens.

Nach diesem Aufruf steht der Rahmen auf dem Bildschirm. Der Arbeits-
bereich wird jedoch nicht automatisch gelöscht, das heißt nach dem Start
des Programms bleibt er grau. Um diesen zu löschen, können wir jedoch
mit der Hintergrundfarbe (Index 0) ein gefülltes Rechteck über den Ar-
beitsbereich malen, so daß der Inhalt des Fensters in strahlendem Weiß
erscheint. Das ist bequem mit ein paar VDI-Routinen zu erledigen.

Dabei ergibt sich ein neues Problem: Wo ist überhaupt der Arbeitsbereich

des Fensters? Beim Öffnen haben wir ja nur die Werte für das gesamte
Fenster angeben müssen. Je nachdem welche Bedienungselemente wir
ausgewählt haben, fällt unser Arbeitsbereich verschieden aus, da ja mehr
oder weniger Platz für den Rand beschlagnahmt wird. Da kommt uns die
Funktion wind_calc gerade recht: Dieser können Sie entweder die Ko-
ordinaten des gesamten Fensters oder die des Arbeitsbereiches übergeben,

und Sie erhalten Lage und Ausmaße des jeweils anderen Bereiches zu-
rück.Dabei ist jedoch eine wichtige Kleinigkeit zu beachten: GEM be-
nutzt zwei unterschiedliche Verfahren, um Eckpunkte eines Rechtecks in
Koordinaten auszudrücken. Wenn Sie also mit wind_calc die Größe des

 GEM-Programmierung 215

Arbeitsbereiches ermitteln (eigentlich auch nur ein Rechteck), dann er-
halten Sie x- und y-Koordinaten fiir die linke obere Ecke sowie die
Breite und Höhe des Rechtecks ın Bildpunkten (Pixel). Wenn Sie jedoch

das gleiche Rechteck mit VDI-Funktionen löschen wollen, so müssen Sie

zusätzlich zu den x- und y-Werten für die linke obere Ecke nicht Breite
und Höhe, sondern die x- und y-Koordinate des unteren rechten Punktes

angeben. Wir unterscheiden also zwischen AES-Koordinaten (x/y/w/h; w
und h bedeuten width=Breite und height=Höhe) und VDI-Koordinaten
(x1/yl/x2/y2). Die Umrechnung erfolgt ganz einfach: x2=x+w-1l und
y2=y+h-1. Daß wir die Breite zu x und die Höhe zu y addieren, dürfte
einleuchten; die -1 kommt daher, daß ja selbst eine horizontale oder
vertikale Linie (ein sehr dünnes Rechteck) noch eine Breite von | hat
(jedenfalls auf dem Bildschirm unseres Rechners).

Jetzt haben wir also ein Fenster auf dem Bildschirm und könnten es be-

nutzen. Doch bevor ich Ihnen sage, was es dabei alles zu beachten gibt,

zeige ich Ihnen, wie das Fenster wieder vom Bildschirm verschwindet.
Dazu gibts dann auch ein Beispielprogramm, und Sie haben Gelegenheit,
alles bis dahin Gelernte anzuwenden.

So, wie ein Fenster in zwei Schritten geöffnet werden muß (create und
open), so gibt es auch zwei Funktionen, die es schließen können. Die

erste heißt wind__close, ist das Gegenstück zu wind_open und entfernt
das Fenster vom Bildschirm. Das Window-Handle bleibt erhalten; Sie
könnten das Fenster also mit wind_open erneut erscheinen lassen, ohne

daß Sie vorher wind create bemühen müssen. Um das Handle endgültig

freizugeben, was Sıe übrigens auch tun müssen, wenn Sie das Fenster
nicht mehr benötigen (z.B. am Programmende), müssen Sie nur die
Funktion wind_ delete aufrufen. Der einzige Parameter ist das Window-
Handle. Damit gehört dieses Fenster der Vergangenheit an.

Bevor wir ein Fenster zur Demonstration öffnen, will ich Ihnen noch er-

klären, welche Bedienungselemente es gibt und wie Sie dem Rechner

klarmachen, welche dieser Elemente Sıe in einem bestimmten Fenster ha-

ben möchten. Letzteres ist einfach: beim wind _create-Aufruf müssen Sie
einen Wert angeben, der die Ausstattung des anzumeldenden Fensters
festlegt. Dabei haben die Bits 0 bis 11 bestimmte Bedeutungen; ein ge-
setztes Bit sagt, daß die durch dieses Bit repräsentierte Eigenschaft des
Fensters vorhanden ist. |

Die Bits selber entnehmen Sie bitte der untenstehenden Tabelle. Hier

werden erst einmal die Möglichkeiten der einzelnen Elemente kurz an-

 216 Atari ST Intern 2

gesprochen. Ich verwende dabei den offiziellen Namen eines jeden Ele-
ments, den Sie ın jeder guten Beschreibung der Routine wiederfinden
werden.

NAME gibt an, ob das Fenster eine Titelzeile besitzt. Die Titelzeile ist
der oberste Teil eines Fensters, in dem z.B. ım Desktop das Laufwerk

und der aktuelle Pfad stehen. CLOSER legt fest, ob das Fenster links
oben ein Schließfeld haben soll. FULLER bestimmt die rechte obere
Fensterecke; dort kann das Feld erscheinen, dessen Anklicken gewöhnlich
eine Vergrößerung des Fensters auf die maxımal mögliche Größe be-
wirkt. MOVER entscheidet darüber, ob der Anwender mit der Titelzeile

das Fenster verschieben darf oder nicht. INFO ermöglicht die Einrich-
tung einer speziellen Textzeile, die nicht zum eigentlichen Arbeitsbereich
gehört. Sie liegt direkt unter der Titelzeile. Im Desktop steht hier die

Anzahl der Objekte und deren Platzbedarf auf dem Massenspeicher. Mit
SIZER können Sie bestimmen, ob der Benutzer die Größe des Fensters

ändern darf; dazu wird dann in der rechten unteren Ecke ein entspre-

chendes Feld angelegt. UPARROW, DNARROW und VSLIDE geben an,

ob Sie Pfeile nach oben (UP) und unten (DN) und einen vertikalen
Schieber zwischen den Pfeilen wünschen. Alle drei befinden sich stets am
rechten Fensterrand. LFARROW, RTARROW und HSLIDE beziehen sich

auf die entsprechenden Elemente am unteren Fensterrand und bedeuten

demnach Links- (LF) und Rechtspfeil (RT) sowie horizonaler Schieber.

Die folgende Tabelle faßt dies noch einmal kurz zusammen. Dort finden
Sie auch die Bitnummer und den dieser Nummer entsprechenden dezi-

malen Wert. Wenn Sie also Titel und Infozeile wünschen, so müssen Sie
die Eins und die 16 addieren bzw. die Bits 0 und 4 setzen, was eigentlich
das gleiche ist. Tun Sie das, was Sie für einfacher halten.

Offizieller Bit-

Name Nummer Wert Bedeutung

NAME 0 1 Titelzeile

CLOSER 1 2 SchlieBfeld

FULLER 2 4 Volle-Größe-Feld

MOVER 3 8 Fenster kann bewegt werden
INFO 4 16 Info-Zeile
SIZER 5 32 Größe kann verändert werden

UPARROW 6 64 Pfeilnach oben

DNARROW wf /\ 28 Pfeil nach unten
VSLIDE 8 56 vertikaler Schieber
LFARROW 9 512 Pfeil nach links
RTARROW 10 1024 Pfeil nach rechts

HSLIDE 11 2048 horizontaler Schieber

 GEM-Programmierung 217

Die Frage: "Woher weiß denn mein Programm überhaupt, ob der Benut-

zer einen dieser Knöpfe angeklickt hat?" will ich noch zurückstellen. So-
viel sei verraten: Es ist nicht schwer, und wir haben dieses Thema bereits

angesprochen. Doch für’s erste soll es uns genügen, überhaupt ein Fenster

auf den Bildschirm zu zaubern.

Das erledigt folgendes Beispielprogramm, das nach den bisherigen Erläu-

terungen nicht schwer zu verstehen sein dürfte. Es Öffnet ein Fenster,
löscht den Arbeitsbereich, nachdem es dessen Größe berechnet hat,

schreibt etwas in das Fenster hinein und wartet auf einen Tastendruck.

Dann schließt es das Fenster wieder.

ANogé j (CERN
|

¢| (eee ee ee OP |

GFA-BASIC

‘

' Fenster öffnen und wieder schließen

' GFA-BASIC MP 30-11-88 WIND1.GFA
é

VOID APPL_INITC)
8

handle%=WIND_CREATE(4095 , 20,20, 280, 150)
' (4095 bedeutet: Alle Bedienelemente sind aktiv)
a

IF handle%<0 ! sollte eigentlich nicht passieren

form_alert(1,"(3] (Sorry! |Kein Window-Handle mehr frei!] [0K]")

ELSE 0

VOID WIND_OPEN(handle%, 20,20, 280, 150)

' Arbeitsbereich ausrechnen:
q

VOID WIND_CALC(1,4095, 20,20, 280, 150, x%, y%, we, h%)

ı Arbeitsbereich Löschen

DEFFILL O - ı Füllen mit Hintergrundfarbe

 218

PBOX

VOID
8

VOID

VOID

ENDIF

Atari ST Intern 2

“%,y%,X%tW%-1,y%+h%- 1

GEMDOS(7) |! Warten auf Taste

WIND_CLOSE(handle%)
WIND_DELETEChandle%)

VOID APPL_EXIT()
END
8

Omikron-BASIC

Fenst er öffnen und wieder schließen

A

t

' Omikron MP 30-11-88 WIND1.BAS
8

Appl_Init

V_Opnvwk
q

Wind _Create(4095, 20,20, 280,150, Handle)

IF Handle<O

THEN

ELSE

ENDIF

FORM_ALERT (1,"[3) [Sorry! !Kein Window-Handle mehr frei!] [OK]",Ret)

Wind_Open(Handle,20,20,280,150)
0

ı Arbeitsbereich ermitteln lassen:
i

Wind_Calc(1,4095,20,20,280,150,X,Y,W,H)
a

Vsf_Interior(0)' Füllen mit Hintergrundfarbe

Vsf_Perimeter(0)' ohne Umrandung

V_Bar(X,Y,X+W-1,Y+H-1)

Vsf_Perimeter(1)' Umrandung wieder einstellen
0 .

GEMDOS (,7)' Warten auf Taste
a

Wind_Close(Handle)

Wind _Delete(Handle)

V_Clsvwk

Appl_Ex

END
q

it

 GEM-Programmierung 219

C

NH

/* Fenster öffnen und wieder schließen */

/* Laser C MP 30-11-88 WIND1.C */
[RERREREREREREREREREEERREREREREREEKREEREREREEE /

#include <osbind.h>

#include "gem_inex.c"

int whandle,

pxyarray(4],

X,y,W,h;

main()

{

gem_init();

whandle = wind_create (4095, 20, 20, 280, 150);

/* 4095 = alle möglichen Bedienelemente */

if (whandle < 0) |
form_alert (1, "(3] [Sorry! |Kein Window-Handle mehr frei!] [0K]");

else

{
wind_open (whandle, 20, 20, 280, 150);

/* Arbeitsbereich berechnen lassen: */

wind_calc (1, 4095, 20, 20, 280, 150, &x, &y, &w, &h);

/* Umrechnen von Höhe/Breite in zweiten Eckpunkt: (x2/y2) */

pxyarray[0] = x; pxyarray[i] = y;

pxyarray(2] = xtw-1; pxyarray[3] = y+h-1;

/* Arbeitsbereich löschen: */

vsf_interior (handle, 0); /* Füllen mit Hintergrundfarbe */

vsf_perimeter (handle, 0); /* keine Umrandung */

v_bar (handle, pxyarray);

vsf_perimeter (handle, 1); /* Umrandung wieder einschalten */

Crawcin(); /* Warten auf Taste */

wind_close (whandle);

wind_delete (whandle);

gem_exit();

 Atari ST Intern 2 220

Assembler

; Fenster öffnen und wieder schließen

; Assembler MP 30-11-88 WIND1.Q

INCLUDE 'GEM_INEX.Q'

gemdos = 1

crawcin = 7

TEXT

main: jsr gem_init

; wind_create

move .W #100, control

move .w #5 ,control+2

move.WwW #1,control+4

clr.w control+6

clr.w control+8

move .wW #4095, int_in

move .wW #20, int_int2

move.W #20, int_int4

move .w #280, int_int6

move ..W #150, int_in+8

jsr aes

tst.w int_out

bmi error

move .W int_out, whandle

; Wind_open

move .W #101, control

move .w whandle, int_in

salle méglichen Bedienelemente

‚maximale Größe des Fensters (x)

‚(y)
;(Breite)

; (Höhe)

‚negativ? Dann Fehler!

‚sonst als Window-Handle merken

;Funktions-Nummer

‚Handle von wind_create

; Alle übrigen Werte sind mit denen von wind_create identisch,

; also noch in den Parameter-Arrays!

jsr aes

GEM-Programmierung

» Arbeitsbereich berechnen

move .wW

move .wW

move .wW

clr.w

clr.w

move .wW

move .wW

move .W

move .W

move .W

move .W

jsr

=
e

=
e

#108, control

#6, control+2

#5, control+4

control+6

control +8

#1,int_in

#4095, int_int2

#20, int_int4

 221

(wind_calc):

;1 -> Arbeitsbereich ausrechnen

‚Eigenschaften des Fensters

‚äußere Ausmaße

#20, int_in+6

#280, int_in+8

#150, int_in+10

aes

Die Ergebnis-Koordinaten können für den nächsten

Schritt (löschen des Arbeitsbereiches) in den

» AES-Arrays gelassen werden.

‚ vsf_interior (Füllmuster):

move .wW

clr.w

clr.w

move.w

move .wW

move.w

clr.w

jsr

#23,contrl

contrl+2

contrl+4

#1, contrl+6

#1,contrl+8

handle, contrl+12

intin

vdi

sFullen mit Hintergrundfarbe

; vsf_perimeter (Umrandung ausschalten):

move .w

clr.w

clr.w

move .W

move .w

move .w

clr.w

jsr

#104, contrl

contrl+2

contrl+4

#1,contrl+6

#1,contrl+8

handle, contrl+12

intin

vdi

Flag: Umrahmung ausschalten

‚ v_bar (löscht den Arbeitsbereich):

» (Koordinaten von wind_calc, müssen aber von x/y/breit/hoch

; in x1/y1/x2/y2 umgerechnet werden.

move .W

move .W #2 ,contri+2

#11,contrl :Opcode fur graphische

‚Grundfunktionen

222

break:

clr.w

clr.w

move .wW

move .W

move .W

move .Ww

move .wW

move .wW

add. w

subq. WwW

move .w

add.w

subq.w

move .wW

jsr

contrl+6

contr l+8

#1,contri+10

handle, contri+12

int_out+2,d0

d0,ptsin

Int_out+4,d1

di1,ptsin+2

int_out+6,d0

#1,d0

d0, ptsint4

int_out+8,d1

#1,d1

d1,ptsin+6

vdi

Atari ST Intern 2

;Funktionsnummer fur v_bar

;x1 = x aus wind_calc

7y1 = y aus wind_calc

x + Breite...

eu. ” 1...

Sue. = X2

sy + Höhe...

su... 7 1...

pees = y2

; vsf_perimeter (Umrandung wieder einschalten):

move .wW

clr.w

clr.w

move .w

move .W

move .W

move .wW

jsr

#104, contrl

contrl+2

contrl+4

#1,contrl+6

#1,contrl+8

handle, contrl+12

#1,intin

vdi

: Warten auf Taste:

move .W

trap

addq. |

#crawcin,-(sp)

#gemdos

#2,Sp

; wind_close:

move .wW

move .wW

move .W

clr.w

clr.w

move .W

jsr

#102,control

#1,control+2

#1,control+4

control+6

control +8

whandle, int_in

aes

;Flag: Umrahmung einschalten

 GEM-Programmierung 223

; wind_delete:

move .wW #103, control ‚nur die Funktionsnummer muß

jsr aes geändert werden

quit: jsr gem_exit

clr.w -(sp)

trap #gemdos

error: move .W #52,control ;Form-Alert

move.W #1,control+2

move .wW #1, control+4

move .wW #1, control+6

clr.w control+8

move. l #err_txt,addr_in ;String, der die Box beschreibt |

move . wW #1, int_in ‚erster Knop ist Default-Button

jsr aes

bra.s quit

DATA

err_txt: DC.b '[3] [Sorry! !Kein Window-Handle mehr frei!] [0K]',0 BSS

whandle: DS.w 1

END

5.8.1 Fenster in Aktion

Ein Fenster auf den Bildschirm zu bringen und wieder zu löschen, mag

ja ganz nett sein, doch Sinn und Zweck ist es wohl, Informationen in
diesem Fenster darzustellen. Daneben gibt es noch ein. paar andere Dinge,

die wir an unserem Fenster aus dem letzten Beispielprogramm verbessern
müßten. So war ja bisher, wie Sie vielleicht beim Ablauf dieses Pro-
gramms bemerkt haben, der Inhalt der Titel- und der Infozeile zufällig,

und auch die vorhandenen Bedienungselemente zeigten, wenn man Sie
anklickte, keine Reaktion. Das wollen wir nun ändern.

Für das erste Problem, also die Titel- und Infozeile, gibt es eine relativ
einfache Lösung: Die AES-Funktion wind_set. Das ist eine sehr viel-
seitige Funktion, die jede nur denkbare Veränderung eines Fensters
durchführen kann. Dabei ist es egal, ob sich das Fenster bereits auf dem

 224 | Atari ST Intern 2

Bildschirm befindet oder nicht, das heißt Sie können wind_set vor oder
nach dem wind _open-Aufruf anwenden. Das Fenster muß lediglich mit
wind create schon angemeldet sein.

In der Standardversion erhält die Funktion sechs Parameter. Der erste ist
das Window-Handle; die Funktion erkennt hieran, auf welches Fenster

sich die geplante Änderung bezieht. Das zweite ist ein Wert, der die Art
der Änderung beschreibt - es gibt nicht weniger als zehn Möglichkeiten,
diese Funktion einzusetzen. Daran schließen sich vier Integer-Parameter
an, deren Bedeutung von der gewählten Unterfunktion abhängt. Wir ge-

ben Ihnen hier erstmal die vielsagenden Namen | bis 4 (in der Reihen-

folge, wie sie im Aufruf erscheinen).

Für uns sind die Unterfunktionen 2 und 3 interessant. Mit Nummer 2
kann die Titelzeile eines Fensters eingestellt werden, während Funktion 3

für die Info-Zeile zuständig ist. Dazu benötigt die Funktion aber auch
noch einen String, der die gewünschte Zeile enthält. Dieser soll laut
offizieller Dokumentation mit zwei Nullbytes abgeschlossen sein; die

Erfahrung hat jedoch gezeigt, daß ein Nullbyte auch reicht. Die Adresse
dieses Strings ist jedenfalls an wind_set zu übergeben, wobei der Para-
meter | das höherwertige Wort enthält und der Parameter 2 das nieder-
wertige (die Startadresse belegt ja vier Bytes und kann in einer einzigen
Integer-Variablen nicht untergebracht werden). Die Parameter 3 und 4

haben keine Bedeutung.

Nun gibt es aber von Programmiersprache zu Programmiersprache ein

paar Kleinigkeiten, die nicht ganz unwichtig sind. Gehen wir in der ge-
wohnten Reihenfolge vor:

GFA-BASIC

Sie könnten sich natürlich mit VARPTR die Startadresse eines Strings

besorgen, und auch das abschließende Nullbyte läßt sich durch

A$=A$+CHR$(0) leicht beschaffen. Allerdings garantiert BASIC nicht,
daß eine Stringvariable im Laufe des Programms ihren Platz beibehält
(Stichwort: Garbage Collection). Deshalb sollten Sie einen kleinen
Speicherbereich mit Malloc() reservieren, in den der String in einer

Schleife hineinkopiert wird (mit Poke-Befehlen). Dann übergeben Sie
einfach die Startadresse als High- und Low-Word an die Funktion. Die

Beispielprogramme dürften das deutlich machen.

 m GEM-Programmierung 225

Omikron-BASIC

Es gilt sinngemäß das gleiche wie unter GFA-BASIC. Allerdings können
Sie hier wirklich einen String übergeben (statt der Parameter 1 bis 4).
Zusätzlich müssen Sie einen Speicherbereich angeben (mit MEMORY-
Funktion besorgen), der ausreicht, um diesen String samt Nullbyte auf-
zunehmen. Sie ersparen sıch also das Einpoken von Hand.

Cc

Hier liegt ein String, wenn Sie ihn nicht gerade als lokale Variable einer
Funktion deklariert haben, immer an der gleichen Startadresse. Die
Startadresse wird bekanntlich durch den Namen des Strings (ohne []) an-
gegeben oder durch den gesamten String in Anführungszeichen (bei

Stringkonstanten, wie im folgenden Beispiel). Der Trick in C ist aber,
daß Sie die Parameter 1 und 2 durch ein einzelnes Langwort ersetzen
können. Der Compiler macht dann (ohne es zu wissen) alles richtig. Be-

trachten Sie einfach das Beispielprogramm, dann wissen Sie, was ich

meine.

Assembler

Hier geht es ähnlich zu wie in C: Sie können die Befehle

move.w #high, int_int4

move.w #low, int_int6

durch ~

move.| #adresse, int_int4

ersetzen. Das Ergebnis ist das gleiche.

So, damit wäre der erste Punkt geklärt. Und der größte Brocken bleibt:

Die Abfrage der Benutzeraktivitäten. Und das ist (wie so vieles) im
Prinzip kein Problem. Man hat nämlich all das, was ein Anwender mit
einem Mauszeiger an einem Fenster anstellen kann, als Ereignis mit in
die Ereignis-Verwaltung des AES gepackt. Es gibt zwar keine Funktion
evnt_close, die darauf wartet, daß die Close-Box eines Fensters an-

geklickt wird; statt dessen hat man alle möglichen Aktivitäten zusammen-
gefaßt und macht daraus eine Nachricht. Damit sind wir nicht nur bei
einem der wichtigsten Ereignisse überhaupt angelangt; Sie sehen nun
auch, wie einzelne Teile des AES zusammenarbeiten und für sich alleine

 226 Atari ST Intern 2

überhaupt keinen Sinn ergeben. Ohne Fenster keine Nachrichten, und

ohne Nachrichten (und ohne die Ereignisfunktionen) keine Möglichkeit,
vernünftig mit Fenstern zu hantieren!

Die Nachrichten wurden schon kurz im Kapitel 5.6 angesprochen, ohne

daß sie für uns einen Sinn gehabt hätten. Eine Nachricht besteht aus 8
Worten, die von O0 bis 7 durchnumeriert sind. Das Wort 0 gibt an, um

welche Nachricht es sich handelt. Wenn sich diese Nachricht auf ein
Fenster bezieht, so finden Sie im Wort 3 außerdem das Handle des Fen-

sters, auf das sich die Nachricht bezieht. Die Worte 4 bis 7 haben je nach
Nachricht unterschiedliche Bedeutungen; meist werden sie dazu benutzt,
um Koordinaten zu übermitteln. Übrigens: Die Nachricht selbst bekom-
men Sie mit der AES-Funktion evnt_mesag, der als Parameter die
Startadresse eines Bereichs zu übergeben ist, der die 8 Worte aufnehmen
kann. Mit evnt_multi ist die Abfrage selbstverständlich auch möglich.

Ein Beispiel: Das Ereignis mit der Kennzahl 28 (der offizielle Name
heißt WM _MOVED) sagt einem Programm, daß der Benutzer ein Fenster
an eine andere Stelle bewegen möchte. Bevor das AES die Nachricht los-
schickt, hat der Benutzer bereits über das Ihnen sicherlich bekannte
Gummi-Rechteck die neue Position vorgegeben. Die Aufgabe des Pro-

gramms ist es nun, den Worten 4, 5, 6 und 7 die neuen Koordinaten (x,

y, Breite und Höhe; letztere haben sich beim Verschieben natürlich nicht

verändert) zu entnehmen. Dann muß das Programm manchmal prüfen, ob

die gewünschte Aktion zulässig ist, denn es könnte ja durchaus vernünf-

tige Gründe dafür geben, die Bewegung eines Fensters auf einen be-
stimmten Bildschirmausschnitt zu beschränken (oder überhaupt im Bild-

schirm zu halten). Die Koordinaten müßten also eventuell geändert wer-

den. Dann erst gibt das Programm den Befehl, die neue Position des

Fensters einzustellen. Dazu dient wieder die Funktion wind_set, diesmal
mit einer anderen Unterfunktions-Nummer. Im nächsten Programm
können Sie diese Schritte gut nachvollziehen.

Ein ganz wesentlicher Punkt bei der Fensterprogrammierung ist auch das

sogenannte Redraw-Handling. Redraw heißt auf Deutsch neuzeichnen
oder nochmal zeichnen und bezieht sich in unserem Fall auf den Fenster-

inhalt. Ich möchte hier nur einen kleinen Einblick in dieses Verfahren

geben; die wirklichen Möglichkeiten (man sollte eher von Pflichten
sprechen) lernen Sie dann im nächsten Kapitel kennen.

Denken Sie sich ein Fenster mit irgendeinem Inhalt. Das Fenster wird

nun so weit nach rechts unten verschoben, daß eın Teil des Inhalts vom
Bildschirm verschwunden ist. Anschließend machen Sie das wieder rück-

gängig, das heißt der alte Inhalt soll wieder auf dem Bildschirm erschei-

 GEM-Programmierung 227

nen. Ein zweiter Fall: Ein Fenster ist so klein, daß sein Inhalt nur teil-

weise abgebildet werden kann. Nun wird es vergrößert, um alle Informa-

tionen auf einen Blick haben zu können.

Beiden Situationen ist eines gemeinsam: Nach dem Verschieben bzw.

Vergrößern des Fensters müssen Teile des Fensters neu aufgebaut wer-

den. Beim Verschiebe-Beispiel wird das wohl besonders deutlich: Wenn

ich das Fenster nach unten schiebe, so kann der verbleibende Teil mit

den VDI-Raster-Funktionen auf die neue Position kopiert werden, weil

der komplette neue sichtbare Teil ja auch vorher schon auf dem Bild-
schirm vorhanden war. Andersherum geht das jedoch nicht, weil der
neue Fensterinhalt nicht komplett auf dem Bildschirm steht, also auch

nicht einfach an eine andere Stelle kopiert werden kann.

Kurz: Es gibt Situationen, in denen das Neuzeichnen eines Fensters oder
eines Teils eines Fensters erforderlich ist. Solche Situationen werden vom
AES automatisch erkannt und der Applikation in Form einer Nachricht
mitgeteilt. Das Neuzeichnen selbst ist Sache der Applikation. GEM sorgt

nur dafür, daß in einem solchen Fall die Fensterränder, die Info-Zeile

und solche Dinge wieder erscheinen.

In unserem nächsten Programm ist das Neuzeichnen recht einfach zu be-
werkstelligen. Wenn das Fenster neu gezeichnet werden muß, dann er-

halten wir eine Nachricht. Die Kennzahl der Nachricht ist 20. Sobald wir
diese Nachricht erhalten, wird das Unterprogramm zur Ausgabe des

Fensterinhalts aufgerufen. Dieses Unterprogramm löscht auch gleichzeitig
den Arbeitsbereich.

Das sind die wesentlichen Veränderungen des nächsten Programms ge-

genüber dem letzten Beispiel. Außerdem gibt es ein paar kleine Erwei-
terungen:

> Der Mauszeiger wird vor einer Grafik-Ausgabe abgeschaltet. Das
ist nötig, weil sonst bei der nächsten Bewegung des Mauszeigers die
neue Zeichnung der unmittelbaren Umgebung des Zeigers wıeder
gelöscht würde. Das können Sie im vorigen Fenster-Programm be-
obachten: Starten Sie das Programm und bewegen Sie den Mauszei-
ger in eine Position innerhalb des Fensters, bevor es sichtbar wird

(also noch während des Ladens). Wenn das Fenster dann gelöscht,

der Arbeitsbereich also weiß wird, ist der Mauszeiger verschwun-
den. Wenn Sie die Maus nun bewegen, wird zwar der Zeiger wieder
sichtbar; es bleibt aber ein häßlicher grauer Fleck zurück.

228 Atari ST Intern 2

Deshalb müssen Sie vor einer Ausgabe mit VDI-Funktionen den

Mauszeiger mit v_hide_c (VDI-Funktion) ausschalten und
anschließend mit v_show_c (ebenfalls VDI) wieder einschalten.
Das gilt jedoch nicht für AES-Funktionen, die ja auch ab und zu

 Bildschirm- Ausgaben machen müssen - die schalten den Mauszei-
ger selbst ab, so daß Sie sich darum nicht mehr kümmern müssen.

Wenn das Fenster kleiner ist als der Inhalt, der im Arbeitsbereich

dargestellt werden soll, dann darf natürlich nur ein Ausschnitt der

geplanten Ausgabe erscheinen; die Ausgabe muß auf einen be-

stimmten Bereich, nämlich den Arbeitsbereich, begrenzt werden.
Das erledigt bequem die VDI-Funktion vs_clip, die alle nachfol-

genden Ausgaben auf ein anzugebendes Rechteck beschränkt. Clip

bedeutet denn im Englischen auch etwa abschneiden.

Beide Tricks können Sie ım folgenden Listing gut wiedererkennen: Das
Programm Öffnet ein Fenster, so wie es im letzten Programm auch schon

geschah. Doch werden die Koordinaten diesmal in Variablen gehalten, so

daß sie im Verlauf des Programms geändert werden können. Titel- und
Infozeile werden mit vernünftigen Inhalten gefüllt, 1m Fenster selbst
steht ein dreizeiliger Text (Stichwort: clipping, s.o.) und die Randele-
mente (Size,Box, Move-Bar, Full-Box und Close-Box erhalten die übli-

chen Funktionen. Mit der Close-Box können Sie das Programm übrigens
beenden. Auch das Redraw-Verfahren ist in einer sehr einfachen Form
schon eingebaut:

 Bitte beachten Sie:

Hallo! Das ist eine Fenster-Dem«
Sie können das Fenster bewegen |
Ende durch Klick auf die Close-t

 F

 GEM-Programmierung 229

GFA-BASIC

8

ı Fenster mit Funktionen (vergrößern, ...)

' GFA-BASIC MP 13-12-88 WIND2.GFA
8

DEFINT "a-z" ı alle Variablen sind Integer -> erspart uns viele %s
a

DIM puffer&(7) ! Platz für 8 Worte einer Nachricht (evnt_mesag)

VOID APPL_INITO)

" Bildschirmauflösung feststellen:
i

rez=XBI0S(4) ! Getrez liefert O=low, 1=mid, 2=high

x_max=640+320* (rez=0)
y_max=200-200*(rez=2)
8

ı Anfangs-Fenstergröße vorgeben:
8

wx=20 ! x-Koordinate

wy=20 ty

ww=280 ! w= width (Breite)

wh=150 ! h = height (Hohe)
t

ı Fenster anmelden für maximale Größe und alle Elemente (63)

ı außer Pfeile und Schieber
8

whandle=WIND_CREATE(63,0,0,x_max, y_max)

IF whandle<0 ! Dann wird wohl ein Fehler aufgetreten sein

VOID FORM _ALERT(1,"{3] [Kein Handle mehr verfügbar!) [OK]")

ELSE

' Titel- und Infozeile einstellen:

' Die Strings werden in einen sicheren Speicherbereich

' kopiert, da sich ihre Startadresse nicht ändern darf
a

title$="WIND2.PRG"+CHR$CO)

info$="Bitte beachten Sie:"'+CHR$(0)

s=MALLOC(40)

FOR i=1 TO LEN(title$) I Titelzeile

POKE s-1+1,ASC(MIDS(title$,i,1))

NEXT i

tk

FOR i=1 TO LENCinfo$) ! Infozeile

POKE st+19+1,ASC(MID$(info$,i,1))

NEXT i

 230 Atari ST Intern 2

' Wir brauchen Low- und High-Words (durch DIV 2°16und MOD 2°16)

' Titelzeile: Unterfunktion 2 / Infozeile: Unterfunktion 3

' VOID WIND SET(whandle,2,s DIV 65536,s MOD 65536,0,0)

VOID WIND _SET(whandle,3,(st+20) DIV 65536,(s+20) MOD 65536,0,0)

VOID WIND_OPEN(whandle, wx, wy, ww, wh)

GOSUB output_text ! Fullt das Fenster mit Inhalt

REPEAT

' Auf ein Ereignis warten:
'

VOID EVNT_MESAG(LPEEK(*puffer&())+4) ! Adresse des ersten Elements
§

IF puffer&(0)=20 ! Redraw-Meldung

GOSUB output_text

ENDIF
a

IF puffer&(0)=23 ! Full-Box wurde angeklickt

WX=2 ' Fenster auf maximal mogliche

wy=20 ı Größe bringen (nur Menüzeile und

WW=X_max-5 I 2 Punkte an den Rändern werden

wh=y_max-25 I gespart)

VOID WIND_SET(whandle,5,wx,wy,ww,wh) ! Größe einstellen ENDIF
8

IF puffer&(0)=27 ı Size-Box

ww=puf fer&(6) I Größe aus der Nachricht entnehmen

wh=puffer&(7)

VOID WIND_SET(whandle,5,wx, wy, ww, wh)

ENDIF
t

IF puffer&(0)=28 ! Move-Box

wx=puf fer&(4) ! x und y sind verändert

wy=puffer&(5)
VOID WIND_SET(whandle,5,wx,wy, ww, wh)

ENDIF

UNTIL puffer&(0)=22 ! ... bis Close-Box gedriickt wurde
‘

VOID WIND_CLOSE(whandle)
VOID WIND_DELETE(whandle)

VOID MFREE(s)

ENDIF

VOID APPL_EXIT()

END

 GEM-Programmierung 231

PROCEDURE output_text

HIDEM I Maus abschalten, die stört nur
8

ı Größe des Arbeitsbereichs ermitteln:
t

VOID WIND_CALC(1,63,wx,wy,ww,wh,X,y,W,h)

' Umrechnen in x1/y1/x2/y2:
f

x1=x

yi=y
X2=xtw- 1
ye=y+h-1
t

' Loschen des Arbeitsbereichs:
a

BOUNDARY 0

DEFFILL 0

PBOX x1,y1,x2,y2

BOUNDARY 1

' Clipping einschalten (fur Text-Ausgabe):

CLIP x1,y1 TO x2,y2

' Text ausgeben:
1

TEXT x1+8,y1+14,"Hallo! Das ist eine Fenster-Demonstration!" TEXT

x1+8,y1+30,'"Sie können das Fenster bewegen und seine Größe...

... verändern. '!

TEXT x1+8,y1+46,"Ende durch Klick auf die Close-Box!"

' Clipping wieder ausschalten:
0

CLIP OFF

SHOWM

RETURN
§

Auch hier wurde wieder eine Zeile getrennt (erkennbar an den drei
Punkten), die Sie bitte wieder in einer Zeile eingeben.

Omikron-BASIC

ı Fenster mit Funktionen (vergrößern, ...)

' Omikron-BASIC MP 02-12-88 WIND2.BAS

Appl_Init:V_Opnvwk

 232 Atari ST Intern 2

ı Bildschirmauflösung feststellen:
i

XBIOS (Rez,4)' O=low, 1=mid, 2=high

X_Max=640+320* (Rez=0)

Y_Max=200-200* (Rez=2)
a

ı Anfangs-Fenstergröße vorgeben:
4

Wx=20 : Wy=20 : Ww=280 : Wh=150
i

Wind_Create(63,0,0,X_Max, Y_Max,Whandle)

IF Whandle<O THEN

FORM_ALERT (1,"(3] [Kein Handle verfugbar!] [0K]",Dummy)195 ELSE

' Titel- und Infozeile einstellen:
I

Adr= MEMORY(40)' wird für wind_set benötigt

Wind_Set(Whandle,2,"WIND2.PRG",Adr)
Wind_Set(Whandle,3,"Bitte beachten Sie:",Adr+15)

Wind_Open(Whandle,Wx ,Wy,Ww,Wh)
8

ı Jetzt rufen wir ein Unterprogramm auf, das den Arbeits-

ı bereich des Fensters löscht und etwas hineinschreibt:
4

Output_Text
a

' *k* Warten auf Benutzeraktivitäten ***
8

REPEAT

Evnt_Mesag(Puffer$)' je 2 Bytes bilden ein Wort

IF FN PCO)=20 THEN Output_Text!' Redraw-Aufforderung
8

IF FN P(0)=23 THEN ! Full-Box wurde angeklickt

Wx=2 :Wy=20:Ww=X_Max-5:Wh=Y_Max-25

Wind Set(Whandle,Wx,Wy, Ww, Wh)

ENDIF

IF FN P(O)=27 THEN ! Size-Box

Ww=FN P(6)! Größe aus dem Nachrichtenpuffer übernehmen

Wh=FN P(7) |
Wind_Set(Whandle, Wx, Wy, Ww,Wh)

ENDIF
a

IF FN P(Q)=28 THEN ' Move-Box

Wx=FN P(4)

Wy=FN P(5)

 GEM-Programmierung 233

Wind_Set(Whandle,Wx,Wy,Ww,Wh)

ENDIF

UNTIL FN P(0)=22! ...bis Close-Box geklickt wurde

ı Fenster schließen und freigeben:
8

Wind_Close(Whandle)
Wind_Delete(Whandle)

ENDIF
a

V_Clsvwk:Appl_Exit
END
§

' Die folgende Funktion wird zur Verarbeitung des Ergebnis-Strings

' von evnt_mesag verwendet. Sie übergeben einfach die Nummer des

' Wortes der Nachricht, das Sie lesen mochten.
4

DEF FN P(N)= CVI(MIDS(Puf fer$,N*2+1,2))
i

DEF PROC Output_Text' Gibt Inhalt des Fensters aus

V_Hide C' Der Mauszeiger stort hier nur...
t

ı Wir müssen die Größe des Arbeitsbereichs errechnen lassen: '!

Wind_Calc(1,63,Wx,Wy,Ww,Wh,X,Y,W,H)

X2=X+W-1:Y2=Y+H-1' Umrechnen von x/y/w/h in x1/y1/x2/y2

" Löschen des Arbeitsbereichs:
4

Vsf_Interior(0)' Füllmuster: weiße Fläche

Vsf_Perimeter(0)' keine Umrandung

V_Bar(X,Y,X2,Y2)
Vsf_Perimeter(1)' Umrandung wieder einschalten

' Clipping einschalten:
t

Vs_CLip(x,Y¥,X2, 2)
4

V_Gtext(X+8,Y+14,'"Hallo! Das ist eine Fenster-Demonstration!")

V_Gtext(X+8,Y+30,'"Sie können das Fenster bewegen und seine Größe verandern.")

V_Gtext(X+8,Y+46,"Ende durch Klick auf die Close-Box!")

Vs_Clip' ohne Parameter = Clipping wird ausgeschaltet
‘

V_Show_C(1)' Mauszeiger wieder anschalten

RETURN
'

 234

C

[ERRRRRREREEEERERERERREREEREREREEEREEERREERERERERE /

/* Fenster mit Funktionen (vergréBern, ...) */

/* Laser C MP 30-11-88 WIND2.C */
[RERRRRRRREREREEEERERREEERERRERERERRERERERRRERERE /

#include <osbind.h>

#include "gem_inex.c"

Atari ST Intern 2

int whandle, /* Das hatten wir auch schon in WIND1.C */

pxyarray[4],

x,y W,h;

int puffer [8]; /* Hierhin kommen die AES-Nachrichten */

int wx

wy

WW

wh

20,

280,

150;

20, /* äußere Fenstergröße mit Startwerten */

void clip_window (pxyarray) /* Begrenzt alle nachfolgenden VDI- */

int pxyarrayl[]; /* Ausgaben auf einen Bereich */

{

vs_clip (handle, 1, pxyarray); /* 1: Clipping einschalten */

>

void switch_clipping_off() /* macht clip_window rückgängig */

{

int pxyarray[4];

vs_clip (handle, 0, pxyarray); /* 0: Clipping ausschalten */

>

void output_text()

{

/* Mauszeiger ausschalten: */

v_hide_c (handle);

/* Arbeitsbereich errechnen: */

wind calc (1, 63, wx, wy, ww, wh, &Xx, &y, &w, &h);

/* Umrechnen von Höhe/Breite in zweiten Eckpunkt: (x2/y2) */

pxyarray[0] = x; pxyarray[1] = y;
pxyarray[2] = x+w-1; pxyarray[3] = y+h-1;

 GEM-Programmierung 235

/* Arbeitsbereich löschen: */

vsf_interior (handle, 0); /* Füllen mit Hintergrundfarbe */

vsf_perimeter (handle, 0); /* keine Umrandung */

v_bar (handle, pxyarray); /* weißes gefülltes Rechteck */

vsf_perimeter (handle, 1); /* Umrandung wieder einschalten */

/* Jetzt schreiben wir irgendeinen Text in das Fenster. */

clip_window (pxyarray);

v_gtext (handle, x+8, y+14,

"Hallo! Das ist eine Fenster-Demonstration!");

v_gtext (handle, x+8, y+30,

"Sie kénnen das Fenster bewegen und seine GroBe verdndern.");

v_gtext (handle, x+8, y+46,

"Ende durch Klick auf die Close-Box!");

switch_clipping_off();

/* Mauszeiger wieder zeigen: */

v_show_c (handle, 1);

main()

{
gem_init();

graf_mouse (0, OL); /* Pfeil als Mauszeiger */

whandle = wind_create (63, 0, 0, x_max, y_max);

/* 63 = alles, aber keine Pfeile und Schieber */

if (whandle < 0)

form_alert (1, "[3] [Sorry! |Kein Window-Handle mehr frei!) [OK]");
else

{

/* Titel- und Infozeile einstellen */

wind_set (whandle, 2, "WIND2.PRG", 0, 0); /* 2 -> Titel und */

wind set (whandle, 3, "Bitte beachten Sie:", 0, 0); /* 3 -> Info */

wind_open (whandle, wx, wy, ww, wh);

/* Jetzt soll der Arbeitsbereich des Fensters gelöscht und */

/* das Fenster mit einem sinnvollen Inhalt gefüllt werden. */

output_text(); /* Das machen wir in einem Unterprogramm. */

 236

NETT EREREREEERE |

/* Jetzt kommt das Wichtigste: */

/* Wir warten auf Benutzeraktivitäten und werten sie aus */
[RERRERERERERRERERERKEEREREERERERREEREERRRREREREKREEEREREEEREEEE |

do

{
evnt_mesag (puffer); /* Warten auf eine Nachricht */

switch (puffer [0])

{
case 20: /* Redraw */

output_text();

break;

case 23: | /* Full-Box */
WX = 2:

wy = 20;
WW = x_max - 5;

wh = y_max - 25;

wind_set (whandle, 5, wx, wy, ww, wh); /* neue Größe */

case 27: /* Size-Box */

ww = puffer[6];

wh = puffer [7];

wind_set (whandle, 5, wx, wy, WW, wh); /* neue Größe */

case 28: /* Move-Bar */

wx = puffer[4];

wy = puffer [5];

wind_set (whandle, 5, wx, wy, WW, wh);

break;

> |
> while (puffer[0] != 22); /* Bis Close-Box betätigt */

wind_close (whandle);
wind_delete (whandle);

>

gem_exit();
>
Assembler:

Fenster mit Funktionen (vergrößern, ...)

Assembler MP 30-11-88 WIND2.Q

=
e

S
s

Be
a

B
O

INCLUDE 'GEM_INEX.Q'

gemdos = 1

Atari ST Intern 2

break;

break;

main:

GEM-Programmierung

TEXT

jsr

; 'Anstandiger' Mauszeiger:

move .w

move .wW

move .W

move .wW

clr.w

clr.w

jsr

gem_init

#78, control

#1, control+2

#1,control+4

#1,control+6

control+8

int_in

aes

; wind_create

move .wW

move .wW

move .W

clr.wW

clr.w

move .W

move .W

move .W

move .W

move.wW

jsr

tst.w

bmi

move .W

#100, control

#5, ,control+2

#1,control+4

control+6

control +8

#63, int_in

#0, int_int2

#0, int_int4

x_max, int_int6

y_max, int_int8

aes

int_out

error

int_out, whandle

 237

;graf_mouse

:0 für Pfeil

‚alles außer Pfeilen und Schiebern

‚maximale Größe des Fensters (x)

:(y)

(Breite) die Werte stammen aus
; (Höhe) dem Include-File

‚negativ? Dann Fehler!

sonst als Window-Handle merken

; Titel- und Infozeile festlegen:

move .wW

move .W

move .W

clr.w

clr.w

move .W

move .wW

move. l

jsr

move .W

#105, control

#6, control+2

#1, control+4

control+6

control+8

whandle, int_in

#2, int_int2
#title, int_int4

aes

#3, int_int2

;wind_set

72: Titelzeile

‚nochmal, aber mit 3 für Infozeile

238

Loop:

lab1:

 Atari ST Intern 2

move. | #info, int_int4

jsr aes

; wind_open

move .W #101, control : Funkt ions-Nummer

move .W whandle, int_in ;Handle von wind_create

move .W wx, int_int2

move . Ww wy, int_int4

move .W WW,int_int6

move.Ww wh, int_int8

jsr aes

; Löschen des Arbeitsbereiches und Ausgabe eines Textes:

jsr

m
e

|
e

B
e

W
O

text_out

Hier beginnt die Hauptschleife:

k Wir warten auf Ereignisse ***

‚ evnt_mesag:

move .W

clr.w

move .W

move .W

clr.w

move. |

jsr

#23, control

control+2

#1,control+4

#1, control+é6

control+8

#puf fer, addr_in

aes

; Die folgenden Zeilen sehen nicht sehr schön aus.

; Sie sind ein Ersatz für switch/case aus C

cmpi.W

bne.s

jsr

bra

cmpi .W

bne.s

move .W

move .W

move .W

subq.w

move .W

#20, puffer ‚20: Redraw-Message

lab!

text_out ;Fenster neuzeichnen

loop

#23, puffer ‚23: Full-Box

lab2

#2 , WX ‚Maximale Fenstergröße einstellen

#20, wy

x_max,dO ‚Breite und Höhe sind abhängig

von der Auflösung

Llab2:

lab3:

wind set:

lab4:

GEM-Programmierung

move .W

subi .wW

move .wW

bra

cmpi .w

bne.s

move.W

move .W

bra

cmp] .wW

bne.s

move .W

move .W

move .W

move .W

move .W

clr.w

clr.w

move.

move.

move.

move.

move.

move. EZ
E
x

E
X

x

jsr

cmpi .wW

bne

 239

y_max,d0

#25 ,,d0

dO,wh /

wind_set

#27, puffer

Lab3

puffer+12,ww

puffer+14,wh

wind_set

‚27: Size-Box

‚Die neue Größe steht im Puffer

#28,puffer

Lab4

puffer+8,wx

puf fer+10,wy

»28: Move-Bar

#105, control

#6, control+2

#1,control+4

control+6

control+8

;wind_set zum Einstellen von

‚neuer Größe und Position

whandle, int_in

#5 ,int_in+2

wx,int_int4

wy,int_in+6

WW, int_in+8

wh, int_in+10

‚Fenster, das einzustellen ist

25: x/y/w/h einstellen

‚neue Werte

aes

#22 ,puffer ‚Close-Box betätigt?

Loop ‚nein, dann noch ein Ereignis

; Jetzt können wir das Fenster schließen:

; wind_close:

move .wW

move .W

move .W

clr.w

clr.w

move .W

jsr

#102, control

#1,control+2

#1, control+4

control+6

control+8

whandle, int_in

aes

; wind_delete:

 240

quit:

error:

text_out:

move .W

jsr

jsr

clriw

trap

move .wW

move .W

move .W

move .w

clr.w

move. |

move .W

jsr

bra.s

=
e

m
n

“o
s

Atari ST Intern 2

#103,control ;nur die Funktionsnummer muß

aes ‚geändert werden

gem exit

-(sp)
#gemdos

#52,control :Form-Alert

#1,control+2

#1,control+4

#1,control+6

control +8

#err_txt,addr_in ;String, der die Box beschreibt

#1, int_in ‚erster Knopf ist Default-Button

aes

quit

Ende des Hauptprogramms, ab jetzt folgen Unterroutinen

» Füllt das Fenster mit seinem Inhalt

; Mauszeiger abschalten

move.W

clr.w

clr.w

clriw

clr.w

move .W

jsr

#123, contrl ;v_hide_c

contrl+2

contrl+4

contrl+6

contrl+8

handle, contrl+12

vdi

; Arbeitsbereich berechnen (wind_calc):

move .W

move .wW

move .W

clr.w

clr.w

move .W

move .W

move .W

move .W

move .W

#108, control

#6, control+2

#5, control+4

control+6

control+8

#1,int_in ‚1 -> Arbeitsbereich ausrechnen

#63, int_int+2 ‚Eigenschaften des Fensters

wx, int_int4 ‚äußere Ausmaße

wy, int_inté

ww, iInt_int8

 GEM-Programmierung 241

move .wW

jsr

move.

move.

move.

move.

add.w

subq.w

move .W

add. w

subq. w

move ..W

x£
e
c
 £

wh, int_int+10

aes

int_out+2,d0 7x1 = x aus wind_calc

do, x1

int_out+4,d1 7y1 = y aus wind calc

di,y1

int_out+6,d0 ‚x + Breite...

#1,d0 sun. 7 1...

d0,x2 Ju. = X2

int_out+8,d1 sy + Höhe...

#1,d1 peer 7 1...

d1,y2 see. = y2

; Clipping für diesen Arbeitsbereich einschalten

move .W

move .w

clr.w

move .W

clr.w

move .W

move.

move.

move.

move.

move. x
E
x

x

x

jsr

#129,contrl

#2,contrl+2

contrl+4

#1,contrl+6

contri+8

handle, contrl+12

‚Funktions-Opcode

x1,ptsin

yi,ptsin+2

x2,ptsint4

y2, ptsin+6

#1,intin ‚1:

‚Koordinaten des Arbeitsbereichs

Einschalten

vdi

; vsf_interior (Fullmuster):

move .W

clr.w

clr.w

move .W

move .wW

move .W

clr.w

jsr

#23 ,contrl

contrl+2

contrl+4

#1,contrl+6

#1, contrl+8

handle, contr l+12

intin

vdi

‚Füllen mit Hintergrundfarbe

; vsf_perimeter (Umrandung ausschalten):

move .W

clr.w

clr.w

move .wW

move.W

#104 ,contrl

contrl+2

contrl+4

#1,contrl+6

#1,contrl+8

242

MOVe.W

clr.w

jsr

Atari ST Intern 2

handle, contrl+12

intin ;Flag: Umrahmung ausschalten

vdi

; v_bar (löscht den Arbeitsbereich):

; (Koordinaten von wind_calc, müssen aber von x/y/breit/hoch

‚ in x1/y1/x2/y2 umgerechnet werden.

moVe.W #11,contrl ;Opcode fur graphische

move .W #2,contrl+2 :Grundfunktionen

clr.w contrl+4

clr.w contrl+6

clr.w contri+8

move.W #1, contrl+10 ;Funktionsnummer fur v_bar

move .W handle, contrl+12

move .w x1,ptsin

move.W yil,ptsint+2

move.Ww x2,ptsint+4

move.W y2, ptsint6

jsr vdi

; vsf_perimeter (Umrandung wieder einschalten):

#104, contrl move .W

clr.w contrl+2

clr.w contrl+4

move .W #1,contrl+6

move .w #1,contrl+8

move .wW handle, contrl+12

move .W #1,intin ‚Flag: Umrahmung einschalten

jsr vdi

; Ausgabe der Texte mit v_gtext

move .W #8, contr

move .wW #1,contrl+2

clr.w contrl+4 scontrl+6 wird je nach Textlange

clr.w contrl+8 ‚gesetzt

move.W handle, contrl+12

move .W x1,ptsin ;x-Koordinate

addi .w #8, ptsin

move .W y1,ptsint2 »y-Koordinate

addi.w #14, ptsint2

lea zeile1,a0

jsr fix_text ‚Text in intin-Array schreiben

 GEM-Programmierung | 243

jsr vdi

addi.w #16,ptsint2 snachste Zeile

lea zeile2,a0

jsr fix_text

jsr vdi

addi .w #16, ptsint2

lea zeile3,a0

jsr fix_text

jsr vdi

; Clipping ausschalten

move.W #129, contrl ; Funkt1ons-Opcode

move .W #2, contrl+2

clr.w contrl+4

move .W #1,contrl+6

clr.w contrl+8

move .W handle, contrl+12

clr.w intin 30: Clipping aus

jsr vdi

: Mauszeiger wieder zeigen

move .W #122,contrl ;v_show_c

clr.w contrl+2

clr.w contrl+4

move .W #1,contrl+6

clr.w contrl+8

move .W handle, contrl+12

move .wW #1,intin

jsr vdi

rts

fix_text:

; Unterprogramm, das einen String (Startadresse in a0

‚ zu übergeben) in das intin-Array schreibt, die Länge

; bestimmt und in contri[3] ablegt

clr.w do ‚Länge

clr.w di ;Hilfsregister

lea intin,al

fix_loop: move.b (a0)+,di ‚ein Byte aus Zielstring holen

tst.b d1 :Stringende?

beq.s f ix_end

move .W di1,(a1)+ ‚nein, dann als Wort ins

 244 Atari ST Intern 2

addq.w #1,d0 ‚intin-Arrary schreiben

bra.s fix_loop

fix_end: move.w d0,contrl+6 ‚Länge festhalten

rts

DATA

err_txt: DC.b '[3] [Sorry! !Kein Window-Handle mehr frei!] [OK] ',O

WX: DC.w 20 ;Anfangsgröße des Fensters

wy: DC.w 20

WW: DC.w 280

wh: DC.w 150

title: DC.b 'WIND2.PRG' ,0

info: DC.b 'Bitte beachten Sie:',0

zeilei: DC.b 'Hallo! Das ist eine Fenster-Demonstration! ',0

zeile2: DC.b 'Sie können das Fenster bewegen und seine '

DC.b 'Größe verändern. '!,O

zeile3: DC.b 'Ende durch Klick auf die Close-Box!'!,O

whandle: DS.w 1 ;Window-Handle

x1: DS.w1 ;Koordinaten des Arbeitsbereichs

yi: DS.w 1

x2: DS.w 1 ;Eckpunkt !!! Nicht Breite/Hohe!

y2: DS.w 1

puffer: DS.w 8 ;Hier werden die AES-Nachrichten abgelegt

END

5.8.2 Mehrere Fenster

Wer ein Fenster auf den Bildschirm bringt, der kann auch mit zwei Fen-

stern hantieren - könnten Sie jetzt denken. Leider ergibt sich dabei ein
Problem, das mit dem Redraw-Verfahren zusammenhängt. Im vorigen
Programm wurde dieses Verfahren ja schon einmal angesprochen. Sie ha-

ben gesehen, daß in bestimmten Situationen der Fensterinhalt neu ge-
zeichnet werden muß. Bis jetzt haben wir dazu ganz einfach die Routine
aufgerufen, die den Arbeitsbereich löscht und den Text ins Fenster

schreibt.

 GEM-Programmierung 245

Wenn wir das gleiche jetzt mit zwei oder mehr Fenstern auf dem Bild-
schirm wieder machen würden, dann hätten wir damit zwar die Möglich-
keit geschaffen, ein Fenster zu vergrößern (der neue, jetzt sichtbare Teil
muß ja neu gezeichnet werden); die Kombination von mehreren Fen-

stern schafft aber ganz neue Situationen, um die wir uns bis jetzt nicht
kümmern mußten. Damit meine ich folgendes: Wenn wir eine Redraw-
Meldung im Nachrichtenpuffer erhalten, dann ist zunächst einmal unklar,

ob ein ganzes Fenster neu gezeichnet werden soll (was wir bisher getan
haben) oder nur ein Teil eines Fensters.

Dazu ein Beispiel: Sie haben zwei Fenster auf dem Bildschirm, wobei das
eine (das im Vordergrund, also das aktive Fenster) die rechte Hälfte des
anderen verdeckt. Nun schieben Sıe dieses (das aktive) Fenster nach
rechts, aber nur soweit, daß immer noch ein Teil des Hintergrund-Fen-
sters verdeckt bleibt. Dann wird ein Stück des zweiten Fensters sichtbar,

das vorher nicht zu sehen war. Dieses Stück muß das Programm neu

zeichnen, aber... - Können Sie sich vorstellen, was passiert, wenn wir

einfach das ganze Fenster neu ausgeben? Genau! Das Vordergrund-Fen-

ster wird teilweise überschrieben; denn die VDI-Routinen, mit denen wir

die Ausgabe ja vornehmen, kümmern sich nicht darum, ob sie im vorge-
schriebenen Fenster bleiben oder nicht.

Wir müssen also irgendwie herausfinden, welche Teile eines neu zu

zeichnenden Rechtecks überhaupt sichtbar sind. Sie können sich vorstel-

len, daß das bei mehr als zwei Fenstern recht schwierig zu programmie-
ren ist. Es ist sogar unmöglich, sobald ein Accessory wie das Kontrollfeld
sein "Privatfenster" geöffnet hat; denn die Applikation kann dessen Ko-
ordinaten nicht erfragen. (Abgesehen davon erfährt sie auch nichts vom
Öffnen des Accessory-Fensters.) Statt dessen bedienen wir Programmierer
uns der Rechteckliste.

Diese Liste kann von einem GEM-Programm fiir jedes seiner Fenster an-

gefordert werden. Die Liste besteht dann aus einer möglichst kleinen

Zahl von Rechtecken (bzw. deren Koordinaten), die zusammen den Be-
reich des Fensters abdecken, der im Moment sichtbar ist, d.h. nicht
durch andere Fenster verdeckt wird. Die Zahl der Rechtecke variiert
natürlich: Wenn ein großes Fenster ein kleines ganz verdeckt, dann gibt
es für das kleine Fenster gar kein sichtbares Rechteck. Wenn aber das

kleine Rechteck in den Vordergrund gebracht wird, dann liegt die Zahl
der sichtbaren Rechtecke des großen Fensters bei vier (eines oben, eins
unten, eins rechts und eins links neben dem kleinen Fenster, wenn das
kleine Fenster in der Mitte des großen liegt)!

 246 Atari ST Intern 2

Nun, nehmen wir an, wir hätten diese Rechteckliste. Was ist dann bei ei-

ner Redraw-Meldung zu tun?

Im Nachrichtenpuffer finden wir zunächst einmal das Window-Handle
des Fensters, das neu gezeichnet werden muß; falls mehrere Fenster auf
Vordermann gebracht werden müssen, erhalten wir auch mehrere Re-
draw-Nachrichten. Dieses Handle steht im Wort 3. Außerdem liegen in
den Worten 4 bis 7 die Koordinaten des Bereichs vor, in dem die Störung
aufgetreten ist. Das ist also der Bereich, der maximal neu gezeichnet
werden muß. Auch hierzu ein Beispiel: Fenster 2 (klein) liegt über Fen-

ster 1 (groß). Wenn Fenster 2 geschlossen wird, dann ist Fenster I neu zu
zeichnen, jedoch nur der Teil, der vorher von Fenster zwei verdeckt

wurde (der gestörte Bereich halt).

Bevor wir diesen Bereich jedoch neu zeichnen, müssen wir zunächst die
Rechteckliste des nunmehr vollständig sichtbaren und neu zu zeichnenden
Fensters anfordern (es könnte ja sein, daß zwischen Fenster 1 und Fen-
ster 2 noch ein drittes Fenster liegt). Nehmen wir an, wir erhalten zwei
sichtbare Rechtecke. Dann müssen wir sehen, ob sich diese beiden

Rechtecke mit dem neu zu zeichnenden Bereich (Koordinaten aus dem

Nachrichten-Puffer) überlappen. Wir müssen quasi ein Schnittrechteck

zwischen dem gestörten Bereich und jedem Rechteck aus der Rechteck-
liste bilden. Jedes Ergebnisrechteck (falls es das gibt) ıst dann ein wirk-

lich neu zu zeichnende Bereich, den wir mit VDI-Funktionen bearbeiten
können (am besten: Clipping und dann zeichnen).

Soweit zur Theorie. Die wichtigsten Fragen, die Sie jetzt stellen sollten,
sind: Wie komme ich an die Rechteckliste, und wie bilde ich ein Schnitt-
rechteck? Nun, die Rechteckliste wird vom AES automatisch geführt und

bei jeder Bewegung von Fenstern auf den neuesten Stand gebracht. Bevor
Sie die Liste anfordern können, muß sie freigegeben werden. Das ge-
schieht mit der AES-Funktion wind__update. Sie erhält einen Parameter,
der ein Wert zwischen 0 und 3 sein darf. Für uns sind die Werte 0 und 1
interessant: Mit einer Eins teilen wir dem AES mit, daß wir im folgenden
einen Fensterbereich neu aufbauen wollen und dazu die Rechteckliste
benötigen werden. Nebeneffekt: GEM läßt keine Benutzeraktivitäten mit
der Maus mehr zu. Ihr Programm kann also in Ruhe ein Fenster
aufbauen, ohne daß der Anwender Größe oder Position dieses oder eines
anderen Fensters ändern könnte. Auch die Drop-Down-Menüs (mehr
später!) sind gesperrt. Erst wenn wir fertig sind und der Benutzer wieder
handeln darf, heben wir die Sperre durch einen wind _update-Aufruf mit

dem Parameter Null wieder auf.

 GEM-Programmierung 247

Die Rechteckliste selbst kann dann mit der Funktion wind_get an-
gefordert werden. Sie ist das Gegenstück zu wind_set und erlaubt es, die
verschiedensten Daten über ein Fenster, dessen Handle zu übergeben ist,

in Erfahrung zu bringen. Zu diesen verschiedensten Daten gehört nun
auch die Rechteckliste. Bei jedem Aufruf von wind_get wird je ein
sichtbares Rechteck zurückgegeben. Wichtig ist auch, daß es ein Erstes

Rechteck und dann nur noch das jeweils Nächste Rechteck gibt. Dafür
stehen zwei verschiedene Unterfunktions-Nummern von wind_get zur
Verfügung: 11 für das erste und 12 für das nächste Rechteck. Gewöhn-

lich wird also in einer Schleife solange nach Rechtecken gefragt, bis das
AES das Ende der Liste meldet. Die Liste gilt dann als beendet, wenn

Breite und Höhe des zuletzt zurückgegebenen Rechtecks Null sind. Um
dies im Programm abzufragen, genügt es natürlich, eine der beiden
Größen zu überprüfen. (Sie erinnern sich: Das kleinste Rechteck, das es

auf dem Computer geben kann, hat die Breite 1 und die Höhe 1; besser

bekannt als Punkt.)

So bleibt die Frage offen, wie wir das Schnittrechteck aus einem

Rechteck der Liste und derm zerstörten Bereich errechnen. Dafür gibt es
keine GEM-Funktion; das müssen wir also von Hand machen. Doch
keine Sorge, so schwer ist es nicht: Wenn die Koordinaten der Rechtecke
im VDI-Format (x1/y1/x2/y2) vorliegen, dann ist x1 des Schnittrechtecks

die größere der beiden x1-Koordinaten der beiden sich schneidenden
Bereiche; x2 des Ergebnisrechtecks ist dagegen der kleinere der beiden
x2-Werte der Quellbereiche. Wenn am Ende noch x2 größer als xl ist,
dann überschneiden sich die Rechtecke, sonst nicht. Für die y-Werte gilt

Entsprechendes. Im Programm sieht das meist etwas anders aus, weil in

der Regel Koordinaten im AES-Format vorliegen (x/y/w/h).

In meinem Beispielprogramm verwende ich eine Mischung: Die Quell-

rechtecke werden im AES-Format angegeben, und das Unterprogramm

gibt VDI-Koordinaten zurück. Das hat sich als besonders praktisch er-
wiesen, weil das Schnittrechteck meist mit VDI-Routinen weiterbehandelt

wird. Übrigens: Ein solches Unterprogramm bekommt üblicherweise den
Namen intersect. Manche C-Compiler haben eine Intersect-Funktion in

ihrer Standard-Bibliothek, doch werden dort spezielle Datenstrukturen

verwendet, die ich hier nicht behandeln möchte, weil sie sich nicht auf
die anderen Sprachen übertragen lassen. Auch in C programmieren wir
die Funktion also selbst. In GFA-BASIC ist die Funktion dagegeben
brauchbar implementiert, so daß wir sie auch benutzen werden. |

Einige weitere Deteils sollten Sie ab sofort beachten: Selbstverständlich
muß ein Programm jetzt mit Hilfe der Window-Handles sehr genau zwi-
schen den verschiedenen Fenstern unterscheiden. Dabei ist auch zu be-

 248 Atari ST Intern 2

achten, daß auch ein Accessory, das ein Fenster geöffnet hat, Nachrich-
ten empfangen muß. Diese Nachrichten erhält aber möglicherweise nicht

nur das Accessory; unser eigenes Programm könnte sie "mithören". Jedes

GEM-Programm sollte also als erstes prüfen, ob die Nachricht überhaupt

für eines der eigenen Fenster bestimmt ist. In diesem Zusammenhang
sollte auch erwähnt werden, daß Sie zwar Daten (also Handles, Koordi-

naten usw.) mehrerer Fenster in Arrays unterbringen können (so habe ich

es auch gemacht), doch müssen Sie dann höllisch aufpassen, daß Sıe nicht

Window-Handles und Indizes verwechseln (eine wunderbare Fehler- und

damit Bombenquelle)! |

Und noch etwas ist wichtig: Sobald es mehrere Fenster gibt, kann der

Benutzer durch Anklicken eines Fensters im Hintergrund dieses Fenster

in den Vordergrund bringen, also als aktives Fenster deklarieren. Das ist

so nicht ganz richtig; denn Sie erhalten im Nachrichtenpuffer lediglich
die Mitteilung, daß der Benutzer ein Fenster aktivieren möchte (Ereig-

nis-Nr. 21, WM_ TOPPED). Das Fenster müssen Sie (bzw. Ihr Programm)

dann schon selbst nach vorne bringen. Das geht mit der wind_set-
Funktion, Unterfunktion Nr. 10. Eins noch am Rande: Wenn sowohl

Accessories als auch die Applikation Fenster geöffnet haben, dann wer-

den Tastendrücke nur dem Programm gemeldet, dessen Fenster oben

liegt, also aktıv ıst. Das ıst ganz praktisch, weil dann die Ziffern, die Sıe

für das Taschenrechner-Accessory eintippen, nicht gleich mit ın die

Textverarbeitung übernommen werden.

Die letzte Neuerung betrifft die maximalen Koordinaten eines Fensters.

Bisher haben wir die recht umständlich über die Bildschirmauflösung

hergeleitet. Es geht aber sauberer: Mit der Funktion wind _ get können
wir nicht nur Daten (z.B. Größe) unserer eigenen Fenster, sondern auch

die Werte des Desktops erfragen. Desktop ist in diesem Fall der gesamte
Bildschirm bis auf die Menüzeile. Das Desktop-Fenster hat ein festes

Window-Handle, nämlich 0. Die Koordinaten des Arbeitsbereichs erfra-

gen wir dann mit der Unterfunktion Nr. 4 von wind_ get.

So, jetzt haben Sie alle Kenntnisse, um das folgende Programm zu ver-

stehen. Lassen Sie es erst einmal laufen, und probieren Sie alles aus, be-

vor Sie sich das Listing vornehmen. Sie werden feststellen, daß die "Pro-

grammchen" mittlerweile etwas umfangreicher ausfallen, gerade in
Assembler. Das folgende Programm ist aber eine Ausnahme; die nächsten
Programme werden wieder kürzer!

 GEM-Programmierung 249

 Fenster 1

Si Bitte ebenfalls beachten

End Hallo! Das ist eine Fe
Sie können das Fenster
Ende durch Klick auf ı

F

GFA-BASIC

i

' Zwei Fenster gleichzeitig mit Funktionen

' GFA-BASIC MP 13-12-88 WIND3.GFA
i

DEFINT “a-z" I alle Variablen sind Integer -> erspart uns viele %s

DIM puffer&(7) ! Platz für 8 Worte einer Nachricht (evnt_mesag)

DIM whandle(1),wx(1),wy(1),ww(1),wh(1), opened(1)

' Initialisierung der Arrays:
4

wx(0)=20 ! Koordinaten Fenster 0

wy(0)=20

ww(0)=200

wh(0)=120
8

wx(1)=50 I Koordinaten Fenster 1

wy(1)=50

ww(1)=200

wh(1)=120

VOID APPL_INITO)

ı Größe des Desktop (Abeitsbereich) feststellen:

VOID WIND_GET(O,4,x_desk,y_desk,w_desk,h_desk)
J

ı Fenster anmelden für maximale Größe und allen Elementen (63)! außer Pfeile und

Schieber
1

IF FN create_windows

VOID FORM ALERT(1,"[3] [Kein Handle mehr verfugbar!] [OK]")

 250 Atari ST Intern 2

ELSE
a

' Titel- und Infozeile einstellen:

' Die Strings werden in einen sicheren Speicherbereich

' kopiert, da sich ihre Startadresse nicht andern darf
6

t1$="Ffenster 1"+CHR$CO)

11$="Bitte beachten Sie:"+CHR$(O)

t2$=""Fenser 2""+CHRS(0)

i2$="Bitte ebenfalls beachten:"+CHR$(0)

s=MALLOC(100)
i

FOR i=1 TO LEN(t1$) ! Titelzeile 1

POKE s-1+1,ASC(MID$(t1$,1,1))

NEXT i
t

FOR 1=1 TO LEN(11$) I Infozeile 1

POKE s+24+1,ASC(MID$(11$,1,1))

NEXT i
i

FOR i=1 TO LEN(t2$) I Titelzeile 2

POKE st+49+1,ASC(MID$(t2$,1,1))

NEXT i
A

FOR i=1 TO LENCi2$) I Infozeile 2

POKE s+74+i,ASC(MID$Ci2$,i,1))

NEXT i
§

' Wir brauchen Low- und High-Words (durch DIV 2°16und MOD 2°16)

' Titelzeile: Unterfunktion 2 / Infozeile: Unterfunktion 3 '

VOID WIND_SET(whandle(0),2,s DIV 65536,s MOD 65536,0,0)

VOID WIND_SET(whandle(0),3,(st+25) DIV 65536,(s+25) MOD 65536,0,0)

VOID WIND_SET(whandle(1),2,(s+50) DIV 65536, (s+50) MOD 65536,0,0)

VOID WIND_SET(whandle(1),3,(s+75) DIV 65536,(s+75) MOD 65536,0,0)

' Fenster öffnen:
i

FOR i=0 TO 1

VOID WIND_OPEN(whandle(1),wx(i),wy(i),ww(i),wh(i))

opened(i)=1

output_text(i)

NEXT i

REPEAT

ı Auf ein Ereignis warten:
4

VOID EVNT_MESAG(LPEEK(*puffer&())+4) ! Adresse des ersten Elements

 GEM-Programmierung 251

' Index des Fensters ermitteln, von dem die Nachricht stammt:

' (Window-Handle steht in puffer&(3))

w=0

WHILE NOT (puffer&(3)=whandle(w) OR w=2)

INC w

WEND
6

IF window<2 ! War das Uberhaupt unser Fenster (1 oder 2)?

IF puffer&(0)=20 I Redraw-Meldung

GOSUB redraw(w)

ENDIF
8

IF puffer&(0)=21 ! Window- Topped

VOID WIND_SET(whandle(w),10,0,0,0,0)

ENDIF
8

IF puffer&(0)=23 I Full-Box wurde angeklickt

wx(w)=x_desk+2 I Fenster auf maximal mögliche

wy(w)=y_desk+2 I Größe bringen

ww(w)=w_desk-6

wh(w)=h_desk-6

VOID WIND_SET(whandle(w),5,wx(w) ,wy(w) ,ww(W),Wwh(W))

ENDIF
a

IF puffer&(0)=27 I Size-Box

ww(w)=puf fer&(6) I Größe aus der Nachricht entnehmen

wh(w)=puffer&(7)

VOID WIND_SET(whandle(w),5,wx(w), wy(w), WwCwW),wh(wW))

ENDIF
I

IF puffer&(0)=28 ! Move-Box

wx(w)=puf fer&(4) I x und y sind verändert

wy(w)=puf fer&(5)

VOID WIND_SET(whandle(w),5,wx(w), wy(wW),WWwCW),Wwh(W))

ENDIF
8

IF puffer&(0)=22 ! Close-Box

VOID WIND_CLOSE(whandle(w))

VOID WIND_DELETE(whandle(w))

opened(w)=0

ENDIF
8

ENDIF
UNTIL NOT (Copened(0)=1) OR (opened(1)=1)) ! solange Fenster offen...

8

VOID MFREE(s)
ENDIF

VOID APPL_EXIT()

 252 Atari ST Intern 2

END

PROCEDURE output_text(w) ! Fensterinhalt am Programmstart

' ausgeben

' Größe des Arbeitsbereichs ermitteln:
i

VOID WIND _CALC(1,63,wWx(w) ,wy(w),Ww(wW),wh(w),X,y,W,h)

X2=Xtw- 1

y2=y+h-1

CLIP x,y TO x2,y2

draw_text(x,y,x2,y2,X,Y)

CLIP OFF

RETURN
0

a

PROCEDURE draw_text(x1,y1,x2,y2,x,y)
a

' Parameter:

' x1,y1,x2,y1 ist das Rechteck, das neu gezeichnet, also

ı gelöscht werden soll. x,y ist die linke obere Ecke des

ı Textes. x,y sind nicht unbedingt gleich x1,y1 !!!

HIDEM I Maus abschalten, die stört nur
a

ı Löschen des Arbeitsbereichs:
i

BOUNDARY 0

DEFFILL O

PBOX x1,y1,x2,y2

BOLINDARY 1

' Text ausgeben:
8

TEXT x+8,y+14,"Hallo! Das ist eine Fenster-Demonstration!"

TEXT x+8,y+30,'"Sie können das Fenster bewegen und seine Größe...

... Verändern."

TEXT x+8,y+46,"Ende durch Klick auf die Close-Box!"
t

SHOWM

RETURN

FUNCTION create_windows

FOR i=0 TO 1

whandle(i)=WIND_CREATE(63,x_desk,y_desk,w_desk,h_desk)

NEXT i

RETURN (whandle(0)<0) AND (whandle(1)<0)

ENDFUNC

 GEM-Programmierung

PROCEDURE redraw(w)

' Nochmal den Arbeitsbereich berechnen:

' (brauchen wir für linke obere Ecke des Textes)
‘

VOID WIND_CALC(1,63,wx(w),wy(w), Ww(W),Wh(W),ax,ay,awW, ah)
ß

VOID WIND_UPDATE(1) ! Alle Mausfunktionen sperren,

' damit wir ungestort sind / Rechteckliste freigeben

' Verarbeitung der Rechteckliste:

VOID WIND_GET(whandle(w),11,rx,ry,rw,rh) ! 11->erstes Rechteck

WHILE rw>0 ! solange, wie das Rechteck noch Breite besitzt

IF RC_INTERSECT(puffer&(4), puffer&(5), puffer&(6), puffer&(7),...

. ..-Px,ry,rw,rh)

rx2=rx+rw-1

ry2=ry+rh-1

CLIP rx,ry TO rx2,ry2

GOSUB draw_text(rx,ry,rx2,ry2,aX,ay)

ENDIF

253

VOID WIND_GET(whandle(w),12,rx,ry,rw,rh) ! 12 -> nächstes Rechteck

WEND
8

CLIP OFF

VOID WIND_UPDATE(O) ! Maus wieder anwerfen

RETURN
I

Omikron-BASIC

Zwei Fenster gleichzeitig mit Funktionen

Omikron-BASIC MP 04-12-88 WIND3.BAS

DIM Whandle(1),Wx(1),Wy(1),Ww(1),Wh(1), Opened(1)

Appl_Init:V_Opnvwk
a

Größe des Desktop-Windows (Nummer 0) erfragen:

Wind_Get(0,4,Xdesk, Ydesk,Wdesk, Hdesk)

Fenster anmelden:

IF FN Create_Windows THEN

FORM_ALERT (1,"[3] [Sorry! |Kein Window-Handle mehr frei!) [OK]",Dumny)
ELSE

 254 Atari ST Intern 2

' StandardgroBe der Fenster in Array eintragen:
I

Wx(0)=20:Wy(0)=20:Ww(0)=200:Wh(0)=120

Wx(1)=50:Wy(1)=50:Ww(1)=200:Wh(1)=120
t

' Titel- und Infozeile einstellen:
I

Adr= MEMORY(100)' Speicherplatz für wind_set
a

Wind Set(Whandle(0),2,"Fenster 1",Adr)

Wind_Set(Whandle(0),3,"Bitte beachten Sie:",Adr+25)
Wind_Set(Whandle(1),2,"Fenster 2",Adr+50)

Wind_Set(Whandle(1),3,"Bitte ebenfalls beachten:",Adr+75)

' Fenster Öffnen und etwas reinschreiben:
t

FOR 1=0 TO 1
Wind_Open(Whandle(I),WxCI),WyCI),WwCI),WhCI))
Opened(I)=1
Output_Text(I)

NEXT I

' *** Warteschleife ***
4

REPEAT
Evnt_Mesag(Puffer$)
i

' Feststellen, von welchem Fenster die Nachricht kam (0 oder 1)
' Handle steht in Puffer [3]
‘

Window=0

WHILE NOT (FN P(3)=Whandle(Window) OR Window=2)

Window=Window+1

WEND
a

IF Window<2 THEN ! nur eigene Fenster (0 und 1) beachten

IF FN P(0)=20 THEN Redraw(Window)

IF FN P(O)=21 THEN ! Window Topped

Wind_Set(Whandle(Window))' Fenster nach oben bringen

ENDIF

4

IF FN P(0)=23 THEN ! Ful l-Box

Wx (Window) =Xdesk+2

Wy (Window)=Ydesk+2

Ww(Window)=Wdesk-6

Wh (Window)=Hdesk-6

Wind Set (Whandle(Window) ,Wx(Window) ,Wy(Window), ...
.- eWw(Window) ,Wh(Window))

ENDIF

 GEM-Programmierung 255

IF FN PC(0)=27 THEN ! Size-Box

Ww(Window)=FN P(6)

Wh(Window)=FN P(7)
Wind_Set(Whandle(Window) ‚Wx(Window) ‚Wy(Window),...

u. .WulWindow) ,Wh(Window))

ENDIF
i

IF FN P(Q)=28 THEN ! Move-Bar

Wx(Window)=FN P(4)

Wy(Window)=FN P(5)
Wind Set (Whandle(Window) ,Wx(Window),Wy(Window),...

-. -Ww(Window) ,Wh(Window))

ENDIF
a

IF FN P(OQ)=22 THEN ! Close-Box

Wind _Close(Whandl e(Window))

Wind Delete(Whandl e(Window))

Opened(Window)=0' als geschlossen markieren

ENDIF

ENDIF
I

' Weiter, solange noch Fenster offen sind...

UNTIL NOT ((Opened(0)=1) OR (Opened(1)=1))

ENDIF
1

V_Clsvwk:Appl_Exit

END
t

a

DEF FN PCN)= CVIC MID$CPuffer$,N*2+1,2))
8

DEF FN Create_Windows

FOR I=0 TO 1

Wind _Create(63,Xdesk, Ydesk,Wdesk,Hdesk,Whandle(I)) NEXT I
i

RETURN (Whandle(0)<0) OR (Whandle(1)<0)
I

DEF PROC Intersect(X1,Y1,W1,H1,X2,Y2,W2,H2,R X,...

-o.R Y,R Xx,R Yy,R Ret)

' Berechnet die Schnittfläche zweier Rechtecke

W= MINCX2+W2,X1+Wi)

H= MINCY2+H2,Y1+H1)
X= MAX(X2,X1)
Y= MAX(Y2,Y1)

Xx=W-1:Yy=H-1

 256 Atari ST Intern 2

Ret=(W>X) AND CH>Y)' Prüft, ob Schnittfläche vorhanden ist

RETURN

DEF PROC Draw_Text(X1,Y1,X2,Y2,X,Y)
' Bedeutung der Parameter:

' X1, Y2, X2 und Y2 bilden das Rechteck, das zu löschen ist.

' x und y geben an, wo die linke obere Ecke des Textes sein soll.

' Das muß nicht innerhalb des Rechtecks sein, wenn z.B. bei

' Redraw nur die untere Hälfte des Fensters zu löschen ist.
8

V_Hide_C
0

Vsf_Interior(0)' Rechteck löschen

Vsf_Perimeter(0)

V_Bar(X1,Y1,X2,Y2)

Vsf_Perimeter(1)
8

V_Gtext(X+8,Y+14,"Hallo! Das ist eine Fenster-Demonstration!")
V_Gtext(X+8,Y+30,'"Sie können das Fenster bewegen und seine...

... Größe verändern.")

V_Gtext(X+8,Y+46,"Ende durch Klick auf die Close-Box!")
0

V_Show_C(1)

RETURN

DEF PROC Output_Text(Window)

Wind _Calc(1,63,Wx(Window) ,Wy(Window) ,Ww(Window),...

.. .WhlWindow),X,Y,W,H)

X2=X+W-1:Y2=Y+H-1

Vs_Clip(X,Y,X2,Y2)

Draw_Text(X,Y,X2,Y2,X,Y)

Vs_Clip

RETURN

DEF PROC Redraw(Windonw)

! Wir brauchen nochmal den Arbeitsbereich:
8

Wind _Calc(1,63,Wx(Window) ,Wy(Window) ,Ww(Window),...

.» -Wh(Window) ,Ax,Ay,Aw, Ah)

Wind_Update(1)' Mausfunktionen sperren
5

' Verarbeitung der Rechteckliste:
q

Wind_Get (Whandle(Window), 11,Rx,Ry,Rw,Rh)

 GEM-Programmierung

WHILE Rw<>O' Aufhoren wenn Breite Null

Intersect(FN P(4),FN P(5),FN P(6),FN P(7),Rx,Ry,..-

...Rw,Rh,X,Y,Xx,Yy,Ret)

IF Ret THEN ' Falls Uberschneidung

Vs_Clip(X,Y,Xx,Yy)

Draw_Text(X,Y,Xx,Yy,Ax,Ay)

ENDIF
8

Wind_Get(Whandle(Window), 12,Rx,Ry,Rw,Rh)' nächst. Recht.

WEND
5

Vs_Clip' Clipping ausschalten

Wind_Update(0)

RETURN
4

257

Denken Sie wieder daran, durch Punkte geteilte Zeilen in einer Zeile

einzugeben!

Cc
NETT TITTEN |

/* Zwei Fenster gleichzeitig mit Funktionen */

/* Laser C MP 30-11-8 WIND3.C */
NETTE]

#include <osbind.h>

#include "gem_inex.c"

int whandlel[2], /* Alles für zwei Fenster

opened[2] = (1, 13; /* Flag ob Fenster geöffnet

int puffer[8]; /* Hierhin kommen die AES-Nachrichten

int wx{2] = (20, 50}, /* äußere Fenstergrößen mit Startwerten

wy[2] = (20, 50),

ww[2] = (200, 200},

wh[2] = (120, 1203;

int xdesk, ydesk, wdesk, hdesk; . /* Größe des Desktop

int i, window; /* Hilfsvariablen

void clip_window (pxyarray) /* Begrenzt alle nachfolgenden VDI-

int pxyarray[]; /* Ausgaben auf einen Bereich

*/
*/

*/

*/

*/

*/

*/
*/

 258 Atari ST Intern 2

vs_clip (handle, 1, pxyarray); /* 1: Clipping einschalten */

}

void switch_clipping_off() /* macht clip_window rückgängig */

{

int pxyarray[4];

vs_clip (handle, 0, pxyarray); /* 0: Clipping ausschalten */

>

void output_text (window)

int window;

{
int pxyarray[4],

X,y,W,h;

/* Arbeitsbereich errechnen: */

wind calc (1, 63, wx[window], wy[window], wwiwindow],

wh [window], &x, &y, &w, &h);

/* Umrechnen von Höhe/Breite in zweiten Eckpunkt: (x2/y2) */
pxyarray[0] = x;

pxyarray[1] = y;

pxyarray[2] = x+w-1;

pxyarray[3] = y+h-1;

clip_window (pxyarray);

draw_text (pxyarray, x, y);

switch_clipping_off();

>

draw_text (pxyarray, X, y)

int pxyarray[], x, y;

{

/* Mauszeiger ausschalten: */

v_hide_c (handle);

/* Arbeitsbereich löschen: */

vsf_interior (handle, 0); /* Füllen mit Hintergrundfarbe */

vsf_perimeter (handle, 0); /* keine Umrandung */

v_bar (handle, pxyarray); /* weißes gefülltes Rechteck */

vsf_perimeter (handle, 1); /* Umrandung wieder einschalten */

 GEM-Programmierung 259

/* Jetzt schreiben wir irgendeinen Text in das Fenster. */

v_gtext (handle, x + 8, y + 14,

"Hallo! Das ist eine Fenster-Demonstration!");

v_gtext (handle, x + 8, y + 30,

"Sie kénnen das Fenster bewegen und seine Groé8e verdndern.");

v_gtext (handle, x + 8, y + 46,

"Ende durch Klick auf die Close-Box!");

/* Mauszeiger wieder zeigen: */

v_show_c (handle, 1);

int create_windows()

{
/* Desktop-Größe ermitteln mit wind_get Funktion Nr. 4 */

/* Desktop hat festes Window-Handle O0 */

wind_get (0, 4, &xdesk, &ydesk, &wdesk, &hdesk);

for (i =0; i<=1; it)

whandle[i] = wind_create (63, xdesk, ydesk, wdesk, hdesk);

return (whandle[0] < 0 |! whandle(1] < 0);

int intersect (x1, y1, wi, hi, x2, y2, we, h2, pxyarray)

int x1, y1, wi, hi, x2, y2, we, h2, pxyarray[];

int x, y, W, h;

w= (x2+W2 < x1+w1) ? x2+w2 : x1+w1;

h = (y2+h2 < yi+hl1) ? y2+h2 : y1+h1;

x = (x2 > x1) ? x2: x1;

y = (y2 > y1) ? y2: yl;

pxyarray[0] = x;

pxyarray[1] = y;

pxyarray[2] = w - 1;

pxyarray[3l = h- 1;

return (> x && h > y);

void redraw (window)

{

int window;

 260 Atari ST Intern 2

int x, y, wW, h, /* Neu zu zeichnender Bereich */

rx, ry, rw, rh, /* Variablen für die Rechteckliste */

ax, ay, aw, ah, /* Arbeitsbereich */

pxyarrayl[4];

wind_update (1); /* Maus desaktivieren, Rechteckliste freigeben */

x = puffer[4]; /* Koordinaten des neu zu zeichnenden Bereichs */

y = puffer[5]; /* (gehört zur Nachricht) */

w= puffer[6];

h = puffer[7];

/* Größe Arbeitsbereich ermitteln */

wind_calc (1, 63, wx[window], wyLwindow], ww[Iwindow] ,

wh{window], &ax, &ay, &aw, &ah);

/* Erstes Rechteck aus der Rechteckliste anfordern: (11) */

wind get (whandle[window), 11, &rx, &ry, &rw, &rh);

while (rw != 0) /* Solange Breite > 0... */

{
if (intersect (x, y, w, h, rx, ry, fw, rh, pxyarray))

{
clip window (pxyarray);

draw_text (pxyarray, ax, ay);

/* pxyarray gibt das zu zeichnende Rechteck an, wahrend */

/* x und y die gedachte obere linke Ecke angeben */

/* (muß nicht im Rechteck liegen */

>
wind get (whandle[window], 12, &rx, &ry, &rw, &rh); /* nachstes R. */

>

switch clipping off();

wind update (0); /* Wir sind fertig. */

main()

{

gem_init();

graf_mouse (0, OL); /* Pfeil als Mauszeiger */

if (create_windows()) /* Funktion liefert 1 bei Fehler */

form_alert (1, "[3] [Sorry! |Kein Window-Handle mehr frei!) [OK]");

else

{

 GEM-Programmierung 261

/* Titel- und Infozeile einstellen */

wind_set (whandle[0], 2, "Fenster 1", 0, 0);
wind_set (whandle[1], 2, "Fenster 2", 0, 0);

wind_set (whandle[0], 3, "Bitte beachten Sie:", 0, 0);

wind_set (whandle[1], 3, "Bitte ebenfalls beachten:", 0, 0);

/* Fenster öffnen und etwas reinschreiben */

for (1 =0; i<=1; i++)

{

wind_open (whandleli], wxli], wyli], wwli], whli]);

output_text (1);

>

NH

/* Jetzt kommt das Wichtigste: */

/* Wir warten auf Benutzeraktivitäten und werten sie aus */
NIIT TITTEN |

do

{
evnt_mesag (puffer); /* Warten auf eine Nachricht */

/* Index des Fensters ermitteln, von dem die Nachricht stammt */

/* puffer[3] enthält dazu das Window-Handle */

for (window = 0;

!(puffer [3] == whandle[window] |! window == 2); window++);

if (window != 2) /* Handle gefunden bzw. unser Fenster? */ {

switch (puffer [0])

{
case 20: /* Redraw */

redraw (window);

break;

case 21: /* Topped */

wind _set(whandle[window], 10, 0, 0, 0, 0); /* 10 -> Top */

break;

case 23: /* Full-Box */

wx [window] = xdesk + 2;

wy [window] = ydesk + 2;

ww[window] = wdesk - 6;

wh {window] = hdesk - 6;

wind_set (whandle[window], 5, wx[window],

wy [Window], ww[window], wh[(window]); /* neue GrdBe */

break;

 262 Atari ST Intern 2

case 27: /* Size-Box */

wa({window] = puffer [6];

wh [window] = puffer[7];
wind set (whandle[window], 5, wx[window],

wy [window], ww[window], wh{window]); /* neue Größe */

break;

case 28: /* Move-Bar */

wx [window] = puffer([4];

wy [window] = puffer [5];

wind set (whandle[window], 5, wx([window],
wy [Window], ww window], wh(window]); /* neue Größe */

break;

case 22: /* Close-Box */
wind_close (whandle [window]);

wind delete (whandle[window]);

opened[window] = 0; /* als geschlossen kennzeichnen */

break;

>

>
> while (opened(0] |! opened[1]); /* Bis beide Fenster zu sind */

}
gem exit();

>

Assembler

; Zwei Fenster gleichzeitig mit Funktionen

; Assembler MP 05-12-88 WIND3.Q

INCLUDE 'GEM_INEX.Q'

gemdos = 1

TEXT

main: jsr gem_init

- !Anständiger' Mauszeiger:
a

move .w #78, control ‚graf_mouse

move.W #1,control+2

move .W #1,control+4

move .W #1, control+6

clr.w control+8

clr.w int_in ‚0 für Pfeil

no_err:

GEM-Programmierung

jsr

clr.w

move .wW

jsr

move .W

move .W

move .w

move .wW

jsr

tst.w

beq.s

move .wW

move.w

move .w

move .W

clr.w

move. |

move .w

jsr

bra

lea

move .w

move .wW

jsr

lea

move .w

move .wW

jsr

lea

move .W

move .wW

jsr

lea

move .wW

move .wW

jsr

 263

aes

d1 Größe des Desktop (0) ermitteln

#4 ,d2 sUnterfunktion
wind_get

d1,xdesk

d2,ydesk

d3 ‚wdesk

d4 ,hdesk

create_windows

do ‚Fehler?

no_err

#52,control

#1,control+2

#1,control+4

#1,control+6

control +8

#err_txt,addr_in ;String, der die Box beschreibt

#1, int_in ‚erster Knop ist Default-Button

aes

quit

sdann Form-Alert

;für Fehlermeldung

titlel,a0

#2 ,d0

whandle,di

wind_set1

‚Titelzeile

‚2 ist wind_set Unterfunktion

‚erstes Fenster

info1,a0

#3 ,d0

whandle,d1

wind_set1

‚3 setzt Info-Zeile

title2,a0

#2,d0

whandle+2,d1

wind_set1

‚zweites Fenster

info2,a0

#3 ,d0

whandl e+2,d1

wind_set1

: Öffnen der Windows:

clr.w

clr.w
lea

d7

d3

whandle, a5

 264

open_lp:

Loop:

s_lp:

lea

move .W

move .wW

move .W

clr.w

clr.w

move.

move.

move.

move.

move.

jsr

jsr

addq.w

addq.w

cmpi .w

bne.s

E
E
E

EZ
Ez

=
e

Atari ST Intern 2

Wx, a4

#101, control

#5 ,control+2

#1,control+4

control+6

control +8

0(a5,d7.w),int_in

0(a4,d7.w), int_int2

4(a4 ,d’.w),int_int4

8(a4,d7.w), int_int6

12(a4,d7.w), int_int8

‚wind_open

;Window-Handle

aes

output_text

#1 ,d3 ‚Index für output_text

#2,d7 ‚nächstes Fenster

#4 ,d7 schon beide offen?

open_lp ‚nein, dann Schleife

: *** Nachrichtenschleife ***

3 evnt_mesag:

move .wW

clr.w

move .W

move .wW

clr.w

move. l

jsr

#23, control

control+2

#1, control+4

#1, control+6

control+8

#puf fer ,addr_in

aes

» Index des Fensters ermitteln, das die Nachricht auslöste

‚ und dessen Handle in puffer+6 steht:

» Ergebnis ist eigentlich kein Index, sondern ein Offset.

clr.w

lea

lea

lea

move .W

cmp. Ww

beq.s

addq.w

cmpi .w

beq

bra.s

d3

Wx, a4 Koordinaten

whandle, a5 ‚Handles

puffer, a6 ‚Nachricht

6(a6) ,d2 sWindow-Handle der ‘Quelle!

0(a5,d3.w),d2

s_found

#2,d3

#4 ,d3 ‚ist das überhaupt unser Fenster?

Loop ‚scheint nicht so, weiter warten

s_lp

s_found:

labO:

lab1:

labe:

lab3:

GEM-Programmierung 265

Jetzt werden die möglichen Ereignisse abgefragt/behandelt:

cmpi.Ww

bne.s

jsr

bra

cmpi.W

bne.s

move .W

move.W

jsr

bra

cmpi .wW

bne.s

move .W

move .W

move .W

clr.w

clr.w

move .wW

jsr

move .W

jsr

lea

clr.w

bra

cmp .W

bne.s

move.W

addq. w

move .W

move . Ww
addg.w

move.W

move.W

subq.w

move .W

move .W

subi .w

move .W

bra

cmpi .W

bne.s

move .W

move .wW

bra

#20, (a6) ;Redraw?

LabO

redraw sdann Bereich neuzeichnen

cont

#21, (a6) ‚Window Topped

Lab!

d2,d1 ;Window-Handle

#10, d0 ‚Funktion: Window nach oben bringen

wind_set2

cont

#22,(26) ;Close-Box

lab2

#102, control ;wind_close

#1, control+2

#1,control+4

control+6

control +8

0¢a5,d3.w),int_in ;Handle

aes

#103, control ;wind delete

aes (nur neue Funktionsnummer)

opened, a3 Fenster nicht mehr geöffnet

0(a3,d3.w)

cont

#23,(a6)

lab3

xdesk ,d0

#2,d0

d0,0(a4,d3.w)

ydesk ,dO

#2,d0

dO ,4(a4,d3.w)

wdesk , d0

#6 , dO

d0,8(a4,d3.w)

hdesk , dO

#6 , dO

d0, 12(a4,d3.w)

set

223: Full-Box

‚Maximale Fenstergröße einstellen

#27, (a6)

Lab4

12(a6) ,8(a4 ,d3.w)

14(36),12(a4,d3.w)

set

‚27: Size-Box

 266

lab4:

set:

cont:

quit:

intersect:

ist:

is2:

cmpi.W

bne.s

move.W

move.W

move.W

move.W

move.W

move.W

move.W

move .W

jsr

Atari ST Intern 2

#28, (a6) ‚28: Move-Bar

cont

8(a6) ,0(a4,d3.w)

10(a6) ,4(a4,d3.w)

#5 ,d0 ‚Funktion: Position verändern

0¢(a5,d3.w),d1 :Window-Handle

0¢(a4,d3.w),d2 :Koordinaten

8(a4,d3.w),d4

—12(a4, 03.0) ,d5
4(a4,d35.w),d3 ‚d3 darf erst ganz zum Schluß ver-

wind_set2 ‚ändert werden (ist ja auch Offset)

; Test, ob noch mindestens ein Fenster offen ist

tst.w

bne

tst.w

bne

jsr

clr.w

trap

opened

Loop ‚offen, dann zur Schleife

opened+2 ‚2. Fenster

Loop

gem_exit

-(sp)
#gemdos

; *** Unterprogramme ***

; Test auf Uberschneidung von Rechtecken.

; Parameter:

: d1-d4& -> Koordinaten Rechteck 1

; Rechteck zwei kommt aus dem Nachrichten-Puffer

; Dessen Startadresse soll in a6 stehen.

; Ausgabe:

; dO -> O=keine Überschneidung, 1=Überschneidung

>». pxy: VDI-Koordinaten (also nicht Breite und Höhe) des

CMP.W

bgt

move .wW

bra.s

move .w

cmp.W

bgt

Schnittrechtecks

puf fer+8,d1 3x2 > x1?

is]

puf fer+8, pxy ‚ja, dann x=x1

is2

d1,pxy ‚sonst x=x2

puf fer+10,d2 ‚y2 > y1?

153

is3:

is4:

is5:

is6:

is?:

is8:

isrts:

redraw:

GEM-Programmierung

move .W

bra.s

move .wW

move .W

add. w

add. w

cmp.wW

blt.s

move .wW

bra.s

move .W

subi .W

move.W

add.w

add.w

CMP.W

blt

move .W

bra.s

move .wW

subi.w

clr.w

move .W

CMP.W

blt.s

move .W

cmp.w

blt.s

moveq. |

rts

puf fer+10, pxy+2

184

d2 ,pxy+2

puf fer+8,d0

puf fer+12,d0

d3,d1

d1,d0

is5

di, pxy+4

is6

dO, pxy+4

#1, pxyt4

puf fer+10,d0

puf fer+14,d0

d4 ,d2

d2,d0

is7

d2, pxy+6

is8

dO, pxy+6

#1, pxy+6

do

pxy+4,di

pxy,di
isrts

pxy+6,di

pxy+2,d1

isrts

#1 ,d0

 267

swie oben, aber für y

‚x1...

Jon. + Wi

sund x2 + w2

‚x2+W1 < xt+wl?

snein, größer -> x=x1+w1

sja, dann x=x2+w2

sKorrektur (x2=x+tw-1)

syl.ee

see. + ht

sund y2 + h2

‚Rest: wie oben

‚Test: Überschneidung?

»x2 < x1?

‚dann Fehler

sy2 < yi?

rebenfalls Fehler

ssonst kein Fehler

; Zeichnet ein Fenster oder einen Ausschnitt aus einem Fenster

; neu. Koordinaten des neu zu zeichnenden Bereichs im

; Ereignispuffer (+8,+10,+12,+14). Window (0/1) in d3

isr.w

move .W

move .W

‘move .W

move .W

clr.w

clr.w

move .wW

#1,d3

d3,-(sp)

#107, control

#1, control+2

#1, control+4

control+6

control+8

#1,int_in

‚Offset in Index umwandeln

‚für später retten

‚wind_update |

;(Mausaktivitäten verbieten,

;Rechteckliste freigeben)

Flag: Kontrolle selbst übernehmen

 268

rdr_lp:

rdr_lab:

rdr_end:

jsr

jsr

move .W

move .wW

move .W

move .W

jsr

tst.w

beq

jsr

tst.w

-S

move .W

move .wW

clr.w

move .W

clr.w

move .wW

move .W

move .wW

move .W

move.W

move.W

jsr

move .wW

move .W

move .W

jsr

move .wW

move .wW

jsr

bra

move .W

move .W

clr.w

move .wW

clr.w

move .W

clr.w

jsr

addq. |

Atari ST Intern 2

aes

wind_calc ‚Wir brauchen noch einmal x- und y-

pxy,d6 Koordinate des Arbeitsbereichs

pxy+2,d

puffer+6,d1 ‚Erstes Rechteck aus Liste

#11,d2 ;Unterfunktions-Nr. von wind_get

wind_get

d3 :Breite prüfen

rdr_end ;Null, dann aufhoren

intersect ‚sonst Schnittrechteck bilden

do : Uberschneidung?

rdr_lab snicht, dann Uberspringen

#129,contrl ‚vs_clip

#2,contr\|+2

contrl+4

#1,contrl+é6

contri+8

handle, contrl+12

pxy, ptsin ‚Koordinaten des Arbeitsbereichs

pxyt+2,ptsint2

pxy+4, ptsin+4

pxy+6, ptsint+6

#1,intin »1: Einschalten

vdi

d6 ,d4 ‚Koordinaten der linken oberen

d7,d5 Ecke (nicht immer im Rechteck)

(sp),d3 ‚Fenster-Index (0/1)

draw_text

puf fer+6,d1 ‚nächstes Rechteck

#12,d2

wind_get

rdr_lp ‚und nochmal...

#129, contrl ‚Clipping aus...

#2,contrl+2

contri+4

#1,contrl+6

contr|+8

handle, contrl+12

intin ‚0: Clipping aus

vdi

#2,sp ;Retten von d3 rückgängig machen

GEM-Programmierung

move .W

move.W

move .wW

clr.w

clr.w

clr.w

jmp

wind_set1:

#107, control

#1, control+2

#1,control+4

control+6

control+8

int_in

aes

 269

;wind_update

;AES übernimmt Kontrolle

; Setzt Infozeile oder Titelzeile

; Parameter:

s dO -> Unterfunktion (2 Title/3 Info)

;

di -> Window-Handle

a0 -> String

move .W #105, control

move .wW #6, control+2

move .W #1, control+4

clr.w control+6

clr.w control+8

move .W d1,int_in

move .W dO, int_int2

move. a0, int_in+4

Jmp aes

wind_set2:

;‚wind_set

sWindow-Handle

;Unterfunktion

;‚Startadresse

; Setzt Koordinaten oder bringt Fenster nach oben

; Parameter:

3 dO -> Unterfunktion (5 Koordinaten/10 Info)

:

;

di -> Window-Handle

d2-d5 -> Koordinaten

move .W

move .W

move .W

clr.w

clr.w

move .wW

move .wW

move .W

move .wW

move .W

move .wW

jmp

create_windows:

#105, control

#6, control+2

#1,control+4

control+6

control+8

di, int_in

dO, int_int2

d2,int_int4

d3, int_int6

d4, int_int8

d5, int_in+10

aes

‚wind_set

;Window-Handle

‚Unterfunktion

; window_create für 2 Fenster

270

cw_loop:

cwlerr:

cw_rts:

draw_text:

Atari ST Intern 2

: Ergebnis in dQ:

; 0 -> OK

; 1 -> Fehler

; Window-Handles in whandle und whandle+2

move. | d7,-(sp)

moveq.l #0,d7

lea whandle, a5

move .wW #100, control ‚wind_create

move.W #5 ,control+2

move .W #1,control+4

clr.w control+6

clr.w control+8

move .W #63, int_in ‚alles außer Pfeile und Schieber

move .W xdesk,int_int?2 ;maximale Größe des Fensters (x)

move .W ydesk,int_int4 ;(y)

move.W wdesk,int_int6 ;(Breite) die Werte stammen aus

move.W hdesk,int_int8 ;(Hdhe) dem Include-File

jsr aes

tst.w int_out ‚negativ? Dann Fehler!

bmi cw_err

move .W int_out,0(a5,d7.w) ;sonst als Window-Handle merken

addq. | #2,d7 ‚nächstes Fenster

cmpi .wW #4 ,d7 sschon durch?

bne.s cw_loop

clr.w do skein Fehler u

bra.s cw_rts

move .W #1 ,d0 ‚Fehler-Flag

move. | (sp)+,d7

rts

: Loscht Arbeitsbereich und schreibt Text

; Parameter:

; in pxy (.bss-Segment) die Koordinaten des zu löschenden

: Rechtecks

» d&,d5: x/y Koordinaten der linken oberen Ecke des
; Textes (muß nicht im Rechteck liegen, siehe Redraw)

; Mauszeiger abschalten

move .W

clr.w

clr.w

clr.w

clr.w

move .W

#123, contrl

contrl+2

contri+4

contr|+6

contrl+8

handle, contrl+12

;v_hide_c

 GEM-Programmierung 271

jsr vdi

; Rechteck in pxy löschen:

; vsf_interior (Ful‘imuster):

move .wW

clr.w

clr.w

move .W

move .wW

move .W

clr.w

jsr

#23,contrl

contrl+2

contrl+4

#1, contrl+6

#1, contr l+8

handle, contrl+12

intin

vdi

‚Füllen mit Hintergrundfarbe

; vsf_perimeter (Umrandung ausschalten):

move .W

clr.w

clr.w

move .W

move .W

move .W

clr.w

jsr

#104, contrl

contrl+2

contrl+4

#1,contrl+6

#1,contrl+8

handle, contrl+12

intin

vdi

Flag: Umrahmung ausschalten

; V_bar (löscht den Arbeitsbereich):

move.W

move.W

clr.w

clr.w

clr.w

move .wW

move .W

move .wW

move .wW

move .wW

move .W

jsr

#11,contrl

#2,contrl+2

contrl+4

contrl+6

contrl+8

#1,contrl+10

handle, contrl+12

pxy, ptsin

pxy+2,ptsint2

pxy+4, ptsint4

pxy+6,ptsin+6

vdi

‚Opcode für graphische

:Grundfunktiionen

‚Funktionsnummer für v_bar

; vsf_perimeter (Umrandung wieder einschalten):

MOVe.W

clr.w

clr.w

move .W

move .w

move .wW

move .W

#104, contrl

contri+2

contrl+4

#1, contrl+6

#1, contrl+8

handle, contrl+12

#1,intin ‚Flag: Umrahmung einschalten

 272 Atari ST Intern 2

jsr vdi

; Ausgabe der Texte mit v_gtext

move .W #8, contrl

move .W #1, contrl+2

clr.w contrl+4 scontrl+6 wird je nach Textlänge

clr.w contrl+8 ‚gesetzt

move.W handle, contrl+12

move .wW d4,ptsin :x-Koordinate

addi .w #8,ptsin

move .W d5,ptsint2 sy-Koordinate

addi .w #14, ptsint2

lea zeilei,a0

jsr fix_text ;Text in intin-Array schreiben

jsr vdi

addi .w #16, ptsint2 ‚nächste Zeile

lea zeile2,a0

jsr fix_text

jsr vdi

" addi.w #16, ptsint2
lea zeile3,a0

jsr fix_text

jsr vdi

; Mauszeiger wieder zeigen

move.W

clr.w

clr.w

move .W

clr.w

move .W

move .W

jsr

rts

output_text:

- Gibt zu a

; Parameter:

;

#122,contrl ;V_show_c

contrl+2

contrl+4

#1, contrl+6

contrl+8

handle, contrl+12

#1,intin

vdi

Beginn des Programms einmal den Text aus

d3: gewünschtes Fenster (0/1)

jsr wind_calc ‚Arbeitsbereich berechnen

wind_calc:

GEM-Programmierung 273

; Clipping für diesen Arbeitsbereich einschalten

move .wW

move .W

clr.w

move .wW

clr.w

move .wW

move .wW

move .W

move.w

move .W

move .W

jsr

move .w

move . WwW

jsr

#129, contrl ‚Funktions-Opcode

#2,contrl+2

contri+4

#1,contrl+6

contrl+8

handle, contrl+12

pxy,ptsin

pxy+2,ptsint2

pxy+4, ptsint4

pxy+6, ptsin+6

#1,intin ‚1:

vdi

‚Koordinaten des (von wind_calc)

Einschalten

pxy, d4
pxy+2,d5

draw_text

‚linke obere Ecke des Textes

; Clipping ausschalten

move .W

move .wW

clr.w

move .W

clr.w

move .w

clr.w

jsr

rts

#129, contrl

#2,contrl+2

contrl+4

#1,contr!+6

contrl+8

handle, contrl+12

intin

vdi

:Funkti1ons-Opcode

‚0: Clipping aus

Errechnet Arbeitsbereich.

Parameter:

Ausgabe:

; d3: gewünschtes Fenster (0/1)

Bereich in x1/y1/x2/y2 in pxy

movem.|

Ist.w

lea

move .W

move .wW

move .W

clr.w

clr.w

o

move .W

d0/d1/d3/a0, - (sp)

#1,d3 ‚Index * 2 als Offset

wx, a0 :Basisadresse fur "Array"

#108, control ;wind_get

#6, control+2

#5 ,control+4

control+6

control +8

#1, int_in 1 -> Arbeitsbereich ausrechnen

 274

wind_get:

move .W

move .W

move .W

move .W

move .W

jsr

move .W

move .wW

move . WwW

move .W

add.w

subq.w

move .W

add. w

subq.w

move .wW

movem.|

rts

#63, int_int2

Atari ST Intern 2

sEigenschaften des Fensters

0O(a0,d3.w),int_in+t4 ;äußere Ausmaße (x)

4(a0,d3.w), int_int6 ;(y)

8(a0,d3.w), int_int8 ;(w)

12(a0,d3.w), int_in+10

aes

int_out+2,d0

dO, pxy
int_out+4,d1

di,pxy+2

iInt_out+6,d0

#1 ,d0

dO, pxy+4

int_out+8,d1

#1,d1

di,pxy+6

(sp)+,d0/d1/d3/a0

;(h)

7x1 = x aus wind_calc

‚yi = y aus wind_calc

‚x + Breite...

su... 7 1...

Sau. = X2

sy + Hohe...

su... 7 1...

gee. = ye

; Liefert Rechteckliste oder Größe des Desktop

; Parameter:

; dit: Window-Handle (Desktop: 0)

» d2: Funktion:

4: Größe Arbeitsbereich

11: Erstes Rechteck

12: Nächstes Rechteck

; Ausgabe:

: Koordinaten in d1-d4

move .w

move .wW

move .w

clr.w

clr.w

move .w

move .W

jsr

Move.W

move .W

move .w

move .wW

rts

#104, control

#2, control+2

#5 ,control+4

control+6

control+8

di,int_in

d2,int_int2

aes

int_out+2,d1

int_out+4,d2

int_out+6,d3

int_out+8,d4

;wind_get

sWindow-Handle

Unter funktion

 GEM-Programmierung 275

fix_text:

; Unterprogramm, daB einen String (Startadresse in a0

; zu übergeben) in das intin-Array schreibt, die Länge

; bestimmt und in contrl[3] ablegt

clr.w do ‚Länge

clr.w di ;Hilfsregister

lea intin,al

fix_loop: move.b (a0)+,d1 ‚sein Byte aus Zielstring holen

tst.b di :Stringende?

beq.s fix_end

move .W di1,(a1)+ ‚nein, dann als Wort ins

addq.w #1,d0 ;intin-Arrary schreiben

bra.s fix_loop

fix_end: move.w dO,contrl+6 ‚Länge festhalten

rts

DATA

opened: DC.w 1,1 ;Flag ob Fenster offen

WX: DC.w 20,50 Koordinaten der Fenster

wy: DC.w 20,50

WW: DC.w 200,200

wh: DC.w 120,120

titlel: DC.b 'Fenster 1',0

title2: DC.b 'Fenster 2',0

info1: DC.b 'Bitte beachten Sie:',O

info2: DC.b 'Bitte ebenfalls beachten: '!,O

err_txt: DC.b '[3] [Sorry! !Kein Window-Handle mehr frei!] [OK] ',O

zeilei: DC.b "Hallo! Das ist eine Fenster-Demonstration!'!,O

zeile2: DC.b 'Sie können das Fenster bewegen und seine Größe '

DC.b 'verandern.',0

zeile3: DC.b 'Ende durch Klick auf die Close-Box!',0

BSS

whandle: DS.w 2 ;Window-Handles

xdesk: DS.w 1 ;Koordinaten des Desktop

ydesk: DS.w 1

wdesk: DS.w 1

 276 Atari ST Intern 2 ————

hdesk: DS.w 1

puffer: DS.w8 ;Nachrichtenpuffer

pxy: DS.w 4 ;Koordinaten

END ‚Ganz schön lang, was?

5.9 Resource-Files

Die Fenster aus dem letzten Kapitel sind ja nur ein grundsätzlicher Be-
standteil eines typischen GEM-Programms. Zwei weitere kommen noch
hinzu: Menüleisten und Dialogboxen. Was das ist, brauche ich Ihnen wohl

nicht zu erklären. Sie könnten jetzt aber fragen, warum beides unter der
gleichen Überschrift behandelt wird, die dazu auch noch nichts mit

Menüs und Dialogen zu tun zu haben scheint.

Nun, Menüleisten und Dialogboxen gehören zu den Dingen, die intern
etwas mehr Aufwand für den Rechner bedeuten. Die Möglichkeiten die-
ser Hilfsmittel sind so komplex, daß es zu kompliziert wäre, etwa eine

ganze Dialogbox im Programm selbst aufzubauen (das sähe etwa so aus:
Mache da einen Kasten mit dem Text und dort zwei Knöpfe, und da

stell noch ein Bildchen hin...). Deshalb werden solche Boxen mit einem
separaten Hilfsprogramm entworfen, das ähnlich einem objektorientierten
Grafikprogramm wie GEM-DRAW funktioniert. Für Menüs gilt das glei-

che. Dieses Hilfsprogramm erzeugt dann aus Ihren Angaben eine Datei,

die die richtige Applikation laden und benutzen kann (wir werden sehen,

wie das geht). In dieser Datei sind praktisch alle möglichen Dialogboxen

und Menüs ın Aussehen und Funktion definiert, die das Programm ir-
gendwann einmal braucht. Weil diese Datei somit eine wichtige ’Quelle’
fiir die Applikation ist, nennt man die Datei selbst ein ’Resource-File’

(resource = Hilfsquelle). Der Dateiname endet in der Regel mit der Ex-

tension .RSC.

Zwei ganz wesentliche Vorteile bringt diese Datei mit sich: Erstens kön-
nen mit dem Hilfsprogramm auch große Eingabemasken komfortabel
entworfen werden, die dann im Programm mit einer einzigen AES-
Funktion abgearbeitet werden können. Und zweitens ist es problemlos
möglich, z.B. ein amerikanisches Programm ins Deutsche zu übersetzen:

Alle Änderungen können mit dem Hilfsprogramm am Resource-File vor-
genommen werden; das Programm selbst muß weder editiert noch neu
compiliert werden, wenn die Bedienung über Menüs und Dialogboxen

abgewickelt wird.

 GEM-Programmierung 277

Sie benötigen im folgenden unbedingt ein solches Hilfsprogramm zur Er-
stellung von Resource-Dateien; diese Programme heißen Resource-
Construction-Sets oder ähnlich. Da sich für den Atari ST kein besonderes
RCS durchgesetzt hat, kann ich Ihnen leider nicht allgemein sagen, wie

man mit solchen Programmen umgeht. Manchmal gehört ein RCS zum
Lieferumfang einer Programmiersprache und wenn nicht, dann müssen

Sie halt etwas probieren; sehr schwer ist die Arbeit ohnehin nicht, denn

es ähnelt wie gesagt einem Zeichenprogramm.

Grundsätzlich müssen Sie folgendes wissen: Jedes Resource-File besteht
aus mindestens einem Baum. Ein Baum ist folglich die gröbste Struktur
innerhalb eines Resource-Files. Jeder Baum enthält, wenn das File fertig

ist, alle Objekte (das sind also Teile eines Baums), die gezeichnet werden
müssen, um z.B. eine Dialogbox auf den Bildschirm zu bringen. Die
Objekte können auf verschiedenen Ebenen in diesem Baum liegen: Jedes
Objekt, das sich ganz innerhalb eines anderen Objekts befindet, ist ein
Unter-Objekt dieses anderen Objekts. Beispiel: Ein Text in einem
Rechteck ist ein Unterobjekt dieses Rechtecks. Der äußere Rahmen einer

Dialogbox ist also das Objekt, das allen anderen Objekten des gleichen
Baumes übergeordnet ist (es enthält ja alle anderen Objekte). Man nennt
es deshalb auch Wurzelobjekt. Diese Hierarchie ıst für Sie zunächst
einmal nur deshalb wichtig, weil es Auswirkungen auf Bewegungen der

Objekte innerhalb des RCS hat: Wenn Sie nämlich beim Editieren eines
Resource-Files ein Objekt an eine neue Position bewegen, dann werden

alle diesem Objekt untergeordneten Objekte automatisch mitbewegt. Das
ist eine praktische Sache. Wofür die verschiedenen Ebenen sonst noch gut
sind, werden wir etwas später sehen.

Zurück zu den Bäumen: Jedes gute RCS bietet verschiedene Baumtypen.

Dazu gehören mindestens die Typen Dialog und Menü (es dürfte klar
sein, wozu). Oft wird auch der Baumtyp Free angeboten, der eigentlich
nur eine Unterabteilung der Dialog-Bäume ist. Diese Unterscheidung
verschiedener Bäume gibt es allerdings nur scheinbar: Sie erleichtert Ih-
nen "nur" das Erstellen der Bäume mit dem RCS. So werden die

Rechtecke, die die einzelnen Menü-Einträge in einem Menü-Baum ent-

halten, vom RCS automatisch erzeugt usw. Deutlicher wird dieser
Pseudo-Baumtyp am Beispiel der Dialog- und Free-Bäume: Eın Dialog-
Baum ist mit dem Free-Baum völlig identisch. Allerdings können Sie im
RCS die Objekte nur dann in ganz feinen Schritten (Pixelbreite) bewe-
gen, wenn Sie den Baum als Free-Baum deklariert haben; im Dialog-
Baum werden alle Objekte auf glatte Koordinaten (durch 8 teilbar) ge-
rundet.

 278 Atari ST Intern 2

Wichtig ist noch, daß wir später in der Applikation die einzelnen Bäume

und die Objekte auseinanderhalten können, um z.B. nicht nur irgendeine,
sondern eine ganz bestimmte Dialogbox auf den Bildschirm zaubern zu
lassen. Dafür gibt es eine Funktion im RCS, die meist Name heißt. Mit
dieser Funktion können Sie ein Objekt, das vorher angeklickt wurde, be-
nennen. Das bedeutet nichts weiter, als daß Sie der Nummer eines Bau-

mes oder eines Objektes (diese sind nämlich durchnumeriert) einen Na-
men geben. Wenn Sie Ihr Resource-File abspeichern, dann wird neben
dem .RSC-File auch noch eine andere Datei gesichert, die Sie in Ihren
Programmtext einbinden oder per Include-Anweisung lesen lassen kön-

nen. Dort werden dann alle Namen der Objekte, die Sie im RCS angege-
ben haben, als Konstanten deklariert und können über diese angespro-

chen werden.

So, jetzt kann ich Ihnen eigentlich nicht mehr viel über das RCS sagen.
Sie sollten an dieser Stelle die Lektüre unterbrechen, um mit Ihrem RCS

ein wenig zu spielen. Machen Sie eine Sicherheitskopie vom Resource-

File eines Programms und untersuchen Sie diese Datei mit dem RCS (es
ist möglich, daß Sie beim Versuch, eine fertige RSC-Datei zu bearbeiten,

eine Fehlermeldung erhalten - ignorieren Sie diese!). Versuchen Sie auch
einmal, eine eigene RSC-Datei ganz neu zu erstellen; erforschen Sie da-

bei, soweit es geht, die Möglichkeiten des RCS. Das ist die Bedingung
für das Verständnis der folgenden Abschnitte.

5.9.1 Die Menüleiste

Ich will hier nicht die Vor- und Nachteile einer mausgesteuerten
Menüleiste aufzeigen, sondern Ihnen in einem kleinen Beispielprogramm
zeigen, wie einfach sich die Anwendung einer fertigen Menüleiste
gestaltet, wenn sie erst einmal mit dem RCS erstellt wurde. Mit dem RCS

haben Sie sich inzwischen hoffentlich angefreundet.

Unsere Menüleiste soll zwei Oberbegriffe erhalten, man spricht von

Menititeln (englisch: Title): Desk und Funktio’. Den Desk-Titel muß jede
Menüleiste haben, obwohl er nicht Desk heißen muß. Hier findet man
später die Accessories wieder. Der einzige für Sie freie Menü-Eintrag

(englisch: Entry) würde gewöhnlich für eine Copyright-Meldung, zum
Anzeigen der Versionsnummer und ähnliches verwendet; bei uns soll er
Information heißen. Merken Sie sich: Man unterscheidet zwischen
Menütitel und Menü-Eintrag (das, was unter dem Titel ausgefahren wird,
wenn der Mauszeiger den Titel berührt). Der zweite Titel soll nur einen
Eintrag erhalten: Ende. Mit ihm soll das Programm später verlassen

 GEM-Programmierung 279

werden können. Laden Sie also Ihr RCS, richten Sie einen Menübaum ein
(das RCS fragt dabei nach dem Namen, nennen Sie den Baum MENUE),

und legen Sie die Einträge an. Der Text eines Titels oder eines Eintrags
wird übrigens gewöhnlich dadurch geändert, daß ein Doppelklick auf
dem Titel bzw. Eintrag ausgeführt wird.

So sollten die beiden Menüs am Ende aussehen:

| Desk __ Funktion
| Information e

Desk Accessory t
Desk Accessory 2 fF]
Desk Accessory 3
Desk Accessory 4
Desk Accessory 5
Desk Accessory os

BER EN SESS

Die Menütitel sind in dieser Abbildung nur deshalb soweit auseinander-
gezogen, damit Sie die Einträge besser lesen können; bei Ihnen sollte
’Funktion’ also direkt neben ’Desk’ stehen.

Nun müssen Sie den beiden Einträgen nur noch zwei Namen geben: nen-

nen wir sie doch ’INFO’ und ’ENDE’. Übrigens: Umlaute sollten diese
Bezeichner nicht enthalten, weil das später im Programm zu Fehlermel-

dungen führen würde.

Wenn Sie damit fertig sind, dann können Sie die fertige Resource-Datei

abspeichern; sie soll MENUI.RSC heißen. Dabei sichert das RCS auch

gleich zwei weitere Dateien: Eine Datei namens MENUI.H und eine na-

mens MENUI1.DEF oder MENUI.DFN, das hängt von Ihrem RCS ab.
Die H-Datei ist eine Header-Datei fiir C-Compiler, die drei Konstanten
deklarieren wird: MENUE, INFO und ENDE - das sind genau die Na-

men, die wir dem Baum und seinen Objekten gegeben haben. Damit ist
später im Programm die Identifizierung der einzelnen Objekte sicherge-
stellt. Die DEF-Datei ist so etwas Ähnliches. Allerdings wird sie nicht
für das Programm benötigt, das das Resource-File lädt; vielmehr dient
sie als Gedächtnisstütze für das RCS selbst und sorgt dafür, daß, wenn

Sie das Resource-File ein zweites Mal bearbeiten wollen, die bisher ver-

einbarten Namen noch bekannt sind. Sie können diese Datei ignorieren,

sollten sie aber nicht löschen.

 280 Atari ST Intern 2

Schauen wir uns aber die Header-Datei einmal an:

#define MENUE 0

#define INFO 7

#define ENDE 16

Wie ich gerade schon sagte, ist diese Datei für C-Programme gedacht.
Wenn wir in BASIC oder in Assembler arbeiten, so müßten wir die Zei-
len etwas umschreiben: Das ’#define’ entfällt genauso wie das folgende
Leerzeichen, und statt des zweiten Leerzeichens zwischen dem Bezeichner

und der Zahl schreiben wir ein Gleichheitszeichen. Mit den Resource-
Files wachsen natürlich auch die Header-Dateien, und es ist nicht beson-
ders aufregend, diese Umwandlung von Hand durchzuführen. Lassen wir
das also den Computer machen. Das folgende Programm erwartet als Ein-

gabe nur den Dateinamen des Header-Files ohne (!) die Extension H und
wird eine Datei mit der Extension H2 erzeugen, die Sie in Ihr Programm
mit Merge (BASIC) oder Include (Assembler) einbinden können. Da das

Programm keine außergewöhnlichen Tricks benutzt und mehr der An-
wendung als der Demonstration dient, habe ich es nur in Omikron-BA-
SIC geschrieben. Es befindet sich aber compiliert auf der Diskette im
Buch.

Umwandlung von C-Header-Files des RCS in BASIC-Files

Omikron-BASIC MP 09-12-88 BASHEAD.BAS

PRINT "Umwandlung von C-Header-Files (*.H) vom RCS"

PRINT "Dateiname ohne Extension: "

INPUT Filename$
a

OPEN "I",1,FilenameS+".H"! Quelldatei zum Lesen

OPEN "O",2,Filename$+".H2"' Zieldatei zum Schreiben

WHILE NOT EOF(1)
INPUT #1,A$! ’ Originalzeile holen

AS= MIDSC(A$,9)! #define löschen

P= INSTRCA$," ")! Leerzeichen suchen

PRINT #2, LEFTSCAS$,P)+"="+ MIDSCAS,P)

WEND

CLOSE 1: CLOSE 2

END

Die Datei MENU1.H2, die dieses Programm erstellen soll, sieht so aus:

MENUE = 0

INFO = 7°
ENDE = 16

 GEM-Programmierung 281

So, damit hatten wir ein Resource-File und ein Header-File. Aber wir

wollten eine Menüleiste haben. Kein Problem! Dafür gibt es die Menu-

Library des AES, deren Funktionen, wer hätte es gedacht, alle mit
menu __ beginnen. Die Funktionen sollten Sie sich als erstes einmal in Ih-
rer GEM-Dokumentation anschauen,-aber lassen Sie menu_ register bitte
aus, die wird nämlich nur von Accessories benutzt.

Was die einzelnen Funktionen machen, dürfte eigentlich leicht zu verste-

hen sein. Allerdings taucht in jedem Aufruf ein Parameter auf, der laut

Beschreibung die Adresse des Menü-Objektbaumes enthalten soll. Dabei

wird das Problem deutlich, das wir noch vor uns haben: Der Menü-

Objektbaum (das ıst einfach ein Baum aus Objekten, so wie Sie ihn mit

dem Resource-Construction-Set gebaut haben), befindet sich ja in einer

RSC-Datei auf dem Massenspeicher. Und bevor wir die Menüleiste

zeichnen lassen können, müssen wir diesen Baum in den Speicher be-

kommen. Die Adresse des Menti-Objektbaumes ist dann natürlich die
Adresse, an der der Baum im Speicher abgelegt wird.

Ich könnte Sie jetzt mit seitenlangen Erklärungen zu Baumstrukturen und
dem AES-Objektformat im Speicher langweilen. Falls Sie das interessiert,

finden Sie Informationen darüber ın jedem guten GEM-Buch. Da diese

Informationen aber nicht sehr wichtig sind und Sıe wahrscheinlich lieber

Ihr erstes eigenes Menü auf dem Bildschirm sehen möchten, lasse ıch das
aus. Statt dessen beschreibe ich, wie Sie Ihr Resource-File vom Massen-

speicher ins RAM bekommen.

Das ist einfacher, als Sie erwarten mögen. Die AES-Funktion rsrc_ load
führt nämlich alle dazu nötigen Schritte durch. Der einzige Parameter ist
der Dateiname des Resource-Files. Als Funktionswert erhalten Sıe ein
Flag, das, falls es Null ist, einen Fehler signalisiert.

Weil wir aber damit die Startadresse des Menübaumes noch nicht kennen,

muß es noch eine andere Funktion geben, um diese Adresse zu ermitteln.

Aber was heißt hier des Menübaums? In unserem ersten Beispiel haben

wir zwar wirklich nur einen Baum, doch kann es durchaus mehrere

Menübaume in einem Resource-File geben. Aber wozu haben wir diesen
Bäumen Namen gegeben? Die helfen uns jetzt weiter.

Die Funktion, welche die Startadresse eine Menübaumes ermitteln kann,

nennt sich rsrc_gaddr (Resource-Get-Address). Sie kann noch mehr,

aber nicht alles auf einmal... Also: Sie übergeben der Funktion einen
Baum-Index, damit diese weiß, von welchem der möglicherweise mehre-
ren Baume Sie die Startadresse erfragen möchten. Dieser Index ist iden-

 282 | Atari ST Intern 2

tisch mit dem Namen, den Sie diesem Baum im RCS gegeben haben, und

der auch im Header-File .H oder .H2 (s.o.) enthalten war. In unserem
Fall übergeben wir also einfach die Konstante MENUE.

Außerdem will rsrc_gaddr von Ihnen wissen, welcher Art dieses ’Ding’,
das Sie suchen, ist. Wir suchen einen Baum, und deshalb geben wir hier

eine Null an (es kommt selten vor, daß Sie hier etwas anderes als Null
angeben müssen). Schließlich ist noch ein Rückgabeparameter zu überge-

ben, in dem Sie nach dem Aufruf endlich die Startadresse des Baumes

finden. Das Ganze darf aber natürlich erst dann geschehen, wenn das

Resource-File mit rsrc_load geladen wurde.

So, nehmen wir an, Sie haben die Startadresse unseres Menübaums. Dann

wollen Sie natürlich als nächstes die Menüleiste auf den Bildschirm brin-
gen. Dafür gibt es die Funktion menu_bar, die zwei Parameter erhält:
die Startadresse des Baumes natürlich und ein Flag, das bestimmt, ob die

Menüzeile neu gezeichnet (1) oder vom Bildschirm entfernt (0) werden
soll. Nach dem Aufruf ıst das Menü am Bildschirm zu sehen und könnte

vom Anwender bedient werden.

Dazu müssen Sie ihm allerdings eine Gelegenheit bieten, indem Sie eine

der Ereignis-Funktionen (evnt_...) aufrufen. Um auch auf die Wahl des
Anwenders reagieren zu können, sollte es allerdings nicht irgendeine,
sondern die Funktion evnt_mesag sein (die Windows lassen grüßen);
denn auch das Anklicken eines Menüpunktes wird als Ereignis in dem

Ihnen bereits bekannten Nachrichtenpuffer gemeldet. Das entsprechende

Ereignis hat die Nummer 10 und heißt offiziell MN SELECTED. Sie
finden außerdem in Wort 3 die Nummer des Menütitels und in Wort 4
die Nummer des Menü-Eintrags, der angeklickt wurde. Mit Nummer ist
hier wieder die Zahl gemeint, die Ihr RCS als Konstante auswirft, wenn
Sie dem Titel oder dem Eintrag einen Namen geben. Eins sei hier gleich
klargestellt: Alle Einträge eines Menüs können anhand ihrer Eintrag-
Nummern identifiziert werden, das heißt Einträge unter verschiedenen

Menütiteln haben nie gleiche Eintragnummern. Deshalb habe ich auch in
der Resource-Datei MENUI.RSC, die wir vorhin zusammengestellt ha-
ben, den beiden Titeln keinen Namen gegeben, nur die Einträge wurden

mit INFO und ENDE bezeichnet.

Wir warten also auf die Nachricht und entscheiden dann mit dem Wort
Nr. 4 des Ereignispuffers, was der Benutzer von uns wollte. Also lassen

wir entweder eine kleine Alertbox mit einem Copyright-Hinweis erschei-
nen oder wir verlassen das Programm nach einer Sicherheitsabfrage
(ebenfalls durch eine Alertbox). Wenn wir das, was der Benutzer wollte,

ausgeführt haben, dann gibt es jedoch noch etwas zu erledigen: Der

 GEM-Programmierung 283

Menütitel, der ja bei Mauszeigerkontakt invertiert wird, also weiß auf
schwarz erscheint, muß wieder in den normalen Zustand versetzt werden.
Das macht die Funktion menu_tnormal (Title-Normal). Als Parameter
verlangt sie unter anderem die Nummer des Menütitels, der automatisch
im Wort Nr. 3 des Ereignispuffers mitgeliefert wird.

Vor dem Verlassen sind jetzt noch zwei Dinge zu tun, die wir bis jetzt
nicht ausführen mußten: Die Menüzeile muß wieder gelöscht werden
(ebenfalls mit menu_ bar), und der Speicherplatz, den das Resource-File

beansprucht, muß offiziell freigegeben werden. Das macht die Funktion
rsrc_free, die ohne Parameter aufgerufen wird.

Nun steht einem Beispielprogramm nichts mehr im Wege, mit dem wir
die Resource-Datei ausprobieren können. Falls Sie diese noch nicht her-

gestellt haben, so finden Sie auf der Diskette im Buch auch die fertige
Datei MENUI.RSC. Falls Sie Ihre eigene Datei testen möchten, so müs-
sen Sie vorher überprüfen, ob die Nummern der Einträge und die Num-

mer des Baumes mit meinen Werten übereinstimmen, weil diese unter-

schiedlich sein können, wenn Sie die Objekte in einer anderen Reihen-

folge angelegt haben, was aber durchaus nicht falsch ist. Versuchen Sie

auch einmal, aus dem Programm heraus ein Accessory aufzurufen!

GFA-BASIC

Laden des Resource-Files und Anzeigen einer Menüleiste

GFA-BASIC MP 10-12-88 MENU1.GFA

Für rsrc_load muß Speicher an GEMDOS zurückgegeben werden:

a

t

ß

ß

t

A

RESERVE -33000 ! Das muB reichen, da Resource-Files

' nicht größer als 32K werden
A

menue=0 ! Diese Konstanten wurden mit 'Merge' aus der Datei

info=7 I MENU1.H2 geladen, die mit dem Programm BASHEAD

ende=16 1! erzeugt werden kann (siehe Beschreibung).

puffer$=SPACE$(16) 1! Platz für 8 Worte
4

DEFFN p(x)=CVI(MID$(puffer$,x*2+1,2)) ! Funktion holt

' Wort Nr. x aus dem Puffer
4

VOID APPL_INITC)

' Laden des Resource-Files (MENU1.RSC):

IF RSRC_LOAD("MENU1 .RSC")=0

 284 Atari ST Intern 2

VOID FORM_ALERT(1,"[3J [Kein Resource-File!] [Abbruch] ")
ELSE

ı Adresse des Menü-Objektbawmes erfragen (0 für Baum):
8

VOID RSRC_GADDR(0,menue,menue_adresse%)

' Anzeigen (1) der Menüleiste:
t

VOID MENU_BAR(menue_adresse%, 1)

' Ereignisschleife:
t

abbruch%=0
4

REPEAT

VOID EVNT_MESAG(VARPTR(puf fer$))

IF FN p(0)=10 I Menüpunkt angeklickt?

titleZ=FN p(3) ! Nummer des Titels merken

IF FN p(4)=info I Information gewünscht?

VOID FORM_ALERT(1,"L1J [Menü-Demoprogramm!(c) 1989 Data...
„..Becker GmbH] [Weiter]")

ENDIF

IF FN p(4)=ende ! oder Programmende?

IF FORM_ALERT(2,"(2] [Wirklich beenden?] [Ja|Nein]")=1
abbruch%=1

ENDIF

ENDIF

' Menütitel normal (1) stellen:
a

VOID MENU_TNORMAL (menue_adresse%, title%, 1)

ENDIF

UNTIL abbruch%=1
I

VOID MENU_BAR(menue_adresse%,0) ! Menüzeile löschen

VOID RSRC_FREEC) I Platz freigeben

ENDIF
4

RESERVE

VOID APPL_EXIT()

END

 GEM-Programmierung 285

Omikron-BASIC

Laden des Resource-Files und Anzeigen einer Menüleiste

Omikron-BASIC MP 10-12-88 MENU1.BAS

ı Für rsrc_load muß Speicher an GEMDOS zurückgegeben werden:
I

CLEAR 33000! Das muB reichen, da Resource-Files

‘ nicht größer als 32K werden
a

Menue=0' Diese Konstanten wurden mit 'Merge' aus der Datei

Info=7' MENU1.H2 geladen, die mit dem Programm BASHEAD

Ende=16' erzeugt werden kann (siehe Beschreibung).

Puffer$= SPACE$(16)' Platz für 8 Worte
8

DEF FN PCX)= CVIC MID$CPuffer$,X*2+1,2))' Funktion holt

‘ Wort Nr. x aus dem Puffer
‘

Appl_Init
8

' Laden des Resource-Files (MENU1.RSC):
a

Rsrc_Load("MENU1.RSC", Back)

IF Back=0 THEN

FORM_ALERT (1,"(3] [Kein Resource-File!] [Abbruch] ")

ELSE

ı Adresse des Menü-Objektbaumes erfragen (0 für Baum):
8

Rsrc_Gaddr(0,Menue,Menue_Adresse)
§

' Anzeigen der Menileiste:
8

Menu_Bar (Menue_Adresse)
8

' Ereignisschleife:
a

Abbruch=0
t

REPEAT

Evnt_Mesag(Puffer$)

IF FN PCO)=10 THEN ! - Menüpunkt angeklickt?

Title=FN P(3)! Nummer des Titels merken

IF FN P(4)=Info THEN ! Information gewünscht?

FORM_ALERT (1,"L[1] [Menü-Demoprogramm!(c) 1989 Data...
...Becker GmbH] [Weiter]")

ENDIF

IF FN P(4)=Ende THEN ' oder Programmende?

 286 Atari ST Intern 2

FORM_ALERT (2,"[2] [Wirklich beenden?] [JalNein]",Back)
IF Back=1 THEN Abbruch=1

ENDIF

' Menutitel normal (1) stellen:
i

Menu_Tnormal (Title, 1)

ENDIF

UNTIL Abbruch=1

Menu_Bar (Menue_Adresse) ' Menüzeile löschen

Rsrc_Free' Platz freigeben

ENDIF
a

Appl_Exit
8

END

Denken Sie an die geteilten Zeilen!

C
[RRRERERERREREERERERERREREREREREEEREREEEERERERERREREREEEEE |

/* Laden des REC-Files und Anzeigen einer Menüleiste */

/* Megamax Laser C MP 10-12-88 MENU1.C */
[RERREEREREREREREEREREREREREEEEERREREREREREUREEERERERERERE |

#include "menul.h" /* Konstanten des RSC-Files */

/* Zur Erinnerung: Die Konstanten heiBen MENUE, INFO und ENDE */

int puffer [8],

title,

abbruch = 0;

long menue_adresse;

main()

{

appl_init();
graf_mouse (0, OL); /* Pfeil als Mauszeiger */

/* Resource-File laden */

if (rsrc_load ("MENU1.RSC") == 0) /* Fehler beim Laden? */

form_alert (1, "(3] [Kein Resource-File!] [Abbruch]");

else

{
/* Adresse des Menübaumes beschaffen */

rsrc_gaddr (0, MENUE, &menue_adresse);

 GEM-Programmierung 287

menu_bar (menue_adresse, 1); /* Menüleiste zeigen */

/* Ereignis-Warteschleife: */

do

{

evnt_mesag (puffer);

if (puffer[0] == 10) /* Menüpunkt angeklickt? */

{

title = puffer[3]; /* für später merken */

switch (puffer[4])

{
case INFO: form_alert (1,

"[1] [Menü-Demoprogramm!(c) 1989 Data...

..-Becker GmbH] [Weiter]");

break;

case ENDE: if (form_alert (2,

"[2] [Wirklich beenden?] [JalNein]") == 1)
abbruch = 1;

break;

>
menu_tnormal (menue_adresse, title, 1);

>

>
while (!abbruch);

menu_bar (menue_adresse, 0); /* Menü wieder löschen */

rsrc_free();

>
appl_exit();

}

Assembler

;
; Resource-File laden und Menüleiste anzeigen

Assembler MP 11-12-88 MENU1.1S

„INCLUDE 'GEM_INEX.IS'

gemdos = 1

MENUE = 0 ;Konstanten für den, Menübaum und die beiden

INFO = 7 ‚Einträge (aus der Datei MENU1.H2, mit

ENDE = 16 ;BASHEAD.TOS erzeugt)

288

main:

- TEXT

jsr

Atari ST Intern 2

gem_init

: Pfeil als Mauszeiger:

move.W

move .wW

move .wW

move .wW

clr.w

clr.w

jsr

#78, control

#1, control+2

#1, control+4

#1, control+6

control+8

int_in

aes

;graf_mouse

;0 für Pfeil

; rsrc_load:

move.w

clr.w

move .W

move .wW

clr.w

move. |

jsr

tst.w

beq

: Adresse

move .wW

move .wW

move .wW

clr.w

move .W

clr.w

move. Ww

jsr

move. |

#110, control

control+2

#1,control+4

#1,control+6

control+8

#rsc_name,addr_in

aes

3 Opcode

int_out ;Fehler aufgetreten?

rsc_error

des Menü-Objektbaums feststellen (rsrc_gaddr)

#112,control

#2, control+2

#1, control+4

control+6

#1,control+8

int_in ‚0 -> wir suchen einen Baum

#MENUE,int_in+2 ;Index des MenU-Baumes

aes

addr_out,menu_adr ;Wert merken

; Anzeigen der Menüleiste (menu_bar):

move .W

move .wW

move .W

move .w

clr.w

move .wW

move. l

jsr

#30, control

#1,control+2

#1,control+4

#1,control+6

control+8

#1, int_in ‚1 für Menü zeigen

menu_adr,addr_in ;MenUobjektbaum

aes

loop:

no_info:

tnormal:

ende:

GEM-Programmierung

; evnt_mesag-Warteschleife

move .w

clr.w

move .w

move .W

clr.w

move. l

jsr

cmpi .wW

bne

cmpi.W

bne.s

move.W

lea.l

jsr

bra

cmpi .W

bne

move.W

lea.l

jsr

cmpi.W

beq

move .W

move .W

move .wW

move .W

clr.w

move.wW .

move .W

move. |

jsr

bra

#23, control

control+2

#1,control+4

#1,control+6

control+8

#puffer addr_in

aes

#10, puffer

Loop

#INFO,puffer+8

no_info

#1,d0

info_txt,a0

form_alert

tnormal

#ENDE , puf fer+8

Loop |

#2,d0

ende_txt,a0

form alert

#1,d0

ende

#33, control

#2, control+2

#1,control+4

#1, control+6

control+8

puffer+6, int_in

#1, int_inte

menu_adr,addr_in

aes

Loop

; Programmende:

; Menüzeile wieder löschen

move.W

move.W

move.W

move.W

clr.w

clr.w

move. |

#30, control

#1, control+2

#1, control+4

#1,control+6

control+8

int_in

menu_adr,addr_in

 289

‚Menüpunkt angeklickt?

‚nein, dann warten

‚sonst: Info gewünscht?

:Default-Button

‚Alert-Box zeigen

‚und Titel normal stellen

‚oder Ende angeklickt? |

‚nein, dann warten

;‚Default-Button

:Sicherheitsabfrage

;ja angeklickt?

‚sonst Programm abschließen

‚menu_tnormal (zeigt Menütitel

‚normal, also nicht mehr

sinvertiert)

‚Titelnummer (Teil der Nachricht)

2:1: Titel normal zeigen

sund auf den nachsten Klick warten

(menu_bar):

;0 für Menü löschen

;Menüobjektbaum

 290

quit:

rsc_error:

Atari ST Intern 2

jsr aes

; Resource-File aus dem Speicher entfernen (rsrc_free)

move .wW #111,control

clr.w control+2

move .W #1,control+4

clr.w control+6

clr.w control+8

jsr aes

jsr gem_exit

clr.w -(sp)

trap #gemdos

move .W #1 ,d0 ‚Default-Button

lea.l err_txt,a0

jsr form_alert Fehlermeldung

bra quit ‚und Programm abbrechen

form_alert:

info_txt:

ende_txt:

; Zeigt Alert-Box.

; Parameter:

; dO: Default-Button (0..3)

; a0: String, der die Box beschreibt [.][...]L[...]

; Ausgabe:

; dO: angeklickter Knopf (0..3)

move .wW #52, control ;Opcode form_alert

move .W #1,control+2

move.W #1,control+4

move.Ww #1,control+6

clr.w control+8

move .W dO, int_in ;Default-Button

move. l a0,addr_in String

jsr aes

move .w int_out,d0 ‚angeklickter Knopf

rts

„DATA

„DC.b "T[1] [Menü-Demoprogramm|(c) 1989 Data Becker GmbH] "

.DC.b "[Weiter]'",O

.DC.b "[2] [Wirklich beenden?] [Ja!Nein]",O

 GEM-Programmierung 291

err_txt: .DC.b "[3] [Kein Resource-File!] [Abbruch] !"',O

rsc_name: .DC.b "MENU1.RSC",0

-BSS

menu_adr: .DS.l 1

puffer: .DS.w 8

„END

Sie haben gesehen, wie einfach es ist, eine kleine Menüleiste nicht nur

am Bildschirm darzustellen, sondern auch auf die Wahl des Anwenders

einzugehen, und bei größeren Menüs mit mehr Einträgen wird die Sache
nicht komplizierter. Die Menüs sind überhaupt eines der schönsten Bei-

spiele dafür, wie einfach sich komplizierte und langweilige Standard-

Dinge unter GEM programmieren lassen. Sie haben ferner sehen können,

daß die Accessories (falls geladen) im Desk-Menü vertreten waren und

auch funktionierten; das heißt, wir müssen uns um die gar nicht küm-
mern; GEM regelt die Angelegenheit sehr gut und für uns praktisch. Das
einzige, was Sıe in diesem Zusammenhang beachten müssen, ıst folgen-
des: Selbst, wenn Sıe nur ein Fenster offen haben, so müssen Sie, wenn

Sie eine Menüleiste verwenden wollen, eine komplette Redraw-Routine

für dieses Fenster installieren (siehe 5.8.2), weil ein Accessory jederzeit
das zweite Window öffnen könnte.

So, was gibt es zu den Menüs noch zu sagen? Es gibt aktive und nicht
aktive Menüpunkte. Ein Menüpunkt ist genau dann aktiv, wenn er im

Menü nicht heller als die anderen Einträge erscheint. Ein heller oder

grauer Eintrag wird nicht invertiert, wenn der Mauszeiger ihn berührt,
und kann auch nicht angeklickt werden (kann schon, doch erhält das

Programm keine Nachricht, und evnt_mesag wird nicht beendet). Es ist
immer dann sinnvoll, einen Menüpunkt inaktiv zu machen, wenn die au-

genblickliche Situation es nicht erlaubt, diesen Punkt zu bearbeiten. So
sollte ein Malprogramm alle Menüpunkte, die mit Farben zu tun haben,

inaktiv machen, wenn es in der hohen Auflösung auf einem monochro-
men Monitor gefahren wird. Das Umschalten zwischen aktiv und nicht
aktiv geschieht über die Funktion menu_ienable (Entry-Enable, Eintrag
anklickbar machen). Als Parameter müssen Sie den Index (die Nummer)
des Eintrages angeben, der verändert werden soll. Die Angabe des Titels
dieses Eintrages ist nicht erforderlich.Eine zweite Möglichkeit, einzelne
Einträge zu verändern, besteht im sogenannten Check-Mark. Das ist ein
Häkchen, das links neben einem Menü-Eintrag erscheinen kann. Es wird
gewöhnlich dann gesetzt, wenn das, was der Menüpunkt bewirkt, bereits

 292 Atari ST Intern 2

eingestellt ist. Beispiel: Zwei Eintrage lauten Anfanger und Fortge-

schrittener, dann sollte der Eintrag ’Anfänger’ ein Häkchen erhalten,

wenn das Programm mit einem niedrigen Schwierigkeitsgrad spielt: Die
Funktion, die einen Haken löscht oder setzt, heißt menu_ ickeck. Deren

Anwendung ist so einfach, daB ich dafür kein eigenes Beispielprogramm
vorgeben méchte. Gleiches gilt auch fir menu_ienable.

Etwas anderes möchte ıch Ihnen aber noch zeigen: Da es oft nötig ist, die
Hand von der Tastatur zur Maus und zurück zu bewegen, um einen

Menüpunkt anklicken zu können, ziehen es viele Anwender vor, Ihre

Befehle dem Programm nur über die Tastatur mitzuteilen. Anwender-
freundliche Programme sollten es also dem Benutzer überlassen, ob er

einen Menüpunkt mit der Maus anklickt oder ob er die gleiche Aktion
durch einen Tastendruck auslöst.

Die Wahl, welche Taste welchem Menüpunkt entsprechen soll, ist Ihnen

überlassen. Dabei ist selbstverständlich zu beachten, daß die Menüpunkte

Directory und Drucken nicht beide mit dem D aufgerufen werden kön-

nen. Außerdem müssen Sıe wählen, ob die Menüs über normale Buchsta-

ben oder in Verbindung mit der Control-Taste aufgerufen werden sollen.
Letzteres ıst immer dann notwendig, wenn die normalen Buchstaben an-

dere Funktionen haben (zum Beispiel in einer Textverarbeitung).

Die Taste, die optional einen Menüpunkt auslösen soll, wird gewöhnlich

mit in das Menü geschrieben, und zwar rechts neben den Eintrag. Wenn
zusätzlich zu der Taste auch noch Control gedrückt werden muß, dann

schreibt man ein Potenzzeichen oder Dach (*) direkt vor den Buchstaben.

Das kann schon bei der Erstellung des Resource-Files gemacht werden.

Im Programm selbst wird dann statt des evnt_mesag-Aufrufs die Funk-
tion evnt multi aufgerufen, die auf Ereignisse (Nachrichten) und
Tastendrücke warten soll. Wenn wir eine Nachricht erhalten, verfahren

wir wie gewöhnlich. Erhalten wir einen Tastendruck, dann wird die ge-

wünschte Routine aufgerufen. Es ist aber üblich, vor diesem Aufruf den
Menütitel des zugehörigen Eintrags zu invertieren, damit der Anwender
wenigstens ungefähr weiß, ob er die richtige Taste getroffen hat. Das
geht mit der Funktion menu_tnormal, die ja auch dazu benutzt wird, das

Invertieren wieder rückgängig zu machen. Allerdings müssen Sie dazu
wissen, unter welchem Titel der Eintrag steht (menu_tnormal erwartet ja
die Nummer dieses Titels als Parameter). Deshalb geben wir also ab jetzt
nicht nur den Menü-Einträgen im Resource-Construction-Set Namen,

sondern auch den Titeln.

 GEM-Programmierung 293

Um beide Verfahren (mit und ohne Tastendruck) besser vergleichen zu

können, nehmen wir doch für unser Beispielprogramm wieder die gleiche

Menüleiste. Die Titel nennen wir DESK und FUNKTION; die Einträge
behalten ihre alten Namen. Information soll mit I, Ende mit E aufgeru-
fen werden können. Die Menüleiste sieht dann so aus:

„Desk Funktion
Infornation I Ende E,

WAN SAN ASS un SAN SNS AAA SSA SAN

Desk Accessory 1
Desk Accessory 2
Desk Accessory 3

R
E
,

EC
R

ER

aO
R

aa

ae

o
a
r
s

wi

E
E
E

ee
2

Ä
a
e

Desk Accessory 4 |
Desk Accessory 5 | .

Desk Accessor 6 oe oe

N

Die Header Datei MENU2.H (bzw. MENU2.H2 für BASIC und Assem-

bler) besitzt dann natürlich zwei neue Konstanten. An diesem Programm

läßt sich auch sehr schön demonstrieren, was ich im Kapitel 5.8.2 (meh-

rere Fenster) schon einmal erwähnt habe: Wenn Sie das Kontrollfeld öff-

nen, so können Sie beide Menüpunkte (Ende und Information) zwar
weiterhin per Maus anwählen; die Tastenbefehle I und E funktionieren
jedoch nicht, weil das Kontrollfeld ein Fenster geöffnet hat, das gerade
aktiv, also im Vordergrund ist. Alle Tastendriicke werden deshalb nur an

das Kontrolifeld-Programme weitergereicht. Erst, wenn das Kontrollfeld
geschlossen wird oder eines unserer Fenster in den Vordergrund gebracht
wird (was hier nicht geht, weil unser Programm keine Fenster hat), kön-
nen Sie die Tastenbefehle wieder benutzen.

Das Programm sieht dem ersten recht ähnlich. Unterschiedlich sind le-

diglich die Ereignisabfrage (evnt_multi erfordert etwas mehr Aufwand)
und natürlich die Ereignisauswertung. Außerdem habe ich die wirklichen
Menüfunktionen in Unterprogramme gepackt. Eine letzte Information:
Das Ergebnis von evnt_keybd (erhalten wir jetzt also auch bei
evnt_multi) ist ein Wort, dessen unteres Byte den ASCII-Code der ge-
drückten Taste enthält (bzw. 0 bei Cursor- und Funktionstasten), wäh-
rend im hochwertigen Byte (Bits 8 bis 15) der Scan-Code zu finden ist,
mit dem man z.B. unterscheiden kann, ob eine Ziffer des Ziffernblocks
oder des Hauptblocks gedrückt wurde. Nur: Diese Information ist für uns
ohne Belang; uns genügt der ASCII-Code der Taste. Wir blenden dazu

 294 Atari ST Intern 2

das obere Wort aus (AND-Verknüpfung). Damit das Programm gleicher-
maßen auf Groß- und Kleinbuchstaben reagieren kann, was in unserem

Fall sinnvoll ist, wird der Buchstabe vor der Abfrage in einen
Großbuchstaben umgewandelt.

GFA-BASIC

§

' Aktivieren von Menüs per Maus und per Tastatur

' GFA-BASIC MP 11-12-88 MENU2.GFA
I

a

8

Für rsrc_load muß Speicher an GEMDOS zurückgegeben werden:

RESERVE -33000 ! Das muß reichen, da Resource-Files

' nicht größer als 32K werden
8

menue=0 I Konstanten wie gehabt, aber zwei neue für die

desk=3 I Menütitel

funktion=4

info=7

ende=16

puffer$=SPACE$C(16) ! Platz für 8 Worte
I

DEFFN p(x)=CVI(CMID$Cpuffer$,x*2+1,2)) ! Funktion holt

' Wort Nr. x aus dem Puffer
4

VOID APPL_INITC)

' Laden des Resource-Files (MENU1.RSC):
a

IF RSRC_LOAD("MENU2.RSC")=0

VOID FORM_ALERT(1,"[3] [Kein Resource-File!] [Abbruch] ")

ELSE

ı Adresse des Menü-Objektbawmes erfragen (0 für Baum):
'

VOID RSRC_GADDR(0,menue,menue_adresse%)

' Anzeigen (1) der Menileiste:
a

VOID MENU_BAR (menue_adresse%, 1)

' Ereignisschleife:
4

abbruch%=0

REPEAT

' evnt_multi: 17 = evnt_keybd + evnt_mesag

 GEM-Programmierung 295

' d% ist dummy-Variable

WS=EVNT_MULTI(17,0,0,0,0,0,0,0,0,0,0,0,0,0, VARPTR(puf fer$),0,d%,...

...d4,d4, dh, key%, dz)
I

IF (w% AND 16) AND (FN p(0)=10) ! Menüpunkt angeklickt?

title%=FN p(3) I Nummer des Titels merken

IF FN p(4)=info ! Information gewunscht?

sub_info

ENDIF

IF FN p(4)=ende ! oder Programmende?

sub_ende

ENDIF

' Menititel normal (1) stellen:
i

VOID MENU_TNORMAL (menue_adresse%, title%, 1)

ENDIF
4

IF w% AND 1 ! Taste gedrückt?

tasteS=UPPERS(CHR$(key% AND 255)) ! nur ASCII-Code

IF taste$="]" I (niederwertiges Byte)

' Menutitel invers

VOID MENU_TNORMAL (menue_adresse%, desk ,0)

' Funktion aufrufen:

sub_info

' Menütitel wieder normal:

VOID MENU_TNORMAL (menue_adresse%, desk, 1)

ENDIF

IF taste$="E"

VOID MENU_TNORMAL (menue_adresse%, funktion,0)

sub_ende

VOID MENU_TNORMAL (menue_ädresse%, funktion, 1)

ENDIF

ENDIF |
UNTIL abbruch%=1

a

VOID MENU_BAR(menue_adresse%,0) ! Menüzeile löschen

VOID RSRC_FREE() ! Platz freigeben

ENDIF
4

RESERVE

VOID APPL_EXIT()
ß

END
8

PROCEDURE sub_info

VOID FORM_ALERT(1,"[1] [MenU-Demoprogramm}(c) 1989 Data Becker...

- GmbH] [Weiter]")

RETURN

 296 Atari ST Intern 2

PROCEDURE sub_ende

IF FORM_ALERT(2,"[2] [Wirklich beenden?] [Ja|Nein] ")=1
abbruch%=1

ENDIF

RETURN
8

Omikron-BASIC

Anzeigen einer Menüleiste, Funktionen auf Tastendruck

Omikron-BASIC MP 11-12-88 MENU2.BAS

Für rsrc_load muß Speicher an GEMDOS zurückgegeben werden:

CLEAR 33000! Das muB reichen, da Resource-Files

' nicht größer als 32K werden
J

Menue=0! Kennen Sie schon, jetzt aber aus MENU2.H2

Desk=3! (mit Titelnummern)

Funkt ion=4

Info=7

Ende=16

Puffer$= SPACE$(16)' Platz für 8 Worte
1

DEF FN P(X)= CVI(MIDS(Puffer$,X*2+1,2))' Funktion holt

‘ Wort Nr. x aus dem Puffer

Appl_Init
ı

" Laden des Resource-Files (MENU1.RSC):
i

Rsrc_Load("MENU2.RSC", Back)

IF Back=0 THEN
FORM_ALERT (1,"(3] (Kein Resource-File!] [Abbruch] ")

ELSE

ı Adresse des Menü-Objektbawmes erfragen (0 für Bawm):
t

_Rsrc_Gaddr(0,Menue,Menue_Adresse)
é

' Anzeigen der Menileiste:
J

Menu_Bar(Menue_Adresse)
'

' Ereignisschleife:
8

Abbruch=0

GEM-Programmierung 297

REPEAT

Evnt_Multi(17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Puffer$,W,D,D,D,...

...D,K,D)
I

IF (W AND 16) AND (FN P(0)=10) THEN ' Menüpunkt angeklickt?

Title=FN P(3)' Nummer des Titels merken

IF FN P(4)=Info THEN ! Information gewünscht?

Sub_Info

ENDIF

IF FN P(4)=Ende THEN ! oder Programmende?

Sub_Ende

ENDIF

' Menütitel normal (1) stellen:
§

Menu_Tnormal (Title, 1)

ENDIF
(

IF (WAND 1) THEN '! Tastendruck

Taste$= UPPER$S(CHRSCK AND 255))' Zeichen steht im Low-Byte

IF Taste$="I" THEN

Menu_Tnormal(Desk,0)' Menütitel invertieren

Sub_Info

Menu_Tnormal(Desk,1)' und wieder normal

ENDIF
t

IF Taste$="E" THEN

Menu_Tnormal (Funktion, 0)

Sub_Ende

Menu_Tnormal (Funktion, 1)

ENDIF

ENDIF

UNTIL Abbruch=1
i

Menu_Bar(Menue_Adresse) ' Menüzeile löschen

Rsrc_Free! Platz freigeben

ENDIF

Appl_Exit
a

END
a

DEF PROC Sub_ Info

FORM_ALERT (1,"{1] [Menü-Demoprogramm!(c) 1989 Data Becker GmbH]...
...[Weiter]")

RETURN
a

DEF PROC Sub Ende

FORM_ALERT (2,"[2] [Wirklich beenden?] [JalNein]",Back)

 298 Atari ST Intern 2

IF Back=1 THEN Abbruch=1

RETURN
1

C

[BRRRRRREREEREREEREREREEEEEEERERERREEEEERERERREREEEREEER /

/* Anzeigen einer Menüleiste/Menüpunkt über Taste */

/* Megamax Laser C MP 11-12-88 MENU2.C */
NT]

#include "menu2.h" /* Konstanten des RSC-Files */

/* Die beiden neuen Konstanten heißen DESK und FUNKTION */

int puffer[8],

key,
dummy ,
title,

abbruch = 0,

which;

long menue_adresse;

void sub_info()

{
form_alert (1,

"[1] [Menü-Demoprogramm|(c) 1989 Data Becker GmbH] [Weiter]");

veid sub_ende()

{
if (form_alert (2, "([2] [Wirklich beenden?] [Ja!Nein]") == 1)

abbruch = 1;

main()

{

appl_init();

graf_mouse (0, OL); /* Pfeil als Mauszeiger */

/* Resource-File laden */

if (rsrc_load ("MENU2.RSC") == 0) /* Fehler beim Laden? */

form_alert (1, "[3] [Kein Resource-File!] [Abbruch]");

else

{

/* Adresse des Menübaumes beschaffen */

 GEM-Programmierung 299

rsrc_gaddr (0, MENUE, &menue_adresse);

menu_bar (menue_adresse, 1); /* Menüleiste zeigen */

/* Ereignis-Warteschleife: */

do
{ |

which = evnt_multi (17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

puffer, 0, 0, &dummy, &dummy, &dummy, &dumny,

&key, &dummy);

if ((puffer[0] == 10) &&

(which && 16)) /* Menüpunkt angeklickt? */

{
title = puffer [3]; /* für später merken */

switch (puffer[4])

{
case INFO: sub_info();

break;

case ENDE: sub_ende();
break;

>
menu_tnormal (menue_adresse, title, 1);

>

if (which && 1) /* Taste gedrückt */

{
key &= 255; /* Nur Low-Byte berücksichtigen */

key = key > !Z! ? key-('z'-'Z') : key; /* GroBbuchstabe */

switch (key)

{

case 'I': menu_tnormal (menue_adresse, DESK, 0);

sub_info();

menu_tnormal (menue_adresse, DESK, 1);

break;

case 'E': menu_tnormal (menue_adresse, FUNKTION, 0);

sub_ende();

menu_tnormal (menue_adresse, FUNKTION, 1);

break;

>

>
while (!abbruch);

menu_bar (menue_adresse, 0); /* Menü wieder löschen */

rsrc_free();

300

>

appl_exit();
>

Assembler

gemdos

MENUE

DESK

FUNKT ION

INFO

ENDE

main:

=
e

S
e

S
e

B
e

Atari ST Intern 2

Menüleiste anzeigen, Funktionen auf Tasten

Assembler MP 11-12-88 MENU2.Q

INCLUDE 'GEM_INEX.Q'

= 1

0

3
4

7

16

TEXT

jsr

Konstanten aus MENU2.H2

gem_init

; Pfeil als Mauszeiger:

move .w

move .W

move .W

move .wW

clr.w

clr.w

jsr

#78, control

#1,control+2

#1,control+4

#1, control+6

control+8

int_in

aes

;graf_mouse

:0 für Pfeil

‚ rsrc_load:

move.W

clr.w

move .W

move .w

clr.w

move. l

jsr

tst.w

beq

#110, control

control+2

#1,control+4

#1, control+é6

control+8

#rsc_name,addr_in

aes :

;Opcode

int_out ‚Fehler aufgetreten?

rsc_error

» Adresse des Menü-Objektbaums feststellen (rsrc gaddr)

— GEM-Programmierung

loop:

no_info:

move .w

move .w

move .W

clr.w

move.W

clr.w

move .W

jsr

move. |

#112, control

#2, control+2

#1, control+4

control+6

#1,control+8

int_in

#MENUE, int_int2

aes

 301

;0 -> wir suchen einen Baum

‚Index des Menü-Baumes

addr_out,menu_adr;Wert merken

; Anzeigen der Menüleiste (menu_bar):

move .W

move .wW

move .W

move .W

clr.w

move .W

move. |

jsr

; evnt_multi-Warteschleife

move .w

move.

move .w

move .w

clr.w

move.w

move. l

jsr

move.W

btst

beq

cmpi.w

bne

cmpi .w

bne.s

move .W

lea

jsr

bra

cmp .W

bne

move .W

lea

#30, control

#1,control+2

#1, control+4

#1, control+6

control+8

#1, int_in

menu_adr, addr_in

aes

#25 ,control

#16, control+2

#7, concrol+4

#1,control+6

control+8

#17,int_in

#puf fer ,addr_in

aes

Int_out,d7

#4 ,d7
no_menu

#10, puffer

loop

#INFO, puf fer+8

no_info

#1,d0

info_txt,a0

form_alert

tnormal

#ENDE , puf fer+8

Loop

#2,d0

ende_txt,a0

31 fiir Menu zeigen

;Menüobjektbaum

sevnt_multi

(in Assembler relativ kurz!)

‚evnt_mesag + evnt_keybd

‚int_out: 1 (Taste) / 16 (Menü)

‚für später aufheben

‚Nachricht erhalten?

‚wirklich Menüpunkt angeklickt?

‚nein, dann warten

‚sonst: Info gewünscht?

;Default-Button

sAlert-Box zeigen

‚und Titel normal stellen

‚oder Ende angeklickt?

‚nein, dann warten

sDefault-Button

;Sicherheitsabfrage

302

tnormal :

no_menu:

gross:

jsr

cmpi .W

beq

move.W

move.W

move.W

move.W

cir.w

move.W

move.W

move. |

jsr

bra

btst

beq

move .wW

andi .w

cmpi.b

bie

subi.b

cmpi.b

bne

; Menütitel invertieren:

move.W

move .wW

move .w

move .W

clr.w

move .W

clr.w

move. |

jsr

move .W

lea

jsr

move .wW

move.W

move.W

move.W

clr.w

move .wW

move .w

move. |

form_alert

#1 ,d0

fine

#33, control

#2, control+2

#1, control+4

#1,control+6

control+8

puffer+6, int_in

#1, int_int2
menu_adr, addr_in

aes

loop

#0, d7

Loop

int_out+10,d0

#3 ff ,dO

#'2',d0

gross
#'z'-'2Z' dO

#'1', dO

no_info2

#33, control

#2, control+2

#1, control+4

#1, control+6

control+8

#DESK, int_in

int_in+2

menu_adr ,addr_in

aes

#1,d0

info_txt,a0

form_alert

#33, control

#2, control+2

#1,control+4

#1,control+6

control+8

#DESK, int_in

#1, int_int2

menu_adr , addr_in

Atari ST Intern 2

sja angeklickt?

sonst Programm abschließen

‚menu_tnormal (zeigt Menütitel)

normal, also nicht mehr

sinvertiert)

;Titelnummer (Teil der Nachricht)

21: Titel normal zeigen

‚und auf den nächsten Klick warten

‚Taste gedrückt?

;betätigte Taste

nur Low-Byte betrachten

;Kleinbuchstabe

‚ja, dam Groß machen

Information gefragt?

;menu_tnormal

;Titelnummer

2:0: Titel invers zeigen

‚Default-Button

‚Alert-Box zeigen

;menu_tnormal

*Titelnummer

21: Titel normal zeigen

no_info2:

fine:

GEM-Programmierung 303

jsr aes

bra loop

cmpi.b #'E',dO

bne Loop

move .W #33, control ;menu_tnormal

move .W #2, control+2

move .wW #1, control+4

move .w #1,control+6

clr.w control+8

move .wW #FUNKTION, int_in ;Titelnummer

clr.w int_int2 ‚0: Titel invers zeigen

move.| menu_adr,addr_in

jsr aes

move .w #2 ,d0 ‚Default-Button

lea ende_txt,a0 ;Sicherheitsabfrage

jsr form_alert

cmpi.w #1,d0 ‚ja angeklickt?

beq fine ‚sonst Programm abschließen

MOVe.W #33 control ;menu_tnormal

move .wW #2,control+2

move .wW #1,control+4

move .W #1,control+6

clr.w control+8

move .W #FUNKTION, int_in ;Titelnummer

move.W #1, int_in+2 ;1: Titel normal zeigen

move . | menu_adr,addr_in

jsr aes

bra Loop

; Programmende:

; Menuzeile wieder loschen (menu_bar):

move .W #30, control

move .wW #1,control+2

move .w #1,control+4

move .W #1,control+6

clr.w control+8

clr.w int_in ‚0 für Menü löschen

move. | menu_adr,addr_in ;Menuobjektbaum

jsr aes

; Resource-File aus dem Speicher entfernen (rsrc_free)

move .W

clr.w

move .wW

#111,control

control+2

#1, control+4

 304

clr.w control+6

clr.w control+8

jsr aes

quit: jsr gem_exit

clr.w -(sp)

trap #gemdos

rsc_error:

move .W #1,d0

lea -err_txt,a0

jsr form_alert

bra quit

form_alert:

: Zeigt Alert-Box.

; Parameter:

Atari ST Intern 2

:Default-Button

‚Fehlermeldung

‚und Programm abbrechen

: dO: Default-Button (0..3)
» a0: String, der die Box beschreibt [.][...][...]

s Ausgabe:

» dO: angeklickter Knopf (0..3)

move .W #52, control

move .W #1, control+2

move .W #1, control+4

move .wW #1,control+6

clr.w control+8

move .wW d0, int_in

move. | a0,addr_in

jsr aes

move .W int_out,d0

rts

DATA

;Opcode form_alert

;Default-Button

‚String

‚angeklickter Knopf

info_txt: DC.b "[1] [Meni-Demoprogramm!(c) 1989 DATA BECKER GmbH] "

DC.b "(Weiter]",0

ende_txt: DC.b "[2] [Wirklich beenden?] [Ja|Nein]",O

err_txt: DC.b "[3] [Kein Resource-File!] [Abbruch] ",O

rsc_name: DC.b "MENU2.RSC",0

BSS

menu_adr: DS.t 1

puffer: DS.w 8
END

 GEM-Programmierung 305

5.9.2 Dialoge

Jeder kennt sie, und jeder hält sie für praktisch: die Dialogboxen. Sie

sind neben den Fenstern und den Menüleisten das dritte Erkennungszei-
chen für GEM-Applikationen. So stehen Ihnen am Ende dieses Kapitels

alle Möglichkeiten zur Verfügung, selbst zur Tastatur zu greifen und eine
echte GEM-Applikation zu programmieren.

Vor die Dialogboxen haben die Götter allerdings die Objektbäume ge-
stellt. Diese Bäume wurden schon einmal im vorigen Abschnitt über

Menüs erwähnt, aber nicht richtig erklärt; das war zum Verständnis der

Menüs auch nicht erforderlich. Sie haben jetzt die Wahl: Entweder holen

Sie den Stoff nach, was langweilig wird; oder Sie überschlagen die näch-

sten Seiten, dann müssen Sie auf meine Unterprogramme in den Bei-

spielapplikationen vertrauen, die alles Wichtige automatisch erledigen.

Gut, ich habe Sie gewarnt; Objektbäume sind ein trockenes Thema. Da-

für dürfen Sie sich bald zu den wenigen zählen, die sich in dieser Mate-
rie wirklich auskennen. Ich werde hier nicht alle Einzelheiten ausleuch-
ten, das ist Sache des ersten Intern-Bandes; doch Sie erhalten alle we-
sentlichen Informationen.

Was genau ist eigentlich ein Objektbaum? Das ist eine Datenstruktur, mit

deren Hilfe logisch zusammengehörende Objekte (gemeint sind grafische
Objekte) im Speicher dargestellt werden, d.h. wir betrachten hier die

Objekte einer Dialogbox, nachdem sie mit rsrc_load in den Speicher ge-

laden wurde. Logisch zusammengehörend sınd alle Objekte eines Re-
source-Files dann, wenn sie zur gleichen Dialogbox (oder auch zur glei-
chen Menüleiste) gehören; diese Objekte zusammen bilden dann einen
Objektbaum.

Wichtig für uns als Programmierer ist es, die Startadresse eines solchen
Objektbaums herauszufinden. Das geht sehr einfach über die Funktion
rsrc_gaddr, die wir ja vorhin schon benutzt haben. Diese Funktion kann
selbstverständlich erst dann aufgerufen werden, wenn mit rsrc_load

bereits Objekt-Bäume in den Speicher geladen wurden. Zu übergeben
sind der Typ des Dings, das wir suchen; in unserem Fall ıst das eine
Null, die besagt, daß wir die Startadresse eines ganzen Objektbaumes ha-

ben möchten (Startadressen von anderen Dingen werden kaum benötigt).
Zum andern ist der Index des Baumes anzugeben, dessen Adresse wir

brauchen; ein Resource-File kann schließlich mehrere Objektbäume ent-

 306 Ä Atari ST Intern 2

halten. Den Index bekommen Sie (wie schon bei den Menüleisten er-

wähnt) über die Name-Funktion des RCS, mit dem Sie den Objektbaum
erstellt haben.

An dieser Startadresse finden wir nun alle Objekte, die zu dem entspre-

chenden Objektbaum gehören. Jedes Objekt belegt dabei einen Speicher-
platz von 24 Bytes. Außerdem sind alle Objekte durchnumeriert; man
sagt auch, die Objekte haben Indizes. Das Objekt mit dem Index Null
liegt immer an der mit rsrc_gaddr erfragten Startadresse, das mit dem
Index 1 liegt 24 Bytes dahinter usw. Auch die Indizes der einzelnen Ob-
jekte finden Sie im Header-File (.H oder .H2), wenn Sie Option Name

des RCS benutzt haben.

Diese Objekte liegen nun zwar physikalisch hintereinander in einer Reihe
ım Speicher. Logisch gesehen gibt es aber eine Anordnung der Objekte,

die nicht ihrer Reihenfolge im Speicher entspricht. Um das zu erreichen,

sind die Objekte mit vielen Zeigern ausgestattet, die alle auf irgendwel-
che anderen Objekte zeigen, so daß eine richtige Verästelung der Objekte

entsteht. So ist denn auch der Begriff des Objektbaums zu erklären.

Betrachten wir dieses Zeigersystem einmal genauer: Jedes Objekt besteht

im Speicher, das wurde gerade gesagt, aus 24 Bytes oder 12 Worten. Die

ersten drei Worte eines Objekts sind Zeiger, die der internen Verwaltung

dienen und den logischen Aufbau des Baumes erkennen lassen. Alle Zei-
ger zusammen beschreiben also die Anordnung der Objekte ım Baum.

Strenggenommen sind es übrigens gar keine Zeiger (die würden ja Lang-
worte benötigen); in einem solchen Wort steht immer nur der Index des
Objektes, auf das gezeigt werden soll. An dieser Stelle muß ein Beispiel

her, um die weiteren Erläuterungen verständlich zu halten.

Dialogbox

Knopf i Knopf Z Knopf 3

Diese kleine Dialogbox besteht aus folgenden Teilen: einem äußeren
Rahmen, wie ihn jede Dialogbox besitzt, einem String (Dialogbox), einem
Kasten (Box), der drei Knöpfe (Buttons) enthält, und einem Button, in

 GEM-Programmierung 307

dem OK steht. Hier ıst die Hierarchie der Objekte gut zu erkennen: Wir
haben ein Objekt, das alle anderen umfaßt, nämlich den äußeren
Rahmen. Wenn wir schon von Objekt-Bäumen reden, so bietet sich für

dieses oberste Objekt die Bezeichnung Wurzelobjekt an. Drei Objekte
sind direkte Unterobjekte dieses Rahmens, nämlich der String Dialogbox,
der Button OK und die Box. Letztere enthält wiederum drei Unterobjek-
te: drei Buttons. Damit hätten wir auch gleich den Begriff des Unterob-
jekts erklärt: Ein Objekt ist einem anderen Objekt untergeordnet, wenn
dieses andere Objekt das untergeordnete Objekt ganz umfaßt. Ein Objekt
ist demnach anderen Objekten übergeordnet, wenn es die anderen Ob-

jekte ganz enthält.

Klären wir noch, was ein direktes Unterobjekt ist: Die Buttons Knopf]

bis Knopf3 aus unserer Beispielbox sınd alle Unterobjekte des Wurzel-
objekts, also des Rahmens, allerdings nicht unmittelbar; denn sie sind ja
auch Unterobjekte der Box (und zwar direkte), die ihrerseits direktes
Unterobjekt des Rahmens ist. Diese Box besteht demnach aus drei Hie-
rarchie-Ebenen: Der Wurzel, den Unterobjekten String, Box und Button
sowie den drei weiteren Unterobjekten (Buttons).

Rahmen
(Wurzelob.)

a a .. “.
« wn ae ,

String: Box um die |. Button:
Dialogbox ”| Buttons me OK

a“ Ke |
~~ BEE

Button! Button! Button!

 Knopfi » Knopf? , Knopf3

next ————» zeigt auf nachstes Objekt
head — — —» zeigt auf erstes Unterobjekt
tail ------ » zeigt auf letztes Unterobjekt

Zur Klärung dieser Anordnung: Wenn wir das System auf den Speicher
übertragen, dann führen wir drei verschiedene Zeiger ein, mit denen
Objekte auf andere Objekte zeigen: einen Zeiger namens next, der auf

 308 Atari ST Intern 2

das nächste Objekt der gleichen Ebene zeigen soll, einen namens head,
der auf das erste der direkt untergeordneten Objekte zeigen soll, und

einen namens tail, der auf das letzte der direkt untergeordneten Objekte
zeigen soll. Wir vereinbaren ferner, daß der Next-Zeiger des letzten Ob-

jekts einer Ebene auf das direkt übergeordnete Element zurückzeigen
soll. Die letzten Unklarheiten werden per Definiton beseitigt: Das Wur-

zelobjekt hat keine übergeordneten Objekte; deshalb nımmt dessen Next-
Zeiger den Wert -1 an (den Objektindex -1 kann es ja nicht geben). Das
gleiche gilt für Objekte, die keine Unterobjekte mehr haben: head und
tail dieser Objekte werden ebenfalls auf -1 gesetzt. Nun ist es interessant,
wie jedes Objekt im Speicher aussieht. Das zeigt folgendes Bild:

== Wort a Languort 2 (2 Bytes)
(4 Bytes)

objc_next Zeiger auf nächstes Objekt

ob_head Zeiger auf das erste Unterobjekt

ob_tail Zeiger auf das letzte Unterobjekt

ob_type Objekttyp |

ob_flags Objektflags

ob_state Objektstatus

ob_spec Zeiger auf weitere Informationen

ob_x x-Koordinate

ob_width Breite des Objekts

ob_height Höhe des Objekts

Die ersten drei Einträge erkennen Sie sicherlich wieder: Es sind die drei
Zeiger next, head und tail. Wie ich bereits sagte, werden hier nicht wirk-
lich Zeiger, sondern die Indizes der Objekte, auf die gezeigt werden soll,

abgelegt. Das nächste Wort, ob_type, gibt an, von welchem Typ das Ob-

jekt ist (also z.B. Button, Box, Text, Icon...). Daran schließen sich die

 GEM-Programmierung 309

Objektflags (ob_ flags) an: In diesem Wort geben die einzelnen Bits Aus-
kunft darüber, was mit dem Objekt alles geschehen kann, ob es z.B. an-
geklickt oder editiert werden kann. Das nächste Wort heißt ob_state und
gibt den Status des Objekts wieder; hiermit kann z.B. geprüft werden, ob
ein Button angeklickt (selektiert) ist oder nicht. Das einzige Langwort des
Objekts, ob_spec, ist ein wirklicher Zeiger. Er zeigt nicht auf ein wei-
teres Objekt, sondern auf zusätzliche Daten, deren Bedeutung allerdings

vom Objekttyp abhängig sind und daher nicht allgemein erklärt werden

können. Schließlich folgen noch vier Worte für die Koordinaten, die re-
lativ zum direkt übergeordneten Objekt angegeben sind. Beim Wurzelob-
jekt erfolgt diese Angabe relativ zum Bildschirm-Ursprung. Mehr dazu
können Sie dem ersten Intern-Band entnehmen, der zum Beispiel die Ob-

jekttypen und die Bedeutung von ob_spec genau erläutert. Wir werden
uns jetzt darum bemühen, eine solche Dialogbox auf den Bildschirm zu
bekommen. Dazu werden wird ein Resource-File konstruieren und ın den
Speicher laden. Der erste Punkt, das Arbeiten mit einem RCS, ist schwie-

rig zu erklären (darauf habe ich ja schon im Kapitel 5.9.1 hingewiesen);
deshalb sollen hier nur allgemeine Informationen gegeben werden. Die
Bedienung ihres RCS entnehmen Sie dann bitte dessen Bedienungsanlei-
tung. Zunächst wollen wir eine Dialogbox kreieren, die außer Boxen und

Strings, auf die der Benutzer keinen Einfluß hat, noch drei Buttons ent-

hält, die angeklickt werden können. Das sähe also so aus:

I Boxtext

 Box

= Buttons

1——- Boxtext

Wenn Sie diesen Objektbaum mit einem RCS selbst erstellen möchten,

dann sollten Sie schon jetzt beachten, welche Namen ich den Objekten

 310 Atari ST Intern 2

gegeben habe. Der ganze Baum heißt DIALOG (brauchen wir für
rsrc_gaddr), und die Knöpfe hören auf die Konstanten KNOPFI,

KNOPF2 und KNOPF3. Übrigens: In C gehört es sich, daß Bezeichner
von Konstanten großgeschrieben werden; in Assembler mache ich das
nur, wenn es sich um Konstanten von Objekt-Bäumen handelt, um sie

von normalen Konstanten unterscheiden zu können. In BASIC geht das
leider nicht.

Aus der obigen Abbildung können Sie auch erkennen, welche Objekt-
Typen für die Dialogbox verwendet wurden. Was Sie nicht sehen können,

ist, daß die Buttons die Eigenschaften (Objektflags) SELECTABLE und

EXIT besitzen. Die erste Eigenschaft erhält automatisch jeder Button. Sie
bewirkt, daß das entsprechende Objekt später selektiert (d.h. angewählt)
oder deselektiert wird, wenn der Benutzer es mit dem Mauszeiger an-
klickt. Ein selektiertes Objekt erscheint dabei invertiert. Ein Button, der

EXIT-Status besitzt, bewirkt zudem, daß die Abarbeitung des Formulars

(dazu später mehr) beendet ist, sobald der Benutzer diesen Button

angeklickt hat. Zusätzlich wurde für den Button KNOPF3 DEFAULT
aktiviert. Die Bedeutung ist die gleiche wie in einer Alert-Box: Der But-
ton, der diesen Status besitzt, gilt als angeklickt, wenn der Anwender die

Return-Taste drückt. Es sollte klar sein, daß ın jedem Objektbaum nur

ein Button diesen Status haben kann. Falls Sie es noch nicht wissen: All
diese Dinge können Sie in einem RCS einstellen, wenn Sie mit dem

Mauszeiger auf das gewünschte Objekt fahren und doppelklicken.Wenn

Sie den Objektbaum fertiggestellt haben, dann speichern Sie ihn ab (Sie

können natürlich auch das RSC-File auf der Diskette im Buch nehmen).

BASIC- und Assembler-Programmierer sollten dann das Programm BAS-

HEAD.TOS benutzen, um eine Header-Datei (.H2) zu erstellen, die Sie in
Ihrer Programmiersprache benutzen können (habe ich bereits auf der
Diskette gemacht). Jetzt können wir uns an das Programm machen, das

die Resource-Datei (sie soll übrigens DIALOGI.RSC heißen) benutzt.

Die ersten beiden Funktionen, die in diesem Zusammenhang benutzt |
werden müssen, kennen Sie bereits aus dem Beispiel der Menüleisten. Es

sind rsrc_load und rsrc_gaddr, die genauso verwendet werden müssen,
wie wir es auch bisher gemacht haben. Die nächsten Schritte sind vier
Aufrufe von AES-Funktionen. Da diese immer zum Darstellen einer
Dialogbox auf dem Bildschirm verwendet werden, habe ich sie in den

folgenden Beispielprogrammen show dialog zusammengefaßt. Es handelt

sich um folgende Funktionen:

 GEM-Programmierung 311

1. form_center

Diese Funktion muß mindestens einmal vor dem ersten Anzeigen der
Dialogbox aufgerufen werden. Sie berechnet die Koordinaten (x, y; w
und h stehen ja fest), an denen die Box erscheinen muß, um in der Mitte
des Bildschirms zu stehen. Diese Koordinaten hängen von der momenta-
nen Bildschirmauflösung ab und sind daher beim Erstellen des Resource-
Files noch nicht bekannt. Zu übergeben sind die Startadresse des Objekt-
baums und vier Variablen, in denen die Koordinaten (x, y, w, h) zurück-

gegeben werden.

2. form_dial

Dies ist eine Zusammenfassung von vier Funktionen, die von 0 bis 3
durchnumeriert sind. Wir brauchen zunächst einmal die Unterfunktion
Nr. 0. Diese meldet dem AES, daß wir, also die Applikation, vorhaben,

einen bestimmten Bildschirmbereich, dessen Koordinaten zu übergeben
sind, für eigene Zwecke zu benutzen. AES rettet dann Randelemente von

Fenstern in einem Puffer, um sie wieder herstellen zu können, sobald die

Dialogbox nicht mehr gebraucht wird. Parameter: Die Nummer der

Unterfunktion (0) und die Koordinaten des Bereichs (haben wir von
form_ center erhalten) und zwar - es lebe die Bürokratie - in zweifacher
Ausfertigung (also: form_ dial (0,x,y,w,h,x,y,w,h)).

3. form dial

Jetzt können wir auch gleich die Unterfunktion Nr. 1 von form_ dial be-
nutzen. Diese zeichnet ein größer werdendes Rechteck, auch Zoom-

Rechteck genannt. Das sieht ganz nett aus. Zu übergeben sind die Un-
terfunktionsnummer (1), die Koordinaten des kleinen Rechtecks und die
des großen Rechtecks. Letztere sind mit den Koordinaten von form_cen-
ter identisch, während Sie das kleine Rechteck freı wählen können. Bei-

spiele: linke obere Bildschirmecke, Bildschirmmitte, linke obere Ecke der

(zukünftigen) Dialogbox usw. Die Routine zeichnet dann zuerst das
kleine Rechteck und läßt es wachsen. |

4. objc_ draw

Nach dieser Menge Verwaltungs-Zoom-Theorie wird es nun Zeit, die
Dialogbox auch wirklich zu zeichnen. Das erledigt die Funktion
objc_draw. Als Parameter sind zu übergeben: die Adresse des Objekt-
baums, ein Rechteck (x, y, w, h), das als Zeichengrenze (Clipping) dient
(gewöhnlich gibt man hier die Koordinaten von form__center an); ferner
der Index des Objektes, mit dem die Zeichnung begonnen wird (gewöhn-
lich Null = Wurzelobjekt/Rahmen) sowie eine maximale Zeichentiefe.

 312 Atari ST Intern 2

Letztere gibt an, wie viele Ebenen von Unterobjekten zusätzlich zu dem
ersten zu zeichnenden Objekt gezeichnet werden sollen, d.h. bei 0 wird
nur das angegebene erste zu zeichnende Objekt ausgegeben, bei | auch

dessen direkte Unterobjekte, bei 2 auch die direkten Unterobjekte dieser
Unterobjekte usw. Ein Beispiel für die seltene Anwendung der beiden

zuletzt genannten Parameter werden Sie im Beispielprogramm DIALOG4
finden.

Mit diesen vier Funktionsaufrufen steht nun die Dialogbox auf dem
Bildschirm. Was jetzt noch fehlt, ıst die Abarbeitung dieses Dialogs, also
die Reaktion auf den Anwender. Aber auch das haben die GEM-Ent-
wickler für uns schon vorbereitet. So genügt ein Aufruf der Routine
form do, um zu warten, bis der Anwender einen der drei Exit-Knöpfe

betätigt hat. Der Index des Buttons, durch den die Verarbeitung der Box

abgebrochen wurde, wird von form __do als Funktionswert zurückgegeben.
Als Parameter werden die Adresse des Objektbaumes erwartet und der

Index des Edit-Feldes, auf dem der Text-Cursor zuerst stehen soll. Da

wir aber noch keine Edit-Felder in unserem Dialog haben, geben wir
hier einfach eine Null an.

Wenn der Benutzer also einen Knopf gedrückt hat, dann kann die Dia-
logbox wieder verschwinden. Dazu dient mein Unterprogramm
hide dialog, das noch einmal die Koordinaten der Box ausrechnet
(form _center) und die letzten beiden Unterfunktionen von form_ dial (2
und 3) bemüht. Nummer 2 zeichnet ein sich verkleinerndes Rechteck,

während Nummer 3 die Fensterränder und das graue Desktop wiederher-

stellt. Außerdem erhalten Fenster, die sich möglicherweise unter der

Dialogbox befanden, eine Redraw-Meldung.

Eins gibt es noch zu beachten: Wenn der Benutzer einen Button anklickt,

so wird dieser selektiert und erscheint invers. Soll die gleiche Dialogbox

noch einmal verwendet werden (ohne das Programm neu zu laden), so

muß dieser Knopf vorher wieder deselektiert werden. Das machen wir

am besten gleich nach dem form _do-Aufruf.

Aber wie geht das eigentlich: Knöpfe selektieren und deselektieren? Das
Prinzip sieht so aus: Wir berechnen die Startadresse des Objekts, das

(de)selektiert werden soll. Diese Adresse ist die Startadresse des Objekt-
baums (erfahren«wir durch rsrc_gaddr) + 24 * Index des Objektes, da ja
jedes Objekt 24 Bytes = 12 Worte beansprucht. Zu dieser Zahl addieren

wir noch einmal 10 (siehe Abbildung zur Objektstruktur) und erhalten
die Adresse, an der der Objektstatus des betreffenden Objekts steht. In

diesem Wort ist nun das Bit 0 zu setzen (selektieren) oder zu löschen

(deselektieren). Alles klar? Sie sehen schon: Mit Dialogboxen zu arbeiten,

 GEM-Programmierung 313

heißt, mit Zeigern und Adressen zu hantieren. Daß dies auch gute
Möglichkeiten mit sich bringt, den Rechner abstürzen zu lassen, sei am
Rande bemerkt...

In GFA-BASIC funktioniert dies im Prinzip genauso. Allerdings gibt es
dort die Anweisungen:

OB_STATE(adresse, index)=...

bzw.

=0B_STATE(adresse, index)

Damit ist es möglich, den Objektstatus zu lesen oder zu schreiben.
adresse ist die Startadresse des Objektbaums und index der Index des be-

troffenen Objekts.

In C sieht die Sache wieder anders aus: Hier gibt es eine Standard-Hea-
der-Datei namens OBDEFS.H (OBject DEFinitionS), in der ein Struct
OBJECT definiert wird.

typedef struct object {
int ob_next;

int ob_head;

int ob_tail;

unsigned int ob_type;

unsigned int ob_flags;

unsigned int ob_state;

char *ob_spec;

int ob_x;

int ob_y;

int ob_width;

int ob_height;
} OBJECT;

Wenn wir nun ein ARRAY mit Elementen vom Typ OBJECT bilden und

diesem Array die Startadresse des Objektbaums geben, dann können wir
durch

object [index] .ob_state

bequem auf den Objektstatus zugreifen.

Das sollte als Erklärung für das erste Beispiel genügen.

 314 Atari ST Intern 2

GFA-BASIC

8

ı Erste Dialogbox laden, anzeigen und verarbeiten
"GFA-BASIC MP 16-12-88 DIALOG1.GFA
!

DEFINT “a-z" ! alle Variablen 4-Byte-Integer
8

dialog=0 I Konstanten aus DIALOG1.H2

knopf3=4

knopf 1=5

knopf2=6

VOID APPL_INITC)
a

IF RSRC_LOAD("DIALOG1.RSC")=0

VOID FORM_ALERTC(1,"(3] [Kein Rsc-File!] [Ende]")
ELSE

' Startadresse des (0 =) Baumes 'dialog' suchen:
t

VOID RSRC_GADDR(O,dialog,baum_adr)

' Dialogbox anzeigen lassen:
i

GOSUB show_dialog(baum_adr)

' Dialogbox abarbeiten lassen, d.h. auf 'Knopfdruck' warten
J

knopf=FORM_DO(baum_adr ,0) ! 0 = kein Edit-Feld
8

ı Status 'selected'!' des gewählten Knopfes aufheben:

GOSUB deselect(baum_adr, knopf)

' Dialogbox wieder verschwinden lassen:
1

GOSUB hide_dialog(baum_adr)

' Meldung an den Anwender, welcher Knopf gedrückt wurde:
1

_ SELECT knopf

CASE knopf1

nr=1

CASE knopf2

nr=2
CASE knopf3

nr=3

ENDSELECT

a$=" [1] [Sie haben den Knopf Nr. "+STR$(nr)+" gedrückt!] [Richtig!]"

 GEM-Programmierung 315

VOID FORM_ALERT(1,a$)

' Resource-File aus dem Speicher entfernen:
1

VOID RSRC_FREE(C)

ENDIF

VOID APPL_EXIT()
‘

END
t

PROCEDURE select (baum, index)

' Bit 0 setzen:

OB_STATE(baum, index)=0B_STATE(baum, index) OR 1

RETURN

PROCEDURE deselect (baum, index)

' Bit O0 löschen:

OB_STATE(baum, index)=0B_STATE(baum, index) AND -2

RETURN

PROCEDURE show_dialog(baum)

LOCAL x,y,w,h
t

' Formular auf dem Bildschirm zentrieren (wird dabei noch

' nicht gezeichnet)
1

VOID FORM_CENTER(baum,x,y,w,h)

' Fensterrander etc. retten lassen:
t

VOID FORM DIAL(O,x,y,w,h,x,y,w,h)

' Zeichnen eines 'Zoom'-Rechtecks:
ß

VOID FORM_DIALC1,x,y,1,1,X,y,W,h)
a

' Zeichnen des Formulars:

' Start bei Objekt Nr. O0 (Wurzelobjekt, äußerer Kasten/Rahmen)

' Tiefe: max. 12 Ebenen (willkdrlich)

VOID OBJC_DRAW(baum,0,12,x,y,w,h)
5

RETURN
6

 316 Atari ST Intern 2

PROCEDURE hide_dialog(baum)

LOCAL x,y,w,h

' Nochmal die Koordinaten erfragen:
1

VOID FORM_CENTER(baum,x,y,w,h)

' Zeichnen eines kleiner werdenden Rechtecks:
‘

VOID FORM_DIAL(2,x,y,1,1,x,y,W,h)
1

' Fensterrander wiederherstellen und Redraw-Meldung

ı an alle zerstörten Fenster veranlassen:

VOID FORM_DIAL(3,x,y,w,h,X,y,W,h)

RETURN

Omikron-BASIC:
ß

' Erste Dialogbox laden, anzeigen und verarbeiten

" MIKRON-BASIC MP 16-12-88 DIALOG1.BAS
4

Dialog%L=0! Konstanten aus DIALOG1.H2

Knopf 3%L=4

Knopf 1%XL=5

Knopf 2%L=6
i

Appl_Init
ı

Rsrc_Load("DIALOG1.RSC",RetZL)

IF Ret4L=0 THEN

FORM_ALERT (1,"(3] [Kein Rsc-File!] [Ende]",DummyA4_)

ELSE

' Startadresse des (0 =) Baumes 'dialog' suchen:
I

Rsrc_Gaddr(0,Dialog%L ,Baum_AdrXL)

ı Dialogbox anzeigen lassen:
|

Show_Dialog(Baum_Adr”%L)
‘

' Dialogbox abarbeiten lassen, d.h. auf 'Knopfdruck' warten
I

Form_Do(0,Baum_Adr%L,Knopf%L) ' 0 = kein Edit-Feld

ı Status 'selected!' des gewählten Knopfes aufheben:
u

 GEM-Programmierung 317

Deselect (Baum_Adr&L ,Knopf%L)

' Dialogbox wieder verschwinden lassen:
1

Hide _Dialog(Baum_AdrZ_L)

' Meldung an den Anwender, welcher Knopf gedrückt wurde:
4

IF Knopf%L=Knopf1%L THEN Nr%L=1

IF Knopf%L=Knopf2%L THEN Nr%L=2

IF Knopf%L=Knopf3%XL THEN Nr%L=3
A

A$S=""[1] [Sie haben den Knopf Nr."4+ STRS(NrAL)+" gedrückt!) [Richtig!]"

FORM_ALERT (1,A$,DummyXL)

! Resource-File aus dem Speicher entfernen:
8

Rsrc_Free
8

ENDIF

Appl_Exit
a

END

DEF PROC Select(Baum&L , Index&L)

ı Bit 0 setzen:

WPOKE Baum&L+24* Index%L+10, WPEEK(Baum4L+24* Index%L+10) OR 1

RETURN

DEF PROC Deselect (Baum&L , Index.)

' Bit 0 löschen:

WPOKE BaumAL+24* Index4%L+10, WPEEK(Baum4L+24* I ndex4%L+10) AND -2

RETURN

DEF PROC Show _Dialog(BaumaAL)

LOCAL X%L,Y%L,W%L, H%L
5

' Formular auf dem Bildschirm zentrieren (wird dabei noch
' nicht gezeichnet)
‘

Form_Center(Baum&L ,X4L ,YAL , WAL , HAL)

ı Fensterränder etc. retten lassen:
8

Form Dial(0,X%L,YAL,WXL,HXL)

 318 Atari ST Intern 2

t Zeichnen eines 'Zoom'-Rechtecks:
i

Form Dial(1,X%L,YAL , WAL, HAL)
{

ı Zeichnen des Formulars:

' Start bei Objekt Nr. 0 (Wurzelobjekt, äußerer Kasten/Rahmen)

ı Tiefe: max. 12 Ebenen (willkürlich)

Objc_Draw(0,12,X%L,Y%L,WAL,HXL, BaumXL)
a

RETURN
6

DEF PROC Hide_Dialog(Baum&AL)

LOCAL X%L,Y%L, WL, H%L

' Nochmal die Koordinaten erfragen:
a

Form_Center(Baum&L ,X%L,Y4L , WAL, HAL)

' Zeichnen eines kleiner werdenden Rechtecks:
t

Form Dial(2,XAL,YAL ,WAL, HAL)
1

' Fensterrander wiederherstellen und Redraw-Meldung

' an alle zerstorten Fenster veranlassen:
8

Form_Dial(3,X4L,YAL,WAL, HAL)

RETURN
8

C

[RERRERERERRERREREEEEERREREEREREREEREREREERERREREREREREEE /

/* Erste Dialogbox laden, anzeigen und verarbeiten */

/* Megamax Laser C MP 14-11-88 DIALOG1.C */
[RERRERREREERERERERERERREREREEEREREEEEEEEREREREREERERERE /

#include <obdefs.h> /* GEM-Objekt-Definitionen */ |

#include "gem _inex.c"

#include "dialog1.h" /* Header-File der Resource-Datei */

OBJECT *baum_adr; /* pointer auf das erste Onjekt eines Baumes */

int knopf ;

char = str [50],

ziffer[2];

 GEM-Programmierung

select (baum, index) /* schaltet Button ‘object' ein */

OBJECT baum{];
int index;

{
baum[index].ob_state }= 1; /* Bit 0 in ob state setzen */

>

deselect (baum, index) /* schaltet Button 'object' aus */

OBJECT bawml];
int index;

{
baum[index].ob_state &= -2; /* Bit 0 in ob_state löschen */

>

show_dialog (baum) Ä /* Darstellen einer Dialogbox */

OBJECT *baum;

{
int x, Y, w,h;

/* Formular auf dem Bildschirm zentrieren. Dabei werden nur */

/* Koordinaten intern an die Bildschirmauflösung angepaßt,

/* es wird also noch nichts gezeichnet. Außerdem erhalten

/* wir die zukünftigen Koordinaten der Dialogbox.

form_center (baum, &x, &y, &w, &h);

/* Fensterränder etc. retten lassen: */

form_dial (0, x, y, w, h, x, y, w, h);

/* Zeichnen eines 'Zoom'-Rechtecks */

form_dial (1, x, y, 1, 1, x, y, W, h);

/* Zeichnen des Objektbaumes selbst */

/* Start bei Objekt Nr. 0 (Wurzel, äußerer Kasten) */

/* Tiefe: max. 12 Ebenen (willkürlich) */

objc_draw (baum, 0, 12, x, y, W, h);

hide_dialog (baum)

OBJECT *baum;
{
int x, y, wW, h;

/* Nochmal die Koordinaten erfragen: */

form_center (baum, &x, &y, &w, &h);

/* Zeichnen eines kleiner werdenden Rechtecks */

*/
*/
*/

319

 320 Atari ST Intern 2

form dial (2, x, y, 1, 1, xX, y, W, h);

/* Fensterränder wieder herstellen lassen und Redraw- */

/* Meldung an alle zerstörten Fenster veranlassen */

form_dial (3, x, y, W, h, x, y, W, h);

>

main()

{

gem_init();

/* Resource-File (DIALOG1.RSC) laden */

if (rsrc_load ("DIALOG1.RSC") == 0)

form_alert (1, "[3] [Kein RSC-File!] [Ende]");

else

{

/* Startadresse des (0 =) Baums DIALOG festellen */

rsre_gaddr (0, DIALOG, &baum_adr);

/* Dialogbox anzeigen Lassen: */

show_dialog (baum_adr);

/* Dialog abarbeiten lassen, d.h. auf 'Knopfdruck' warten */

knopf = form_do (baum_adr, 0); /* O weil kein Edit-Feld */

/* Status 'SELECTED' des gedrtickten Buttons aufheben */
deselect (baum_adr, knopf);

/* Dialogbox wieder verschwinden lassen */

hide dialog (baum_adr);

/* Meldung an den Anwender, welcher Knopf gedrückt wurde: */

switch (knopf)

{

case KNOPF1: strcpy (ziffer, "1");

break;

case KNOPF2: strcpy (ziffer, "2");

break;

case KNOPF3: strcpy (ziffer, "3");

break;

}

strcpy (str, "[1] [Sie haben den Knopf Nr. ");

strcat (str, ziffer);

 GEM-Programmierung 321

strcat (str, " gedrückt!] [Richtig!]");

form_alert (1, str);

/* Resource-File aus dem Speicher werfen: */

rsrc_free();

}

gem _exit();

>

Assembler

;
: Erste Dialogbox laden, anzeigen und verarbeiten

‚ Assembler MP 17-11-88 DIALOG1.Q

gemdos =1

DIALOG = 0 sKonstanten aus DIALOG1.H2

KNOPF3 = 4
KNOPF 1 = 5

KNOPF2 = 6

INCLUDE 'GEM_INEX.Q'

TEXT

main: jsr gem_init

» Pfeil als Mauszeiger:

move.W #78,control ‚graf_mouse

move .W #1,control+2

move.W #1,control+4

move.W #1,control+6

clr.w control+8

clr.w int_in ;0 fur Pfeil

jsr aes

; rsrc_load:

move .W #110, control

clr.w control+2

move.W #1, control+4

move .W #1, control+6

clr.w control+8

move. | #rscname,addr_in

322

not2:

not3:

jsr

tst.w

beq

Atari ST Intern 2

aes

int_out

rscerr

: Fehler?

‚ rsrc_gaddr ermittelt Startadresse des Dialogs:

move .W

move .W

move .W

clr.w

move .W

clr.w

move .W

jsr

move. |

jsr

: form do

move .wW

move .wW

move .W

move .w

clr.w

clr.w

move. l

jsr

move .wW

jsr

jsr

: Meldung

move .W

noveq. l

cmpi .W

bne.s

moveg. l

cmpi.W

bne.s

moveq.|

addi.b

move.b

lea

#112,control

#2, control+2

#1,control+4

control+6

#1,control+8

int_in ‚0 für 'Baum gesucht!

#DIALOG, int_int2 ;Index des Baumes

aes
addr_out,baum_adr ;Ergebnis: die Startadresse

show_dialog ‚Anzeigen des Baumes

läßt Dialog abarbeiten:

#50,control

#1,control+2

#1, control+4

#1,control+6

control+8

int_in

baum adr,addr_in

aes

int_out,knopf

skein Edit-Feld

;gedrückter Knopf

deselect ‚Selected-Status löschen

hide_dialog ‚Dialogbox vom Bildschirm entfernen

je nach gedrücktem Knopf:

knopf ,d1

#1,d0

#KNOPF2,d1
not2

#2 ,d0

#KNOPF3,d1
not3

#3, d0

#'0' dO

d0, ziffer

sAus Zahl eine ASCII-Ziffer machen

form_str,a0 ‚Alert-Box anzeigen

quit:

rscerr:

GEM-Programmierung

jsr

form_alert

; rsrc_free:

move .wW

clr.w

move .W

clr.w

clr.w

jsr

jsr

clr.w

trap

lea

jsr

bra

show_dialog:

#111,control

control+2

#1, control+4

control+6

control+8

aes

gem_exit

-(sp)
#gemdos

errtxt,a0

form_alert ;Warnhinweis ausgeben

quit

; Dieses Unterprogramm malt einen Objektbaum auf den

: Bildschirm. Dazu muB sich dessen Startadresse unter

; 'baum_adr' befinden.

; form_center

move .W

clr.w

move .W

move .W

clriw

move. |

jsr

move .W

move .wW

move .W

move .W

#54, control

control+2

#5 ,,control+4

#1,control+6

control+8

baum_adr, addr_in

aes

int_out+2,d4

int_out+4,d5

int_out+6,d6

int_out+8,d7/

‚Koordinaten sichern

; form_dial rettet Fensterränder etc. (0)

move.W

move.W

move .W

clr.w

clr.w

clr.w

#51,control

#9 ,control+2

#1,control+4

control+6

control+8

int_in ‚Unterfunktion 0

323

 324 Atari ST Intern 2

; keine Werte für das kleine Rechteck fo_dilittlx/y/w/h

move.Ww

move .W

move .W

move .wW

jsr

dé, int_in+10
d5, int_in+12
d6, int_in+14
d7, int_in+16
aes

‚großes Rechteck do_dibigx/y/w/h

; form_dial zeichnet 'Zoom'-Rechteck (1):

move.W

move .W

move .w

clr.w

clr.w

move .W

move .wW

move .W

move .W

move .W

move .W

move .w

move .W

W

jsr

#51, control

#9 ,control+2

#1,control+4

control+6

control+8

#1, int_in

d4, int_in+2

d5, int_in+4

#1, int_in+6

#1, int_in+8

d4, int_in+10

d5, int_in+12

d6, int_in+14

d7, int_int16

aes

;‚Unterfunktion 1

‚Größe des kleinen Rechtecks

‚großes Rechteck do_dibigx/y/w/h

; Dialog zeichnen mit objc_dran:

move .W

move .w

move .wW

move .wW

clr.w

clr.w

move .W

move .wW

move .w

move .wW

move .wW

move. |

jmp

hide dialog:

#12, int_int2

#42, control

#6 ,control+2

#1,control+4

#1, control+6

control+8

int_in ;‚O=Wurzelobjekt zuerst zeichnen

max. 12 Ebenen (willkürlich)

d4, int_in+4

d5, int_in+6

d6, int_in+8

d7, int_in+10

baum_adr,addr_in

aes

; Entfernt das Formular vom Bildschirm.

; Adresse des Objektbaums wieder in baum_adr

; form_center

move .W

clr.w

#54, control

control+2

select:

GEM-Programmierung

move.W

move .W

clr.w

move. lt

jsr

move .wW

move .wW

move .W

move .W

 325

#5 ,,control+4

#1, control+6

control+8

baum_adr, addr_in

aes

int_out+2,c4

int_out+4,d5

int_out+6,d6

int_out+8,d7

Koordinaten sichern

; form_dial zeichnet schrumpfendes-Rechteck (2):

move.W

move .wW

move .W

clr.w

clr.w

move .W

move .W

move .wW

move .w

move .wW

move.W

move.W

move.W

move.W

jsr

#51,control

#9, ,control+2

#1,control+4

control+6

control+8

#2, int_in

d4,int_int2

d5, int_int4

#1, int_in+6

#1, int_in+8

d4, int_in+10

d5, int_in+12

d6, int_in+14

d7, int_in+16

aes

‚Unterfunktion 2

Größe des kleinen Rechtecks

‚großes Rechteck do_dibigx/y/w/h

; form_dial sendet Redraw-Meldungen an Fenster (3)

move.W

move .wW

move .W

clr.w

clr.w

move .wW

#51,control

#9 ,control+2

#1, control+4

control+6

control+8

#3, int_in sUnterfunktion 3

; keine Werte für das kleine Rechteck fo_dilittlx/y/w/h

move .wW

move .W

move .W

move .wW

jmp

d4, int_int+10

d5, int_in+12
d6, int_in+14
d7, int_in+16
aes

‚großes Rechteck do_dibigx/y/w/h

; Schaltet den Button 'knopf' auf 'selected'-Status

; Objektbaum muß in baum adr stehen

movea. |

move .wW

baum_adr,a0

knopf ‚dO Index des Objekts

 326

deselect:

Atari ST Intern 2

mulu #24 ,d0 | ;‚* 24 (jedes Objekt hat 24 Bytes)

ori.w #1,10(a0,d0.w) ;Bit 0 (selected) setzen

rts

; Schaltet den Button 'knopf' auf ‘nicht-selected'-Status

; Objektbaum muß in baum_adr stehen

movea.| baum_adr,a0

move .W knopf , d0 ‚Index des Objekts

mulu #24 ,dO ‚* 24 (jedes Objekt hat 24 Bytes)

andi .w #-2,10(a0,d0.w) ;Bit O (selected) löschen

rts

form_alert:

rscname:

form_str:

ziffer:

errtxt:

baum_adr:

knopf :

; Zeigt Alert-Box. Beschreibender String steht ab al.

; Knopf Nr. 1 ist Default-Button.

move .W #52, control

move .wW #1, control+2

move .W #1,control+4

move .W #1,control+6

clr.w control+8

move .w #1,int_in ;Default-Button

move. | a0,addr_in

jmp aes

DATA

DC.b 'DIALOG1.RSC',0

DC.b '[1J [Sie haben den Knopf Nr. '

DC.b 'O gedrückt!) LRichtig!]',O

DC.b '[(3] [Kein RSC-File!] [Ende] ',0

BSS

DS.L 1

DS.w 1

END

Vielleicht haben Sie einmal versucht, auf einem Button einen Doppelklick
auszuführen und wunderten sich, daß das Programm entweder "hängen"

 GEM-Programmierung 327

blieb oder sogar abstürzte. Nun, GEM übermittelt uns mit der form-do-

Routine nicht nur die Indexnummer des gewählten Objektes, sondern

setzt im Falle eines Doppelklicks zusätzlich das höchste Bit. Wenn Sie auf

einem Doppelklick nicht reagieren wollen, so müssen Sıe das Bit durch

knopf = knopf and 32767

löschen. Erst danach darf die Deselektier-Routine aufgerufen werden.

Dieses erste Beispielprogramm zeigt noch nicht, wie leistungsfähig die
Dialogboxen unter GEM sind; es war ja auch mehr eine bessere Alert-
Box, ın der ein Button angeklickt werden mußte.

Oft gibt es aber ganz andere Arten von Abfragen: Zahlen und Strings

müssen eingegeben werden. Kein Problem unter GEM! Dazu bauen Sie
im RCS ein Edit-Feld in Ihren Dialog mit ein. Wenn Sie später im
Programm die Routine form _do aufrufen, dann wird nicht nur auf das
Betätigen eines Exit-Buttons gewartet; der Rechner nimmt auch vollau-

tomatisch Eingaben im Edit-Feld entgegen, und zwar so, wie Sie es von
Dialogboxen gewöhnt sınd, d.h. die Taste Esc löscht das aktuelle Einga-
befeld, und auch die Cursortasten sowie Delete und Backspace funktio-

nieren! Und das alles mit einem einzigen form _do-Aufruf- Sie werden
sehen!

Zwei Probleme sind nun zu diskutieren: Erstens ist es nicht ganz leicht,
die Edit-Felder im RCS anzulegen, und zweitens müssen wir innerhalb
des Programms Zugriff auf den Inhalt dieses Feldes haben; denn was
nützt uns die Eingabe des Benutzers, wenn unser Programm sie nicht le-
sen kann.

Betrachten wir das erste Problem: Wenn Sie im RCS eine Dialogbox
basteln, dann haben Sie (wahrscheinlich) in dem Fenster mit den ver-

schiedenen Bauteilen auch ein Teil mit dem Namen EDIT. Das bewegen

Sie wie gewohnt an die gewünschte Stelle in Ihrer Dialogbox. Dann dop-

pelklicken Sie auf diesem neuen Feld. Es sollte eine riesige Box erschei-
nen, in der, meist ganz unten, drei Zeilen zur Text-Eingabe stehen. Diese

Zeilen haben furchtbare Namen:

te_ptext, te_ptmplt und te_pvalid

Ein wenig Objektkunde kann ich Ihnen auch hier nicht ersparen: In ei-
nem Objekt zeigt der ob_spec-Zeiger bekanntlich auf unterschiedliche
Dinge (das hängt vom Objekt-Typ ab). In einem Edit-Objekt zeigt er auf
eine neue Datenstruktur, die weitere Informationen über das Objekt ent-

hält; man hätte diese nicht allein in den zwölf Worten des Objekts unter-

 328 Atari ST Intern 2

bringen können. Diese Struktur heißt TEDINFO, das heißt Text/EDit-
INFOrmation. Diesem Namen können Sıe auch schon entnehmen, daß
eine TEDINFO-Struktur nicht nur bei EDIT-, sondern auch bei TEXT-

Objekten benutzt wird (nicht zu verwechseln mit STRING!).

Die TEDINFO-Struktur ist nicht allzu interessant; nur die ersten drei

Langworte sind für uns wichtig:

= Langwort | TEDINFO: | Z (4 Bytes)

te_ptext Zeiger auf eigentlichen Text

te_ptmplt Zeiger auf Eingabe-Schablone

te_pyalid Zeiger auf Eingabe-Haske

(die weiteren Einträge sind für uns
nicht so interessant)

Die Namen sollten Ihnen bekannt vorkommen. Also: te steht für

TEDINFO, und p bedeutet Pointer. Es sind also drei Zeiger, und zwar

Zeiger auf Strings. Und genau diese Strings sind die geheimnisvollen
Einträge, die Sie im RCS für ein EDIT-Objekt ausfüllen müssen - was
Sie hier hineinschreiben, steht nach rsrc_load im Speicher, und te_ptext,

te_ptmplt und te_pvalid zeigen auf diese Strings. Was müssen Sie da also

ım RCS eintragen?

Beginnen wir mit te_ptmplt. Die letzten fünf Buchstaben heißen tem-

plate. Das Wort ist schwer zu übersetzen; es bezeichnet gewöhnlich Füh-
rungssysteme für Maschinen. In unserem Fall wird dieser String die Ein-
gabe quası führen, aber darunter können Sie sich bestimmt auch nicht
viel mehr vorstellen. Vielleicht sollten wir deshalb im Deutschen die Be-
zeichnung Maske bzw. Eingabemaske verwenden. Das ist ein String, der
später in der Dialogbox ausgegeben wird. Allerdings hat ein Zeichen
innerhalb dieses Strings eine Besonderheit: der Unterstrich (_). Wo immer
dieses Zeichen in der Maske auftaucht, kann der Benutzer später, also

wenn der Dialog innerhalb einer Applikation wirklich abgearbeitet wird,

 GEM-Programmierung 329

ein Zeichen eingeben. Wenn der Benutzer mehr als nur ein Zeichen ein-

geben soll, so müssen Sie entsprechend viele Unterstriche in die Maske

schreiben. Aber die Maske hat noch eine weitere Aufgabe, die wieder
stärker mit der eigentlichen Bedeutung des Wortes template zusammen-

hängt: Wenn in einer Maske nämlich mehrere Gruppen von diesen Stri-

chen stehen, d.h. wenn Striche durch normale Zeichen getrennt werden,

dann kann der Benutzer innerhalb dieses einen Edit-Objektes zum näch-
sten Unterfeld springen, also den Cursor an den Anfang der nächsten
Strichgruppe setzen, indem er das Zeichen auf der Tastatur tippt, das die

beiden Strichgruppen trennt.

Dazu zwei sinnvolle Beispiele für templates:

1. Datm: _/_/_

Wenn der Benutzer eingibt: 2/5/80, so erscheint auf dem Bildschirm:

Datum: 2 /5 /80

2. Dateiname: __

Gibt der Benutzer hier ein: BTEXT.PRG, so erscheint:

Dateiname: BTEXT .PRG

Mit dem template-String ist also eine formatierte Eingabe möglich.

Betrachten wir den nächsten Zeiger: te_pvalid. Valid heißt gültig, und

das trıfft den Punkt einmal ganz genau: Mit dem valid-String müssen Sie
für jeden einzelnen Unterstrich in einem template bestimmen, welche
Zeichen der Benutzer hier eintragen darf, d.h. welche Zeichen gültig
oder erlaubt sind. Dazu geben Sie für jeden Unterstrich der Eingabe-
maske ein Zeichen an, das alle hier erlaubten Eingabezeichen repräsen-

tiert. Diese Zeichen sind durch einen Code wie folgt festgelegt:

valid-Code erlaubte Zeichen

9 alle Ziffern (0-9)

A alle Großbuchstaben und das Leerzeichen

a alle Buchstaben und Leerzeichen

N Großbuchstaben, Ziffern und Leerzeichen

n alle Buchstaben, Ziffern und Leerzeichen

F File-Namen einschließlich ? *: |

P (groß) Pfadname einschließlich ? *:

p (klein) Pfadname einschließlich :

X alle Zeichen

Der Unterschied zwischen File- und Pfadnamen liegt übrigens nur darin,
daß ein Pfadname zusätzlich den Backslash (\) enthalten darf.

 330 Atari ST Intern 2

Beachten Sie bitte, daß Ihnen die meisten Resource Construction Sets zur

Eingabe dieses valid-Strings eine Hilfe anbieten: Da Sıe ja nur für die

Unterstriche der Maske, nicht aber für den erklärenden Text (z.B. Da-

tum: oder Dateiname:) valid-Zeichen eingeben müssen, wäre es praktisch,

wenn Sie die valid-Codes immer direkt unter den Strichen der Maske

eingeben könnten. Das geht, indem Sıe das Proportionalitätszeichen, die

Tilde, als Füllzeichen verwenden; es wird vom RCS als nicht vorhanden

angesehen (Beispiel s.u.).

Schließlich müssen Sie noch den dritten String vorgeben: te_ptext. Das
ist, wıe der Name vermuten läßt, der Text, der beim Anzeigen der Dia-

logbox in die Maske eingebaut wird, und zwar nur an den Stellen, wo in-

nerhalb der Maske ein Strich steht. Hier müssen Sie 1m RCS auf jeden

Fall so viele Zeichen eingeben, wie auch Striche in der Maske vorhanden

sind; denn bei einer Benutzer-Eingabe im laufenden Programm werden

die Zeichen direkt in diesem String, also ın den Resource-Daten, ge-

speichert (durch Nullbyte abgeschlossen). Wenn also hier nicht genug

Platz für die Eingaben ist, dann überschreibt der Anwender womöglich

wichtige andere Daten des Objektbaums. Übrigens können Sie bei der

Eingabe des text-Strings im RCS auch den gleichen Trick benutzen, wie

ich ihn schon für valıd empfohlen habe: das Zeichen -, das nicht mit im

RSC-File abgespeichert wird. Und noch etwas: Mit welchem Zeichen Sie

den text-String füllen, ıst ganz egal; es kommt nur auf die Länge an.

Wenn Sıe möchten, daß hier bei der Anzeige der Dialogbox in Ihrem

Programm ein bestimmter String steht (z.B. ein Leerstring), dann sollten

Sie diesen String erst zur Laufzeit, d.h. in Ihrem eigenen Programm,

dorthin schreiben.

Auch dazu ein Beispiel:

te_ptmplt: Ihren Namen, bitte:

te_pyalidd III >" ™ eee Aaaaaaaaaaaaaaaaaaaa

te ptext: eee auhohfshdjkldhuoebl f

Damit ist sichergestellt, daß der Benutzer seinen Namen mit einem

Großbuchstaben beginnt; außerdem ist genügend Platz fiir die Eingabe

des Benutzers reserviert (durch den Namen, den Sie besser nicht aus-

sprechen sollten).

Punkt 2: Wie geht das Ganze denn jetzt in meinem Programm? Betrach-

ten wir zunächst einmal den einfachen Teil, nämlich die wirkliche Ein-

gabe in dieses Edit-Feld durch den Benutzer. Die erledigt das AES so

nebenher, wenn Sie mit form _do auf das Betätigen eines Exit-Buttons
warten. Wenn Sie mehrere Edit-Objekte ın einer Box haben, dann kann

 GEM-Programmierung 331

der Anwender auch automatisch mit Cursor Up/Down bzw. Tab zwischen

den einzelnen Feldern hin und her springen; auch alle anderen Cursor-

Aktivitaten werden vom AES iiberwacht. Sie miissen allerdings beim
Aufruf von form _do einen zusätzlichen Parameter angeben, den wir
bisher einfach auf Null gesetzt haben, nämlich den Index des Edit-Ob-
jektes, an dem sich der Textcursor zu Anfang befinden soll. Wenn Sie
nur ein Edit-Objekt in Ihrem Objektbaum haben, dann geben Sie einfach
den Index dieses Objekts an.

Bei der letzten Frage wird es noch einmal problematisch: Das Programm

muß Zugang zu dem String te_ptext haben, um Strings vor der Eingabe

vorgeben (oder das Eingabefeld durch einen Leerstring zu löschen) und

nach der Eingabe den Text auslesen zu können. Hier ıst wieder ein wenig

Zeigerakrobatik nötig: Bei einem Edit-Objekt zeigt der ob_spec-Zeiger

auf eine TEDINFO-Struktur. In dieser TEDINFO-Struktur ist wiederum

das erste Langwort ein Zeiger auf te ptext - all das können Sie den

Abbildungen der Objekt- und TEDINFO-Struktur entnehmen! Die

eigentliche Berechnung der te_ptext-Adresse ist allerdings (wie schon bei

ob_ state, Stichwort: selected) in den verschiedenen Programmiersprachen

unterschiedlich zu lösen: In GFA-BASIC haben Sie mit

OB_SPEC(adresse,index) Zugriff auf diesen Zeiger; in Omikron-BASIC
müssen einfache Peeks und Pokes herhalten. In C arbeiten wir wieder mit
den C-Objekt-Definitionen der Datei OBDEFS.H, die neben dem Ihnen
schon bekannten OBJECT-Struct auch eine TEDINFO-Struktur enthält.
In Assembler gibt es diesen Luxus natürlich nicht, doch auch hier kann

man das Problem kurz und elegant lösen. Am besten schauen Sie sıch

jeweils im Listing an, wie die Unterprogramme ın "Ihrer" Sprache

aussehen. Ach ja, die Unterprogramme heißen übrigens read_text und

write text, mit denen Sie Strings lesen und schreiben können. Diese
Routinen können Sie aber nicht nur für Edits, sondern auch für Text-

Objekte (nicht Strings!) benutzen, da auch diese, vielleicht erinnern Sie

sich, mit TEDINFO-Strukturen arbeiten. Das bietet sich immer dann an,
wenn Sie innerhalb einer Dialogbox auch reine Ausgaben machen möch-
ten, dıe der Benutzer nicht editieren können soll.

Im Programm erhalten die Unterprogramme read_text und write_text
jeweils drei Parameter: die Adresse des Objektbaums, den Index des
Edit-/Text-Objekts und eine Stringvariable/einen String für den zu le-
senden/schreibenden Text. In BASIC fehlt einem String üblicherweise das
abschließende Nullbyte; deshalb hängen wir es im Unterprogramm ein-

fach an (+CHR$(0)).

Und nun zu meinem, zweiten Dialog-Beispielprogramm: DIALOG2. Dem
Programm liegt folgende Dialogbox zu Grunde:

 332 AtariST Intern? ———

Boxtext

Hier Eingabe vornehmen: — _

012345678981234567890123456789__ | — trinss
oa:

Letzte Eingabe! —— — Edit
012345678901234567898123456789 7 Text

ee — SSS

oo Buttons

Folgende Namen habe ich den Objekten gegeben: Das Edit-Objekt heißt

EINGABE, das Text-Objekt AUSGABE. Die Buttons heißen OK und
ENDE. Der Objektbaum als Ganzes trägt wieder den Namen DIALOG.

Das Programm soll eine Eingabe beliebigen Typs entgegennehmen, d.h.
alle Zeichen sind erlaubt (valid-String besteht aus XXXX...). Die Eingabe

darf maximal 30 Zeichen lang sein. Auch das Text-Objekt muß schon im

RCS mit einem Text gleicher Länge gefüllt werden (ich habe Ziffern ge-
nommen, um die Länge leichter zählen zu können). Wenn der Benutzer

die Eingabe mit OK bestätigt, dann wird das Programm die Box erneut
auf den Bildschirm bringen und die letzte Eingabe im Text-Objekt an-
zeigen. Mit Klick auf Ende oder Druck auf die Return-Taste ist das Pro-

gramm beendet; ENDE ist also der Default-Button.

GFA-BASIC

' Dialogbox laden, anzeigen und Edits verarbeiten

' GFA-BASIC MP 16-12-88 DIALOG2.GFA
(

DEFINT "a-z" ! alle Variablen 4-Byte-Integer
'

dialog=0 I Konstanten aus DIALOG.H2

eingabe=3

ausgabe=5

ok=6

ende=7

 GEM-Programmierung 333

VOID APPL_INIT()
I

IF RSRC_LOAD("DIALOG2.RSC")=0
VOID FORM _ALERT(1,"(3] [Kein Rsc-File!] [Ende]")

ELSE

' Startadresse des Baumes erfragen:
i

VOID RSRC_GADDR(0, dialog, baum_adr)

' Ausgabefeld initialisieren:
I

GOSUB write_text(baum_adr , ausgabe, "*** keine ***"')
4

REPEAT

ı Eingabefeld löschen:

GOSUB write_text(baum_adr,eingabe,"")

' Dialogbox anzeigen lassen:
5

GOSUB show_dialog(baum_adr)

' Dialogbox abarbeiten lassen; 'eingabe' erstes Edit-Feld
8

knopf=FORM_DO(baum_adr , eingabe)
A

' Status 'selected' des gewahlten Knopfes aufheben:
t

GOSUB deselect (baum_adr, knopf)

' Dialogbox wieder verschwinden lassen:
a

GOSUB hide_dialog(baum_adr)

Eingabe auslesen und in Ausgabefeld schreiben:
I

read_text(baum_adr,eingabe, a$)

write_text(baum_adr , ausgabe, a$)

UNTIL knopf=ende

' Resource-File aus dem Speicher entfernen:
8

VOID RSRC_FREE()

ENDIF

VOID APPL_EXIT()

 334 Atari ST Intern 2

END

PROCEDURE select(baum, index)

' Bit 0 setzen:

OB STATE(baum, index)=0B STATE(baum, index) OR 1
RETURN

PROCEDURE deselect (baum, index)

' Bit 0 ldschen:

OB_STATE(baum, index)=0B STATE(baum, index) AND -2
RETURN

PROCEDURE show_dialog(baum)

LOCAL x,y,w,h
i

' Formular auf dem Bildschirm zentrieren (wird dabei noch

! nicht gezeichnet)

VOID FORM_CENTER(baum,x,y,W,h)

ı Fensterränder etc. retten lassen:
|

VOID FORM _DIAL(O,x,y,w,h,x,y,wW,h)

' Zeichnen eines 'Zoom'-Rechtecks:
'

VOID FORM DIAL(1,25,25,25,25,x,y,wW,h)
t

' Zeichnen des Formulars:

' Start bei Objekt Nr. 0 (Wurzelobjekt, äußerer Kasten/Rahmen)

' Tiefe: max. 12 Ebenen (willkürlich)

VOID OBJC_DRAW(baum,0,12,x,y,w,h)
'

RETURN
1

PROCEDURE hide_dialog(baum)

LOCAL x,y,w,h
t

' Nochmal die Koordinaten erfragen:
J

VOID FORM _CENTER(baum,x,y,wW,h)

' Zeichnen eines kleiner werdenden Rechtecks:
i

 GEM-Programmierung

VOID FORM_DIAL(2,25,25,25,25,x,y,W,h)
8

' Fensterrander wiederherstellen und Redraw-Meldung

' an alle zerstorten Fenster veranlassen:
i

VOID FORM DIAL(3,x,y,wW,h,X,y,wW,h)

RETURN

PROCEDURE write_text(baum, index, text$)

LOCAL adr,i,a$

' Startadresse des reinen Textes (te_ptext) ermitteln:
8

adr=LPEEK(OB_SPEC(baum, index))

' Nullbyte anhangen:

a$=text$+CHRS$(0)
J

FOR i=1 TO LEN(a$)

POKE adr+i-1,ASC(MID$(a$,1,1))

NEXT i

RETURN

PROCEDURE read_text(baum, index,VAR text$)

LOCAL adr,i

' te _ptext ermitteln:
8

adr=LPEEK(OB_SPEC(baum, index))
5

text$="

i=0
I

WHILE PEEK(Cadr+i)<>0 I bis zum Nullbyte lesen

text$=text$+CHR$(PEEK(adr+1))

INC i

WEND

RETURN
a

Omikron-BASIC

Dialogbox laden, anzeigen und Edits verarbeiten

Omi kron-BASIC MP 16-12-88 DIALOG2.BAS

335

 336 Atari ST Intern 2

Dialog&L=0! Konstanten aus DIALOG.H2

EingabeXL=3

AusgabeXL=5

Ok%L=6

EndeXL=7
0

Appl_Init
1

Rsrc_Load("DIALOG2.RSC",RetZL)

IF Ret%L=0 THEN
FORM_ALERT (1,"[3] [Kein Rsc-File!] [Ende] ",Dummy4L)

ELSE

' Startadresse des Baumes erfragen:
t

Rsrc_Gaddr(0,Dialog%L,Baum_Adr&)

' Ausgabefeld initialisieren:
‘

Write_Text(Baum_Adr%L ‚AusgabeAl ,"*** keine ***")
1

REPEAT

' Eingabefeld Löschen:

Write_Text(Baum_AdrXL,EingabeXL,"")

' Dialogbox anzeigen lassen:
t

Show _Dialog(Baum_Adr&_L)

' Dialogbox abarbeiten lassen; 'eingabe' erstes Edit-Feld

Form_Do(EingabeZL , Baum_AdrZ_ , Knopf)

' Status 'selected' des gewählten Knopfes aufheben:
§

Deselect(Baum_Adr%L,Knopf%L)

' Dialogbox wieder verschwinden lassen:
i

Hide_Dialog(Baum_AdrXL)

ı Eingabe auslesen und in Ausgabefeld schreiben:
I

Read_Text(Baum_Adr%L,EingabeXL ‚A$)

Write_Text(Baum_Adr4Z_ , Ausgabe , A$)

UNTIL Knopf%L=Ende%L

 GEM-Programmierung 337

' Resource-File aus dem Speicher entfernen:
5

Rsrc_Free
a

ENDIF

Appl_Exit
8

END

DEF PROC Select (Baum&L , Index&_)

' Bit 0 setzen:

WPOKE Baum%L+24*Index%L+10, WPEEK(BaumfL+24*IndexXL+10) OR 1

RETURN

DEF PROC Deselect(BauwmAL , IndexXL)

ı Bit O0 löschen:

WPOKE Baum%L+24*Index%L+10, WPEEK(Baum%L+24*1ndex%L+10) AND -2RETURN

DEF PROC Show _Dialog(BaumAL)

LOCAL X&L,YAL WAL, HAL
t

' Formular auf dem Bildschirm zentrieren (wird dabei noch

' nicht gezeichnet)
t

Form_Center(BaumaL , XL, YAL ,WAL , HAL)

' Fensterrander etc. retten lassen:
I

Form Dial(0,X%XL,YXL,WXL,H%L)

ı Zeichnen eines 'Zoom'-Rechtecks:
4

Form Dial(1,X%L,Y%L, W%L, H%L)
ı

ı Zeichnen des Formulars:

ı Start bei Objekt Nr. O0 (Wurzelobjekt, äußerer Kasten/Rahmen)

ı Tiefe: max. 12 Ebenen (willkürlich)

Objc_Draw(0,12,X%L, Y%L, W%L, H%L , Baum%L)
1

RETURN
‘

DEF PROC Hide Dialog(BaumAZL)

LOCAL X%L,Y%L,W%L, H%L

 338 : Atari ST Intern 2

' Nochmal die Koordinaten erfragen:
t

Form_Center(Baum&L , XAL, YAL , WAL , HAL)

' Zeichnen eines kleiner werdenden Rechtecks:
i

Form Dial(2,X4L,YA4L,WAL, HAL)
a

' Fensterrander wiederherstellen und Redraw-Meldung

' an alle zerstorten Fenster veranlassen:
A

Form Dial(3,X4L,YAL,WAL , HAL)
8

RETURN
8

DEF PROC Write_Text(BaumAL , Index%L ,Text$)

LOCAL AdrX%L,I%L,A$

' Startadresse des reinen Textes (te_ptext) ermitteln:
q

Adr%L= LPEEK(LPEEK(Baum&%L+24* I ndex4%L+12))

' Nullbyte anhangen:

A$=Text$+ CHR$(O)
I

FOR I%L=1 TO LEN(AS)
POKE Adr%L+I%L-1, ASC(MID$(A$, I%L,1))

NEXT I%L
RETURN

DEF PROC Read_Text(Baum&L, Index%L,R Text$)

LOCAL Adr%L,IXL

* te_ptext ermitteln:
4

Adr4’L= LPEEK(LPEEK(Baum4L+24* Index%L+12))
i

Text$=""

I%XL=0
8

WHILE PEEK(AdrA¢L+IZL)<>0' bis zum Nullbyte lesen

Text$=Text$+ CHR$(PEEK(AdrAL+I4L))

I%XL=1%L+1

WEND

RETURN

 GEM-Programmierung 339

Cc
[RRRREREREERREREREREREREREREREREREREREREERERERREEERERERE /

/* Dialogbox laden, anzeigen und Edits verarbeiten */

/* Megamax Laser C MP 14-11-88 DIALOG2.C */
[BERRREERREREREREREEREREREREKRERERERERERRKEREEEREREERERERE /

#include <obdefs.h> /* GEM-Objekt-Definitionen */

#include "gem _inex.c" |

#include "dialog2.h" /% Header-File der Resource-Datei */

OBJECT *baum_adr; /* pointer auf das erste Onjekt eines Baumes */

int knopf;

char eingabe[80];

select (baum, index) /* schaltet Button ‘object' ein */

OBJECT baum[];

int index;

{
baum[index].ob_state |= 1; /* Bit 0 in ob state setzen */

>

deselect (baum, index) /* schaltet Button ‘object’ aus */OBJECT baum[];

int index;

{
baum[index] .ob_state &= -2; /* Bit 0 in ob_state löschen */

>

write_text (baum, index, string) /* Andert TEXT-Objekt */

OBJECT bawml];
int index;

char stringl];

{
TEDINFO *ted;

ted = (TEDINFO *) baumLindex] .ob_spec;

strepy (ted->te_ptext, string);

/* ted->te_ptext entspricht: (*ted).te_ptext */

}

read_text (baum, index, string) : /%* Liest TEXT-Objekt */

OBJECT bawml];

int index;

char stringl];

 340 Atari ST Intern 2

TEDINFO *ted;

ted = (TEDINFO *) baum[index] .ob_spec;

strcepy (string, ted->te_ptext);

}

show_dialog (baum) /* Darstellen einer Dialogbox */

OBJECT *baum;

{
int x, y, w, h;

/* Formular auf dem Bildschirm zentrieren. Dabei werden nur */

/* Koordinaten intern an die Bildschirmauflösung angepaßt, */

/* es wird also noch nichts gezeichnet. Außerdem erhalten */

/* wir die zukünftigen Koordinaten der Dialogbox. */

form_center (baum, &x, &y, &w, &h);

/* Fensterrander etc. retten lassen: */

form_dial (0, x, y, w, h, x, y, W, h);

/* Zeichnen eines 'Zoom'-Rechtecks */

form_dial (1, 25, 25, 25, 25, x, y, w, h);

/* Zeichnen des Objektbaumes selbst */

/* Start bei Objekt Nr. 0 (Wurzel, äußerer Kasten) */

/* Tiefe: max. 12 Ebenen (willkürlich) */

objc_draw (baum, 0, 12, x, y, w, h);

hide_dialog (baum)

OBJECT *baum;
{
int x, y, w, h;

/* Nochmal die Koordinaten erfragen: */

form_center (baum, &x, &y, &w, &h);

/* Zeichnen eines kleiner werdenden Rechtecks */

form_dial (2, 25, 25, 25, 25, x, y, w, h);

/* Fensterränder wieder herstellen lassen und Redraw- */

/* Meldung an alle zerstörten Fenster veranlassen. */

form_dial (3, x, y, Ww, h, x, y, w, h);

main()

 GEM-Programmierung 341

gem_init();

/* Resource-File (DIALOG2.RSC) laden */

if (rsrc_load ("DIALOG2.RSC") == 0)

form_alert (1, "[31[Kein RSC-File!] [Ende]");

else

{
/* Startadresse des (0 =) Baums DIALOG festellen */

rsrc_gaddr (0, DIALOG, &baum_adr);

/* Ein- und Ausgabefeld initialisieren */

write text (baum_adr, AUSGABE, "*** keine ***");

do

{
/* Eingapefeld löschen: */

write_text (baum_adr, EINGABE, "");

/* Dialogbox anzeigen lassen: */

show_dialog (baum_adr);

/* Dialog abarbeiten lassen, EINGABE erstes EDIT-Element */

knopf = form_do (baum_adr, EINGABE);

/* Status 'SELECTED' des gedrückten Buttons aufheben */

deselect (baum_adr, knopf);

/* Dialogbox wieder verschwinden lassen */

hide_dialog (baum_adr);

/* Eingabe auslesen und in Ausgabefeld schreiben */

read_text (baum_adr, EINGABE, eingabe);
write_text (baum adr, AUSGABE, eingabe);

> while (knopf != ENDE); /* Bis ENDE angeklickt wurde */

/* Resource-File aus dem Speicher werfen: */

rsrc_free();

>

gem_exit();
}

Assembler

; Erste Dialogbox laden, anzeigen und Edits verarbeiten

: Assembler MP 17-11-88 DIALOG2.Q

 342

gemdos

DIALOG

EINGABE

AUSGABE

OK

ENDE

main:

N

s
a
v
u
ı
w
o

Atari ST Intern 2

Konstanten aus DIALOG2.H2

INCLUDE 'GEM_INEX.Q'

TEXT

jsr

; Pfeil als Mauszeiger:

move .W

move .wW

move .W

move .W

clr.w

clr.w

jsr

gem_init

#78, control

#1, control+2

#1,control+4

#1,control+6

control+8

int_in

aes

; rsrc_load:

move .wW

clr.w

move .W

move .wW

clr.w

move. |

jsr

tst.w

beq

#110,control

control+2

#1,control+4

#1,control+6

control+8

#rscname,addr_in

aes

int_out

rscerr

;graf_mouse

:0 fir Pfeil

‚Fehler?

‚ rsrc_gaddr ermittelt Startadresse des Dialogs:

move .W

move .W

move .W

clr.w

move .W

clr.w

move .w

jsr

move.

#112, control

#2, control+2

#1,control+4

control+6

#1,control+8

int_in ‚0 für 'Baum gesucht!

#DIALOG, int_int2 ;Index des Baumes

aes

addr_out,baum_adr Ergebnis: die Startadresse

loop:

 GEM-Programmierung 343

: Ausgabefeld initialisisren:

lea

move .W

jsr

inittxt, a0 ‚Anfangstext

#AUSGABE , dO Index des Text-Feldes

write_text

» Eingabefeld löschen:

lea

move .W

jsr

jsr

; form_do

move .W

move .W

move .wW

move .W

clr.w

move .wW

move. l

jsr

move .wW

jsr

jsr

; Eingabe

lea

move.Ww

jsr

lea

move.W

jsr

; Abbruch,

cmpi.W

bne

empty, a0 sLeerstring

#E INGABE , dO ‚Index des Edit-Feldes

write_text

show_dialog Anzeigen des Baumes

läßt Dialog abarbeiten:

#50,control

#1,control+2

#1,control+4

#1,control+6

control+8

#EINGABE,int_in ;Edit-Feld

baum _adr,addr_in

aes

int_out,knopf ;gedrückter Knopf

deselect ;‚Selected-Status löschen

hide_dialog ;Dialogbox vom Bildschirm entfernen

ins Ausgabefeld kopieren:

str,a0

#E INGABE , dO
read text

str,a0

#AUSGABE , dO
write text

wenn Ende geklickt wurde:

#ENDE , knopf

Loop

; rsrc_free:

move.W

clr.w

#111,control

control+2

Atari ST Intern 2 344

quit:

rscerr:

move.W

clr.w

cir.w

jsr

jsr

clr.w

trap

lea

jsr

bra

show_dialog:

#1,control+4

control+6

control+8

aes

gem_exit

-(sp)

#gemdos

errtxt,a0

form_alert ;Warnhinweis ausgeben

quit

; Dieses Unterprogramm malt einen Objektbaum auf den

; Bildschirm. Dazu muB sich dessen Startadresse unter

; ‘baum_adr' befinden.

; form_center

move .wW

clr.w

move .W

move .W

clr.w

move. |

jsr

MoVe.W

move .W

move .wW

move .wW

#54, control

control+2

#5 ,control+4

#1,control+6

control+8

baum_adr,addr_in

aes

int_out+2,d4

int_out+4,d5

int_out+6,d6

int_out+8,d7

Koordinaten sichern

; form_dial rettet Fensterränder etc. (0)

move.WwW

move.W

move.WwW

clr.w

clr.w

clr.w

#51,control

#9 ,control+2

#1,control+4

control+6

control+8

int_in ;Unterfunktion 0

; keine Werte fur das kleine Rechteck fo_dilittlx/y/w/h

move .W

move .W

move .W

move .W

d4, int_in+10
d5, int_int12
d6, int_in+14
d7, int_int16

;großes Rechteck do_dibigx/y/w/h

GEM-Programmierung

jsr aes

 345

; form_dial zeichnet 'Zoom'-Rechteck (1):

move .W

move . Ww
move .wW

clr.w

clr.w

move .wW

move .w

move .W

move .wW

move .w

move.wW

move.W

move.W

move.W

jsr

#51,control

#9 ,control+2

#1,control+4

control+6

control +8

#1,int_in

d4,int_int+2

d5,int_int4

#1,int_int6

#1, int_int8

d4, int_in+10

d5, int_in+12

d6, int_in+14

d7,int_int+16

aes

:Unterfunktion 1

Größe des kleinen Rechtecks

‚großes Rechteck do_dibigx/y/w/h

; Dialog zeichnen mit objc_draw:

move .W

move .W

move .W

move .wW

clr.w

clr.w

move.

move.

move.

move.

move.

move.

jmp

m~-
£
£
£

E
E

hide_dialog:

#42,control

#6, control+2

#1,control+4

#1,control+6

control+8

int_in

#12, int_inte

d4,int_int4

d5,int_int6

dé, int_int8

d7, int_in+10

baum_adr, addr_in

aes

;‚O=Wurzelobjekt zuerst zeichnen

‚max. 12 Ebenen (willkürlich)

» Entfernt das Formular vom Bildschirm.

; Adresse des Objektbaums wieder in baum_adr

; form_center

move .wW

clr.w

move.W

move.W

clr.w

move. |

jJsr

#54 ‚control

control+2

#5, control+4

#1,control+6

control+8

baum_adr,addr_in

aes

 346

select:

Atari ST Intern 2

move . W int_out+2,d4 ;Koordinaten sichern

move . Ww int_out+4,d5

move .W int_out+6,d6

move .W int_out+8,d7

; form_dial zeichnet schrumpfendes-Rechteck (2):

move.W #51,control

move .W #9 ,control+2

move .W #1, control+4

clr.w control+6

clr.w control+8

move .wW #2, int_in ‚Unterfunktion 2

move.W d4,int_int2 ‚Größe des kleinen Rechtecks

move .wW d5,int_int4

move .w #1, int_in+6

move .W #1, int_in+8

move .W d4, int_in+10 ‚großes Rechteck do_dibigx/y/w/h

move.W d5, int_in+12

move.W d6, int_int14

move .w d7, int_in+16

jsr aes

; form_dial sendet Redraw-Meldungen an Fenster (3)

move.W #51,control

move.W #9 ,control+2

move .W #1,control+4

clr.w control+6

clr.w control+8

move .W #3,int_in sUnterfunktion 3

; keine Werte fur das kleine Rechteck fo_dilittlx/y/w/h

move .wW d4, int_in+10 ;groBes Rechteck do_dibigx/y/w/h

move .wW d5, int_in+12

move . Ww d6, int_int+14

move .W d7, int_in+16

Jmp aes

; Schaltet den Button 'knopf! auf 'selected'-Status

; Objektbaum muß in baum _adr stehen

movea.l baum_adr,a0

move .W knopf , dO Index des Objekts

mulu #24 ,d0 ‚* 24 (jedes Objekt hat 24 Bytes)

addi.w #10,d0 ‚+10 als Offset für ob_state

ori.W #1,0(a0,d0.w) ‚Bit 0 (selected) setzen

 GEM-Programmierung 347

rts

deselect:

; Schaltet den Button 'knopf' auf 'nicht-selected'-Status

; Objektbaum muß in baum_adr stehen

movea.| baum_adr,a0

move .wW knopf , d0 ‚Index des Objekts

mulu #24 ,d0 :* 24 (jedes Objekt hat 24 Bytes)

addi.w #10,d0 ;+10 als Offset fur ob state

andi .w #-2,0(a0,d0.w) ;Bit O (selected) löschen

rts

form_alert:

; Zeigt Alert-Box. Beschreibender String steht ab a0.

; Knopf Nr. 1 ist Default-Button.

move .W #52,controt

move .W #1, control+2

move .W #1,control+4

move .W #1,control+6

clr.w control+8

move.W #1, int_in ;Default-Button

move. | a0,addr_in

jmp aes

write text:

: Schreibt String in Text- oder Edit-Objekt (Index in dQ)

; String in a0, Objektbaum in baum_adr

movea.| baum_adr,al

mulu #24 ,d0

movea.l 12(Cal,d0.w),al ;Adresse des TEDINFO-Blocks

movea.l (al),al ‚te_ptext enthält den Textwrt_lp:

move.b (a0)+,(al)+

bne.s wrt_lp

rts

read_text:

; Gegenstück zu write_text. Zieladresse ist in a0

; zu übergeben.

movea.| baum_adr,al

mulu #24 ,d0

movea. | 12(a1,d0.w),al

 348 Atari ST Intern 2

movea. | (a1),al

rd_lp: move .b (a1)+, (a0)+
bne.s rd_lp

rts

DATA

rscname: DC.b 'DIALOG2.RSC',0O

errtxt: DC.b '[3] [Kein RSC-File!] [Ende] ',O

inittxt: DC.b '*** keine ***'!,0

empty: DC.b 0

BSS

baum_adr: DS.l 1

knopf : DS.w 1

str: DS.b 40

END

Mit den beiden Unterprogrammen read_text und write _text steht Ihnen
eine einfache Möglichkeit zur Verfügung, Ein- und Ausgaben über Dia-
logboxen vorzunehmen, übrigens eine Sache, bei der sich viele Anfänger
schwertun. Eine Information möchte ich Ihnen noch zur Vorsicht geben:

Wenn Sie te_ptmplt wirklich als Eingabe-Führung benutzen, etwa zur

Eingabe eines Filenamens (Name:), dann wird der

Punkt nicht in te_ptext mit gespeichert, sondern nur als Cursorsteuer-

Anweisung des Benutzers gewertet. Wenn Sie also solche Eingaben als
Dateinamen an eine GEMDOS-Routine übergeben, so müssen Sie den

Punkt vorher selbst einfügen, und zwar hinter dem achten Zeichen ın

te ptext; denn die bei der Eingabe übersprungenen Striche werden auto-

matisch mit Leerzeichen gefüllt.

Jetzt zu einem weiteren oft benötigten Bestandteil der Dialogboxen:
Radio-Buttons. Das sind Knöpfe (mindestens zwei), von denen immer

nur einer gleichzeitig selektiert sein darf. Der Name Radio-Button
kommt daher, daß Sie sich ja auch bei jedem Radiogerät fiir einen Fre-

quenzbereich entscheiden müssen, und wenn Sie UKW gehört haben und
MW drücken, dann wird der UKW-Knopf automatisch ausgerastet. In ei-
ner Dialogbox ist es ähnlich. Sobald der Benutzer einen Radio-Knopf an-
klickt, werden alle anderen Radio-K.nöpfe automatisch deselektiert.

Es gibt natürlich auch Fälle, in denen solche Buttons in einer Dialogbox

sinnvoll angewendet werden können; ich nehme nicht an, daß Sie Ihren
Atari nur zum Radiohören verwenden. Aber denken Sie an einen Dialog

 GEM-Programmierung 349

in einem Grafik-Programm, mit dem die Zeichenfarbe bestimmt werden
soll - mehr als eine Farbe gleichzeitig geht nicht! Oder stellen Sie sich
eine Adreßverwaltung mit Radio-Buttons fiir die Anrede vor: Herrn,
Frau, Fräulein, Familie und Firma - immer nur eine Auswahl ist sinn-

voll.

Wenn Sie im RCS einen Radio-Button anlegen, dann verwenden Sie einen

ganz gewöhnlichen Button. Doppelklicken Sie auf diesen Knopf und

wählen Sie zusätzlich zum Flag SELECTABLE (sollte schon aktiviert

sein) noch das Flag RADIO BUTTON. Achten Sie außerdem darauf, daß
sich alle logisch zusammengehörenden Radioknöpfe innerhalb eines über-

geordneten Kastens (darf das Wurzelobjekt, also der äußere Rahmen,
sein) befinden. Das ist dann wichtig, wenn Sie mehr als eine Gruppe von

Radio-Buttons im selben Objektbaum verwenden, wenn also von jeder
Knopfgruppe jeweils genau ein Knopf aktiv sein muß; denn sonst weiß
ja der Rechner nicht mehr, welche Knöpfe er ausschalten muß, wenn Sie

einen Button anklicken.

Als Beispielprogramm muß noch einmal beziehungsreich das Radio mit

seinen Frequenzbereichen herhalten. Um nach der Anzeige des Dialogs

überprüfen zu können, ob ein Button selektiert ist oder nicht, habe ich

die Funktion selected zusätzlich zu den bisherigen Unterprogrammen ein-
geführt. Die Dialogbox sieht so aus:

| Radio-Buttons tL Boxtext

, - Box

| _UKW J HW J Buttons mit Flag
- wid i : Ck Radiobutton

 ENDE Button

Der Baum heißt wieder einmal DIALOG. Die vier Radio-Buttons habe

ich UKW, MW, KW und LW genannt, während der Exit-Button auf den

Namen ENDE hört.

 350 Atari ST Intern 2

GFA-BASIC

' Dialogbox laden, anzeigen, Radiobuttons verarbeiten

' GFA-BASIC MP 16-12-88 DIALOG3.GFA

DEFINT "a-z" 1! alle Variablen 4-Byte-Integer
‘

dialog=0 I Kontanten aus DIALOG3.H2

mw=3

ukw=2

kw=4

lw=5

ende=6
a

VOID APPL_INIT()
i

IF RSRC_LOAD("DIALOG3.RSC")=0

VOID FORM _ALERT(1,"[3] [Kein Rsc-File!] [Ende]")

ELSE

' Startadresse des Baumes erfragen:
t

VOID RSRC_GADDR(0, dialog, baum_adr)

' Einen Default-Button setzen (hier: UKW)
t

GOSUB select(baum_adr,ukw)

' Dialogbox anzeigen lassen:
i

GOSUB show_dialog(baum_adr)

' Dialogbox abarbeiten lassen
4

knopf=FORM DO(baum_adr ,0)

' Status 'selected' des gewadhlten Knopfes aufheben:

GOSUB deselect (baum_adr, knopf)

' Dialogbox wieder verschwinden lassen:
t

GOSUB hide_dialog(baum_adr)

' Knöpfe auswerten:
8

IF FN selected(baum_adr,ukw)

a$="Ul trakurzwel le"

ENDIF

GEM-Programmierung 351

IF FN selected(baum_adr ,mw)

a$="Mittelwelle""
ENDIF
a

IF FN selected(baum_adr, kw)

aS="Kurzwel le"

ENDIF
a

IF FN selected(baum_adr, lw)

a$="Langwel le"

ENDIF
8

VOID FORM_ALERT(1,"[1] [Sie haben den Frequenzbereich|"+a$+...
..." ausgewahl(t!] [Ja!]")

' Resource-File aus dem Speicher entfernen:
|

VOID RSRC_FREE()

ENDIF

VOID APPL_EXIT()
1

END
'

PROCEDURE select(baum, index)

' Bit O setzen:

OB_STATE(baum, index)=0B_STATE(baum, index) OR 1

RETURN

PROCEDURE deselect (baum, index)

' Bit O löschen:

OB_STATE(baum, index)=0B_STATE(baum, index) AND -2

RETURN
8

i

DEFFN selected(baum, index)=0B_ STATE(baum, index) AND 1
i

PROCEDURE show _dialog(baum)

LOCAL x,y,w,h
t

' Formular auf dem Bildschirm zentrieren (wird dabei noch

' nicht gezeichnet)

VOID FORM_CENTER(baum,x,y,w,h)

' Fensterrander etc. retten lassen:

 352 Atari ST Intern 2

VOID FORM DIAL(O,x,y,w,h,x,y,wW,h)

' Zeichnen eines 'Zoom'-Rechtecks:
(

VOID FORM_DIAL(1,25,25,25,25,x,y,w,h)
|

ı Zeichnen des Formulars:

ı Start bei Objekt Nr. 0 (Wurzelobjekt, äußerer Kasten/Rahmen)

ı Tiefe: max. 12 Ebenen (willkürlich)

VOID OBJC_DRAW(baum,0,12,x,y,w,h)
t

RETURN
i

PROCEDURE hide_dialog(baum)

LOCAL x,y,w,h

ı Nochmal die Koordinaten erfragen:
t

VOID FORM _CENTER(baum,x,y,wW,h)

' Zeichnen eines kleiner werdenden Rechtecks:
t

VOID FORM_DIAL(2,25,25,25,25,x,y,wW,h)
ı

ı Fensterränder wiederherstellen und Redraw-Meldung

ı an alle zerstörten Fenster veranlassen:

VOID FORM DIAL(3,x,y,w,h,x,y,W,h)
i

RETURN
I

PROCEDURE write_text(baum, index, text$)

LOCAL adr,i,a$

' Startadresse des reinen Textes (te_ptext) ermitteln:
I

adr=LPEEK(OB_SPEC(baum, index))

' Nullbyte anhangen:

a$=text$+CHR$CO)
I

FOR i=1 TO LEN(a$)

POKE adr+i-1,ASC(MID$(a$, i, 1))
NEXT i

RETURN

 GEM-Programmierung | 353

PROCEDURE read_text(baum, index,VAR text$)

LOCAL adr,i

' te_ptext ermitteln:

adr=LPEEK(OB_SPEC(baum, index))
i

text$=""

1=0
i

WHILE PEEK(adr+i)<>0 I bis zum Nullbyte lesen

text$=text$+CHR$(PEEK(adr+i))

INC 1

WEND

RETURN

Omikron-BASIC

Dialogbox laden, anzeigen, Radiobuttons verarbeiten

Omi kron-BASIC MP 16-12-88 DIALOG3.BAS

Dialog%L=0! Kontanten aus DIALOG3.H2

MwAL=3

Ukw%L=2

KwAL=4

Lw%L=5

Ende%L=6

Appl_Init

Rsrc_Load("DIALOG3.RSC", RetZL)

IF Ret“%L=0 THEN

FORM_ALERT (1,"[3] [Kein Rsc-File!] [Ende]")

ELSE

' Startadresse des Baumes erfragen:
a

Rsrc_Gaddr(0,DialogAL ‚Baum _Adr%L)

ı Einen Default-Button setzen (hier: UKW)
a

Select(Baum_Adr%L ‚UkwAL)

' Dialogbox anzeigen lassen:
I

Show_Dialog(Baum_Adr%L)

 354 Atari ST Intern 2

' Dialogbox abarbeiten lassen

Form_Do(0,Baum_Adr%L,Knopf%L)

' Status 'selected' des gewählten Knopfes aufheben:

Deselect(Baum_Adr%L,Knopf%L)

ı Dialogbox wieder verschwinden lassen:
8

Hide_Dialog(Baum_Adr%L)

ı Knöpfe auswerten:
J

IF FN Selected%L (Baum_Adr&’,Ukw%L) THEN AS="Ultrakurzwel le"

IF FN Selected%L(Baum_Adr%L ,Mw%L) THEN A$="Mittelwelle"

IF FN Selected%L(Baum_Adr%L ,Kw%L) THEN A$="Kurzwelle""

IF FN Selected%L(Baum_Adr“%L,Lw%L) THEN A$="Langwelle"
i

FORM_ALERT (1,"(1] [Sie haben den Frequenzbereich|"+A$+...
..." ausgewählt!j [Ja!]")

I Resource-File aus dem Speicher entfernen:
‘

Rsrc_Free
'

ENDIF
I

Appl_Exit
8

END
t

DEF PROC Select(BaumZL , Index%L)

' Bit 0 setzen:

WPOKE Baum&L+24* Index%L+10, WPEEK(Baum4L+24* Index%L+10) OR 1

RETURN

DEF PROC Deselect (BaumL , IndexZL)

" Bit O0 löschen:

WPOKE Baum&L+24*Index%L+10, WPEEK(Baum%L+24* Index%L+10) AND -2RETURN
I

I

DEF FN Selected%L(Bawm%L , Index%L)= WPEEK(Baum%L+24*Index%L+10) AND 1
ß

DEF PROC Show_Dialog(BaumAL)

LOCAL XAL,Y%L,WAL, H%L

 GEM-Programmierung 355

' Formular auf dem Bildschirm zentrieren (wird dabei noch

ı nicht gezeichnet)
1

Form _Center(Baum&L ,X%L, YAL , WAL , HAL)

' Fensterrander etc. retten lassen:
t

Form Dial(0O,XAL,YAL, WAL, HAL)

' Zeichnen eines 'Zoom'-Rechtecks:
t

Form Dial(1,XAL,YAL,WAL, HAL)
q

' Zeichnen des Formulars:

' Start bei Objekt Nr. O (Wurzelobjekt, AauBerer Kasten/Rahmen)

' Tiefe: max. 12 Ebenen (willkurlich)

Objc_Draw(0,12,X%L,Y%L,W%L, H%L , Baum%L)
8

RETURN
t

DEF PROC Hide Dialog(Baum&L)

LOCAL X%L,Y%L,W%L , H%L

' Nochmal die Koordinaten erfragen:
8

Form_Center (Baum. , XL, YL , WAL , HAL)

' Zeichnen eines kleiner werdenden Rechtecks:
8

Form _Dial(2,X%L,YAL,W%L,HAL)
I

ı Fensterränder wiederherstellen und Redraw-Meldung

ı an alle zerstörten Fenster veranlassen:
I

Form Dial(3,X%L,Y%L, W%L, K%L)
ı

RETURN
‘

DEF PROC Write_Text(Baum&L , Index. , Text$)

LOCAL Adr%L,I%L,A$

' Startadresse des reinen Textes (te_ptext) ermitteln:
8

Adr%L= LPEEK(LPEEK(Baum%L+24* Index%L+12))

! Nullbyte anhängen:

 356 Atari ST Intern 2

A$=Text$+ CHR$(O)
a

FOR 1%L=1 TO LENCAS)

POKE Adr%L+1%L-1, ASC(MID$(CA$,IAL,1))

NEXT IAL

RETURN

DEF PROC Read Text(Baum%L, Index%L,R Text$)
LOCAL Adr%L, I%L

' te_ptext ermitteln:
8

Adr%L= LPEEK(LPEEK(Baum&L+24* I ndex%L+12))
J

Text$=""
1%L=0
4

WHILE PEEKCAdrAL+IZL)<>0! bis zum Nullbyte lesen

Text$=Text$+ CHRS(PEEK(Adr&L+IZL))

I%L=1%L+1

WEND

RETURN

C
NETTER

/* Dialogbox laden, anzeigen, Radiobuttons verarbeiten */

/* Megamax Laser C MP 14-11-88 DIALOG3.C */
NV TEN

#include <obdefs.h> /* GEM-Objekt-Definitionen */

#include "gem_inex.c"

#include "dialog3.h" /* Header-File der Resource-Datei */

OBJECT *baum_adr; /* pointer auf das erste Onjekt eines Baumes */

int knopf;

char str[80],

frq[20];

select (bawm, index) /* schaltet Button 'object' ein */

OBJECT bawml];

int index;

{

 GEM-Programmierung 357

baumLindex].ob_state }= 1; /* Bit 0 in ob_state setzen */
}

deselect (baum, index) /* schaltet Button ‘object' aus */OBJECT baum[];

int index;

{
baum[index] .ob_state &= -2; /* Bit 0 in ob_state löschen */

>

int selected (baum, index) /* true, wenn objekt selektiert wurde */

OBJECT baum[];

int index;

{
return (baum[index] .ob state && 1); /* Bit 0 zurückgeben */

>

write_text (baum, index, string) /* Andert TEXT-Objekt */

OBJECT bawml];
int index;

char stringl];

{

TEDINFO *ted;

ted = (TEDINFO *) baum[index] .ob_spec;

strcpy (ted->te_ptext, string);

/* ted->te_ptext entspricht: (*ted).te_ptext */

>

read text (baum, index, string) /* Liest TEXT-Objekt */

OBJECT baum[];

int index;

char stringl);

{

TEDINFO *ted;

ted = (TEDINFO *) baum[index] .ob_spec;

strepy (string, ted->te_ptext);

}

show_dialog (baum) /* Darstellen einer Dialogbox */

OBJECT *baum;

{
int x, y, wW, h;

 358 Atari ST Intern 2

/* Formular auf dem Bildschirm zentrieren. Dabei werden nur */

/* Koordinaten intern an die Bildschirmauflösung angepaßt, */

/* es wird also noch nichts gezeichnet. Außerdem erhalten */

/* wir die zukünftigen Koordinaten der Dialogbox. */

form_center (baum, &x, &y, &w, &h);

/* Fensterrander etc. retten lassen: */

form_dial (0, x, y, w, h, xX, y, Ww, h);

/* Zeichnen eines 'Zoom'-Rechtecks */

form_dial (1, 25, 25, 25, 25, x, y, w, h);

/* Zeichnen des Objektbaumes selbst */

/* Start bei Objekt Nr. O (Wurzel, äußerer Kasten) */

/* Tiefe: max. 12 Ebenen (willkürlich) */

objc_draw (baum, 0, 12, x, y, Ww, h);

hide_dialog (baum)

OBJECT *bawm;
{
int x, y, Ww, h;

/* Nochmal die Koordinaten erfragen: */

form_center (baum, &x, &y, &w, &h);

/* Zeichnen eines kleiner werdenden Rechtecks */

form_dial (2, 25, 25, 25, 25, x, y, w, h);

/* Fensterränder wieder herstellen lassen und Redraw- */

/* Meldung an alle zerstörten Fenster veranlassen */

form_dial (3, x, y, w, h, X, y, W, h);

main()

{

gem_init();

/* Resource-File (DIALOG3.RSC) laden */

if (rsrc_load ("DIALOG3.RSC") == 0)

form_alert (1, "[3] [Kein RSC-File!] [Ende]");

else

{
/* Startadresse des (0 =) Baums DIALOG festellen */

rsrc_gaddr (0, DIALOG, &baum_adr);

 GEM-Programmierung 359

/* Einen Dafault-Button setzen (hier: UKW) */

select (baum_adr, UKW);

/* Dialogbox anzeigen lassen: */

show_dialog (baum_adr);

/* Dialog abarbeiten lassen, kein EDIT-Element */

knopf = form_do (baum_adr, 0);

/* Status 'SELECTED' des gedrückten Buttons aufheben */

deselect (baum_adr, knopf);

/* Dialogbox wieder verschwinden lassen */

hide dialog (baum_adr);

/* Knöpfe auswerten: */

if (selected (baum_adr, UKW))

strepy (frq, "Ultrakurzwelle");

if (selected (baum_adr, MW))

strcpy (frq, "Mittelwelle");

if (selected (baum_adr, KW))

strcpy (frq, "Kurzwelle");

if (selected (baum_adr, LW))

strcepy (frq, "Langwelle");

strepy (str, "{1] [Sie haben den Frequenzbereich|");
strceat (str, frq);

strcat (str, " ausgewählt!] [Ja!]");

form_alert (1, str);

/* Resource-File aus dem Speicher werfen: */

rsrc_free();

>

gem_exit();
>

Assembler

; Dialogbox laden, anzeigen, Radio-Buttons verarbeiten

; Assembler MP 17-11-88 DIALOG3.Q

it —
 gemdos

360

DIALOG

MW

UKW

KW

LW

ENDE

main:

i

o
u

fF
NM
W

©

Atari ST Intern 2

:Konstanten aus DIALOG3.H2

INCLUDE 'GEM_INEX.Q'

TEXT

jsr

; Pfeil als Mauszeiger:

move .wW

move.W

move .W

move .wW

clr.w

clr.w

jsr

gem_init

#78,control

#1,control+2

#1, control+4

#1,control+6

control+8

int_in

aes

; rsrc_load:

move .w

clr.w

move .W

move .W

clr.w

move. |

jsr

tst.w

beq

#110, control

control+2

#1, control+4

#1, control+6

control+8

#rscname,addr_in

aes

int_out

rscerr

;graf_mouse

30 fur Pfeil

‚Fehler?

;‚ rsrc_gaddr ermittelt Startadresse des Dialogs:

move .w

move .W

move .W

clr.w

move .w

clr.w

move .W

jsr

move. |

#112,control

#2,control+2

#1,control+4

control+6

#1,control+8

int_in 0 für ‘Baum gesucht!

#DIALOG, int_in+2 ;Index des Baumes

aes

addr_out,baum_adr ‚Ergebnis: die Startadresse

; Einen Default-Button (UKW) setzen:

n_ukw:

n_mw:

n_kw:

n_lw:

cpy_lp:

 GEM-Programmierung 361

move .wW

jsr

jsr

; form_do

move .W

move .W

move .W

move .W

clr.w

clr.w

move. |

jsr

move .W

jsr

jsr

#UKW, knopf

select

show_dialog ‚Anzeigen des Bawmes

läßt Dialog abarbeiten:

#50,control

#1,control+2

#1,control+4

#1,control+6

control+8

int_in skein Edit-Feld

baum_adr,addr_in

aes

int_out, knopf ;gedrückter Knopf

deselect ;‚Selected-Status löschen

hide_dialog ;‚Dialogbox vom Bildschirm entfernen

; Knöpfe auswerten:

move.W

jsr

beq.s

moveq.L

move.w

jsr

beq.s

moved. l

move .w

jsr

beq.s

moved. l

move.W

jsr

beq.s

moved. l

asl.w

lea

movea. l

lea

move .b

bne.s

HUKW, dO

selected Knopf gesetzt?

n_ukw

#0 ,d1

#MW , dO

selected

n_mw

#1,d1

#KW, dO

selected

n_kw

#2 ,d1

#LW,d0

selected

n_lw

#3 ,d1

#2,d1 ‚mal 4

frqtab, a0 ;Tabelle mit Zeiger auf Strings

0¢a0,d1.w),a0 ‚String mit Frequenzname an

form_fort,al ;form_alert-String anhängen

(a0)+,(a1l)+

cpy_\p

 362 Atari ST Intern 2

subq. l #1,a1 ;Nullbyte überschreiben

lea form_end, a0 ‚mit dem Rest des Stringscpy_l2:

move.b (a0)+,(al)+

bne.s cpy_l2

lea form_anf , a0

jsr form_alert ‚Box anzeigen

; rsrc_free:

move.w -#111,control

clr.w control+2

move .wW #1,control+4

clr.w control+6

clr.w control+8

jsr aes

quit: jsr gem_exit

clr.w -(sp)

trap #gemdos

rscerr: lea errtxt,a0

jsr form_alert ;Warnhinweis ausgeben

bra quit

show_dialog:

; Dieses Unterprogramm malt einen Objekt-Baum auf den

; Bildschirm. Dazu muß sich dessen Startadresse unter

; 'baum_adr' befinden.

; form_center

move .wW

clr.w

move .W

move .w

clr.w

move. |

jsr

move .W

move .wW

move .W

move .w

#54,control

control+2

#5, control+4

#1, control+6

control+8

baum_adr,addr_in

aes

int_out+2,d4 ;Koordinaten sichern

int_out+4,d5

int_out+6,d6

int_out+8,d7

; form_dial rettet Fensterränder etc. (0)

GEM-Programmierung 363

sUnterfunktion 0

; keine Werte für das kleine Rechteck fo_dilittlx/y/w/h

move .W #51,control

move .W #9, ,control+2

move.W #1,control+4

clr.w control+6

clr.w control +8

clr.w int_in

move .W d4, int_in+10

move . W d5, int_in+12

move.w d6, int_in+14

move.w d7,int_in+16

jsr aes

‚großes Rechteck do_dibigx/y/w/h

; form_dial zeichnet 'Zoom'-Rechteck (1):

move .W

move.W

move .W

clr.w

clr.w

move .W

move .W

move .W

move.

move.

move.

move.

move .W

move .W

jsr

x
z
x
X
 x

#51,control

#9 ,control+2

#1,control+4

control +6

control+8

#1, int_in

d4, int_in+2

d5,int_int4

#1, int_in+6

#1, int_in+8

d4, int_in+10

d5, int_in+12

d6, int_in+14

d7, int_in+16

aes

;Unterfunktion 1

Größe des kleinen Rechtecks

‚großes Rechteck do_dibigx/y/w/h

; Dialog zeichnen mit objc_draw:

move .wW

move .wW

move .W

move .wW

clr.w

clr.w

move .W

move .wW

move .W

move .W

move .wW

move. |

jmp

hide_dialog:

#42,control

#6, control+2

#1,control+4

#1, control+6

control+8

int_in

#12, int_in+2

d4, int_int4

d5,int_int6

d6, int_int8

d7, int_in+10

baum _adr ,addr_in

aes

:O=Wurzelobjekt zuerst zeichnen

‚max. 12 Ebenen (willkürlich)

; Entfernt das Formular vom Bildschirm.

364 Atari ST Intern 2

; Adresse des Objektbaums wieder in baum_adr

; form_center

move .wW

clr.w

move .w

move .wW

clr.w

move. |

jsr

move .wW

move.w

move .wW

move. WwW

#54 ‚control

control+2

#5 ,control+4

#1,control+6

control+8

baum _adr,addr_in

aes

int_out+2,d4

int_out+4,d5

int_out+6,d6

int_out+8,d7

‚Koordinaten sichern

; form_dial zeichnet schrumpfendes-Rechteck (2):

move .W

move .W

move .w

clr.w

clr.w

move.

move.

move.

move.

move

move.

move.

move.

move.

jsr

E
L

EX
E
E
E

L
E
E

XL

#51,control

#9 ,control+2

#1,control+4

control+6

control+8

#2, int_in

d4, int_int2

d5, int_int4

#1, int_in+6

#1, int_in+8

d4, int_in+10

d5, int_in+12

d6, int_in+14

d7, int_in+16

aes

sUnterfunktion 2

Größe des kleinen Rechtecks

‚großes Rechteck do_dibigx/y/w/h

; form_dial sendet Redraw-Meldungen an Fenster (3)

move .W

move .W

move. Ww

clr.w

clr.w

move .wW

#51,control

_#9,control+2

#1, control+4

control+6

control+8

#3, int_in :Unterfunktion 3

; keine Werte für das kleine Rechteck fo _dilittlx/y/w/h

move .W

move .W

move .W

move ..W

jmp

d4,int_in+10

d5, int_in+12

d6, int_in+14

d7, int_in+16

aes

‚großes Rechteck do_dibigx/y/w/h

select:

deselect:

selected:

 GEM-Programmierung 365

; Schaltet den Button 'knopf' auf 'selected'-Status

; Objektbaum muß in baum_adr stehen

movea.| baum_adr,a0

move.W knopf ,dO ‚Index des Objekts

mulu #24 ,d0 :* 24 (jedes Objekt hat 24 Bytes)

ori.w #1,10(¢a0,d0.w) ;Bit 0 (selected) setzen

rts

; Schaltet den Button 'knopf' auf 'nicht-selected'-Status

; Objektbaum muß in baum_adr stehen

movea.| baum_adr,a0

move .W knopf , d0 ‚Index des Objekts

mulu #24 ,d0 ‚* 24 (jedes Objekt hat 24 Bytes)

andi .w #-2,10(a0,d0.w) ;Bit 0 (selected) löschen

rts

; Zero-Flag wird gesetzt, wenn Objekt (Index in dO) nicht

; selektiert ist. Aadresse des Objektbaums in baum_adr.

movea.| baum_adr,a0

mulu #24 ,d0 ‚Index * 24 = Offset

btst #0,11(a0,d0.w) ;btst testet Bytel!!, daher 11

rts

form_alert:

; Zeigt Alert-Box. Beschreibender String steht ab a0.

; Knopf Nr. 1 ist Default-Button.

move .W #52, control

move .w #1, control+2

move .W #1, control+4

move .wW #1, control+6

clr.w control+8

move .W #1,int_in ;‚Default-Button

move. | a0,addr_in

jmp aes

write_text:

i Schreibt String in Text- oder Edit-Objekt (Index in dQ)

; String in a0, Objektbaum in baum_adr

 366

movea. |

mulu

movea. l

movea. l

move.b

bne.s

rts

read_text:

Gegenstück zu write_text.

baum_adr, a1

#24,d0

12¢a1,d0.w),al

(a1),al

(a0)+,(al)+
wrt_lp

:
; zu übergeben.

movea.|

mulu

movea. |

movea. l

rd_lp: move.b

bne.s

rts

DATA

frqtab:

DC.b

errtxt: DC.b

f_ukw: DC.b

f_mw: DC.b

f_kw: DC.b

f_lw: DC.b

form_end: DC.b

form_anf: DC.b

form_fort:

BSS

DS.w 30

baum_adr: DS.l 1

knopf : DS.w 1

END

baum _adr,al

#24 ,d0

12¢a1,d0.w),al

(al),al

(a1)+,(a0)+
rd_lp

Atari ST Intern 2

Adresse des TEDINFO-Blocks

‚te_ptext enthält den Textwrt_lp:

Zieladresse ist in a0

DC.L f_ukw, f_mw,f_kw,f_lw ; Startadressen der Stringsrscname:

'DIALOG3.RSC',0

' [3] [Kein RSC-File!] [Ende] ',0

'Ultrakurzwelle',O

'Mittelwelle',O

'Kurzwelle',O

'Langwelle',0

' ausgewahlt!] [Ja!]',0

'[1] [Sie haben den Frequenzbereich}'

‚Platz für das Ende des Alert-Strings

Zum Abschluß möchte ıch Ihnen noch eine nette Möglichkeit vorstellen,
um die eigenen Programme mit Dialogboxen nicht nur komfortabel zu
machen, sondern auch sehr professionell aussehen zu lassen.

 GEM-Programmierung 367

Oft müssen in einem Programm irgendwelche Zahlen abgefragt werden.

Der Bereich der möglichen Zahlen ist dabei nicht immer groß. Wenn Sie
also in Ihrer Textverarbeitung die Zahl der Zeilen pro Seite erfragen

wollen, dann wird der Benutzer Werte von vielleicht 30 bis 60 angeben.

Sie könnten dazu ein Edit-Objekt für numerische Eingaben (also mit
te_pvalid = 99) einrichten und den Benutzer die Eingabe über die Tasta-

tur tätigen lassen. In GEM-Programmen findet man jedoch oft eine an-

dere Möglichkeit, solche Zahlen einzustellen: Mit der Maus können zwei
Pfeile angeklickt werden, einer nach oben und einer nach unten. Mit
diesen Pfeilen kann die Zahl, die zur Kontrolle immer mit in der Dialog-
box erscheint, vergrößert und verkleinert werden. Das hat zwei Vorteile:

Erstens kann der Benutzer die Hand auf der Maus lassen, und zweitens
ist es einfacher, falsche Eingaben auszuschließen: Wenn nämlich die ma-
ximale Zeilenzahl für eine Seite 60 beträgt, dann können Sie jede Ver-
größerung über 60 hinaus sperren - bei Edit-Objekten geht das nicht,

dort können Sie nur die Zahl der Stellen einer Eingabe begrenzen.

Was brauchen wir für eine solche Dialogbox? Zunächst einmal die Pfeile:
Das sind Buttons. Diese Buttons sollen aber, wenn sie angeklickt werden,

nicht mehr selektiert werden. Deshalb müssen Sie ım RCS das Flag SE-
LECTABLE löschen. Statt dessen müssen diese Objekte einen Exit-Cha-
rakter haben, denn beim Klick auf die Buttons muß unsere Applikation

kurzzeitig die Kontrolle erhalten; schließlich müssen wir ja die Zahl

entsprechend den Wünschen des Anwenders verändern. Allerdings hat das

EXIT-Flag, wie wir es bisher kennen, die dumme Eigenschaft, daß der

Mausknopf erst wieder losgelassen werden muß, bevor form _do wirklich

beendet wird. Außerdem ist ein Exit-Button dicker als normale Knöpfe,

und das sieht um die kleinen Pfeile herum nicht gut aus. Deshalb gibt es
optional zum EXIT-Flag noch die Eigenschaft TOUCHEXIT, das heißt
etwa Ende bei Berührung. Dieses Flag erfüllt all unsere Anforderungen:
Der Knopf wird nicht zu dick, und form _do wird beendet, sobald der

Mausknopf gedrückt ist (nicht unbedingt wird!). Übrigens: Pfeile in alle
Himmelsrichtungen erhalten Sie im RCS dadurch, daß Sie die Buchstaben
A, B, C und D zusammen mit der Taste Control drücken.

Auch hierzu möchte ich wieder ein Beispielprogramm geben. Die Dialog-

box sieht so aus: |

 368 Atari ST Intern 2 ——

Zahl mit Knöpfen einstellen [IT Boxtext

IL Box

aktuellert || Strings
EN Herti 3

[Fertig}s. B Text

N

Button Buttons mit Flag
'Touchexit'

Wie gesagt: Die beiden Pfeil-Knöpfe sind weder EXIT- noch SELEC-

TABLE-Buttons. Ihr einziges Objekt-Flag ist TOUCHEXIT. Die Knöpfe

habe ich UP und DOWN genannt. Letzterer Name ist in GFA-BASIC lei-

der nicht zu gebrauchen, deshalb heißt der Button hier DN. Der normale

Default- und Exit-Button heißt FERTIG, und das Text-Feld (kein

String!), in dem Sie hier eine Null sehen, heißt AKTUELL. Das Text-
Objekt hat nur diese eine Ziffer.

Das Programm soll nun die Dialogbox anzeigen und mit form_do auf

einen Knopfdruck warten. Wenn FERTIG gedrückt wurde, dann beenden

wir das Programm. Wurde aber UP oder DOWN betätigt, so erhöhen/er-

niedrigen wir die aktuelle Zahl um 1, prüfen, ob sie noch im zulässigen

Bereich liegt (in unserem Fall sind Zahlen von O bis 9 erlaubt) und

schreiben die so erhaltene neue Zahl mit write _ text in das Text-Objekt
AKTUELL. Nur: Damit steht die Zahl noch nicht auf dem Bildschirm;
write _text schreibt sie ja nur in den Objektbaum. Um die Änderung
auch auf dem Bildschirm erkennen zu lassen, müssen wir den Baum mit

objce_draw noch einmal neu zeichnen. Allerdings nicht den ganzen Baum,
sondern nur das Text-Objekt AKTUELL. Deshalb können wir beim
objc_draw-Aufruf das erste zu zeichnende Objekt angeben. Es wird
dann nur dieses Objekt mit seinen Unterobjekten gezeichnet, und auch
die maximale Unterobjekttiefe, also die Zahl der untergeordneten Ob-

jektebenen, die gezeichnet werden sollen, läßt sıch, das habe ıch eingangs
des Kapitels 5.9.2 schon einmal erwähnt, bei objc_draw angeben. Wir
wählen hier eine Null; damit wird das Objekt AKTUELL ohne Unter-
objekte gezeichnet - genau das, was wir brauchen. Anschließend gehen

 GEM-Programmierung 369

wir (nach einer kurzen Pause durch evnt_ timer, um die Zahl nicht allzu
schnell springen zu lassen) wieder in die form _do-Routine und warten

auf den nachsten Knopfdruck.

Eine kleine Anderung gegentiber den bisherigen Programmen ist noch zu

beachten: Da wir objc_ draw auch im Hauptprogramm aufrufen, benöti-

gen wir die Koordinaten der Dialogbox, die wir gewöhnlich in den Un-
terprogrammen als Abfallprodukt von form_ center erhalten haben. Dazu

gibt das Unterprogramm show_ dialog einfach die Koordinaten in Rück-
gabevariablen (bzw. im BSS-Segment in Assembler) an das Hauptpro-

gramm zurück.

GFA-BASIC

' Dialogbox anzeigen / Touchexit-Buttons (UP/DOWN)

' GFA-BASIC MP 16-12-88 DIALOG4.GFA
I

DEFINT "a-z" 1 alle Variablen 4-Byte-Integer
A

dialog=0 ! Konstanten aus DIALOG4.H2

aktuel l=5 |

dn=7 I (GFA-BASIC würde aus DOWN machen: DO WHILE)

up=6

fertig=8

VOID APPL_INIT()
i

IF RSRC_LOAD("DIALOG4.RSC")=0
VOID FORM ALERT(1,"[3] [Kein Rsc-File!] [Ende]")

ELSE

' Startadresse des Baumes erfragen:
8

VOID RSRC_GADDR(O,dialog,baum_adr)

' Ausgabefeld (aktuell) initialisieren:
i

write_text(baum_adr,aktuell,"0")
zahl=0

' Dialogbox anzeigen lassen, Koordinaten merken:
i

GOSUB show _dialog(baum_adr,x,y,w,h)

REPEAT

' Dialogbox abarbeiten lassen; 'eingabe' erstes Edit-Feld

 370 Atari ST Intern 2

knopf=FORM_DO(baum_adr, eingabe)
i

SELECT knopf

CASE up
INC zahl

CASE dn

DEC zahl

ENDSELECT

' Auf gultigen Bereich Uberprufen:
I ~

SELECT zahl

CASE 10

zahl=0

CASE -1

zahl=9

ENDSELECT

' Zahl in das Formular schreiben:
6

write_text(baum_adr,aktuell,STRS$(zahl))

VOID OBJC_DRAW(baum_adr,aktuell,0,x,y,w,h) ! O=nur aktuell zeichnen

' Kurze Pause (0.2 Sekunden):
J

VOID EVNT_TIMER(200)

UNTIL knopf=fertig
1

ı Selected-Status löschen:
J

deselect (baum_adr, knopf)

' Dialogbox wieder verschwinden lassen:
4

GOSUB hide_dialog(baum_adr)

' Resource-File aus dem Speicher entfernen:
'

VOID RSRC_FREEC)

ENDIF

VOID APPL_EXIT()
ı

END
'

PROCEDURE select(baum, index)

' Bit 0 setzen:

 GEM-Programmierung 371

OB_STATE(baum, index)=0B_STATE(baum, index) OR 1
RETURN

PROCEDURE deselect(bawm, index)

ı Bit 0 löschen:

OB_STATE(Cbawm, index)=0B_STATE(baum, index) AND -2

RETURN
5

8

DEFFN selected(baum, index)=0B_STATE(bawm, index) AND 1
8

PROCEDURE show_dialog(baum, VAR x,y,w,h)

LOCAL x,y,w,h
8

' Formular auf dem Bildschirm zentrieren (wird dabei noch

' nicht gezeichnet)
1

VOID FORM CENTER(baum,x,y,W,h)

' Fensterrander etc. retten lassen:

1

VOID FORM _DIAL(O,x,y,w,h,x,y,wW,h)

' Zeichnen eines 'Zoom'-Rechtecks:
1

VOID FORM_DIAL(1,25,25,25,25,x,y,w,h)
i

' Zeichnen des Formulars: |

' Start bei Objekt Nr. O (Wurzelobjekt, AauBerer Kasten/Rahmen)

' Tiefe: max. 12 Ebenen (willkürlich)

VOID OBJC_DRAW(baum,0,12,x,y,w,h)
8

RETURN
t

PROCEDURE hide_dialog(baum)

LOCAL x,y,w,h

' Nochmal die Koordinaten erfragen:
a

VOID FORM_CENTER(baum,x,y,w,h)

' Zeichnen eines kleiner werdenden Rechtecks:
1

VOID FORM DIAL(2,25,25,25,25,x,y,w,h)

' Fensterrander wiederherstellen und Redraw-Meldung

 372 Atari ST Intern 2

ı an alle zerstörten Fenster veranlassen:
1

VOID FORM DIAL(3,x,y,W,h,x,y,W,h)
1

RETURN
t

PROCEDURE write_text(baum, index, text$)

LOCAL adr,i,a$

' Startadresse des reinen Textes (te_ptext) ermitteln:
1

adr=LPEEK(OB_SPEC(baum, index))

' Nullbyte anhdngen:

a$=text$+CHR$(O)
i

FOR i=1 TO LEN(a$)
POKE adr+i-1,ASC(MID$(a$,i,1))

NEXT i

RETURN

PROCEDURE read_text(baum, index,VAR text$)

LOCAL adr, i

' te_ptext ermitteln:
6

adr=LPEEK(OB_SPEC(baum, index))
8

text$s="N

1=0
a

WHILE PEEKCadr+i)<>0 ! bis zum Nullbyte lesen

text$=textS+CHRS(PEEK(adr+i))

INC i

WEND

RETURN
f

Omikron-BASIC

' Dialogbox anzeigen / Touchexit-Buttons (UP/DOWN)

' GFA-BASIC MP 16-12-88 DIALOG4 .GFA

Dialog&L=0! Konstanten aus DIALOG4.H2

Aktuel l%L=5

 GEM-Programmierung

Down%L=7

UpAL=6

Fertig%L=8

Appl_Init
‘

Rsrc_Load("DIALOG4.RSC",Ret%L)
IF Ret%L=0 THEN

FORM_ALERT (1,"[3] [Kein Rsc-File!] [Ende] ")

ELSE

ı Startadresse des Baumes erfragen:
t

Rsrc_Gaddr(0,DialogAL ‚Baum _AdrXL)

' Ausgabefeld (aktuell) initialisieren:
8

Write_Text(Baum_Adr%L,Aktuell%L,'"0")

Zahl%L=0

' Dialogbox anzeigen lassen, Koordinaten merken:
f

Show_Dialog(Baum_AdrXL,X%AL,Y%L,W%L,HAL)

REPEAT

' Dialogbox abarbeiten lassen

- Form_Do(0,Baum_AdrXL ,KnopfXL)
8

IF KnopfXL=UpXL THEN Zahl%L=ZahlXL+1

IF Knopf%L=Down%L THEN Zahl%L=Zahl%L- 1
8

' Auf gültigen Bereich überprüfen:
i

IF ZahlXL=10 THEN ZahlXL=0

IF ZahlAL=-1 THEN ZahlAL=9

' Zahl in das Formular schreiben:
0

Write_Text(Baum_Adr%L,Aktuell%L, RIGHT$C STR$CZahlX%L),1))

Objc_Draw(Aktuell%L,0,X%L,Y%AL,WAL,H%AL,Baum_Adr%L)' O=keine Unterobj.

ı Kurze Pause (0.2 Sekunden):
A

Evnt_Timer(200)

UNTIL Knopf%L=FertigAL
0

' Selected-Status löschen:
A

373

 374 Atari ST Intern 2

Deselect(Baum Adr%L,KnopfXL)

' Dialogbox wieder verschwinden lassen:
t

Hide Dialog(Baum_AdrZL ,X4L,YAL ,WAL, HAL)

' Resource-File aus dem Speicher entfernen:
8

Rsrc_Free
i

ENDIF

Appl_Exit
I

END

DEF PROC Select(Baum&L, Index.)

' Bit 0 setzen:

WPOKE Baum%L+24*Index%L+10, WPEEK(Baum%L+24*Index%L+10) OR 1

RETURN

DEF PROC Deselect(Baum%L , Index%L)

' Bit O0 Löschen:

WPOKE Baum%L+24* I ndex%L+10, WPEEK(Baum4L+24* I ndex4L+10) AND -2RETURN
t

i

DEF FN Selected&%L(BaumAL, Index&’L)= WPEEK(Baum&L+24* Index%L+10) AND 1

t

ı

DEF PROC Show _Dialog(BaumfL,R X%L,R Y%L,R WAL,R HAL)
i

' Formular auf dem Bildschirm zentrieren (wird dabei noch

' nicht gezeichnet)

Form_Center(Baum4L ,X4L ,YAL ,WAL , HAL)

' Fensterränder etc. retten lassen:
1

Form Dial(0,X4L, YL ,WAL , HAL)

' Zeichnen eines 'Zoom'-Rechtecks:
1

Form_Dial(1,X%L,Y%L ,W%L , H%L)
'

' Zeichnen des Formulars:

' Start bei Objekt Nr. O (Wurzelobjekt, äußerer Kasten/Rahmen)

ı Tiefe: max. 12 Ebenen (willkürlich)

 GEM-Programmierung 375

Objc_Draw(0,12,X4L,YAL,WAL, HAL, Baum.)
t

RETURN
a

6

DEF PROC Hide Dialog(BaumAL ,XAL,YAL, WAL , HAL)

ı Zeichnen eines kleiner werdenden Rechtecks:
1

Form Dial(2,X4L,YAL,WAL , HAL)
0

' Fensterrander wiederherstellen und Redraw-Meldung

' an alle zerstorten Fenster veranlassen:

Form Dial(3,X4L,YAL, WAL , HAL)
t

RETURN
'

DEF PROC Write_Text(BaumAL , IndexXL,Text$)

LOCAL Adr%L,IAL,A$

' Startadresse des reinen Textes (te_ptext) ermitteln:
a :

Adr%L= LPEEK(LPEEK(Baum%L+24*Index%L+12))

ı Nullbyte anhängen:

A$=Text$+ CHR$(O)
1

FOR I%L=1 TO LENCAS)

POKE Adr%L+I%L-1, ASC(MIDCA,I%L,1))

NEXT IAL

RETURN

DEF PROC Read_Text(Baum%L ,IndexXL,R Text$)

LOCAL AdrXL,I%L

' te_ptext ermitteln:
I

Adr%L= LPEEK(LPEEK(Baum%L+24*Index%L+12))

Text$=""

IZL=0
4

WHILE PEEKCAdr&L+1X%L)<>0' bis zum Nullbyte lesen

Text$=Text$+ CHR$C PEEK(Adr%L+I%L))

1I%XL=1%L+1

WEND

 376 Atari ST Intern 2

RETURN

C

NT TITTEN

/* Dialogbox anzeigen / Touchexit-Buttons (UP/DOWN) */

/* Megamax Laser C MP 14-11-88 DIALOG4.C */
NETTE]

#include <obdefs.h> /* GEM-Objekt-Definitionen */

#include "gem_inex.c"

#include "dialog4.h" /% Header-File der Resource-Datei */

OBJECT *baum_adr; /* pointer auf das erste Objekt eines Baumes */

int knopf,

zahl,

X, Y, W, hh;
char eingabe [80],

*str = NON.

select (baum, index) /* schaltet Button ‘object! ein */

OBJECT bawml];
int index;

{
baum[index].ob state |= 1; /* Bit 0 in ob state setzen */

}

deselect (baum, index) /* schaltet Button !object! aus */OBJECT baum[];

int index;

{

baum[index] .ob_state &= -2; /* Bit O0 in ob_state löschen */

}

show_dialog (baum, x, y, w, h) /* Darstellen einer Dialogbox */

OBJECT *baum;

int *x, *y, *w, *h;

{

/* Formular auf dem Bildschirm zentrieren. Dabei werden nur */

/* Koordinaten intern an die Bildschirmauflösung angepaßt, */

/* es wird also noch nichts gezeichnet. Außerdem erhalten */

/* wir die zukünftigen Koordinaten der Dialogbox. */

form_center (baum, x, y, wW, h);

/* Fensterränder etc. retten lassen: */

 GEM-Programmierung 377

form_dial (0, *x, *y, *w, *h, *x, *y, *w, *h);

/* Zeichnen eines 'Zoom'-Rechtecks */

form_dial (1, 25, 25, 25, 25, *x, *y, *w, *h);

/* Zeichnen des Objektbawmes selbst */

/* Start bei Objekt Nr. O0 (Wurzel, äußerer Kasten) */

/* Tiefe: max. 12 Ebenen (willkürlich) */

objc_draw (baum, 0, 12, *x, *y, *w, *h);

hide_dialog (baum)

OBJECT *baum;

{
int x, y, Ww, h;

/* Nochmal die Koordinaten erfragen: */

form_center (baum, &x, &y, &w, &h);

/* Zeichnen eines kleiner werdenden Rechtecks */

form_dial (2, 25, 25, 25, 25, x, y, w, h);

/* Fensterränder wieder herstellen lassen und Redraw- */

/* Meldung an alle zerstorten Fenster veranlassen */

form_dial (3, x, y, wW, h, xX, y, Ww, h);

>

write_text (baum, index, string) /* Ändert TEXT-Objekt */

OBJECT bawml];

int index;

char string[];

{
TEDINFO *ted;

ted = (TEDINFO *) baum[index] .ob spec;

strepy (ted->te_ptext, string);

/* ted->te_ptext entspricht: (*ted).te_ptext */

>

main()

{

gem_init();

/* Resource-File (DIALOG4.RSC) laden */

if (rsrc_load ("DIALOG4.RSC") == 0)

 378 Atari ST Intern 2

form_alert (1, "[3] [Kein RSC-File!] [Ende]");

else

{

/* Startadresse des (0 =) Baums DIALOG festellen */

rsrc_gaddr (0, DIALOG, &baum_adr);

/* Ausgabefeld (AKTUELL) initialisieren: */

write_text (baum_adr, AKTUELL, "0");

/* Dialogbox anzeigen lassen: */

show_dialog (baum_adr, &x, &y, &w, &h);

do

{

/* Dialog abarbeiten lassen */

knopf = form_do (baum_adr, 0);

switch (knopf) /* Pfeil-Knopfe abfragen */

{
case UP: zahl++;

break;

case DOWN: zahl--;

break;

>

Switch (zahl) /* Auf Grenzen prüfen */

{
case -1: zahl = 9;

break;

case 10: zahl = 0;

break;

}

/* Zahl in das Feld schreiben: */
str[0] = '0'! + zahl;

write_text (baum_adr, AKTUELL, str);

/* nur das Textfeld neu zeichnen lassen (0 Unter-Ebenen) */

objce_draw (baum adr, AKTUELL, 0, x, y, w, h);

/* Kurze Pause (0.2 Sekunden) */
evnt_timer (200, 0);

> while (knopf != FERTIG);

/* Knopf deselektieren */

deselect (baum_adr,knopf);

 GEM-Programmierung 379

/* Dialogbox wieder verschwinden lassen */

hide_dialog (baum_adr);

/* Resource-File aus dem Speicher werfen: */

rsrc_free();

>

gem_exit();
>

Assembler

;
; Dialogbox anzeigen / Touchexit-Buttons (UP/DOWN)

; Assembler MP 17-11-88 DIALOG4.Q

gemdos = 1

DIALOG = 0 sKonstanten aus DIALOG4.H2

AKTUELL = 5

DOWN = 7

UP = 6

FERTIG = 8

INCLUDE 'GEM_INEX.Q'

TEXT

main: jsr gem_init

; Pfeil als Mauszeiger:

move.W #78,control ;graf_mouse

move .W #1, control+2

move .W #1,control+4

move .W #1, control+6

clr.w control+8

clr.w int_in ‚0 für Pfeil

jsr aes

; rsrc_load:

move .wW #110, control

clr.w control+2

move .w #1,control+4

mMove.W #1,control+6

clr.w control+8

move. l #rscnaine,addr_in

 380

Loop:

not_up:

jsr

tst.w

beq

aes

int_out

rscerr

Atari ST Intern 2

‚Fehler?

‚ rsrc_gaddr ermittelt Startadresse des Dialogs:

move.W

move.W

move .w

clr.w

move .wW

clr.w

move .wW

jsr

move. |

#112,control

#2, control+2

#1,control+4

control+6

#1,control+8

int_in

#DIALOG, int_int2

aes

addr_out,baum_adr

‚0 für '!Baum gesucht!

‚Index des Baumes

‚Ergebnis: die Startadresse

» Ausgabefeld (AKTUELL) initialisieren:

lea

move.W

jsr

jsr

; form_do

move .W

move .W

move .wW

move .W

clr.w

clr.w

move. |

jsr

move.W

cmpi.W

beq

cmpi .W

bne

addq.b

cmpi.b

ble.s

move.b

bra

cmpi.W

bne

ziffstr,a0

#AKTUELL , dO
write text

show_dialog

zeigt anfangs auf '0',0

‚Anzeigen des Baumes

läßt Dialog abarbeiten:

#50, control

#1, control+2

#1,control+4

#1,control+6

control+8

int_in

baum _adr,addr_in

aes

int_out , knopf

#FERTIG, knopf

fine

#UP , knopf

not_up

#1,ziffstr

#'9' ziffstr

go_on

#'O' ziffstr

go_on

#DOWN , knopf

Loop

skein Edit-Feld

sgedriickter Knopf

;Knop 'UP' gedruckt?

‚dann 1 zur Ziffer addieren

‚auf Grenzen abchecken

2>9?

‚dann eine 0 draus machen

oder 'DOWN'?

‚nein, dann ignorieren

 GEM-Programmierung 381

subq.b #1,ziffstr ‚minus 1

cmpi.b #'O' ziffstr : <0?

bge.s go_on

move .b #'9' ziffstr ;dann eine 9 reinschreibengo_on:

lea ziffstr,a0 ‚Ziffer in Formular 'eintragen'

move .W #AKTUELL , dO

jsr write text

‚ objc_draw zeichnet AKTUELL neu/keine Unterobjekte (0)

move.W #42 control

move .w #6, control+2

move .wW #1,control+4

move .W #1,control+6

clr.w control+8

move .w #AKTUELL,int_in ;erstes Objekt ist Ziffer

clr.w int_in+2 ‚keine Unterobjekte

move .wW xX, int_int+4

move .W y,int_int+6

move.W w,int_int8

move.W h, int_in+10

move. | baum_adr, addr_in

jsr aes

; evnt_timer wartet 200 ms

move.W #24 control

move .W #2,control+2

move .w #1,control+4

clr.w control+6

clr.w control+8

move .W #200, int_in ; Low-Word

clr.w int_int2 ;und High-Word von 200

jsr aes

bra Loop

fine: jsr deselect ‚Selected-Status löschen

jsr hide_dialog sDialogbox vom Bildschirm entfernen

; rsrc_free:

move .w #111,control

clr.w control+2

move .W #1, control+4

clr.w control+6

clr.w control+8

 382

quit:

rscerr:

jsr

jsr

clr.w

trap

lea

jsr

bra

show_dialog:

=
e

S
e

B
S

n
s

=
e

=
e

=
e

move .wW

clr.w

move .wW

move .w

clr.w

move. l

jsr

move .wW

move .wW

move .wW

move .W

Atari ST Intern 2

aes

gem_exit

-(sp)
#gemdos

errtxt,a0

form_alert ;Warnhinweis ausgeben

quit

Dieses Unterprogramm malt einen Objektbaum auf den

Bildschirm. Dazu muß sich dessen Startadresse unter

"baum adr' befinden.

Neu: Die Koordinaten werden später noch im Hauptprogramm

benötigt und daher im bss-Segment gespeichert

(nicht mehr in Registern wie bisher)

form_center

#54 ,control

control+2

#5, control+4

#1, control+é6

control+8

baum_adr,addr_in

aes

int_out+2,x

int_out+4,y

int_out+6,w

int_out+8,h

;Koordinaten sichern

; form_dial rettet Fensterränder etc. (0)

move.W

move .W

move .w

clr.w

clr.w

clr.w

#51,control

#9,,control+2

#1,control+4

control+6

control+8

int_in ‚Unterfunktion 0

; keine Werte für das kleine Rechteck fo_dilittlx/y/w/h

move .W

move .W

move .W

move .W

x, int_in+10

y,int_in+12

w, int_int14

h, int_in+16

';großes Rechteck do_dibigx/y/w/h

. GEM-Programmierung

jsr aes

 383

; form_dial zeichnet 'Zoom'!-Rechteck (1):

move .W #51,control

move .w #9, ,control+2

move.W #1,control+4

clr.w control+6

clr.w control+8

move .w #1,int_in ‚Unterfunktion 1

move .W x, int_int2 Größe des kleinen Rechtecks

move .W y, int_int4

move .W #1, int_int6

move .W #1, int_int8

move .W x, int_in+10 ‚großes Rechteck do_dibigx/y/w/h

move .W y, int_in+12

move .W w,int_in+14

move.W h, int_in+16

jsr aes

; Dialog zeichnen mit objc_draw:

move.w° #42,control

move .W #6, control+2

move .w #1,control+4

move .W #1,control+6

clr.w control+8

clr.w int_in ‚O=Wurzelobjekt zuerst zeichnen

move.W #12, int_int2 ‚max. 12 Ebenen (willkürlich)

move.W x,int_int4

move.W y, int_int6

move .W Ww, int_int8

move .W h, int_in+10

move. l baum_adr,addr_in

jmp aes

hide_dialog:

; Entfernt das Formular vom Bildschirm.

; Adresse des Objektbaums wieder in baum_adr

; form_dial zeichnet schrumpfendes-Rechteck (2):

move .W #51, control

move .W #9 ,control+2

move .wW #1, control+4

clr.w control+6

clr.w control+8

move .W #2,int_in ‚Unterfunktion 2

move.W x, int_int2 :GroBe des kleinen Rechtecks

384

select:

deselect:

selected:

 Atari ST Intern 2

move .w y, int_int4

move .W #1, int_int6

move .w #1, int_int8

move .wW x, int_in+10 ‚großes Rechteck do_dibigx/y/w/h

move.W y, int_inti2

move .w Ww, int_int14

move .wW h, int_int+16

jsr aes

; form_dial sendet Redraw-Meldungen an Fenster (3)

move .wW #51,control

move . Ww #9 ,control+2

move .W #1,control+4

clr.w control+6

clr.w control+8

move .W #3, int_in sUnterfunktion 3

; keine Werte fur das kleine Rechteck fo dilittlx/y/w/h

move .W x, int_in+10 ;groBes Rechteck do_dibigx/y/w/h

move .W y, int_int12

move .W Ww, int_int14

move .W h, int_in+16

jmp aes

; Schaltet den Button 'knopf' auf 'selected'-Status

; Objektbaum muß in baum_adr stehen

movea.l baum_adr,a0

move .wW knopf ,d0 ‚Index des Objekts

mulu #24 ,d0 ‚* 24 (jedes Objekt hat 24 Bytes)

ori.w #1,10(a0,d0.w) ;Bit O (selected) setzen

rts

; Schaltet den Button 'knopf' auf 'nicht-selected'-Status

; Objektbaum muß in baum_adr stehen

movea.l baum_adr,a0

moVve.W knopf ,d0 ‚Index des Objekts

mulu #24 ,dO ‚* 24 (jedes Objekt hat 24 Bytes)

andi.w #-2,10Ca0,d0O.w) ;Bit O0 (selected) löschen

rts

‚; Zero-Flag wird gesetzt, wenn Objekt (Index in d0) nicht

 GEM-Programmierung 385

; selektiert ist. Aadresse des Objektbaums in baum_adr.

movea.| baum_adr,a0

mulu #24 ,d0 ‚Index * 24 = Offset

btst #0,11(a0,d0.w) ;btst testet Bytel!!, daher 11

rts |

form_alert:

; Zeigt Alert-Box. Beschreibender String steht ab a0.

» Knopf Nr. 1 ist Default-Button.

move.W #52,control

move.W #1,control+2

move .W #1,control+4

move .W #1,control+6

clr.w control+8

move .W #1,int_in :Default-Button

move.L a0,addr_in

Jmp aes

write_text:

; Schreibt String in Text- oder Edit-Objekt (Index in dO)

; String in a0, Objektbaum in baum_adr

movea.l baum _adr,al

mulu #24 ,d0

movea.l 12(a1,d0.w),a1 ;Adresse des TEDINFO-Blocks

movea.l (al),al ;‚te_ptext enthält den Textwrt_lp:

move.b (a0)+,(al)+
bne.s wrt_lp

rts

read_text:

rd_lp:

; Gegenstuck zu write_text. Zieladresse ist in a0

> zu übergeben.

movea.l baum_adr,at

mulu #24 ,d0

movea.l 12(a1,d0.w),a1

movea.l (al),al

move.b (al)+,(a0)+

bne.s rd_lp

rts —

 386 Atari ST Intern 2

DATA

ziffstr: DC.b '0',0

rscname: DC.b 'DIALOG4.RSC',0

errtxt: DC.b '(3] [Kein RSC-File!] [Ende] ',0

BSS

x: DS.w 1 Koordinaten der Dialogbox

y: DS.w 1

W: DS.w 1

h: DS.w 1

baum_adr: DS.l 1

knopf : DS.w 1

END

5.10 Accessories

Wenn der ST-Besitzer das Wort Accessory hört, dann denkt er sofort an

die kleinen nützlichen Hilfsprogramme wie Kontrollfeld, Drucker-An-

passung oder Taschenrechner. Ich will Ihnen nun zeigen, wie Sie solche

Programme selbst schreiben können.

Accessories sind Programme, die sich beim Booten auf der Diskette (im

Hauptverzeichnis) befinden und die Extension .ACC tragen. Die Pro-

gramme kann man dann aus jeder GEM-Anwendung heraus aufrufen,
sobald eine Menüleiste vorhanden ist. Accessories müssen übrigens keine

kleinen Programme sein: Wenn Sie wollen, können Sie durchaus ein Gra-
fik-Programm oder eine Textverarbeitung als Accessory programmieren.

Allerdings sollten Sie beachten, daß diese Programme ständig Speicher-

platz belegen, ob sie nun gebraucht werden oder nicht, was freilich den

MEGA-ST4-Besitzer nicht hindern sollte, ruhig etwas umfangreiche Ac-
cessories zu Schreiben. Accessories müssen grundsätzlich Stand-Alone-Pro-

gramme sein, das heißt die BASIC-Fans müssen ihre Programme compi-

lieren. Leider lag mir vor dem Erscheinen dieses Buches der GFA-BA-

SIC-Compiler 3.0 noch nicht vor, so daB ich Ihnen fiir diese Sprache lei-

der kein Beispiel anbieten kann. Die allgemeinen Erläuterungen sind je-
doch mit einiger Sicherheit auch für GFA-BASIC gültig, sobald der
Compiler erscheint.

Ein Accessory besteht immer aus zwei Teilen: Einer Initialisierung, in der
sich das Programm einen Platz in der Menüleiste reservieren lassen muß
und auch schon den Namen angibt, unter dem es dort später erscheinen

 GEM-Programmierung 387

will, und einer Endlosschleife, die immer nur darauf wartet, daß das
Accessory aus seinem Schlaf geweckt wird. Wenn der Benutzer also das
Accessory aufruft, so wird der Teil des Programms innerhalb dieser
Endlosschleife ausgeführt und anschließend weiter gewartet. Accessories
enden aufgrund dieser Endlosschleife nıe. Deshalb können Sie auch nur
beim Booten vom GEM in den Speicher geladen werden; diese Laderou-

tine unterbricht das Programm in der Endlosschleife, lädt das nächste

Accessory usw. Spaßeshalber können Sie ja einmal ein Accessory um-
benennen, so daß die Extension nicht mehr .ACC sondern .PRG lautet,
und es dann starten - der Rechner bleibt in der Endlos-Schleife hängen.

Betrachten wir den ersten Teil eines Accessories: die Initialisierung. Jedes

Accessory muß, genau wie eine Applikation, mit appl_init eröffnet
werden (in C und Assembler macht das wieder die Include-Datei, die wir
ja auch bisher immer benutzt haben). Allerdings benötigen wir diesmal

die Identifikations-Nummer des Programms, die als Funktionswert von
appl_init zurückgegeben wird. In GEM_INEX ist dazu schon die globale
Variable ap_id (Applikations-ID) deklariert; wir brauchen uns darum

also nicht zu kümmern.

Anschließend müssen wir uns um einen Platz ın der Menüleiste bewer-
ben. Das geht mit der AES-Funktion menu_ register, die als Parameter
die Programm-ID (ap_id) erhält. Zusätzlich geben wir den String an, der
als Menü-Eintrag im Desk-Menü erscheinen soll. Dabei ıst es üblich,

diesem Namen zwei Leerzeichen voranzustellen.

Diese Funktion menu_register gibt eine weitere Identifikationsnummer
zurück: ac_id, das heißt: Accessory-ID. Mit diesem Wert unterscheidet
GEM zwischen den maxımal sechs möglichen Accessories. Wenn dieser
Funktionswert gleich -I wird, dann bedeutet das übrigens, daß die
Menüleiste schon voll war, unser Antrag also abgelehnt wurde. In diesem
Fall sollten wir natürlich nicht in die Endlosschleife einsteigen, sondern
das Programm wie eine Applikation verlassen.

Bevor wir zum Hauptteil eines Accessories kommen, möchte ıch noch

kurz erläutern, was es in den einzelnen Sprachen Besonderes zu beachten

gibt:

Omrikon-BASIC

Sie erhalten bei appl_init keine ap_id. Dafür müssen Sie diese ID auch
bei menu_ register nicht angeben; der Wert wird sozusagen intern auto-
matisch weitergeleitet.

 388 Atari ST Intern 2

Wichtiger ist jedoch, wie Sie aus einem Quelltext ein lauffähiges Acces-
sory machen. Dazu müssen Sie, wie schon gesagt, im Besitz des Omikron-

Compilers sein. Schreiben Sie Ihr Programm wie gewohnt, allerdings ohne
vorher die Datei GEMLIB.BAS geladen zu haben. Testläufe können Sie
selbstverständlich im Interpreter nicht durchführen. Deshalb bietet es sich

an, die eigentliche Routine, die Sie als Accessory schreiben wollen,
zunächst als Applikation zu entwickeln und erst später, wenn alles wie

gewünscht funktioniert, daraus ein Accessory zu machen.

So, Sie haben also jetzt einen Accessory-Quelltext. Den speichern Sie

ohne GEMLIB als ASCII-Text ab, also mit dem Befehl MERGE. Die

Extension dieser Datei sollte .BAS sein. Als nächstes laden Sie das Pro-
gramm GEMSEL.BAS (gehört zu Omikron-BASIC) in den Speicher und

starten es. Sie werden nach dem Dateinamen Ihres Quelltextes und nach
dem Pfadnamen der GEMLIB.BAS-Datei gefragt. Das Programm hängt
nun alle benötigten Routinen aus der GEMLIB-Datei an Ihren Quelltext
an und speichert diesen unter dem alten Namen (wieder als ASCII-Text).

Bevor Sie das Programm compilieren können, müssen Sie diesen ASCII-

Text wieder in das Standard-BASIC-Format übertragen. Laden Sıe dazu

den ASCII-Text ein, und speichern Sie ihn ganz normal mit SAVE unter
gleichem Namen wieder ab. Anschließend starten Sie den Compiler und

übersetzen das Programm. Auf der Compiler-Diskette gibt es nun noch
ein Programm namens CUTLIB.PRG, das die Library BASLIB teilweise
an das compilierte Programm anhängt. Schließlich benennen Sie das fer-
tige Programm noch in NAME.ACC um, kopieren das Programm auf eine

Test-Diskette und drücken den Resetknopf. Wenn alles richtig ist, kön-

nen Sie das Accessory gleich ausprobieren.

Cc

Beim Megamax-Laser-C-System sind Sie es gewohnt, ein Programm aus

dem Editor heraus mit Control und R compilieren, linken und starten zu

lassen. Das geht bei Accessories natürlich nicht; der Rechner würde ja in
der Endlosschleife steckenbleiben. Speichern Sıe statt dessen mit Control

und S Ihren Quelltext ab und lassen Sie den Compiler im Menü Execute
Ihr Programm bearbeiten.

Als nächstes starten Sie den Linker im gleichen Menü. Sie müssen die

Dateien INIT.O und Ihr Accessory-.O-File linken. Unten in der Dialog-
box tragen Sie dann noch ein, wie Ihr Programm heißen soll. Der Name
muß hier schon auf .ACC enden, damit der Linker weiß, daß er ein Ac-

 GEM-Programmierung 389

cessory linken soll. Wenn Sie keine Fehlermeldung erhalten, dann kopie-
ren Sie die ACC-Dateı auf eine Test-Diskette, und booten Sie den Rech-
ner.

Assembler

In Assembler schreiben Sie Ihr Programm wie gewohnt. Allerdings benö-
tigen Sie eine veränderte Initialisierungs-Datei. Das kommt daher, daß
ein Accessory niemals den nicht benötigten Speicherplatz mit Setblock

bzw. Mshrink wieder freigeben darf. Einen Stack richten wir uns einfach
im BSS-Segment ein. Auch mit dieser neuen Include-Dateı
(ACC _INIT.Q) sollte der erste Assembler-Befehl im Hauptprogramm jsr
gem_ init sein. Sie können Ihre Programme wie üblich assemblieren oder
auch linken lassen, müssen dann aber die Extension ändern (aus .PRG

wird .ACC).

Die neue Header-Datei sieht so aus:

; Include-Datei für AES/VDI Anmeldung bei Accessory

; Assembler MP 13-10-88 ACC_INIT.Q

z;Diese Datei kann in eigenen Applikationen mit Include

sverwendet werden. Die Include-Anweisung sollte der

‚erste Befehl im Assembler-Quelltext sein.

;Unterschied zu GEM_INIT und GEM_INEX:

;Ein Accessory darf nicht mit Setblock/Mshrink Speicher

sfreigeben. Nur ein Stack von ausreichender Größe (4 KB)

swird eingerichtet.

TEXT

lea stackend,sp ;Stack einrichten

jmp main ‚Sprung in die Applikation

; Unterprogramme aes und vdi

aes: move.| #aespb,di ;AES-Parameterbl ock

move.w #%c8,d0 ;Magic-Number fir AES

trap #2 > GEM-Aufruf

rts

vdi: move.l #vdipb,di _ ;VDI-Parameterblock

move.w #873,d0 ‚Code für VDI

trap #2 ;GEM-Aufruf

 390

gem_init:

rts

Atari ST Intern 2

‚vor dem ersten GEM-Call aufrufen

‚Anmeldung beim AES (appl_init):

move .W

clr.w

move .wW

clr.w

clr.w

jsr

move .wW

#10,control ;appl_init (AES)

control+2

#1,control+4

control+6

control+8

aes

int_out,ap_id ‚Identifikation merken

‚Bildschirm als Arbeitsstation anmelden (VDI):

gi_lp:

gem_ exit:

moveq.| #18,d0 ‚intin vorbereiten

lea

move.W

subq.w

bpl.s

move .wW

move .W

clr.w

move .wW

move.

move .wW

jsr

move .wW

x

move .W

move .W

rts

move .wW

clr.w

clr.w

clr.w

clr.w

move .wW

jsr

move .w

clr.w

move .w

clr.w

intin,a0

#1,0(a0,d0.w) sElement auf 1 setzen

#2 ,d0 ‚voriges Element

gi_lp ‚Ende?

#2 ,20(a0) ;Koordinatenflag (immer 2)

#100,contrl ;v_opnvwk (VDI)

contrl+2
#12,contrl+4

#11,contril+6

#45, contrl+8

vdi

contri+12,handle ;VDI-Grafik-Handle

intout,x_max ;Auflösung speichern

intout+2,y_max

‚vor Verlassen des Programms aufrufen

#101,contrl ;v_clsvwk (VDI)

contrl+2

contrl+4

contr l+6

contr l+8

handle, contrl+12

vdi

#19,control ;appl_exit (AES)

control+2

#1,control+4

control+6

GEM-Programmierung

clr.w

jsr

rts

control+8

aes

» Es folgen die Parameterblöcke:

aespb:

vdipb:

DATA

; Jetzt kommen die

global:

control:

int_in:

int_out:

addr_in:

addr_out:

contrl:

intin:

ptsin:

intout:

ptsout:

stack:

stackend:

ap_id:

handle:

X_max:
y_max:

BSS

DS.w

DS.w

DS.w

DS.w

DS.L

DS.L

DS.w

DS.Ww

DS.w

DS.w

DS.w

DS.w

DS.w

DS.w

DS.w

DS.w

END

control

global

int_in ‚Unterschied zwischen AES- und

int_out ;VDI-Integer-Arrays: _

addr_in

addr_out

contrl

intin

ptsin

intout

ptsout

eigentlichen Arrays:

16 + AES
10
128
128
128
128

12 VDI
128

128

128

128

2000

1 ;ap_id, wird von appl_init geliefert

1 ;VDI-Grafik-Handle

1 ;Bildschirmauflösung, erfährt man

1 ;bei v_opnvwk

391

 392 Atari ST Intern 2

Das Folgende gilt wieder für alle Programmiersprachen gleichermaßen.

Wenn Sie so ein Accessory in der Initialisierung angemeldet haben, dann
muß es ın eine Endlos-Warteschleife gehen. Aber worauf warten wir
eigentlich? Auf den Aufruf unseres Accessories durch den Anwender,
und genau das teilt uns GEM über eine Nachricht mit. Die Nachrichten

kennen Sie schon von der Fensterprogrammierung: Wir brauchen einen
Nachrichten-Puffer, der acht Worte aufnehmen kann (in Omrikon-BASIC

reicht ein String); die Nachricht selbst bekommen wir durch .einen

evnt_mesag-Aufruf.

Die Nachricht, auf die wir warten müssen, heißt AC_OPEN. Wir erken-
nen Sıe daran, daß im Wort 0 des Puffers die Zahl 40 steht. Außerdem

müssen wir überprüfen, ob im Wort 4 die Accessory-Identifikationsnum-
mer unseres Programms steht (ac_id); diese Zahl haben wir ja durch
menu_ register erhalten. Wenn das so ist, dann starten wir das eigentliche
Accessory. Anschließend gehen wir zurück zum evnt_mesag-Aufruf und
warten auf die nächste Nachricht.

Dazu gleich einmal ein Beispielprogramm: Ein Accessory, das lediglich

eine Alert-Box auf den Bildschirm zaubert. Sie können es gut als
Grundlage für eigene Accessories benutzen; denn die eigentliche Aufgabe
des Programms, also das Anzeigen der Alert-Box, wird in einem Unter-

programm (go_accessory) vorgenommen. Aber Achtung: Dieses Pro-
gramm prüft nicht, ob menu_ register eine Fehlermeldung zurückgegeben
hat, also ob überhaupt noch Platz für ein weiteres Accessory war.

Omikron-BASIC

' Accessory~-Demo DEMOACC.BAS

' Omikron-BASIC MP 23-12-88
I

Appl_Init

' Eintragen als Accessory:
a

Menu_Register(" Demo-Accessory",Ac_Id&L)
t

REPEAT

Evnt_Mesag(Puffer$)' Auf Nachricht warten

' Unser Accessory gewUnscht?
'

IF (FN P&L(O)=40) AND (FN PXL(4)=Ac_Id%L)

THEN Go Accessory

ENDIF

 GEM-Programmierung 393

I

UNTIL 0' Endlosschleife
4

4

DEF FN P%L(NXL)= CVIC MID$CPuffer$,N%L*2+1,2))
8

a

DEF PROC Go_ Accessory

' Eigentliches Accessory:
4

FORM_ALERT (1,"(1]ISUPER-ACCESSOR Y} {Bitte wahlen ...
„.. Sie:] [Ende!Schluß lAbbruch] ")

RETURN

C
NIT N

/* Accessory - Header (muB als Accessory gelinkt werden) */

/* Megamax Laser C MP 21-12-88 DEMOACC.C */
[RERREREEK EERE KERRIER EEE RENEE EERE KER EKER EREREREE

#include "gem_inex.c"

int ac_id,

puffer [8];

void go_accessory()

{

form_alert (1,"[1])IS UPER-ACCESSOR Y! !Bitte wahlen ...
... Sie:] [Ende}SchluB | Abbruch]");

main)

{
gem_init();

/* gem_init liefert die Applikations-Nummer in der globalen */ /* Variablen

ap_id zuruck, die im Include-File deklariert ist */

ac_id = menu_register (ap_id, " Demo-Accessory");

/* Endlos-Warteschleife */

while (1)

{

evnt_mesag (puffer);

394 Atari ST Intern 2

if (puffer[0] == 40) /* Accessory gewünscht? */

if (puffer(4] == ac_id) /* unser Accessory? */

go_accessory(); /* dann das Unterprogramm aufrufen */
)

>

Assembler

>» Demo-Accessory DEMOACC.Q

; Assembler MP 22-12-88

INCLUDE 'ACC_INIT.Q' ‚neue Include-Datei

TEXT

main: jsr gem_init ‚ap_id wird zurückgeliefert; menu_register:

move.w #35,control

move.w #1,control+2

move.w #1,control+4

move.w #1,control+6

clr.w control+8

move.w ap_id,int_in

move. #acc_name,addr_in

Jsr aes

move.w int_out,ac_id ;ID des Menü-Eintrags

sevnt_mesag in einer Endlosschleife:

loop: move .W

s

clr.w

move .W

move .wW

clr.w

move. |

jsr

- erhaltene Nachricht

cmpi .wW

bne

move .wW

cmp.W

bne

jsr

#23,control ;Opcode evnt_mesag

control+2

#1,control+4

#1, control+6

control+8

#puffer,addr_in

aes

Uberprufen:

#40,puffer ;Accessory aufgerufen?

Loop

puffer+8,d0O ;ID unseres Accessory

ac_id,d0 ‚sind wirklich wir dran?

loop

go_accessory ;Programm aufrufen

 GEM-Programmierung | 395

bra Loop ‚und Endlosschleife fortsetzen...

; Das folgende kleine Unterprogramm soll das eigentliche

; Accessory sein. Es gibt mit form_alert eine kleine

; Alert-Box auf dem Bildschirm aus.

go_ accessory:

form_str:

acc_name:

puffer:

ac_id:

move.w #52,control ;Opcode form_alert

move.w #1,control+2

move.w #1,control+4

move.w #i,control+6

clr.w control+8

move.w #1,int_in ;Default-Button

move.l #form_str,addr_in

jsr aes

rts ‚Accessory - Ende

DATA

DC.b 'II[ISUPER-ACCESSORY!:!

DC.b 'Bitte wählen Sie:]'

DC.b ' TEnde!Schluß!Abbruch] ' ‚0

DC.b ' Demo-Accessory'!,O

BSS

DS.w 8 ;Platz für Nachrichten

DS.w 1 ;Accessory-ID

END

5,11 Beispielprogramme

Trotz der vielen Demoprogramme, die Sie bisher gesehen haben, ist es

durchaus möglich, daß die ein oder andere Frage offen geblieben ıst. Das
liegt sicherlich nicht zuletzt daran, daß es ın all den Programmen nicht
um eine Anwendung, sondern um die jeweiligen Systemfunktionen an
sich ging. Es ıst also nicht verwunderlich, daß der sinnvolle Einsatz von
Systemfunktionen zur Lösung eines Problems manchmal mehr Probleme

bereitet als das Verständnis der einzelnen Betriebssystemfunktion.

 396 Atari ST Intern 2

Deshalb habe ich ein paar einfache Programme unter GEM erstellt, die

nicht zur Demonstration der GEM-Funktionen geschrieben wurden, son-

dern wirklich zur Anwendung zu gebrauchen sind. Wenn Sie die Pro-

gramme griindlich durcharbeiten (BASIC-Fans: Sehen Sie sich ruhig mal
ein C-Listing an), dann werden Sie bestimmt noch eine ganze Menge von
Tricks kennenlernen, die ich bis jetzt vielleicht nur deshalb nicht er-
wähnt habe, weil ich Sie für selbstverständlich halte.

Die Listings sind gut kommentiert, und auf eine umfangreiche Doku-
mentation möchte ich ganz bewußt verzichten; Sie sind mittlerweile so
weit fortgeschritten, daß Sie alles Wichtige selbst herausfinden können,

und das ist wesentlich sinnvoller als das Durchlesen der Programmdoku-

mentation.

Ich hielt es jedoch nicht mehr für erforderlich, jedes Programm in allen

vier Sprachen abzudrucken, so wie ich es bisher gemacht habe. Es ist

aber fiir jede Sprache etwas dabei!

5.11.1 Accessory:

Anzeige einer ASCII-Tabelle

Jedem der 256 Zeichen, die unser Atari ausgeben kann, ist eine Nummer

(0 bis 255) zugeordnet. Ein Teil dieser Zeichen hat bei den meisten Com-

putern die gleiche Nummer, weil die Zuordnung dieser Zeichen durch

ASCII genormt ist. ASCII bedeutet American standard code for informa-

tion interchange (amerikanischer Standard-Code für Informationsaus-
tausch). Man sagt auch, daß jedem Zeichen ein ASCII-Code zugeordnet
ist. Dieser ASCII-Code ist dann die Nummer, die das jeweilige Zeichen
repräsentiert. Nun benötigt der Programmierer recht oft eine Tabelle mit
den ASCII-Zeichen und ASCII-Codes; es gibt sie in unzähligen Varianten
in Computer-Fachbüchern oder Fachzeitschriften. Solche Tabellen haben

jedoch zwei Nachteile: Sie stören auf dem ohnehin meist überfüllten
Schreibtisch, und nicht alle Tabellen enthalten auch die Erweiterungen

des Atari-Zeichensatzes (mehr als die Hälfte der 256 Zeichen des Atarı
gehört nicht zum ASCII-Zeichensatz).

Da wir dıe Tabelle in der Regel direkt am Rechner brauchen werden,
können wir jedoch ein kleines Accessory schreiben, das per Mausklick

alle Zeichen unseres Computers zusammen mit ihren ASCII-Codes an-

zeigt. Die Codes sollten zweckmäßigerweise sowohl dezimal als auch he-
xadezimal ausgegeben werden; C- Programmierer können ja die Hex-Aus-

gabe durch eine oktale ersetzen.

 GEM-Programmierung 397

Das Assembler-Programm benötigt beim Assemblieren die Include-Datei

ACC_INIT.Q, die Sie im Ordner GEM der Diskette im Buch finden. Das
Programm läuft nur auf dem Monochrom-Monitor, weil die große Infor-
mationsmenge selbst bei mittlerer Auflösung nicht mehr dargestellt wer-
den könnte.

Die Tabelle sieht zwar, wenn sie fertig ist, wie eine Dialogbox aus, doch

kommen wir ohne dieses Hilfsmittel (Objekte, ...) aus. Ein Resource-File

würde die Ausgabe der Codes auch stark bremsen (es dauert auch so
schon etwa zwei Sekunden, trotz Assembler-Programmierung). Statt des-

sen malen wir alles selbst, auch den Rahmen; auch das Löschen unseres

Ausgaberechtecks nehmen wir höchstpersönlich vor. Nur zwei Funkti-

onsaufrufe erinnern an normale Objekte: die form _dial-Unterfunktionen
0 und 3. Diese werden benötigt, damit das AES später den Bildschirm

wiederherstellen kann. Wir müssen also nicht den gesamten Bildschirm
retten, bevor wir uns austoben!

So arbeitet übrigens auch das VT-52-Emulator-Accessory: Wenn Sie die-

ses Hilfsprogramm beenden, dann wird das AES mit einem form_dial-

Aufruf veranlaßt, den gesamten Arbeitsbereich wıederherzustellen. Das

AES sendet dann auch Redraw-Meldungen an alle sichtbaren Fenster.

Nur die Menüzeile kann damit nicht gerettet werden, doch die können

Sıe ohne Probleme mit den Raster-Funktionen sichern lassen.

e
8

;s Accessory zum Anzeigen des Zeichensatzes (ASCII-Tabelle)

: Assembler MP 05-01-89 ASCII .Q

gemdos = 1

crawcin = 7

TEXT

INCLUDE 'ACC_INIT.Q!

main: jsr gem_init

; menu_register:

move.w #35,control

move.w #1,control+2

move.w #1,control+4

- move.w #1,control+6
clr.w control+8

move.w ap_id,int_in

 398

move. l

jsr

move .wW

Atari ST Intern 2

#acc_name,addr_in

aes

int_out,ac_id ‚Accessory-ID merken

; evnt_mesag-Endlos-Schleife:

mainloop: move .W

clr.w

move .W

move .W

clr.w

move. |

jsr

#23,control ;Opcode evnt_mesag

contrl+2

#1,control+4

#1,control+6

control+8

#puf fer ,addr_in

aes

; Prüfen der Nachricht: Waren wir gemeint?

; ***** Jetzt

accessory:

cmp .W

bne

move .W

cmp.wW

bne

jsr

bra

#40 ,puffer ;Erkennungszeichen: Accessory gerufen

mainloop

puffer+8,d0 ;ac_id des gewünschten Programms

ac_id,d0 ‚Sind wir das?

mainloop

accessory :Dann los!

mainloop

folgt die eigentliche Routine: *****

move .W

move .w

move .W

clr.w

clr.w

clr.w

move .W

move.W

move .W

move.W

jsr

#51,control ;form_dial (AES)

#9 ,control+2 ;AES soll Fensterränder retten

#1,control+4

control+6

control +8

int_in ;Unterfunktionsnummer 0

#11, int_in+10 7X,

#31, int_in+12 ty,

#617, int_int14 ‚Breite (x2-x1+1) und

#345, int_in+16 ‚Höhe (y2-y1+1)

aes

; Mauszeiger verstecken:

move.W

clr.w

clr.w

#123,contrl ;v_hide_c

contrl+2

contri+4

GEM-Programmierung 399

clr.w contrl+6

clr.w contrl+8

move.w handle,contri+12

jsr vdi

» Löschen des Ausgabebereichs:

move.w #23,contrl ;vsf_interior

clr.w contrl+2 s(setzt Fulltyp)

clr.w contrl+4

move.w #1,contrl+6

move.w #1,contri+8

clr.w intin ;Füllen mit Hintergrundfarbe

jsr vdi

move.w #104,contri ;vsf_perimeter

clr.w contrl+2

clr.w contrl+4

move.w #1,contrl+6

move.w #1,contrl+8

move.w handle,contrl+12

clr.w intin ;Umrahmung beim Füllen aus

jsr vdi

move.w #11,contrl ;v_bar

move.w #2,contrl+2

clr.w contrl+4

clr.w contrl+6

clr.w contrl+8

move.w #1,contrl+10 ;Unterfunkt ionsnummer

move.w handle,contrl+12

move.w #11,ptsin Koordinaten

move.w #31,ptsin+2

move.w #627 ,ptsint+4

move.w #375,ptsinté6

jsr vdi

» Kästchen zeichnen:

clr.w d6

clr.w d7/

r_loop: move.w #6,contrl ;v_pline

move.w #2,contrl+2 ;2 Punkte verbinden

clr.w contrl+4

clr.w contrl+6

clr.w contrl+8

move.w #15,ptsin ;x-Koordinate Punkt1

 400

move.

add.w

move.

move.

jsr

move.

move.

clr.w

clr.w

clr.w

move.

add.w

move.

move.

move.

jsr

addi.

addi.

cmpi.

bne

W

W

W

W

W

W

W

W

W

Atari ST Intern 2

#35 ,ptsint2 ;y-Koordinate Punkt!

d6 ,ptsint2

#623 ,ptsin+t4 ;x-Koordinate Punkt2

ptsint2,ptsint6 ;y-Koordinate Punkt2

vdi

#6,contrl ‚v_pline

#2,contrl+2 ;2 Punkte verbinden

contri+4

contrl+6

contrl+8

#15, ptsin »x-Koordinate Punkt!

d7,ptsin a

#35 ,ptsin+2 ;y-Koordinate Punkt!

ptsin,ptsint+4 :x-Koordinate Punkt2

#371,ptsin+6

vdi

#21,d6

#38 ,d7

#357,d6 ‚Endwert

r_loop

; Rahmen wie bei Dialogbox zeichnen:

move.

move.

clr.w

clr.w

clr.w

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

jsr

move.

move.

W

W

x
X

E
E
E

E
L
L
E

KT
KT

EF

#6, contrl

#5 ,contri+2

contrl+4

contrl+6

contrl+8

#14,ptsin

#34 ,ptsint2

#624 ,ptsint4

#34 ,ptsint6

#624 ,ptsint8

#372,ptsint+10

#14 ,ptsin+12

#372 ,ptsin+14

#14 ,ptsin+16

#34 ‚ptsin+18

vdi

#6,contrl

#5 ,contrl+2

;v_pline

;5 Punkte verbinden

;v_pline

;5 Punkte verbinden

GEM-Programmierung

: Ausgabe der

lLoop1:

; Ausgabe des

Loop2:

clr.w contrl+4

clr.w contrl+6

clr.w contrl+8

move.w #11,ptsin

move.w #31,ptsint2

move.w #627,ptsint4

move.w #31,ptsin+6

move.w #627,ptsint8

move.w #375,ptsin+10

move.w #11,ptsin+12

move.w #375,ptsint14

move.w #11,ptsin+16

move.w #31,ptsin+18

jsr vdi

Tabelle: Zeichen + ASCII-Code (dezimal und hexadezimal)

move.b #'$',hex ;Dollarzeichen in HEX-String

clr.w dS ‚nächstes auszugebende Zeichen

clr.w d ‚Zeile

clr.w d6 ‚Spalte

Zeichens:

lea

move.W

andi.w

move.b

move.W

asr.W

move.b

move.W

andi. |

divu

Swap

move.b

swap

andi.

divu

move .b

swap

move.b

cmpi.b

bne.s

digits,a0 ;ASCII-Codes in Ziffern schreiben

d5 ,d4 *Hexzahl erzeugen

#41111,d4

0¢a0,d4.w),hex+2 ;Einerziffer schreiben

d5 ,d4

#4 ,d4

0¢a0,d4.w),hex+1 ;16er-Ziffer

d5 ,d4 ;Dezimalzahl erzeugen

#Sffff,d4 ‚oberes Wort löschen

#10,d4 :;/ Basis des Zahlensystems

d4 ‚Rest in unteres Wort

0¢a0,d4.w),dez+2 ;Einerziffer

d4 sErgebnis weiterverarbeiten

#Sf fff ,d4 ‚oberes Wort löschen

#10 ,d4

0(a0,d4.w),dez ‚Ergebnis ist 100er-Ziffer

d4

0¢a0,d4.w),dez+1 ;Rest ist Zehnerziffer

#'0' dez ‚führende Nullen Löschen

l

401

402

move.b

cmpi.b

bne.s

move.b

move .W

clr.w

move.

move.

move.

move.

move.

jsr

Zz
E
E
E

—E

move .W

move .W

clr.w

move .W

clr.w

move .W

move .W

move .W

add. w

move .W

add. w

jsr

move .w

clr.w

move .wW

move .wW

move .W

move .W

move .w

jsr

move .W

move .W

clr.w

move .wW

clr.w

move .W

clr.b

move .b

clr.b

move.b

clr.b

Atari ST Intern 2

#' '§ dez sLeerzeichen

#'0' dez+1

(

#' ' dez+1

#107,contrl ;8x16 Schriftgröße wählen

contrl+2 ;vst_point

#2,contrl+4

#1,contrl+é6

#1,contrl+8

handle, contrl+12

#13, intin :GroBe 13

vdi

#8, contrl ‚v_gtext

#1,contrl+2

contri+4

#1,contr|l+6 ;1 Zeichen ausgeben

contrl+8

handle, contrl+12

d5,intin ‚Zeichen

#43 ,ptsin ;x-Koordinate

d6,ptsin

#52,ptsint2 ;y-Koordinate

d’,ptsint2

vdi

#107,contrl ;6x6 Schriftgröße wählen

contrl+2 ‚vst_point

#2,contrl+4

#1,contrl+6

#1,contrl+8

handle, contrl+12

#4 ,intin :GroBe 13

vdi

#8, contr l ;V_gtext (Ausgabe Dezimal)

#1,contrl+2

contrl+4

#3,contrl+6 ;3 Zeichen ausgeben

contr|+8

handle, contrl+12

intin ‚Zeichen

dez, intin+1

intint2

dez+1, intin+3

intin+4

 GEM-Programmierung 403

move.b dez+2, intin+5

move.w #19,ptsin »x-Koordinate

add.w d6,ptsin

move.w #42,ptsin+2 ;y-Koordinate

add.w d/,ptsint2

jsr vdi

move.w #8,contrl ‚v_gtext (Ausgabe Hexadezimal)

move.w #1,contrl+2

clr.w contrl+4

move.w #3,contrl+6 ;3 Zeichen ausgeben

clr.w contrl+8

move.w handle,contrl+12

clr.b intin ‚Zeichen

move.b hex, intin+1

clr.b intiné2

move.b hex+1, intin+3

clr.b intin+t4

move.b hex+2, intin+5

move.w #19,ptsin :x-Koordinate

add.w d6,ptsin

move.w #53,ptsin+2 ;y-Koordinate

add.w d7,ptsint+2

jsr vdi

addq.w #1,d5 ‚nächstes Zeichen

addi.w #38,d6

cmpi.w #608,d6 ‚Zeile fertig?

bne Loop2

addi.w #21,d7 ja, dann nächste Zeile

cmpi.w #336,d7

bne Loop1

; Mauszeiger wieder einschalten:

_move.w #122,contrl

clr.w contrl+2

clr.w contrl+4

move.w #1,contrl+6

clr.w contri+8

move.w handle,contrl+12

move.w #1,intin

jsr vdi

 404 Atari ST Intern 2

; Warten auf Tastendruck:

; Bemerkung:

; Eigentlich wollte ich evnt_multi verwenden und auf Tastendruck

» oder Mausklick warten. Das geht jedoch nicht, weil uns GEM

; leider nur dann solche Ereignisse mitteilt, wenn wir das

; aktive Bildschirmfenster haben. Da unser Programm aber über-

» haupt keine Fenster hat, haben wir natürlich auch nicht das

; aktive Fenster. Deshalb folgt nun ein einfacher GEMDOS-Aufruf:

move.w #crawcin,-(sp)

trap #gemdos

addq.l #2,sp

Das Wiederherstellen des Bildschirms überlassen wir GEM:

move.w #51,control ;form_dial

move.w #9,control+2 ;AES soll Redraw-Meldungen geben

move.w #1,control+4

clr.w control+6

clr.w control+8

move.w #3,int_in ; Unter funkt i onsnummer

move.w #11, int_in+10 :X,

move.w #31,int_in+12 y,

move.w #617, int_in+14 ‚Breite (x2-x1+1) und

move.w #345, int_in+16 ‚Höhe (y2-y1+1)

jsr aes

rts ‚Ende Accessory

DATA

digits: DC.b '0123456/789ABCDEF !

acc_name: DC.b ' ASCII-Codes',0

BSS

dez: DS.b 3 -Hier werden die Zahlen für die Ausgabe

hex: DS.b 3 ;aufbereitet

ALIGN

puffer: DS.w 8

ac_id: DS.w 1 ;Accessory-ID

END

 ——— GEM-Programmierung 405

5.11.2 Applikation: Quelltext-Lister

Dieses Omrikon-BASIC-Programm wird schnell seine Freunde finden. Es
bietet Ihnen die Möglichkeit, Programmlistings oder andere ASCII-Texte

sehr komfortabel auszudrucken. Mit verschiedenen Dialogboxen können

Sie folgende Parameter bestimmen:

» Ausdruck seitenweise (mit beliebigem Titel im Kopf) oder durchge-

hend. Entscheiden Sie sich für den seitenweisen Ausdruck, so druckt

der Rechner im Kopf jeder Seite auch die Seitennummer, den Da-

teinamen sowie Datum und Uhrzeit aus.

> Druck mit oder ohne Zeilennummern.

» Steuercodes Ihres Druckers für:

a) Seitenvorschub (Form Feed)

b) Wagenrücklauf+Zeilenvorschub
Cc) Init-String (z.B.: Umschalten auf Schmalschrift)
d) Exit-String (z.B.: Drucker-Reset, Glocke etc.)

> Seitenformat:

a) Zeilen pro Seite (einschlieBlich Kopf)

b) Zeichen pro Zeile (Zeilenbreite) einschließlich Rand
eg) Breite des linken Randes

d) Ausgabe ein- oder zweispaltig (nur bei seitenweisem Aus-
druck).Die letzte Option (Ausdruck in zwei Spalten) ist eine

Rarität; Sie können damit beı nicht zu breiten Texten oder auf
einem A3-Drucker die Hälfte des Papiers sparen!

Die Dialogboxen und Ihren Aufbau möchte ich nicht detailliert erklären;
statt dessen habe ich zusätzlich zum RSC-File auch die Definitionsdateien

für das Atari-RCS2 und fiir das Megamax RCP auf die Diskette kopiert.

Wenn es also zu Unklarheiten im Zusammenhang mit den Objekten oder
deren Namen kommt, dann schauen Sie sich bitte das RSC-File mit ei-

nem RCS an.

Sie werden feststellen, daB die eigentliche Druckroutine gar nicht so lang
ist. Das Drumherum nimmt jedoch ziemlich viel Platz in Anspruch, was
typisches Erkennungsmerkmal einer GEM-Applikation ist. Lassen Sie
sich nicht davon abschrecken; es werden keine GEM-Routinen benutzt,

die ich nicht schon in kleineren Beispielprogrammen vorgestellt habe.

 406 Atari ST Intern 2

Dies ist übrigens das einzige Omrikon-Programm in diesem Buch, das
Zeilennummern besitzt. Diese wurden durch die ON-ERROR-GOTO-
Anweisung beim Laden eines Textes nötig, weil die EOF-Funktion des
BASIC bei nicht-Omrikon-Dateien nur unzuverlässig arbeitete. In diesem

Zusammenhang muß auch erwähnt werden, daß das Programm (wegen

des ON-ERROR-GOTO-Befehls) compiliert nur dann richtig arbeitet,

wenn in der Laderoutine die Compiler-Anweisung Trace _On steht (siehe
Programm). Letzter Hinweis: In der Druck-Routine wird die Ausgabe des
LPRINT-Befehls durch die Anweisung MODE LPRINT "D" dahingehend
beeinflußt, daß auf einem EPSON-kompatiblen Drucker auch die deut-

schen Umlaute korrekt ausgedruckt werden. Wenn Sie einen Drucker mit

IBM-Zeichensatz besitzen, dann sollten Sıe diesen MODE-Befehl strei-

chen. Einen Hinweis dazu finden Sie im Listing.

100 !

101 ' GEM-Applikation: Datei-Lister (Drucker-Ausgabe)

102 ' Omikron-BASIC MP 05-01-89 LISTER.BAS

103 '

104 CLEAR 33000' Speicher muß für RSRC-LOAD zurückgegeben werden

105 !

106 ' Konstanten aus dem Resource-Header-File:

107

108 Starten=18

109 Fine=20

110 Format=23

111 Steuer=22

112 Speicher=25

113 B_Steuer=4

114 Sv=1

115. Init=4

116 Crlf=3

117 Ex=5

118 Okk=6

119 Abbr=7

120 B_Form=3

121 B_Info=2
122 Eins=2

123 Zwei=3

124 F_Zeilen=6

125 Rand=8

126 F_Zeich=7

127 Dname=1

128 B_Druck=1

129 B_Menue=0

130 Kopf=2

131 Seiten=5

132 Znr=4

133 Abb=7

 GEM-Programmierung

134 Ok=8

135 Info=8

136 Laden=17

137 ! |

138 DIM Zeilen$(3000)' reicht wohl für längere Listings...

139 !

140 Datei_Geladen=0' Flag initialisieren

141 !

142 Puffer$= SPACE$(16)' AES-Ereignis-Puffer (8 Worte)

143 !

144 ' Funktion zum Zugriff auf den Puffer:

145 !

146 DEF FN P(X)= CVI(MID$SCPufferS,X*2+1,2))

147 !

148 Appl_Init

149 V_Opnvwk

150 !

151 Lade_Parameterdatei

152 !

153. Rsrc_Load("LISTER.RSC",Back)' RSC-File laden

154 IF Back=0 THEN

155 FORM_ALERT. (1,"[3] [Kein RSC-File!) [Abbruch]")

156 Appl_Exit

157 END

158 ENDIF

159 !

160 ' Adressen der Objekt-Bäume holen:

161 '

162 Rsrc_Gaddr(0,B_Menue,Menue_Ptr)

163 Rsrc_Gaddr(0,B_Info,Info_Ptr)

164 Rsrc_Gaddr(0,B_Druck,Druck_Ptr)

165 Rsrc_Gaddr(0,B_Form, Form_Ptr)

166 Rsrc_Gaddr(0,B_Steuer,Steuer_Ptr)

167 '

168 ' Menüleiste anzeigen:

169 !

170 Menu_Bar(Menue_Ptr)

171 °

172 Abbruch=0

173 !

174 ' Ereignis-Warteschleife:

175 !

176 REPEAT

177 Evnt_Mesag(Puffer$)' Warten auf AES-Nachricht

178 "

179 IF FN PCO)=10 THEN !' Wort 10=0 --> Menüpunkt angeklickt

180 Title=FN P(3)° Titel-Index merken

181 ‘

182 IF FN P(4)=Info THEN Sub_Info

183 IF FN P(4)=Laden THEN Sub Laden

407

408

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

 Atari ST Intern 2

IF FN P(4)=Starten THEN Sub_Starten

IF FN P(4)=Fine THEN Sub_Fine

IF FN P(4)=Steuer THEN Sub_Steuer

IF FN P(4)=Format THEN Sub Format

IF FN P(4)=Speicher THEN Sub Speicher
ß

Menu_Tnormal(Title,1)' Menütitel normal zeichnen

ENDIF

UNTIL Abbruch=1! Zurück, wenn nicht Ende gewünscht

Rsrc_Free

V_Clsvwk

Appl_Exit

END

DEF PROC Sub Fine

FORM_ALERT (1,"([2] [Programm bestimmt verlassen?] [Ja|Nein]", Back)
IF Back=1 THEN Abbruch=1' Flag fur Hauptprogramm setzen204 RETURN

BK ee Ke HHH KKK EEK EEK KEKEKERKEKEEEEEEKEEEEEEEEREEREEEEEEEKKEKKKEKKKK

DEF PROC Sub Laden

Trace_On! Ermöglicht im Compiler ON ERROR GOTO...

' Anzeigen einer File-Selektor-Box:
i

Path$= STRING$(64,0)! Platz machen

Adr= LPEEK(VARPTR(Path$))+ LPEEK(SEGPTR +28)

GEMDOS (,$47, HIGH(Adr), LOW(Adr),0)' Pfadname holen
Path$= LEFT$(Path$, INSTR(Path$, CHR$(0))-1)' Nullbytes weg
4

GEMDOS (Akt_Drive,$19)' aktuelles Laufwerk ermitteln

Path$= CHR$C ASC("A")+Akt_Drive)+":"+Path$+"*, *"
8

Default$=""

FILESELECT (Path$,Default$, Flag)
i

Dateiname$= LEFT$(Path$, LEN(Path$)- INSTR(MIRRORS(Path$)+...
tn un) +"\"'4+Defaul tS

i

IF NOT (Flag=0 OR Default$S="") THEN

ON ERROR GOTO 243' EOF bereitet gelegentlich Schwierigkeiten...

OPEN "I",1,Dateiname$' Open for Input

1=-1

WHILE NOT EOF(1)

I=1+1

LINE INPUT #1,Zeilen$(I)

WEND

 GEM-Programmierung 409

234 Letzte _Zeile=I

235 FOR I=Letzte_Zeilet+1 TO 3000:Zeilen$(I)="": NEXT I

236 IF 1>0 THEN Datei_Geladen=1:Write_Text(Druck_Ptr,Kopf,"")

237 CLOSE 1

238 ENDIF

239

240 + Trace Off! Brauchen wir jetzt nicht mehr

241 RETURN

242 '

243 1=I-1: RESUME NEXT ' Beim Fehler wird EOF(1) true.

244 !

245 !

246 DEF PROC Trace_On: RETURN ' Dummy-Prozeduren, damit das

247 DEF PROC Trace Off: RETURN ' Programm im Interpreter lauft

248 !

249 \
250 CHRAEKEKEKKKEKEEEEKEKKEKEEEEEEEKEKEEEEEREKREEEKEEREKEREEEEKEKKKKEKKKKKKK

251 ! |

252 DEF PROC Sub_Starten

253 IF Datei_Geladen=0 THEN

254 FORM_ALERT (1,"[1] [Sie haben noch keine!Datei geladen!] [Ach?]")

255 RETURN

256 ENDIF

257

258 Write_Text(Druck_Ptr,Dname,Dateiname$)

259 IF Seitenweise=1 THEN Select(Druck_Ptr,Seiten) ELSE...

. Deselect(Druck_Ptr,Seiten)

260 IF Zeilennummern=1 THEN Select(Druck_Ptr,Znr) ELSE...

... Deselect(Druck_Ptr,Znr)

261 Do_Dialog(Druck_Ptr,Kopf,Back)

262 ~—C

26353 Read_Text(Druck_Ptr,Kopf,Kopf$)

264 =~

265 IF Back=Ok THEN

266 Seitenweise=0:Zeilennummern=0

267 IF FN Selected(Druck_Ptr,Seiten) THEN Seitenweise=1

268 IF FN Selected(Druck_Ptr,Znr) THEN Zeilennummern=1

269 Drucken

270 ENDIF

271 "

272 RETURN

273 !
274 IKKRAKKKKKKK CK HC TE HI N RT TC TH TI TTTH T T T T TRT TTT TTTTT IT I KKK

275 !

276 DEF PROC Sub _ Info

277 Do_Dialog(Info_Ptr,O,Dummy)

278 RETURN

279 '
280 PHKKHKKEKKEKEKKKKEKEEKEEKEKEEEEEEKEEEREREREEEEKEKEKKKKKKKKK KKK

281 !

 410 Atari ST Intern 2

282 DEF PROC Sub Steuer

283 USING "####"' Gilt auch für STR$C..)

284 AS$=FN St_Str$(Sv1,Sv2,Sv3,Sv4)

285 Write Text(Steuer Ptr,Sv,A$)

286 AS=FN St_Str$(Crlf1,Crlf2,Crif3,Crif4)
287 = Write _Text(Steuer_Ptr,Crlf,A$)

288 A$=FN St_Str$(Init1,Init2, Init3, Init4)
289 Write _Text(Steuer_Ptr,Init,A$)

290 AS=FN St_Str$(Exi,Ex2,Ex3,Ex4)

291 Write Text(Steuer_Ptr,Ex,A$)

292

293 Do Dialog(Steuer Ptr,Sv,Back)

29,

295 IF Back=Okk THEN

296 Read _Text(Steuer_Ptr,Sv,A$)

297 Lies(A$,Sv1,Sv2,Sv3,Sv4)

298 Read_Text(Steuer_Ptr,Crlf,A$)

299 Lies(A$,Crlfi,Crif2,Crlf3,Crif4)

300 Read_Text(Steuer Ptr, Init,A$)

301 Lies(AS, Init1, Init2, Init3, Init4)

302 Read_Text(Steuer_Ptr,Ex,A$)

303 Lies(A$,Ex1,Ex2,Ex3,Ex4)

304 ENDIF

305 RETURN

306 !

307 DEF FN St_Str$(X1,X2,X3,X4)
308 LOCAL A$:A$=""

309 IF X1>=0 THEN AS=A$+ RIGHTS(STRS$(X1),3) ELSE RETURN A$

310 IF X2>=0 THEN AS=A$+ RIGHT$C STR$CX2),3) ELSE RETURN A$

311 IF X3>=0 THEN A$=A$+ RIGHT$C STR$CX3),3) ELSE RETURN AS

312 IF X4>=0 THEN A$=A$+ RIGHTS(STRS$(X4),3)

313 RETURN AS

314 !

315 DEF PROC Lies(A$,R A,R B,R C,R D)
316 A=-1:B=-1:C=-1:D=-1

317 IF MIDCA,1,3)<>"" THEN A= VAL(MID$(A$,1,3))
318 IF MIDS(A$,4,3)<>""" THEN B= VAL(MID$(A$,4,3))
319 IF MIDSCA$,7,3)<>"" THEN C= VAL(MIDS(A$,7,3))

320 IF MIDCA,10,3)<>"" THEN D= VALC MIDCA,10,3))

321 RETURN

322 !
323 CRRKKKKKKEKKKEEEEEKREKREEEKEKERKEKEERETEEKEEEEKEKEKKEEEKEKEEKKEKEKKKKKK

324 !

325 DEF PROC Sub Format

326 USING "####"

327 Write_Text(Form Ptr,F_Zeilen, RIGHT$(STRS(Zeilen_Seite),2))

328 Write_Text(Form_Ptr,F Zeich, RIGHT$(STR$(Zeichen_Zeile),3))

329 Write_Text(Form_Ptr,Rand, RIGHT$(STR$(Randbreite),2))

330 "

331 Deselect(Form Ptr,Eins)' Spaltenzahl

 GEM-Programmierung

332 Deselect(FormPtr,Zwei)' (Radio-Buttons)

333 ~=IF Spalten=1 THEN Select(Form_Ptr,Eins) ELSE Select(Form Ptr, Zwei)

334

335 Do Dialog(Form Ptr,F_Zeilen, Back)

336 "

337 IF FN Selected(Form Ptr,Eins) THEN Spalten=1 ELSE Spalten=2338 '

339 Read_Text(Form Ptr,F_Zeilen,A$)

340 Zeilen_Seite= VALCA$)

341 Read_Text(Form_Ptr,F_Zeich,A$)

342 Zeichen_Zeile= VAL(A$)

343 Read_Text(Form_Ptr,Rand,A$)

344 Randbreite= VAL(A$)

345 RETURN

346 !
347 LHRARKKKRAEKREKEKEKKKEEKEEKEEKEEKEERKEEKREUREREEEEEKEEEKEKEKEEKKEIKKEK

348 !

349 DEF PROC Lade_Parameterdatei

350 OPEN "I", 1,"LISTER.PAR"

351 INPUT #1,Sv1,Sv2,Sv3,Sv4

352 INPUT #1,Crlfi1,Crlf2,Crlf3,Crif4

353 INPUT #1, 1nit1,Init2,Init3,Init4

354 INPUT #1,Ex1,Ex2,Ex3,Ex4
355 INPUT #1,Zeilen Seite

356 INPUT #1,Zeichen Zeile

357 INPUT #1,Randbreite

358 INPUT #1,Spalten

359 INPUT #1,Seitenweise

360 INPUT #1,Zeilennummern

361 CLOSE 1

362 RETURN

363 !

364 !

365 DEF PROC Sub_Speicher

366 OPEN "O0",1,"LISTER.PAR"

367 WRITE #1,Sv1,Sv2,Sv3,Sv4

368 WRITE #1,Crlfi,Crif2,Crilf3,Crif4

369 WRITE #1, Init1, Init2, Init3, Init4

370 WRITE #1,Ex1,Ex2,Ex3,Ex4

371 WRITE #1,Zeilen_Seite

372 WRITE #1,Zeichen_Zeile

373 WRITE #1,Randbreite

374 WRITE #1,Spalten

375 WRITE #1,Seitenweise

376 WRITE #1,Zeilennummern

377 CLOSE 1

378 RETURN

379 *
380 EHHKKKCHKKKRKEKEKKEKREEEEKREREEREKEEKEEKAREKREKEEEEEEEKEEKKKEKKKK KKK KKEKKK

381 '

382 DEF PROC Drucken

411

412

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

 Atari ST Intern 2

WHILE 1=1' Endlosschleife

BIOS (Back,8,0)' Bcostat (Nr. 8): Ist Drucker (0) bereit?

IF Back<O THEN EXIT ' Doch nicht endlos...

FORM_ALERT (1,"[3] [Bitte Drucker anschaltenlund auf ONLINE...
. stellen!] [Wird gemacht, Chef!]'")

WEND

Der folgende Befehl dient dazu, die deutschen Umlaute auf

EPSON-kompatiblen Druckern korrekt auszugeben. Wenn Sie einen

Atari oder IBM Drucker verwenden, so müssen Sie diesen Befehl

Löschen:

MODE LPRINT "Dp"! Man druckt deutsch
‘

' Weil diese automatische Umwandlung die Ubertragung von Steuer-

ı codes gefährden könnte, öffnen wir zusätzlich einen direkten

' Printer-Kanal:
1

OPEN "P",2

' Init-String senden:
8

PRINT #2,FN D_Code$(Init1,Init2,Init3,Init4);
a

Rand$= SPACE$(Randbreite)

Zs=Zeilen_Seite-4' 4 Zeilen fur Kopfzeile

Akt_Breite=Zeichen_Zeile-Rand

Spalten_Breite=Akt_Breite

IF Spalten=2 THEN Spalten_Breite=(Akt_Breite)\2

CrlfS=FN D_ Code$(Crif1,Crif2,Crlf3,Crif4)' neue Zeile

Sv$=FN D_Code$(Sv1,Sv2,Sv3,Sv4)! Seitenvorschub

FOR 1=0 TO Letzte _Zeile' Hauptschleife fur Ausdruck
0

IF (I MOD Zs=0) AND (Spalten=2) AND (I>0) THEN I=I+Zs
IF I>Letzte_Zeile THEN EXIT
I

IF (I MOD (Zs*Spalten)=0) AND (Seitenweise=1) THEN ' Kopfzeile

IF I>0 THEN PRINT #2,Sv$' Seitenvorschub ab Seite 2

USING ""sSn$="-"+ STRSCI\(Zs*Spalten)+1)+" -"

MODE "Dp"! fur Datum

AS= SPACES((Akt_Breite- LEN(Kopf$))\2- LEN(Sn$))+Kopf$

LPRINT Rand$;Sn$;A$;: PRINT #2,Crlf$;

AS= DATES +", "+ TIMES + SPACES(Akt_Breite-18-...

. LEN(Dateiname$))

A$=A$+Dateiname$: LPRINT Rand$;A$;: PRINT #2,Crlf$;

AS= STRINGS(Akt_Breite,"-"): LPRINT Rand$;A$;: PRINT #2,Crlf%;

PRINT #2,Crlf$;'! Leerzeile

ENDIF

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

 GEM-Programmierung 413

AS=""; USING "##HHH"

IF Zeilennummern=1 THEN AS=A$+ STR$CI+I)+": "

AS=A$+Zei len$(1) ; |

IF (Spalten=2) AND (Seitenweise=1) AND (I+Zs)<=Letzte_Zeile THEN

IF LENCA$)<Spalten_Breite THEN A$=A$+ SPACES...

...(Spalten_Breite- LEN(A$))

IF Zeilennummern=1 THEN AS=A$+ STRS(I+Zst+1)+": "

A$=A$+Zeilen$(I+Zs)

ENDIF

LPRINT Rand$;A$;: PRINT #2,CrLf$;

NEXT i

' Exit-String senden:
|

PRINT #2,FN D_Code$(Ex1,Ex2,Ex3,Ex4);
i

CLOSE 2! Druckerkanal schließen

RETURN

DEF FN D Code$(A,B,C,D)
LOCAL A$
IF A>=0 THEN A$= CHR$CA) ELSE RETURN "u
IF B>=0 THEN A$S=A$+ CHR$(B) ELSE RETURN A$
IF C>=0 THEN A$=A$+ CHRS(C) ELSE RETURN A$
IF D>=0 THEN AS=A$+ CHRS(D)

RETURN A$
8

KRRKKRKKERKTTRT CT TI TE TC TITTEN TI IC I N KH KT

DEF PROC Select(Baum, Index)

WPOKE Baum+24*Index+10, WPEEK(Baum24*Index+10) OR 1

RETURN
|

DEF PROC Deselect(Baum, Index)

WPOKE Baum+24*Index+10, WPEEK(Bawm+24*Index+10) AND -2
RETURN

DEF FN Selected(Baum, Index)= WPEEK(Baum+24*Index+10) AND 1
i

DEF PROC Write_Text(Baum, Index, Text$)

LOCAL Adr,I,A$

Adr= LPEEK(LPEEK(Baum+24* I ndex+12))

A$=Text$+ CHR$(O)

FOR I=1 TO LENCAS)

POKE Adr+I-1, ASC(MID$(A$,I,1))
NEXT I

 414 Atari ST Intern 2

480 RETURN

481 '

482 DEF PROC Read _Text(Baum, Index,R Text$)

483 LOCAL Adr,1,A$

484 Adr= LPEEK(LPEEK(Baum+24*Index+12))

485 Text$="":1=0

486 WHILE PEEK(Adr+1)<>0

487 Text$=Text$+ CHR$C PEEK(Adr+1))

488 I=1+1

489 WEND

490 RETURN

491 !

492 DEF PROC Do Dialog(Baum,Start_Ed,R Ex_Button)

493 LOCAL X,Y,W,H
494 Form_Center(Baum,X,Y,W,H)

495 Form Dial(0,X,Y,W,H)

496 Form Dial(1,X,Y,W,H)

497 Objc_Draw(0,12,X,Y,W,H,Baum)

498 Form_Do(Start_Ed,Baum,Ex_ Button)

499 Deselect(Baum,Ex_Button)

500 Form Dial(2,X,Y,W,H)
501 Form Dial(3,X,Y,W,H)
502 RETURN

503 '

5.11.3 Applikation:

Balken-/Tortendiagramme

Im Gegensatz zum Computer kann der Mensch Zahlen viel leichter er-
fassen und miteinander vergleichen, wenn sie grafisch in Diagrammen
dargestellt werden. Je nach Art der Zahlen bieten sich dafür verschiedene

Diagramm-Typen an: Balkendiagramme, Liniendiagramme oder Torten-

diagramme, um nur einige zu nennen.

Mein Beispielprogramm kann als Grundlage für ein solches Diagramm-

Programm dienen. Es kann aus maximal acht Zahlenwerten Balken- und

Tortendiagramme zeichnen. Zusätzlich kann der Benutzer nachträglich
Text zur Beschriftung und Linien (z.B. zur Skalierung) anbringen. Die
Bedienung erfolgt über Menüs und Dialogboxen, während die Ausgabe in
einem Window stattfindet. Größe und Position des Fensters sind konstant,

und es gibt nur dieses eine Fenster. Da allerdings der Aufruf von Ac-
cessories gestattet ıst, wurde ein vollständiges Redraw-Verfahren einge-
baut.

 GEM-Programmierung 415

Wieder einmal ist es so, daß das Programm durch die GEM-Umgebung
"etwas" länger geworden ist. Sie werden allerdings bemerken, daß die Ar-

beit mit Dialogboxen zur Daten-Eingabe teilweise zu langweiligen Passa-
gen im Listing führt. Dadurch, daß man Konstanten wie sl, s2, s3...

nicht über einen Index anspechen kann, entstehen im Listing oft Folgen

von fast identischen Anweisungen. Das ist der Preis, mit dem der Pro-

grammierer dem Anwender eine komfortable Bedienung erkauft.

Auf ein paar Punkte soll jetzt noch genauer eingegangen werden: Da ist

zunächst die globale Variable kein _redraw, die vielleicht Verwirrung
stiften könnte. Wie Sie der Prozedur redraw entnehmen können, können

Sie durch Setzen der Variablen kein_redraw einmal eine Redraw-Nach-
richt vom AES ignorieren lassen. Erst die nächste Redraw-Meldung wird

dann wieder wie gewohnt ausgeführt.

Nehmen wir doch ein Beispiel, wie es in diesem Programm oft vor-
kommt: Ein Diagramm befindet sich auf dem Bildschirm, während der
Anwender in einer Dialogbox die Daten für dieses Diagramm editiert.
Bestätigt er die Änderung durch den OK-Button, dann zeichnet das Pro-
gramm grundsätzlich das ganze Diagramm neu (also nicht nur den Teil,
der durch die Box verdeckt war). Allgemein ausgedrückt: Eine Änderung
irgendwelcher Daten hat ein Neuzeichnen des gesamten Fensters erfor-
derlich gemacht.

Allerdings weiß GEM natürlich nicht, daß wir das Fenster komplett er-
neuert haben. Folglich erhalten wir beim nächsten evnt_mesag-Aufruf
eine Redraw-Nachricht: Die Dialogbox wurde ja gelöscht, und wir
möchten doch bitte den Hintergrund wiederherstellen. Da aber ohnehin

das gesamte Fenster gerade erst restauriert wurde, ist natürlich auch der

Bereich der Dialogbox in ordentlichem Zustand. Also ist die Redraw-
Meldung überflüssig und wird von uns nicht beachtet. Mit dem gleichen
Trick arbeitet das Programm auch an einigen anderen Stellen. |

Punkt 2: Grafik abspeichern. Dieser Menüpunkt erlaubt es, ein Diagramm

zur Weiterverarbeitung mit einem Grafikprogramm im Doodle-(Screen-
)Format abzuspeichern. Dazu ist es nur erforderlich, mit BSAVE den
aktuellen Bildschirmspeicher (Adresse erfahren wir durch XBIOS(3),

Logbase; Länge: stets 32000 Bytes) zu sichern. Allerdings hätten wir dann

die Menüzeile und den Fensterrand mit auf der Dateı. Um das zu unter-

binden, legen wir mit MALLOC einen Speicherbereich im RAM an, der

komplett gelöscht wird. Dann kopieren wir mit der Anweisung

RC_COPY nur den Inhalt des Fensters vom Original-Bildschirm in den

 416 Atari ST Intern 2

zweiten logischen Bildschirm (siehe auch Kapitel 2.1). Diesen Bereich
(seine Startadresse heißt im Listing screen2) speichern wir mit BSAV

ab. |

Der dritte Punkt betrifft noch einmal das Redraw-Verfahren. Da das
Programm den Bildschirm nicht rettet (würde viel Speicherplatz kosten),
sondern das Diagramm beı jedem Redraw neu berechnet und gezeichnet
wird, fehlen nach jedem Neuzeichnen alle bisherigen Text-Ausgaben und
Linien, die der Benutzer nachträglich in das Bild geschrieben hat. Um

das zu verhinden, habe ich den ersten Schritt zum objekt-orientierten
Grafik-Programm getan (aber auch wirklich nur den ersten): Jedesmal,

wenn Text ausgegeben oder eine Linie gezogen wird, dann wird diese

Aktion in einer Liste in Strings codiert festgehalten. Diese Liste wird
über die Variablen opts$() und next_opt angesprochen. Bei jedem Neu-
zeichnen des Bildschirms oder eines Teils davon wird also nicht nur das
Diagramm gezeichnet; es werden auch alle Grafik-Befehle, die in der
Liste stehen, ausgeführt. Das erste Byte eines Befehls bestimmt übrigens,
ob die Ausgabe im Modus Balkengrafik oder Tortengrafik erfolgen soll.

Die Liste wird nur dann gelöscht, wenn Sie eine neue Datei zur Bearbei-
tung laden.

ı Zahlen grafisch in Balken/Tortendiagramm darstellen

' GFA-BASIC MP 06-01-88 DIAGRAMM.GFA

a

RESERVE -33000 I etwas Speicher zurückgeben an GEMDOS
ı :

DEFINT "a-z" I Ab sofort: Alle Variablen sind Integer
h

' Konstanten des Resource-Files:
i

b_daten=2

s1=4

w1=5

w2=8

s2=7

s3=10

w3=11

s4=13

w4=14

s5=16

w5=17

w6=20

s6=19

s7=22

w7=23

s8=25

 GEM-Programmierung 417

w8=26

ok=28

abbruch=27

b_menue=0

info=8

laden=17

sich=18

gsich=20

ende=22

dedi t=24

balken=26

torten=27

schrift=29

Linien=30

b_info=1
a

' Eigene Konstanten:
'

akt_form=balken ! 'balken' und 'torten' sind oben definiert
a

DIM bez$(8),wertS(8),wert#(8) 1! Daten einer Grafik

FOR i=1 TO 8
bez$(1 yzıın

wert$(li)=""

wert#(1)=0

NEXT 1
i

DIM opts$(100) I Zusätzliche Grafik wird hier für Redraw gesichert

next_opt=0
i

' Der File-Selector braucht nacher einen Pfadnamen:
‘

pathS=CHRS(ASC("A'")+GEMDOS(&H19))+"3"+DIRSCO)+"* DIF"

path2S=CHRS(ASC("A")+GEMDOS(&H19))+"=2"+DIRS(0)+"* DOO"

default$=""

defaultes=""

VOID APPL_INIT()
t

IF RSRC_LOAD("DIAGRAMM.RSC")=0
VOID FORM_ALERT(1,"(3] [Kein RSC-File!} [Ende]")
VOID APPL_EXIT()
END

ENDIF

' Startadressen der Baume holen:
' |

VOID RSRC_GADDR(0,b menue,menue_ptr)

VOID RSRC_GADDR(0,b_info, info_ptr)
VOID RSRC_GADDR(0,b_ daten,daten_ptr)

 418 Atari ST Intern 2

' Arbeitsbereich ermitteln, graue Flache zeichnen:
1

VOID WIND_GET(0,4,xdesk, ydesk, wdesk, hdesk)
8

DEFFILL 1,2,4 ! Desktop-Grau

BOUNDARY 0 I Umrahmung aus

PBOX xdesk, ydesk, xdesk+wdesk- 1, ydesk+hdesk- 1

' Menüpunkt Linien und Beschriften sind noch nicht erlaubt:
i

VOID MENU_IENABLE(menue_ptr,schrift,0)

VOID MENU_IENABLE(menue_ptr, Linien,0)

VOID MENU_IENABLE(menue_ptr,gsich,0) ! gilt auch für 'Grafik sichern'

ı Menüleiste zeigen:
ß

VOID MENU_BAR(menue_ptr, 1)

fenster_offen=0 ı Flag: Fenster noch nicht geöffnet

abbruch=0 ' Flag: noch kein Abbruch

puf fer$=SPACE$(16) ! Platz für GEM-Ereignispuffer
|

REPEAT

neu_zeichnen=0 ' Flag: Grafik muß nicht neu gezeichnet werden
t

VOID EVNT_MESAG(VARPTR(puf fer$)) ! Warten auf Nachricht...

' IF FN p(0)=10 1! Menüpunkt? |

title=FN p(3) ! Titel-Index merken
i

SELECT FN p(4)

CASE info

sub_info

CASE laden

sub_laden

CASE sich

sub_sich

CASE gsich

sub_gsich

CASE ende

sub_ende

CASE dedit

sub _dedit

CASE balken

sub_balken

CASE torten

sub_torten

CASE schrift

sub_schrift

CASE linien

 GEM-Programmierung 419

sub_linien

ENDSELECT
t

VOID MENU_TNORMAL(menue_ptr,title,1) ! Titel normal darstellen

ENDIF
6

IF FN p(0)=20 AND FN p(3)=whandle ! Redraw

redraw

ENDIF
8

IF FN p(0)=21 AND FN p(3)=whandle ! Topped

neu_zeichnen=1

ENDIF
8

IF FN p(0)=22 AND FN p(3)=whandle ! Closed

sub_ende

ENDIF
!

' Prifen: Erfolgte eine Veränderung, die das Neuzeichnen der

' Grafik erforderlich macht?
a

IF neu_zeichnen=1

IF fenster_offen=1

ı Prüfen, ob unser Fenster oben (aktiv) ist:
a

VOID WIND_GET(whandle, 10, oben, dummy, dumny , dummy)
a

IF whandle<>oben

VOID WIND_SET(whandle,10,0,0,0,0)

kein_redraw=1 1! Redraw kommt automatisch nach WIND_SET

ENDIF

ENDIF

zeichne_grafik

ENDIF

UNTIL abbruch=1
'

IF fenster_offen=1

VOID WIND_CLOSE(whandle)

VOID WIND_DELETE(whandle)

ENDIF
I .

VOID MFREE(s_ptr) ! Hier stand die Titelzeile
I

VOID MENU_BAR(menue_ptr,0) I Menüleiste löschen
8

VOID RSRC_FREE(C) ~ ! Resource-Daten léschen

VOID APPL_EXIT()

 420 Atari ST Intern 2

RESERVE
’

END
t

t

' Funktion zum Zugriff auf einzelne Worte des AES-Nachrichtenpuffers:
I

DEFFN p(x)=CVICMID$Cpuffer$,x*2+1,2))
ı

PROCEDURE sub_gsich

FILESELECT path2$,default2$, ausgabe$

IF ausgabe$<>"" AND RIGHTS(ausgabe$, 1)<>"\"

screen2=MALLOC(32000)

IF screen2>0

FOR i=0 TO 31996 STEP 4

LPOKE screen2+i,0

NEXT i
i

' Grafik nach der File-Selektor-Box noch einmal ausgeben:

'ı Prüfen, ob unser Fenster oben (aktiv) ist:
t

VOID WIND. GET(whandle, 10, oben, dummy, dummy , dummy)

IF whandle<>oben

VOID WIND_SET(whandle,10,0,0,0,0)

kein_redraw=1 I Redraw kommt automatisch nach WIND_SET

ENDIF

zeichne_grafik
8

RC_COPY XBIOS(3),xwork, ywork,wwork,hwork TO screen2,xwork, ywork

BSAVE ausgabe$,screen2,32000
a

VOID MFREE(screen2)

ELSE

VOID FORM_ALERT(1,"[3] [Dafür reicht der!Speicher nicht!] [Schade] ")

ENDIF

ENDIF

RETURN

PROCEDURE sub_torten

IF akt_form<>torten

akt_form=torten
8

VOID MENU_ICHECK(menue_ptr,balken,0) ! Balken-Haken löschen

VOID MENU_ICHECK(menue_ptr,torten,1) ! Torten-Haken setzen

 GEM-Programmierung

IF fenster_offen=1 I Nur, wenn das Fenster schon geöffnet

neu_zeichnen=1 I ist, soll neu gezeichnet werden (sonst

ENDIF I würde das Fenster womöglich ohne

ENDIF ı sinnvolle Daten geöffnet)

RETURN |

PROCEDURE sub_balken

IF akt_form<>balken

akt_form=balken
8

VOID MENU_ICHECK(menue_ptr, torten,0)

VOID MENU_ICHECK(menue_ptr,balken, 1)
a

IF fenster_offen=1

neu_zeichnen=1

ENDIF

ENDIF

RETURN

PROCEDURE sub_schrift

'! Menüs, Windows desaktivieren:
i

VOID WIND_UPDATE(3) ! Mauskontrolle an das Programm (= an uns)

CLIP xwork, ywork, wwork, hwork
t

VOID GRAF_MOUSE(5,0) I Fadenkreuz
agzım

ı Tastaturpuffer leeren:
q

WHILE INKEY$<>""

WEND
t

GRAPHMODE 3 I XOR-Modus

text_abbr=0

x=MOUSEX

y=MOUSEY
§

REPEAT

IF MOUSEK=1 ı Knopf gedrückt

TEXT x,y,a$ I Text wieder löschen

GRAPHMODE 1 I Replace-Modus

TEXT x,y,a$! Text ‘richtig' schreiben

text_abbr=1

ENDIF

IF MOUSEX<>x OR MOUSEY<>y

421

 422 Atari ST Intern 2

TEXT x,y,a% I alten Text löschen

x=MOUSEX t neue Koordinaten übernehmen

y=MOUSEY

TEXT x,y,a$ I Text neu schreiben

ENDIF
4

z$=INKEYS
I F zg<> un

IF z$=CHR$(8) I Backspace?

IF a$<>""

TEXT x,y,a$

aS=LEFT$(a$, LEN(a$)-1)

TEXT x,y,a$

ENDIF

ELSE

TEXT x,y,aS

a$=a$+z$

TEXT x,y,a$

ENDIF

ENDIF

UNTIL text_abbr=1

' Text-Ausgabe in der Options-Liste eintragen:
t

INC next_opt

opts$(next_opt)=CHRS(akt_form)+CHRS(0)+MKIS(x)+MKIS(y)+a$
|

VOID WIND_UPDATE(2) ! Mauskontrolle an GEM

VOID GRAF_MOUSE(0,0) I Pfeil als Zeiger

CLIP OFF

RETURN

PROCEDURE sub_linien

VOID WIND_UPDATE(3) ! Mauskontrolle an das Programm (= an uns)

CLIP xwork, ywork, wwork, hwork
I

VOID GRAF_MOUSE(5,0) I Fadenkreuz
t

REPEAT I Gelegenheit für den Benutzer, die Maustaste nach

UNTIL MOUSEK=0 ! dem Klick im Menü wieder loszulassen
1

REPEAT I Warten auf Klick

UNTIL MOUSEK=1

t

GRAPHMODE 3 I XOR-Modus

x1=MOUSEX I Koordinaten merken

y 1=MOUSEY

 GEM-Programmierung 423

x=x1

y=y1
LINE x,y,X,Y ! ein Punkt muB schon gesetzt werden
R

REPEAT

IF x<>MOUSEX OR y<>MOUSEY

LINE x1,y1,x,y I Linie löschen

x=MOUSEX

y=MOUSEY

LINE x1,y1,x,y I neue Linie zeichnen

ENDIF

UNTIL MOUSEK=O

LINE x1,y1,x,y I wieder löschen

GRAPHMODE 1 ! Replace-Modus

LINE x1,y1,x,y I richtig zeichnen

ı In die Grafik-Liste eintragen:
I

INC next_opt

opts$(next_opt)=CHRS$(akt_form)+CHRS(1)+MKIS(x1)+MKISCy1)+MKIS(X)+...

-.-MKI$(y)
i

VOID WIND_UPDATE(2) 1! Kontrolle zurück an GEM

VOID GRAF_MOUSE(0,0) ! Pfeil als Meuszeiger

CLIP OFF

RETURN

PROCEDURE sub_ende

IF FORM_ALERT(2,"[2] [Programm bestimmt beenden?) (JalNein]")=1
abbruch=1

ENDIF
RETURN

PROCEDURE sub_info

do_dialog(info_ptr,0,dummy)

RETURN

PROCEDURE sub _dedit I Dateneditor

write_text(daten_ptr,s1,bez$(1))

write _text(daten_ptr,s2,bez$(2))

write _text(daten_ptr,s3,bez$(3))

write _text(daten_ptr,s4,bez$(4))

write text(daten_ptr,s5,bez$(5))

write _text(daten_ptr,s6,bez$(6))

write _text(daten_ptr,s/,bez$(7))

write text(daten_ptr,s8,bez$(8))

 424

write_text(daten_ptr,wi,wert$(1))

write_text(daten_ptr,w2,wert$(2))

write _text(daten_ptr,w3,wert$(3))

write_text(daten_ptr,w4,wert$(4))

write_text(daten_ptr,w5,wert$(5))

write_text(daten_ ptr,w6,wert$(6))

write_text(daten_ptr,w/,wert$(7))

write _text(daten_ptr,w8,wert$(8))

do_dialog(daten_ptr,s1,geklickt)
J

IF geklickt=ok

read_text(daten_ptr,s1,a$)

bez$(1)=a$

read_text(daten_ptr,s2,a$)

bez$(2)=a$

read_text(daten_ptr,s3,a$)

bez$(3)=a$

read_text(daten_ptr,s4,a$)

bez$(4)=a$

read_text(daten_ptr,s5,a$)

bez$(5)=a$

read_text(daten_ptr,s6,a$)

bez$(6)=a$

read_text(daten_ptr,s7,a$)

bez$(7)=a$

read_text(daten_ptr,s8,a$)

bez$(8)=a$
q

read_text(daten_ptr,wi,a$)

wert$(1)=a$

wert#(1)=VAL(a$)

read_text(daten_ptr,w2,a$)

wert$(2)=a$

wert#(2)=VAL(a$)

read_text(daten_ptr,w3,a$)

wert$(3)=a$

wert#(3)=VAL(a$)

read_text(daten_ptr,w4,a$)

wert$(4)=a$

wert#(4)=VAL(a$)

read_text(daten_ptr,w5,a$)

wert$(5)=a$

wert#(5)=VAL (aS)

read_text(daten_ptr,w6,a$)

wert$(6)=a$

wer t#(6)=VAL(a$)

read _text(daten_ptr,w7,a$)

wert$(7)=a$

wert#(7)=VAL(a$)

Atari ST Intern 2

I Sieht umständlich aus, oder?

I Geht aber nicht anders!

I Jetzt wird's noch schlimmer...

 GEM-Programmierung 425

read_text(daten_ptr,w8,a$)

wert$(8)=a$

wer t#(8)=VAL(a$)

neu_zeichnen=1 I Flag: Grafik bitte neu zeichnen

kein_redraw=1 I Aber: Wenn wir sowieso ganz neu zeichnen, dann

! können wir ein Redraw durch die Dialogbox ignorieren!

ENDIF

RETURN

' Grafik (neu) zeichnen:

PROCEDURE zeichne_grafik |

IF fenster_offen=0 ! Fenster noch nicht offen?

whandle=WIND_CREATE(3,xdesk, ydesk, wdesk , hdesk)

' Titelzeile anlegen:
1

s_ptr=MALLOC(20)
i

FOR i=1 TO LENC" DIAGRAMM "'+CHR$(0))
POKE s_ptr-1+i,ASCCMID$C" DIAGRAMM "+CHR$(0),i,1))

NEXT i

VOID WIND_SET(whandle,2,s_ptr DIV 65536,s_ptr MOD 65536,0,0)

VOID WIND_OPEN(whandle,xdesk+5,ydesk+5 ‚wdesk-10,hdesk- 10)

' Arbeitsbereich ausrechnen:
4

VOID WIND _CALC(1,3,xdesk+5, ydesk+5, wdesk-10,hdesk-10,xwork,...

...ywork, wwork, hwork)

fenster_offen=1
‘

kein_redraw=1 I Redraw kommt automatisch nach WIND OPEN '

ı Da das Fenster jetzt offen ist, können wir die Menüpunkte

' !Beschriften' und 'Linien' zulassen:
i

VOID MENU_IENABLE(menue_ptr,schrift, 1)

VOID MENU_IENABLE(menue_ptr, linien, 1)

VOID MENU_IENABLE(menue_ptr,gsich,1)

ENDIF

BOUNDARY 0 I Kein Rand beim Füllen

DEFFILL 1,0

PBOX xwork, ywork, xwork+wwork-1,ywork+hwork- 1

IF akt_form=balken

 426 Atari ST Intern 2

zeichne_balken

ELSE

zeichne_torte

ENDIF
t

IF next_opt>0 ! Linien und Texte eintragen:

CLIP xwork, ywork, wwork, hwork

FOR i=1 TO next_opt

IF ASCCopts$(1))=akt_form

IF MIDSCopts$(i),2,1)=CHRS$(0)

TEXT CVI(MID$(opts$(i),3,2)),CVI(MID$(opts$(i),5,2)),.--
.--MID$Copts$(1), 7)

ELSE

LINE CVICMID$Copts$Ci),3,2)) ,CVICMID$Copts$(i),5,2)),...

..-CVI(MID$(opts$(1),7,2)),CVI(MID$(opts$(1),9,2))
ENDIF

ENDIF

NEXT i

CLIP OFF

ENDIF

RETURN

PROCEDURE zeichne_balken

' Feststellen, wieviele Werte zu zeichnen sind:
I

FOR i=1 TO 8

EXIT IF wert$(i)=""

NEXT i

last=i-1 I Der zuletzt geprüfte Eintrag ist Ja schon leer
1

' Wertebereich berechnen:
t

max_wert#=wert#(1)

min_wert#=wert#(1)

IF last>1

FOR i=2 TO last

max_wert#=MAX(wert#(i),max_wert#)

min_wert#=MIN(wert#(i),min_wert#)

NEXT i

ENDIF
‘

IF min_wert#<0

IF max_wert#=>0

wertebereich#=max_wert#-min_wert#

null_linie=TRUNC(ywork+40+(hwork-61)*max_wert#/wertebereich#)

ELSE

wertebereich#=-min_wert#

 GEM-Programmierung 427

nul l_linie=ywork+20

ENDIF

ELSE

wertebereich#=max_wert#

nul l_linie=ywork+hwork-41

ENDIF

faktor#=(hwork-60)/wertebereich#

LINE xwork+5,null_linie, xwork+wwork-6,null_linie
8

breite#=(wwork-20)/(last+0.5*(last-1))
8

BOUNDARY 1

DEFFILL 1,2,5
{

FOR i=1 TO last

xX 1=TRUNC(xwork+10+1.5*(1-1)*breite#)

x2=TRUNC(x1+breite#)

y=TRUNC(null_linie-faktor#*wert#(i))

PBOX x1,null_linie,x2,y
0

IF SGN(wert#(i))=1

ADD y,10

ENDIF

IF SGN(wert#(i))=0

SUB y,3

ENDIF

TEXT x1+(breite#-8*LEN(wert$(1)))\2,y-SGN(wert#(i))*15,wert$(i)
ß

IF SGN(wert#(i))=-1

by=null_linie-8

ELSE

by=null_linie+20

ENDIF
t

TEXT x1+(brei te#-8*LEN(bez$(i)))\2, by, bez$(i)

NEXT 1

RETURN

PROCEDURE zeichne_torte

' Feststellen, wieviele Werte zu zeichnen sind:
i

FOR i=1 TO 8

EXIT IF wert$(i)=""
NEXT i

 428 Atari ST Intern 2

last=1-1
J

' Summe aller Beträge ausrechnen:
i

summe=0

FOR 1=1 TO last

ADD summe,ABS(wert#(1))

NEXT i

winkel=0
1

BOUNDARY 1 I Umrandung wieder einschalten

ELLIPSE xwork+wwork\2, ywork+thwork\2+15,wwork\2-50,hwork\2-50, 1800, 3600
t

LINE xwork+50, ywork+hwork\2, xwork+50, ywork+hwork\2+15

LINE xwork+wwork-50, ywork+hwork\2, xwork+wwork-50, ywork+hwork\2+15
§

FOR i=1 TO last

DEFFILL 1,2,i

teilwinkel=TRUNC(3600*ABS(wert#(i))/summe)

PELLIPSE xwork+wwork\2,ywork+hwork\2,wwork\2-50,hwork\2-50,...

.. winkel,winkel+teilwinkel
ı

IF winkel+teilwinkel>1800 OR winkel+teilwinkel=0

xx=xwork+wwork\2+(wwork\2-50)*COS((3600-winkel-teilwinkel)*...

...P1/1800)

yy=ywork+hwork\2+(hwork\2-50)*SINC(3600-winkei-teilwinkel)*...

...P1/1800)

LINE xx,yy,xx,yy+15
8

IF winkel<1800

w=1800

t=tei lwinkel-1800+winkel

ELSE

w=winkel

t=teilwinkel

ENDIF oo

xx=xwork+wwork\2+(wwork\2-50)*COS((3600-w-t\2)*P1I/1800)

yy=ywork+hwork\2+(hwork\2-50)*SIN((3600-w-t\2)*P1I/1800)

FILL xx,yy+8

ENDIF
f

ADD winkel, teilwinkel

NEXT i
1

FOR i=1 TO last

y=ywork+5+((i-1)\4)*Chwork-25)
x=xwork+10+(Ci-1) MOD 4)*CCwwork-20)\4)

 GEM-Programmierung

DEFFILL 1,2,1

PBOX x,y,x+16,y+16

TEXT x+21,y+13, bez$(i)+" ("+wertS¢1)+")"

NEXT i
I

RETURN
8

PROCEDURE redraw

LOCAL x,y,w,h
a

IF kein_redraw=1

kein_redraw=0

ELSE

' ' Bitte keine Mausaktivitdten:
Q

VOID WIND_UPDATE(1)

VOID WIND_GET(whandle,11,x,y,w,h) ! 1. Rechteck aus Rechteckliste

WHILE NOT w=0
1

' Mit Clip werden die Ausgaben auf das Rechteck begrenzt,

' das neu zu zeichnen ist. Es ist das Schnittrechteck aus dem

' Rechtecklisten-Rechteck und dem Rechteck aus der Nachricht.
8

IF RC_INTERSECT(FN p(4),FN p(5),FN p(6),FN p(7),x,y,w,h)
CLIP x,y,w,h

zeichne_grafik

ENDIF
4

VOID WIND_GET(whandle, 12,x,y,W,h)
WEND
8

CLIP OFF

VOID WIND_UPDATE(0)

ENDIF

RETURN

PROCEDURE sub_laden

FILESELECT path$,default$, ausgabe$

IF ausgabe$<>"" AND RIGHTS(ausgabe$, 1)<>"\"

OPEN "I", #1, ausgabe$

FOR i=1 TO 8

LINE INPUT #1,bez$(i)

LINE INPUT #1,wert$(i)

NEXT ij
CLOSE #1

429

 430 Atari ST Intern 2

FOR i=1 TO 8 I Umwandeln der Strings in Zahlen

wert#(i)=VAL(wert$(i))

NEXT i
5

neu_zeichnen=1 ! Weil wir ohnehin alles neu zeichnen, ist...

kein_redraw=1 1! ... kein Redraw durch File-Selector mehr nötig
J

next_opt=0 I keine Grafik-Objekte aus alter Datei mitnehmen

ENDIF

RETURN

PROCEDURE sub_sich

FILESELECT path$,default$, ausgabe$

IF ausgabe$<>"" AND RIGHTS(ausgabe$, 1)<>"\"

OPEN "0" #1, ausgabe$

FOR i=1 TO 8

PRINT #1,bez$(i)
PRINT #1,wert$(i)

NEXT i

CLOSE #1

ENDIF

RETURN

ı Nützliche Unterprogramme für Objekte:
8

PROCEDURE select(baum, index)

OB_STATE(baum, index)=0B_STATE(baum, index) OR 1

RETURN
a

PROCEDURE deselect (baum, index)

OB_STATE(baum, index)=0B STATE(baum, index) AND -2

RETURN
‘

PROCEDURE do_dialog(baum,start_ed,VAR exit_button)

LOCAL x,y,w,h
I

VOID FORM_CENTER(baum,x,y,w,h) ! Baum zeichnen, ...

VOID FORM_DIAL(O,x,y,w,h,x,y,w,h)

VOID FORM DIAL(1,25,25,25,25,x,y,w,h)

VOID OBJC_DRAW(baum,0,12,x,y,w,h)
Q

exit_button=FORM DO(baum, start_ed) ! bearbeiten lassen ...

deselect(baum,exit_button)
A .

VOID FORM DIAL(2,25,25,25,25,x,y,w,h) I und löschen

VOID FORM_DIAL(3,x,y,w,h,X,y,W,h)
RETURN

431 GEM-Programmierung

PROCEDURE write_text(baum, index, text$)
LOCAL adr,i,a$
a

adr=LPEEK(OB_SPEC(baum, index))
a$=text$+CHR$(0)
i

FOR i=1 TO LEN(a$)
POKE adr+i-1,ASC(MID$(a$,i,1))

NEXT i
RETURN
a

PROCEDURE read_text(baum, index, VAR text$)

LOCAL adr, i
a

adr=LPEEK(OB_SPEC(baum, index))

text$=""

1=0
q

WHILE PEEKCadr+i)<>0 I bis zum Nullbyte lesen

text$=text$+CHR$CPEEK(adr+i))

INC i

WEND

RETURN
t

beminne/Verluste für das Unternehmen

im vorigen Honat!

2488 D
2008 DM SE

Bs SSESENS

 = E

x

= Si 4 2 a 7 % rt

3 & Er

Er

ac
e

0

RS

rs 2
 & re re 5 re a &

a x x x = E
R
S
:
 ER

H
E
R
R
E
N

H
E
R
R
E
N
,

R
R

re

se
e

se
es

s
e
t

&

 ‘
RE

 x
fe tt,

ee

t

 432 Atari ST Intern 2

5.11.4 Accessory:

Programm-Kommunikation

Dieses Accessory paBt nicht so recht in die Gruppe der bisher vorge-
stellten Programme, weil es keinen wirklichen Nutzen bringt. Da die Idee
an sich aber sehr praktisch sein kann, will Ich Ihnen das Programm hier

dennoch als Beispiel-Accessory vorstellen.

Es geht dabei um den Austausch von Daten zwischen mehreren Pro-

grammen. Das Ungewöhnliche ist nun, daß diese Programme sich gleich-

zeitig im Hauptspeicher des Rechners befinden sollen; der Sender einer

Nachricht und der Empfänger laufen also im Multitasking-System des
GEM. Das bedeutet: Um eine derartige Kommunikation zu erreichen,

brauchen wir mindestens zwei Programme.

Ich habe mich für zwei Accessories entschieden; das System arbeitet aber

ebenso gut mit einem Accessory und einer Applikation (zwei Applikatio-

nen erlaubt GEM ja leider nicht gleichzeitig). Der Sender soll TALK (=
sprechen) heißen, der Empfänger LISTEN (= zuhören). Nur TALK kann
eine Nachricht an LISTEN senden; umgekehrt funktioniert es nicht.

Die Nachricht selbst können wir relatıv einfach über das normale Nach-

richten-System des AES verbreiten. Sie wissen ja bereits, daß eine typi-

sche AES-Nachricht aus acht Worten besteht, wobei das erste Wort den

Typ der Nachricht angibt (Menüpunkt angeklickt, Fenster soll neue

Größe bekommen, Accessory aufgerufen, Redraw-Meldung usw.). Jede

Nachricht hat dazu bekanntlich eine feste Nummer. Dem Programmierer

ist es nun gestattet, neue Nachrichten zu definieren und sie von einem

Programm an ein anderes schicken zu lassen. Dabei sollte sichergestellt

sein, daß das Empfängerprogramm die Nachricht auch versteht. Eine
solche Nachricht könnte z.B. lauten: "Gib bitte den Text aus, dessen

Startadresse in puffer[2] (high) und puffer[3] (low) steht!"

Das ist auch die Nachricht, die mein Beispielprogramm LISTEN verste-

hen kann. Ich habe ihr willkürlich die Nummer 99 zugeteilt. Das Emp-

fängerprogramm sieht so aus:

NT N

/* Accessories sprechen miteinander (Empfänger) */

/* Laser C MP 08-01-89 LISTEN.C */
NRW]

#include "gem_inex.c"

 GEM-Programmierung 433

int ac_id, /* Identifikations-Nr. des Accessorys */

puffer[8]; /* Wie gewohnt: AES-Nachrichtenpuffer */

long *longs; /* Pointer auf puffer, s.u. */

char str[100]), /* Hier basteln wir einen String zusammen */

message; / Hier kommt die Nachricht an */

main()

{

/* Problem: Wir benötigen in einem ARRAY sowohl Worte als auch */

/* Langworte. Lösung: Wir weisen einem zweiten ARRAY (bzw. */

/* Pointer; ist ja fast dasselbe) die Startadresse des ersten */

/* Arrays zu. Formal sind die Arrays verschieden (verschiedene */

/* Typen: 1. int, 2. long), doch sie zeigen auf die gleichen Daten. */

longs = (long *) puffer;

gem_init();

ac_id = menu_register (ap_id, " Empfänger"); /* ACC anmelden */

while (1) /* Endlosschleife */

{
evnt_mesag (puffer); /* Warten auf AES-Nachricht */

switch (puffer[0]) /* Ereignistyp auswerten */

{

/* Möglichkeit 1: */

/* Der Anwender hat ganz normal den Eintrag im Desk-Menü */

/* angeklickt. Dann steht in puffer[0] wie üblich 40. */

/* Wir geben nur einen kleinen Hinweis: */

case 40: /* Accessory gefragt? */

if (puffer[4] == ac_id) /* etwa unser Accessory? */

form_alert (1,"[1][Ich bin der Empfänger. schicken Sie mir...
„.. doch malleine Nachricht!] [Mach ich!]");

break;

/* Möglichkeit 2: */

/* In puffer[0] steht unser 'Geheimcode' 99. Das AES kennt */

/* diese Nachricht nicht, also muß sie vom Sende-Accessory */

/* kommen. Im Wort 2 und 3 (oder im zweiten Langwort) der */

/* Nachricht finden wir einen Zeiger auf den String, der die */

/* übermittelte Nachricht enthält: */

case 99: — /* Aha, Nachricht vom Sender! */

message = (char*) *(longs+1); /* Zweites Langwort */

strepy (str, "[1] [Empfanger erhielt Nachricht:! |");
strcat (str, message); /* Hier ist die Nachricht! */

 434 Atari ST Intern 2

strcat (str, "] [Verstanden.]");

form_alert (1, str); /* Das ganze bitte anzeigen! */

break; |

Der Sender muß natürlich die Fähigkeit besitzen, eine fremde Nachricht

in das AES-Nachrichtensystem einzuschleusen. Das geht mit der Funktion

appl_ write des AES. Dieser muß als Parameter die Zahl der zu über-

tragenden Bytes (bei acht Worten also 16), die eigentliche Nachricht und

die Identifikationsnummer des Zielprogramms übergeben werden. Letz-
teres ist der Rückgabewert des appl_init-Aufrufs im Zielprogramm.

Doch wie soll der Sender an diesen Funktionswert kommen?

Dafür gibt es die Funktion appl_find. Der ist der Dateiname eines

Programms oder eines Accessories zu übergeben. Wenn sich das Pro-
gramm im Speicher befindet, so wird die Identifikations-Nummer des

Programms zurückgeben. Wenn nicht, so erhalten Sie als Zeichen für

einen Fehler -1 zurück. Wichtig ist, daß der Dateiname keine Extension

enthält und nur aus Großbuchstaben besteht. Der Name muß genau acht

Zeichen lang sein (eventuell mit Leerzeichen auffüllen).

NETTER /

/* Accessories sprechen miteinander (Sender) */

/* Laser C MP 08-01-89 TALK.C */
NRW |

#include "gem_inex.c"

int ac_id,

typ,
lListen_id,

puffer [8];

long *longs;

char message [100] ;

main()

{
longs = (long *) puffer;

gem_init();

ac_id = menu_register (ap_id, " Sender");

 GEM-Programmierung 435

while (1) /* Endlosschleife */

{

evnt_mesag (puffer);

/* Dieses Accessory kann nur durch Klick im Desk-Menü aktiviert */

/* werden. Deshalb haben wir auch nur den Ereignistyp 40 zu */

/* prüfen: */

/* Test: Unser Accessory? */

if (puffer[0] == 40 && puffer[4] == ac_id)

{
. /* Die Nachricht wird später mit appl_write geschrieben. Dazu */

/* benötigen wir aber die Applikations-ID des Empfängers. Die */

/* besorgen wir uns mit appl. find. Dabei stellen wir auch */

/* fest, ob der Empfänger überhaupt geladen wurde */

Listen_id = appl_find ("LISTEN ");

if (listen_id == -1) /* Nicht gefunden? */

form_alert (1, "{3] [Der Empfanger befindet sich!noch nicht...
... im Speicher!) [Ach?]");

else

{
typ = form_alert (0, "[2] [Welche Nachricht wünschen...

... Sie?! 11. Hallo Empfanger}2. Schénes Wetter...

... heute! !3. Atari ist super!](1}2/31");

Switch (typ)

{

case 1: strcpy (message, "Hallo Empfanger");
break;

case 2: strcpy (message, "Schönes Wetter heute!");

break;

case 3: strcpy (message, “Atari ist super!");

break;

>

/* Jetzt können wir die Nachricht senden. In puffer[0] */

/* schreiben wir unseren 'Geheimcode' (99), der dem */

/* Empfänger klarmacht, was wir eigentlich wollen. */

/* Die Startadresse der Nachricht wird in puffer[2] */

/* und [3] abgelegt (über longs, siehe Kommentar im */

/* Listing LISTEN.C). */

puffer [0] 99; /* Code für Privatgespräch */

(longs+1) = (long) message; / entspricht puffer[2] und [3] */

appl_write (listen_id, 16, puffer); /* 16 Bytes senden */

 436 Atari ST Intern 2

5.11.5 Applikation: Dateien codieren

Wenn Sie sich für das Thema Datenschutz interessieren, dann ist dieses
Programm etwas fiir Sie: Es verschlüsselt beliebige Dateien oder Pro-
gramme mit einem frei wählbaren Schlüssel. Nur wer den Schlüssel

kennt, kann die Dateı später wieder benutzen.

Zum Prinzip: Die Datei wird codiert, indem jedes Daten-Byte mit einem

Zeichen des Codes exklusiv-oder verknüpft wird (d.h. eın gesetztes Bit
im Code bewirkt, daß das entsprechende Bit der Daten negiert wird). Ist

der Code z.B. zwei Zeichen lang, dann wird das erste Datenbyte mit dem
ersten Codebyte verknüpft, das zweite Datenbyte mit dem zweiten Code-

byte, das dritte Datenbyte wieder mit dem ersten Codebyte usw. Dabei
hat die Exklusiv-oder-Verknüpfung den Vorteil, daß die gleiche Routine

auch zum Entschlüsseln der Datei benutzt werden kann; denn eine zweite

Negation hebt die erste auf.

Zum Ablauf des Programms: Die File-Selector-Box wird zur Eingabe ei-
nes Dateinamens aufgerufen. Sodann wird mit Fsfirst die Länge der ge-
wählten Datei ermittelt und diese komplett ın den Speicher geladen

(wenn der Platz nicht reicht, gibt’s eine Fehlermeldung). Nach der ei-

gentlichen Codierung (s.o.) wird die Datei zuritickgeschrieben. Der An-

wender kann nun eine zweite Datei bearbeiten oder das Programm been-
den.

Das Programm wurde ın Assembler geschrieben und benötigt die beiden
Include-Dateien GEM_INIT.Q und GEM_INEX.Q aus dem Ordner
GEM.S. Bitte lassen Sie sich nicht durch den großen Umfang des Listings

abschrecken; Sıe wissen ja bereits, daß in Assembler alles ein paar Zeilen
mehr benötigt als in Hochsprachen. Ein Hinweis noch: Der File-Selector
verändert die DTA (Disk-Transfer-Address; siehe Listing), die ja für die
Fsfirst-Funktion gesetzt werden muß. Der Aufruf der Funktion Fsetdta
muß also nach dem Aufruf des File-Selectors erfolgen.

; Dateien codieren/decodieren (Demo-Applikation)

; Assembler MP 11-01-89 CODE.Q
s

f

 GEM-Programmierung 437

gemdos = 1 Konstanten zu GEMDOS-Routinen

dgetdrv = $19

fsetdta = $la

fopen = $3d

fclose = $3e

fread = $3f

fwrite = $40

fseek = $42

dgetpath = $47

malloc = $48

mfree = $49

fsfirst = $4e

DIALOG = 0 :Konstanten zum Resource-File

FNAME = 3

KEY = 5

ABB = 7

OK = 6

INCLUDE 'GEM_INEX.Q!'

TEXT

main: jsr gem_init swie üblich

; rsrc_load:

move.w #110,control

clr.w control+2

move.w #1,control+4

move.w #1,control+6

clr.w control+8

move.l #rscname,addr_in

jsr aes

tst.w int_out ;Fehler?

beq rsc_err

; rsrc_gaddr ermittelt Startadresse des Dialogs:

move.w #112,control

move.w #2,control+2

move.w #1,control+4

clr.w control+6

move.w #1,control+8

clr.w int_in ;0 für 'Baum gesucht!

move.w #DIALOG,int_int2 ;Index des Baumes

jsr aes

 438

n
s

“
o
a

move. |

lea

clr.b

move .W

jsr

clr.b

lea

Atari ST Intern 2

addr_out,baum_adr ;Ergebnis: die Startadresse

code, a0 ;Schlüsselfeld leeren

(a0)
#KEY , dO

write text

Für den Fileselector muß zunächst mal ein Pfadname

gebastelt werden:

default ;kein Default-Name bei Programmstart

fsel_pfad,a2

; Aktuelles Lauswerk erfragen

move .w

trap

addq. |

addi .b

move .b

move.b

#dgetdrv,-(sp)

#gemdos

#2,sp

#'A' dO ‚Funktionsergebnis -> Buchstabe

d0, (a2)

#':'1(a2) ;Doppelpunkt hinter Laufwerk

; Pfad des aktuellen Laufwerks erfragen

: \ und Maske

fsel_lp:

fsel_le:

fsel_le:

fsel_e2:

mainloop:

clr.w -(sp) ‚aktuelles Laufwerk

pea 2(a2)

move.w #dgetpath, -(sp)

trap #gemdos —
addq.l #8,sp

anhangen

clr.w di ;‚Stringlänge ermitteln

tst.b O€a2,d1.w) ;Nullbyte?

beq.s fsel_le

addq.w #1,d1

bra.s fsel_lp

move.b #'\',0(a2,d1.w)

lea maske, a3 ‚Zeiger auf *.*

move.b (a3)+,1(a2,d1.w)

beq.s fsel_e2

addq.w #1,d1

addq.w #1,d2

bra.s fsel_l2

 GEM-Programmierung 439

: Aufruf der GEM-File-Selector-Box

.
a

.
a

move .w

clr.w

move .W

move .wW

clr.w

move. |

move. t

jsr

tst.w

beq
lea

tst.b

beq

#90,control ;Funktions-Opcode

control+2

#2, control+4

#2, control+é6

control+8

#fsel_pfad,addr_in svorbereiteter Pfadname

#default,addr_int4 ‚und Default-Dateiname |

aes

int_out+2 ‚Abbruch statt OK angeklickt?

fsel_q ;dann abbrechen

default,a3

(a3) ‚Dateiname überhaupt ausgewählt?

fsel_q

Jetzt müssen wir nur noch aus dem Pfad- und dem Dateinamen

einen kombinierten Pfad- und Dateinamen machen:

lea

lea

cpy_loop: move.b

bne.s

fsel_l4: cmpi .b

bne.s

addq. |

fsel_l5: move .b

.
a

=
‘

bne.s

fsel_pfad,a0 ;zur Bearbeitung kopieren

pfadname, a2

(a0)+, (a2)+
cpy_loop

#'\',-(€a2) ;Backslash suchen

fsel_l4

#1,a2 ;‚Backslash stehen lassen

(a3)+,(a2)+ ;Dateiname kopieren

fsel_l5

Testen, ob die Datei überhaupt existiert. Dabei stellen

wir auch gleich die Länge in Bytes fest:

pea

move .W

trap

addq. |

clr.w

move.W

trap

addq. t

tst.w

dta_buff ;DTA-Buffer festlegen

#fsetdta,-(sp)

#gemdos

#6,Sp

-(sp) ‚normale Datei suchen

pfadname ;Name

#fsfirst,-(sp)

#gemdos

#8,sp

do : Fehler?

 440 Atari ST Intern 2

bmi error

; Speicher für die Datei besorgen:

move.l filesize,-(sp)

move.w #malloc,-(sp)

trap #gemdos

addq.l| #6,sp

movea.| d0,a6 ;‚Startadresse merken

tst.l do ‚nicht genug Speicher da?

bmi mem_err

; Datei öffnen und laden:

move.w #2,-(sp) ;Ööffnen zum Lesen und Schreiben

pea pfadname

move.w #fopen,-(sp)

trap #gemdos

addq.| #8,sp

move.w dO,fhandle ;Handle merken

tst.w dO ;Fehler?

bmi error

pea (a6) ;Startadresse für Laden

move.| filesize,-(sp) ‚zu lesende Bytes

move.w fhandle,-(sp)

move.w #fread,-(sp)

trap #gemdos

adda.l #12,sp

; Datei codieren:

lea pfadname,a0 ;Dateinamen in Formular schreiben

move.w #FNAME ,dO

jsr write text

jsr show_dialog ;Anzeigen des Baumes

‚ form_do läßt Dialog abarbeiten:

move.w #50,control

move.w #1,control+2

move.w #1,control+4

move.w #1,control+6

clr.w control+8

move.w #KEY,int_in ;Edit-Feld

move.l baum _adr,addr_in

jsr aes

move.w int_out,knopf ;gedrückter Knopf

GEM-Programmierung

jsr deselect

jsr hide_dialog

break:

move.w knopf,dO

cmpi.w #0K,d0

bne fsel_q

lea code, a0

move.w #KEY,d0

jsr read_text

lea code, a0

tst.b (a0)

beq no_code

lea (a6) ,a4

lea (a6),a5

adda.l filesize,ad

code_rep: lea code, a0

code_loop: tst.b (a0)

beq.s code_rep

move.b (a0)+,d0

eor.b d0,(a4)+
cmpa.l a4,a5

bgt.s code_loop

break2:

; Datei zurückschreiben:

 441

‚Selected-Status löschen

;Dialogbox vom Bildschirm entfernen

Welcher Knopf wurde gedrückt?

‚Abbruch -> Ende

‚Code auslesen

‚a0 wurde zerstört

‚Code überhaupt eingegeben?

‚Startadresse

‚Endadresse

»Codewort

‚Ende des Codes?

‚dann von vorne anfangen

‚Code-Byte holen

‚Exklusiv-Oder-Verknüpung

‚Ende erreicht?

‚noch nicht, dann weiter

‚Zeiger an den Anfang der Datei

‚Position relativ zum Dateianfang

‚Datei zurückschreiben

Datei schließen

clr.w -(sp)

move.w fhandle,-(sp)

clr.l -(sp)

move.w #fseek,-(sp)

trap #gemdos

adda.l #10,sp

pea (a6)

move.l filesize,-(sp)

move.w fhandle,-(sp)

move.w #fwrite,-(sp)

trap #gemdos

adda.l #12,sp

move.w fhandle,-(sp)

move.w #fclose,-(sp)

 442

trap

adda. |

#gemdos

#4,sSp

; Speicher wieder freigeben:

pea

move .W

trap

addq. |

no_code: bra

lea

jsr

bra

mem_err:

lea

jsr

bra

rsc_err:

lea

jsr

error:

fsel_q: jsr

; rsrc_free:

move .W

clr.w

move .W

clr.w

clr.w

jsr

clr.w

trap

alert:

(a6)
#mf ree, - (sp)

#gemdos

#6,Sp

mainloop

out_of_mem, a5

alert

fsel_q

rsc_txt,a5

alert

fsel_q

not_found, a5

alert

gem_exit

#111,control

control+2

#1,control+4

control+6

control +8

aes

-(sp)
#gemdos

‚ Anzeigen einer Alert-Box. String

move.W

move .W

move .W

move .wW

clr.w

move .W

move. l

jsr

#52,control

#1,control+2

#1,control+4

#1,control+6

control+8

#1,int_in

a5,addr_in

aes

Atari ST Intern 2

sAlert-Box zeigen

;PtermO

; (Programmende)

in ad.

; Opcode

;Default-Button

;beschreibender String

 GEM-Programmierung 443

rts

; Unterprogramme zum Umgang mit GEM:

show_dialog:

; Dieses Unterprogramm malt einen Objektbaum auf den

« Bildschirm. Dazu muß sich dessen Startadresse unter

ıbaum_adr' befinden.

form_center

move .wW

clr.w

move .W

move .W

clr.w

move. |

jsr

move.

move.

move.

move. x
E
X
 X

#54, control

control+2

#5 ,control+4

#1,control+6

control+8

baum_adr,addr_in

aes

int_out+2,d4 ;Koordinaten sichern

int_out+4,d5

int_out+6,d6

int_out+8,d7

form_dial rettet Fensterränder etc. (0)

move .W

move.

move .w

clr.w

clr.w

clr.w

keine Werte für das

move .wW

move .wW

move .W

move .wW

jsr

=

form_dial zeichnet

move .W

move .wW

move .W

clr.w

clr.w

move .W

move .wW

move.Ww

move.W

#51,control

#9 control+2

#1,control+4

control+6

control+8

int_in ;Unterfunktion 0

kleine Rechteck fo_dilittlx/y/w/h

d4,int_in+10 ;groBes Rechteck do_dibigx/y/w/h

d5, int_in+12

d6, int_in+14

d7, int_in+16

aes

'Zoom'-Rechteck (1):

#51,control

#9 control+2

#1,control+4

control+6

control+8

#1,int_in ;Unterfunktion 1

d4,int_int2 ;Größe des kleinen Rechtecks

d5, int_in+4

#1, int_in+6

444

a

Dialog zeichnen mit

hide dialog:

Entfernt das Formular vom Bildschirm. ‘

'

‘ ; form_center

move .W

move .W

move .W

move .W

move .W

jsr

move .W

move .W

move .W

move .W

clr.w

clr.w

move .wW

move .W

move .W

move .W

move .W

move. l

jmp

move .W

clr.w

move .W

move .wW

clr.w

move. l

Jsr

move.W

move.W

move.W

move.W

; form_dial zeichnet

move .W

move .W

move .W

clr.w

clr.w

move .W

Atari ST Intern 2

#1, int_int8

d4,int_int10 ;großes Rechteck do_dibigx/y/w/h

d5, int_in+12

d6, int_int14

d7,int_int+16

aes

objc_draw:

#42,control

#6, control+2

#1,control+4

#1,control+6

control+8

int_in ;‚O=Wurzelobjekt zuerst zeichnen

#12,int_int2 ;max. 12 Ebenen (willkürlich)

d4, int_int+4

d5,int_int6

dé, int_int8

d7, int_in+10

baum_adr,addr_in

aes

; Adresse des Objektbaums wieder in baum_adr

#54, control

control+2

#5, control+4

#1, control+6

control+8

baum_adr,addr_in

aes

int_out+2,d4 ;Koordinaten sichern

int. out+4,d5

int_out+6,d6

int_out+8,d7

schrumpfendes-Rechteck (2):

#51,control

#9,control+2

#1,control+4

control+6

control+8

#2,int_in ;Unterfunktion 2

 GEM-Programmierung 445

move.w d4,int_int2 ;Größe des kleinen Rechtecks

move.w d5,int_int4

move.w #1, int_int6

move.w #1, int_in+8

move.w d4,int_int+10 ;großes Rechteck do_dibigx/y/w/h
move.w d5,int_int12

move.w d6,int_inti4

move.w d/,int_int16

jsr aes

; form_dial sendet Redraw-Meldungen an Fenster (3)

move.w #51,control

move.w #9,control+2

move.w #1,control+4

clr.w control+6

clr.w control+8

move.w #3,int_in ;Unterfunktion 3

; keine Werte für das kleine Rechteck fo_dilittlx/y/w/h

move.w d4,int_in+10 ;großes Rechteck do_dibigx/y/w/h

move.w d5,int_int+12

move.w d6,int_in+14

move.w d/,int_in+16

Jmp aes

deselect:

; Schaltet den Button ‘knopf' auf 'nicht-selected'-Status

; Objektbaum muB in baum_adr stehen

movea.| baum_adr, a0

move.w knopf,d0 ‚Index des Objekts

mulu #24 ,d0 ‚® 24 (jedes Objekt hat 24 Bytes)

addi.w #10,d0 ‚+10 als Offset für ob_state

andi.w #-2,0(a0,d0.w) ‚Bit O0 (selected) löschen

rts

write_text:

» Schreibt String in Text- oder Edit-Objekt (Index in dO)

‚ String in a0, Objektbaum in baum_adr

movea.| baum_adr, al

mulu #24 ,dO

movea.l 12(a1,d0.w),a1 ‚Adresse des TEDINFO-Blocks

movea.| (a1),a1 ;te_ptext enthalt den Text

wrt_lp: move.b (a0)+,(a1)+

bne.s wrt_lp

 446

read_text:

Atari ST Intern 2

rts

; Gegenstick zu write_text. Zieladresse ist in a0

; zu übergeben.

rd_lp:

maske:

rscname:

not_found:

out_of_mem:

rsc_txt:

knopf:

baum_adr:

fhandle:

dta_buff:

filesize:

fsel_pfad:

pfadname:

default:

code:

movea.| baum_adr, a1

mulu #24 ,d0

movea.| 12(a1,d0.w),al

movea.| (al),al

move.b (al)+,(a0)+

bne.s rd_lp

rts

DATA

DC.b '*.*1,0

DC.b 'CODE.RSC',0

DC.b '(3] [Diese Datei existiert!aber gar nicht!]'
DC.b '[So?]',0

DC.b '(3] [Fur diese Datei ist mein|Speicher '
DC.b 'zu klein!] (Erweitern?]',0

DC.b '[3J [Ich kann das RSC-Filelnicht finden!]'
DC.b ' [Abbruch] ' ‚0

oO

”

z
m

X

a
.
.
.

DS.

DS.

DS.

On

;DTA-Buffer fur Fsfirst

;hier steht die Größe in Bytes

(der Rest ist reserviert) o
T
-
 O

F

=

N
)

&

DS.b 40

DS.b 40

DS.b 13

DS.b 40

END

 GEM-Programmierung 447

Jetzt sind wir am Ende des Buches angekommen und Sie haben viel
Neues kennengelernt. Sie sind nun in der Lage, eigene Applikationen und

Accessories zu entwickeln. Wenn Sie dazu weitere Anregungen suchen,

oder auch Kniffe kennenlernen wollen, so kann ich Ihnen das Buch "Die

besten Tips & Tricks zum Atari ST" warmstens empfehlen. Auch in die-

sem Buch finden Sie in jeder Programmiersprache interessante Anwen-

dungen, die fertig auf der beiliegenden Diskette ebenfalls vorhanden
sind. Werfen Sie ruhig einmal einen Blick hinein, es lohnt sich wirklich.
Und nun wünsche ich Ihnen noch viel SpaB bei der Entwicklung eigener

Programme.

 448 Atari ST Intern 2 ———

 Anhang 449

Anhang

Anhang A

ASCII-Codes

Hinweis: Unter TOS können die Zeichen mit den Codes O0 bis 31 nur
mit der BIOS-Funktion Bconout (Nr. 3) ausgeben werden. Als

device, also als Gerätenummer, muß eine 5 angegeben wer-

den.

I

~_

M
e
l
e

[
b
e
n

|
e
)

or

Mm
(
x

j
o
r

|
>
C

|

o
o

j
e
s

|
OO
 “

5
d

D
T
d
t
d
0

=
z
 a I

_
in

>

=
 1
|2

D°

F
I
C
E

 450 Atari ST Intern 2 ———

Anhang B

Scan-Codes

Diese Tabelle zeigt alle Tasten der ST-Tastatur. Jede der Tasten liefert
dem System einen bestimmten Scan-Code. Sie können diese Tabelle
immer dann benutzen, wenn Sie Sondertasten (Funktions-, Cursortasten)

abfragen müssen oder zwischen den Ziffern des Zahlenblocks und des

Hauptblocks unterscheiden wollen. Alle Codes sind im Hexadezimal-

system angegeben.

/ Fl / Fz f A Fa / “/ Fe / 7 / Fe FS 17

f 38 / 53€ / 3D / sr / se / 41 / 42 / a3 / 44

ESC; i | 2 |3 | 4 15 |6 | 7 1/8 9,8 |B # BS

61 | 62 | 83 | 84 | os | 865 | or | as | 83 | 8A | oB | oc | BD | 29 | GE

TAB |Q0 |W IE IR IT JZ /U JI JO JP JU ft DEL

 OF 16 | 11 | 12| 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 93

CTRL |A |S |D|IF 1G JH |J |K {L Jo [A

ip | 1£ | aF | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 ic | 2B

SH |< |¥ |X |C |¥ |B YN YM |, |, |- | SH

2a | 6a | 2c | 2p | 2E | 2F | se | sı | 32 | 33 | 34 | 35 | 36

ALT CAPS

38 39 3A

Anhang 451

HELP | UNDO Ci) | 4] 8

62 61 63 | 64 | 65 | 66

INS; @ |CLR ’I8|93]|-

52 | 48 | 47 67 | 68 | 69 | 4A

1819» 45/6 | +

4B | 58 | 4D 6A | 6B | 6C | 4E

i|ı2|3

6D | GE | 6F <

6 , 76 fl 72

 452 Atari ST Intern 2

Anhang C

Noten und Frequenzen

Diese Tabelle ist für die Soundprogrammierung wichtig. Für eine Reihe
von Oktaven sind hier die Frequenzen aller Noten und die zugehörigen
Periodendauern aufgelistet. Es wurde auch schon die Aufteilung der Pe-
riodendauer in ein High- und ein Low-Byte vorgenommen.

Note Frequenz Periodendauer High-Byte Low-Byte

C 65.41 1911 7 119

Cis = Des 69.30 1804 7 12

D+ 73.42 1703 6 167

Dis = Es 77.78 1607 6 71

E 82.41 1517 5 237

F 87.31 1432 5 152

Fis = Ges 92.50 1351 5 71

G 98.00 1276 4 252

Gis = As 103.83 1204 4 180

A 110.00 1136 4 112

Ais=B 116.54 1073 4 49

H 123.47 1012 3 244

c 130.82 956 3 188

cis =des 138.59 902 3 134

d 146.84 851 3 83

dis=es 155.57 804 3 36

e 164.82 758 2 246

f 174.62 716 2 204

fis=ges 185.00 676 2 164

g 196.00 638 2 126

gis=as 207.66 602 2 90

a 220.00 568 2 56

ais=b 233.08 536 2 24

h 246.94 506 1 250

Note Frequenz Periodendauer High-Byte Low-Byte

cl 261.63 478 1 222
cis! =des! 277.18 451 1 195
qi 293.67 426 1 170
dis! =es! 311.13 402 1 146
el 329.63 379 1 123
fi 349.23 358 1 102
fis! =ges! 369.99 338 1 82
gi 392.00 319 1 63
gis!=as! 415.31 301 1 45
al 440.00 284 1 28
aist=b! 466.16 268 1 12
hi 493.88 253 0 253

c? 523.26 239 0 239
cis” =des” 554.36 225 0 225
d? 587.34 213 0 213
dis? =es? 622.26 201 0 201
e 659.26 190 0 190
f 698.46 179 0 179
fis” = ges” 739.98 169 0 169
g? > 8 784.00 159 0 159
gis =as 830.62 150 0 150

a 880.00 142 0 142
ais? =b” 932.32 134 0 134
h? 987.76 127 0 127

°° 1046.52 119 0 119
cis?=des®> 1108.72 113 0 113
d® 1174.68 106 0 106
dis’ =es® 1244.52 100 0 100
e° 1318.52 95 0 95
f° 1396.92 89 0 89
fig>=ges> 1479.96 84 0 84
2°, , 1568.00 80 0 80
gis =as 1661.24 75 0 75

a> 1760.00 71 0 71
ais? =b° 1864.64 67 0 67
h? 1975.52 63 0 63

453

 454 Ä Atari ST Intern 2

Anhang D

Verzeichnis der VT-52-Sequenzen

Wenn Sie mit den TOS-Funktionen zur Bildschirm-Text-Ausgabe arbei-
ten, dann gibt es bestimmte Zeichenkombinationen, die nicht als Buch-

staben oder Ziffern auf dem Bildschirm erscheinen, sondern bestimmte

Sonderfunktionen auslösen. Da diese Funktionen sehr praktisch sınd, habe

ich sie auch in meinen Beispielprogrammen benutzt.

Alle diese Sequenzen werden durch den ASCII-Code der Escape-Taste,

also durch den Wert 27, eingeleitet. In C schreibt man diese Zahl oktal;
dann wird daraus \33.

Die wichtigsten dieser Steuercodes möchte ich Ihnen kurz vorstellen. Be-

achten Sie, daß zwischen Groß- und Kleinbuchstaben unterschieden wird:

ESCAPE E

löscht den Bildschirm und bringt den Cursor in die linke obere Ecke des
Schirms.

ESCAPE H

bringt den Cursor in die linke obere Bildschirmecke, ohne den Schirm

dabei zu löschen.

ESCAPE Y zeile spalte:

Setzt den Cursor auf eine Position, die durch die Zeichen (!!!, ggf. mit
CHR$() umwandeln) zeile und spalte ausgedrückt wird. Für zeile und
spalte gilt: Ein Wert von 32 bedeutet oberste Zeile oder linker Bildrand.
Der Steuerstring CHR$(27)+Y’+CHR$(32)+ CHR$(33) bringt den Cursor
also in die erste Zeile an die zweite Spalte.

ESCAPE e:

Der Cursor erscheint auf dem Bildschirm an der aktuellen Cursorposition.

ESCAPE f:

Der Cursor wird ausgeschaltet.

 Anhang 455

ESCAPE p:

Alle folgenden Zeichen erscheinen invertiert. Beim Monochrom-Monitor
werden Zeichen jetzt weiß auf schwarzem Hintergrund ausgegeben.

ESCAPE q:

Macht ESCAPE p rückgängig. Die Zeichen erscheinen wieder normal.

Zwei weitere wichtige Codes werden ebenfalls sehr häufig verwendet. Ih-
nen wird jedoch kein Escape vorangestellt:

13: Carriage Return (Wagenrücklauf) |

Der Cursor wird an den linken Rand der aktuellen Cursorzeile gesetzt.

10: Line Feed (Zeilenvorschub)

Der Cursor wird um eine Zeile nach unten verschoben. Befindet er sich

bereits in der untersten Zeile des Bildschirms, so wird der Bildschirmin-

halt um eine Zeile nach oben gerollt.

Gewöhnlich werden beide Codes hintereinander benutzt, um bei der

Text-Ausgabe unter TOS am Anfang der nächsten Zeile weiterzuschrei-
ben. Hängt man ein weiteres Line Feed an, so entsteht zusätzlich eine
Leerzeile zwischen dem bisherigen und dem ım folgenden auszugebenden

Text.

 456 Atari ST Intern 2

Anhang E

Programmverzeichnis

Soweit nicht anders angegeben, befindet sich auf der Diskette im Buch
jedes Programm fünfmal: für GFA-BASIC (.GFA), für Omrikon-BASIC
(.BAS), für C (.C), für Assembler (.Q) und als lauffähiges Programm
(.TOS, .PRG oder .ACC). Manche Programme benötigen zur Laufzeit
zusätzliche Dateien (in Klammern angegeben); .DEF- und .DFN-Dateien

(nur im Ordner DEMOS.511) dienen zur Bearbeitung der Resource-Files

mit einem Resource-Construction-Programm.

Ordner: TOS.1

Dateiname Kapitel

FONTOUT 1.2

TASTDEMO (nicht für Omikron) 1.2

ONLINE 1.2

CHROUT (nicht für Omikron) 1.3

STROUT (nicht für Omikron) 1.3

FILES (+ READ.ME) 1.4.1

SHOWFILE (+ READ.ME) 1.4.2

DIR 1.4.2

UMLEITEN 1.6

NACHLAD (+ ZULADEN.TOS) 1.7

NACHLAD2 (+ ZULADEN.TOS) 1.7

VIRUS 1.8

Ordner: GRAFIK.2

Dateiname Kapitel

MULTISCR (nicht für GFA-BASIC) 2.1

SPRITE 2.2

Ordner: INTERRUP.3

Dateiname Kapitel

VBL-QUEUE (nicht für BASIC) 3.1

TIMER_A (nicht für BASIC) 3.2

RASTER (nur Assembler) 3.3

RASTER2 (nur Assembler) 3.3

 Anhang

Ordner: SOUND.4

Dateiname Kapitel

SOUND1 (nur für GFA-BASIC) 4.2

SOUND2 4.3

SOUND3 4.3

SOUND4 4.4

Ordner: GEM.5 |

Dateiname Kapitel

GEMINIT.Q (nur für Assembler) 5.3

DEMOAPP 5.4

GEM _INEX (nur für C/Assembler) 5.5
VDI_ DEMO (nicht für GFA-BASIC) 5.5.1

LINIEN (nicht für GFA-BASIC) 5.5.2

COPYRAST (nicht für GFA-BASIC) 5.5.3
BUTTON 5.6

MULTI 5.6

FSEL 5.7

WIND1 5.8

WIND2 5.8.1

WIND3 5.8.2

BASHEAD (nur Omikron und .TOS) 5.9.1

MENU1 (+ .RSC, .H und .H2) 5.9.1

MENU2 (+ .RSC, .H und .H2) 5.9.1

DIALOG1 (+ .RSC, .H und .H2) 5.9.2

DIALOG2 (+ .RSC, .H und .H2) 5.9.2
DIALOG3 (+ .RSC, .H und .H2) 5.9.2

DIALOG4 (+ .RSC, .H und .H2) 5.9.2
DEMOACC (nicht für GFA-BASIC) 5.10

Ordner: DEMOS.511

Dateiname Kapitel

ASCIl (ACC) 5.11.1

LISTER (+ .RSC, .PAR, .DEF, .DFN) 5.11.2

DIAGRAMM (+ .RSC, .DEF, .DFN, .DIF) 5.11.3

LISTEN (ACC) 5.11.4

TALK (ACC) 5.11.4
CODE (+ .RSC, .DEF, .DFN) 5.11.5

457

 458 Atari ST Intern 2

Stichwortverzeichnis 459

Stichwortverzeichnis

A |
A__drawspritecesessasnsnnnsnssssssnsnsnnnnnsnsnssnnnsssnsssnsssnsssssnnnnnnnnnnnnssnsssnsnsssssssnnen 92
A__undrawspriteuessssssnssnnnnenssnssssssssenssnssnssnnensnssnnnsnsnennnnnnnsnsnnnnsnnnsnssnnnnn 92
AC Ad eeeesssnnessssnnnnnnnannnessnnnnsnnnnnnnssnsssonnnsnnnsnssssnnnnnsnnsssnnnsssssssnansnnnnnsnen 387, 392
ACCESSOTIESccccscossccssccssccscccscccsccessccsseesccecccsccescecccescescescessceecsecses sevceecee 386

Addrin-Arrayccccscccssccssccescceverescceccscessceeccecccescusececeesccsceesceseseseesceess 153

ACdrout-Ar4ray ccscccsssccssssccssscccesccccssccssscssccsssccessessssescesssssesscsesssece LOD
AES, uu. iececcccsscccscccsscccsscccscccsscccsccscccsscccescecsseceseeesccesesesesessseseseceeesseecesesceeseees 151
AES-Koordimatencccccsscccsssccsscccscccesccnsccescecsccescsesccesccesecesceesceeceeess 215

AKtiONSPUNKE 0... ce eee cceccscceeccnecceccesccccescsccecesceesseccsesecseseesceseesseceecseseoees 89

Alertbox oii... cece tecceccecceccececcnsccsccsccncceceecesccscesccseesceccscccssssecesssssecesssssecsevens 161

Allokierenunneessesssnssonsnnsnnsnnsnnnnnnnnnsunnnnnnnnnnnsnnennnnnsnnsnenunnnnnssennsnsssnnnsernnen 47

AP I vneeeenenenessssnnsssnnnnnsnsnsensnnsssnnnonnonsossensassssssssssssnssnssnnnnonennnnn 164, 169 ,387
Appl_ exitueessssssssnnnennnssnsssnnnensnnnsnnnnnnnnonnonnnnnsssnsssnnnnsnnnnonnnnnnsssssssssnsnnnene 164

Appl_findnesssssnesssssssnsssnsnsnnnnsnsnsssnnsnssssnsnnnnnnnsnsnnsnnsnnnsnsnssssnsnnsnsnsssnn 434
Appl_initeeessssssssssssnsnsssnsnnnnnnnnnsnnsssnnsnssnsssssssnnnsnnsnnssnnensnsnnnsssnnnnnnn 164, 387

Appl write ...ueeesssssssssnsssnssnnnnsnnnensunsnnnnansnnnnnnnnsnenssssensnssnsnnnennonnnennnnsnonnsnsan 434

Applikationen.eesssosseesssonssneneonnnnnnenonunnensnunnnnsnnnsnnnnnnsnnsnnnensssronnonensennenn 150

ASCILccccsccsccseccesccscccscccescecccceccscescesseesccsccescesccececscsecsesceessecesescessescees 15
ASCH-Codes ccsccsvccsccsccsscceccccccnscssecscesceeccecesscccccsseccoscesseseescescescesces 449

Asteriskccccecceccecccscceccescceccsccsccsccesccecsscccecesecscesscvccsccscesesessecsessecteceeseess 35

Attribut-Funktiomencccccccccccccsccssccccscccscccssccscccscscsecesccescssscseseseesees 178

Ausgabe-Funktionencccsssccccssscccssccsescecscceececssceecscensscesscsesccsesceees 172

AUSZaDEStAtUScccccesccssescescceccscceeceens necacecconncecsensescascaacauccesecceccussecceces 18

B
Basepageccsccecsscccsccescsccscssceccecceccsccccsceccsceccssecceesccseescsceccsseccscsccsees acess 49

BAUMcccsccsccsceccsccsceccncccccccsccsccscescsccsceccscessscececoscecesescessecessesesasecccceess 277

Bconineseeesssessessssnnnonsnnnsnnnnnnnnnonnnnsnnnnnnnnnnnsnnnnnnnensnnsnnnsnnnsnnnnnssnnannssnenn var 15

Bconout .0.........ccscscccsccsccssccsccesccsccesccsccsccescesccsccececscescceccsceecesscscesccesessssceceess 15

Bconstatccccsccsccsccsccscssccsccscccesscteceeccscesccscsscecsscesccscessecescessessuctecesessesss .15

Bcostät ..eaceesssanssnsseneennennnnennnnnnsnnnnunnnnnnsnsennnnnnnsnnnnnnssnsnnnnnnsnnnnnsnensnnsnnnensernnnnnn 15

BedienungseleMentecccccssscccssscccssscccescecsscesseccesseecsccussessccescsceeveces 215

Benutzeroberflache 0.00.0... cecseccssecccssecccsscccsscccsccccscecscescsscessecsescesseees 149

Betri€bDSSySteMscccsssccsssscccsccccssscecsscecscsccnscecescescccesceeesceescsecesevsceoess 11

Bild-Wiederhol-Speichercccccssscccscccscccscccssccssccscccsccesecesccsscesccesces 79

Bildschirmspeichercccsccccssssccssscccsscccsscccsscccsscccscecessccssessscsssccsceeescs 79

BiNCiMgscssececcccccssscseccccececsseccsccsceecesssccsceesccsecceeeccssesececssesessssscssseens 153
BIOS oui... ccsccsssccsccceccccesccecccessccessccascenescescecesesescccscececcscececesscccscessscssceessess lif

 460 Atari ST Intern 2

Cc
CCOMIMccecccsscccscccescccssccssccssccesccssccescccsscscscesccceseccsscesccsscsesseesccescsesseescees 24
CCOMIScccsccsssccsscccscccscccscccssccesccccsccssceeseccescncsecesscesccesccescsesssescoesces kennen 24
CCOMOUL ...enseesssesssnesnossnnnnnnnnnnnnnsnsnnnnsnnssnonsnnnsnnenensnnsnnasnsssnnnnnsnusssssnnnsenenansnnen 24

CCOMWS.csscccsccscccscccsccesccccccnecesceescnescesscnsccesceccsecceecsessescsessseccesscsseeseescsecs 24

Check-Mark .2.0........ cc cceccesccssccccccsccecccscccecccsccescceccscceccesccescescneceeseceesescceces 291

CLEARucsenssssssssasssnnsnonenonannonsnonsennnsnnnnnonnnnnennsnnnnsnnnnnonssnnsnenssnssnassensenenn 49
Contour Filleseessesssessessonssnnnnnnnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnnnensnnennsnnnnnnn 172

COMtrOl-ALrayccccccsccssccsccssccscscccccssccsccsccscseccssceccescessaces 152, 154, 160

Copy Raster, Opaque nececcecccsccscccsccsccsccseccscescccccsceccceccscseccesseseeceeveecs 186

CAWCINcccccscccscceeccccccscccsccncccssccsccescceveccaccscccsccccssceesccesccccesceesccecsesesecceces 24

D
Datei-Attribut ccc ccceccssccsssccscccsscesssccescceccescssscescesscessccescsesseescesscees 30

Date1-AuSWahl .0............ccccccssccsecceccsscccsccesccscccsccesccsccescsecccscesccssccsccescesceeces 205

Dateiencccccsecccscccscccsscccccscnscccscccscceensccsccecsecesesescceseesscseseceseteseseccensees 29

Default-Buttoncccccccssccsscccssccsscececccssccsscccsccsccesccascccsccescsesccsseuses 161

Deselektierencccccccsssccssccccsccccsccccsvccccsscccscecsscecescececcccccessceesscessceeees 312

Desktop .u........ccccescceccscceccescsccsccsccsccescccscescesccsccscceccscseccsscescesccscevsescssceecess 248

Dialog boxecccccsscscccssccccscsccccccscccscecccscccccecssececeseucscsescecsccccssescssusss 276

Dialogecccscccssscccsscccsscccsscccssceccsescsccusccecesceescesessecescecsecesceessesecceeuscs 305

Disk Transfer Addressccccsssccssscccssccccssccccsccssccssccescessesssccccesceesscess 35

Dispatchercccccccssscccsscccsscccsscccesecccsscccssceccscesccccssescscccseccescecssceesseseces 192

Dosoundceceecesceeeee ceevaveccescecesssceccessscescecscncecscesecestececsccssecescesascostcces 142

DTAnn. seescceccsccesccsccescccscceseneccesccesccsccesscecsesceesccscescsesceesees 35f, 436

E
Edit—Feld cc ceccscccsecccssccessccccsccccsscccsscecesccessccsssecescccsccescccessceescececcs 327
Eimgabemaske .uu..........ccccscesccccsssecccccscsccccusecsccececcececcesececuceccecacesseccsscseuses 328
EimgabestatuSccccsssssssccccsssecccssssssecsssssccceecceseccsseseecsccsecscscencesseencsces 18
Ereignisccccccssssccecesscccsescccessccccscsceussscececsccecescensesssusscesevessseccceuesseuees 199

Ereignmis-Pufferccccccsscccsssccccssecccssscececccccessccesceccnssccecsescsesscsececeaees 199
Ereigmis—Verwaltungccccssssccssssssccccssssccccssssceseesccssessccecsessescsseceeeess 190
Evnt _buttonuessssssssssssssennnnnnnnnnssnnsssssssnnnennsonsnsnsnsnsnsnsnnensnnsnesnsnnsennnsnnnnn 192
Evnt_keybd2u20ssssesssenesssesssonnennnnnnsnnnnnnnnnnnnnnsnnensssnennnnnnnnsssssnsnnssnnnnn 192
Evnt _mesageenssnssnssessennnnnnnnnnnnnnennnnnnnnnsnnnsnenennnnnssnsnnnne 192, 199, 282, 392

Evnt _mouseeueesssssessssnsennnnsnnnnsnnnnnnnennssensnsnsnsnsssnssssnsnennnnnnnennnnnnnnsnnne nenne 192
Evnt_multieeesssssssssnsensnsnsnnnnnnnnensnnnnnennennnnssnnnnnnnnnnnnnensnnnen 193, 200, 292f
Evnt_timereessssssnnsssensonnnnnnnnnnnnnnnsnnnnnnssnnnnnssnsnnnnunsnsnnnnsssssssnsnnsnnennnnnnsnnn 192
EXIT-Statuscaneeenn. nensnessnenssssssssnnensnnsssnssssessssssnnenssnnssnnnsnsnnsnsnnsnnn 310

F

FCIOSEccsssccssccccscccssceccscccssccccsccsscccccscecssscccssccessccnscessccsescccsscessceeescenscees 31

Stichwortverzeichnis .461

FUPccscescsccscsccccscceccceccsccscnecescsccccscsccsccscsccccsccccecccsecsccsescccssccesscecesacs 52

FeMSterccscceccsccsccsscceccesccsccevcevccecccscesccsccsccscsessecscccesceccscsescessessescesees 213

Fforceccesssanseosseneeeneennenoenennn Bensnnssnnsnnsnnennssnnsnnsnnsnnsnnennännsnnsonennsensensansennsnane 51

File-Handleesssesssssssessssnnensssssonssssnnnnssnonnnnsenssnnensnsssnnnsnssssssnnssnnssnnnnnnn 30
File-Selector-Boxccceccscssccssccsccsccccccsccsccscccccccccsccccsccesceccssceccsscescess 204

Fileselectcccccssccsccssccscccscccccsccsccsccsccsscescescceccsccscceccsccsccscescescesscesess 206

Filled Areac.cccccsscssccsecsscccccsscceccccccsccsccscccecsccsccsccecccccecseccesseccescesces 172

Filled Rectangleccccscscccsscccssssscescenessccsscecsscccsccceccsssesescesesesescenecss 172

Fopenccccesccssccssccccccscccsccscccsscesesscccsccnsccsccescccscesccsccuscceccesecsceoees soncevecesses 29

| So) 9 00:0 (=) 6 163
Form_centeruussessssennnnnnnnnnnnnnssssnennnnnnnnnnnnnensnnnnnssssnsssnnnnnnsssnssensnnnnssssnnnn 311
FOr _dialeeeseessssssssnsnnnnnnnsnnnnnnsnennnnnnnnnnnnnnnnnnnnnnsnsnnsnnnnnnnsssnssssssssssensnssnne 311
Form_douussossssssssssnenennsnsnsnnsnennnnennnnnnnnnnnnnnnsssssnnunnnsssssssonsnnnssssnnnn 312, 331
Fread........ceceessssesssessenssnsnnannnnnnnannnnnnnnunnnnnnnnnnnnnnunsnnsnnansnnnnnnnnnnsnsnnssnssnnenssennne 34

FLO Quen Zcccccsccccecsccsccscccceccsccccsccscccceccccececceccccsccccecccceccccsceccscecesceceeees 127

FOQuen Zencccceccccssceccssccssecccccsccsscesceccecccsesccccecceccecsccecsscesssccscsscessecs 452

Fsel inputeeeeessssnssnnsnnnnnssssssnnnsssnnnnnnnnnnnsssnsssnsnnnnnnsnnnssssssnssnnsssnsunsonnennnen 205
FSetdtaccccsccsccscsccscccccsccsscecceseccccccscccecsccsssscccccsceccecesceccssscscsessscescssees 37

FSfIrStcccccsccssccssccsccsscccsccssccescescccsscesccescessscccsecccccseccescesesoseesseosce 36, 436

Fsnext ccc ceccescssccsccsccesccscceccescceccsccsccscceccssccsccerssccecssccescecceseecscseesceseescaeses 36

Fwrite „nn. Kessssssssssssssssssssnsssnsnunsnnnnnnnnnsnnnonnnnnnnnnnnsnnsnnnsnsnssssssssssssssssssnne 30

G |

GEM uuieececccscssscsccsssccssvcssccssscssscssssssscssscsscesscsssesesssossscsssscssssssessseees sessseseeee 149
GEMDOS. noice ccc ccceeccssccscvccscccscccccscccsccecccsccesccesceccceccsccecceecceccescssccesees lif

GEMLIB.BAS oui... cccceeccneccescccscccnccescceccccesesecsccesccssccsccsccessceccsscescsenes 155

GEMSEL.BAS uuu... ceccsccesccesccscccccccescccccnsccecccscceccesccosccscceccescsscecscesces 388

GIACCESSccscccecccssccsccccsccccscesscccsccsssccsccccscccecccecceccccecccecccesscusccsccsssceees 134
Global-Arraycssccecccecccscccecccecccscccsccncccccsesssccccescssccscscsescececcesccsceesces 152

Grafik-Handle 0.0... cccceccesccsccceccecceccecccsccecceccecceccecccscssccsccscescesceeces 167

H |

Handleccccesccessccnsccesccnscccavcenssccessecssccssccescccesscceccsccssccesssesesescesccsens 167

FHIBL oui... eeecceccecccecccescesccceccscececccsccsccccsecccccsscesccccccsccessosccsscescceccssccsscescs 101

Head oui... cccceccesccsccnsccncccsccccscceccecscccsccecccssccsssescccccecccsccescceccuscssscescascececs 308

HUUKUrve oo... cc ceeccssccecccesccescccscccscceccceccescccesceccesccsccesees 129, 132f, 137

|

Inf0-Zeilecccscccsscccssscccsscccsssccccssccsscccseccececs secescccccessceccessscceecs 216, 224

IMCCTrup tsccccssccsccccscccscccccescccscccccccescccsccsccccesccesscesccececssccnsecesscsconss 101

INCETSECLccscccesccncccreccccsccccsccnssccscccesccescccescceccccccecsecesconsscssscsscnsccessess 247

Intinccccecccssscccsssccccssscccccsecccccssccccscccccsssecesscccccsscccsssonscecccsscececscseneccces 154

 462 Atari ST Intern 2

Intoutcccccsccsccssccccevcecsccsccssescescscescesssccscescnsceceececesceseeceecsecscoscecess 154

IMtOUt-ALrrayccccccssccesccscescscesccesccescescesceesceescsccersesees deccesccescousceesceecs 152

Invers- Transparent-MoOdus scccscsscsesccsccesceccsccecceccscesccsccsccescsscesces 181

J
Joker ooucicc ccc cccccccceccecceccseccscccccesceccssccsccsceecsavensceeccecceccescassescescosscscssessessesses 35

K
Kontrollregistercccccecsssccssscesccceccceseccssccesccesscesccesccusccesccesccescoesceess 112

L
Lautstarkecccccssccssccscccsscnsccnsccesccesccsccceccesscscseseescceceescoecsesceeseesceeees 132

Line-A-Bibliothek cc cccscccsesccsccccesccesccescccsccesscesseesecesceessnesesesceesees 92

Logbase 2..........ccccccsscccescesccsccesccnsecucsccesccscccesccusccsceseccusccscsesscesccescescesess 81

M |
MALLOC oueiic ee ccccceesccssccnscccecceccecesccnsccnesccesccesscesscsccesceesceees arena 38, 48
Maskeeceassessasssssnnssonnnnsnnnnnnnnnnnnnnnnnnnnnennnnnnsnnsnnnnnnnnnsnssnnsnssnnsonsnnsusennen 35, 90

MEMORY.suessesssonsennsnansnonsnunannnnnnnsnnnnnnnnneennsnnnsnnnnnnnsennnnanssnsnenssenssnnneen 25
Menu_ickeckeeunsenssesennnnnnnsnnnnsnnonsnnnnensnennnennnnnnononnnnsnsnnnnnnsnssnssssnsssssssnn 292
Menu _baruucsessssssnsnsansonsensnssssnnnssnsnsnnnnnnnnnnsnssnnsnnnnsensnnonsnnnsnssssssnsnnnne 282f
Menu _ienableuuuesessesssnsnnnnesssennnnnnnnnssnensnnnnnnnnennnssnnnnnnnnnnnnnnnannennensnnnen 291
Menu_ registeruenesenesssssssnnsnnnnnennnnnnnnnsnsnnnsnnsnnnnnssansnnnsnnsnnsnnssssnsnnssnsnsnnenen 387
Menu_tnormaleusesessesessesssessssnenennennnnnnnnnnnnnssssssnsnnnnsnsnnnnnennnnnssnsssssnnnnnn 283
Menü-Eintrag.eeesssseessesssennsnsonnnnnnnnnnnunnnnnenonsnsonnnnnunsnenasnnennnanennsnsnennnnnnn 278

Menii-ObjektbaumMesscccscccssecccescccscssecscessnscesccceccecssceesscescscecsesees 281

Menüleistecccccsccssssccssscccsccccssscccsccesscccccsescesceessceessecescesssessscsesceeens 278

Moeeniileistencccccscecccsssccccseccccsssscccscscscecscseecscesecscenecscseescesssseessceeees 276
Menütitelesecoscsessssenssssonnsnnnnsnnnnnnnnnnnnsnnnnnnnnnnnnnnnnennnnsennnennnnsnonsnessnnsnnnnnnn 278

MESSAZE cccscccccscccscccccsccsccsscccccccccsccsccecccsscsscscceccesesccesccscessesccscescescesees 199

ME DB uu... cccceccesccccescccscccsccceccecececcsccescecssccsccccceuscecsccscenesccesenseceesssescees 187
MEP.ccesccsscccescccsccescccssccescccsccscsccescscscnesesesecevesesceescescscscesscees 101, 112
MEREE oun... eet ccceesccnscccesccenccessccecccsccscececccesccessccecececcsscccsccssecesceesceuss 38, 48
Modus-Wortcccccsssccssscccsssccsesccssscessccevsceccccecsseccscecesccsccceecscessseeecceeacs 30

MSHIINKccccsccccsscscccccssssccccccssccccssscccccesssccccesecccccsceccasecccnsscscssasssscuscecs 48

N |
Nachladencccssccsscccscccsscccesccssccssccnsceees bececececcecceccccceccecceccescsscescsccees 58

NachrichteMcccccsssssscccccsssssescsccccccessccsccecssesccccesesees 192, 199, 226, 392
Nextcccsscccccccsssssceccccccccssscccccssssssscsecenssssscecerens sevececcccccccccsssesecccsececceesecs 307
NOISE sccccssssccccscssssesccccscccccsscsccccccssscccccsscccseccsecccssecscecsseccescscccassscenens 134
Non-Standard-Handlecccccssssseccccssscccccssscccscsscccssscccecsscesassseccaeeses 50
NVDIS 0.0... ssccccccsssssssscsescsssssscccccscsssssssnesseeessssnsanecscescessssesssssscereesseesesssees .. 104

 -Stichwortverzeichnis

O
Ob_speceeeesssssnnnnnnennnnsssnsnsnnnnnnennnssnnnsnssssannnn
OB STATE 2csssssssssnssnsnnnnnnnennnnssnnnsssssssnenenn
OBDEFS.H00222002ss0nnsnnenenonnennnneonnnnnnnenseenn
Objc_drawunsssssssssensnsennnsssnsnnnonsnnsnssnsnssnnn
Objektuassesssenssnnsnnnnnnnnnnenennnnnenennnnsnnensnnnnnneene

Objektbäumeccsssoseenneenenennnennnensnennnnnennnenn

Objektstatusccccsccsssccsssccescccesccsesseesceeseeees

Oktave ...ccssensnsssnssnnnonennnnnnnennnnnsnnnnsnenssnnnsnsnnsnnennn

OSBIND.AH.csccccssscccssscesesccesscceeessccaseenenss

p

PAGESLTENZEccccscescescescescesccsccsccercnscssosccsceees

Parameter-AsrrayScccccsscecssccscecceccscesceceseecs

Periode oii... .eccessccsesccescccescccescceesccsesccaseceseceesees
PeriddeNndauerrcccceeccsesccsvccssscseescensceveccees

Pexec ou... cc ccccecesceccececceccecsceccecesccsceccescscescecsscess

PHYSDASEcccceecsecceccescceccescscsesccessescuscescesse

POLYLIME ou... ... ccc eecceeccenccesccscceesceesccesccesceeseesceesees

Polymarkercccesccesscesscesccensccssccescosscesscaeces

Programmverzeichnisccceesccssccessccesceeescees

Pterm(retcode)ccccsscceesccesccssccecceeceescseees

Ptermrescccccscescesccscnsccscescceccsscecceccescesesceece

PtSINcccccssccccesccssscccscsccssceeesccenscsescesceeescseusss

Rasterzeileninterruptcccccccseccccsevscceeeeseens
RauSChgeneratorcccscessccesssccscceesccescceesees

RCS .uu...ccccescccsscccscsccssscecesscccssececscecacsecccseccscseuees

Replace seseeeeeessseeeeececesssseeneceseseesseesecesessaeeeeeseseees

RESERVE ..uiii...... cc csccsccsccscsccsccscscceccsccscescsceececs

Resource-Filesuesesesssnnnsnonnnnnnnnnonunnnnnnenereenn
Rstc_freecsesnzennnnssssssnsnnnnnnnnnnnenennnnnnsnnnsnnennee
Rsrc_gaddr ...eeeessssessenseeennne nern bensnsnsnennnsennen
Rsrc_loadeeceessssssssnsnnsnssnnennsosnnnnnnonnnnnnnnnnnannen

Kennsssssssssssennsssssssssnnennnssssne 305

463

sececececccccececscececscececs . 327, 331

peneecesceccececcescescsceccescecesceecs 313

seccecescsccccccescesccsceccecescesccecs 313

seceecucceccsccccsccsccsceeees 311, 368

277, 308, 312

Kensnnssssssssssnnnssssssssnnnnnnssssnsene 79

Kenasssssssnnsssssnsnnssssssnonssnenenen 128

nnnnonssssssssensnsassnnn sessssssessseee 249

Nonssssnnnsssssnsonssssnnssnsnnnssnsnnen 179

seecceeeseeeeeeceeeeeeeeceseessaeeseees 283

Kensssesnunnnsssssssssssnensnnensnnnannn 281

464 Atari ST Intern 2

S

Scan-Codescccssccssccsccceccnccceccssseesecesceescesceesccescescseseessssccescescsessescoesens 450

Schieberasesesessssensesnassonsnnnnennannnnnnnnnnnnnnennsnnnsnnnsnnnennsnnnssnnnsnnssnnnsenssnnnene 216

Schließfeldccecnceneeseesenessenssnassnnnnnnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnsnonsnnsnnnsnunennn 216

Schnittrechteck _.........scsesessasssnsssnnnsnnnnnonnnnnannnnnnnnnnnnsnnnsnnnnnnnnnnsnnnnsnonsnnnnnnnsen 247

SCFEEN-MaMnagerrccccsssccsscseccesccssecescssccsccesceesceseescesccsccessesccescsceesees 199

SEGPTR oui... cece cecccscccsccscccsccsscccsccesceseccscccsccesecescessceccescceceesceccsesccssseceeeceens 25

SEKtOLENcceccecssccecccccceccscsscccscccccesecsccecssccesecseesssescscesssecsecceseesesseeseosceecs 68

Selektieremcccssccsscccssccescccscccssccesccsecccscccscccssecscccssccsscsscecescscessceeece 312

Set Polyline End Styles o.............cc.cccccssscccsssccnescccscccescccscccessccesscasscsescesencs 181

Set Polyline Line Widthucsssesessssenononessnnnnnnnneneonnnenonenensnnnnnnnnnnnsnerenen 181
Set Writing Modecscccscssscccsssscccscscccessceceescecescceescecessceeesssecesceeess 179

SETBLOCK. wii... .c ccc ccccccseccscccsccssccesccssccssccccecscccccceccesceescesecccesssesccesseccceseacs 48

SELSCTEENcccsccsscssccsccescsccnscencceceescscceccescesceessesseceessnccsccseescascescesseeceees 81

Shapescccseccsccscccscccccsccesccscceccsceescsccsccessessseccesseceesseccsssescescescesccesseceeces 89

Shiftercecensesasseassesssonsnnonnnenonnnnnnnnnnnnnennnnnnnnnnnnnnnnnnnnnnnnnnnsnnsnnnsensunnsnnsnnnnnnne 77

Soundcersessesssnssnnsnnsnnnnnnnnnnunsnnnnnnnnenussunnnonsnnsnnsnnsensennsnssnennennenn 127, 129, 134

Sound-Chipeesesssesesenessonnsnnnnnsnnnnnnnnnnnnnnnnennnnunnnnsnnnsannsnnnnnsnssnossnnnnnnssnnnnn 127

Speicherverwaltungcccccsssscccsssecccssscccsscsccsscccccscesssccessscecesscecesseseescs 47

SPLIt€Scccccccssccsssccssccccsccccccccssscceseccussecccscccsscccssseccsccesccccscesessssssceecsesesses 89

Stack-KOrreKturcccceccecceccecccccscceccccccccccccccccecccccsccccsceccccesccsceescccesens 14

Standard-Handles uo... ec ccscssccesccsccscceccccccsccecceccecceccsccescescescescessescosss 50

SYSteMVvariablenccecessesccsvecccscsccssccesssccessccsesceessseescecccctevessssceceseeees 103

T

Tall oi... cccceccssscccsccccescccesecccsscccsscccssccccsccccssccucsccccssccscceusccesscccscesssccecacececs 308

Te_ptext ...eccsseseonsnesssnnnnsnsennnnnsnennnnsnsnennnnnnennnnsssnsnnnssnsnnnsssrsnnssssnnnssene 327, 331

Te_ptmpltesssssssseennnnnnnsesnnnnnnnnnnennnnnnnnnnnsnnnnnnnnnnunnnnsnssnnnnnsssnsensnsssensnnnnnn 327
Te_pvalid ...usesssessnsnnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnensnnnnonnsnnnnennnensonnnnnennsnnsnnnnnnnnnnnnn 327
TEDINPO20220022002s0sssnnseannnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnnnonsnnnnnnnnnnnnennn 328, 331

Text .ocseesssnssnssnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnnnnnnsnnennsnnnnnnssnnnnsnunsnnnnnnn 172f

Timer o.oo... ccccccccseessssssssssccccccccceesesessessssccacessececeeeeesseeeeesssssessessssansossensseeess 112
TitelZeile 00... ccccsssccsssscccessssccsessscecessseccessessessssesseeeeeeees sense 216, 224
TOSuusrsenssennnennnennnsnnnnnnnnnnnnnnnannnnnnonnnnnnnnnnnnnnnnsnnnennsnnnnnunsnnnnennsnnnsnunsnnnsnnnnen 11

TOUCHEÄTT02220020002seennssnnseonnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnunennnnnnnnnnnsennnnnnne 367

Trackscccssccsecccsscevsccceccovscececccneccceccssscccecesesceesccvccesceevssssccosccssenssesscsesecs 68

Transparent—-MoOdus ccccssscsscccssccscccsccssccssccsvcesecsccsccesccescsccescesceecs 179

Trapccccseccosscscccccccssccsccscccvscsvececccscesscccsccesccesccsccesccecccascescecsceccesscescesseucees 14

TUNE oui... cccsscccesccssccecscccscececccsscecevecescccececscesescecsecesccnsccsscecscscscsesceesceess 134

U

Stichwortverzeichnis 465

V
V _contourfilleessssssssssssnennnnnenssnnnssnssnssnssnnnsnnnnnnnsenssnssnensnnnnsnnensnssnnsnnan 172
V_filareaeeesensssnnnsssnssnnnnunnsssnnonsnnunssnnnssnnnnnnssnsnnnssssssnsnnnsnnsnsssssnssssnnnnne 172
V__BtEXt „n.neecneessssnnnnnnnnsssnsnsnnnsnnssssnsnsnnssssnsssnnnnssssssssnssssssnsssnssnensssssssssnnnn 172f
V _hide_C .eeneneeesssssnsnnssssssnnnnunnsensnnsnnonsnsnnnsssnnnnenssnssnssnsssssnnnnnnsssssssssssssnnnnn 228
V_opnvwKsssssssssssesssnssennnnnnsnsnnsnssensnsnnnnnsnssnsssesnnnnnnssssssssnnsnsssssnennnennn 167
V_plineesssssssssssnsssnsnnnnnnsnnnnsnsssssssssnsonsnnnnnnssssssnsnsnnssnssnsnnssssssssssnssnnnennn 172

V _pmarkereesssssssssssssssenssnsnnnnsnsnssnnnnnennnnnnnnssnssssssssssssssssnsnssssnsssssssserennnn 172

V_recflunssssssssssssssssnnsnnnnnnennunnssssnsssssssnssnssssonsssssssnssnsnsssssssssssssssnssssnnnnen 172
V_Show_Cusesssssesssssssnsnsssensnonsunsnsssssssnnnnnnssssssssssnnnsnanssssnsssssssunsnnnnnsnnn 228
VARPTReuueesssssssssnnnnnnnnnnnnnnnnnonnennanennnnnenennnennennnnnnnnnnnssnnsssssenenennnnssnnensn 25
VBL _.....esssssssnnnnnnnnnnnnnnnnnnnnsnnnsnnnsnnnsssnnnnenenennnssnnnennnsnsnsnsensssssssnnennnnnnssssssnn 101
Vbl_queueunsssssssnnnssssssnsonsonsnnensnsnsnonnnnnsnonsnonnnnnsnnsssssnnnsnssnnnnnnanasnsssnnen 103f
VDIueeeseeesnssnnnnnnnnnonnanonnnnnnnnnnnnansnnnnnnsnsnsssnnsnnennneonnnnnnsssssssnnsnsnnnnen 151, 166
VDI-Koordinaten.............0000nnnnnnensnssnsnennnnnnsnnnssnsnnnnnnnonssssssnsnnnssnsssnennnnnn 215
Video-Chipeneeseesssassensensnonnunennnnunnunnnnnnnnnnunnnnsnnnunnnonnnsnnsnnnnnssnsnensnsnnsnnnnnnn 77

Video-RAMessesssnssnssnnssnnsnsnnnnsnnnensnnnsnnnnonsnnssssnnnsnnsnnsnnnnnsnnssnsenssnnnne 79, 122

VITUS .ueeeeeeeeennnnnnnnnsnnnnnnsnnnsnsnnsnnssnnnnnnsnsnsnnssssssnnennnnnnnnnnnnssssssssssssnsnsennenenennnnnnnn 69
VOLUMEuesssssnnnnnnnnnnnnonnnnnnnnnnnsnnnnnsnnnennennsnesnnnnnnnnnnnnssnssnssnnensnnnnnnnnnnnnn 134
Vorteiler20000000000nnnnnnonensnnsnnensensnonnnnnnnnnnnsnsnsnnssnnnsnssnsssnsnssnensensnssssnneen 112
Vro_cpyfmnnessssssssssnsnsnnnsnnsssnsnssnsssssnnssssnnsssssnsnnssnnssnsnnsssssssnssssnsnsnssnen 186
Vsl_endsecssessssssssssnsnssssssssnnsnonsnssssnsnnnnnssssssnsennnnssssnensssssssnsnssssssnnssssenn 181
Vsl_ widthessssssssssssssssnsssnsnnnnonensnennnnensnnnnsensnsnenenennnnnnnnnnssssssnsnennnnansensen 181
Vswr _modessssssssssnnsssssssnenensnnssssssssnnnanensnsnonnnnsssensennssssssnenannssnnnsssnnnn 179
VT-52csssssssnsnnnnsnnnnnnnnnnssnensnsnnnnnnnssnsnssnsnsnsennnnnnnnsnsnnnssssssssssssenensennn 454
VT-52-Kommandos2sssnn00ssssssensennnnnsnsennnnnnnsnsonnnssnsssnnonsnsnenonssnsennn 25

W
WAVE ..eeeesessssnnnnnnunnnnnnnnnnnnnnnnnsnnnsnnnsnsnnnennssnnsensnsssnennnnnnnsnssssssssssssssnenenenn 134
WildcardSunesssnssnnnnnnnnennnnnnnnnnnnannnnnnensnsnnnnennennnnnnnnnnnnnssnsssssnnnnnssnnnsnenennnnn 35
Wind_calcesssssssssensnnennensnessssonsnnnnnnnnnnnnnanssnnnnnsnnnnnsnnnnnnnnnnnnsnssnensnssnansnen 214
Wind_close ou...cessscessscccsssceccsscccsetscssssecsssnsessseescsssceeessseeesessusessssceecesseeees 215
Wind__ createeesssssessssssonnnnnensnsnonnnnensnssnnsnnsnnnesssssnssssssnnennensnnssnsssssssnnnnnnn 214
Wind_deleteuunsonssnsnennonenesssssssnnnnnnnnannnnnnnnnnnnnnsnnnnsnsnnsnnsnnsssssnsssssnsnnene 215
Wind_geteeessssssnnonsssssssssnnnnnnnnnnnnnnennssnnnsnnnnnnnnansnnnnssssnsnsnssnssssssnsennnn 247f
Wind_openeessssssosssesssssnsnnnnnnsnnnunensnssnnnsnsnnsnsnsssnsonsonssnnnsnssnssssssssssnnnenenn 214
Wind_set ..eeassasssnnsnnnnnnnnnnnnnnnnnennonensnnnnsnnnnonnnnnnssnnnnensnnnnssennsrnnn 223, 226, 248

Wind _ updateeeceesssssesssesenensnnsnnnnnnsnnnennnnnnnnnnsnnnnnnnnennnnnnnnnsnsssnnnnnnsnenennnnnn 246

Window-Handleuessesessessssssssessonnnnnnnnnnnnnnnsnnnnnnsnnsnnnnnsnnnenenenennneneennnn 214
Windowsnueeeesesssssonsenssnonssssnnnnsssnnnnnsensnssnnnenssssnsnsnnnssssssnnsssssssssssssnnsensnenn 214
WOrK_ÄN .neeeeennesssssnnnnessnsnnnnnnnnnnsssnnnnnsnsnssssssnnsssonsssssnsnsessnsnsnsnsssssssssnnssnnnennn 168
Work _Outeesssssssnenssssssnnnnnsennsnnnnnnnensnssssnnnnsssnsnnsssnnnnssnsnsnssssssssssssnnnnsennnnn 168
Wurzelobjektcccccsssssscccccccccccsssvscccceecssssssseccccesssscccceascsccccascesces 277, 307

 466 Atari ST Intern 2

X

XBIOS.00000nssensennssassnnsnnesnnnnnnnnnnensnnnnnnnnnnnnnnnnnnnnnnsnnnnunsnnsnnnsenennenensnnennnn lif

NDCUMEL oo... eee eeecccesceecccsccccscccssccsscesccesseesscesscscscesceeceeesceessesccenseesseessees 112

XOR -MOdUS oicece ccc ceecceccsccsscscccsccsccesccsccsccsscsccsscsccsccscescescescescessessessesseecs 180

Y

YM-2149 oii cecccsccsscccscceccsscccsccsccncccesccssceccensecscceseescesccscesscessessesscnscens 127

eee Bücher zum Atari ST

Dieser INTERN-Band ist das Standardbuch zur Programmierung der
Atari-ST-Computer. Sie finden alle Informationen zum Aufbau und zur
Funktion Ihres Rechners, die zur professionellen Programmierung un-
entbehrlich sind. Dabei sind die Beispiele in den vier wichtigsten Pro-
grammiersprachen angegeben: Omikron-Basic V3.0 (ST-Basic), GFA-
Basic, C und Assembler. So wird jeder Programmierer in seiner Spra-
che unterstützt. Durch den übersichtlichen und konsequent didakti-
schen Aufbau ist das Buch ideal als Nachschlagewerk geeignet.

Aa . Aus dem Inhalt:
nghisc

“eS - Das TOS vom 06.02.86 (1040ST/F), vom
22.04.87 (Blitter-TOS) und das brandneue

TOS 1.4
- Aufbau und Anschlüsse des
68000-Prozessors

- Funktionen und Register des Custom-Chips

- Der Blitter und seine Programmierung

- Der Soundgenerator YM-2149
- Programmierung des Tastaturprozessors

- Alles über die Schnittstellen der ST-Modelle
- DMA-Betrieb mit Timing-Diagrammen

- Der Erweiterungsbus im Mega-ST

- Speicheraufbau

DATA BECKER - Die Systemvariablen und ihre Bedeutung

| - TOS: GEMDOS, BIOS und

XBIOS-Funktionen mit ausführlichen
Beschreibungen und Beispielen in BASIC, C
und Assembler

- GEM: VDI und AES-Funktionen mit
einführenden Erläuterungen und Beispielen

in den vier wichtigsten Programmiersprachen

- Grafikprogrammierung

- Dokumentiertes BIOS-ROM-Listing des
‚normalen‘ und des Blitter-TOS

- Tabellen zum schnellen Nachschlagen:

GEMDOS, BIOS, XBIOS

Brückmann, Englisch, Gerits

Atari ST intern, Band 1
Hardcover, 732 Seiten, DM 69, —
ISBN 3-89011-119-X

EEE Bücher zum Atari ST

Bei der Arbeit mit dem Atari ST tauchen immer wieder Probleme
auf. Genau dort setzt dieses Buch an. Es beantwortet alle Fra-
gen zu den Bereichen Desktop, Massenspeicher, Drucker,
Schnittstellen... kurz zu allem, was zum Atari ST gehört. Der gut
strukturierte Aufbau des Buches mit zusätzlichen Symbolen
zum schnellen Finden der Lösungen in lexikonähnlicher Form
macht dieses Buch zum unentbehrlichen Nachschlagewerk, das
das nötige Hintergrundwissen liefert.

Aus dem Inhalt:

- Desktop: Umgang mit Icons, Mentleiste und

Windows, Bedienung von

Objektauswahiboxen

~ Massenspeicher: Schnelles Kopieren mit

einem Laufwerk, Umbenennen von Ordnern,

Tips zu Festplatten

- Drucker: Zeichensätze, DIP-Schalter,

Druckeranpassung

- Schnittstellen: Centronics, RS232,

DMA Datenübertragung

- Computerwissen: Aufbau des Computers,

Zahlensysteme
H IA NDBUCH - Software: Tips & Tricks zu Standardsoftware

- Pflege und Wartung: Einbau von TOS-Roms,

kleine Reparaturen selbst gemacht
DATA BECKER

Liesert
Das große Atari ST Handbuch
Hardcover, 370 Seiten, DM 49, —
ISBN 3-89011-273-0

ees Bucher Zum ATARI ST

Der Mega ST, das Flaggschiff von Atari, verfügt über eine
Vielzahl von Anwendungsmöglichkeiten, die sich u. a. aus
dem extrem großen Arbeitsspeicher dieses Rechners erge-
ben. Insbesondere in den Bereichen Desktop Publishing
(DTP) und Programmierung erweist sich der Mega ST als
vielseitig und anderen Geräten weit überlegen. In diesem
Buch gehen die Autoren ausführlich auf die Möglichkeiten
dieses Rechners ein und weisen darüber hinaus auf alle
technischen Einzelheiten hin, deren Kenntnis für jeden
Mega-ST-Besitzer unerläßlich ist. Besonders interessant ist
es für alle, die das dokumentierte Blitter-TOS für die eigene

Programmentwicklung nutzen wollen.

Aus dem Inhalt:

- Die Bedienung und die Handhabung des

_ 1... Mega ST
iOS oe - Die Software für den Mega ST

wr Bitch (Textverarbeitungen, Datenbanken,
Tabellenkalkulationen usw.)

- Desktop Publishing mit dem Mega ST

(Beckerpage ST usw.)
- Die Programmierung des Mega ST (AES, VDI,

BIOS, XBIOS, GEMDOS usw.)
- Die Pheripherie des Mega ST (Festplatte,
Laserdrucker usw.)

- Der Aufbau des Rechners

- Die Nutzung des großen RAM-Speichers -
RAM-Disk bis 3,5 MByte mit
Autokonfiguration

- Nützliche Beispielprogramme und ein

ausführlich dokumentiertes
Blitter-TOS-Listing

mit dokumentiertem
Blitter-TOS-Listing

Dittrich, Englisch, Severin

Das große Mega ST Buch

Hardcover, 538 Seiten, DM 69, —

ISBN 3-89011-196-3

EEE Bücher zum Atari ST

Dieses Buch möchte vermeiden, daß beim Programmieren das

Rad noch einmal erfunden werden muß. Struktogramme zu Stan-
dard-Algorithmen und einführende Erläuterungen fügen sich zu

einem Nachschlagewerk zusammen, mit dem sowohl Anfänger

als auch Fortgeschrittene zurechtkommen. Zu den möglichst por-

tabel gehaltenen Algorithmen kommen in einem zweiten Teil nützli-
che Tools für den ST. Gleichzeitig bietet dieses Buch einen Einstieg
in das neue GFA-BASIC Version 3.0, eine komplett dokumentierte

AES-Liste der neu hinzugekommenen AES-Bibliothek sowie eine

Gegenuberstellung der Befehle GFA V2.0 und V3.0, um Ihnen die
Anpassung Ihrer alten Programme zu erleichtern.

 Aus dem Inhalt:

— Einführung in die Benutzung von

| Struktogrammen
Das große . | — Textverarbeitung: Flatter- und
GFA-Programmier- Fa Blocksatz, Silbentrennung,
Handbuch nies Wordwrap

wer = ua
— Datenverarbeitung: Sequentielle,

Index-Sequentielle und Random-
Access-Dateien

- Grafik: Vektorgrafik, Drehen,
Spiegeln und Verschieben von
Objekten, Barcodes

— Mathematik: Matrizenrechnung,
GFA 2.0 Nullstellen, Integral- und
GFA 3.0 Differentialrechnung, Finanzmathe-

matik, Zahlensysteme, Statistik
— Kalenderberechnung
— Strategie-Algorithmen
— Tools: Automatisches Backup,

REM-Killer, Diagramme,
3-D-Funktionsplotter

— GFAV3.0: AES-Liste, Befehlsliste
GFAV2.0 —V3.0

Liesert, Linden
Das groBe GFA-Programmier-Handbuch
Tools & Algorithmen
Hardcover, 480 Seiten, DM 59,—
ISBN 3-89011-258-7

Pees Bucher zum ATARI ST

Die besten Tips und Tricks zum ATARI ST sind eine wahre
Fundgrube fur jeden ATARI-ST-Besitzer. Anhand vieler
nützlicher Routinen werden die fantastischen Möglichkeiten
dieses Rechners ausführlich erklärt. Programmier- und
Hardwaretips vermitteln zusätzlich eine Menge über die
Rechnerstruktur und dessen Programmierung in GFA-Ba-
sic, C und Assembler.

Aus dem Inhalt:

- GEM-Starter
- Uhrzeit resetfest
- echtes Multitasking
- Sprite-Programmierung
- schnelle Grafikroutinen
- Dia-Show
- Sound-Programmierung
- Konvertierungsprogramme

- Floppy-Speeder
- Short-Cuts für beliebige Programme
- Accessory-Aufbau

- Filesearch für Festplatte

- Bildschirmschoner

- Ordner umbenennen

- Einschaltverzögerung für Festplatte

Pauly, Schepers, Schulz

Die besten Tips & Tricks

Hardcover, 428 Seiten, DM 59, —

ISBN 3-89011-210-2

Pn Bücher zum Atari ST

Wer bisher glaubte, professionelle Programme könne man
nur in C oder gar Assembler entwickeln, wird mit diesem

Buch eines Besseren belehrt. Nach einem ausführlichen

Basic-Grundkurs erfahren Sie alles über die Dateiverwal-
tung, die Nutzung von Betriebssystemroutinen, die Grafik-

programmierung oder die Programmierung unter GEM.
Nützliche Tools und Libaries runden das Buch ab.

PINS ee

Maier

Aus dem Inhalt:

- Variablentypen in ST-Basic
- Strings und Stringmanipulation

- Strukturierte Programmierung
- Rekursionen
- Formatierte Ein- und Ausgabe
- Sequentielle und relative Dateiverwaltung

- Logische Verknüpfungen
- Betriebssystemprogrammierung

- GEM-Programmierung
- Eigene File-Selector-Box
- Multitasking

- Omikron.Compiler

- Nützliche Libaries

Das große ST-BASIC-Buch
Hardcover, 407 Seiten, DM 49, —
ISBN 3-89011-283-8

ier Bücher zum ATARI ST

Endlich gibt es GFA V3.0! Zu diesem umfangreichen BASIC
gehört auch ein umfangreiches Buch, in dem detailliert je-
der Befehl behandelt wird. Dabei liefert es keine nackte Be-
fehlsübersicht, sondern wirklich brauchbares Material in
Hülle und Fülle. Anhand zahlreicher Beispielprogramme ler-
nen Sie dieses leistungsfähige BASIC spielend zu beherr-
schen.

Aus dem Inhalt:

- Das Editor-Menü

- Variablentypen und -organisation

- Diskettenoperationen

Litzkendorf - Strukturierte Programmierung
- Mausabfrage in eigenen Programmen
- Sound-Programmierung
- Beschreibung des

Resource-Construction-Set
- Verwendung von Multitasking-Befehlen
- Programmieren von Pull-Down-Menüs
- Abfrage von Ereignissen (Events)
- Window-Programmierung

Co, oe - Zugriff auf GEMDOS, BIOS und XBIOS
OES SOT Compile - Komplette AES- und

VDI-Library-Beschreibung

- Verwenden eigener Fonts mit GDOS
- Eine komplette Adressenverwaltung als
RAM-Kartei

- Komplette Befehlsübersicht über alle Befehle

des GFA-BASIC

Litzkendorf

Das große GFA Basic 3.0 Buch

Hardcover incl. Diskette, 828 Seiten, DM 49, —

ISBN 3-89011-222-6

Das steht drin:

Ein so leistungsfähiger Rechner wie der ATARI ST erwartet von
seinen Programmierern umfangreiche Gundkenntnisse, um ihn zu
beherrschen. Der zweite INTERN-Band vermittelt ihnen genau
diese Kenntnisse und zeigt Ihnen in vielen Beispielprogrammen,
wie Sie das Betriebssystem und die Hardware sinnvoll einsetzen
können. Fast alle Programme sind in den vier Sprachen
GFA-BASIC, OMIKRON-BASIC (ST-Basic), C und Assembler
abgedruckt. Den Schwerpunkt des Buches bildet die
Programmierung von GEM-Applikationen und -Accessories.

Aus dem Inhalt:

e Benutzung von GEMDOS, BIOS und XBIOS-Funktionen
e Dateien unter GEMDOS
e Speicherverwaltung
e Umlenken der Ein-/Ausgabe
e |ogische und physikalsche Bildschirme
e Sprite-Programmierung
e Interrupts (auch in C)
e Soundprogrammierung
e GEM-Programmierung:
Benutzung von AES und VDI, Grafikfunktionen,
Ereignisverwaltung, die File-Selector-Box, Windows, Menus,
Dialogboxen und Accessories

e umfangreiche Demo-Applikationen und Accessories

Und geschrieben hat dieses Buch:

Martin Pauly, seit Jahren begeisterter ST-Fan. Er kennt nicht nur
das Betriebssystem und die Hardware seines Rechners in- und
auswendig, sondern beherrscht auch die verschiedensten
Programmiersprachen. Mit diesem Buch mochte er allen
ST-Besitzern zeigen, wie die vielfaltigen Moglichkeiten des
ATARI ST eingesetzt werden.

ISB N 3-89011-324-9 DM +079.00

DM 79,-
OS 616,- oe
SFr 77,-

u |
BECKER 9 '783890"113241

