o SYBEX

- ATARI ST

Das Floppy
Arbeitsbuch

mit
Programm-
Diskette

Frank Aumann
Peter Maier
Ralf Stopper

ATARI ST
Das Floppy-Arbeitsbuch

ATARI ST
Das Floppy-Arbeitsbuch

Peter Maier
Ralf Stépper
Frank Aumann

&

BERKELEY - PARIS - DUSSELDORF

Satz: SYBEX-Verlag GmbH, Diisseldorf
Umschlaggestaltung: Daniel Boucherie / tgr
Gesamtherstellung: Druckerei Hub. Hoch, Diisseldorf

Die Reprovorlagen fiir dieses Buch wurden auf einem Apple Macintosh erstellt und mit
einem Apple LaserWriter ausgegeben.

Der Verlag hat alle Sorgfalt walten lassen, um vollstindige und akkurate Informationen zu
publizieren. SYBEX-Verlag GmbH, Diisseldorf, iibernimmt keine Verantwortung fiir die
Nutzung dieser Informationen, auch nicht fiir die Verletzung von Patent- und anderen
Rechten Dritter, die daraus resultieren.

ISBN 3-88745-642-4
1. Auflage 1986
2. Auflage 1986

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie,
Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages
reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfiltigt oder
verbreitet werden.

Printed in Germany
Copyright © 1986 by SYBEX-Verlag GmbH, Diisseldorf

Inhaltsverzeichnis
Kapitel 1 — Der Diskettenaufbau beim ATARI ST................... 7
Allgemeines iiber die ATARI-Floppylaufwerke 7
Der Aufbau einer Diskettenspur — (Track) 7
Das einfachste Aufzeichnungsverfahren, die FM-Methode 8
DasMFM-Verfahren............. ... 9
Spezielle Bitfolgen i i il 12
Das Formatieren einer Diskette 13
Die Unterteilung der Diskette in logische Sektoren.................. 13
Die Systeminformationen der Diskettec....... 14
Der logische Sektor Null - Der Bootsektor 15
Aufbaudes Bootsektors 16
Das Ladeprogrammttt 17
Die File Allocation Table oo, 23
Bedeutung der FAT-Eintrdgeoviiininnen. ... 23
Das Inhaltsverzeichnis, die Directory 25
Kapitel 2 — Diskettenprogrammierung unter TOS 29
Die Systemroutinen des ATARI-DOS 29
DasGEMDOS e e e 30
Datei-Befehleo e 31
Folder-Befehle 44
Directory-Befehle 49
Drive-Befehle. e e 55
Die Fehlermeldungendes GEMDOS i, 57
Einschrankungendes GEMDOS 58
GEMDOS-Systemaufrufe i, 58
Die BIOS-RoUtineniiiiiiininnnitiiinnneeen.. . 60
BIOS-Systemaufrufe i 63
Die XBIOS-Routineno i 65
XBIOS-Systemaufrufe...............oiii i 70
Kapitel 3 - Die Floppy-Disk Schnittstelle 75
Kapitel 4 - DirektprogrammierungdesFDC 79

Der Aufbaudes FDC 1772o e e 79

6 ATARI ST - Das Floppy-Arbeitsbuch

Die Programmierung iiber Direct Memory Access. 84
Die Kommandos des Floppy Disk Controllers. 87
Die Programmierung des FDC.................t 90
Zusammenfassungttt . 101
Kapitel 5—RoutinendesXBIOS o i 103
Ein XBIOS-Fehler.. ... 123
Kapitel 6—EinFDC-Fehler...................... 127
Kapitel 7-DiePowerdisk 131
Filecopy V2.0. . ..o e 132
Speedcopy V2.0 . ..ot 135
Fehlermeldungenttt 138
Excopy V9.0, ..o e e 139
Diskmonitor. 140
The CIonettt e e i e e 143
Anhang

A Die Fehlermeldungendes TOS, 147
B DerBootsektor 149
C Der ATARI-Zeichensatzccoiiiiiiiiinnnene... 151
D Die Scan-Codesder Tastatur.................coviuevnnne.nn. 153
E Die GEMDOS-Funktionencoiiiiiitininnennann. 155
F Die BIOS-Funktionenc..ooiuuiiiiineinnean. .. 157
G Die XBIOS-Funktionen.cooviiiinnevnevnenenn. 159
H Der Bios-ParameterBlocko i 161
I DieKommandosdesFDC............. iiiinn. 163

Kapitel 1

Der Diskettenaufbau beim ATARI ST

Allgemeines iiber die ATARI-Laufwerke
Die Diskettenstationen SF 354 und SF 314 verarbeiten Disketten im 3,5-Zoll-
Format. Wiahrend die SF 354 nur einen Schreib-/Lesekopf besitzt, kann die SF
314 auch doppelseitig bespielte Disketten bearbeiten.
Die folgende Tabelle zeigt die Formate der Disketten:

SF354 SF314

Typ: SSDD DSDD

Spuren (Tracks): 80 80 (0..79)

Sektoren je Spur: 9 9 (1..9)

Seiten: 1 2

Kapazitat: 500kB 1MB unformatiert

360kB 720kB formatiert
Die verfiigbare Kapazitit von 360 kB (720 kB) wird eingeschrankt durch:

— disketteninterne Informationen
— das Inhaltsverzeichnis
— und durch jeden weiteren Ordner (Unterverzeichnis, Folder)

Der Aufbau einer Diskettenspur — (Track)

Eine formatierte Diskette enthélt im Normalfall 80 Spuren, von denen jede
wiederum in 9 Sektoren zu 512 Bytes unterteilt ist. Um auf die Daten in einem
bestimmten Sektor zugreifen zu konnen, dreht sich zum einen die Diskette,
und zum andern kann der Schreib-/Lesekopf mechanisch zur Mitte bzw. zum
Rand der Diskette bewegt werden. Dadurch ist es méglich, simtlich Sektoren
auf der Diskette anzufahren.

8 ATARI ST - Das Floppy-Arbeitsbuch

Zur Bearbeitung der Sektoren gibt es im Prinzip zwei Mdglichkeiten: die
Hard-Sektorierung und die Soft-Sektorierung. Weil der ATARI ST von der
Soft-Sektorierung Gebrauch macht und die Hard-Sektorierung inzwischen
auch keine groBere Rolle mehr spielt, wird im folgenden nur auf die Soft-Sek-
torierung eingegegangen.

Um festzustellen, an welcher Stelle eine Spur beginnt, existiert auf der Disket-
te ein Index-Loch. Uber eine Lichtschranke wird ein Impuls erzeugt, der dem
FDC (Floppy-Disk-Controller) mitteilt, da der Schreib-/Lesekopf am An-
fang der Spur steht. Bei der 3,5-Zoll-Floppy entfdllt das Index-Loch, dafiir
gibt es auf der Unterseite der Diskette in der Metallnarbe eine Einkerbung, die
fiir die richtige Positionierung der Floppy in dem Laufwerk sorgt. Die Stel-
lung des Schreib-/Lesekopfes wird nun vom Laufwerk bestimmt und an den
FDC iibergeben.

Wiirde man nun die Daten ohne ein spezielles Format auf die Diskette schrei-
ben, so bekdme man beim Einlesen dieser Daten grole Schwierigkeiten, weil
sich die Scheibe nie mit konstanter Geschwindigkeit dreht. Zur Losung dieses
Problems wurden verschiedene Aufzeichnungsverfahren entwickelt:

|

das FM-Verfahren,

das MFM-Verfahren,

das M2FM-Verfahren und
das GCR-Verfahren.

Weil der ATARI ST das MFM-Verfahren verwendet, werden wir hier nur auf
das MFM-Verfahren und seinen Vorgénger, das FM-Verfahren, eingehen.

Das einfachste Aufzeichnungsverfahren, die FM-Methode

Das FM-Verfahren (FM steht fiir Frequenzmodulation) ist auch unter dem
Namen Single-Density-Aufzeichnungsverfahren bekannt. Zusitzlich zu den
Datenbits werden auch Taktbits auf die Diskette iibertragen. Im Abstand von
4 us werden die Datenbits hintereinander auf die Diskette geschrieben.

Am Anfang einer solchen Bit Cell (Bitzelle) wird zunéchst ein Taktimpuls
geschrieben. Soll die Zelle dann das Datenbit 1 enthalten, folgt nach 2 ps wie-
derum ein Impuls. Bei jedem Impuls wird durch den Schreibkopf ein magne-
tischer FluBwechsel auf der Diskette erzeugt. Das Datenbyte $2C (Bitfolge
00101100) hitte bei dem FM-Verfahren das Aussehen wie auf der folgenden
Seite gezeigt.

Einfiihrung 9

tt

4 ps (Bit Cell)
Das Byte $2C im FM-Format

Der Nachteil des FM-Verfahrens liegt in seinem Platz- und Zeitverbrauch, da
bei jedem Bit der Takt mit aufgezeichnet wird.

Das MFM-Verfahren

MFM steht fiir Modified Frequency Modulation und bedeutet, wie der Name
schon sagt, eine Weiterentwicklung des FM-Verfahrens (Das MFM-Verfahren
ist auch als Double-Density-Aufzeichnung gelaufig). Dieses Verfahren ermog-
licht die Verdoppelung der Aufzeichnungsrate, ohne dafl die Anzahl der FluB-
wechsel erhoht wird. Die Bit Cell ist beim MFM-Verfahren nur halb so grofl
wie bei dem FM-Verfahren, namlich 2 fs. Fiir die Aufzeichnung der Daten-
bits kann man von folgenden Regeln ausgehen:

~ Soll eine Zelle das Datenbit 1 enthalten, wird ein Impuls in der Mitte der
Zelle aufgezeichnet.

— Bei einem Datenbit 0 wird ein Impuls am Anfang der Zelle aufgezeichnet,
aber nur dann, wenn die vorherige Zelle ebenfalls ein Nullbit enthalt.

Das Datenbyte $2C (Bitfolge 00101100) im MFM-Format:

1 i1 ;0

2 us (Bit Cell)

Das Byte $2C im MFM-Format

10 ATARI ST - Das Floppy-Arbeitsbuch

Das Auslesen der Datenbits veranschaulicht die folgende Abbildung:

1pus

'
RN AR

M |__| ru—l_]g)a:nbitsaus)

foioi1io0i1i1 30

Auslesen der Datenbits im MFM-Format

Wenn man wihrend eines Taktimpulses einen Datenimpuls erhélt, wird er als
logisch 1 interpretiert. Erhalt man diesen Impuls, wihrend kein Taktimpuls
vorliegt, wird er als logisch 0 eingestuft. Nun sind wir in der Lage, die Da-
tenbits von den Taktbits auf der Diskette zu unterscheiden. Aber wir wissen
noch nicht, wann ein Datenbyte und wann ein Sektor anfangt. Deshalb gibt es
Kennungen oder Marken fiir den Beginn von Daten- und Informationsfeldern.

|GAPI [GAPII| Ad_1 [GAPIII| Da_l [GAPIV|GAPII| Ad 2|

Aufbau einer Spur im MFM-Verfahren

Nach dem Index-Loch am Anfang einer Spur folgt nach ca. 92 Fiillbytes
(ATARI benutzt dafiir das Byte $4E) die Index-Address-Mark, die jedoch in-
zwischen von den meisten Systemen nicht mehr benétigt wird (GAP I).

Fiir jeden Sektor folgt dann:

Eine Liicke (GAP II) am Anfang des Adressenfeldes, die aus zwolf $00-Bytes
und drei $F5-Bytes besteht. Die $00-Bytes ermoglichen dem FDC, die
Schreib-/Lese-Elektronik einzustellen, wihrend die $F5-Bytes eine spezielle
Bedeutung haben, auf die wir spéter eingehen werden.

Einfithrung 11

Das Adressenfeld (Ad_x):

Dieses Feld beginnt mit der sogenannten ID-Address-Mark, die aus einem
$FE-Byte besteht. Anschliefend folgen die Informationen iiber die Spurnum-
mer, die Sektornummer, die Diskettenseite, die Grofe des Datensektors und
eine Priifsumme:

[Marke | Spur | Seite] Sektor|Gr<‘jBe| Prﬁfsummﬂ
$FE 0.$4F 0.1 19 $02 2 CRC-Bytes

Im allgemeinen sind bei der Spurnummer die Bytes $00 bis $4F erlaubt. Sie
erlauben eine Numerierung zwischen 0 und 79, und zwar bei der Sektornum-
mer die Bytes $01 bis $09 und bei der Seite $00 und $01, wobei $00 die Vor-
derseite und $01 die Riickseite der Diskette kennzeichnet. Die GroRe eines Da-
tensektors kann der folgenden Tabelle entnommen werden:

Byte Grofe

$00 128 Bytes
$01 256 Bytes
$02 512 Bytes
$03 1024 Bytes

Der letzte Eintrag in einem Feld ist die Priifsumme. Dem FDC wird hierbei
ein $F7-Byte iibermittelt; dies hat ebenfalls eine bestimmte Bedeutung und soll
spater erklédrt werden. Als néchstes folgt die Liicke vor dem Datenfeld (GAP
I1I), die aus 22 Fiillbytes ($4E), zwolf $00-Bytes und drei $F5-Bytes besteht.

Auf diese Liicke folgt das Datenfeld:

rMarke l 512 Bytes Datenl Prl'.ifsummel

$FB $ES (neu formatiert) 2 CRC-Bytes

Wie das $FE-Byte das Adressenfeld, kennzeichnet das $FB-Byte ein Feld: das
Datenfeld. Danach folgen so viele Datenbytes wie im Adressenfeld angege-
ben sind. Bei einer neuformatierten Diskette wiren das 512 $E5-Bytes. Am
Ende steht wieder die Priifsumme.

Am Ende eines jeden Sektors folgt wiederum eine Liicke, die GAP IV. Diese
besteht aus 40 Fiillbytes. Nachdem alle Sektoren geschrieben wurden, wird

12 ATARI ST - Das Floppy-Arbeitsbuch

die Spur bis zum erneuten Auftreten des Index-Impulses, der das physikali-
sche Ende der Spur kennzeichnet, mit $4E-Bytes beschrieben.

Spezielle Bitfolgen

Wie kann der FDC nun die Marken von normalen Datenbytes unterscheiden?
Dazu wurden spezielle Bitfolgen gewihlt, bei denen auch die Taktbits eine
Rolle spielen. Durch das Weglassen bestimmter Taktbits wird ein Bitmuster
erzeugt, das sonst nie auftreten kann. Der FDC kann durch seine Elektronik
diese Muster erkennen und dementsprechend darauf reagieren.

Bei dem MFM-Verfahren ist diese Sache im Gegensatz zum FM-Verfahren
nicht so einfach, weil dort bereits Taktimpulse durch das dichtere Aufzeich-
nungsverfahren fehlen. Daher werden nur zwei Bitfolgen verwendet: die $A1-
Folge und die $C2-Folge.

Die $C2-Folge wird dreimal hintereinander aufgezeichnet. Danach folgt die
Erkennungsmarke fiir das Index-Loch mit dem Code $FC, der mit allen Takt-
impulsen aufgezeichnet wird. Die $C2-Folge dient also zum Identifizieren der
Index-Mark.

Auch das $A1-Muster wird dreimal hintereinander aufgezeichnet. Anstelle
der Index-Loch-Markierung folgt nun entweder ein $FE-Byte als ID-Address-
Mark oder ein $FB-Byte, das ein Datenfeld identifiziert.

Die Priifsumme (Cyclic Redundancy Check)

Die CRC-Bytes dienen, wie schon erwéhnt, zur Fehlererkennung. CRC ist eine
Abkiirzung fiir Cyclic Redundancy Check, was man im Prinzip als Priifsumme
bezeichnen kann. Im eigentlichen Sinn ist dies aber keine Aufsummierung ein-
zelner Bytes. Das Verfahren zur Erzeugung der CRC-Bytes ist wesentlich
schwieriger. Hierbei werden nur bestimmte Bits, die aus dem Generator-Poly-
nom

6,412, S

x164x124 %341

erzeugt werden, verwendet.

Einfiihrung 13

Das Formatieren einer Diskette

Nun hat man ein Feld voller Daten, Liicken und Markierungen. Wie bekommt
man diese nun auf die Diskette? Diesen Vorgang nennt man die Formatierung
einer Spur, weil die Spur auf ein spezielles Format gebracht wird. Die Forma-
tierung ist im Prinzip nichts anderes als das Schreiben dieses Feldes auf die
Diskette.

Der FDC des ATARI ST besitzt hierfiir den WRITE-TRACK-Befehl, der eine
ganze Spur beschreibt. Dieser Befehl interpretiert nun verschiedene Bytes in-
nerhalb des Feldes als Befehle und nicht als Daten. So miissen z.B. die beiden
CRC-Bytes am Ende eines Feldes erzeugt und die speziellen Bytes bei den
Adrefmarken und der Index-Mark geschrieben werden. Die Bitfolgen haben
im FM- und im MFM-Verfahren eine unterschiedliche Bedeutung Fiir das
MFM-Verfahren sind die folgenden Bytes reserviert:

Bitfolge Bedeutung

$00-$F4 Schreibe das Byte normal im MFM-Format.

$F5 Schreibe $A1 im MFM-Format mit fehlendem Taktbit
zwischen Bit 4 und 5.

$F6 Schreibe $C2 im MFM-Format mit fehlendem Taktbit
zwischen Bit 3 und 4.

$F7 Schreibe 2 CRC-Bytes.

$F8-$FF Schreibe das Byte normal im MFM-Format.

Die Bytes $F5, $F6 und $F7 sollten daher niemals als Fiillwert beim Forma-
tieren einer Spur bzw. einer Diskette verwendet werden.

Die Unterteilung der Diskette in logische Sektoren

Das Betriebssystem des ATARI ST kennt nicht nur die Unterteilung der Dis-
kette in Spur, Sektor und Seite, sondern auch die in sogenannte logische Sek-
toren.

Bei dieser Unterteilung werden die Sektoren beginnend mit dem logischen
Sektor 0 fortlaufend numeriert. Bei einer einseitigen Diskette wére der lo-
gische Sektor 9 identisch mit dem physikalischen Sektor 1 auf der Spur 1. Auf
einer doppelseitigen Diskette entspricht der logische Sektor 9 dem physika-
lischen Sektor 1 auf Spur 0 der Seite 1.

14 ATARI ST - Das Floppy-Arbeitsbuch

Die Umrechnung von Spur, Sektor und Seite in logische Sektoren kann man
mit der folgenden Formel durchfiihren:

log = NSECTS * (Spur * NSIDES + Seite) + Sektor — 1
wobei
— NSECTS die Anzahl der physikalischen Sektoren je Spur ist,

— NSIDES die Anzahl der Seiten auf der Diskette (1 oder 2) ist und
— Seite entweder 0 oder 1 ist.

Die Umkehrung, also die Berechnung von Spur, Sektor und Seite aus dem lo-
gischen Sektor, ergibt sich aus den folgenden Formeln:

Seite = (log div NSECTS) mod NSIDES

Spur = log div (NSIDES * NSECTS)

Sektor =1 + (log mod (NSIDES * NSECTS)) — (NSECTS * Seite)
Fiir eine einseitige Diskette mit 9 Sektoren je Spur ergibt sich also:

log =9 * Spur + Sektor — 1

Seite =0

Spur =logdiv9

Sektor = (logmod 9) +1
und fiir eine zweiseitige Diskette:

log =9 * (Spur * 2 + Seite) + Sektor — 1

Seite = (log div 9) mod 2

Spur = (log div 18)

Sektor = (log mod 18) — 9 * Seite + 1

(div bezeichnet die Division ohne Rest, mod den Rest der Division.)

Die Systeminformationen der Diskette

Die ersten beiden Spuren nehmen eine Sonderstellung auf der Diskette ein.
Hier werden nur Systeminformationen gespeichert und keine Daten des An-
wenders.

Einfiihrung 15

Als Systeminformationen gelten der Bootsektor, die File Allocation Table
(Datei-Belegungstabelle) und das Inhaltsverzeichnis, das Directory.

Diese befinden sich bei einer einseitigen Diskette auf:

Sektor Information
Spur 0: 1 Bootsektor
2-6 File Allocation Table — Kopie
7-9 File Allocation Table
Spur 1: 1-2 File Allocation Table
3-9 Inhaltsverzeichnis

Im allgemeinen gilt:

logischer Sektor Information

0 Bootsektor

1-5 Kopie der FAT

6-10 File Allocation Table
11-17 Inhaltsverzeichnis
ab 18 Benutzerdaten

Der logische Sektor Null — Der Bootsektor

Der Bootsektor hat nicht nur die Aufgabe, simtliche Informationen zu spei-
chern, die beim Formatieren der Diskette notwendig waren, er ermoglicht
auch bei einem Reset des Rechners ein Programm automatisch von der Dis-
kette zu starten (zu booten). Die Werte sind hierbei im 8086-Format, also low-
Byte/high-Byte, abgespeichert.

Der Bootsektor besteht insgesamt aus drei Teilen:

— einer Seriennummer
— den Disketteninformationen (BIOS-Parameter-Block, BPB)

— einem (optionalen) Ladeprogramm

16 ATARI ST - Das Floppy-Arbeitsbuch
Aufbau des Bootsektors
Bytes Bedeutung Wert (*)
$00 - 501 <BRA> $60 $38
$02 $07 Flaller "Loader"
$08 $SO0A Seriennummer SxXXXXXX
SOB soc BPS 500 $02 = 512
$0D SPC $02
SOE $OF RES $01 $00 = 1
$10 NFATS $02
$11 $12 NDIRS $70 $00 = 112
$13 $14 NSECTS $D0 $02 = 720
$15 MEDIA $F8
$16 $17 SPF $05 $00 = 5
$18 $19 SPT $09 $00 = 9
S1A $1B NSIDES $01 $00 =1
$i1c $1D NHID $00 $00
S$S1E S1FF <Ladeprogramm> Sxx. .

(*) Die Werte sind der TOS-Systemdiskette (einseitig) entnommen.

Die Abkiirzungen bedeuten:

<BRA>

Sprung (BRAnch) zum Lade-Programm. Dieser Sprung
wird nur ausgefiihrt, wenn die Priifsumme des Bootsek-

tors dem Wert $1234 entspricht.

Einfithrung

17

Fiiller Diskettenbezeichnung.

Seriennummer 24-Bit-Nummer.

BPS Bytes je Sektor, normalerweise 512.

SPC Sektoren je Cluster. Der Rechner faft je zwei Sektoren
zu einem Cluster (Gruppe) zusammen.

RES Reservierte Sektoren am Anfang einer Diskette, inklusi-
ve des Bootsektors; normalerweise 1.

NFATS Anzahl der File Allocation Tables auf der Diskette.

NDIRS Maximale Inhaltsverzeichniseintrige. Insgesamt112 auf
einer einseitigen Diskette.

NSECTS Gesamtanzahl der Sektoren auf der Diskette, 720 auf
einer einseitigen.

MEDIA Diskettenformat wird vom ATARI ST-BIOS nicht be-
nutzt.

SPF Sektoren je File Allocation Table.

SPT Sektoren je Spur.

NSIDES Anzahl der Diskettenseiten (1 oder 2).

NHID Anzahl der versteckten Sektoren, wird vom ATARI ST-
BIOS ignoriert.

Das Ladeprogramm

Das Ladeprogramm ist ein Assembler-Programm und steht im Bootsektor ab
der Position $3A. Mit diesem Loader kann man entweder einen Image-File

oder einen zusammenhingenden Block von der Diskette in den Rechnerspei-
cher laden und anschlieend auch ausfiihren lassen. Ein Image-File ist ein ge-
naues Abbild von dem auszufithrenden Programm und enthilt daher weder
einen Programmkopf noch Relokations-Informationen.

Zu dem Ladeprogramm gibt es noch einige Informationen, die im Bootsektor
ab der Position $1E abgespeichert sind.

Hier bedeuten die Abkiirzungen:

EXECFLG

LDMODE

Ein Wort (Integer), das an die Adresse _cmdload in den
Rechner kopiert wird. Ist _cmdload ungleich Null, dann
wird beim Systemstart ein Programm mit dem Namen
COMMAND.PRG geladen.

kennzeichnet den Lademodus. Ist LDMODE gleich Null,
dann sucht das System nach einem File, das unter
FNAME angegeben ist und ladt es. Ist LDMODE un-
gleich Null, werden NSECT Sektoren, angefangen mit
dem logischen Sektor SSECT geladen.

18 ATARI ST - Das Floppy-Arbeitsbuch

SSECT, NSECT siehe unter LDMODE.

LDADDR an diese Adresse wird das File oder der Block geladen.

FATBUF Adresse, an dié die File Allocation Table und die Direc-
tory geladen werden.

FNAME siche unter LDMODE.

CHECKSUM soll der Bootsektor ausfithrbar sein, so muBl die Priif-
summe des Sektors $1234 entsprechen. Die letzten bei-
den Bytes werden zum Entstehen dieser Priiffsumme be-
notigt.

$1E - $1F EXECFLG $00 $00

$20 - s21 LDMODE $00 s$00

$22 - $23 SSECT $00 $00

$24 - $25 NSECT $00 $00

$26 - $29 LDADDR $00 04 00 00
$S2A - $2D FATBUF $00 00 80 00
$2E - $38 FNAME "TOS IMG"
$39 DUMMY $00

$3A - $1fD Ladeprogramm $33 SFA ...
$1fe - S$1ff | CHECKSUM

Als Beispiel eines Ladeprogramms haben wir im folgenden den Booter der
einseitigen TOS-Systemdiskette als kommentiertes Assembler-Listing aufge-

fiihrt.

Einfithrung 19
K o e e e = ——— s = = o = o
*
* TOS-Booter
*
T o o e o o o i o o S Tt B S o o .
*
* Konstanten innerhalb des Programms
*
bios .equ 13 ; TRAP-Nummer des BIOS
_cmdload .equ 5482 ; fir COMMAND.PRG
_bootdev .equ 5446 ; Laufwerknummer
_membot .equ $432 ; Beginn des Benutzerspeichers
i (TPA)
b Struktur des BIOS-Parameter-Blocks
*
recsiz .equ 0 ; GroBe des Sektors in Bytes
clsiz .equ 2 ; GroBe der Gruppe in Sektoren
clsizb .equ 4 ; GroBe der Gruppe in Bytes
rdlen .equ 6 ; GroBe der Direc. in Sektoren
fsiz .equ 8 ; GroBe der FAT in Sektoren
fatrec .equ 10 ; Erster log. Sektor der FAT
datrec .equ 12 ; Log. Sektor der ersten
; Datengruppe
numcl .equ 14 ; Anzahl der Datengruppen
; auf der Diskette
*
*
* Das Listing beginnt mit dem ersten Byte des Bootsektors
*
*
BOOTER:

bra CODE

Es folgt nun der BIOS-Pa

.dc.b 'Loader’
.dc.b 0,0,0
.dc.b 0,2
.dc.b 2

.dc.b 1,0
.dc.b 2

.dc.b $70,0
.dc.b $DO, 2
.dec.b SF8
.dc.b 5,0

; Sprung zum Ladeprogramm

rameter-Block, BPB

Diskettenbezeichnung
Seriennummer

Bytes Jje Sektor
Sektoren je Gruppe
Reservierte Sektoren
Anzahl der FATs
Directory-Eintrége
Gesamtzahl der Sektoren
Kennzeichnung der Disk
Sektoren je FAT

Ne e Ne e Se e Ve Ne Ne N

20

ATARI ST - Das Floppy-Arbeitsbuch

EXEC_FLG:
LDMODE :

SEC_START:

NR_SECT:
LOAD_ADR:
FAT ADR:
FILE:

CODE:

*

.dc.b 9 i
.dc.b 0 ;
.dc.b 1 i
.dc.b 0,0 i
.dc.b 0,0 ;
.dc.b 0,0 ;
.dc.b 0,0 ;
.dc.b 0,0 ;
.dec.1 $40000 ;
.dc.1 $8000 ;
.dc.b 'TOS IMG',0 ;

Sektoren je Spur
Nicht benutzt

Seiten der Disk
Versteckte Sektoren
Kein COMMAND.PRG
Lademodus

Nicht benutzt, da der
Lademodus Null ist
Ladeadresse
FAT-Adresse

Name des IMAGE-Files

* Zuerst wird EXEC_FLG in die Speicheradresse $482 kopiert

*

* %

FATOK:

*

move.w EXEC_FLG(pc),_cmdload

move.w _bootdev,-(a7)

move.w #7,-(a7)

trap #bios

addg.l #4,a7

tst.1 do

beq ENDE

move.l dO0,a5

lea FAT_ADR(pc),al
tst.1l (a0)

bne FATOK

move.l _membot, (a0)

move.w fsiz(a5),d0
1sl #8,d0

add.l do,do

move.w d0,ad

add.l FAT ADR(pc),a4
move.w LDMODE (pc),d0
begq LD_FILE

BPB liber BIOS-Aufruf getbpb in den Speicher holen

Gerdteadresse auf Stack
Funktionsnummer von getbpb

Stack aufrdumen
Adresse des BPB =
Ja, dann Fehler
Adresse des BPB
Adresse der FAT
= 07?

Nein, dann weitermachen
Adresse FAT auf den Start
des Benutzerspeichers
legen

07?

nach
nach

A5
AO

Ne Ne Ne N e e o Ne Se o Se Ne Se Se SNe

SPF nach dO
mit 512
multiplizieren

A4 zeigt auf das ENDE
der FAT im RAM

LDMODE gleich Null?

Ja, TOS als Datei laden

Ne Ne Se e e Ne Se S

* Der folgende Programmteil wird normalerweise nie ausgefiihrt

*

move .w
move.w
move.l
bra

NR_SECT (pc) ,d4
LOAD_ADR (pc) ,a3
EXEC

SEC_START (pc) ,d6;

Log. Startsektor des TOS
; Anzahl der Sektoren

; Startadresse im RAM

; Laden und Starten

Einfithrung

21

*

* Das Betriebssystem wird als IMAGE-File eingeladen (TOS.IMG)

*

LD_FILE:

NEXT:

CHAR:

TEST:

move.w
move.w
add.w
move.l
bsr

bne
move.l
move .w
1sl.w
1sl.w
lea

lea

sub.w
cmp
blt
moveq

move.b
cmp.b
bne

dbf

moveq
move.b

1sl.w
move.b
move.l
move.l
clr.l

cmp . w

bge
move.w
subg.w
mulu
add.w
cmp
bge
tst.w
beqg
cmp . w
beqg

fatrec(ab),d6
fsiz(ab5),d4
rdlen (a5),d4
FAT ADR(pc),a3
GETSEC

ENDE
a4, a0
rdlen (a5),do
#8,d0
#1,d0
0(a0,d0.w),a0l

FILE (pc),al

#$20,a0
a4,al
ENDE
#10,d0

0(a0,d0.w),d1
0(al,d0.w),dl
NEXT

d0, CHAR
#0,d7

$1b (a0),d7
#8,d7

$la(a0),d7
FAT ADR(pc),ab

LOAD_ADR(pc) ,a3

d4

#S0££0,d7

EXEC

d7,d3

#2,d3

clsiz (a5),d3
datrec(a5),d3
#$40,d4
GE_40

d4

FIRST

d5,d3

SECOK

Ne Ne Ne Ne e Ne Ne S Se Ne e e N,

N~ Se S S

D T

Ne N N N N Se S NN

Ne Ne Ne Ne o Ne Se e Se Ne Se o Se NS

Sektor der 2. FAT
GroRe der FAT
DIR-Lé&nge

FAT und Directory ohne
Starten laden

Fehler?

Ende der FAT im RAM

Directory-L&dnge in Bytes

A0 zeigt auf das Ende der
des Directory im RAM

Zeiger auf Filenamen nach
Al

N&dchster Name

Ende der FAT erreicht?
Ja, dann Fehler!

Lédnge des Namens - 1

Stimmt dieses Zeichen
iberein?

Nein, dann n&dchste Datei
untersuchen

Ja, das nachste Zeichen
holen (oder fertigqg)

Register D7 l&schen

1. Sektorengruppe der
Datei

in das Register D7

bringen

Startadresse der FAT in A6
Startadresse des TOS in A3
Anzahl der Sektoren auf
Null setzen

D7 >= $FFO?

(letzte Gruppe)

Ja, dann laden und starten
Aktueller Sektor ist
(Gruppe - 2) * GrdBe der
Gruppe+terster Datensektor
Aktuellen Sektor nach D3
Anzahl der Sektoren > $407?

Ja, dann lade bis hierher
D4 =0 2
Ja, dann erste Gruppe

Wurde der Sektor erwartet?
Ja, dann teste weiter

22 ATARI ST - Das Floppy-Arbeitsbuch
GE_40: bsr GETSEC ; Nein, lade bis hierher
bne ENDE ; Fehler
1sl.1 #8,d4 ; Anzahl der geladenen
; Sektoren mal
1s1l.1 #1,d4 ; 512 = Anzahl der geladenen
;i Bytes
add.l d4,a3 ; + alte Startadr. = neue
; Startadr.
FIRST: move.w d3,d6 ; D6 = 1. Sektor fuer GETSEC
move.w d3,d5 ;
clr.1l d4 ; Anzahl Sektoren auf Null
SECOK: add.w clsiz(a5),d4 ; Eine Gruppe mehr an
; Sektoren
add.w clsiz(a5),ds ; Nachster erwarteter Sektor
move.w d7,d2 ; Aktuelle Gruppe
lsr.w #1,d2 ; Mit 1.5 multiplizieren
add.w d7,d2 ;
move.b 1l(a6,d2.w),dl ; Als Zeiger in der FAT
1sl.w #8,d1 ;
move.b 0(a6,d2.w),dl ; Hole die n&chste Gruppe
btst #0,d7 ; 12 Bits miissen isoliert
; werden:
beqg ODD: ; ungerade, dann Bits 0-11
1sr #4,d1 ; gerade, dann Bits 4-15
ODD: and.w #SO0f£ff,dl ;
move.w dl,d7 ; Nachste Gruppe
bra TEST ; und testen

*

* Programm laden und starten
*

EXEC:

EX 1:

ENDE:

GETSEC:

tst.w
beq

bsr
bne

d4
EX_1

GETSEC
ENDE

i
i
’
;
‘

Anzahl der Sektoren = 0
dann sofort starten
Sektoren holen

Fehler

move.l LOAD_ADR(pc),-(a7)

rts

clr.1l
rts

move.w
move.w
move.w
move.l
clr.w
move.w
trap
add.w
tst.w
rts

do

_bootdev, - (a7)
d6,-(a7)
d4,-(a7)
a3,-(a7)

-(a7)

#4,-(a7)

#bios

#14,a7

do

Ne Ne Ne Ne Se Se ove N N S

Laufwerk,

1. log. Sektor,
Anzahl der Sektoren,
Startadresse und das
rw-Flag auf den Stack
rwabs-Aufruf

Stack wieder aufrdumen
Fehler-Flag testen

Einfithrung 23

Die File Allocation Table

Samtliche Information iiber die Diskettenausnutzung stehen in der "Datei-Be-
legungstabelle", File Allocation Table (FAT). Beim ATARI ST werden zwei
dieser Tabellen verwendet, die hinter dem reservierten Sektor (Bootsektor)
hintereinander auf die Diskette geschrieben werden. Die erste FAT beginnt
daher bei dem iiblichen ATARI-Format ab dem logischen Sektor 1 und die
zweite ab dem logischen Sektor 6. Das Betriebssystem des ATARI ST benutzt
nur die zweite FAT, die erste steht als Kopie auf der Diskette.

Das TOS fafit jeweils zwei Sektoren zu einem Cluster (Gruppe) zusammen.
Der erste Cluster, der fiir die Speicherung der Dateien zu Verfiigung steht, ist
der Cluster 2, der auf einer einseitigen Diskette bei Spur 2, Sektor 1 bzw. ab
dem logischen Sektor 18 beginnt.

Jeder Eintrag in der FAT ist 12 Bits = 1.5 Bytes gro8.

Bedeutung der FAT-Eintrige

Die FAT-Eintrage haben zwei Funktionen. Zum einen zeigen sie dem TOS an,
welche Gruppen auf der Diskette noch frei sind, zum anderen verbinden sie
diese zu einem File. Jeder Directory-Eintrag eines Files enthalt die Nummer
des ersten Clusters der Datei, die weiteren lassen sich tiber den folgenden Al-
gorithmus berechnen:

1. CL ist die Nummer des gegebenen Clusters.
2. Der FAT-Eintrag F ergibt sich aus
F=CL +CL / 2;

3. Aus der 16-Bit-Zahl an der Stelle F in der FAT errechnet sich nun
die nichste Cluster-Nummer NCL, wobei zu beachten ist, daR die
Eintrage im 8086-Format abgespeichert sind (erst das Low-Byte,
dann das High-Byte)!

4. Falls CL eine ungerade Zahl ist, miissen die oberen 12 Bits in die
unteren 12 Bits kopiert werden:

NCL := SHR(NCL, 4);

5. Da ein Eintrag nur 12 Bits groB ist, werden nun die relevanten Bits
ausmarkiert:

NCL = NCL & S$OFFF;

24 ATARI ST - Das Floppy-Arbeitsbuch

Um alle Gruppennummern eines Files zu bekommen, fithrt man den Algo-
rithmus so lange durch, bis die Nummer groRer als $FF7 ist.

Wenn das TOS ein File auf der Diskette abspeichert, priift es den Eintrag auf
den Wert $000. Ist dieser Eintrag $000, dann ist dieser Cluster nicht belegt
und kann zur Datenspeicherung benutzt werden. Liegt der Wert des Eintrages
zwischen $FF1 und $FF7, dann ist auf der Diskette ein Schreibfehler
aufgetreten, der die Benutzung des Clusters verbietet. In jedem anderen Fall
($002 - $FF0) ist diese Gruppe schon belegt und kann zur Datenspeicherung
nicht benutzt werden.

Will das TOS nun eine Datei lesen, dann geht es diese Datei Cluster fiir Cluster
durch und benutzt den Wert jeweils als Zeiger auf den nichsten Cluster. Ist der
Eintrag $000 oder $001, dann ist die Diskette fehlerhaft, da das TOS diese
Clusternummer nicht vergibt. Trifft das TOS trotzdem auf diesen Eintrag, so
zeigt er auf den Cluster $000, bzw. auf den Cluster $001.

Liegt der Wert des Eintrages zwischen $002 und $FF7, dann ist diese Gruppe
bereits belegt, und der Wert weist auf den der Datei folgenden Block.
Allerdings ist dabei zu beachten, daR der Wert die Anzahl der Cluster nicht
iibersteigt, da der Lesekopf diesen Cluster sonst nicht finden kann. Ist er
grofer als $FF7, so ist diese Gruppe die letzte in der Datei.

$000 Freie Gruppe

$001 Nicht moglich

$002 - SFEF Nichste Gruppennummer
$FFO - $FF7 Fehlerhafte Gruppe

$FF8 - $FFF Ende der Datei

Die ersten beiden Eintrége in der FAT haben eine besondere Bedeutung, da sie
nicht zu Clustern des Datenbereichs gehoren. Diese Cluster liegen in der Di-
rectory und werden normalerweise vom TOS nicht benutzt. Den beiden Ein-
tragen werden aus Sicherheitsgriinden Werte zugewiesen, die EOF bedeuten.
In Anlehnung an MS-DOS wird in das erste Byte eine Kennung fiir das Medi-
um geschrieben, aber ansonsten nicht benutzt.

Einige Werte fiir das Medium:

$F8 - Single Sided/80 Tracks
$F9 - Double Sided/80 Tracks
$FC - Single Sided/40 Tracks
$FD - Double Sided/40 Tracks

Einfithrung 25

Falls Sie diese Eintrige dndern, sollten Sie beachten, daf der auf den Cluster 0
folgende Block jeweils der Startblock der Datei ist. Das TOS beachtet also den
Eintrag fiir den nullten Cluster nicht. Auflerdem werden diese beiden Cluster
vom TOS nie zur Datenspeicherung benutzt, selbst wenn Sie die Eintrdge in
der FAT auf $000 abgeéndert haben.

Die Umrechnung von einer Gruppennummer zu dem dazugehérigen logischen
Sektor kann iiber den folgenden Algorithmus erfolgen:

1. log := CL - 2;
2. Dieser Wert wird mit der Anzahl der Sektoren je Cluster multipli-
ziert,
log := log * CLSIZ
3. Dazu addiert sich der logische Sektor des ersten Clusters:

log := log + DATREC

Die Werte von CLSIZ und DATREC erhilt man iiber den GETBPB-Aufruf,
der den BIOS-Parameterblock der Diskette liefert.

Das Inhaltsverzeichnis, die Directory

Die Directory ist das Inhaltsverzeichnis der Diskette. Es enthalt Informatio-
nen iiber die Dateien auf der Diskette. Bei der ST-Serie beginnt es normaler-
weise ab dem logischen Sektor 11. Die Directory besteht aus einer Aneinan-
derreihung von Eintrégen fiir jede Datei.

Jeder Eintrag ist 32 Bytes lang und folgendermaBlen aufgebaut:

Bytes Bedeutung

0..7 Name der Datei

8..10 Extension der Datei

11 Datei-Attribut

12..21 nicht benutzt)

22..23 Uhrzeit der letzten Anderung

24..25 Datum der letzten Anderung

26..27 Zeiger auf den ersten Cluster der Datei
28..31 Liénge der Datei

26 ATARI ST - Das Floppy-Arbeitsbuch

Die Eintrage des Directories bestehen aus folgenden Angaben, deren Format
niher beschrieben wird:

Name und Extension

Hier steht der Name der Datei, wie er auch im Desktop erscheint, allerdings
ohne den trennenden Punkt.

Datei-Attribut

Das Attribut ist bitweise verschliisselt:

Bit Bedeutung, wenn gesetzt
0 nur lesen
1 versteckt
2 Systemdatei
3 Diskettenname
4 Unterverzeichnis
5 Archivstatus
6 - nicht benutzt
7 - nicht benutzt
Uhrzeit

Auch die Uhrzeit und das Datum sind bitweise verschliisselt, stehen aber im
8086-Format auf der Diskette:

HHHHMMMM MMMSSSSS

Bit0-4 Sekunden
Bit 5-10 Minuten
Bit 11-15 Stunden

Einfithrung 27

Datum

JJJJJJIM MMMTTTTT

Bit0-4 Tag
Bit5-8 Monat
Bit 9-15 Jahr- 80

Lénge

Auch die Lange der Datei ist im 8086-Format abgespeichert:

Fiir die Unterverzeichnisse (Folder) der Diskette ist kein fester Platz reser-
viert. Jeder dieser Subdirectories wird als eine Datei auf die Diskette geschrie-
ben, das Inhaltsverzeichnis-Eintrage enthélt. Die ersten beiden Eintrage in
einem Folder sind die speziellen Unterverzeichnisse "." und "..". Das Ver-
zeichnis "." zeigt auf das iibergeordnete Subdirectory bzw. das Hauptdirec-

"on

tory, ".." auf das eigene.

Wird nun eine Datei oder ein Folder geléscht, werden die Eintrage nicht aus-
genullt, sondern nur das erste Byte auf den Wert $E5 gesetzt.

29

Kapitel 2

Diskettenprogrammierung unter TOS

Die Systemroutinen des ATARI ST-DOS

In dem folgenden Kapitel werden die Systemroutinen des ATARI ST vorge-
stellt, die in der Assembler-Sprache durch einen TRAP-Befehl aufgerufen
werden und in irgendeiner Weise mit der Floppy zu tun haben.

Das DOS des ATARI ST ist im Prinzip in drei Teile unterteilt:

- GEMDOS
- BIOS

und das erweiterte BIOS,

- XBIOS.

Der Aufruf einer Funktion dieser drei Bereiche erfolgt in Assembler wie
folgt:

1. Parameter auf dem Stack ablegen.
2. Die Funktionsnummer auf den Stack legen.
3. Den TRAP-Befehl ausfithren:
—~ GEMDOS = TRAP #1
—~ BIOS =TRAP #13
— XBIOS = TRAP #14
4. Den Stack wieder in Ordnung bringen.
5. Eine eventuelle Fehlermeldung aus dem Datenregister DO auslesen.

Da die Programmierung dieser Funktionen in der Sprache C sehr einfach ist,
sind im folgenden die Aufrufe der Funktionen in der iiblichen C-Notation
angegeben. Die Funktionen sind hierbei MAKRO-Definitionen, die iiber den

30 ATARI ST - Das Floppy-Arbeitsbuch

Preprozessor des Compilers in eine der folgenden Formen tiberfiihrt wird:

— (long) GEMDOS (Nummer, Parameterliste);
— (long) BIOS (Nummer, Parameterliste);
— (long) XBIOS (Nummer, Parameterliste);

GEMDOS, BIOS und XBIOS sind hierbei in der "C"-Bibliothek enthaltene
(z.B. LATTICE-C) oder externe Funktionen (z.B. bei DR-C in dem Modul
OSBIND.O).

Das GEMDOS

GEMDOS-Befehle weisen teilweise Ahnlichkeiten mit MS-DOS-Befehlen auf,
allerdings wurden nur einige MS-DOS-Funktionen iibernommen. Wenn man
ein 51/4-Laufwerk an den ST anschlieft und eine MS-DOS-Diskette einlegt, so
wird man erstaunt feststellen, daf§ die Directory einwandfrei eingelesen wird.
Leider sind aber alle restlichen Daten auf MS-DOS-Disketten ohne Hilfsmittel
nicht zu lesen.

GEMDOS-Aufrufe haben die unangenehme Eigenschaft, daf sie die Register
A0 und DO verdndern. Falls Sie in Assembler programmieren, sollten Sie den
Inhalt dieser Register vor dem TRAP-Aufruf retten. Nach dem Funktionsauf-
ruf wird im Register DO ein Wert iibergeben, der auch eine Fehlermeldung
sein kann.

Programmiert man in Assembler oder Pascal, muf bei der Eingabe von Datei-
oder Ordnernamen darauf geachtet werden, dafl der Name durch ein Nullbyte
abgeschlossen wird. In C ist das nicht nétig.

Man kann die Befehle des GEMDOS in vier Kategorien einteilen:
— Datei-Befehle

— Folder-Befehle

— Directory-Befehle

— Drive-Befehle

Diskettenprogrammierung unter TOS 31

Datei-Befehle

Die Datei-Befehle setzen sich aus folgenden Befehlen zusammen, auf die nach-
folgend ndher eingegangen wird:

— FCREATE $3C

— FOPEN $3D
- FCLOSE $3E
— FREAD $3F
- FWRITE $40
— FDELETE $41

- FSEEK $42
- FATTRIB $43

- PEXEC $4B

- FRENAME $56
- FDATIME $57

Kommando: Fcreate Funktionsnummer: $3C
Format. Fcreate (name,attr)

char *name;

WORD attr;

Funktion: Vereinbarung eines Datei- oder Diskettennamens.

Um die Diskette mit einem Namen zu versehen oder um eine Datei auf ihr an-
zulegen, muB man zunéchst den Befehl Fereate mit einem Namen (8 Zeichen)
und einer Extension (3 Zeichen) und einem entsprechenden Attribut aufrufen.

Folgende Attributwerte sind bei Fcreate moglich:

$00 - diese Datei kann gelesen und beschrieben werden.
$01 - diese Datei kann nur gelesen werden.

$02 - ein sogenanntes "Hidden File" wird kreiert.

$04 - System-Datei.

$08 - Diskettenname.

Die Attributwerte $10 (Folder) und $20 konnen beim Kreieren einer Datei
nicht angegeben werden. Fiir Folder gibt es einen Extrabefehl: Dcreate. Das
Attribut $20 wird vom TOS selbst vergeben. Existiert die zu erstellende Datei
schon, wird ihr die Linge 0 zugeordnet. Die Datei wird sozusagen geloscht.
Man erhélt nach dem Aufruf ein File-Handle, iiber das spéter alle Zugriffe auf
diese Datei laufen. Als erste freie Handle-Nummer erhélt man eine 6. Es
kénnen maximal 40 Dateien gleichzeitig ge6ffnet werden.

32 ATARI ST - Das Floppy-Arbeitsbuch

Fehlercodes:

—34 Pfad nicht gefunden
—-35 zuviele offene Dateien
—36 Zugriff nicht méglich

Erhilt man als Fehlerwert die —36 zuriick, so bedeutet dies, dall entweder das
Inhaltsverzeichnis voll ist.

Kommando: Fopen Funktionsnummer: $3D

Format. Fopen (name,modus)

char *name;
WORD modus;

Funktion: Offnen einer Datei

Dateien miissen zum Lesen oder Schreiben gedffnet werden. Dazu dient der
Aufruf Fopen. Man gibt dabei den Namen der Datei, die man 6ffnen will, und
die Zugriffsart (Modus) an.

Folgende Moduswerte sind bei Fopen moglich:

0 — nur Lesen
1 — nur Schreiben
2 — Lesen und Schreiben

Wird die Datei gefunden und war die gewiinschte Zugriffsart méglich, so wird
das Handle der Datei zuriickgegeben, ansonsten wird eine Fehlernummer aus-
gegeben. Das erhaltene Handle wird spéter bei allen Lese-, Schreib- und Such-
operationen gebraucht.

Will man z.B. in eine Datei schreiben, deren Attribut auf "nur lesen" gestellt
ist, so muR erst das Attribut dieser Datei gedndert werden. Im Desktop wird
das iiber das Menii "Zeige Info" bewerkstelligt. Man kann dazu auch die Funk-
tion Fattrib dazu verwenden, worauf wir spéter zuriickkommen. Der Aufruf
Fopen setzt den Dateizeiger an den Anfang der Datei. Die Position des Zeigers
kann dann mit Fseek verindert werden.

Fehlercodes:

—33 Datei nicht gefunden
-35 zu viele offene Dateien
—-36 Zugriff nicht méglich

Diskettenprogrammierung unter TOS 33

Kommando: Fclose Funktionsnummer: $3E

Format: Fclose (handle)

WORD handle;

Funktion: Schliefen einer Datei.

Eine Datei, die man gedffnet hat, sollte man nach Beenden der Arbeit auch
wieder schliefen, sonst konnte es zu einem Datenverlust kommen. Man gibt
dabei die Handle-Nummer an, die man beim Offnen der Datei erhalten hat.
Fehlercodes:

-37 falsche Handle-Nummer

Kommando: Fread Funktionsnummer: $3F

Format: Fread (handle,anzahl,puffer)

WORD handle;
LONG anzahl;
char *puffer;

Funktion: Lesen einer Datei

Mit der Funktion Fread konnen Daten aus einer Datei gelesen werden. Dazu
wird die Handle-Nummer, die man beim Offnen der Datei erhalten hat, die
Anzahl der zu lesenden Bytes und die Adresse eines Puffers, iiber den die Da-
ten gelesen werden sollen, iibergeben. Als Riickgabewert erhalten Sie ent-
weder die Anzahl der fehlerfrei gelesenen Bytes oder eine Fehlernummer.

Wird iiber das logische Datei-Ende hinaus gelesen, wird der Vorgang abge-
brochen, weil nicht mehr Bytes eingelesen werden kénnen, als von der Datei in
der FAT belegt sind.

Fehlercodes:

-37 falsche Handle-Nummer

34 ATARI ST - Das Floppy-Arbeitsbuch

Kommando: Fwrite Funktionsnummer: $40

Format: Fwrite (handle,anzahl,puffer)

WORD handle;
LONG anzahl;
char *puffer;

Funktion: Schreiben in eine Datei

Die Parameter zum Beschreiben einer Datei sind identisch mit denen beim Le-
sen einer Datei. Es ist dabei moglich, durch Andern der Handle-Nummer die
Ausgabe einer Datei auch auf einen Drucker oder auf den Bildschirm zu leiten.

Dabei sind folgende Handle-Nummern gestattet:

1 = Konsole-Ausgabe
2 = RS-232-Schnittstelle
3 = Drucker

Die Handle-Nummer 0 bedeutet Konsole, die Nummern 4 und 5 bewirken
meistens Fehlermeldungen. Nun wird auch klar, warum man beim Kreieren
einer Datei als erste freie Handle-Nummer eine 6 bekommt.

Fehlercodes:

—36 Zugriff nicht moglich
-37 falsche Handle-Nummer

Kommando: Fdelete A Funktionsnummer: $41

Format. Fdelete (name)
char *name;

Funktion: Loschen einer Datei

Dieser Befehl ist mit Vorsicht zu verwenden, da damit Dateien fast unwider-
ruflich geloscht werden. Diese Funktion wirkt ohne weitere Angaben nur im
aktiven Directory. Befindet sich eine Datei, die man 16schen mdochte, in einem
Folder, so gibt es zwei Moglichkeiten:

— Man iibergibt den kompletten Pfadnamen.
— Man ernennt den Folder zum aktuellen Directory (Fkt. DSETPATH).

Diskettenprogrammierung unter TOS 35

Fehlercodes:

—33 Datei nicht gefunden
—36 Zugriff nicht moglich

Kommando: Fseek Funktionsnummer: $42

Format. Fseek (anzahl,handle,modus)
LONG anzahl;
WORD handle;
WORD modus;
Funktion: Dateizeiger fiir direkten Zugriff setzen
Normalerweise wird eine Datei rein sequentiell gelesen, d.h. wenn man eine
bestimmte Information sucht, mufl man die Datei von Anfang an durchsuchen.
Mit dem Befehl Fseek hat man nun die komfortable Moglichkeit, einen Zeiger
innerhalb einer Datei an eine bestimmte Position zu setzen.
Es werden 3 Parameter verlangt:
— Anzahl der Bytes, um die der Zeiger bewegt werden soll
— Handle-Nummer der Datei (siche Fopen)
— Modus
Der Modus kann folgende Werte annehmen:
0 - Suchen vom Anfang der Datei ausgehend
1 - Suchen von der aktuellen Position aus
2 - Suchen vom Dateiende aus riickwérts
Dabei diirfen bei Modus 0 nur positive Werte iibergeben werden, bei Modus 1

positive und negative und bei Modus 2 nur negative Werte, da man ja vom
Datei-Ende ausgeht und sich nur riickwirts bewegen kann.

Fehlercodes:

—32 falsche Funktion
-37 falsche Handle-Nummer

36 ATARI ST - Das Floppy-Arbeitsbuch

Kommando: Fattrib Funktionsnummer: $43
Format. Fattrib(pfad,modus,attr)

char *pfad;
WORD modus,attr;

Funktion: Attribut einer Datei erfragen und édndern

Durch diesen Befehl wird dem Anwender die Moglichkeit gegeben, das
Attribut einer Datei zu dndern oder zu ermitteln. Man iibergibt den Namen der
Datei oder den kompletten Pfadnamen, falls sich die Datei in einem Folder
befindet, den Zugriffsmodus (Attribut ermitteln oder dndern) und das neuzu-
setzende Attribut.

Beim Ermitteln des Attributs einer Datei wird der letzte Parameter nicht ver-
wendet; er muf aber iibergeben werden.

In der folgenden Aufstellung werden die méglichen Attributwerte angefiihrt:
$00 — lesen/schreiben (read/write)

$01 — nur lesen (read only)

$02 - verborgene Datei (hidden file)

$04 — System-Datei (system file)

$08 — Diskettenname (disk label)

$10 — Subdirectory (folder)

$20 - Datei wurde beschrieben und korrekt geschlossen

Die Attribute von Foldern und Disklabels kénnen durch Fattrib nicht gedndert
werden. Man erhilt nach dem Aufruf das aktuelle Attribut der Datei zuriick,

nach dem Andern des Attributs also auch den neuen Wert oder eine Fehler-
meldung.

Fehlercodes:

-33 Datei nicht gefunden
—34 Pfad nicht gefunden

Diskettenprogrammierung unter TOS 37

Kommando:

Pexec Funktionsnummer: $4B

Format. Pexec (modus,pfad, kommandozeile,umgebung)

WORD modus;

char *pfad;

char *kommandozeile;
char *umgebung;

Funktion: Laden und/oder Starten einer Datei

Dieser Befehl erlaubt das Laden oder Nachladen von Programmen. Das Pro-
gramm kann dann gestartet werden.

Pexec verlangt vier Parameter:

Modus:

Pfad.

Kommandozeile:

Umgebung:

Fehlercodes:

0 = laden und automatisch starten (load and go)
3 = nur laden (Riickgabe = Basepage) (just load)
4 = Basepage erstellen (create basepage)

S = starten (just go)

Name der Datei oder kompletter Pfadname

Die Kommandozeile wird in die Basepage kopiert; ver-
gleichbar mit den Angaben, die man TTP-Programmen
iibergibt.

Parameter, die nicht iiber die Kommandozeile iibergeben
werden kénnen.

-33 Datei nicht gefunden
-39 zuwenig freier Speicher
—66 falsches Ladeformat

38 ATARI ST — Das Floppy-Arbeitsbuch

Kommando: Frename Funktionsnummer: $56

Format: Frename (null,alt,neu)

WORD null;
char *alt;
char *neu;

Funktion: Umbenennen einer Datei

Dieser Befehl dient dazu, Dateien umzubenennen. Diese Funktion ist sehr von
Nutzen, da es oft notwendig ist, den Dateinamen zu dndern. Der erste Para-
meter ist eine Null, danach folgt der alte Dateiname und dann der neue Name.

Gibt man nun als neuen Namen zusitzlich den Pfad eines vorhandenen Ordners
an (z.B. TEST.FOLANEUNAME.C), so wird die umzubenennende Datei un-
ter dem neuen Namen in den angegebenen Ordner kopiert.

Es ist nicht mdglich, den Namen eines Folders oder eines Disklabels zu dndern.
Fehlercodes:

-34 Pfad nicht gefunden
-36 Zugriff nicht méglich

Man erhilt den Fehlerwert —36 zuriick, wenn die umzubenennende Datei nur
gelesen werden darf.

Kommando: Fdatime Funktionsnummer: $57
Format: Fdatime (handle,puffer,modus)

WORD handle;
char *puffer;
WORD modus;

Funktion: Datum setzen

Die letzte Funktion dieses Kapitels ist Fdatime. Damit ist man in der Lage, das
Datum und den Zeitpunkt der Datei-Erstellung zu bestimmen oder zu dndern.
Dazu muR die Datei aber mit Fopen oder Fcreate gedffnet worden sein. Die
beim Offnen erhaltene Handle-Nummer wird iibergeben. Der zweite Parame-
ter ist ein 4 Byte grofler Puffer, der die Daten fiir die Datei enthalt.

Diskettenprogrammierung unter TOS 39

Zuletzt wird der Modus angegeben. Modus 0 bedeutet, da man die Daten der
Datei ermittelt; Modus 1 bedeutet, die Daten der Datei werden neu gesetzt. Der
Datenpuffer enthilt in den ersten beiden Bytes die Zeit; das Datum steht in den
letzten zwei Bytes.

Es ergibt sich folgende Codierung:

Zeit: Bits 5 - 10 Minuten
Bits 11 - 15 Stunden

Dabei ist zu beachten, daR die interne Uhr des ATARI in 2-Sekunden-Schritten
lauft, da in den ersten 5 Bits nur der Bereich von O - 31 dargestellt werden
kann.

Datum: Bits 0 - 4 Tag
Bits 5 - 8 Monat
Bits 9 - 15 Jahr - 1980

Der Wertebereich der "Jahrbits" geht bis 119.

Programmbeispiel mit Dateibefehlen

Im folgenden C-Programm wird ein grofer Teil der soeben erlduterten Be-
fehle am Beispiel veranschaulicht.

/**/

/* FILE.C */
/* */
/* Ein C-Programm zur Veranschaulichung der DOS-Routinen */
/* */
/* - Fcreate */
/* - Fopen */
/* - Fclose */
/* - Fread */
/* - Fwrite x/
/* - Fdelete */
/* - Frename *x/
/* - Fseek */
/* - Fattrib. */

/*********‘k************************************‘k***’k*********/

#include "portab.h"
/* Externe DOS-Funktionen */

extern gemdos (), bios(), xbios();

40 ATARI ST - Das Floppy-Arbeitsbuch

/* Makrodef. fuer die DOS-Funktionen (LATTICE-C) */
#define Fcreate(a,b) gemdos (0x3c,a,b)
#define Fopen(a,b) gemdos (0x3d, a,b)
#define Fclose(a) gemdos (0x3e, a)
#define Fread(a,b,c) gemdos (0x3f,a,b,c)
#define Fwrite(a,b,c) gemdos (0x40,a,b, c)
#define Fdelete(a) gemdos (0x41,a)
#define Fseek(a,b,c) gemdos (0x42,a,b, c)
#define Frename(a,b,c) gemdos (0x56,a,b, c)
#define Fattrib(a,b,c) gemdos (0x43,a,b,c)
#define Bconout (a) bios (3,5,a)
#define Cnecin() (WORD) gemdos (0x8)

#define LATTICE 1

/* Variablendeklarationen */

WORD f_handle,mode,attribute,ret_code;
char name[l2]},buffer([257];

/* Create_File: oeffnet eine neue Datei auf dem aktuellen */
/* Laufwerk. *x/

create file()

{

printf ("\n\n Bitte den Namen der Datei eingeben: ");
scanf ("%s",name) ;

printf ("\n Bitte das Attribut eingeben: ");
scanf ("$h", &attribute);

f_handle = Fcreate (name,attribute);
printf (" \n\nDie ID der Datei ist: %d",f handle);

ret_code = Fclose(f_handle);
printf (" \n\nReturncode vom Schliessen ist: %d",ret_code);

Cnecin();

/*Clear_File: loescht eine Datei auf dem aktuellen Laufwerk.*/
clear file()

{

Diskettenprogrammierung unter TOS 41

printf (" \n\nBitte den Namen der Datei eingeben: ");
scanf ("%$s",name) ;

ret_code = Fdelete (name);

printf ("\n\nReturncode vom Loeschen ist: %d \n",ret_code);
Cnecin();

}

/* Open_File: oeffnet eine vorhandene Datei und schreibt den*/
* Puffer hinein */

open_file()

WORD 1i;
/* Daten fuer die Datei in den Puffer schreiben */

for (i=0; i < 256; i++)
buffer[i] = i;
buffer[256] = 0;

printf (" \n\nBitte den Namen der Datei eingeben: ");
scanf ("%$s",name) ;

f handle = Fopen (name,2);
printf (" \n\nDie ID der Datei ist: %d",f_handle);

if (f_handle > -1)
{

ret_code = Fwrite(f_ handle,255,buffer);
printf (" \n\nEs wurden %d Bytes geschrieben. ",ret_code);

}

ret_code = Fclose (f_handle);
printf (" \n\nReturncode vom Schliessen ist: %d",ret_code);

Cnecin() ;

}

/* Read_File: liest die ersten 65 Bytes aus der Datei. x/

read_file()
{

WORD 1i;
LONG offset;

printf (" \n\nBitte den Namen der Datei eingeben: ");
scanf ("%s”,name) ;

i 9] ATARI ST - Das Floppy-Arbeitsbuch

f handle = Fopen (name, 2);
printf (" \n\nDie ID der Datei ist: %d",f handle);
if (f _handle > -1)

{
printf (" \n\nAb welchem Byte soll gelesen werden? ");

scanf ("%d", &soffset) ;
Fseek (offset,f handle,0);

ret_code = Fread(f_handle,40,buffer);
printf (" \n\nEs wurden %d Bytes gelesen. \n\n",ret_code);

for (i=0; i < 40; i++)
Bconout (buffer[i]);
ret_code = Fclose(f_handle);
printf ("\n\nReturncode vom Schliessen ist: %d",ret_code);

Cnecin () ;
}

rename ()

{
char alt[12],neu(l12];
WORD hd;

printf (" \n\nBitte den alten Namen der Datei eingeben: ");
scanf("%$s",alt);

printf (" \n\nBitte den neuen Namen der Datei eingeben: ");
scanf ("$s",neu) ;

hd = Frename (0,alt,neu);

printf (" \n\nDer Returncode ist: %d",hd);
Cnecin () ;

}

change_attr()
{

WORD mode,attr,hd;

printf (" \n\nBitte den Namen der Datei eingeben: ");
scanf ("%s",name) ;

printf (" \n\nAttribut ermitteln oder setzen (e,s)? ");
mode = 0;

if (Cnecin() == 's')
{
mode = 1;
printf (" \n\nAttribut eingeben: ");
scanf ("%h", &attr);

Diskettenprogrammierung unter TOS 43
hd=Fattrib (name,mode,attr);
printf (" \n\nDas Attribut ist: %d",hd);
Cnecin () ;
}
main ()
{
/* Endlosschleife, bis von der Tastatur 0 gelesen wird */
while (TRUE)
/* Bildschirm loeschen und Menue anzeigen */
printf ("$cE\n\n",Ox1b) ;
printf(" - 1 - Datei erstellen\n\n");
printf(" - 2 - Datei loeschen \n\n");
printf(" - 3 - Datei oeffnen \n\n");
printf(" - 4 - Datei lesen \n\n");
printf(" - 5 - Datei umbenennen \n\n");
printf(" - 6 - Attribut aendern \n\n\n");
printf(" - 0 - Zurueck zum DESKTOP \n\n");
/* Tastatur abfragen und in den Menuepunkt verzweigen */

switch (Cnecin())

{

case '0': exit(0);
case 'l': create_file();
break;
case '2': clear “ile();
break;
case '3': open_file();
break;
case '4': read_file();
break;
case '5': _ename();
break;
case '6': change_attr();

44 ATARI ST - Das Floppy-Arbeitsbuch

Folder-Befehle
Die Folder-Befehle setzen sich aus folgenden Funktionen zusammen:

- DCREATE $39
- DDELETE $3A
- DSETPATH $3B
- DGETPATH $47

Das Erstellen und Verwalten von Foldern oder Ordnern ist eine der komfor-
tabelsten Funktionen des Betriebssystems. Damit hat man die Moglichkeit, das
Disketten-Directory sehr iibersichtlich zu organisieren. Leider kostet jeder
Ordner auch Platz auf der Diskette, aber das nimmt man der besseren Uber-
sicht in der Directory wegen geme in Kauf.

Kommando: Dcreate Funktionsnummer: $39

Format: Dcreate (pfad)
char *pfad;
Funktion: Vereinbarung eines Folders

Mit diesem Befehl kénnen Ordner (Folder) erstellt werden. Dazu wird der
Name des Ordners, bestehend aus 8 Zeichen und 3 Zeichen Extension, iiber-
geben. Es ist auch moglich, den Pfadnamen eines schon existierenden Ordners
anzugeben. Dann wird der neue Ordner innerhalb des anderen erzeugt.

Fehlercodes:

—34 Pfad nicht gefunden
-36 Zugriff nicht moglich

Kommando: Ddelete Funktionsnummer: $3A

Format: Ddelete (pfad)
char *pfad;
Funktion: Loschen eines Folders

Diese Funktion erlaubt es, ein leeres Subdirectory zu loschen. Enthilt der
Ordner Dateien, so wird eine Fehlermeldung zuriickgegeben. Um diesen Ord-

Diskettenprogrammierung unter TOS 45

ner dennoch zu 16schen, mufl man erst alle Dateien in diesem Folder 16schen.
Dann erst kann man diesen Ordner 16schen.

Die Ubergabe des Namens erfolgt wie bei Dcreate.

Fehlercodes:

-34 Pfad nicht gefunden
—36 Zugriff nicht méglich
—65 interner Fehler

Kommando: Dsetpath Funktionsnummer: $3B
Format: Dsetpath (pfad)

char *pfad;
Funktion: Folder zum Directory ernennen
Damit kann ein Folder zum aktuellen Directory ernannt werden. Es ist somit
nicht nétig, bei Zugriff auf eine Datei innerhalb eines Ordners, immer den
kompletten Pfadnamen zu iibergeben. Man ernennt den Ordner zum aktuellen
Directory und kann dann direkt auf die Dateien innerhalb des Ordners zugrei-
fen. Um wieder in das Haupt-Directory zu kommen, geniigt es, den Backslash
(\) einzugeben.

Fehlercodes:
-34 Pfad nicht gefunden

Kommando: Dgetpath Funktionsnummer: $47

Format. Dgetpath (pfadpuffer,drive)

char *pfadpuffer;
WORD drive;

Funktion: Directory ermitteln

Diese Funktion ermittelt das derzeitig aktuelle Directory. Dazu wird ein Zei-
ger auf einen 64-Byte-Puffer iibergeben, in dem dann der komplette Pfadname

46 ATARI ST - Das Floppy-Arbeitsbuch

steht (wie immer durch ein Nullbyte abgeschlossen). Dazu mufl die Nummer
des gewiinschten Laufwerks angegeben werden:

0 — aktuelles Laufwerk
1 — Laufwerk A
2 — Laufwerk B

Ist zum Zeitpunkt des Aufrufs das Haupt-Directory aktiv, so wird nur das
Nullbyte zuriickgegeben.

Fehlercodes:

—46 unbekanntes Laufwerk

Programmbeispiel mit Folder-Befehlen

Im folgenden C-Programm werden die soeben erliuterten Befehle am Beispiel
veranschaulicht:

/**/

/* */
/* FOLDER.C */
/* */
/* Ein C-Programm zur Veranschaulichung der DOS-Routinen */
/* */
/* - Dcreate */
/* - Ddelete */
/* - Dsetpath */
/* - Dgetpath */
/* */

/**/

#include "portab.h"

/* Externe DOS-Funktionen */
extern gemdos (), bios(), xbios();
/* Makrodef. fuer die DOS-Funktionen (LATTICE-C) */

#define Cnecin () (WORD) gemdos (0x8)
#define Dcreate(a) gemdos (0x39,a)

Diskettenprogrammierung unter TOS 47

"#define Ddelete(a) gemdos (0x3a,a)
#define Dsetpath(a) gemdos (0x3b, a)
#define Dgetpath(a,b) gemdos (0x47,a,b)

#define LATTICE 1

/* Variablendeklarationen */

WORD £ handle,ret_code;
char name([l14],buffer[50];

create_ folder()
{

printf ("\n\n Bitte den Folder-Namen eingeben: ");
scanf ("%$s",name) ;

f handle = Dcreate (name);
printf ("\n\n Die Folder-ID ist: %d",f handle);

Cnecin();
}

delete folder()
{

printf ("\n\n Bitte den Folder-Namen eingeben: ");
scanf ("%$s",name) ;

ret_code = Ddelete (name);
printf ("\n\n Der Return-Code vom Loeschen ist: %d",ret_code);

Cnecin () ;

change_path{()
{

printf ("\n\n Bitte den Folder-Namen eingeben: ");
scanf ("%s",name) ;

ret_code = Dsetpath(name);
printf ("\n\n Der Returncode von SETPATH ist: %d",ret_code);

Cnecin () ;
}
show_path ()
{

48 ATARI ST - Das Floppy-Arbeitsbuch

Dgetpath (buffer,0) ;
printf ("\n\n Der momentane Pfadname ist: %s",buffer);

Cnecin () ;

}

main ()

/* Endlosschleife, bis von der Tastatur 0 gelesen wird */

while (TRUE)
{

/* Bildschirm loeschen und Menue anzeigen */

printf ("%$cE\n\n", 0x1b) ;

printf (" FOLDER.PRG\n\n");

printf (" Ein Beispielprogramm aus dem FLOPPY-ARBEITS");
printf ("BUCH\n\n\n") ;

printf(" - 1 - Folder erstellen \n\n");

printf(" - 2 - Folder loeschen \n\n");
printf(" - 3 - Pfadnamen setzen \n\n");
printf(" - 4 - Pfadnamen holen \n\n\n");
printf(" - 0 - Zurueck zum DESKTOP \n\n");
/* Tastatur abfragen und in den Menuepunkt verzweigen */

switch (Cnecin())
{

case '0': exit(0);

case 'l': create folder();
break;

case '2': delete folder();
break;

case '3': change path();
break;

case '4': show path():

Diskettenprogrammierung unter TOS 49

Directory-Befehle

Die Directory-Befehle setzen sich aus folgenden Funktionen zusammen:

— FSETDTA $1A
- FGETDTA $2F
— DFREE $36

— FSFIRST $4E

— FSNEXT $4F

Kommando: Fsetdta Funktionsnummer: $1A

Format: Fsetdta (ptr)
LONG ptr;
Funktion: DTA setzen

Die Disk Transfer Address, kurz auch DTA genannt, ist ein 44-Byte-Puffer,
der hauptséchlich bei Directory-Operationen Verwendung findet. Mit dem
Befehl kann diese DTA gesetzt werden. Eine genaue Beschreibung des Puf-
ferinhalts finden Sie unter der Funktionsbeschreibung des Befehls Fsfirst.

Kommando: Fgetdta Funktionsnummer: $2F

Format: Fgetdta()
Funktion: Adresse der DTA ermitteln
Als Ergebnis dieses Aufrufs erhilt man die Adresse des DTA-Puffers zuriick.

Kommando: Dfree Funktionsnummer: $36

Format. Dfree (puffer,drive)

LONG puffer;
WORD drive;

Funktion: Platz auf der Diskette priifen

Mit Dfree stellen Sie fest, wieviel Platz auf der Diskette belegt ist und wieviel
noch frei ist.

50 ATARI ST - Das Floppy-Arbeitsbuch

Dabei miissen ein 16 Byte grofier Puffer und die Nummer des gewiinschten
Laufwerks angegeben werden.

0 — aktives Laufwerk
1 — Laufwerk A
2 — Laufwerk B

Der Puffer zeigt auf eine Struktur, die folgendermafien aussieht:

LONG b_frei;
LONG b_total;
LONG b_sektorgroe;
LONG b_clustergrofe;

b_frei: Anzahl der freien "Allocation Units" (Cluster).
Eine Datei auf der Diskette, auch wenn sie nur ein paar
Bytes grof sein sollte, benétigt mindestens ein Cluster (also
zwei Sektoren).

b_total: Gesamtanzahl der Cluster auf einer Diskette. Bei einer ein-
seitigen Diskette betragt dieser Wert 351, bei einer doppel-
seitigen Diskette 711.

b_sektorgrofe: Grofle eines Sektors (normalerweise 512 Bytes).

b_clustergrofe: Anzahl der zu einem Cluster gehérenden Sektoren (norma-
lerweise zwei Sektoren).

Fehlercodes:

—46 unbekanntes Laufwerk

Programmbeispiel: Dfree

/**/
/* */
/* SPACE.C Ein Beispielprogramm aus dem Floppy - */
/* Arbeitsbuch */
/* */
/* Dieses Programm gibt den freien Speicherplatz auf der x/
/* Diskette aus. */
/* */

/**/

Diskettenprogrammierung unter TOS

#include”osbind.h"
#include”"stdio.h"

#define DIGITALC 1
main ()

{

long pbuf;
long free_space,used_space,max_space;
char c;

struct buffer

{

long b_free;

long b_total;

long b_secsize;

long b_clsize;
} buf;

pbuf = &buf;
label:

printf (" Bitte Diskette einlegen........... \n");
Cconin() ;

Dfree (pbuf,0) ;

free space = buf.b_free * buf.b clsize * buf.b_secsize ;
max_space = buf.b_total * buf.b clsize * buf.b_secsize ;
used_space = max space - free space;

printf (" Maximaler Speicherplatz : %1d\n",max space);
printf (" Freier Speicherplatz : %1d\n",free_space);
printf (" Belegter Speicherplatz : %1d\n",used space);

printf (" Noch eine Diskette ? J/N \n");
c = getchar();
if (c== 'j")

goto label; .
printf(” Bitte Taste druecken.............. \n") ;
Cconin() ;

}

52 ATARI ST - Das Floppy-Arbeitsbuch

Kommando: Fsfirst Funktionsnummer: $4E
Formar. Fsfirst (name,attr)

char *name;
WORD attr;

Funktion: Datei auf Diskette suchen

Dieser Befehl ermoglicht es, herauszufinden, ob eine bestimmte Datei in der
Directory enthalten ist. Man kann auch nach mehreren Dateien suchen oder
sich auch das ganze Directory ausgeben lassen. Man muB zuerst den DTA-Puf-
fer (Fsetdta) einrichten, damit man die kompletten Informationen iiber eine
Datei erhlt.

Dieser Puffer baut sich folgendermafien auf:

Byte 0-20 fiir GEMDOS reserviert

Byte 21 Datei-Attribut

Byte 22-23 Uhrzeit der Erstellung

Byte 24-25 Datum der Erstellung

Byte 26-29 Dateigrofie in Bytes

Byte 30-43 Name und Extension der Datei

Bei Aufruf des Befehls iibergibt man den Dateinamen und das Attribut der
Datei, nach der gesucht werden soll. Bei der Angabe des Dateinamen ist es
nicht notig, immer den kompletten Namen anzugeben. Buchstaben kénnen
auch durch ein Fragezeichen (?) ersetzt werden, der Name oder die Extension
durch einen Stern (*).

Man kann auch den gesamten Dateinamen durch *.* ersetzen. Es wird immer
die erste Datei ausgegeben, die nach den Suchkriterien gefunden wurde. Als
Attribute konnen die Werte eingesetzt werden, die schon bei Fattrib behandelt
wurden. Man kann aber auch den Wert 255 als Attribut angeben. Dann wird
das Attribut der Datei bei der Suche nicht mehr beachtet.

Beispiele:

Fsfirst(TEST.PRG,0) sucht nach TEST.PRG (read/write).

Fsfirst(*.C,0) sucht das erste read/write-Programm mit der Exten-
sion.C.

Fsfirst(??ST.PAS,16) sucht den Ordner ?7ST.PAS, wobei die ersten beiden
Buchstaben beliebig sind.

Fsfirst(*.*,8) sucht den Diskettennamen.

Fsfirst(*.*,255) sucht die erste Datei.

Diskettenprogrammierung unter TOS 53

Wird eine Datei gefunden, werden die Daten in den DTA-Puffer iibertragen.
Fehlercodes:

-33 Datei nicht gefunden
-49 keine weiteren Dateien

Kommando: Fsnext Funktionsnummer: $4F
Format. Fsnext()

Funktion: Weitere Dateien suchen

Sucht man nun nicht nur eine ganz bestimmte Datei, sondern mehrere oder
will man gar das Directory einlesen, bendtigt man die Funktion Fsnext. Natiir-
lich muR vorher ein Fsfirst-Aufruf erfolgt sein.

Parameter benétigt diese Funktion nicht. Zum Einlesen des Directories geniigt
es, nach einem einmaligen Fsfirst-Aufruf (*.*,255) solange den Aufruf Fsnext
zu verwenden, bis die zuriickgegebene Handle-Nummer ungleich 0 ist.

Dann wurde keine Datei mehr gefunden.

Fehlercodes:

—49 keine weiteren Dateien

Programmbeispiel: Catalog.C

/**/

/* */
/* Dieses Programm ist ein Beispiel zum Einlesen des */
/* Directories. Folgende Routinen werden benutzt: */
/* */
/* Fsfirst, Fsnext und Setdta */
/* */

/**/

#include "osbind.h"
#define WORD short
#define LONG int
#define LATTICE 1

54 ATARI ST - Das Floppy-Arbeitsbuch

/* Aufbau des DTA-Puffers *x/

struct buffer { char dummy[21];
char attr;
WORD zeit;
WORD datum;
LONG laenge;
char name[14];
} dta;
/* Diese Routine maskiert die Datumbits aus */
void
data (i)
WORD 1i;
{
WORD j;
j = 1i & 0x001f;
printf (" %2u.",3j):
j = (i & 0x01le0) >> 5;
printf("%$2u.",Jj);
j = ((1i & O0xfe00) >> 9)+80;
printf("%$2u *,3);

}
/* Diese Routine maskiert die Zeitbits aus */
void
time (i)
WORD 1i;
{
WORD 3j;
j = (i & 0x£f800) >> 11;
printf("%02u:",Jj);
j = (i & 0x07e0) >> 5;
printf ("$02u\n",j);

}

/* Namen in der DTA l&schen *x/
void

clear_ name ()

{

WORD i;
for (i=0; i < 14; i++) dta.name[i] = '\0';
}
main ()
{
WORD handle, a;
char *name = "A:*.*"; /* Directory von Drive A */

clear name();
Fsetdta (dta);
handle = Fsfirst (name,255); /* 255 = Alle Dateien */

a = 0;
if (handle == 0)
do

{

printf ("$-15.13s",dta.name) ;
printf ("$3d",dta.attr);
printf(" %6u",dta.laenge);
data (dta.datum) ;

Diskettenprogrammierung unter TOS 55

time (dta.zeit);

clear name();

handle = Fsnext(); /* ndchste Datei */
if (a++ == 23) Cnecin();

}
while (handle == 0);
Cnecin();

Drive-Befehle

Es gibt nur zwei Drive-Befehle:

Kommando: Dsetdrv Funktionsnummer: $O0E

Format. Dsetdrv(drive)
WORD drive;
Funktion: Aktuelles Laufwerk bestimmen

Mit diesem Befehl kann ein Laufwerk zum aktuellen Laufwerk ernannt wer-
den. Dem Aufruf wird ein Parameter iibergeben, der die Laufwerksbezeich-
nung enthélt, O fiir Laufwerk A, 1 fiir Laufwerk B. Nach dem Aufruf erhalt
man die Nummer des vor dem Aufruf aktiven Laufwerks.

Kommando: Dgetdrv Funktionsnummer: $19

Format: Dgetdrv()
Funktion: Aktuelles Laufwerk ermitteln

Die Funktion Dgetdrv ermittelt die derzeitig aktuelle Floppy. Man erhilt die
Nummer des aktiven Laufwerks.

Programmbeispiel:

/**/
/x DRIVE.C */
/* Dieses Programm dient zur Veranschaulichung der */
/* DRIVE-Routinen des ATARI-Betriebssystems TOS. */

/**/

#include "stdio.h"
#include "osbind.h"

56 ATARI ST - Das Floppy-Arbeitsbuch

/* Makrodefinitionen fuer die GEMDOS-Aufrufe */

#define ESC 0x1b

#define DIGITALC 1

/* Hauptprogramm */
main ()
{
WORD new_drive, old drive;
char number;
/* Bildschirm loeschen und Kopfzeile ausgeben x/

printf ("%cE",ESC);
printf("\n - DRIVE.PRG -\n\n");
printf ("Ein Beispielprogramm aus dem FLOPPY-ARBEITSBUCH\n\n");

/* Aktuelle Laufwerknummer holen und ausgeben */

old drive = Dgetdrv();

printf("\n Aktuelles Laufwerk: %c",o0ld _drive + 0x41);
Cnecin() ; :
/* Neues Laufwerk eingeben und setzen */

printf ("\n\n Laufwerk eingeben (A..D): ");
number = Cnecin();
printf (" $%c\n",number) ;

/* Wenn number ein Kleinbuchstabe ist, 0x20 subtrahieren */

if (number > 0x60)
number -= 0x20;

/* Wenn number < 'A' oder > 'D' ist, dann number */
/* auf 'A' setzen */
if ((number < 0x41l) || (number > 0x44))

number = 0x41;

/* Neues Laufwerk (0..3) setzen */

Dsetdrv (number - 0x41);

Diskettenprogrammierung unter TOS 57

/* Aktuelle Laufwerknummer holen und ausgeben x/

new_drive = Dgetdrv();
printf ("\n\n Aktuelles Laufwerk: %c",new_drive + 0x41);
Cnecin();

/* Laufwerknummer in den Anfangszustand zuruecksetzen */

Dsetdrv(old _drive);

Die Fehlermeldungen des GEMDOS

Als Ergebnis des Aufrufs einer GEMDOS-Funktion erhilt man einen Wert
zuriick, der Aufschluf dariiber gibt, ob wihrend derAusfithrung der Funktion
ein Fehler aufgetreten ist.

Ist dieser Wert 0, so ist kein Fehler aufgetreten. Die Funktion wurde korrekt
ausgefiihrt. Erhélt man einen negativen Wert zuriick, so ist ein Fehler aufge-
treten.

Diese haben folgende Bedeutung:

—-32 ungiltige Funktionsnummer
-33 Datei nicht gefunden

-34 Pfadname nicht gefunden
—35 zuviele offene Dateien

-36 Zugriff nicht méglich

—37 ungiiltige Handle-Nummer
-39 nicht geniigend Speicher
—46 ungiiltige Laufwerkbezeichnung
—49 keine weiteren Dateien

—65 interner Fehler

—66 falsches Ladeformat

58 ATARI ST - Das Floppy-Arbeitsbuch

Einschrinkungen des GEMDOS

Bei einigen Funktionen des GEMDOS sind folgende Einschrankungen zu be-
achten:

Frename: Ordner und der Diskettenname konnen nicht umbenannt werden.

Farttrib: Das Attribut von Ordnern und dem Diskettennamen kann eben-
falls nicht geandert werden.

Dcreate: Es konnen maximal 10 Ordner ineinander verschachtelt werden.
Auf einer Diskette konnen maximal 32 Ordner erstellt werden,
ohne daB bei weiterer Erstellung von Ordnern total unsinnige
Fehlermeldungen erscheinen oder mit Diskettenfehlern zu rech-
nen ist.

GEMDQOS-Systemaufrufe

Es folgt nun eine Zusammenfassung der GEMDOS-Aufrufe. Dabei werden die
hexadezimalen Werte, die Funktion, Eingabeparameter und Riickgabewerte
dargestellt:

Hex Funktion Eingabe Riickgabe
E Dsetdrv drive
19 Dgetdrv Drive
1A Fsetdta ptr
2F Fgetdta DTA
36 Dfree * puffer freie Bytes
drive Anz. Cluster
Bytes/Sektor
Sektor/Cluster
39 Dcreate * pfad Fehler
3A Ddelete * pfad Fehler
3B Dsetpath * pfad Fehler
3C Fcreate * pfad Fehler
attribut
3D Fopen * pfad Fehler
modus

3E Fclose handle Fehler

Diskettenprogrammierung unter TOS

59

Hex Funktion Eingabe Riickgabe
3F Fread handle Fehler
anzahl
* puffer
40 Fwrite handle Fehler
anzahl
* puffer
41 Fdelete * pfad Fehler
42 Fseek anzahl Fehler
handle
modus
43 Fattrib * pfad Fehler
modus
attribut
47 Dgetpath * pfadpuffer Pfadname
drive
4B Pexec modus Adr. Basepage
* pfad Fehler
kommandozeile
umgebung
4E Fsfirst * pfad Datei
attribut Fehler
4F Fsnext Datei
Fehler
56 Frename * pfad (alt) Fehler
* pfad (neu)
57 Fdatime handle Datum
* puffer Zeit
modus Fehler
Dabei bedeuten:
* — Zeiger auf
DTA - Disk-Transfer-Adresse
handle - Datei-Handle
pfad — Name oder Pfadname
ptr - Pointer

60 ATARI ST - Das Floppy-Arbeitsbuch

Die BIOS-Routinen

Die Schnittstelle zwischen GEMDOS und der Hardware des ATARI ist das
BIOS (Basic Input/Output System).

Das BIOS kiimmert sich um grundlegende Ein- und Ausgabe-Funktionen, z.B.

die Tastatureingabe, Bildschirmausgabe, RS-232-Schnittstelle, Druckerausga-
be sowie Ein- und Ausgabe von und auf Disketten.

Die BIOS-Funktionen benutzen bei einem Aufruf die Register AO-A2 und
DO0-D2. Aufgerufen werden sie durch einen TRAP #13.

Folgende Funktionen des BIOS werden fiir Diskettenoperationen benutzt:
— Rwabs 4
— *getbpb 7

— Mediach 9
— Drvmap 10

Funktion: Rwabs Funktionsnummer: 4
Format: LONG Rwabs (rwflag,puffer,anzahl,start,device)
WORD rwflag;
LONG puffer;
WORD anzahl,start,device;

Funktion: Sektoren lesen oder schreiben

Mit diesem Befehl kénnen Sektoren von der Diskette gelesen und geschrieben
werden.

Die Parameter haben folgende Bedeutung:
rwflag: 0 Sektoren lesen
1 Sektoren schreiben
2 Sektoren lesen, ignoriere Diskettenwechsel
3 Sektoren schreiben, ignoriere Diskettenwechsel
puffer: ist die Adresse eines Puffers, iiber den die Daten gelesen werden

sollen oder aus dem die Daten auf Diskette geschrieben werden
sollen. Dabei ist zu beachten, dal der Puffer an einer geraden

Diskettenprogrammierung unter TOS 61

Adresse (in Assembler) beginnen sollte, da sonst die Ubertragung
der Daten sehr langsam vonstatten geht.

anzahl: Anzahl der Sektoren, die gelesen bzw. geschrieben werden sollen.
start: gibt an, ab welchem logischen Sektor dabei begonnen wird.
device: gibt an, welches Laufwerk benutzt wird.

0 - Laufwerk A
1 —-Laufwerk B

Wie bei GEMDOS- werden auch bei BIOS-Aufrufen Fehlercodes zuriickgege-
ben. Ist dieser Wert 0, so ist der Aufruf korrekt abgearbeitet worden,; ist er ne-
gativ, so ist ein Fehler aufgetreten.

Eine Liste der Fehlermeldungen finden Sie im Anhang.

Kommando: *getbpb Funktionsnummer: 7
Format: LONG getbpb(device)

WORD device;
Funktion: Pointer auf BPB

Dieser Befehl liefert einen Pointer auf den BIOS-Parameter-Block (BPB) des
Laufwerks device.

Dabei steht O fiir Laufwerk A und 1 fiir Laufwerk B. Man erhilt die Adresse
des BPB zuriick oder 0, falls ein Fehler aufgetreten ist.

Der BIOS-Parameter-Block ist folgendermafien aufgebaut:

int recsiz Sektorgrofie in Bytes

int clsiz Cluster-Grofie in Sektoren
int clsizb Cluster-Grofe in Bytes

int rdlen Directory-Lénge in Sektoren
int fsiz FAT-Grofe in Sektoren

int fatrec Sektornummer der FAT-Kopie

int datrec Sektornummer des ersten Daten-Clusters
int numcl Anzahl der Daten-Cluster auf Diskette
int bflags diverse Flags

62 ATARI ST - Das Floppy-Arbeitsbuch

Die Daten des BPB fiir 80-Track-SS- und 80-Track-DS-Laufwerke sind:

Parameter 80 Track SS 80 Track DS
recsiz 512 512
clsiz 2 2
clsizb 1024 1024
rdlen 7 7
fsiz 5 5
fatrec 6 : 6
datrec 18 | 18
numcl 351 711
Kommando: Mediach Funktionsnummer: 9

Format:. LONG Mediach (device)
Word device;
Funktion: Diskettenwechsel ermitteln

Dieser Befehl ermittelt, ob zwischenzeitlich eine Diskette gewechselt wurde.
Dazu iibergibt man die Laufwerknummer (O fiir Laufwerk A, 1 fiir Laufwerk
B) und erhélt dann einen von drei moglichen Werten als Ergebnis zuriick:

—0 Diskette wurde definitiv nicht gewechselt
—1 Diskette kann gewechselt worden sein
-2 Diskette wurde definitiv gewechselt

Kommando: Drvmap Funktionsnummer: 10

Format: LONG drvmap()
Funktion: Bitvektor liefern

Dieser Befehl liefert einen Bitvektor, der die angeschlossenen Laufwerke ent-
hilt. Die Bitnummer n ist dabei gesetzt, wenn das Laufwerk n angeschlossen ist
(wie immer ist 0 = Laufwerk A usw.).

Diskettenprogrammierung unter TOS 63

BIOS-Systemaufrufe

Dies ist eine Zusammenfassung der BIOS-Aufrufe. Es werden die dezimalen
Werte, die Funktion, Eingabeparameter und Riickgabewerte dargestellt:

Dez Funktion Eingabe Riickgabe
4 Rwabs rwflag Daten
puffer Fehler
anzahl
start
device
7 getbpb device Adr. BPB
9 Mediach device gewechselt?
10 Drvmap Laufwerke
Dabei bedeuten:

Adr — Adresse
BPB - BIOS-Parameter-Block

Programmbeispiel mit BIOS-Routinen

Im folgenden C-Programm werden die soeben erlduterten BIOS-Befehle am
Beispiel veranschaulicht:

/**/

/* */
/* BIOS.C - Ein Beispielprogramm aus dem Floppy-Arbeitsbuch */
/* */
/*In diesem Programm werden folgende BIOS-Routinen benutzt: */
/* */
/% - Rwabs, */
/* - Drvmap */
/* - getbpb x/
/* * /

/**/

extern long bios();
extern long gemdos();

#define Rwabs(a,b,c,d,e) bios(4,a,b,c,d,e)
#define getbpb (a) ((long *) bios(7,a))
#define Mediach(a) bios(9,a)

64 ATARI ST - Das Floppy-Arbeitsbuch

#define Drvmap () bios (10)

#define WORD short

/* Dieses MAKRO wartet auf die Eingabe der Tastatur */
#define Cnecin() gemdos (8)

#define LATTICE 1

struct BPB

{
WORD recsize;
WORD clsize;
WORD clsizeb;
WORD rdlen;
WORD fsize;
WORD fatrec;
WORD datrec;
WORD numcl;
WORD bflags;

} *bp_block;

params ()
{
bp_block = getbpb(0);
printf ("Sektorgroesse in Bytes : %d\n",bp block->recsize);

printf ("Sektoren je Cluster : %d\n",bp block->clsize);
printf ("Bytes je Cluster : %d\n",bp_block->clsizeb);
printf ("Sektoren der Directory : %d\n",bp block->rdlen);
printf ("Sektoren je FAT : %d\n",bp block->fsize);
printf ("Startsektor der FAT : %d\n",bp_block->fatrec);
printf ("Startsektor der Daten : %d\n",bp block->datrec);
printf ("Anzahl der Cluster : %d\n\n",bp_block->numcl) ;

}

drive ()

{

WORD handle, k,1i;

handle = Drvmap();
k = 0x80;
printf ("\nAngeschlossene Laufwerke: ");

for (i=7; i>-1; i--)
if (handle & k)
printf (" %c",i+65);
k =%k / 2;
}

printf ("\n\n");

Diskettenprogrammierung unter TOS 65

boot ()

/* Einlesen des Bootsektors iliber die RWABS-Funktion */

char sektor([512];
WORD 1i,3;

Rwabs (0, sektor,1,0,0);
for (i=0; 1i<512; i++)
{
if (i % 16 == 0) printf("\n");

j = sektor[i] & OxO00ff;
printf (" %02x",3j);

main ()
drive () ;
Cnecin();
params () ;
Cnecin();

boot () ;
Cnecin () ;

Die XBIOS-Routinen

Aufer den BIOS-Funktionen gibt es beim ATARI ST noch die erweiterten
BIOS-Funktionen (XBIOS - extended BIOS). Diese werden iiber TRAP #14
aufgerufen.

Folgende Funktionen des XBIOS befassen sich mit der Floppy:

— Floprd 8
— Flopwr 9
— Flopfmt 10
— Protobt 18
- Flopver 19

66 ATARI ST - Das Floppy-Arbeitsbuch

Kommando: Floprd Funktionsnummer: 8
Format: 'WORD Floprd (puffer,fiiller,dev,startsek,track,seite,anzahl)

LONG puffer,fiiller;
WORD dev,startsek,track,seite,anzahl;

Funktion: Sektoren lesen

Mit diesem Befehl kann man einen oder mehrere Sektoren von der Diskette le-
sen. Die Parameter haben folgende Bedeutung:

puffer: In diesen Puffer werden die Daten von Diskette gelesen. Der Puf-
fer muR an einer Wortgrenze beginnen und fiir die zu lesenden
Daten groB genug sein (512 Bytes mal Anzahl der Sektoren).

fuller: Dummy-Parameter (immer 0).

dev: Laufwerk (0 = Laufwerk A, 1 = Laufwerk B).

startsek: Nummer des ersten zu lesenden Sektors (normalerweise zwischen
1 und 9).

track: Nummer des zu lesenden Tracks.

seite: Gibt an, auf welcher Diskettenseite gelesen werden soll (0=Seite 1,
1 =Seite 2).

anzahl: Anzahl der Sektoren, die gelesen werden sollen.

Als Riickgabewert erhilt man entweder 0, wenn kein Fehler aufgetreten ist,
oder wie bei GEMDOS eine negative Zahl als Fehlermeldung.

Diese Fehlermeldungen sind am Ende dieses Kapitels aufgelistet.

Kommando: Flopwr Funktionsnummer: 9

Format. WORD Flopwr (puffer,fiiller,dev,startsek,track,seite,anzahl)

LONG puffer,fiiller;
WORD dev,startsek,track,seite,anzahl;

Funktion: Sektoren schreiben

Mit dieser Funktion kann man einen oder mehrere Sektoren auf die Diskette
schreiben. Die Parameter haben die gleiche Bedeutung wie bei Floprd.

Diskettenprogrammierung unter TOS 67

Kommando: Flopfmt Funktionsnummer: 10

Format:

Funktion:

WORD
Flopfmt (puffer,fiiller,dev,spt,track,seite,intlv,magic,virgin)

LONG puffer,fiiller;
WORD dev,spt,track,seite,intlv,virgin;
LONG magic;

Diskette formatieren

Mit diesem Befehl hat man die Mdglichkeit, einzelne Tracks oder auch die
ganze Diskette zu formatieren.

Dabei werden folgende Ubergabe-Parameter verlangt:

puffer:

filler:
dev:

spt:

track:
seite:

intlv:

magic:

virgin:

Puffer, der die kompletten Track-Daten enthilt. Bei 9 Sektoren
pro Track muB dieser Puffer mindestens 8 KByte grof sein.

Dummy-Parameter (immer 0).
Nummer des Laufwerks (0 = Laufwerk A, 1 = Laufwerk B).

"Sectors per Track"; dies ist die Anzahl der zu formatierenden
Sektoren pro Track.

Nummer des Tracks.
Diskettenseite (0 oder 1).

"Interleave"; bestimmt, in welcher Reihenfolge die Sektoren auf
die Diskette geschrieben werden.

Beispiel: Bei einem Interleave von 1 lautet die Sektor-Reihen-
folge: 1-2-3-4-5-6-7-8-9.

Bei einen Interleave von 2 lautet die Reihenfolge:
1-3-5-7-9-2-4-6-8.

Als sogenannte "magic number" muf die Konstante $87654321
benutzt werden, da sonst die Formatierung abgebrochen wird.

Dies ist der Wert, der beim Formatiervorgang als Datenbytes auf
die Diskette geschrieber: wird.

68 ATARI ST - Das Floppy-Arbeitsbuch

ATARI hat als Standardwert $ESES empfohlen. Man sollte es ver-
meiden, den Wert $F als Hi-Nibble-Wert zu wihlen, da die Byte-
folgen $F* (* — Joker) vom Floppy-Disk-Controller als Befehle
interpretiert werden.

Als Ergebnis des Aufrufs erhilt man einen Fehlercode zuriick. Betragt dieser
Wert 0, so war die Formatierung erfolgreich. Falls eine negative Zahl zuriick-
gegeben wurde, ist ein Fehler aufgetreten.

Der Wert —16 (Bad Sectors) bedeutet, daBl einige Sektoren nicht korrekt for-
matiert wurden und die Daten nicht richtig zuriickgelesen werden konnten.
(Die Formatierroutine im TOS liest ndmlich nach jedem Sektor, der forma-
tiert wurde, diesen Sektor gleich wieder ein (verify) und iiberpriift die gele-
senen Daten mit denen im Formatierpuffer.)

Falls ein Fehler —16 aufgetreten ist, steht im Puffer eine Liste der "schlechten”
Sektoren. Sie konnen daraufhin noch einmal formatiert werden (natiirlich
muf der ganze Track formatiert werden, da immer bei Sektor eins angefangen
wird) oder in der FAT als "bad" markiert werden.

Kommando: Protobt Funktionsnummer: 18
Format: VOID Protobt (puffer,seriennr,disktyp,execflag)

LONG puffer,seriennr;
WORD disktyp,execflag;

Funktion: Image des Bootsektors erzeugen

Mit diesem Befehl wird das "Image" (Bild) eines Bootsektors erzeugt. Der er-
zeugte Bootsektor steht dann in einem Puffer, den man mit dem Befehl Flopwr
auf Track 0, Sektor 1 auf Seite 1 schreibt.

Die Parameter haben dabei folgende Bedeutung:
execflag: Dieses Flag bestimmt, ob der Bootsektor ausfiihrbar ist.

0 nicht ausfithrbar
1 ausfiihrbar
-1 Bootsektor bleibt, wie er war

disktyp: Gibt den Typ der Diskette an (SS/DS 40T/80T)
0 40 Tracks, single sided (180 kB)
1 40 Tracks, double sided (360 kB)

Diskettenprogrammierung unter TOS 69

seriennr:

puffer:

2 80 Tracks, single sided (360 kB)
3 80 Tracks, double sided (720 kB)
-1 Disktyp wird nicht veréndert

Ist eine 24-Bit-Seriennummer, die in den Bootsektor geschrieben
wird. Ist die Seriennummer gréfer als 24 Bits ($01000000), so
wird sie durch den Zufallsgenerator erzeugt. Ein Wert von —1 be-
deutet, wie auch schon bei den zwei ersten Parametern, daf die Se-
riennummer nicht verdndert wird.

Adresse eines 512-Byte-Puffers, in dem die Daten des Bootsektors
stehen.

Der Bootsektor einer Systemdiskette hat folgenden Aufbau:

Adresse 40 Tracks SS 40 Tracks DS 80 Tracks SS 80 Track DS
0-1 Branch auf Bootprogramm

2-7 "loader"

8-10 Seriennummer

11-12 BPS 512 512 512 512
13 SPC 1 2 2 2
14-15 RES 1 1 1 1
16 NFATS 2 2 2 2
17-18 NDIRS 64 112 112 112
19-20 NSECTS 360 720 720 1440
21 MEDIA 252 253 248 249
22-23 SPF 2 2 5 5
24-25 SPT 9 9 9 9
26-27 NSIDES 1 2 1 2
28-29 NHID 0 0 0 0

510-511 CHECKSUM

Die Abkiirzungen haben folgende Bedeutung:

Bytes pro Sektor. Normalerweise immer 512.

Sektoren pro Cluster.

Anzahl der reservierten Sektoren am Beginn der Diskette ein-
schlieBlich des Bootsektors.

Anzahl der File Allocation Tables (FATSs) auf der Diskette.
Maximale Anzahl der Directory-Eintrége.

Gesamtzahl der Sektoren auf der Diskette.

Media Descriptor Byte; wird vom ST-BIOS nicht benutzt.

Anzahl der Sektoren in jedem FAT.

70 ATARI ST - Das Floppy-Arbeitsbuch

SPT: Anzahl der Sektoren pro Track.
NSIDES: Anzahl der Seiten auf der Diskette.
NHID: Anzahl der "versteckten" Sektoren; wird vom ST-BIOS ignoriert.

Kommando: Flopver Funktionsnummer: 19
Format: 'WORD Flopver (puffer,fiiller,dev,startsec,track,seite,anzahl)

LONG puffer,fiiller;
WORD dev,startsec,track,seite,anzahl;

Funktion: Sektoren priifen

Dieser Befehl dient zum Uberpriifen eines oder mehrerer Sektoren auf der
Diskette. Dabei werden die Sektoren von der Diskette gelesen und mit den Da-
ten in einem Puffer verglichen. Stimmen die gelesen Daten mit denen aus dem
Puffer iiberein, so wird keine Fehlermeldung ausgegeben.

Bei einem Fehler wird eine negative Zahl zuriickgegeben, und im Puffer steht
eine Liste der fehlerhaften Sektoren.

Die Parameter der Funktion sind die gleichen wie bei der Funktion Floprd.

XBIOS-Systemaufrufe

Dies ist eine Zusammenfassung der XBIOS-Aufrufe. Es werden die dezimalen
Werte, die Funktion, Eingabeparameter und Riickgabewerte dargestellt:

Dez Funktion Eingabe Riickgabe

8 Floprd puffer Daten
fiiller Fehler
dev
startsek
track
seite
anzahl

Diskettenprogrammierung unter TOS 71

Dez Funktion Eingabe Riickgabe

9 Flopwr puffer Fehler
fiiller
dev
startsek
track
seite
anzahl
10 Flopfmt puffer Fehler
fuller
dev
spt
track
seite
intlv
magic
virgin
18 Protobt puffer Fehler
seriennr
disktyp
execflag

19 Flopver puffer Fehler
fuller
dev
startsek
track
seite
anzahl

Programmbeispiel mit XBIOS-Routinen

Im folgenden C-Programm werden die soeben erlduterten XBIOS-Befehle am
Beispiel veranschaulicht.

/**/

/* FORMAT.C-Ein Beispielprogramm aus dem Floppy-Arbeitsbuch */
/* ' */
/* Dieses Programm formatiert eine einseitige Diskette mit */
/* 83 Spuren und 10 Sektoren je Spur. Anschliessend werden */

/* die ersten 30 Bytes des Bootsektors ausgegeben. *x/
/**/

72 ATARI ST - Das Floppy-Arbeitsbuch

/**/

/* */
/*In diesem Programm werden folgende XBIOS-Routinen benutzt:*/
/* */
/% - Floprd */
/% - Flopwr */
/* - Flopfmt */
/* - Protobt *x/
/* - Flopver */
/* */

/**/

extern long xbios();
extern long gemdos();

#define Floprd(a,b,c,d,e,f,g) xbios(8,a,b,c,d,e,£,q)

#define Flopwr(a,b,c,d,e,f,q) xbios(9,a,b,c,d,e, f,qg)

#define Flopfmt(a,b,c,d,e,f,g,h,i) xbios(10,a,b,c,d,e,f,q,h,1i)

#define Protobt(a,b,c,d) xbios(1l8,a,b,c,d)

#define Flopver(a,b,c,d,e,f,qg) xbios(19,a,b,c,d, e, f,qg)

/* Dieses MAKRO wartet auf die Eingabe der Tastatur */

#$define Cnecin() gemdos (8)

#define DIGITALC 1

/* Global definierter Puffer fuer einen Sektor */
char boot [513];

/* In dieser Routine wird die Diskette formatiert */

format ()
{

char buffer([11000]; /*Genuegend Platz fuer iO Sektoren */
int track, handle;
/* Zuerst werden die Systemspuren mit NULL formatiert */

Flopfmt (buffer,01,0,10,0,0,1,0x876543211,0);
Flopfmt (buffer,01,0,10,1,0,1,0x876543211,0);

/* ... anschliessend die restlichen Spuren mit HEX ES5E5 */

for(track = 2; track < 83; track++)
Flopfmt (buffer,01,0,10,track,0,1,0x876543211, 0xe5eb) ;

/* Der Bootsektor wird nun mit 80 Spuren und 9 Sektoren */
/* je Spur erstellt */

Protobt (boot,-11,2,-1);

Diskettenprogrammierung unter TOS

73

/*

/*

/*

/*
/*

. und auf unser Format abgeaendert

boot [0x13]
boot [0x14]
boot [0x18]

0x34;
0x03;
0x0A;

o

zum Schluss wird er auf die Diskette geschrieben
Flopwr (boot,01,0,1,0,0,1);
. und noch einmal ueberprueft.

handle = Flopver (boot,01,0,1,0,0,1);
printf (" Fehlercode: %d",handle);

Ueber die Floprd-Routine wird hier der Bootsektor

eingelesen und die ersten 30 Bytes ausgegeben werden.

read_boot ()

{

int i;

printf ("\n");

Floprd (boot,01,0,1,0,0,1);

for (i=0; i < Oxle; i++)
printf (" %02x",boot[i]);

printf ("\n\n");

/* Eine MAIN-Routine darf in keinem C-Programm fehlen

main ()

printf ("Insert Disk");
Cnecin();

format () ;

printf ("\nOk\n");
read_boot () ;

Cnecin();

Die Fehlermeldungen des BIOS und XBIOS

0

-1
-2
-3

kein Fehler
allgemeiner Fehler
Drive not ready
unbekannter Befehl

*/

*x/

x/

4
x/

*/

74 ATARI ST - Das Floppy-Arbeitsbuch

-4 CRC-Error (Checksum Error)

-5 Bad Request (falsches Kommando, Parameteriibergabe konnte fehler-
haft sein)

-6 Seek Error (Track nicht gefunden)

=7 Unknown Media (fehlerhafter oder zerstdrter Bootsektor)

-8 Sektor nicht gefunden

-9 No Paper

—-10 Schreibfehler

—-11 Lesefehler

—-12 allgemeiner Fehler

—-13 Write Protect (Diskette ist schreibgeschiitzt)

—14 Media Change (Diskette wurde gewechselt)

—-15 Unknown Device (nicht bekannt)

—-16 Bad Sectors (schlecht formatiert)

—17 Insert Disk (eigentlich eine Aufforderung und kein Fehler)

75

Kapitel 3

Die Floppy-Disk-Schnittstelle

Fiir die Floppy-Laufwerke des ST hat sich ATARI einen etwas ungewdhn-
lichen Anschluf} ausgesucht. Ahnlich dem Monitor-Anschluf} besteht dieser aus
einem runden "Plug-In"-Stecker mit 14 Pins.

Die Schnittstelle ist iiber den DMA-Chip (DMA - Direct Memory Access) mit
dem eingebauten Floppy-Disk-Controller (FDC) WD1772 von Western Digi-
tal verbunden. Es werden hierbei maximal zwei Laufwerke unterstiitzt, was in
den meisten Fillen auch ausreichend ist. Zudem hat man noch die Méglichkeit,
ein Festplattenlaufwerk (Harddisk) anzuschlieBen. Die Anschlufibuchse der
Floppy-Laufwerke hat folgende Belegung:

Die Pin-Belegung des Steckers

1 RD Read Data Das ist der Lese-Eingang fiir die Laufwer-
ke. Hieriiber werden Daten- und Taktimpul-
se an den FDC geleitet.

2 SO Side-0 Select Uber diese Leitung wird die Seite Null des
Laufwerks angesprochen.

76 ATARI ST - Das Floppy-Arbeitsbuch

3 GND Ground Dies ist der Masseanschluf.

4 P Index Pulse Uber diese Leitung wird der FDC infor-
miert, wenn das Index-Loch der Diskette
erkannt wurde.

5 DO Drive-0 Select ~ Uber diese beiden low-aktiven Signale

6 D1 Drive-1 Select ~ werden die Laufwerke A und B adressiert.

7 GND Ground Masseanschluf}.

8 MO Motor On Der FDC sendet hieriiber das Signal zum
Starten des Laufwerkmotors.

9 DIRC Direction Ein High-Pegel an diesem Ausgang veran-
laBt die Laufwerkelektronik, den Schreib-
und Lesekopf zur Mitte der Diskette zu be-
wegen; ein Low-Pegel bewegt ihn zum Rand
hin.

10 STEP Step Der FDC iibermittelt iiber diesen Ausgang
die Impulse fiir die schrittweise Weiterbe-
wegung des Schreib-/Lesekopfes.

11 WD Write Data Hieriiber werden die Takt/Datenbytes auf
Diskette geschrieben.

12 WG Write Gate Das ist ein Sicherheitseingang fiir den
Schreibvorgang. Vor jedem Schreibzugriff
auf Diskette mufl das Signal auf low gesetzt
werden.

13 TROO Track00 Dieser low-aktive Eingang zeigt dem FDC
an, dafl der Schreib-/Lesekopf iiber der
Spur Null positioniert ist.

14 WPRT Write Protect Dieses Signal gibt den Zustand des Schreib-

schutzes auf der Diskette an. Es wird vor je-
dem Schreibzugriff abgefragt; falls es low
ist, wird der Schreibvorgang abgebrochen.

Die Floppy-Disk-Schnittstelle 77

Zum Schluf} sind noch die Signalpegel der Anschliisse aufgefiihrt:

Anschlufl Pegel
1 TTL - low-aktiv,

intern iiber 1kOhm auf +5V gelegt
2 TTL - high-aktiv,

ist nach einem RESET auf high
4 TTL - low-aktiv,

intern iiber 1kOhm auf +5V gelegt
5/6 TTL - low-aktiv,

ist nach einem RESET auf high
8-12 TTL - low-aktiv,

diese Signale werden invertiert.
13/14 TTL - low-aktiv,

intern iiber 1 kOhm auf +5V gelegt.

79

Kapitel 4

Direktprogrammierung des FDC

Dieses Kapitel behandelt die direkte Programmierung des FDC ohne Umweg
iiber die DOS-Routinen des ATARI ST. Die hier vorgestellten Beispielpro-
gramme sind in Assembler geschrieben und wurden mit dem AS68 von DI-
GITAL RESEARCH in den Maschinencode iibersetzt. Einige dieser Quelltex-
te sind auf der beigefiigten Diskette zu finden.

Der Aufbau des Floppy-Disk-Controllers

Der ATARI ST ist mit dem Floppy-Disk-Controller WD1770/1772 von WE-
STERN DIGITAL ausgestattet. Dieser FDC ist kompatibel mit der WD179x-
Serie, besitzt jedoch einen digitalen Datenseparator und eine Schreib-Vorkom-
pensiationslogik. Er hat einen Eingang, iiber den er zwei Aufzeichnungs-
formate unterscheidet: das FM bzw. das MFM-Verfahren, wobei die Daten-
iibertragungsrate bei dem MFM-Format 250 kBits/sec, bei dem FM-Format
125 kBits/sec betragt.

Normalerweise benutzt ATARI den WD1772, der Step-Raten von 2, 3, Sund 6
msec erlaubt, wihrend der WD1770 die Step-Raten der 179x-Serie 6, 12, 20
und 30 msec verarbeitet. Die Grofe der Datensektoren ist bei beiden Versi-
onen gleich. Es werden Sektoren mit 128, 256, 512 und 1024 Bytes geschrie-
ben und gelesen.

Der FDC befindet sich in einem 28-Pin-Gehiuse, dessen Anschliisse nun kurz
beschrieben werden:

Pin Symbol Funktion

1 CsS Chip Select Ein logischer low-Pegel erméglicht den
Zugriff auf die Register des FDC.

2 RW Read/Write Dieser AnschluB bestimmt die Richtung
des Zugriffs. Ein low-Pegel bewirkt einen

80

ATARI ST - Das Floppy-Arbeitsbuch

Symbol

Funktion

3,4

5-12

13

14
15
16

17

18

19

20

A0 Address 0,1
Al

DO Data 0-7
-D7

MR Master Reset

GND Ground

VCC Power Suply
STEP Step

DIRC Direction

CLK Clock

8

Read Data

MO Motor On

Schreib-, ein high-Pegel einen Lesevor-
gang.

In Verbindung mit RW werden hieriiber
die FDC-Register ausgewdhlt:

Al A0 RW=1 RW=0

0 Status-Reg. Command-Reg.
1 Track-Register

0 Sector-Register

1 Data-Register

—— OO

Bidirektionaler 8-Bit-Bus, fiir die Uber-
tragung von Daten, Kommandos und den
Statusinformationen.

Ein logischer low-Pegel bewirkt ein Zu-
riicksetzen des FDC in den Grundzustand
und ein Loschen des Statusregisters.

Masseanschluf.

+5V.

Dieser Ausgang liefert einen Impuls fiir
jede Kopfbewegung.

Dieser Ausgang ist high, falls die Kopfbe-
wegungen in die Mitte der Diskette, low,
wenn die Bewegungen zum Rand der Dis-
kette hin erfolgen.

An diesem Eingang liegt eine Frequenz
von 8 MHz und liefert den Takt fiir den
FDC.

Uber diesen Eingang werden Takt- und
Datenbits gelesen, die anschlieRend von
dem Datenseparator getrennt werden.

Ein high-Pegel an diesem Ausgang erlaubt
die Motoransteuerung bei den Lese-,
Schreib- und Step-Operationen.

Direktprogrammierung des FDC 81

Pin Symbol Funktion
21 WG Write Gate Wenn dieses Signal high ist, sind keine
Schreibzugriffe auf Diskette gestattet.
22 WD Write Data Uber diesen Ausgang werden Takt- und
Datenbits auf die Disk geschrieben.
23 TROO Track 00 Ist der Schreib-/Lesekopf iiber der Spur 0

positioniert, ist der Anschluf} logisch low.

24 TP Index Pulse Dieser Eingang ist low, wenn das Lauf-
werk das Index-Loch erkannt hat.

Das folgende Schaubild verdeutlicht die Verbindung zwischen dem FDC, dem
Laufwerk und dem Rechner:

Rechner FDC Laufwerk
CLK > MO)
Y e
— Tﬂ
=
WPRT
e =
e e
Ly Gy
¢ DRQ WD ;
& DDEN
VCC Gj]i 1
+vV = =

25 WPRT Write Protect Ist die Diskette schreibgeschiitzt, wird die-
ser Eingang logisch low.

82 ATARI ST - Das Floppy-Arbeitsbuch

26 DDEN Double Density Ein low-Pegel an diesem Eingang wihlt
das MFM-Format, ein high-Pegel das FM-
Format aus.

27 DRQ Data Request Dieser Ausgang signalisiert, daf§ das DA-
TA-Register voll (bei einem Lesezugriff)
bzw. leer (bei einem Schreibzugriff) ist.

28 INTRQ Interrupt Req. Wurde ein Kommando beendet, ist dieser
Ausgang auf high-Pegel gesetzt.

Wie die Pins 3 und 4 des FDC bereits vermuten lassen, enthalt der Floppy-
Disk-Controller fiinf Register, die man beschreiben oder auslesen kann. Diese
Register sind das DATA-Register, TRACK-Register, SECTOR-Register,
COMMAND-Register und das STATUS-Register.

Zusitzlich zu diesen fiinf Registern existiert noch das DATA-SHIFT-Register,
das beim Lesen die seriellen Daten in Byteform konvertiert und beim Schrei-
ben die Bytes bitweise iibertragt. Mit Ausnahme des Command-Registers darf
wihrend der Ausfithrung eines Kommandos auf kein Register des FDC zuge-
griffen werden, da sonst die Floppy-Operation beendet wird. Samtliche Regi-
ster sind 8 Bit breit.

Das DATA-Register, DR

Dieses Register wird bei den Schreib- und Leseoperationen als Zwischenspei-
cher benutzt. Bei einem Lesekommando schreibt das DATA-SHIFT-Register
die gelesenen Daten in das DR, bei einem Schreibkommando holt es sich von
hier die Daten.

Wenn ein SEEK-Kommando ausgefiihrt wird, enthilt das DR die zu suchende
Spur.

Das TRACK-Register, TR

In diesem Register befindet sich die Position des Schreib-/Lesekopfes. Wenn
sich der Kopf um eine Spur zur Mitte der Diskette bewegt, wird das TRACK-
Register inkrementiert, bewegt er sich um eine Spur zum Rand der Diskette,
wird es dekrementiert.

Direktprogrammierung des FDC 83

Falls zwei Diskettenlaufwerke angesteuert werden, mufl vor jeder Operation
die richtige Position des Schreib-/Lesekopfes in dieses Register geladen wer-
den.

Das SECTOR-Register, SR

In diesem Register steht der gewiinschte Sektor. Der Inhalt dieses Registers
wird bei den Schreib-/Leseoperationen mit der gelesenen Sektornummer des
ID-Feldes verglichen.

Das COMMAND-Register, CR

Dieses Register kann nur beschrieben werden. Es enthélt dann das FDC-Kom-
mando.

Das STATUS-Register, STR

Dieses Register kann nur gelesen werden und enthélt eine Statusmeldung des
FDC. Diese Meldung ist bitweise verschliisselt:

Bit Name Bedeutung
7 MOTORON Dieses Bit zeigt den Zustand des MOTOR-ON-Pins
an

6 WRITE PROTECT Dieses Bit wird nur bei einer Schreiboperation ver-
wendet. Wenn es gesetzt ist, kann der Schreibzu-
griff nicht stattfinden.

5 RECORDTYPE/ Beiden Typ-I-Kommandos zeigt dieses Bit das En-

SPIN_UP de der SPIN-UP-Wartezeit an; bei Kommandos des
Typs II oder III kennzeichnet das Bit die gelesenen
Daten:

0 - Normal DATA MARK
1 - DELETED DATA MARK

Die Bedeutung der DELETED DATA MARK
wird bei der Beschreibung der FDC-Kommandos
genauer erklért.
4 RECORDNOT Dieses Bit ist gesetzt, wenn der FDC die gewiin-
FOUND schte Spur, Seite oder den Sektor nicht gefunden
hat.

84 ATARI ST - Das Floppy-Arbeitsbuch

3 CRC ERROR Falls zu diesem Bit das RECORD NOT FOUND-
Bit zusétzlich gesetzt ist, wurde ein Fehler in einem
Adressenfeld erkannt, ansonsten ein Fehler im

Datenfeld.
2 LOSTDATA/ Bei Kommandos des Typs I zeigt dieses Bit den Zu-
TRACK_00 stand des TROO Pins an. Ansonsten wurde der In-

halt des DATA-Registers von dem DATA-SHIFT-
Register iiberschrieben, bevor es ausgelesen wer-

den konnte.
1 DATA REQUEST/ Dieses Bit kennzeichnet bei einem Typ I-Komman-
INDEX do den Zustand des IP-Pins, ansonsten den Zustand
des DRQ-Pins.
0 BUSY Falls zur Zeit ein Kommando bearbeitet wird, ist
dieses Bit gesetzt.

Die Programmierung iiber Direct Memory Access

Die Direktprogrammierung des FDC kann mit Direct Memory Access (DMA)
erfolgen oder auch iiber den direkten Zugriff auf die Systembausteine des
ATARI ST. Da sich diese Art der FDC-Programmierung &uferst kompliziert
gestaltet, so muf} z.B. der Programmierer die Buszuteilung selbst verwalten,
wird im folgenden nur die Direktprogrammierung unter DMA behandelt.

Der fiir den DMA reservierte Speicherbereich beinhaltet alle Register, die fiir
die FDC-Programmierung benétigt werden. Bevor die Dateniibertragung von
oder zu dem FDC beginnen kann, muf der DMA-Puffer geléscht und die
DMA-Adresse gesetzt werden.

Der DMA-Puffer ist 32 Bytes breit. Alle Daten, die von oder zu dem FDC
iibertragen werden, werden zuerst in diesen Puffer geschrieben. Stehen
schlieBlich mehr als 15 Bytes in dem DMA-Puffer, beginnt die Dateniibertra-
gung. Dabei werden jeweils 16 Bytes gesendet; stehen also 17 Bytes im Puffer
werden davon nur 16 iibertragen!

Das 17. Byte verbleibt im DMA-Puffer bis dieser wieder halb voll ist. Dieser
Puffer wird von dem DMA-Chip selbst verwaltet. Der Programmierer hat auf
diesen Puffer keinen Zugriff. Um diesen Puffer zu 16schen, wird zuerst der
Wert $190 und danach der Wert $90 an die Adresse $FF8606 geschrieben
(togglen).

Die Adresse $FF8606 wird auch DMA-Modus-Register, DMA_Mode, ge-
nannt. Dieses Register ist fiir die Steuerung des DMA zustéindig. Es wihlt iiber
das 4. Bit die Register aus, die iiber die Adresse $FF8604, FDC REG ange-

Direktprogrammierung des FDC 85

sprochen werden. Ist dieses Bit gesetzt, wird das Sector-Count-Register adres-
siert; ist es geloscht, werden die Register des FDC ausgewihlt. Die Bits 1 und 2
des DMA-Modus-Registers haben dann fiir den Zugriff auf das FDC_REG
folgende Bedeutung:

Bit 1 2 Bedeutung

0 0 Man erhilt beim Lesen den Status des FDC, beim Schreiben
wird der Wert in das COMMAND-Register des FDC iiber-
tragen.

Bei den anderen Kombinationen wird jeweils ein Register des FDC ausge-
wihlt, in das entweder der Wert des FDC_REG geschrieben oder dessen In-
halt ausgelesen wird.

0 1 Zugriff auf das TRACK-Register
1 0 Zugriff auf das SECTOR-Register
1 1 Zugriff auf das DATA-Register.

Bit Bedeutung

0 Nicht benutzt.

1,2 Wenn das Bit 4 geloscht ist, dann wird hieriiber das FDC-Register
ausgewdhlt (s.0.).

3 0 — Der DMA greift auf den FDC zu.
1 — Zugriff auf den HDC (Harddisk-Controller).

4 0 — Uber Bit 1 und 2 wird das FDC-Register gewihlt.
1 - Das SCR wird angesprochen.

5 Dieses Bit muf geloscht sein.

6 0 — Der DMA-Chip iibernimmt den Datentransfer.
1 — Zugriff erfolgt ohne DMA.

7 0 — Zugriff auf den HDC (Harddisk-Controller).
1 — Der DMA greift auf den FDC zu.

8 0 — Datenrichtung auf Lesen.

1 — Datenrichtung auf Schreiben.
9-15 Nicht benutzt.

Bit-Belegung des DMA-Modus-Registers

Dem DMA muR nun noch mitgeteilt werden, wo er die Daten findet, bzw. wo-
hin er die empfangenen Daten schreiben soll. Dafiir besitzt der DMA-Chip

86 ATARI ST - Das Floppy-Arbeitsbuch

drei 8-Bit-Register, in die die Speicheradresse geschrieben wird. Diese Re-
gister stehen im Speicher an den Stellen

$FF8609, $FF860B und $FF860D (DMA_high, DMA_mid, DMA_low)

Die Startadresse der Daten wird in drei Schritten in diese Register geschrie-
ben. Zuerst werden die unteren 8 Bits der Startadresse nach $FF860D, die
mittleren 8 Bits nach $FF860B und die oberen 8 Bits nach $FF8609 ge-
schrieben.

Wird der DMA-Puffer gelesen oder beschrieben, so wird anschliefend die
Adresse in diesen drei Registern neu gesetzt. Die maximale Anzahl der zu
ibertragenden Bytes wird dem DMA iiber das Sector-Count-Register mitge-
teilt. Der Wert in diesem Register, mit 512 multipliziert, ergibt die maximale
Anzahl der Bytes, die ibertragen werden. Das Sector-Count-Register SCR
wird iiber das FDC_REG angesprochen, falls das 4. Bit im DMA-Modus-Re-
gister gesetzt ist.

Da der ATARI ST zwei Laufwerke verwalten kann, werden noch Register des
Soundchips fiir die FDC-Programmierung benétigt. Der Soundchip besitzt 16
interne Register, von denen das 15. fiir die Auswahl des Laufwerks und der
Diskettenseite zustdndig ist.

Um dieses Register ansprechen zu koénnen, wird in das Select-Register des
Soundchips, PSG, die Nummer des gewiinschten Registers geschrieben. Da-
nach wird an der Adresse $FF8802, PSG_DATA, die Auswahl des Lauf-
werks und der Seite getroffen. Dafiir sind dessen untersten drei Bits relevant:

Bit0 — Seite 1
Bit1 — Laufwerk A
Bit2 — Laufwerk B

Dieses Register ist low-aktiv, daher entstehen die angegebenen Werte, wenn
die dazugehdrigen Bits geloscht sind.

Wenn eine Floppy-Operation beendet ist, wird das BUSY-Bit im Statusregi-
ster des FDC geloscht, und ein Interrupt wird erzeugt. Um festzustellen, ob
die Operation nun beendet wurde, darf man nicht das BUSY-Bit abfragen, da
sonst das ausgefiihrte Kommando abgebrochen wiirde. Dadurch kommt ein
neuer Baustein des ATARI ST ins Spiel, der Multi Function Periphal Chip,
MPFP. Dieser ist unter anderem fiir die Verwaltung der Interrupts zustindig.

Das erste Register des MFP wird General Purpose Input/Output Interrupt
Port, GPIP, gennant. Ist das S. Bit dieses Registers gesetzt, hat der FDC einen
Interrupt erzeugt, und das FDC-Kommando wurde beendet.

Direktprogrammierung des FDC 87

Die Kommandos des Floppy Disk Controllers

Der FDC versteht elf Kommandos. Diese Kommandos sind in vier Typen-
gruppen unterteilt. Die Kommandoworte werden dem CR iibermittelt, wenn
das zugehorige Kommando ausgefithrt werden soll. Dabei sollte beachtet wer-
den, daR die Ausfithrung eines Kommandos sofort abbricht, wenn ein neues
Kommando in das CR geschrieben wird. Die einzige Ausnahme bildet der
"Force Interrupt”-Befehl.

Restore

— Seek

— Step

— Stepin

— Step out
Typ I Kommandos: — Read Sector

— Write Sector
Typ Il Kommandos: — Read Adress

— Read Track

— Write Track
Typ IV Kommando: - Force Interrupt

Typ I Kommandos:

Die folgende Tabelle zeigt die Bedeutung der Bits bei den jeweiligen Kom-
mandos:

Restore 0 0 0 0 h v rl r0
Seek 0 0 0 1 h v rl r0
Step 0 0 1 u h v rl r0
Step in 0 1 0 u h v rl r0
Step out 0 1 1 u h v rl r0
Read Sector 1 0 0 m h e 0 0
Write Sector 1 0 1 m h e p a0
Read Address 1 1 0 0 h e 0 0
Force Interrupt 1 1 0 1 I3 12 I1 10
Read Track 1 1 1 0 h e 0 0
Write Track 1 1 1 1 h e P 0
Das Spin-Up-Bit

h=0 - Spin-Up Sequenz einschalten
h=1 - Spin-Up Sequenz ausschalten

Ist das h-Bit gesetzt, iiberpriift der FDC vor der Ausfiihrung der Kommandos
(mit Ausnahme des Force Interrupt-Kommandos) den Zustand des Motor-On-

88 ATARI ST - Das Floppy-Arbeitsbuch

Pins. Falls dieses auf low-Pegel (Motor aus) liegt, aktiviert der FDC den Mo-
tor und wartet 6 Umdrehungen, bis der Motor ca. 300 Umdrehungen/min. er-
reicht hat. Danach fiihrt er das Kommando aus, wartet 10 Umdrehungen und
setzt den Motor-On-Pin wieder auf low-Pegel. Wenn das h-Bit geloscht ist,
legt der FDC keine Wartezeit ein und 148t auch das Motor-On-Pin im high-
Zustand.

Das Verify-Bit

v=0 - ohne Verify
v=1 - mit Verify

Bei den Kommandos der Gruppe 1 kann eine Uberpriifung der Position des
Schreib-/Lesekopfs erfolgen. Ist das v-Bit gesetzt, vergleicht der FDC die aus
dem ersten aufgetretenen ID-Feld gelesene Spurnummer mit dem Inhalt des
TRACK-Registers. Wenn beide Werte iibereinstimmen und auch die Priif-
summe des ID-Feldes keinen Fehler aufweist, ist die Uberpriifung beendet,
und das Kommando wird ohne Fehler beendet. Stimmen die beiden Werte
iiberein, die Priifsumme aber nicht, wird das CRC-Fehlerbit im STATUS-
Register gesetzt, und das néchste ID-Feld wird fiir die Verify-Operation be-
nutzt. Findet der FDC innerhalb von 5 Umdrehungen zusétzlich zur Uberein-
stimmung keine korrekte Priifsumme, so wird das Kommando mit einem
Seek-Error abgebrochen.

Die Step-Rate

rl1 10

0 0 - 6ms
0 1 - 12ms
1 0 -2ms
1 1 - 3ms

Diese beiden Bits geben bei den Kommandos des ersten Typs die Zeit an, die
der FDC zwischen zwei Step-Impulsen wartet. Die Step-Rate des TOS liegt bei
3 ms. Diese STEP-Raten sind die offiziell von ATARI dokumentierten und
entsprechen nicht denen von Western Digital.

Das Update-Bit

u=0 - ohne Update
u=1 - mit Update

Dieses Bit tritt nur bei den Step-Kommandos in Erscheinung. Ist es gesetzt, so
wird bei einem Step zur Mitte der Diskette das TRACK-Register inkremen-
tiert, bei einem Step zum Rand der Diskette dekrementiert.

Direktprogrammierung des FDC 89

Das Multiple-Bit
m=0 - einen Sektor lesen/schreiben
m=1 — mehrere Sektoren lesen/schreiben

Dieses Bit bestimmt bei den Kommandos des Typs II, ob jeweils nur ein Sek-
tor bearbeitet werden soll oder mehrere, die direkt aufeinanderfolgen. Ist das
Bit gesetzt, so inkrementiert der FDC nach jedem Sektor das SEKTOR-Regi-
ster.

Die Adrefifeld-Markierung

a0 =0 — Normales Adress Data Mark
a0 =1 — Deleted Adress Data Mark

Beim Write-Sector-Kommando bestimmt das Bit 0, ob eine normale AdreR3-
feld-Markierung oder eine deleted (geloschte) Adrefifeld-Markierung fiir den
Sektor geschrieben wird. Mit der DELETED ADDRESS DATA MARK wer-
den die Daten auf dem Sektor fiir geloscht oder ungiiltig erklart. Da das TOS
diese Art Daten zu 16schen nicht verwendet und diese Methode im Prinzip
auch nur bei dem FM-Format vorkommt, sollte das Bit bei dem Write-Sector-
Kommando immer geldscht sein.

Das Verzogerungs-Bit

e=0 - keine head settling delay time
e=1 - 30ms head settling delay time

Ein gesetztes e-Bit veranlait den FDC, eine Pause von 30 ms einzulegen, da-
mit das Laufwerk seinen Schreib-/Lesekopf vor der Ausfithrung des Kom-
mandos beruhigen kann.

Die Prekompensation
p=0 - Prekompensation einschalten
p=1 - Prekompensation ausschalten

Da der Umfang der &ufleren Spuren grofier ist als der Umfang der inneren
Spuren, kann man bei eingeschalteter Prekompensation einzeln nebeneinan-
derliegende Pulse dichter zusammenriicken und so eine gleichbleibende Da-
tenkapazitit bei hoherer Aufzeichnungsdichte erreichen.

90 ATARI ST - Das Floppy-Arbeitsbuch

Die Interrupt-Bits

10 =1 — nicht benutzt

I1 =1 - nicht benutzt

12 =1 - Interrupt bei Indexpulse
I3 =1 — Sofortiger Interrupt

Das einzige Typ-IV-Kommando bewirkt das Auftreten von Unterbrechungen
des in der Ausfithrung befindlichen Kommandos. Ist das 12-Bit gesetzt, so tritt
bei jedem Auftreten des Index-Impulses bei gesetztem I3-Bit ein sofortiger
Interrupt ein. Sind alle Ix-Bits geloscht, wird der laufende Befehl sofort be-
endet.

Die Programmierung des FDC

Der Ablauf eines FDC-Kommandos hat im allgemeinen acht Schritte:

Laufwerk und Seite selektieren

DMA-Basisregister laden (DMA_low, DMA_mid, DMA_high)
DMA-Puffer und DMA-Statusregister 16schen
Sector-Count-Register laden

FDC Register mit den entsprechenden Werten laden
Kommando senden

Warten, bis das Interrupt Bit gesetzt bzw. Timeout ist
Fehlermeldung abfragen

XNAANA LN -

Mit Ausnahme des Force Interrupt-Kommandos folgt nun fiir jedes Kom-
mando ein Beispielprogramm. Diese Routinen greifen auf das Laufwerk A
und die Seite 0 zu. Vor der Ausfithrung der Kommandos sollte darauf geachtet
werden, dal im TRACK-Register des FDC die korrekte Position des Schreib-/
Lesekopfs enthalten ist.

Das TOS speichert fiir jedes Laufwerk die aktuelle Position in der Drive Con-
figuration Table, DCT. In dieser DCT ist auler der Spur noch die Step-Rate
enthalten. Fiir das ROM-TOS liegt die DCTO bei $0A06 und die DCT1 bei
$0A0A.

Das TOS pafit diese Werte nicht der aktuellen Kopfposition an! Der Program-
mierer mufl daher nach jeder FDC-Routine entweder diese Variablen korri-
gieren oder den Kopf wieder auf die anfangliche Spur zuriicksetzen.

Direktprogrammierung des FDC 91

Beispielprogramm 1, RESTORE

*

Registerdefinitionen

fdc_reg: equ $££8604 ;i FDC Register

dma_mode : equ S$ff8606 ; DMA Modus Register

dma_low: equ $ff860d ; DMA Basis Register
;i low

dma_mid: equ $££860Db ; DMA Basis Register
; mid

dma_high: equ $££8609 ; DMA Basis Register
; high

sound_chip: equ $S££8800 ; Sound Chip

psg_data: equ $££8802 ; Sound Chip Data
; Register

gpip: equ $fffall ; MFP I/O Port

*

* Da auf reservierte Speicherbereiche zugegriffen wird, muB

* die Routine im Supervisormodus des MC68000 ausgefiihrt

* werden

*

* X X K ¥

* % Sk Ok K Ok ¥ % F X

clr.1l - (sp) ; in den

; Supervisor-Modus
move .w #$20, - (sp) ; gehen
trap #1 H
add.l #6, sp ; Stack aufrdumen
move.l do, ssp i User_Stack sichern

Dann ist es wichtig, die flopvbl-Routine zu sperren, da
in ihr das FDC-Statusregister selektiert wird, was zum
Abbruch des derzeitig ausgefithrten Kommandos f&hrt.

move.b #$ff,$43e

Jetzt werden das Laufwerk A: und die Seite 0 angewdhlt.
Dazu werden die entsprechenden Bits im Port A des Sound-
chips gesetzt:

Bit 0: Seite der Diskette, '0O' entspricht Seite 1,

'1l' entspricht Seite 0
Bit 1: Laufwerk A: ('0' Laufwerk wird selektiert)
Bit 2: Laufwerk B: ('l' Laufwerk wird deselektiert)

move .w sr,—-(a7) ; Prozessor-Status

; retten
ori.w #5700, sr ; Interrupts sperren
move .w #0,D0 ; Laufwerks-Bit (= A:)

addg.b #1,D0 ; wird an die richtige

92 ATARI ST - Das Floppy-Arbeitsbuch
1sl.b #1,D0 ; Position gebracht
ori.w #0,D0 ; Seite 0
eori.b #7,D0 ; die unteren 3 Bits
; inv.
andi.b #7,D0 ; und die anderen
; l&schen
move.b #$e, sound_chip ; Port A ansprechen
move.b sound_chip,D1 ; alten Wert merken
and.b #$£8,D1 ; die unteren drei
; Bits
or.b DO,D1 ; setzen
move.b D1,psg_data ; und zuriickschreiben
move.w (a7)+,sr ; Interrupts freigeben
move.w #580, dma_mode ;i CR selektieren
move .w #3507, fdc_reg ; RESTORE mit verify
*
* Anstelle des RESTORE-Kommandos kénnte auch
*
* move.w #$57,fdc_reg fuer STEP_IN
* oder move.w #$77,fdc_reg fuer STEP_OUT
*
* verwendet werden. Hierbei steht die STEP-RATE bei 3ms, das
* Spin-up-Bit ist geloescht, das Verify- und Update-Bit
* gesetzt.
*
*
* Um das Weiterlaufen der Floppy bei einem Fehler zu
* verhindern, wird ein Z&hler benutzt.
* Wéhrend des Schleifendurchlaufs wird auf eine Mitteilung
* des FDC gewartet. Da das BUSY Bit nicht abgefragt werden
* kann, ohne den FDC zu einem Abbruch des Kommandos zu
* bewegen, wird das 5.Bit im I/O-Port des MFP abgefragt.
* Dieses zeigt an, ob der FDC einen Interrupt gesendet hat.
*
move.l #$60000,D7 ; Time-out z&hler
; initial.
warten: subqg. 1l #1,D7 i Timer weiterzdhlen
beq status ; wenn abgelaufen
; abbrech.
btst #5,gpip ; Kommando fertig?
bne warten ; nein, dann warten
status: move .w #3580, dma_mode ; FDC-Statusreg.
; selektieren
move.w fdc_reg,do ; Status nach DO
; retten
*
* Das RESTORE-Kommando ist nun beendet, die Floppy wird
* wieder deselektiert. Sie kann jedoch nicht ohne weiteres
*

deselektiert werden, wenn der Motor noch l&uft, da er

Direktprogrammierung des FDC 93

* gsonst endlos weiterlaufen wiirde.
*

motor: move .w fdc_reg,d3 ; Status nach D3
btst #7,d3 ; MOTOR ON Bit testen
bne motor ; warten wenn gesetzt
move.w sr,-(a7) ; wie beim Selektieren

or.w #5700, sr
move.b #$e,sound_chip
move.b sound chip,D1l

and.b #$£8,D1

or.b #7,D1 ; beide Laufwerke aus!
move.b D1,psg_data

move.w (a7)+,sr

clr.w $43e ; flopvbl wieder
; freigeben
move.l ssp,-(sp) ; und zurick in den
; User-—
move.w #$20,-(sp) ; modus gehen
trap #1
add.l #6,sp
clr.w - (sp) ; Programm beenden
trap #1
.bss
ssp: .ds.1 1 ; zum Speichern des
* ; Stack Pointers
.end
Beispielprogramm 2, SEEK

In diesem Programm wird der Schreib-/Lesekopf iiber die Spur 79 positio-
niert. Im TRACK-Register muf die aktuelle Position des Schreib-/Lesekopfs
enthalten sein.

Die Registerdefinitionen entnehmen Sie bitte dem vorigen Beispielprogramm.

clr.l -(sp)

move.w #$20, - (sp)

add.l #6,sp

move.l do0, ssp

move.b #S£f, $43e

move.w sr,-(a7)

or.w #$700, sr

move.w #0,D0 ; Laufwerk A:

addq.b #1,D0

94 ATARI ST - Das Floppy-Arbeitsbuch

1sl.b #1,D0
or.w #0,D0 ; Seite 0
eori.b #7,D0
andi.b #7,D0

move.b #Se, sound_chip
move.b sound_chip, D1
and.b #$£8,D1
or.b DO,D1
move.b D1l,psg_data
move .w (a7)+,sr
*
* Fiir den SEEK Befehl mu das DATA Register des FDC die
* gewlinschte Spurnummer enthalten.
*
move.w #$86, dma_mode ; DATA Register selek.
move.w track, fdc_reg ; Track -> DATA Reg.
move.w #580, dma_mode CR selektieren

~ =

move .w #$17, fdc_reg Seek mit Verify und

Update

~

move.l #$60000,D7
warten: subqg.l #1,D7

beg status

btst #5,gpip

bne warten
status: move.w #$80, dma_mode

move.w fdc_reg,d0
motor: move.w fdc_reg,d3

btst #7,d3

bne motor

move.w sr,-(a7)

or.w #$700, sr

move.b #$e,sound_chip

move.b sound_chip, D1

and.b #$£8,D1

or.b #7,D1

move.b D1,psg_data

move.w (a7)+,sr

clr.w $43e

move.1l ssp,—(sp)

move.w #3$20, - (sp)

trap #1

add.l #6,sp

clr.w - (sp)

trap #1

.data

track: .dc.w 79 ; Spur 79

Direktprogrammierung des FDC 95

.bss
ssp: .ds.l 1 ; zum Speichern des
SSp

.end

Damit wiren alle Kommandos des Typs I an einem Beispiel abgehandelt.

Beispielprogramm 3, READ SECTOR

Diese Programm liest den Sektor 1 auf der aktuellen Spur.

clr.1l - (sp) ; In den

; Supervisormodus
move .w #$20, - (sp) ;i gehen
trap #1
add.l #6,sp
move.l do, ssp ; User-Stack sichern
move.b #$££f, $43e ; FLOCK auf -1 setzen
move.w sr,~-(a7) ; Prozessor-Status

; retten
ori.w #3700, sr ; Interrupts sperren
move .w #0,D0 ; Laufwerks-Bit (= A:)
addg.b #1,D0 ; wird an die richtige
1s1l.b #1,D0 ; Position gebracht
ori.w #0,D0 ; Seite 0
eori.b #7,D0 ; die unteren 3 Bits

; inv.
andi.b #7,D0 ; und die anderen

; ldschen
move.b #Se,sound_chip ; Port A ansprechen
move.b sound_chip, D1 ; alten Wert merken
and.b #$£8,D1 ; die unteren drei

; Bits
or.b DO,D1 ; setzen
move.b D1,psg_data ; und zurlickschreiben
move.w (a7)+,sr ; Interrupts freigeben

Nun wird das Sektor-Register mit der gewlinschten Sektor-
nummer geladen. Es wird dann auf der aktuellen Spur ein
Adressen-Feld gesucht, dessen Sektornummer mit der
gesuchten Nummer iibereinstimmt und dessen Priifsumme
korrekt ist. Wurde danach das Datenfeld innerhalb von 43
Bytes (MFM-Format) nicht gefunden, beendet der FDC das
Kommando nach weiteren 4 Versuchen mit einem RECORD NOT
FOUND Fehler.

Ok K % O Ok F F O F

move .w #$84, dma_mode ; Sektor-Register
; selek.
move.w sector, fdc_reg ; Sektornummer laden

96 ATARI ST - Das Floppy-Arbeitsbuch
move.l #record, - (a7) ; Jetzt wird die
move.b 3(a7) ,dma_low ; Adresse des Daten-
move.b 2(a7) ,dma_mid ; bereichs der DMA
move .b 1(a7),dma_high ; mitgeteilt
addg.l #4,a7 ;

*

* Léschen des DMA-Puffers und des DMA-Statusregisters

o Datenrichtung der DMA auf LESEN setzen und das

* Sector-Count Register adressieren

*
move .w #590, dma_mode
move .w #$190, dma_mode
move .w #$90,dma_mode

*

* Fuer den Write-Sector Befehl muss die Datenrichtung

* auf Schreiben geaendert werden. Dafuer muessen die letzten

* 3 Zeilen durch die folgende Sequenz ersetzt werden:

*

* move.w #5190, dma_mode

* move.w #590, dma_mode

* move.w #5190, dma_mode

*

* Der Wert im SCR, mit 512 multipliziert ergibt die maximale

* Anzahl der zu iibertragenden Bytes

*
move.w #$1,fdc_reg ; 512 Bytes

*

* Das READ SECTOR Kommando wird ohne die MULTIPLE-Option

* durchgefiihrt.

*
move.w #$80, dma_mode i CR selektieren
move.w #$80, fdc_reg ;i READ SECTOR -> CR

*

* Fuer ein WRITE_SECTOR Kommando miissen die letzen beiden

* Zeilen in

*

* move .w #$180, dma_mode

* move .w #%a0, fdc_reg

*

* gedndert werden.

*
move.1l #$60000,D7 ; Time-out Zihler

; initial.

warten: subg.1l #1,D7 ; Timer weiterzdhlen

beq status ; wenn abgelaufen

; abbrech.
btst #5,gpip ; Kommando fertig ?
bne warten ; nein, dann warten

Direktprogrammierung des FDC

97

status: move.w
move.w

motor: move .w
btst
bne

move.w
ori.w
move.b
move.b
and.b
ori.b
move.b
move.w

clr.w
move.l
move .w
trap
add.1l
clr.w
trap
.data
sector: .dc.w
.bss
ssp: .ds.1l
record: .ds.b

.end

#$80, dma_mode
fdc_reg,d0

fdc_reg,d3
#7,d3
motor

sr,—-(a7)
#$700, st

#Se, sound_chip
sound_chip,D1
#$£8,D1

#7,D1
D1,psg_data
(a7)+,sr

$43e

ssp, - (sp)
#$20, - (sp)
#1

#6,sp

- (sp)

#1

512

Beispielprogramm 4READADRESS

Ne Ne Se Ne Ne Ne N

FDC-Statusreg.
selektieren

Status nach DO
retten

Status nach D3
MOTOR ON Bit testen
warten wenn gesetzt

wie beim Selektieren

beide Laufwerke aus!

Sektor 1

zum Speichern des
SSp
512 Bytes Daten

Das READ ADRESS Komanndo liest das néchste Adressenfeldauf der derzei-
tigen Spur. Das Adressenfeld besteht ausvier Bytes Daten und 2 Bytes Priif-

summe.

clr.1l
move .w
trap
add.1l
move.
move.
move.
or.w
move .w

20

- (sp)
#$20, - (sp)
#1

#6,sp

do, ssp
#$££f, $43e
sr,-(a7)
#$700, sr
#0,D0

i

Laufwerk A:

98 ATARI ST - Das Floppy-Arbeitsbuch
addg.b #1,D0
1sl.b #1,D0
or.w #0,D0 ; Seite 0
eori.b #7,D0
andi.b #7,D0
move .b #$e, sound_chip
move.b sound_chip,D1
and.b #s$£8,D1
or.b DO,D1
move .b D1,psg_data
move .w (a7)+,sr
move .1l #feld, - (a7)
move .b 3(a7) ,dma_low
move .b 2(a7) ,dma_mid
move.b 1(a7),dma_high
addqg.1l #4,a7
move .w #$90, dma_mode ; Datenrichtung auf
; Lesen
move .w #5190, dma_mode ;
move.w - #$90,dma_mode ;
move .w #51, fdc_reg ; 512 Bytes
*
* Da der DMA aber nur jeweils 16 Bytes lbertrdgt, missen mehr
* als nur ein Adressenfeld eingelesen werden. Dazu wird
* dieses Kommando dreimal an den FDC gesendet. Die ersten 6
* Bytes des Datenbereichs enthalten dann das erste gelesene
* Adressenfeld
*
move.1l #3,d4 ; D4 als Z&hler
move .w #3580, dma_mode ; COMMAND-Register
read: move .w #5C0, fdc_reg ; Read_Adress
' move.l #$60000,D7
warten: subqg.1l #1,D7
beq status
btst #5,9pip
bne warten
subg.1l #1,d4
bne read
status: move .w #$80,dma_mode
move .w fdc_reg,d0l
motor: move .w fdc_reg,d3
btst #7,d3
bne motor
move .w sr,~-(a7)
or.w #$700, sr
move.b #$e,sound_chip
move.b sound_chip,D1
and.b #$£8,D1
or.b #7,D1
move.b D1,psg_data

Direktprogrammierung des FDC

99

move.w (a7)+,sr
clr.w $43e
move.1l ssp, - (sp)
move.w #$20, - (sp)
trap #1
add.1l #6,sp
clr.w -(sp)
trap #1
.bss

ssp: .ds.1l 1

feld: .ds.b 16
.end

Beispielprogramm 5,READTRACK

Dieses Programm liest die aktuelle Spur ein.

clr.l - (sp)
move.w #$20, - (sp)
trap #1

add.l #6,sp
move.l d0, ssp
move.b #S£f, $43e
move .w sr,-(a7)
or.w #5700, sr
move.w #0,D0
addqg.b #1,D0
1sl.b #1,D0
or.w #0,D0
eori #7,D0

b

andi.b #7,D0
b
b

move #$e,sound_chip
move sound_chip, D1
and.b #$£8,D1

or.b DO,D1

move D1,psg_data
move (a7)+,sr

#spur, - (a7)
3(a7) ,dma_low
2(a7) ,dma_mid
1(a7) ,dma_high
#4,a7

3

o]

Q

o
HOOUORSE O

move .w #$90, dma_mode
move.w #$190, dma_mode
move .w #590, dma_mode

*
* Fiir den Write-Track Befehl muf die

; zum Speichern des
; SSp
; 16 Bytes Daten

; Laufwerk A

; Seite 0

; Datenrichtung auf
; Lesen

~. we

Datenrichtung auf

100 ATARI ST — Das Floppy-Arbeitsbuch

* Schreiben ge&dndert werden. Dafiir miissen die letzten 3
* Befehle durch die folgende Sequenz ersetzt werden
*
* move .w #$190,dma_mode
* move.w #590, dma_mode
* move .w #$190,dma_mode
*
move .w #13, fdc_reg ; 13 * 512 Bytes = $1a00
; Bytes Daten
move .w #$80, dma_mode
move.w #$EQ, fdc_reg
*
* Fiir ein Write-Track miissen die letzen beiden Befehle in
*
* move.w #$180, dma_mode
* move .w #5£0, fdc_reg
*
* gedndert werden.
*
move.l #$60000,D7
warten: subg.1l #1,D7
beq status
btst #5,9pip
bne warten
status: move .w #580,dma_mode
move .w fdc_reg,dol
motor: move .w fdc_regq,d3
btst #7,d3
bne motor
move .w sr,-(a7)
or.w #5700, sr
move.b #$e, sound_chip
move.b sound chip,D1
and.b #$£8,D1
or.b #7,D1
move .b D1,psg_data
move .w (a7)+,sr
clr.w $43e
move.l ssp, - (sp)
move .w #$20, - (sp)
trap #1
add.l #6,sp
clr.w - (sp)
trap #1
.bss
ssp: .ds.1l 1 ; zum Speichern des
; SSP
spur: .ds.b $1A00 ; $1A00 Bytes Daten

.end

Direktprogrammierung des FDC 101

Zusammenfassung

Folgende Register diirfen nicht beschrieben werden, wenn ein Kommando
ausgefithrt wird, da andernfalls der FDC unterbricht:

— TRACK-Register
— SECTOR-Register
— COMMAND-Register

Bei der Programmierung iiber die DMA werden, solange das Sector-Count-
Register ungleich Null ist, jeweils 512 Bytes iibertragen und das SCR dann de-
krementiert. Deshalb sollte im SCR die Anzahl als Quotient von den zu iiber-
tragenden Bytes durch 512 stehen.

Da der DMA-Puffer immer 16 Bytes weitergibt, muBl eine durch 16 teilbare
Anzahl von Bytes iibertragen werden.

Bei allen Kommandos muf die vbl-Routine ausgeschaltet werden, da in ihr das
COMMAND-Register geladen wird.\MaBnahme: Die Speicherstelle $43E mit
dem Wert $FF laden und nach dem Beenden des FDC-Programms wieder
16schen.

Die DMA-Basis-Register miissen in der Reihenfolge low-mid-high geladen
werden.

Das READ/WRITE-Bit in DMA-Modus-Register muf stimmen.

Um einen Bus-Error des MC68000 zu vermeiden, sollten simtliche Routinen
im Supervisor-Modus durchgefiihrt werden.

Vor der Ausfithrung jedes Kommandos sollte man togglen, um den Puffer zu
16schen, da ansonsten noch Bytes aus vorhergegangenen Kommandos iiber-
tragen werden kénnten.

Vor jedem Kommando wird die Seite und das Laufwerk im Port A des Sound-
chips eingestellt (LED leuchtet auf).

Das Laufwerk sollte man erst dann deselektieren, wenn der Motor aus ist.

103

Kapitel 5

Routinen des XBIOS

Zum besseren Verstindnis der FDC-Programmierung werden in diesem Ka-
pitel die XBIOS-Routinen

floprd (Sektoren einlesen)

flopwr (Sektoren schreiben)

flopfmt (Spur schreiben, formatieren)
flopver (Sektoren priifen)

anhand eines Assemblerlistings erklért. In diesem Listing werden symbolische
Namen verwendet, damit man auf kein spezielles TOS festgelegt ist. Am Ende
dieses Kapitels sind dann die Adressen in verschiedenen TOS-Versionen auf-

gefiihrt.

Zunichst folgt jedoch eine Erklarung der Variablen:

curr_error
curr_count

e_dma
tmp_dma
sav_addr
retry_count

default_error
curr_sektor
curr_track
curr_side
curr_dma

spt

interleave

der momentan getestete oder aufgetretene Fehler
Zihler fiir die Anzahl der Sektoren beim Schreiben oder
Lesen

Ende des DMA Bereichs bei Read-Multiple
Zwischenspeicher fiir die DMA-Adresse
Speicher zum Retten der Registerinhalte

Zahler fir die Anzahl der Versuche:

2 =1. Versuch

1 = 2. und letzter Versuch
Standard-Fehlernummer

der gewiinschte Sektor (beim Aufruf iibergeben)
der gewiinschte Track (beim Aufruf iibergeben)
die gewiinschte Seite (beim Aufruf iibergeben)
DMA-Startadresse (beim Aufruf iibergeben)
Sektoren pro Track (beim Aufruf iibergeben)
Summand fiir die Reihenfolge der Sektoren
(beim Formatieren iibergeben)

104 ATARI ST - Das Floppy-Arbeitsbuch

virgin Filllwert (beim Formatieren iibergeben)
motor_on_flag 0 = Floppy arbeitet nicht
FFFF = Floppy arbeitet

flock 0 = kein Floppy-Zugriff
<>0 = Floppy-Zugriff , VBL-Routine ist gesperrt
frclock Anzahl der ausgefiihrten VBL-Routinen
wp_st_tab Write-Protect-Statustabelle
nflops Anzahl der Floppies
wplatch Write-Protect-Latch
(wird von der Routine Mediach getestet)
deselflag Diese Variable zeigt an, ob die Floppies selektiert sind.
curr_device gewiinschtes Drive (beim Aufruf iibergeben)
acctim Stand des 200-Hertz-Zahlers beim letzten Floppyzugriff.
_hz 200 200-Hertz-Zahler
disknum Nummer der zuletzt angesprochenen Floppy
dm_tab Disk-Mode-Tabelle
etv_critic Vektor auf die Error-Routine
dct0 Drive-Configuration-Table von Drive A

word 0 = Position des Kopfes
word 1 = Step Rate
detl Drive-Configuration-Table von Drive B
word 0 = Position des Kopfes
word 1 = Step Rate

Programm (floprd):

Khkkkkkkhkkkhkhkkdhhkkhkhkhkhkkhkhkkkkkkhkhkkhhkkkhkhkhkhkkkhkkkkkkhkhkhkkkkhkkhkhkkkkkkk
* *
* floprd, Einlesen von Sektoren *
* *
* Format: *
* *
* dom bt + R R B Attt bt *
* |RSP |puffer |filler |dev|sec|tcklsid|cnt| *
* e s att e *
* ~ *
* SSP *
* *
KAkAAKKAA K KAAKRAA Ak kkhkhkhkhkhkhkhkhhkkkkkhkkhkkkhkhkkhkkhkhkhkkhkkkhkkhkkkhkhkkkkkkkx

floprd bsr change * Diskettenwechsel?
moveq.1l #SF5,D0 * DO -> curr_error
* und default_error
* $F5 = Read Error
bsr param * Parameter holen und
* setzen
next bsr select * Laufwerk und Seite
*

selektieren

Routinen des XBIOS mit Beispielen

105

wl

zeit

fertig

bsr
bne

move.w

move.w

move.w
move.w

move.w
move.w

move.w
bsr

move.l
move.l
btst

beq
subg.1l

beqg
move.b
move.b
move.b
cmpa.l
bgt

bsr

bra
move.w

bsr

bra
move.w
move.w
btst
beqg

move.w
bsr
and.b

seek_tr
whl

#$FFFF, curr_error

* % OF Ok O %

Kopf auf Track
positionieren
wenn Fehler,
mal
curr_error auf allg.
Fehler

dann noch

Loschen des DMA-Puffers durch Togglen

#$90, (A6)

#5190, (R6)

* ¥ O F O ¥ %

#$90, (A6)

curr_count, $FF8604
#$80, (A6)

#$90,D7
FDC_out

* Ok ¥ H ¥ F

#$40000,D7
e_dma,A2
#5, $FFFAO01L

fertig
#1,D7

¥ X F F F H ¥ ¥ ¥

zeit
SFF8609,tmp_dma_high*
$FF860B,tmp_dma mid *
$FF860D, tmp_dma_ low *
tmp_dma, A2 o
wl

reset_1772

fertig
#SFFFE, curr_error

reset_1772

%Ok Ok Ok X ¥ ¥ %

whl

#$90, (A6)
(A6) ,DO
#0,DO0
whl

#580, (A6)
get_FDC
#$18,D0

* Ok X X O O H X

DMA-Modus-Register

Bits 4,7 gesetzt, also
FDC Sector-Count-Reg.
lesen/DMA ein

Bits 4,7,8 gesetzt,
FDC/SCR/schreiben

Bits 4,7 also SCR/lesen

curr_count -> SCR

Bit 7 =-> Command-Reg.
oder Status-Reg.

$90 -> Read Multiple
wird in das CR des FDC
geschrieben

Timeout-Z&hler setzen
Endadresse DMA in A2
Bit 5 des I/0O-Ports des
MFP zeigt an, ob

FDC fertig?

wenn ja, dann fertig
Timeout-Z&hler
dekrementieren

Timer = 0, dann zeit
laden der aktuellen
DMA-Adresse

und vergleichen

mit DMA-Endadresse
wenn ungleich, dann
weiter warten

Ende der Ubertragung
(FDC - Reset)

SFFFE -> curr_error
ist timeout - error
Ende der Ubertragung
(FDC Reset)

Bits 4,7 lesen/DMA/SCR
DMA-Status -> DO

Test, ob DMA-Fehler
wenn DMA-Fehler, dann
noch einmal

Bit 7 SR oder CR

lesen des Status-Reg.
Bits 3,4 CRC Error

106 ATARI ST - Das Floppy-Arbeitsbuch

beqg flopok
bsr Fehlernr.

whl cmpi.w #1,retry count
bne w2
bsr test_seek

w2 subg.w #1, retry count
bpl next
bra flopfail

Record not found
kein Fehler, dann OK
Fehler! Nummer bestimm.

schon zweiter Versuch?
nein

schon 2 Versuche also
testseek

retry_ count dekr.

wenn retry count > 0
dann neuer Versuch

kein Versuch mehr, dann
flopfail

% %k %k Kk Kk ok sk ok ok Kk Kk Kk ok ok sk gk ok ok ok ok ok Kk ke k ks ok ok ok ok %k ok ok ok ok ok ok Sk ok ok ok ok ok ok ke k ok ok ok sk ke ke k ok ok ok ok ok ok

* *
* *
* S + *
* DO | Status des FDC | *
* o + *
K e ———— e e e e o e e o e o *
* e + *
* curr_error | Fehlernummer | *
* S + *
* *
* $F3 - Schreibschutz *
* SF8 - record nicht gefunden *
* $SFC - Priifsummenfehler (CRC) *
* *
R R SRS E SRS E SRS ST SRS RS EEEEEE S EEE SRR EEEEEEEEES SRS S SR

Fehlernr moveq.l #S$F3,D1
btst #6,D0
bne wll
moveq.l #$F8,D1
btst #4,D0
bne wll
moveq.l #S$FC,D1
btst #3,D0
beq wll

move.w default_error,D1

wll move .w D1l,curr_error
rts

* % % Ok k% % % X % F

(Schreibschutz) -> D1
wenn Schreibschutz,

dann wll

(record not found) -> D1
wenn dieser Fehler,

dann wll
(Priifsummenfehler) -> D1
wenn CRC-Error,

dann wll

wenn kein Fehler, dann
default_error nehmen

Fehlernr. -> curr_ error

Routinen des XBIOS mit Beispielen

107

Programm (flopwr):
KA AAKKAARKRAKRKAKR R A KRR KR AR ARKA KA AR AR A ARk Ak hkkkkhkkhkhkhkkhkhkkhkhkhkhkkkAkk kA hkhkkxk
* *
* flopwr, Schreiben von Sektoren *
* *
* Format: *
* *
* B S e e matntat Tl St el e *
* |RSP |puffer |filler |dev]|sec|tck|sid|cnt]| *
* R e e it e e e e e e 3 *
* ~ *
* SSp *
* *
KhkhkhkhkhkkhhkhkkhkhkkhkhkkAhkkhkhkhkhkkhkkhkhkhkhkkhhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkkhkhkkhkkkhkkkkk
flopwr Dbsr change * Diskettenwechsel?
moveq.1l #$F6,D0 * F6 = Write Error
* DO -> default_error
* und curr_error
bsr param * Parameter holen
* und setzen
move.w curr_sektor,DO *
subg.w #1,D0 * (curr_sektor -1)
or.w curr_track,DO * oder curr_track
or.w curr_side,DO * oder curr_side
* = 072
* also Bootsektor?
bne w21l * wenn kein Bootsektor
moveq.1l #2,D0 * wenn Bootsektor, dann
bsr setdmtab * media change = 'changed’
w21l bsr select * Drive und Seite
bsr seek_tr * Track finden
bne w26 * wenn Fehler, dann w26
w22 move.w #SFFFF, curr_error * kein Fehler, dann
* curr_error = allg.Fehler
* DMA-Puffer 1l8schen durch Togglen
move .w #5190, (A6) * Bits 4,7,8 SCR/schreiben
move.w #$90, (A6) * Bits 4,7 SCR/lesen
move.w #$190, (A6) * Bits 4,7,8 SCR/schreiben
move.w #1,D7 * 1 in das Sektor-Count-
bsr FDC_out * Register schreiben
move . w #$180, (A6) * Bits 7,8 SR/CR/schreiben
move.w #$A0,D7 * SA0 in CR des FDC
bsr FDC_out * also Write-Sektor
move.l #$40000,D7 * Timer = $40000
w23 btst #5,SFFFAO1 * FDC fertig?
beq w24 * wenn fertig, dann w24
subg.l #1,D7 * Timer dekrementieren
bne w23 * wenn Timer > 0, dann

108 ATARI ST - Das Floppy-Arbeitsbuch
w23
bsr reset_1772 * Ende der Ubertragung
* (FDC-Reset)
bra w25
w24 move.w #5180, (A6) * Bits 7,8 SR/CR/schreiben
bsr get_FDC * Status-Register lesen
bsr Fehlernr * Fehlernummer?
btst #6,D0 * Schreibschutz?
bne flopfail * Abbruch, da Fehler
and.b #$5C, DO * Bits 2,3,4,6
* Write Protect,RNF,
* Checksum, Lost Data
bne w25 * Fehler, neuer Versuch
* kein Fehler
addg.w #1,curr_sektor * ndchster Sektor
addi.l #5200, curr_dma * DMA-Adresse um 512
* erhdhen
subg.w #1,curr_count * wieder einer weniger
beqg flopok * wenn alle Sektoren
* geschrieben sind, dann
* Ende ohne Fehler
bsr wl71l * current_sector in Sektor
* Register des FDC, und
* DMA setzen
bra w22 * Sektor schreiben
w25 cmpi,w #1,retry count * wenn nicht letzter
bne w27 * Versuch dann w27
w26 bsr testseek * Test auf Seek Error
w27 subg.w #1,retry_ count * ein Versuch weniger
bpl w21l * noch ein Versuch
bra flopfail * Beenden mit Fehler
Programm (flopfmt):

% % k K %k %k %k Kk Kk Kk Kk ok %k Kk k Kk Kk Kk Kk k k %k Kk ok 5k %k %k %k Kk Kk ok 5k ok %k Kk %k Kk k %k %k %k Kk Kk %k Kk %k %k Kk %k Kk %k Kk k Kk Kk Kk Kk ok ok kkx

* *
* flopfmt, Schreiben (Formatieren) einer Spur *
* *
* Format: *
* *
ol e e e e Rt S e e s A
* | RSP |puffer |[filler [dev|spt|trk|sid|ilv]| magic |vrg| *
I e e e e e Attt LL LS T + + + et T
* A *
* Stackpointer *
* *
ok % % ok ok Kk Kk gk ok ok ok ok ok ok ko 3k ok ok ok ok %k ok 3k ok ok sk ok ok ok ko ok ok ok ok ok ok ok Kk

flopfmt cmpi.l
bne
bsr

#$87654321,$16 (A7) * Stimmt die magische Zahl
flopfail * nein, Ende mit Fehler
change * Diskette gewechselt?

Routinen des XBIOS mit Beispielen

109

fmtrack

w31l
w32

moveq.l
bsr

bsr
move.w
move.w
move .w
moveq.l
bsr
bsr
bne
move.
move.
bsr
bne
move.
move.
bsr
move.l

tst.w
beg

move.w
bra

#SFF, DO
param

select

$E (A7), spt

$14 (A7) ,interleave
$1A (A7) ,virgin
#2,D0

setdmtab

find tr

flopfail
curr_track, $0 (Al)
#$FFFF, curr_error
fmtrack

flopfail
spt,curr_count
#1,curr_sektor
verify
curr_dma, A2

(A2)
flopok

#SFFFO0, curr_error
flopfail

F OOk b Ok O Ok b OF b O b % % X % % % 2 3 3 % X X X X X X

SFF = allg. Fehler als
default_error und
curr_error
Parameter holen und
setzen

Laufwerk und Seite
spt holen
interleave holen
virgin holen
Drive_change_modus
'gewechselt' setzen
Track suchen

bei Fehler Ende
aktuellen Track in DCT
curr_error=allg. Fehler
Track formatieren

Ende mit Fehler

spt als Z&dhler

Bei Sektor 1 beginnend
verifizieren

curr_dma ist Liste der
schlechten Sektoren
Wenn curr DMA = 0

(Liste ist leer),

dann Ende ohne Fehler
sonst 'Bad Sector' (S$FO0)
Ende mit Fehler

auf

% %k % %k Kk K ok %k ok Kk K Kk ok gk ok Kk Kk Kk ok ok sk ok ke ok ok ok gk Kk ok ok ok gk ok ke kK ok ok ok ok ke ke

*

*

hd Erstellen und Schreiben des Puffers *

*

*

KhkkkkhkkhkkhkhhkAkkhkkkhkhkhkhkkkkhkkhkhkkkkkhhkkkkkhkkkkkkkx

move.w

move .w
move.l
move .w
move.b
bsr

move .w
move.w
clr.b
bsr

move.w
move.b
bsr

move.b

#$FFF6,default_error*

#1,D3
curr_dma, A2
#$3B,D1
#$4E,DO
£fill buf

* % Ok Ok % *

default_error
'Write Error’'
Start mit Sektor 1
Adr. des Puffers in A2
60mal

SFE in den Puffer
schreiben ('L')

L0,Ad_x,Ll1,Dat_x,L2 erstellen

D3,D4
#11,D1

DO

£ill buf
#2,D1
#$F5,D0
£ill buf
#SFE, (A2) +

* % Ok Ok ¥ % % *

Sektornummer in D4
12mal

$00 in den Puffer
schreiben ('LO')
3mal

$F5 in den Puffer
schreiben ('LO')
SFE ('Ad_x-Marke')

110

ATARI ST - Das Floppy-Arbeitsbuch

w33

w34

move.
move.
move.
move
move.
move.
move.
bsr
move.
clr.b
bsr
move.
move.
bsr
move.
move.

s vaoobooo

20 o=

move.
move.
dbra
move.
move.
move.
bsr
add.w

oo UTU

cmp . w
ble

addg.w
cmp . w
ble

move.
move.
bsr

move.
move.
move.
move.
move.
move.
move.
bsr

move.
move.
bsr

move.l

££E 000 U=

£ =

btst
beq
subqg.1l
bne

bsr

curr_track, (A2) +
curr_side, (A2) +
D4, (A2)+

#2, (A2) +

#SF7, (A2) +
#$15,D1

#$4E,DO

£ill buf

#11,D1

DO

£fill buf

#2,D1

#SF5,D0

£fill buf

#SFB, (A2) +
#S$FF,D1

virgin_high, (A2)+
virgin_low, (A2)+
D1,w33

#SF7, (A2) +
#$27,D1

#$4E,DO

£ill buf
interleave,D4

spt,D4
w32

#1,D3
interleave,D3
w31l

#$578,D1
#$4E,DO

£fill buf
dma_low, $FF860D
dma_mid, SFF860B
dma_high, $FF8609
#5190, (R6)
#$90, (A6)
#5190, (A6)
#$1F,D7

FDC_out

#5180, (A6)
#$F0,D7

FDC_out
#$40000,D7

#5, SFFFAO1
testl
#1,D7

w34

reset_1772

% % % k¥ H %

("Ad_x-Spur')
('Ad_x-Seite')

Sek.nr. ('Ad_x-Sektor’)
$02 ('Ad_x-GroéBe')
SF7 Checksum erzeugen
22mal

$4E in den Puffer
schreiben ('L1l"')

12mal

$00 in den Puffer
schreiben ('L1l')

3mal

SF5 in den Puffer
schreiben ('L1l')

SFB ('Dat_x-Marke')
256mal

virgin_high und
virgin_low in Puffer
('Dat_x-Daten')

$F7 Checksum erzeugen
40mal

$4E in den Puffer
schreiben ('L2")
interleave addieren
ergibt n&chsten Sektor
wenn ndchster Sektor
kleiner gleich spt,
formatiere den Sektor
wenn Startsektor + 1
<= interleave,

dann weiter mit neuem
Startsektor

1401mal

$4E in den Puffer
schreiben

DMA-Adresse laden

DMA-Puffer l1l&schen

und Modus auf
SCR/schreiben

31 in das Sector-Count-
Register schreiben
CR/SR des FDC-
Kommando Write-Track

in CR des FDC

Zdhler initialisieren

FDC fertig?

wenn ja, dann testl
sonst dekrementieren
und wenn Zahler > 0
weiter warten

sonst Ubertr. beenden
FDC-Reset

Routinen des XBIOS mit Beispielen 111

w35 moveq.l #1,D7 * 1 nach D7
* bedeutet, ein Fehler
* ist aufgetreten
rts * und Ende

kkkkkkkkkhkhkhhkkhkkkhkhkkkkkhkhkkkkkkhkkkhkkkkhkkkkk

* *
* *
* Testen, ob Fehler aufgetreten ist *
* *
* *
* *

khkkkkkkkkkhkkhkhkkhkkkkhkhkhkhkhkkkkkhkkkkhkkkhkhkk

and.b #$44,D0 Bits 2,6 Lost Data und

Schreibschutz testen

testl move .w #$190, (A6) * SCR/schreiben
move.w (A6),DO * DMA-Status
btst #0,D0 * auf DMA-Fehler testen
beqg w35 * wenn Fehler, dann w35
move.w #$180, (A6) * CR/SR/schreiben
bsr get_FDC * Status-Register lesen
bsr Fehlernr * Fehlernummer berechnen
*
*

rts

FhkkkkAhkhkhkhkkhkhhkhkhkkhkhkhkkkkkhkhkkhkkhhkhkhhhkkkkhkhkhhkkhkhkhhkkkhkkhkkkkkk

Puffer mit Daten fiillen

DO - Wert, der geschrieben werden soll

D1 - Anzahl, mit der der Wert in den Puffer geschrieben

*
*
*
*
*
*
*
werden soll *
*
*

*
*
*
*
*
*
*
*
*
KA KAkAAKRAARA KKK KA KRk R Kk k Ak kkkkhkhkkkkkkhkkkhkkkkrhkkkkkkkkkkkkkkkkx

DO in Puffer und
A2 inkrementieren
D1 dekrementieren und
wenn D1 > 0, nochmal

£ill buf move.b DO, (A2)+

dbra D1,fill buf

* X X

rts

112 ATARI ST - Das Floppy-Arbeitsbuch

Programm (flopver):

hkkkkhkkhkhkkkkkkkhkhkhkkkkkhhkkkkhkhkhkkkkkhkhkhkkkkhkhkkkkkhkkkkkkkhkkkkkkkx

* *
* flopver, Priifen (Verifizieren) von Sektoren *
* *
* Format: *
* *
* +———t + + + B e e Rt e Lt L *
* | RSP |puffer |filler |dev|sec|tck|sid|cnt]| *
* B et et B B R e e e T *
* ~ *
* SSP *
* *
A KA A A AR KA AR KA AR A KA AKRAKAAKR A AR A R AR AR A AR AR AR Ak kA Ak kkkhkhkkkkkkk
flopver bsr change * Diskette gewechselt?
moveq.l #S$F5,D0 * Read Error als
* default_error
* und curr_error
bsr param * Parameter holen und
* setzen
bsr select * Seite und Drive
* selektieren
bsr seek_tr * Track suchen
bne flopfail * bei Fehler Ende
bsr verify * verifizieren
bra flopok * alles OK und Ende

dhkhkhkkkkkhkkhkkkkkkhkkkkhkhkhkkkhkhkkhkkkkx

* *
* Verifizieren der Sektoren *
* *

khkkkkkkhkhkkhkkhkhkhkkhkkhkhkkdhkkhkhkkkkkk

verify move.w #SFFF5,default_ error* default_error auf

bsr FDC_out SR schreiben

* Read error
move.l curr_dma,A2 * A2 = Adresse fiir die
* Bad-Sector-List
addi.l #$200,curr_dma * curr_dma auf néchsten
* Sektor
wal move.w #2,retry count * 2 Versuche
move.w #$84, (A6) * SECTOR-Register
* adressieren
move.w curr_sektor,D7 * Sektornummer in das
*
w42 move.b dma_low, $SFF860D * DMA-Adresse setzen

move.b dma_mid, SFF860B *

move.b dma_high, $SFF8609 *

Routinen des XBIOS mit Beispielen 113

w43

test2

w44

move.w #$90, (A6) * DMA-Puffer l1l&schen

move.w #$190, (A6) * und

move.w #$90, (A6) * SCR adressieren

move.w #1,D7 * Sector-Count-Reg. auf

bsr FDC_out * 1 setzen

move.w #$80, (A6) * CR/SR adressieren

move.w #$80,D7 * Read-Sektor in das

bsr FDC_out * COMMAND-Reg. schreiben

move.l #$40000,D7 * zihler initialisieren

btst #5, SFFFAQ1 * FDC fertig?

beq - test2 * wenn ja dann test2

subqg.l #1,D7 * Zihler dekrementieren

bne w43 * wenn Zdhler >0 dann w43

bsr reset_1772 * sonst Ubertr. beenden
* (FDC-Reset)

bra repeat * ndchster Versuch

kkkkkhkkkkkhkhkkhkkkkhkkkkkhkhkkkkkhkhkkkkkhkkkkkkkkk

* *
* Testen, ob ein Fehler aufgetreten ist *
* *
* *

kkkkhkhkhkkhkhkhkkkkkkhkkkkhkkkkhkkkkhkhkkkkkkkkkkkkhkxk

move .w #$90, (A6) * DMA-Status-Register
move.w (a6),DO * lesen und testen, ob
btst #0,D0 * DMA-Error
beq repeat * wenn Fehler, dann
* nachster Versuch
move . w #$80, (A6) * SR adressieren
bsr get_FDC * und lesen
bsr Fehlernr * Fehlernummer?
and.b #$1C,DO * Bits 2,3,4
* Lost Data, CRC, Record
* not found testen
bne repeat * wenn Fehler dann
* ndchster Versuch
addqg.w #1,curr_sektor * ndchster Sektor in
* curr_sektor
subg.w #1,curr_count * noch ein Sektor weniger
bne wil * wenn noch ein Sektor zu
* yerifizieren ist, dann
* W4l
subi.l #5200, curr_dma * DMA-Zeiger wieder um
* einen Sektor zurilick
clr.w (A2) * Bad-Sector-List mit O
rts * beenden

114 ATARI ST - Das Floppy-Arbeitsbuch

khkkkhkkkhkhkkhhhkkhhkkhkhhkkkkkhkhkkkhkhhkhkkhhhkkkhkhkhhkkkhhkkkkkkhkkkkkkx

* *
* Testen, ob zweiter Versuch *
* *
* Wenn beim zweiten Versuch ein Fehler auftritt, wird *
* diese Sektornummer in die Bad-Sector-List geschrieben *
* *
AKKK KA KK A KA A KRR KA AKRKI A KRR AR A Ak ARk A Ak kkkhkhkkkkhkhkhkkkkhkhkhkhhkkkkhkkhkkk
repeat cmpi.w #1,retry count * Wenn kein Versuch mehr

bne w45 * méglich, dann kein
reseek

bsr testseek Test, ob Seek Error
w45 subg.w #1,retry count ein Versuch weniger

bpl w42 wenn noch ein Versuch

méglich, dann w42
curr_sektor in
Bad-Sector-List

move.w curr_sektor, (A2)+

* Ok ok H ¥ *

bra wéd

AAkkAAAkKk A Ak kA AR KA AR A A Ak hkkkkkkkkhhkhkkkhkkkkokkkhkkkkhkkkkkhkhkkkkkkx

* *
* Floppy Vertical Blank Handler *
* *

khkkkhkkkhhkkhkhkhkhkhkhhhkhhkhkhkhkhhkkhhkkhkhkhkhhhkkkkkhkhkkhkhkkhkkhkkkkkkkx

flopvbl suba.l A5,A5 * A5 1l6schen
lea SFF8606,A6 * DMA-Modus/Status Reg.
st motor_on_flag * motor_on flag setzen
tst.w flock * Systemvar. flock ist
* dann <> 0, wenn gerade
* ein Floppy-Zugriff
* stattfindet
* bei flock <> 0
bne w54 * nichts machen
move.l frclock,DO * die Systemvariable
* frclock enthdlt die
* Anzahl der ausgefiihrten
* VBL-Routinen
move.b DO, D1
and.b #7,D1 * mod 8
bne w52 * wenn noch nicht
* 8. Interrupt
move.w #$80, (A6) * sonst CR/SR adressieren
1sr.b #3,D0 * Bit 4 isolieren

and.w #1,D0
lea wp_st_tab,A0
adda.w DO, A0

* wp<Status-Tabelle

* DO=1 => A0 Adresse des
* wp-Status von Floppy B
* DO=0 => AO Adresse des
* wp—-Status von Floppy A

Routinen des XBIOS mit Beispielen

115

cmp . w

bne
clr.w

w51 addqg.
1sl.b
eori.
bsr

move.
btst
sne

move.
bsr
move.
or.w
test.

w52

bne
bsr
btst
bne
move.
bsr
move.
clr.w
rts

w53
w54

b

b

w

nflops,DO

w51
DO

#1,D0
#1,D0
#7,D0
setdrive
SFF8604,D0
#6,D0

(A0)

D2,D0
setdrive
wp_st_tab,DO0
DO,wp_latch
deselflag

w53

get_FDC

#7,D0

w54

#7,D0
setdrive
#1,deselflag
motor_on_flag

H Ok O R % ¥ O R X X O 2 b OF OF O X O Ok O b ¥ F F F A F

die Systemvariable
nflops enth< die
Anzahl der Floppies
wenn Floppy B
angesprochen aber
nflops=1 -> DO 1l&schen
sonst w51

00 -> 010 => Drive A
01 -> 100 => Drive B
invert. da low-aktiv
Drive selektieren

SR lesen
Schreibschutz testen
und in die wp-Status-
Tabelle schreiben
vorh. Select-Status
wieder herstellen
wp_st_tab in wp_latch

Floppies schon
deselektiert

dann weiter

SR lesen

wenn Motor on, dann
Ende

beide Drives
deselektieren
deselflag setzen
motor_on flag l&schen

KAk KA KKK A KKK AA Rk Ahkhhkhhkkkhkhkhhkkhhhkhhhkhkkhkhhkhhkkkhkhhkhkhkkhkkhkhkkkkk

*
*
*
*
*
*

param
suba.
lea
st
move.
move.
move.

move.
move.

1

£ = g

Einstellen der Floppy-Parameter

retry_count - 2

movem.l D3-D7/A3-A6,sav_addr*

A5,A5

SFF8606,A6
motor_on_flag
DO,default_error
DO, curr_error
#1, flock

* % & % % b O % ¥ %

$8 (A7) ,curr_dma
$10(A7) ,curr_device

KAk kI A AKRKAKk A Kk hhkA Ak kAR Ak kkkkhkhkhkkkhkhkkhkhkkkhkhkkhkkkkkhkkkkkkkkhkxkx

*
*
*
*
*
*

Register retten

A5 16schen

A6 = DMA-Modus/Status R.
motor_on_flag setzen

DO als default_error
und curr_error
VBL-Routine d. Setzen
der Systemvariable flock
sperren

curr_dma vom Stack holen
curr_device holen

116

ATARI ST - Das Floppy-Arbeitsbuch

move .
move.
move.
move.
move.

£ 5%

lea
tst.w
beq
lea

w6l
move .w

1sl.w
1sl.w
move.l
adda.l
move.l
tst.w
bpl
bsr
clr.w
bsr
beq

moveq.l

bsr
bne
bsr
beq

w62 move.w

w63 rts

moveq. 1l

$12 (A7) ,curr_sektor *

$14 (A7) ,curr_track
$16 (A7) ,curr_side
$18 (A7) ,curr_count

#2,retry_count

dectO,Al
curr_device
w6l

dctl,Al

#0,D7
curr_count,D7

#8,D7
#1,D7
curr_dma,A0
D7,A0
AQ,e_dma
$0 (A1)
w63
select
$0 (A1)
restore
w63
#10,D7
w80

w62
restore
w63

#SFF00, $0 (A1)

Ok Ok Ok F X % %

O R A R X 3k Ok R Ok Ok R % Ok ¥ % F ¥ ¥

*

curr_sektor holen
curr_track holen
curr_side holen
curr_count holen

Anzahl d. Wiederholungen
auf 2 setzen

wenn curr_device = 0
dann Al = dct0

sonst Al = dctl

0000 im oberen Wort,
curr_count im unteren
Wort wvon D7

mal 512 ergibt Bytes

DMA-Startadresse in A0
plus Bytes

ergibt DMA-Endadresse
aktueller Track > O
dann w63

sonst select

aktueller Track = 0
Track Null suchen

kein Fehler, dann w63
Track 10

suchen

bei Fehler w62

sonst Track Null suchen
kein Fehler, dann w63

khkhkkkhkhkhkhkhkhkhkhkkhkkkhkhkhhkhkkhkhkhkhkhkkhkhhkhkhkkhkhkhkhkhkkkhkhkhkkkkhkhkkhkkkkhkkkkkxkx

*
*
*
*
*
*

Fehler ist aufgetreten

flopfail moveq.l #1,D0
bsr setdmtab
move .w curr_error,DO
ext.1l DO
bra w7l

% % Kk Kk Kk k % k %k %k Kk Kk k Kk %k k k k Kk Kk Kk ok k Kk Kk Kk Kk ok k Kk Kk Kk Kk ok %k gk Kk Kk ok Kk %k k Kk kK Kk ok ok ok ok ko ook ok ok ok ok ok

* % *

*
*
*
*
*
*

media_change auf
'unsure’' setzen
curr_error in
D0.1 schreiben

Routinen des XBIOS mit Beispielen

117

% K Kk % k Kk k Kk Kk Kk ok k k Kk k %k Kk Kk k Kk Kk ok %k kK k Kk ok ok ok Kk Kk kK k ok ok ke sk ok k ok gk sk ke ki ki ok ok k ok ki ki ok ki k ok ke ok

*

* Kein Fehler ist aufgetreten

*

*
*
*

KA A KKK AKRKR AR AR A IR AR AR KRR KA KA KA KA KA AR AR ARk khkkkkhkkkkkhkkkkkkkhkkk

clr.1
move.l
nmove.w
move.w
bsr
move.w
bsr
move.w
1lsl.w
lea
move.l

flopok
w7l

cmpi.w

bne

move.l
w72 move.l
movem. 1l

clr.w
rts

DO

DO, - (A7)
#$86, (A6)
$0(A1),D7
FDC_out
#$10,D6
do_FDCcmd
curr_dev,DO
#2,D0
acctim, A0
_hz_200,$0(a0,D0.w)

#1,nflops
w72
_hz_200,%4(A0)

%k %k kO R SR 3F R R O Ok F F

(A7)+,D0
sav_addr,D3-D7/A3-A6%
*

flock *

kein Fehler

0 ibergeben

Bits 1,2,7 DATA-Reg.
aktuellen Track in das
DR schreiben
Seek-Befehl

an den FDC senden
Drive-Nummer

als Index

Adresse acctim in AQ
_hz 200 ist der Z&hler
fiir 200-Hz-Systemtakt
wenn eine Floppy, dann

200-Hz~-Z&hler fir
anderes Drive
Fehlernummer holen
gerettete Register
zurickholen
VBL-Routine freigeben

IR A A KKK A A A KA A A AR IR KA AR ARk kA Ak hkhk kA k Ak kkkkkkkkhkhkkkkkkxkkkkk

*

* Kopf auf Track positionieren

*

*
*
*

% %k %k %k %k % %k Kk Kk Kk ok ok %k Kk Kk Kk Kk ok k k %k %k ok sk Kk k ok ok ok sk ok kK ok ok %k ok sk ok ok ok ok ok %k ok ok ok ok ok ok %k Kk k ke k ks k ok ok

find_tr
w80

move.w
nove.w
move.w
bsr
move.w
bra

curr_track,D7 *
#$FFFA, curr_error *
#$86, (A6) *
FDC_out *
#$10,D6 *
do_FDCcmd *

track in D7

bei Fehler Seek Error
Bits 1,2,7 TR adress.
D7 in TR schreiben
Bit 4 - SEEK-Befehl
an FDC senden

AAKKKKAKK KKK KK KA KA AR AAAKRAR A KAk khkkhkhkhkkhkhkhkkhkkhkhkhkkhkkkhkkhkkhkhkkkik

*

* Kopf auf Track 0 und dann auf 5
*

*
*
*

hkhkkkkhkhkhkhkhkkhkkhkkhkhkhkkhkkhkkkkhkkhkhkkkkkhhhkkkkhkhkhkhkkkkhkhkhkhkkhkkhkhkhkkkkk

testseek move.w
bsr
bne
clr.w

#$FFFA, curr_error
restore

w81

$0 (A1)

*
*
*
*

curr_error='seek error'
Kopf auf Track Null
wenn Fehler, dann Ende
aktueller Track = 0

118 ATARI ST - Das Floppy-Arbeitsbuch
move.w #$82, (A6) * TR adressieren
clr.w D7 * 0 in
bsr FDC_out * TR schreiben
move . w #$86, (A6) * DR adressieren
move.w #5,D7 * 5 (ziel-Track)
bsr FDC_out * in DR schreiben
move.w #$10,D6 * Bit 4 -~ SEEK-Befehl
bsr do_FDCcmd * an FDC senden
bne w81 * bei Fehler Ende
move .w #5,%0 (A1) * aktuelle Track-Nummer=5
seek_tr move.w #SFFFA,curr_error * curr_error='seek error'
move.w #$86, (A6) * DR adressieren
move.w curr_track,D7 * Ziel-Track in DR
bsr FDC_out * schreiben
moveq.l #$10,D6 * SEEK Befehl
bsr do_FDCcmd * an FDC senden
bne w81 * bei Fehler Ende
move .w curr_track,$0(Al) * Kopfposition als
* aktuellen Track
and.b #$18,D7 * Bits 3,4 Priifsumme und
* Record not found testen
w81 rts * Zero flag = 0
*

bedeutet Fehler

Khkkkkhkhkhkhkhkhhkkhkhkhkkhkkhhkhhkkkhhkhkkkkhkhkkhkhkkhhhkkkhhkkhkkkhkkhkkkkkkhkkkk

*

* Kopf auf track 0
*

*
*
*

% %k %k %k %k Kk ok K ok %k %k gk Kk Kk Kk Kk ok ok ok Kk ok ok ok ke k ok ok ek ki k ki ok sk ok k ok ko ke ki ok ok ok k ko k ok ok ok ok ok ok ok ki k ok ki ke

clr.w
bsr
bne
btst
eori.b

restore

bne
clr.w

w9l rts

D6
do_FDCcmd
w9l

#2,D7
#4,CCR

w9l
$0 (Al)

Ok % Ok Ok Ok %

Restore Kommando an
FDC senden (D7 SR)
bei Fehler Ende

Track 00 Bit testen
Bit 4 'Zero-Flag'
invertieren

wenn Track<>00 -> Ende
sonst aktuellen Track
{ibernehmen

hhkkkkkhkhkkhkhkhhkhkkhkhkhkkkkkhkhkkkhkhkhkhkkhkhkhhkhhkhkhhhkkhhhkhhkkkhkkhkkkkkhkkkx

Kommando an FDC senden

Status Register in D7 zuriick

*
*
*
* Befehl in D6
*
*
*

KAKKAKRAKRA KA IR A KA KA KRR KA KRR AR A KA KA KRR Ak ARk kA k kA khkkkkkhkkkkkkhkkkkkx

do_FDCcmd move.w
and.b
or.b
move.l

$2(a1),DO0
#3,D0
DO,D6
#$40000,D7

*
*
*
*

*
*
*
*
*
*
*

Step Rate in DO

Bit 0 und 1 isolieren
in den Befehl einbauen
Timer initialisieren

Routinen des XBIOS mit Beispielen

119

move .w
bsr
btst
bne
move.l

wl01 bsr

wl02 subqg.l
beqg

btst
bne

rts
wl03 bsr

moveq.1l

rts

#580, (A6)
get_FDC
#7,D0

wlO01
#$60000,D7
D6->FDC
#1,D7

w103

#5, SFFFAQO1
wl02
reset_1772

#1,D6

* Ok H ¥ Ok Sk % % X X X X

* ¥ O X

CR/SR adressieren

SR lesen

Bit 7 Motor_on testen
ja, dann weiter

sonst Timer erhd&hen
Befehl von D6 in CR
Timer dekrementieren
wenn abgelaufen, dann
Ende

IO-Port/FDC fertig?
wenn nein, dann weiter
warten

Ubertragung beenden
(FDC Reset)

Zero Flag l&schen
bedeutet Fehler

KA kA A A A KA KA KA AKR AR A KA AR Ak kA A Ak Ak Ak k Ak hkkhkkhkkkkkkkkkkhkkkkkkkkhkkkkx

*

* FDC Reset
*

*
*
*

khk A hkAAA KAk A kAR ARk khkhhkhkkkkhhhkkhdhkhhkkkkhkhkhkhkkkkkkkhkkhkkhkhkkkkkkxk

reset_1772 move.w
move . w
bsr

move .w
dbra

bsr

rts

wlll

#3580, (A6)
#$D0,D7
FDC_out
#15,D7
D7,wlll
FDC->D7

* Ok Ok Ok ¥ ¥

CR/SR adressieren

4,6,7 Reset Befehl

an FDC senden
Verzdgerungszéhler von
16 auf 0 dekrementieren
SR in D7

khkkkhkhkkAAkhkhkhkhkkhkAkAkkhkhkkhkkkkkkhkkhkhkkhAhkkkkhkhkhkkkhkkhkhkkhkhkhkhkkkkkkxkx

*

* Seite und Drive selektieren

*

*
*
*

kkkkkhkkkhhkhkhkhkAhkhkhkkhkhkkhkkhkkkhkkkkhkhkhhkhkhkhkkkkkkkhkkhkhkkkhkkhkhkhkhkdhkxx

select clr.w deselflag
move.w curr_device,DO
addq.b #1,D0
1sl.b #1,D0
or.w curr_side,DO
eori.b #7,D0
and.b #7,D0
bsr setdrive

deselflag l1ldschen
Drive Bit

00 -> 010 Drive A
01 -> 100 Drive B
Seitennummer in Bit
0 invertieren, da
low—-aktiv

nur Bits 0 bis 2

in Port A des
Soundchips setzen

* Ok Ok A X Ok ok 2k Ok %

120

ATARI ST - Das Floppy-Arbeitsbuch

move.w
move.w
bsr
clr.b

wl71 move.w
move.
bsr

move.
move.
move.
rts

£

o oo

#$82, (A6)
$0(Al1),D7
FDC_out
tmp_dma

#$84, (A6)

curr_sektor,D7
FDC_out
curr_dma_low, $SFF860D
curr_dma_mid, $FF860B

TR adressieren
aktuelle Track-Nr.
in TR schreiben
tmp_dma High-Byte
16schen

* X ¥ X X

Sektor-Register
adressieren

Sektor in

Sektor-Re. schreiben
DMA-Register setzen

* Ok %k O O

curr_dma_high, $FF8609

hhkkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkkhkkhkhkkhkkkhkkhkkkhkkkkkhkhkhkkhkkkhkkkhkkkkkhkkkkkkkkk

Port A im Sound Chip setzen

*
*
*
* Neue Bitkonfiguration in DO
*
*

%k %k K k %k Kk Kk Kk Kk Kk k% Kk k Kk Kk sk sk k kK ok ok Kk ok ok ok gk ok kK ke ok gk ke ke ke ke ok sk ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok

setdrive move.w

ori.w

move .b

move.b
move.b
and.b
or.b

move.b
move .w

rts

SR, - (A7)
#3700, SR

#14,SFF8800

$FF8800,D1
D1,D2
#$F8,D1
DO,D1

D1,$FF8802
(A7) +,SR

¥ Ok Ok % % Ok ok 3F OF % % X OF Ok % b % O % % X ¥ X X

*
*
*
*
*
*

Statusregister retten
Interrupt-Mask = 111
setzen d.h. Interrupt-
Level 7, also sperren
aller Interrupts

da die Adresse $FF8800
beim Lesen immer das
zuletzt angesprochene
Register des Soundchips
adressiert

also Interrupt sperren,
damit kein anderes
Register angesprochen
werden kann

Register 14 (Port A) des
Soundchips adressieren
Port A lesen

und in D2

Bits 0 bis 2 18schen
und durch neue Bits
ersetzen

und in Port A schreiben
Statusregister
regenerieren

Routinen des XBIOS mit Beispielen 121

hhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkkkhkhkkkkhkhkhhkhkhkkhkhkhkhkkkkkhkhkkhkkkhkhkhkhkkkkkkkkkkk

* Die Verzdgerungsschleife ist eingebaut da der FDC nach *
* Erhalt des Force Interrupt-Kommandos bei FM-Format *
* 32 Us und bei MFM-Format 16 WUs lang kein anderes *
* Kommando empfangen darf, da sonst das Force Interrupt- *
* Kommando nicht ausgefiihrt wird. *
* *
* Allerdings ergibt das einen Zeitverlust bei der Ausfithrung*
* der Befehle zumal die Ausfilhrung der Warteschleife *
* erheblich l&dnger dauert (422 Taktzyklen = ca. 52.75 Hs) *
* *
* Befehl Taktzyklen *
* bsr 18 => 18 *
* move.w SR,-(a7) + 8+6 => 14 *
* move.w D7,-(a7) + 8 => 8 *
* move.w #$20,D7 + 8 => 8 *
* move.w (a7)+,D7 + 8 => 8 *
* move.w (a7)+,SR + 1244 => 16 *
* rts + 16 => 16 *
* dbra D7, 32mal branch + 10*32 => 320 ca.1l0 *
* dbra d7 lmal nicht branch + 14 => 14 *
* ———— *
* 422 *
* *
AAKAAAKRAKAKRAKA KA AA AR KK AR A ARk Ak AkAhkkkhkhkhkkhkhkhkhkkkhkhkkkkhkhkkkhkhkkhkkkhkkx

D6->FDC bsr wait * Verzogerungsschleife
move . w D6, $FF8604 * D6 in adressiertes
* Register schreiben
bra wait * Verzdgerungsschleife
FDC_out bsr wait * Verzogerungsschleife
move.w D7,SFF8604 * D7 in adressiertes
* Register schreiben
bra wait * Verzdgerungsschleife
FDC->D7 bsr wait * Verzdgerungsschleife
move .w $FF8604,D7 * adressiertes Register
* in D7 lesen
bra wait * Verzdgerungsschleife
get_FDC bsr wait * Verzdgerungsschleife

*

move .w $FF8604,D0 adressiertes Register

* in DO lesen

wait move .w SR, - (A7) * Statusregister retten
move .w D7,- (A7) * D7 retten
move .w #$20,D7 * Zdhler initialisieren
wl81 dbra D7,wl81 * Schleife
move .w (A7) +,D7 * D7 zurickholen
move .w (A7) +, SR * Statusregister
*

zurickholen

122 ATARI ST - Das Floppy-Arbeitsbuch

KAk kkhkAA Ak Ak Ak kkhhkhkhkkkhkhkhkhkkkhkkhkkkkkkhkhkkhkkhkhkkhkkhkkkkkhkkhkkkkhkkxkkk

* *
* Bei Aufruf einer Floppy-Routine *
* testen, ob Diskette von A nach B oder von B nach A *
* gewechselt (bei einem Drive). *
* und wenn, dann Aufforderung zum Wechseln *
* *
* *

% % % %k %k %k %k %k Kk Kk Kk %k %k ok ok Kk Kk ok Kk ok Kk ok ok ok sk Kk Kk Kk k ok ok ok k k ok ok ok k Kk ok ok ok ok ok ok ok ok ok ok ok ok k ko ok ok ok

change cmpi.w #1,nflops * wenn nicht eine Floppy,
bne term * dann fertig
move .w $10(A7),DO * sonst Drive-Nummer mit
cmp . w disknum, DO * Disketten-Nummer
* vergleichen
beq wl91l * werin gleich, dann wil9l
move .w DO, - (A7) * sonst Drive-Nummer auf
* den Stack
move .w #SFFEF, - (A7) * Fehlernummer -17
* 'Diskette einlegen'
bsr h _error * Fehler berichtigen
addg.w #4,A7 * Drive und Fehlernummer
* auf Stack vergessen
move . w #SFFFF,wp_latch * Drives A und B sind
* 'unsure'
move .w $10 (A7) ,disknum * Disketten-Nummer auf
* Drive-Nummer
wl9l clr.w $10 (A7) * Drive-Nummer auf O
* Drive = A
term rts

% %k Kk ok k ok %k Kk ok ko k Kk ok ok sk ok k ok Kk ok ok ok sk ok sk ok ok ok ok ok sk k ok ok sk ok ke k sk ok ok ok k k sk ok sk ok ok ok ko ok ok ok ok ok
* *
* Drive-Modus setzen *
* *
* Drive-Modus in DO *
* *
* *

kkkkkkhkhkhkhkhkhkhkkhkhkhkkhkkhkhkkkkhkhkhhkhkkkhkhkhkAAAkkkkkkkkkhkkhkkkkhkkkkk

setdmtab lea dm_tab, A0 * Disk_mode_ tabelle in A0
move .b DO, - (A7) * DO auf den Stack
move.w curr device,DO * dm_tab mit Drive
* indizieren und
move.b (A7)+,%$0(A0,D0.w) * Drive-Modus dorthin
* schreiben

rts

Routinen des XBIOS mit Beispielen 123

Kk khkAhkkhkkhkhhhkhkhkhkkkkhhkhkhkkkkkhkhkhkhkhhkkhkhkhkkkkhkhkkhkkkkkhkhmkkkkhkkkkxk

* *
* Einsprung in die Error Handling Routine , die versucht *
* Fehler zu korrigieren (z.B. 'Insert Disk B in Drive A) *
* *

Ihkkhkhkhkkhk kAR hkkhkhkhkhkhk kA hkhkhkhkhkkkhkhkkkkhkkkkkkkhkkhkkhkkkhkkkhkkhkkkhkkkhkkkkkkx

etv_critic ist ein
Systemvektor, der auf
die Routine zur

h error move.l etv_critic,- (A7) *
*
*
* Fehlerbehandlung zeigt
*
*
*

moveq.l #SFF,DO

rts dieser Vektor wird bei

rts angesprungen

Ein XBIOS-Fehler

Wenn Sie die Leseroutine des XBIOS etwas genauer betrachten, kénnen Sie
einen groben Programmierfehler erkennen. Bei den Kommandos Read Mul-
tiple und Write Multiple bricht der FDC die Ausfiihrung erst ab, wenn die
Nummer des Sektors grofer als die maximale Anzahl der Sektoren je Spur ist.
Das XBIOS des ATARI vergleicht nun die aktuelle DMA-Adresse mit der
DMA-Adresse, die sich aus der Anzahl der Sektoren, mit 512 multipliziert,
errechnet. Ist diese Adresse erreicht, wird dem FDC ein RESET-Kommando
gesendet, was die Dateniibertragung von und zur Diskette sofort abbricht.
Anschliefend miifiten die 2 CRC-Bytes zur Uberpriifung der Daten gelesen
werden, was der FDC nun jedoch unterldaft. Somit wird ein eventueller Priif-
summenfehler im letzten Sektor nicht mehr erkannt!

Dieser Bug tritt jedoch nur bei den Routinen auf, die die Multiple-Befehle ver-

wenden. Die flopwr-Routine arbeitet z.B. ohne Multiple-Option. Dort wird je-
der Sektor einzeln eingelesen.

Nun noch die Adressen der Routinen in den verschiedenen TOS-Versionen:

neues TOS altes TOS ROM
Name 196480 Bytes 207128 Bytes
floprd $7424 $62D2 $FC159E

flopwr $750A $63B0 $FC167C

124 ATARI ST - Das Floppy-Arbeitsbuch

neues TOS altes TOS ROM
Name 196480 Bytes 207128 Bytes

flopfmt $75C2 $6468 $FC1734
flopver $775C $6602 $FC18CE
flopvbl $783E $66E4 $FC19B0
Fehlernr $74E8 $638E $FC165A
curr_error $09E0 $06A2 $09E0
curr_count $09CA $068C $09CA
e_dma $09D0 $0692 $09D0
tmp_dma $09DA $069C $09DA
sav_addr $09E2 $06A4 $09E2
retry_count $09B0 $0672 $09B0
default_error $09DE $06A0 $09DE
curr_sektor $09C6 $0688 $09C6
curr_track $09C4 $0686 $09C4
curr_side $09C8 $068A $09C8
curr_dma $09CC $068E $09CC
spt $09D4 $0696 $09D4
interleave $09D6 $0698 $09D6
virgin $09D8 $069A $09D8

Routinen des XBIOS mit Beispielen

125

neues TOS altes TOS ROM
Name 196480 Bytes 207128 Bytes
motor_on_flag $09BE $0680 $09BE
flock $043E $043E $043E
frclock $0466 $0466 $0466
wp_st_tab $09B2 $0674 $09B2
nflops $04A6 $04A6 $04A6
wplatch $09B4 $0676 $09B4
curr_device $09C2 $0684 $09C2
acctim $09B6 $0678 $09B6
_hz_200 $04BA $04BA $04BA
disknum $5622 $4692 $5622
dm_tab $4DBS $3E2A $4DB8
etv_critic $0404 $0404 $0404
det0 $0A06 $06C8 $0A06
detl $0A0A $06CC $0A0A

127

Kapitel 6

Ein FDC-Fehler

Eine besondere Eigenschaft des FDC ist ein Synchronisationsfehler, der "Hop-
pelfehler”. Er tritt nur bei dem Read-Track-Kommando auf. Bei diesem Be-
fehl werden bestimmte Bitfolgen als Synchronisationsmarkierungen interpre-
tiert, die jedoch keine sind.

Dieses Phinomen héngt von der Art der Datenspeicherung, dem MFM-Ver-
fahren, ab. Bei dem MFM-Verfahren kann normalerweise ein Datenbit drei
verschiedene Zustinde annehmen:

1. Das Bit ist gesetzt=> ' [’
Das Bit ist geloschtund ~ *

2. folgt nach einem Einsbit => ~—~
3. folgt nach einem Nullbit => I

A A

Um die Bedeutung der Synchronisation zu verdeutlichen, geben wir ein klei-
nes Beispiel. Der Lesekopf liest folgende Drittelbitfolge:

S e e e e e e eIt

Ohne Synchronisation kann die Folge folgendermafen interpretiert werden:

J S g R

128 ATARI ST - Das Floppy-Arbeitsbuch

Die Lese-Elektronik muf} also, wie man anhand des Beispiels leicht erkennt,
synchronisiert werden. Das heifit ihr mufl mitgeteilt werden, wann ein Bit
“beginnt und endet (im Beispiel sind die Bitgrenzen mit * gekennzeichnet).

Dafiir werden bestimmte Bitfolgen als Marken definiert, die der Lese-Elek-
tronik mitteilen, wann ein Bit beginnt. Als Sync-Markierungen sind beim FDC
die Bytes $A1 mit fehlendem Takt zwischen Bit 4 und 5 und $C2 mit fehlen-
dem Taktbit zwischen Bit 3 und 4 vorgesehen. Die Synchronisation erfolgt
aber auch beim Lesen der Bitfolge 000101001 in folgenden Bytes:

1. ~~mm 0 0010 1001 = $29 mit vorherigem geraden Byte

2. 00 0101 001~ = $52/$53 mit dem vorherigen Byte ein Viel-
faches von vier.

3. ~~~~~000 1010 O01~~ = $A4/$AS5/$A6/$AT mit dem vorherigen

Byte ein Vielfaches von acht.

Da der ADDRESS MARK DETECTOR nur bei dem Read-Track nach den
Sync-Markierungen sucht, tritt unter dem Read-Sector-Kommando der Fehler
nicht auf!

Betrachten wir das Byte $29 im MFM Format:

1 1 1 1 1 1 1 1]
[T T1 [] [T1L
o o™ oM ®

A
0 1 0 0 1

A

Diese Bitfolge erkennt der FDC als Adrefmarke.

Das letzte Bit des vorhergehenden Bytes und die ersten 7 Bits werden als néch-
stes Byte in das DATA-Register geschrieben (0001 0100 = $14).

Dann wird die Bytegrenze um zwei Drittel nach rechts verschoben (die néch-
sten zwei Drittel werden nicht erkannt).

TN nh'n e~

A A A A A A A A A CSET A Hier geht
o 0" 0" 1" 0 1M 0" 0" Tenwid es weiter.
ibersprungen.

Die folgenden Bytes erscheinen fiir den Lesekopf bis zur néchsten Sync-Marke
um ein Drittelbit nach rechts verschoben.

Ein FDC-Fehler 129

—auslwird0(d L > —T1)
— aus 0 mit fithrender 0 wird 1 (| I =>'T")
— aus 0 mit fihrender 1 wird0 (' > ")

A ~ A ~

Beim Byte $52/$53 tritt diegleiche Bitfolge ein Bit eher auf, was dazu fiihrt,
daB die folgenden Bytes um vier Drittel (genauer 1 Bit — da die Sync-Folge ein
Bit friiher auftritt — und 1 Drittel) nach rechts verschoben werden.

Beim Byte $A4/$A5/$A6/$A7 werden die folgenden Bytes um 7 Drittel (2 Bit
+ 1 Drittel) nach rechts verschoben.

Um zu zeigen, wie grofl die Verinderung der Bytes wird, geben wir zwei Bei-
spiele:

Beispiel 1:

Original: 00 29 00 01 02 04 08 10 20 40 80 00
gelesen: 00 14 7F FE 7C F9 F3 F7 CF 9F 3F FF

Beispiel 2:

Original: 02 90 00 01 02 04 08 10 20 40 80 00
gelesen: 02 14 7F FF E7 CF 9F 3F 7C F9 F3 FF

Um sicherzugehen, daf§ die Daten korrekt gelesen werden, sollte daher auf den
Gebrauch des Read-Track-Kommandos verzichtet werden.

131

Kapitel 7

Die Powerdisk

Die Powerdisk ist eine Beilage zum Floppy-Arbeitsbuch. Sie enthélt Program-
me, die man im tiglichen Umgang mit der Floppy des ATARI ST gut gebrau-
chen kann.

Einen komfortablen Diskmonitor, ein sehr gutes Filecopy, zwei schnelle und
benutzerfreundliche Kopierprogramme und ein Programm zur Untersuchung
und Manipulation der Diskette.

Auflerdem sind Beispielprogramme und Source-Listings aus dem Buch auf der
Powerdisk zu finden.

Wenn Sie nun das Inhaltsverzeichnis der Diskette angeklickt haben, so werden
Sie zwei Ordner und ein Programm erkennen kénnen. In dem Ordner Bei-
spiele finden Sie die Programme und Source-Listings aus dem Floppy-Ar-
beitsbuch.

In dem Ordner Powerdisk sind die zur Powerdisk gehorenden Programme zu
finden.

Bitte klicken Sie nun das Programm Power an. Nun wird das Hauptmenii der
Powerdisk geladen. Sie haben folgende Auswahlmoglichkeiten:

Copy-Menii:

- Filecopy
- Speedcopy
— Excopy

- Ende

Spezial-Menii:
— Diskmon
- The Clone

132 ATARI ST - Das Floppy-Arbeitsbuch

Maochten Sie Dateien kopieren, so klicken Sie bitte Filecopy an. Mochten Sie
normale Disketten kopieren, wihlen Sie bitte Speedcopy. Mochten Sie mit
groBerer Kapazitiit formatierte Disketten kopieren, so nehmen Sie Excopy.

Der Diskmonitor erlaubt Ihnen, Ihre Diskette unter die Lupe zu nehmen und
The Clone ist zur Manipulation und Untersuchung der Diskette zu benutzen.

Um die Powerdisk zu beenden, wihlen Sie bitte Ende.

Filecopy V2.0

Mit Hilfe dieses Programms kénnen Sie ein oder mehrere Files kopieren, um-
benennen oder 16schen.

Sie konnen auferdem Ordner erstellen, umbenennen, den Diskettennamen 4n-
dern und eine Diskette formatieren.

Haben Sie nun den Punkt Filecopy im Hauptmenu angeklickt, so haben Sie nach
dem Ladevorgang folgende Auswahlmgglichkeiten:

File-Meni Laufwerk-Menii
— Files kopieren A
- Files umbenennen B

- Files l6schen

- Diskette formatieren
- Directory

- Ende

Spezial-Meni

— Ordner umbenennen

- Ordner erstellen

— Diskettennamen &ndern

1. Files kopieren

Haben Sie diesen Punkt angewihlt, so erscheint das Filecopy-Window, und die
Directory wird vom Laufwerk A eingelesen.

Nun konnen Sie auswihlen, mit welchen Laufwerken Sie arbeiten mochten.
Klicken Sie nun im Punkt Quelldisk das Laufwerk B an, so wird das Inhalts-
verzeichnis von Drive B ausgegeben.

Die Powerdisk 133

Nachdem Sie die Laufwerkkonfiguration ausgewihlt haben, klicken Sie bitte
die gewiinschten Dateien im Fenster an. Diese werden dann fett unterlegt und
mit einem Hékchen versehen.

Sind mehr Dateien auf der Diskette, als in das Window passen, so kénnen Sie
den Slide-Bar an der rechten Seite des Fensters verschieben. Ausgewihlte Da-
teien bleiben angeklickt.

Ordner werden outlined dargestellt und kdnnen nicht kopiert werden! Die
Dateien, die sich in einem Ordner befinden, erscheinen unter dem Ordner-
namen. Haben Sie nun alle gewiinschten Dateien ausgewdhlt, so klicken Sie bit-
te den COPY-Button an.

Sie werden dann aufgefordert, die Disketten in die entsprechenden Laufwerke
einzulegen. Driicken Sie nun die Return-Taste, oder klicken Sie den OK-But-
ton an.

Jetzt konnen Sie auswihlen, ob Sie in einen Ordner kopieren wollen oder in
das Haupt-Directory. Mochten Sie in einen Ordner kopieren, so erscheint ein
Fenster, das die auf der Zieldiskette existierenden Ordner anzeigt. Den ge-
wiinschten Ordner kdnnen Sie durch Anklicken auswihlen. Schliefen Sie dann
bitte das Fenster. Nun beginnt der Kopiervorgang.

2. Files umbenennen

Haben Sie den Meniipunkt "Files umbenennen” angewihlt, so erscheint das In-
haltsverzeichnis der Diskette. Jetzt konnen Sie die Datei, die umbenannt wer-
den soll, durch Anklicken auswihlen. Beachten Sie dabei aber, dafl nur eine
Datei selektiert sein kann. Durch Driicken des rechten Mausbuttons oder An-
klicken der Close-Box verlassen Sie dieses Fenster.

Falls eine Datei angeklickt ist, erscheint nun ein Eingabefenster, in das Sie den
neuen Namen der Datei eingeben konnen. Durch Anklicken der Exit-Box kon-
nen Sie diesen Meniipunkt verlassen, ohne die Datei umzubenennen. Wenn Sie
dieses Fenster durch die Rename-Box verlassen, wird die Datei umbenannt.

3. Filesloschen

Mochten Sie Dateien 16schen, wihlen Sie bitte den Punkt "Files 16schen” aus.
In dem nun erscheinenden Fenster konnen Sie die Parameter "Laufwerk" und
Sicherheit" einstellen. Wenn "Sicherheit AN" ist, dann wird der Name einer
Datei angezeigt, bevor sie geloscht wird, und auf eine Bestitigung gewartet.

134 ATARI ST - Das Floppy-Arbeitsbuch

Verlassen Sie dieses Fenster durch EXIT, wenn Sie keine Dateien 16schen
wollen.

Nach Anklicken der ERASE-Box wihlen Sie die Datei durch Anklicken. Die
angeklickten Dateien werden geldscht, sobald Sie das Directory Window
durch Driicken der rechten Maustaste verlassen.

4. Directory

Wenn Sie das Inhaltsverzeichnis sehen méchten, so wihlen Sie bitte den Punkt
"Directory" an. Beachten Sie bitte, daB sich in dem angegebenen Laufwerk
auch eine Diskette befindet.

Es 6ffnet sich nun ein Fenster, das Ihnen folgendes anzeigt:

— den Diskettennamen (in der Fensterleiste)
— die Anzahl der freien und belegten Bytes (in der Infozeile)
— die Ordner und Programme, die sich auf der Disk befinden

Die Programme werden alphabetisch sortiert ausgegeben, Ordner kommen
wie im Desktop zuerst. Sie sehen nun den Namen des Programms, das Attri-
but, die Dateildnge sowie Datum und Uhrzeit der Erstellung.

Falls sich mehr Programme auf der Diskette befinden, als in das Fenster
passen, konnen Sie den Slide-Bar an der rechten Seite des Fensters
verschieben.

Maochten Sie sehen, welche Programme sich in einem Ordner befinden, so
klicken Sie diesen bitte einmal an.

Um den Ordner zu verlassen, schlieBen Sie bitte das Fenster. Dann befinden
Sie sich wieder im Haupt-Directory. Durch Driicken der ESC-Taste (Escape)
wird das Directory neu eingelesen.

Zum Verlassen des Directory-Fensters konnen Sie die rechte Maustaste driik-
ken oder das Fenster schlieflen.

5. Ordner erstellen

Wihlen Sie dann das Sub- oder Hauptdirectory, in dem der Ordner erstellt
werden soll. Beenden Sie Thre Auswahl durch Driicken der rechten Maustaste.
Danach geben Sie den Namen des Ordners ein. Dieser wird dann auf der Dis-
kette erstellt.

Die Powerdisk 135

6. Diskettennamen indern

Dieser Meniipunkt erlaubt Ihnen, den Namen der Diskette zu dndern. Geben
Sie den neuen Diskettennamen ein, der mit RENAME auf der Diskette erzeugt
oder, falls schon vorhanden, geéndert wird.

7. Ordner umbenennen

Zuerst erscheint ein DIRECTORY-Fenster, in dem Sie den Ordner auswihlen.
Der momentane Ordnername erscheint in der INFO-Zeile des Fensters.

Durch Driicken der rechten Maustaste wird der Name dann in ein DIALOG-
Fenster iibernommen, in dem Sie dann den neuen Namen eingeben.

8. Laufwerk auswihlen

Die Bestimmung des aktuellen Laufwerks erfolgt im Auswahlmenii in der
Kopfleiste unter "LAUFWERK".

Speedcopy V2.0

Mit diesem Kopierprogramm kénnen Sie Ihre Disketten schnell, komfortabel
und sicher kopieren.

Dies ist vor allem nétig fiir das Erstellen von Sicherungsduplikaten von wich-
tigen Disketten. Es ermdglicht Thnen auBlerdem, defekte Diskettten zu ko-
pieren, um wenigstens die noch funktionierenden Programme benutzen zu
konnen.

Dieses Kopierprogramm wurde entwickelt, da das eingebaute Desktop-Copy
einige Wiinsche offenldfit und manchmal auch nicht zur vollen Zufriedenheit
arbeitet.

Speedcopy V2.0 eignet sich nicht zum Kopieren geschiitzter Software. Es las-
sen sich nur Backups von "normalen" Disketten erstellen.

Nachdem Sie im Hauptmenii den Punkt Speedcopy angeklickt haben, erscheint
nach dem Ladevorgang die Copyright-Meldung des Programms.

136 ATARI ST - Das Floppy-Arbeitsbuch

Durch Driicken der Return-Taste gelangen Sie in das Hauptmenii des Copys.

Sie sehen nun den Bildschirm in vier Fenster aufgeteilt. Das Fenster links
oben, das COPY-Fenster, bietet die Auswahl zwischen dem Kopieren einer
einseitigen Diskette (SINGLE SIDE COPY) und dem Kopieren einer zweisei-
tigen Diskette (DOUBLE SIDE COPY). Auflerdem haben Sie die Moglichkeit,
sich mitteilen zu lassen, ob Ihre Diskette eventuelle Fehler aufweist.

Das zweite Fenster rechts oben, das CATALOG-Fenster, erméoglicht es Thnen,
das Inhaltsverzeichnis Ihrer Diskette anzeigen zu lassen.

In dem Fenster links unten, dem OPTIONS-Fenster, wihlen Sie die Laufwerk-
konfiguration aus, stellen ein, ob die Zieldiskette formatiert wird und ob die
Multi-Option (Mehrfachkopien) aktiviert sein soll.

Das vierte Fenster, das FAST PARAMETER-Fenster, bietet nun die Einstell-
moglichkeiten, ob Sie schnell lesen, schreiben oder formatieren méchten.

1. Das COPY-Fenster

Wenn Sie nun eine einseitige Diskette kopieren mochten, klicken Sie bitte den
entsprechenden Button an. Um eine zweiseitige Diskette zu kopieren, klicken
Sie bitte diesen Button an.

Wollen Sie sich mitteilen lassen, ob Fehler auf der Diskette vorhanden sind, so
klicken Sie bitte "Fehler ignorieren AUS" an. Jetzt wird bei einem auftreten-
den Fehler eine Meldung ausgegeben, und der Kopiervorgang wird abgebro-
chen.

Maochten Sie eine defekte, fehlerhafte Diskette kopieren, wihlen Sie bitte "Feh-
ler ignorieren AN" aus. Dann werden eventuelle Fehler auf der Diskette iiber-
lesen, aber sie werden nicht kopiert. Am Ende des Kopiervorgangs wird dann,
falls Fehler aufgetreten sind, ein kurze Meldung ausgegeben.

2. Das CATALOG:-Fenster

Wenn Sie das Inhaltsverzeichnis sehen méchten, so wihlen Sie bitte das ge-
wiinschte Laufwerk aus und klicken dann die Box mit dem ATARI-Symbol an.
Beachten Sie bitte, daB sich in dem angegebenen Laufwerk auch eine Diskette
befindet.

Die Powerdisk 137

Es 6ffnet sich nun ein Fenster, das Thnen folgendes anzeigt:

— den Diskettennamen (in der Fensterleiste)
— die Anzahl der freien und belegten Bytes (in der Infozeile)
— die Ordner und Programme, die sich auf der Disk befinden.

Die Programme werden alphabetisch sortiert ausgegeben. Ordner kommen
wie im Desktop zuerst. Sie sehen nun den Namen des Programms, das Attri-
but, die Dateilédnge sowie Datum und Uhrzeit der Erstellung.

Falls sich mehr Programme auf der Diskette befinden, als in das Fenster pas-
sen, konnen Sie den Slide-Bar an der rechten Seite des Fensters verschieben.

Mochten Sie sehen, welche Programme sich in einem Ordner befinden, so
klicken Sie diesen bitte einmal an.

Um den Ordner zu verlassen, schliefen Sie bitte das Fenster. Dann befinden
Sie sich wieder im Haupt-Directory.

Durch Driicken der ESC-Taste (Escape) wird das Directory neu eingelesen.

Zum Verlassen des Directory-Fensters konnen Sie die rechte Maustaste driik-
ken oder das Fenster schliefen.

Hinweis: Bei der Anzeige der freien und belegten Bytes kommt es zu Ab-
weichungen gegeniiber der Anzeige des Desktops, da das Desktop
den Platz von Ordnern und den darin enthaltenen Dateien im
Haupt-Directory nicht mitberechnet. Das Desktop zeigt immer
nur den Platzbedarf an, der sich aus den Groflen der einzelnen
Dateien addiert.

3. Das OPTIONS-Fenster

Hier wihlen Sie, mit welchen Laufwerken Sie arbeiten mochten, ob die Ziel-
diskette formatiert werden soll und ob die Multi-Option (Mehrfachkopien)
eingeschaltet werden soll.

Klicken Sie dazu bitte die gewiinschten Felder an.

4. Das FAST PARAMETER-Fenster

In diesem Fenster konnen Sie einstellen, ob Sie schnell lesen, schreiben und
formatieren wollen. Sie kénnen auch einzelne Parameter ausschalten z.B.
"Schnell Schreiben" auf AUS.

138 ATARI ST - Das Floppy-Arbeitsbuch

Diese Parameter verdoppeln die Geschwindigkeit der Floppy-Routinen. Eine
komplette einseitige Diskette wird, falls geniigend Speicher vorhanden ist, in
ca. 36 Sekunden kopiert (lesen und schreiben).

Falls Probleme auftreten, sei es beim Lesen, Schreiben oder Formatieren, so
schalten Sie bitte die Parameter auf AUS.

Es konnen vor allem beim Schreiben Probleme auftreten, zu 99% aber nur bei
Fremdlaufwerken, die eine langsamere Step-Rate als die ATARI-Laufwerke
besitzen und deshalb diese Geschwindigkeit nicht richtig verkraften.

5. Der Kopiervorgang

Haben Sie nun entweder das Feld fiir SINGLE SIDE COPY oder DOUBLE
SIDE COPY angeklickt, so wird dieses Menii verlassen, und es erscheint ein
Fenster, das Sie auffordert, die Quelldiskette einzulegen, wenn Sie nur mit
einem Laufwerk kopieren oder wenn Sie mit zwei Laufwerken kopieren wol-
len, werden Sie aufgefordert, beide Disketten in die Laufwerke einzulegen.
Driicken Sie die Return-Taste, um den Kopiervorgang zu starten, oder klicken
Sie mit der Maus das Feld ABBRUCH an, um wieder ins Menii zu gelangen.

Waurde der Kopiervorgang gestartet, sehen Sie ein Fenster, das Ihnen anzeigt,
auf welchem Track die Floppy gerade arbeitet.

Nach dem Einlesen der Diskette werden Sie aufgefordert, die Zieldiskette
einzulegen (nur beim Kopieren mit einem Laufwerk).

Haben Sie die Multi-Option eingeschaltet, so erscheint dieses Fenster so lange,
bis Sie genug Kopien gemacht haben. Dann miissen Sie ABBRUCH anklicken,
um das Schreiben der Daten zu beenden.

Falls die Diskette nicht ganz eingelesen wurde, erscheint wieder die Auffor-
derung, die Quelldiskette einzulegen.

Die Prozedur wiederholt sich.

Fehlermeldungen:

Folgende Fehlermeldungen konnen auftreten:

- Dies ist keine einseitige Disk
Sie haben versucht, eine zweiseitige Diskette mit dem SINGLE SIDE COPY zu
kopieren.

Die Powerdisk 139

— Dies ist keine zweiseitige Disk
Sie haben versucht, eine einseitige Diskette mit dem DOUBLE SIDE COPY zu
kopieren.

— Dies ist keine zweiseitige Floppy
Sie haben versucht, eine zweiseitige Diskette auf einem einseitigen Laufwerk
zu kopieren.

- Drive not ready
Thr Laufwerk reagiert nicht. Uberpriifen Sie gegebenfalls die Stecker und die
Stromversorgung.

- Track nicht gefunden
Dies ist ein Fehler auf der Diskette. Der Track ist nicht formatiert oder nicht
vorhanden.

- Sektor nicht gefunden
Ebenfalls ein Fehler auf der Diskette.

- Lesefehler
Der Track kann nicht korrekt eingelesen werden (Dies deutet meistens auf ei-
nen Fehler im Header des Tracks).

— Schreibfehler
Es wurde versucht, auf einen fehlerhaften Track oder Sektor zu schreiben.

- Disk ist schreibgeschiitzt
Bitte den Schreibschutz entfernen.

- Allgemeiner Fehler
Systemfehler.

Excopy V1.0

Mit Excopy konnen Sie mit Extended-Format formatierte Diskette kopieren.
Extended-Format bedeutet, da die Diskette mit 82 Tracks und 10 Sektoren
pro Track formatiert ist.

Als einzige Anderung gegeniiber dem Speedcopy kann man mit diesem Copy
das Directory nicht einlesen, sondern Sie konnen sich stattdessen das Format
der Diskette anzeigen lassen. Dazu wihlen Sie bitte das Laufwerk und klicken
dann die Box mit dem ATARI-Symbol an.

140 ATARI ST - Das Floppy-Arbeitsbuch

Diskmonitor

Wenn Sie aus dem SPECIAL-Menii den "DISKMON" gewihlt haben, so wird
der Disketten-Monitor und das dazugehorende Resource-File nachgeladen.
Kurz darauf befinden Sie sich im View Disk-Modus.

Der Bildschirm ist in drei Teile unterteilt, der hexadezimalen und der ASCII-
Anzeige sowie der Anzeige fiir Spur, Sektor, Seite und Laufwerk (Drive).

Der Diskmonitor 14dt nun den Sektor 3 von der Seite 0 auf Spur 1 in den Rech-
ner und zeigt diesen dann auf dem Bildschirm an. Sie kénnen nun das Direc-
tory der POWERDISK erkennen.

Der Diskmonitor versteht folgende Kommandos:
(Space) Der aktuelle Sektor wird noch einmal eingelesen.
r (Read) Es erscheint nun ein Fenster, in dem Sie die aktuellen Parameter

andern konnen. Diese sind Spur, Sektor, Seite, Laufwerk, die maximale
Spur und der maximale Sektor.

+ (Plus) Der Sektor wird um eins erhéht. Ist der Sektor groRer als der ma-
ximale Sektor, so wird der Sektor 1 auf der nichsten Spur angesprungen.

- (Minus) Der Sektor wird um eins erniedrigt. Wenn der Sektor dann klei-
ner gleich null ist, wird der maximale Sektor auf der vorherigen Spur an-
gesprungen.

T (Cursor Up) Die Spur wird um eins erhéht. Falls die Spur groBer als die
maximale Spur ist, so wird auf die Spur 0 gesprungen.

4 (Cursor down) Die Spur wird um eins erniedrigt. Ist die Spur kleiner als
null, so wird auf die maximale Spur gesprungen.

s (Side) Dieses Kommando wechselt die Seite.

d (Drive) Dieses Kommando wechselt das Laufwerk. Es kénnen Laufwerk
A oder B angewihlt werden.

f (Format) Mit dieser Routine koénnen Sie eine Spur mit beliebiger Sekto-
renanzahl (maximal 11) formatieren. Der von ATARI empfohlene Fiill-
wert zum Formatieren ist $E5.

Die Powerdisk 141

F (Fill) Damit fiillen Sie den im Speicher befindlichen Block. Dieser kann
dann mit dem W-Kommando auf die Diskette geschrieben werden.

w (Write) Dieser Befehl schreibt den im Speicher befindlichen Block auf die
Diskette. Sie konnen hier noch Spur und Sektor wihlen.

e (Edit) Mit diesem Kommando gelangen Sie in den Editier-Modus. Sie
konnen nun im Hexadezimal-Feld oder im ASCII-Feld die Daten durch
Uberschreiben dndern. Verlassen Sie den Edit-Modus mit RETURN oder
ENTER, so werden die gednderten Daten in den Speicher iibernommen,
und Sie kénnen den Block dann mit dem W-Kommando auf die Disk
schreiben. Mit dem Verlassen iiber die UNDO-Taste wird der alte Block
wieder angezeigt.

b (Boot) Dieser Befehl ermoglicht die Erstellung einer "boot"-fahigen Dis-
kette. Wenn Sie bei COMMAND.PRG das JA-Feld wihlen, so wird bei ei-
nem Booten der Diskette das COMMAND.PRG nachgeladen. Unter der
Seriennummer kénnen Sie eine beliebige hexadezimale Zahl eingeben. Ist
diese grofer oder gleich $01000000, so wird eine zuféllige Zahl auf die
Diskette geschrieben.

Zum Erstellen einer doppelseitigen Systemdiskette gehen Sie folgende
Schritte durch:

1. Formatieren Sie Ihre Diskette zweiseitig mit 80 Spuren und ¢ Sektoren je
Spur.

2. Kopieren Sie von der einseitigen Sytemdiskette die Datei TOS.IMG auf
Thre Diskette.

3. Starten Sie nun den Diskmonitor.

4. Laden Sie den Bootsektor (Spur 0, Sektor 1) von der einseitigen System-
diskette in den Speicher.

5. Legen Sie Ihre doppelseitige Diskette in das Laufwerk und schreiben den
Block mit dem W-Kommando auf Spur 0, Sektor 1, Seite 0.

6. Driicken Sie die b-Taste und wihlen dann den zweiseitigen Typ aus.

7. Wenn Sie nun das OK-Feld anklicken und Ihre Diskette nicht schreibge-
schiitzt ist, erstellt der Diskmonitor eine doppelseitige Systemdiskette.

S (Search) Es erscheint ein Fenster, in dem Sie den zu suchenden String und
die Suchrichtung eingeben koénnen. Fingt der String mit $ an, so wird die-

142 ATARI ST - Das Floppy-Arbeitsbuch

ser als Hexadezimalzahl interpretiert. Diese muf in jedem Fall eine gerade
Anzahl von Stellen aufweisen (z.B. $12AB). Ist die Anzahl ungerade, so
wird die letzte Stelle bei der Suche ignoriert.

Die Suche erstreckt sich je nach Richtung von der aktuellen Position iiber
den maximalen Sektor und die maximale Spur, bis entweder der String
gefunden oder in die Ausgangsposition zuriickgekehrt wurde.

Ist der String gefunden, so kénnen Sie mit der r-Taste die Suche fortsetzen
oder mit der e-Taste den gefundenen String editieren.

Der Suchvorgang kann iiber einen Tastendruck abgebrochen werden.

p (Print) Falls Sie den Inhalt Ihrer Disketten auch auf dem Papier haben
wollen, konnen Sie mit diesem Befehl den aktuellen Block entweder iiber
die parallele (Drucker) oder serielle (Modem) Schnittstelle ausgeben las-
sen. Mit einem Tastendruck kann der Ausdruck abgebrochen werden. Der
Ausdruck hat folgendes Aussehen:

Track: xx Sector: xx

0000: 41 42 43 44 45 46 47 77 78 79 7A : ABCDEFG . wxyz
0010: 30 31 32 33 34ciivennnnnn 3C 3D 3E : 01234 <=>
01F0: 61 62 63 64vvvruvennennennennss 6F : abcd o

v (View File) Mit diesem Kommando gelangen Sie in den View File-Modus.
Hier kénnen Sie eine beliebige Datei von einem beliebigen Laufwerk
(Floppy, Harddisk, RAM-Disk) auswihlen. Danach wird diese Datei ge-
offnet, und die ersten 512 Bytes werden auf dem Bildschirm angezeigt.
Die Anzeige fiir Spur, Sektor, Seite und Laufwerk ist verschwunden, statt-
dessen erscheint nun der Name der Datei und die Position des Blocks.

g, x und UNDO beenden den Diskmon.
Im View File-Modus existieren folgende Kommandos:

+ Die néchsten 512 Bytes der Datei einlesen.

- Die vorherigen 512 Bytes einlesen.
— An das Ende der Datei gehen.

« An den Anfang der Datei gehen.

Die Powerdisk 143

g An eine beliebige Position innerhalb der Datei gehen.
x Datei schlieBen und neue Datei auswahlen.

e Block editieren (wie unter View Disk). Wird der Edit-Modus mit RE-
TURN oder ENTER verlassen, erscheint eine Abfrage, ob der geénderte
Block auf die Diskette zuriickgeschrieben werden soll. Wenn Sie diese
Frage mit JA beantworten und die Datei den read only-Status hat, so er-
halten Sie eine Fehlermeldung. Eine Datei mit read only-Status kann nicht
editiert werden!

s Durchsuchen der Datei nach einem beliebigen String. Es gilt hier das
gleiche wie unter View Disk, nur wird hier nicht iiber die Sektoren ge-
sucht, sondern iiber den File-Pointer.

p Auch eine Datei konnen Sie zu Papier bringen. Es wird der angezeigte
Block ausgedruckt, per Tastendruck kénnen Sie den Vorgang abbrechen.
Eine genauere Beschreibung des p-Kommandos wurde bereits unter View
Disk gegeben. Mit q oder UNDO kehren Sie in den View Disk-Modus
zurick.

The Clone

Dieses Programm erlaubt dem Benutzer vielféltige Moglichkeiten der Mani-
pulation und des Untersuchens von Disketten.

Es kénnen ein oder mehrere Tracks formatiert werden, ein Track kann ko-
piert werden, Tracks kénnen nach Fehlern untersucht werden, eine ganze Dis-
kette kann auf Fehler iiberpriift und nach Wahl formatiert werden.

Nach dem Ladevorgang haben Sie folgendes Auswahlmenii:

— Format Track
- Copy Track

- Scan Track

- Scan Disk

- Format Disk
- Ende

144 ATARI ST - Das Floppy-Arbeitsbuch

1. Format Track

Mit diesem Befehl haben Sie die Moglichkeit, Tracks zu formatieren und dabei
alle Parameter nach Wahl einzustellen.

Die Parameter diirfen dabei folgende Werte annehmen:

Starttrack: von 0 bis 83
Endtrack: von 0 bis 83

Der Endtrack darf nie kleiner als der Starttrack sein.

Anzahl der Sektoren: von 1 bis 11

Interleave: von 1 bis 11

Data: Zahlen von 0 bis 9 und Buchstaben von a bis f
bzw. A bis F.

Laufwerk: A oder B

Seite: O oder1l

Nach Eingabe der Parameter miissen Sie den Formatieren-Button anklicken.
Nun werden Sie aufgefordert, die Diskette einzulegen. Driicken Sie Return,
um den Formatiervorgang zu starten, oder klicken Sie mit der Maus auf den
Stop-Button, um abzubrechen.

2. Copy Track

Damit konnen Sie einen Track von einer Spur und Diskette auf eine beliebige
andere Spur und Diskette kopieren.

Es stehen Thnen folgende Parameter zur Verfiigung:

Lese Track: von 0 bis 83
Schreibe Track: von 0 bis 83
Startsektor: von 0 bis 11

Anzahl der Sektoren: von 1bis 11

Bitte beachten Sie, daf die Summe von Startsektor und Anzahl der Sektoren
den Wert 12 nicht iibersteigt, sonst erhalten Sie eine Fehlermeldung.

Quelldisk: A oder B
Zieldisk: A oder B
Seite: 0 oder 1

Die Powerdisk 145

Bitte klicken Sie nun den Kopieren-Button an. Sie werden dann aufgefordert,
die Quelldiskette einzulegen. Wurde der Track korrekt eingelesen, erscheint
die Meldung, die Zieldiskette einzulegen.

Driicken Sie nun ebenfalls auf OK.

3. Scan Track

Diese Funktion erlaubt, Tracks und Sektoren auf Fehler und auf Vorhanden-
sein zu untersuchen.

Folgende Parameter stehen zur Verfiigung:

Starttrack: von 0 bis 83
Endtrack: von 0bis 83

Der Endtrack darf nicht kleiner als der Starttrack sein.

Startsektor: von 0 bis 11
Endsektor: von 0 bis 11

Der Endsektor darf nicht kleiner als der Startsektor sein.

Laufwerk: A oder B
Seite: 0 oder 1

Wihlen Sie nun den Scan-Button, um den Vorgang zu starten.

In der unteren Zeile wird dann angezeigt, auf welchem Track und Sektor ge-
rade gelesen wird. Tritt ein Fehler auf, so wird eine Meldung ausgegeben.
Driicken Sie biite die Return-Taste. Nun konnen Sie wihlen, ob Sie weiter-
machen wollen oder ob Sie unterbrechen wollen.

Klicken Sie dazu bitte den entsprechenden Button an. Am Ende des Scan-
Vorgangs oder nach Abbruch driicken Sie bitte eine Taste.

4. ScanDisk

Hiermit wird eine ganze Diskette nach Fehlern durchsucht. Auf dem Bild-
schirm wird angezeigt, ob ein Sektor belegt, frei oder fehlerhaft ist.

146 ATARI ST - Das Floppy-Arbeitsbuch

Treten beim Lesen Fehler auf, so wird dies durch ein Fragezeichen (?) ange-
zeigt. Ein belegter Sektor wird durch ein Pluszeichen (+), ein freier Sektor
durch ein Minuszeichen (-) angezeigt.

Am Ende des Scan-Vorgangs miissen Sie eine Taste driicken.

5. Format Disk

Sie konnen eine Diskette mit 40, 80 oder 82 Tracks einseitig oder zweiseitig
formatieren. Bitte legen Sie eine nicht schreibgeschiitzte Diskette in das ge-
wihlte Laufwerk und klicken den Format-Button an.

Um dieses Menu zu verlassen, wihlen Sie Ende.

AuRer im Punkt "Format Disk" kann iiberall das Directory eingelesen werden.

Im Farbmodus muf beachtet werden, dal die Programme nur in der mittleren
Auflosung funktionieren.

Bei The Clone sind in Farbe die angegebenen Buttons gesetzt:

— Format Track Die hellen Buttons sind angewhit.
— Copy Track Die dunklen Buttons sind angewihilt.
— Scan Track Die dunklen Buttons sind angewdhilt.
—Disk Scan Die hellen Buttons sind angewéhit.

— Format Disk Die roten Buttons sind angewéhlt.

147

Anhang A

Die Fehlermeldungen des TOS

Nummer Abkiirzung Bedeutung
0 Ok Kein Fehler

-1 Error Fundamentaler Fehler

-2 Device Not Ready Gerit nicht betriebsbereit

-3 Unknown Cmd Unbekannter Befehl

-4 CRC Error Sektor nicht lesbar

-5 Bad Request Falscher Befehlstext

-6 Seek Error Spur wurde nicht gefunden

-7 Unknown Media Falsches Diskettenformat

-8 Sector Not Found Sektor wurde nicht gefunden

-9 No Paper Kein Papier im Drucker
-10 Write Fault Allgemeiner Fehler beim Schreiben
-11 Read Fault Allgemeiner Fehler beim Lesen
-12 General Error Allgemeiner Fehler
-13 Write Protect Diskette ist schreibgeschiitzt
-14 Media Change Diskette wurde gewechselt
-15 Unknown Device Gerit ist unbekannt
-16 Bad Sectors Defekte ~ Sektoren beim Formatieren
-17 Insert Disk Diskette einlegen
-32 Invalid Function Ungiiltige Funktionsnummer
-33 File Not Found Datei wurde nicht gefunden
-34 Path Not Found Ordner wurde nicht gefunden
-35 No Handle Left Zu viele Dateien sind offen
-36 Access Denied Zugriff nicht méglich
-37 Invalid Handle Ungiiltiges Handle
-39 Insufficient Memory Zu wenig Speicherplatz
-40 Invalid Memory-

Block Address Ungiiltige Speicherblockadresse

-46 Invalid Drive Ungiiltiges Laufwerk
-49 No More Files Keine weiteren Dateien moglich

149

$00 - $01
$02 - $07
$08 - $0A
$0B - $0C
$0D

$0E - $OF
$10
$11-$12
$13 - $14
$15

$16- $17
$18-$19
$1A-$1B
$1C-$1D
$1E - $1FF

BRA
FILLER
SERIAL
BPS
SPC
RES
NFATS
NDIRS
NSECTS
MEDIA
SPF

SPT
NSIDES
NHID
BOOTER

Anhang B

Der Bootsektor

Sprung zum Ladeprogramm
Diskettenbezeichnung
Seriennummer

Bytes je Sektor
Sektoren je Gruppe
Reservierte Sektoren
Anzahl der FATS
Directory-Eintrige
Anzahl der Sektoren
Diskettenformat
Sektoren je FAT
Sektoren je Spur
Anzahl der Seiten
Versteckte Sektoren
Ladeprogramm

151

Anhang C

Der ATARI-Zeichensatz

FOESABOEDETF

B12Z23 456

Inﬂgg:;.za

e

LD

B 1

3456789

CERARBLODEF
POR

3

LM WD

I JR
¥ oI

H

I

s T U WM [%14

iy
“abeodeFoghi.

n
i

W

3

B

At

Wb

£ T u

pgr

n
B

A

i

o
ode L£yp f

Hof o0

m Y] e

a8 & ™

I

HowmiF A
I ®aaTn

i

3

B:

J

I

w;g

"
H
3

wp oy o B Q&

T

C:
b

ﬂ: My

L

g% g TEanirn

oou

@ &N

E:

153

Anhang D

Die Scan-Codes der Tastatur

OO AN NV —=O

0 1 2 3 4 5 6 7 8 9
ESC 1 2 4 5 6 7 8
9 0 B ! BSP TAB Q w E R
T VA U I (0] P + RET
A S D F G H J K L O
A # SHL ~ Y X C A\ B N
M R . - SHR ALT SPC CPS F1
F2 F3 F4 F5 F6 F7 F8 F9 F10
CLR 7T [« - [+]
INS DEL
< UNDO HELP [(
10 D] 1 *r @ 681 1P M (5] [6] (1]
11 2] [3] [0] [] ENT

Die Abkiirzungen bedeuten:

oo]
£
=)
[

INS -
DEL -
ENT -

Backspace
Return

Shift links

Shift rechts
Alternate
Space, Leertaste
Caps Lock
Funktionstasten
Clr/Home
Insert

Delete

Enter

In eckige Klammern eingeschlossene Tastatursymbole sind auf derlOer-Tasta-
tur zu finden. ’

155

$00
$01
$02
$03

$05
$06
$07

$09
$0A
$0B
$0E
$10
$11
$12
$13
$19
$1A
$20
$2A
$2B
$2C
$2D
$2F
$30
$31
$36
$39
$3A
$3B
$3C
$3D

Anhang E

Die GEMDOS-Funktionen

Pterm0()

Cconin()
Cconout(char)
Cauxin()
Cauxout(char)
Cprnout(char)
Crawio(word)
Crawcin()
Cnecin()
Cconws(string)
Cconrs(buffer)
Cconis()
Dsetdrv(drive)
Cconos()

Cprnos()

Cauxis()

Cauxos()
Dgetdrv()
Fsetdta(pointer)
Super(stack)
Tgetdate()
Tsetdate(date)
Tgettime()
Tsettime(time)
Fgetdta()
Sversion()
Ptermres(keep, ret)
Dfree(buffer, drive)
Dcreate(path)
Ddelete(path)
Dsetpath(path)
Fcreate(name, attribute)
Fopen(name, mode)

156 ATARI ST - Das Floppy-Arbeitsbuch
$3E Fclose(handle)

$3F Fread(handle, count, buffer)

$40 Fwrite(handle, count, buffer)

$41 Fdelete(name)

$42 Fseek(offset, handle, mode)

$43 Fattrib(path, mode, attribute)

$45 Fdup(stdhandle)

$46 Fforce(stdhandle, handle)

$47 Dgetpath(pathbuffer, drive)

$48 Malloc(amount)

$49 Mfree(address)

$4A Mshrink(zero, memory, size)

$4B Pexec(mode, path, cmdline, environment)
$4C Pterm(code)

$4E Fsfirst(spec, attribute)

$4F Fsnext()

$56 Frename(zero, oldname, newname)

$57 Fdatime(handle, buffer, set)

157

$00
$01
$02
$03

$05
$06
$07
$08

$10
$11

Anhang F
Die BIOS-Funktionen
Getmpb(p_mpb)
Bconstat(device)
Bconin(device)

Bconout(device, char)

Rwabs(flag, buffer, count, recno, device)
Setexc(vecnum, vector)

Tickcal()

Getbpb(device)

Bcostat(device)

Mediach(device)

Drvmap()

Kbshift(mode)

159

$00
$01
$02
$03

$05
$06
$07

$09
$0A
$0C
$0D
$OE
$O0F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21

Anhang G

Die XBIOS-Funktionen

Initmous(type, params, vector)
Ssbrk(amount)

Physbase()

Logbase()

Getrez()

Setscreen(logloc, physLoc, resol)
Setpallete(palpointer)

Setcolor(colnumber, color)

Floprd(buf filler,dev,sectno,trkno,side,count)
Flopwr(buf,filler,dev,sectno,trkno,side,count)
Flopfmt(buf,fil,dev,spt,trkno,side,inter,mag,vir)
Midiws(count, pointer)

Mfpint(interno, vector)

Torec(device)

Rsconf(speed, flowctl, ucr, rsr, tst, scr)
Keybtl(unshift, shift, capslock)

Random()

Protobt(buffer, serial, dtype, execflag)
Flopver(buf,filler,dev,sectno,trkno,side,count)
Scrdmp()

Cursconf(function, operand)
Settime(datetime)

Gettime()

Bioskeys()

Ikbdws(count, pointer)

Jdisint(intno)

Jenabint(intno)

Giaccess(data, regno)

Offgibit(bitno)

Ongibit(bitno)

Xbtimer(timer, control, data, vector)
Dosound(pointer)

Setprt(config)

160

ATARI ST - Das Floppy-Arbeitsbuch

$22
$23

$25
$26
$27

Kbdvbase()
Kbrate(initial, repeat)
Prtblk()

Vsync()
Supexec(codeptr)
Puntaes()

161

$00
$02
$03
$04
$06
$08
$0A
$0C

RECSIZ
CLSIZ
CLSIZB
RDLEN
FSIZ
FATREC
DATREC
NUMCL

Anhang H

Der BIOS-Parameter-Block

Grofe der Sektoren in Bytes

GroRe der Cluster in Sektoren
Grofe der Cluster in Bytes

Grofe des Directories in Sektoren
GroBe der FAT in Sektoren

Erster logischer Sektor der FAT
Erster logischer Datensektor
Anzahl der Cluster auf der Diskette

163

Anhang I

Die FDC-Kommandos

Name Bitmap

RESTORE 0 0 O O h v r1 12
SEEK 0 0 0 1 h v rl 2
STEP 0 0 1 u h v 11 12
STEP IN 0 1 1 u h v r1 2
STEP OUT 0 1 1 u h v r1 2
READ SECTOR 1 0 0 m h e 0 0
WRITE SECTOR 1 0 1 m h e p a0
READ ADDRESS 1 1 0 0 h e 0 0
READ TRACK 1 1 1 0 h e 0 O
WRITE TRACK 1 1 1 1 h e p O
FORCE INTERRUPT 1 1 0 1 3 12 12 10

165

8086 Format 15, 23,26

Attribut 25, 26, 31, 32,
36, 52, 58, 59

Basepage 37,59

BIOS 29,30, 60, 61, 63,
65,73

BIOS.C 63 ff

Booter 19 ff

Bootsektor 15 ff, 68 ff

BPB 15,61, 62,63

BPS 16ff, 69

CATALOG.C S3ff
Checksum 18, 69
Cluster 23,24, 25, 50
CMDLOAD 17

CRC 12,13

DataMark 89

Datum 25,27, 38, 39, 53

Dcreate 31, 44, 45,58

DCT 90

Ddelete 44, 58

Dfree 49, 50, 58

Dgetdrv 55, 58

Dgetpath 44, 45, 58

Directory 15, 23 ff, 34,
44 ff

Disklabel 36, 38

DMA 75,84 ff, 101

DRIVE.C 55ff

Drvmap 60, 62, 63

Dsetdrv 55, 58

Dsetpath 34, 44, 45, 58

DTA 49,52,53,58, 59

Stichwortverzeichnis

Execflag 17,18, 68
Extension 25, 26, 31, 44

FAT 15,23 ff, 33, 61, 68
Fattrib 31, 36, 52, 58
Fclose 31,33,58
Fcreate 31, 38, 58
Fdatime 31, 38, 59
FDC 175,79 ff, 123
FDC - Register 82 ff
Fdelete 31, 34,59
Fgetdta 49, 58
FILE.C 39ff
Flopfmt 65, 67,71, 103
Floprd 65, 66, 70, 103 ff,
Flopver 65, 70, 71, 103,
112, 124
Flopwr 65, 66, 68, 71,
103 ff, 123
FM 8ff, 79, 89
Folder 27, 31, 34, 36, 38,
44,45, 58
FOLDER.C 46 ff
Fopen 31,32,35,38,58
Force Interrupt 87
Formatieren 13, 67
FORMAT.C 71ff
Fread 31, 33,59
Frename 31, 38, 58
Fseek 31, 32, 35,59
Fsetdta 49, 52, 58
Fsfirst 49, 52,53
Fsnext 49, 53
Fwrite 31, 34,59

GEMDOS 29,30, 52, 57,
58, 60, 61, 66
getbpb 25, 60, 61, 63

166

ATARI ST - Das Floppy-Arbeitsbuch

Handle 31ff, 53,59
Interrupt Bit 90

Ladeprogramm 15 ff
Logische Sektoren 13 ff,
23,25

Mediach 60, 62, 63
MFM 8ff, 79, 127
MotorOn 88
Multiple Bit 89, 123

Pexec 31,37,59

Pfad 31,34, 36,37, 38,
44, 45, 58, 59

Physikal. Sektoren 13 ff

Prekompensation 89

Protobt 65, 68, 71

Read Adress 87
READ ADR.ASS 97ff
Read Sector 87
READ SEC.ASS 95 ff

Read Track 87, 127
READ TRK.ASS 99 ff
Restore 87
RESTORE.ASS 91 ff
Rwabs 60, 63

SEEK.ASS 94 ff
SPACE.C 50ff
SpinUp 87

Step 79, 87 ff

TRAP 29, 30, 60, 65

Uhrzeit 25, 26, 38, 39, 52
Update Bit 88

Verify Bit 88
Verzog. Bit 89

Write Sector 87, 89
Write Track 87

XBIOS 29, 30, 65, 70,
73, 103, 123

Die SYBEX-Bibliothek

Atari

ARBEITEN MIT DEM ATARI ST

von Karl-Heinz Hauer vermittelt Thnen notwendige Kenntnisse zum Umgang mit den
ATARI ST-Computern, z. B. System-Hardware, Betriebssystem-Adressen, TOS,
Kernel-Routinen, ATARI-BASIC, ATARI-Logo. 432 Seiten, 172 Abb. Best.-Nr.
3623 (1986)

ATARI ST — ARBEITEN MIT GEM, Bd. 2: DIE VDI-BIBLIOTHEK

von Holger Danielsson/Andreas Volkmann — Der ATARI-ST-Nutzer wird anhand
einer Vielzahl kleiner C-Routinen mit dem Aufruf der VDI-Bibliothek von GEM und
der Einbindung in eigene Programme bekannt gemacht. 240 Seiten, ca. 48 Abb.,
Best.-Nr. 3627 (1986), Mit integrierter Programm-Diskette, die Programme und Un-
terroutinen enthélt.

ATARI ST — EINFUHRUNG IN WORDSTAR

von Arthur Naiman — Das Originalwerk ,,Einfiihrung in WordStar® ist seit Erschei-
nen 1983 ein SYBEX-Bestseller. Um der Arbeit in der speziellen System-Umgebung
des ATARI ST unter Kontrolle der CP/M-2.2-Emulatoren gerecht zu werden, wurde
das Buch fiir ST-Nutzer iiberarbeitet und durch Zusatz-Informationen ergénzt.
280 Seiten, mit Abb., Best.-Nr. 3666 (1986/87)

ATARI ST — TIPS UND TOOLS ZU C

von Olaf Hartwig — fiihrt den ATARI ST-Nutzer in die Sprache C ein und zeigt an-
hand vieler Beispiele, wie der Programmierer sich eigene Tools in C entwickeln kann:
Einsatz von Makros, Modifikation der grammatischen Sprachstruktur, Entwicklung
von ST-Sonderbibliotheken, Terminalverwaltung, Adressierung aller BIOS-,
XBIOS- und GEMDOS-Funktionen. 224 Seiten, mit Abb., Best.-Nr. 3674 (1986)

Kommunikation

DAS MODEMBUCH ZUR DFU

von Bruno Hurth und Manfred Hurth — Jetzt steht Ihnen ein Nachschlagewerk mit ei-
ner Fiille unentbehrlicher Informationen zur Verfugung, auf das Sie immer wieder zu- |
riickgreifen werden: Méglichkeiten der DFU im Bereich der DBP, Mailboxen, Aku-
stikkoppler, Btx u.v.m. 224 Seiten, Best.-Nr.: 3619 (1985)

SYBEX MAILBOX FUHRER

Alles iiber den Zugang zu elektronischen Briefkésten in Deutschland: Voraussetzun-
gen fiir die Teilnahme an der Datenkommunikation; Telefon-Nummern, Eingangs-
und Untermeniis wichtiger Mailboxen und was diese Thnen nutzen kénnen, u.v.m.
272 Seiten, Best.-Nr.: 3663 (iiberarbeitete Ausgabe 1986)

ONLINE DATENBANKEN

Zugang zum Wissen der Welt mit Mikrocomputern von Steffen Schubert — Manager
aller Unternehmensgruppen, Wissenschaftler und Ingenieure erhalten einen Uber-
blick iiber alle Datenbank-Typen, bekommen wichtige Anbieter in Europa und Uber-
see genannt und lernen, Datenbanken effektiv und kostengiinstig zu nutzen. 200 Sei-
ten, Best.-Nr. 3621 (1986)

Einfihrende Literatur

CHIP UND SYSTEM: Einfiihrung in die Mikroprozessoren-Technik

von Rodnay Zaks — eine sehr gut lesbare Einfithrung in die faszinierende Welt der
Computer, vom Microprozessor bis hin zum vollstindigen System. 2., iiberarbeitete
und aktualisierte Ausgabe. 568 Seiten, 325 Abbildungen, Best.-Nr.: 3601 (1985)

Pascal

EINFUHRUNG IN PASCAL UND UCSD/PASCAL

von Rodnay Zaks — das Buch fiir jeden, der die Programmiersprache PASCAL ler-
nen mochte. Vorkenntnisse in Computerprogrammierung werden nicht vorausge-
setzt. Eine schrittweise Einfilhrung mit vielen Ubungen und Beispielen. 535 Seiten,
130 Abbildungen, Best.-Nr.: 3004 (1982)

DAS PASCAL HANDBUCH

von Jacques Tiberghien — ein Woérterbuch mit jeder Pascal-Anweisung und jedem
Symbol, reservierten Wort, Bezeichner und Operator, fiir beinahe alle bekannten
Pascal-Versionen incl. Turbo Pascal. 520 Seiten, 270 Abbildungen, Format23 x 18 cm,
Best.-Nr.: 3614 (1986)

Assembler

PROGRAMMIERUNG DES 68000

von C. Vieillefond — macht Sie mit dem 32-bit-Prozessor von leistungsstarken Rech-
nern wie Macintosh, Amiga, ATARI ST und Sinclair QL vertraut; erldutert die Struk-
tur des 68000, den Aufbau des Speichers, die Adressierungsarten und den Befehlssatz.
456 Seiten, 150 Abb., Best.-Nr. 3060 (1985)

Andere Programmiersprachen

ERFOLGREICH PROGRAMMIEREN MIT C

von J. A. Illik — ein unentbehrliches Handbuch fiir jeden, der mit der universellen
Sprache C erfolgreich programmieren will. Aussagekriftige Beispiele, auf verschiede-
nen Mini- und Mikrocomputern getestet. 408 Seiten, Best.-Nr.: 3055 (1984)

Fordern Sie ein Gesamtverzeichnis

\SYI)EX unserer Verlagsproduktion an:

SYBEX-VERLAGGmbH SYBEXINC. SYBEX

Vogelsanger Weg 111 2344 Sixth Street 6—8, Impasse du Curé
4000 Disseldorf 30 Berkeley, CA 94710, USA 75018 Paris

Tel.: (0211) 61802-0 Tel.: (415) 848-8233 Tel.: 1/203-95-95

Telex: 8588163 Telex: 287639 SYBEX UR Telex:211.801f

&

ATARI ST

Das Floppy
Arbeitsbuch

Die Floppy des ATARI ST-Systems ist kein Geheimnis mehr
fur Sie, wenn Sie dieses Buch gelesen und sich anhand der in-
tegrierten Programmdiskette mit den Interna auseinanderge-
setzt haben.

Die Autoren gehen detailliert auf das Datenhandling und die
Programmierung des Floppydisk-Controllers ein, stellen die
wichtigen Routinen des GEMDOS, des ATARI BIOS und
XBIOS vor und erlautern anhand von Programmbeispielen
den Umgang mit den leistungsfahigen Massenpeichern.

Auszug aus dem Inhalt:

o Die Datenorganisation der Floppydisk
o Diskettenprogrammierung unter TOS
o Die Floppydisk-Schnittstelle

e Programmierung des FDC

e Das ATARI BIOS und XBIOS

In das Buch integriert ist eine 3,5-Zoll-Diskette, randvoll mit
unentbehrlichen Utilities (Filecopy, Speedcopy, Diskmonitor
usw.) und Programmbeispielen einschlieBBlich deren Quell-
listings.

Buch und Diskette bilden ein leistungsfdahiges Entwicklungs-
system, das jeder engagierfe ATARI ST-Besitzer fur seine Ar-
beit mit dem System benétigt.

ISBN 3-88745-642-4

unverbindliche
Preisempfehlung
DM 69,-
sFr 69,-
0S 614,-
9 "783887"'456429

