
ATARI ST
Das Floppy
rbeitsbuch

Mi) ey '
id i)

MWe

Frank Aumann m B

Peter Maier | Diskette

Ralf Stöpper :
os 9

ATARI ST
Das Floppy-Arbeitsbuch

ATARI ST
Das Floppy-Arbeitsbuch

Peter Maier

Ralf Stopper
Frank Aumann

&
BERKELEY - PARIS - DÜSSELDORF

Satz: SYBEX-Verlag GmbH, Düsseldorf
Umschlaggestaltung: Daniel Boucherie / tgr
Gesamtherstellung: Druckerei Hub. Hoch, Diisseldorf

Die Reprovorlagen fiir dieses Buch wurden auf einem Apple Macintosh erstellt und mit
einem Apple LaserWriter ausgegeben.

Der Verlag hat alle Sorgfalt walten lassen, um vollständige und akkurate Informationen zu
publizieren. SYBEX-Verlag GmbH, Düsseldorf, übernimmt keine Verantwortung für die
Nutzung dieser Informationen, auch nicht für die Verletzung von Patent- und anderen
Rechten Dritter, die daraus resultieren.

ISBN 3-88745-642-4
1. Auflage 1986
2. Auflage 1986

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie,
Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages
reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder
verbreitet werden.

Printed in Germany
Copyright © 1986 by SYBEX-Verlag GmbH, Düsseldorf

Inhaltsverzeichnis

Kapitel 1 - Der Diskettenaufbau beim ATARI ST................... 7
Allgemeines über die ATARI-Floppylaufwerke 7
Der Aufbau einer Diskettenspur — (Track)0.0. 7
Das einfachste Aufzeichnungsverfahren, die FM-Methode............ 8
Das MFM-Verfahren 0.0... ce eee eee eee eens 9
Spezielle Bitfolgen 2... eects . 12
Das Formatieren einer Diskette 0.0... eee eee eee eee 13
Die Unterteilung der Diskette in logische Sektoren.................. 13
Die Systeminformationen der Diskette 0... cee eee 14
Der logische Sektor Null - Der Bootsektor...................0044. 15
Aufbau des Bootsektors .. 2.2.2222 ccc eee eee nes . 16
Das Ladeprogramm 0... ccc ccc cnet eens Lee . 77
Die File Allocation Table... 2.0... 0... cece eee 23
Bedeutung der FAT-Einträge 2.2. . ccc ccc ees 23
Das Inhaltsverzeichnis, die Directory 0... eee 25

Kapitel 2 — Diskettenprogrammierung unter TOS 29
Die Systemroutinen des ATARI-DOS22 0.2.0.0 0 eee 29
Das GEMDOS 0. ccc ce een cent ne ee nees . 30
Datei-Befehle 0.0... cece cc cee eee eee enes . 31
Folder-Befehle....... 0... 0c eee cee ee eee eee nenn. . 44
Directory-Befehle 0.0... ccc eee ee eee . 49
Drive-Befehle.... 0.0.0.0... . ccc cee cence teen eee eens 55
Die Fehlermeldungen des GEMDOS 000... eee ee eee 57
Einschränkungen des GEMDOS 0.0.2.0. eee eee eee 58
GEMDOS-Systemaufrufe 0.0.0... cee ees 58
Die BIOS-Routinen 0.0... ccc cence eee nee . 60
BJOS-Systemaufrufe 0... eee eee eee nee . 63
Die XBIOS-Routinen 0.0.0... cece eee ee eee . 65
XBIOS-Systemaufrufe......... 00... ce eee ee eee ee eee 70

Kapitel 3 — Die Floppy-Disk Schnittstelle 75

Kapitel 4 - Direktprogrammierung des FDC 79
Der Aufbau des FDC 1772... 2. oo oo onen 79

6 ATARI ST - Das Floppy-Arbeitsbuch

Die Programmierung über Direct Memory Access.................. 84
Die Kommandos des Floppy Disk Controllers...................0.. 87
Die Programmierung des FDC................... cece eee eee eee 90
Zusammenfassung cee eee eee eee eee een eee . 101

Kapitel 5- Routinen des XBIOS 2. cece eee ee eee 103
Ein XBIOS-Fehler ... 0.0... 0.0... ce ee eee eee eens . 123

Kapitel 6 - Ein FDC-Fehler............ 20.0... eee ee eee 127

Kapitel 7- Die Powerdisk 0.0... ce eee ence e eee eeee 131
Filecopy V2.0..... 0.0... cece cece eee eee e eee enna . 132
Speedcopy V2.0 20... . cee ce eee eee eee tence nenn . 135
Fehlermeldungen 0... ccc cece eee eet eee een nee . 138
Excopy V1.0....... 0... ccc cee ce eee een eee n ene nennen 139
DiskmonitoOr.... 0.0... ee eee enn e ene een ees 140
The Clone 0... ccc ee cee cence eee ence eee enes 143

Anhang

A Die Fehlermeldungen des TOS 0.0.0... ce ccc cee 147
B Der Bootsektor 0.0... ccc ect teen eens . 149
C Der ATARI-Zeichensatz 0... cece ee eee eee 151
D Die Scan-Codes der Tastatur........ 00.0... ccc eee ee eee 153
E Die GEMDOS-Funktionen 0... ec cee eee 155
F Die BIOS-Funktionen 0.0... ce cee 157
G Die XBJOS-Funktionen............. 0.0... ce ee eee 159
H Der Bios-Parameter Block 0... e eee eee eee 161
I Die Kommandos des FDC 0... ccc ee ee eens 163

Kapitel 1

Der Diskettenaufbau beim ATARIST

Allgemeines über die ATARI-Laufwerke

Die Diskettenstationen SF 354 und SF 314 verarbeiten Disketten im 3,5-Zoll-
Format. Während die SF 354 nur einen Schreib-/Lesekopf besitzt, kann die SF
314 auch doppelseitig bespielte Disketten bearbeiten.

Die folgende Tabelle zeigt die Formate der Disketten:

SF354 SF314

Typ: SSDD DSDD
Spuren (Tracks): 80 80 (0..79)
Sektoren je Spur: 9 9 (1..9)
Seiten: 1 2
Kapazität: 500 kB 1MB unformatiert

360kB 720kB formatiert

Die verfügbare Kapazität von 360 kB (720 kB) wird eingeschränkt durch:

— disketteninterne Informationen

— das Inhaltsverzeichnis

— und durch jeden weiteren Ordner (Unterverzeichnis, Folder)

Der Aufbau einer Diskettenspur — (Track)

Eine formatierte Diskette enthalt im Normalfall 80 Spuren, von denen jede
wiederum in 9 Sektoren zu 512 Bytes unterteilt ist. Um auf die Daten in einem
bestimmten Sektor zugreifen zu können, dreht sich zum einen die Diskette,
und zum andern kann der Schreib-/Lesekopf mechanisch zur Mitte bzw. zum
Rand der Diskette bewegt werden. Dadurch ist es möglich, sämtlich Sektoren
auf der Diskette anzufahren.

8 ATARI ST - Das Floppy-Arbeitsbuch

Zur Bearbeitung der Sektoren gibt es im Prinzip zwei Möglichkeiten: die
Hard-Sektorierung und die Soft-Sektorierung. Weil der ATARI ST von der
Soft-Sektorierung Gebrauch macht und die Hard-Sektorierung inzwischen
auch keine größere Rolle mehr spielt, wird im folgenden nur auf die Soft-Sek-
torierung eingegegangen.

Um festzustellen, an welcher Stelle eine Spur beginnt, existiert auf der Disket-
te ein Index-Loch. Uber eine Lichtschranke wird ein Impuls erzeugt, der dem
FDC (Floppy-Disk-Controller) mitteilt, daß der Schreib-/Lesekopf am An-
fang der Spur steht. Bei der 3,5-Zoll-Floppy entfällt das Index-Loch, dafür
gibt es auf der Unterseite der Diskette in der Metallnarbe eine Einkerbung, die
für die richtige Positionierung der Floppy in dem Laufwerk sorgt. Die Stel-
lung des Schreib-/Lesekopfes wird nun vom Laufwerk bestimmt und an den
FDC übergeben. |

Würde man nun die Daten ohne ein spezielles Format auf die Diskette schrei-
ben, so bekäme man beim Einlesen dieser Daten große Schwierigkeiten, weil
sich die Scheibe nie mit konstanter Geschwindigkeit dreht. Zur Lösung dieses
Problems wurden verschiedene Aufzeichnungsverfahren entwickelt:

das FM-Verfahren,
das MFM-Verfahren,

das M?FM-Verfahren und
das GCR-Verfahren.

Weil der ATARI ST das MFM-Verfahren verwendet, werden wir hier nur auf
das MFM-Verfahren und seinen Vorgänger, das FM-Verfahren, eingehen.

Das einfachste Aufzeichnungsverfahren, die FM-Methode

Das FM-Verfahren (FM steht für Frequenzmodulation) ist auch unter dem
Namen Single-Density-Aufzeichnungsverfahren bekannt. Zusätzlich zu den
Datenbits werden auch Taktbits auf die Diskette übertragen. Im Abstand von

4 us werden die Datenbits hintereinander auf die Diskette geschrieben.

Am Anfang einer solchen Bit Cell (Bitzelle) wird zunächst ein Taktimpuls

geschrieben. Soll die Zelle dann das Datenbit 1 enthalten, folgt nach 2 us wie-

derum ein Impuls. Bei jedem Impuls wird durch den Schreibkopf ein magne-
tischer Flußwechsel auf der Diskette erzeugt. Das Datenbyte $2C (Bitfolge
00101100) hätte bei dem FM-Verfahren das Aussehen wie auf der folgenden
Seite gezeigt.

Einführung 9

0 0 1 0 1 1 0

Ue elated

4 us (Bit Cell)

Das Byte $2C im FM-Format

Der Nachteil des FM-Verfahrens liegt in seinem Platz- und Zeitverbrauch, da
bei jedem Bit der Takt mit aufgezeichnet wird.

Das MFM-Verfahren

MFM steht fur Modified Frequency Modulation und bedeutet, wie der Name
schon sagt, eine Weiterentwicklung des FM-Verfahrens (Das MFM-Verfahren
ist auch als Double-Density-Aufzeichnung geläufig). Dieses Verfahren ermög-
licht die Verdoppelung der Aufzeichnungsrate, ohne daß die Anzahl der Fluß-
wechsel erhöht wird. Die Bit Cell ist beim MFM-Verfahren nur halb so groß
wie bei dem FM-Verfahren, nämlich 2 fs. Für die Aufzeichnung der Daten-
bits kann man von folgenden Regeln ausgehen:

— Soll eine Zelle das Datenbit 1 enthalten, wird ein Impuls in der Mitte der
Zelle aufgezeichnet.

— Bei einem Datenbit 0 wird ein Impuls am Anfang der Zelle aufgezeichnet,
aber nur dann, wenn die vorherige Zelle ebenfalls ein Nullbit enthält.

Das Datenbyte $2C (Bitfolge 00101100) im MFM-Format:

0 Lil {0

2 us (Bit Cell)

Das Byte $2C im MFM-Format

10 | ATARI ST - Das Floppy-Arbeitsbuch

Das Auslesen der Datenbits veranschaulicht die folgende Abbildung:

1 us

Inn “vs

| 1] | | I | J esi (2 us)

Auslesen der Datenbits im MFM-Format

Wenn man während eines Taktimpulses einen Datenimpuls erhält, wird er als
logisch 1 interpretiert. Erhält man diesen Impuls, während kein Taktimpuls
vorliegt, wird er als logisch 0 eingestuft. Nun sind wir in der Lage, die Da-
tenbits von den Taktbits auf der Diskette zu unterscheiden. Aber wir wissen
noch nicht, wann ein Datenbyte und wann ein Sektor anfängt. Deshalb gibt es
Kennungen oder Marken für den Beginn von Daten- und Informationsfeldern.

|GAPI |GAPII| Ad_1 |[GAPII| Da_1 |GAPIVGAPII| Ad2| _

Aufbau einer Spur im MFM-Verfahren

Nach dem Index-Loch am Anfang einer Spur folgt nach ca. 92 Füllbytes
(ATARI benutzt dafiir das Byte $4E) die Index-Address-Mark, die jedoch in-
zwischen von den meisten Systemen nicht mehr benötigt wird (GAP J).

Fiir jeden Sektor folgt dann:

Eine Lücke (GAP II) am Anfang des Adressenfeldes, die aus zwölf $00-Bytes
und drei $F5-Bytes besteht. Die $00-Bytes ermöglichen dem FDC, die
Schreib-/Lese-Elektronik einzustellen, wahrend die $F5-Bytes eine spezielle
Bedeutung haben, auf die wir spater eingehen werden.

Einführung 11

Das Adressenfeld (Ad_x):

Dieses Feld beginnt mit der sogenannten ID-Address-Mark, die aus einem
$FE-Byte besteht. Anschließend folgen die Informationen über die Spurnum-
mer, die Sektornummer, die Diskettenseite, die Größe des Datensektors und
eine Prüfsumme:

| Marke | Spur | Seite | Sektor| Größe | Prüfsumme |

$FE 0.$4F 0.1 1.9 $02 2 CRC-Bytes

Im allgemeinen sind bei der Spurnummer die Bytes $00 bis $4F erlaubt. Sie
erlauben eine Numerierung zwischen 0 und 79, und zwar bei der Sektornum-
mer die Bytes $01 bis $09 und bei der Seite $00 und $01, wobei $00 die Vor-
derseite und $01 die Rückseite der Diskette kennzeichnet. Die Größe eines Da-
tensektors kann der folgenden Tabelle entnommen werden:

Byte Größe

$00 128 Bytes
$01 256 Bytes
$02 512 Bytes
$03 1024 Bytes

Der letzte Eintrag in einem Feld ist die Prüfsumme. Dem FDC wird hierbei
ein $F7-Byte übermittelt; dies hat ebenfalls eine bestimmte Bedeutung und soll
später erklärt werden. Als nächstes folgt die Lücke vor dem Datenfeld (GAP
III), die aus 22 Füllbytes ($4E), zwölf $00-Bytes und drei $F5-Bytes besteht.

Auf diese Lücke folgt das Datenfeld:

| Marke | 512 Bytes Daten | Prüfsumme |

$FB $E5 (neu formatiert) 2 CRC-Bytes

Wie das $FE-Byte das Adressenfeld, kennzeichnet das $FB-Byte ein Feld: das
Datenfeld. Danach folgen so viele Datenbytes wie im Adressenfeld angege-
ben sind. Bei einer neuformatierten Diskette wären das 512 $E5-Bytes. Am
Ende steht wieder die Prüfsumme.

Am Ende eines jeden Sektors folgt wiederum eine Lücke, die GAP IV. Diese
besteht aus 40 Füllbytes. Nachdem alle Sektoren geschrieben wurden, wird

12 ATARIST - Das Floppy-Arbeitsbuch

die Spur bis zum erneuten Auftreten des Index-Impulses, der das physikali-
sche Ende der Spur kennzeichnet, mit $4E-Bytes beschrieben.

Spezielle Bitfolgen

Wie kann der FDC nun die Marken von normalen Datenbytes unterscheiden?
Dazu wurden spezielle Bitfolgen gewählt, bei denen auch die Taktbits eine
Rolle spielen. Durch das Weglassen bestimmter Taktbits wird ein Bitmuster
erzeugt, das sonst nie auftreten kann. Der FDC kann durch seine Elektronik
diese Muster erkennen und dementsprechend darauf reagieren.

Bei dem MFM-Verfahren ist diese Sache im Gegensatz zum FM-Verfahren
nicht so einfach, weil dort bereits Taktimpulse durch das dichtere Aufzeich-
nungsverfahren fehlen. Daher werden nur zwei Bitfolgen verwendet: die $A1-
Folge und die $C2-Folge.

Die $C2-Folge wird dreimal hintereinander aufgezeichnet. Danach folgt die
Erkennungsmarke für das Index-Loch mit dem Code $FC, der mit allen Takt-

impulsen aufgezeichnet wird. Die $C2-Folge dient also zum Identifizieren der
Index-Mark.

Auch das $A1-Muster wird dreimal hintereinander aufgezeichnet. Anstelle
der Index-Loch-Markierung folgt nun entweder ein $FE-Byte als ID-Address-
Mark oder ein $FB-Byte, das ein Datenfeld identifiziert.

Die Prüfsumme (Cyclic Redundancy Check)

Die CRC-Bytes dienen, wie schon erwähnt, zur Fehlererkennung. CRC ist eine
Abkürzung für Cyclic Redundancy Check, was man im Prinzip als Prüfsumme
bezeichnen kann. Im eigentlichen Sinn ist dies aber keine Aufsummierung ein-
zelner Bytes. Das Verfahren zur Erzeugung der CRC-Bytes ist wesentlich
schwieriger. Hierbei werden nur bestimmte Bits, die aus dem Generator-Poly-
nom

x6, 41245544

erzeugt werden, verwendet.

Einführung 13

Das Formatieren einer Diskette

Nun hat man ein Feld voller Daten, Lücken und Markierungen. Wie bekommt
man diese nun auf die Diskette? Diesen Vorgang nennt man die Formatierung
einer Spur, weil die Spur auf ein spezielles Format gebracht wird. Die Forma-
tierung ist im Prinzip nichts anderes als das Schreiben dieses Feldes auf die
Diskette.

Der FDC des ATARI ST besitzt hierfür den WRITE-TRACK-Befehl, der eine
ganze Spur beschreibt. Dieser Befehl interpretiert nun verschiedene Bytes in-
nerhalb des Feldes als Befehle und nicht als Daten. So müssen z.B. die beiden
CRC-Bytes am Ende eines Feldes erzeugt und die speziellen Bytes bei den
Adreßmarken und der Index-Mark geschrieben werden. Die Bitfolgen haben
im FM- und im MFM-Verfahren eine unterschiedliche Bedeutung. Für das
MFM-Verfahren sind die folgenden Bytes reserviert:

Bitfolge Bedeutung

$00-$F4 Schreibe das Byte normal im MFM-Format.
$F5 Schreibe $A1 im MFM-Format mit fehlendem Taktbit

zwischen Bit 4 und 5.

$F6 Schreibe $C2 im MFM-Format mit fehlendem Taktbit
zwischen Bit 3 und 4.

$F7 Schreibe 2 CRC-Bytes.
$F8-$FF Schreibe das Byte normal im MFM-Format.

Die Bytes $F5, $F6 und $F7 sollten daher niemals als Füllwert beim Forma-
tieren einer Spur bzw. einer Diskette verwendet werden.

Die Unterteilung der Diskette in logische Sektoren

Das Betriebssystem des ATARI ST kennt nicht nur die Unterteilung der Dis-
kette in Spur, Sektor und Seite, sondern auch die in sogenannte logische Sek-
toren.

Bei dieser Unterteilung werden die Sektoren beginnend mit dem logischen
Sektor 0 fortlaufend numeriert. Bei einer einseitigen Diskette wäre der lo-
gische Sektor 9 identisch mit dem physikalischen Sektor 1 auf der Spur 1. Auf
einer doppelseitigen Diskette entspricht der logische Sektor 9 dem physika-
lischen Sektor 1 auf Spur 0 der Seite 1.

14 ATARIST - Das Floppy-Arbeitsbuch

Die Umrechnung von Spur, Sektor und Seite in logische Sektoren kann man
mit der folgenden Formel durchführen:

log = NSECTS * (Spur * NSIDES + Seite) + Sektor - 1

wobei

— NSECTS die Anzahl der physikalischen Sektoren je Spur ist,
— NSIDES die Anzahl der Seiten auf der Diskette (1 oder 2) ist und
— Seite entweder 0 oder 1 ist.

Die Umkehrung, also die Berechnung von Spur, Sektor und Seite aus dem lo-
gischen Sektor, ergibt sich aus den folgenden Formeln:

Seite (log div NSECTS) mod NSIDES
Spur = log div (NSIDES * NSECTS)
Sektor =1 + (logmod (NSIDES * NSECTS)) - (NSECTS * Seite)

Für eine einseitige Diskette mit 9 Sektoren je Spur ergibt sich also:

log = 9 * Spur + Sektor - 1

Seite =0
Spur =logdiv9
Sektor = (logmod 9) +1

und für eine zweiseitige Diskette:

log =9* (Spur *2 + Seite) + Sektor — 1

Seite = (log div 9) mod 2
Spur = (log div 18)
Sektor = (log mod 18) — 9 * Seite + 1

(div bezeichnet die Division ohne Rest, mod den Rest der Division.)

Die Systeminformationen der Diskette

Die ersten beiden Spuren nehmen eine Sonderstellung auf der Diskette ein.
Hier werden nur Systeminformationen gespeichert und keine Daten des An-
wenders.

Einführung 15

Als Systeminformationen gelten der Bootsektor, die File Allocation Table
(Datei-Belegungstabelle) und das Inhaltsverzeichnis, das Directory.

Diese befinden sich bei einer einseitigen Diskette auf:

Sektor Information

Spur 0: 1 Bootsektor
2-6 File Allocation Table — Kopie
7-9 File Allocation Table

Spur 1: 1-2 File Allocation Table
3-9 Inhaltsverzeichnis

Im allgemeinen gilt:

logischer Sektor Information

0 Bootsektor
1-5 Kopie der FAT
6-10 File Allocation Table

11-17 Inhaltsverzeichnis

ab 18 Benutzerdaten

Der logische Sektor Null — Der Bootsektor

Der Bootsektor hat nicht nur die Aufgabe, sämtliche Informationen zu spei-
chern, die beim Formatieren der Diskette notwendig waren, er ermöglicht
auch bei einem Reset des Rechners ein Programm automatisch von der Dis-
kette zu starten (zu booten). Die Werte sind hierbei im 8086-Format, also low-
Byte/high-Byte, abgespeichert.

Der Bootsektor besteht insgesamt aus drei Teilen:

— einer Seriennummer

— den Disketteninformationen (BIOS-Parameter-Block, BPB)

— einem (optionalen) Ladeprogramm

16 ATARI ST - Das Floppy-Arbeitsbuch

Aufbau des Bootsektors

Bytes Bedeutung Wert (*)

$00 sol <BRA> $60 $38

502 507 Füller "Loader"

S08 SOA Seriennummer SXXXXXX

SOB SOC BPS $00 $02 512

SOD SPC $02

SOE SOF RES $01 $00 1

$10 NFATS $02

$11 $12 NDIRS $70 $00 112

$13 $14 NSECTS SDO $02 720

$15 MEDIA SF8

$16 $17 SPF $05 $00 5

$18 $19 SPT $09 S00 9

S1A - $1B NSIDES $01 $00 1

$1c $1D NHID $00 $00

SIE SIFF <Ladeprogramm> SXX...

(*) Die Werte sind der TOS-Systemdiskette (einseitig) entnommen.

Die Abkürzungen bedeuten:

<BRA> Sprung (BRAnch) zum Lade-Programm. Dieser Sprung
wird nur ausgeführt, wenn die Prüfsumme des Bootsek-
tors dem Wert $1234 entspricht.

Einführung 17

Füller Diskettenbezeichnung.
Seriennummer 24-Bit-Nummer.
BPS Bytes je Sektor, normalerweise 512.
SPC Sektoren je Cluster. Der Rechner faßt je zwei Sektoren

zu einem Cluster (Gruppe) zusammen.
RES Reservierte Sektoren am Anfang einer Diskette, inklusi-

ve des Bootsektors; normalerweise 1.
NFATS Anzahl der File Allocation Tables auf der Diskette.
NDIRS Maximale Inhaltsverzeichniseinträge. Insgesamt112 auf

einer einseitigen Diskette.
NSECTS Gesamtanzahl der Sektoren auf der Diskette, 720 auf

einer einseitigen.
MEDIA Diskettenformat wird vom ATARI ST-BIOS nicht be-

nutzt.

SPF Sektoren je File Allocation Table.
SPT Sektoren je Spur.
NSIDES Anzahl der Diskettenseiten (1 oder 2).
NHID Anzahl der versteckten Sektoren, wird vom ATARI ST-

BIOS ignoriert.

Das Ladeprogramm

Das Ladeprogramm ist ein Assembler-Programm und steht im Bootsektor ab
der Position $3A. Mit diesem Loader kann man entweder einen /mage-File
oder einen zusammenhängenden Block von der Diskette in den Rechnerspei-
cher laden und anschließend auch ausführen lassen. Ein Image-File ist ein ge-
naues Abbild von dem auszuführenden Programm und enthält daher weder
einen Programmkopf noch Relokations-Informationen.

Zu dem Ladeprogramm gibt es noch einige Informationen, die im Bootsektor
ab der Position $1E abgespeichert sind.

Hier bedeuten die Abkürzungen:

EXECFLG

LDMODE

Ein Wort (Integer), das an die Adresse cmdload in den
Rechner kopiert wird. Ist_cmdload ungleich Null, dann
wird beim Systemstart ein Programm mit dem Namen
COMMAND.PRG geladen.

kennzeichnet den Lademodus. Ist LDMODE gleich Null,
dann sucht das System nach einem File, das unter
FNAME angegeben ist und lädt es. Ist LDMODE un-
gleich Null, werden NSECT Sektoren, angefangen mit
dem logischen Sektor SSECT geladen.

18 ATARI ST - Das Floppy-Arbeitsbuch

SSECT, NSECT siehe unter LDMODE.

LDADDR an diese Adresse wird das File oder der Block geladen.

FATBUF Adresse, an die die File Allocation Table und die Direc-
tory geladen werden.

FNAME siehe unter LDMODE.

CHECKSUM soll der Bootsektor ausführbar sein, so muß die Prüf-
summe des Sektors $1234 entsprechen. Die letzten bei-
den Bytes werden zum Entstehen dieser Prüfsumme be-
nötigt.

SIE - SIF EXECFLG $00 $00

$20 - $21 LDMODE $00 $00

$22 - $23 SSECT $00 $00

$24 - $25 NSECT $00 $00

$26 - $29 LDADDR $00 04 00 00

S2A - $2D FATBUF $00 00 80 00

S2E - $38 FNAME "TOS IMG"

$39 DUMMY $00

S3A - $1f£D Ladeprogramm $33 SFA ...

Slfe - $1ff CHECKSUM

Als Beispiel eines Ladeprogramms haben wir im folgenden den Booter der
einseitigen TOS-Systemdiskette als kommentiertes Assembler-Listing aufge-
fiihrt.

Einführung 19

* TOS-Booter
*

Ko - ee ee ee mn ee ee a ae ee

*

* Konstanten innerhalb des Programms
*

bios .equ 13 ; TRAP-Nummer des BIOS
_cmdload .egu $482 ; fir COMMAND.PRG
_bootdev .equ 5446 ; Laufwerknummer
_membot .equ $432 ; Beginn des Benutzerspeichers

; (TPA)

x

* Struktur des BIOS-Parameter-Blocks
*

recsiz .equ 0 ; Größe des Sektors in Bytes
clsiz .equ 2 ; Größe der Gruppe in Sektoren
clsizb .equ 4 ; Größe der Gruppe in Bytes
rdlen .equ 6 ; Größe der Direc. in Sektoren
fsiz .equ 8 ; Größe der FAT in Sektoren
fatrec .equ 10 ; Erster log. Sektor der FAT
datrec .equ 12 ; Log. Sektor der ersten

; Datengruppe
numcl .equ 14 ; Anzahl der Datengruppen

; auf der Diskette

*

*

* Das Listing beginnt mit dem ersten Byte des Bootsektors
* .

*

BOOTER:

bra CODE ; Sprung zum Ladeprogramm

x

* Es folgt nun der BIOS-Parameter-Block, BPB
x

.dc.b 'Loader' ; Diskettenbezeichnung

.dc.b 0,0,0 ; Seriennummer

.dc.b 0,2 ; Bytes je Sektor

.dc.b 2 ; Sektoren je Gruppe

.dc.b 1,0 ; Reservierte Sektoren

.dc.b 2 ; Anzahl der FATs

.dc.b $70,0 ; Directory-Einträge

.dc.b SDO,2 ; Gesamtzahl der Sektoren

.dc.b SF8 ; Kennzeichnung der Disk

.dc.b 5,0 ; Sektoren je FAT

20 ATARI ST - Das Floppy-Arbeitsbuch

EXEC _FLG:
LDMODE :
SEC START:
NR_SECT:
LOAD ADR:
FAT ADR:
FILE:

CODE:

x

.dc.b 9 ;

.dc.b 0 ;

.dc.b 1 ;

.dc.b 0,0 ;

.dc.b 0,0 ;

.dc.b 0,0 ;

.dc.b 0,0 ’

.dc.b 0,0 ;

.dc.l $40000 ;

.dc.]l $8000 ;

.dc.b 'TOS IMG',O ;

Sektoren je Spur
Nicht benutzt
Seiten der Disk
Versteckte Sektoren

Kein COMMAND.PRG

Lademodus

Nicht benutzt, da der
Lademodus Null ist
Ladeadresse

FAT-Adresse

Name des IMAGE-Files

* Zuerst wird EXEC_FLG in die Speicheradresse $482 kopiert
*

+

FATOK:

*

move .w

BPB über BIOS-Aufruf getbpb in den

move.w _bootdev,-(a7)
move.w #7,-(a7)
trap #bios
addq.1 #4,a7
tst.1 dd
beq ENDE
move.l d0,a5
lea FAT ADR(pc),a0

tst.l (a0)
bne FATOK

move.l _membot, (a0)

move.w fsiz(a5),d0
lsl #8,d0
add.l d0,d0
move.w d0,a4
add.l FAT ADR(pc),a4

move.w LDMODE (pc) ,d0
beq LD FILE

EXEC FLG(pc), cmdload

Speicher holen

Gerateadresse auf Stack
Funktionsnummer von getbpb

Stack aufraumen

Adresse des BPB = 0?
Ja, dann Fehler

Adresse des BPB

Adresse der FAT

= 0?
Nein, dann weitermachen
Adresse FAT auf den Start

des Benutzerspeichers
legen

nach A5

nach AO

me

We

B
e

Ys

We

N
e

W
e

We

W
e

We

We

W
e

Wo

SPF nach dO
mit 512
multiplizieren

A4 zeigt auf das ENDE
der FAT im RAM
LDMODE gleich Null?
Ja, TOS als Datei laden Mm

e
Se

Ye

“N
e

Ns

S
e

“N
e

“W
es

* Der folgende Programmteil wird normalerweise nie ausgeführt
x

move .w

move.w

move .l

bra

NR_SECT (pc) ,d4

EXEC

SEC_START (pc) ,d6;

LOAD _ADR (pc) ,a3 ;

Log. Startsektor des TOS
; Anzahl der Sektoren

Startadresse im RAM
; Laden und Starten

Einführung 21

x

* Das Betriebssystem wird als IMAGE-File eingeladen (TOS.IMG)
x

LD FILE:

NEXT:

CHAR:

TEST:

move .w

move.w

add.w

move .l

bsr

bne

move.l

move.w

lsl.w

lsl.w

lea

lea

sub.w

cmp
blt
moveq

move.b

cmp.b
bne

dbf

moveq

move.b

lsl.w

move .b

move.l

move.l

clr.l

cmp .w

bge
move .w
subq.w
mulu
add.w
cmp
bge
tst.w

beg
cmp .w
beq

fatrec (a5) ,d6

fsiz(a5),d4
rdlen (a5),d4
FAT ADR(pc) ,a3
GETSEC

ENDE

a4,a0
rdlen(a5),d0

#8,d0
#1,d0
0(a0,d0.w),a0

FILE (pc),al

#$20,a0
a4,a0
ENDE

#10,d0

0(a0,d0.w),dl
O0(al,d0O.w),dl

NEXT

ad0,CHAR

#0,d7

$1b(a0),d7

#8,d7
Sla(a0),d7
FAT _ADR (pc) ,a6
LOAD _ADR (pc) ‚a3

d4

#SOff0,da7

EXEC

d7,d3
#2,d3
clsiz (a5) ,d3
datrec(a5),d3
#540,d4
GE 40
d4
FIRST

d5,da3
SECOK

“w
e

W
e

We

B
e

Y
e

W
e

B
e

W
e

W
e

B
e

No

W
e

We

D
E

We

We

No

S
o

S
e

W
s

B
e

N
e

S
s

we

W
a

W
e

We

Wo

W
e

W
e

W
e

W
e

Me

“M
e

We

Be

We

We

We

Be

We

We

We

Ve

We

Sektor der 2.

Größe der FAT

DIR-Lange

FAT

FAT und Directory ohne
Starten laden

Fehler?

Ende der FAT im RAM

Directory-Länge in Bytes

AO zeigt auf das Ende der
des Directory im RAM

Zeiger auf Filenamen nach
Al

Nächster Name

Ende der FAT erreicht?
Ja, dann Fehler!

Länge des Namens - 1

Stimmt dieses Zeichen
überein?
Nein, dann nächste Datei
untersuchen

Ja, das nächste Zeichen
holen (oder fertig)

Register D7 löschen
1. Sektorengruppe der
Datei
in das Register D7
bringen
Startadresse der FAT in A6
Startadresse des TOS in A3
Anzahl der Sektoren auf

Null setzen

D7 >= SFFO?
(letzte Gruppe)
Ja, dann laden und starten

Aktueller Sektor ist
(Gruppe - 2) * Größe der
Gruppeterster Datensektor
Aktuellen Sektor nach D3
Anzahl der Sektoren > $40?
Ja, dann lade bis hierher
D4 = 0 ?
Ja, dann erste Gruppe
Wurde der Sektor erwartet?

Ja, dann teste weiter

22 ATARI ST - Das Floppy-Arbeitsbuch

GE_40: bsr GETSEC ; Nein, lade bis hierher
bne ENDE ; Fehler
lsl.l #3,d4 ; Anzahl der geladenen

; Sektoren mal
l1sl.l #1,d4 ; 512 = Anzahl der geladenen

; Bytes

add.l d4,a3 ; + alte Startadr. = neue
; Startadr.

FIRST: move.w d3,d6 ; D6 = 1. Sektor fuer GETSEC
move.w d3,d5 ;
clr.1 d4 ; Anzahl Sektoren auf Null

SECOK: add.w clsiz(a5),d4 ; Eine Gruppe mehr an
;‚ Sektoren

add.w clsiz(a5),d5 ; Nächster erwarteter Sektor
move.w d7,d2 ; Aktuelle Gruppe
lsr.w #1,d2 ; Mit 1.5 multiplizieren
add.w d7,d2 ;
move.b 1(a6,d2.w),d1l ; Als Zeiger in der FAT

lsl.w #8,dal ;
move.b 0(a6,d2.w),dl ; Hole die nächste Gruppe
btst #0,d7 ; 12 Bits müssen isoliert

; werden:

beq ODD: ; ungerade, dann Bits 0-11
lsr #4,d1 ; gerade, dann Bits 4-15

ODD: and.w #SO0fff,dl1 ;
move.w d1,d7 ; Nächste Gruppe
bra TEST ; und testen

* Programm laden und starten
*

EXEC:

EX 1:

ENDE:

GETSEC:

tst.w

beq

bsr

bne

move.

rts

clr.l

rts

move.

move.

move.

move.

clr.w

move.

trap

add.w

tst.w

rts

1

Ww
W
W
I

Ww

da
EX 1

GETSEC
ENDE na

Se

M
e

Te

We

Anzahl der Sektoren = 0

dann sofort starten

Sektoren holen

Fehler

LOAD ADR (pc) ,- (a7)

do

_bootdev, - (a7)
d6,- (a7)
d4,-(a?)

a3,- (a7)

- (a?)
#4,-(a7)
#bios
#14,a7
a0

M
e

S
W

S
E

“
N
e

N
e

M
e

N
e

N
e

N
e

W
e
 Laufwerk,

1. log. Sektor,
Anzahl der Sektoren,

Startadresse und das

rw-Flag auf den Stack
rwabs-Aufruf

Stack wieder aufräumen

Fehler-Flag testen

Einführung | 23

Die File Allocation Table

Sämtliche Information über die Diskettenausnutzung stehen in der "Datei-Be-
legungstabelle", File Allocation Table (FAT). Beim ATARI ST werden zwei
dieser Tabellen verwendet, die hinter dem reservierten Sektor (Bootsektor)
hintereinander auf die Diskette geschrieben werden. Die erste FAT beginnt
daher bei dem üblichen ATARI-Format ab dem logischen Sektor 1 und die
zweite ab dem logischen Sektor 6. Das Betriebssystem des ATARI ST benutzt
nur die zweite FAT, die erste steht als Kopie auf der Diskette.

Das TOS faßt jeweils zwei Sektoren zu einem Cluster (Gruppe) zusammen.
Der erste Cluster, der für die Speicherung der Dateien zu Verfügung steht, ist

der Cluster 2, der auf einer einseitigen Diskette bei Spur 2, Sektor 1 bzw. ab
dem logischen Sektor 18 beginnt.

Jeder Eintrag in der FAT ist 12 Bits = 1.5 Bytes groß.

Bedeutung der FAT-Einträge

Die FAT-Einträge haben zwei Funktionen. Zum einen zeigen sie dem TOS an,
welche Gruppen auf der Diskette noch frei sind, zum anderen verbinden sie
diese zu einem File. Jeder Directory-Eintrag eines Files enthält die Nummer
des ersten Clusters der Datei, die weiteren lassen sich über den folgenden Al-

gorithmus berechnen:

1. CL ist die Nummer des gegebenen Clusters.

2. Der FAT-Eintrag F ergibt sich aus

F = CL + CL / 2;

3. Aus der 16-Bit-Zahl an der Stelle F in der FAT errechnet sich nun
die nächste Cluster-Nummer NCL, wobei zu beachten ist, daß die
Einträge im 8086-Format abgespeichert sind (erst das Low-Byte,
dann das High-Byte)!

4. Falls CL eine ungerade Zahl ist, müssen die oberen 12 Bits in die
unteren 12 Bits kopiert werden:

NCL := SHR(NCL,4);

5. Daein Eintrag nur 12 Bits groß ist, werden nun die relevanten Bits
ausmarkiert:

NCL = NCL & SOFFF;

24 ATARI ST - Das Floppy-Arbeitsbuch

Um alle Gruppennummern eines Files zu bekommen, führt man den Algo-
rithmus so lange durch, bis die Nummer größer als $FF7 ist.

Wenn das TOS ein File auf der Diskette abspeichert, prüft es den Eintrag auf
den Wert $000. Ist dieser Eintrag $000, dann ist dieser Cluster nicht belegt
und kann zur Datenspeicherung benutzt werden. Liegt der Wert des Eintrages
zwischen $FF1 und $FF7, dann ist auf der Diskette ein Schreibfehler
aufgetreten, der die Benutzung des Clusters verbietet. In jedem anderen Fall
($002 - $FFO) ist diese Gruppe schon belegt und kann zur Datenspeicherung
nicht benutzt werden.

Will das TOS nun eine Datei lesen, dann geht es diese Datei Cluster fiir Cluster
durch und benutzt den Wert jeweils als Zeiger auf den nachsten Cluster. Ist der
Eintrag $000 oder $001, dann ist die Diskette fehlerhaft, da das TOS diese
Clusternummer nicht vergibt. Trifft das TOS trotzdem auf diesen Eintrag, so
zeigt er auf den Cluster $000, bzw. auf den Cluster $001.

Liegt der Wert des Eintrages zwischen $002 und $FF7, dann ist diese Gruppe
bereits belegt, und der Wert weist auf den der Datei folgenden Block.
Allerdings ist dabei zu beachten, daß der Wert die Anzahl der Cluster nicht
übersteigt, da der Lesekopf diesen Cluster sonst nicht finden kann. Ist er
größer als $FF7, so ist diese Gruppe die letzte in der Datei.

$000 Freie Gruppe
$001 Nicht möglich
$002 - $FEF Nächste Gruppennummer
$FFO - $FF7 Fehlerhafte Gruppe
$FF8 - $FFF Ende der Datei

Die ersten beiden Einträge in der FAT haben eine besondere Bedeutung, da sie
nicht zu Clustern des Datenbereichs gehören. Diese Cluster liegen in der Di-
rectory und werden normalerweise vom TOS nicht benutzt. Den beiden Ein-
trägen werden aus Sicherheitsgründen Werte zugewiesen, die EOF bedeuten.
In Anlehnung an MS-DOS wird in das erste Byte eine Kennung für das Medi-
um geschrieben, aber ansonsten nicht benutzt.

Einige Werte für das Medium:

$F8 - Single Sided/80 Tracks
$F9 - Double Sided/80 Tracks
$FC — Single Sided/40 Tracks
$FD - Double Sided/40 Tracks

Einführung 25

Falls Sie diese Einträge ändern, sollten Sie beachten, daß der auf den Cluster 0

folgende Block jeweils der Startblock der Datei ist. Das TOS beachtet also den
Eintrag für den nullten Cluster nicht. Außerdem werden diese beiden Cluster
vom TOS nie zur Datenspeicherung benutzt, selbst wenn Sie die Einträge in
der FAT auf $000 abgeändert haben.

Die Umrechnung von einer Gruppennummer zu dem dazugehörigen logischen
Sektor kann über den folgenden Algorithmus erfolgen:

1. log := CL - 2;

2. Dieser Wert wird mit der Anzahl der Sektoren je Cluster multipli-
ziert,

log := log * CLSI2

3. Dazu addiert sich der logische Sektor des ersten Clusters:

log := log + DATREC

Die Werte von CLSIZ und DATREC erhält man über den GETBPB-Aufruf,
der den BIOS-Parameterblock der Diskette liefert.

Das Inhaltsverzeichnis, die Directory

Die Directory ist das Inhaltsverzeichnis der Diskette. Es enthält Informatio-
nen über die Dateien auf der Diskette. Bei der ST-Serie beginnt es normaler-
weise ab dem logischen Sektor 11. Die Directory besteht aus einer Aneinan-
derreihung von Einträgen für jede Datei.

Jeder Eintrag ist 32 Bytes lang und folgendermaßen aufgebaut:

Bytes Bedeutung

0.7 Name der Datei
8..10 Extension der Datei
11 Datei-Attribut
12..21 nicht benutzt \
22..23 Uhrzeit der letzten Anderung
24..25 Datum der letzten Anderung
26..27 Zeiger auf den ersten Cluster der Datei
28..31 Lange der Datei

26 ATARI ST - Das Floppy-Arbeitsbuch

Die Eintrage des Directories bestehen aus folgenden Angaben, deren Format
näher beschrieben wird:

Name und Extension

Hier steht der Name der Datei, wie er auch im Desktop erscheint, allerdings
ohne den trennenden Punkt.

Datei-Attribut

Das Attribut ist bitweise verschlüsselt:

Bit Bedeutung, wenn gesetzt

0 nur lesen

1 versteckt

2 Systemdatei
3 Diskettenname

4 Unterverzeichnis

5 Archivstatus

6 - nicht benutzt
7 - nicht benutzt

Uhrzeit

Auch die Uhrzeit und das Datum sind bitweise verschliisselt, stehen aber im
8086-Format auf der Diskette:

HHHHMMMM MMMSSSSS

Bit0-4 Sekunden

Bit5-10 Minuten

Bit 11-15 Stunden

Einführung 27

Datum

15 8 7 ...eee 0

JJJJJJIM MMMTTTTT

Bit0-4 Tag
Bit5-8 Monat

Bit 9-15 Jahr - 80

Länge

Auch die Länge der Datei ist im 8086-Format abgespeichert:

Für die Unterverzeichnisse (Folder) der Diskette ist kein fester Platz reser-
viert. Jeder dieser Subdirectories wird als eine Datei auf die Diskette geschrie-
ben, das Inhaltsverzeichnis-Einträge enthält. Die ersten beiden Einträge in
einem Folder sind die speziellen Unterverzeichnisse "." und "..". Das Ver-
zeichnis "." zeigt auf das übergeordnete Subdirectory bzw. das Hauptdirec-

mn

tory, ".." auf das eigene.

Wird nun eine Datei oder ein Folder gelöscht, werden die Einträge nicht aus-
genullt, sondern nur das erste Byte auf den Wert $E5 gesetzt.

29

Kapitel 2

Diskettenprogrammierung unter TOS

Die Systemroutinen des ATARI ST-DOS

In dem folgenden Kapitel werden die Systemroutinen des ATARI ST vorge-
stellt, die in der Assembler-Sprache durch einen TRAP-Befehl aufgerufen
werden und in irgendeiner Weise mit der Floppy zu tun haben.

Das DOS des ATARI ST ist im Prinzip in drei Teile unterteilt:

— GEMDOS
— BIOS

und das erweiterte BIOS,

— XBIOS.

Der Aufruf einer Funktion dieser drei Bereiche erfolgt in Assembler wie
folgt:

1. Parameter auf dem Stack ablegen.
2. Die Funktionsnummer auf den Stack legen.
3. Den TRAP-Befehl ausführen:

— GEMDOS = TRAP #1
— BIOS = TRAP #13
— XBIOS = TRAP #14

4. Den Stack wieder in Ordnung bringen.
5. Eine eventuelle Fehlermeldung aus dem Datenregister DO auslesen.

Da die Programmierung dieser Funktionen in der Sprache C sehr einfach ist,
sind im folgenden die Aufrufe der Funktionen in der üblichen C-Notation
angegeben. Die Funktionen sind hierbei MAKRO-Definitionen, die über den

30 ATARI ST - Das Floppy-Arbeitsbuch

Preprozessor des Compilers in eine der folgenden Formen überführt wird:

— (long) GEMDOS (Nummer, Parameterliste);
— (long) BIOS (Nummer, Parameterliste);
— (long) XBIOS (Nummer, Parameterliste);

GEMDOS, BIOS und XBIOS sind hierbei in der "C"-Bibliothek enthaltene
(z.B. LATTICE-C) oder externe Funktionen (z.B. be1 DR-C in dem Modul

OSBIND.O).

Das GEMDOS

GEMDOS-Befehle weisen teilweise Ähnlichkeiten mit MS-DOS-Befehlen auf,
allerdings wurden nur einige MS-DOS-Funktionen übernommen. Wenn man
ein 5!/4-Laufwerk an den ST anschließt und eine MS-DOS-Diskette einlegt, so
wird man erstaunt feststellen, daß die Directory einwandfrei eingelesen wird.
Leider sind aber alle restlichen Daten auf MS-DOS-Disketten ohne Hilfsmittel
nicht zu lesen.

GEMDOS-Aufrufe haben die unangenehme Eigenschaft, daß sie die Register
AO und DO verändern. Falls Sie in Assembler programmieren, sollten Sie den
Inhalt dieser Register vor dem TRAP-Aufruf retten. Nach dem Funktionsauf-
ruf wird im Register DO ein Wert übergeben, der auch eine Fehlermeldung
sein kann.

Programmiert man in Assembler oder Pascal, muß bei der Eingabe von Datei-
oder Ordnernamen darauf geachtet werden, daß der Name durch ein Nullbyte
abgeschlossen wird. In C ist das nicht nötig.

Man kann die Befehle des GEMDOS in vier Kategorien einteilen:

— Datei-Befehle

— Folder-Befehle

— Directory-Befehle

— Drive-Befehle

Diskettenprogrammierung unter TOS 31

Datei-Befehle

Die Datei-Befehle setzen sich aus folgenden Befehlen zusammen, auf die nach-
folgend näher eingegangen wird:

— FCREATE $3C
— FOPEN $3D
— FCLOSE $3E
— FREAD $3F
— FWRITE $40
— FDELETE $41
— FSEEK $42
— FATTRIB $43
— PEXEC $4B
— FRENAME $56
~ FDATIME $57

Kommando: Fcreate Funktionsnummer: $3C

Format: Fcreate (name,attr)

char *name;
WORD attr;

Funktion: Vereinbarung eines Datei- oder Diskettennamens.

Um die Diskette mit einem Namen zu versehen oder um eine Datei auf ihr an-
zulegen, muß man zunächst den Befehl Fcreate mit einem Namen (8 Zeichen)
und einer Extension (3 Zeichen) und einem entsprechenden Attribut aufrufen.

Folgende Attributwerte sind bei Fcreate möglich:

$00 - diese Datei kann gelesen und beschrieben werden.
$01 - diese Datei kann nur gelesen werden.
$02 - ein sogenanntes "Hidden File" wird kreiert.
$04 - System-Datei.
$08 - Diskettenname.

Die Attributwerte $10 (Folder) und $20 können beim Kreieren einer Datei
nicht angegeben werden. Für Folder gibt es einen Extrabefehl: Dcreate. Das
Attribut $20 wird vom TOS selbst vergeben. Existiert die zu erstellende Datei
schon, wird ihr die Lange 0 zugeordnet. Die Datei wird sozusagen gelöscht.
Man erhält nach dem Aufruf ein File-Handle, über das später alle Zugriffe auf
diese Datei laufen. Als erste freie Handle-Nummer erhält man eine 6. Es
können maximal 40 Dateien gleichzeitig geöffnet werden.

32 ATARI ST - Das Floppy-Arbeitsbuch

Fehlercodes:

—34 Pfad nicht gefunden
-35 zu viele offene Dateien
-36 Zugriff nicht möglich

Erhält man als Fehlerwert die —36 zurück, so bedeutet dies, daß entweder das
Inhaltsverzeichnis voll ist.

Kommando: Fopen Funktionsnummer: $3D

Format: — Fopen (name,modus)

char *name;
WORD modus;

Funktion: Offnen einer Datei

Dateien müssen zum Lesen oder Schreiben geöffnet werden. Dazu dient der
Aufruf Fopen. Man gibt dabei den Namen der Datei, die man öffnen will, und
die Zugriffsart (Modus) an.

Folgende Moduswerte sind bei Fopen möglich:

0 — nur Lesen

1 — nur Schreiben

2 — Lesen und Schreiben

Wird die Datei gefunden und war die gewünschte Zugriffsart möglich, so wird
das Handle der Datei zurückgegeben, ansonsten wird eine Fehlernummer aus-
gegeben. Das erhaltene Handle wird später bei allen Lese-, Schreib- und Such-
operationen gebraucht.

Will man z.B. in eine Datei schreiben, deren Attribut auf "nur lesen" gestellt
ist, so muß erst das Attribut dieser Datei geändert werden. Im Desktop wird
das über das Menü "Zeige Info" bewerkstelligt. Man kann dazu auch die Funk-
tion Fattrib dazu verwenden, worauf wir später zurückkommen. Der Aufruf
Fopen setzt den Dateizeiger an den Anfang der Datei. Die Position des Zeigers
kann dann mit Fseek verändert werden.

Fehlercodes:

-33 Datei nicht gefunden
-35 zu viele offene Dateien
-36 Zugriff nicht möglich

Diskettenprogrammierung unter TOS 33

Kommando: Fclose Funktionsnummer: $3E

Format: _Fclose (handle)

WORD handle;

Funktion: Schließen einer Datei.

Eine Datei, die man geöffnet hat, sollte man nach Beenden der Arbeit auch
wieder schließen, sonst könnte es zu einem Datenverlust kommen. Man gibt
dabei die Handle-Nummer an, die man beim Öffnen der Datei erhalten hat.

Fehlercodes:

-37 falsche Handle-Nummer

Kommando: Fread Funktionsnummer: $3F

Format: _Fread (handle,anzahl,puffer)

WORD handle;
LONG anzahl];
char *puffer;

Funktion: Lesen einer Datei

Mit der Funktion Fread können Daten aus einer Datei gelesen werden. Dazu
wird die Handle-Nummer, die man beim Offnen der Datei erhalten hat, die
Anzahl der zu lesenden Bytes und die Adresse eines Puffers, über den die Da-
ten gelesen werden sollen, übergeben. Als Rückgabewert erhalten Sie ent-
weder die Anzahl der fehlerfrei gelesenen Bytes oder eine Fehlernummer.

Wird über das logische Datei-Ende hinaus gelesen, wird der Vorgang abge-
brochen, weil nicht mehr Bytes eingelesen werden können, als von der Datei in
der FAT belegt sind.

Fehlercodes:

-37 falsche Handle-Nummer

34 ATARI ST - Das Floppy-Arbeitsbuch

Kommando: Fwrite Funktionsnummer: $40

Format: TFwrite (handle,anzahl,puffer)

WORD handle;
LONG anzahl;
char *puffer;

Funktion: Schreiben in eine Datei

Die Parameter zum Beschreiben einer Datei sind identisch mit denen beim Le-
sen einer Datei. Es ist dabei möglich, durch Andern der Handle-Nummer die
Ausgabe einer Datei auch auf einen Drucker oder auf den Bildschirm zu leiten.

Dabei sind folgende Handle-Nummern gestattet:

1 = Konsole-Ausgabe
2 = RS-232-Schnittstelle

3 = Drucker

Die Handle-Nummer 0 bedeutet Konsole, die Nummern 4 und 5 bewirken

meistens Fehlermeldungen. Nun wird auch klar, warum man beim Kreieren
einer Datei als erste freie Handle-Nummer eine 6 bekommt.

Fehlercodes:

-36 Zugriff nicht möglich
-37 falsche Handle-Nummer

Kommando: Fdelete Funktionsnummer: $41

Format: — Fdelete (name)

char *name;

Funktion: Löschen einer Datei

Dieser Befehl ist mit Vorsicht zu verwenden, da damit Dateien fast unwider-
ruflich gelöscht werden. Diese Funktion wirkt ohne weitere Angaben nur im
aktiven Directory. Befindet sich eine Datei, die man löschen möchte, in einem
Folder, so gibt es zwei Möglichkeiten:

— Man tibergibt den kompletten Pfadnamen.
— Man ernemnt den Folder zum aktuellen Directory (Fkt.DSETPATH).

Diskettenprogrammierung unter TOS 35

Fehlercodes:

-33 Datei nicht gefunden
-36 Zugriff nicht möglich

Kommando: Fseek Funktionsnummer: $42

Format: — Fseek (anzahl,handle,modus)

LONG anzahl;
WORD handle;

WORD modus;

Funktion: Dateizeiger für direkten Zugriff setzen

Normalerweise wird eine Datei rein sequentiell gelesen, d.h. wenn man eine
bestimmte Information sucht, muß man die Datei von Anfang an durchsuchen.
Mit dem Befehl Fseek hat man nun die komfortable Möglichkeit, einen Zeiger
innerhalb einer Datei an eine bestimmte Position zu setzen.

Es werden 3 Parameter verlangt:

— Anzahl der Bytes, um die der Zeiger bewegt werden soll

— Handle-Nummer der Datei (siehe Fopen)

— Modus

Der Modus kann folgende Werte annehmen:

0. - Suchen vom Anfang der Datei ausgehend

1 - Suchen von der aktuellen Position aus

2 - Suchen vom Dateiende aus rückwärts

Dabei dürfen bei Modus 0 nur positive Werte übergeben werden, bei Modus 1
positive und negative und bei Modus 2 nur negative Werte, da man ja vom
Datei-Ende ausgeht und sich nur rückwärts bewegen kann.

Fehlercodes:

-32 falsche Funktion

-37 falsche Handle-Nummer

36 ATARI ST - Das Floppy-Arbeitsbuch

Kommando: Fattrib Funktionsnummer: $43

Format: Fattrib(pfad,modus, attr)

char *pfad;
WORD modus, attr;

Funktion: Attribut einer Datei erfragen und ändern

Durch diesen Befehl wird dem Anwender die Möglichkeit gegeben, das
Attribut einer Datei zu ändern oder zu ermitteln. Man übergibt den Namen der
Datei oder den kompletten Pfadnamen, falls sich die Datei in einem Folder
befindet, den Zugriffsmodus (Attribut ermitteln oder ändern) und das neuzu-
setzende Attribut.

Beim Ermitteln des Attributs einer Datei wird der letzte Parameter nicht ver-
wendet; er muß aber übergeben werden.

In der folgenden Aufstellung werden die möglichen Attributwerte angeführt:

$00 — lesen/schreiben (read/write)

$01 — nur lesen (read only)

$02 — verborgene Datei (hidden file)

$04 — System-Datei (system file)

$08 — Diskettenname (disk label)

$10 — Subdirectory (folder)

$20 — Datei wurde beschrieben und korrekt geschlossen

Die Attribute von Foldern und Disklabels können durch Fattrib nicht geändert
werden. Man erhält nach dem Aufruf das aktuelle Attribut der Datei zurück,
nach dem Ändern des Attributs also auch den neuen Wert oder eine Fehler-

meldung.

Fehlercodes:

-33 Datei nicht gefunden
-34 Pfad nicht gefunden

Diskettenprogrammierung unter TOS 37

Kommando: Pexec Funktionsnummer: $4B

Format: Pexec (modus,pfad,kommandozeile,umgebung)

WORD modus;
char *pfad;
char *kommandozeile;
char *umgebung;

Funktion: Laden und/oder Starten einer Datei

Dieser Befehl erlaubt das Laden oder Nachladen von Programmen. Das Pro-
gramm kann dann gestartet werden.

Pexec verlangt vier Parameter:

Modus: 0 = laden und automatisch starten (load and go)

3 = nur laden (Rückgabe = Basepage) (just load)

4 = Basepage erstellen (create basepage)

5 = starten (just go)

Pfad: Name der Datei oder kompletter Pfadname

Kommandozeile: | Die Kommandozeile wird in die Basepage kopiert; ver-
gleichbar mit den Angaben, die man TTP-Programmen
übergibt.

Umgebung: Parameter, die nicht über die Kommandozeile übergeben
werden können.

Fehlercodes:

-33 Datei nicht gefunden
-39 zuwenig freier Speicher
-66 falsches Ladeformat

38 ATARI ST - Das Floppy-Arbeitsbuch

Kommando: Frename Funktionsnummer: $56

Format: Trename (null,alt,neu)

WORD null;

char *alt;
char *neu;

Funktion: Umbenennen einer Datei

Dieser Befehl dient dazu, Dateien umzubenennen. Diese Funktion ist sehr von

Nutzen, da es oft notwendig ist, den Dateinamen zu ändern. Der erste Para-

meter ist eine Null, danach folgt der alte Dateiname und dann der neue Name.

Gibt man nun als neuen Namen zusätzlich den Pfad eines vorhandenen Ordners
an (z.B. TEST.FOL\NEUNAME.C), so wird die umzubenennende Datei un-
ter dem neuen Namen in den angegebenen Ordner kopiert.

Es ist nicht möglich, den Namen eines Folders oder eines Disklabels zu ändern.
Fehlercodes:

-34 Pfad nicht gefunden
-36 Zugriff nicht möglich

Man erhält den Fehlerwert —36 zurück, wenn die umzubenennende Datei nur
gelesen werden darf.

Kommando: Fdatime Funktionsnummer: $57

Format: _Fdatime (handle,puffer,modus)

WORD handle;
char *puffer;
WORD modus;

Funktion: Datum setzen

Die letzte Funktion dieses Kapitels ist Fdatime. Damit ist man in der Lage, das
Datum und den Zeitpunkt der Datei-Erstellung zu bestimmen oder zu ändern.
Dazu muß die Datei aber mit Fopen oder Fcreate geöffnet worden sein. Die
beim Offnen erhaltene Handle-Nummer wird übergeben. Der zweite Parame-
ter ist ein 4 Byte großer Puffer, der die Daten für die Datei enthält.

Diskettenprogrammierung unter TOS 39

Zuletzt wird der Modus angegeben. Modus 0 bedeutet, daß man die Daten der
Datei ermittelt; Modus 1 bedeutet, die Daten der Datei werden neu gesetzt. Der
Datenpuffer enthält in den ersten beiden Bytes die Zeit; das Datum steht in den
letzten zwei Bytes. |

Es ergibt sich folgende Codierung:

Zeit: Bits 5 - 10 Minuten

Bits 11 - 15 Stunden

Dabei ist zu beachten, daß die interne Uhr des ATARI in 2-Sekunden-Schritten
läuft, da in den ersten 5 Bits nur der Bereich von 0 - 31 dargestellt werden
kann.

Datum: Bits 0 - 4 Tag
Bits 5 - 8 Monat

Bits 9 - 15 Jahr - 1980

Der Wertebereich der "Jahrbits" geht bis 119.

Programmbeispiel mit Dateibefehlen

Im folgenden C-Programm wird ein großer Teil der soeben erläuterten Be-
fehle am Beispiel veranschaulicht.

[RRKKKKKKKKKKKKKKKKK KK KKK KKK KKK KKK KKK KR KKK KK KKK KKK KKK KK KK KK KK /

/* FILE.C * /

/* */
/* Ein C-Programm zur Veranschaulichung der DOS-Routinen x /

/* * /
/* - Fcreate */
/* - Fopen x/

/* - Fclose * /
/* - Fread */
/* - Fwrite x /

/* - Fdelete * /
/* - Frename x /
/* - Fseek */
/* - Fattrib. x /
[KKK RK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKKKKKK KKK KK KKK KKK KK KKK /

#include "portab.h"

/* Externe DOS-Funktionen x /

extern gemdos(), bios(), xbios();

40 ATARI ST - Das Floppy-Arbeitsbuch

/* Makrodef. fuer die DOS-Funktionen (LATTICE-C)

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define

#define

/* Variablendeklarationen

Fcreate (a,b)
Fopen (a,b)
Fclose (a)
Fread(a,b,cC)
Fwrite (a,b,c)
Fdelete (a)
Fseek (a,b,c)
Frename (a,b,c)

Fattrib (a,b,c)

Bconout (a)

Cnecin ()

LATTICE 1

gemdos (0x3c,a,b)
gemdos (0x3d,a,b)
gemdos (0x3e, a)

gemdos (0x3f,a,b,c)
gemdos (0x40,a,b,c)
gemdos (0x41,a)

gemdos (0x42,a,b,c)
gemdos (0x56,a,b,c)
gemdos (0x43,a,b,cC)

bios (3,5,a)

(WORD) gemdos (0x8)

WORD f_handle,mode,attribute,ret_code;
char name[12],buffer[257];

/* Create File: oeffnet eine neue Datei auf dem aktuellen
/* Laufwerk.

create file()
{
printf("\n\n Bitte den Namen der Datei eingeben: ");
scanf("%s",name) ;

printf("\n Bitte das Attribut eingeben: ");
scanf("Sh",&attribute) ;

f handle = Fcreate (name, attribute) ;

printf(" \n\nDie ID der Datei ist: %*d",f handle);

ret_code = Fclose(f_handle);
printf(" \n\nReturncode vom Schliessen ist: %d",ret_code);

Cnecin();

*/

*/

*/
*/

/*Clear File: loescht eine Datei auf dem aktuellen Laufwerk.*/

clear file()

{

Diskettenprogrammierung unter TOS 41

printf(" \n\nBitte den Namen der Datei eingeben: ");
scanf("%3s",name) ;

ret_code = Fdelete (name) ;

printf ("\n\nReturncode vom Loeschen ist: @d \n",ret code);
Cnecin();

}

/* Open File: oeffnet eine vorhandene Datei und schreibt den*/
/* Puffer hinein */

open file()
{

WORD i;

/* Daten fuer die Datei in den Puffer schreiben x /

for (i=0; i < 256; itt)
buffer[i] = i;

buffer[256] = 0;

printf(" \n\nBitte den Namen der Datei eingeben: ");
scanf("%s",name) ;

f handle = Fopen (name, 2) ;

printf(" \n\nDie ID der Datei ist: %d",f handle);

if (f handle > -1)
{

ret code = Fwrite(f_handle,255,buffer) ;
printf(" \n\nEs wurden %d Bytes geschrieben. ",ret code);

}

ret_code = Fclose (f_handle);
printf(" \n\nReturncode vom Schliessen ist: %d",ret_code);

Cnecin();

}

/* Read File: liest die ersten 65 Bytes aus der Datei. */

read _file()
{

WORD i;

LONG offset;

printf(" \n\nBitte den Namen der Datei eingeben: ");
scanf ("%s",name);

42 | ATARI ST - Das Floppy-Arbeitsbuch

£ handle = Fopen (name,2);
printf(" \n\nDie ID der Datei ist: %d",f handle);
if (f handle > -1)

{
printf(" \n\nAb welchem Byte soll gelesen werden? ");
scanf ("%d", &0ffset) ;

Fseek (offset,f handle, 0);

ret code = Fread(f_handle,40,buffer) ;

printf(" \n\nEs wurden %d Bytes gelesen. \n\n",ret_code);

for (i=0; i < 40; i++)
Bconout (buffer[i]);

ret_code = Fclose (f_ handle);
printf("\n\nReturncode vom Schliessen ist: %d",ret_code);

Cnecin();

}

rename ()

char alt [12],neu[l2];

WORD hd;

printf(" \n\nBitte den alten Namen der Datei eingeben: ");
scanf("%s",alt) ;

printf(" \n\nBitte den neuen Namen der Datei eingeben: ");
scanf ("%s",neu);

hd = Frename (0,alt,neu) ;
printf(" \n\nDer Returncode ist: %d",hd) ;
Cnecin();

}

change attr ()

{

WORD mode, attr,hd;

printf(" \n\nBitte den Namen der Datei eingeben: ");
scanf("%s",name) ;

printf(" \n\nAttribut ermitteln oder setzen (e,s)? ");
mode = 0; |

if (Cnecin() == 's')

{
mode = 1;

printf(" \n\nAttribut eingeben: ");
scanf ("%h"”,&attr);

Diskettenprogrammierung unter TOS 43

hd=Fattrib (name,mode, attr) ;

printf(" \n\nDas Attribut ist: %d",hd);
Cnecin();

}

main ()

{

/* Endlosschleife, bis von der Tastatur 0 gelesen wird * /

while (TRUE)

/* Bildschirm loeschen und Menue anzeigen * /

printf ("ScE\n\n",0x1b) ;
printf(" - 1 - Datei erstellen\n\n") ;
printf(" - 2 - Datei loeschen \n\n");
printf(" - 3 - Datei oeffnen \n\n");
printf(" - 4 - Datei lesen \n\n");
printf(" - 5 - Datei umbenennen \n\n");
printf(" - 6 —-— Attribut aendern \n\n\n");
printf(" - 0 - Zurueck zum DESKTOP \n\n");

/* Tastatur abfragen und in den Menuepunkt verzweigen */

switch (Cnecin())

{
case '0': exit(0);
case '1': create _file();

break;
case '2': clear “ile();

break;

case '3': open file();
break;

case '4': read file();
break;

case '5': _ename();
break;

case '6': change attr();

44 ATARIST - Das Floppy-Arbeitsbuch

Folder-Befehle

Die Folder-Befehle setzen sich aus folgenden Funktionen zusammen:

- DCREATE $39
- DDELETE $3A
- DSETPATH $3B
- DGETPATH $47

Das Erstellen und Verwalten von Foldern oder Ordnern ist eine der komfor-
tabelsten Funktionen des Betriebssystems. Damit hat man die Méglichkeit, das
Disketten-Directory sehr übersichtlich zu organisieren. Leider kostet jeder
Ordner auch Platz auf der Diskette, aber das nimmt man der besseren Über-
sicht in der Directory wegen gerne in Kauf.

Kommando: Dereate Funktionsnummer: $39

Format: _Dcreate (pfad)

char *pfad;

Funktion: Vereinbarung eines Folders

Mit diesem Befehl können Ordner (Folder) erstellt werden. Dazu wird der
Name des Ordners, bestehend aus 8 Zeichen und 3 Zeichen Extension, über-
geben. Es ist auch möglich, den Pfadnamen eines schon existierenden Ordners
anzugeben. Dann wird der neue Ordner innerhalb des anderen erzeugt.

Fehlercodes:

-34 Pfad nicht gefunden
-36 Zugriff nicht möglich

Kommando: Ddelete Funktionsnummer: $3A

Format: _Ddelete (pfad)

char *pfad;

Funktion: Löschen eines Folders

Diese Funktion erlaubt es, ein leeres Subdirectory zu löschen. Enthält der
Ordner Dateien, so wird eine Fehlermeldung zurückgegeben. Um diesen Ord-

Diskettenprogrammierung unter TOS 45

ner dennoch zu löschen, muß man erst alle Dateien in diesem Folder löschen.
Dann erst kann man diesen Ordner löschen.

Die Übergabe des Namens erfolgt wie bei Dcreate.

Fehlercodes:

-34 Pfad nicht gefunden
-36 Zugriff nicht möglich
-65 interner Fehler

Kommando: Dsetpath Funktionsnummer: $3B

Format: Dsetpath (pfad)

char *pfad;

Funktion: Folder zum Directory ernennen

Damit kann ein Folder zum aktuellen Directory ernannt werden. Es ist somit
nicht nötig, bei Zugriff auf eine Datei innerhalb eines Ordners, immer den
kompletten Pfadnamen zu übergeben. Man ernennt den Ordner zum aktuellen
Directory und kann dann direkt auf die Dateien innerhalb des Ordners zugrei-
fen. Um wieder in das Haupt-Directory zu kommen, genügt es, den Backslash
(\) einzugeben.

Fehlercodes:

-34 Pfad nicht gefunden

Kommando: Degetpath Funktionsnummer: $47

Format: Dgetpath (pfadpuffer,drive)

char *pfadpuffer;
WORD drive;

Funktion: Directory ermitteln

Diese Funktion ermittelt das derzeitig aktuelle Directory. Dazu wird ein Zei-
ger auf einen 64-Byte-Puffer tibergeben, in dem dann der komplette Pfadname

46 ATARI ST - Das Floppy-Arbeitsbuch

steht (wie immer durch ein Nullbyte abgeschlossen). Dazu muß die Nummer
des gewünschten Laufwerks angegeben werden:

0 — aktuelles Laufwerk

1 — Laufwerk A

2 - Laufwerk B

Ist zum Zeitpunkt des Aufrufs das Haupt-Directory aktiv, so wird nur das
Nullbyte zurückgegeben.

Fehlercodes:

46 unbekanntes Laufwerk

Programmbeispiel mit Folder-Befehlen

Im folgenden C-Programm werden die soeben erläuterten Befehle am Beispiel
veranschaulicht:

[RRKKRKRKKKKKKKK KKK KKK KKK KKK KHK KH KK HK KK KK KK KK KK KK KK]

/* */

/* FOLDER.C */
/* */
/* Ein C-Programm zur Veranschaulichung der DOS-Routinen x /

/* x /

/* - Dcreate * /
/* - Ddelete * /
/* - Dsetpath * /
/* - Dgetpath * /
/* */
VE EEE EEE 2 2 2 2 2 2 2 2 2.2.2.2 2 2.2.2.2 2.2.2 2.2.2 2.2.2.2 2.2.2.2 .2.2.2.2 2.2.2 2.2.2.2 2 2.2.2.2 2.2.2.2.207

#include "portab.h"

/* Externe DOS-Funktionen x /

extern gemdos(), bios(), xbios();

/* Makrodef. fuer die DOS-Funktionen (LATTICE-C) * /

#define Cnecin () (WORD) gemdos (0x8)
#define Dcreate (a) gemdos (0x39,a)

Diskettenprogrammierung unter TOS 47

#define Ddelete (a) gemdos (0x3a,a)
#define Dsetpath (a) gemdos (0x3b,a)
#define Dgetpath (a,b) gemdos (0x47,a,b)

#define LATTICE 1

/* Variablendeklarationen x /

WORD f handle,ret_code;
char name[14],buffer[50];

create folder ()

{

printf("\n\n Bitte den Folder-Namen eingeben: ");
scanf ("%s",name);

f handle = Dcreate (name);
printf("\n\n Die Folder-ID ist: %*d",f handle);

Cnecin();

}

delete folder ()

{

printf("\n\n Bitte den Folder-Namen eingeben: ");
scanf ("%s",name);

ret_code = Ddelete (name);
printf("\n\n Der Return-Code vom Loeschen ist: %d",ret_code);

Cnecin ();

change_path()

{
printf("\n\n Bitte den Folder-Namen eingeben: ");
scanf("%s",name) ;

ret _code = Dsetpath (name);
printf("\n\n Der Returncode von SETPATH ist: %d",ret_code);

Cnecin ();

}

show path ()
{

48 ATARI ST - Das Floppy-Arbeitsbuch

Dgetpath (buffer, 0) ;
printf("\n\n Der momentane Pfadname ist: %*s",buffer) ;

Cnecin ();

main ()

/* Endlosschleife, bis von der Tastatur 0 gelesen wird x /

while (TRUE)

{

/* Bildschirm loeschen und Menue anzeigen * /

printf ("%cE\n\n",0Ox1b);
printf (" FOLDER.PRG\n\n") ;
printf(" Ein Beispielprogramm aus dem FLOPPY-ARBEITS") ;
printf ("BUCH\n\n\n") ;
printf(" - 1 - Folder erstellen \n\n");
printf(" - 2 - Folder loeschen \n\n");
printf(" - 3 - Pfadnamen setzen \n\n");
printf(" - 4 - Pfadnamen holen \n\n\n");
printf(" - 0 - Zurueck zum DESKTOP \n\n");

/* Tastatur abfragen und in den Menuepunkt verzweigen x /

switch (Cnecin())

exit (0);

create folder();

delete folder ();

change path();

case '0':

case '1'’:

break;

case '2’:

break;

case '3':

break;

case '4': show_path ();

Diskettenprogrammierung unter TOS 49

Directory-Befehle

Die Directory-Befehle setzen sich aus folgenden Funktionen zusammen:

- FSETDTA $1A
— FGETDTA $2F
— DFREE $36
— FSFIRST $4E
— FSNEXT $4F

Kommando: Fsetdta Funktionsnummer: $1A

Format: Fsetdta (ptr)

LONG ptr;

Funktion: DTA setzen

Die Disk Transfer Address, kurz auch DTA genannt, ist ein 44-Byte-Puffer,
der hauptsächlich bei Directory-Operationen Verwendung findet. Mit dem
Befehl kann diese DTA gesetzt werden. Eine genaue Beschreibung des Puf-
ferinhalts finden Sie unter der Funktionsbeschreibung des Befehls Fsfirst.

Kommando: Fegetdta Funktionsnummer: $2F

Format: Fgetdta()

Funktion: Adresse der DTA ermitteln

Als Ergebnis dieses Aufrufs erhält man die Adresse des DTA-Puffers zurück.

Kommando: Dfree Funktionsnummer: $36

Format: Dfree (puffer,drive)

LONG puffer;
WORD drive;

Funktion: Platz auf der Diskette prüfen

Mit Dfree stellen Sie fest, wieviel Platz auf der Diskette belegt ist und wieviel
noch frei ist.

50 ATARI ST — Das Floppy-Arbeitsbuch

Dabei müssen ein 16 Byte großer Puffer und die Nummer des gewünschten
Laufwerks angegeben werden.

0 — aktives Laufwerk

1 - Laufwerk A

2 - Laufwerk B

Der Puffer zeigt auf eine Struktur, die folgendermaßen aussieht:

LONG b frei;

LONG b_total;

LONG b_sektorgröße;
LONG b_clustergröße;

b frei: Anzahl der freien "Allocation Units" (Cluster).
Eine Datei auf der Diskette, auch wenn sie nur ein paar
Bytes groß sein sollte, benötigt mindestens ein Cluster (also
zwei Sektoren).

b_total: Gesamtanzahl der Cluster auf einer Diskette. Bei einer ein-
seitigen Diskette beträgt dieser Wert 351, bei einer doppel-
seitigen Diskette 711.

b_sektorgröße: Größe eines Sektors (normalerweise 512 Bytes).

b_clustergröße: Anzahl der zu einem Cluster gehörenden Sektoren (norma-
lerweise zwei Sektoren).

Fehlercodes:

—46 unbekanntes Laufwerk

Programmbeispiel: Dfree

[BR EEE 5 5 5 5 5.2 2 2.2.2. 2.2.2.2 2.2.2.2. 2.2 2.2.2.2 2.2 2.2.2.2 .2.2.2.2.2.2.2 2.2.2.2. 2.2 2.2.2 2.2.2.2 2.2 02.207

/* x /

/* SPACE.C Ein Beispielprogramm aus dem Floppy - * /
/* Arbeitsbuch * /
/* * /
/* Dieses Programm gibt den freien Speicherplatz auf der x /
/* Diskette aus. x /
/* x /

[RR KKK KK KK KK KK RK KK KK KKK KKK IK KKK KKK KKK KKK KKK KA K KKK KKK KK AK KK KK A /

Diskettenprogrammierung unter TOS 51

#include"osbind.h"
#include"stdio.h"

#define DIGITALC 1

main ()

{

long pbuf;
long free _space,used_space,max_space;

char c;

struct buffer

{

long b_free;
long b_total;
long b_secsize;
long b_clsize;

} buf;

pbuf = &buf;
label:

printf(" Bitte Diskette einlegen........... \n");
Cconin();

Dfree (pbuf,0);
free space = buf.b free * buf.b clsize * buf.b secsize ;
max space = buf.b total * buf.b_clsize * buf.b_secsize ;
used_space = max_space - free space;

printf(" Maximaler Speicherplatz : %1d\n",max_space) ;
printf(" Freier Speicherplatz : %ld\n",free_ space) ;
printf(" Belegter Speicherplatz : %ld\n",used_space) ;

printf(" Noch eine Diskette ? J/N \n");

c = getchar();
if (c== 'j')

goto label;
printf(" Bitte Taste druecken.............. \n");

Cconin();

}

52 ATARIST - Das Floppy-Arbeitsbuch

Kommando: Fsfirst Funktionsnummer: $4E

Format: Fsfirst (name,attr)

char *name;

WORD attr;

Funktion: Datei auf Diskette suchen

Dieser Befehl ermöglicht es, herauszufinden, ob eine bestimmte Datei in der
Directory enthalten ist. Man kann auch nach mehreren Dateien suchen oder
sich auch das ganze Directory ausgeben lassen. Man muß zuerst den DTA-Puf-
fer (Fsetdta) einrichten, damit man die kompletten Informationen über eine
Datei erhält.

Dieser Puffer baut sich folgendermaßen auf:

Byte 0-20 für GEMDOS reserviert
Byte 21 Datei-Attribut
Byte 22-23 Uhrzeit der Erstellung
Byte 24-25 Datum der Erstellung
Byte 26-29 Dateigröße in Bytes
Byte 30-43 Name und Extension der Datei

Bei Aufruf des Befehls übergibt man den Dateinamen und das Attribut der
Datei, nach der gesucht werden soll. Bei der Angabe des Dateinamen ist es
nicht nötig, immer den kompletten Namen anzugeben. Buchstaben können
auch durch ein Fragezeichen (?) ersetzt werden, der Name oder die Extension
durch einen Stern (*).

Man kann auch den gesamten Dateinamen durch *.* ersetzen. Es wird immer
die erste Datei ausgegeben, die nach den Suchkriterien gefunden wurde. Als
Attribute können die Werte eingesetzt werden, die schon bei Fattrib behandelt
wurden. Man kann aber auch den Wert 255 als Attribut angeben. Dann wird
das Attribut der Datei bei der Suche nicht mehr beachtet.

Beispiele:

Fsfirst(TEST.PRG,0) sucht nach TEST.PRG (read/write).
Fsfirst(*.C,0) sucht das erste read/write-Programm mit der Exten-

sion .C.
Fsfirst(??ST.PAS,16) sucht den Ordner ??ST.PAS, wobei die ersten beiden

Buchstaben beliebig sind.
Fsfirst(*.*,8) sucht den Diskettennamen.
Fsfirst(*.*,255) sucht die erste Datei.

Diskettenprogrammierung unter TOS 53

Wird eine Datei gefunden, werden die Daten in den DTA-Puffer tibertragen.

Fehlercodes:
-33 Datei nicht gefunden
-49 keine weiteren Dateien

Kommando: Fsnext Funktionsnummer: $4F

Format: Fsnext()

Funktion: Weitere Dateien suchen

Sucht man nun nicht nur eine ganz bestimmte Datei, sondern mehrere oder
will man gar das Directory einlesen, benötigt man die Funktion Fsnext. Natür-
lich muß vorher ein Fsfirst-Aufruf erfolgt sein.

Parameter benötigt diese Funktion nicht. Zum Einlesen des Directories genügt
es, nach einem einmaligen Fsfirst-Aufruf (*.*,255) solange den Aufruf Fsnext
zu verwenden, bis die zurückgegebene Handle-Nummer ungleich 0 ist.

Dann wurde keine Datei mehr gefunden.

Fehlercodes:

49 keine weiteren Dateien

Programmbeispiel: Catalog.C

[KKK KKK K EEE EEE. 5 5 52 2.2.2.2 2.2.2 2.2.2 2.2 2.2.2.2. 2.2 2.2.2 2.2 2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.07

/* x /

/* Dieses Programm ist ein Beispiel zum Einlesen des */
/* Directories. Folgende Routinen werden benutzt: * /

/* x /

/* Fsfirst, Fsnext und Setdta * /

/* * /
[RR KK KKK KKK KKK KR KK KK KK KK KK KKK KK KKK KK KK RK KK KKK RK KKK KK KK KKK KK /

#include "osbind.h"
#define WORD short
#define LONG int
#define LATTICE 1

54 ATARI ST - Das Floppy-Arbeitsbuch

/* Aufbau des DTA-Puffers * /

struct buffer { char dummy[21];

char attr;

WORD zeit;
WORD datum;

LONG laenge;
char name[14];

} dta;

/* Diese Routine maskiert die Datumbits aus */
void
data(i)

WORD i;

{
WORD 3;
j= 1 & 0x001f;
printf(" %2u.",4);3
j = (1 & 0Ox01e0) >> 5;
printf ("32u.",J);
j = ((i & Oxfe00) >> 9)+80;
printf("%2u ", 4);

}
/* Diese Routine maskiert die Zeitbits aus */
void
time (i)
WORD i;

{
WORD 7;
j = (i & 0xf800) >> 11;
printf("%02u:",j);
3} = (i & 0x07e0) >> 5;
printf ("%02u\n",J);

}
/* Namen in der DTA löschen * /
void
clear _name()

WORD i;
for (i=0; i < 14; it+) dta.name[i] = '\0O';

}
main ()

{
WORD handle,a;
char Aname = "A:*.*"; /* Directory von Drive A */
clear name ();

Fsetdta (dta) ;

handle = Fsfirst(name,255); /* 255 = Alle Dateien */
a = QO;

if (handle == 0)
do

{

printf ("%-15.13s",dta.name) ;
printf("%S3d",dta.attr) ;

printf(" %6u",dta.laenge) ;
data (dta.datum) ;

Diskettenprogrammierung unter TOS 55

time (dta.zeit);

clear name();
handle = Fsnext (); /* nächste Datei */
if (a++ == 23) Cnecin();

}
while (handle == 0);

Cnecin ();

Drive-Befehle

Es gibt nur zwei Drive-Befehle:

Kommando: Dsetdrv Funktionsnummer: $0E

Format: Dsetdrv(drive)

WORD drive;

Funktion: Aktuelles Laufwerk bestimmen

Mit diesem Befehl kann ein Laufwerk zum aktuellen Laufwerk ernannt wer-

den. Dem Aufruf wird ein Parameter übergeben, der die Laufwerksbezeich-
nung enthält, 0 für Laufwerk A, 1 für Laufwerk B. Nach dem Aufruf erhält
man die Nummer des vor dem Aufruf aktiven Laufwerks.

Kommando: Dgetdrv Funktionsnummer: $19

Format: Dgetdrv()

Funktion: Aktuelles Laufwerk ermitteln

Die Funktion Dgetdrv ermittelt die derzeitig aktuelle Floppy. Man erhält die
Nummer des aktiven Laufwerks.

Programmbeispiel:

[RKRKKKKKKKKKKKKKKKKK KKK KKK KKK 2.2 2 2 2.2.2.2 2.2 2.2.2.2 2.2 2.2 2 2.2 2 2 2.2 2 2 2 2 22.3072

/* DRIVE.C */
/* Dieses Programm dient zur Veranschaulichung der */
/* DRIVE-Routinen des ATARI-Betriebssystems TOS. */
[RK KKK KK KKK KKK KKK KK RK 2 2 2 2 2 2.2.2 2 2.2.2.2 2.2.2 KK RK KR KKK KKK 2 2 2.2.2.2 2.2 2 2.2.2. 2.07

#include "stdio.h"
#include "osbind.h"

56 ATARI ST — Das Floppy-Arbeitsbuch

/* Makrodefinitionen fuer die GEMDOS-Aufrufe * /

#define ESC Ox1b

#define DIGITALC 1

/* Hauptprogramm * /

main ()

{

WORD new_drive, old_drive;
char number;

/* Bildschirm loeschen und Kopfzeile ausgeben x /

printf ("ScE",ESC) ;
printf ("\n - DRIVE.PRG -\n\n");

printf("Ein Beispielprogramm aus dem FLOPPY-ARBEITSBUCH\n\n");

/* Aktuelle Laufwerknummer holen und ausgeben */

old_ drive = Dgetdrv();
printf("\n Aktuelles Laufwerk: <c",old_drive + 0x41);
Cnecin();

/* Neues Laufwerk eingeben und setzen * /

printf("\n\n Laufwerk eingeben (A..D): ");
number = Cnecin();
printf(" %c\n",number) ;

/* Wenn number ein Kleinbuchstabe ist, 0x20 subtrahieren x /

if (number > 0x60)

number -= 0x20;

/* Wenn number < 'A' oder > 'D' ist, dann number x /

/* auf 'A' setzen x /

if ((number < 0x41) || (number > 0x44))

number = 0x41;

/* Neues Laufwerk (0..3) setzen * /

Dsetdrv(number - 0x41);

Diskettenprogrammierung unter TOS 57

/* Aktuelle Laufwerknummer holen und ausgeben * /

new drive = Dgetdrv();
printf("\n\n Aktuelles Laufwerk: $c",new drive + 0x41);
Cnecin();

/* Laufwerknummer in den Anfangszustand zuruecksetzen * /

Dsetdrv(old_ drive) ;

Die Fehlermeldungen des GEMDOS

Als Ergebnis des Aufrufs einer GEMDOS-Funktion erhält man einen Wert
zurück, der Aufschluß darüber gibt, ob während derAusfiihrung der Funktion
ein Fehler aufgetreten ist.

Ist dieser Wert 0, so ist kein Fehler aufgetreten. Die Funktion wurde korrekt
ausgeführt. Erhält man einen negativen Wert zurück, so ist ein Fehler aufge-
treten.

Diese haben folgende Bedeutung:

-32 ungültige Funktionsnummer

-33 Datei nicht gefunden

-34 Pfadname nicht gefunden

-35 zu viele offene Dateien

-36 Zugriff nicht möglich

-37 ungültige Handle-Nummer

-39 nicht genügend Speicher

—46 ungültige Laufwerkbezeichnung

-49 keine weiteren Dateien

-65 interner Fehler

-66 falsches Ladeformat

58 ATARI ST - Das Floppy-Arbeitsbuch

Einschrankungen des GEMDOS

Bei einigen Funktionen des GEMDOS sind folgende Einschrankungen zu be-
achten:

Frename: Ordner und der Diskettenname können nicht umbenannt werden.

Fattrib: Das Attribut von Ordnern und dem Diskettennamen kann eben-

falls nicht geändert werden.

Dcreate. | Es können maximal 10 Ordner ineinander verschachtelt werden.
Auf einer Diskette können maximal 32 Ordner erstellt werden,
ohne daß bei weiterer Erstellung von Ordnern total unsinnige
Fehlermeldungen erscheinen oder mit Diskettenfehlern zu rech-
nen ist.

GEMDOS-Systemaufrufe

Es folgt nun eine Zusammenfassung der GEMDOS-Aufrufe. Dabei werden die
hexadezimalen Werte, die Funktion, Eingabeparameter und Rückgabewerte
dargestellt:

Hex Funktion Eingabe Rückgabe

E Dsetdrv drive
19 Dgetdrv Drive
1A Fsetdta ptr
2F Fgetdta DTA
36 Dfree * puffer freie Bytes

drive Anz. Cluster
Bytes/Sektor
Sektor/Cluster

39 Dcreate * nfad Fehler
3A Ddelete * nfad Fehler
3B Dsetpath * nfad Fehler
3C Fcreate * pfad Fehler

attribut
3D Fopen * pfad Fehler

modus
Fclose handle Fehler

Diskettenprogrammierung unter TOS 59

Hex Funktion Eingabe Rückgabe

3F Fread handle Fehler
anzahl
* puffer

40 Fwrite handle Fehler
anzahl
* puffer

41 Fdelete * pfad Fehler
42 Fseek anzahl Fehler

handle
modus

43 Fattrib * pfad Fehler
modus
attribut

47 Dgetpath * nfadpuffer Pfadname
drive

4B Pexec modus Adr. Basepage
* pfad Fehler
kommandozeile
umgebung

4E Fsfirst * pfad Datei
attribut Fehler

4F Fsnext Datei
Fehler

56 Frename * pfad (alt) Fehler
* pfad (neu)

57 Fdatime handle Datum
* puffer Zeit
modus Fehler

Dabei bedeuten:

* — Zeiger auf

DTA - Disk-Transfer-Adresse

handle - Datei-Handle

pfad — Name oder Pfadname

Pointer

60 ATARI ST - Das Floppy-Arbeitsbuch

Die BIOS-Routinen

Die Schnittstelle zwischen GEMDOS und der Hardware des ATARI ist das

BIOS (Basic Input/Output System).

Das BIOS kiimmert sich um grundlegende Ein- und Ausgabe-Funktionen, z.B.
die Tastatureingabe, Bildschirmausgabe, RS-232-Schnittstelle, Druckerausga-
be sowie Ein- und Ausgabe von und auf Disketten.

Die BIOS-Funktionen benutzen bei einem Aufruf die Register AO-A2 und
DO-D2. Aufgerufen werden sie durch einen TRAP #13.

Folgende Funktionen des BIOS werden fiir Diskettenoperationen benutzt:

-Rwabs 4
— *getbpb 7
— Mediach 9
— Drvmap 10

Funktion: Rwabs Funktionsnummer: 4

Format: LONG Rwabs (rwflag,puffer,anzahl,start,device)

WORD rwflag;
LONG puffer;
WORD anzahl,start,device;

Funktion: Sektoren lesen oder schreiben

Mit diesem Befehl können Sektoren von der Diskette gelesen und geschrieben
werden.

Die Parameter haben folgende Bedeutung:

rwflag: 0 Sektoren lesen

1 Sektoren schreiben
2 Sektoren lesen, ignoriere Diskettenwechsel
3 Sektoren schreiben, ignoriere Diskettenwechsel

puffer: ist die Adresse eines Puffers, über den die Daten gelesen werden
sollen oder aus dem die Daten auf Diskette geschrieben werden
sollen. Dabei ist zu beachten, daß der Puffer an einer geraden

Diskettenprogrammierung unter TOS 61

Adresse (in Assembler) beginnen sollte, da sonst die Übertragung
der Daten sehr langsam vonstatten geht.

anzahl: Anzahl der Sektoren, die gelesen bzw. geschrieben werden sollen.

start: gibt an, ab welchem logischen Sektor dabei begonnen wird.

device: gibt an, welches Laufwerk benutzt wird.

0 - Laufwerk A

1 - Laufwerk B

Wie bei GEMDOS- werden auch bei BIOS-Aufrufen Fehlercodes zurückgege-
ben. Ist dieser Wert 0, so ist der Aufruf korrekt abgearbeitet worden; ist er ne-
gativ, so ist ein Fehler aufgetreten.

Eine Liste der Fehlermeldungen finden Sie im Anhang.

Kommando: *getbpb Funktionsnummer: 7

Format: LONG getbpb(device)

WORD device;

Funktion: Pointer auf BPB

Dieser Befehl liefert einen Pointer auf den BIOS-Parameter-Block (BPB) des
Laufwerks device.

Dabei steht 0 für Laufwerk A und 1 für Laufwerk B. Man erhält die Adresse
des BPB zurück oder 0, falls ein Fehler aufgetreten ist.

Der BIOS-Parameter-Block ist folgendermaßen aufgebaut:

int recsiz Sektorgröße in Bytes
int clsiz Cluster-Größe in Sektoren
int clsizb Cluster-Größe in Bytes
int rdlen Directory-Länge in Sektoren
int fsiz FAT-Größe in Sektoren
int fatrec Sektornummer der FAT-Kopie
int datrec Sektornummer des ersten Daten-Clusters
int numcl Anzahl der Daten-Cluster auf Diskette

int bflags diverse Flags

62 ATARI ST - Das Floppy-Arbeitsbuch

Die Daten des BPB fiir 80-Track-SS- und 80-Track-DS-Laufwerke sind:

Parameter 80 Track SS 80 Track DS

recsiz 512 512

clsiz 2 2

clsizb 1024 1024

rdlen 7 7

fsiz 5 5

fatrec 6 Ä 6

datrec 18 | 18

numcl 351 711

Kommando: Mediach Funktionsnummer: 9

Format: | LONG Mediach (device)

Word device;

Funktion: Diskettenwechsel ermitteln

Dieser Befehl ermittelt, ob zwischenzeitlich eine Diskette gewechselt wurde.
Dazu übergibt man die Laufwerknummer (0 für Laufwerk A, 1 für Laufwerk
B) und erhält dann einen von drei möglichen Werten als Ergebnis zurück:

-0 Diskette wurde definitiv nicht gewechselt
—1 Diskette kann gewechselt worden sein
—2 Diskette wurde definitiv gewechselt

Kommando: Drvmap Funktionsnummer: 10

Format: LONG drvmap()

Funktion: Bitvektor liefern

Dieser Befehl liefert einen Bitvektor, der die angeschlossenen Laufwerke ent-
hält. Die Bitnummer n ist dabei gesetzt, wenn das Laufwerk n angeschlossen ist
(wie immer ist 0 = Laufwerk A usw.).

Diskettenprogrammierung unter TOS 63

BIOS-Systemaufrufe

Dies ist eine Zusammenfassung der BIOS-Aufrufe. Es werden die dezimalen
Werte, die Funktion, Eingabeparameter und Rückgabewerte dargestellt:

Dez Funktion Eingabe Rückgabe

4 Rwabs rwflag Daten
puffer Fehler
anzahl
start

device
7 getbpb device Adr. BPB
9 Mediach device gewechselt?
10 Drvmap Laufwerke

Dabei bedeuten:

Adr — Adresse

BPB — BIOS-Parameter-Block

Programmbeispiel mit BIOS-Routinen

Im folgenden C-Programm werden die soeben erlauterten BIOS-Befehle am
Beispiel veranschaulicht:

[RRKKKKKKKKKKKKKKKKKKKEKKKK KKK KKK KK KKK KKK KKK KKK KK KK KK KK KK KKK KK /

/* */
/* BIOS.C - Ein Beispielprogramm aus dem Floppy-Arbeitsbuch */

/* */

/*In diesem Programm werden folgende BIOS-Routinen benutzt: */

/* x /

/* - Rwabs, */
/* - Drvmap */

/* - getbpb */

/* x /
[RR KK RK KKK KKK KKK KKK KK KK KKK KKK KKK KKK KK KKK KK KK KKK KKK KKK KKK KKK KK /

extern long bios();
extern long gemdos();

#define Rwabs (a,b,c,d,e) bios (4,a,b,c,d,e)
#define getbpb (a) ((long *) bios(7,a))
#define Mediach (a) bios (9,a)

64 | ATARI ST - Das Floppy-Arbeitsbuch

#define Drvmap () bios (10)
#define WORD short

/* Dieses MAKRO wartet auf die Eingabe der Tastatur x /

#define Cnecin() gemdos (8)
#define LATTICE 1

struct BPB

{
WORD recsize;
WORD clsize;
WORD clsizeb;
WORD rdlen;

WORD fsize;
WORD fatrec;

WORD datrec;

WORD numcl;

WORD bflags;

} *bp_ block;

params ()

{
bp block = getbpb (0);
printf ("Sektorgroesse in Bytes : *d\n",bp block->recsize) ;
printf("Sektoren je Cluster : Sd\n",bp block->clsize);
printf("Bytes je Cluster : <d\n",bp block->clsizeb) ;
printf("Sektoren der Directory : %d\n",bp block->rdlen);
printf("Sektoren je FAT : Sd\n",bp block->fsize);
printf ("Startsektor der FAT : Sd\n",bp block->fatrec);

printf("Startsektor der Daten : %d\n",bp block->datrec);
printf("Anzahl der Cluster : Sd\n\n",bp block->numcl) ;

}

drive ()

{
WORD handle,k,i;

handle = Drvmap();
k = 0x80;
printf("\nAngeschlossene Laufwerke: ");

for (i=7; i>-1; i--)

if (handle & k)

printf(" °c",i+t65);
k=k/ 2;

print£f("\n\n");

Diskettenprogrammierung unter TOS 65

boot ()

/* Einlesen des Bootsektors über die RWABS-Funktion */

char sektor [512];

WORD i, j;

Rwabs (0, sektor,1,0,0);

for (i=0; i<512; i++)

{
if (i % 16 == 0) printf("\n");

j = sektor[i] & Ox00ff;
print£(" %02x",j);

main ()

drive ();
Cnecin();

params () ;
Cnecin();
boot () ;

Cnecin();

Die XBIOS-Routinen

Außer den BIOS-Funktionen gibt es beim ATARI ST noch die erweiterten
BIOS-Funktionen (XBIOS - extended BIOS). Diese werden über TRAP #14
aufgerufen.

Folgende Funktionen des XBIOS befassen sich mit der Floppy:

— Floprd 8

— Flopwr 9

— Flopfmt 10

— Protobt 18

— Flopver 19

66 ATARIST - Das Floppy-Arbeitsbuch

Kommando: Floprd Funktionsnummer: 8

Format: WORD Floprd (puffer,filler,dev,startsek,track,seite,anzahl)

LONG puffer,füller;
WORD dev,startsek,track,seite,anzahl;

Funktion: Sektoren lesen

Mit diesem Befehl kann man einen oder mehrere Sektoren von der Diskette le-

sen. Die Parameter haben folgende Bedeutung:

puffer: In diesen Puffer werden die Daten von Diskette gelesen. Der Puf-
fer muß an einer Wortgrenze beginnen und für die zu lesenden
Daten groß genug sein (512 Bytes mal Anzahl der Sektoren).

füller: Dummy-Parameter (immer 0).

dev: Laufwerk (0 = Laufwerk A, 1 = Laufwerk B).

startsek: | Nummer des ersten zu lesenden Sektors (normalerweise zwischen
1 und 9).

track: Nummer des zu lesenden Tracks.

seite: Gibt an, auf welcher Diskettenseite gelesen werden soll (0=Seite 1,
1 = Seite 2).

anzahl: Anzahl der Sektoren, die gelesen werden sollen.

Als Rückgabewert erhält man entweder 0, wenn kein Fehler aufgetreten ist,
oder wie bei GEMDOS eine negative Zahl als Fehlermeldung.

Diese Fehlermeldungen sind am Ende dieses Kapitels aufgelistet.

Kommando: Flopwr Funktionsnummer: 9

Format: WORD Flopwr (puffer,füller,dev,startsek,track,seite,anzahl)

LONG puffer,füller;
WORD dev,startsek,track,seite,anzahl;

Funktion: Sektoren schreiben

Mit dieser Funktion kann man einen oder mehrere Sektoren auf die Diskette
schreiben. Die Parameter haben die gleiche Bedeutung wie bei Floprd.

Diskettenprogrammierung unter TOS 67

Kommando: Flopfmt Funktionsnummer: 10

Format:

Funktion:

WORD
Flopfmt (puffer,füller,dev,spt,track,seite,intlv,magic,virgin)

LONG puffer,füller;
WORD dev,spt,track,seite,intlv,virgin;
LONG magic;

Diskette formatieren

Mit diesem Befehl hat man die Möglichkeit, einzelne Tracks oder auch die
ganze Diskette zu formatieren.

Dabei werden folgende Übergabe-Parameter verlangt:

puffer:

füller:

dev:

spt:

track:

seite:

intlv:

magic:

virgin:

Puffer, der die kompletten Track-Daten enthält. Bei 9 Sektoren
pro Track muß dieser Puffer mindestens 8 KByte groß sein.

Dummy-Parameter (immer 0).

Nummer des Laufwerks (0 = Laufwerk A, 1 = Laufwerk B).

"Sectors per Track"; dies ist die Anzahl der zu formatierenden
Sektoren pro Track.

Nummer des Tracks.

Diskettenseite (0 oder 1).

"Interleave"; bestimmt, in welcher Reihenfolge die Sektoren auf
die Diskette geschrieben werden.

Beispiel: Bei einem Interleave von 1 lautet die Sektor-Reihen-
folge: 1-2-3-4-5-6-7-8-9.

Bei einen Interleave von 2 lautet die Reihenfolge:
1-3-5-7-9-2-4-6-8.

Als sogenannte "magic number" muß die Konstante $87654321
benutzt werden, da sonst die Formatierung abgebrochen wird.

Dies ist der Wert, der beim Formatiervorgang als Datenbytes auf
die Diskette geschrieben wird.

68 ATARI ST - Das Floppy-Arbeitsbuch

ATARI hat als Standardwert $ESES empfohlen. Man sollte es ver-
meiden, den Wert $F als Hi-Nibble-Wert zu wählen, da die Byte-
folgen $F* (* — Joker) vom Floppy-Disk-Controller als Befehle
interpretiert werden.

Als Ergebnis des Aufrufs erhält man einen Fehlercode zurück. Betragt dieser
Wert 0, so war die Formatierung erfolgreich. Falls eine negative Zahl zurück-
gegeben wurde, ist ein Fehler aufgetreten.

Der Wert -16 (Bad Sectors) bedeutet, daß einige Sektoren nicht korrekt for-
matiert wurden und die Daten nicht richtig zurückgelesen werden konnten.
(Die Formatierroutine im TOS liest nämlich nach jedem Sektor, der forma-
tiert wurde, diesen Sektor gleich wieder ein (verify) und überprüft die gele-
senen Daten mit denen im Formatierpuffer.)

Falls ein Fehler -16 aufgetreten ist, steht im Puffer eine Liste der "schlechten"
Sektoren. Sie können daraufhin noch einmal formatiert werden (natürlich
muß der ganze Track formatiert werden, da immer bei Sektor eins angefangen
wird) oder in der FAT als "bad" markiert werden.

Kommando: Protobt Funktionsnummer: 18

Format: | VOID Protobt (puffer,seriennr,disktyp,execflag)

LONG puffer,seriennr;
WORD disktyp,execflag;

Funktion: Image des Bootsektors erzeugen

Mit diesem Befehl wird das "Image" (Bild) eines Bootsektors erzeugt. Der er-
zeugte Bootsektor steht dann in einem Puffer, den man mit dem Befehl Flopwr
auf Track 0, Sektor 1 auf Seite 1 schreibt.

Die Parameter haben dabei folgende Bedeutung:
execflag: Dieses Flag bestimmt, ob der Bootsektor ausführbar ist.

0 nicht ausführbar
1 ausführbar
-1 Bootsektor bleibt, wie er war

disktyp: Gibt den Typ der Diskette an (SS/DS 40T/80T)
0 40 Tracks, single sided (180 kB)
1 40 Tracks, double sided (360 kB)

_ Diskettenprogrammierung unter TOS 69

seriennr:

puffer:

2 80 Tracks, single sided (360 kB)
3 80 Tracks, double sided (720 kB)
-1 Disktyp wird nicht verändert

Ist eine 24-Bit-Seriennummer, die in den Bootsektor geschrieben
wird. Ist die Seriennummer größer als 24 Bits ($01000000), so
wird sie durch den Zufallsgenerator erzeugt. Ein Wert von -1 be-
deutet, wie auch schon bei den zwei ersten Parametern, daß die Se-
riennummer nicht verändert wird.

Adresse eines 512- Byte-Fuffers, in dem die Daten des Bootsektors
stehen.

Der Bootsektor einer Systemdiskette hat folgenden Aufbau:

Adresse 40 Tracks SS 40 TracksDS 80 Tracks SS 80 Track DS

0-1 Branch auf Bootprogramm
2-7 "loader"

8-10 Seriennummer

11-12 BPS 512 512 512 512
13 SPC 1 2 2 2
14-15 RES 1 41 1 1
16 NFATS 2 2 2 2
17-18 NDIRS 64 112 112 112
19-20 NSECTS 360 720 720 1440
21 MEDIA 252 253 248 249
22-23 SPF 2 2 5 5
24-25 SPT 9 9 9 9
26-27 NSIDES 1 2 1 2
28-29 NHID 0 0 0 0
510-511 CHECKSUM

Die Abkiirzungen haben folgende Bedeutung:

Bytes pro Sektor. Normalerweise immer 512.
Sektoren pro Cluster.
Anzahl der reservierten Sektoren am Beginn der Diskette ein-
schlieBlich des Bootsektors.
Anzahl der File Allocation Tables (FATs) auf der Diskette.
Maximale Anzahl der Directory-Eintrage.
Gesamtzahl der Sektoren auf der Diskette.
Media Descriptor Byte; wird vom ST-BIOS nicht benutzt.
Anzahl der Sektoren in jedem FAT.

70 ATARI ST - Das Floppy-Arbeitsbuch

SPT: Anzahl der Sektoren pro Track.
NSIDES: Anzahl der Seiten auf der Diskette.
NHID: Anzahl der "versteckten" Sektoren; wird vom ST-BIOS ignoriert.

Kommando: Flopver Funktionsnummer: 19

Format: | WORD Flopver (puffer,fiiller,dev,startsec,track,seite,anzahl)

LONG puffer, filler;
WORD dev,startsec,track,seite,anzahl;

Funktion: Sektoren prüfen

Dieser Befehl dient zum Überprüfen eines oder mehrerer Sektoren auf der
Diskette. Dabei werden die Sektoren von der Diskette gelesen und mit den Da-
ten in einem Puffer verglichen. Stimmen die gelesen Daten mit denen aus dem
Puffer überein, so wird keine Fehlermeldung ausgegeben.

Bei einem Fehler wird eine negative Zahl zurückgegeben, und im Puffer steht
eine Liste der fehlerhaften Sektoren.

Die Parameter der Funktion sind die gleichen wie bei der Funktion Floprd.

XBIOS-Systemaufrufe

Dies ist eine Zusammenfassung der XBIOS-Aufrufe. Es werden die dezimalen
Werte, die Funktion, Eingabeparameter und Rückgabewerte dargestellt:

Dez Funktion Eingabe Rückgabe

8 Floprd puffer Daten
füller Fehler
dev
startsek
track
seite
anzahl

Diskettenprogrammierung unter TOS 71

Dez Funktion Eingabe Rückgabe

9 Flopwr puffer Fehler

10 Flopfmt puffer Fehler

magic
virgin

18 Protobt puffer Fehler
seriennr
disktyp
execflag

19 Flopver puffer Fehler
füller

dev

startsek

track

seite

anzahl

Programmbeispiel mit XBIOS-Routinen

Im folgenden C-Programm werden die soeben erläuterten XBIOS-Befehle am
Beispiel veranschaulicht.

[KR KKKKKKKKKKKKKKKKKK KKK KK KKK KKK KKK KKK KK KK KK 2.2.2 2.2 2 2.2.2 2 2 2.2 2.2. 2.207

/* FORMAT.C-Ein Beispielprogramm aus dem Floppy-Arbeitsbuch */
/* , * /

/* Dieses Programm formatiert eine einseitige Diskette mit */
/* 83 Spuren und 10 Sektoren je Spur. Anschliessend werden */
/* die ersten 30 Bytes des Bootsektors ausgegeben. x /
[KK RK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK 2.2.2.2. 2.2.2.2 2.2.2. 2.2. 2 KKK KK KKK KK /

72 _ATARI ST - Das Floppy-Arbeitsbuch

[KRKKKKKKKKKKK KKK KKK KKK KK KKK KK KKK KKK KK KKK KKK KKKKKKKKKKKKKK KKK /

/* */
/*In diesem Programm werden folgende XBIOS-Routinen benutzt:*/
/* */
/* - Floprd * /
/* - Flopwr * /
/* - Flopfmt x /
/* - Protobt * /

/* - Flopver * /

/* */
[BRR En EEE EEE 2 2 2 2.2 2 2.2.2.2. 2.2.2.2 2.2.2.2 2.2.2.2. 2.2.2. 2.2.2. 2.2.2.2 2.2.2.2 2.2. 2.2.2.2 2. 2.2.2077

extern long xbios();
extern long gemdos ();

#define Floprd(a,b,c,d,e,f,g) xbios(8,a,b,c,d,e,f,g)
#define Flopwr(a,b,c,d,e,f,g) xbios (9,a,b,c,d,e,f,g)
#define Flopfmt (a,b,c,d,e,f,g,h,i) xbios(10,a,b,c,d,e,f,9,h,i)
#define Protobt (a,b,c,d) xbios (18,a,b,c,d)
#define Flopver(a,b,c,d,e,f,g) xbios(19,a,b,c,d,e,f,g)

/* Dieses MAKRO wartet auf die Eingabe der Tastatur * /

#define Cnecin() gemdos (8)

#define DIGITALC 1

/* Global definierter Puffer fuer einen Sektor * /

char boot [513];

/* In dieser Routine wird die Diskette formatiert x /

format ()

{

char buffer[11000]; /*Genuegend Platz fuer 10 Sektoren */
int track, handle;

/* Zuerst werden die Systemspuren mit NULL formatiert * /

Flopfmt (buffer,01,0,10,0,0,1,0x876543211, 0) ;
Flopfmt (buffer,01,0,10,1,0,1,0x876543211,0);

/* ... anschliessend die restlichen Spuren mit HEX E5E5 * /

for (track = 2; track < 83; track++)

Flopfmt (buffer,01,0,10,track,0,1,0x876543211,0xe5e5);

/* Der Bootsektor wird nun mit 80 Spuren und 9 Sektoren * /
/* je Spur erstellt */

Diskettenprogrammierung unter TOS 73

/*

/*

/*

/*

/*

und auf unser Format abgeaendert

boot [0x13]
boot [0x14]

boot [0x18]

0x34;

0x03;
OxOA;

zum Schluss wird er auf die Diskette geschrieben

Flopwr (boot,01,0,1,0,0,1);

und noch einmal ueberprueft.

handle = Flopver (boot,01,0,1,0,0,1);
printf(" Fehlercode: %d",handle);

Veber die Floprd-Routine wird hier der Bootsektor
eingelesen und die ersten 30 Bytes ausgegeben werden.

read boot ()

{

int 1;

printf("\n");
Floprd (boot,01,0,1,0,0,1);
for (i=0; i < Oxle; i++)

printf(" %302x",boot [i]);

printf("\n\n");

/* Eine MAIN-Routine darf in keinem C-Programm fehlen

printf ("Insert Disk");
Cnecin();
format ();

printf("\nOk\n");
read boot ();
Cnecin();

Die Fehlermeldungen des BIOS und XBIOS

0
—l
—2
—3

kein Fehler
allgemeiner Fehler
Drive not ready
unbekannter Befehl

*/

*/

* /

* /
*/

* /

74 ATARI ST - Das Floppy-Arbeitsbuch

4 CRC-Error (Checksum Error)
-5 Bad Request (falsches Kommando, Parameterübergabe könnte fehler-

haft sein)
—6 Seek Error (Track nicht gefunden)
7 Unknown Media (fehlerhafter oder zerstörter Bootsektor)
-8 Sektor nicht gefunden
-9 No Paper
-10 Schreibfehler
-11 Lesefehler
-12 allgemeiner Fehler
-13 Write Protect (Diskette ist schreibgeschützt)
—14 Media Change (Diskette wurde gewechselt)
-15 Unknown Device (nicht bekannt)
-16 Bad Sectors (schlecht formatiert)
-17 Insert Disk (eigentlich eine Aufforderung und kein Fehler)

75

Kapitel 3

Die Floppy-Disk-Schnittstelle

Für die Floppy-Laufwerke des ST hat sich ATARI einen etwas ungewöhn-
lichen Anschluß ausgesucht. Ahnlich dem Monitor-Anschluß besteht dieser aus
einem runden "Plug-In"-Stecker mit 14 Pins.

Die Schnittstelle ist über den DMA-Chip (DMA - Direct Memory Access) mit
dem eingebauten Floppy-Disk-Controller (FDC) WD1772 von Western Digi-
tal verbunden. Es werden hierbei maximal zwei Laufwerke unterstützt, was in
den meisten Fällen auch ausreichend ist. Zudem hat man noch die Möglichkeit,
ein Festplattenlaufwerk (Harddisk) anzuschließen. Die Anschlußbuchse der
Floppy-Laufwerke hat folgende Belegung:

Die Pin-Belegung des Steckers

1 RD Read Data Das ist der Lese-Eingang für die Laufwer-
ke. Hierüber werden Daten- und Taktimpul-
se an den FDC geleitet.

2 SO Side-0 Select Uber diese Leitung wird die Seite Null des
Laufwerks angesprochen.

76 ATARIST - Das Floppy-Arbeitsbuch

3 GND Ground Dies ist der Masseanschluß.

4 IP Index Pulse Über diese Leitung wird der FDC infor-
miert, wenn das Index-Loch der Diskette
erkannt wurde.

5 DO _ Drive-O Select Über diese beiden low-aktiven Signale

6 D1 Drive-1 Select werden die Laufwerke A und B adressiert.

7 GND Ground Masseanschluß.

8 MO ~~ Motor On Der FDC sendet hieriiber das Signal zum
Starten des Laufwerkmotors.

9 DIRC Direction Ein High-Pegel an diesem Ausgang veran-
laßt die Laufwerkelektronik, den Schreib-
und Lesekopf zur Mitte der Diskette zu be-
wegen; ein Low-Pegel bewegt ihn zum Rand
hin.

10 STEP Step Der FDC übermittelt über diesen Ausgang
die Impulse für die schrittweise Weiterbe-
wegung des Schreib-/Lesekopfes.

11 WD Write Data Hierüber werden die Takt/Datenbytes auf
Diskette geschrieben.

12 WG _ Write Gate Das ist ein Sicherheitseingang fiir den
Schreibvorgang. Vor jedem Schreibzugriff
auf Diskette muß das Signal auf low gesetzt
werden.

13 TROO Track00 Dieser low-aktive Eingang zeigt dem FDC
an, daß der Schreib-/Lesekopf über der
Spur Null positioniert ist.

14 WPRT Write Protect Dieses Signal gibt den Zustand des Schreib-
schutzes auf der Diskette an. Es wird vor je-
dem Schreibzugriff abgefragt; falls es low
ist, wird der Schreibvorgang abgebrochen.

Die Floppy-Disk-Schnittstelle 77

Zum Schluß sind noch die Signalpegel der Anschlüsse aufgeführt:

Anschluß Pegel

1 TTL - low-aktiv,
intern Uber 1kOhm auf +5V gelegt

2 TTL - high-aktiv,
ist nach einem RESET auf high

4 TTL - low-aktiv,
intern über 1kOhm auf +5V gelegt

5/6 TTL - low-aktiv,
ist nach einem RESET auf high

8-12 TTL - low-aktiv,
diese Signale werden invertiert.

13/14 TTL - low-aktiv,
intern über 1 kOhm auf +5V gelegt.

79

Kapitel 4

Direktprogrammierung des FDC

Dieses Kapitel behandelt die direkte Programmierung des FDC ohne Umweg
über die DOS-Routinen des ATARI ST. Die hier vorgestellten Beispielpro-
gramme sind in Assembler geschrieben und wurden mit dem AS68 von DI-
GITAL RESEARCH in den Maschinencode übersetzt. Einige dieser Quelltex-
te sind auf der beigefügten Diskette zu finden.

Der Aufbau des Floppy-Disk-Controllers

Der ATARI ST ist mit dem Floppy-Disk-Controller WD1770/1772 von WE-
STERN DIGITAL ausgestattet. Dieser FDC ist kompatibel mit der WD179x-
Serie, besitzt jedoch einen digitalen Datenseparator und eine Schreib- Vorkom-
pensiationslogik. Er hat einen Eingang, über den er zwei Aufzeichnungs-
formate unterscheidet: das FM bzw. das MFM-Verfahren, wobei die Daten-
übertragungsrate bei dem MFM-Format 250 kBits/sec, bei dem FM-Format
125 kBits/sec betragt.

Normalerweise benutzt ATARI den WD1772, der Step-Raten von 2, 3, 5 und 6
msec erlaubt, wahrend der WD1770 die Step-Raten der 179x-Serie 6, 12, 20
und 30 msec verarbeitet. Die Größe der Datensektoren ist bei beiden Versi-
onen gleich. Es werden Sektoren mit 128, 256, 512 und 1024 Bytes geschrie-
ben und gelesen.

Der FDC befindet sich in einem 28-Pin-Gehäuse, dessen Anschlüsse nun kurz
beschrieben werden:

Pin Symbol Funktion

i CS Chip Select Ein logischer low-Pegel ermöglicht den
Zugriff auf die Register des FDC.

2 RW Read/Write Dieser Anschluß bestimmt die Richtung
des Zugriffs. Ein low-Pegel bewirkt einen

80 ATARI ST - Das Floppy-Arbeitsbuch

Pin Symbol Funktion

3,4

13

14

15

16

17

18

19

20

AO
Al

DO

CLK

5

MO

Address 0,1

Data 0-7

-D7

Master Reset

Ground

Power Suply

Step

Direction

Clock

Read Data

Motor On

Schreib-, ein high-Pegel einen Lesevor-
gang.

In Verbindung mit RW werden hierüber
die FDC-Register ausgewählt:

Al AO RW=1 RW =0

0 Status-Reg. Command-Reg.
1 Track-Register
0 Sector-Register
1 Data-Register D

D

Bidirektionaler 8-Bit-Bus, für die Uber-
tragung von Daten, Kommandos und den
Statusinformationen.

Ein logischer low-Pegel bewirkt ein Zu-
rücksetzen des FDC in den Grundzustand
und ein Löschen des Statusregisters.

Masseanschluß.

+5V.

Dieser Ausgang liefert einen Impuls für
jede Kopfbewegung.

Dieser Ausgang ist high, falls die Kopfbe-
wegungen in die Mitte der Diskette, low,
wenn die Bewegungen zum Rand der Dis-
kette hin erfolgen.

An diesem Eingang liegt eine Frequenz
von 8 MHz und liefert den Takt für den
FDC.

Über diesen Eingang werden Takt- und
Datenbits gelesen, die anschließend von
dem Datenseparator getrennt werden.

Ein high-Pegel an diesem Ausgang erlaubt
die Motoransteuerung bei den Lese-,
Schreib- und Step-Operationen.

Direktprogrammierung des FDC 81

Pin Symbol Funktion

21 WG WriteGate Wenn dieses Signal high ist, sind keine
Schreibzugriffe auf Diskette gestattet.

22 WD Write Data Über diesen Ausgang werden Takt- und
Datenbits auf die Disk geschrieben.

23 TROO Track 00 Ist der Schreib-/Lesekopf über der Spur 0
positioniert, ist der Anschluß logisch low.

24 IP Index Pulse Dieser Eingang ist low, wenn das Lauf-
werk das Index-Loch erkannt hat.

Das folgende Schaubild verdeutlicht die Verbindung zwischen dem FDC, dem
Laufwerk und dem Rechner:

Rechner Laufwerk

25 WPRT Write Protect Ist die Diskette schreibgeschützt, wird die-
ser Eingang logisch low.

82 ATARI ST - Das Floppy-Arbeitsbuch

26 DDEN Double Density Ein low-Pegel an diesem Eingang wählt
das MFM-Format, ein high-Pegel das FM-
Format aus.

27 DRQ Data Request Dieser Ausgang signalisiert, daß das DA-
TA-Register voll (bei einem Lesezugriff)
bzw. leer (bei einem Schreibzugriff) ist.

28 INTRO Interrupt Req. Wurde ein Kommando beendet, ist dieser
Ausgang auf high-Pegel gesetzt.

Wie die Pins 3 und 4 des FDC bereits vermuten lassen, enthält der Floppy-
Disk-Controller fünf Register, die man beschreiben oder auslesen kann. Diese
Register sind das DATA-Register, TRACK-Register, SECTOR-Register,
COMMAND-Register und das STATUS-Register.

Zusätzlich zu diesen fünf Registern existiert noch das DATA-SHIFT-Register,
das beim Lesen die seriellen Daten in Byteform konvertiert und beim Schrei-
ben die Bytes bitweise überträgt. Mit Ausnahme des Command-Registers darf
während der Ausführung eines Kommandos auf kein Register des FDC zuge-
griffen werden, da sonst die Floppy-Operation beendet wird. Sämtliche Regi-
ster sind 8 Bit breit.

Das DATA-Register, DR

Dieses Register wird bei den Schreib- und Leseoperationen als Zwischenspei-
cher benutzt. Bei einem Lesekommando schreibt das DATA-SHIFT-Register
die gelesenen Daten in das DR, bei einem Schreibkommando holt es sich von
hier die Daten.

Wenn ein SEEK-Kommando ausgeführt wird, enthält das DR die zu suchende
Spur.

Das TRACK-Register, TR

In diesem Register befindet sich die Position des Schreib-/Lesekopfes. Wenn
sich der Kopf um eine Spur zur Mitte der Diskette bewegt, wird das TRACK-
Register inkrementiert, bewegt er sich um eine Spur zum Rand der Diskette,
wird es dekrementiert.

Direktprogrammierung des FDC 83

Falls zwei Diskettenlaufwerke angesteuert werden, muß vor jeder Operation
die richtige Position des Schreib-/Lesekopfes in dieses Register geladen wer-
den.

Das SECTOR-Register, SR

In diesem Register steht der gewiinschte Sektor. Der Inhalt dieses Registers
wird bei den Schreib-/Leseoperationen mit der gelesenen Sektornummer des
ID-Feldes verglichen.

Das COMMAND-Register, CR

Dieses Register kann nur beschrieben werden. Es enthält dann das FDC-Kom-
mando.

Das STATUS-Register, STR

Dieses Register kann nur gelesen werden und enthält eine Statusmeldung des
FDC. Diese Meldung ist bitweise verschliisselt:

Bit Name Bedeutung

7 MOTORON Dieses Bit zeigt den Zustand des MOTOR-ON-Pins
an.

6 WRITE PROTECT Dieses Bit wird nur bei einer Schreiboperation ver-
wendet. Wenn es gesetzt ist, kann der Schreibzu-
griff nicht stattfinden.

5 RECORD TYPE/ Beiden Typ-I-Kommandos zeigt dieses Bit das En-
SPIN_UP de der SPIN-UP-Wartezeit an; bei Kommandos des

Typs II oder III kennzeichnet das Bit die gelesenen
Daten: |

0 - Normal DATA MARK

1 - DELETED DATA MARK

Die Bedeutung der DELETED DATA MARK
wird bei der Beschreibung der FDC-Kommandos
genauer erklärt.

4 RECORD NOT Dieses Bit ist gesetzt, wenn der FDC die gewiin-
FOUND schte Spur, Seite oder den Sektor nicht gefunden

hat.

84 ATARI ST - Das Floppy-Arbeitsbuch

3 CRC ERROR Falls zu diesem Bit das RECORD NOT FOUND-

Bit zusätzlich gesetzt ist, wurde ein Fehler in einem
Adressenfeld erkannt, ansonsten ein Fehler im

Datenfeld.
2 LOST DATA/ Bei Kommandos des Typs I zeigt dieses Bit den Zu-

TRACK_00 stand des TROO Pins an. Ansonsten wurde der In-
halt des DATA-Registers von dem DATA-SHIFT-
Register überschrieben, bevor es ausgelesen wer-
den konnte.

1 DATA REQUEST/ Dieses Bit kennzeichnet bei einem Typ I-Komman-
INDEX do den Zustand des IP-Pins, ansonsten den Zustand

des DRQ-Pins.
0 BUSY Falls zur Zeit ein Kommando bearbeitet wird, ist

dieses Bit gesetzt.

Die Programmierung über Direct Memory Access

Die Direktprogrammierung des FDC kann mit Direct Memory Access (DMA)
erfolgen oder auch über den direkten Zugriff auf die Systembausteine des
ATARIST. Da sich diese Art der FDC-Programmierung äußerst kompliziert
gestaltet, so muß z.B. der Programmierer die Buszuteilung selbst verwalten,
wird im folgenden nur die Direktprogrammierung unter DMA behandelt.

Der für den DMA reservierte Speicherbereich beinhaltet alle Register, die für
die FDC-Programmierung benötigt werden. Bevor die Datenübertragung von
oder zu dem FDC beginnen kann, muß der DMA-Puffer gelöscht und die
DMA-Adresse gesetzt werden.

Der DMA-Puffer ist 32 Bytes breit. Alle Daten, die von oder zu dem FDC
übertragen werden, werden zuerst in diesen Puffer geschrieben. Stehen
schließlich mehr als 15 Bytes in dem DMA-Puffer, beginnt die Datenübertra-
gung. Dabei werden jeweils 16 Bytes gesendet; stehen also 17 Bytes im Puffer
werden davon nur 16 übertragen!

Das 17. Byte verbleibt im DMA-Puffer bis dieser wieder halb voll ist. Dieser
Puffer wird von dem DMA-Chip selbst verwaltet. Der Programmierer hat auf
diesen Puffer keinen Zugriff. Um diesen Puffer zu löschen, wird zuerst der
Wert $190 und danach der Wert $90 an die Adresse $FF8606 geschrieben
(togglen).

Die Adresse $FF8606 wird auch DMA-Modus-Register, DMA_Mode, ge-
nannt. Dieses Register ist für die Steuerung des DMA zuständig. Es wählt über
das 4. Bit die Register aus, die über die Adresse $FF8604, FDC_REG ange-

Direktprogrammierung des FDC 85

sprochen werden. Ist dieses Bit gesetzt, wird das Sector-Count-Register adres-

siert; ist es gelöscht, werden die Register des FDC ausgewählt. Die Bits 1 und 2
des DMA-Modus-Registers haben dann für den Zugriff auf das FDC_REG
folgende Bedeutung:

Bit 1 2 Bedeutung

0 0 Man erhält beim Lesen den Status des FDC, beim Schreiben
wird der Wert in das COMMAND-Register des FDC über-
tragen.

Bei den anderen Kombinationen wird jeweils ein Register des FDC ausge-
wahlt, in das entweder der Wert des FDC_REG geschrieben oder dessen In-
halt ausgelesen wird.

0 1 Zugriff auf das TRACK-Register
1 0 Zugriff auf das SECTOR-Register
1 1 Zugriff auf das DATA-Register.

Bit Bedeutung

0 Nicht benutzt.
1,2 Wenn das Bit 4 gelöscht ist, dann wird hierüber das FDC-Register

ausgewählt (s.o.).
3 0 — Der DMA greift auf den FDC zu.

1 -— Zugriff auf den HDC (Harddisk-Controller).
4° 0 — Uber Bit 1 und 2 wird das FDC-Register gewählt.

1 — Das SCR wird angesprochen.
5 Dieses Bit muß gelöscht sein. |
6 0 — Der DMA-Chip übernimmt den Datentransfer.

1 — Zugriff erfolgt ohne DMA.
7 0 - Zugriff auf den HDC (Harddisk-Controller).

1 — Der DMA greift auf den FDC zu.
8 0 - Datenrichtung auf Lesen.

1 — Datenrichtung auf Schreiben.
9-15 Nicht benutzt.

Bit-Belegung des DMA-Modus-Registers

Dem DMA muß nun noch mitgeteilt werden, wo er die Daten findet, bzw. wo-
hin er die empfangenen Daten schreiben soll. Dafür besitzt der DMA-Chip

86 ATARI ST - Das Floppy-Arbeitsbuch

drei 8-Bit-Register, in die die Speicheradresse geschrieben wird. Diese Re-
gister stehen im Speicher an den Stellen

$FF8609, $FF860B und $FF860D (DMA_high, DMA_mid, DMA_low)

Die Startadresse der Daten wird in drei Schritten in diese Register geschrie-
ben. Zuerst werden die unteren 8 Bits der Startadresse nach $FF860D, die
mittleren 8 Bits nach $FF860B und die oberen 8 Bits nach $FF8609 ge-
schrieben.

Wird der DMA-Puffer gelesen oder beschrieben, so wird anschließend die
Adresse in diesen drei Registern neu gesetzt. Die maximale Anzahl der zu
übertragenden Bytes wird dem DMA über das Sector-Count-Register mitge-
teilt. Der Wert in diesem Register, mit 512 multipliziert, ergibt die maximale
Anzahl der Bytes, die übertragen werden. Das Sector-Count-Register SCR
wird über das FDC_REG angesprochen, falls das 4. Bit im DMA-Modus-Re-
gister gesetzt ist.

Da der ATARI ST zwei Laufwerke verwalten kann, werden noch Register des
Soundchips für die FDC-Programmierung benötigt. Der Soundchip besitzt 16
interne Register, von denen das 15. für die Auswahl des Laufwerks und der
Diskettenseite zuständig ist.

Um dieses Register ansprechen zu können, wird in das Select-Register des
Soundchips, PSG, die Nummer des gewünschten Registers geschrieben. Da-
nach wird an der Adresse $FF8802, PSG_DATA, die Auswahl des Lauf-
werks und der Seite getroffen. Dafür sind dessen untersten drei Bits relevant:

BitO — Seite 1

Bit 1 — Laufwerk A

Bit 2 — Laufwerk B

Dieses Register ist low-aktiv, daher entstehen die angegebenen Werte, wenn
die dazugehörigen Bits gelöscht sind.

Wenn eine Floppy-Operation beendet ist, wird das BUSY-Bit im Statusregi-
ster des FDC gelöscht, und ein Interrupt wird erzeugt. Um festzustellen, ob
die Operation nun beendet wurde, darf man nicht das BUSY-Bit abfragen, da
sonst das ausgeführte Kommando abgebrochen würde. Dadurch kommt ein
neuer Baustein des ATARI ST ins Spiel, der Multi Function Periphal Chip,
MFP. Dieser ist unter anderem für die Verwaltung der Interrupts zuständig.

Das erste Register des MFP wird General Purpose Input/Output Interrupt
Port, GPIP, gennant. Ist das 5. Bit dieses Registers gesetzt, hat der FDC einen
Interrupt erzeugt, und das FDC-Kommando wurde beendet.

Direktprogrammierung des FDC 87

Die Kommandos des Floppy Disk Controllers

Der FDC versteht elf Kommandos. Diese Kommandos sind in vier Typen-
gruppen unterteilt. Die Kommandoworte werden dem CR übermittelt, wenn
das zugehörige Kommando ausgeführt werden soll. Dabei sollte beachtet wer-
den, daß die Ausführung eines Kommandos sofort abbricht, wenn ein neues
Kommando in das CR geschrieben wird. Die einzige Ausnahme bildet der
"Force Interrupt" -Befehl.

Typ IKommandos: - Restore
— Seek
— Step
— Step in
— Step out

Typ I Kommandos: — Read Sector
— Write Sector

Typ III Kommandos: — Read Adress
— Read Track
— Write Track

Force Interrupt Typ IV Kommando:

Die folgende Tabelle zeigt die Bedeutung der Bits bei den jeweiligen Kom-
mandos:

Restore 0 0 0 0 h V rl r0
Seek 0 0 0 1 h V rl r0
Step 0 0 1 u h Vv rl r0
Step in 0 1 0 u h Vv rl r0
Step out 0 1 1 u h Vv rl r0
Read Sector 1 0 0 m h e 0 0
Write Sector 1 0 1 m h e p a0
Read Address 1 1 0 0 h e 0 0
Force Interrupt 1 1 0 1 13 2 I I0
Read Track 1 1 1 0 h e 0 0
Write Track 1 1 1 1 h e p 0

Das Spin-Up-Bit

h=0 - Spin-Up Sequenz einschalten
h=1 - Spin-Up Sequenz ausschalten

Ist das h-Bit gesetzt, überprüft der FDC vor der Ausführung der Kommandos
(mit Ausnahme des Force Interrupt-Kommandos) den Zustand des Motor-On-

88 ATARI ST - Das Floppy-Arbeitsbuch

Pins. Falls dieses auf low-Pegel (Motor aus) liegt, aktiviert der FDC den Mo-
tor und wartet 6 Umdrehungen, bis der Motor ca. 300 Umdrehungen/min. er-
reicht hat. Danach fiihrt er das Kommando aus, wartet 10 Umdrehungen und
setzt den Motor-On-Pin wieder auf low-Pegel. Wenn das h-Bit gelöscht ist,
legt der FDC keine Wartezeit ein und läßt auch das Motor-On-Pin im high-
Zustand.

Das Verify-Bit

v=0 - ohne Verify
v=1 - mit Verify

Bei den Kommandos der Gruppe 1 kann eine Überprüfung der Position des
Schreib-/Lesekopfs erfolgen. Ist das v-Bit gesetzt, vergleicht der FDC die aus
dem ersten aufgetretenen ID-Feld gelesene Spurnummer mit dem Inhalt des
TRACK-Registers. Wenn beide Werte übereinstimmen und auch die Prüf-
summe des ID-Feldes keinen Fehler aufweist, ist die Überprüfung beendet,
und das Kommando wird ohne Fehler beendet. Stimmen die beiden Werte
überein, die Prüfsumme aber nicht, wird das CRC-Fehlerbit im STATUS-
Register gesetzt, und das nächste ID-Feld wird für die Verify-Operation be-
nutzt. Findet der FDC innerhalb von 5 Umdrehungen zusätzlich zur Überein-
stimmung keine korrekte Prüfsumme, so wird das Kommando mit einem
Seek-Error abgebrochen.

Die Step-Rate

rl r0
0 O - 6ms
0 1 - 12ms

1 O - 2ms

1 1 - 3ms

Diese beiden Bits geben bei den Kommandos des ersten Typs die Zeit an, die
der FDC zwischen zwei Step-Impulsen wartet. Die Step-Rate des TOS liegt bei
3 ms. Diese STEP-Raten sind die offiziell von ATARI dokumentierten und
entsprechen nicht denen von Western Digital.

Das Update-Bit

u=0 - ohne Update
u=1 — mit Update

Dieses Bit tritt nur bei den Step-Kommandos in Erscheinung. Ist es gesetzt, so
wird bei einem Step zur Mitte der Diskette das TRACK-Register inkremen-
tiert, bei einem Step zum Rand der Diskette dekrementiert.

Direktprogrammierung des FDC 89

Das Multiple-Bit

m=0 - einen Sektor lesen/schreiben

m=1 - mehrere Sektoren lesen/schreiben

Dieses Bit bestimmt bei den Kommandos des Typs II, ob jeweils nur ein Sek-
tor bearbeitet werden soll oder mehrere, die direkt aufeinanderfolgen. Ist das
Bit gesetzt, so inkrementiert der FDC nach jedem Sektor das SEKTOR-Regi-
ster.

Die Adreßfeld-Markierung

a0=0 - Normales Adress Data Mark

a0=1 -— Deleted Adress Data Mark

Beim Write-Sector-Kommando bestimmt das Bit 0, ob eine normale Adref-
feld-Markierung oder eine deleted (gelöschte) Adreßfeld-Markierung für den
Sektor geschrieben wird. Mit der DELETED ADDRESS DATA MARK wer-
den die Daten auf dem Sektor für gelöscht oder ungültig erklärt. Da das TOS
diese Art Daten zu löschen nicht verwendet und diese Methode im Prinzip
auch nur bei dem FM-Format vorkommt, sollte das Bit bei dem Write-Sector-

Kommando immer gelöscht sein.

Das Verzögerungs-Bit

e=0 - keine head settling delay time
e=1 - 30ms head settling delay time

Ein gesetztes e-Bit veranlaßt den FDC, eine Pause von 30 ms einzulegen, da-
mit das Laufwerk seinen Schreib-/Lesekopf vor der Ausführung des Kom-
mandos beruhigen kann.

Die Prekompensation

p=0 - Prekompensation einschalten
p=1 - Prekompensation ausschalten

Da der Umfang der äußeren Spuren größer ist als der Umfang der inneren
Spuren, kann man bei eingeschalteter Prekompensation einzeln nebeneinan-
derliegende Pulse dichter zusammenrücken und so eine gleichbleibende Da-
tenkapazität bei höherer Aufzeichnungsdichte erreichen.

90 ATARI ST - Das Floppy-Arbeitsbuch

Die Interrupt-Bits

10 =1 — nicht benutzt
I1=1 — nicht benutzt
[2 = 1 - Interrupt bei Indexpulse
I3 = 1 — Sofortiger Interrupt

Das einzige Typ-IV-Kommando bewirkt das Auftreten von Unterbrechungen
des in der Ausführung befindlichen Kommandos. Ist das I2-Bit gesetzt, so tritt
bei jedem Auftreten des Index-Impulses bei gesetztem I3-Bit ein sofortiger
Interrupt ein. Sind alle Ix-Bits gelöscht, wird der laufende Befehl sofort be-
endet.

Die Programmierung des FDC

Der Ablauf eines FDC-Kommandos hat im allgemeinen acht Schritte:

Laufwerk und Seite selektieren
DMA-Basisregister laden (DMA_low, DMA_mid, DMA high)
DMA-Puffer und DMA-Statusregister löschen
Sector-Count-Register laden
FDC Register mit den entsprechenden Werten laden
Kommando senden
Warten, bis das Interrupt Bit gesetzt bzw. Timeout ist
Fehlermeldung abfragen o

O
N
n
4
u
p
»
N
M

Mit Ausnahme des Force Interrupt-Kommandos folgt nun für jedes Kom-
mando ein Beispielprogramm. Diese Routinen greifen auf das Laufwerk A
und die Seite 0 zu. Vor der Ausführung der Kommandos sollte darauf geachtet
werden, daß im TRACK-Register des FDC die korrekte Position des Schreib-/
Lesekopfs enthalten ist.

Das TOS speichert für jedes Laufwerk die aktuelle Position in der Drive Con-
figuration Table, DCT. In dieser DCT ist außer der Spur noch die Step-Rate
enthalten. Für das ROM-TOS liegt die DCTO bei $0A06 und die DCT1 bei
$0AOA.

Das TOS paßt diese Werte nicht der aktuellen Kopfposition an! Der Program-
mierer muß daher nach jeder FDC-Routine entweder diese Variablen korri-
gieren oder den Kopf wieder auf die anfängliche Spur zurücksetzen.

Direktprogrammierung des FDC 91

Beispielprogramm 1, RESTORE

* Registerdefinitionen

fdc_reg: equ S££8604 ; FDC Register
dma_mode: equ sff8606 ; DMA Modus Register
dma_low: equ St£860d ; DMA Basis Register

; low
dma_mid: equ sff860b ; DMA Basis Register

; mid
dma_high: equ sff8609 ; DMA Basis Register

; high
sound_chip: equ) Sff8800 ; Sound Chip
psg_data: equ sff8802 ; Sound Chip Data

; Register
gpip equ Sfffa0l ; MFP I/O Port

*

* Da auf reservierte Speicherbereiche zugegriffen wird, muß
* die Routine im Supervisormodus des MC68000 ausgeführt
* werden
x

clr.l - (sp) ; in den
; Supervisor-Modus

move .w #520,- (sp) ; gehen
trap #1 ; |
add.1 #6,Sp ; Stack aufräumen
move .1 d0,ssp ; User Stack sichern

*

* Dann ist es wichtig, die flopvbl-Routine zu sperren, da
* in ihr das FDC-Statusregister selektiert wird, was zum
* Abbruch des derzeitig ausgeführten Kommandos fährt.
*

move .b #S££,$43e

* .

* Jetzt werden das Laufwerk A: und die Seite 0 angewählt.
* Dazu werden die entsprechenden Bits im Port A des Sound-
* chips gesetzt:
*

* Bit O0: Seite der Diskette, '0' entspricht Seite 1,
* ‘1' entspricht Seite 0
* Bit 1: Laufwerk A: ('0' Laufwerk wird selektiert)
* Bit 2: Laufwerk B: ('1' Laufwerk wird deselektiert)
*k

move .W sr,-(a7) ; Prozessor-Status

; retten

ori.w #$700,sr ; Interrupts sperren
move .w #0,DO ; Laufwerks-Bit (= A:)

addq.b #1,D0 ; wird an die richtige

92 ATARI ST - Das Floppy-Arbeitsbuch

lsl.b #1,D0 ; Position gebracht
ori.w #0,D0 ; Seite 0
eori.b #7,D0 ; die unteren 3 Bits

; inv.
andi.b #7,DO ; und die anderen

; löschen

move.b #$e,sound_chip ; Port A ansprechen
move.b sound_chip,Dl ; alten Wert merken
and.b #$£8,D1 ; die unteren drei

; Bits
or.b DO,D1 ; setzen
move .b D1,psg data ; und zurückschreiben
move .w (a7)+,sr ; Interrupts freigeben

move .W #$80,dma_mode ; CR selektieren
move .wW #507, fdc_reg ; RESTORE mit verify

x

* Anstelle des RESTORE-Kommandos könnte auch
*

* move .w #$57,fdc_reg fuer STEP_IN
* oder move.w #577, £dc_reg fuer STEP OUT
*

* verwendet werden. Hierbei steht die STEP-RATE bei 3ms, das
* Spin-up-Bit ist geloescht, das Verify- und Update-Bit
* gesetzt.
x

x

* Um das Weiterlaufen der Floppy bei einem Fehler zu
* verhindern, wird ein Zähler benutzt.
* Während des Schleifendurchlaufs wird auf eine Mitteilung
* des FDC gewartet. Da das BUSY Bit nicht abgefragt werden
* kann, ohne den FDC zu einem Abbruch des Kommandos zu
* bewegen, wird das 5.Bit im I/O-Port des MFP abgefragt.
* Dieses zeigt an, ob der FDC einen Interrupt gesendet hat.
*

move .1 #$60000,D7 ; Time-out Zähler
; initial.

warten: subq.1 #1,D7 ; Timer weiterzählen
beq status ; wenn abgelaufen

; abbrech.
btst #5,gpip ; Kommando fertig?
bne warten ; nein, dann warten

status: move .w #580, dma_mode ; FDC-Statusreg.

; selektieren
move.w fdc_reg,dO ; Status nach DO

;‚ retten

*

* Das RESTORE-Kommando ist nun beendet, die Floppy wird
* wieder deselektiert. Sie kann jedoch nicht ohne weiteres
* deselektiert werden, wenn der Motor noch läuft, da er

Direktprogrammierung des FDC 93

* sonst endlos weiterlaufen würde.
*

motor: move .w fdc_reg,d3 ; Status nach D3
btst #7,d3 ; MOTOR ON Bit testen
bne motor ; warten wenn gesetzt

move.w sr,-(a?7) ; wie beim Selektieren

or.w #5700,sr
move.b #$e,sound_chip
move.b sound_chip,D1

and.b #S£8,D1
or.b #7,Di ; beide Laufwerke aus!
move.b Di,psg data
move.w (a7)+,sr

clr.w S43e ; flopvbl wieder
; freigeben

move.l ssp,-(sp) ; und zurück in den
; User-

move.w #$20,-(sp) ; modus gehen
trap #1
add.l #6,sp

clr.w - (sp) ; Programm beenden
trap #1

.bss

ssp: .ds.l 1 ; zum Speichern des
* ; Stack Pointers

end

Beispielprogramm 2, SEEK

In diesem Programm wird der Schreib-/Lesekopf über die Spur 79 positio-
niert. Im TRACK-Register muß die aktuelle Position des Schreib-/Lesekopfs
enthalten sein.

Die Registerdefinitionen entnehmen Sie bitte dem vorigen Beispielprogramm.

clr.l - (sp)
move.w #520,-(sp)

add.l #6,sp
move .l d0,ssp
move.b #S£ff,S43e
move .w sr,-(a?)

or.Ww #5700,sr
move .w #0,D0 ; Laufwerk A:

addq.b #1,D0

94 ATARI ST - Das Floppy-Arbeitsbuch

+
+

+
Ft

warten:

status:

motor:

track:

isl.b

or.w
eori.b
andi.b

move,.b

move.b

and.b

or.b

move.b

move.w

3 O < 0)

z
=
 =

#1,D0
#0,D0
#7,DO
#7,DO

#Se,sound_chip
sound_chip,D1
#S£8,D1
DO,D1
D1l,psg_ data
(a7) +,sr

#$86,dma_mode
track,fdc_reg

#580, dma_mode
#$17,fdc_reg

#560000,D7

#1,D7
status

#5,gpip
warten

#580, dma_mode
fdc_reg,dO
fdc_reg,d3

#7,d3
motor

sr,-(a?)

#$700,sr
#Se,sound_chip
sound_chip,D1
#$£8,D1
#7,D1
D1,psg_data
(a7)+,sr

$43e
SSp,- (sp)
#$520,-(sp)
#1
#6,Sp

- (sp)
#1

79

; Seite O

Für den SEEK Befehl mu das DATA Register des FDC die
gewünschte Spurnummer enthalten.

; DATA Register selek.
; Track -> DATA Reg.

; CR selektieren
; Seek mit Verify und
; Update

; Spur 79

Direktprogrammierung des FDC 95

| bss
ssp: .ds.l 1 ; zum Speichern des
SSP

.end

Damit waren alle Kommandos des Typs I an einem Beispiel abgehandelt.

Beispielprogramm 3, READ SECTOR

Diese Programm liest den Sektor 1 auf der aktuellen Spur.

clr.l - (sp) ; In den

; Supervisormodus
move.w #$20,-(sp) ; gehen
trap #1
add.l #6,sp
move.l d0,ssp ; User-Stack sichern
move .b #Sf££,$43e ; FLOCK auf -1 setzen
move .w sr,-(a7) ; Prozessor-Status

; retten
ori.w #5700,sr ; Interrupts sperren
move .w #0,D0 ; Laufwerks-Bit (= A:)
addq.b #1,D0 ; wird an die richtige
lsl.b #1,D0 ; Position gebracht
ori.w #0,D0 ; Seite 0
eori.b #7,DO ; die unteren 3 Bits

; inv.
andi.b #7,DO ; und die anderen

; löschen
move.b #$e,sound_chip ; Port A ansprechen
move.b sound chip,D1 ; alten Wert merken
and.b #S£8,D1 ; die unteren drei

; Bits
or.b DO,D1 ; setzen
move.b D1,psg_data ; und zurückschreiben
move.w (a7)+,sr ; Interrupts freigeben

Nun wird das Sektor-Register mit der gewünschten Sektor-
nummer geladen. Es wird dann auf der aktuellen Spur ein
Adressen-Feld gesucht, dessen Sektornummer mit der
gesuchten Nummer übereinstimmt und dessen Prüfsumme
korrekt ist. Wurde danach das Datenfeld innerhalb von 43
Bytes (MFM-Format) nicht gefunden, beendet der FDC das
Kommando nach weiteren 4 Versuchen mit einem RECORD NOT

FOUND Fehler.

+
+

+
+

F
R
K

move .wW #$84,dma_mode ; Sektor-Register
; selek.

move.w sector, fdc_reg ; Sektornummer laden

96 ATARI ST — Das Floppy-Arbeitsbuch

move .1 #record, — (a7) ; Jetzt wird die
move .b 3(a7),dma_low ; Adresse des Daten-

move .b 2(a7),dma_mid ; bereichs der DMA
move .b 1(a7),dma_high ; mitgeteilt

addq.1l #4,a7 ;

*

* Löschen des DMA-Puffers und des DMA-Statusregisters
x Datenrichtung der DMA auf LESEN setzen und das
* Sector-Count Register adressieren
*

move .W #$90,dma_mode
move .w #$190,dma_mode
move .w #$90,dma_mode

*

* Fuer den Write-Sector Befehl muss die Datenrichtung
* auf Schreiben geaendert werden. Dafuer muessen die letzten
* 3 Zeilen durch die folgende Sequenz ersetzt werden:
x

* move .w #5190, dma_mode
* move .w #$90,dma_mode
* move .w #$190,dma_mode
*

* Der Wert im SCR, mit 512 multipliziert ergibt die maximale
* Anzahl der zu übertragenden Bytes
x

move.w #51, fdc_reg ; 512 Bytes

*

* Das READ SECTOR Kommando wird ohne die MULTIPLE-Option
* durchgeführt.
*

move .w #580, dma_mode ; CR selektieren
move.w #580, £fdc_reg ; READ SECTOR -> CR

*

* Fuer ein WRITE SECTOR Kommando müssen die letzen beiden
* Zeilen in
*

* move .W #$180,dma_mode
* move .W #$a0,fdc_reg
*

* geändert werden.
x

move.l #560000,D7 ; Time-out Zähler
; initial.

warten: subq.1 #1,D7 ; Timer weiterzählen
beq status ; wenn abgelaufen

; abbrech.

btst #5,gpip ; Kommando fertig ?
bne warten ; nein, dann warten

Direktprogrammierung des FDC 97

status: move .w #580, dma_mode

move.w fdc_reg,d0

motor: move .W fdc_reg,d3
btst #7,d3
bne motor

move.w sr,-(a?)

ori.w #5700,sr
move.b #$e,sound_chip
move.b sound_chip,Dl
and.b #S£8,D1
ori.b #7,D1
move .b Di,psg_data
move .w (a7)+,sr

clr.w $43e

move.l ssp,- (sp)
move .w #$20,-(sp)
trap #1
add.1 #6, Sp
clr.w -(sp)

trap #1

data

sector: .dc.w 1

bss

ssp: .ds.l 1

record: .ds.b 512

end

Beispielprogramm 4,READADRESS

n
o

N

S
e

S
e

S
o

W
o

B
o
 FDC-Statusreg.

selektieren
Status nach DO

retten

Status nach D3

MOTOR ON Bit testen

warten wenn gesetzt

wie beim Selektieren

beide Laufwerke aus!

Sektor 1

zum Speichern des
SSP
512 Bytes Daten

Das READ ADRESS Komanndo liest das nächste Adressenfeldauf der derzei-
tigen Spur. Das Adressenfeld besteht ausvier Bytes Daten und 2 Bytes Prüf-
summe.

clr.l - (sp)
move .w #$20,-(sp)
trap #1
add.l #6,Sp
move.1 d0,ssp
move.b #Sf££,$43e
move .w Sr,-(a7)
or.w #$700,sr
move .w #0,D0 ’ Laufwerk A:

98 ATARI ST - Das Floppy-Arbeitsbuch

addq.b #1,D0
lsl.b #1,D0
Or.W #0,D0 ; Seite 0
eori.b #7,D0
andi.b #7,DO
move .b #Se,sound_chip
move .b sound _chip,D1
and.b #S£8,D1
or.b DO,D1
move .b D1l,psg_ data
move .w (a7) +,sSr

move .l #feld,-(a7)
move.b 3(a7),dma_low
move .b 2(a7),dma_mid
move .b 1(a7),dma_high
addq.l #4,a7

move .w #590, dma_mode ; Datenrichtung auf
;‚ Lesen

move .W #$190,dma_mode ;
move.w .#590,dma_mode ;

move .w #$1,fdc_reg ; 512 Bytes
*

* Da der DMA aber nur jeweils 16 Bytes überträgt, müssen mehr
* als nur ein Adressenfeld eingelesen werden. Dazu wird
* dieses Kommando dreimal an den FDC gesendet. Die ersten 6
* Bytes des Datenbereichs enthalten dann das erste gelesene
* Adressenfeld
*

move .1l #3,d4 ; D4 als Zähler
move.w #580, dma_mode ; COMMAND-Register

read: move .W #$C0,fdc_reg ; Read_Adress
move.1 #$60000,D7

warten: subq.1 #1,D7

beg status
btst #5,gpip
bne warten
subq.1 #1,d4
bne read

status: move .w #580, dma_mode

move .w fdc_reg,d0
motor: move .W fdc_reg,d3

btst #7,d3
bne motor
move .W sr,~- (a7)

or.W #$700,sr
move .b #Se,sound chip
move .b sound_chip,D1
and.b #$£8,D1
or.b #7,D1
move .b D1l,psg_data

Direktprogrammierung des FDC 99

move .w (a7)+,sr

clr.w $43e
move.1 ssp,- (sp)
move .w #520,-(sp)
trap #1
add.l #6,sp
clr.w - (sp)
trap #1

.bss

ssp: .ds.l 1 ; zum Speichern des

; SSP
feld: .ds.b 16 ; 16 Bytes Daten

.end

Beispielprogramm 5,READTRACK

Dieses Programm liest die aktuelle Spur ein.

clr.l -(sp)
move .w #520,-(sp)
trap #1
add.l #6,Sp
move.l d0,ssp
move.b #Sf££,$43e
move .w Ssr,- (a7)

or.w #$700,sr
move .w #0,D0 ; Laufwerk A

addq.b #1,D0
lsl.b #1,D0
or.Ww #0,DO ; Seite 0
eori.b #7,DO
andi.b #7,DO

move.b #Se,sound_chip
move .b sound_chip,D1
and.b #$£8,D1
or.b DO,D1
move .b D1,psg_ data
move .w (a7) +,sr

move.l #spur,-(a”7)
move.b 3(a7),dma_low
move .b 2(a7),dma_mid
move.b 1(a7),dma_high
addq.1 #4,a7

move .w #590, dma_mode ; Datenrichtung auf
; Lesen

move.w #$190,dma_mode ;
move .w #$90,dma_mode ;

X

* Für den Write-Track Befehl muß die Datenrichtung auf

100 ATARI ST - Das Floppy-Arbeitsbuch

move.

move

move.

K
H
K

H

move.

move.

move.

move

move

+
R
R
 HF

OF

move

warten: subq.
beq
btst

bne

status: move,

move.

motor: move.

btst
bne
move
or.Ww
move
move.

Ww

~W

W

«W

«W

geändert werden.

.1

Z
z
 =

z

.W

-b
b

and.b

or.b
move
move
clr.
move
move
trap
add.
clr.

trap

.bss

ssp: .ds.

spur: .ds.

.b
WwW
w
.1
Ww

1
w

1

b

‚end

Schreiben geändert werden. Dafür müssen die letzten 3
Befehle durch die folgende Sequenz ersetzt werden

#$190,dma_mode
#$90,dma_mode
#$190,dma_mode

#13,fdc_reg ; 13 * 512 Bytes = $1a00
; Bytes Daten

#$80,dma_mode
#SEQ,fdc reg

Für ein Write-Track müssen die letzen beiden Befehle in

#$180,dma_mode
#$f£0,fdc_reg

#$60000,D7
#1,D7
status

#5,Qpip
warten

#$80,dma_mode
fdc_reg,d0
fdc_reg,d3

#7,a3
motor

Sr,- (a7)

#$700,sr
#$e,sound_chip
sound_chip,D1
#$5£8,D1
#7,D1
D1,psg_data
(a7)+,sr
$43e
ssp,-(sp)
#$20,-(sp)

1 ; zum Speichern des
; SSP

$1A00 ; $1A00 Bytes Daten

Direktprogrammierung des FDC 101

Zusammenfassung

Folgende Register diirfen nicht beschrieben werden, wenn ein Kommando
ausgeführt wird, da andernfalls der FDC unterbricht:

— TRACK-Register
— SECTOR-Register
— COMMAND-Register

Bei der Programmierung über die DMA werden, solange das Sector-Count-
Register ungleich Null ist, jeweils 512 Bytes übertragen und das SCR dann de-
krementiert. Deshalb sollte im SCR die Anzahl als Quotient von den zu über-
tragenden Bytes durch 512 stehen.

Da der DMA-Puffer immer 16 Bytes weitergibt, muß eine durch 16 teilbare
Anzahl von Bytes übertragen werden.

Bei allen Kommandos muß die vbl-Routine ausgeschaltet werden, da in ihr das
COMMAND-Register geladen wird \Maßnahme: Die Speicherstelle $43E mit
dem Wert $FF laden und nach dem Beenden des FDC-Programms wieder
löschen.

Die DMA-Basis-Register müssen in der Reihenfolge low-mid-high geladen
werden.

Das READ/WRITE-Bit im DMA-Modus-Register muß stimmen.

Um einen Bus-Error des MC68000 zu vermeiden, sollten sämtliche Routinen
im Supervisor-Modus durchgeführt werden.

Vor der Ausführung jedes Kommandos sollte man togglen, um den Puffer zu
löschen, da ansonsten noch Bytes aus vorhergegangenen Kommandos über-
tragen werden könnten.

Vor jedem Kommando wird die Seite und das Laufwerk im Port A des Sound-
chips eingestellt (LED leuchtet auf).

Das Laufwerk sollte man erst dann deselektieren, wenn der Motor aus ist.

103

Kapitel 5

Routinen des XBIOS

Zum besseren Verständnis der FDC-Programmierung werden in diesem Ka-
pitel die XBIOS-Routinen

floprd (Sektoren einlesen)
flopwr (Sektoren schreiben)
flopfmt (Spur schreiben, formatieren)
flopver (Sektoren prüfen)

anhand eines Assemblerlistings erklärt. In diesem Listing werden symbolische
Namen verwendet, damit man auf kein spezielles TOS festgelegt ist. Am Ende
dieses Kapitels sind dann die Adressen in verschiedenen TOS-Versionen auf-
geführt.

Zunächst folgt jedoch eine Erklärung der Variablen:

curr_error
curr_count

e dma
tmp dma
sav_addr
retry_count

default_error
curr_sektor
curr_track
curr_side
curr_dma
spt
interleave

der momentan getestete oder aufgetretene Fehler
Zahler fiir die Anzahl der Sektoren beim Schreiben oder
Lesen
Ende des DMA Bereichs bei Read-Multiple
Zwischenspeicher fur die DMA-Adresse
Speicher zum Retten der Registerinhalte
Zahler fiir die Anzahl der Versuche:
2 = 1. Versuch
1 = 2. und letzter Versuch
Standard-Fehlernummer
der gewünschte Sektor (beim Aufruf übergeben)
der gewünschte Track (beim Aufruf übergeben)
die gewünschte Seite (beim Aufruf übergeben)
DMA-Startadresse (beim Aufruf übergeben)
Sektoren pro Track (beim Aufruf übergeben)
Summand für die Reihenfolge der Sektoren
(beim Formatieren übergeben)

104 ATARI ST - Das Floppy-Arbeitsbuch

virgin
motor_on_flag

Füllwert (beim Formatieren übergeben)
0 = Floppy arbeitet nicht
FFFF = Floppy arbeitet

flock 0 = kein Floppy-Zugriff
<>0 = Floppy-Zugriff , VBL-Routine ist gesperrt

frclock Anzahl der ausgefiihrten VBL-Routinen
wp st tab Write-Protect-Statustabelle
nflops Anzahl der Floppies
wplatch Write-Protect-Latch

(wird von der Routine Mediach getestet)
deselflag Diese Variable zeigt an, ob die Floppies selektiert sind.
curr_device gewünschtes Drive (beim Aufruf übergeben)
acctim Stand des 200-Hertz-Zählers beim letzten Floppyzugriff.
_hz 200 200-Hertz-Zähler
disknum Nummer der zuletzt angesprochenen Floppy
dm tab Disk-Mode-Tabelle
etv_critic Vektor auf die Error-Routine
dct0 Drive-Configuration-Table von Drive A

word 0 = Position des Kopfes
word 1 = Step Rate

dctl Drive-Configuration-Table von Drive B
word 0 = Position des Kopfes
word 1 = Step Rate

Programm (floprd):

AAKKKKKAKKKKÄKKKKKKKKKK KHK IKK KK KK KT KK KK KK KKK KK KKKKKEKKKKKKKKKKKKKKKE

x x

* floprd, Einlesen von Sektoren *
x x

* Format: *
x x

* +---+---4-- 4-4 4-4 44444 *
* |RSP {puffer filter Idevlsec|tck|sid|cnt| *

* +---+---4---+---+ +---+---+---+---+---+ *
x A x

* SSP *
x X

AKKKKKKKKKKKKAKKKÄKAKKKKHKKKK KK KKKTK KK KK KK KK KT KT KK KK TK KK KK KK KK KK KU DU

floprd bsr change * Diskettenwechsel?
moveq.1 #5F5,DO * DO -> curr_error

* und default_error
* SF5 = Read Error

bsr param * Parameter holen und
* setzen

next bsr select * Laufwerk und Seite
* selektieren

Routinen des XBIOS mit Beispielen 105

wl

zeit

fertig

bsr

bne

move.

move

F
o
o
d

«W

seek_tr

whl

#SFFFF,curr error

+
+

+

*
 *

Kopf auf Track
positionieren
wenn Fehler,

mal
curr error auf allg.
Fehler

dann noch

Löschen des DMA-Puffers durch Togglen

#590, (A6)

#5190, (A6)

+
+

+
+

F
F

2

#390, (A6)

curr count, SFF8604
#580, (A6)

#$90,D7
FDC _out

+
+

+
+

HF
F

#$40000,D7
e dma,A2
#5, SFFFAO1

fertig
#1,D7

+
+

+
N
H

H
H

zeit
SFF8609,tmp_dma_high*
SFF860B,tmp dma _mid *
SFF860D,tmp dma_low *
tmp _dma,A2 *
wl

reset_1772

fertig
#SFFFE, curr error

reset_1772

+
+

+
+

+
F

+
HF

F

whl

#$90, (A6)
(A6) ,DO

#0,D0

whl

#580, (A6)
get _FDC
#518,DO +

+
+

+
FF

HF

KF

F

DMA-Modus-Register
Bits 4,7 gesetzt, also
FDC Sector-Count-Reg.

lesen/DMA ein
Bits 4,7,8 gesetzt,
FDC/SCR/schreiben
Bits 4,7 also SCR/lesen

curr_count -> SCR
Bit 7 -> Command-Reg.
oder Status-Reg.

$90 -> Read Multiple
wird in das CR des FDC
geschrieben

Timeout-Zähler setzen
Endadresse DMA in A2
Bit 5 des I/O-Ports des
MFP zeigt an, ob
FDC fertig?
wenn ja, dann fertig
Timeout-Zähler
dekrementieren
Timer = 0, dann zeit
laden der aktuellen

DMA-Adresse

und vergleichen
mit DMA-Endadresse
wenn ungleich, dann
weiter warten
Ende der Übertragung
(FDC - Reset)

SFFFE -> curr_error
ist timeout - error
Ende der Übertragung
(FDC Reset)

Bits 4,7 lesen/DMA/SCR
DMA-Status -> DO
Test, ob DMA-Fehler
wenn DMA-Fehler, dann
noch einmal
Bit 7 SR oder CR
lesen des Status-Reg.
Bits 3,4 CRC Error

106 ATARI ST - Das Floppy-Arbeitsbuch

* Record not found

beq flopok * kein Fehler, dann OK
bsr Fehlernr. * Fehler! Nummer bestimm.

whl cmpi.w #1,retry count * schon zweiter Versuch?
bne w2 * nein

bsr test_seek * schon 2 Versuche also
x testseek

w2 subq.w #1,retry count * retry count dekr.
bpl next * wenn retry count > 0

* dann neuer Versuch
bra flopfail * kein Versuch mehr, dann

* flopfail

KKEKEKKEKKKKKEKKKKKKKKEKKKKKKKKKKKKEKKKKEKKKEKKKKKEKKEKKAEKKKKKKKKKKKKKKK

+ - ----+
| Status des FDC |

+
+
F
F

+
 i | | I | | 1 | | I | |] | | | I | | | | | | | | | | | | | | | | | 1 | +

* +------ -- ------- + x

* curr error | Fehlernummer | *
* + --- - -- - - -- + *

* *

x SF3 - Schreibschutz x
* SF8 - record nicht gefunden *
* SFC - Prüfsummenfehler (CRC) x
* x

KAKAKKKAKKAKKKKKAKKKKKKKKKKKK KK KK KK KK KK KK IK KH KK KH IK KK KK IK KK KH KH KH KK AK KH AK KH KH A KU KU

Fehlernr moveq.l #$F3,D1 * (Schreibschutz) -> Dl
btst #6,D0 * wenn Schreibschutz,
bne wil * dann wll
moveq.l #SF8,D1l * (record not found) -> Dl
btst #4,D0 * wenn dieser Fehler,
bne wll * dann will
moveq.l #SFC,D1 * (Prüfsummenfehler) -> Dl
btst #3,D0 * wenn CRC-Error,
beq wil * dann will
move .w default _error,D1 * wenn kein Fehler, dann

* default_error nehmen

wil move.w Dl,curr_error * Fehlernr. -> curr error
rts

Routinen des XBIOS mit Beispielen 107

Programm (flopwr):

KAKKKIKAKKHKKKKKKKK KK KK KT KK KK KK KH KHK KK KK KK KH IK IK KK AK KK KK IK KH KK AK AK KH AK KK AK K KH A KH A KH AK N

x *

* flopwr, Schreiben von Sektoren *
* x

* Format: *
x x

x +---4---4+---4---4=---4---4---4---4--- 4-4 + x

* | RSP lpuffer |filler |dev|sec|tck|sid|cnt| *
* +—-—-4---+4---4---4---4--- + --- $+ - $-- = +--+ *
* A *

* SSP *
* *

KAKKKKKKAKKKKKKKKKKK KHK KK KT KT KK KH KH AK KK KK KK KK KK KK KK KK AK TK KK AK TK A KK AK KK A KH HK K A KH A AK A

flopwr bsr change * Diskettenwechsel?
moveq. 1 #SF6,D0 * F6 = Write Error

* DO -> default_error
* und curr_error

bsr param * Parameter holen
* und setzen

move.w curr_sektor,DO *
subq.w #1,D0 * (curr_sektor -1)
or.w curr track,DO * oder curr_track
or.w curr_side,DO * oder curr_side

* = 0?
* also Bootsektor?

bne w21 * wenn kein Bootsektor
moveq.1 #2,D0 * wenn Bootsektor, dann
bsr setdmtab * media change = 'changed'

w21 bsr select * Drive und Seite
bsr seek_tr * Track finden
bne w26 * wenn Fehler, dann w26

w22 move .w #SFFFF,curr_ error * kein Fehler, dann
* curr error = allg.Fehler

* DMA-Puffer löschen durch Togglen

move.w #$190, (A6) * Bits 4,7,8 SCR/schreiben
move.w #590, (A6) * Bits 4,7 SCR/lesen
move.w #$190, (A6) * Bits 4,7,8 SCR/schreiben
move .w #1,D7 * 1 in das Sektor-Count-
bsr FDC_out * Register schreiben
move.w #$180, (A6) * Bits 7,8 SR/CR/schreiben
move .w #SA0,D7 * SAO in CR des FDC
bsr FDC_out * also Write-Sektor
move .1 #540000,D7 * Timer = $40000

w23 btst #5,$SFFFAO1 * FDC fertig?
| beq w24 * wenn fertig, dann w24

subq.1 #1,D7 * Timer dekrementieren
bne w23 * wenn Timer > 0, dann

108 ATARIST - Das Floppy-Arbeitsbuch

w23
bsr reset_1772 * Ende der Übertragung

* (FDC-Reset)
bra w25

w24 move.w #5180, (A6) * Bits 7,8 SR/CR/schreiben
bsr get_FDE * Status-Register lesen
bsr Fehlernr * Fehlernummer?
btst #6,D0 * Schreibschutz?
bne flopfail * Abbruch, da Fehler
and.b #55C,DO * Bits 2,3,4,6

* Write Protect,RNF,
* Checksum, Lost Data

bne w25 * Fehler, neuer Versuch

* kein Fehler
addq.w #1,curr_sektor * nächster Sektor
addi.l #$200,curr dma * DMA-Adresse um 512

* erhöhen
subq.w #1,curr count * wieder einer weniger
beq flopok * wenn alle Sektoren

* geschrieben sind, dann
* Ende ohne Fehler

bsr w171 * current sector in Sektor
* Register des FDC, und
* DMA setzen

bra w22 * Sektor schreiben
w25 cmpi,w #1,retry count * wenn nicht letzter

bne w27 * Versuch dann w27
w26 bsr testseek * Test auf Seek Error
w27 subq.w #1,retry count * ein Versuch weniger

bpl w21 * noch ein Versuch
bra flopfail * Beenden mit Fehler

Programm (flopfmt):

KAKKKKKKKKKKKKKKKKKKKK KK KK KH KT TK KK KK KK KK KK KK KK KK KK KK KK KK KK KK KK AK KH {U

flopfmt, Schreiben (Formatieren) einer Spur

Format:

x *

x *

* x

x *

* *

%K+---4=---4---4---4-- 4-44 4444444008
* | RSP |puffer |filler |dev/sptitrk|sidjilv| magic |vrg| *
ko +---4---4---4---4---4---4-- 4-4 + + + +---+---+ *
x *

* *

* x

x x

N

Stackpointer

KAKKKKKKKKK KKK KK KKK KKK KKK TH HH HH HH HH HK HH KH HK KH HK KH KK KK KK I

flopfmt cmpi.l #587654321,$16(A7) * Stimmt die magische Zahl
bne flopfail * nein, Ende mit Fehler
bsr change * Diskette gewechselt?

Routinen des XBIOS mit Beispielen 109

fmtrack

moveq.l
bsr

#SFF,DO
param

select

SE (A7),spt

$14 (A7),interleave
$1A(A7),virgin

#2,D0
setdmtab
find tr
flopfail
curr track, $0(A1)
#SFFFF,curr error
fmt rack
flopfail
spt,curr count
#1,curr_sektor
verify
curr dma, A2

(A2)

flopok
#SFFFO,curr error
flopfail +

+
+

+
H

F
F

F
F

HF
HF

H

F
H

HF

HF
H
F

HF

F
F
F

HF
H
H

F
F
 SFF = allg. Fehler als

default_error und
curr error
Parameter holen und
setzen

Laufwerk und Seite
spt holen
interleave holen
virgin holen
Drive _change modus auf
'gewechselt' setzen
Track suchen
bei Fehler Ende
aktuellen Track in DCT
.curr error=allg. Fehler
Track formatieren
Ende mit Fehler
spt als Zahler
Bei Sektor 1 beginnend
verifizieren

curr _dma ist Liste der
schlechten Sektoren

Wenn curr DMA = 0
(Liste ist leer),
dann Ende ohne Fehler

sonst ‘Bad Sector' (SFO)
Ende mit Fehler

KAKKKKKKKAKKAKKKKAKKKKKAH KK KK KKKKKKKKEKKKKKKKKKKK

x x

* Erstellen und Schreiben des Puffers *
x *

KIKKKKKEKKEKKEKKEKKEKKKKKKKKKKKKKEKKKKKKKKKKKKKKKKK

move .w

move.
move.
move.
move.
bsr

O
Z
r
e
=
z
e

move .w
move .w

clr.b

bsr
move.w
move.b
bsr
move.b

#SFFF6,default error*
*

#1,D3 *
curr dma, A2 *

#$3B,D1 x
#S4E,D0 *
fill buf *

default_error =
"Write Error'
Start mit Sektor 1
Adr. des Puffers in A2
60mal

SFE in den Puffer
schreiben ('L')

LO,Ad_x,L1,Dat_x,L2 erstellen

D3,D4

#11,D1
DO
fill buf
#2,D1
#SF5,D0
fill buf
#SFE, (A2) + +

+
t
r

HF
HF

F Sektornummer in D4
12mal
$S00 in den Puffer
schreiben ('LO')
3mal
SF5 in den Puffer
schreiben ('LO’)
SEE ('Ad_x-Marke')

110 ATARI ST - Das Floppy-Arbeitsbuch

move .b curr track, (A2) + * ('Ad_x-Spur')
move.b curr side, (A2) + * ('Ad_x-Seite')
move.b D4, (A2) + * Sek.nr. ('Ad_x-Sektor')

move.b #2, (A2) + * 502 ('Ad_x-Größe')
move.b #SF7, (A2) + * SF7 Checksum erzeugen
move .w #$15,D1 * 22mal
move .b #S4E,D0 * S4E in den Puffer
bsr fill_buf * schreiben ('L1')

move.w #11,D1 * 12mal
clr.b DO * $00 in den Puffer
bsr fill buf * schreiben ('L1')

move .w #2,D1 * 3mal
move .b #SF5,DO * SF5 in den Puffer
bsr fill_buf * schreiben ('L1')
move.b #SFB, (A2) + * SFB ('Dat_x-Marke’)
move .w #SFF,D1 * 256mal

w33 move .b virgin high, (A2)+ * virgin_ high und
move.b virgin_low, (A2)+ * virgin_low in Puffer
dbra D1,w33 * ('Dat_x-Daten')

move .b #SF7, (A2) + * SF7 Checksum erzeugen
move .w #$27,D1 * 40mal
move .b #S4E,D0 * S4E in den Puffer
bsr fill buf * schreiben ('L2')
add.w interleave,D4 * interleave addieren

* ergibt nächsten Sektor
cmp .W spt,D4 * wenn nachster Sektor
ble w32 * kleiner gleich spt,

x formatiere den Sektor
addq.w #1,D3 * wenn Startsektor + 1
cmp .w interleave,D3 * <= interleave,
ble w3l * dann weiter mit neuem

* Startsektor
move.w #5578,D1 * 1401mal
move .b #$4E,DO * S4E in den Puffer
bsr fill_buf * schreiben
move.b dma_low, $FF860D * DMA-Adresse laden
move.b dma _mid, $FF860B *
move.b dma_high, $FF8609 *
move .w #5190, (A6) * DMA-Puffer löschen
move.w #590, (A6) * und Modus auf
move .w #$190, (A6) * SCR/schreiben
move .w #S1F,D7 * 31 in das Sector-Count-
bsr FDC_out * Register schreiben
move .w #$180, (A6) * CR/SR des FDC-
move .w #SF0,D7 * Kommando Write-Track
bsr FDC_out * in CR des FDC
move .l #540000,D7 * Zähler initialisieren

w34 btst #5, SFFFAO1 * FDC fertig?

beq testl * wenn ja, dann testl
subq.1 #1,D7 * sonst dekrementieren
bne w34 * und wenn Zähler > 0

* weiter warten
bsr reset_1772 * sonst Übertr. beenden

x FDC-Reset

Routinen des XBIOS mit Beispielen 111

w35 moveq.1

rts

#1,D7

+
+

+
7

1 nach D7
bedeutet, ein Fehler
ist aufgetreten
und Ende

KAKKAKKKKIKKKAÄKKKÄKKKKKKKK KK KK KK KT KK KK KK KK KK KÜU

x

x

*

*

x

*

testl move .w

move .w

btst

beq
move .w

bsr

bsr

and.b

rts

x

*

Testen, ob Fehler aufgetreten ist *
x

x

*

#5190, (A6)
(A6) ,DO

#0,D0
w35

#$180, (A6)

get_FDC

Fehlernr

#$44,D0

F
r

+
+

FF

HF
HF

H
F

KAKKKIKKKKIKKKKKKKKKKKK KK KK KK KK KK KK KK KK KK N{ÜU

SCR/schreiben
DMA-Status

auf DMA-Fehler testen
wenn Fehler, dann w35
CR/SR/schreiben
Status-Register lesen
Fehlernummer berechnen

Bits 2,6 Lost Data und
Schreibschutz testen

KAAKKAKKKKKKKKKKKKK KT KK KK KH KH TK KH KHK AK HK KK KH KH KK A KK IK KK KK KK IK KK KK KK KK KK KK KK A KK X

*

x

*

*

*

x

x

x

x

*

fill_buf move.b

dbra

rts

Puffer mit Daten füllen

DO, (A2) +

D1,fill_buf

+
+

DO - Wert, der geschrieben werden soll

D1 - Anzahl, mit der der Wert in den Puffer geschrieben
werden soll

KK KK KKKKKKKKK KKK KKK KKK KKK KKK KKK KH AK AK KH KH KH KK KK KK KH AK KH A KK KH KK KK KH KH KH KH A X

*

x

x

*

*

x

*

*

x

x

DO in Puffer und
A2 inkrementieren
D1 dekrementieren und
wenn Dl > 0, nochmal

112 ATARI ST - Das Floppy-Arbeitsbuch

Programm (flopver):

KAKKKKAKHKKKAKKAKKAKKKKKKAKKK KK. KK KK KK TK I KK KK KK IK KK KK KK IK KK KK KK KK AK KK A KH KANU

* x

* flopver, Prüfen (Verifizieren) von Sektoren *
x *

* Format: *
x x

* +---+---+---+---+ + +---+---+---+4---+---+ *

* |RSP |puffer |filler |dev|sec|tck]|sid|cnt | *
* +---+---+---4-- -4---+---4--- 4-4 4-4 + *
* A *

* SSP *
x x

KAEKKEKKKKEKKKKKEKKKKKEKKKKKKKKKKEKK KKK KKKKKKKKKKKKKKKKKKKKEKKKKKEKKK

flopver bsr change * Diskette gewechselt?
moveq.l #S$F5,DO * Read Error als

* default_error
* und curr_error

bsr param * Parameter holen und
* setzen

bsr select * Seite und Drive
* selektieren

bsr seek_tr * Track suchen
bne flopfail * bei Fehler Ende
bsr verify * verifizieren
bra flopok * alles OK und Ende

KAAKKKKKKKKKKKKKKKKKKTK KT KK KK KK KK HI,

* *

* Verifizieren der Sektoren *
* x

KAAKKKKKÄKKKKAKKÄKKKKKKÄKKKKKKKKKKKTKHKU

verify move.w #SFFF5,default_error* default_error auf
* Read error

move .l curr_dma,A2 * A2 = Adresse für die
* Bad-Sector-List

addi.l #$200,curr dma * curr dma auf nächsten
* Sektor

w4l move.w #2,retry_count * 2 Versuche
move .w #584, (A6) * SECTOR-Register

* adressieren
move.w curr sektor,D7 * Sektornummer in das
bsr FDC_out * SR schreiben

w42 move.b dma_low, SFF860D * DMA-Adresse setzen
move.b dma_mid,$FF860B *
move.b dma_high, $FF8609 *

Routinen des XBIOS mit Beispielen 113

w43

test2

w44

move .w #$90, (A6) * DMA-Puffer löschen
move .w #$190, (A6) * und
move .w #590, (A6) * SCR adressieren
move .w #1,D7 * Sector-Count-Reg. auf
bsr FDC_out * 1 setzen
move.w #580, (A6) * CR/SR adressieren
move .w #$80,D7 * Read-Sektor in das
bsr FDC_out * COMMAND-Reg. schreiben
move.l #540000,D7 * Zähler initialisieren

btst . #5,$FFFA01 * FDC fertig?
beq ' test2 * wenn ja dann test2
subq.1 #1,D7 * Zähler dekrementieren
bne w43 * wenn Zähler >0 dann w43
bsr reset _1772 * sonst Übertr. beenden

* (FDC-Reset)
bra repeat * nächster Versuch

KAKKKKKKKEKKEKKKKKKKKKKKKKEKKEKKEKRKKKKKKKKKKEKKKKKK

* x

* Testen, ob ein Fehler aufgetreten ist *
* *

x x

KAKKKIKKAKKKKKKKÄAÄKKKKKKKKK KK KK KK KK KH KK KK KK KK AU

move.w #590, (A6) * DMA-Status-Register
move.w (A6) ,DO * lesen und testen, ob

btst #0,D0 * DMA-Error
beq repeat * wenn Fehler, dann

* nächster Versuch
move.w #$80, (A6) * SR adressieren
bsr get FDC * und lesen
bsr Fehlernr * Fehlernummer?
and.b #S1C,DO * Bits 2,3,4

* Lost Data, CRC, Record
* not found testen

bne repeat * wenn Fehler dann
* nachster Versuch

addq.w #1,curr_sektor * nachster Sektor in
* curr _sektor

subq.w #1,curr_count * noch ein Sektor weniger
bne w41 * wenn noch ein Sektor zu

* verifizieren ist, dann
* W4l

subi.1 #$200,curr_dma * DMA-Zeiger wieder um
* einen Sektor zurück

clr.w (A2) * Bad-Sector-List mit 0
rts * beenden

114 ATARI ST - Das Floppy-Arbeitsbuch

AKKKKAKKAKKKKKKKKAKKKKKKKKKK KK KK. KK. KK KH KK KK KK KK KK IK AK KK KK TH KH KK AK KK A AK AK KK A A A I

* *

* Testen, ob zweiter Versuch x
* *

* Wenn beim zweiten Versuch ein Fehler auftritt, wird *
* diese Sektornummer in die Bad-Sector-List geschrieben *
* x

KAKAKAKAKKKKKKAKKKKKKKK KK KK. KK KK KK KK KKK KK HK AK KK AK AK KA KK IK KH AK KK KK AK AK AK KK IK KH A KK KK A AK A, Ro

repeat cmpi.w #1,retry count * Wenn kein Versuch mehr
bne w45 * möglich, dann kein

reseek
bsr testseek * Test, ob Seek Error

w45 subq.w #1,retry count * ein Versuch weniger
bpl w42 * wenn noch ein Versuch

* möglich, dann w42
move .w curr _sektor, (A2)+ * curr _sektor in

* Bad-Sector-List
bra w44

KKEKKEKKKKKKEKKKEKKEKEKKKKEKKKEKKK KKK KKK KKK KK KK I TE KK KK TI TI KK IK KK TI KK KK AK KH AK KH KK» N

* *

* Floppy Vertical Blank Handler x
x *

KAAKKKKAKKAKKAKKAKKKKKKKK KK KK KK KK KK KK KK KH KH KH KKK KKK KK AK A KK A HK A HK KK A KH AK A KH A X

flopvbl suba.l A5,A5 * A5 löschen
lea SFF8606,A6 * DMA-Modus/Status Reg.
st motor on flag * motor on flag setzen
tst.w flock * Systemvar. flock ist

dann <> 0, wenn gerade
ein Floppy-Zugriff
stattfindet
bei flock <> 0

bne w54 nichts machen
die Systemvariable
frclock enthält die
Anzahl der ausgeführten
VBL-Routinen

move .1l frclock,DO

+
+

+
F
F

F
F

HF

F

move .b DO,D1
and.b #7,D1
bne w52

mod 8
wenn noch nicht
8. Interrupt
sonst CR/SR adressieren
Bit 4 isolieren

move.w #$80, (A6)
lsr.b #3,D0
and.w #1,D0
lea wp_st_tab,A0
adda.w DO, AO

+
+
H
R

F

wp*Status-Tabelle
DO=1 => AO Adresse des
wp-Status von Floppy B
DO=0 => AO Adresse des
wp-Status von Floppy A +

+
+

+
OF

Routinen des XBIOS mit Beispielen 115

w51

w52

w53

w54

nflops,DO

w5l

DO

#1,D0
#1,D0
#7,D0
setdrive
SFF8604,D0
#6,D0

(AO)

D2,DO
setdrive
wp_st_tab,D0
DO,wp_latch
deselflag

w53
get _ FDC
#7,D0
w54
#7,D0
setdrive
#1,deselflag
motor on flag +

+
 +

+
e
+

+
+

F
F

H
H
H

F
H

F
H

H
H

F
H

F
F

H
H

F
H

H
F
 die Systemvariable

nflops enthalt die
Anzahl der Floppies
wenn Floppy B
angesprochen aber
nflops=1 -> DO löschen
sonst w5l
00 -> 010 => Drive A

01 -> 100 => Drive B

invert. da low-aktiv

Drive selektieren
SR lesen

Schreibschutz testen
und in die wp-Status-
Tabelle schreiben
vorh. Select-Status

wieder herstellen
wp_st_tab in wp_latch

Floppies schon
deselektiert
dann weiter
SR lesen
wenn Motor on, dann

Ende
beide Drives
deselektieren
deselflag setzen
motor on flag löschen

KKKKKKKKEKKKEKKKKKKKEKKKKKKKKKEKRKKKRKKKKKKKKKKKKK KK KK AK KK KK KK KK KK KK

lea

st

move.

move.

move e

move.

move.

1

=

Einstellen der Floppy-Parameter

retry count - 2

movem.1 D3-D7/A3-A6,sav_addr*
suba. A5,A5

SFF8 606, A6
motor on flag
DO,default_ error
DO,curr error
#1, flock

$8(A7),curr_dma
$10(A7),curr_device F

H

+
+

+
+

HF

HF

HF

KKKEKKKKKKKKKKKKKKKEKKKKKKKKKKEKKKKKKKKKKKKKKKKKEKKKKKEKKEKKKKKKK

x

*

*

*

x

x

Register retten
A5 löschen
A6 = DMA-Modus/Status R.
motor on flag setzen
DO als default_error
und curr_error
VBL-Routine d. Setzen
der Systemvariable flock
sperren
curr_dma vom Stack holen
curr device holen

116 ATARI ST - Das Floppy-Arbeitsbuch

move.w $12(A7),curr_sektor * curr_sektor holen
move.w $14(A7),curr_ track * curr_track holen
move.w $16(A7),curr_ side * curr side holen
move.w $18(A7),curr_count * curr_count holen
move.w #2,retry count * Anzahl d. Wiederholungen

* auf 2 setzen
lea dct0,Al * wenn curr device = 0
tst.w curr device * dann Al = dctO
beq w6l *
lea dct1,Al * sonst Al = dcetl

w6l moveq.l #0,D7 * 0000 im oberen Wort,
move.w curr_count,D7 * curr_count im unteren

* Wort von D7
lsl.w #8,D7 * mal 512 ergibt Bytes
lsl.w #1,D7 *
move.l curr_dma,A0 * DMA-Startadresse in AO
adda.l D7,AO * plus Bytes
move.l A0Q,e dma * ergibt DMA-Endadresse
tst.w SO(A1l) * aktueller Track > 0
bpl w63 * dann w63
bsr select * sonst select
clr.w $0 (Al) * aktueller Track = 0
bsr restore * Track Null suchen
beq w63 * kein Fehler, dann w63
moveq.1 #10,D7 * Track 10
bsr w80 * suchen
bne w62 * bei Fehler w62
bsr restore * sonst Track Null suchen
beq w63 * kein Fehler, dann w63

w62 move.w #SFF00,$0 (Al) *

w63 rts

KKEKKKEKKKKKEKKKKKEKKEKKEKKKEKKKEKKKEKKKKEKKKKKEKKEKKEKKEKKKKKEKKKKEKKKKKEKKKK

x

x

*

*

x

x

Fehler ist aufgetreten

flopfail moveg.l #1,D0
bsr setdmtab
move .W curr_error,DO
ext.1 DO
bra wil

KKKEKKKKKKKKKEKKKEKEKKKKEKKEKKKKKKKKKKKKKEKKEKKKKKKKEKKKEKKKKKEKKKEKKK

+
+
u
"

x

x

x

x

*

x

media change auf
‘unsure’ setzen
curr_error in
DO.1 schreiben

Routinen des XBIOS mit Beispielen 117

KAAKAKKIKKKKKKKKKKKKK KK KK KK KK IK KK KH KH KK KK KK KT KK KK KK KK KK KK KK KK KK KK KK

x x

* Kein Fehler ist aufgetreten *
x *

KKKKEKKKKKKKKKKKEKKKKKKEKKKKEKKEKKKKKKKKKRKKRKEKKKKKKKKKRKEKKEKKKKKKKKK

flopok clr.l DO * kein Fehler
wil move.l DO,-(A7) * 0 übergeben

move .w #$86, (A6) * Bits 1,2,7 DATA-Reg.
move.w SO(Al),D7 * aktuellen Track in das
bsr FDC_out * DR schreiben
move .w #510,D6 * Seek-Befehl
bsr do_FDCcmd * an den FDC senden
move.w curr_dev,DO * Drive-Nummer
lsl.w #2,D0 * als Index
lea acctim, AQ * Adresse acctim in AO
move.l _hz 200,$0(A0,DO.w) * hz 200 ist der Zähler

* für 200-Hz-Systemtakt
cmpi.w #1,nflops * wenn eine Floppy, dann
bne w72 *
move.l1 _hz_200,54(AO) * 200-Hz-Zähler für

* anderes Drive
w72 move.l (A7)+,DO * Fehlernummer holen

movem.1 sav_addr,D3-D7/A3-A6* gerettete Register
* zurückholen

clr.w flock * VBL-Routine freigeben
rts

KKEKKKKKKKKEKKKKKKEKKKKKKEKKEKKKEKKKKKKKEKKKKKKKKKKKEKKEKKEKKKEKRKKKEKKKK

* x

* Kopf auf Track positionieren *
x *

KKEKKKKKKKKKKEKKKRKKEKKKEKKEKKEKKKKEKKKKKEKKKEKKKKKRKKKKEKKKKKKKKKKKKKEKK

find tr move.w curr_track,D7 * track in D7
w80 move.w #SFFFA,curr_error * bei Fehler Seek Error

move .w #586, (A6) * Bits 1,2,7 TR adress.
bsr FDC_out * D7 in TR schreiben
move .w #$10,D6 * Bit 4 - SEEK-Befehl
bra do_FDCcmd * an FDC senden

AAKKKKKKKAKKKKKKKKKKKK KK KK KK KT KK KEK KKK KKKEKKKEKKKKKKKKKKKKKKKK

* *

* Kopf auf Track 0 und dann auf 5 *
+ *

KAKKKKKKKKKKAKKAKKKKKKHK KK KK KK KK KK KE KER KK KEKE KH TI KK IK KK KK KK KK KK KK KK A KK „U

testseek move.w #SFFFA,curr error * curr_error='seek error'
bsr restore * Kopf auf Track Null
bne w81 * wenn Fehler, dann Ende
clr.w SO (Al) * aktueller Track = 0

118 ATARI ST - Das Floppy-Arbeitsbuch

move .w

clr.w

bsr

move.

move.

bsr

move.

bsr

bne

move.

move.

move.

move.

bsr

moveq.1
bsr

bne

move.w

z
=

=

seek tr

Z
e
e
 =

and.b

w81 rts

#982, (A6)
D7
FDC out
#586, (A6)
#5,D7
FDC out

#$10,D6
do _FDCcmd
w81
#5,$0 (Al)
#SFFFA, curr error
#$86, (A6)
curr track,D7
FDC out
#510,D6
do_FDCcma
w81
curr track, $0(A1)

#$18,D7
+

+
+

+
H
F

F
H
F

H
H

F
F

F
H

HF
F
F

F
F

F
OF

OF TR adressieren
O0 in

TR schreiben
DR adressieren
5 (Ziel-Track)

in DR schreiben
Bit 4 - SEEK-Befehl
an FDC senden

bei Fehler Ende
aktuelle Track-Nummer=5

curr _error='seek error'
DR adressieren
Ziel-Track in DR
schreiben
SEEK Befehl
an FDC senden

bei Fehler Ende

Kopfposition als
aktuellen Track

Bits 3,4 Priifsumme und
Record not found testen

Zero flag = 0
bedeutet Fehler

KAEKKKKKKKEKKEKKKKKKKKKKKKKK KK KKKEKKKKKKKEKKKE KKK KKKKKKKKKKKKKKKKK

x

* Kopf auf track 0
*

*

*

*

KKEKKKKKKKKKKKKKKEKKEK KKK KKK KK KKK KK KK KK KH KH KK KKK KKKEKKKKKKKKKKKKKE

restore clr.w D6 * Restore Kommando an
bsr do FDCcmd * FDC senden (D7 = SR)
bne w91 * bei Fehler Ende
btst #2,D7 * Track 00 Bit testen
eori.b #4,CCR * Bit 4 = 'Zero-Flag'

* invertieren
bne w91l * wenn Track<>00 -> Ende

clr.w $0 (A1) * sonst aktuellen Track
* übernehmen

w91 rts

KAKKAKKAKKKKKKKKKKKKKK KK KK KK KK KKK KKK KKK KE KKKEKKKKKEKKKKKKKKKKKKEKK

x *

* Kommando an FDC senden *
x x

x Befehl in D6 x
* Status Register in D7 zurtick *
* x

KAAKKAKKAKKKKKKAKKKKKKKKKKTK KK KK KK KK KK KK KK KK KK KK KK KK IK KK KK KK KK KU

do_FDCcmd move .w 52(Al),DO * Step Rate in DO
and.b #3,D0 * Bit 0 und 1 isolieren
or.b DO,D6 * in den Befehl einbauen
move.l #540000,D7 * Timer initialisieren

Routinen des XBIOS mit Beispielen 119

move .w

bsr

btst

bne

move .l

w101 bsr

w102 subq.1

beg

btst

bne

rts

w103 bsr

moveq.1

rts

#580, (A6)
get_FDC
#7,DO
w101
#$60000,D7
D6->FDC
#1,D7
w103

#5, $SFFFAOL
w102

reset _1772

#1,D6

E
N
T

HF

HF

H
K

+
+

F

CR/SR adressieren
SR lesen
Bit 7 Motor_on testen
ja, dann weiter
sonst Timer erhöhen
Befehl von D6 in CR
Timer dekrementieren
wenn abgelaufen, dann
Ende
IO-Port/FDC fertig?
wenn nein, dann weiter
warten

Übertragung beenden
(FDC Reset)

Zero Flag löschen
bedeutet Fehler

AKKKKKIKKAKKAÄAKKKKKKKTK KK KK KT KT KK KT Ä KKEKKKEKKKEKKKKKKEKKKKKKKEKKKKKKEKE

x

* FDC Reset
x

x

x

x

KAAKKKKAKKKAKKKKKKK KK KH KK KT K KK KH KH KK KH KK KK KK KK KK IK KK AK TK AK KK AK KK KK AK KK AK KH AK A KA I

reset _1772 move.w
move .w
bsr

move .w
dbra

bsr

rts

will

#380, (A6)
#$D0,D7
FDC out
#15,D7
D7,wl11
FDC->D7 +

+
+

FF

€
=

CR/SR adressieren
4,6,7 Reset Befehl
an FDC senden

Verzögerungszähler von
16 auf O dekrementieren
SR in D7

KKEKKKKKK KKK KKK KKK KKKKKKKKKKKK KKK KKK KK KKK KKKEKKKKKEKKKKKKKKKKKKK

x

* Seite und Drive selektieren
x

x

*

*

KAEKKKKKKKKKK KK KKKKKK KKK KKK KKKKEKK KKK KKK KKK KKK KK KK KK KK KK KK AK KU

select clr.w deselflag
move.w curr device,D0
addq.b #1,D0
lsl.b #1,D0
or.w curr _ side,DO
eori.b #7,DO

and.b #7,D0
bsr setdrive

deselflag löschen
Drive Bit
00 -> 010 Drive A
01 -> 100 Drive B
Seitennummer in Bit
O0 invertieren, da
low-aktiv

nur Bits 0 bis 2
in Port A des
Soundchips setzen +

+
+

+
+

+
+

+
F

120 ATARI ST - Das Floppy-Arbeitsbuch

move.w #582, (A6) * TR adressieren
move .w SO(Al),D7 * aktuelle Track-Nr.
bsr FDC_out * in TR schreiben
clr.b tmp_dma * tmp_dma High-Byte

* löschen

w171 move.w #584, (A6) * Sektor-Register
* adressieren

move.w curr_sektor,D7 * Sektor in
bsr FDC_out * Sektor-Re. schreiben
move.b curr_dma low, SFF860D * DMA-Register setzen
move.b curr dma_mid,SFF860B
move.b curr dma_high, $FF8609
rts

KAAKKKKKKKKKKKKKKKKKKK KK KK KH KK KK TH KH KKK KK KK AK KK KK KK IK KK IK AK KK KA AK KH KH KH A KK AK KK Ro

*

*

*

x

x

x

move.w

ori.w

setdrive

move.b

move.b

move.b

and.b

or.b

move.b

move .w

rts

Port A im Sound Chip setzen

Neue Bitkonfiguration in DO

KAKKAKKKAKKKKKKKKKKKKKKKK KK. KK KK KK KT TI KK KK IK KK K AK KK KH KH TH A A KK AK AK AK A AK „&

SR,-(A7)
#$700,SR

#14, SFF8800

SFF8800,D1
D1,D2
#SF8,D1
DO,D1

(A7)+,SR

+
 +

H
F

F
F
F

H
H

H
H

H
F

F
H

HF
H
H

HF
*F

x

x

x

*

*

*

Statusregister retten
Interrupt-Mask 111
setzen d.h. Interrupt-
Level 7, also sperren
aller Interrupts
da die Adresse $FF8800
beim Lesen immer das
zuletzt angesprochene
Register des Soundchips
adressiert
also Interrupt sperren,
damit kein anderes
Register angesprochen
werden kann
Register 14 (Port A) des
Soundchips adressieren
Port A lesen
und in D2
Bits 0 bis 2 löschen
und durch neue Bits
ersetzen

und in Port A schreiben
Statusregister
regenerieren

Routinen des XBIOS mit Beispielen 121

AKAKHKKKKKAKKKKKKKKKKKK KK KH. KK KH KK KK IK KK KK KK IK KK KK IK KK IK IK KK KK KK KK IK IK KK IK KK KK AK A KANU

* Die Verzögerungsschleife ist eingebaut da der FDC nach *

* Erhalt des Force Interrupt-Kommandos bei FM-Format *

* 32 us und bei MFM-Format 16 Us lang kein anderes *

* Kommando empfangen darf, da sonst das Force Interrupt- *
* Kommando nicht ausgeführt wird. *
* *

* Allerdings ergibt das einen Zeitverlust bei der Ausführung*
* der Befehle zumal die Ausführung der Warteschleife

* erheblich länger dauert (422 Taktzyklen = ca. 52.75 us) *
* *

* Befehl Taktzyklen *
* bsr 18 => 18 *
* move.w SR,- (a7) + 8+6 => 14 *
* move.w D7,-—(a7) + 8 => 8 *
* move.w #$20,D7 + 8 => 8 *
* move.w (a7)+,D7 + 8 => 8 *
* move.w (a7)+,SR + 12+4 => 16 *
* rts + 16 => 16 x
* dbra D7, 32mal branch + 10*32 => 320 ca.10 *
* dbra d7 imal nicht branch + 14 => 14 x
* — a *

* 422 *
x k

KARKAKKKAKKKKAKKKKKKÄKKKKKKK KK KK KK KK KE KKK IKK KH KH TH KK K KK AK KK A KT KH AK TK I AK I KH A KH KK XS

D6->FDC bsr wait * Verzögerungsschleife
move .w D6, SFF8604 * D6 in adressiertes

* Register schreiben
bra wait * Verzögerungsschleife

FDC_ out bsr wait * Verzögerungsschleife
move .w D7,SFF8604 * D7 in adressiertes

* Register schreiben
bra wait * Verzögerungsschleife

FDC->D7 bsr wait Verzögerungsschleife *

move .w SFF8604,D7 * adressiertes Register
* in D7 lesen
x bra wait Verzögerungsschleife

get_FDC bsr wait * Verzögerungsschleife
move .w SFF8604,DO * adressiertes Register

* in DO lesen

wait move .w SR, -(A7) * Statusregister retten
move .w D7,-(A7) * D7 retten

move .W #$20,D7 * Zähler initialisieren

w181 dbra D7,w181 * Schleife
move .w (A7)+,D7 * D7 zurückholen

move .w (A7)+,SR * Statusregister
* zuruckholen

122 ATARIST - Das Floppy-Arbeitsbuch

KAKKKKKAKKKKKKKAKKKKKKKK KK KK KK IK. KK KK IK KK IK KK KK KK IK IK KT IK IK KK KK KH AK KK KK A KH A KU

*

* Bei Aufruf einer Floppy-Routine
* testen, ob Diskette von A nach B oder von B nach A
* gewechselt (bei einem Drive).
* und wenn, dann Aufforderung zum Wechseln
*

KAAKKKAKKKKAKKKAÄKKKKKKKKK KK KK KK KK KT KK KK KK KK KKK KK KK KK IK IK KK AK KH A AK AK AK AK a a

change cmpi.w #1,nflops
bne term
move .W $10 (A7) ,DO
cmp.w disknum, DO

beq w191
move .w DO, - (A7)

move .w #SFFEF,-(A7)

bsr h_ error
addq.w #4,A7

move .w #SFFFF,wp latch

move .w $10 (A7),disknum

w191 clr.w $10 (A7)

term rts

+
+

F
F

HF

F
F

HF

HF

HF

HF

HF

F
H

HK
HF

KF
*

*

*

x

x

x

x

*

wenn nicht eine Floppy,
dann fertig
sonst Drive-Nummer mit
Disketten-Nummer
vergleichen
wenn gleich, dann w191
sonst Drive-Nummer auf
den Stack
Fehlernummer -17

"Diskette einlegen'
Fehler berichtigen
Drive und Fehlernummer
auf Stack vergessen
Drives A und B sind
"unsure'
Disketten-Nummer auf
Drive-Nummer

Drive-Nummer auf 0

Drive =A

KAKEKKKKKKKKEKKKKKKEKKKKK KEK KKK KKK KKK KKK KK KKKKKEKKKKKKKKKKKKKKKKKK

Drive-Modus setzen

*

*

*

* Drive-Modus in DO
*

* KAKKKAKKKAKKKKKKÄKKKKKKKKKKK KK KK KK KK KK KKKKKKKKKKKKKKKKKKKKEK

setdmtab lea dm tab,AO0
move.b DO, - (A7)
move.w curr device,D0

move .b (A7)+,SO(AO,DO.w)

rts

+
+

+
+

HF

x

*

x

*

*

x

Disk_mode tabelle in AO
DO auf den Stack

dm tab mit Drive
indizieren und
Drive-Modus dorthin
schreiben

Routinen des XBIOS mit Beispielen | 123

KAKKKKKKAKKKKKKHKKKKKKIKK KK KHK KK KK KT TH KH KK KH KK IK KK AK AK AK TH KH KK A AK KK AK HE KH AK KH IK AH KH AH KK

x x

* Einsprung in die Error Handling Routine , die versucht *
* Fehler zu korrigieren (z.B. "Insert Disk B in Drive A) *
x *

KAKKAKKKKKKKKKKKKKAKKHK KK IKK KK KK KK KH IK IK IK IK AK KK KK AK KK KK KH AK HK KK A K A AK AK KH A KH AK A KH A U

h_ error move.l etv_critic,-(A7) etv_critic ist ein *

* Systemvektor, der auf
* die Routine zur
* Fehlerbehandlung zeigt

moveq.1 #SFF,DO *
x

x

rts dieser Vektor wird bei

rts angesprungen

Ein XBIOS-Fehler

Wenn Sie die Leseroutine des XBIOS etwas genauer betrachten, können Sie
einen groben Programmierfehler erkennen. Bei den Kommandos Read Mul-
tiple und Write Multiple bricht der FDC die Ausführung erst ab, wenn die
Nummer des Sektors größer als die maximale Anzahl der Sektoren je Spur ist.
Das XBIOS des ATARI vergleicht nun die aktuelle DMA-Adresse mit der
DMA-Adresse, die sich aus der Anzahl der Sektoren, mit 512 multipliziert,
errechnet. Ist diese Adresse erreicht, wird dem FDC ein RESET-Kommando
gesendet, was die Datenübertragung von und zur Diskette sofort abbricht.
Anschließend müßten die 2 CRC-Bytes zur Überprüfung der Daten gelesen
werden, was der FDC nun jedoch unterläßt. Somit wird ein eventueller Prüf-
summenfehler im letzten Sektor nicht mehr erkannt!

Dieser Bug tritt jedoch nur bei den Routinen auf, die die Multiple-Befehle ver-
wenden. Die flopwr-Routine arbeitet z.B. ohne Multiple-Option. Dort wird je-
der Sektor einzeln eingelesen.

Nun noch die Adressen der Routinen. in den verschiedenen TOS-Versionen:

neues TOS altes TOS ROM
Name 196480 Bytes 207128 Bytes

floprd $7424 $62D2 $FC159E

flopwr $750A $63B0 $FC167C

124 ATARI ST - Das Floppy-Arbeitsbuch

neues TOS altes TOS ROM
Name 196480 Bytes 207128 Bytes

flopfmt $75C2 $6468 $FC1734

flopver $775C $6602 $FC18CE

flopvbl $783E $66EA $FC19B0

Fehlernr $74E8 $638E $FC165A

curr_error $09E0 $06A2 $09E0

curr_count $09CA $068C $09CA

e_dma $09D0 $0692 $09D0

tmp_dma $09DA $069C $09DA

sav_addr $09E2 $06A4 $09E2

retry_count $09B0 $0672 $09B0

default_error $09DE $06A0 $09DE

curr_sektor $09C6 $0688 $09C6

curr_track $09C4 $0686 $09C4

curr_side $09C8 $068A $09C8

curr_dma $09CC $068E $09CC

spt $09D4 $0696 $09D4

interleave $09D6 $0698 $09D6

virgin $09D8 $069A $09D8

Routinen des XBIOS mit Beispielen 125

neues TOS altes TOS ROM
Name 196480 Bytes 207128 Bytes

motor_on_flag $09BE $0680 $09BE

flock $043E $043E $043E

frclock $0466 $0466 $0466

wp_st_tab $09B2 $0674 $09B2

nflops $04A6 $04A6 $04A6

wplatch $09B4 $0676 $09B4

curr_device $09C2 $0684 $09C2

acctim $09B6 $0678 $09B6

_hz 200 $04BA $04BA $04BA

disknum $5622 $4692 $5622

dm_tab $4DB8 $3E2A $4DB8

etv_critic $0404 $0404 $0404

dct0 $0A06 $06C8 $0A06

detl $0AOA $06CC $0AOA

127

Kapitel 6

Ein FDC-Fehler

Eine besondere Eigenschaft des FDC ist ein Synchronisationsfehler, der "Hop-
pelfehler". Er tritt nur bei dem Read-Track-Kommando auf. Bei diesem Be-
fehl werden bestimmte Bitfolgen als Synchronisationsmarkierungen interpre-
tiert, die jedoch keine sind.

Dieses Phänomen hängt von der Art der Datenspeicherung, dem MFM-Ver-
fahren, ab. Bei dem MFM-Verfahren kann normalerweise ein Datenbit drei
verschiedene Zustände annehmen:

1. Das Bit ist gesetzt => ' ML

Das Bit ist gelöschtund ” *

2. folgt nach einem Einsbit=> x» *

3. folgt nach einem Nullbit => | |
A A

Um die Bedeutung der Synchronisation zu verdeutlichen, geben wir ein klei-
nes Beispiel. Der Lesekopf liest folgende Drittelbitfolge:

JLILILILILILILILILIL
Ohne Synchronisation kann die Folge folgendermaßen interpretiert werden:

. TL.

128 ATARIST - Das Floppy-Arbeitsbuch

Die Lese-Elektronik muß also, wie man anhand des Beispiels leicht erkennt,
synchronisiert werden. Das heißt ihr muß mitgeteilt werden, wann ein Bit
beginnt und endet (im Beispiel sind die Bitgrenzen mit “ gekennzeichnet).

Dafür werden bestimmte Bitfolgen als Marken definiert, die der Lese-Elek-
tronik mitteilen, wann ein Bit beginnt. Als Sync-Markierungen sind beim FDC
die Bytes $A1 mit fehlendem Takt zwischen Bit 4 und 5 und $C2 mit fehlen-
dem Taktbit zwischen Bit 3 und 4 vorgesehen. Die Synchronisation erfolgt
aber auch beim Lesen der Bitfolge 000101001 in folgenden Bytes:

1. rn nen 0 0010 1001 = $29 mit vorherigem geraden Byte
2. mumnun 00 0101 001- = $52/$53 mit dem vorherigen Byte ein Viel-

faches von vier.
3. ~~~~~000 1010 Ol~~ = $A4/$A5/$A6/$A7 mit dem'vorherigen

Byte ein Vielfaches von acht.

Da der ADDRESS MARK DETECTOR nur bei dem Read-Track nach den
Sync-Markierungen sucht, tritt unter dem Read-Sector-Kommando der Fehler
nicht auf!

Betrachten wir das Byte $29 im MFM Format:

| | | | | | | | |

rLIL_J] u PLE Le
o0*~ o* o * i * N 0 1 0 0 1

A

Diese Bitfolge erkennt der FDC als Adreßmarke.

Das letzte Bit des vorhergehenden Bytes und die ersten 7 Bits werden als näch-
stes Byte in das DATA-Register geschrieben (0001 0100 = $14).

Dann wird die Bytegrenze um zwei Drittel nach rechts verschoben (die nach-
sten zwei Drittel werden nicht erkannt).

Inn in A
“Ser A Hier geht

0 0 0 1 0 1 0 0 Teil wird es weiter.
übersprungen.

Die folgenden Bytes erscheinen für den Lesekopf bis zur nächsten Sync-Marke
um ein Drittelbit nach rechts verschoben.

Ein FDC-Fehler 129

- aus 1 wirdO(TL, > 1)

— aus 0 mit führender 0 wird 1 (IL_- ‘FL)

_ aus 0 mit führender 1 wird 0('___' > '__‘)
A N A N

Beim Byte $52/$53 tritt diegleiche Bitfolge ein Bit eher auf, was dazu führt,
daß die folgenden Bytes um vier Drittel (genauer 1 Bit — da die Sync-Folge ein
Bit früher auftritt — und 1 Drittel) nach rechts verschoben werden.

Beim Byte $A4/$A5/$A6/$A7 werden die folgenden Bytes um 7 Drittel (2 Bit
+ 1 Drittel) nach rechts verschoben.

Um zu zeigen, wie groß die Veränderung der Bytes wird, geben wir zwei Bei-
spiele:

Beispiel 1:

Original: 00 29 00 01 02 04 08 10 20 40 80 00

gelesen: 00 14 7F FE 7C F9 F3 F7 CF 9F 3F FF

Beispiel 2:

Original: 02 90 00 01 02 04 08 10 20 40 80 00
gelesen: 02 14 7F FF E7 CF 9F 3F 7C F9 F3 FF

Um sicherzugehen, daß die Daten korrekt gelesen werden, sollte daher auf den
Gebrauch des Read-Track-Kommandos verzichtet werden.

131

Kapitel 7

Die Powerdisk

Die Powerdisk ist eine Beilage zum Floppy-Arbeitsbuch. Sie enthalt Program-
me, die man im täglichen Umgang mit der Floppy des ATARI ST gut. gebrau-
chen kann.

Einen komfortablen Diskmonitor, ein sehr gutes Filecopy, zwei schnelle und
benutzerfreundliche Kopierprogramme und ein Programm zur Untersuchung
und Manipulation der Diskette.

Außerdem sind Beispielprogramme und Source-Listings aus dem Buch auf der
Powerdisk zu finden.

Wenn Sie nun das Inhaltsverzeichnis der Diskette angeklickt haben, so werden
Sie zwei Ordner und ein Programm erkennen können. In dem Ordner Bei-
spiele finden Sie die Programme und Source-Listings aus dem Floppy-Ar-
beitsbuch.

In dem Ordner Powerdisk sind die zur Powerdisk gehörenden Programme zu
finden.

Bitte klicken Sie nun das Programm Power an. Nun wird das Hauptmenü der
Powerdisk geladen. Sie haben folgende Auswahlmöglichkeiten:

Copy-Menü:

- Filecopy

- Speedcopy

- Excopy

- Ende

Spezial-Menü:

-— Diskmon

- The Clone

132 ATARI ST - Das Floppy-Arbeitsbuch

Möchten Sie Dateien kopieren, so klicken Sie bitte Filecopy an. Möchten Sie
normale Disketten kopieren, wählen Sie bitte Speedcopy. Möchten Sie mit
größerer Kapazität formatierte Disketten Kopieren, so nehmen Sie Excopy.

Der Diskmonitor erlaubt Ihnen, Ihre Diskette unter die Lupe zu nehmen und
The Clone ist zur Manipulation und Untersuchung der Diskette zu benutzen.

Um die Powerdisk zu beenden, wählen Sie bitte Ende.

Filecopy V2.0

Mit Hilfe dieses Programms können Sie ein oder mehrere Files kopieren, um-
benennen oder löschen.

Sie können außerdem Ordner erstellen, umbenennen, den Diskettennamen än-
dern und eine Diskette formatieren.

Haben Sie nun den Punkt Filecopy im Hauptmenu angeklickt, so haben Sie nach
dem Ladevorgang folgende Auswahlmöglichkeiten:

File-Menü Laufwerk-Menü

- Files kopieren A
- Files umbenennen B

- Files löschen

- Diskette formatieren

- Directory

- Ende

Spezial-Menü

- Ordner umbenennen

- Ordner erstellen

- Diskettennamen ändern

1. Files kopieren

Haben Sie diesen Punkt angewählt, so erscheint das Filecopy-Window, und die
Directory wird vom Laufwerk A eingelesen.

Nun können Sie auswählen, mit welchen Laufwerken Sie arbeiten möchten.
Klicken Sie nun im Punkt Quelldisk das Laufwerk B an, so wird das Inhalts-
verzeichnis von Drive B ausgegeben.

Die Powerdisk 133

Nachdem Sie die Laufwerkkonfiguration ausgewählt haben, klicken Sie bitte
die gewünschten Dateien im Fenster an. Diese werden dann fett unterlegt und
mit einem Häkchen versehen.

Sind mehr Dateien auf der Diskette, als in das Window passen, so können Sie

den Slide-Bar an der rechten Seite des Fensters verschieben. Ausgewählte Da-
teien bleiben angeklickt.

Ordner werden outlined dargestellt und können nicht kopiert werden! Die
Dateien, die sich in einem Ordner befinden, erscheinen unter dem Ordner-
namen. Haben Sie nun alle gewünschten Dateien ausgewählt, so klicken Sie bit-
te den COPY-Button an.

Sie werden dann aufgefordert, die Disketten in die entsprechenden Laufwerke
einzulegen. Drücken Sie nun die Return-Taste, oder klicken Sie den OK-But-
ton an.

Jetzt können Sie auswählen, ob Sie in einen Ordner kopieren wollen oder in
das Haupt-Directory. Möchten Sie in einen Ordner kopieren, so erscheint ein
Fenster, das die auf der Zieldiskette existierenden Ordner anzeigt. Den ge-
wünschten Ordner können Sie durch Anklicken auswählen. Schließen Sie dann
bitte das Fenster. Nun beginnt der Kopiervorgang.

2. Files umbenennen

Haben Sie den Menüpunkt "Files umbenennen" angewählt, so erscheint das In-
haltsverzeichnis der Diskette. Jetzt können Sie die Datei, die umbenannt wer-
den soll, durch Anklicken auswählen. Beachten Sie dabei aber, daß nur eine
Datei selektiert sein kann. Durch Drücken des rechten Mausbuttons oder An-
klicken der Close-Box verlassen Sie dieses Fenster.

Falls eine Datei angeklickt ist, erscheint nun ein Eingabefenster, in das Sie den
neuen Namen der Datei eingeben können. Durch Anklicken der Exit-Box kön-
nen Sie diesen Menüpunkt verlassen, ohne die Datei umzubenennen. Wenn Sie
dieses Fenster durch die Rename-Box verlassen, wird die Datei umbenannt.

3. Files löschen

Möchten Sie Dateien löschen, wählen Sie bitte den Punkt "Files löschen" aus.
In dem nun erscheinenden Fenster können Sie die Parameter "Laufwerk" und
Sicherheit" einstellen. Wenn "Sicherheit AN" ist, dann wird der Name einer
Datei angezeigt, bevor sie gelöscht wird, und auf eine Bestätigung gewartet.

134 ATARI ST - Das Floppy-Arbeitsbuch

Verlassen Sie dieses Fenster durch EXIT, wenn Sie keine Dateien löschen

wollen.

Nach Anklicken der ERASE-Box wählen Sie die Datei durch Anklicken. Die

angeklickten Dateien werden gelöscht, sobald Sie das Directory Window
durch Drücken der rechten Maustaste verlassen.

4. Directory

Wenn Sie das Inhaltsverzeichnis sehen möchten, so wählen Sie bitte den Punkt

"Directory" an. Beachten Sie bitte, daß sich in dem angegebenen Laufwerk
auch eine Diskette befindet.

Es öffnet sich nun ein Fenster, das Ihnen folgendes anzeigt:

— den Diskettennamen (in der Fensterleiste)
— die Anzahl der freien und belegten Bytes (in der Infozeile)
— die Ordner und Programme, die sich auf der Disk befinden

Die Programme werden alphabetisch sortiert ausgegeben, Ordner kommen
wie im Desktop zuerst. Sie sehen nun den Namen des Programms, das Attri-
but, die Dateilänge sowie Datum und Uhrzeit der Erstellung.

Falls sich mehr Programme auf der Diskette befinden, als in das Fenster
passen, können Sie den Slide-Bar an der rechten Seite des Fensters
verschieben.

Möchten Sie sehen, welche Programme sich in einem Ordner befinden, so
klicken Sie diesen bitte einmal an.

Um den Ordner zu verlassen, schließen Sie bitte das Fenster. Dann befinden
Sie sich wieder im Haupt-Directory. Durch Drücken der ESC-Taste (Escape)
wird das Directory neu eingelesen.

Zum Verlassen des Directory-Fensters können Sie die rechte Maustaste drük-
ken oder das Fenster schließen.

5. Ordner erstellen

Wählen Sie dann das Sub- oder Hauptdirectory, in dem der Ordner erstellt
werden soll. Beenden Sie Ihre Auswahl durch Drücken der rechten Maustaste.
Danach geben Sie den Namen des Ordners ein. Dieser wird dann auf der Dis-
kette erstellt.

Die Powerdisk 135

6. Diskettennamen ändern

Dieser Menüpunkt erlaubt Ihnen, den Namen der Diskette zu ändern. Geben
Sie den neuen Diskettennamen ein, der mit RENAME auf der Diskette erzeugt
oder, falls schon vorhanden, geändert wird.

7. Ordner umbenennen

Zuerst erscheint ein DIRECTORY-Fenster, in dem Sie den Ordner auswählen.

Der momentane Ordnername erscheint in der INFO-Zeile des Fensters.

Durch Drücken der rechten Maustaste wird der Name dann in ein DIALOG-
Fenster übernommen, in dem Sie dann den neuen Namen eingeben.

8. Laufwerk auswählen

Die Bestimmung des aktuellen Laufwerks erfolgt im Auswahlmenü in der
Kopfleiste unter "LAUFWERK".

Speedcopy V2.0

Mit diesem Kopierprogramm können Sie Ihre Disketten schnell, komfortabel
und sicher kopieren. |

Dies ist vor allem nötig für das Erstellen von Sicherungsduplikaten von wich-
tigen Disketten. Es ermöglicht Ihnen außerdem, defekte Diskettten zu Ko-
pieren, um wenigstens die noch funktionierenden Programme benutzen zu
können.

Dieses Kopierprogramm wurde entwickelt, da das eingebaute Desktop-Copy
einige Wünsche offenläßt und manchmal auch nicht zur vollen Zufriedenheit
arbeitet.

Speedcopy V2.0 eignet sich nicht zum Kopieren geschützter Software. Es las-
sen sich nur Backups von "normalen" Disketten erstellen.

Nachdem Sie im Hauptmenü den Punkt Speedcopy angeklickt haben, erscheint
nach dem Ladevorgang die Copyright-Meldung des Programms.

136 ATARI ST - Das Floppy-Arbeitsbuch

Durch Drücken der Return-Taste gelangen Sie in das Hauptmenü des Copys.

Sie sehen nun den Bildschirm in vier Fenster aufgeteilt. Das Fenster links
oben, das COPY-Fenster, bietet die Auswahl zwischen dem Kopieren einer
einseitigen Diskette (SINGLE SIDE COPY) und dem Kopieren einer zweisei-
tigen Diskette (DOUBLE SIDE COPY). Außerdem haben Sie die Möglichkeit,
sich mitteilen zu lassen, ob Ihre Diskette eventuelle Fehler aufweist.

Das zweite Fenster rechts oben, das CATALOG-Fenster, ermöglicht es Ihnen,
das Inhaltsverzeichnis Ihrer Diskette anzeigen zu lassen.

In dem Fenster links unten, dem OPTIONS-Fenster, wählen Sie die Laufwerk-
konfiguration aus, stellen ein, ob die Zieldiskette formatiert wird und ob die
Multi-Option (Mehrfachkopien) aktiviert sein soll.

Das vierte Fenster, das FAST PARAMETER-Fenster, bietet nun die Einstell-
möglichkeiten, ob Sie schnell lesen, schreiben oder formatieren möchten.

1. Das COPY-Fenster

Wenn Sie nun eine einseitige Diskette kopieren möchten, klicken Sie bitte den
entsprechenden Button an. Um eine zweiseitige Diskette zu kopieren, klicken
Sie bitte diesen Button an.

Wollen Sie sich mitteilen lassen, ob Fehler auf der Diskette vorhanden sind, so
klicken Sie bitte "Fehler ignorieren AUS" an. Jetzt wird bei einem auftreten-
den Fehler eine Meldung ausgegeben, und der Kopiervorgang wird abgebro-
chen.

Möchten Sie eine defekte, fehlerhafte Diskette kopieren, wählen Sie bitte "Feh-
ler ignorieren AN" aus. Dann werden eventuelle Fehler auf der Diskette über-
lesen, aber sie werden nicht kopiert. Am Ende des Kopiervorgangs wird dann,
falls Fehler aufgetreten sind, ein kurze Meldung ausgegeben.

2. Das CATALOG-Fenster

Wenn Sie das Inhaltsverzeichnis sehen möchten, so wählen Sie bitte das ge-
wünschte Laufwerk aus und klicken dann die Box mit dem ATARI-Symbol an.
Beachten Sie bitte, daß sich in dem angegebenen Laufwerk auch eine Diskette
befindet.

Die Powerdisk 137

Es öffnet sich nun ein Fenster, das Ihnen folgendes anzeigt:

— den Diskettennamen (in der Fensterleiste)
— die Anzahl der freien und belegten Bytes (in der Infozeile)
— die Ordner und Programme, die sich auf der Disk befinden.

Die Programme werden alphabetisch sortiert ausgegeben. Ordner kommen
wie im Desktop zuerst. Sie sehen nun den Namen des Programms, das Attri-
but, die Dateilänge sowie Datum und Uhrzeit der Erstellung.

Falls sich mehr Programme auf der Diskette befinden, als in das Fenster pas-
sen, können Sie den Slide-Bar an der rechten Seite des Fensters verschieben.

Möchten Sie sehen, welche Programme sich in einem Ordner befinden, so
klicken Sie diesen bitte einmal an.

Um den Ordner zu verlassen, schließen Sie bitte das Fenster. Dann befinden
Sie sich wieder im Haupt-Directory.

Durch Drücken der ESC-Taste (Escape) wird das Directory neu eingelesen.

Zum Verlassen des Directory-Fensters können Sie die rechte Maustaste drük-
ken oder das Fenster schließen.

Hinweis: Bei der Anzeige der freien und belegten Bytes kommt es zu Ab-
weichungen gegenüber der Anzeige des Desktops, da das Desktop
den Platz von Ordnern und den darin enthaltenen Dateien im
Haupt-Directory nicht mitberechnet. Das Desktop zeigt immer
nur den Platzbedarf an, der sich aus den Größen der einzelnen
Dateien addiert.

3. Das OPTIONS-Fenster

Hier wählen Sie, mit welchen Laufwerken Sie arbeiten möchten, ob die Ziel-
diskette formatiert werden soll und ob die Multi-Option (Mehrfachkopien)
eingeschaltet werden soll.

Klicken Sie dazu bitte die gewünschten Felder an.

4. Das FAST PARAMETER-Fenster

In diesem Fenster können Sie einstellen, ob Sie schnell lesen, schreiben und
formatieren wollen. Sie können auch einzelne Parameter ausschalten z.B.

"Schnell Schreiben" auf AUS.

138 ATARI ST - Das Floppy-Arbeitsbuch

Diese Parameter verdoppeln die Geschwindigkeit der Floppy-Routinen. Eine
komplette einseitige Diskette wird, falls genügend Speicher vorhanden ist, in
ca. 36 Sekunden kopiert (lesen und schreiben).

Falls Probleme auftreten, sei es beim Lesen, Schreiben oder Formatieren, so
schalten Sie bitte die Parameter auf AUS.

Es können vor allem beim Schreiben Probleme auftreten, zu 99% aber nur bei
Fremdlaufwerken, die eine langsamere Step-Rate als die ATARI-Laufwerke
besitzen und deshalb diese Geschwindigkeit nicht richtig verkraften.

5. Der Kopiervorgang

Haben Sie nun entweder das Feld für SINGLE SIDE COPY oder DOUBLE
SIDE COPY angeklickt, so wird dieses Menü verlassen, und es erscheint ein
Fenster, das Sie auffordert, die Quelldiskette einzulegen, wenn Sie nur mit
einem Laufwerk kopieren oder wenn Sie mit zwei Laufwerken kopieren wol-
len, werden Sie aufgefordert, beide Disketten in die Laufwerke einzulegen.
Drücken Sie die Return-Taste, um den Kopiervorgang zu starten, oder klicken
Sie mit der Maus das Feld ABBRUCH an, um wieder ins Menü zu gelangen.

Wurde der Kopiervorgang gestartet, sehen Sie ein Fenster, das Ihnen anzeigt,
auf welchem Track die Floppy gerade arbeitet.

Nach dem Einlesen der Diskette werden Sie aufgefordert, die Zieldiskette
einzulegen (nur beim Kopieren mit einem Laufwerk).

Haben Sie die Multi-Option eingeschaltet, so erscheint dieses Fenster so lange,
bis Sie genug Kopien gemacht haben. Dann müssen Sie ABBRUCH anklicken,
um das Schreiben der Daten zu beenden.

Falls die Diskette nicht ganz eingelesen wurde, erscheint wieder die Auffor-
derung, die Quelldiskette einzulegen.

Die Prozedur wiederholt sich.

Fehlermeldungen:

Folgende Fehlermeldungen können auftreten:

- Dies ist keine einseitige Disk

Sie haben versucht, eine zweiseitige Diskette mit dem SINGLE SIDE COPY zu
kopieren.

Die Powerdisk 139

- Dies ist keine zweiseitige Disk

Sie haben versucht, eine einseitige Diskette mit dem DOUBLE SIDE COPY zu
Kopieren.

- Dies ist keine zweiseitige Floppy

Sie haben versucht, eine zweiseitige Diskette auf einem einseitigen Laufwerk
zu kopieren.

- Drive not ready .

Ihr Laufwerk reagiert nicht. Überprüfen Sie gegebenfalls die Stecker und die
Stromversorgung.

- Track nicht gefunden

Dies ist ein Fehler auf der Diskette. Der Track ist nicht formatiert oder nicht

vorhanden.

- Sektor nicht gefunden

Ebenfalls ein Fehler auf der Diskette.

- Lesefehler

Der Track kann nicht korrekt eingelesen werden (Dies deutet meistens auf ei-
nen Fehler im Header des Tracks).

- Schreibfehler

Es wurde versucht, auf einen fehlerhaften Track oder Sektor zu schreiben.

- Disk ist schreibgeschützt

Bitte den Schreibschutz entfernen.

- Allgemeiner Fehler

Systemfehler.

Excopy V1.0

Mit Excopy können Sie mit Extended-Format formatierte Diskette kopieren.
Extended-Format bedeutet, daß die Diskette mit 82 Tracks und 10 Sektoren
pro Track formatiert ist.

Als einzige Änderung gegenüber dem Speedcopy kann man mit diesem Copy
das Directory nicht einlesen, sondern Sie können sich stattdessen das Format
der Diskette anzeigen lassen. Dazu wählen Sie bitte das Laufwerk und klicken
dann die Box mit dem ATARI-Symbol an.

140 ATARI ST - Das Floppy-Arbeitsbuch

Diskmonitor

Wenn Sie aus dem SPECIAL-Menü den "DISKMON" gewählt haben, so wird
der Disketten-Monitor und das dazugehörende Resource-File nachgeladen.
Kurz darauf befinden Sie sich im View Disk-Modus.

Der Bildschirm ist in drei Teile unterteilt, der hexadezimalen und der ASCII-
Anzeige sowie der Anzeige für Spur, Sektor, Seite und Laufwerk (Drive).

Der Diskmonitor lädt nun den Sektor 3 von der Seite 0 auf Spur 1 in den Rech-
ner und zeigt diesen dann auf dem Bildschirm an. Sie können nun das Direc-
tory der POWERDISK erkennen.

Der Diskmonitor versteht folgende Kommandos:

(Space) Der aktuelle Sektor wird noch einmal eingelesen.

r (Read) Es erscheint nun ein Fenster, in dem Sie die aktuellen Parameter
ändern können. Diese sind Spur, Sektor, Seite, Laufwerk, die maximale
Spur und der maximale Sektor.

+ (Plus) Der Sektor wird um eins erhöht. Ist der Sektor größer als der ma-
ximale Sektor, so wird der Sektor 1 auf der nächsten Spur angesprungen.

- (Minus) Der Sektor wird um eins erniedrigt. Wenn der Sektor dann klei-
ner gleich null ist, wird der maximale Sektor auf der vorherigen Spur an-
gesprungen.

T (Cursor Up) Die Spur wird um eins erhöht. Falls die Spur größer als die
maximale Spur ist, so wird auf die Spur 0 gesprungen.

4 (Cursor down) Die Spur wird um eins erniedrigt. Ist die Spur kleiner als
null, so wird auf die maximale Spur gesprungen.

s (Side) Dieses Kommando wechselt die Seite.

d (Drive) Dieses Kommando wechselt das Laufwerk. Es können Laufwerk
A oder B angewählt werden.

f (Format) Mit dieser Routine können Sie eine Spur mit beliebiger Sekto-
renanzahl (maximal 11) formatieren. Der von ATARI empfohlene Füll-
wert zum Formatieren ist $ES.

Die Powerdisk 141

F (Fill) Damit füllen Sie den im Speicher befindlichen Block. Dieser kann
dann mit dem W-Kommando auf die Diskette geschrieben werden.

w (Write) Dieser Befehl schreibt den im Speicher befindlichen Block auf die
Diskette. Sie können hier noch Spur und Sektor wählen.

e (Edit) Mit diesem Kommando gelangen Sie in den Editier-Modus. Sie
können nun im Hexadezimal-Feld oder im ASCII-Feld die Daten durch
Überschreiben ändern. Verlassen Sie den Edit-Modus mit RETURN oder
ENTER, so werden die geänderten Daten in den Speicher übernommen,
und Sie können den Block dann mit dem W-Kommando auf die Disk
schreiben. Mit dem Verlassen über die UNDO-Taste wird der alte Block
wieder angezeigt.

b (Boot) Dieser Befehl ermöglicht die Erstellung einer "boot"-fähigen Dis-
kette. Wenn Sie bei COMMAND.PRG das JA-Feld wählen, so wird bei ei-
nem Booten der Diskette das COMMAND.PRG nachgeladen. Unter der
Seriennummer können Sie eine beliebige hexadezimale Zahl eingeben. Ist
diese größer oder gleich $01000000, so wird eine zufällige Zahl auf die
Diskette geschrieben. |

Zum Erstellen einer doppelseitigen Systemdiskette gehen Sie folgende
Schritte durch:

1. Formatieren Sie Ihre Diskette zweiseitig mit 80 Spuren und 9 Sektoren je
Spur.

2. Kopieren Sie von der einseitigen Sytemdiskette die Datei TOS.IMG auf
Ihre Diskette.

3. Starten Sie nun den Diskmonitor.

4. Laden Sie den Bootsektor (Spur 0, Sektor 1) von der einseitigen System-
diskette in den Speicher.

5. Legen Sie Ihre doppelseitige Diskette in das Laufwerk und schreiben den
Block mit dem W-Kommando auf Spur 0, Sektor 1, Seite 0.

6. Drücken Sie die b-Taste und wählen dann den zweiseitigen Typ aus.

7. Wenn Sie nun das OK-Feld anklicken und Ihre Diskette nicht schreibge-
schützt ist, erstellt der Diskmonitor eine doppelseitige Systemdiskette.

S (Search) Es erscheint ein Fenster, in dem Sie den zu suchenden String und
die Suchrichtung eingeben können. Fängt der String mit $ an, so wird die-

142 | ATARI ST - Das Floppy-Arbeitsbuch

ser als Hexadezimalzahl interpretiert. Diese muß in jedem Fall eine gerade
Anzahl von Stellen aufweisen (z.B. $12AB). Ist die Anzahl ungerade, so
wird die letzte Stelle bei der Suche ignoriert.

Die Suche erstreckt sich je nach Richtung von der aktuellen Position über
den maximalen Sektor und die maximale Spur, bis entweder der String
gefunden oder in die Ausgangsposition zurückgekehrt wurde.

Ist der String gefunden, so können Sie mit der r-Taste die Suche fortsetzen
oder mit der e-Taste den gefundenen String editieren.

Der Suchvorgang kann über einen Tastendruck abgebrochen werden.

p (Print) Falls Sie den Inhalt Ihrer Disketten auch auf dem Papier haben
wollen, können Sie mit diesem Befehl den aktuellen Block entweder über
die parallele (Drucker) oder serielle (Modem) Schnittstelle ausgeben las-
sen. Mit einem Tastendruck kann der Ausdruck abgebrochen werden. Der
Ausdruck hat folgendes Aussehen:

Track: xx Sector: xx
0000: 41 42 43 44 45 46 47 77 78 79 7A : ABCDEFG . wxyz
0010: 30 31 32 33 34 ..iciccncwcvuvcs 3C 3D 3E : 01234 <=>

O1FO: 61 62 63 6A Liew cennccccrcecccccene 6F : abcd 6)

v (View File) Mit diesem Kommando gelangen Sie in den View File-Modus.
Hier können Sie eine beliebige Datei von einem beliebigen Laufwerk
(Floppy, Harddisk, RAM-Disk) auswählen. Danach wird diese Datei ge-
öffnet, und die ersten 512 Bytes werden auf dem Bildschirm angezeigt.
Die Anzeige für Spur, Sektor, Seite und Laufwerk ist verschwunden, statt-
dessen erscheint nun der Name der Datei und die Position des Blocks.

q, x und UNDO beenden den Diskmon.

Im View File-Modus existieren folgende Kommandos:

+ Die nächsten 512 Bytes der Datei einlesen.

- Die vorherigen 512 Bytes einlesen.

— Andas Ende der Datei gehen.

« Anden Anfang der Datei gehen.

Die Powerdisk 143

g Aneine beliebige Position innerhalb der Datei gehen.

x Datei schließen und neue Datei auswählen.

e Block editieren (wie unter View Disk). Wird der Edit-Modus mit RE-
TURN oder ENTER verlassen, erscheint eine Abfrage, ob der geanderte
Block auf die Diskette zuriickgeschrieben werden soll. Wenn Sie diese
Frage mit JA beantworten und die Datei den read only-Status hat, so er-
halten Sie eine Fehlermeldung. Eine Datei mit read only-Status kann nicht
editiert werden!

s Durchsuchen der Datei nach einem beliebigen String. Es gilt hier das
gleiche wie unter View Disk, nur wird hier nicht über die Sektoren ge-
sucht, sondern über den File-Pointer.

p Auch eine Datei können Sie zu Papier bringen. Es wird der angezeigte
Block ausgedruckt, per Tastendruck können Sie den Vorgang abbrechen.
Eine genauere Beschreibung des p-Kommandos wurde bereits unter View
Disk gegeben. Mit q oder UNDO kehren Sie in den View Disk-Modus
zurück.

The Clone

Dieses Programm erlaubt dem Benutzer vielfältige Möglichkeiten der Mani-
pulation und des Untersuchens von Disketten.

Es können ein oder mehrere Tracks formatiert werden, ein Track kann ko-
piert werden, Tracks können nach Fehlern untersucht werden, eine ganze Dis-
kette kann auf Fehler überprüft und nach Wahl formatiert werden.

Nach dem Ladevorgang haben Sie folgendes Auswahlmenü:

- Format Track

- Copy Track

- Scan Track

- Scan Disk

- Format Disk

- Ende

144 ATARI ST - Das Floppy-Arbeitsbuch

1. Format Track

Mit diesem Befehl haben Sie die Möglichkeit, Tracks zu formatieren und dabei
alle Parameter nach Wahl einzustellen.

Die Parameter dürfen dabei folgende Werte annehmen:

Starttrack: von 0 bis 83

Endtrack: vonObis 83

Der Endtrack darf nie kleiner als der Starttrack sein.

Anzahl der Sektoren: von 1 bis 11

Interleave: von 1 bis 11

Data: Zahlen von 0 bis 9 und Buchstaben von a bis f
bzw. A bis F.

Laufwerk: A oder B

Seite: 0 oder 1

Nach Eingabe der Parameter müssen Sie den Formatieren-Button anklicken.

Nun werden Sie aufgefordert, die Diskette einzulegen. Driicken Sie Return,
um den Formatiervorgang zu starten, oder klicken Sie mit der Maus auf den
Stop-Button, um abzubrechen.

2. Copy Track

Damit können Sie einen Track von einer Spur und Diskette auf eine beliebige
andere Spur und Diskette kopieren.

Es stehen Ihnen folgende Parameter zur Verfügung:

Lese Track: | von 0 bis 83

Schreibe Track: von 0 bis 83
Startsektor: von 0 bis 11

Anzahl der Sektoren: von 1 bis 11

Bitte beachten Sie, daß die Summe von Startsektor und Anzahl der Sektoren
den Wert 12 nicht übersteigt, sonst erhalten Sie eine Fehlermeldung.

Quelldisk: A oder B
Zieldisk: A.oderB

Seite: 0 oder 1

Die Powerdisk 145

Bitte klicken Sie nun den Kopieren-Button an. Sie werden dann aufgefordert,
die Quelldiskette einzulegen. Wurde der Track korrekt eingelesen, erscheint
die Meldung, die Zieldiskette einzulegen.

Drücken Sie nun ebenfalls auf OK.

3. Scan Track

Diese Funktion erlaubt, Tracks und Sektoren auf Fehler und auf Vorhanden-

sein zu untersuchen.

Folgende Parameter stehen zur Verfügung:

Starttrack: von 0 bis 83

Endtrack: von 0 bis 83

Der Endtrack darf nicht kleiner als der Starttrack sein.

Startsektor: von 0 bis 11
Endsektor: von 0 bis 11

Der Endsektor darf nicht kleiner als der Startsektor sein.

Laufwerk: A oder B

Seite: 0 oder 1

Wahlen Sie nun den Scan-Button, um den Vorgang zu starten.

In der unteren Zeile wird dann angezeigt, auf welchem Track und Sektor ge-
rade gelesen wird. Tritt ein Fehler auf, so wird eine Meldung ausgegeben.
Drücken Sie bitte die Return-Taste. Nun können Sie wählen, ob Sie weiter-
machen wollen oder ob Sie unterbrechen wollen.

Klicken Sie dazu bitte den entsprechenden Button an. Am Ende des Scan-
Vorgangs oder nach Abbruch drücken Sie bitte eine Taste.

4. ScanDisk

Hiermit wird eine ganze Diskette nach Fehlern durchsucht. Auf dem Bild-
schirm wird angezeigt, ob ein Sektor belegt, frei oder fehlerhaft ist.

146 ATARI ST - Das Floppy-Arbeitsbuch

Treten beim Lesen Fehler auf, so wird dies durch ein Fragezeichen (?) ange-
zeigt. Ein belegter Sektor wird durch ein Pluszeichen (+), ein freier Sektor
durch ein Minuszeichen (-) angezeigt.

Am Ende des Scan-Vorgangs miissen Sie eine Taste driicken.

5. Format Disk

Sie können eine Diskette mit 40, 80 oder 82 Tracks einseitig oder zweiseitig
formatieren. Bitte legen Sie eine nicht schreibgeschützte Diskette in das ge-
wahlte Laufwerk und klicken den Format-Button an.

Um dieses Menu zu verlassen, wahlen Sie Ende.

Außer im Punkt "Format Disk" kann überall das Directory eingelesen werden.

Im Farbmodus muß beachtet werden, daß die Programme nur in der mittleren
Auflösung funktionieren.

Bei The Clone sind in Farbe die angegebenen Buttons gesetzt:

— Format Track Die hellen Buttons sind angewählt.
— Copy Track Die dunklen Buttons sind angewählt.
— Scan Track Die dunklen Buttons sind angewählt.
— Disk Scan Die hellen Buttons sind angewählt.
— Format Disk Die roten Buttons sind angewählt.

147

Anhang A

Die Fehlermeldungen des TOS

Nummer Abkürzung Bedeutung

0 Ok Kein Fehler
-1 Error Fundamentaler Fehler
-2 Device Not Ready Gerät nicht betriebsbereit
-3 Unknown Cmd Unbekannter Befehl
-4 CRC Error Sektor nicht lesbar
-5 Bad Request Falscher Befehlstext
-6 Seek Error Spur wurde nicht gefunden
-7 Unknown Media Falsches Diskettenformat
-8 Sector Not Found | Sektor wurde nicht gefunden
-9 No Paper Kein Papier im Drucker

-10 Write Fault Allgemeiner Fehler beim Schreiben
-11 Read Fault Allgemeiner Fehler beim Lesen
-12 General Error Allgemeiner Fehler
-13 Write Protect Diskette ist schreibgeschützt
-14 Media Change Diskette wurde gewechselt
-15 Unknown Device Gerät ist unbekannt
-16 Bad Sectors Defekte Sektoren beim Formatieren
-17 Insert Disk Diskette einlegen
-32 Invalid Function Ungültige Funktionsnummer
-33 File Not Found Datei wurde nicht gefunden
-34 Path Not Found Ordner wurde nicht gefunden
-35 No Handle Left Zu viele Dateien sind offen
-36 Access Denied Zugriff nicht möglich
-37 Invalid Handle Ungültiges Handle
-39 Insufficient Memory Zu wenig Speicherplatz
-40 Invalid Memory-

Block Address Ungültige Speicherblockadresse
-46 Invalid Drive Ungültiges Laufwerk
-49 No More Files Keine weiteren Dateien möglich

149

$00 - $01
$02 - $07
$08 - $0A
$0B - $0C
$0D
$0E - $0F
$10
$11-$12
$13 - $14
$15
$16 - $17
$18 - $19
$1A - $1B
$1C-$1D
$1E - $1FF

BRA
FILLER
SERIAL

NSIDES
NHID
BOOTER

Anhang B

Der Bootsektor

Sprung zum Ladeprogramm
Diskettenbezeichnung
Seriennummer
Bytes je Sektor
Sektoren je Gruppe
Reservierte Sektoren
Anzahl der FATS
Directory-Einträge
Anzahl der Sektoren
Diskettenformat
Sektoren je FAT
Sektoren je Spur
Anzahl der Seiten
Versteckte Sektoren
Ladeprogramm

151

Anhang C

Der ATARI-Zeichensatz

=

fe
d

Fo
b

pe
e

Eo

=

m
m

a
n

a

m
o
s

=
=

=

en

=

e
e

ni

EP
:

IN

Ze

w
u

=
=

m

u
s

m

m

am

ir

Go

z
e

m
m

z
u

a
m

as

z
u

“i

PY
:

J, ‘| a wn BH { F ! !

yt ty Hy il, u ng far i i a | [hy

a a Fe
I a Ba u ee = a Bu a ae

, gis nl fp q F : 1, fe tats En u ie th 1 iy a N i

a¢@a4acee@8@@ tt ia
itt ot you ENTE GH

unk aod ~ w= & yy]

|
wv 3 G&G wr oh

153

Anhang D

Die Scan-Codes der Tastatur

1 2 3 4 5 6 7 8 9

0 ESC 1 2 3 4 5 6 7 8
1 9 O 8B! BSP TAB Q W E R
2 T z U Io P YU + RET
3 AS D F G HJ K L O
4 A # SH» Y xX C V B N
5 M „, - SHR ALT SPC CPS Fl
6 RP B FM FB F6 F8 FF FO
7 CLR T 1 * > [+]

8 INS DEL
9 < UNDO HELP [(
10 DP} A A fm Bl D U [5] [6] (1]
11 BB Bl CM} L] ENT

BSP — Backspace
RET — Return

SHL — Shift links
SHR — Shift rechts
ALT — Alternate
SPC — Space, Leertaste
CPS — Caps Lock
F1/F10 - Funktionstasten
CLR — Cir/Home
INS — Insert
DEL — Delete
ENT — Enter

In eckige Klammern eingeschlossene Tastatursymbole sind auf der10er-Tasta-
tur zu finden. |

155

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0E
$10
$11
$12
$13
$19
$1A
$20
$2A
$2B
$2C
$2D
$2F
$30
$31
$36
$39
$3A
$3B
$3C
$3D

Anhang E

Die GEMDOS-Funktionen

Pterm0()
Cconin()
Cconout(char)
Cauxin()
Cauxout(char)
Cprnout(char)
Crawio(word)
Crawcin()
Cnecin()
Cconws(string)
Cconrs(buffer)
Cconis()
Dsetdrv(drive)
Cconos()
Cprnos()
Cauxis()
Cauxos()
Dgetdrv()
Fsetdta(pointer)
Super(stack)
Tgetdate()
Tsetdate(date)
Tgettime()
Tsettime(time)
Fgetdta()
Sversion()
Ptermres(keep, ret)
Dfree(buffer, drive)
Dcreate(path)
Ddelete(path)
Dsetpath(path)
Fcreate(name, attribute)
Fopen(name, mode)

156 ATARI ST - Das Floppy-Arbeitsbuch

$3E Fclose(handle)
$3F Fread(handle, count, buffer)
$40 Fwrite(handle, count, buffer)
$41 Fdelete(name)
$42 Fseek(offset, handle, mode)
$43 Fattrib(path, mode, attribute)
$45 Fdup(stdhandle)
$46 Fforce(stdhandle, handle)
$47 Dgetpath(pathbuffer, drive)
$48 Malloc(amount)
$49 Mfree(address)
$4A Mshrink(zero, memory, size)
$4B Pexec(mode, path, cmdline, environment)
$4C Pterm(code)
$4E Fsfirst(spec, attribute)
$4F Fsnext()
$56 Frename(zero, oldname, newname)
$57 Fdatime(handle, buffer, set)

157

Anhang F

Die BIOS-Funktionen

Getmpb(p_mpb)
Bconstat(device)
Bconin(device)
Bconout(device, char)
Rwabs(flag, buffer, count, recno, device)
Setexc(vecnum, vector)
Tickcal()
Getbpb(device)
Bcostat(device)
Mediach(device)
Drvmap()
Kbshift(mode)

159

Anhang G

Die XBIOS-Funktionen

Initmous(type, params, vector)
Ssbrk(amount)
Physbase()
Logbase()
Getrez()
Setscreen(logLoc, physLoc, resol)
Setpallete(palpointer)
Setcolor(colnumber, color)
Floprd(buf,filler,dev,sectno,trkno,side,count)
Flopwr(buf,filler,dev,sectno,trkno,side,count)
Flopfmt(buf,fil,dev, spt,trkno,side,inter,mag,vir)
Midiws(count, pointer)
Mfpint(interno, vector)
Iorec(device)
Rsconf(speed, flowctl, ucr, rsr, tst, scr)
Keybtl(unshift, shift, capslock)
Random()
Protobt(buffer, serial, dtype, execflag)
Flopver(buf,filler,dev,sectno,trkno,side,count)
Scrdmp()
Cursconf(function, operand)
Settime(datetime)
Gettime()
Bioskeys()
Ikbdws(count, pointer)
Jdisint(intno)
Jenabint(intno)
Giaccess(data, regno)
Offgibit(bitno)
Ongibit(bitno)
Xbtimer(timer, control, data, vector)
Dosound(pointer)
Setprt(config)

160 ATARI ST - Das Floppy-Arbeitsbuch

$22 Kbdvbase()
$23 Kbrate(initial, repeat)
$24 PrtblkQ)
$25 Vsync()
$26 Supexec(codeptr)
$27 Puntaes()

161

$00
$02
$03
$04
$06
$08
$0A
$0C

RECSIZ
CLSIZ
CLSIZB
RDLEN
FSIZ
FATREC
DATREC
NUMCL

Anhang H

Der BIOS-Parameter-Block

Größe der Sektoren in Bytes
Größe der Cluster in Sektoren
Größe der Cluster in Bytes
Größe des Directories in Sektoren
Größe der FAT in Sektoren
Erster logischer Sektor der FAT
Erster logischer Datensektor
Anzahl der Cluster auf der Diskette

163

Anhang I

Die FDC-Kommandos

Typ Name Bitmap

1 RESTORE 0 0 0 0 h V rl 12
SEEK 0 0 0 1 h V rl 2
STEP 0 90 1 uh vv rn 12
STEPIN 0 1 1 u h V rl 12

STEP OUT 0 1 1 u h V rl 12

2 READ SECTOR 1 0 0 m =h e 0 0
WRITE SECTOR 10 1 m h e pp a0

3 READ ADDRESS 1 1 0 0 h e 0 0
READ TRACK 1 1 1 0 h e 0 0
WRITE TRACK 1 1 1 1 h e p 0

4 FORCE INTERRUPT 1 1 0 1 3 D f= D

165

8086 Format 15, 23, 26

Attribut 25, 26, 31, 32,
36, 52, 58, 59

Basepage 37,59
BIOS 29, 30, 60, 61, 63,

65, 73
BIOS.C 63 ff
Booter 19 ff
Bootsektor 15 ff, 68 ff
BPB 15, 61, 62, 63
BPS _ 16 ff, 69

CATALOG.C 53 ff
Checksum 18, 69
Cluster 23, 24, 25, 50
CMDLOAD 17
CRC 12,13

Data Mark 89
Datum 25, 27, 38, 39, 53
Dcreate 31, 44, 45, 58
DCT 90
Ddelete 44,58
Dfree 49,50, 58
Dgetdrv 55,58
Dgetpath 44, 45,58
Directory 15,23 ff, 34,

44 ff
Disklabel 36, 38
DMA 75,84 ff, 101
DRIVE.C 55 ff
Drvmap 60, 62, 63
Dsetdrv 55,58
Dsetpath 34, 44, 45, 58
DTA 49, 52, 53, 58, 59

Stichwortverzeichnis

Execflag 17, 18, 68
Extension 25, 26, 31, 44

FAT 15,23 ff, 33, 61, 68
Fattrib 31, 36, 52, 58
Felose 31, 33,58
Fcreate 31,38, 58

. Fdatime 31, 38, 59
FDC 75, 79 ff, 123
FDC - Register 82 ff
Fdelete 31, 34, 59
Fgetdta 49, 58
FILE.C 39ff
Flopfmt 65, 67, 71, 103
Floprd 65, 66, 70, 103 ff,
Flopver 65, 70, 71, 103,

112, 124
Flopwr 65, 66, 68, 71,

103 ff, 123
FM 8 ff, 79, 89
Folder 27, 31, 34, 36, 38,

44, 45, 58
FOLDER.C 46 ff
Fopen 31,32, 35, 38, 58
Force Interrupt 87
Formatieren 13,67
FORMAT.C T71ff
Fread 31, 33, 59
Frename 31,38, 58
Fseek 31,32, 35, 59
Fsetdta 49, 52, 58
Fsfirst 49, 52, 53
Fsnext 49, 53
Fwrite 31, 34, 59

GEMDOS _ 29, 30, 52, 57,
58, 60, 61, 66

getbpb 25, 60, 61, 63

166 ATARI ST - Das Floppy-Arbeitsbuch

Handle 31ff, 53, 59

Interrupt Bit 90

Ladeprogramm 15 ff
Logische Sektoren 13 ff,

23,25

Mediach 60, 62, 63
MFM __ 8 ff, 79, 127
MotorOn 88
Multiple Bit 89, 123

Pexec 31,37, 59
Pfad 31, 34, 36, 37, 38,

44, 45, 58, 59
Physikal. Sektoren 13 ff
Prekompensation 89
Protobt 65, 68, 71

Read Adress 87
READ ADR.ASS 97ff
Read Sector 87
READ SEC.ASS 95ff

Read Track 87, 127
READ TRK.ASS 99ff
Restore 87
RESTORE.ASS 91 ff
Rwabs 60, 63

SEEK.ASS 94 ff
SPACE.C 50 ff
SpinUp 87
Step 79, 87 ff

TRAP 29, 30, 60, 65

Uhrzeit 25, 26, 38, 39, 52
Update Bit 88

Verify Bit 88
Verzög. Bit 89

Write Sector 87,89
Write Track 87

XBIOS 29, 30, 65, 70,
73, 103, 123

Die SYBEX-Bibliothek

Atari

ARBEITEN MIT DEM ATARI ST
von Karl-Heinz Hauer vermittelt Ihnen notwendige Kenntnisse zum Umgang mit den
ATARI ST-Computern, z. B. System-Hardware, Betriebssystem-Adressen, TOS,
Kernel-Routinen, ATARI-BASIC, ATARI-Logo. 432 Seiten, 172 Abb. Best.-Nr.
3623 (1986)

ATARIST — ARBEITEN MIT GEM, Bd. 2: DIE VDI-BIBLIOTHEK
von Holger Danielsson/Andreas Volkmann — Der ATARI-ST-Nutzer wird anhand
einer Vielzahl kleiner C-Routinen mit dem Aufruf der VDI-Bibliothek von GEM und
der Einbindung in eigene Programme bekannt gemacht. 240 Seiten, ca. 48 Abb.,
Best.-Nr. 3627 (1986), Mit integrierter Programm-Diskette, die Programme und Un-
terroutinen enthält.

ATARI ST — EINFÜHRUNG IN WORDSTAR
von Arthur Naiman — Das Originalwerk „Einführung in WordStar“ ist seit Erschei-
nen 1983 ein SYBEX-Bestseller. Um der Arbeit in der speziellen System-Umgebung
des ATARIST unter Kontrolle der CP/M-2.2-Emulatoren gerecht zu werden, wurde
das Buch für ST-Nutzer überarbeitet und durch Zusatz-Informationen ergänzt.
280 Seiten, mit Abb., Best.-Nr. 3666 (1986/87)

ATARI ST — TIPS UND TOOLS ZU C
von Olaf Hartwig — führt den ATARI ST-Nutzer in die Sprache C ein und zeigt an-
hand vieler Beispiele, wie der Programmierer sich eigene Tools in C entwickeln kann:
Einsatz von Makros, Modifikation der grammatischen Sprachstruktur, Entwicklung
von ST-Sonderbibliotheken, Terminalverwaltung, Adressierung aller BIOS-,
XBIOS- und GEMDOS-Funktionen. 224 Seiten, mit Abb., Best.-Nr. 3674 (1986)

Kommunikation

DAS MODEMBUCH ZUR DFU
von Bruno Hurth und Manfred Hurth — Jetzt steht Ihnen ein Nachschlagewerk mit ei-
ner Fülle unentbehrlicher Informationen zur Verfügung, auf das Sie immer wieder zu-
rückgreifen werden: Möglichkeiten der DFU im Bereich der DBP, Mailboxen, Aku-
stikkoppler, Btx u.v.m. 224 Seiten, Best.-Nr.: 3619 (1985) Ä

SYBEX MAILBOX FÜHRER
Alles über den Zugang zu elektronischen Briefkästen in Deutschland: Voraussetzun-
gen für die Teilnahme an der Datenkommunikation; Telefon-Nummern, Eingangs-
und Untermenüs wichtiger Mailboxen und was diese Ihnen nutzen können, u.v.m.
272 Seiten, Best.-Nr.: 3663 (überarbeitete Ausgabe 1986)

ONLINE DATENBANKEN
Zugang zum Wissen der Welt mit Mikrocomputern von Steffen Schubert — Manager
aller Unternehmensgruppen, Wissenschaftler und Ingenieure erhalten einen Über-
blick über alle Datenbank-Typen, bekommen wichtige Anbieter in Europa und Über-
see genannt und lernen, Datenbanken effektiv und kostengünstig zu nutzen. 200 Sei-
ten, Best.-Nr. 3621 (1986)

Einführende Literatur

CHIP UND SYSTEM: Einführung in die Mikroprozessoren-Technik
von Rodnay Zaks — eine sehr gut lesbare Einführung in die faszinierende Welt der
Computer, vom Microprozessor bis hin zum vollständigen System. 2., überarbeitete
und aktualisierte Ausgabe. 568 Seiten, 325 Abbildungen, Best.-Nr.: 3601 (1985)

Pascal

EINFÜHRUNG IN PASCAL UND UCSD/PASCAL
von Rodnay Zaks — das Buch für jeden, der die Programmiersprache PASCAL ler-
nen möchte. Vorkenntnisse in Computerprogrammierung werden nicht vorausge-
setzt. Eine schrittweise Einführung mit vielen Übungen und Beispielen. 535 Seiten,
130 Abbildungen, Best.-Nr.: 3004 (1982)

DAS PASCAL HANDBUCH
von Jacques Tiberghien — ein Wörterbuch mit jeder Pascal-Anweisung und jedem
Symbol, reservierten Wort, Bezeichner und Operator, für beinahe alle bekannten
Pascal-Versionen incl. Turbo Pascal. 520 Seiten, 270 Abbildungen, Format23x18cm,
Best.-Nr.: 3614 (1986)

Assembler

PROGRAMMIERUNG DES 68000
von C. Vieillefond — macht Sie mit dem 32-bit-Prozessor von leistungsstarken Rech-
nern wie Macintosh, Amiga, ATARIST und Sinclair QL vertraut; erläutert die Struk-
tur des 68000, den Aufbau des Speichers, die Adressierungsarten und den Befehlssatz.
456 Seiten, 150 Abb., Best.-Nr. 3060 (1985)

Andere Programmiersprachen

ERFOLGREICH PROGRAMMIEREN MIT C
von J. A. Illiik — ein unentbehrliches Handbuch für jeden, der mit der universellen
Sprache C erfolgreich programmieren will. Aussagekräftige Beispiele, auf verschiede-
nen Mini- und Mikrocomputern getestet. 408 Seiten, Best.-Nr.: 3055 (1984)

Fordern Sie ein Gesamtverzeichnis

wr unserer Verlagsproduktion an:

SYBEX-VERLAGGmbH SYBEXINC. SYBEX
Vogelsanger Weg 111 2344 Sixth Street 6—8, Impasse du Curé
4000 Düsseldorf 30 Berkeley, CA 94710, USA 75018 Paris
Tel.: (02 11) 61 80 2-0 Tel.: (415) 848-8233 Tel.: 1/203-95-95
Telex: 8588 163 Telex: 287639 SYBEX UR Telex: 211.801 f

unverbindliche

Preisempfehlung

DM 69,-
sFr 69,-
oS 614,-

9 "783887

Das Floppy
Arbeitsbuch

456

