
Markt&fTechnik

128er-Software

10} DIGITAL
RESEARCH

BASIC
mpiler

FROM 110} DIGITAL RESEARCH’ THE CREATORS OF CP/M

5Y,”-Diskette im 1541-Format
für Commodore 128 (128 D)

Handbuch in englischer Sprache

Markt&dechnik

128er-Software

DIGITAL
RESEARCH’

CBASIC |
Compiler

FROM [) DIGITAL RESEARCH’ THE CREATORS OF CPM

5Y,”-Diskette im 1541-Format
fur Commodore 128 (128 D)

Handbuch in englischer Sprache

Markt & Technik Verlag Aktiengeselischaft - Hans-Pinsel-StraBe 2 - 8013 Haar

Die Informationen in diesem Handbuch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht.
Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Bei der Z tellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen.

Trotzdem können Fehler nicht vollständig ausgeschlossen werden. Verlag, Herausgeber und Autoren können

für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine

Haftung übernehmen.

Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.

Die gewerbliche Nutzung der in diesem Buch gezeigten Modelle und Arbeiten ist nicht zulässig.

»Commodore 128 Personal Computer« ist eine Produktbezeichnung der Commodore Büromaschinen GmbH, Frankfurt,

die ebenso wie der Name »Commodore« Schutzrecht genießt. Der Gebrauch bzw. die Verwendung bedarf der Erlaubnis

der Schutzrechtsinhaberin.

CBASIC, CP/M, CP/M-86 und CP/NET sind eingetragene Warenzeichen der Digital Research, Inc., USA

SID, CB 80, CB 86, Concurrent CP/M 86, MP/M, GSX, GSX-86, MP/M II und MP/M 86
sind Warenzeichen der Digital Research, Inc., USA

Intel ist ein eingetragenes Warenzeichen der Intel, Corp., USA

Zilog und Z 80 sind eingetragene Warenzeichen der Zilog, Inc., USA

© 1981, 1982, 1983 by Digital Research, Inc., USA

© 1986 by Markt &Technik, 8013 Haar bei München

Alle Rechte vorbehalten

Einbandgestaltung: Grafikdesign Heinz Rauner

Druck: Schoder, Gersthofen

Printed in Germany

Der CBASIC-Compiler für den Commodore 128 3

Der CBASIC-Compiler für den Commodore 128

Sehr geehrter CBASIC-Compiler- Anwender,

vielen Dank, daß Sie sich zum Kauf des CBASIC-Compilers von Digital
Research für den Commodore 128 entschieden haben. Bitte nehmen Sie sich
die Zeit, diese Seiten gründlich durchzulesen, da Sie die Bedienung des

Compilers erleichtern und Sie vor dem Verlust Ihres neuen Programmes
durch Fehlbedienung schützen.

Der CBASIC-Compiler ist für die meisten Computer mit den Betriebs-

systemen CP/M, CP/M 3.0, CP/M-86, MS-DOS und PC-DOS erhältlich.

Das Handbuch ist deshalb nicht speziell auf den Commodore 128 ausge-
richtet. Auf diesen Seiten stehen die Informationen, die Sie für den Einsatz

des CBASIC-Compilers auf dem Commodore 128 zusätzlich benötigen.

Wichtig! Bitte denken Sie daran, daß Sie sich Kopien von der mitgeliefer-

ten Originaldiskette erstellen, bevor Sie mit dem Produkt arbeiten. So kön-

nen Sie immer wieder auf die Originaldisketten zurückgreifen, wenn eine
Arbeitsdiskette einmal defekt werden sollte. Informationen darüber, wie Sie

eine Kopie einer Diskette erstellen, finden Sie im Bedienungshandbuch

Ihres Computers.

Auf der 1541-Diskette befindet sich der komplette Compiler, der Linker

und der Bibliotheks-Manager, sowie die Laufzeitbibliothek: ganz einfach
alles, was Sie benötigen, um kleine oder große Programme mit Profi-Qua-
lität zu entwickeln, die auf jedem CP/M 2.2 und CP/M 3.0-Computer

lauffähig sind. Wenn Sie ein 1571-Laufwerk haben, sollten Sie sich die
Diskette in das 1571-Format umkopieren.

Kompatibilitat

Auch wenn dieses Produkt für sich komplett ist, benötigen Sie zum Er-
stellen von Arbeitsdisketten, zum Eingeben von Quelldateien und zum
Testen Ihrer Programme einige Hilfsprogramme, die mit Ihrem Computer
geliefert wurden. Dieses Produkt ist in bezug auf die Erfassung der Quell-
dateien voll kompatibel zu ED (dem Editor von CP/M), WordStar und
vielen anderen Editoren und Textverarbeitungen. Ebenso besteht Kompati-
bilität zu RMAC zum Erstellen von Assembler-Unterroutinen und zu SID
zum Test von Programmen. RMAC kann dazu verwendet werden, Sprach-

erweiterungen zu erstellen, die jede beliebige Funktion ausführen, zum

4 Der CBASIC-Compiler für den Commodore 128

Beispiel die Steuerung der Klang- und Grafik-Eigenschaften Ihres Com-

puters.

Mit Ausnahme der von Ihnen eventuell erstellten Assembler-Unterroutinen
können die CB-80-Programme auch mit dem CB-86-Compiler übersetzt
werden, der für die Betriebssysteme CP/M-86, PC-DOS und MS-DOS er-
hältlich ist. Sie können sicher sein, daß Ihre CBASIC-Programme auf einer
Vielzahl von Computern lauffähig sind, wobei höchsten eine Neukompilie-
rung (z.B. für 8088- oder 8086-Computer) notwendig ist. Ihre Anwendun-
gen sind also vollkommen portabel und kompatibel zur 16-Bit-Welt.

Weitere Programme für Ihren Computer

Wir glauben, daß sie viel Spaß am CBASIC-Compiler haben werden und

daß er für Sie schnell zu einem leistungsfähigen - ja idealen - Werkzeug
zur Erstellung Ihrer Anwendungen werden wird.

Wir möchten noch darauf hinweisen, daß Markt & Technik auch den Pas-
cal/MT+-Compiler von Digital Research für den Commodore 128 anbietet.
Diese Sprache bietet sich zur Programmierung einer Vielzahl von Anwen-
dungen an und eignet sich besonders für solche Programme, die im Spei-
cher oder auf der Diskette auf komplexe Datenstrukturen zugreifen müssen.
Näheres zu diesem und weiteren Programmen für Ihren Commodore 128
aus dem Markt & Technik Verlag finden Sie ab der folgenden Seite.

ie taaziniermade Welt der Bratt

weg rt oe zahlreichen Ben
a GASH, ur ASS)

H. Ponnath

Grafik-Programmierung C 128
1. Quartal 1986, ca. 250 Seiten
inkl. Beispieldiskette

Ein mächtiges Werkzeug hat der Anwender von
Computergrafik mit dem Basic 7.0 des Commo-
dore 128 PC in den Händen! Was man damit
alles anfangen kann, soll !hnen dieses Buch zei-
gen: hochauflösende Grafik, Multicolorbilder,
Sprites und Shapes werden anhand von vielen

Beispielprogrammen besprochen. Die Video-
chips und ihre Möglichkeiten sind ebenso
Thema wie einige nützliche Assemblerroutinen,
die Speicherorganisation, der 80-Zeichen-Bild-
schirm und vieles andere mehr. Außerdem ent-
hält das Buch eine Diskette mit allen Program-
men.
Best.-Nr. MT 90202
ISBN 3-89090-202-2
DM 52,-IsFr. 47,80/6S 405,60

P. Rosenbeck

Das Commodore 128-
Handbuch
Juli 1985, 383 Seiten

Dieses Buch sagt Ihnen alles,
was Sie über Ihren C128 wis-
sen müssen: die Hardware,
die drei Betriebssystem-Modi
und was die CP/M-Fähigkeit
für Ihren Computer bedeutet.

Aber Sie werden irgendwann
Lust verspüren, tiefer in Ihren

C128 einzusteigen. Auch da-
für ist gesorgt: an einen
Assemblerkurs, der Ihnen zu-

gleich die Funktionsweise
des eingebauten Monitors
nahebringt, schließen sich
Kapitel an, die mit Ihnen auf
Entdeckungsreise ins Innere

der Maschine gehen. Daß die
Reise spannend wird, dafür

sorgen die Beispiele, aus
denen Sie vielüber die Interna
des Systems lernen können -
bis hin zur Grafik-Program-
mierung.

Best.-Nr. MT 809
ISBN 3-89090-195-6
DM 52,-IsFr. 47,80/6S 405,60

Bucher zum

J. Hückstädt
BASIC 7.0 auf dem
Commodore 128
Juli 1985, 239 Seiten

Das neue BASIC 7.0 des
C128 eröffnet mit seinen ca.
150 Befehlen ganz neue Di-
mensionen der BASIC-Pro-
grammierung. Es ermöglicht
dem Anfänger den einfachen
und effektiven Zugriff auf die
erstaunlichen Grafik- und Ton-
möglichkeiten des C128; der
Fortgeschrittene findet die
nötigen informationen für

(auch systemnahe) Profi-Pro-

grammierung mit strukturier-

ten Sprachmitteln.
An praxisnahen Beispielen

(wie z.B. der Dateiverwaltung)

zeigt der Autor auf, wie man
die für den 128er typischen
Merkmale und Eigenschaften
(Sprites, Shapes, hochauflö-
sende Grafik, Musikprogram-
mierung und Geräusche) opti-
mal nutzt!.
Best.-Nr. MT 808
ISBN 3-89090-170-0
DM 52,-IsFr. 47,80168405,60

Markt & Technik-Fachbücher
erhalten Sie bei Ihrem Buchhändler

Markt&fechnik

BUCHVERLAG

Hans-Pinsel-Str. 2, 8013 Haar bei München

Spitzen-Software für

dBASE Il, Version 2.41
dBASE Il, das meistverkaufte Programm unter den Daten-

banksystemen, eröffnet Ihnen optimale Möglichkeiten der

Daten- u. Dateihandhabung. Einfach u. schnell können

Datenstrukturen definiert, benutzt und geändert werden.
Der Datenzugriff erfolgt sequentiell oder nach frei wählba-

ren Kriterien, die integrierte Kommandosprache ermög-
licht den Aufbau kompletter Anwendungen wie Finanz-

buchhaltung, Lagerverwaltung, Betriebsabrechnung usw.

dBASE Il für den Commodore 128 PC
Bestell-Nr. MS 303 (51/4 ”-Diskette)

Hardware-Anforderungen: Commodore 128 PC, Disket-
tenlaufwerk, 80-Zeichen-Monitor, beliebiger Commodore-
Drucker oder ein Drucker mit „ entronies- Schnittstelle

Für nur DM 199,— we (sFr. 178,-16S 1890,*)
*inkl. MwSt. Unverbindliche Preisempfehlung

Und dazu die
weiterführende
Literatur:

Commodore 128 PC

Commodore 128 PC
5\,”-Diskette

im Floppy 1541-Format

Zu einem Weltbestseller unter den Datenbank-

systemen gehört auch ein klassisches Einführungs-

und Nachschlagewerk! Dieses Buch von dem deut-

schen Erfolgsautor Dr. Peter Albrecht begleitet Sie
mit nützlichen Hinweisen bei Ihrer täglichen Arbeit mit
dBASE Il. Schon nach Beherrschung weniger Be-
fehle ist der Einsteiger in der Lage, Dateien zu erstel-

len, mit Informationen zu laden und auszuwerten.

Best.-Nr. MT 838
ISBN 3-89090-189-1
DM 49,- (sFr. 45,10/6S 382,20)

Erhältlich bei Ihrem Buchhändler.

Sie erhalten jedes WordStar-, dBASE Il- und MULTIPLAN-Pro-
gramm für Ihren Commodore 128 PC fertig angepaßt (Bildschirm-
steuerung und Druckerinstallation). Jeweils Originalprodukte!
Jedes Programmpaket enthält außerdem ein ausführliches Hand-
buch mit kompakter Befehlsübersicht.

Diese Markt &Technik-Soft
Cc ter-Abteil

Azul

erhalten Sie in den

der Kaufhäuser oder bei Ihrem Com-

puterhändler.

Markt&fechnik

128er-Software
Hans-Pinsel-Straße 2, 8013 Haar bei München

Spitzen-Software fir
Commodore 128 PC
MULTIPLAN, Version 1.06
Wenn Sie die zeitraubende manuelle Verwaltung tabellari-

scher Aufstellungen mit Bleistift, Radiergummi und 128er Software
Rechenmaschine satt haben, dann ist MULTIPLAN, das

System zur Bearbeitung »elektronischer Datenblätter«,
genau das richtige für Sie! Das benutzerfreundliche und
leistungsfähige Tabellenkalkulationsprogramm kann bei

allen Analyse- und Planungsberechnungen eingesetzt
werden wie z.B. Budgetplanungen, Produktkalkulationen,
Personalkosten usw. Spezielle Formatierungs-, Aufberei-

tungs- und Druckanweisungen ermöglichen außerdem MICRSSOFT.

MULTIPLAN
optimal aufbereitete Prasentationsunterlagen!

MULTIPLAN fiir den Commodore 128 PC ®

Bestell-Nr. MS 203 (51/4”-Diskette) fur den
Hardware-Anforderungen: Commodore 128 PC, Disket- Commodore 128 PC
tenlaufwerk, 80-Zeichen-Monitor, beliebiger Commodore- 51,".Diskette
Drucker oder ein Drucker mit Centronics-Schnittstelle im Floppy 1541-Format

Für nur DM 199,— (SFr. 178,-15S 1890,*)
*inkl. MwSt. Unverbindliche Preisempfehlung

Dank seiner Menütechnik ist MULTIPLAN sehr
schnell erlernbar. Mit diesem Buch von Dr. Peter

Albrecht werden Sie Ihre Tabellenkalulation ohne Pro-
bieme in den Griff bekommen. Als Nachschlagewerk
leistet es auch dem Profi nützliche Dienste.

Best.-Nr. MT 836
ISBN 3-89090-187-5

DM 49,- (sFr. 45,10/6S 382,20)

Erhältlich bei Ihrem Buchhändler.

Und dazu die
weiterführende
Literatur:

Sie erhalten jedes WordStar-, dBASE Il- und MULTIPLAN-Pro-

gramm für Ihren Commodore 128PC fertig angepaßt (Bildschirm-
steuerung und Druckerinstallation). Jeweils Originalprodukte! Markt&dechnik
Jedes Programmpaket enthält außerdem ein ausführliches Hand-
buch mit kompakter Befehlsübersicht.

Diese Markt & Technik-Soft dukte erhalten Sie in den eI- O are
Cc ter-Abteil p 4 gen der Kaufhäuser oder bei Ihrem Com-
puterhändler. Hans-Pinsel-Straße 2, 8013 Haar bei München

Dieser 6502-Macroassembler setzt neue Maßstäbe. Seine Leistungs-
fähigkeit wird jeden CP/IM-Assembler-verwöhnten Maschinen-
programmierer überzeugen:

@ integrierter Editor, der schon bei der Eingabe des Quelitextes eine
Syntaxüberprüfung vornimmt;

@ integrierter Linker, mit dem queligesteuertes Linken von relokatiblen
Modulen möglich ist;
assemblereigene schnelle und gleichzeitig sehr leistungsfähige
Integerarithmetik;
über 2000 Labels können gleichzeitig verwaltet werden, das heißt
Maschinenprogramme bis zu einer Länge von ca. 25 KByte Objektcode
können bei Bedarf in einem Rutsch assembliert werden;
Macros mit beliebig vielen Parametern, Macrobibliotheken, Minimacs,

bedingte Assemblierung, Labeleingabe im Dialog, Ausgabe formatierter
Assemblerlistings, Ausgabe sortierter Symboltabellen und vieles andere

mehr.

ASS AuBerdem wird der ASE-Macroassembler von einem sehr guten Monitor
und einem Relativiader unterstützt, der relokatible Module an beliebige

Der ASE-Maqo- Speicheradressen laden kann und endlich Schluß macht mit den Dutzen-
den Maschinenprogrammen auf Diskette, die sich nur durch ihre Start-

Gl

Assembler für den adresse unterscheiden!

Commodore 128 PC Lernen Sie es kennen, das TOPASS Assembler-Entwicklungssystem!
a

it © nie ° rie Es lohnt sich!

mit Imegrieriem
Best.-Nr. MD 253A DM 89,- e ©

Editor und Linker © inkl. MwSt. Unverbindliche Preisempfehlung.

Die Profi-Text beitung mit vollautomatischer Silbentrennung, integrierter Tabellenkalkulation und Zusatzprogramm
zum Überprüfen der Rechtschreibung für den Commodore 128 PC.

PROTEXT ist ein leicht bedienbares Textprogramm mit hoher Leistungsfähigkeit. Eingebaute Hilfefunktionen ermöglichen eine
schnelle Einarbeitung. Mit PROTEXT sind daher auch Anfänger in der Lage, alle Vorteile eines professionellen Textprogramms zu

nutzen. Überzeugen Sie sich selbst!

Was PROTEXT alles kann:
e Farbkombination für Hintergrund und Schrift (Vordergrund) frei wählbar;
® formatierte Ausgabe auf Bildschirm und Drucker mit programmierbaren Haltepunkten über serielle, V24- oder zwei Software-

Centronics-Schnittstellen;
e vielfältige Formatanweisungen: linker/rechter Rand, vollautomatische Silbentrennung, Kopf-/Fußzeilen, Fußnoten, Zentrieren usw.;
@ schnelle selbstlernende Textkorrektur mit deutschem (ca. 25000 Worte) Grundwortschatz sowie neun Kundenbibliotheken, die

in Text umgewandelt, bearbeitet, ergänzt, sortiert und ausdruckbar sind;
© Textübertragung per DFU mit Space-Optimierung und automatischer Fehlerkorrektur;
© leistungsfähige Rechenmöglichkeiten mit Zeilenmarkierung (Rechentabulator), Kolonnenverarbeitung, progr. Tabellenkalkulation

und Taschenrechner.
Li A

I forderungen: C 128 oder C 128D, 80-Zeichen-Monitor, Commodore-Drucker oder Drucker mit Centronics-Schnittstelle.

Best.-Nr. MD 254A DM 89,- inkl. MwSt. Unverbindliche Preisempfehlung.

Markt&fechnik
TOPASS und PROTEXT erhalten Si
in den Computer-Abteilungen der “ 128er-Software
Kaufhäuser und in Computershops. Hans-Pinsel-Straße 2, 8013 Haar b. München

| 0

DIGITAL
RESEARCH"
Markt&dechnik
Verlag Aktiengesellschaft

Hans-Pinsel-Straße 2
8013 Haar bei München

CBASIC*® Compiler (CB8O")
Language

Programming Guide

IN ER

aie

I

DIGITAL
RESEARCH’
Markt&fechnik
Verlag Aktiengesellschaft

Hans-Pinsel-Straße 2
8013 Haar bei München

CBASIC® Compiler (CB8SO")
Language

Programming Guide

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publica-
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CBASIC, CP/M, CP/M-86, and CP/NET are registered trademarks of Digital Research.
CB80, CB86, Concurrent CP/M-86, LK80, MP/M, MP/M II, MP/M-80, MP/M-86,
RMAC, and SID are trademarks of Digital Research. Intel is a registered trademark
of Intel Corporation. Z80 is a registered trademark of Zilog, Inc.

The CBASIC Compiler (CB80) Language Programming Guide was prepared using
the Digital Research TEX Text Formatter and printed in the United States of America.

First Edition: January 1983

Foreword

The CBASIC® Compiler is a compiler version of the CBASIC programming lan-
guage. For the software developer interested in maximizing the execution speed of
commercial applications programs, the CBASIC Compiler is an excellent choice.

Digital Research designed the CBASIC Compiler for use under single-user, multi-
user, and concurrent operating systems based on both 8-bit and 16-bit microprocessors.

m 8-bit CBASIC Compiler, CB80™, runs under the CP/M® versions 2 and 3,

MP/M™, and CP/NET® operating systems based on the Intel® 8080, 8085,
or Zilog Z80® microprocessor.

m 16-bit CBASIC Compiler, CB86™, runs under the CP/M-86®, MP/M-86™,
and Concurrent CP/M-86™ operating systems based on the Intel 8086, 8088
family of microprocessors.

The CBASIC Compiler Language Programming Guide provides a short demon-
stration program to help you get your CBASIC Compiler system up and running.
The manual is divided into five sections.

Section 1 is an introduction and demonstration program.
Section 2 describes the compiler, CB80.
Section 3 describes the link editor, LK80™.
Section 4 describes the indexed library and the library manager utility program.
Section 5 explains the machine-level environment of the CBASIC Compiler.

Use this Programming Guide in conjunction with the CBASIC Compiler Language
Reference Manual. Together, the manuals provide all the information you need to
use the CBASIC Compiler to its full potential.

Digital Research is very interested in your comments on programs and documen-
tation. Please use the Software Performance Reports and the Reader Comment card
to help us provide you with the best microcomputer software and documentation.

Table of Contents

Getting Started with the CBASIC Compiler

1.1 Components 0... c ccc ccc e eee ee cc ccneeeteseceeeees 1
1.2 A Demonstration

The Compiler, CB80

2.1 Compiling Programs 0... cc cece cece ectccceceeeuas 5
2.1.1 CB80 Command Lines
2.1.2 Compiler Errors

2.2 Compiler Directives 2.0.0.0... 0... c cece ccc nennen rennen 8
2.2.1 Source Code Compiler Directives
2.2.2 CB80 Command Line Toggles

The Link Editor, LK80

3.1 Linking Modules ccc ccccececcccccucucecccucucucecncs 15
3.1.1 LK8O Command Lines 0.0 cc ccc cece cece cece 16
3.1.2 LKBO Errors 1.00... ccc ccc ce ccc cece ececcecece 18

3.2 LK80O Toggles 0. ccc ccc ccc cece cee cenctcuvcsuceeeeus 18
3.3 Producing Overlays 0... cece ccc nennen nennen 20
3.4 Linking Assembly Language Routinescccccccccccccee 21

The Library

4.1 CB8O.IRL 22... ccc ccc cece nennen 23
4.1.1 Dynamic Storage Allocation Routines005. 24
4.1.2 Arithmetic Routines 0... cece een 24

4.2 The Library Manager Utility, LIBcccccccccccceeces 25
4.21 LIB Manager Command Linescc ccc eeees 25

Machine-level Environment

5.1 Memory Allocation 0... cece cece ec cee c ccc eeeccceeennees 27
5.2 Internal Data Representation cc cece samen 30

n
m

oO

nn

Be

>

Table of Contents (continued)

5.3 Parameter Passing and Returning Valuescceccueece 33
5.4 .REL File Format 0.0.0... cece cece cece ee eeceeencceneveees 34

5.5 .IRL File Formato... 0. ccc cece ccc cece cence eceeeensceeee 37

Appendixes

Implementation Dependent Values:......cc ccc ceeeeceeeeceees 39

Compiler Error Messages2--- Sete eee cere e ene eens 41

LK80 Error Messages 0... ccc cece ccc e cee ee ee eeeeeteeteacenes 53

Execution Error Messages 0... cece cc cecccccececceeueceaveees 57

LIB Error Messages 0. cc cee cece eeccceeceueceseeceueeceeees 61

Yo
n

R
e
m

>
aa

P
u
,

C)

oO u

er

m
Table of Contents (continued)

List of Tables

CB80 Toggles 0. ccc cece ccc cece ee ee eee ete eee nenne nenn 11
LK80 Toggles ccc cece ce cece cece ee ence eee eee eee eeeeeee 19
Special Link Items 0... cece cece cee eee ns e nennen nenn 35
Implementation Dependent Values 2... cece cece eee neces 39
File System and Memory Space Errors cee ce cece cece eeeeee 41
Compilation Error Messagescee eee c cree eee eee eee eeeeee 43
LK80 Error Messages ccc cece cece cece ence eee e eee eeeenees 53

CB80 Error Codes 0... cece ccc cece ec eect eee terse eeees cece ees 57
LIB Error Messages cece ccc cece e cece eee eee nenne nennen 61

List of Figures

CP/M Memory Allocation 0c ccc cece eee ee eee nennen en 28
Real Number Storage cc ccc cece cece cece eee sete eee sence 30
Integer Storage 2.0... . cece cece eee reer e ee ee ete tear esereeeeee 31

String Storage ccc ccc cece cee eect e eee eee eee e nese ten nenn 32

Section 1
Getting Started with the CBASIC

Compiler

A compiler is a computer program that translates high-level programming language
instructions into machine readable code. The compiler takes as input a user-written
source program and produces as output a machine-level object program. Some com-
pilers translate a user-written source program into a program that a computer can
execute directly. The CBASIC Compiler system, however, uses a link editor and a
library in addition to the compiler. Together, the three components translate your
CBASIC source code file into a directly executable program using your microcompu-
ter’s memory space as efficiently as possible. The system enables you to modularize
programs for quick and easy maintenance. The result is a programming system that
rivals the performance of systems based on much larger machines.

The primary advantage that compilers provide over other methods of translation
is speed. Compiled applications programs execute faster than interpreted programs
because the compiler creates a program that the computer can execute directly.

1.1 Components

The three components that make up the CBASIC Compiler system are listed in the
directory of your CBASIC product disk along with three compiler overlay files and
the library manager utility:

m= The compiler, CB80, translates CBASIC source code into relocatable machine
code modules. Source programs default to a .BAS filetype unless specified
otherwise. CB80 generates .REL files.

m The link editor, LK80, combines the relocatable object modules that the
compiler creates and relocatable routines from the library into a directly
executable program with optional overlays. LK80 generates .COM files.

m The library provides relocatable routines that allocate and release memory,
determine available memory space, and perform arithmetic operations and
input/output processing.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

1.2 A Demonstration CBASIC Compiler (CB80) Programmer’s Guide

1.2 A Demonstration

The following demonstration program can help you learn how to compile, link,

and run your first CBASIC program. The instructions are for the CBASIC Compiler

on a CP/M-based system with two floppy-disk drives. You should already be familiar

with CP/M and a text editor.

Make a back-up copy of your master CBASIC Compiler product disk. Place your

operating system disk in drive A and a copy of your CBASIC Compiler disk in drive

B.

1. Write the source program.

Using your text editor, create a file named TEST.BAS on your CBASIC

Compiler disk in drive B. Enter the following program into TEST.BAS exactly

as it appears below:

PRINT

FOR I%=1T010

PRINT IX5 "TESTING THE CBASIC COMPILER!"

NEXT 1%

PRINT

PRINT "FINISHED"

END

2. Compile the program.

To start CB80, enter the following command. Be sure drive B is the default

drive.

B>CB80 TEST

CB80 assumes a filetype of .BAS for the file you specify in the compiler

command line unless otherwise specified. A sign-on message, a listing of

your source program, and several diagnostic messages display on your

terminal.

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 1.2 A Demonstration

CBASIC Compiler CB8Ö Version 1.x

Ser. No. 000-0000 Copyright (c) 1982

Digital Research, Inc, All rights reserved

end of pass 1

end of pass 2

1: O03eh PRINT

2: O0dth FOR IX = 1 TO 10

O04ah PRINT I%s "TESTING THE CBASIC COMPILER!"

: OOS6h NEXT IA

: 0064h PRINT
: 0067h. PRINT "FINISHED"

7: 0070h END

end of comrilation

no errors detected

code area size: 112 0070h

data area size: 2 000Z2h

common area size: 0 O000h

symbol table srace remaining: 31890

Section 2.1 describes the various parts of the listing. The message no errors
detected indicates a successful compilation. CB80 creates a relocatable file
for the TEST.BAS program. The directory for disk B should have the new
file TEST.REL.

3. Link the program.

To start LK80, enter the following command. Be sure drive B is the default
drive.

B>LAK8O TEST

LK80 assumes a filetype of .REL for the file you specify in the linker com-
mand line. A sign-on message and several diagnostic messages display on
your terminal.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

1.2 A Demonstration CBASIC Compiler (CB80) Programmer’s Guide

(mm we CE Ein EEE dm de GE dam mim MD GEM AH ai Amt ME Amin etme dB MEER eee ewes A ei eure Une

LK80 Versıon 1.x

Ser. No. 060-0000 Coprvright (c) 1982

Digital Research, Inc, All rights reserved

code size: 1200 (O100-12FF)

common size: oO000

data size: 0166 (1300-1465)

symbol table srace remaining: L24AF

If you get no error messages, the program has been linked successfully.
LK80 creates a directly executable program. The directory for disk B should
have the new file TEST.COM.

4. Run the program.

To run the TEST.COM program, enter the following command. Be sure
drive B is the default drive.

B>TEST

The following output should appear on your terminal:

1 TESTING THE CBASIC COMPILER!

2 TESTING THE CBASIC COMPILER!

3 TESTING THE CBASIC COMPILER!

4 TESTING THE CBASIC COMPILER!

> TESTING THE CBASIC COMPILER!

6 TESTING THE CBASIC COMPILER!

7 TESTING THE CBASIC COMPILER!

8 TESTING THE CBASIC COMPILER!

9 TESTING THE CBASIC COMPILER!

10 TESTING THE CBASIC COMPILER!

FINISHED

End of Section 1

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 2
The Compiler, CB80

CB80 consists of an executable file with filetype .COM and three overlay files.
Your CBASIC Compiler product disk should contain the following four files:

= CB80.COM
= CB80.0V1
= CB80.0V2
= CB80.0V3

When compiling a CBASIC program, all four files must be on the logged-in drive.
The source program file can be on any logical drive.

2.1 Compiling Programs

CB80 takes a CBASIC source program as input and generates a relocatable object
file. During compilation, CB80 creates the following temporary work files with a
.TMP filetype:

PA. TMP
QCODE.TMP
DATA. TMP

Unless compilation is unsuccessful, you never see these temporary files listed in a
directory. CB80 erases the files automatically when compilation is finished. CB80
also erases the temporary files if they are on disk before you start the compiler.

The size of the .TMP files varies according to the size of the source program. The
amount of temporary space required is approximately equal to the amount of space
the source program occupies. If you do not have enough work space on disk for the
compiler, you can break up large programs into modules and compile each module
separately.

ALL INFORMATION PRESENTED HERE !S PROPRIETARY TO DIGITAL RESEARCH 5

2.1 Compiler Programs CBASIC Compiler (CB80) Programmer’s Guide

The following is an example of a CB80 listing:

CBASIC Compiler CB8O0 Version 1.x

Ser. No. Copyright (c) 1982

Digital Research» Inc. All rights reserved

end of pass 1

end of Pass 2

1: 003eh PRINT

2: 0041h FOR IA = 1 TO 10

3: 004ah PRINT I%3 "TESTING THE CBASIC COMPILER!" |

4: 00556h NEXT IA

2: OOGGh PRINT

6: 0067h PRINT "FINISHED"

7: 0070h END

end of compilation

no errors detected

code area size: 112 0070h

data area size: 2 0002h

Common area size: Ö Q000h

symbol table space remaining: 31890

Certain phases of the compilation process are combined into a module called a
pass. CB80 is a three-pass compiler. Following the sign-on message, CB80 indicates
the completion of the first two passes with a message. The program listing includes
the line numbers, relative addresses for the code that each line generates, and the
actual source code lines. In the preceding listing, 1: is an example of a line number.
003eh is a relative address for the relocatable code that the first PRINT statement
generates.

CB80 prints the total number of compilation errors detected in the program fol-
lowing the message end of compilation. The message no errors detected, however,
indicates a successful compilation. The last four messages indicate the amount of
space CB80 allocates for certain segments of data. Refer to Section 5 for an expla-
nation of memory allocation. If CB80 detects errors, the relative addresses and the
memory allocation messages do not print.

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH:

CBASIC Compiler (CB80) Programmer’s Guide 2.1 Compiler Programs

To complete the compilation process, CB80 generates a relocatable object file. The
relocatable file has the same filename as the source program and has a .REL filetype.
The .REL file requires approximately the same amount of space as the source pro-
gram. If the source program contains errors that prevent a successful compilation,
CB80 does not generate the .REL file. *

2.1.1 CB80 Command Lines

The command line starts CB80, specifies the file to compile, and passes special
information in the form of compiler directives. The following command line compiles
the source program in a file named TEST. CB80 assumes a filetype of .BAS unless
otherwise specified.

CB80 TEST

Enter a complete file specification to override the .BAS filetype. The following
command line compiles the source program in a file named TEST.PR1. Remember,
source files cannot have a .REL filetype.

CB80 TEST.PRI

Source files can be on any logical disk drive. The following command line compiles
the source program TEST.PR1 from drive D:

CBSO D:TEST,.PRI

If you type an incorrect command line or neglect to enter a filename, CB80 indi-
cates the error with the message invalid command line.

2.1.2 Compiler Errors

CB80 reports three different types of compiler errors. The first type, file system
and memory space errors, includes mistakes such as invalid command lines, read
errors, and out of memory conditions. CB80 indicates file system and memory space
errors with literal messages such as disk full and symbol table overflow. Refer to
Appendix B, Table B-1, for a complete listing of file system and memory space error
messages. |

The second type, compilation errors, includes misuses of the CBASIC language
such as invalid characters, improper data type specifications, and missing delimiters.
CB80 inserts an integer value in the compiler listing of the source program to indi-
cate the occurrence of a compilation error. The integer corresponds to an error
description listed in Appendix B, Table B-2.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

2.1 Compiler Programs CBASIC Compiler (CB80) Programmer’s Guide

The third type, fatal compiler errors, should never occur during your experience
with the CBASIC Compiler. CB80 indicates a fatal compiler error with the following
message. The XXX stands for a three-digit integer value.

FATAL COMPILER ERROR XXX
NEAR SOURCE LINE XXXX

If this error message occurs during compilation of your CBASIC program, contact
the Digital Research Technical Support Center. Please report the three-digit integer
and the circumstances under which the error occurs.

2.2 Compiler Directives

Compiler directives are special instructions to CB80. The CBASIC Compiler sup-
ports two different ways to specify compiler directives: source code compiler direc-
tives and command-line toggles.

2.2.1 Source Code Compiler Directives

Source code compiler directives are special keywords that do not translate into
executable code. All source code compiler directives begin with a percent sign. You
cannot place blanks between the percent sign and the rest of the keyword. Only
blanks and tab characters can precede a directive. Source code compiler directives
cannot appear on the same line with CBASIC statements or functions. CB80 ignores
all characters on the same line that are not part of the directive. A source code
compiler directive cannot span more than one line with a continuation character.
You cannot label source code compiler directives.

The CBASIC Compiler supports the following six source code compiler directives:

% NOLIST
% LIST
% EJECT
% PAGE
% INCLUDE
% DEBUG

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARC =

CBASIC Compiler (CB80) Programmer’s Guide 2.2 Compiler Directives

Normally, CB80 generates a listing of the source program during compilation. The
%NOLIST directive tells CB80 not to list anything that follows the %NOLIST in
the program. The %LIST directive tells CB80 to resume the listing. Use % LIST and
%NOLIST any number of times in a program. Toggle B described in Section 2.2.2
suppresses all listings regardless of any directives in the source code.

The %EJECT directive tells CB80 to continue the program listing at the top of the
next page of paper. %EJECT works only when you direct the listing to a printer.
CB80 ignores %EJECT if the %NOLIST directive is in effect, or if you direct the
listing to the console or a disk file.

The %PAGE directive sets the page length for a listing directed to a printer. The
page length you specify.must be an unsigned integer placed after the %PAGE key-
word, as shown in the following example:

APAGE 40

The %INCLUDE directive tells CB80 to include the code from a specified source
file along with the original compiling program. The included source file is incorpo-
rated into the original program immediately following the %INCLUDE. Specify the
filename, the filetype, and the drive that holds the file. CB80 assumes the default
drive and a .BAS filetype if not specified otherwise. The following examples show
three variations of % INCLUDE:

AINCLUDE CONDEF

ZINCLUDE CONDEF.INC

ZINCLUDE D:CONDEF.INC

You can nest included files six deep. The maximum nesting depth depends on your
particular implementation of the CBASIC Compiler. Refer to Appendix A for current
implementation dependent values.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

2.2 Compiler Directives CBASIC Compiler (CB80) Programmer’s Guide

The % DEBUG directive works with three command line toggles: the I, N, and V

toggles. You can switch these three toggles on or off from within the program source
code. To turn a toggle on, place the toggle letter after the % DEBUG keyword. To
turn a toggle off, place the toggle letter preceded by a minus sign after the % DEBUG
keyword. The following examples show variations of the %DEBUG directive:

DEBUG I

ADEBUG -I

ADEBUG INY

ADEBUG -I-N-V

2.2.2 CB80 Command Line Toggles

Command line toggles are single-letter compiler directives that you specify in the
CB80 command line instead of in the source program. Once a toggle is set, it nor-
mally remains set through the entire compilation process. The %DEBUG directive
can change the I, N, and V toggles during compilation. Place letters within brackets
following the file specification in a CB80 command line. Letters can be lower- or
upper-case. If you enter conflicting toggles in a command line, the last one read from
left to right takes effect. Certain toggles require an additional parameter enclosed in
parentheses. The following examples show several ways to specify command line
toggles:

CB80 TEST [B)

CBBO TEST.BAS CB» P» 5)

CB80 FILE.DAT [BPW(72)]

CB8O CALCS.PRG [N] [CO] CP]

CB80 DATA.OVL C Pon J]

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide

CB80 supports the fifteen command line toggles listed in the following table:

Table 2-1. CB80 Toggles

2.2 Compiler Directives

Toggle Instruction

B Suppress listing of the source file.

C Change the default % INCLUDE file disk.

F Send the source listing to a disk file on the same drive
as the source file.

I Interlist the generated code with the source file.

L Set the page length for printed listings.

N Generate code for line numbers.

O Suppress the generation of the object .REL file.

P List the source file on the printer.

R Change the disk that the -REL file is written to.

S Include symbol name information in the .REL file.

T List the symbol table following the source listing.

U Generate error messages for undeclared variables.

V Put source code line numbers into the .SYM file.

W Set the page width for printed listings.

x Change the disk used for the work files.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

2.2 Compiler Directives CBASIC Compiler (CB80) Programmer’s Guide

The B toggle tells CB80 not to list the source program on the console screen.
However, compiler errors and statistical data concerning size of code and data areas
display on the screen. The B toggle overrides other toggles that control compiler
output.

The C toggle specifies the default drive for include files. Enclose the new drive
specification in parentheses following the C. If a drive has been specified in the
%INCLUDE directive, the C toggle has no effect. The C toggle allows program
development to be independent of your hardware configuration.

The F toggle tells CB80 to send the source listing to a disk file that is on the same
drive as the source file. The new file has the same filename as the source file and has
a .LST filetype.

The | toggle interlists compiler-generated code with the original source statements.
Compiler-generated code uses standard 8080 mnemonics.

The L toggle changes the page length for a listing directed to a printer. Enclose the
new length in parentheses following the L. The length must be an unsigned integer,
as in the following example:

CBBO TEST [L(50)]

The N toggle generates code that saves the current line number for each physical
line in a source program. The code enables the ERRL function to return the line
number when an execution error occurs.

The O toggle tells CB80 not to generate the relocatable object file. If a compiler
error occurs, CB80 does not generate the .REL file.

The P toggle prints the program listing on the printer. CB80 sends a form-feed
before printing the first page. CB80 prints the page number and the source filename
at the top of each page.

The R toggle specifies which drive to place the .REL file on.

The S toggle places all information on program variables and line labels into the
-REL file. The link editor uses the information to generate a SYM file. You can use
the SYM file with the Digital Research Symbolic Instruction Debugger, SID™.

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 2.2 Compiler Directives

The T toggle lists the symbol table immediately following the source program
listing.

The U toggle generates an error message if a variable name does not appear in an
INTEGER, REAL, or STRING declaration. Use the U toggle to locate misspelled
identifiers.

The V toggle places the source code line numbers into the .SYM file.

The W toggle changes the page width for a listing directed to the printer. Initially,
the width is set to 80 columns. Enclose the new width in parentheses following the
W. The width must be an unsigned integer.

CB80 TEST [W(70)])

The X toggle specifies a drive for the temporary work files. Normally, CB80 places
the work files on the same drive as the source file. Enclose the new drive specification
in parentheses following the X. The drive is specified by a single lower- or upper-
case letter.

CBSO TEST CX(D)]

CB80 evaluates toggles from left to right. This means a subsequent directive can
override any earlier one. In the following example, CB80 sends the listing to the
printer.

CBSO TEST CBP]

In the following example, CB80 suppresses the listing.

CB80 TEST CPB]

End of Section 2

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARC 13

End of Section 2 CBASIC Compiler (CB80) Programmer’s Guide

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 3

The Link Editor, LK80

LK80 is a linkage editor designed specifically for use with CB80. LK80 combines
relocatable object modules that CB80 generates with relocatable modules from the
indexed library, CB80.IRL, into an executable program with optional overlay files.
Your CBASIC Compiler product disk should contain the following two files:

LK80.COM

CB80.IRL

When linking a CBASIC program, both files must be on the default drive.

3.1 Linking Modules

LK80 converts a .REL file into an executable .COM file. During linking, LK80
automatically searches the default disk for the indexed library file. LK80 includes
any library routines that the compiled program requires in the executable program.

Following a sign-on message, LK80 prints four messages that indicate the amount
of space LK80 allocates for the program. Refer to Section 5 for an explanation of
memory allocation. The following example shows the console display during linking:

LK80 Version 1.x

Ser. No. 000-0000 Copyright (c) 1982

Digital Research» Inc. All rights reserved

code size: 1200 (0100-12FF)

common size: 0000

data size: 0166 (1300-1465)

symbol table space remaining: 124F

LK80 determines and displays the four values that follow the sign-on message as
hexadecimal numbers. The values in parentheses are the memory location assigned
to each area.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

3.1 Linking Modules CBASIC Compiler (CB80) Programmer’s Guide

To complete the linking process, LK80 generates the executable program and a
symbol location file with filetype SYM. The executable program has the same file-
name as the first .REL file listed in the LK80 command line and has a filetype of
‚COM. You can specify a different filename for the executable program in the com-
mand line. You can use the SYM file with the Digital Research symbolic debugging
program, SID.

3.1.1 LK80 Command Lines

The command line starts LK80 and specifies the relocatable files to link. The
following command line links the modules in a file named TEST.REL with the run-
time subroutine library and generates an executable program file named TEST.COM.
LK80 assumes a filetype of .REL if not specified otherwise.

LK8O0 TEST

You can rename a file in the LK80 command line using an equal sign. The follow-
ing command line links the modules in the file named TEST.REL but generates an
executable file named TESTPGM.COM.

LKBO TESTPGM=TEST

You can specify which drive holds the .REL file to link, and you can specify a
drive for LK80 to write the executable file to. The following command line produces
the same executable file as in the previous example, but LK80 links the TEST.REL
file from drive D and writes the TESTPGM.COM file to disk A.

LK8O A: TESTPGM=D: TEST

LK80 can link any program that occupies less than 64K bytes of memory unless
the length of symbols exhausts the space reserved for the symbol table. You can link
several relocatable files into one executable program. However, when combining
several files, only one file can contain executable statements. All other files must
contain only multiple-line functions. In the following command line, TEST is the
executable program, and ONE, TWO, and THREE contain multiple-line functions.
LK80 links all four relocatable files into one executable program named TEST.COM.

LK8O TEST» ONE» TWO? THREE

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 3.1 Linking Modules

You can specify a filetype other than .REL for files in the command line if the files
are relocatable object files. LK80 aborts the linking process if any of the files are not
relocatable object files. In the following command line, TEST.A is the executable
program, and ONE.B, TWO.C, and THREE.D contain multiple-line functions. LK80
assumes all four files are relocatable object files and links them into one executable
program named TESTPGM.COM.

LK80 TESTPGM=TEST.A»ONE.B,»TWO.C»THREE.D

If you generate your own subroutine library using LIB86, you must specify the
library in the LK80 command line. The following example links the library LIB1.IRL
into TESTPGM, along with ONE.REL and TWO.REL.

LK80 TESTPGM=ONE+TWO>+LIBI.IRL

Note that you must specify the .IRL filetype for libraries.

LK80can link up to 60relocatable files at one time. However, the total length of the
command line cannot exceed 128 characters. In cases where a command line exceeds 128
characters, you can shorten filenames, or you can place the command line in a disk file.
There is no limit on the length of a command line if LK80 reads it from a disk file.

Create the command line file using any text editor. Do not enter the characters
LK80 in the disk file. List each relocatable object file as you would in an ordinary
command line. You can place tab characters, carriage returns, and line-feeds any-
where in a command line file. Use the backslash to document large command line
files. LK80 ignores all characters that follow a backslash on the same line. Then
specify the disk file in an LK80 command line as shown in the following example:

LKSO $ CMDLINE.LIN

The preceding example tells LK80 to read the rest of the command line from a disk
file named CMDLINE.LIN. The dollar sign must follow the LK80. At least one space
must separate the dollar sign from the file specification. The command line file can
have any filename and filetype.

3.1.2 LK80 Errors

LK80 reports two different types of errors. The first type includes mistakes such as
improper command lines and out of memory conditions. LK80 indicates these errors
with a literal message. Refer to Appendix C, Table C-1, for a complete listing of
LK80 error messages and descriptions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

3.1 Linking Modules CBASIC Compiler (CB80) Programmer’s Guide

The second type, LK80 failures, should never occur during your experience with
the CBASIC Compiler. LK80 indicates a failure with the following message. The N
stands for an integer value.

LK80 FAILURE N

If the above error message occurs during linking of your CBASIC program, contact the

Digital Research Technical Support Center. Please report the number and the circum-
stances under which the error occurs.

3.2 LK80 Toggles

LK80 toggles are single-letter directives that you specify in the LK80 command
line. Once a toggle is set, it remains set through the entire linking process. Place the
letters within brackets following the relocatable file specifications in the LK80 com-
mand line. Letters can be lower- or upper-case. The following examples show several
ways to specify LK80 toggles:

LKBO TEST(Q]

LKSO TESTPGM=TEST »ONE»,TWO;sTHREECOL J

LK8O0 TEST (€M;,0B;sL]

LKBO TEST CMOBL]

LK8O TEST CM] COB] CLI

18 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 3.2 LK80 Toggles

LK80 supports five toggles as listed in the following table.

Table 3-1. LK80 Toggles

Toggle Instruction

L Redirect console output from LK80 to the printer.

M List all module names followed by an absolute starting address for
each.

O Write output files to a drive other than the default drive.

Place all symbols beginning with a question mark into the SYM
file.

S Save linking information for the overlays in a file for future short-
links.

The L toggle directs all console messages output during linking to the printer.

The M toggle lists all module names and corresponding absolute addresses on the
console. LK80 lists library modules first, followed by overlay modules. The M toggle
displays a load map that you can use with the addresses provided in the CB80 listing
to aid in debugging.

The O toggle directs all output files to a disk drive other than the default drive.
Place the new drive specification immediately after the O. For example, the toggle
OC writes all output files to drive C.

The Q toggle tells LK80 to place all symbols beginning with a question mark into
the SYM file. The toggle adds about 100 symbols to the .SYM file. If you do not
specify the Q toggle, LK80 places only program defined symbols into the .SYM file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

3.2 LK80 Toggles CBASIC Compiler (CB80) Programmer’s Guide

The S toggle provides a way to short-link an overlay file independent of all other
overlays in a program. Short-linking enables you to modify an overlay file and relink
it into the original program without relinking the entire program. The S toggle saves
linking information for the overlays in a disk file. LK80 saves the information in a
file with the same name as the root program, but with a .LNK filetype. The following
command line links the relocatable files TEST.REL, ONE.REL, and TWO.REL into
an executable program TEST.COM and an overlay MSGS.OVL. The S toggle saves
information for the overlay.

LKBO TEST »ONE»TWOs(MSGS)CS]

If you find an error in MSGS.OVL during execution of the program, you can
correct the error in MSGS.BAS. Then recompile MSGS.BAS to generate MSGS.REL.
Finally, you can short-link the new MSGS.REL into the TEST.COM program using
the information saved in TEST.LNK. You do not have to repeat the whole link
specified in the original command line. The following short-link command line relinks
the new MSGS.REL overlay into TEST.COM. Note that you must not enclose MSGS
in parentheses in a short-link command line.

LK80 TEST.LNK, MSGS

The following rules apply to short-linking with the S toggle:

m The new overlay must not require code, common, or data segment sizes
larger than the segment sizes allocated in the original link.

m The new overlay must not reference library modules that are not included in
the root. LK80 informs you if this occurs.

= You must place the saved .LNK file first in the LK80 short-link command
line. LK80 assumes that all filenames after the .LNK filename constitute one
overlay.

LK80 can short-link only one overlay at a time.

m LK80 does not generate a symbol file during a short-link.

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 3.3 Producing Overlays

3.3 Producing Overlays

LK80 can produce overlay files that a CBASIC CHAIN statement can load into
memory and execute. Overlay files have a .OVL filetype. LK80 overlay files preserve
all variables declared in COMMON including variables stored dynamically, such as
arrays and strings.

To generate an overlay, enclose the filename of the relocatable object file in paren-
theses within the LK80 command line. The following command line creates an exe-
cutable file named TEST.COM and one overlay named ONE.OVL.

LK8O TEST(ONE)

The TEST.COM file is the root program. A CHAIN statement in the TEST.COM
program loads the overlay ONE.OVL. When the root program chains to an overlay,
the overlay actually replaces and overwrites the root in memory. This also occurs
when an overlay chains to another overlay or back to the. root.

The root program contains all library routines for the entire program. This reduces
the size of an overlay file and the time required to load an overlay into memory.

LK80 can create up to 60 overlays at one time. However, the total number of
relocatable modules in one link cannot exceed 60. The following command line
generates an executable program named TESTPGM.COM and two overlays named
ONE.OVL and TWO.OVL:

LK80 TESTPGM=TEST(ONE) (TWO)

You can combine several relocatable modules into one overlay. The following
command line generates an executable program named TEST.COM and three over-
lays named A.OVL, C.OVL, and F.OVL:

LK8O0 TEST(A,B) (C»DsE) (F)

You can specify names for the overlay files in the command line. The following
command line generates the TESTPGM.COM program and two overlays named
FIRST.OVL and SECOND.OVL:

LK80 TESTPGM=TEST (FIRST=A) (SECOND=B °C)

ALL INFORMATION PRESENTED HERE iS PROPRIETARY TO DIGITAL RESEARCH 21

End of Section 3 CBASIC Compiler (CB80) Programmer’s Guide

3.4 Linking Assembly Language Routines

LK80 can link assembly language routines with relocatable modules that CB80
creates. You can use the Digital Research Relocating Macro Assembler, RMAC™, to
convert your assembly language programs into relocatable modules that LK80 can
link.

Assembly language routines linked into a CBASIC program must not contain ini-
tialized data. You can place all data that requires an initial value in the code segment.
Refer to section 5.3 for information on parameter passing and returning values.

Note that using assembly language routines makes a program machine-dependent.

End of Section 3

22 ALL INFORMATION PRESENTED HERE !S PROPRIETARY TO DIGITAL RESEARCH

Section 4
The Library

A library file consists of one or more relocatable modules. However, to be useful
in the linking process, a library file must contain an index. The CBASIC Compiler
provides an indexed library file for use with LK80 and a library manager utility
program to create your own library files. Your CBASIC Compiler product disk should
contain the following two files:

CB80.IRL
LI6.COM

4.1 CB80.IRL

The file CB80.IRL is an indexed library file that contains modules to allocate and
release memory, determine available memory space, and perform arithmetic opera-
tions and input/output processing. All indexed library files have a .IRL filetype. An
index precedes the group of modules and contains all the public symbols that are in
each module. The index enables LK80 to determine which routines in CB80.IRL are
required to create the executable program.

LK80 first reads the .REL files you specify in the command line. LK80 then searches
the index of CB80.IRL for any symbols that remain unresolved. LK80 links only
those modules from CB80.IRL that contain definitions of the unresolved symbols.

For example, if a module in one of your programs requires the square root subrou-
tine, LK80 searches the index of the CB80.IRL file for the symbol ?RSQR. Assuming
that this symbol is not defined anywhere in your program, LK80 links the module
from CB80.IRL that contains the definition of ?RSQR. LK80 links any module from
the indexed library that contains a required symbol definition.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

4.1 CB80.IRL CBASIC Compiler (CB80) Programmer’s Guide

4.1.1 Dynamic Storage Allocation Routines

The CBASIC Compiler indexed library file provides four routines for use in assem-
bly modules that enable you to allocate and release memory, and to determine the
amount of space that is available for allocation.

m The ?GETS routine allocates space. The routine requires that the number of
bytes of memory to allocate pass in registers H and L. The maximum num-
ber of bytes the routine can allocate is 32,762. ?GETS returns a pointer to a
contiguous block of memory in registers H and L. There is no restriction on
what the allocated memory space can contain, if the adjacent space at either
end of the allocated area is not modified.

m The ?RELS routine releases previously allocated memory. The routine requires
that the address of the space to release passes in registers H and L. ?RELS
does not return a value.

m= The ?MFE routine returns the size of the largest contiguous area available
for allocation using the ?GETS routine. The value returned is an integer
placed in in registers H and L.

m The 2IFRE routine returns the total amount of unallocated dynamic memory.
The returned value is an integer placed in registers H and L. A negative value
indicates a number larger than 32,767. :

4.1.2 Arithmetic Routines

The CBASIC Compiler indexed library file provides routines for signed integer
multiplication and division for use in assembly modules.

= The ?MIDH routine multiplies the signed integer in registers D and E by the
signed integer in registers H and L. The routine returns the result in registers
H and L.

= The ?DIDH routine divides the signed integer in registers D and E by the
signed integer in registers H and L. The routine returns the result in registers
H and L.

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 4.2 The Library Manager Utility, LIB

4.2 The Library Manager Utility, LIB

The LIB.COM file is a versatile librarian program used to develop library files for
use with LK80. LIB.COM can perform the following four tasks:

concatenate a group of .REL files into a library
create an indexed library, .IRL file
select modules from a library
print module names and public symbols from a library

The LIB.COM program supports three command line switches. A switch is a single
lower- or upper-case letter that you specify in brackets following the first filename in
the LIB command line.

m The I switch creates an indexed library, .IRL file.
m The M switch prints a listing of module names from a specified file.
= The P switch prints a listing of both module names and public symbols from

a specified file.

4.2.1 LIB Manager Command Lines

You can concatenate a group of .REL files to unite modules that must execute in
combination. Two separate modules might contain public functions that a third mod-
ule needs for execution. Combining the three modules into one .REL file simplifies
the LK80 command line that refers to them. The following librarian command line
creates a file named TEST.REL by concatenating the files TEST1.REL, TEST2.REL,
and TEST3.REL:

LIB TEST=TEST1-TESTZ,TESTS

The librarian program only concatenates the three original files. The librarian does
not modify the files in any other way.

Using the I switch, you can create an indexed library file for a group of modules
that support the same types of applications, but are not interdependent for execution.
Certain programs might require only one or two modules from a group. Generate an
indexed library with the group of modules using LIB.COM. The following command
line generates an indexed library named TEST.IRL from the three modules TEST1,
TEST2, and TEST3:

LIB TESTCIIJ=TEST1 »sTEST2,»TESTS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

4.2 The Library Manager Utility, LIBCBASIC Compiler (CB80) Programmer’s Guide

Specify the library name in the LK80 command line whenever the application pro-
gram requires certain modules. LK80 searches the index of the library for the required
routines and links the corresponding modules into the program. This procedure helps
keep the executable program file as small as possible. You can specify up to ten
indexed library files in an LK80 command line. LK80 processes library files in order
of occurrence.

When you start the LIB.COM program, a sign-on message and some diagnostic
messages display on the console. Using the M toggle, you can have LIB.COM gener-
ate a list of all module names in the specified files following the diagnostic messages.
The following command line generates a list of all modules for the TEST.REL file:

LIB TESTCM]

Using the P toggle, you can have LIB.COM generate a list of all module names
and public symbols in the specified files following the diagnostic messages. The fol-
lowing command line generates a list of all modules and public symbols for the
TEST.REL file:

LIB TESTLPI

End of Section 4

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 5

Machine-level Environment

To understand the CBASIC Compiler machine-level environment, you should have
a working knowledge of CP/M and a familiarity with elementary computer architecture.

5.1 Memory Allocation

The operating system loads an executable CBASIC program into the CP/M Tran-
sient Program Area (TPA). Before a CBASIC program loads, the CP/M Console
Command Processor (CCP) resides at the top of the TPA. The CBASIC program
overwrites all of the CCP after it begins execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

5.1 Memory Allocation CBASIC Compiler (CB80) Programmer’s Guide

The following diagram shows memory allocation during execution of a compiled
CBASIC program. The area extending from the base of memory at 0H to the base of
the TPA at 100H is reserved for CP/M and remains fixed. The area extending from
the top of the TPA to the top of memory at FFFFH is reserved for CP/M and remains
fixed. When CP/M loads a CBASIC program, the memory available in the TPA is
partitioned into six areas of varying size. The diagram shows the relative positions of
the different areas in memory, but does not accurately represent relative sizes.

FFFFH

CP/M BIOS

CP/M BDOS

Free Storage Area (FSA)

Computational Stack Area (CSA)

Data Area : TPA

Common Area

Program Code

Code Area

100H Library ‘Code

0H Reserved for CP/M

Figure 5-1. CP/M Memory Allocation

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.1 Memory Allocation

m The Code Area contains the actual computer instructions used during execu-
tion. The Code Area consists of two partitions: the Program Code and the
Library Code. The Program Code section contains the root program. When
you chain to an overlay, the overlay file overwrites the root program in this
area. Likewise, when you chain back to the root programs, the root program
overwrites the overlay file. The Library Code section contains the various
routines from CB80.IRL and other indexed library modules that the program
requires for execution.

= The Common Area contains all variables passed through COMMON state-
ments to chained programs. The Common Area reserves eight bytes of stor-
age space for each variable, regardless of data type. For array and string
variables, the actual value is stored in the Free Storage Area. The value
stored in the Common Area is an address in the FSA. |

m The Data Area contains all variables that are not declared in COMMON.
The Data Area is not preserved during chaining. The Data Area reserves two
bytes for each integer and eight bytes for each real number. The Data Area
stores the pointers that refer to strings and arrays in the FSA.

= The Computational Stack Area (CSA) is fixed at 100 bytes of memory. The
CSA evaluates expressions and passes parameters to CBASIC predefined
functions.

m The Free Storage Area (FSA) stores arrays, strings, and file buffers. Variably
sized blocks of memory are allocated from the FSA as required and returned
when no longer needed.

The starting and ending addresses for each partition in the TPA varies for different
programs. Once allocated, however, the amount of memory each partition occupies
remains fixed during program execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 29

5.2 Internal Data Representation CBASIC Compiler (CB80) Programmer’s Guide

5.2 Internal Data Representation

CBASIC machine-level representation varies somewhat for real numbers, integers,
strings, and arrays.

m REAL NUMBERS are stored in binary coded decimal (BCD) floating-point

form. Each real number occupies eight bytes of memory storage space, as
shown in Figure 5-2. The high-order bit in the first byte (byte 0) contains the
sign of the number. The remaining seven bits in byte 0 contain a decimal
exponent. Bytes 1 through 7 contain the mantissa. Two BCD digits occupy
each of the seven bytes in the mantissa. The number’s most significant digit
is stored in byte 7, furthest from the exponent. The floating decimal point is
always situated to the left of the most significant digit.

14 BCD Dict! MANTISSA

XX XX XX XX XX XX XX XxX
BYTES 0 1 2 3 4 5 6 7

t Ä exponen ;

. XxX X X X X X X X
> BITS 0123 4 56 7

_ exponent’s
sign bit

> number’s

sign bit

Figure 5-2. Real Number Storage

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.2 Internal Data Representation

m INTEGERS are stored in two bytes of memory space with the low order byte
first as shown in Figure 5-3. Integers are represented as 16-bit two’s comple-
ment binary numbers. Integer values range from -32768 to +32767,
inclusive.

LOW ORDER BYTE HIGH ORDER
STORED FIRST BYTE

SIGN
BIT

Figure 5-3. Integer Storage

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

5.2 Internal Data Representation CBASIC Compiler (CB80) Programmer’s Guide

m STRINGS are stored as a sequential list of ASCII representations. The length
of a string is stored in the first two bytes followed by the actual ASCII
values. The maximum number of characters in a string is 32,762. CBASIC
Compiler allocates space in the Free Storage Area for strings. A pointer in
the Data Area is an address in the FSA for the actual string.

Data in string.

0 or more bytes

| |
XX XX XX » ©, Ce XX

BYTES 2 3 n

length
string length

high order low order
bit bit

(stored first) |

L___» BITS X x X X x x
14 13......... 8 7 vecccccccssccesccs 0

reserved for use
by run-time library

Figure 5-4. String Storage

Note: string lengths are stored high order and then low order. This is con-
trary to the normal 8080 convention for storing 16-bit quantities. The reserved
bit, 15, is used to indicate that the string is temporary if the bit is a 1, and
not temporary if it is a 0.

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.2 Internal Data Representation

-

ms ARRAYS, both numeric and string, are allocated space in the Free Storage
Area as required. Eight bytes are reserved for each element of an array
containing real numbers and two bytes for each element of an integer array.

At some point in a program, it might be necessary to free memory space allocated
to arrays that are no longer needed in the program. Freeing numeric array space
requires that you simply redimension the array to zero. However, freeing string array
space is a two step process. First, you must set all string array elements to null. Set
all string array elements equal to a string variable that has never been assigned a
value. Use a variable such as NULLS. Be sure that NULLS has never been assigned a
value. Do not set NULL$ equal to “/”. Second, you must redimension the string
array to zero after assigning each element in the array to NULLS.

5.3 Parameter Passing and Returning Values

CBASIC Compiler passes all parameters on the hardware stack. When a program
calls a routine, CBASIC places each parameter on the stack reading from left to right.
The last entry on the stack is the return address. All values must conform to the
format described in Section 5.2.

An assembly language routine can return integer, real, or string values to a CBASIC
program. Before returning to the CBASIC program, all parameters passed on the
stack must be removed and the stack pointer adjusted accordingly.

Integers return in registers H and L. Real numbers return using a pointer in regis-
ters H and L that points to an eight byte area containing the real value. The H and
L registers contain the address of the exponent byte of the number being returned.

Strings return using a pointer in registers H and L. Strings must have been allo-
cated using CBASIC Compiler dynamic storage management routines. The allocation
bit of a returning string should be set to 1. This ensures that the space is initialized
when no longer needed.

ALL INFORMATION PRESENTED HERE JS PROPRIETARY TC DIGITAL RESEARCH 33

5.4 .REL File Format CBASIC Compiler (CB80) Programmer’s Guide

5.4 .REL File Format

CB80 and the Digital Research Relocating Macro Assembler (RMAC) create .REL
files. A .REL file contains information encoded in a bit stream. You can interpret the
information as described in the following list:

mw If the first bit is a 0, the next 8 bits load according to the value of the
location counter.

m If the first bit is a 1, the next two bits can be interpreted as follows:

00 Special link item.

01 Program relative. The next 16 bits load following an offset from the
program segment origin.

10 Data relative. The next 16 bits load following an offset from the data
segment origin.

11 Common relative. The next 16 bits load following an offset from the
origin of the currently selected common block.

A special item consists of the following:

m 4-bit control field that selects one of 16 special link items described in Table
5-1.

= An optional value field that consists of a 2-bit address type field and a 16-bit
address field. The address type field can be interpreted as follows:

00 - absolute
01 - program relative
10 - data relative
11 - common relative

= an optional name field consisting of a 3-bit name count followed by the
name in 8-bit ASCII characters.

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.4 .REL File Format

Table 5-1. Special Link Items

Control Field Meaning

A name field follows the next five Link Items:

0000 Entry symbol. This module describes the symbol indicated in
the name field.

0001 Currently unassigned.

0010 | Program name. This is the name of the relocatable module.

0011 Name field. Gives the name of default library file to use.
LK80 assumes a filetype of .IRL.

0100 Currently unassigned.

A value field and a name field follow the next four link items:

0101 Define common size. The value field determines the amount

of memory to reserve for the common block indicated in the
name field.

0110 Chain external. The value field contains the head of a chain

that ends with an absolute 0. The value of the external sym-
bol described in the name field replaces each element of the
chain.

0111 Define entry point. The value field defines the value of the
symbol in the name field. This link item puts local symbols
in .REL files.

1000 Currently unassigned.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

5.4 .REL File Format CBASIC Compiler (CB80) Programmer’s Guide

Table 5-1. (continued)

Control Field Meaning

A value field follows the next six link items:

1001 _ External plus offset. The value in the value field after all
chains are processed must offset the following two bytes in
the current segment.

1010 Define data size. The value field contains the number of bytes
in the data segment of the current module.

1011 Set location counter. Set the location counter to the value

indicated in the value field.

1100 Chain address. The value field contains the head of a chain

that ends with an absolute 0. The current value of the loca-

tion counter replaces each element of the chain.

1101 Define program size. The value field contains the number of
bytes in the code segment of the current module.

1110 End module. Defines the end of the current module. If the
value field contains a value other than absolute 0, the value
is the start address for the linking program. The next item
in the file will start at the next byte boundary.

The last item has no value field or name field:

1111 End file. Follows the last module item for the last module in

the file.

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.5 .IRL File Format

5.5 .IRL File Format

The CBASIC Compiler librarian utility, LIB.COM, creates .IRL files. An .IRL file
consists of three parts: the header, the index, and the relocatable section. The header
contains 128 bytes allocated as follows:

m byte 0 - extent number of first record of relocatable section
m byte 1 - record number of first record of relocatable section
mw bytes 2 to 127 - currently unassigned

The index consists of entries that correspond to the entry symbol items listed in
the relocatable section. Entries use the following form:

e r b ci c2 Lee cn d

e = Extent offset from start of relocatable section to start of module.

r = Record offset from start of extent to start of module.

om
 ll Byte offset from start of record to start of module.

cl - cn = Name of symbol.

d = End of symbol delimiter (OFEH).

When cl equals OFFH, the index terminates and the remainder of the record is not
used.

The relocatable section contains relocatable object code as described in the Section
5.4.

End of Section 5

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

End of Section 5 CBASIC Compiler (CB80) Programmer’s Guide

38 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix A
Implementation

Dependent Values

The following implementation dependent values apply to CB80 version 1 for use
with CP/M, versions 2 and 3, and MP/M-80™, versions 1 and 2:

i

Table A-1. Implementation Dependent Values

Parameter Value Minimum

Initial page width for compiler output 80 —

Initial page length for compiler output 66 —

Maximum number of errors maintained 95 —

Maximum nesting of include 6 4

Maximum number of formal parameters 15 15

Maximum number of subscripts in an array 15 15

Maximum unique identifier length 5 0 31

Maximum number of characters in string constant 255 255

Maximum length of Global and External names 6 6

Maximum nesting of FOR loops 43 —

Maximum nesting of WHILE loops 39 —

Number of files that can be open at one time 20 12

File buffer size in bytes 128 —

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

A Implementation Dependent Values CBASIC Compiler (CB80) Programmer’s Guide

The minimum values are the minimum that are used in any CB80 implementation.

The following extensions exist in CB80, versions 1.3 and 1.4, to provide compati-

bility with CBASIC version 2. Note that future versions of CB80 might not support
these extensions.

40

The LPRINTER statement accepts a WIDTH option to be consistent with
CBASIC. The width is ignored.

Integer and real data is initialized to 0; strings are initialized to null strings.
See Section 5.2.

The INPUT prompt string can be any expression; the first operand must be
a string constant.

An OPEN or CREATE statement accepts a RECS field for compatibility with
CBASIC. The expression is ignored.

You can use the reserved words LT, GT, LE, GE, EQ, and NE in place of
the relational operators <, >, <=, >=, =,and<>.

CB80 supports the following form of an IF statement:

IF expression THEN label

but the label must be a numeric label.

End of Appendix A

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix B
Compiler Error Messages

The compiler prints the following messages when a file system error or memory
space error occurs. In each case, control returns to the operating system.

Table B-1. File System and Memory Space Errors

Error Meaning

COULD NOT OPEN FILE: filename

The filename following the message cannot be located in the file
system directory.

Z%Z INCLUDES NESTED TOO DEEP :fllename

The filename following the message occurred in an %INCLUDE
directive that exceeds the allowed nesting of % INCLUDE directives.

SYMBOL TABLE OVERFLOW

The available memory for symbol table space has been exceeded.
Break the program into modules or use shorter symbol names.

INVALID FILE NAME: filename

The filename is not valid for your operating system.

DISK READ ERROR

The operating system reports a disk read error.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-1. (continued)

Error Meaning

CREATE ERROR: filename

The file cannot be created. Normally this means there is no directory
space on the disk.

DISK FULL

The operating system reports that no additional space is available to
write temporary or output files. The directory may be full or the
disk is out of space.

INVALID COMMAND LINE

The command line is incorrect. The compiler prints a greater-than
sign, >, one blank space, and all command line characters beginning
with the first character in error. If no characters remain in the com-
mand line when an error occurs, the compiler does not print the >
or the space.

MISSING SOURCE FILE NAME

The command line processor reports that you did not specify a source
file.

CLOSE OR DELETE ERROR

The operating system reports that it cannot close a file. This occurs
if diskettes are switched during compilation.

If the compiler detects an internal failure, the following error message appears:

FATAL COMPILER ERROR XXX
NEAR SOURCE LINE XXXX

where XXX is a three digit number. Please advise Digital Research of the error and
the circumstances under which it occurs.

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

The following error messages indicate a compilation error occurred during compi-
lation of a program. Compilation continues after the error is recorded. Compilation
error messages display within the source code listing.

Table B-2. Compilation Error Messages

Error Meaning

1 Invalid character in the source program. The character is ignored.

2 Invalid string constant. The string is too long or contains a carriage
return.

3 Invalid numeric constant. An integer constant of zero is assumed.

4 Undefined compiler directive. This source line is ignored.

5 The %INCLUDE directive is missing a filename. This source line is
ignored.

6 Statements found after an END.

7 Not used.

8 Variable used without being defined, and the U toggle used during
compilation.

9 The DEF statement is not terminated by a carriage return. A carriage
return is inserted.

10 A right parenthesis is missing from the parameter list. A right par-
enthesis is inserted.

11 A comma is missing in the parameter list. A comma is inserted.

12 An identifier is missing in the parameter list.

13 The same name is used twice in a parameter list.

14 A DEF statement occurs within a multiple-line function. Multiple-
line functions cannot be nested. The statement is ignored.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error Meaning

15 A variable is missing.

16 The function name is missing following the keyword DEF. The DEF
statement is ignored.

17 A function name is used previously. The DEF statement is ignored.

18 A FEND statement is missing. A FEND is inserted.

19 There are too many parameters in a multiple line function.

20 Inconsistent identifier usage. An identifier cannot be used as both a
label and a variable.

21 Additional data exists in the source file following an END statement.
This is the logical end of the program.

22 Data statements must begin on a new line. The remainder of this
statement is treated as a remark.

23 There are no variables or function names in a declaration statement;
or, areserved word appears in the list of identifiers.

24 A function name appears in a declaration within a multiple-line
function other than the multiple-line function that defines this func-
tion name.

25 A function call has incorrect number of parameters.

26 A left parenthesis is missing. A left parenthesis is inserted.

27 Invalid mixed mode. The type of the expression is not permitted.

28 Unary operator cannot be used with this operand.

29 Function call has improper type of parameter.

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning

30 Invalid symbol follows a variable, constant, or function reference.

31 This symbol cannot occur at this location in an expression. ‘The
symbol is ignored.

32 Operator is missing. Multiplication operator inserted.

33 Invalid symbol encountered in an expression. The symbol is ignored.

34 A right parenthesis is missing. A right parenthesis is inserted.

35 A subscripted variable is used with the incorrect number of subscripts.

36 An identifier is used as a simple variable with previous usage as a
subscripted variable.

37 An identifier is used as a subscripted variable with previous usage as
an unsubscripted variable.

38 A string expression is used as a subscript in an array reference.

39 A constant is missing.

40 Invalid symbol found in declaration list. The symbol is skipped.

41 A carriage return is missing in a declaration statement. A carriage
return is inserted.

42 Comma is missing in declaration list. A comma is inserted.

43 A common declaration cannot occur in a multiple-line function. The
statement is ignored.

44 An identifier appears in a declaration twice in the main program or
within the same multiple-line function.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error Meaning

45 The number of dimensions specified for an array exceed the maxi-
mum number allowed. A value of one is used. This might generate
additional errors in the program.

46 Right parenthesis is missing in the dimension specification within a
declaration. A right parenthesis is inserted.

47 The same identifier is placed in COMMON twice.

48 An invalid subscripted variable reference encountered in a declara-
tion statement. An integer constant is required. A value of 1 is used.

49 An invalid symbol found following a declaration, or the symbol in
the first statement in the program is invalid. The symbol is ignored.

50 An invalid symbol encountered at the beginning of a statement or
following a label. Ä

51 An equal sign is missing in assignment. An equal sign is inserted.

52 A name used as a label previously used at this level as either a label
or variable.

53 Unexpected symbol follows a simple statement. The symbol is ignored.

54 A statement is not terminated with a carriage return. Text is ignored
until the next carriage return.

55 A function name is used in the left part of an assignment statement
outside of a multiple-line function. Only when the function is being
compiled can its name appear on the left of an assignment statement.

56 A predefined function name is used as the left part of an assignment
statement.

57 In an IF statement, a THEN is missing. A THEN is inserted.

46 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning

58 A WEND statement is missing. A WEND is inserted.

59 A carriage return or colon is missing at the end of a WHILE loop
“header.

60 In a FOR loop header the index is missing. The compiler skips to
end of this statement.

61 In a FOR loop header, a TO is missing. A TO is inserted.

62 An equal sign is missing in a FOR loop header assignment. An equal
sign is inserted.

63 Carriage return or colon is missing at end of FOR loop header.

64 A NEXT statement is missing. A NEXT is inserted.

65 Not used.

66 The variable that follows NEXT does not match the FOR loop index.

67 NEXT statement encountered without a corresponding FOR loop
header.

68 WEND statement encountered without a corresponding WHILE loop
header.

69 FEND statement encountered without a corresponding DEF state-
ment. This error indicates that the end of the source program was
detected while within a multiple-line function.

70 The PRINT USING string is not of type string.

71 A delimiter is missing in a PRINT statement. A comma is inserted.

72 A semicolon is missing in an INPUT prompt. A semicolon is inserted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error Meaning

73 A delimiter is ‘missing in an INPUT statement. A comma is inserted.

74 A semicolon is missing following a file reference. A semicolon is
inserted.

75 The prompt in an INPUT statement is not of type string.

76 In an INPUT LINE statement, the variable following the keyword
LINE is not a string variable.

77 In an INPUT statement, a comma is missing between variables. A
comma is inserted.

78 The keyword AS is missing in an OPEN or CREATE statement. AS
is inserted.

79 The filename in an OPEN or CREATE statement is not a string
expression.

80 A delimiter is missing in a READ statement. A comma is inserted.

81 In a GOTO, GOSUB, or ON statement, a label is missing. This

token can be an identifier previously used as a variable.

82 The label in a GOTO statement is not defined. If the label is used in
a function, it must be defined in that function.

83 A delimiter is missing in a file READ statement. A comma is inserted.

84 In a READ LINE statement, the variable following the keyword
LINE is not a string variable.

85 The label in an IF END statement is not defined.

86 A pound sign, #, is missing in an IF END statement. A pound sign
is inserted.

48 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning

87 A THEN is missing in an IF END statement. A THEN is inserted.

88 In a PRINT statement, the semicolon is missing following a using
string. A semicolon is inserted.

89 In an ON statement, a GOTO or GOSUB is missing. A GOTO is
assumed.

90 The index of a FOR loop header is of type string. The index must
be an integer or real value.

91 The expression following the keyword TO in a FOR loop header is
of type string. The expression must be an integer or real value.

92 The expression following the keyword STEP in a FOR loop header
is of type string. The expression must be an integer or real value.

93 A variable in a DIM statement is defined previously as other than a
subscripted variable.

94 An identifier is missing as an array name in a DIM statement. The
entire statement is ignored.

95 A left parenthesis is missing in a DIM statement. A left parenthesis
is inserted.

96 A right parenthesis is missing in a DIM statement. A right paren-
thesis is inserted.

97 The maximum number of dimensions allowed with a subscripted
variable is exceeded.

98 A comma is missing in a POKE statement. A comma is inserted.

99 The index of a FOR loop header is not a simple variable.

100 In a CALL statement, a multiple-line function name is missing.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error Meaning

101 A file PRINT statement is terminated with a comma or senicolon.

102 A DIM statement is missing for this subscripted variable.

103 A comma is missing in the label list associated with an ON GOTO
or ON GOSUB statement. A comma is inserted.

104 A GOTO is missing in an ON ERROR statement. A GOTO is
inserted.

105 A comma is missing in a PUT statement. A comma is inserted.

106 The expression in an IF statement is of type string. An integer or
real expression is required.

107 The expression in a WHILE loop header is of type string. An integer
or real expression is required.

108 In an OPEN or CREATE statement, the filename is missing.

109 In an OPEN or CREATE statement, the expression following the
reserved word AS is missing.

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning

110 A multiple-line function calls itself.

111 A semicolon separates expressions in a file PRINT statement. A comma
is substituted for the semicolon.

112 A file PRINT statement does not have an expression list.

113 A TAB function is used in a file PRINT statement expression list.

114 Label used as a variable in a list of expressions.

115 A GO not followed by a TO or SUB. GOTO is assumed.

116 An OPEN or CREATE statement specifies both UNLOCKED and
LOCKED access control.

117 A CREATE statement uses the READ ONLY access control.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

End of Appendix B CBASIC Compiler (CB80) Programmer’s Guide

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix C
LK80 Error Messages

LK80 prints the following messages to indicate the occurrence of an error during
linking. Control returns to the operating system after the message is displayed.

Table C-1. LK80 Error Messages

Message Meaning

Unresolved external: symbol name

You defined the symbol name as external but neglected to define
the symbol as public.

Out of Directory Space

LK80 ran out of directory space while writing the root, overlay,
symbol, or environment file.

Disk Full

LK80 ran out of disk space while writing the root, overlay, sym-
bol, or environment file. |

Multiple Definition: symbol name

You defined a symbol name more than once.

Too many overlays

You specified more than 60 overlays in the command line.

Too many modules

You specified more than 60 modules in the command line.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

C LK80 Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table C-1. (continued)

Message Meaning

Symboi table overflow

There is not enough memory for the symbol table.

Cannot open source file

A source file specified in the command line cannot be opened.

Too many library files

You cannot specify more than 10 indexed library files in the com-
mand line.

Toomany library modules

You cannot extract more than 150 modules from all indexed

library files.

Index too big

A library file index cannot exceed 16K.

Too many external-plus-offsets

The table that saves external-plus-offsets has overflowed. Refer-
ences to offsets from external symbols usually occur in assembly
language programs.

Code size exceeded, Short link aborted.

The new overlay cannot require a code segment larger than the
code segment in the original full link.

Data size exceeded, Short link aborted,

The new overlay cannot require a data segment larger than the
data segment in the original full link.

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide C LK80 Error Messages

Table C-1. (continued)

Message Meaning

Common size exceeded. Short link ahor.ed,

The new overlay cannot require a common segment larger than
the common segment in the original full link.

Root has no entry Point.

You did not specify the root program in the command line or
your root program does not contain executable statements.

No entry Point defined for overla”: overlay

The overlay file specified in the message does not contain execut-
able statements.

Not enough memory

There is not enough memory for LK80 to complete linking the
modules specified in the command line.

Cannot close file: file

LK80 cannot complete linking because it cannot close the module
specified in the message.

Expected module name

You did not specify a module name in the command line.

Toggle not supported

You specified an invalid toggle letter in the command line.

Expected] at end of toggle definition

You omitted a closing square bracket in a command line toggle
definition.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

C LK80 Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table C-1. (continued)

Message Meaning

Unexpected (7

You entered a left parenthesis without a matching right paren-
thesis in the command line, indicating an incomplete overlay
specification.

Unexpected) ?

You entered a right parenthesis without a matching left paren-
thesis in the command line, indicating an incomplete overlay
specification.

Invalid or unexpected character

You entered a character in the command line that LK80 does not
recognize or did not expect at a certain position in the command
line.

Module name ortyPre too long

Module names cannot exceed 8 characters and types cannot exceed
3 characters.

Can only specify outrut name on first module

Only one module name can precede the equal sign in a command
line. If you do not use the equal sign, the first module listed
becomes the name of the output file.

Multirle entry Points in: filespec

More than one file specified in the command line contains execut-
able statements. The file specified in the message contains execut-
able statements.

End of Appendix C

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix D
Execution Error Messages

The following warning message might be printed during execution of a CB80
program:

IMPROPER INPUT - REENTER

This message occurs when the fields you enter from the console do not match the
fields specified in the INPUT statement. Following this message, you must reenter all
values required by the input statement.

Execution errors cause a two-letter code to be printed. The following table con-
tains valid CB80 error codes.

If an error occurs with a code consisting of an asterisk followed by a letter, such
as *R, a CB80 library has failed. Please notify Digital Research of the circumstances
under which the error occurred.

Table D-1. CB80 Error Codes

Code Error

AC The argument in an ASC function is a null string.

BN The value following the BUFF option in an OPEN or CREATE state-
ment is less than 1 or greater than 128.

CE The file being closed cannot be found in the directory. This occurs if
the file has been changed by the RENAME function.

CM The file specified in a CHAIN statement cannot be found in the
selected directory. If no filetype is present, the compiler assumes a
type of OVL.

CT The filetype of the file specified in a CHAIN statement is other than
COM or OVL.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

D Execution Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table D-1. (continued)

Code Error

CU A CLOSE statement specifies a file identification number that is not
active.

DF An OPEN or CREATE statement uses a file identification number
that is already used.

DU A DELETE statement specifies a file identification number that is not
active.

DW The operating system reports that there is no disk or directory space
available for the file being written to, and no IF END statement is in
effect for the file identification number.

DZ Division by zero is attempted.

EF Attempt to read past the end-of-file, and no IF END statement is in
effect for the file identification number.

ER Attempt to write a record of length greater than the maximum rec-
ord size specified in the OPEN or CREATE statement for this file.

EX Indicates MP/M II extended error.

FR Attempt to rename a file to a filename that already exists.

FU Attempt to access a file that was not open.

IF A filename in an OPEN or CREATE statement or with the RENAME
function is invalid for your operating system.

IR A record number of zero is specified in a READ or PRINT statement.

LN The argument in the LOG function is zero or negative.

ME The operating system reports an error during an attempt to create or
extend a file. Normally, this means the disk directory is full.

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide D Execution Error Messages

Table D-1. (continued)

Code | Error

MP The third parameter in a MATCH function is zero or negative.

NE A negative value is specified for the operand to the left of the power
operator.

NF A file identification is less than 1 or greater than the maximum num-
ber allowed. See Appendix E.

NN An attempt to print a numeric expression with a PRINT USING
statement fails because there is not a numeric field in the USING
string.

NS An attempt to print a string expression with a PRINT USING state-
ment fails because there is not a string field in the USING string.

OD A READ statement is executed but there are no DATA statements in
the program, or all data items in all the DATA statements have been
read.

OE _ Attempt to OPEN a file that does not exist, and for which no IF
END statement is in effect.

OF An overflow occurs during a real arithmetic calculation.

OM The program runs out of dynamically allocated memory during
execution.

RB Random access is attempted to a file activated with the BUFF option
specifying more than one buffer.

RE Attempt to read past the end of a record in a fixed file.

RU A random read or print is attempted to a stream file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

D Execution Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table D-1. (continued)

Code Error

SL A concatenation operation results in a string greater than the maxi-
mum allowed string length.

SQ Attempt to calculate the square root of a negative number.

SS The second parameter of a MID$ function is zero or negative, or the
last parameter of a LEFT$, RIGHTS, or MIDS is negative.

TL A tab statement contains a parameter less than 1.

UN A PRINT USING statement is executed with a null edit string, or the
backslash escape character, \, is the last character in an edit string.

WR Attempt to write to a stream file after it is read, but before it is read
to the end-of-file.

End of Appendix D

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix E
LIB Error Messages

The following table presents the LIB.COM program error messages and descriptions.

Table E-1. LIB Error Messages

Message Meaning

CANNOT CLOSE LIB cannot close the output file. The diskette might
be write-protected.

DIRECTORY FULL There is no directory space for the output file.

DISK READ ERROR LIB cannot read the specified file.

DISK WRITE ERROR LIB cannot write the specified file; probably due to
a full diskette.

FILE NAME ERROR The form of a source filename is invalid.

NO FILE LIB cannot find the file that is specified in the com-
mand line.

NO MODULE LIB cannot find the module that is specified in the
command line.

SYNTAX ERROR You used an incorrect command line to start the

LIB program.

End of Appendix E

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

End of Appendix D CBASIC Compiler (CB80) Programmer’s Guide

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Index

A

arithmetic routines, 24
array subscripts
maximum numbers of, 39

arrays, storage of, 33
assembly language routines, 21

B

BAS filetype, 2, 7
B toggle (CB80), 12

C

C toggle (CB80), 12
CB80 command line toggles, 10
CB80 command lines, 7

CB80.IRL, 23

CBASIC Compiler product disk, 1, 5,
15, 23

CBASIC Program

execution of, 28

loading of, 27
CHAIN statement, 20

Code Area, 29

COM files, 1, 5

command line toggles, 10
command lines

CB80, 7

LK80, 16 .

COMMON, 20
Common Area, 29

compilation errors, 6, 7, 43

compiler directives, 8

compiler errors, 7, 41

compiler output
page length, 39

page width, 39
compiler passes, 6
compiling programs, 5
Computational Stack Area (CSA), 29

CP/M Transient Program Area

(TPA), 27
CREATE statement, 40

CSA, (see Computational Stack Area)

D

Data Area, 29

DEBUG directive, 10
default library file, 15, 35

directly executable program, 1, 4

E

EJECT directive, 9
ERRL function, 12

errors, 39

compiler errors, 7, 43
LK80 errors, 18, 53

LIB errors, 61

executable program, 15, 16

executable statements, 16

external names

maximum length of, 39

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

F

F toggle (CB80), 12
fatal compiler errors, 8, 42
fatal errors

linker, 15, 43

file buffer size, 39

file system errors, 7
FOR loops
maximum nesting, 39

formal parameters
maximum number of, 39

Free Storage Area (FSA), 29

freeing memory space, 33

I

I toggle (CB80), 12

identifier
maximum length, 39

IF statement, 40

implementation dependent values, 39
improper input, 57
INCLUDE directive, 9, 11, 12
maximum nesting of, 39

indexed library file, 15, 23, 24, 25

integers, 31

initialization of, 40

IRL file, 23, 35
IRL file format, 37

IRL index entries, 37

L

L toggle (CB80), 12
L toggle (LK80), 19
LIB command line switches, 25

LIB error messages, 61

LIB.COM, 25, 26, 37, 61

librarian command lines, 25

librarian utility, 25, 37

library file, 1, 24

link editor, 1, 3, 15

linking, 15, 16
linking assembly language routines,

21
LIST directive, 9

LK80 command lines, 16
toggles in, 18

| LK80 command line disk file

documentation of, 17

LK80 errors, 18, 53

LK80 failures, 18

LK80 toggles, 18-19

LNK file, 19, 20

LPRINTER statement, 40

M

M toggle (LK80), 19
machine level representation, 30

memory allocation messages, 6
memory space errors, 7, 41

memory
allocation of, 24, 27-28
Code Area, 29

Common Area, 29

Computational Stack Area, 29
Data Area, 29

Free Storage Area, 29

freeing array space, 33
release of, 24
space available, 24

module names, 19, 26

multiple-line functions, 16

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

N reserved words, 40
root program, 20

N toggle (CB80), 12
NOLIST directive, 9

S

O S toggle (CB80), 12
S toggle (LK80), 19

O toggle (CB80), 12 short-linking, 19, 20

O toggle (LK80), 19 source code compiler directives, 8
OPEN statement, 40 source code line numbers, 13

overlay files, 20 source files, 7
Ä source program listing, 13

source program, 1, 2, 5, 7

P size of, 5
storage allocation, 24

P toggle (CB80), 12 string constants
PAGE directive, 9 maximum number of characters in,
page width, 13 39
parameters, 33 strings, 32

printer, 19 symbol file, 11, 16, 17
public symbols, 26 symbol location file, 16

symbol table, 13

symbols
Q definition of, 23

placement of, 19
Q toggle (LK80), 19 unresolved, 23

SYM file, 12, 13, 19

R
T

R toggle (CB80), 12
real numbers, 30. T toggle (CB80), 13
relational operators, 40 temporary work files, 13
REL files, 1, 7, 34 Transient Program Area (TPA), 27

relocatable machine code modules, 1

relocatable object file, 5, 7, 12, 17,

20
relocatable object modules, 1
relocatable routines, 1

(see Library file)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

U

U toggle (CB80), 13
unresolved symbols, 23

V

V toggle (CB80), 13

W

W toggle (CB80), 13
WHILE loops
maximum nesting, 39

x

X toggle (CB80), 13

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

il

DIGITAL
RESEARCH
Markt&fechnik —
Verlag Aktiengesellschaft

Hans-Pinsel-Straße 2 _
8013 Haar bei München

CBASIC’ Compiler
Language

Reference Manual

e
n

Tl

DIGITAL
RESEARCH
Markt&fechnik
Verlag Aktiengesellschaft

Hans-Pinsel-Straße 2
8013 Haar bei München

CBASIC* Compiler
Language

Reference Manual

COPYRIGHT

Copyright © 1981, 1982 by Digital Research. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the

prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CBASIC, CP/M, CP/M-86, and CP/NET are registered trademarks of Digital Re-

search. CB80, CB86, Concurrent CP/M-86, MP/M, MP/M II, and MP/M-86 are

trademarks of Digital Research. Intel is a registered trademark of Intel Corporation.
Zilog and Z80 are registered trademarks of Zilog, Inc.

The CBASIC Compiler Language Reference Manual was prepared using the Digital
Research TEX Text Formatter and printed in the United States of America.

First Edition: September 1981
Second Edition: March 1982

Third Edition: December 1982

Foreword

CBASIC® is a comprehensive and versatile programming language for developing
professional microcomputer software. Software developers worldwide have selected
CBASIC for its capacity to quickly produce reliable, maintainable programs in a struc-
tured programming environment. CBASIC combines the power of a structured, high-
level language with the simplicity of BASIC to provide a serious development tool that
is easy to learn and easy to use.

The CBASIC® Compiler is a compiler version of the CBASIC programming language.
The CBASIC Compiler is available for both 8-bit and 16-bit operating systems. Use
the CBASIC Compiler Language Reference Manual with either version.

m The 8-bit version, CB80™, runs under CP/M®, MP/M™, and CP/NET® oper-
ating systems for microcomputers based on the Intel® 8080, 8085, or Zilog®
Z80® microprocessor.

m The 16-bit version, CB86™, runs under the CP/M-86®, MP/M-86™, or Con-

current CP/M-86™ operating systems for computers based on the Intel 8086,
8088 family of microprocessors.

The CBASIC Compiler Language Reference Manual is for readers familiar with
conventional BASIC terminology and programming concepts. The manual defines the
structure, statements, and functions of the CBASIC language in Sections 1 through 4.
Section 5 covers input and output, including the use of disk files. The CBASIC Compiler
(CB80) Language Programming Guide and the CBASIC Compiler (CB86) Language
Programming Guide provide in-depth discussions of the compiler, link editor, and
library file for the respective versions of the CBASIC Compiler.

Programs written in other versions of CBASIC maintain compatibility with the CBASIC
Compiler. You can convert existing CBASIC programs to the CBASIC Compiler with
few modifications. The result is much faster execution and additional flexibility using
assembly language routines. Appendix C explains the language enhancements made to
implement the CBASIC Compiler version.

Digital Research is interested in your comments on programs and documentation.
Please use the Software Performance Reports enclosed in each product package to help
us provide you with better software products.

ili

Table of Contents

Introduction to CBASIC Compiler

1.1 CBASIC Compiler Components 0.0.0 cceee cee ceceees
1.2 Program Structure ccc ccc ccc cece cctv eee rennen

Identifiers, Numbers, and Expressions

2.1 Identifiers 2.0.0... ccc ce cece cee ee nennen nenne nenn
2.2 Declarations 0... cc ccc cece cece ee cen eee eeeteeeeuaenes
2.3 Strings 22... ccc ccc ce ce cee ee ee cece eee eeteeeneeeeeeas

2.4 Numbers 0... ccc ccc cece cece cece eee eee cent eeeeeneens
2.5 Variables and Array Variables 0... cece ccc cece ceeees
2.6 EXPressions ccc cece cc ce ee ce eee cece e cena eeeeeeeeeas

Statements and Functions 0... ccc cece eee e cece nennen

Defining and Using Functions

4.1 Function Names 0... ccc cece cee cect ee eeeeceeteenees

4.2 Function Definitions 0c. cece ccc cece ccc ee accu eencen
4.2.1 Single-line Functions 0... cee cece cce ec eeceeees
4.2.2 Multiple-line Functions 0... seen

4.3 Function References 0... ccc cece cee cece cee esevceeeceeuns
4.4 Public and External Functions 0. ccc eeccecccevevcees

Input and Output

5.1 Console Input and Output 0... cece eee cee cee eees
5.2 Printing cc ccc cc cee cee e eee e nee eects eeeeeeeeees

5.3 Formatted Printing 0... 0. cc ce cee cee cece cee eeeeeeeeeaees
5.3.1 String Character Fields 0. ce
5.3.2 Fixed-length String Fields22 22 0... cece eee eee eeee
5.3.3 Variable-length String Fields 20... ee
5.3.4 Numeric Data Fields 0.0... cc cece ce ce ee eee ee
5.3.5 Escape Characters 1.00.0... 0 cc sense een een

5.4 File Input and Output 0. ccc cece cee eee cece ee eanes
5.5 File Organization 0.0... ccc ccc cece cece nennen een

5.5.1 Stream Files „2.220 ccc ec cc cece cece eee nennen
5.5.2 Fixed Files 0... 0c e cece cece nee een

Table of Contents (continued)

Appendixes

A CBASIC Compiler Reserved Words0cccccccvsvccccecees 137

B Decimal-ASCIH-Hex Table 0.0... ccc cc cee ee ee erence eeees 139

C CBASIC to CBASIC Compiler Conversion Aid0ce cece eee 141
C.1 Subscripted Variable 2.0... .. 0. ccc ccc ccc cece eee eens 141
C.2 FILE Statement 2... cc ce ee ee eee ee ernennen 142

C.3 SAVEMEM cc ccc ccc ect ence eet e eee e eee e teense 143
C.4 CHAIN Statement 2... ec cece ec ee cee eee eee aes 143

C.5 String Lengths 2.0... . ce cc eee cece nennen nn 144
C.6 PEEK and POKE 2... ccc cece cece eee ee eens 144

C.7 FOR-NEXT Loops cc ccc ccc ee eee cee ete ee eee eee 145

C.8 Console Width ccc ccc cc ce ccc eee c cece eee eevee 145
C.9 FRE co.cc cc cc ee et ee eee ee eee eee ee ee tee e eee e sees 146

C.10 READ and INPUT Statements for Integers 0.0 ccc eee ees 146
C.11 Function and Variable Names ccc ccc ccc cece eee tees 147
C.12 Labels 2... cc ce ee eee cece cece eee eeeeeees 147
C.13 Warning Messages cece ccc cece cece eee eee eeeeees 147

C.14 New Reserved Words cece cece cece cece cee eeees 148

D Glossary ccc ccc ee eee eee eee ernennen ne 149

vi

m
m

De

Table of Contents (continued)

List of Tables

Hierarchy of Operators 22222 0 ccc c cece cece eeceeevsenenvuuneues 11

Special Characters in Format Strings cc en 83

Special Characters in Format Strings nn 125

List of Figures

Sequential File..........ceeeecceneeneeeeeeeeeennnneeennenn Pe 2
Relative File 0.0.0... cece ccc cece cece cece eeeeeeeuceueteuueenas 134

vi

j

Section 1
Introduction to CBASIC Compiler

1.1 CBASIC Compiler Components

The CBASIC Compiler system has three main components: a compiler, a link editor,
and a library.

= The compiler translates CBASIC source code into relocatable machine code.
Source programs default to a .BAS filetype unless otherwise specified. The com-
piler generates .REL files.

m The link editor combines relocatable object modules into an executable core-
image file with optional overlays. The link editor generates executable files of
type .COM for the 8-bit microprocessor family, and type .CMD for the 16-bit
microprocessor family.

m The library provides relocatable modules that allocate memory, release memory,
determine available space, and perform arithmetic operations and input/output
processing.

1.2 Program Structure

CBASIC has features found in other high-level languages, such as structured control
statements, functions, complex expressions, labels, data declarations, and a variety of

data types. Other CBASIC features are parameter passing, local and global variables,
easy access to the operating system, and chaining between programs.

WY
OM
N
et,
O
>

1.2 Program Structure CBASIC Compiler Reference Manual

CBASIC requires no line numbers and allows you to use commas, spaces, and tabs
freely to make your programs more readable. You must use a statement number or
label only when referencing a statement or module from another location in the pro-
gram. CBASIC allows literal identifiers, integers, decimal fractions, and exponential

numbers as labels, as in the following examples.

CALC. TOTAL: PRINT AX + BZ + CA

1 PRINT "THESE ARE VALID LINE NUMBERS"

O INPUT "ENTER A NUMBER:"5N

100 GO TO 100.0

100.0 END

21.543 A$ = NAME$

7920E12 Y = 2.0 * K

Numeric statement labels do not have to be in order. The compiler treats the labels
as strings of characters, not as numeric quantities. For example, the two labels 100
and 100.0 are distinct CBASIC statement labels. Only the first thirty-one characters
are meaningful for distinguishing one label from another.

CBASIC statements can span more than one physical line. Use the backslash char-
acter, \, to continue a CBASIC statement on the next line. The compiler ignores any
character that follows a backslash on the same line, thus providing a method of program
documentation. The backslash does not work as a continuation character if used in a
string constant. The following example demonstrates the continuation character:

IF X = 3 THEN \

PRINT "THE VALUES ARE EQUAL" \

ELSE \

GOSUB 1000

CBASIC Compiler Reference Manual 1.2 Program Structure

In most cases, you can write multiple statements on the same line. Use a colon, :,
to separate each command that appears on one line. However, the statements DIM,
IF, DATA, END, and declaration statements cannot appear on one line with other
statements. The following example demonstrates multiple statements on one line:

PRINT TAB(10)5"X": READ #13NAME$: GOTO 1000

Use comments or remarks freely to document your programs. The REM statement
allows unlimited program documentation. Use spaces freely to enhance readability of
your programs. Comments, long variable names, and blank spaces do not affect the
size of your compiled program.

End of Section 1

Section 2
Identifiers, Numbers, and

Expressions

CBASIC has three data types: integers, real numbers, and strings. CBASIC also
supports dynamic, multidimensional arrays of all three data types. Each data type has
a distinct form for identifiers. Numeric constants have several forms.

CBASIC has a large set of operators for building expressions with variables, con-
stants, and functions of the three data types. By converting from one type to another,
where necessary, CBASIC allows you to mix real and integer numbers in most expressions.

2.1 Identifiers

An identifier is a string of characters that names an element in a program. Identifiers
specify variable names and user-defined function names. An identifier can be any length.
Only the first thirty-one characters are meaningful for distinguishing one name from
another. The first character must be a letter or a question mark, the remaining characters
can be letters, numerals, or periods. The last character determines a default data type
for the individual identifier. Declarations can override the default data type (see Section

2.2).

m Identifiers ending with $ represent strings.
m Identifiers ending with % represent integers.
m Identifiers without a $ or % represent real numbers.

The compiler converts lower-case letters to upper-case unless you set toggle D.

nn
MD
N
a.
O
=)

N

2.1 Identifiers CBASIC Compiler Reference Manual

The following are examples of valid CBASIC identifiers.

AA

NEW. SUM

fileiZ.name$

Payroll,Identification.Number%

2.2 Declarations

Declarations enable you to specify the data type for a group of variables or function
names. A declaration statement consists of a data type keyword followed by a space
and a list of identifiers delimited with commas. The data type keywords are INTEGER,
REAL, and STRING. The following are examples of valid declaration statements.

INTEGER I1:J»LODP.COUNT

REAL A» AMOUNT.DUE» C

STRING NAME » PART.DESCRIP

The three preceding examples, listed in a program, form a declaration group or
block. A declaration group can contain blank lines, REM statements, COMMON
statements, and DATA statements.

You can declare common variables with the COMMON statement allowing two or
more programs to share data. Refer to the Programming Guide for instructions on
chaining. The following COMMON statement declares three common variables.

COMMON X, YA» Z$%

You can list the same variable in a declaration statement anda COMMON statement

as follows.

STRING X

COMMON X,» Y(1)

REAL Y¥(1)

6

CBASIC Compiler Reference Manual 2.2 Declarations

You can place any number of COMMON statements in a declaration group. How-
ever, you cannot use COMMON statements in the declaration group of a multiple-
line function.

To use an array identifier in a declaration statement, place the number of subscripts
in parentheses after the array name, as shown in the following examples.

INTEGER COORDINATES(2)» Y(1)

COMMON NAMES$(1)

The COORDINATES array is a two-dimensional integer array. Y is a one-dimen-
sional integer array, and NAMES$ is a one-dimensional string array. For more infor-
mation about arrays, see the DIM statement in Section 3.

2.3 Strings

Strings can contain ASCII characters or binary data. Some editors can even place
control characters in strings. Delimit string constants with quotation marks. Zero or
more characters placed between a pair of quotation marks make up a single string
constant. A string constant must fit on a single physical line. A pair of adjacent quotation
marks represents a null string. A null string contains no characters. The backslash, \,
has no special meaning inside a string constant. You can embed quotation marks in a
string constant by using two quotes to represent one, as in the following example.

The string constant

"""Hellos"" said Tom."

stores internally as the string:

"Hello," said Tom,

String constants must fit on one physical line. This means that a string constant
cannot contain a carriage return, and cannot exceed 255 characters. String variables
are more flexible. Internally, a string can have from 0 to 32,767 characters. Each

character takes up one byte. The first two bytes in the string contain the length of the
string. To build long strings, use string expressions (described later in this section),
and string functions (described in Section 3).

2.3 Strings CBASIC Compiler Reference Manual

The following are examples of valid CBASIC string constants:

"July 4, 1776"

"Enter your name please:"

hPENE"' has no special meaning inside a string."

wa (represents the null string)

2.4 Numbers

CBASIC supports two types of numeric quantities: real and integer. You can write
a real constant in either fixed format or exponential notation. In both cases, the real
number contains from one to fourteen digits, a sign, and a decimal point. In exponential
notation, the exponent is of the form Esdd, where s, if present, is a valid sign, +, -,
or blank, and where dd is one or two valid digits. The sign is the exponent sign. Do
not confuse the exponent sign with the optional sign of the mantissa. The numbers
range from 1.0E-64 to 9.9999999999999E62. Although CBASIC maintains only four-
teen significant digits, you can include more digits in a real constant. Real constants
round down to fourteen significant digits. The following are examples of real numbers.

25.00

-4529,78

1.5E+3 (equals 1500.0)

1.5E-3 (equals .0015)

CBASIC treats a constant as an integer if the constant does not contain an embedded
decimal point, is not in exponential notation, and ranges from -32,768 to +32,767.
The following are examples of integers. |

CBASIC Compiler Reference Manual 2.4 Numbers

You can express integer constants as hexadecimal or binary constants. The letter H
terminates a hexadecimal constant. The letter B terminates a binary constant. The first
digit of a hexadecimal constant must be numeric. For example, 255 in hexadecimal is
OFFH, not FFH. FFH is a valid identifier. The following are additional examples of
hexadecimal and binary representations.

labOH

010116

ÖFFFFH

10111110B

Hexadecimal and binary constants cannot contain a decimal point. The value retained
is the sixteen least-significant bits of the number specified.

In this manual, the terms real number and floating-point number are interchangeable.
The term numeric applies to either a real or integer quantity.

2.5 Variables and Array Variables

A variable in CBASIC represents an integer, a real number, or a string, depending
on the type of the identifier.

Each variable always has a value associated with it. The value can change many
times during program execution. A string variable does not have a fixed length asso-
ciated with it. Rather, as different strings are assigned to the variable, the run-time
system allocates storage dynamically. The maximum length allowed in a string variable
is 32,767 characters. Numeric variables initialize to 0. String variables initialize to a
null string.

A variable takes the general form:

identifier [(subscript list)]

2.5 Variables CBASIC Compiler Reference Manual

The following are examples of variables:

XK $

PAYMENT

day.of.derosit4

Array variables look like regular variables with an added subscript list. CBASIC
arrays can hold strings, integers, or reals. As with regular variables, the type of identifier
specifies the type of array. A subscript list specifies which element in the array to
reference. The number of subscripts allowed in a variable is implementation dependent.
See Appendix A of the Programming Guide for current values.

A subscript list takes the general form:

(subscript {,subscript})

The following examples show array variables:

v$(ikr JA sk» 1%)

COST(3»5)

POSZ(XAKISS »YAXIS%)

INCOME CAMT(CLIENTZ) »CURRENT.MONTH4)

The subscripts in a subscript list must be numeric expressions. Access to array
elements is more efficient if you use integer expressions. If the expression is real, the
value rounds to the nearest integer. The subscript list indicates that the variable is an
array variable and indicates which element of the array to reference.

Before you reference an array variable in a program, dimension the array using the
DIM statement. The DIM statement specifies the upper-bound of each subscript and
allocates storage for the array. Section 3 describes the DIM statement.

You must dimension an array explicitly; no default options are available.

Use the subscript list to specify the number of dimensions and the extent of each
dimension for the array that you declare. The subscript list cannot contain a reference
to the array. All subscripts have an implied lower-bound of zero.

10

CBASIC Compiler Reference Manual 2.6 Expressions

2.6 Expressions

Expressions consist of algebraic combinations of function references, variables, con-
stants, and operators. Expressions evaluate to an integer, real, or string value. The
following are examples of expressions.

cost + overhead * Percent

a*b/ce(l.,2+xyz)

last.name$ + ", " + first.name$

index% + 1

Table 2-1. Hierarchy of Operators

Hierarchy Operator Definition

1 () balanced parentheses
2 ” power operator

Arithmetic Operators

3 %, / multiply, divide
4 +, - plus, minus

Relational Operators

5 < LT (less than)
{= LE (less than/equal to)

> en (greater than)
>= E (greater than/equal to)
= EQ (equal to)

< > E (not equal)

Logical Operators

6 NOT

7 AND

8 OR

9 XOR

11

2.6 Expressions CBASIC Compiler Reference Manual

Arithmetic and relational operations work with integers and real numbers. An integer
value converts to a real number if the operation combines a real and integer value.
The operation then uses the two real values, resulting in a real value. This is mixed-
mode arithmetic.

Mixed-mode operations require more time to execute because the compiler generates
more code. A mixed-mode expression always evaluates to a real value.

The power operator calculates the logarithm of the mantissa if the calculation uses
real values. A warning results when the number to the left of the operator is negative
because the logarithm of a negative number is undefined. The absolute value of the
negative number is used to calculate the result. The exponent can be positive or negative.

If both values used with the power operator are either integer constants or integer
variables, CBASIC calculates the result by successive multiplications. This allows you
to raise a negative integer number to an integer power. With integers, if the exponent
is negative, the result is zero. In all cases, 0 ~ 0 is 1, and 0 * X, where X is not equal
to 0, is 0.

If the exponent is an integer but the base is real, the integer converts to a real value
before calculating the result. Likewise, if the exponent is real but the base is an integer
quantity, CBASIC calculates the result using real values.

Only the relational operators and +, the concatenation operator, work with string
variables. CBASIC does not support mixed string and numeric operations. The mne-
monic relational operators (LT, LE, etc.,) are interchangeable with the corresponding
algebraic operators (<, <=, etc.). Relational operators result in integer values. A 0 is
false and a -1 is true.

Logical operators AND, NOT, OR, and XOR operate on integer values and result
in an integer number. The result is bitwise logical. If you use a real value with logical
operators, it first converts to an integer.

12

CBASIC Compiler Reference Manual 2.6 Expressions

If a numeric quantity exceeds the range from 32,767 to -32,768, you cannot represent
it with a 16-bit two’s complement binary number. Logical operations on such a number
produce unpredictable results.

These are results of logical operations:

12 AND 3 =) 1100B AND 0101B =4

NOT -1 =) NOT 3H = -4

12 OR 3 =15 OCH OR 5H =13

12.4 XOR 3.2 =15 12.4 XOR 3.7 = 8

You can increase efficiency by using integer expressions instead of real expressions
for relational tests and logical operations.

If a series of digits contains no decimal point or ends in a decimal point, the compiler
attempts to store it as an integer. If the resulting number is in the range of CBASIC
integers, the compiler treats it as an integer. If the constant is then required in an
expression as a real number, the constant converts to a real number at run-time. For
example,

x = K + |],

causes the integer constant 1 to convert to a real value before adding it to X. To
eliminate this extra conversion, embed the decimal in the number as shown:

K = KX + 1,0

Actually, there is very little difference in execution speed. A similar situation exists
in the following statement:

YR = AL + 1,0

In this case, the X% converts to a real number before adding it to the real constant.
The result then converts back to an integer prior to assignment to Y%.

13

2.6 Expressions CBASIC Compiler Reference Manual

Generally, you should avoid mixed-mode expressions whenever possible, and do not
use real constants with integer variables. CBASIC stores most whole numbers used in
a program as integers. This provides the most effective execution.

If an overflow occurs during an operation between real values, an execution error
occurs.

End of Section 2

14

Section 3

Statements and Functions

The syntax notation in this section uses the following typographical conventions to
highlight the various elements that make up each statement and function.

m CAPS designate CBASIC Compiler keywords.
m Lower-case letters indicate variables.
m Italics identify syntactic items, such as expressions.
m Items enclosed in square brackets [] are optional.
m Items enclosed in braces { } are optional and can be repeated.

Y
nv
a
=,
O
>
Ww

All other punctuation, such as delimiters and parentheses, must be included. The
glossary in Appendix D contains general definitions of syntactic items such as expres-
sion, file specification, and label.

15

ABS Function CBASIC Compiler Reference Manual

ABS Function

The ABS function returns the absolute value of a number.

Syntax:

x = ABS(numeric expression)

Explanation:

The ABS function returns a real number. Integer expressions convert to real numbers.

Examples:

A = ABS(150)

Y = ABS(-150)

IF ABS(TEMP.A-TEMP.B) < SAFE.LIMIT THEN CALL WARN.MSG

16

CBASIC Compiler Reference Manual ASC Function

ASC Function

The ASC function returns the ASCII decimal value of the first character in a string.

Syntax:

i% = ASC(string expression)

Explanation:

ASC returns an integer between 0 and 255. The string must contain at least one character. An execution error occurs if the string expression evaluates to a null string.

Refer to Appendix B for a listing of ASCII symbols and corresponding numeric values. The inverse function of ASC is CHR$.

Examples:

PRINT ASC(A$ + B$)

 SEND% = ASC(LAST.NAMES)

IF ASC(DIGIT$) > 47 AND ASC(DIGITS) < SB \
THEN PRINT "VALID DIGITS"

17

ATN Function CBASIC Compiler Reference Manual

ATN Function

The ATN function returns the arctangent of a number.

Syntax:

x = ATN(numeric expression)

Explanation:

The ATN function is the inverse of the TAN function. ATN returns the angle,
expressed in radians, whose tangent is the expression. ATN returns a real number.

Examples:

x = ATN(.6494)

PI= 3.14159

IF ATN(N) < PI1/2.0 THEN \

PRINT "ANGLE LESS THAN 90 DEGREES"

PI = 3.14159

RADIANS = ATN(X)

DEGREES RADIANS * 180/PI

18

CBASIC Compiler Reference Manual ATTACH Function

ATTACH Function

The ATTACH function returns a Boolean integer value indicating whether or not a
specified printer is available for program use. If the printer is available, the function
attaches it to the program.

Syntax:

i% = ATTACH(printer number)

Explanation:

Use ATTACH with concurrent or multiuser operating systems. The ATTACH func-
tion returns the value that the operating system returns after attempting to attach a
specified printer. A logical false, 0, indicates that the printer is attached for program
use. ATTACH returns a logical false in systems that do not support multiple printers.

Once ATTACH attaches a printer to a program, no other program can use that
printer.

Examples:

IX = ATTACH(4)

JZ = ATTACH(PRINTER,.NOX)

IF ATTACH(PRINTER.NOZ) = TRUEX THEN GOTO MESSAGE

LPRINTER

CALL PRINT.TABLE.OF.VALUES

CALL PRINT.BAR. CHART

DETACH

19

CALL Statement CBASIC Compiler Reference Manual

CALL Statement

The CALL statement transfers program control to a multiple-line function.

CALL function name {(parameter list)}

Explanation:

The CALL statement passes parameters to and starts execution of the specified
function. The address of the statement following the CALL statement is placed on a
stack. A RETURN or FEND statement in the function sends control back to the
statement following the CALL statement.

The parameter list is a list of expressions, variables, or constants. You must separate
the expressions with commas. The number of parameters specified in a CALL statement
must match the number of formal parameters in the function definition. Parameter
data types in the CALL statement and function definition must also match. Numeric
parameters convert from integer to real, or real to integer, as required.

The CALL statement cannot reference a single-line function or a program label.
Section 4 explains how to define and use functions.

Examples:

CALL CLEAR.SCREEN

CALL FN.CALC.TOTAL(SUB%)

CALL GET.REC(FILE.NM$%+s REC.NOA + AMOUNT)

20

Ä

CBASIC Compiler Reference Manual CHAIN Statement

CHAIN Statement

The CHAIN statement loads another program into memory and starts execution.

Syntax:

CHAIN filespec

Explanation:

The CHAIN statement can load two types of programs: an overlay program gen-
erated by the linker, or a directly executable file. CHAIN can load files generated by
languages other than CBASIC. However, before you chain to an overlay file, the linker
must create that overlay and the root program at the same time.

The filespec can be a string expression, a variable, or a constant. The compiler
assumes a filetype of .OVL if not specified otherwise in the filespec. Refer to the
Programming Guide for more information on chaining modules and programs.

Examples:

CHAIN "B: AVERAGES"

CHAIN NEW, PROG$

TOTALS$ = "ACCOUNTS .OVYL"

CHAIN CDRIVE$ + TOTALS

21

CHR$ Function CBASIC Compiler Reference Manual

CHR$ Function

The CHR$ function returns a one character string. The string is a single ASCII
character that has the specified ASCII decimal value.

Syntax:

a$ = CHR$(numeric expression)

Explanation:

The expression contains the ASCII decimal value of the character. If the expression
is real, CHR$ converts it to an integer.

Refer to Appendix B for a listing of ASCII symbols and corresponding numeric
values. The ASC function is the inverse function of CHR$.

Examples:

REM BEEP THE TERMINAL

PRINT CHR$(7)

LINEFEED% = 10

PRINT CHR$(LINEFEED%)

IF CHRS(CINPCIN.PORTZ)) = "A" THEN GOSUB 100

22

CBASIC Compiler Reference Manual CLOSE Statement

CLOSE Statement

The CLOSE statement closes disk files.

CLOSE file number{ file number}

Explanation:

The CLOSE statement closes the files, releases the file numbers, and frees all buffer
space that the files used. A file must first be activated with a CREATE or OPEN
statement before using a CLOSE statement. An IF END statement assigned to a closed
file has no further effect unless you reassign the file number in a CREATE or OPEN
statement.

The file number is a unique identification number you assign to a file with the
CREATE or OPEN statement. File numbers can be any numeric expression. If file
numbers evaluate to real values, they convert to integers.

STOP statements automatically close all active files. A run-time error does not close
files.

Examples:

CLOSE 2

CLOSE 5, 12, 20

CLOSE UPDATE.FILE%,» OLD.MASTER.FILE%Z» NEW.MASTER.FILE%

23

COMMANDS$ Function CBASIC Compiler Reference Manual

COMMAND$ Function

The COMMANDS function returns a string containing the command tail used to
execute the program.

Syntax:

a$ = COMMAND$

Explanation:

A command line is the line that you enter at the keyboard telling the operating system
to run a program. A command line consists of a command keyword and an optional
command tail. The command keyword identifies the program to execute. The command
tail can contain extra information for the program such as a filename, option, or
parameter.

The COMMANDS function does not return the command keyword. COMMAND $
eliminates all blanks preceding the first character in the command tail and converts all
characters to upper-case.

You can use the COMMANDS$ function anywhere, any number of times in a pro-
gram. You can use COMMANDS$ in any CBASIC program loaded with a CHAIN
statement.

Examples:

ITF COMMANDS = "" THEN STOP

For the following command lines,

PAYROLL nochecks totals

PAYROLL NOCHECKS TOTALS

ACCOUNTS nochecks TOTALS

COMMANDS returns the string:

NOCHECKS TOTALS

24

CBASIC Compiler Reference Manual COMMON Statement

COMMON Statement

The COMMON statement specifies variables to retain in memory for use by chained
programs.

Syntax:

COMMON variablel,variable}

Explanation:

Only blank lines, REM statements, and data type declaration statements can precede
COMMON statements.

The compiler treats all COMMON statements in a program as one consecutive list
of variables. Therefore, a program can contain any number of COMMON statements.
All COMMON statements taken as a group must have the same number of variables
in each chained program. Each COMMON statement in a chained program can contain
a different number of variables if the total number of variables matches for all chained
programs. The position of each variable and data type must match in each chained
program. Dimensioned variables must have the same number of subscripts.

For array variables, place the number of subscripts in parentheses after the array
name. The COMMON statement does not indicate the size of the subscript. Be sure
to allocate array space with a DIM statement before referencing an array variable in
COMMON. The first program requiring access to the array must contain the DIM
statement. Subsequent programs can access the array without affecting the data.

If a DIM statement executes a second time for the same array, the original data is
lost. However, elements in a string array are not released from memory. Set string
array elements to null strings before reexecuting a DIM statement for the same string
array. Refer to the DIM statement for information on setting array elements to null.

Examples:

COMMON X

COMMON X, IA» AS

COMMON A$(2), BS(3) Yor 2

25

CONCHAR% Function CBASIC Compiler Reference Manual

CONCHAR% Function

The CONCHAR% function reads one character from the console keyboard and
returns the decimal ASCII representation of that character.

Syntax:

1% = CONCHAR%

Explanation:

CONCHAR% waits for a character to be entered at the console keyboard, then
displays the character on the console screen before returning the ASCII decimal value.
However, if the ASCII decimal value is less than 32, CONCHAR% does not display
the character.

The low-order eight bits of the returned value comprise the binary ASCII represen-
tation. The high-order eight bits are always zeros. The value returned is a decimal
integer. Refer to Appendix B for a listing of ASCII symbols and corresponding numeric
values. The INKEY function performs the same task that CONCHAR% performs
except INKEY does not display the character on the console screen.

Examples:

ALPHA% = CONCHARZ

IF CONCHARZ = 48 THEN GOSUB 1000

PRINT CHRS(CONCHARZ)

26

CBASIC Compiler Reference Manual CONSOLE Statement

CONSOLE Statement

The CONSOLE statement directs program output to the console screen.

Syntax:

CONSOLE

Explanation:

CBASIC maintains a special print control flag to determine whether output from a
PRINT statement is displayed on a console screen or printer. The CONSOLE and
LPRINTER statements set and reset the flag. You cannot access the print control flag
directly.

Initially, the flag is set to logical false and output from PRINT statements displays
on the console screen. LPRINTER sets the flag to logical true so information can be
printed on a list device. The CONSOLE statement resets the flag to false and redirects
output to the console screen.

The print control flag does not affect INPUT statement prompt strings. Prompt
strings always print on the console screen.

If the current output column is not 1, both CONSOLE and LPRINTER send a
carriage return line-feed prior to changing the print control flag. Refer to the LPRINTER
statement for more information.

Examples:

CONSOLE

200 CONSOLE

IF LST,REQUEST THEN LPRINTER \

ELSE CONSOLE

27

CONSTAT% Function CBASIC Compiler Reference Manual

CONSTAT% Function

The CONSTAT% function returns a logical value signifying console status.

1% = CONSTAT%

Explanation:

Use CONSTAT% to determine if the console has a ready status. Ready status means
a character has been entered at the console keyboard but has not been read by the
program. CONSTAT% returns a -1 or logical true if the console is ready. Otherwise,
CONSTAT% returns a zero or logical false.

Examples:

IF CONSTATZ THEN \

GOSUB 95 REM PROCESS OPERATOR INTERRUPT

PRINT "PRESS ANY KEY TO CONTINUE"

WHILE NOT CONSTAT%

WEND

28

CBASIC Compiler Reference Manual COS Function

COS Function

The COS function returns the cosine of a number.

Syntax:

x = COS(numeric expression)

Explanation:

All CBASIC trigonometric functions require that you specify the numeric expression
in radians. Integers convert to real numbers. The cosine value returned is a real number.

Examples:

IA = C05(3,14159)

IF COS(ANGLE) = 0.0 THEN VERTICAL% = TRUEX

PI = 3.14159

INPUT "ENTER DEGREE VALUE..."3 DEGREES

RADIANS = DEGREES * PI/180.0

A = COS(RADIANS)

29

CREATE Statement CBASIC Compiler Reference Manual

CREATE Statement

The CREATE statement creates a new disk file on disk with no information in it.

Syntax:

CREATE filespec [RECL rec length]
AS file number [BUFF number of buffers] [mode]

Explanation:

CREATE erases any preexisting file of the same name before creating the new file.
Use CREATE statements to create either stream or fixed disk files.

To make a stream file, CREATE requires a filespec and a file number. The filespec
can be a string expression, variable, or constant. The file number is a unique integer
identification number ranging from 1 to the current implementation limit for the num-
ber of files accessible at one time. Refer to Appendix A of the Programming Guide for
the current limit. Place the file number in a CREATE statement after the keyword AS.

To create a fixed file, specify the record length with the RECL parameter in addition
to the filespec and file number.

The BUFF option assigns additional internal buffers. CREATE assumes a default
value of 1 buffer if not specified otherwise. The BUFF parameter must specify 1 if you
access the file randomly.

CBASIC supports three different modes for accessing files: LOCKED, UNLOCKED,
and READONLY. Use the mode parameter under multiuser or concurrent operating
systems. If you CREATE a file in LOCKED mode, no other program or user can access
that file. UNLOCKED mode allows more than one program or user to access the
file. READONLY files allow more than one program or user to read the file. An-
other program or user cannot modify the data inside a READONLY file. You cannot
CREATE a file in READONLY mode. Use READONLY with the OPEN statement.

30

|

CBASIC Compiler Reference Manual CREATE Statement

Examples:

CREATE

CREATE

CREATE

CREATE

CREATE

"SALES.FEB" AS 1

"BsTEST.DAT" RECL 250 AS 20

ACCOUNT.MASTER$ RECL 500 AS 12 BUFF 4

"Bs" + NAMES + "," + LEFTS(STRS(CURR.WORKZA) » 3)N

AS CURR.WORKZ

"FILE,DAT" AS NUMZ BUFF (MFRE/128)

31

DATA Statement CBASIC Compiler Reference Manual

DATA Statement

The DATA statement defines a list of constants that a READ statement can assign
to variables.

Syntax:

DATA constant{,constant}

Explanation:

The constant listin aDATA statement can be any combination of integer, real, and
string constants. However, data types for the constants in the DATA statements and
the corresponding variables in the READ statements must match. Real constants assigned
to integer variables by a READ statement are truncated to the integer portion of the
real number.

DATA statements can span more than one physical line using the backslash contin-
uation character, but cannot appear on the same line with other statements. The
continuation character can appear in string constants enclosed in quotation marks.
However, string constants do not require quotation marks. Delimit each constant with
a comma or a carriage return line-feed.

DATA statements are nonexecutable statements that can appear anywhere in a
program. CBASIC treats all DATA statements in a program as one consecutive list of
constants.

See the READ and RESTORE statements for additional information.

Examples:

DATA 3» 25, 14% 8, GG» 181; 4

DATA ones two» threes G4» 5: 6,0

DATA 7.0% eights 9, 10

DATA 331,5, "VIOLET", 456.2, "BLUE", \

983.7+ "YELLOW", 614,9, "RED"

DATA "ABC\DEF"

32

CBASIC Compiler Reference Manual DEF Statement

DEF Statement

The DEF statement defines both single-line and multiple-line functions.

Single-line:

DEF function name|[(formal parameters)] = expression

Multiple-line:

DEF function name[(formal parameters)]\

[EXTERNAL or PUBLIC]
(declaration statements]

CBASIC statements

RETURN
FEND

Explanation:

A function definition must occur in a program before using the function. To define
a function, the word DEF must precede the function name.

Single-line function definitions use an equal sign followed by an expression. The
expression contains the actual process that the single-line function performs. The data
types used in the expression must correspond to the data type used in the function
name.

Multiple-line function definitions include optional data declarations and any number
of statements. A DEF statement precedes the declaration group, and a FEND statement
terminates the function. You can place any number of RETURN statements in the
body of the function. Refer to Section 4.4 for information on PUBLIC and EXTERNAL
functions.

33

DEF Statement CBASIC Compiler Reference Manual

In both cases, formal parameters hold a place for actual parameters specified in the
function reference. A formal parameter is either a string variable or numeric variable;
it is never a constant. If a formal parameter is a string variable, the actual parameter
must be a string expression. If the formal parameter is numeric, the actual parameter
must be numeric. However, real numbers convert to integers and integers convert to
real as required.

All formal parameters and any variables declared in the declaration group are local
to the function. Labels defined in a multiple-line function are local to that function.
Refer to Section 4 for complete information on defining and using functions.

Examples:

Single-line:

DEF FN25 = RND * 25.0

DEF HYPOT(SIDE1 »SIDEZ)= \

SOR((SIDEI * SIDE1) + (SIDEZ * SIDEZ))

Multiple-line:

DEF READ. INPUT(CINPUT.NOZ)

READ # INPUT.NOZ%s CUSTNOX » AMOUNT

RETURN

FEND

DEF TEST(A, B)

INTEGER TEST, C

C=A + B

D=A/ B

FEND

DEF COUNTZCINDEX14)

COUNTAZ = 0

FOR IX =1 TO INDEX1%4

COUNTZ = COUNT% + ARRAY(I%)

NEXT IA

COUNTA = COUNT?

RETURN

FEND

34

CBASIC Compiler Reference Manual DELETE Statement

DELETE Statement

The DELETE statement deactivates files from processing and erases them from the
disk directory.

Syntax:

DELETE file number{,file number}

Explanation:

The DELETE statement erases the file, releases the file number, and reallocates all
buffer space that the file used. An IF END statement assigned to the file number has
no further effect unless you reassign the file number with a CREATE or OPEN statement.

The file number is the unique identification number you assign to a file with a
CREATE or OPEN statement.

Examples:

DELETE 3

DELETE 6; 13, 18

DELETE UPDATE,FILE% » OLD.MASTER.FILEX

35

DETACH Statement | CBASIC Compiler Reference Manual

DETACH Statement

The DETACH statement deactivates a printer from program access.

DETACH

Explanation:

Use the DETACH statement with the ATTACH function under concurrent or
multiuser operating systems. The DETACH statement has no effect in systems that do
not support multiple printers.

Example:

IF ATTACH(PRINTER.NOZ%) = FALSEX THEN GO TO MESSAGE

LPRINTER

CALL TABLE.OF.VALUES

CALL BAR.CHART

DETACH

36

CBASIC Compiler Reference Manual DIM Statement

DIM Statement

The DIM statement dynamically allocates space for an array.

DIM identifier(subscript list)

Explanation:

The DIM statement reserves storage space for both numeric and string arrays and
specifies the upper-bound of each subscript. Initially, the individual elements are set
to zero in numeric arrays, and are set to null in string arrays.

The number of subscripts in the DIM statement determines the number of dimensions
in the array. The number of subscripts is limited by current implementation values.
Refer to Appendix A of the Programming Guide for the current limit. The value of
each subscript plus 1 equals the number of elements in each dimension. All subscripts
have an implied lower-bound of zero.

Each execution of a DIM statement allocates a new array. If a DIM statement for
a numeric array executes a second time, data in the first allocation is lost. You should
set each element in a string array to null before executing the DIM statement a second
time. Set array elements to null by setting the elements equal to a string variable that
is not assigned a value. Refer to the Programming Guide for information on the internal
representation of arrays.

String array elements are limited to 32,760 bytes each.

Examples:

DIM A(10)

DIM BA(50, 50, 50)

DIM NAME$(300) + ADDRESS$(300), PHONE (300)

37

END Statement CBASIC Compiler Reference Manual

END Statement

The END statement terminates a CBASIC program.

END

Explanation:

The END statement is a directive to the compiler indicating an end to the source
program. The compiler reports an error if any statements follow the END statement.

An END statement cannot appear on the same line with other statements.

The compiler adds an END statement to a program automatically if you omit it in
the source code file.

Examples:

>00 END

END

38

CBASIC Compiler Reference Manual ERR Function

ERR Function

The ERR function returns a two-character string signifying the last execution error
to occur in a program.

Syntax:

a$ = ERR

Explanation:

Use the ERR function with the ON ERROR statement and ERRL function. The
two-character string contains an execution error message as listed in Appendix D of
the Programming Guide. The ERR function returns a null string if no error has occurred
in the program at the time the ERR function executes.

You can use the ERR function any number of times in’a program.

Examples:

IF ERR = "OM" THEN \

PRINT "OUT OF MEMORY"

IF ERR = "EX" THEN \

CALL EXTENDED.ERROR(ERR)

REM IF DATA.STRINGS IS NULL» ERROR AC OCCURS

ON ERROR GOTO 100

ALPHAZ = ASC(DATA.STRINGS$)

PRINT ALPHAZ

GOTO 200

100 A$ = ERR

PRINT A$

200 END

39

ERRL Function CBASIC Compiler Reference Manual

ERRL Function

The ERRL function returns the line number in which the last execution error occurred.

Syntax:

i% = ERRL

Explanation:

You can use the ERRL function with or without the ON ERROR statement. ERRL

determines the line number of the last execution error.

ERRL returns an integer. You must compile the source program using the N toggle,

or ERRL returns a zero.

Example:

REM IF DATA,STRING$ IS NULL» ERROR AC OCCURS

ON ERROR GOTO 100

ALPHA% = ASC(DATA-.STRINGS)

PRINT ALPHAZ

STOP

100 PRINT ERRL

END

40

CBASIC Compiler Reference Manual ERRX Function

ERRX Function

The ERRX function returns the sixteen-bit MP/M II™ extended error code.

Syntax:

i% = ERRX

Explanation:

Use ERRX with the ON ERROR statement and ERR function. Execution error EX
indicates the occurrence of an MP/M II extended error. If the ERR function detects
the error EX, you can use ERRX to determine which extended error occurred. ERRX
returns an integer corresponding to an MP/M II extended error code. If an extended
error has not occurred, ERRX returns a 0. Refer to the MP/M II Operating System
Programmer’s Guide for descriptions of extended error codes.

Example:

ON ERROR GOTO CHECK.ERROR

OPEN "FILE.DAT" AS 5 READONLY

%

¢

CHECK.ERROR:

IF ERR ="EX" THEN \

PRINT "MP/M II EXTENDED ERROR...«"3 ERRX

CLOSE 5

END

41

EXP Function CBASIC Compiler Reference Manual

EXP Function

The EXP function returns the constant e raised to an exponent.

Syntax:

x = EXP(numeric expression)

Explanation:

The constant e is the base of natural logarithms equal to 2.7182. Integers convert
to real numbers. EXP returns a real number.

Examples:

x DEVIANCE / EXP(2)

2 EXP(SIN(X) * COS(Y))

42

CBASIC Compiler Reference Manual | FEND Statement

FEND Statement

The FEND statement terminates multiple-line, user-defined functions.

FEND

Explanation:

Use one FEND statement to terminate each multiple-line function definition. FEND
returns program control to the statement following the last function call or reference.

Examples:

DEF CALC.TOTAL(AZ, BR)

TOTZ = AX + BY

FEND

DEF AREA.LAND(LENGTH+ WIDTH)

AREA = LENGTH * WIDTH

PRINT "THE AREA IS..." 5AREA

RETURN

FEND

43

FLOAT Function CBASIC Compiler Reference Manual

FLOAT Function

The FLOAT function converts a number to a floating-point real number.

x = FLOAT(numeric expression)

Explanation:

A real expression first converts to an integer, then back to floating-point form.

Examples:

x = FLOAT(360)

DOLLARS = FLOAT(DOLLARSZ)

POSITION = COS(FLOAT(ANG%)) * OFFSET

44

CBASIC Compiler Reference Manual FOR Statement

FOR Statement

The FOR statement controls the execution of a FOR/NEXT loop.

Syntax:

FOR index variable = numeric expression
TO numeric expression [STEP numeric expression]

Explanation:

All statements between a FOR statement and a corresponding NEXT statement
execute repeatedly, depending on the numeric expressions. The expressions before and
after the keyword TO determine the number of loop executions. The first expression
is the initial value and the second expression is the terminating value.

Each execution of the statements in the FOR/NEXT loop adds the value in the STEP
expression to the index variable. If not specified, the STEP value defaults to 1. If the
STEP expression is positive, the value of the index variable must exceed the expression
following the keyword TO for the loop to terminate. If the STEP expression is negative,
the value of the index variable must become less than the expression following the
keyword TO for the loop to terminate.

The index variable must be a nonsubscripted numeric variable, either real or integer.
The FOR statement converts all numeric expressions to real numbers if the index
variable is real, and to integers if the index variable is an integer.

The sign of the STEP expression determines how the loop ends. If the STEP expression
is positive, the loop executes as long as the index variable is less than or equal to the
terminating value. If the STEP expression is negative, the loop executes as long as the
index is greater than or equal to the terminating expression.

FOR/NEXT loops can contain any executable statement. You can nest FOR/NEXT
loops. Refer to Appendix A of the Programming Guide for implementation limits on
FOR/NEXT loop nesting. Refer to the NEXT statement for additional information.

45

FOR Statement CBASIC Compiler Reference Manual

Examples:

FOR IX = 1 TO 10

PRINT IA 5 "TESTING CBASIC!"

NEXT 1%

FOR J = -1.0 TO -10,0 STEP -2.0

PRINT J 3 "TESTING CBASIC!"

NEXT J

FOR POSITION=MARGIN+TABS TO PAPER.WIDTH STEP TABS

PRINT TAB(POSITION)s SET. TABS

NEXT POSITION

46

CBASIC Compiler Reference Manual FRE Function

FRE Function

The FRE function returns the amount of space available in the Free Storage Area
(FSA).

Syntax:

x = FRE

Explanation:

FRE returns an integer equal to the number of bytes available in the FSA. FRE
actually returns an unsigned 16-bit binary number. Be sure to interpret the function
correctly when free space is greater than 32,767 bytes. CBASIC treats a number greater
than 32,767 as a negative number. Consequently, a negative number indicates a large
positive value. A large amount of space remains when FRE returns a negative value.

See the MFRE function for more information.

Examples:

x = FRE

PRINT X

IF FRE < 500.0 THEN PRINT "LOW MEMORY SPACE!"

47

GET Function CBASIC Compiler Reference Manual

GET Function

The GET function reads one byte of data from a specified disk file.

i% = GET(fle number)

Explanation:

Each execution ofthe GET function reads the binary data from one byte in the file
and returns an integer value between 0 and 255.

The file number is a unique identification number you assign to a file ina CREATE
or OPEN statement.

Examples:

IA = GET(3)

IF END # FILE.ND% THEN SET.EOF

WHILE NOT EOF%

CALL PROCESS(GET(FILE.NOZ%))

WEND

STOP

SET,EOF: EOF% = TRUEZ

RETURN

48

CBASIC Compiler Reference Manual GOSUB Statement

GOSUB Statement

The GOSUB statement execution to the subroutine identified with a statement label.

Syntax:

GOSUB label

GO SUB label

Explanation:

CBASIC saves the address of the statement following a GOSUB statement on a stack.
This allows a RETURN statement to send control back to the statement following the
GOSUB.

The label must be defined somewhere within the program. GOSUB statements inside
multiple-line functions cannot reference a label outside the body of the function. Like-
wise, GOSUB statements outside of a given function cannot reference a label inside
the function.

Do not place a colon after an alphabetic label reference in a GOSUB statement.

Examples:

GOSUB 10

GOSUB GET.NEXT.ONE

LPRINTER

PRINT "SPACE BEFORE TABLE OF VALUES"

GO SUB 200

PRINT "SPACE AFTER TABLE OF VALUES"

STOP

200 REM PRINT THE TABLE
FOR INDEX% = 1 TO TABLE.SIZE%

' PRINT TABLE CINDEX%)
NEXT INDEX%

RETURN

49

GOTO Statement CBASIC Compiler Reference Manual

GOTO Statement

The GOTO statement transfers execution to a statement identified with a label.

GOTO label

GO TO label

Explanation:

The GOTO statement continues execution at the statement label you specify. If the
specified statement is not executable, execution continues with the next executable
statement encountered.

The label must be defined somewhere within the program. Labels within multiple-
line functions are local to the function. GOTO statements inside multiple-line functions
cannot reference a label outside the body of the function. Likewise, GOTO statements
outside of a given function cannot reference a label inside the function.

Do not place a colon after an alphabetic label reference in a GOTO statement.

Examples:

112 GOTO 1000

GO TO 2001.5

GOTO CALCULATIONS

x: GOTO x

50

CBASIC Compiler Reference Manual IF Statement

IF Statement

The IF statement transfers execution to one of two statements or statement groups,
depending on the value of a logical expression.

Syntax:

IF logical expression THEN statement group [ELSE statement group]

Explanation:

The IF statement determines whether the expression is true (-1) or false (0). Real
numbers convert to integers. If the expression is true, execution passes to the statement
group following the keyword THEN. If the expression is false, execution passes to the
statement group following the keyword ELSE. If you omit the ELSE portion of the IF
statement, execution falls through to the next executable statement when the logical
expression evaluates to false.

A statement group can contain one or more executable CBASIC statements. Use the
colon to group statements together and the backslash continuation character to con-
tinue a statement group over several lines.

You can nest IF statements. If required, you can use empty or null statements to
force the proper pairing of an IF/THEN portion with the corresponding ELSE portion.
An ELSE corresponds to the nearest unpaired IF.

Examples:

Kk& = 100

IF K% < 150 THEN GOSUB REPEAT

IF DIMENSIONS.WANTED% THEN PRINT LENGTH» HEIGHT \

ELSE GOTO 425

IF TIME > LIMIT THEN PRINT TIME.OUT.MSG$: \

BAD. RESPONSEX = BAD.RESPONSE% + 1 : \

QUESTION = QUESTIONZ + 1 \

ELSE \

PRINT THANK.MSG$ =: \

GOSUB 2000 : \ ANALYSE RESPONSE

ON RESPONSE% GOSUB 2010, 2020 \

2030+ 2040, 2050

51

IF END Statement CBASIC Compiler Reference Manual

IF END Statement

The IF END statement transfers program execution to a specified label when a file
access exception occurs.

Syntax:

IF END # file number THEN label

Explanation:

The IF END statement detects the following three file access exceptions:

™ attempting to READ past an end-of-file
m disk or directory full when creating or writing to a file
B attempting to OPEN a file that does not exist

Control reverts to an IF END statement when one of three preceding exceptions
occurs. Program execution transfers to the statement specified by the label that follows
the keyword THEN. An IF END statement applies to the one file specified by the file
number. The file number is a unique identification number assigned to a file in a
CREATE or OPEN statement.

A program can have any number of IF END statements for the same file to transfer
execution to different labels. The most recently executed IF END statement for a given
file number is the one in effect when a file access exception occurs.

To detect access errors for a given series of statements, the IF END statement must
execute before the statements.

52

CBASIC Compiler Reference Manual IF END Statement

You can execute an IF END statement for a file number before that file number is
active. This procedure traps errors caused by opening a file that does not exist or
creating a file when there is no directory space.

Examples:

IF END #7 THEN 500

OPEN "FILE.DAT" AS 7

IF END #19 THEN 230,5

READ #195 FIRST$+ SECONDS,» THIRDS

IF END FILE.NOX THEN MESSAGE

PRINT # FILE.NO%$ FIRST%» SECOND% » THIRDS

53

INITIALIZE Statement CBASIC Compiler Reference Manual

INITIALIZE Statement

The INITIALIZE statement allows you to change diskettes and other removable
storage media during program execution without restarting the operating system.

Syntax:

INITIALIZE [numeric expression]

Explanation:

Storage media must be changed before the INITIALIZE statement executes. Never
change media while files are open on that media.

When using INITIALIZE under multiuser systems, use the numeric expression to
specify which drives to reset. INITIALIZE treats the expression as a series of binary
digits. You specify which drives to reset with a binary 1. Drives A through P correspond
to digits from right to left.

Examples:

INITIALIZE _ resets all drives

INITIALIZE 11B resets drives A and B

INITIALIZE 110B resets drives B and C

INITIALIZE 1000B resets drive D

54

CBASIC Compiler Reference Manual INKEY Function

INKEY Function

The INKEY function returns the ASCII decimal value equal to a character entered
at the console keyboard.

Syntax:

i% = INKEY

Explanation:

INKEY waits for a character to be entered at the console keyboard. Unlike the
CONCHAR% function, INKEY does not display the character on the console screen.

The low-order eight bits of the returned value comprise the binary ASCII represen-
tation. The high-order eight bits are always zeros.

INKEY is useful to prevent passwords and other special characters from printing.
INKEY accepts control characters.

Examples:

IX = INKEY

WHILE INKEY <> ESCY%
WEND

REM GET PASSWORD

PRINT "ENTER PASSWORD..."
PWS = au |

FOR I% = 1 TO PW.LENZ

PWS = PWS + CHR$(INKEY)

NEXT IA

55

INP Function CBASIC Compiler Reference Manual

INP Function

The INP function returns a value from a CPU input/output port.

Syntax:

1% = INP (numeric expression)

Explanation:

The INP function is hardware dependent and might not apply to certain micropro-
cessors. The expression must specify a valid I/O port number. CBASIC does not check
the validity of the port number.

Real numbers convert to integers. The function returns an eight-bit integer value.

Examples:

PRINT INP(ADDR%)

IF INP(255) > 0 THEN PRINT CHR$(7)

ON INP{INPUT.DEVICE.PORT%) GOSUB \

100, 200, 300, 400, 400, 400, Soo

56

CBASIC Compiler Reference Manual INPUT Statement

INPUT Statement

The INPUT statement accepts data from the console during program execution and
assigns the data to program variables.

Syntax:

INPUT [prompt string;] variable {,variable}

Explanation:

The INPUT statement prompts you for response with a question mark during pro-
gram execution. If you specify a literal prompt string, the INPUT statement prints the
string on the console screen and waits for input from the keyboard. If you specify a
null prompt string, the INPUT statement simply waits for input from the keyboard.
One blank space prints after either prompt. A prompt string must be a string constant.

Each variable initiates a request from the console screen. Each response at the console
corresponds to a variable in the INPUT statement. A warning message appears on
‚screen if the number of response items you enter does not match thenumber of variables.
You must separate individual response items with commas. However, you can enclose
string responses in quotation marks, allowing commas to serve as literal characters.
Press the carriage return key to complete a response.

All characters entered in response display on the console screen. The maximum
number of characters you can enter in response is implementation dependent. CBASIC
supports at least 255 characters in any implementation.

For numeric data entered in response to an INPUT statement, the data type converts
to the assigned variable data type. Conversion terminates if INPUT encounters an
unexpected character. INPUT does not print an error message to indicate integer
overflow.

All CP/M line-editing functions remain in effect.

Examples:

INPUT PRICES

INPUT "Please enter your last name..."5 LNAME$

INPUT "Enter three integer values." INT14» INTZ2%A + INTSZ

57

INPUT LINE Statement CBASIC Compiler Reference Manual

INPUT LINE Statement

The INPUT LINE statement accepts one line of data from the console and assigns
it to a string variable.

Syntax:

INPUT [prompt string;] LINE string variable

Explanation:

The INPUT LINE statement is a special form of the INPUT statement. Only one
variable can appear following the keyword LINE. INPUT LINE prompts you for
response with a question mark during program execution unless you specify a literal
prompt string.

INPUT LINE accepts all characters in response, including commas and spaces, until
you press the carriage return key. If you enter only a carriage return in response,
INPUT LINE assigns a null string to the variable.

The maximum length of a line is 255 characters. All CP/M line-editing functions
remain in effect.

Examples:

INPUT LINE CHARACTERS$

INPUT "Please enter your address."s LINE ADDRS

INPUT "Type RETURN to continue..." LINE DUMMY$

58

CBASIC Compiler Reference Manual INT Function

INT Function

The INT function returns the integer portion of anumber as a floating-point number.

x = INT (numeric expression)

Explanation:

INT truncates the fractional portion of the expression. Integer numbers convert to
real numbers. INT returns a real number.

Examples:

x = INT(322,50)

REFUND = INT(TAXES - CONSTANT)

IF (NUM/2) - INT{NUM/2) = O THEN \

PRINT "EVEN" ELSE PRINT "ODD"

59

INT% Function CBASIC Compiler Reference Manual

INT% Function

The INT% function returns the integer portion of a number as an integer.

i% = INT% (numeric expression)

Explanation:

INT% truncates the fractional portion of the expression. Integers first convert to
real numbers then back to integer form. INT% returns an integer.

Examples:

IX = INTZ(452.25)

LENGTH% = 12 * INTAC FEET) + INCHESA

REFUND = INTZ(TAXES - CONSTANT)

60

CBASIC Compiler Reference Manual INTEGER Statement

INTEGER Statement

The INTEGER statement is a declaration statement that specifies the integer data
type for variables and function names.

Syntax:

INTEGER identifier[,identifier]

Explanation:

Use INTEGER statements in the declaration group of a program or multiple-line
function. Declaration statements override the default data type specified with the last
character in an identifier.

To use an array identifier in an INTEGER statement, place the number of subscripts
in parentheses after the array name.

Refer to Section 2 for more information on declarations and identifiers.

Examples:

INTEGER IA

INTEGER I; J» K

INTEGER COORD(2),» I(1)

STRING NAMES$(1)

61

LEFT$ Function CBASIC Compiler Reference Manual

LEFT$ Function

The LEFT$ function returns a string consisting of the leftmost characters in a string.

Syntax:

a$ = LEFT$ (string expression, numeric expression)

Explanation:

The numeric expression is a positive value specifying the number of characters to
return. If the numeric expression is negative, an error occurs. Real expressions convert
to integers. LEFT$ returns a null string if the numeric expression equals zero. LEFT$
returns the entire string if the numeric expression specifies more characters than the
string contains.

Examples:

AS = LEFT$("GOOGDXXXXX", 4)

PRINT LEFT$(INPUT.DATA$, GOODY)

IF LEFT$(ANSWER$» 1) = "Y" THEN GOTO CONTINUE

62

CBASIC Compiler Reference Manual LEN Function

LEN Function

The LEN function returns the length of a string.

1% = LEN (string expression)

Explanation:

The LEN function returns an integer. LEN returns zero if the expression is a null
string.

Examples:

IX = LEN("645 BAYVIEW AVENUE")

IF LEN(TEMPORARY$) > 25 THEN \

PRINT "LIMIT ENTRY TO 25 CHARACTERS"

FOR INDEX% = 1 TO LEN(DBJECT$)

NUMACINDEX%) = ASC(MID$(OBJECT$,INDEXA »1))

NEXT INDEX%

63

LET Statement CBASIC Compiler Reference Manual

LET Statement

The LET statement assigns a value to a variable.

[LET] variable = expression

Explanation:

The keyword LET is optional.

Variables and expressions can be strings, real numbers, or integers. For numeric
expressions and variables, the LET statement converts the data type of the expression
to match the data type of the variable.

Examples:

100 LET A = B+eC

SALARY = (HOURS.WORKED * RATE) - DEDUCTIONS

DATES MONTHS + " " + DAYS + " " +YEAR$

S(1%) TCIZ) + UCT“) - MW

64

CBASIC Compiler Reference Manual LOCK Function

LOCK Function

The LOCK function prevents any program from modifying the data in a record.

Syntax:

i% = LOCK(fle number, record number)

Explanation:

The LOCK function returns the value that the operating system returns after attempt-
ing to lock a record. Normally, a zero indicates that the record is locked. LOCK
returns a value of zero in systems that do not support record locking.

To LOCK a record, the file must be a fixed file accessed in the UNLOCKED mode.
Refer to the UNLOCK function, CREATE statement, and OPEN statement for more
information.

Examples:

IA = LOCK(20,3)

IF LOCK(6 30) > 0 THEN GOTO LOCK.ERROR.MSG

FOR J% = 1 TO 10

KA = LOCK(11:J%)

PRINT KZ

NEAT J%

65

LOG Function CBASIC Compiler Reference Manual

LOG Function

The LOG function returns the natural logarithm of a number.

Syntax:

x = LOG (numeric expression)

Explanation:

LOG returns the natural logarithm as a real number. Integer expressions convert to
real numbers. The expression must be a positive value greater than zero.

Examples:

x = LOG(266,72)

PRINT "The logarithm ="$ LOG(VYALUEYX)

IF LOG(VALUE) > TOLERANCE% THEN GOSUB NEWDATA

66

CBASIC Compiler Reference Manual LPRINTER Statement

LPRINTER Statement

The LPRINTER statement directs program output to a printer.

LPRINTER

_ Explanation:

CBASIC maintains a special print control flag to determine whether output from
a PRINT statement displays on a console screen or printer. The LPRINTER and
CONSOLE statements set and reset the flag. You cannot access the print control flag
directly. |

Initially, the flag is set to logical false and output from PRINT statements display
on the console screen. LPRINTER sets the flag to logical true so information is sent
to the printer. The CONSOLE statement resets the flag to false and redirects output
to the console screen.

The print control flag does not affect INPUT statement prompt strings. Prompt
strings always print on the console screen.

If the current output column is not 1, both LPRINTER and CONSOLE send a
carriage return line-feed prior to changing the print control flag. See the CONSOLE
statement.

Examples:

S00 LPRINTER

LPRINTER

PRINT "A table of relative values follows."

PRINT

PRINT TABLE .VALUES

IF DOCUMENT.FILEX THEN LPRINTER

67

MATCH Function CBASIC Compiler Reference Manual

MATCH Function

The MATCH function returns the position of the first occurrence of a specified
character pattern in a string.

Syntax:

1% = MATCH (pattern string, string expression, numeric expression)

Explanation:

MATCH searches the string expression for a series of characters that matches the
pattern defined in the pattern string. The numeric expression specifies a position in the
string expression to begin searching.

The pattern string contains a series of letters and digits, plus the following wildcard
matching characters, which represent different classes of characters.

represents any digit
! represents any lower-case or upper-case letter
? represents any character

MATCH returns a zero if either the pattern string or string expression is a null
string.

The backslash is an escape character in the pattern string. Any character after the
backslash is literal, and does not serve as a wildcard character.

Examples:

MATCH("is"+ "Now is the time!"+ 1) returns the position 5

MATCH(" ##", "October G» 1982"s 1) returns 12

MATCH("a?"» "character"»s A) returns 5

MATCH("\#" 5 "1#22345#6789", 3) returns 7

MATCH("ABCD" + "ABC", 1) returns 0

68

CBASIC Compiler Reference Manual MFRE Function

MFRE Function

The MFRE function returns the largest contiguous area of available memory space
in the Free Storage Area (FSA).

Syntax:

i% = MFRE

Explanation:

MFRE returns an integer equal to the largest number of contiguous bytes available
in the FSA. MFRE returns an unsigned 16-bit binary number. Be sure you interpret
the function correctly when the amount of contiguous free space is greater than 32,767
bytes. CBASIC treats a number greater than 32,767 as a negative number. Therefore,
a negative number actually indicates a large positive value. When MFRE returns a
negative value, a large contiguous segment of space remains in memory.

MERE returns an integer that is less than or equal to the value returned by the FRE
function. The FRE function returns the total amount of unallocated space in the FSA
whether or not it is contiguous. Refer to the Programming Guide for a description of
the Free Storage Area.

Examples:

PRINT "CHECK POINT #1"5 MFRE

IF MFRE < A,SIZE%X THEN \

PRINT "CANNOT DIMENSION ARRAY!"

WHILE MFRE > MINZ

CALL ALLOCATE.MORE

WEND

69

MID$ Function CBASIC Compiler Reference Manual

MID$ Function

The MID$ function returns a segment of a string.

Syntax:

A$ = MID$ (string expression, numeric expression,

numeric expression)

Explanation:

The first numeric expression specifies a position that determines the first character
to return from the original string. MID$ returns a null string if the first numeric
expression is greater than the length of the string. The second numeric expression
specifies the length of the string segment to return. MID$ returns all characters to the
right of the first character specified in the first numeric expression, if the second numeric
expression is greater than the number of characters to the right of the first character.
The function converts real numbers to integers.

Examples:

DIGITS$ = MID$SC"TOMAHAWKZSSIK", 9: 4)

VALID$ = MIDS(LISTING$,» POS%, 1)

DAYS = MID#$("MONTUEWEDTHUFRISATSUN":+s DAY%*3-2, 3)

70

CBASIC Compiler Reference Manual MOD Function

MOD Function

The MOD function returns the remainder from an integer division.

Syntax:

1% = MOD(numeric expression, numeric expression)

Explanation:

The MOD function divides the first expression by the second and returns the remain-
der. Real numbers convert to integers. MOD returns an integer value.

Examples:

IX = MOD(J%» K%)

IF MOD(L%» MAX%) <> O THEN \

PRINT "NOT DIVISOR"

71

NEXT Statement CBASIC Compiler Reference Manual

NEXT Statement

The NEXT statement denotes the end of a FOR/NEXT loop.

NEXT [index variable]

Explanation:

If specified, the index variables after the keyword NEXT must match the index
variables in the corresponding FOR statement. The NEXT statement sends control to
the beginning of the FOR/NEXT loop until the termination criteria for the loop is met.
Refer to the FOR statement for additional information.

Examples:

FOR IA = 1 TO 10

PRINT X(1%)

NEXT IA

FOR LOOP% = 1 TO ARRAY.SIZE%
GO SUB 210

GO SUB 410

NEXT

72

CBASIC Compiler Reference Manual ON Statement

ON Statement

The ON statement transfers program execution to one of a number of labels. The
ON statement has two forms.

Syntax:

ON numeric expression GOTO label{, label}
ON numeric expression GOSUB label{,label}

Explanation:

The numeric expression determines where to transfer program execution. If the
expression evaluates to 1, ON branches to the first label. If the expression evaluates
to 2, ON branches to the second label and so forth. However, if the numeric expression
evaluates to a number less than one or greater than the number of labels, the results
are unpredictable. Always test the value of the numeric expression before executing
an ON statement. Real number expressions convert to integers.

When using the ON statement with a GOSUB, the RETURN statement in the sub-
routine returns execution to the first executable statement following the ON statement.

There is no limit to the number of labels allowed in an ON statement. A label can

appear anywhere in a program in relation to the ON statement except in a multiple-
line function.

73

ON Statement CBASIC Compiler Reference Manual

Examples:

ON IX GOTO 10, 20, 30

ON RESULT% - 1 GOSUB 290, 620, 1000, 110

WHILE TRUE%

GOSUB 100 REM ENTER PROCESS DESIRED
GOSUB 110 REM TRANSLATE PROCESS NUMBER
IF PROCESS.DESIRED% = 0 THEN REPEAT
IF PROCESS.DESIRED% < 6 THEN \

ON PROCESS.DESIRED% GOSUB \

1000, \ ADD A RECORD

1010, \ ALTER NAME

1020, \ UPDATE QUANTITY

1030,» \ DELETE A RECORD

1040 \ CHANGE COMPANY CODE

1050 = \ GET PRINTOUT

ELSE GOSUB 400 REM ERROR - REPEAT
WEND

74

CBASIC Compiler Reference Manual ON ERROR Statement

ON ERROR Statement

The ON ERROR statement branches execution to a label upon detection of an
execution error.

Syntax:

ON ERROR GOTO label

Explanation:

Program control reverts to an ON ERROR statement when an execution error occurs
in a program following the ON ERROR statement. If you use more than one ON
ERROR statement in a program, the last one to execute remains in effect.

Do not use an ON ERROR statement in a multiple-line function. If you return from
a multiple-line function using an ON ERROR statement, the return address is lost
because the stack is reset. You can use the ON ERROR statement with the ERR and
ERRL functions.

Example:

REM IF DATA,STRING$ IS NULL» ERROR AC OCCURS

ON ERROR GOTO 100

ALPHAZ = ASC(DATA.STRINGS)

PRINT ALPHAZ

GOTO 200

100 A$ = ERR

PRINT A$

IX = ERRL

PRINT IA

200 END

75

OPEN Statement CBASIC Compiler Reference Manual

OPEN Statement

The OPEN statement opens an existing disk file for reading or updating.

Syntax:

OPEN “‘filespec” [RECL rec length]
AS file number [BUFFnumber of buffers] [mode]

Explanation:

Use OPEN statements to open both stream and fixed disk files. If you specify a file
that does not exist, the program detects an end-of-file condition.

To open an existing stream file, OPEN requires a filespec and a file number. The
filespec can be a string expression, a variable, or a constant. The file number is a unique
integer identification number ranging from 1 to the current implementation limit for
the number of files accessible at one time. Refer to Appendix A of the Programming
Guide for current limits. Place the file number in an OPEN statement after the keyword
AS.

To access an existing fixed file, you must specify the fixed record length with the
RECL parameter in addition to the filespec and file number. Assign the same record
length that you assigned in the original CREATE statement.

The BUFF option assigns additional internal buffers. OPEN assumes a default value
of one buffer if not specified otherwise. BUFF must specify 1 if you access a file
randomly.

CBASIC supports three different modes for accessing files: LOCKED, UNLOCKED,
and READONLY. Use the mode parameter under multiuser or concurrent operating

systems. If you OPEN a file in LOCKED mode, no other program or user can access
that file. UNLOCKED mode allows more than one program or user to access the file.
READONLY files allow more than one program or user to read the file. Another
program or user cannot modify the data inside a READONLY file.

76

CBASIC Compiler Reference Manual OPEN Statement

Examples:

OPEN "SALES.APR" AS 2

OPEN "B: QUESTION.DAT" RECL 300 AS 18

OPEN ACCOUNT.MASTERS AS 12 BUFF 4

OPEN "B:" + NAMES + "." + LEFTS(STRS(CURR.WORK%) » 3)
AS CURR.WORKYS

77

OUT Statement CBASIC Compiler Reference Manual

OUT Statement

The OUT statement sends an integer value to a specified CPU output port.

OUT numeric expression, numeric expression

Explanation:

The OUT function is hardware dependent and might not apply to certain micro-
processors. The first expression must specify a valid output port number. CBASIC does
not check the validity of the port number. The second expression specifies an eight-
bit integer value to send.

Real numbers convert to integers.

Examples:

OUT 1» 58

OUT 3» 80H

OUT FRONT.PANEL% » RESULTS

OUT PORTZ(SELECTEDZ) + ASC("S$")

78

|

CBASIC Compiler Reference Manual PEEK Function

PEEK Function

The PEEK function returns the contents of a memory location.

i% = PEEK (numeric expression)

Explanation:

The expression must evaluate to an absolute address for the computer you use.
CBASIC does not check the validity of this memory address.

PEEK converts real-number expressions to integers.

Examples:

IX = PEEK(250)

CONTENTS% = PEEK(MEM,ADDR%)

FOR INDEX% = 1 TO PEEKZ(BUFFERZ)

IN.BUFFER$(INDEX%) = CHRS(PEEKZ(BUFFERZ+INDEXZ))

NEXT INDEX%

73

POKE Statement CBASIC Compiler Reference Manual

POKE Statement

The POKE statement stores one byte of data into a memory location.

Syntax:

POKE numeric expression, numeric expression

Explanation:

The first expression must evaluate to an absolute memory address for the computer
you use. CBASIC does not check the validity of this memory address.

The second expression specifies the value to store. POKE converts this value into a
one-byte integer.

Examples:

POKE 135, 54

POKE 1700, ASC("$")

FOR LOCX = 1 TO LEN(OUT.MSG$)

POKE MSG.LOC%+LOC%+ ASC(MIDS (OUT. MSGS +LOC% +1))
NEXT LOC%

80

CBASIC Compiler Reference Manual POS Function

POS Function

The POS function returns the next column position to be printed on the console or
printer.

Syntax:

1% = POS

Explanation:

POS returns the next output column for either the console or printer, depending on
which output mode is in effect. POS determines the number of characters and spaces
output to the console or printer since the last carriage return. POS returns that total
plus 1 to indicate the next column available for output.

POS returns inaccurate values if you output cursor control characters or backspace
characters.

Examples:

PRINT "The print head is at column: "3 POS

IF (WIDTH.LINE - POS) X 15 THEN GOSUB LINEFEED

81

PRINT Statement CBASIC Compiler Reference Manual

PRINT Statement

The PRINT statement outputs data to the console or printer.

Syntax:

PRINT [expression{delimiter,;expression}delimiter]|

Explanation:

PRINT outputs expressions to the console unless the LPRINTER statement is in
effect. 3

Use any number of expressions with the PRINT statement; delimit each expression
with a comma or semicolon. The comma tabs to the next column that is a multiple of
20 before the next expression prints. The semicolon allows expressions to print con-
tinuously on a line with no spaces in between. However, numeric expressions are

always separated by one space.

The keyword PRINT with no expression list outputs a carriage return line-feed. The
PRINT statement sends a carriage return line-feed after each execution unless a comma
or semicolon follows the last expression.

Refer to Section 5 for more information on input and output.

Examples:

PRINT "This Program calculates total profits."

PRINT QUANTITYZ+» PRICE» QUANTITY% * PRICE

PRINT "Today’s date is: "3 MONTH$s " "5 DAY%Zs " "3 YEARZ

82

CBASIC Compiler Reference Manual PRINT USING Statement

PRINT USING Statement

The PRINT USING statement allows you to specify special formats for output data.
The PRINT USING # variation directs formatted output to a disk file.

Syntax:

PRINT USING format string;[#file number,[rec number];)
expression {,expression}

Explanation:

The format string is a model for the output. A format string contains data fields and
literal data. Data fields can be numeric or string types. Any character in the format
String that is not part of a data field is a literal character. Format strings cannot be
null strings. Table 3-1 describes characters that have special meaning in format strings.

Table 3-1. Special Characters in Format Strings

Character Meaning

! single-character string field

8 variable-length string field

/ fixed-length string field delimiter

* digit position in numeric field

“% asterisk fill in numeric field

$$ float a $ in numeric field

j decimal point position in numeric field

- leading or trailing sign in numeric field

exponential position in numeric field

’ place comma every third digit before decimal point

\ escape character

83

PRINT USING Statement CBASIC Compiler Reference Manual

The expression list tells which variables hold the data to be formatted. Separate each
variable with a comma or semicolon. The comma does not cause automatic tabbing
as it does with unformatted printing. PRINT USING matches each variable in the list
with a data field in the format string. If there are more expressions than there are fields
in the format string, execution is reset to the beginning of the format string.

While searching the format string for a data field, the type of the next expression in
the list, either string or numeric, determines which data field to use. Section 5.3 has
additional information on formatted printing.

Examples:

PRINT USING "“###" $5 IX

ST$= "Total amount due is $$# ,##8, ne"

PRINT USING STs TOTAL.DUE

PRINT USING "! I I"5 #155 "ALPHA", "BETA", "GAMMA"

84

CBASIC Compiler Reference Manual PRINT #Statement

PRINT # Statement

The PRINT # statement outputs data to a disk file.

Syntax:

PRINT # file number|,rec number|;expression
{,expression}

Explanation:

The PRINT # statement writes expressions to the file specified by the file number.
Each PRINT # statement executed creates a single record. Each expression used in the
PRINT # statement creates a single field.

Use any number of expressions with the PRINT # statement and separate each one
with a comma.

You can specify a random access record number for files that have a fixed record
length. However, the amount of data written to fixed-length records must not exceed
the record length specified in the RECL parameter in the CREATE or OPEN statement.
You must add two bytes for the carriage return line-feed when determining the amount
of data you can print to a record. Record numbers start with one, not zero.

Refer to Section 5 for more information on using disk files.

Examples:

CREATE "FILE.1" AS 1
A$ = "FIELD.ONE"
BY = "22222"

PRINT #15 A$, BZ

REM STORE CURRENT VALUE IN RECORD 5

OPEN "UPDATE.DAT" RECL 10 AS 15

INPUT "Enter current value."s VALUES

PRINT #155955 VALUE

85

PUT Statement CBASIC Compiler Reference Manual

PUT Statement

The PUT statement writes one byte of data to a specified disk file.

Syntax:

PUT file number expression

Explanation:

Each execution of the PUT statement writes binary data for one byte to the file.

The expression can be any value between 0 and 255. Real expressions convert to
integers. The file number is a unique identification number you assign to a file in a
CREATE or OPEN statement.

Examples:

PUT 3, 255

PUT 20, ALPHAZ

86

CBASIC Compiler Reference Manual RANDOMIZE Statement

RANDOMIZE Statement

The RANDOMIZE statement seeds the random number generator for use with the
RND function.

Syntax:

RANDOMIZE

Explanation:

An INPUT statement must precede any RANDOMIZE statement if your operating
system does not support a time-of-day function. During program execution, the amount
of time it takes a user to respond to the INPUT statement serves as a variable to seed
the random number generator. |

See the RND function for more information.

Examples:

INPUT “Type any character to continue."$ LINE A$

RANDOMIZE

87

READ Statement CBASIC Compiler Reference Manual

READ Statement

The READ statement sequentially assigns the constants in a DATA statement to
variables.

Syntax:

READ variable {,variable}

Explanation:

CBASIC maintains a pointer to keep track of the next constant in the DATA statement
constant list. Each time a READ statement executes, READ assigns a constant in the
DATA statement to the next variable in the READ statement. Then, READ sets the

pointer to the next constant in the DATA statement. A compiler error occurs if the
READ statement attempts to read past the last constant.

READ statements must assign each constant to a variable with a matching data type.
If the data types do not correspond, the READ statement might assign an unexpected
value to a variable.

Refer to the DATA and RESTORE statements for further information.

Examples:

DATA 1» 2% 3.90

READ FIRST%A » SECOND% » THIRD

FOR IA = 1 T0 5

READ NAMES$

NEXT IA

DATA "BROWN" , "BAILEY" + "JOHNSON" |

DATA "ERICSON", "PRINCE"

88

CBASIC Compiler Reference Manual READ # Statement

READ # Statement

The READ # statement reads data fields from a specified disk file into variables.

Syntax:

READ # file number|,rec number variable
{ variable}

Explanation:

The READ # statement reads expressions from a disk file specified by the file number.
The file number is a unique identification number assigned to a file in the CREATE or
OPEN statement. [File numbers are limited by the current implementation value for
the number of files allowed open at one time.] Each READ # statement executed reads
data sequentially, field by field, into the variables. READ # assigns one field of data
to each variable. When reading a fixed file, the number of variables in the READ #
statement must be less than or equal to the number of fields in each record.

You can specify a random access record number for files that have a fixed record
length. Record numbers start with one, not zero.

Refer to Section 5 for more information on using disk files.

Examples:

OPEN "B: FILE.DAT" AS 8

WHILE NUMBER.OF.FIELDSA

READ #8; FIELDS$

PRINT FIELDS%A

NUMBER .OF,.FIELDS% = NUMBER.OF,FIELDS%A - 1

WEND

REM READ RECORD 3...FIELDS ONE AND TWO

IF END # 15 THEN 700

OPEN "FILE.1" AS 15

READ #15,» 35 FIELD1$» FIELD2%

89

READ # LINE Statement CBASIC Compiler Reference Manual

READ # LINE Statement

The READ # LINE statement reads one complete line of data from a file and assigns
the information to a string variable.

Syntax:

READ # file number, [record number]; LINE string variable

Explanation:

You can use only one variable after the keyword LINE. The variable must be a string
variable.

The READ # LINE statement can read records accessed sequentially or randomly.

Examples:

READ #FILE.NO4%’;s LINE DS

READ #F%,» RECA: LINE %$

90

CBASIC Compiler Reference Manual REAL Statement

REAL Statement

The REAL statement is a declaration statement that specifies a real number data
type for variables and function names.

Syntax:

REAL identifier [,identifier]

Explanation:

Use REAL statements in the declaration group of a program or multiple-line function.
Declaration statements override the default data types specified with the last character
in an identifier.

To use an array identifier in a REAL statement, place the number of subscripts in
parentheses after the array name.

Refer to Section 2 for more information on declarations and identifiers.

Examples:

REAL X

REAL Ky Yo 2

REAL COORD(2)» X

STRING NAMES$(1)

91

REM Statement CBASIC Compiler Reference Manual

REM Statement

The REM statement documents a source program to improve readability.

REM any characters carriage return

REMARK any characters carriage return

Explanation:

The REM statement allows program documentation. REM statements do not affect
the size of a compiled program. Adding comments to a program with the REM state-
ment makes the program easier to understand and maintain. The compiler ignores
everything that follows the keywords REM or REMARK on a physical line.

The continuation character allows a remark to span more than one physical line.
The REM statement can appear on the same line with other statements, but must be
the last statement on a logical line. A colon is not required to separate the REM from
executable statements. |

Examples:

REM THIS IS A REMARK

remark this is also a remark

TAX = 0,15 * INCOME REM LOWEST TAX RATE

REM THIS SECTION CONTAINS THE \

TAX TABLES FOR CALIFORNIA

92

CBASIC Compiler Reference Manual RENAME Function

RENAME Function

The RENAME function allows you to change the name of a disk file during program
execution.

Syntax:

i% = RENAME (flespec,filespec)

Explanation:

The first filespec is the new name assigned to the file. The second filespec is the file
to rename. The RENAME function returns an integer value. RENAME returns a -1 if
the function is successful and a 0 if the function fails. Assigning a file a name that
already exists causes an execution error.

Be sure to close a file before renaming it. Otherwise, when files automatically close
at the end of processing, CBASIC tries to close the renamed file under the old name
but cannot find it.

Examples:

DUMMY% = RENAME("PAYROLL.MST"» "PAYROLL. $$$")

IF RENAME(NEWFILE$» OLDFILE$) THEN RETURN

93

RESTORE Statement CBASIC Compiler Reference Manual

RESTORE Statement

A RESTORE statement allows rereading of the constants in DATA statements.

Syntax:

RESTORE

Explanation:

A RESTORE statement repositions the DATA statement pointer to the beginning of
the DATA statement constant list. Use a RESTORE statement to reread the constants
in the DATA statements. The CHAIN statement automatically executes a RESTORE
Statement.

Refer to the DATA and READ statements for more information.

Examples:

“00 RESTORE

IF END.OF.DATAZ THEN RESTORE

94

|

CBASIC Compiler Reference Manual RETURN Statement

RETURN Statement

The RETURN statement transfers control from a subroutine back to the calling
program.

Syntax:

RETURN

Explanation:

The RETURN statement transfers execution of a program to the location saved on
top ofthe return stack. The subroutine callcan be aGOSUB statement, an ON...GOSUB
statement, or a call to a multiple-line function. |

RETURN passes a value back to the main program when returning from a multiple-
line function.

Examples:

200 RETURN

IF ANSWER.VALID%Z THEN RETURN

95

RIGHT$ Function CBASIC Compiler Reference Manual

RIGHT$ Function

The RIGHT$ function returns a string consisting of the rightmost characters in a
string.

Syntax:

a$ = RIGHT$(string expression,numeric expression)

Explanation:

The numeric expression is a positive value specifying the number of characters from
the string expression to return. If the numeric expression is negative, an execution error
occurs. Real expressions convert to integers. RIGHT$ returns a null string if the numeric
expression equals zero. RIGHT$ returns the entire string if the numeric expression
specifies more characters than the string contains.

Examples:

IF RIGHT$(ACCOUNT.NO$ »1) = "O" THEN \

TITLE,ACCT% = TRUE

NAMES = RIGHTS (NAMES »+LEN(NAMES) -LEN(FIRST.NAMES))

96

CBASIC Compiler Reference Manual RND Function

RND Function

The RND function generates and returns a random number.

Syntax:

x = RND

Explanation:

RND returns a uniformly distributed random number between 0 and 1. The
RANDOMIZE statement seeds a random number generator to avoid identical sequences
of random numbers. RND returns a real number.

Refer to the RANDOMIZE statement for further information.

Examples:

DIEX=INTZCRND#*6,)+1

IF RND > .5 THEN \

HEADS% = TRUEZ\

ELSE \

TAILS% TRUEX

97

SADD Function CBASIC Compiler Reference Manual

SADD Function

The SADD function returns the address of a specified string.

i% = SADDS& (string variable)

Explanation:

Strings are stored as a sequential list of ASCII characters. The first two bytes hold
the length of the string followed by the actual ASCII values. The length is stored as
an unsigned binary integer. SADD returns an integer equal to the address of the first
byte of the length.

If the expression is a null string, SADD returns a zero.

Examples:

The following statements place the address of STRING$ into the address stored in
PARM.LOC%:

POKE PARM.LOCZ »SADD(STRING$) AND OFFH

POKE PARM.LOCA+1,SADD(STRING$) /256

98

CBASIC Compiler Reference Manual SGN Function

SGN Function

The SGN function returns an integer value representing the algebraic sign of a
number.

Syntax:

i% = SGN(numeric expression)

Explanation:

SGN returns a -1 if the expression is negative, a 0 if the expression is zero, and a
+1 if the expression is greater than zero.

Real number expressions convert to integers.

Examples:

IF SGN(BALANCE) <> © THEN \

OUTSTANDINGBAL’ = TRUEZ

IF SGN(BALANCE) = -1 THEN \

OVERDRAWNZ = TRUEZ

99

SHIFT Function CBASIC Compiler Reference Manual

SHIFT Function

The SHIFT function returns an integer that is arithmetically shifted a specified number
of positions to the right.

Syntax:

i% = SHIFT(numeric expression, numeric expression)

Explanation:

The first expression specifies the value that the function shifts. The second expression
specifies the number of positions to shift the value in the first expression to the right.
SHIFT returns a O if the second expression is greater than 15.

The function shifts arithmetically. SHIFT divides the value in the first expression by.
2 for each position shifted to the right. The function retains the arithmetic sign of the
first expression after a shift. Therefore, if the first expression is positive, zeros shift
into the high-order positions. When the value is negative, ones shift into the high-order
positions.

Examples:

SHIFT (12345, 3)

SHIFT (FFHs 2)

SHIFT (1011011B, 1)

100

CBASIC Compiler Reference Manual SIN Function

SIN Function

The SIN function returns the sine of a number. :

x = SIN(numeric expression)

Explanation:

The SIN function assumes the expression is an angle in radians. Integers convert to
real numbers. The sine value returned is a real number.

Examples:

FACTOR(Z) = SIN(A - B/C)

IF SIN(ANGLE/(2.0 * PI)) = 0,0 THEN \
PRINT "HORIZONTAL"

101

SIZE Function CBASIC Compiler Reference Manual

SIZE Function

The SIZE function returns the number of 1-kilobyte blocks in a specified file.

i% = SIZE(filespec)

Explanation:

The filespec can specify ambiguous filenames if your operating system supports
ambiguous references.

The SIZE function returns the number of bytes allocated for all files specified in the
filespec, divided by 1024.

The SIZE function returns an unsigned integer.

Examples:

SiZEC NAMES. BAK")

SEIZE (COMPANYS + DEPTS + ".NEW")

SIZE CU#.#")

SITZE("*,BAS")

REM TESTING FOR ENOUGH SPACE

SIZE.OF,.OUTPUTA = 1,25 * SIZE("A: INPUT")

PFREE,BLOCKSY = 241 - SIZE("Bs#.#")

IF FREE.BLOCKSZ «= SIZE.OF.OUTPUT% THEN \

ENOQUGH.ROOMZ = FALSE” \

ELSE ENOUGH. ROOM’ = TRUEZ

KE TURN

102

CBASIC Compiler Reference Manual SQR Function

SQR Function

The SQR function returns the square root of a number.

x = SQR(numeric expression)

Explanation:

SQR returns a real number. Integers convert to real numbers. If the expression is
negative, an execution error occurs.

Examples:

HYPOT = SOR((SIDE1*2.0)+(SIDE2*2,0))

PRINT USING \
"THE SOR ROOT OF X IS: ####,#8"5 SOR(X)

103

STOP Statement CBASIC Compiler Reference Manual

STOP Statement

A STOP statement terminates program execution and returns control to the operating
system.

Syntax:

STOP

Explanation:

The STOP statement closes all open files and returns control to the operating system.
Any number of STOP statements can appear in a program.

Examples:

400 STOP

IF STOP.REQUESTED THEN STOP

104

CBASIC Compiler Reference Manual STR$ Function

STR$ Function

The STR$ function converts a number to a string.

Syntax:

a$ = STR$(numeric expression)

Explanation:

STR$ converts the expression to a string of characters identical to the digits in the
expression. STR$ deletes the blank space that follows a number. Integers convert to
real numbers.

Examples:

PRINT STR$(NUMBER)

IF LEN(STR$(VALUE))>S5 THEN EDS="saraataeae a"

105

STRING Statement CBASIC Compiler Reference Manual

STRING Statement

The STRING statement is a declaration statement that specifies a string data type
for variables and function names.

Syntax:

STRING identifier | identifier]

Explanation:

Use STRING statements in the declaration group of a program or multiple-line
function. Declaration statements override the default data type specified with the last
character in an identifier.

To use an array identifier in a STRING statement, place the number of subscripts
in parentheses following the array name.

Refer to Section 2 for more information on declarations and identifiers.

Examples:

STRING A$

STRING A, Bs C

STRING NAMES$, TITLES

REAL SALARY$

106

CBASIC Compiler Reference Manual STRING$ Function

STRING$ Function

The STRING$ function returns a string that consists of one string copied a specified
number of times.

Syntax:

a$ = STRINGS (numeric expression, string expression)

Explanation:

The numeric expression specifies the number of times to copy the string in the string
expression. The length of the returned string equals the length of the string in the string
expression, multiplied by the numeric expression.

STRING§$ reduces memory fragmentation when building large strings and executes
significantly faster than building a string using concatenation.

Numeric expressions that evaluate to real numbers convert to integers.

Examples:

STRINGS (3+ "AB") — returns ABABAB

STRINGS (0, A$) returns a null string

STRINGS (I%s "") returns a null string

107

TAB Function CBASIC Compiler Reference Manual

TAB Function

The TAB function moves the cursor or print head to a specified column.

Syntax:

TAB (numeric expression)

Explanation:

The expression specifies a column number. If the value of the expression is less than
or equal to the current print position, TAB sends a carriage return line-feed before
tabbing to the specified column. The expression cannot exceed the line width.

TAB outputs blank characters until the cursor or print head reaches the desired
position. An incorrect TAB column might result if a program outputs cursor or printer
control characters.

Do not use TAB with PRINT # statements. Use the TAB function in PRINT or
PRINT USING statements only. TAB rounds real expressions to the nearest integer.

Examples:

PRINT TAB(1S)s "X"

PRINT "THIS IS COL. 1"5TAB(SO)5S"THIS IS COL, 50"

PRINT TABCKAtYZ/24) 5" !"S5TABCPOSZ+OF FSET) 5

PRINT TAB(CLEN(STR# (NUMBER)))5"#"

108

CBASIC Compiler Reference Manual TAN Function

TAN Function

The TAN function returns the tangent of a number.

Syntax:

x = TAN(numeric expression)

Explanation:

The TAN function assumes the expression is a value in radians. Integers convert to
real numbers. The tangent value is a real number.

Examples:

POWER.FACTOR = TAN(PHASE.ANGLE)

QUIRK = TAN(X - 3,0 * COS(Y))

109

UCASE$ Function CBASIC Compiler Reference Manual

UCASE$ Function

The UCASE$ function translates lower-case characters to upper-case.

Syntax:

a$ = UCASES (string expression)

Explanation:

UCASE$ returns a string with all of its lower-case characters converted to upper-
case. The function does not change the original string.

Examples:

IF UCASES(ANS#) = "YES" THEN\

RETURN \

ELSE STOP

NAMES = UCASE$(NAMES)

110

CBASIC Compiler Reference Manual UNLOCK Function

UNLOCK Function

The UNLOCK function unlocks a record, allowing modification of the data in the
record.

Syntax:

1% = UNLOCK(fle number, record number)

Explanation:

The UNLOCK function returns the value that the operating system returns after
attempting to unlock a record. Normally, a zero indicates that the record is unlocked.
UNLOCK returns a value of zero in systems that do not support record locking.

To LOCK or UNLOCK a record, the file must be a fixed file accessed in the UNLOCKED
mode. Refer to the LOCK function, CREATE statement, and OPEN statement for
more information.

Examples:

IF UNLOCK (1, REC%) THEN CALL ERROR.MSG

111

VAL Function CBASIC Compiler Reference Manual

VAL Function

The VAL function converts a digit string to a real number.

x = VAL(digit string expression)

Explanation:

VAL processes from left to right until it reaches the end of the string or until it
encounters a character that is not a digit. Ä

VAL returns a zero if the string is null. A plus or minus sign can precede the digit
string.

Examples:

PRINT ARRAYS(VAL CIN, STRINGS))

ON VAL (PROG.SEL%) GOSUB 10, 20, 30, 40, 50

112

CBASIC Compiler Reference Manual VARPTR Function

VARPTR Function

The VARPTR function returns the address of a variable.

1% = VARPTR (variable)

Explanation:

VARPTR returns the actual address for an unsubscripted numeric variable. For
string variables, however, VARPTR returns the address of a 16-bit pointer. The actual
location of the string varies because strings are allocated dynamically, but the value
that VARPTR returns does not change during program execution. If a variable is in
COMMON, the VARPTR value location does not change after chaining.

For subscripted variables, VARPTR returns the address of a pointer to an array in
the Free Storage Area. Refer to the Programming Guide for a description of the Free
Storage Area.

Examples:

AZ = VARPTR(XK

PRINT VARPTR (1%)

DIM A$(10)

CALL PROCESS (VARPTR (A$))

113

WEND Statement CBASIC Compiler Reference Manual

WEND Statement

A WEND statement denotes the end of a WHILE/WEND loop.

WEND

Explanation:

The WEND statement sends control to the beginning of the WHILE/WEND loop
until the WHILE expression evaluates to logical false (0).

Branching to a WEND statement sends control to the corresponding WHILE statement.

Examples:

WHILE VALUE > 1
PRINT "X"

WEND

WHILE ACCOUNT.IS.ACTIVE%

GOSUB 100 REM ACCUMULATE INTEREST

WEND

TIME = 0,0

TIME,EXPIREDA = FALSE

WHILE TIME © LIMIT

TIME = TIME + 1.0

IF CONSTATA THEN \

RETURN REM ANSWERED IN TIME

WEND

TIME,EXPIREDA = TRUEA

RETURN

114

CBASIC Compiler Reference Manual WHILE Statement

WHILE Statement

The WHILE statement specifies the conditional expression that controls a WHILE/
WEND loop.

Syntax:

WHILE logical expression

Explanation:

All statements between a WHILE statement and a corresponding WEND statement
execute until the value of the expression following the keyword WHILE evaluates to
logical false (0).

Real expressions convert to integers. Integer expressions reduce execution time.
WHILE/WEND loops can be nested.

Examples:

PRINT “PRESS ANY KEY TO CONTINUE"

WHILE NOT CONSTATZ

WEND

WHILE NUMBER.OF.FIELDSZ

READ #FILE.DATs FIELDS

PRINT FIELDS

NUMBER .OF,FIELDS% = NUMBER.OF.FIELDS% - 1

WEND

WHILE FILE.EXISTSZ%

WHILE TRUEZ

IF ARGS = ACCTS THEN \

ACTIVITY“ = TRUEZ :\

RETURN

IF ARGS «= ACCTS THEN \

ACTIVITY“ = FALSEZ :\

RETURN

GOSUB 3000 REM READ ACCT$ REC

WEND

WEND

ACTIVITYA = FALSEZ

115

Section 4
Defining and Using Functions

A function is a named, isolated portion of a program that other parts of the program
can invoke to compute a value or perform some operation. To execute, a function
must be referenced by name. You cannot call a function with a GOSUB or GOTO
statement. There are only two ways to invoke a function:

sw with a CALL statement
@ in an expression

When a function’s name is in an expression, the function returns a value that the
expression uses as if the function were a variable. Functions can have parameters that
are like variables whose values you specify in the function call.

COS, MATCH, and INP are examples of functions that are predefined in the CBASIC

language. You can define your own functions to perform tasks in a program that
predefined functions cannot perform. A user-defined function passes parameters to one
or more executable statements. The function name serves as a variable to pass a
computed value back to the calling statement. Once defined, you can call a user-defined
function any number of times in the program.

4.1 Function Names

A function name is a valid CBASIC identifier. However, only the first six characters
distinguish one function name from another. The function name identifies a function
and serves as a variable to hold the value that the function passes back to the calling
statement. The form of the function name determines which type of value the function
returns.

m Names for string functions end with $.
= Names for integer functions end with %.
= Names for real number functions do not end with $ or %.

117

Y
M
a)
=.
Oo
J

>

4.1 Function Names CBASIC Compiler Reference Manual

You must use a function name to define a function and to call a function from
another location in a program. The following examples are valid function names:

PROPER, FUNCTION, NAMES

TRUNCATE$

Wi2Z3dy

4.2 Function Definitions

A function definition must occur in a program before making a function call. Use
the DEF statement to define a function. CBASIC supports two types of function def-
initions: single-line and multiple-line.

4.2.1 Single-line Functions

A single-line function performs computations that do not span more than one logical
line. You can accomplish more complex programming tasks with multiple-line func-
tions. Single-line function definitions use an equal sign followed by an expression. The
expression contains the actual process that the single-line function performs. The data
types in the expression must match the data type in the function name. Use the following
format when defining single-line functions:

DEF function.name [(formal parameters)] = expression

A formal parameter holds a place for an actual parameter that you specify in a
function reference. A formal parameter is either a string variable or a numeric variable;
it is never a constant. Formal parameters must have the same data type as the actual
parameters in the function reference. CBASIC considers formal parameters local to the
function. Local variables are independent of the rest of a program. CBASIC functions
pass parameters by value.

118

CBASIC Compiler Reference Manual 4.2 Function Definitions

The following examples show single-line function definitions:

DEF 25 = RND * 25.0

100 DEF CALC.HYPOT(SIDE1 sSIDE2)= \

SOR((SIDE1 * SIDE1) + (SIDEZ * SIDE2))

DEF LEFT.JUSTIFY$(AS$ »sLENZ) =LEFT$ (AS$+BLNKSS$ sLENZ)

4.2.2 Multiple-line Functions

Multiple-line function definitions contain data declarations and executable state-
ments. The function definition begins with a DEF statement and ends with a FEND
statement. You can use RETURN statements in the body of the function. Both RETURN
and FEND stop function execution, pass the function value, and send control back to
the statement following the calling statement. Use any number of RETURN statements,
but be sure one FEND statement appears last in a multiple-line function definition.
Use the following format when defining multiple-line functions:

DEF function.name [(formal parameters)]

data declarations

CBASIC statements

RETURN
FEND

119

4.2 Function Definitions CBASIC Compiler Reference Manual

The function reference assigns the value of the actual parameters to the formal
parameters in the function definition. All formal parameters and variables in a dec-
laration are local to the function. All labels defined in a function are local to the
function. The following two examples show multiple-line function definitions:

DEF GET.AMOUNT(CUST.NOZ)

READ # CUSTOMER.INF 5s’ CUSTNO% » AMOUNT

GET.AMDUNT = AMOUNT

FEND

DEF AREA.CIR(DIA, MIN)

REAL AREA.CIR+»s DIA» MIN

IF DIA «= MIN THEN \

RETURN \

ELSE RAD = D/Z

AREA,CIR = (R * 3,14159)°2

FEND

The following rules apply to multiple-line functions:

m Function definitions cannot be nested. However, a function can call another

function.

m COMMON statements cannot appear in a function definition.

m Functions cannot have GOTO statements that reference a line outside the function.

m A DIM statement in a function allocates a new array on each execution of the
function. Data stored in an array from a previous execution is lost. Arrays in
multiple-line functions are global to an entire program.

120

CBASIC Compiler Reference Manual 4.3 Function References

4.3 Function References

Reference user-defined functions in any CBASIC statement or expression. The CALL
statement can reference multiple-line functions only. The number of actual parameters
in the function reference must match the number of formal parameters in the function
definition. The function substitutes the current value of each actual parameter in the
reference statement for the formal parameters in the function definition. The following
are examples of function references:

300 PRINT FUNCTION(250, 1429)

CALL FUNCTION.NUMBER.ONE (WHOLESALE, RETAIL» DIFF)

IF LENGTHZAC" INPUT DATA" »X$,0) <= LIMITA THEN

GOSUB 3000

WHILE FN-ALTITUDE(CURR.ALTZ) > MINIMUM.SAFE

CURR.ALTZ=INP(ALT.PORTZ)

WEND

4.4 Public and External Functions

Multiple-line functions can compile separately to form individual program modules.
The PUBLIC and EXTERNAL keywords provide a method to access the same multiple-
line function from different modules.

To execute a multiple-line function from a different program module, declare the
function public in the definition. Enter the keyword PUBLIC after the list of formal
parameters in the DEF statement, as shown in the following example.

DEF function.name |(formal parameters)] PUBLIC

data declarations

CBASIC statements

FEND

121

4.4 Public and External CBASIC Compiler Reference Manual

The complete definition for the public function appears in one module. However,
any module that references a public function in another module must contain an
abbreviated definition of that function specified as external. An external function def-
inition does not contain the executable statement group. Other modules can reference
the public function in an expression or with a CALL statement. Enter the keyword
EXTERNAL after the list of formal parameters in the abbreviated definition, as shown
in the following example.

DEF function.name [(formal parameters)] EXTERNAL

data declarations
FEND
CALL function.name [(actual parameters)]

The link editor links the external function call to the public function for execution.
CBASIC does not check parameter data types between modules. Be sure that corre-
sponding parameter data types match. Parameter names do not have to match. How-
ever, the function names used in external functions must match the name of the cor-
responding public function.

End of Section 4

122

Section 5
Input and Output

CBASIC uses the operating system to control input and output for interaction between
programs, consoles or terminals, printers, and disk drives.

5.1 Console Input and Output

CBASIC reads input from the console one line at a time. Therefore, all CP/M line-
editing functions, such as CTRL-U and DELETE, remain in effect. CTRL-C entered
from the keyboard terminates a program but does not close files being accessed. Three
functions, CONCHAR%, INKEY, and CONSTAT%, use direct console input and

output. Use the following statements and predefined functions to input data from a
console device. Refer to Section 3 for more detailed descriptions of statements and
functions.

m INPUT statements query the user for information during program execution.
You can enter any number of input values with an INPUT statement. You can
have a prompt message displayed if you desire.

m INPUT LINE works like an INPUT statement, but accepts only one variable
for data to be entered. All characters entered in response to INPUT LINE are
interpreted as one string.

m CONSTAT% is a predefined function that determines console status. The func-
tion returns a logical true value (-1) if a character is ready at the console, and

a logical false value (0) if a character is not ready.

m CONCHAR% is a function that waits for an entry from the keyboard
and returns an eight-bit ASCII representation of the character entered.
CONCHAR% echoes characters of ASCII decimal value greater than 31.

123

YN
a)
N
nd
O
en)
Wn

5.1 Console Input and Output CBASIC Compiler Reference Manual

The following CBASIC statements and predefined functions control console output.

m Ihe CONSOLE statement restores printed output to the console device.

m The TAB predefined function moves the console cursor to a specified position
on the screen. TAB also works with printers. Use TAB only in the PRINT
statement.

m The POS predefined function returns the next available position on the console
screen to be printed.

5.2 Printing

CBASIC provides three statements to control output to a line printer.

m PRINT outputs data to a console or printer.
m LPRINTER directs all output PRINT statements to the line printer or list device.
m PRINT USING allows formatting of printed output to the console or printer.

5.3 Formatted Printing

The PRINT USING statement allows you to specify special formats for output data.
You can output formatted data to the console or line printer with CONSOLE or
LPRINTER. The PRINT USING # variation directs formatted output to a disk file.
Write aPRINT USING statement as follows:

PRINT USING format string. [#file number[,rec number] ;)

<expression list>

The format string is a model or image for the output. A format string contains data
fields and literal data. Data fields can be numeric or string type. Any character in the
format string that is not part of a data field is a literal character. Format strings cannot
be null string expressions. Table 5-1 describes characters that have special meanings
in format strings:

124

CBASIC Compiler Reference Manual 5.3 Formatted Printing

Table 5-1. Special Characters in Format Strings

Character Meaning

| single-character string field

B. variable-length string field

/ fixed-length string field delimiter

digit position in numeric field

% asterisk fill in numeric field

$$ float a $ in numeric field

' decimal point position in numeric field

- leading or trailing sign in numeric field

exponential position in numeric field

’ place comma every third digit before decimal point

\ escape character

The expression list tells which variables hold the data to format. Separate each
variable with a comma or semicolon. The comma does not cause automatic tabbing
as it does with unformatted printing. PRINT USING matches each variable in the list
with a data field in the format string. If there are more expressions than there are fields
in the format string, execution resets to the beginning of the format string.

_ While searching the format string for a data field, the type of the next expression in
the list, either string or numeric, determines which data field to use. For example, if
PRINT USING encounters a numeric data field while outputting a string, the statement
treats characters in the numeric data field as literal data. An error occurs if there is no
data field in the format string of the type required.

125

5.3 Formatted Printing CBASIC Compiler Reference Manual

5.3.1 String Character Fields

Specify a one-character string data field with an exclamation point, !. PRINT USING

outputs the first character of the next expression statement list.

For example,

F«NAME$="Lyrn":M,NAME$ = "Marion"sL.NAME$= "Kobi"

PRINT USING "!, I, &"5 F.NAMES »M.NAMES +L .NAMES

outputs

L.» M. Kobi

In this example, PRINT USING treats the period as literal data.

5.3.2 Fixed-length String Fields

Specify a fixed-length string field of more than one position with a string of characters
enclosed between a pair of slashes. The width of the field is equal to the number of
characters between the slashes, plus two. Place any characters between the slashes to
serve as fill. PRINT USING ignores fill characters for fixed-length string fields.

A string expression from the print list is left-justified in the fixed field and, if necessary,
padded on the right with blanks. PRINT USING truncates a string longer than the
data field on the right.

For example,

FORI$ = "THE PART REQUIRED IS /eesSe eee Ove ee dl"

PART.DESCRP$ = "GLOBE VALVE, ANGLE"

PRINT USING FORI$%s PART.DESCRP$

outputs

THE PART REQUIRED IS GLOBE VALVE, ANG

Using periods and numbers between the slashes makes it easy to verify that the data
field is 16 characters long. Periods and numbers do not effect the output.

126

CBASIC Compiler Reference Manual 5.3 Formatted Printing

5.3.3 Variable-length String Fields

Specify a variable-length string field with an ampersand, &. This results in a string
output exactly as defined.

For example,

COMPANYS = "SMITH INC."

PRINT USING "& &"5 "THIS REPORT IS FOR" ,COMPANY$

outputs

THIS REPORT IS FOR SMITH INC,

The following example shows how a string can be right-justified in a fixed-length
string field using a variable-length string field.

FLD.S% = 20
BLK$ = " "
PHONES = "408-649-3896"
PRINT USING "#&"3 RIGHT$(BLK% + PHONE$ + FLD.S$)

outputs

408-649-3896

The preceding example uses the # as a literal character because the print list contains
only a string expression. A # can also indicate a numeric data field.

5.3.4 Numeric Data Fields

Specify a numeric data field with a pound sign, #, to indicate each digit required in
the resulting number. One decimal point can also be included in the field. Values are
rounded to fit the data field. Leading zeros are replaced with blanks. When the number
is negative, PRINT USING prints a minus sign to the left of the most significant digit.
A single zero prints to the left of the decimal point for numbers less than one if you
provide a position in the data field.

127

5.3 Formatted Printing CBASIC Compiler Reference Manual

For example,

“ = 123,7546

Y= -21,0

FORS = "aan, HHHH HHH, HHH"

PRINT USING FOR$3I Ke Ke

PRINT USING FORSs Yo Yor ¥

outputs

123.7546 123.8 124

-21,0000 -21,0 -21

Tell PRINT USING to print numbers in exponential format by appending one to
four up arrows, *, to the end of the numeric data field. For example,

A = 12.345

PRINT USING "8,888" * meow, LM

outputs

1,235E 01 ~,123E 0?

PRINT USING reserves four positions for the exponent regardless of the number of
up arrows used in the field.

If one or more commas appear embedded in a numeric data field, the number prints
with commas between each group of three digits that precede the decimal point. For
example,

PRINT USING "HH 22 2:2 "5 100+ 1000, 10000

outputs

100 1,000 10,000

PRINT USING includes each comma that appears in the data field in the width of
the field. You need only one comma to obtain embedded commas in the output;
however, placing each comma in the data field at the specified position clarifies the
formatting statement.

128

CBASIC Compiler Reference Manual 5.3 Formatted Printing

For example, the following data fields produce the same results, except the width
of the first field allows only nine output digits. The second field allows ten digits.

FERRERRRN

ee 2 2 ee 2 2 , HEH

Commas do not print if you use the exponent option. In this case, PRINT USING
treats commas as pound signs, #.

You can use asterisk filling in a numeric data field by appending two asterisks to
the beginning of the data field. You can float a dollar sign by appending two dollar
signs to the beginning of the data field. Do not use the exponential format with either
asterisk filling or floating dollar signs. PRINT USING includes a pair of asterisks or
dollar signs in the count of digit positions available for the field. The asterisks or dollar
signs appear in the output if there is enough space. The dollar sign does not print if
the number is negative.

For example,

COST = 8742937.56

PRINT USING "ran ,##Ht ae , #4 "3 COST, -COST

PRINT USING "S$## ,‚sansen,u# "3 COST, -COST

outputs

*#B8 +742 5937.56 *-8:742,937,56

$98:742:9337.26 -B8 +742 5937.56

PRINT USING outputs a number with a trailing sign instead of a leading sign if the
last character in the data field is a minus sign. A blank replaces the minus sign in the
output if the number is positive. For example,

PRINT USING "a an-u2#2”"""- "ss 10, 10, -10, -10

outputs

10 100E-Ol 10- 100E-01-

129

5.3 Formatted Printing CBASIC Compiler Reference Manual

PRINT USING fixes the sign position as the next output position if a minus sign is
the first character in a numeric data field. If the number is positive, a blank prints
instead of the minus sign. For example,

PRINT USING "-s#s## "3 105 -10

outputs

10 - 10

If a number does not fit in a numeric data field without truncating digits before the
decimal point, a percent sign, %, precedes the number in the standard format. For
example,

A = 132.71

PRINT USING "“##,# HHH, BS Kok

outputs

A 132,71 132,7

5.3.5 Escape Character

You can use a special format string character as literal data in a data field with the
escape character. A backslash, \ , signals PRINT USING to treat the next consecutive
character as a literal character. For example, a pound sign, #, can precede a number.
For example,

ITEM.NUMBER = 31

PRINT USING "THE ITEM NUMBER IS\ ##8#"5 ITEM.NUMBER

outputs

THE ITEM NUMBER IS #31

Two consecutive backslashes cause a one backslash to print as a literal character. An
escape character cannot be the last character in a format string.

130

CBASIC Compiler Reference Manual 5.4 File Input and Output

5.4 File Input and Output

CBASIC uses the operating system file accessing routines to store and retrieve data
in disk files. All data is represented in character format using the ASCII code. Programs
can create, open, read, write, and close data files with the following CBASIC statements
and functions. Each statement is described in more detail in Section 3.

CREATE creates a new file on disk with no information in it. The CREATE
statement erases a preexisting file of the same name before creating the new
file.

OPEN opens an existing disk file for reading or updating. If the file does not
exist, the program detects an end-of-file condition.

IF END transfers program execution to a a specified label when a file access
exception occurs.

READ # accesses a specified file and assigns the data sequentially, field by field,
into specified variables. Data can also be accessed from a specified record.

READ LINE reads one complete record of data from a file and assigns the
information to a string variable.

PRINT # outputs data to a specified file and assigns the data sequentially into
fields from specified expressions. Data can also be output to a specified record.

m PRINT USING # outputs data to a specified file using formatted printing options.

CLOSE closes disk files. The specified files are no longer available for input or
output until reopened.

DELETE deactivates a file from processing and erases it from the disk directory.

GET reads one byte of data from a specified disk file.

PUT writes one byte of data to a specified disk file.

SIZE returns the number of 1-kilobyte blocks in a specified file.

RENAME allows you to change the name of a disk file during program execution.

131

5.5 File Organization CBASIC Compiler Reference Manual

5.5 File Organization

CBASIC organizes information on a disk surface into three levels: files, records, and

fields.

m Files consist of one or more records.

m Records are groups of fields. Each record is delimited by a carriage return line-
feed.

m Fields are the individual data items. Each field in a record is delimited by a

comma.

CBASIC supports two types of data files on disk: stream and fixed.

5.5.1 Stream Files

Sequential or stream organization is performed on a strict field-by-field basis. The
PRINT # statement writes each field to the disk in a continuous stream. Each data
item uses only as much space as needed. Each PRINT # statement executed creates a
single record. Each variable used in the PRINT # statement creates a single field.
Individual record lengths vary according to the amount of space occupied by the fields.
There is no padding of data space. The following diagram shows a stream file composed
of three records.

RECORD 1 “FIELD ONE”, “FIELD TWO”, “FIELD THREE” cr/lf

FILE.1 RECORD 2 “Field 1”, “ “Field 2”, “ “cr/If

RECORD 3 111,222,3.3,444,5.Scr/lf

pe ————— Record lengths vary —

Figure 5-1. Sequential File

Field three in record two is a null string. Commas serve as delimiters, but are
considered string characters when embedded in a pair of quotation marks. Quotation
marks are not considered string characters when embedded in a string. Quotation
marks are always considered as string delimiters in files.

132

CBASIC Compiler Reference Manual 5.5 File Organization

The following CBASIC program creates the stream file diagramed in Figure 5-1.

CREATE "FILE.1"

A$ =
BS =
Ce =
D$ =
E$ =
Fe =
G% =
H% =
I =

Ju =
Kos

PRINT #135 AS
PRINT #15 D$
PRINT #13 G%
CLOSE 1
END

"FIELD

"FIELD

"FIELD

"FIELD

"FIELD

111
AR,
nun

3.3

444

+0

» BSs

» ES;

a A

AS 1
ONE"
TWO"
THREE"
1"

mu
a

C$

F$

Ir dhs

The three PRINT statements correspond to the three records, and each variable
corresponds to a field.

When you access stream files, each field is read sequentially, one at a time, from the

first to the last. The READ # statement considers a field complete when it encounters
acomma, a terminating quotation mark for string fields, or a carriage return line-feed.
The following program reads the fields in FILE.1 sequentially and prints them on the
console screen.

IF END #19

OPEN "FILE.1

FOR I’ =

THEN 1
u AS

1 TO

READ #195 FI

PRINT FIELDS$

NEXT IA

100 END

OO

19

11

ELDS$

133

5.5 File Organization CBASIC Compiler Reference Manual

Any type of variable can be used in the READ # statement in a sequential access.
Executing the preceding program outputs the following display:

FIELD ONE

FIELD TWO

FIELD THREE

FIELD 1

FIELD 2

111
727
nun

343

aaa

Deo

5.5.2 Fixed Files

Fixed files offer the advantage of random access, which is the ability to access any
record in a file directly. Record lengths are fixed. Data space between the end of the
last field and the carriage return line-feed is padded with blanks. The carriage return
line-feed occupies the last two bytes of the record. The number of bytes occupied by
the fields, field delimiters, and the carriage return line-feed cannot exceed the specified
record length. Figure 5-2 shows a fixed file composed of three records.

RECORD 1 | “FIELD ONE”, “FIELD TWO”, “FIELD THREE” cr/lf

FILE.2 RECORD 2 | “FIELD 1,” “FIELD TWO”,” ” cr/lf

RECORD 3 | 111,222,3.3,444,5.5 cr/If

- Record lengths fixed >

Figure 5-2. Relative File

134

CBASIC Compiler Reference Manual 5.5 File Organization

The same rules regarding commas, quotation marks, and null strings in stream files
apply to fixed files. The following program creates the fixed file diagramed in Figure
5-2.

CREATE FILE.Z RECL 40 AS 2

A$ = "FIELD ONE"
B$ = "FIELD TWO"
C$ = "FIELD THREE"
D$ = "FIELD 1
E$ = "FIELD 2
Fe = " ou

G% = 111
H% = 222
I = 3.3
J% = 444
K = 5.5

PRINT #2515 A$, BS, CS

PRINT #2525 D$, E$, FS

PRINT #2*35 GA» Hs» Is JA; K

LOSE 2

END

To access a fixed file randomly, specify an actual record number. Enter the record
number in all PRINT # and READ # statements after the file identification number.
Separate the two numbers with a comma. In the following example, 5 is the record
number.

PRINT #2555 WVARIABLEiA, VARIABLEZA

135

5.5 File Organization CBASIC Compiler Reference Manual

CBASIC locates each record on a randomly accessed file by taking the record number,
subtracting 1, and multiplying that difference by the record length. The result is a byte
displacement value for the desired record measured from the beginning of the file. The
record to be accessed must be specified in each READ # or PRINT # statement
executed. Each READ # and PRINT # statement executed accesses the next specified
record. The following program reads the first three fields from record three in FILE.2.

IF END #20 THEN 200

OPEN "FILE.2" RECL 40 AS 20

READ #20 ,35 FIELDIi$, FIELDZ$, FIELDS

PRINT FIELDi$, FIELDZ$, FIELD3

200 END

The data types of the variables in the READ # statement must match the data
contained in the fields being read. Executing the above program outputs the following

display on screen.

Lil 3.3 rJ

tJ

rJ

End of Section 5

136

Appendix A
CBASIC Compiler Reserved

Words

CBASIC Compiler Reserved Words

| ABS

AND

AS

ASC

ATTACH

ATN

BUFF

CALL

CHAIN

CHR$

CLOSE

COMMAND$

COMMON

CONCHAR%

ERR

ERRL

ERROR

ERRX

EQ

EXP

EXTERNAL

FEND

FLOAT

FOR

FRE

GE

GET

GO

LE

LEFT$

LEN

LET

LINE

LOCK

LOCKED

LOG

LPRINTER

LT

MATCH

MFRE

MID$

MOD

PUBLIC

PUT

RANDOMIZE

READ

READONLY

REAL

RECL

RECS

REM

REMARK

RENAME

RESTORE

RETURN

RIGHT$

STRING$

SUB

TAB

TAN

THEN

TO

UCASE$

UNLOCK

UNLOCKED

USING

VAL

VARPTR

WEND

WHILE

137

>
Oo
xe)
a)
>
en
x
>

A Reserved Words

CBASIC Compiler Reserved Words (continued)

CBASIC Compiler Reference Manual

CONSOLE

CONSTAT%

COS

CREATE

DATA

DEF

DELETE

DETACH

DIM

ELSE

END

GOSUB

GOTO

GT

IF

INITIALIZE

INKEY

INP

INPUT

INT

INT%

INTEGER

NE

NEXT

NOT

ON

OPEN

OR

OUT

PEEK

POKE

POS

PRINT

RND

SADD

SGN

SHIFT

SIN

SIZE

SQR

STEP

STOP —

STR$

STRING

WIDTH

XOR

% CHAIN

% DEBUG

%EJECT

Yo INCLUDE

, % LIST

%NOLIST

138

End of Appendix A

Appendix B
Decimal-ASCII-Hex Table

Decimal-ASCII-Hex Table

Decimal ASCII Hex Decimal ASCII Hex Decimal ASCII Hex

0 NUL 00 44 2C 88 X 58
1 SOH 01 45 - 2D 89 Y 59
2 STX 02 46 2E 90 Z 5A
3 ETX 03 47 / 2F 91 5B
4 EOT 04 48 0 30 92 \ SC
5 ENQ 05 49 1 31 93] SD
6 ACK 06 50 2 32 94 ; SE
7 BEL 07 51 3 33 95 — SF
8 BS 08 52 4 34 96 ‘ 60
9 HT 09 53 5 35 97 a 61

10 LF OA 54 6 36 98 b 62
11 VT OB 55 7 37 99 c 63
12 FF OC 56 8 38 100 d 64
13 CR OD 57 9 39 101 e 65
14 so OE 58 3A 10 f 66
15 SI OF 59 3B 103 g 67
16 DLE 10 60 < 3C 104 h 68 >
17 DC1 11 61 = 3D 105 i 69 5
18 DC2 12 62 > 3E 106 6A @
19 DC3 13 63 ? 3F 107 k 6B 2.
20 DC4 14 64 @ 40 108 | 6C a
21 NAK 15 65 A 41 109 m 6D
22 SYN 16 66 B 42 110 n 6E
23 ETB 17 67 C 43 111 o 6F
24 CAN 18 68 D 44 112 p 70
25 CR 19 69 E 45 113 q 71
26 SUB 1A 70 F 46 114 r 72
27 ESC 1B 71 G 47 115 5 73
28 FS 1C 72 H 48 116 t 74
29 GS 1D 73 I 49 117 u 75

139

B Decimal-ASCII-Hex Table CBASIC Compiler Reference Manual

Decimal-ASCII-Hex Table (continued)

30 RS 1E 74 J 4A 118 v 76
31 US 1F 75 K 4B 119 Ww 77
32 SP 20 76 L AC 120 x 78
33 21 77 M 4D 121 y 79
34 " 22 78 N 4E 122 zZ 7A
35 # 23 79 O 4F 123 { 7B
36 $ 24 80 P 50 124 | 7C
37 % 25 81 Q 51 125 } 7D
38 & 26 82 R 52 126 TE
39 l 27 83 S 53 127 DEL 7F
40 28 84 T 54
4]) 29 85 U 55
42 * 2A 86: V 56
43 + 2B 87 W 57

End of Appendix B

140

Appendix C
CBASIC to CBASIC Compiler

Conversion Aid

This conversion aid helps you convert your CBASIC programs to CBASIC Compiler.
When you compile your source code in CBASIC Compiler, pay close attention to all
error messages. This is the fastest way to determine any necessary changes. Most
programs recompile with no conversion. If any problems arise, call the Digital Research
Support Line (408-375-6262) for assistance.

In this appendix, CBASIC refers to the compiled/interpreted version of CBASIC, and
CBASIC Compiler refers to the compiled version of CBASIC defined in this manual.

C.1 Subscripted Variables (Arrays)

CBASIC allows you to use a dimensioned variable name (an array) as a simple or

unsubscripted variable. CBASIC treats these as separate and distinct variables. CBASIC
Compiler does not allow a dimensioned variable without the array index.

CBASIC CBASIC Compiler

DIM AZ (20) DIM AX (20)

FOR IX = 1 to 20 FOR IX = 1 to 20

AZ (1%) = 0 AZ (IN) = 0

NEXT I% NEXT 1%

AZ = 100 Ak = 100

(error message #36)

CBASIC Compiler issues error message #36 for the statement A% = 100 because
the statement uses an identifier as a simple variable that was previously used as a
subscripted variable.

>
xi

pu
ad

dy

141

C.1 Subscripted Variable CBASIC Compiler Reference Manual

CBASIC CBASIC Compiler

AZ = 100 AZ = 100

DIM AZ (20) DIM AX (20)

(error message #93)

For IX = 1 to 20 For IX = 1 to 20

AZ (IX) =0 AZ (IN) = 0
NEXT 1% (error message #37)

NEXT 1%
END

CBASIC Compiler issues error message #93 for the statement DIM A% (20) because
a variable in a DIM statement is previously defined as other than a subscripted variable.
CBASIC Compiler issues error message #37 for the statement A% = 100 because an
identifier used as a subscripted variable was previously used as an unsubscripted variable.

To correct the error, change the unsubscripted variable to a different variable name
of the same type. Choose a new variable that differs from all other variable names in
your program.

C.2 FILE Statement

The FILE statement in CBASIC opens a file present on the referenced disk. The FILE
statement can also create a file of the name you specify. However, CBASIC Compiler
does not use the FILE statement. Use the OPEN, SIZE, and CREATE statements to

open and create files.

CBASIC CBASIC Compiler

FILE NAME$ IF SIZE (NAME$) <> 0 \

THEN OPEN NAMES AS FILE.NOZ \

ELSE CREATE NAMES AS FILE.NOZ

In the CBASIC. Compiler example, if there is a file NAMES, the file is opened as
usual. If there is no file NAMES, or the length of the file is zero (determined by the

SIZE statement), the IF statement passes control to the CREATE statement, which
creates the file NAME$. Both the OPEN and CREATE statements require a file reference
number (FILE.NO%). However, the FILE statement does not need a file reference
number.

142

CBASIC Compiler Reference Manual C.2 FILE Statement

When you convert a FILE statement, choose a file number that does not conflict
with any other file reference numbers already in your program. Remember to modify
the PRINT and READ statements that access the file to reflect the new file number.

C.3 SAVEMEM

The SAVEMEM statement, which executes routines written to the assembler in

CBASIC, has no meaning in CBASIC Compiler. The CBASIC Compiler (CB80) Lan-
guage Programming Guide and CBASIC Compiler (CB86) Language Programming
Guide tell how to use assembler routines and explain how to link the routines to
CBASIC Compiler programs.

C.4 CHAIN Statement

The CHAIN statement in CBASIC and CBASIC Compiler passes control from the
program executing in memory to the program selected in the CHAIN statement. The
CHAIN statement format is the same in both CBASIC Compiler and CBASIC.

CBASIC CBASIC Compiler

CHAIN <expression> CHAIN <expression>

The expression must evaluate to an unambiguous filename on the disk. If the filename
in the expression does not include the filetype, CBASIC assumes an .INT filetype;
however, CBASIC Compiler assumes an .OVL (overlay) filetype.

In CBASIC Compiler, the .OVL filetype is not the root of a chaining sequence. The
root program has a .COM filetype. If your program chains back to the original root
(.COM file) or a different root, the expression in the CHAIN statement must evaluate

to a filename with .COM filetype. A CBASIC Compiler program can chain to a .COM
file other than the one generated by the link editor.

143

C.5 String Lengths CBASIC Compiler Reference Manual

C.5 String Lengths

CBASIC Compiler allows string lengths up to 32K. CBASIC Compiler uses two bytes
to give this expanded string length; CBASIC uses one byte. To set strings to null in
CBASIC Compiler, see the Programming Guide.

If your program uses the SADD function with PEEK and POKE to pass a string to
an assembly language routine, you must change your program to accommodate the
two-byte length indicator in CBASIC Compiler.

CBASIC CBASIC Compiler

LENZ = PEEK (SADD(STRINGS$)) LENZ = (PEEK (SADD(STRING$)) AND O7FH \

END + PEEK (SADD(STRING$) + 1)) * 256

C.6 PEEK and POKE

The PEEK function in CBASIC and CBASIC Compiler returns the contents of the
memory location specified in the PEEK function call. Memory locations in CBASIC
Compiler might not contain the same information that CBASIC programs expect. You
might have to change the memory location your program is examining, or remove the
PEEK statement from your program.

The POKE statement behaves the same in CBASIC Compiler as it does in CBASIC.
However, the memory locations in CBASIC Compiler differ from the memory locations
in CBASIC. If your program contains a POKE statement to a location in a CBASIC
program, it might insert the value at the wrong address when used in a CBASIC
Compiler program. In particular, the statements,

POKE O1L10OH» 0

or
POKE 27/2, OÖ

used in CBASIC to adjust the console width, must be removed. Use the POKE statement
carefully because the actual location of code is determined by the link editor.

144

CBASIC Compiler Reference Manual C.7 FOR-NEXT Loops

C.7 FOR-NEXT Loops

When using FOR-NEXT loops in CBASIC, the NEXT statement can terminate more
than one loop. CBASIC Compiler does not allow this construct. You must use a separate
NEXT statement for each FOR statement that begins a loop.

CBASIC CBASIC Compiler

FOR IX = 1 TO 100 FOR IA = 1 TO 100

FOR J% = 1 TO 100 FOR J% = 1 TO 100

. (statements) . (statements)

NEXT JA» IA NEXT J%

NEXT I%

Also, CBASIC executes all statements in the FOR-NEXT loop at least once. CBASIC
Compiler executes the statements ina FOR-NEXT loop zero or more times, depending
on the values of the loop indexes. This is potentially troublesome. Examine the logic
of your programs, and make any necessary changes.

C.8 Console Width

To facilitate cursor addressing, CBASIC Compiler generates a carriage return only
upon executing a PRINT statement not terminated by a comma or semicolon. This is
analogous to setting the CBASIC console width to zero by a POKE to 272. CBASIC
automatically generates a carriage return when the console width has been exceeded.
Therefore, CBASIC programs that assume the cursor returns when the console width
is exceeded might not execute correctly in CBASIC Compiler.

145

C.9 FRE CBASIC Compiler Reference Manual

C.9 FRE

In CBASIC Compiler, FRE returns a binary value that represents the number of
bytes of available memory. In CBASIC, the binary value represents a real value. Pro-
grams that use FRE must interpret negative values correctly, because CBASIC Compiler
arithmetic routines interpret binary values in excess of 32,767 as negative numbers.
In general, negative values indicate ample available memory.

The following statement can determine whether adequate memory is available.

IF (FRE > 0) AND (FRE < MIN. MEMORY%) THEN \

CALL LOW.MEMORY.WARNING

C.10 READ and INPUT Statements for Integers

READ and INPUT statements handle integers differently in the two languages. CBASIC
accepts all numeric values as real numbers, and then converts to integers if required.
CBASIC Compiler accepts integers directly.

CBASIC CBASIC Compiler

DATA 10.7, 1E2 DATA 10,7, 1E2

READ AX »B% READ ARX »BX

The values of A% and B% The values of A% and B%
after the READ are: after the READ are:

AZ = il Bx = 100 AZ = 10 Bi = 1

With CBASIC Compiler, conversion stops at the first character not a part of a valid
integer.

146

CBASIC Compiler Reference Manual C.11 Functions and Variables

C.11 Function and Variable Names

CBASIC Compiler requires that function names, variables, and statement labels be
unique. In CBASIC, all functions must start with the letters FN, and labels must be
numeric constants. Thus, no problems should occur when you convert programs from
CBASIC to CBASIC Compiler. Remember that variables and arrays might conflict as
described in Section C.1.

C.12 Labels

CBASIC Compiler places all program labels, including unreferenced labels, in a
symbol table. CBASIC does not put unreferenced labels in the symbol table.

A label in a multiple-line function is local to the function. This is not the same in
CBASIC. |

CBASIC CBASIC Compiler

DEF FN.A . DEF FN.A

100 PRINT "HELLO" 100 PRINT "HELLO"

FEND FEND

GOTO 100 GOTO 100

(error message #82)

CBASIC Compiler issues error message #82 because the label in a GOTO statement
is undefined. The label used in a function must be defined in that function.

C.13 Warning Messages

CBASIC Compiler produces no warning messages during the execution of a program.
All errors are fatal and execution terminates unless you use an ON ERROR GOTO
statement to trap the error.

147

C.14 New Reserved Words CBASIC Compiler Reference Manual

C.14 New Reserved Words

CBASIC Compiler incorporates new reserved words with some of the newly imple-
mented features. If your CBASIC programs use these words as variables, rename them
to a different variable name. The following is a list of reserved words unique to CBASIC
Compiler. Appendix A contains a complete list of all CBASIC Compiler reserved words.

ATTACH GET PUT

%DEBUG INITIALIZE READONLY

DETACH INKEY REAL

ERR INTEGER SHIFT

ERRL LOCK STRING

ERROR LOCKED STRING$

ERRX MOD UNLOCK

EXTERNAL PUBLIC UNLOCKED

End of Appendix C

148

Appendix D
Glossary

address: Location in memory.

ambiguous file specification: File specification that contains either of the Digital Research
wildcard characters, ? or *, in the filename, filetype, or both. When you replace char-
acters in a file specification with these wildcard characters, you create an ambiguous
filespec and can reference more than one file in a single command line.

applications program: Program that needs an operating system to provide an envi-
ronment in which to execute. Typical applications programs are business accounting
packages, word processing, and mailing list programs.

argument: Variable or expression value that is passed to a procedure or function and
substituted for the dummy argument in the function. Same as actual argument or
calling argument. Used interchangeably with parameter.

array: Data type that is a collection of individual data items of the same data type.
Term that describes a form of storing and accessing data in memory, visualized as
matrices. The number of extents of an array is the number of dimensions of the array.
A one-dimensional array is essentially a list.

ASCH: Acronym for American Standard Code for Information Interchange. ASCII is
a standard code for representation of the numbers, letters, and symbols that appear
on most keyboards.

assembler: Language translator that translates assembly language statements into
machine code.

assignment statement: Statement that assigns the value of an expression on the right
side of an equal sign to the variable name on the left side of the equal sign.

back-up: Copy of a file or disk made for safekeeping, or the creation of the file or
disk. |

binary: Base two numbering system containing the two symbols zero and one.

149

>
Oo
oO
0
>
2.
x
O

D Glossary CBASIC Compiler Reference Manual

bit: Common contraction for binary digit. Switch in memory that can be set to on
(1) or off (0). Eight bits grouped together comprise a byte.

buffer: Area of memory that temporarily stores data during the transfer of information.

byte: Unit of memory or disk storage containing eight bits.

call: Transfer of control to a computer program subroutine.

chain: Transfer of control from the currently executing program to another named
program without returning to the system prompt or invoking the run-time monitor.

code: Sequence of statements of a given language that make up a program.

command: Instruction or request for the operating system or a system program to
perform a particular action. Generally, a Digital Research command line consists of a
command keyword, a command tail usually specifying a file to be processed, and a
carriage return.

common: Variables used by a main program and all programs executed through a
chain statement.

compiler: Language translator that translates the text of a high-level language into
machine code.

compiler directive: Reserved words that modify the action of the compiler.

compiler error: Error detected by the compiler during compilation; usually caused
by improper formation of language statement.

compiler toggle: Switch that modifies the output of the compiler.

concatenate: Join one string’to another or one file to another.

concatenation operator: Symbol peculiar to a given language that instructs the com-
piler to combine two unique data items into one.

console: Primary input/output device. The console consists of a listing device such as
a screen and a keyboard through which the user communicates with the operating
system or the applications program.

constant: String or numeric value that does not change throughout program execution.

150

CBASIC Compiler Reference Manual D Glossary

control character: Nonprinting character combination that sends a simple command
to the operating system or applications program. To enter a control character, press
the control (CTRL) key on your terminal and strike the character key specified.

control statement: Language statement that transfers control or directs the order of
execution of instructions by the processor.

cursor: One-character symbol that can appear anywhere on the video screen. The
cursor indicates the position where the next keystroke at the console will have an effect.

data: Information; numbers, figures, names, and so forth.

data base: Large collection of information, usually covering various aspects of related
subject matter.

data file: Nonexecutable file of similar information that generally requires a command
file to process it.

data structure: Mechanism, including both storage layout and access rules, by which
information can be stored and retrieved in a computer system. Data structures can
reside in memory or on secondary storage. System tables such as symbol tables, matrices
of numerical data, and data files are examples of data structures.

data type: Class or use of the data; for example, integer, real, or string.

debug: Remove errors from a program.

default: Values, parameters, or options a given command assumes if not otherwise
specified.

delimiter: Special characters or punctuation that separate different items in a com-
mand line or language statement.

dimension: Refers to the number of extents of an array. A one-dimensional array is
essentially a list of the elements of the array. A two-dimensional array can be visualized
as a matrix of rows and columns of storage space for the elements of the array. A
three-dimensional array can be thought of as a geometric solid having volume, and so
forth.

151

D Glossary CBASIC Compiler Reference Manual

directory: Portion of a disk that contains entries for each file on the disk. In response
to the DIR command, CP/M and MP/M systems display the file specifications stored
in the directory.

disk, diskette: Magnetic media used to store information. Programs and data are
recorded on the disk in the same way that music is recorded on a cassette tape. The
term diskette refers to smaller capacity removable floppy diskettes. The term disk can
refer to a diskette, a removable cartridge disk, or a fixed hard disk.

disk drive: Peripheral device that reads and writes on hard or floppy disks. CP/M
and MP/M systems assign a letter to each drive under their control.

drive specification: Alpha character A through P followed by a colon that indicates
the CP/M or MP/M drive reference for the default or specified drive.

editor: Utility program that creates and modifies text files. An editor can be used to
create documents or code for computer programs.

element: Individual data item in an array.

executable: Ready to run on the processor. Executable code is a series of instructions
that can be carried out on the processor. For example, the computer cannot execute
names and addresses, but it can execute a program that prints names and addresses
on mailing labels.

execute a program: Start a program running. When the program is executing, a
process is executing a sequence of instructions.

expression: Algebraic combination of variables, constants, operators, and function

references that evaluates to an integer, real, or string value.

FCB: File Control Block. Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing a file to be accessed or created on
the disk.

field: Portion of a record; length and type are defined by the programmer. One or
more fields comprise a record.

file: Collection of related records containing characters, instructions or data; usually
stored on a disk under a unique file specification.

152

CBASIC Compiler Reference Manual D Glossary

file number: Unique identification number you assign to a file with the CREATE or
OPEN statement. File numbers can be any numeric expression. If the expression eval-
uates to a real number, it converts to an integer. File numbers range from 1 to the
current implementation limit for the number of files accessible at one time.

filename: Name assigned to a file. The filename can include 1 to 8 alpha, numeric,
and/or some special characters. The filename should tell something about the file.

filetype: Extension to a filename. A filetype is optional, and can contain from 0 to 3
alpha, numeric, and/or some special characters. The filetype must be separated from
the filename by a period. Certain programs require that files to be processed have
specific filetypes.

file access: Refers to methods of entering a file to retrieve the information stored in
the file.

file specification: Unique file identifier. A Digital Research file specification includes
an optional drive specification followed by a colon, a primary filename of 1 to 8
characters, and an optional period and filetype of 0 to 3 characters. Some Digital
Research operating systems allow an optional semicolon and password of 1 to 8
characters following the filename or filetype. All alpha and numeric characters and
some special characters are allowed in Digital Research file specifications.

fixed: Type of file organization used when data is to be accessed randomly—not in
sequential order. Refers generally to the nonvarying lengths of the records composing
the file.

floating point: Value expressed in decimal notation that can include exponential
notation; a real number.

floppy disk: Flexible magnetic disk used to store information. Floppy disks are man-
ufactured in 5 1/4- and 8-inch diameters.

flowchart: Graphic diagram that uses special symbols to indicate the input, output,
and flow of control of part or all of a program.

flow of control: Order of the execution of statements in a program.

formal parameter: Holds a place for an actual parameter that you specify in a user-
defined function reference.

153

D Glossary CBASIC Compiler Reference Manual

format: System utility that writes a known pattern of information on a disk so a
given hardware configuration can properly support reading and writing on that disk.

formatted printing: Output specifically designed in a certain pattern and achieved
through particular coded language statements.

fragmentation: Division of storage area in a way that causes areas to be wasted.

function: Subroutine to which you can pass values and which returns a value. Useful
when the same code is required repeatedly, because the program can call the function
at any time.

global: Relevant throughout an entire program.

hex file: ASCII-printable representation of a code or data file in hexadecimal notation.

hexadecimal notation: Notation for the base 16 number system using the symbols 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,-C, D, E, and F to represent the sixteen digits. Machine
code is often converted to hexadecimal notation because it can be more easily understood.

high bound: Upper limit of one dimension of an array.

high-level language: Set of special words and punctuation that allows a programmer
to code software without being concerned with internal memory management.

identifier: String of characters used to name elements of a program, such as variable
names, reserved words, and user-defined function names. Commonly used synony-
mously with variable name.

include: Call an external file into the code sequence of a program at the point where
the include statement is executed.

initialize: Set a disk system or one or more variables to initial values.

I/O: Abbreviation for input/output.

input: Data entered to an executing program, usually from an operator typing at the
terminal or by the program reading data from a disk.

instruction: Set of characters that defines an operation.

154

CBASIC Compiler Reference Manual D Glossary

integer: Positive or negative nonexponential whole number that does not contain a
decimal point.

interface: Object that allows two independent systems to communicate with each
other, as an interface between the hardware and software in a microcomputer.

intermediate code: Code generated by the syntactical and semantic analyzer portions
of a compiler. |

interpreter: Computer program that translates and executes each source language
statement before translating and executing the next one.

ISAM: Abbreviation for Indexed Sequential Access Merhod.

key: Particular field of a record on which the processing is performed.

keyword: Reserved word with special meaning for statements or commands.

kilobyte: 1024 bytes denoted as 1K. 32 kilobytes equal 32K. 1024 kilobtyes equal
one megabyte, or over one million bytes.

label: Constant, either numeric or literal, that references a statement or function.

Labels in the main executable block of a program must be unique. All labels in a
function must also be unique. However, a label in a function can be the same as a
label in the main executable block of a program or in another function.

linker: System software module that connects previously assembled or compiled pro-
grams or program modules into a unit that can be loaded into memory and executed.

linked list: Data structure in which each element contains a pointer to its predecessor
or successor (singly-linked list) or both (double-linked list).

list device: Device, such as a printer, onto which data can be listed or printed.

listing: Output file created by the compiler that lists the statements in the source
program, the line numbers it has assigned to them, and possibly other optional information.

literal data: Verbatim translation of characters in the code, such as in screen prompts,
report titles, and column headings.

load: To move code from storage into memory for execution.

155

D Glossary CBASIC Compiler Reference Manual

local variable: Relevant only in a specific portion of a program, such as in a function.

logged-in: Made known to the operating system, in reference to drives. A drive is
logged-in when it is selected by the user or an executing process.

logical: Representation of something, such as a console, memory, or disk drive, that
might or might not be the same in its actual physical form. For example, a hard disk
can occupy one physical drive, and yet you can divide the available storage on it to
appear to the user as if there were several different drives. These apparent drives are
the logical drives.

logical device: Reference to an I/O device by the name or number assigned to the
physical device.

logical expression: Expression that evaluates to either true or false.

logical operator: NOT, AND, OR, and XOR.

lower bound: Lower limit of one dimension of an array.

machine code:. Output of an assembler or compiler to be executed directly on the
target processor.

machine language: Instructions directly executable by the processor.

memory: Storage area in and/or attached to a computer system.

microprocessor: Silicon chip that is the CPU of the microcomputer system.

mixed mode: Combination of integer, real or numeric, string values in an expression.
Mixed string and numeric operations are generally not allowed in high-level languages.

mnemonic operator: Alphabetical symbol for algebraic operator: LT, LE, GT, GE,
NE, and EQ.

module: Section of software having well-defined input and output that can be tested
independently of other software.

multiple-line function: Function composed of a function definition statement and one
or more additional statements.

numeric constant: Real or integer quantity that does not vary in the program.

156

CBASIC Compiler Reference Manual D Glossary

numeric variable: Real or integer identifier to which varying numeric quantities can
be assigned during program execution.

null string: String that contains no character; essentially an empty string.

object code: Output of an assembler or compiler that executes on the target processor.

open: System service that informs the operating system of the manner in which a
given resource, usually a disk file, is intended to be used.

operating system: Collection of programs that supervises the execution of other pro-
grams and the management of computer resources. An operating system provides an
orderly input/output environment between the computer and its peripheral devices,
enabling user programs to execute safely.

operation: Execution of a piece of code.

operator: Symbol that represents an arithmetic operation or comparison such as +,
-, =,or <.

option: One of a set of parameters that can be part of a command or language
statement. Options are used to modify the output of an executing process.

output: Data that the processor sends to the console, printer, disk, or other storage
media. |

parameter: Value supplied to a command or language statement that provides addi-
tional information for the command or statement. Used interchangeably with argument.
An actual parameter is a value that is substituted for a dummy or formal argument in
a given procedure or function.

peripheral device: Devices external to the CPU. For example, terminals, printers, and
disk drives are common peripheral devices that are not part of the processor, but are
used in conjunction with it.

pointer: Data item whose value is the address of a location in memory.

primitive: Most basic or fundamental unit of data such as a single digit or letter.

process: Program that is actually executing, as opposed to being in a static state of
storage on disk.

157

D Glossary CBASIC Compiler Reference Manual

program: Series of specially coded instructions that performs specific tasks when
executed on a computer.

prompt: Characters displayed on the input terminal to help the user decide what the
next appropriate action is. A system prompt is a special prompt displayed by the
operating system, indicating to the user that it is ready to accept input.

random access: Method of entering a file at any record number, not necessarily the
first record in the file.

random access file: File structure in which data can be accessed in a random manner,

irrespective of its position in the file.

random number: Number selected at random from a set of numbers.

real number: Numeric value specified with a decimal point; same as floating-point
notation.

record: One or more fields usually containing associated information in numerical
or textual form. A file is composed of one or more records and generally stored on
disk.

record number: Position of a specific record in a fixed-length file, relative to record
number 1. A key by which a specific record in a fixed file is accessed randomly.

recursive: Code that calls itself.

relational operator: Comparison operator. A relational operator states a relationship
between two expressions. The following symbols are CBASIC relational operators: LT,
LE, NE, EQ, GT, GE, EQ.

reserved word: Keyword that has a special meaning to a given language or operating
system.

return value: Value returned by a function.

row-major order: Order of assignment of values to array elements in which the first
item of the subscript list indicates the number of rows in the array.

run a program: Start a program executing. When a program is running, the micro-

processor chip is executing a series of instructions.

158

CBASIC Compiler Reference Manual D Glossary

run-time error: Error occurring during program execution.

run-time monitor: Program that directly executes the coded instructions generated
by a compiler/interpreter.

sequential access: Type of file structure in which data can only be accessed serially,
one record at a time. Data can be added only to the end of the file and cannot be
deleted. An example of a sequential access media is magnetic tape.

source program: Text file that is an input file for a processing program, such as an
editor, text formatter, assembler, or compiler.

statement: Defined way of coding an instruction or data definition using specific
keywords in a specific format.

storage: Place for keeping data temporarily in memory or permanently on disk.

stream organization: Type of file organization used when data is to be accessed
sequentially. Can contain variable length records.

string constant: Literal data, as in a screen prompt, column heading, or title of a
report.

string variable: Identifier of type string to which varying strings can be assigned during
program execution.

subroutine: Section of code that performs a specific task, is logically separate from
the rest of the program, and can be prewritten. A subroutine is invoked by another
statement and returns to the place of invocation after executing. Subroutines are useful
when the same sequence of code is used more than once in a program.

subscript: Integer expression that specifies the position of an element in an array.

subscript list: Numeric value appended to a variable name that indicates the number
of elements in each dimension in the array of that name. Each dimension must have
a value in the subscript list indicating the number of elements for which to allocate
storage space.

syntax: Rules for structuring statements for an operating system or programming
language.

159

D Glossary CBASIC Compiler Reference Manual

toggle: Switch enabled by a special code in the command line that modifies the output
of the executing program.

trace: Option used for run-time debugging. The trace option generally lists each line
of code as it executes to enable the programmer to note where a problem occurs.

upward-compatible: Term meaning that a program created for the previously released
operating system or compiler runs under a later release of the same software program.

user-defined function: Set of statements created and given a function name by the
user. The function performs a specific task and is called into action by referencing the
function by name.

utility: Tool; a program or module that facilitates certain operations, such as copying,
erasing, and editing files, or controlling the cursor positioning on the video screen from
within a program. Utilities are created for the convenience of programmers and appli-
cations operators.

value: Quantity expressed by an integer or real number.

variable: Name to which the program can assign a numerical value or string.

variable length: Usually refers to records, where each record in a file is not necessarily
the same length as another.

variable name: Same as variable.

wildcard characters: Special characters, ? and *, that can be included in a Digital
Research filename and/or filetype to identify more than one file in a single file specification.

End of Appendix D

160

A

algebraic operators, 11, 12
AND operator, 11, 12

arithmetic operators, 11, 12
array, 5

physical storage area of, 10
referenced, 10

variables, 9-10

asterisk fill, 129

B

backslash, 2

balanced parentheses, 11
BAS files, 1

binary constant, 9
bounds checking, 10
byte displacement value, 136

C

CLOSE, 131

CMD files, 1

colon, 3

COM files, 1

commas embedded, 128

comments, 3

COMMON statement, 120

concatenation operator, 12

CONCHAR% function, 123
console input and output, 123
CONSOLE statement, 124

Index

constants, 5, 11

CONSTAT% function, 123

continuation character, 2

control characters, 7

CREATE statement, 131

D

data fields, 124

data files
fixed, 132, 134

stream, 132, 133

data types, 5
decimal-ASCII-hex table, 139

declaration group, 61, 91, 106

declaration statement, 61, 91, 106

DEF statement, 118

default data type, 61, 91, 106

DELETE, 131
delimiters, 132

DIM statement, 120

dimension, 10

E

EQ operator, 11

ERRX function, 41

escape character, 130
exponent, 8

exponential notation, 8
expressions, 11

list, 125

extended error code, 41

161

F L

FEND statement, 119 LE operator, 11, 12

fields, 132 leading sign, 129
file organization, 132 library, 1
fixed files, 134 line numbers, 2

random access to, 134 line-editing functions, 123
fixed format, 8 literal link editor, 1 |
fixed-length string field, 126 character, 127
floating-point, 9 data, 124

formal parameters, 118 local variables, 118
function, 5, 117 logical operators, 11-12

definition, 118 LPRINTER, 124

names, 117 LT operator, 11, 12

references, 121

M
G

mantissa, 8

GE operator, 11 memory fragmentation, 107

GET function, 48, 131 minus sign, 129

GOTO statement, 120 mixed-mode expression, 12

GT operator, 11 mnemonic relational operators, 12

multiple statements, 3
multiple-line function, 119

H

hexadecimal constant, 9 N

hierarchy of operators, 11
high-level language features, 1 name, 5

NE operator, 11

I nested functions, 120

NOT operator, 11, 12
identifier, 5, 10 numbers

IF END, 131 integer, 8

individual record lengths, 132 real, 8

initialize, 9 numeric

INPUT statement, 123 constants, 5, 9

INPUT LINE statement, 123 data field, 125, 127
integer, 5, 8, 9

constants, 8, 9

INTEGER statement, 61

162

O

ON ERROR, 41

OPEN statement, 131

operators hierarchy of, 11
OR operator, 11, 12

overflow, 14

P

POS predefined function, 124
power operator, 11-12

PRINT, 82

PRINT #, 85

PRINT statement, 108, 124

PRINT USING, 83

variation, 124

printing, 124

formatted, 124
PUT statement, 86, 131

quote, 7

RANDOMIZE statement, 87

READ, 88
READ #, 89
READ # LINE, 90
real

constants, 8

numbers, 5, 8, 9, 13

REAL statement, 91

record number, 135

records, 132
REL files, 1

relational operators, 11, 12

REM, 92
RENAME, 93
RESTORE, 94
RETURN, 95
RIGHT$, 96
RND, 97

S

SADD, 98
SGN, 99
SHIFT, 100
SIN, 101
single-line function, 118
SIZE, 131
SIZE function, 102

source programs, 1

spaces, 3

SQR function, 103

statement labels, 2

STOP statement, 104

STR$ function, 105

stream
file, 132

organization, 132

string, 7

constants, 7

data field, 125
length, 7
variables, 9-12, 113

STRING statement, 106

STRING$ function, 107
strings, 5

subscript list expressions in, 10
subscripted variables, 10, 113

T %

TAB function, 108 | %, 5, 117

TAN function, 109

trailing sign, 129

U 3

UCASE$ function, 110

UNLOCK function, 111

up arrow, 128

user-defined functions, 117

V

VAL function, 112

variable-length string field, 125
variables, 5, 9, 11, 12

VARPTR function, 113

W

WEND statement, 114

WHILE statement, 115

X

XOR operator, 11, 12

$

$, 5, 117

floating, 129

164

DIGITAL
RESEARCH’

CBASIC
Compiler
Handbuch in englischer Sprache

Der Hochleistungs-BASIC-Compiler

für Softwareprofis zur Erstellung

kommerzieller Anwendungen.

Der CBASIC-Compiler ist ein erwei-

tertes BASIC mit wichtigen Vorteilen

für Softwareprofis. Er ist ein Compi-

ler, der Maschinencode erzeugt und

die Programmierung und den Test

separater Module erlaubt, die später

ein komplettes Programm ergeben

sollen.

Markt&Technik
128er-Software
Hans-Pinsel-Straße 2

8013 Haar

Schnelle Ausführung

Der CBASIC-Compiler kombiniert

die Geschwindigkeit von

Maschinencode mit der leichten

Verständlichkeit der Sprache BASIC.

Ein mit dem CBASIC-Compiler kom-

piliertes Programm wird acht- bis

zehnmal schneller ausgeführt als

das gleiche interpretierte Pro-

gramm.

Dezimal-Arithmetik

Die 14stellige Dezimal-Arithmetik

gewährleistet höchste Genauigkeit

bei Berechnungen und stellt sicher,

daß alle Geldbeträge auf den Pfen-

nig genau stimmen. Rundungsfeh-

ler, wie sie bei binärer Arithmetik

möglich sind, können nicht auftre-

ten.

Der CBASIC-Compiler unterstützt

auch echte Integer-Arithmetik, so

daß zur Erhöhung der Geschwindig-

keit auch Integer-Variablen verwen-

det werden können.

Mehrzeilige Funktionen

Durch die Möglichkeit, mehrzeilige

Funktionen zu erstellen, verfügt der

CBASIC-Compiler über Fähigkeiten,

die sich sonst nur in strukturierten

Programmiersprachen wie PL/I oder

Pascal finden. Innerhalb einer mehr-

zeiligen Funktion können lokale

Variablen verwendet werden.

Fur professionellen Einsatz

Der CBASIC-Compiler wurde für die

hohen Ansprüche professioneller

Softwareentwickler und erfahrener

Anwender entwickelt. Der CBASIC-

Compiler wird mit ausführlicher

Dokumentation in englischer Spra-

che geliefert.

Hardwarevoraussetzungen

Der CBASIC-Compiler läuft auf dem

Commodore 128 mit einem Disket-

tenlaufwerk. Der CBASIC-Compiler

wird im 1541-Format ausgeliefert.

Die Vorteile des CBASIC-

Compilers auf einen Blick:

@ hohe Geschwindigkeit der

erzeugten Programme

e Grafikerweiterungen

Dezimal-Arithmetik mit hoher

Genauigkeit

umfangreiche Stringverarbeitung

Stringlänge bis 32 KByte

mehrzeilige Funktionen

keine Zeilennummern erforderlich

Overlays durch CHAIN-Befehl

Lieferumfang:

e 514-Zoll-Diskette
@ Bedienerhandbuch in englischer

Sprache

® Beschreibung der Commodore-

spezifischen Version

