
IM | I

P. Lukowicz/O. Pfeiffer

IG

“
= Auf 3'/2”-Diskette enthalten:

H Im Verla Sämtliche Beispielprogramme des Buches
und nützliche Hilfsprogramme

P. Lukowicz/O. Pfeiffer |

Auf 3'/2”-Diskette enthalten:
Sämtliche Beispielprogramme des Buches

und nützliche Hilfsprogramme

Grafik in C auf dem Amiga

Lukowicz/Pfeiffer

— 1. Auflage — Darmstadt: #fefsr , 1990
ISBN 3-923250-91-6

© Copyright 1990

beim Helm -Verlag - Organisation + Datentechnik

Heidelberger Landstr. 194 - 6100 Darmstadt

Telefon 06151-56057

Alle Rechte vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des
Heim: -Verlages in irgendeiner Form reproduziert oder in eine von Maschinen, insbe-
sondere auch von Datenverarbeitungsmaschinen, verwendete Sprache oder Aufzeich-
nungs bzw. Wiedergabeart übertragen oder übersetzt werden. —

Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen
in dem Buch berechtigt nicht zu der Annahme, daß diese von jedermann frei benutzt wer-
den dürfen. Es kann sich auch dann um eingetragene Warenzeichen oder sonstige ge-
setzlich geschützte Kennzeichen handeln, wenn sie nicht als solche besonders
gekennzeichnet sind. |

Druck: Druckerei der ##@7372 OHG, 6100 Darmstadt.

Inhalt

[KRELLLILITT

::inhaltsverzeichnis::
Deemer Hees Oee Hoses eHeedeeeeeresDeeeDestoseos

ROCHE H ES Cee ROR EE HELO FORCED EEO O REESE HEE EH EEE EDS

boca eraser esearedesereoansereane

Vorwort 2... ccc ccc ccc c ccc meee reece eer ees nenn nn ne 1

Einleitungcceeeeccee. vecceeeeceeceeees 3

Kapitel 1 - Grafikdarstellung 5

1. Aufbau des Grafikbildschirms000. 6
2. Die Grafikmodi des Amigasccscccrccceee 9
3. Speicherplatzbelegung einzelner Grafikmodi 11
4. Die Playfields ...cccc ccc cece cccccccnccccnns 12
5. Die Grafikhardwareccccccccccccccces 13
6. Die Textausgabe ...ccccccccccccsescccecceces 14

Kapitel 2 - Fenster und Screenseeee0- 15

1. Was ist ein Screen occ ere cece cccerceeeenes 16
2. Offnen eines Screensceecccccccccscees 18
3. Die Fensterccccccccvcccccvcvccvvvevcces 23
4. Öffnen eines Fensterscccccccccccccccees 27
5. Der IDCMP-Port Doreen sneeennenennnnene 33
6. Das Display Programme000- vu. 39

Kapitel 3 - Zeichenroutinen der Intuition 45

1. Zeichnen von Umrandungen: Draw Border 46
2. Die Speicherallozierungcceseeveccvcens 52
3. Die Images ..cccccccccccccccccccccccsccccens 54

Inhalt

Kapitel 4 - Farbeinstellung und Graphik 63

1. Der Rastportccccccccccccccccccscccccens 64
2. Punkte und Linien ..ccsccccecccscccccscccons 68
3. Rechtecke, Kreise und Ellipsen-. 73
4. Die RGB-Werte der Farbencceeeceees 76

Kapitel 5 - Polygone, Flächen, Füllmuster 83

1. PolyDraw: Zeichnen von Vielecken 84
2. Flächen füllen: TempRas und Arealnfo 88
3. Die Füllprozeduren-. ccc cere c cere eee 94
4. Gefüllte Polygoneccccecccsccccsecceses 99
5. Flächenmuster cc ccccccccccccccccccceens 101
6. Farbmustereee00- eee cece eee cceene 102

Kapite! 6 - Prozeduren und Tricks en 107

1. Die GfxBase-und IntuitionBase-Strukturen ... 108
2. Scrollen eines Rastportscccccccccccvece 111
3. Definition eines eigenen Mauszeigers 114
4. Beeinflussung des Multitaskings 118

7. Kapitel - Textdarstellungceeeee 121

1. Die Text-Prozedur cc cece cece cceees 122
2. Die Fonts des Amiga see eee cerccceceee 127
3. Auflisten der Fontsee08. euere 129
4. Offnen eines Fontscccccncccccccccsccecs 135
5. Erzeugen eines neuen Fonts auf Diskette 149
6. Textausgabe mit IntuiTextseeeee. zur 154

Inhalt

8. Kapitel - Sonderdarstellungsmodi 161

1. Der Interlace-Modus De csdccccce wee 162
2. Der Extra-Half-Bright- -Modus re 164
3. Der HAM-MOdUSccccccccccccccccccscoves 165
4. Erstellen eigener Viewports sec ce cece cecees .171
5. Manipulieren eines Viewports: ScrollVPort .. 183
6. Der Dual-Playfield Moduscceeeeees 184
7. Öffnen eines Dual- -Playfield Screens 187
8. "Übergroße"-Anzeigeccccecccecceceecs 191
9. Das DisplayTools.h include-Filee6. 191

9. Kapitel - Der Blitter ccc cece cece ce enee 197

1. Die Möglichkeiten des Blitters 198
2. Logische Verknüpfung von Bereichen ;........ 200
3. Einfaches Kopieren zwischen zwei Rastports 204
4. Weitere Kopiermöglichkeiten006. 208
5. Noch mehr Blitterroutinencceeeeeeee 214
6. Der Blitter und das Multitasking 217
7. Die Blitterhardwareccceccccnsccccccens 220
8. Fortgeschrittene Optionen beim Kopieren 225
Q. Zeichnen von Linien ...cccccccccccccencscees 228

10. Füllen von Flächencccccccccccccccvves 233

10. Kapitel - Der Coppercccccnccccccens 237

1. Die Funktionen des Copperscceeeeees 238
2. Der hardwaremäßige Aufbau des Displays rn 240
3. Copperlisten und Views ernennen neennne 244
4. Erstellen einer neuen Copperliste 245
5. Die Copperhardwarecccceccccccccccces 250

Inhalt

11. Kapitel - Zweidimensionale Graphikerzeugung 257

1. Erste Schritte ccc cece eee eeees 258
2. Erzeugen eines Spiralnebelscccsecceees 266
3. Fraktale Kurven und L-Systeme 272
4. Random Pixels ..ooocceeseeeessenenneeenenene 280

12. Kapitel - Dreidimensionale Graphikerzeugung 291

1. Das Koordinatensystemccccsccscccccsvece 292
2. Die Rotationsmatrix ..cccccccccccccccccccccs 293
3. 3D-Darstellung von Objekten006. 295
A. 3D-Funktionen 2... cc cc cc ccccccccccccccvccces 298
5. Künstliche Landschaften ...cccccccrsscccceee 305
6. Kugeln mit Längen- und Breitengrade BEE 319
7. Abschließene Anregungensccceccccccecs 326

Anhang A - Datenstrukturen der Intuition......... 327

Anhang B - Datenstrukturen der Graphics-Library 353

Anhang C - Systemfunktionen der Intuition-Library 367

Anhang D - Systemfunktionen der Graphics-Library 379

Anhang E - Blitter-Hardware-Registerbeschreibung 407

Literaturverzeichnisccccccscccvecceccvcvcece 413

Vorwort

Schreibt man ein Grafikbuch über den Amiga, so
bleibt einem an dieser Selle wohl kaum etwas anderes
übrig, als die besonderen Grafikleistungen des Amigas
hervorzuheben. Dabei wollen wir es dann aber auch be-
lassen, da Ihnen ja wohl die theoretischen Grafik-
fähigkeiten Ihres Computers bekännt sein dürften, und
sei es nur aus irgendwelchen Spielen, Grafikdemos
oder auch Malprogrammen. Sobald man aber die Gra-
fikmöglichkeiten durch eigene Programme nutzen möch-
te, stellt man sehr schnell fest, wie unergründlich
die Wege durch den Amiga sind. Nach endlosen Compi-
ler-Durchläufen und bei der dazugehörenden Fehler-
suche endet man schließlich in einem Zustand, bei dem
jede "Guru Meditation" einen in Trance versetzten
kann. Solche Erfahrungen möchten wir Ihnen, zumindest
im Bereich der Grafikprogrammierung, durch dieses

- Buch gerne ersparen. Dabei sei jedoch gesagt, daß bei
aktiver Amiga-Programmierung niemand vor solchen
Erlebnissen sicher ist, auch mit noch sovielen guten
Büchern nicht. Man kann allerdings nicht leugnen, daß
gerade in diesem Fall, Bücher über die Systemprogram-
mierung einen unschätzbaren Wert darstellen. So er-

“ freut es einen dann auch, wenn gerade dieser recht
trockene Stoff bereits im Orginal nicht todernst be-
handelt wird. Beschreibungen wie die der Fehlerwar-
nung der SizeWindow-Routine (siehe Anhang C) geben
einem durchaus wieder neue Hoffnung, zumindest bis zu
dem Zeitpunkt wo der Amiga wiedereinmal seine spiri-
tistischen Neigungen rausläßt. Alles in allem hat uns
das Schreiben dieses Buches jedoch eine Menge ge-
bracht: Spaß, Arger, weniger Schlaf, einen größeren
Kalorienverbrauch in der Zeit zwischen 22 und 2 Uhr,
sowie eine gehörige Portion Selbstbeherrschung. Uns

Vorwort

bleibt abschließend nichts weiter übrig, als Ihnen
bei den nun folgenden Sitzungen mit Ihrem Amiga viel
Spaß und möglichst wenig "Gurus" zu wünschen.

Einleitung

CEIREXEENZEEXKEIEEZLINIIEHEKIZEELKEEXZENZKEXIIHEZXIIEEEKKKZEKIEKEKZEXSZEEEKEUNZEXSZEKUIEIEEZEXELIIZZT
PCC OES O Re CeO E HEHEHE ETE EEE CRETE EEO ERATE H HEHEHE EOD EERE E EHH EESEEEEEEEEREED HOO EEE ENOR OEE SESH EES G
ORC D EOE U HETERO HEE E EOE SEED TOE E THEE ES TH SS OSTEO HOR OEE DE FEET RH HATO EROO REDE EHAEOC EHEC HE OO ETED

PHOTO EOE AH TEE OOOH ERLITT LER LETTER ©
LELIELLTERTTIIPIFSEPELLIEFTT eee ee eee CeCe eee CCCP e CeCe CECE CCCP ESE CeCe eee ere rere reer ere ey
COTO VOOR ARH E EHO TEE ELE E EECA ETO USEF EEE EEE EHR EH EERE ORE TO TEED ERE EEEE

Tere Tere eT eee er eee ere eee eee ee ey SEPP eee eee ee 2 eee Ss ees ee

eee eee rece Perec § Serre err veeesr ec eeereer rer ree ree errerereeres eye)
SEVETETTCECSEERE ECC eee See eee CER eee eee Cee TCC eS ee eee eee ee ee eee ee ee ese

FOR Pe me meme ene eer Dae ERE R OEE HT aE EERE EH ORE E CHRO TEN OE SE SHOOTER DERE SEEDED SHEESH ET Te
PORE OOO Dee HOE ETE E EOE R EH ERED EHO ETHEL OR ET HAE EEHO OSE LEE TE TORE EOE Oe Re tOM

VEC EPC CREEEC REECE PSPS Cee eee eee SESE CELL E CEES CeCe CET Tee eT CeCe TESST Tee eee eee
DERRERERZLERKKEIRZEEENERERENZSIERKERZREEKAERZSSEIERRERBENEENERSEIZERERRHESZERZSESZERREREZZZIZERZERE

Wir möchten Ihnen hier zunächst ein paar Richt-
linien vermitteln, die Ihnen beim Verständniß der
einzelnen Abschnitte von Nutzen sein werden. Hält man
über Computer etwas schriftlich fest so hat man
grundsätzlich zwei Möglichkeiten: entweder man über-
setzt konsequent Begriffe ins Deutsche, oder man
verwendet Sie direkt und geht davon aus, daß jeder
weiß was gemeint ist.

Diese beiden, von den Verlagshäusern unterschied-
lich gehandhabten "Philosophien", haben sicherlich
Vor- und Nachteile, die wir jedoch garnicht erst
versucht haben gegeneinander aufzuwiegen. Wir haben
uns ohne zögern für den umgangssprachlichen Ton
entschieden, der die Amiga-spezifischen Begriffe
"natürlich" in ihrem Orginal beläßt. Bei der System-
nahen Programmierung ist dies besonders sinnvoll, da
dort Begriffe und Parameter auftauchen, die Sie auch
bei Ihrem C-Compiler wiederfinden. Dabei seien be-
reits hier die Include-Files bemerkt, die Sie bei
ihrem C-Compiler in dem Directory "include" finden.
Dort sind sämtliche Routinen und Datenstrukturen des
Amiga-Betriebssytems definiert und zwar "natürlich"
in Englisch.

Da dieses Buch keine Einführung in die Programmier-
sprache. C sein soll, setzen wir bei Ihnen ein Minimum
an Amiga-Wissen voraus, daß Begriffe wie "Icon",
"Pixel" und "Screen" beinhalted. Umgangssprachlich
bedeutet aber auch, daß wir Begriffe wie "Intuition"
oder "RastPort" verschieden verwenden. Reden wir von

Einleitung

dem RastPort oder dem ViewPort, so meinen wir in
erster Linie die RastPort-Datenstruktur, bzw. die
ViewPort-Datenstruktur. Ein Zeiger auf einen solchen
"Port" ist dann logischerweise ein Adreßzeiger auf
die zugehörige Datenstruktur. Sagen Ihnen auch diese
Begriffe noch nichts, dann sollten Sie in diesem Buch
keine Abschnitte oder Kapitel überspringen, da
Begriffe nur bei der Einführung erklärt werden. Die
Abschnitte und Kapitel bauen aufeinander auf, so daß
wir nach der Einführung von Begriffen meißtens bei
der kürzeren, umgangssprachlichen Form bleiben. So
kommt es, daß Sie Worte wie "Bildschirmwiederhol-
speicherbereich" in diesem Buch nicht finden werden,
sieht man mal von dieser Stelle hier ab.

Kapitel 1 Grafikdarstellung

Kapitel 1

Grundlagen der Grafikdarstellung

Kapitel 1 Ze Grafikdarstellung

In diesem Kapitel geht es um die Grafikdarstellung
auf dem Bildschirm und um die Grafikmöglichkeiten des
Amiga. Es wird nicht nur auf die einzelnen Grafikmodi
LoRes, HighRes, Interlace, Extra-Halfbright und Hold-
And-Modify, sowie die Playfields eingegangen, sondern
auch auf die Grafikhardware, also z.B. den Copro-
zessor Blitter, der bei der Grafikprogrammierung eine
wichtige Rolle spielt. In diesem Zusammenhang werden
auch die Verschiedenen Arten des Speichers: CHIP- und
FAST-Memory erläutert.

a er re re er ee ee Sr ee er ee er ee ee EEE DEO EERO SEH OES EHEDEHEEED
SET cee eee cece eee eee cece cee eee ee ee ee ee TEE eee ee Ten

SPE eee eee Ce ee eee ET ET ee ie
PRO ER eee Cee Dee ROH EME em HALT OEE EEA EAH EE ETRE EET HT ERE SOHO LETHE EES OLED ENDO EF OE ODED ESO H OED
PRE ROR eRe Hee ESHER HEHE EEO EE HO REH OT EHH HOO HEE EHS HO EEE OE REREH EE EFE POO ETOCS ET Te
Pee COE ae HO Hee E HEH REET EEE EEE ET ET OH EHD EH EHC EER EES ERED ES EHH SHOR ED EOD
Leeenenerenrorneononenn sen unten nn ee . .
Dette oe reer rt retosrereersriteeehseseenevet abet esrrrssaceecs ot seen eee’ |

In diesem Abschnitt geht es um die Unterschiede in
den Qualitäten der Bildschirmausgabe und um Begriffe
wie Pixel, RGB, Bitplane und BitMap.

Bei der Bildschirmausgabe eines Computers trifft
man auf die unterschiedlichsten Qualitäten und Dar-
stellungsmöglichkeiten der verschiedenen Systeme. Im
Grunde arbeiten sie jedoch alle nach dem gleichen
Prinzip. Das Bild setzt sich aus vielen kleinen Punk-
ten, genannt Pixels, zusammen. Die Qualitätsunter-
schiede verschiedener Systeme und/oder Grafikmodi
entstehen im wesentlichen durch drei Faktoren:

I. Die Auflösung, also aus wievielen Punkten sich
das Bild zusammensetzt. |

Il. Die Intensität und Farbmöglichkeiten jedes ein-
zelnen Pixels, also wieviel verschiedene Hellig-
keits und Farbstufen jeder Pixel annehmen kann.

III. Die Frequenz, mit der die Bilder aufgebaut wer-

Kapitel1 — Grafikdarstellung

den, also wieviel Bilder letztendlich pro Sekun-
de auf dem Bildschirm erscheinen.

Die Auflésung ist verantwortlich fiir die Scharfe
des Bildes, Intensität und Farbmöglichkeiten für
Farbabstufungen und fließende Farbübergänge, sowie
schließlich die Frequenz für die flimmerfreie Dar-
stellung auf dem Bildschirm.

Computerintern sieht das ganze ungefähr so aus:
Jedem Pixel ist genau ein Bit im Speicher des Compu-
ters zugeordnet. Ist es gesetzt (1), so ist der Pixel
an, andernfalls (0) aus. Der Bildschirm ist eine Zu-
sammensetzung aus "Einser" und "Nullen", die die Bit-
plane ergeben. Bildhaft gesehen ist die Bitplane eine
Fläche von Nullen und Einsen. Damit hätten wir jedoch
lediglich die Möglichkeit, einen Punkt auf dem Bild-
schirm zu setzen oder nicht. Um die Farbe der Pixels
zu beeinflussen, braucht man jedoch mehr Information,
als ein Bit. Dazu legt der Amiga mehrere Bitplanes
an, die sich "überlappen". Bei zwei Bitplanes: setzt
sich die Information für ein Pixel aus einem Bit aus
der ersten Bitplane und einem Bit aus der zweiten
Bitplane zusammen. Somit kann man jedem Pixel bereits
vier Farben zuordnen, eben die Binärkombinationen 00,
01, 10 und 11. Durch hinzufügen weiterer Bitplanes,
kann man jedem Pixel 2 hoch (Anzahl an Bitplanes)
Farben über die Farbregister zuordnen.

Kapitel 1 Grafikdarstellung

Bitplane 0
070101000010011100000

0110011ANINANINANI S14

+10000101010100001007110000G

0000011011001 122.1 22.21 22.201111 Bitplane 2

010101111000c1010101000010011100000
111111100000 10 Tı0o0 1 ı an Tann Tann TT 1

117171101010 mr 7000c]010101000010011100000

104779017111 900000 FOFT100711007100010001111

109011 r1177q@etroronttoo000000000000000000

110101111117 3 01 117711000001011100001000100

1010100110101 107 117111]0170101010000101010111

Bitplane 1

Bitplane 3

117010101 Tr tee eee eee ee

EHEN LEBE ER LEREREEREREZEREEREERE

1101011717117171010101011110101

10101cC'0717011101010101010111

770701010101010101010

10101010101010001010

BILD 1.1.: Farbdarstellung durch Bitplanes

In den Farbregistern steht dann der eigentliche
Farbwert (einer von 4096), den das Farbsignal als
RGB-Signal an den Monitor leitet. Dieses Farbsignal
setzt sich aus den Grundfarben Rot, Grün und Blau,
eben RGB, zusammen. Das Benutzen mehrerer Bitplanes
und deren "Überlappen" nennt man Bitmapping.

Kapitel 1 Grafikdarstellung

VERIKERKELLEKKZEREEKEEKEERKKKEKHKEEEKEKEEKEKZZZEKZEKEKEEKKENEKSEZEKENIEZEEXTREETEZEZKERZKENERZZEN]
ER ee er eee eee ee ee ee eee ee ee ee ee eee eee eee eee ee er ee ee ee ee
SVeeeee eee eee eee eee eee eee eee eee eee eee eee ee eee ee ee eee ee ee ee ee eee eer eee eee eee eer eee eee sD
CORR roe e TEE EEE EHH AES E TOE HEE HH REESE RFS E EEE TET HAEH EERE OE RROD RHE H ESTO OES EHEC AHERN DEEDS

be SRO Oe HARTA O EEO OEE EME E EEE AEE O EDT O ROHR ET EOE TOOTH LAER AEST HA EE REDO EET TETHER STEER ES EE SE
ee TE Ce Pee Eee eee Tee eee eee eee re rere rer eT eres)

PCR OE Cee e eRe HE MH OH HORE HERE HEHEHE OHH EERE SE EEF ETO EEEO OEE REO E SHEET EERE OSCE EE HT Oe Meas eenerates
Per Oe ee ee OEE EH HEH DORE HEH OH HERES er ERED EHO SOT EHE ESO RHEE LESS ED HEE SEHD HEHE OH DEO PODER ODE EDO
SP eee eee eee ee eee eee ee eee eee eee ee ee ee ee ee rer rer
SPIER ee rere eee eee eee eee eee eee eee eee eee eee ee eee eee eee eee ee ee
See eee eee ee
be oe eee ee oat errs sete eee te ee wee ee esos ee enn sae reese see oben se eee seeds ees sere sere ss eens ers bere see sane

In Bezug auf die Qualität der Bildschirmausgabe
stehen uns beim Amiga mehrere Möglichkeiten, sprich
Grafikmodi, zur Verfügung. Aus den Preferences der
Workbench wissen Sie, daß die Farbpalette des Amiga
sich aus den Farben Rot, Grün und Blau zusammen-
setzt, die in verschiedenen Abstufungen miteinander
gemischt werden können. Da es für jede der drei Far-
ben 16 Abstufungen gibt, stehen uns also insgesamt
4096 (16 hoch drei) Farben zur Verfügung. Was die
Auflösung betrifft,so ist der Amiga ebenfalls bestens
ausgerüstet, wobei Amiga nicht gleich Amiga ist. Die
amerikanische Version verfügt lediglich über maximal
400 Zeilen, während sein deutscher Bruder bis zu 512
Zeilen auf den Monitor bringen kann. Zu diesen Unter-
schieden kommt es durch die verschiedenen Fernseh-
Normen, wobei die deutsche "PAL"-Version des Amiga
eben den Vorteil hat, mehrere Zeilen darstellen zu
können, demgegenüber kann die amerikanische Version
mit einem flimmerfreieren Bild aufwarten. In diesem
Zusammenhang beachten Sie bitte, daß wir im folgenden
von der PAL-Version ausgehen. Sollten Sie also noch
eine Version der Workbench 1.1 benutzen, sollten Sie
sich schleunigst eine neuere Version besorgen, da
diese Version von maximal 400 Zeilen ausgeht und so-
mit nicht die voile Auflösung unterstützt. Doch nun
zu den einzelnen Grafikmodi:

(1.) LoRes:
Im LoRes-Modus (Low Resolution; Niedrige Auflösung)
stehen uns auf dem Bildschirm 320 (x-Achse) mal 256
(x-Achse) Pixel mit je 32 Farbmöglichkeiten zur Ver-
fügung. Die Beschränkung auf 32 Farben ergibt sich
durch die begrenzte Anzahl von 32 Farbregistern.

Kapitel 1 | Grafikdarstellung

(2.) HighRes:
Der HighRes-Modus (High Resolution; Hohe Auflösung)
erlaubt uns eine Auflösung von 640 (x-Achse) mal 256
(y-Achse) Pixel, die jeweils eine von 16 Farben an-
nehmen können. In diesem Modus kann der Amiga maximal
vier Bitplanes anlegen, deshalb 16 (2 hoch 4) Farben.

(3.) Extra Halfbright:
Der Extra-Halfbright-Modus ist eine Sonderform des
LoRes, wobei dieser Modus jedoch in der Lage ist,
sechs Bitplanes anzulegen und somit 64 (2 hoch 6)
verschiedene Farben auf den Bildschirm zu bringen.
Dabei gibt es jedoch eine Einschränkung, denn wie be-
reits erwähnt, stehen dem Amiga nur 32 Farbregister
zur Verfügung. Im Extra-Halfbright-Modus (wörtlich ü-
bersetzt: ("Besonderer-Halbhell-Modus") kann man
selbst nur 32 Farben über die Farbregister aussuchen,
die restlichen 32 Farben errechnet sich der Amiga aus
den 32 zugeordneten. Dabei verringert er die Farb-
werte so, daß eine in etwa halb so helle Farbe ent-
steht. So wird beispielsweise aus einem Rot ein Oran-
ge, aus einem Dunkelgrau eben ein Hellgrau.

(4.) Hold-And-Modify: |
Der H.A.M.- Modus ist ebenfalls eine Besonderheit
des LoRes und erlaubt es, alle 4096 Farben auf den
Bildschirm zu bringen. Allerdings gibt es auch hier
Einschränkungen, ebenfalls hervorgerufen durch die
Farbregister.

Im Gegensatz zu den anderen Modi besteht nicht nur
die Möglichkeit, den einzelnen Pixeln direkt über den
Farbregistern eine bestimmte Farbe zuzuordnen, son-
dern man kann ihm eine Farbe relativ zum letzten Pi-
xel geben. Konkret kann jeweils eines der drei Farb-
signale Rot, Grün und Blau verändert, bzw. neu einge-
stellt werden. Um eine Farbveränderung über alle drei

10

Kapitel 1 Grafikdarstellung

Farbsignale zu erreichen, muß man sich also über eine
Strecke von drei Pixels bewegen. Die ersten zwei Bit-
planes sind dafür verantwortlich, ob der Pixel einen
direkten Farbwert, oder einen relativen annehmen
soll. Also ob das Rot, Grün oder Blau Signal verän-
dert werden soll, oder ob die vier Bits der letzten
vier Bitplanes dem Pixel über die Farbregister direkt
einen Farbwert zuweisen.

(5.) Interlace:
Der Interlace - Modus läßt sich mit allen oben ge-
nannten Grafikmodi kombinieren. Er vergrößert die
vertikale Auflösung (y-Achse) von 256 auf 512, aller-
dings verstärkt sich dabei das Flimmern des Bild-
schirms. Der Amiga teilt sich das vergrößerte Bild
in zwei Hälften ein, die er abwechselnd um einen hal-
ben Pixel (vertikal) versetzt auf den Bildschirm
bringt. Dabei enthält das erste Teilbild alle unge-
raden Zeilennummern (1,3,5,...,511) und das zweite
alle geraden(2,4,6,...,512). Das Flimmern entsteht,
da jetzt nicht mehr 50, sondern nur noch 25 Bilder
pro Sekunde auf dem Bildschirm erscheinen (Bei der
amerikanischen Norm von 60 Hz sind es immerhin noch
30 Bilder pro Sekunde).

Die Speicherplatzbelegung kann man wie folgt selbst
für jeden Modi berechnen: Die Anzahl der Pixel, und
somit auch der Bits einer Bitplane erhält man durch
das Produkt der Pixel der x-Achse und der Pixel der
y-Achse. Im LoRes (und nicht Interlace) also:

11

Kapitel 1 Grafikdarstellung

320 x 256 = 81920

Teilen wir durch 8, erhalten wir die Anzahl an
Bytes, die eine Bitplane im Speicher belegt, in die-
sem Fall 10240 Bytes, also genau 10 KByte (1KByte =
1024Bit). Bei HighRes und Interlace sind es dann
schon 40 KByte pro Bitplane. Nun ist die Anzahl der
Bitplanes zwar auf sechs beschränkt, um jedoch noch
einmal den Speicheraufwand von Grafiken zu verdeutli-
chen noch ein abschließendes Rechenbeispiel: Wäre es
möglich bei höchster Auflösung alle 4069 Farben di-
rekt addressiert auf den Bildschirm zu bringen, benö-
tigte man zwölf Bitplanes (2 hoch 12 = 4096) und
einen Speicherplatz von:

640 x 512 x 12 Bit = 480 KByte!

Sr ee rr er rr rer rar rr rr rer rear rer
ee ee ee ee ee ee ee ee a EEE ee
Se ee re
Se ee ee
Se ee a EEE Er er ee ee
ere eee ee ee re

RII rer ee
ee ee ee ee er EEE rer
See eee ee ee eee eee ee ee ee ee ee a ear
ee ee EEE ee er a rr er rer er ar rarer
ee ee i a ci irc

Als Playfield (Spielfeld) wird beim Amiga das gra-
fische Ausgabefenster bezeichnet. Es ist eine Ar-
beitsfläche, die sich vorzugsweise über den ganzen
Bildschirm erstreckt und einen beliebigen Grafikmodus
annehmen kann. Dabei muß das Playfield nicht unbe-
dingt die gleiche Größe, wie das eigentliche Ausgabe-
fenster haben, sondern darf auch größer sein.

Es wird dann jedoch immer nur ein Ausschnitt des
Playfields gezeigt, der aber durch den Verschiebebe-
fehl Scroll ruckfrei (SmoothScrolling) über das ganze
Playfield verschoben werden kann. Eine weitere Beson-
derheit sind die Dual-Playfields, bei denen zwei
Playfields sich so überlagern können, daß ein Play-

12

Kapitel 1 Grafikdarstellung

field im Vordergrund und eines im Hintergrund er-
scheint. Als Beispiel hierzu stellen Sie sich einen
Flugsimulator vor, bei dem das Playfield im Vorder-
grund das Cockpit zeigt, während auf dem Playfield im
Hintergrund alles das dargestellt wird, was sich au-
Berhalb des Cockpits befindet.

Cl ee ee
he TCO RH dH OH Re De ROR Hee ee Reet THEO EER HEHE OTE EPR ESSEC EEE EEE DEORE HEHE SEDER OOHEROOS
bere rere eee eee R HHH REECE HHH OEE E EE EEE HH EE RESO RTEHE EERE ERED CREME OEE HEF OTHEH SEED
bp URE H EEO RHEE He HOR EER RESE ETE SHEE EHO EER EREEHS EDS EH ED EHR ETH EEO REE EEE EH EE OED

LL we RPO PHO EH HED HO RO THER DERE DEH EEE EH ASOD HEE HES OSH OURS OH SOS ES EEF AS LEE“
eee eo mere EE HER EEO HERES RRO OEE EOE O EEO SETHE THEE EERO DESEO EOE OHH SHOT OO EEE

Cmts osereseernavecceren

Pee eR HHRMA EEO TEED EH EH EEE EER DEH EOE EEO HEHE OE RHR EEE TED EGER OH ORES E EOD EE DE
POO a RCC O EERE EEE EEO HEHE EEO ED HOE HESS EHH EOE EEH OED OSE OH ESESEET HOO EEO O DHE DED
ORC etree H SCORE HEE OEE EES OHD ESE OT ET ETH HOE RECTED DO eH O OE HED EROS

LL eRe HR eee Rae E HEE REFEREE EEEHE RO EES HOT HOHE EEE EH ERED ESET EOE EOHHHES EE ODE HH OES
SPIRE TELE EEE EEE EEE CeCe ee eee eee ee ee eee eee eee ee eee eee eee ee eee er
Lever eee neem e Oe ese ee PEEP O EET TEED OOS FOS CET SEPP EEE O ESE EDEDE RADE HEE OE DOF OED

Betreffend der Sonderchips des Amigas interessieren
uns im Zusammenhang mit Grafik und ihrer Darstellung
auf dem Bildschirm vor allem Agnus und Blitter, wobei
Agnus für die gesamte Videoausgabe, also das Umwan-
deln der Bitplanes in Video- bzw. RGB-Signale, verant-
wortlich ist. Für den Grafikprogrammierer ist jedoch
der Blitter der wichtigere. Seine eigentliche Aufgabe
ist es, Daten der Bitplanes zu kopieren, verschieben
und zu verändern. Man kann mit ihm relativ einfach
verschiedene Teile der Bitplanes, z.B. die Fen-
ster, in andere Speicherbereiche kopieren, also ver-
schieben. Des weiteren beinhaltet sein Befehlssatz
auch Befehle zum Zeichnen von Linien zwischen zwei
Punkten und zum Füllen von Flächen. Gerade beim Fül-
len von Flächen erkennt man die wahre Geschwindig-
keit des Blitters. Obwohl Pixel für Pixel gesetzt
wird, sieht es so aus, als ob auf dem Bildschirm
eine Fläche einfach nur "eingeschaltet" und nicht
erst aufgebaut wird.

Eine Besonderheit der Grafikhardware, die für die
Programmierung von besonderer Bedeutung ist, ist die
Tatsache, daß die Grafikchips nur auf das erste
(je nach Versiobn halbe oder ganze) MByte zugreifen

13

Kapitel 1 | Grafikdarstellung

können. Dieser Speicherbereich wird daher CHIP-Memory
genannt. Wir werden sehen, daß es daher in vielen
Fällen wichtig ist, daß bestimmte Daten in diesem
Speicherbereich liegen. Das Betriebssystem stellt uns
einige Prozeduren zur Verfügung, mit deren Hilfe man
einen CHIP-Memory Bereich für eigene Zwecke reser-
vieren kann. Damit Ihre Programme auf allen Amiga
Versionen lauffähig sind, sollten Sie CHIP-RAM immer
explizit allozieren. Sie sollten dies immer beach-
ten, auch wenn Ihr Rechner nur 512 KByte hat (also
nur CHIP-Memory).

ee ee ee ee
SIPC TE ee
ETE eR eee REE Tr TE ET TE ECO ETERS ORE EHOD
weer ee eee eee eee eee ce eee eee ee ee eee eee eee eee eee ee ee eee
Tce eee eee ee eee eee eee ee eee eee eee ee eee eee eee
Peete eee ee eee eee eee cee eee eee eee eS eee ee ee ee ee re

PCr eee eee Sere Cree ee eee eee See eee eee eee eee ree eee ee ee,

PEPPER EERE EEE SEC EEE PEUS SEES DER Be re Dora pt Bern
ee
Poor bree r er etre me ren ree tether e
perc eee tesa cere ns en seem ns Het eH eas tes HeeHe Der ar er ae se HODeE ree eeserore
See ee ee Er eee eee Pee e ee eee eee eee eT See eee eT Sere eee ee eee eee ee

In der Textausgabe unterscheidet sich der Amiga
durchaus von anderen Computersystemen. Während viele
Computer eine getrennte Text-und Grafikausgabe haben,
verfügt der Amiga gewissermaßen nur über die Grafik-
ausgabe. Bei vielen anderen Computern wäre eine reine
Grafikausgabe zu langsam, so daß bei der Textausgabe
meistens nur die ASCII-Codes der Schriftzeichen im
Speicher stehen und nicht deren grafischen Binär-
codes. Der Amiga ist aber besonders auf dem Gebiet
der Grafik einer der schnelleren Rechner, so daß die-
se Technik nicht nötig ist und der Text ebenfalls als
Grafik ausgegeben wird. Dadurch lassen sich Schrift-
arten aber auch einfacher verändern und es sind auch
Zeichensätze (die Fonts des Amiga) möglich, die vor
allem nicht an eine bestimmte Größe gebunden sind.
Als Beispiel hierzu ist das Programm Notepad aus der
Workbench zu empfehlen. Mit ihm lassen sich verschie-
dene Zeichensätze laden, benutzen und auch ausdru-
cken.

14

Kapitel 2 Fenster und Screens

Kapitel 2

Fenster und Screens

15

Kapitel 2 | Fenster und Screens

Im ersten Kapitel haben wir uns mit den durch die
Hardware bedingten Aspekten der Videodarstellung be-
schäftigt. Für die Grafikprogrammierung ist es aber
unabdingbar, sich auch mit der Art und Weise ausein-
anderzusetzten, wie die Systemsoftware die Möglich-
keiten der Hardware ausnutzt und die Videoanzeige
verwaltet. Die für den Benutzer sichtbare Anzeige mit
den bekannten Fenstern, Menus, Gadgets etc., auf der
wir später auch unsere Grafiken darstellen wollen,
wird von einem Teil des Betriebssystems verwaltet,
der Intuition genannt wird. Die Programmierung der
Intuition ist ein sehr komplexes Thema, das allein
schon ausreichen würde, um dieses Buch zu füllen. Wir
werden uns deswegen hier auf eine kurze Einführung
der wichtigsten Eigenschaften beschränken. Gegen Ende
dieses Kapitels wird auch das Programm Display.h vor-
gestellt, das einige wichtige Routinen implementiert,
die im Verlauf dieses Buches benötigt werden. Es be-
findet sich auch im "include" Verzeichnis der Be-
gleitdiskette, aus welchem Sie es unbedingt in das
gleichnamige Verzeichnis ihrer Arbeitsdiskette kopie-
ren sollten, falls Sie mit den hier abgedruckten Pro-
grammen experimentieren wollen.

FO ee
See ee ee ee ee ee eee ee ee ee ey
See ee eee ee eee eee ee ee eee eee eee eee eee eee eee ee ee eee ee eee
SUT eee eee eee eee ee ee eee eee ee eee ee ee ee ee ee eee ee ee
Serer eee eee eee eee eee eee eee eee ee eee ee eee ee ee ee ee ee ee eee TE
ee ree eae ee REO HEH RHEE HEHEHE HOODEO HDF EHTS ERED EH EBERD EO HOI ESD SEE EERE LEME O EES

Pere ee rere eee eee eM eee eee ee Cree eee eee ee ee ee ee ee eee

PROC a ee re eee ERED THO OHO HEED HE SED HOSS OPED ERED OH ASE ESE OOH OTD
De eee eee eee eee eee eee ee ee ee ee ee ees

Serer erer tee eee ee ee ee eee ee eee ee ee ee eee ee ee ee ee ee es
wee cee eee ee eee ee eee eee eee ee ee eee ee ee eee ee ee er ee ee ©. re ey
SPEC eee ee eee ee eee eee eee eee ee ee eee eee ee eee ee ee
bse re eee nee ee mr HF eraser EEE ee EH FeO EH OEE ED SETH HOES EE SET ESE DODO ERED EOE ODOT ED

Vieleicht haben Sie schon bei irgendeinem Programm
gesehen, daß es möglich ist, zur gleichen Zeit mehre-
re Bildteile mit verschiedener Auflösung zu erzeugen,
wobei jeder der Bildteile samt Inhalt hoch und run-
ter bewegt werden kann. Ein solcher Bildteil wird vom
Englischen her Screen (Bildschirm) genannt und steht
an der untersten Stufe der Intuition-Anzeige. Ein
Beispiel dafür ist der Workbench-Screen, der immer

16

Kapitel 2 Fenster und Screens

dann erscheint, wenn Sie eine Diskette "gebootet" ha-
ben. Es können auch mehrere solcher Screens überein-
ander liegen. Man kann dann mit Hilfe des Depth-Gad-
gets (der kleine schwarzer Kasten in der rechten
oberen Ecke) den momentan im Vordergrund liegenden
Screen nach hinten befördern, wobei dann der darun-
terliegende zum Vorschein kommt. Auf einem Screen
können Sie dann entweder direkt verschiedene Objekte
darstellen (z.B. Text oder Grafik) oder ein bzw. meh-
rere Fenster aufmachen, die dann zur Darstellung ge-
braucht werden. Für uns liegt die besondere Bedeutung
der Screens darin, daß man für eine Anzeige mit ei-
ner Auflösung, die nicht mit der der Workbench über-
einstimmt, einen eigenen Screen aufmachen muß. Dabei
wird auch die maximale Anzahl von Farben und ihre
RGB-Zusammensetzung festgelegt. Auch die im ersten
Kapitel angesprochenen Sondermodi: H.A.M. und Dual-
Playfield können nur auf einem extra dafür erstellten
Screen verwendet werden. Beim Offnen eines Screens
reserviert das Betriebssystem den für die Bitplanes
notwendigen Speicher, in dem dann die Bilddaten ge-
schrieben werden, und initialisiert die Farbregister.
Wie Sie sehen, ist ein Screen im Grunde eine eigen-
ständige, softwaremäßig verwaltete Videoanzeige. Die
Leistung der Intuition besteht unter anderem darin,
der Hardware mitzuteilen, aus welchem Screen sie die
Bild- und Farbdaten lesen muß. Dazu wird einfach in
dem Hardwaregister, der auf den aktuellen Bildschirm-
speicher zeigt, die Adresse der Bitmap des entspre-
chenden Screens hineingeschrieben. Um mehrere Screens
gleichzeitig untereinander darzustellen, wird erneut
umgeschaltet, sobald der Strahl, der das Bild zeich-
net, die Zeile erreicht hat, in der der neue Screen
anfängt. Es ist leider nicht möglich, verschiedene
Screens nebeneinander darzustellen, sodaß ein Screen
immer ganz Links anfangen muß. Eine weitere Ein-
schränkung ist dadurch gegeben, daß der untere Rand
eines jeden Screens am unteren Bildschirmrand liegen

17

Kapitel 2 Fenster und Screens

muß. Folglich muß die Summe aus der Screenhöhe in
Zeilen und der Nummer der Zeile, in der die obere
Grenze des Screens liegt, die maximale Zeilenanzahl
bei der verwendeten Auflösung ergeben (512 bei Inter-
lace, sonst 256.). |

Nachdem Sie nun mit den wichtigsten Eigenschaften
eines Screens vertraut sind, können wir uns daran ma-
chen, einen eigenen Screen zu erzeugen. Zu diesem
Zweck stellt Intution die Funktion OpenScreen zur
Verfügung. Diese Routine verlangt als Eingabe einen
Zeiger auf die WNewScreen-Struktur, in der sich alle
Informationen über die gewünschten Eigenschaften des
neuen Screens befinden. Dieser Datensatz sieht fol-
gendermaßen aus:

Abb. 2.1 Die Screen-Struktur.

struct NewScreen {

SHORT LeftEdge, TopEdge
Width, Height,
Depth;

UBYTE DetailPen, BlockPen;
USHORT ViewHodes,

Type; |
struct TextAtir *Font;
UBYTE *DefaultTitle;
struct Gadgets. *Gadgets;
struct Bitamp *CustomBitMap;

he

18

Kapitel2 Fenster und Screens

Die Felder LeftEdge und TopEdge geben die Koordina-
ten der linken oberen Ecke des Screens an. Dabei muß
LeftEdge immer 0 sein! Width und Height sind entspre-
chend die Breite und Höhe. Bei der Breite sollten Sie
darauf achten, daß diese mit der Auflösung (siehe un-
ten) übereinstimmt. Depth ist für die Anzahl der Bit-
ebenen, also für die maximale Anzahl der Farben zu-
ständig. Dabei ist die Farbenanzahl 2 hoch Depth.
Beachten Sie bei der Wahl der Tiefe die im ersten Ka-
pitel beschrieben Einschränkungen, die sich aus der
gewählten Auf lösung ergeben. Die beiden Parameter:
DetailPfen und BlockPen bestimmen die Farbe der
Schrift im Screenbalken und des Balkens selbst. Der
Titel, der in dem Screenbalken erscheint, ist durch
*Default Title gegeben. Type gibt an, ob es sich um
einen Workbench-Screen oder um einen besonderen, vom
Benutzer erstellten Screen handelt und kann in der
aktuellen Intuition - Version nur die Werte
WBENCHSCREEN und CUSTOMSCREEN annehmen. Wenn Sie
Ihren eigenen Screen aufmachen müssen Sie Type auf
CUSTOMSCREEN setzen. Am wichtigsten ist das Feld
ViewModes, da es die Auflösung und die Sondermodi des
Screens kontrolliert. Die folgende Tabelle wird Ihnen
über die Werte, die die Auflösung bestimmen, Auf-
schluß geben:

Abb 2.2 Die Auflösung eines Screens

! Gesetzte Flags ! Resultierende Auf lösung !

! NULL rr X 256 OY

1 HIRES =———té=<Ci~Ss«<“ CAO HGHC“(<‘ (S COé;‘P
! INTERELACE 1 320 x 512 (interlace) !
I HIRES | INTERLACE ! 640 x 512 (interlace) !

Kapitel 2 Fenster und Screens

Zusätzlich gibt es noch die HAH- DUALPF-F jags
durch die Sie die H.A.M bzw Dual-Playfield Modi ein-
schalten können. Ein H.A.M Screen mit der Auflösung
640 x 512 kann also durch den folgenden Wert von
Viewffodes erzeugt werden:

HIRES / INTERLACE } HAM

Die übrigen Felder der NewScreen-Struktur haben für
uns momentan keine Bedeutung und sollten mit NULL
initialisiert werden. Wir werden auf sie in späteren
Kapiteln zurückkommen.

Wenn Sie nun die OpenScreen-Funktion aufrufen, wer-
den Sie einen Zeiger auf die $creen-Struktur von In-
tution bekommen. In dieser Struktur speichert das Be-
triebssystem die wichtigsten Daten eines Screens, wie
z.B. Größe, Position, Koordinaten des Mauspfeils etc.
Eine genaue Beschreibung der Screen-Struktur finden
Sie im Anhang A.

Zum Abschluß dieses Abschnittes folgt ein Beispiel-
programm, das ein lowRes (320x256) Screen öffnet, ei-
nen Augenblick wartet und ihn wieder schließt.

Programm 2.1 Screen

#include "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;

/* NewScreen-Struktur zum Öffnen des Screens */
Struct NewScreen NewScreen =

20

Kapitel 2 Fenster und Screens

{
Ö, /* x-Koordinate, muß 0 sein ! */
0, /* y-Koordinate. */
320, /* Breite des Screens. */
200, /* Höhe des Screens. */
4, /* Tiefe = 4 --> max 16 Farben. */
0, /* Vordergrundfarbe. */
1, /* Hintergrundfarbe. */
NULL, /* "Normaler" lowres-Screen. */
CUSTOMSCREEN, /* Screentyp: Eigener Screen. */
NULL, /* Standardfont benutzen. */
"Beispielscreen", /* Name des Screens. */
NULL, /* Keine besonderen Gadgets. */

main ()

struct Screen *Screen;
LONG Ji

/* IntuitionLibrary öffnen, falls Fehler dann
Programm beenden. */

IntuitionBase = (struct IntuitionBase *) OpenLibrary
("intuition.Tibrary",0);
if (IntuitionBase == NULL)
exit(FALSE);

/* Den neuen Screen öffnen, falls Fehler, dann
Programm beenden. */

Screen = (struct Screen *)
OpenScreen(&NewScreen); if (Screen == NULL) exit
FALSE);

for (j = 0; j < 1000000; j++); /* Abwarten */

CloseScreen(Screen); /* Screen schließen */

21

Kapitel 2 oe Fenster und Screens

Beachten Sie, daß vor einem Zugriff auf die Struk-
turen und Prozeduren der Intution die entsprechende
Library geöffnet werden muß. Es ist auch ratsam, im-
mer wieder durch Vergleichen des Resultats mit NULL
zu prüfen, ob beim Öffnen der Library bzw. später des
Screens kein Fehler aufgetreten ist.

In der Intuition-Library gibt es neben OpenScreen
und CloseScreen noch folgende Routinen zum Umgang mit
den Screens:

MakeScreen
MoveScreen
ScreenToBack
ScreenToFront
ShowTit le

22

Kapitel 2 Fenster und Screens

DELILIEZLLELSITIEITELLELZNEIIZEREN
IKRILETEIITIOTIIIESTILURT TITTEN

IMELZTITEN
un...

IKELKLLETLTILITETTTTETITI een
LILIRIIIITRERTIEITEITEIII IRRE

Pe ee rece neeenanesnesereenereres
POPC O OHH Deo een ee eee OOH Dem eH Hee atoe ns eHeserEseroeseseu’

Deemer eee dae Oe oe eae DEH DEH ELE TEE OER EO HEF EEE DEH OOH TER EOD
TERRE P ECC ee eee eee Pee eee eee eee ee eee eee ee ee ey
Seo ee deere rece rae eee naaseseeereesaseseenetseveeeenece
[RERRNAEREEE SPEER EERERE EE EEEREES ESTERS RERE ESSE See ee

Daß ein Fenster eines "dieser Rechtecke, die man
auf dem Bildschirm schieben, verkleinern etc. kann,
und in denen alles Mögliche erscheint" ist, sollte
eigentlich jeder Amiga Benutzer wissen. Um aber die
Fenster sinnvoll zur grafischen Darstellung verwenden
zu können muß man sich auch die Art und Weise an-
schauen, wie sie von Intution verwaltet werden. Ein
Fenster ist eigentlich ein selbständiger Terminal,
in dem ein Programm samt Ein-/Ausgabe ablaufen kann.
Es wird beim Öffnen einem Screen zugewiesen, und kann
nur als sein Teil existieren. Es kann natürlich auch
nicht aus ihm herausbewegt werden. Die Auflösung,
RGB-Zusammensetzung der Farben und Anzeigemodi werden
wie schon gesagt von dem Screen übernommen.

Bild 2.1. Die Intuition-Anzeige

23

Kapitel 2 Fenster und Screens

Gewöhnlich hat ein Fenster auch keine eigene Bit-
map, was z.B. daran zu erkennen ist, daß beim CLI-
Fenster der Inhalt gelöscht wird, wenn das Fenster
verkleinert wird. Andererseits geht aber der Inhalt
des CLI-Fensters nicht verloren, wenn dieses in den
Hintergrund geklickt wird. Unter welchen Umständen
der Fensterinhalt beibehalten wird, hängt von dem so-
genannten Refresh-Modus ab (engl. auffrischen), der
beim Offnen des Fensters eingestellt wird. Es stehen
folgende Modi zur Verfügung:

(1) SimpleRefresh: In diesem Modus wird der Inhalt
des Fensters nie zwischengespeichert, was zur Folge
hat, daß beim Verkleinern, oder Verdecken durch ein
anderes Fenster der Inhalt verloren geht.

(2) SmartRefresh: In diesem Modus wird nur der Inhalt
eines Fensters, das durch ein anderes überdeckt wird,
zwischengespeichert, und später wieder hergestellt.

(3) SuperBitMap: Ein solches Fenster besitzt eine ei-
gene, vom Screen unabhängige Bitmap, so daß sein In-
halt immer beibehalten wird. Der Nachteil dieses Ver-
fahrens ist, daß es sehr speicheraufwendig ist.

Neben den verschieden Refresh-Arten gibt es noch
einige weitere interessante Eigenschaften, mit denen
ein Fenster ausgestattet werden kann. Hier sind sie
alle samt kurzer Beschreibung aufgelistet. Wir werden
später auf einige besonders wichtige noch genauer
eingehen.

24

Kapitel 2 Fenster und Screens

(1) Die Gadgets
Dies sind Objekte, die in dem Fenster gezeichnet
werden, und jedesmal wenn sich der Mauspfeil über ih-
nen befindet, ein Ereignis auslösen können. Intuition
stellt folgende Systemgadgets zur Verfügung:

Close-Gadget: Ein Quadrat mit einem Punkt, der sich
in der linken oberen Ecke des Fensters befindet. Sein
Klicken soll das Programm zum Schließen des Fensters
veranlassen (Das Fenster wird aber nicht automatisch
geschlossen).

Sizing-Gadget: Befindet sich in der rechten unteren
Ecke des Fensters und erlaubt dem Benutzer seine
Größe zu verändern (Die Größenveränderung wird auto-
matisch von Intution vorgenommen).

Drag-Gadget: Befindet sich in der Titelleiste und er-
möglicht dem Benutzer, das Fenster zu verschieben,
wobei die Verschiebung automatisch von Intuition
durchgeführt wird.

Depth-Gadget: Die beiden Quadrate, die sich in der
rechten oberen Ecke des Fensters befinden. Durch An-
klicken eines der beiden Quadrate kann der Benutzer
Intution dazu veranlassen, das Fenster in den Vorder-
grund, bzw. in den Hintergrund zu setzen.

Zusätzlich besteht auch noch die Möglichkeit eigene
Gadgets (Custom-Gadgets) beliebigen Aussehens zu ent-
werfen, deren Handhabung jedoch eine sehr umfangrei-
che Beschreibung benötigen würde, so daß wir sie hier
nur der Vollständigkeit halber erwähnen.

(2) Die Menus:
Jedem Fenster kann ein Pulldown-Menu System zuge-
ordnet werden. Es erscheint in der Screenleiste beim
Drücken der rechten Maustaste. Das Arbeiten mit sol-

25

Kapitel 2 | Fenster und Screens

chen Menüs ist ebenfalls ein sehr komplexes Thema,
das allerdings mit Grafik nichts zu tun hat, und des-
halb ebenfalls hier nicht genauer erläutert wird.

(3) Der IDCMP-Port: Dies ist eine Schnittstelle, über
die Intuition Ihr Programm über das Auftreten ver-
schiedener Ereignisse in einem Fenster informieren
kann (siehe Abschnitt 5).

(4) GZZ-Fenster: Ein Fenster hat gewöhnlicherweise
einen Rahmen und einen Titelbalken. In einem "norma-
len" Fenster ist die Koordinate (0,0), die linke obe-
re Ecke des Rahmens (genauer des Titelbalkens), die
als Bezugspunkt für alle Positionsangaben wie z.B.
beim Zeichnen, dient. Beim GZZ-Fenster beziehen sich
alle Koordinatenangaben auf die linke obere Ecke der
innerhalb des Rahmens liegenden Fläche, so daß der
Programmierer die Rahmenbreite nicht mehr zu berück-
sichtigen braucht.

(5) Borderless-Fenster: Ein solches Fenster hat, wie
der Name schon sagt keinen Rahmen. Falls Sie keine
Gadgets und keinen Titel angegeben haben, erscheint
auch kein Titelbalken.

(6) Backdrop-Fenster: Dieser Fenstertyp bleibt immer
im Hintergrund, d.h. auch wenn bei einem anderen Fen-
ster das Depth-Gadget angeklickt wird, kann dieses
Fenster nicht nach Vorne geholt werden.

26

Kapitel 2 | Fenster und Screens

OOOO Hee Pe MARE eH ETHER EE EH RED EOE OEE TD OOS EDEL DET EEEH HOHE EEEEREHHTE DORE H CHEN EOS
Peewee HEED meer TEE OH OER OHH REECE EEEOE EERO HEED EHTS EDO EHH E HERO H DEH EEEHEEOHETA HES
See oor meee ease He SETA HR ESE TER EIER TEMA EE ER OC EIER III Teer
Pee e merce eran sre ese eEhe Des HersE ECE ETH DOSED ees ETONEEHED OOo DE

PHO e me ed ede arene ees ASHE DEEH OHS E EAH HERES ET ETE CAETED OEE OS
Seem er rear rer sees esesesenesroessesseessessesedee

Some ereerr up rereaserssneserens

VOPR Heme eee EEE H OED E SESE EEE EHEMEH HEHE EEE EE EEE RHO H OO ED
HMM meee HEH RHEE ER ESEH HO EEE TELLER CEP HEOEDED ATES OEE E HEED ORE OE ERED EEE
POMOC meee eH ERE Se EEEEEE HEE DESERTS EHEC EEE DEO ERE H OCR SEE HESH EEO DEO HEE EDEHE

POPP OTE ORTH R ERO H ERE HHE OTOH DEE HEEL OHH E HOES H EH EOE REPRE ROCCE H REO OH EEO SEEDER ED DEERE
RECOM ERE O EH OPED RESHH HORE OEE HEEES COED OEE OS OSHS EF RPE SOOO OEE EE TOLER EROS H OES

ao eo se ces eese sae assacrer anes oes roe su see ror nese usen arenas eoanecess sansa se see ass vcore nase ne

Das Offnen eines Fensters spielt sich nach dem
gleichen Prinzip wie das Offnen eines Screens ab. Es
muß eine Struktur, die NewWindow-Struktur, mit den
Werten für das gewünschte Fenster intialisiert, und
ihre Adresse an die Intuition Funktion OpenWindow
übergeben werden. Als Ergebnis bekommt man, falls das
Öffnen erfolgreich verlaufen ist, einen Zeiger auf
die Window-Struktur, in der Intuition alle relevanten
Information über das Fenster speichert. Ist ein Feh-
ler aufgetreten, so gibt diese Prozedur NULL zurück.
Die NewWindow-Struktur ist folgendermaßen definiert:

Abb 2.3 Die NewWindow-Struktur

struct NewWindow {4}
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
UBYTE DetailPen, BlockPen;
ULONG IDCHPFlags;
ULONG Flags;;
struct Gadget *FirstGadget;
struct Image *CheckMark;
UBYTE *Title;
struct Screen *Screen;
struct BitMap *BitMap;
SHORT MinWidth, MinHeight;
SHORT HaxWidth, MaxHe ight;
USHORT Type;

Fi

27

Kapitel 2 Fenster und Screens

Die ersten sechs Felder haben die gleiche Bedeutung
wie bei der NewScreen-Struktur: x,y-Koordinate, Brei-
te, Höhe, und die Farbe der Titelschrift, bzw. des
Titelbalkens des Fensters. Die Koordinaten beziehen
sich auf die linke obere Ecke des Screens. Die Summe
aus der x-Koordinate und Breite bzw. y-Koordinate und
Höhe darf dann selbstverständlich nicht größer sein
als die Breite bzw. die Höhe des Screens.

Die IDCMP-Flags dienen dazu, einen IDCMP-Port ein-
zurichten und zu gestalten (siehe Abschnitt 5). NULL
bedeutet hier gar keinen IDCMP-Port. Die im vorigen
Abschnitt besprochenen besonderen Eigenschaften des
neuen Fensters, können mittels des Flags-Feldes durch
die folgenden Window-Flags eingestellt werden :

Abb 2.4 Die Window-F lags

Flag! Eigenschaft!

! WINDOWSIZING ! Sizing-Gadget !
! WINDOWDEPTH ! Depth-Gadget !
! WINDOWCLOSE ! Close-Gadget 5
! WINDOWDRAG Drag-Gadget

! SMART REFRESH ! Smart-Refresh Modus !
! SIMPLE REFRESH ! Simple-Refresh Modus !
! SUPER BITMAP ! Ein SuperBitMap-Fenster

!: GIMMEZEROZERO ! Ein GZZ-Fenster A
! BACKDROP ! Ein Backdrop-Fenster !
! BORDERLESS ! Ein Fenster ohne Rahmen !

Kapitel 2 Fenster und Screens

Ein weiteres nützliches Flag ist das ACTIVATE-F lag,
das darüber entscheidet, ob ein Fenster beim Offnen
aktiv wird oder nicht. Die Texteingabe und Uberwa-
chung der Mausaktivitäten können nur im aktiven Fen-
ster erfolgen. Um nun z.B. ein mit den Close-und Drag
Gadgets und SmartRefresh ausgestattetes Fenster zu
öffnen, müssen sie folgende Flags setzen:

WINDOWDRAG ; WINDOWCLOSE | SMART REFRESH

In dem Feld Title müssen Sie die Adresse einer Zei-
chenkette, die dann im Titelbalken des Fensters er-
scheinen wird, übergeben. Die Adresse des Screens,
auf dem das neue Fenster erscheinen soll, muß in
Screen übergeben werden. Falls Sie hier NULL überge-
ben, wird das Fenster auf dem Workbench-Screen geöff-
net. Je nachdem, ob Sie sich für einen eigenen, oder
den Workbench-Screen entscheiden, setzen Sie Type auf
CUSTOMSCREEN (eigener Screen) oder NULL (Workbench
Screen).

Die Variablen MinWidth, MinHeiqht, MaxWidth, und
MaxHeight bestimmen die minimalen bzw. maximalen Di-
mensionen des Fensters. Diese Felder sind nur für
Fenster, die mit einem Drag-Gadget ausgestattet sind,
wichtig. Sie bestimmen dann, inwieweit der Benutzer
die Größe des Fensters verändern kann. Die restlichen
Komponenten der WNewWindow-Struktur sind für uns im
Moment nicht von Bedeutung und sollten mit Null ini-
tialisiert werden. Sie können Ihre Bedeutung dem An-
hang A entnehmen.

Nach dieser Einführung kommt nun ein Beispiel, in
dem ein einfaches Fenster ohne Gadgets und IDCMP-Port.
mit SmartRefresh auf dem Workbench-Screen geöffnet,
und nach einer kurzen Pause wieder gechlossen wird.

Kapitel 2 | Fenster und Screens

Programm 2.2 Fenster.

#include "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;

main ()

struct NewWindow NewWindow;
struct Window *Window;
LONG J

/* Intution-Library Offnen, falls Fehler, dann
Programm beenden.

IntuitionBase = (struct IntuitionBase *)
OpenLibrary ("intuition. library",0);

if (IntuitionBase == NULL) exit(FALSE);

/ * NewWindow-Struktur zum Öffnen des Fensters
initialisieren

NewWindow.LeftEdge = 1; /* x-Koordinate.
NewWindow.TopEdge = 1; /* y-Koordinate.
NewWindow.Width = 00; /* Breite des Fensters.
NewWindow.Height = 150; /* Höhe des Fensters.
NewWindow.BlockPen = 1; /* Vordergrundfarbe.
NewWindow.DetailPen = 0; /* Hintergrundfarbe.

/* Name des Fensters.
NewWindow.Title = "BeispielFenster";

/* Keine Gadgets; "Smart-Refresh".

NewWindow.F lags = SMART REFRESH | ACTIVATE;

30

*/

*/

*/
*/
*/
*/
*/

Kapitel 2 | | Fenster und Screens

New indow. IDCMPF lags = NULL;
/* Kein Nachr ichtenport (IDCHP). */

NewWindow. Type = WBENCHSCREEN;
/* Fenstertyp: Workbenchfenster. */

NewWindow.FirstGadget = NULL;
/* Keine Gadgets. */

NewWindow. CheckMark = NULL;
/* Standard "Checkmark". */

NewWindow. Screen = NULL;
/* Auf dem Workbench-Screen. */

NewWindow.BitMap = NULL;
/* Keine eigene Bitmap. */

NewWindow.MinWidth = 1;
/* Minimale Breite = 1. */

NewWindow.MinHeight = 1;
/* Minimale Höhe = 1. */

NewWindow.MaxWidth = 300;
/* Maximale Breite unwichtig. */

NewWindow.MaxHeight = 150;
/* Maximale Höhe unwichtig. */

/* Das neue Fenster öffnen, falls Fehler, dann
Programm beenden. */

Window = (struct Window *)
OpenWindow(&NewWindow); if (Window==NULL) exit(FALSE);

for (j = 0; j < 1000000; j++); /* Abwarten */
C loseWindow(Window); /* Fenster schlieBen */

}

31

Kapitel 2 Fenster und Screens

Bild 2.2 - Die Ausgabe des Programms Fenster

Zum Abschluß noch eine kurze Aufzählung der Intui-
tion-Prozeduren zum Arbeiten mit Fenstern.

ActivateWindow
CloseWindow
MoveWindow
OpenWindow

SetWindowTit les
SizeWindow

WindowLimits
WindowToBack
WindowToFront

32

Kapitel 2 Fenster und Screens

DKERZXILZZZZLETZILTELZITSETTIITEIZIITERTEN)

veees
POOH P ROHR SHE REDE OOD ED REEDED OSPR DER ODORS

oper eeene

RO mene mR eRe een eeeerneserneesreoes
POPE PEED EHH EMER HE DEE EERE HORE DEED DORE HEE HOSED EOS
POP EERO OHO DHE HEH MA REED HOE OLEH ERE DEDEDE ER EOEe
TOO HOOP EHH Oma DOH HHH SHOR RDP TEE Eee
TOO POPP O ORO SEH HHH E ORD EH HORE DER EHEHE EOD ORO OTF EEN OH EE OOD

oe eee emo ee eee re ease esse raneaneesessssesessnane

Eine der Besonderheiten des Amiga ist die Tatsache,
daß alle Eingaben, sowohl die, die über die Tastatur,
als auch die, die durch die Maus erfolgen, immer nur
fensterbezogen sind. So wird z.B. ein Text nur in dem
Fenster eingegeben, in dem zuletzt die Maus geklickt
wurde. Der IDCMP-Port ist die Schnittstelle, die
dafür sorgt, daß Ihr Programm alles, was in einem
Fenster passiert, überwachen kann. Durch Setzen der
entsprechenden Flags können Sie Intuition dazu veran-
lassen, Ihnen jedesmal eine Nachricht zu schicken,
wenn der Benutzer in einem Fenster z.B. die Maus
bewegt, ein Menü auswählt,oder eine Taste drückt. Das
Setzen dieser Flags kann entweder direkt beim Öffnen
des Fensters durch entsprechendes Initialisieren des
IDCMPF lags-Feldes der NewWindow-Struktur erfolgen,
oder später mit Hilfe der Intuition Prozedur_Modify-
IDCMP. Falls Sie also immer dann, wenn die Maus be-
wegt wird oder wenn das Close-Gadget geklickt wird,
informiert werden wollen, müssen Sie diesem Feld den
Wert:

MOUSEMOVE | CLOSEWINDOW

zuweisen, oder Modif yIDCMP folgendermaßen aufrufen:

ModifyIDCMHP (Window, MOUSEMOVE ! CLOSEWINDOW);

Window muß selbstverständlich ein Zeiger auf die
Window-Struktur Ihres Fensters sein!

33

Kapitel 2 Fenster und Screens

Hier die wichtigsten IDCMP-Flags und die zugehörigen
Ereignisse:

MOUSEBUTTONS
Drücken/Loslassen einer Maustaste. Je nach dem ob das
MBTRAP Window-F lag gesetzt ist, wird dabei die rechte
Taste mit berticksichtigt oder nicht.

MOUSEMOVE
Veränderung der Mausposition.

CLOSEWINDOW
Ancklicken des Close-Gadgets.

NEWSIZE |
Veränderung der Fenstergröße.

ACTIVEWINDOW/INACTIVEWINDOW
Falls Sie dieses Flag setzen, werden Sie eine Nach-
richt erhalten, wenn das Fenster durch Klicken der
Maus in seinem innerem aktiviert, bzw. durch Klicken
in einem anderem Fenster inaktiviert wird.

VANILLAKEY
Die gedrückte Taste.

DISKINSERTED/DISKRENOVED
Sie bekommen eine Nachricht, falls eine Diskette
eingelegt bzw. aus dem Laufwerk herausgenommen wurde.

Nachdem Sie nun einen IDCMP-Port entsprechend Ihrer
Bedürfnisse eingerichtet haben, können Sie diesen je-
derzeit während des Programmablaufes abfragen. Norma-
lerweise wird dabei zuerst die Exec-Prozedur WaitPort
aufgerufen, die dafür sorgt, daß Ihr Programm solange
angehalten wird, bis irgendeine Nachricht an das Fen-
ster gekommen ist. Hiernach kann mit GetMsg ihre Ad-
resse ermittelt werden. Beide Prozeduren brauchen als

34

Kapitel 2 Fenster und Screens

Eingabe lediglich das UserPort-Feld der Window-Struk-
tur. Bei dem Zeiger, den GetMsg zurück gibt, handelt
es sich um die Adresse der IntuiMessage-Struktur, in
der die Nachricht gespeichert ist. Diese ist wie
folgt aufgebaut:

Abb 2.5 Die IntuiMessage-Struktur

struct IntuiMessage {

struct Message ExecHessage;
ULONG Class;
USHORT Code;
USHORT Qualifier;
APTR IAddress;
SHORT MouseX, MouseY;
ULONG Seconds, Micros;
struct Window *IDCHPWindow;
struct IntuiMesage *SpecialLink;

hi

Die Art der Nachricht kann dem Feld Class entnom-
men werden. Eventuelle zusätzliche Informationen, wie
z.B. der ASCII-Code des Zeichens, der der gedrückten
Taste entspricht, stehen in der Code-Variable. In
Mousex_und Mousey finden Sie immer die aktuellen
Koordinaten des Mauszeigers. Falls seit. der letzten
Abfrage des Ports zwei Ereignisse aufgetreten sind,
die entweder vom gleichen Typ sind oder beide das
Code-Feld für sich beanspruchen, wird das zweite Er-
eignis als eine weitere Nachricht eingetragen, die in
eine Warteschleife eingefügt wird. Nachdem die Nach-
richt empfangen und untersucht wurde, muß durch Auf-
ruf der ReplyMsg-Routine dies dem System mitgeteilt
werden. Nun wird die alte IntuiMessage-Struktur ver-
gessen und Sie können auf die eben beschriebene Wei-

35

Kapitel 2 Fenster und Screens

se die nächste Nachricht holen. Um Ihnen das ganze
auf den ersten Blick vielleicht ein wenig verwirrende
Verfahren zu veranschaulichen, haben wir hier wieder
ein Beispielprogramm abgedruckt.

Es öffnet ein Fenster mit einem IDCMP-Port und war-
tet vor dem Schließen bis das Close-Gadget angeklickt
wird. Die while-Schleife wäre an dieser Stelle ei-
gentlich nicht notwendig, da dies das einzige Ereig-
nis ist, daß von Intution in diesem Fall registriert
wird (es ist nur das CLOSEWINDOW-Flag gesetzt !), so
daß das Programm allein durch WaitPort angehalten
wird.

Programm 2.3 IDCMP

#include "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;

main ()

struct NewWindow NewWindow;
struct Window *Window;
struct IntuiMessage *IntuiMessage;
LONG Ji
ULONG Type;

/* Intution-Library öffnen, falls Fehler,dann
Programm beenden. */

IntuitionBase =(struct IntuitionBase *) OpenLibrary
("intuition. library",0);

if (IntuitionBase == NULL) exit(FALSE);

36

Kapitel 2 Fenster und Screens

/* NewWindow-Struktur zum Öffnen des Fensters
initialisieren

NewWindow.LeftEdge = 1; /* x-Koordinate.
NewWindow.TopEdge = 1; /* y-Koordinate.
NewWindow.Width = 300; /* Breite des Fensters.
NewWindow.Height = 150; /* Höhe des Fensters.
NewWindow.BlockPen = 1; /* Vordergrundfarbe.
NewWindow.DetailPen = 0;/* Hintergrundfarbe.

/* Name des Fensters.
NewWindow. Title = "BeispielFenster";

/* Alle Gadgets, "Smart-Refresh".

NewWindow.F lags = SMART REFRESH | ACTIVATE |

*/

WINDOWCLOSE ! WINDOWDRAG JWINDOWDEPTH ! WINDOWSIZING;
/* Close Gadget Message schicken.

NewWindow. IDCMPF lags = CLOSEWINDOW;
NewWindow. Type = WBENCHSCREEN;

/* Fenstertyp: Workbench Fenster.

NewWindow.FirstGadget = NULL;
/* Keine Gadgets.

NewWindow. CheckMark = NULL;
/* Standard "Checkmark".

NewWindow. Screen = NULL; |
/* Auf dem Workbench-Screen.

NewWindow.BitMap = NULL;
/* Keine eigene Bitmap.

NewWindow.MinWidth = 1;
/* Minimale Breite = 1.

NewWindow.MinHeight = 1;
/* Minimale Höhe = 1.

7A

*/

*/

*/

*/

*/

*/

*/

37

Kapitel 2 | Fenster und Screens

NewWindow.MaxWidth = 300;
/* Maximale Breite unwichtig. */

/* Das neue Fenster öffnen, falls Fehler, dann
Programm beenden. */

Window = (struct Window *)OpenWindow(&NewlWindow) ;
if (Window == NULL) exit(FALSE);

Type = 0;
/* Auf Nachricht warten bis Close-

Gadget angeclickt. */
while (Type < CLOSEWINDOW)

/* Auf Nachricht warten */
WaitPort(Window->UserPort);

/* Art der Nachricht merken. */
IntuiMessage = GetMsg(Window->UserPort

);

Type = Intuillessage->Class;

/* Fenster schließen */
CloseWindow(Window);

38

Kapitel 2 Fenster und Screens

Wie Sie sehen, ist der Gebrauch der Fenster und
Screens mit einigem Aufwand verbunden. Um uns in Zu-
kunft diese Arbeit zu ersparen, wird nun ein Programm
vorgestellt, in dem einige nützliche Prozeduren defi-
niert werden. Wir werden dann später ohne weiteren
Kommentar auf diese Routinen zugreifen.

Das Programm, das wir Display.h genannt haben, be-
inhaltet folgende Prozeduren: |

OpenIntui ()
Diese Prozedur öffnet die Intution-Library.

OpenGfx_()
Diese Prozedur öffnet die Graphics-Library

MakeScr (x,y,w,h,Name,d, flags, font ,BMap)
Offnet einen neuen Screen, wobei die Parameter den
wichtigsten Feldern der WNewScreen-Struktur entspre-
chen. Die Variablen x,y,w,h bestimmen die Koordina-
ten der linken oberen Ecke, die Breite und die Höhe.
Die Tiefe wird in d angegeben. flags entspricht dem
ViewModes-Feld von NewScreen, dient also zur Auswahl
der Auflösung und der Sondermodi. In font bzw. BMap
können Sie schließlich einen eigenen Font, bzw. Bit-
Map für diesen Screen angeben. Normalerweise sollten
diese Parameter auf NULL gesetzt werden.

MakeWindow (x,y,w,h,mw,mh,Name, flags Idcmp,screen_)
öffnet ein Fenster wobei die übergebenen Parameter
die wichtigsten Felder der NewWindow-Struktur bestim-
men. Die Variablen x,y,w,h,mw,mh stehen in dieser
Reihenfolge für die Koordinaten der linken oberen

39

Kapitel 2 Fenster und Screens

Ecke, Breite, Höhe und die maximalen Abmessungen des
Fensters. Name ist eine Zeichenkette, die den Titel
des Fensters beinhaltet. In flags bzw. Idcmp können
Sie die gewünschten Window bzw. IDCMP-Flags übergeben.
Der letzte Parameter, screen, ist ein Zeiger auf den
Screen, auf dem das Fenster geöffnet wird. NULL be-
deutet hier, den Workbench-Screen

WaitEvent (wind,code) |
Diese Prozedur wartet, bis an das Fenster, deren
Adresse in wind übergeben wurde, eine IDCMP-Nach-
richt kommt und gibt den Inhalt des Class-Feldes der
IntuiMessage-Struktur (also die Art der Nachricht!)
zurück. In code wird dabei der Inhalt des Code-Fel-
des von IntuiMessage geschrieben.

GetMouse(wind,x,y)
ermittelt die aktuelle Position des Mauszeigers in
dem durch wind bestimmten Fenster.

#include "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;

/* Diese Prozedur öffnet die Intution-Library */
VOID OpenIntui () |

/* Intution-Library öffnen, falls Fehler dann
Programm beenden. */

IntuitionBase = (struct IntuitionBase *)
OpenL ibrary("intuition. library",0);

} if (IntuitionBase == NULL) exit(FALSE);

40

Kapitel 2 Fenster und Screens

/* Diese Prozedur öffnet die Graphics-Library */
VOID OpenGfx ()

GfxBase = (struct GfxBase *) OpenLibrary("graphics.
library",0);

; if (IntuitionBase == NULL) exit(FALSE);

/* Diese Prozedur öffnet einen neuen Screen. */
MakeScr (x, y, w, h, Name, d, flags, font, BMap)
APTR Name, BMap, font;
SHORT x, y, w, h, d;
ULONG flags; |

struct NewScreen NewScreen;

/* NewScreen-Struktur initialisieren. */
NewScreen.LeftEdge x;
NewScreen. TopEdge = y;
NewScreen. Width = WwW;
NewScreen. Height = h;
NewScreen. Depth = d;
NewScreen.DetailPen = 0;
NewScreen.BlockPen = 1;
NewScreen. ViewNodes = flags;
NewScreen. Type = CUSTOHSCREEN;
NewScreen. Font = font; |
NewScreen. Title = Name;
NewScreen. Gadgets = NULL;
NewScreen.CustomBitHap = NULL;

/* Den neuen Screen öffnen. */
return (OpenScreen(&NewScreen));

41

Kapitel 2 Fenster und Screens

/* Diese Prozedur öffnet ein neues Fenster */
MakeWindow (x, y, w, h, mw, mh, Name, flags, Idcmp,

screen)
struct Screen *screen;
APTR Name ;
SHORT x, y, WwW, h, mw, mh;
ULONG flags, Idcmp;

struct NewWindow NewWindow;
ULONG SType;
/* Wokbenchfenster oder nicht ? */

SType = CUSTOMSCREEN;
if(screen == NULL)
SType = WBENCHSCREEN;

OpenIntui(); /* Intuition Library öffnen */

/* NewWindow-Struktur initialisieren */
NewWindow.LeftEdge = xX;
NewWindow. TopEdge = y;
NewWindow.Width = w;
NewWindow.Height = h;
NewWindow.BlockPen = 1];
NewWindow.DetailPen = 0;
NewWindow. Tit le = Name;
NewWindow. F lags = flags;
NewWindow. IDCHPF lags = Idcmp;
NewWindow. Type = SType;
NewWindow.FirstGadget = NULL;
NewWindow.CheckMark = NULL;
NewWindow.Screen = Screen;
NewWindow. BitMap = NULL;
NewWindow.HinWidth = 1;
NewWindow.MinHeight = 1;
NewWindow.MaxWidth = mw;
NewWindow.MaxHeight = mh;
return (OpenWindow(&NewW indow));

42

Kapitel 2 Fenster und Screens

/* Diese Prozedur wartet auf eine Intution Nachricht,
holt die Art des

/* Ereignisses ("Class") und gegebenfalls die
gelesene Größe ("Code").*/

WaitEvent (wind, code)

struct Window *wind;
USHORT *code;

struct IntuiMessage *IntuiMessage;

/* Auf Nachricht warten */
Wait(1 << wind->UserPort->mp S igBit);

/* Nachricht holen. */
IntuiMessage = GetMsg(wind->UserPort);

/* Inhalt merken und Art der Nachricht
zurtickgeben.

*code = IntuiMessage->Code;
return (IntuiMessage->C lass);

/* Diese Prozedur holt die aktuellen Koordinaten

GetHouse(wind,x,y)

struct Window *wind;
SHORT *x, *y;

{

}

wind->MouseX;
wind->MouseY;

*x

*y

/* Ist dies ein GZZ-Fenster ? */
*x = wind->GZZMouseX; _

_ *y = wind->G2ZHouseY;
e

1

des Mauszeigers im Fenster.

*/

*/

*/

43

Kapitel 2 Fenster und Screens

Als Beispiel für die Anwendung der soeben definier-
ten Routinen folgt ein Programm, das ein Fenster auf
einem neuen Screen Öffnet, auf Eingabe von "E" wartet
und es wieder schließt.

Programm 2.5 DisplayDemo

#include "Display.h"

main ()

struct Screen *Screen;
struct Window *Window;
ULONG Class;
short Code;

OpenIntui ();

/* Einen low-res Screen öffnen. */
Screen = MakeScr(0,0,320,200, “Lowres",2,NULL,

| NULL,NULL);
if (Screen == NULL) exit(FALSE);

/* Fenster auf dem neuen Screen öffnen. */
Window = MakeWindow (0,0,200,200,200,200, "Hallo",

SMART REFRESH, VANILLAKEY,Screen);
if(Window == NULL) u

‘of Warten bis "E" gedrückt wird */
do

/* Auf Nachricht warten */
Class = WaitEvent(Window,&Code);

} while (Code != 69);

/* Fenster und Screen schlieBen */
C loseWindow(Window);
CloseScreen(Screen);

44

Kapitel 3 Zeichenroutinen der Intuition

Kapitel 3

45

Kapitel 3 | Zeichenroutinen der Intuition

Obwohl sich die Mehrheit der Grafikprozeduren logi-
scherweise in der Graphics-Library befindet, bietet
auch Intuition mit DrawImage und DrawBorder zwei sehr
nützliche Routinen. Sie werden vom System zur Dar-
stellung der Fenstergrenzen und der Gadgets benötigt
und ermöglichen das Zeichnen von beliebigen Bildern
und Umrandungen. Sie werden in diesem Kapitel im Zu-
sammenhang mit den Images auch mit Routinen zur Allo-
zierung und Deallozierung von Speicherbereichen ver-
traut gemacht werden, die wir später noch sehr oft
benötigen werden. Besonderes wichtig ist dabei, daß
Sie sich von Anfang an angewöhnen, nicht mehr benö-
tigten Speicher auch wieder freizugeben, auch wenn es
sich um scheinbar kleine Mengen handelt.

ANREHELZEZLENZIKZKKERENEKKZEEKNKEXRTEZZLENERZEEKEIKEKEZLKNNEEEZZEEREEXKEETEKKZEHKRZENZKEKEINIZIHENEKKTENZIKKLZZLIEKEKENETERIZZIZIERZEITN)
DIRIZELTEN)

0.0

a

awBorde'

Zur Umrandung diverser Objekte bietet Intuition die
DrawBorder-Prozedur. Diese benötigt eine mit entspre-
chenden Parametern initialisierte Border-Struktur, in
der unter anderem die Koordinaten der Eckpunkte ent-
halten sind. Nachdem Sie eine Umrandung(Border) durch
Erstellen eines solchen Datensatzes erzeugt haben,
können Sie diese mehrmals an verschiedenen Stellen
des Bildschirms ausgeben. Auf diese Weise lassen sich
mit einfachen Mitteln relativ komplexe Gebilde auf
dem Bildschirm darstellen. Obwohl wir hier von Umran-
dungen sprechen, können nicht nur geschlossene Li-
nienzüge gezeichnet werden. Durch die Möglichkeit,
mehrere solcher Borders miteinander zu verketten,
können auch nicht zusammehängende Figuren definiert
und dargestellt werden. Der erste Schritt in der
Definition einer Umrandung ist die Festlegung der
Eckkoordinaten. Diese können als Zahlen in einem

46

Kapitel 3 | Zeichenroutinen der Intuition

SHORT-Arrray gespeichert werden. Ein Dreieck, dessen
Spitze bei (10,0) liegt, kann also wie folgt defi-
niert werden: |

SHORT Dreieck [] = {10,0,

0,10,
10,0};

Als nächstes müssen Sie eine Border-Struktur fol-
gender Form erzeugen: .

Abb 3.1 Die Border-Struktur.

struct Border {

SHORT LeftEdge, TopEdge;
SHORT FrontPen, BackPen;
SHORT Count;
SHORT *XY;
struct Border *NextBorder;

}

In LeftEdge und TopEdge müssen Sie den sogenannten
Offset eintragen, das heißt die x- und y-Entfernung
beim Zeichnen mit DrawBorder angegeben wurde. Haben
Sie also beim Zeichnen als Koordinaten z.B. (100,100)
und als Offset (10,10) angegeben, dann wird der erste
Punkt des in Abbildung 3.1 definierten Dreiecks bei

100 + 10 + 10
100 + 10

X
y

also (120,110) gezeichnet.

47

Kapitel 3 Zeichenroutinen der Intuition

FrontPen bestimmt die Farbe, die zum Zeichnen be-
nutzt wird, falls DrawHode den Wert JAM1 hat. (BackPen
hat in der aktuellen Intuition Version keine Bedeu-
tung). Im Falle des anderen zulässigen DrawMode-Wer-
tes: XOR, wird beim Zeichnen die Farbe des Hinter-
grundes invertiert. Für die Form Umrandung sind die
Variablen XY und Count verantwortlich. In der ersten
geben Sie die Adresse des Feldes an, in dem die Koor-
dinaten der Eckpunkte enthalten sind, während die
zweite die Anzahl der Ecken bestimmt, die tatsächlich
gezeichnet werden. Um von unserem Dreieck nur die
zwei ersten Seiten zu zeichnen, müßte man Count
gleich 3 setzen (Anfangspunkt, erste Ecke, zweite
Ecke). Das letzte Feld der Border-Struktur, NextBor-
der, ist dazu da, mehrere solcher Figuren zu verket-
ten, indem dort die Adresse einer weiteren solchen
Struktur eingetragen wird. Eine solche Kette kann
dann mit einem einzigen DrawBorder-Befehl gezeichnet
werden. Der Aufruf dieser Prozedur sieht immer aus,
wie folgt:

DrawßBorder(RPort,Border,x,y)

In Border wird dann die Adresse der initialisier-
ten Border-Struktur, in x,y die Position, an der die-
se auszugeben ist, übergeben. RPort bezeichnet die
Adresse eines Rastports. Was dieser nun genauer ist,
erklären wir später. Um die Umrandung in einem Screen
darzustellen, geben Sie hier die Adresse des Rast-
Port-Feldes der Screen-Struktur an.

In dem folgenden abgedruckten Programm Border haben
wir versucht, Ihnen vor allem die nicht ganz so tri-
viale Anwendug der Offsets und der Verkettung von Um-
randungen zu verdeutlichen. Dazu werden zwei zunächst
nicht verkettete Borders definiert:

48

Kapitel 3 Zeichenroutinen der Intuition

(1) Rect - Quadratisch
(2) Tria - Dreieckig

Sie werden dann in einer for-Schleife untereinander
mit zwei DrawBorder Aufrufen gezeichnet. Hiernach
wird die Adresse von Tria in das NextBorder Feld von
Rect eingetragen, und Rect wird wieder in einer for-
Schleife gezeichnet. Da die beiden aber nun verkettet
sind, wird ja das Dreieck mitgezeichnet und die re-
sultierende Figur sieht in etwa so aus:

Zum Abschluß wird dann noch der y-Offset (TopEdge)
von Tria auf -25 gesetzt, so daß das Dreieck nun Ü-
ber dem Quadrat, also wie folgt ausgegeben wird:

49

Kapitel 3 — Zeichenroutinen der Intuition

Programm 3.1 Border

#include "Display.h"
#include "intuition/intuition.h"
#include "exec/types.h"

struct Window *Window;

SHORT Cornersi [] = {0, 0, /* Ein Quadrat
50, O,
50, 25,
0, 25,

0, 0};

SHORT Corners2 [] = {25, 0 /* Ein Dreieck
50, 25,
0, 25,
25, 0};

struct Border Rect = {0, 0,
1 ı Va

JAMl,
5,
&Cornersl,
NULL};

struct Border Tria = {0, 0,

JAMl,
4,
&Corners2,
NULL};

main ()

SHORT 1;
USHORT code;
ULONG Class;

50

*/

*/

Kapitel 3 _ Zeichenroutinen der Intuition

/* Ein Fenster auf dem Workbench Screen öffnen */
Window = (struct Window *)MakeWindow(0,0,640,250,

640,250, "Border-Beispiel",
WINDOWCLOSE | SMART REFRESH, CLOSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim Öffnen ?_ */
exit(FALSE);

for(i = 5; i <= 600; i = 7 + 55)
/* Beide Borders getrennt zeichnen. */

DrawBorder (Window->RPort, &Rect, 1,20);
/* Das Quadrat Zeichnen. */

DrawBorder (Window->RPort,&Tria, 1,70);
/* Das Dreieck Zeichnen. */

/* Zweite Umrandung an die erste "anhängen". */
Rect.NextBorder = &Tria;

/* Und beide 10 mal gleichzeitig zeichnen. */
for(i = 5; i <= 600; i = i + 55)

DrawBorder (Window->RPort, &Rect, 1,130);

/* Offset des Dreiecks verändern */
Tria. TopEdge = -25;
/* Und beide Borders wieder 10 mal gleichzeitig

: zeichnen. */
for(i = 5; i <= 600; i = i + 55)

DrawBorder (Window->RPort, &Rect, 1,210);

Class = WaitEvent(Window, &code); |
/* Auf Close-Gadget warten. */

CloseWindow(Window); /* Fenster schließen. */

51

Kapitel 3 Zeichenroutinen der Intuition

TTIIITEIEED

ANAAMNAAAAAAA

AN TAN TAN AN VAN TAN AN TAN VAN AN AN

Bild 3.1 - Die Ausgabe des Programms Border.

Dee TEE UT EEE UT TE TEE
wee eet eee eee eee eee eee eee ee eee eee eee eee LT TR
eee ee coe eee eee eee eee ee eee eee eee eee eee ee eee eee eee eee ee ee eee ee ee eee

RRC Cee eee RETO EE EEO OO HEELS THEO SELES EDO SDE PES ED SE OE DOES EDEREPESSED EDO OREO HED SEHD EE
Pro eC Her ree EOE THE HH EH EDO R EERE HEHEHE H OEE EHH EEC EEO POEHLER DHE EEO DEORE EHEEEE HEHEHE EERE DHSS
SAE eee eee eee ee ee eee eee eee eee eee ee ee eee ee eee ee
EEE Lee Cl POPP”) SERRE EER! REET PRRESEESECES! Of Peeeeeees RECEP CECeeCeeree eee

eet eee eee eee See ee eee eee eer ee eee eee eee cee eee LCCC EPC ee Cees) Sewer
RES ee eee eee ee eee ee eee eee ee ee ee TEE TEE
po Roce ee mesh era r PEO De EH eee DEH EH ERE EH HEHEHE EE RHE SED SEH OBOE PREAH ESOP EHH HEHE EERE E EOD
PROPER eer OH Eee e HSER THe Zr ar Er E HR EER REESE HOE DE OAHEEDOHE SE ESH ETE EEO ERD HET EREE EOP DEH OTOH D EE HOE
See eee ee ee ee eee eee eee eee eee eee eee ee eee ee ee ee ee ee ee ee

Bevor wir uns mit den Images (Bilder) befassen kön-
nen, ist ein kleiner Exkurs in die Speicherverwaltung
fällig. Wir müssen nämlich, um die Bilddaten für die
Grafikchips zugängig zu machen, sicherstellen, daß
sie sich im CHIP-Ram befinden. Tut man es nicht, so
stürzt das Programm auf so manchem Amiga prompt ab.

Als erstes muß der für die Daten notwendige Spei-
cherplatz mit Hilfe der Exec-Prozedur AllocMem reser-
viert (alloziert) werden. Dazu müssen die Größe des
benötigten Speichers in Bytes und die Anforderungen,
die an diesen Speicher gestellt werden, übergeben
werden. Die letzteren werden durch ein Set folgender
Flags bestimmt:

52

Kapitel 3 Zeichenroutinen der Intuition

MEMF CHIP: Es wird CHIP-Ram benötigt.

MEMF CLEAR: Der Speicher soll beim Allozieren mit
Nullen initialisiert werden.

MEMF LARGEST: Es wird ein zusammenhängender Speicher-
block benötigt.

Als Ergebnis liefert dann AllocMem einen Zeiger auf
den reservierten Speicher. Um z.B. Speicher für Bild-
arten, die sich in der Variable Data befinden zu al-
lozieren müssen Sie so vorgehen:

DataPtr=AllocHem(sizeof(Data),MEMF CHIP/MEMF CLEAR);

Dabei wird die benötigte Speichermenge mit Hilfe
der sizeof-Funktion ermittelt. |

Exec stellt auch eine Routine zum Kopieren von
Speicherinhalten zur Verfügung. Sie heißt CopyMem und
benötigt folgende Eingaben:

source: Die Adresse von der kopiert wird.
dest: Die Adresse zu der kopiert werden soll.
size: Die Größe des zu kopierenden Bereiches in

Bytes.

Die Daten vom vorigen Beispiel können also so ko-
piert werden:

CopyMem(&Data,DataPtr, sizeof(Data));

Es werden auf diese Weise die Adresse und Größe des
Speichers als Eingabe gebraucht. Also z.B.:

FreeMem(DataPtr, sizeof (Data));

Dabei ist Vorsicht geboten, denn ein Versuch, einen

53

Kapitel 3 Zu Zeichenroutinen der Intuition

nicht allozierten Speicher zu deallozieren, endet oft
mit Absturz.

more rreneen
one

Die Images (engl. Bilder) gestatten es Ihnen, das
Aussehen von Objekten Pixel für Pixel zu bestimmen.
Analog wie bei den Borders können sie dann mehrmals,
auch verkettet, gezeichnet werden. Die Bilddaten wer-
den in einer Folge von USHORT-Zahlen (Prozessorwör-
ter) gespeichert, deren Bitzusammensetzung der Pixel-
zusammensetzung des Bildes entspricht. Die Farbe wird
hierbei nicht mehr einheitlich für das ganze Objekt
angegeben, sondern wie bei der Videoanzeige durch
überlappende Bitplanes bestimmt. Die Anzahl der Bit-
planes eines Images kann zwischen 1 und der Tiefe des

Screens, auf dem dieser ausgegeben wird, liegen (bzw.
zu dem das Fenster, in dem dieser ausgegeben wird,
gehört). Eintachheitshalber wollen wir uns zuerst mit
einem Image der Tiefe 1, das die Form eines Kreuzes
hat, beschäftigen. Zuerst müssen wir uns das Bild so
wie es spät dargestellt wird, aufzeichnen, also mit |
Hilfe von gesetzten oder nicht gesetzten Punkten.

Abb 3.2 Ein einfaches Image

0000111111110000
0000111111110000

'’4111111111111111
1111111111111111
0000111111110000
0000111111110000

94

Kapitel 3 | Zeichenroutinen der Intuition

Durch die Darstellung in Form von Nullen und Einsen
haben wir es geschafft, das Bild in eine Folge von 16
Bit Dualzahlen umzuwandeln. Diese können nun in Dezi-
mal bzw. Hexadezimalsystem umgerechnet werden und
entsprechen von der Länge jeweils einem Prozessorwort
(WORD). Nach dieser Umwandlung könnte man nun unser
Kreuz wie folgt als hexadezimale Bilddaten Speichern:

USHORT Bild [] = {OxOff0,
Ox0ffO,
Oxf FFF,
Oxf fff,
Ox0ffO,
Ox0F FO} ;

Wie Sie sehen, entspricht bei der Umrechnung eine
Hexadezimalziffer einer vier Bit langen Dualzahl.

In diesem Beispiel wurde das Bild so gewählt, daß
es die Breite von 16 Punkten hat. Falls die Breite
geringer ist, wird trotzdem jede Zeile durch eine
16-Bit Zahl bestimmt. Die nicht benutzten Bits müssen
dann halt Null sein. Für Bilder, die breiter als die
16 Punkte sind, werden zur Definition jeder Zeile
einfach mehr 16-Bit Zahlen genommen. Es ist Jetzt a-
ber 18 Punkte breit:

0000011111111000 0000000000000000
0000011111111000 0000000000000000
1111111111111111 1100000000000000
1111111111111111 1100000000000000
0000011111111000 0000000000000000
0000011111111000 0000000000000000 —

erste Zahl zweite Zahl

55

Kapitel 3 Zeichenroutinen der Intuition

Die zugehörigen Daten würden dann so aussehen:

USHORT Bild [] = {0x07f8,0x0000
0x07f8,0x0000
Oxffff,0xc000
Oxf ffF,0xc000
0x07f8,0x0000
0x07f8,0x0000};

Für Bilder, die aus mehreren Bitplanes bestehen,
werden die einzelnen Bitplanes in der soeben be-
schriebenen Weise definiert und dann hintereinander
in den Daten gespeichert. Ein zweifarbiger Streifen,
der folgendermaßen aussieht:

Bitebene 1
000000000000000
111111111111111

Bitebene 2
111111111111111
000000000000000

Wird durch folgende Daten definiert:

USHORT Bild [] = {0x0000, /* Bitplane 1 */
Oxffff, |
Oxffff, /* Bitplane 2 */
0x0000}

Es ist natürlich auch erlaubt, daß Teile des Bildes |
in beiden Bitebenen gleichzeitig liegen.

Der nächste Schritt nach dem Erstellen der Bildaten
ist das Initialisieren der Image-Struktur. Diese ist
wie folgt definiert:

56

Kapitel 3 Zeichenroutinen der Intuition

Abb 3.3 Die Image Struktur.

struct Image {

SHORT LeftEdge, TopEdge;
SHORT Width, Height, Depth;
SHORT *ImageData;
UBYTE PlanePick, PlaneOnoff;
struct Image *NextImage;

hi

LeftEdge und TopEdge sind hier wie bei der Border-
Struktur die x- und y-Offsets. Die Breite und Höhe
des Bildes in Pixels wird in Width und Height überge-
ben. Depth bestimmt die Tiefe, also die Anzahl der
Bitebenen. In ImageData müssen Sie die Adresse der
Bilddaten hineinschreiben. Diese müssen im CHIP-Ram
liegen! Die nächsten beiden Felder, PlanePick und
PlaneOnOff, sind für die Farbwahl zuständig. Das er-
ste besagt, welche Bitebenen des Bildschirms für die
Darstellung des Images verwendet werden, das zweite,
welche Farbe die Punkte bekommen, die in den Bilda-
ten nicht gesetzt sind. Um das Kreuz von Abb.3.2 in
Farbe 1, seinen Hintergrund in Farbe 3 zu zeichnen,
müssen Sie also für PlanePick 1, für PlaneOn0ff 3 an-
geben. Mit Hilfe von PlaneOnOff können Sie auch, ohne
irgendwelche Bildaten ein gefülltes Rechteck einer
beliebigen Farbe erzeugen. Dazu setzen Sie JmageData
auf Null, Width und Height auf die gewünschte Größe
des Rechtecks und tragen seine Farbe in PlaneOn0ff
ein. Da keine Bildaten existieren, besteht für Intui-
tion das gesamte Bild aus Nullen, und wird daher in
der gewünschten Farbe dargestellt.

57

Kapitel 3 Zeichenroutinen der Intuition

Um das durch die Image-Struktur beschriebene Bild
darzustellen, müssen Sie die Drawlmage-Prozedur so
aufrufen:

DrawImage(RPort, ImagePtr,x,y);

Wie bei der DrawBorder-Routine ist RPort hier die
Adresse eines Rastports. ImagePtr ist der Zeiger auf
die Image-Struktur, x,y die Koordinaten, an denen das
Bild erscheinen soll.

In dem nun folgendem Beispielprogramm haben wir uns
bemüht, Ihnen vor allem die Bedeutung von PlanePick
und PlaneOnOff klarzumachen. Am Anfang wird ein Bild
eines Computers, mit der Tiefe 1 definiert. PlanePick
wird auf 1, PlaneOnOff auf 0 gesetzt und das Bild
wird gezeichnet. Es erscheint in der Vordergrundfar-
be. Hiernach wird PlanePick eine 2 zugewiesen und das
Bild wird nochmal ausgegeben. Es erscheint diesmal in
der Farbe Nummer 2. Als letztes wird dann noch Plane-
OnOff auf 1 gesetzt. Die Farbe des Computers ändert
sich hierbei zwar nicht, sein Hintergrund nimmt aber
die Farbe 1 an. Jedesmal, wenn Sie die linke Mausta-
ste drücken, gibt das Programm ein neues Bild aus. Um
es abzubrechen, klicken Sie das Close-Gadget an.

Beachten Sie auch, daß die Bilddaten vor dem Zeich-
nen in einen allozierten CHIP-Ram Breich kopiert wer-
den.

58

Kapitel 3 Zeichenroutinen der Intuition

Programm 3.2 Image.

#include "Display.h"
#include "intuition/intuition.
#include "exec/types.h"
#include "exec/memory.h"

struct Window *Window;
struct Screen *Screen;

/* Bilddaten */
USHORT Data [] = { Ox3ffc, /*

0x300c, /*
0x300c, /*
0x300c, /*
0x300c, /*
0x300c, /*
Ox3ffc, /*
Ox0ffO, /*
Oxffff, /*
Oxfffl, /*
Oxffff, /*
0x4002};/*

struct Image Bild = {0, 0,
16,12,

1,
0x1,0x0,
NULL};

main ()

APTR IData;
USHORT code;
SHORT x, y;
ULONG Class;

h"

001111111111111100
001100000000001100
001100000000001100
001100000000001100
001100000000001100
001100000000001100
001111111111111100
000011111111110000
111111111111111111
111111111111110001
111111111111111111
010000000000000010

59

Kapitel 3 Zeichenroutinen der Intuition

OpenIntui();

/* Einen low-res Screen öffnen. */
Screen = (struct Screen *)MakeScr(0,0,320, 250,

"Low-res",2, NULL, NULL, NULL);
if (Screen == NULL) |
exit(FALSE);

/* Ein GZZ-Fenster auf dem neuen Screen öffnen */
Window = (struct Window *)MakeWindow(0, 0,320,250,

300,250, "Image-Beispiel",
WINDOWCLOSE |} GI MME ZE ROZE RO } ACTIVATE,
MOUSEBU TTONS | CLOSEWINDOW, Screen);

if(Window == NULL) /* Fehler beim Öffnen ? */
exit(FALSE); |

/* CHIP-Memory für Bildaten allozieren 7
IData = Al locHem(sizeof(Data), MEMF_CHIP | MEHF

PUBLIC);
if (IData == NULL) /* Fehler beim Allozieren */
exit(FALSE);

/* und Daten dorthin kopieren. */
CopyMem(&Data[0],IData,sizeof(Data));

/* Zeiger in der Image-Struktur auf Bildaten setzen
Bild.ImageData = IData;

/* Image Zeichnen */
DrawImage(Window->RPort,&Bild,120,120);
Bild.PlanePick = 0x02;

/* und Image zeichnen. */
DrawImage(Window->RPort, &Bi1d,140,120);

/* Andere Bitplane für "Nullpunkte" wählen */
Bild.PlaneOnOff = 0x01;

60

Kapitel3 20... Zeichenroutinen der Intuition

/* und Image zeichnen. */
DrawImage (Window->RPort,&Bi1d,160,120);

/* Alte Bitplane für "Nullpunkte" wählen. */
Bild.PlaneOQnOff = 0x00;

while (WaitEvent(Window, &code) != CLOSEWINDOW)

GetMouse(Window,&x,&y);
DrawImage(Window->RPort, &Bild,x,y);

/* Datenspeicher wieder freigeben und alles
| schließen. */

FreeMem(IData,sizeof(Data));
Class = WaitEvent(Window,code);
C loseWindow(Window);
CloseScreen(Screen);

61

Kapitel 3 Zeichenroutinen der Intuition

[] Inage-Beispiel

g- Be

a, som a

= & “1 oa 7 2:

Bild 3.2 - Eine Beispielausgabe des Programms Image

62

Kapitel 4 _ Farbeinstellung und Graphik

Kapitel 4

Farbeinstellung und einfache Grafikprozeduren

63

Kapitel 4 | | _ Farbeinstellung und Graphik

Nachdem wir uns in den ersten drei Kapiteln mit In-
tuition befaßt haben, kommen wir nun endlich dazu,
die eigentlichen Grafikroutinen zu betrachten. Wir
wollen hier zuerst am Beispiel einiger einfacher Zei-
chenprozeduren zeigen, wie die Nummer der Zeichenfar-
be, ihre RGB-Zusammensetzung, der Zeichenmodus und
das für die Linie verwendete Muster eingestellt wer-
den können. Dabei werden Sie die beiden grundlegenden
Strukturen der Graphics-Library: RastPort und View
Port sowie ihre Bedeutung kennenlernen. Vor allem der
Rastport wird Ihnen bei der Grafikprogrammierung noch
sehr oft begegnen. Beachten Sie, daß Sie die Files
grahics/graphics.h und eventuell graphics/gfxmacros.h
mittels include in Ihr Programm einbinden müssen, um
auf die hier verwendeten Prozeduren und Strukturen
zugreifen zu können.

TTUSTTEITERTTTDENSETTUTETTETTUOOTETRTTETTETTET N
REE ee ee eee ee eee ee eee ee
SIPC RC CCRC Cee eee ee eee eee ee eee eee ee eee eee ees
Ecce eee eee ee ee eee eee eee eee ee ee eee ee eee eee ee ee

Pere eee eee eee ee eee eee ee eee eee eee eee ee ee ee!
Meee e reer e renee rsterenereeeneee

Comer eeesecesereaeeeroserersemenee
Pea cede werasrecesesenreseseseneoncas
Cae cere eestor oraseaseresererereene
Soe manent ane nwaeeeeeeevecetesacaes

Pee a mre sense eereeoeenerreeeasnedE

Die Screens und Fenster sind zwar vom Standpunkt
des Benutzers aus die elementaren Anzeigenelemente,
vom System aus gesehen stehen diese aber auf einer
ziemlich hohen Stufe, werden also unter Verwendung
anderer grafischer Routinen und "Bauteile" von Intui-
tion aufgebaut.

Damit man die Zeichenroutinen sowohl in einem Fen-
ster als auch in einem Screen oder einem selbster-
zeugten Display verwenden kann, wird diesen nicht ein
Zeiger auf ein Fenster, sondern die Adresse einer
allgemeineren Struktur, die Bestandteil jeder Anzeige
ist, übergeben.

64

Kapitel 4 Farbeinstellung und Graphik

Es handelt sich dabei um die RastPort-Struktur.
Diese bestimmt sozusagen alle Eigenschaften des "Zei-
chenstiftes", also z.B. die Vorder- und Hintergrund-
farbe, den Zeichenmodus, die Schriftart etc., die in
einer Anzeige verwendet wird. Die Adresse des zu ei-
nem Fenster oder Screen gehörenden Rastports, können
Sie wie in Kapitel 3 beschrieben, der Screen- bzw.
Window-Struktur entnehmen.

Da RastPort sehr viele Felder enthält, die nur für
das System von Bedeutung sind, verzichten wir hier
auf die vollständige Auflistung dieser Struktur und
gehen nur auf die wichtigsten Felder ein.

*BitMap: Zeiger auf die Bitmap, (also den "Bild-
speicher") die Anzeige, zu der dieser
Rastport gehört.

*AreaPtrn: Das Muster, das zum Füllen von Flächen
verwendet wird.

FgPen,BgPen: Die Vorder- und Hintergrundfarben, die
zum Zeichnen benutzt werden.

A0lPen: Bestimmt die Umrandungsfarbe für gefüll-
te Flächen.

DrawMode: Der Zeichenmodus.

LinePtrn: Ein Muster für die Linien (z.B.gestri-
chelt). |

CR cp x,cp y: Die momentanen Koordinaten des Grafik-
cursors.

*CR Font: Der in diesem Rastport verwendete
Schriftfont.

TxWidth,TxHeight ‚TxSpacing: Diese Felder geben die
Breite, Höhe und den Abstand zwischen

65

Kapitel 4 Farbeinstellung und Graphik

den Zeichen des aktuellen Fonts an. Der
Zeichenabstand kann durch verändern des
TxSpacing-Wertes verändert werden, wäh-
rend die anderen Werte nur gelesen werden
können.

Der obigen Auflistung können Sie entnehmen, wie die
zum Zeichnen verwendete Farbe gespeichert wird. Um
diese zu verändern, können Sie auf die SetAPen-Proze-
dur zurückgreifen. Ist Rast ein Zeiger auf einen Rast
Port, so kann die dort gültige Vordergrundfarbe so
auf 2 gesetzt werden:

SetAPen(Rast,2);

Analog kann die Hintergrundfarbe mit

SetBPen(Rast,Farbe);

modifiziert werden, wobei Farbe natürlich ein gül-
tiger Farbwert sein muß. Beachten Sie, daß die Verän-
derung der Hintergrundfarbe nicht die Veränderung
des Hirtergrundes auf dem Bildschirm zur Folge hat.
Es wird nur festgelegt, daß ab sofort, überall da, wo
irgend etwas mit der Hintergrundfarbe gezeichnet oder
gefüllt werden soll, der neue Farbwert verwendet
wird. Wann dies der Fall ist, wird weitgehend durch
den Zeichenmodus bestimmt.

Dabei gibt es vier Modi:

(1) JAM1: Dies ist der Standardmodus. Es wird zum
Zeichnen nur die Vordergrundfarbe ge-
braucht.

66

Kapitel 4 Farbeinstellung und Graphik

(2) JAM2: Dieser Modus ist vor allem für die Linien-
und Füllmuster wichtig, auf die wir noch
zu sprechen kommen.’ Es werden die gesetz-
ten Punkte des Musters mit der Vorder-,
die nicht gesetzten mit der Hintergrund-
farbe gezeichnet.

(3) Complement: In Diesem Modus wird jeder Punkt in
der Farbe gezeichnet, die dem binären Kom-
plement seiner bisherigen Farbnummer ent-
spricht. Hatte ein Punkt also in einem
Screen der Tiefe 2 bisher die Farbe Nummer
2 (binär 10), dann wird er nun mit der
Farbe 1 (binär 01) gezeichnet. In einem
Screen der Tiefe 5 würde er aber in der
Farbe 13 (binär 1101 als das Komplement
von 0010 = 2) dargestellt werden.

(4) Inversevid: Ist vorwiegend bei der Textdarstel-
lung von Bedeutung. In Verbindung mit JAM]

“ bewirkt diser Modus, daß der Hintergrund
des Zeichens in der Vordergrundfarbe dar-
gestellt wird, während das Zeichen selbst
durchsichtig ist. Der Unterschied bei Ver-
wendung zusammen mit JAM2 liegt darin, daß
dann das Zeichen in der Hintergrundfarbe
erscheint. |

Der Zeichenmodus wird über Flags, die entsprechend
JAMI1, JAM2, COMPLEMENT, und INVERSEVID heißen, mit
Hilfe der SetDrMd-Prozedur z.B. wie folgt:

SetDrMd(Rast, JAMZ);

eingestellt. Direkte Zugriffe auf die Datenstrukturen
sollten so weit wie möglich vermieden werden, um das

67

Kapitel 4 | Farbeinstellung und Graphik

Programm auch zu eventuellen späteren Systemversio-
nen, bei denen diese vieleicht modifiziert werden,
kompatibel zu halten.

. g
eror0.
seorc«.» re ncne
...n.00% eevaereoneon
sono. oer emerree
un. 10.1.0 ee vecnsesve

ene gee . .ogerıesnon0000
.. sole. . . Oe peoee eee

eaatee . 9 eee „eo oe
eucBee .. eee eaesoveee
... Dr) 5, one [EURER .

......0 oe aee eeoe .

........ “orneanı
ae

„or...
or] onen
... 5

.....
“nero unnee

. or |.o00.0. “naasacna . . .
soe IEURFERTT eves errr e ey . «

2 [KERLE u... uronnenne . .
MEIKERE) vor. soon 0 . .

Punkte können an beliebiger Bildschirmposition mit
der Prozedur_WritePixel mit der aktuellen Farbe und
den aktuellen Zeichenmodus gezeichnet werden.

Als Parameter müssen Sie nur den Zeiger auf den
Rastport und die Koordinaten übergeben. Ein Aufruf
kann also so aussehen:

WritePixel(Rast,10,10);

Oft ist es wichtig zu wissen, welche Farbe ein be-
stimmter Punkt hat. Für diese Situationen gibt es in
der Graphics-Library die Routine ReadPixel, die sozu- |
sagen die Umkehrung von WritePixel ist, also beim:
Aufruf die Farbe des Punktes an der angegebenen Posi-
tion als Funktionsergebnis vom Typ int liefert.

Linien können mit Hilfe der Grafikprozeduren nur ab
der aktuellen Position des Grafikcursors gezeichnet
werden. Diese ist, wie dem vorangegangenen Abschnitt
zu entnehmen ist, in der RastPort - Struktur gespei-
chert. Um den Grafikcursor neu zu positionieren mü-
ssen Sie die Prozedur Move wie folgt aufrufen:

Move(Rast,x,y);

68

Kapitel4 Farbeinstellung und Graphik

Dabei ist Rast ein Zeiger auf einen Rasport und x
und y die gewünschten Koordinaten. Eine Linie von der
auf diese Weise bestimmten Position zu irgendeiner
anderen Stelle auf dem Bilschirm kann dann mit der
Draw-Prozedur dargestellt werden. Diese braucht als
Eingabe wieder die Rastportadresse und die Koordina-
ten des Zielpunktes. Um also eine Linie von (10,10)
nach(100,100) zu zeichnen, müssen Sie so vorgehen:

Move(Rast,10,10);
Draw(Rast,100,100);

Für viele Anwendungen ist die Möglichkeit, Linien
mit verschiedenen Mustern zu zeichnen, also z.B.ge-
strichelt oder punktiert, sehr interessant. Der Be-
fehl SetDrPt erlaubt Ihnen, ein 16 Punkte langes Mus-
ter einem Rastport zuzuordnen. Dieses wird dann bis
auf weiteres für alle in diesem Rastport gezeichneten
Linien verwendet. Das Muster wird in einem SHORT-Wert
gespeichert, dessen Bits den ein oder ausgeschalteten
Punkten entsprechen. Die Linie wird dann als Aneinan-
derreihung solcher 16 Punkte langen Abschnitte ge-
zeichnet. Einer gestrichelten Linie, die aus diesen
16-Punkte Abschnitten besteht:

1111111100000000

(Einsen stehen für gesetzte Punkte) entspricht dem
hexadezimalen Wert ff00. Der dazugehörende Aufruf von
SetDrPt sieht dann so aus: |

SetDrPt (Rast, Oxff00);

Um wieder noramle Linien zeichnen zu können, rufen
Sie SetDrPt mit -1 als Musterwert auf.

69

Kapitel 4 Farbeinstellung und Graphik

In dem nun folgenden Programm können Sie sehen, wie
Linien mit verschiedenen Farben, Mustern und Zeichen-
modi erzeugt werden können. In der ersten for-Schlei-
fe wird jedesmal, bevor eine Linie gezeichnet wird,
eine neue Vordergrundfarbe gewählt. In der zweiten
wird bei jedem Durchlauf ein neues Linienmuster ge-
wählt, und dann eine Linie zuerst mit dem JAMI- und
dann mit dem JAM2-Modus gezeichnet. Wie Sie sehen,
werden beim JAMZ Modus die in dem Muster auf 0 ge-
setzten Punkte nun mit der vorhin gewählten Hinter-
grundfarbe gezeichnet. Probieren Sie doch mal aus,
was passiert, wenn sie die anderen Zeichenmodi, oder
deren Mischung an dieser Stelle verwenden.

Programm 4.1 Draw

#include "Display.h"
#include "intuition/intuition.h"
#include "exec/types.h"
#include "graphics/gfx.h"
#include "graphics/gfxmacros.h"

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;

/* Einige Linienmuster definieren. */
SHORT LPattern [] =

{ Oxff00, /* 1111111100000000 */
OxfOfO, /* 1111000011110000 */
Oxcccc, /* 1100110011001100 */
Oxaaaa, /* 1010101010101010 */

main()

USHORT code;

70

Kapitel 4 Farbeinstellung und Graphik

SHORT i;

OpenIntui();
OpenGfx ();

/* Einen lowres Screen der Tiefe 4 (16 Farben)
öffnen. */

Screen = (struct Screen *)MakeScr(0,0, 320,250,
"Linien",4,NULL,NULL , NULL);

if (Screen == NULL) /* Fehler beim Offnen. */
exit (FALSE);

/* Ein GZZ-Fenster auf dem neuen Screen öffnen */
Window = (struct Window *)MakeWindow(0,0,320,250,

320, 250, "Linien-Beispiel",
WINDOWCLOSE | GIMMEZEROZERO / ACTIVATE,

CLOSEWINDOW, Screen);

if (Window == NULL) /* Fehler beim Öffnen ?_ */
exit(FALSE);

/* Die Adresse des Rastports des Fensters
| ermitteln. */

Rast = Window->RPort;

/* 15 Linien mit verschiedenen Farben zeichnen */
for(i = 1; i < 16; i++)

{ .
SetAPen(Rast, i); /* Neue Farbe auswählen. */
Move(Rast,10,i1*5); /* Grafikcursor positionieren. */
Draw(Rast, 300, i*5); /* Linie zeichnen. */

/* Farbe 1 als Vorder- und 2 als Hintergrund
wählen. */

SetAPen(Rast,1);

/* Und 5 neue Linien mit verschiedenen Mustern und
Zeichenmodi. */

71

Kapitel 4 Farbeinstellung und Graphik

for(i = 1; i < 6; ir)

{
SetDrHd(Rast, JAM1);

| /* Normaler Zeichenmodus. */
SetDrPt(Rast,LPattern[i-1]);

/* Neues Muster auswählen. %/
Move(Rast,10,1*10+100); /* Grafikcursor

positionieren. */
Draw(Rast, 300,1*10+100); /* Linie zeichnen. */
SetDrMd(Rast,JAM2); /* Neuer Zeichenmodus*/
Move(Rast,10, 1*10+5+100); /* Grafikcursor

positionieren. */
Draw(Rast, 300, 1*10+5+100);/* Linie zeichnen. */

/* Auf Close Gadget warten */
i = WaitEvent(Window,&code);

/* und alles schließen */
C loseWindow(Window);
CloseScreen(Screen);

[1Linıen-Beisrrel u... oe

na..n..nnnan.n..n.m.-.—....

.. 1. 0 0 [7 [rer Tr ra Tr The

Bild 4.1 - Die Ausgabe des Programms Draw

72

Kapitel 4 Farbeinstellung und Graphik

PERKKKENZEIKHEIKKELZKKEXIEIKZZEZZLEXZEIKELITERTN ...r.....
SRAM RTE TEGO ETH SE EEE TERETE SEHR EE EO RHEE TEESE OTE EEE EHEE EERE HOSTOH HEED ED TEETEH THEE RELEHEDE OOD OS ESES .

DELZIESTITTIIIISITEIELFRTULTETTETETFTTT . ee tees
IEELELLLLLIRTERTIERTERLINEILEUTETERRERKEREFTERETERLERELLIRTNN oe

eee ... PPUEREEEEER EER SSE PECL SOLE LISS . IKERERERERE) os
DERPLZERZSEREREITIRTRTER IISERZEREIREREESRETEETFERSETRETSTERTER . ‘ .. q

3 Rechtecke, Kreise und Ellipsen |
PPPOE CEH EDO ETOH EERE REDE TEER SH OHH EEE Le LORE HHH EOE REHEEOOH HCE EEE EE EEE EE DEF OOOO DO MOeH DEDEDE OES

. COOH ODE HORM Oem RHEE ORE DEER HERE EEE FEHU EF EHH EERE ESO OHO OE HOSE EEE EOS
PROP Ream Oe eH E DAE O De HER ERH ESSER OEE REEEEH OOO EE DED HH ERODE DH OOOOH HE SECEDE HEE ODED ORES EEE ERE EOE ESOS

BOOP O RCC e EHO e ee HERO H ERE E HET H OO EH REESE HHO E ED TEHO EET HHH OEE EHEC AEH OHO ESH EHD E SETH HEE HR ER EHEC SES
CHOC SHEE HOHE HOHE T HHH eo eEHHH EOP OH EEE OE Ce eo |

RULERS STEELS TENSES SSeS TREES See eT Eee PPULTELEVELELESTSSR EVES SNS EL Eee SESE RET ESE SESE TSS Tee eee ee eee Serres |

Für komplexere Grafikobjekte genügt es allerdings
nicht mehr, Punkte und Linien zu zeichnen. Da alle
aus Linien bestehenden Figuren wie Rechtecke und
Dreiecke mit Hilfe mehrere Aufrufe der Draw, oder wie
wir später sehen werden, eines Aufrufs der PolyDraw-
Prozedur, mühelos erzeugt werden können, bietet der
Amiga keine eigenständige Prozedur zum Zeichnen die-
ser Objekte. Zum Zeichnen von Kreisen und Ellipsen
gibt es dagegen die DrawCircle- und DrawElTlipse-Rou-
tinen. DrawCircle, das in "gfxmacros. h" definiert
wird, benötigt als Eingabe die Adresse des Rastports,
die Koordinaten des Kreismittelpunktes und den Radi-
us. Ein Kreis mit dem Radius 50 wird also auf diese
Weise an der Position (150,100) gezeichnet:

DrawCircle(Rast,150,100,50);

Leider beachtet diese Prozedur nicht die Auflösung
des verwendeten Displays, so daß der Kreis nur auf
einem lowres oder einem hires-interlace Screen wirk-
lich rund ist. |

Um eine beliebige Ellipse zu zeichnen, genügt ein
folgender Aufruf von DrawEllipse:

DrawE lTipse(Rast,x,y,rx,ry);

Dabei ist Rast ein Zeiger auf den Rastport, x,y die
Koordinaten des Mittelpunktes und rx,ry der x- bzw. y-
Radius der Ellipse.

73

Kapitel4 . Farbeinstellung und Graphik

Das Zeichnen verschiedener Figuren wird in dem fol-
genden kurzen Programm vorgeführt. Es zeichnet zuerst
konzentrische Kreise und Ellipsen mit verschiedenen
Radien. Dann werden mittels einer dafür neu definier-
ten Prozedur mehrere gegeneinander verschobene Recht-
ecke erzeugt. Beachten Sie, daß das Programm in einem
Screen und nicht in einem Fenster arbeitet.

Programm 4.2 Figuren

#include "Display.h"
#inc lude "intuition/intuition.h"
#include "exec/types.h"
#include "graphics/gfx.h" |
#include "graphics/gfxmacros.h" —

struct Screen *Screen;
struct RastPort *Rast;

main ()

long Jj;
SHORT i;

OpenIntui();
OpenGfx ();
/* Einen hi-res Screen der Tiefe 2 (4 Farben)

öffnen. */
Screen = (struct Screen *)MakeScr (0, 0,320,250,

"Figuren",2,NULL,NULL);
if (Screen == NULL) /* Fehler beim Öffnen. */
exit (FALSE);

/* Die Adresse des Rastports des Screens
ermitteln. */

Rast = &((*Screen).RastPort);

/* Die erste Figurenreihe zeichnen. */
for(i = 1; i < 5; i++)

74

Kapitel 4 Farbeinstellung und Graphik

{
DrawCircle(Rast,70,70,1*10); /* Kreis zeichnen.
DrawE llipse(Rast, 250,70, i*10, 50-7*10);

bn Und einige Vierecke zeichnen. */
for(i = 1; i < 10; i++)

Rect (Rast, 50+1*5, 150+ 1*2,220+1*5,200+1*2);

/* Abwarten und dann Screen schlieBen */
for(j = 1; j < 400000; j++);
C loseScreen(Screen);

/* Diese Prozedur zeichnet ein Rechteck */
Rect(R,x1,y1,x2,y2)
APTR *R;
SHORT x1, yl, x2, y2;

Move(R,x1,y1);
Draw(R,x2,y1):
Draw(R,x2,y2);
Draw(R,x1,y2):
Draw(R,x1,y1);

Figuren cf

Bild 4.2 - Die Ausgabe Programms Figuren

/* Ellipse Zeichnen.

*/

*/

75

Kapitel 4 Farbeinstellung und Graphik

LO ee ee eee we ee H EE ROO EHH EOE OED TED O EO HERES SES OD ERE TOM MEDE EERE ERODE DO TOHEDES OREO RS OC LESS
bee OEE eRe ee EET mE OSE H OHHH ET EET HR REEE SERIE EEE OSE EPE TORT EOTEEO DEEDES OEE SEE FOOSE HEHEHE OEE EOOOD
Perm O eer ROHL EEE EDT CHET EOE MELEE HESE HOE H ESTO HEHE OEE EH OEEHED EHH EEE TERRE DEE DEO E HOES TEN ES
bee e eee H EERE H EDO E HEHE EE EEE HE EED HET OH ED ORDO OEE TEESE OE EEO OOH EEE OOH HSER ESHO ERE SEF EERO LOH EOD
eee Rare rede ee mers eee EE HEH SEE OER HEHEHE EEE TOTO SED ESE DIESE TEL IE TOTER SORES EC ED HOE ECE EO OES
eee reer eee EEE EEE LLC T OCT ET OREO LET TEE

er ee meee LET ELITE EEE LEERE ROCHE EES O ROE ES
ee ee ee ee ee ee ee ee ee ee ee es
err he OP EE HO He eee HEHEHE HEE HEH EERE HEHE EE EEO OE HR HOO RH ETE EE EECA FORT OHE EEE OEEEREE EDD OER DOES
etme eee eH Eee EERO OEE HHH R HEHEHE EHO O HOSE HET OEE EEO HEH OEP OEE OEE ODO ROE DEERE ED ESHER EEE DEDESED
oO emer m eee Teer EEE HEHEHE RHEE OEE EHEC E OPE SO OHO TERE OO SHEE CED SEH ESE EER DEH EF OOD EEE EOE OOR
be ee ee wero see ene en sno eon nner sever ose seer er so es seesoereosersaerss reese assess oersesae reeves sae

Bisher sind wir nur in der Lage, durch Angabe einer
Nummer, eine der maximal 32 Farben, die für den
Screen voreingestellt sind, zu wahlen. Der Amiga gibt
Ihnen aber die Méglichkeit, eine aus einer Palette
von 4096 verschiedenen Farben auszusuchen. Sie können
diese normalerweise zwar nicht alle gleichzeitig be-
nutzen, dafür aber mit der SetRGB4-Prozedur die RGB-
Anteile, der zur jeder Nummer gehörenden Farbe wäh-
len (jeweils zwischen 0 und 15 liegende Rot-, Grün-
und Blau-Anteile). Die Prozedur SetRGB4 braucht neben
der Nummer der Farbe und der neuen RGB-Werte einen
Zeiger auf die ViewPort-Struktur. Dies ist die grund-
legende Struktur jeder eigenständigen Anzeige, also
eines Screens oder eines selbsterzeugten Displays. So
wie die Eigenschaften eines "Zeichenstiftes" in der
RastPort-Struktur gespeichert sind, können Sie die
wichtigsten Eigenschaften des Displays dem Viewport
entnehmen. Sie werden später noch sehen, wie man mit
Hilfe eines neuen Viewports diverse unter Intuition
nicht zulässige Anzeigen realisieren kann, und dabei
auch den genauen Aufbau der ViewPort-Struktur und die
Bedeutung ihrer Felder kennenlernen.

Um nun beispielsweise der Farbe Nummer 1 eine Mi-
schung aus 7 Anteilen Grün und 7 Anteilen Blau zuzu-
ordnen rufen Sie SetRGB4 folgendermaßen auf:

SetRGB4(View,1,0,7,7);

View ist selbstverständlich ein Zeiger auf die
ViewPort-Struktur. Je nachdem, ob Sie direkt in einem
Screen, oder in einem Fenster arbeiten, müssen Sie

76

Kapitel 4 Farbeinstellung und Graphik

unterschiedlich vorgehen, um diesen zu ermitteln. Um
den Viewport eines Fensters zu finden, können Sie
sich der Intuition-Prozedur ViewPortAdress_ bedienen,
die als Eingabe einen Zeiger auf ein Fenster braucht,
und als Ergebnis die gesuchte Adresse des Viewports
liefert. Der Viewport eines Screens ist direkt in der
Screen-Struktur zu finden. Seine Adresse kann also
wie folgt z.B. in die Variable View eingelesen wer-
den:

View = &((*Screen).Viewport);

Dabei wird natürlich vorausgesetzt, -daB Screen ein
Zeiger auf den Screen ist. Beachten Sie auch, daß
sich die gesamte ViewPort-Struktur, nicht nur Ihre
Adresse in der Screen-Struktur befindet.

Die RGB-Werte für die Farben können selbstverständ-
lich nicht nur verändert, sondern auch jederzeit ge-
lesen werden. Notwendig ist das beispielsweise, um
die von vielen Zeichenprogrammen bekannte Color-
Cycle-Funktion, die die Werte der Farbregister zyk-
lisch verändert, zu verwirklichen.

Die gewünschten Werte werden Ihnen von der Proze-
dur GetRGB4 geliefert. Sie gibt Ihnen eine Zahl, in
der die drei gesuchten Werte enthalten sind, zurück.

Falls Sie sich wundern sollten, wie das geht, dann
denken Sie bitte daran, daß jeder Wert zwischen 0 und
15 liegt, also nur 4 Bit braucht, so daß eine 16 Bit-
Zahl völlig ausreicht, um alle drei Komponenten zu
speichern. Den Anteil einer bestimmten Farbe kann man
mit Hilfe einer AND-Verknüpfung der erhaltenen Zahl,
mit einem Wert, der den zu dieser Farbe gehörenden
Bits entspricht, erhalten. Die untersten 4 Bit sind
für die Farbe Blau reserviert, die nächsten 4 für

77

Kapitel4 -.. «+ Farbeinstellung und Graphik

Grün und die darüberliegenden für Rot. Die obersten 4
Bits sind bedeutungslos. Daraus folgt, daß man den
Roten Anteil durch eine AND-Verknüpfung mit hexadezi-
mal Of00 (dezimal 3840), den Grünen mit 00f0 (240)
und den Blauen mit 000f (15) bekommen kann. Hier ein
Beispiel:

7 jewPortAddress (Window); View =
Colors = GetRGB4(CMap,1);
Rot = Colors & 3840;
Gruen = Colors & 240;
Blau = Colors & 15;J

In diesem Beispiel müssen Window ein Zeiger auf ein
Fenster und CMap die Adresse einer ColorMap-Struktur
sein. Die letztere können Sie aus der ViewPort-Struk-
tur folgendermaBen ermitteln:

CMap = View->Co lorMap;

Wie das in der Praxis funktioniert, können Sie sich
in dem folgenden Programm ansehen. In einer for-
Schleife wird dort der Blauanteil aller Farben des
Screens auf Werte von 0 bis 15 gesetzt. Dann werden
mit jeder Farbe fünf konzentrische Kreise mit immer
größer werdenden Radien gezeichnet, so daß durch die
zunehmende Helligkeit der Eindruck eines dreidimensi-
onalen Tunnels entsteht. Die Adresse des Viewports
wird hier nicht mit der ViewPortAdress-Prozedur, son-
dern über den zu dem Fester gehörenden Screen ermit-
telt. Zum Schluß wird wieder in einer for-Schleife
immer wieder der Blauanteil von zwei benachbarten
Farbregistern vertauscht, so daß der schon erwähnte
Color-Cycle Effekt entsteht. Da die Rot und Grün An-
teile aller Farben null sind, wäre hier die AND Ver-

78

Kapitel 4 Farbeinstellung und Graphik

knüpfung nicht notwendig, um den Blauanteil zu erhal-
ten. Wir haben sie aber trotzdem zur Demonstration
verwendet.

Programm 4.3 ColorCycle

#include "Display.h"
#include "intuition/intuition.h"
#include "exec/types.h"
#include "graphics/gfx.h"J
#include "stdio.h"

struct Screen *Screen;
struct Window *Window;
struct RastPort *Rast;
struct ViewPort *View;
struct ColorMap *CMap;

main ()

long j, Color;
SHORT i, k, *CAdr;

OpenIntui();
OpenGfx ();

/* Einen low-res Screen der Tiefe 4 (16 Farben)
öffnen. */

Screen = (struct Screen *)MakeScr(0,0,320,200,
“Figuren",5,NULL,NULL);

if (Screen == NULL) /* Fehler beim Öffnen. */
exit(FALSE);

79

Kapitel 4 Farbeinstellung und Graphik

/* Fenster auf dem neuen Screen Öffnen. */
Window = (struct Window*)MakeWindow(0,0,320,200,

0,0,"Hallo",SMART REFRESH!
BORDERLESS, NULL ‚Screen);

if(Window == NULL) /* Fehler beim Öffnen. */
exit(FALSE); |

/* Adresse des Rastports, des Viewports und der
ColorMap. */

Rast = Window->RPort;
View = &((*Screen).ViewPort);
CMap = View ->ColorMap;

/* Farbregister 2 bis 15 initialisieren. */
SetRGB4(View,0,0,0,0); /* Hintergrundfarbe

schwarz */
for(i = 1; i < 16; i++) |
SetRGB4(View,1,0,0,1);

/* 80 Konzentrische Kreise zeichnen. */
for(i = 2; i < 16; ir)

SetAPen(Rast, i);
/* Neue Farbe wählen und */

for(k = 1; k < 6; k++)
x 5 Kreise in dieser Farbe. */

DrawCircle(Rast,160,100, i1*5+k);

}
}

/* Farben 50 mal vertauschen. */
for(i= 2; i < 50; itt) ©

for(k = 1; k < 16; k++)

Color = GetRGB4(CMap,k)&15;
SetRGB4(View,k,0,0, GetRGBA(CHap, (k+1)%14+2)815);
SetRGB4 (View, (k+1)214+2, 0,0,Color);

80

Kapitel 4 | _ Farbeinstellung und Graphik

fo
for(j = 1; j < 30000; jtt);

CloseWindow(Window) ;
CloseScreen(Screen);

}

81

Kapitel 4 _Farbeinstellung und Graphik

82

Kapitel 5 | Polygone, Flaechen, Fuellmuster

Kapitel 5

Polygone, gefüllte Flächen und Füllmuster

83

Kapitel 5 Polygone, Flaechen, Fuellmuster

Nach den doch noch ein bißchen primitiven Zeichen-
routinen, die Sie im vierten Kapitel kennengelernt
haben, wollen wir uns hier einem komplizierteren,
aber dafür auch interessanteren Thema zuwenden. Dabei
handelt es sich um das Zeichnen von Vielecken und ge-
füllten Flächen. Dabei gibt es noch eine Besonder-
heit: die Möglichkeit, für diese Flächen verschiede-
ne Muster bzw. Farbmuster zu verwenden. In diesem
Zusammenhang wird ein include-File vorgestellt, das
Ihnen bei der Initialisierung der von den Füllrouti-
nen benötigten Strukturen (TempRas und AreaInfo) be-
hilflich sein soll. Er erhält auch eine Prozedur,
die Ihnen beim Zeichnen von gefüllten Polygonen eini-
ge Arbeit abnehmen wird.

Gute Grafik läßt sich nur schwer aus Rechtecken
und Ellipsen allein aufbauen. Mit der DrawBorder-Pro-
zedur haben Sie bereits eine Möglichkeit kennenge-
lernt, beliebige Vielecke bzw. Linienzüge zu zeich-
nen. Eine einfacherere Möglichkeit stellt die Poly-
Draw-Prozedur der Graphics-Library dar. Diese braucht
als Eingabe die Anzahl der Ecken, sowie einen Zeiger
auf den Rastport und auf einen Speicherbereich, in
dem die Koordinaten der Eckpunkte des zu zeichnenden
Vielecks als Zahlenpaare gespeichert sind. Ein Aufruf
muß also wie folgt aussehen, wenn über den n Ecken der
in Koordinaten gespeicherten Werten ein Polygon ge-
zeichnet werden soll:

PolyDraw(Rast,n,&Koordinaten[0]);

84

Kapitel 5 Polygone, Flaechen, Fuellmuster

Am besten ist es, wenn Sie ihre Koordinaten in
einem Array von SHORT-Zahlen speichern und deren
Adresse dann an diese Prozedur weitergeben. Da Sie
die Anzahl der Ecken extra angeben, können Sie wahl-
weise auch nur einen Teil des Vielecks zeichnen las-
sen. Zu beachten ist lediglich, daß die Prozedur das
Polygon nicht von selbst abschließt, d.h. daß Sie, um
eine geschlossene Figur zu erhalten, die Koordinaten
des ersten Punktes auch am Ende als Koordinaten des
letzten Punktes angeben müssen. Wichtig ist auch, daß
vor dem Zeichnen des Polygons der Grafikcursor an die
Position der ersten Ecke gebracht wird, da ansonsten
diese mit seiner aktuellen Position verbunden wird.

Als Beispiel für die Anwendung der PolyDraw-
Prozedur folgt ein Programm, das dem Benutzer die
Eingabe der Eckkoordinaten durch Klicken der Maus
erlaubt. Die Position der Maus beim Drücken der lin-
ken Taste wird in dem Array Polygon, das später an
PolyDraw übergeben wird, gespeichert, und legt somit
die Position einer Ecke fest. Sobald die rechte Taste
gedrückt wird, wird die Eingabe beendet, der Grafik-
cursor positioniert und das Polygon gezeichnet. Durch
Anfügen des ersten Koordinatenpaares am Ende des
Arrays wird das Polygon abgeschlossen.

Programm 5.1 Polygon

#include "Display.h"
#include "intuition/intuition. h"
#include "exec/types.h"
#include "graphics/gfx.h"

struct Screen *Screen;
struct Window *Window;
struct RastPort *Rast;

85

Kapitel 5 Polygone, Flaechen, Fuellmuster

main ()

SHORT x, y, Corners, Polygon[100];
USHORT code;
ULONG Class;

OpenIntui();
OpenGfx ();

/* Einen hi-res Screen der Tiefe 2 (4 Farben)
öffnen. */

Screen = (struct Screen *)MakeScr(0,0,640,250,
"Polygon", " 2, HIRES, NULL);

if (Screen == NULL) /* Fehler be im Öffnen. */
exit(FALSE); | |

/* Rahmenloses Fenster mit Close Gadget und IDCHP-
Port öffnen. */

Window = (struct Window *)MakeWindow(0,0,640,250,0,
0, "Po lygon "

SMART REFRESH} BORDERLESS | WINDOWCLOSE / RMBTRAP,
CLOSEWI, NDOW IMOUSEBU TTONS, Screen):

if(Window == NULL) .
exit (FALSE); /* Fehler beim Öffnen. */

/* Adresse des Rastports. */
Rast = Window->RPort;
/* Ecken einlesen und Pol 'ygon zeichnen. */
‘on = 0; /* Eckenzahl initialisieren. */
do |
Class = WaitEvent(Window,&code);

| if ((code&HMENUUP) == MENUUP)
/* Ende der Eingabe ? */

break; /* Ja -> Schleifenabbruch. */
if((code&SELECTUP) == SELECTUP)

/* Ecke eingegeben ? */

GetMouse (Window, &x,&y);

86

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* Ja -> Mauskoordinaten lesen, */
WritePixel(Rast,x,y);

/* Punkt makieren, */
Polygon[2*Corners] = x;

/* Koordinaten merken */
Polygon[2*Corners+1] = y;
Corners++; /* und Eckenanzahl erhöhen, af

}
} while (Corners < 50);

/* Das Polygon zeichnen. */
Polygon[2*Corners] = Polygon[0];

/* Polygon abschließen */
Polygon[2*Corners+1] = Polygon[{1];
Move(Rast,Polygon[0],Po lygont 1]);
Pol 'yDraw(k Rast, Corners+1,&(Polygon[0]));

/* Auf Close Gadget warten und alles schließen. */
while((WaitEvent(Window,&code) != CLOSENINDOW));
CloseWindow(Window);
CloseScreen(Screen);

Bild 5.1 -Eine Beispielausgabe des Programms Polygone

87

Kapitel 5 Polygone, Flaechen, Fuellmuster

TIIIZERIERELEIEZEIEZIEELILIENEIZEITER)
DEIPELTEURTTEITEIEEEERERTELTIETERLIETERRELTERLENTSERETT
BETTERLLPRETTEREIFRETEIITERTERTIRITUTTITEREERTIREEITIERSEITERTEFITERFTIIEITEITRPI ET

. . N |
1 EERESSSHPESTIESSSSSESESFERESTEESS SEISSSSIST Des iiimımılinınssen : PSCLIDEISS SEIS DESIST uizsıın I : : | Sepeccecss Seer Serna 4 : :

peewee eter es venes esse seneese eee sees neneeeesesrseeeeee

CERO ECO REPRE RAED HEROS DO HOE HEM DEFT E EHO SHE DHE ROSS ESE DD HESHE OH OOH EDO D ESO OD MEO REDE EH er
Lhe e OHH REE ERR S OEE EOE ETD ROH PH EARO TED OE EERE OER ED EEO REPOS EE OE EH SHEE EEO DOE HOD
POCO HER OEE ELLE LEE OER ERDF SOHO DESH OS
Pees eee HHH TEE ROO EDO OT EEE EEE HEE DHE HOPS OES EOE EES HOH EEE ES 4 |
Desoo none enone s serie ese HEE OO UEOOOEEEEDD ODE EF OES OE EEHOD PREPUESERESESOSOCOSOSESCOCE ESCO SSE E SSS) a
wee teeter nese steer ase nent renee esas rors nance seen sro rons ecs sce rseserseesen ro censosseetcressunssnensenecsess nas raases vases ensses RETTET |

Die Befehle zur Erzeugung gefüllter Flächen sind in
sich relativ simpel, vor ihrer Anwendung müssen aber
in der Regel einige Vorbereitungen getroffen werden.
Der Grund dafür ist darin zu suchen, daß das System
um komplizierter geformte Flächen korrekt und schnell
zu füllen, zusätzlichen freien Speicher als Zwischen-
ablage für Bilddaten und Eckkoordinaten benötigt. Die
Verfügbarkeit, Größe und Adresse dieses Speichers
entnehmen die Grafikprozeduren den Datenstrukturen
TempRas und_AreaInfo, deren Adressen in der RastPort-
Struktur eingetragen werden müssen.

Um diese Strukturen initialisieren zu könnnen, müs-
sen Sie zuerst den benötigten Speicher reservieren.
Der Bildatenzwischenspeicher, der durch TempRas be-
schrieben wird, muß im CHIP-Ram liegen, und groß
genug sein, um den gesamten in jeweils einer Bitplane
liegenden Teil der zu füllenden Fläche komplett auf-
zunehmen. Beachten Sie dabei, daß sich die Größe des
für eine Figur benötigten Speichers aus dem Produkt
ihrer maximalen Höhe und Breite ergibt. Für ein Drei-
eck der Höhe 90 Pixel un Breite 70 Pixel brauchen Sie
also einen Speicher von 90x70 Bit, was aufgerundet
(Speicherplatz wird ja nur in ganzen Bytes verwal-
tet!) 12x10 = 120 Bytes = 6x5 Prozessorwörtern,
entspricht. Um eine TempRas-Struktur zu initialisie-
ren, muß, nach dem der Speicher alloziert wurde, die
InitTempRas-Rout ine der Graphics-Library folgenderma-
Ben aufgerufen werden:

InitTmpRas (&TRas , Memory, Size)

88

Kapitel 5 Polygone, Flaechen, Fuellmuster

Memory ist dabei der Zeiger auf den allozierten
Speicherbereich und Size seine Größe. In TRas wird
ein Zeiger auf die initialisierte TempRas-Struktur
zurückgegeben (TRas muß also vom Typ TempRas sein).
Diesen müssen Sie, um den so erzeugten TempRas einem
Rastport zur Verfügung zu stellen, nur noch wie folgt
in die entsprechende RastPort-Struktur eintragen:

Rast->TempRas = TRas;

Denken Sie daran, daß Sie den Speicher später durch
Deallozieren wieder freigeben und das TempRas-Feld
des Rastports wieder auf NULL setzen.

Als nächstes muß die AreaInfo-Struktur erzeugt wer-
den. Der dafür benötigte Speicher hängt davon ab,
welche Füllroutine Sie gebrauchen wollen. Grundsätz-
lich gilt, daß pro Ecke der zu zeichnenden Figur 10
Bytes benötigt werden. Für ein Polygon mit 10 Ecken
bräuchten Sie also einen 100 Byte großen Buffer. Die
AreaInfo-Struktur wird nach der Allozierung des
Speichers’ durch den folgenden Aufruf der InitArea-
Prozedur initialisiert:

InitArea(&AInfo,Buffer,Size);

In den beiden Parametern Buffer und Size müssen Sie
die Adresse des Buffers und die Anzahl der Ecken mal
2 angeben. In Alnfo wird dann ein Zeiger auf die ini-
tialisierte Arealnfo-Struktur zurückgegeben, den Sie
wieder in die RastPort-Struktur wie folgt eintragen
müssen.

Rast->Arealnfo = &Areal;

Wie Sie sehen, ist die Vorbereitung zum Füllen
von Flächen doch relativ aufwendig. Um Ihnen zukünf-
tig die damit verbundene Mühe zu ersparen, wird in

89

Kapitel 5 Polygone, Flaechen, Fuellmuster

dem hier abgedruckten "include"-File die Prozedur
NewArea definiert, die alle oben beschriebenen Maß-
nahmen für Sie erledigt. Zusätzlich beinhaltet die-
ser File auch noch eine Prozedur, die den von Tempras
und Arealnfo belegten Speicher wieder freigibt
(CloseArea) und eine, die ein gefülltes Polygon
zeichnet (PolyFilT). Auf die Funktionsweise und das
Aufrufformat der letzten Prozedur werden wir in einem
späteren Abschnitt zurückkommen. In NewArea wird eine
neue Art Speicherplatz zu allozieren verwendet. Bei
dieser Methode wird die Intuition-Routine AllocRemem-
ber aufgerufen, die den gewünschten Speicher reser-
viert und seine Größe in einer Remember- Struktur
speichert. Neben der Größe und Art des benötigten
Speichers müssen Sie der Routine auch noch die
Adresse eines Zeigers auf eine solche Struktur über-
geben. Falls dieser Zeiger NULL ist, wird dort die
Adresse einer neuen Remember-Struktur hinein ge-
schrieben. Sie können später wenn Sie weitere Spei-
cherbereiche allozieren, diesen Zeiger wieder verwen-
den, wodurch die neue Remember-Struktur einfach an
die alte "angehängt" wird. Der Vorteil dieses Verfah-
rens liegt darin, daß es möglich ist, mehrere Be-
reiche, die so alloziert wurden, zu einem späteren
Zeitpunkt durch einen einzigen Aufruf von FreeRemem-
ber wieder freizugeben. Man braucht sich dabei nicht
mal die Größe dieser Bereiche zu merken.

Remember Remember Remember

NextRemember NextRemember —» USW. ——PiNextRemember }—® NULL

Size Size Size

Memory Memory Memory

\ \

(Spei cher) (Spei cher) (Spei cher)

Bild 5.2 - Die interne Verwaltung der Remember-
- strukturen

90

Kapitel 5 Polygone, Flaechen, Fuellmuster

Programm 5.2 AreaExtras

#include "intuition/intuition.h"
#include "exec/types.h"
#include "exec/memory.h"
#include "graphics/gfx.h"

/* Diese Prozedur initialisirt ein TempRas und
ein Arealnfo */

NewArea (Rast,Corners,RPointer)

SHORT Corners;APTR *RPointer;
struct RastPort *Rast;

static struct TmpRas TRast;
static struct Arealnfo Areal;
struct Remember *Rm;
APTR TBuffer, ABuffer;
long PlaneSize;

Rm = NULL;
/* CHIP- -Memory fiir Temprast und AreaBuffer

allozieren. */
Planesi ize = (Rast->BitMap->BytesPerRow)*(Rast->

BitMap->Rows);
TBuffer = AllocRemember (&Rm,PlaneSize,MEMF CHIP |}

- MEHF PUBLIC);
if (TBuffer == NULL) /* Fehler beim Allozieren ? */
exit(FALSE);

ABuffer = AllocRemember (&Rm,Corners*10,MEMF CHIP |
" MEMFT PUBLIC):

if (TBuffer == NULL) /* Fehler beim Allozieren ? */
exit(FALSE);

/* TempRas und AreaInfo initialisieren, */
InitArea(&AreaI,ABuffer,2*Corners);
InitTmpRas(&TRast,TBuffer,PlaneSize);

91

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* und seine Adresse im Rastport eintragen. */
Rast->TmpRas = &TRast;
Rast->Arealnfo = &Areal;
*RPointer = Rin;

}

/* Diese Prozedur gibt den für TempRas und AreaInfo
nötigen Speicher frei */

void CloseArea(Rast,RPointer)

APTR RPointer;
struct RastPort *Rast;

FreeRemember (&RPointer, TRUE); /* Speicher
freigeben. */

Rast->Arealnfo = NULL;
/* Eintrag im RastPort löschen. */
Rast->TmpRass = NULL;

/* Diese Prozedur erzeugt ein gefülltes Polygon. */
void PolyFill(Rast,Polygon,Corners)

struct RastPort *Rast;
SHORT *Polygon;
SHORT Corners;

SHORT 1;
APTR Remember;

/* TempRas und Arealnfo initialisieren. */
NewArea (Rast, Corners,&Remember);

/* Grafikcursor zum Startpunkt, Ecken erzeugen und
Polygon zeichnen. */

AreaMove(Rast, *Polygon, *(Pol ygontl));
for(i = 1; i < Corners; i++)

92

Kapitel5 Polygone, Flaechen, Fuellmuster

AreaDraw(Rast,*(Polygon+2*i),*(Polygon+2*i+1));
AreaEnd(Rast);

/* TempRas und Arealnfo löschen. */
CloseArea(Rast, Remember);

Wie dem Listing zu entnehmen ist, können Sie die
NewArea und CloseArea Prozeduren folgendermaßen ge-
brauchen:

NewArea (Rast,Corners,RPointer);
CloseArea(Rast,RPointer);

Die Parameter haben dabei folgende Bedeutung:

Rast: Zeiger auf den Rastport.
Corners: Die Anzahl der Ecken.
RPointer: Die Adresse eines Zeigers auf eine

Remember-Struktur.

Da man im voraus oft nicht genau sagen kann, wie
groß die zu füllende Fläche ist, ist es am sinnvoll-
sten, für den TempRas eine ganze Bitplane zu reser-
vieren. Genau das tut auch das obige Areafxtras Pro-
gramm, das die Größe der Bitplane wie folgt ermit-
telt:

b = Rast->BitMap->BytesPerRow;
h = Rast->BitMap->Rows;
PlaneSize = b*h;

Dabei wird über den in Rast enthaltenen Zeiger auf
die RastPort-Struktur auf die BitMap-Struktur zuge-
griffen, wo die Anzahl der Bytes pro Zeile (BytesPer-
Row) und die Anzahl solcher Zeilen(Rows) gespeichert
sind. Auf der Programmdiskette befindet sich des oben
abgedruckte File in der Directory include unter dem
Namen AreaExtras.h.

93

Kapitel 5 Polygone, Flaechen, Fuellmuster

Serre” Carn ek? TELLER)

PSCC CeO O ROTO TERE HHO REEEE EE EEEREEEE EEE HEHE TOURER EEDA ETON ES EES

Als erstes wollen wir in diesem Abschnitt die
Flood-Routine, die eine beliebige geschlossene Fläche
um die angegebenen Koordinaten füllt, betrachten.
Diese wird wie folgt

Flood(Rast, Mode, x, y);

aufgerufen und kann dazu verwendet werden, eine
mit den schon beschriebenen Zeichenprozeduren erzeug-
te Figur nachträglich zu füllen. Dafür stehen Ihnen
zwei Modi, die durch die Mode-Variable ausgewählt
werden können, zur Verfügung:

(1) outline mode
Falls Sie diesen Modus wählen, werden alle Punkte

um x,y, die nicht die Area-Qutline Farbe haben, in
der aktuellen Vordergrundfarbe gezeichnet.
Der Füllvorgang wird also dann gestoppt, wenn eine
mit der Area-Qutline Farbe gezeichnete Umrandung
erreicht wird. Die Area-Outline Farbe in dem Rastport
Rast kann mit Hilfe der_$etOPen Routine so auf den in
Color enthaltenen Wert gesetzt werden:

SetOPen(Rast,Color);

Dieser Modus wird eingeschaltet, wenn Mode den
Wert 0 hat.

94

Kapitel 5 Polygone, Flaechen, Fuellmuster

(2) color mode
In diesem Modus werden alle Punkte mit der aktu-

ellen Vordergrundfarbe gefüllt, die um x,y liegen und
die die gleiche Farbe besitzen, die der Punkt an
der Position x,y hat. Der Füllvorgang wird hier been-
det, wenn irgendeine geschlossenen Umrandung er-
reicht wird. Dies ist der am häufigsten verwendete
Modus. Um ihn auszuwählen, setzen Sie Mode auf 1.

Im Outline-Modus können Sie die Flood-Routine ver-
wenden, ohne vorher einen TempRas eingerichtet zu
haben. Da das Füllen dabei extrem langsam vor sich
geht, sollte man dies jedoch nach Möglichkeit vermei-
den. Ein Versuch, ohne TempRas im color-Modus zu
Füllen, bleibt entweder ohne Wirkung, oder endet mit
einem Besuch beim Guru!

Wenn Sie ein Rechteck, eine Ellipse oder einen
Kreis direkt ausgefüllt zeichnen wollen, dann können
Sie sich der_RectFill, AreaEllipse, oder AreaCircle-
Prozeduren bedienen. RectFil? kann auch ohne einen-
TempRas gebraucht werden und erzeugt, wie der Name
schon sagt, ein gefülltes Rechteck. Ein Rechteck,
dessen linke obere Ecke bei (10,10) und rechte
untere bei (110,110) liegen (Daraus ergibt sich Höhe
=Breite = 100 Pixel), kann in dem durch Rast bestimm-
ten Rastport so gezeichnet werden:

RectFill(Rast,10,10,110,110);

Für AreaEllipse und AreaCircle müssen wie im
vorigen Abschnitt beschrieben, ein TempRas und Area-
Info initialisiert werden. Die Anzahl der Ecken ist
dabei auf 4 zu setzen. Um eine Ellipse mit den Radien
90 (x-Radius) und 50 (y-Radius) und einen Kreis mit
dem Radius 110 um den Punkt (320, 100) zu erzeugen
muB man, nachdem die ensprechenden Vorbereitungen

95

Kapitel 5 Polygone, Flaechen, Fuellmuster

(TempRas, AreaInfo) getroffen wurden, die beiden Pro-
zeduren so aufrufen:

AreaE lTipse(Rast,320,100,90,50) ;<<Return>>AreaCirc le
(Rast, 320,100,110);

AreaCircle ist in graphics/gfxmacros definiert.

Die schon im Zusammenhang mit Flood erwähnte Area-
Outline Farbe bietet zusätzlich noch die Möglichkeit,
gefüllte Figuren mit einer Umrandung zu zeichnen.
Dazu müssen Sie vor dem Aufruf der gewünschten
Zeichenroutine mit Hilfe von $SetOPen eine Farbe aus-
wählen. Gleichzeitig wird dabei ein Flag im RastPort
gesetzt, der dem System mitteilt, daß alle Flächen
umrandet werden sollen. Um diesen Flag wieder zu
löschen, können Sie das BNDRYOFF-Macro benutzen, das
in graphics/gfxmacros definiert ist. Der Aufruf sieht
so aus:

BNDRYOFF (RAST);

Die Anwendung der soeben besprochenen Prozeduren
können Sie sich an Hand des folgenden Programms
klarmachen. Es eröffnet ein Fenster und zeichnet dort
zwei sich überlappende Ellipsen. Danach wird die
Area-Qutline Farbe auf die Farbe der zweiten Ellipse
gesetzt, und diese im Outline-Modus gefüllt. Obwohl
sich die Ellipsen überlappen, wird die gesamte rechte
Ellipse gefüllt, da das Füllen erst dort aufhört, wo
sich die Area-Outline Farbe befindet. Würden Sie hier
den color-Modus verwenden, dann würde die Ellipse nur
bis zur Uber lappung gefüllt werden. Als nächstes wird
mit ARectFill ein Viereck gezeichnet und dann mit
Hilfe der in AreaExtras.h definierten NewArea-Proze-

96

Kapitel 5 Polygone, Flaechen, Fuellmuster

dur ein TempRas und ein Arealnfo für die nachfolgen-
den Flood und AreaEllipse Aufruf bereitgestellt.
Beachten Sie um wieviel schneller das Füllen mit
Flood nun geht. Zum Abschluß werden mit CloseArea der
TempRas und AreaInfo wieder geschlossen.

Programm 5.3 Fill

#include "Display.h"
#include "AreaExtras.h"
#include "exec/types.h"
#include "intuition/intuition.h"
#include "graphics/gfx.h"
#include "graphics/gfxmacros.h"

struct Window *Window;
struct RastPort *Rast;
struct Remember *Remember ;

main ()

USHORT code;
ULONG Class;

OpenIntui();
OpenGfx ();
/* Fenster mit Close- und Depth Gadget und IDCHP-

Port öffnen. */
Window = (struct Window *)MakeWindow(0,0,640,250,0,

0,"Fi1T",SMART REFRESH}
WINDOWCLOSE /WINDOWDEPTH, CLOSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim Öffnen. */
exit(FALSE); |

Rast = Window->RPort; /* Adresse des Rastports. */

97

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* Zwei überschneidende Ellipsen mit verschiedenen
Farben zeichnen. */

SetAPen(Rast,1);
DrawE TTipse(Rast,220,50,150,40);
SetAPen(Rast,2); |

/* Neue Vordergrundfarbe ! */
DrawE lTipse(Rast,440,50,150,40);
/* Zweite Ellipse im Füllmodus 0 Füllen. */
SetOPen(Rast,2);

/* Neues Area Outline Pen und */
SetAPen(Rast,2); :

/* Vordergrundfarbe. +/
Flood(Rast,0,440,50);

/* Ellipse 2 im Modus 0 füllen */

/* Ein gefülltes Rechteck mit Farbe 1 und Umran-
dung 2 Zeichnen */
SetAPen(Rast,1);
RectFill(Rast,100,110,540,170);

/* TempRas und AreaInfo initialiseren */
NewArea(Rast,4,&Remember);

/* Ellipse 1 im Modus 1 füllen */
F lood(Rast,1,120,50);

/* Eine Gefüllte Ellipse mit farbe 2 Zeichnen. */
SetAPen(Rast,2);
AreaE I] lipse(Rast, 320,200,150,40);
Class = AreaEnd(Rast);

/* Auf Close Gadget warten und Fenster schlieBen */
Class = WaitEvent(Window,&code);
/* Auf Close Gadget warten */

CloseArea(Rast,Remember);
/* Speicher deallozieren */
CloseWindow(Window);

}

98

Kapitel 5 Polygone, Flaechen, Fuellmuster

Falls Sie sich die in AreaExtras definierte Proze-
dur PolyFilT angesehen haben, werden Sie gemerkt
haben, daß das Zeichnen von gefüllten Vielecken nicht
ganz so einfach vor sich geht, wie es bei normalen
Polygonen der Fall ist. Zunächst müssen, wie auch bei
den Kreisen und Ellipsen, TempRas und AreaInfo ent-
sprechend der Größe und Eckenzahl des Polygons ini-
tialisiert werden. Als nächstes muß mit AreaMove der
Anfangspunkt des Polygons bestimmt werden. Nun können
z.B. in einer for-Schleife die erwünschten Eckkoordi-
naten mit AreaDraw dem System mitgeteilt werden, und
schließlich das Polygon mit AreaEnd ausgegeben wer-
den. An Areallove und AreaDraw wird derZeiger auf den
Rastport und das Koordinatenpaar übergeben, an
AreaEnd nur der Zeiger auf den Rastport. So kann ein
gefülltes Dreieck mit den Eckkoordinaten (100,10),
(200,100), (0,200) nach diesem Verfahren, wie folgt
gezeichnet werden.

Fig 5.1 Zeichnen eines gefüllten Polygons.

NewArea (Rast, 3,&Remember);
AreaMove(Rast,100,10);

AreaDraw(Rast,100,10);
AreaDraw(Rast,200,100);
AreaDrwa(Rast,0,200);

AreaEnd(Rast);

99

Kapitel 5 Polygone, Flaechen, Fuellmuster

Einfachheitshalber haben wir hier zur Initialisie-
rung des TempRas und Arealnfo die Prozedur WNewArea
benutzt. Wesentlich einfacher können Sie ein gefüll-
tes Vieleck unter Anwendung der schon erwähnten
PolyFill-Prozedur erzeugen, die wir für Sie in
AreaExtras vereinbart haben. Diese übernimmt nicht
nur die AreaMove, AreaDraw und AreaEnd Aufrufe,
sondern auch die Allozierung und Deallozierung des
TempRas und des Arealnfo.

Als Eingabe braucht PolyFilT wie auch die bekannte
Systemroutine PolyDraw nur die Anzahl der Ecken, und
die Adressen des Rastports und eines Arrays, in dem
die Koordinaten der Ecken gespeichert sind. Um unser
Dreieck auf diese Weise zu zeichnen, müssen Sie also
folgendes tun:

(1) Ein Koordinatenarray so vereinbaren:

short Dreieck [] = {100,10, 200,100, 0,200};

(2) PolyFill so aufrufen:

PolyFill(Rast,&Dreieck[0],3);

Ein weiteres Beispiel für die Anwendug dieser
Routine finden Sie im letzen Beispielprogramm dieses
Kapitels.

100

Kapitel 5 Polygone, Flaechen, Fuelimuster

DRRIXZERKEXZERERKERZERREEERENZERKERDERKEREEZEEKZERTERZZEREEN)
ECP r rere ee eee e eee eee ee Se eee ee Cee eT eee eee eee eee
CRETE HCOOH LE EEE EEE CHADS H EOE ESSE OR EOE EOR AAD

eee ee esaeoaraes
LD ORR HH MOCO T REED IHRE CODED SE SES FOSS R REEDED LED DESD ERED DR DED
Lee eRe HH Oe Ree H EHH HEE HEHEHE ROSH PERE PEER DEHDEH EOE DEDEDE

u I Sas eee ee ee ee ee

TROP HOO OH OOP PRETO HEED SDR OREO HERONS PD OE MEOH OP EGET OER CEED
Deren eee eee ee ee ee ee ee ee oe ey
Levee er PHT OED EPH EHO O RESO SHEE DEH OD DEE EEER HEED COR ENE HO ERED EES
LD Per mr OPO OE OEE HOHE ERE H ODE PHO REED ODD EH HE EEO E EOE OH EONS HEE
Loe oer mer HHO EEO EHH HH PEERED ERE E RO ROP OED RAPER HEHE P OEE OEE DOS
TERTEEERESTEIRERBEHTEENZENSESESSESHESSEESERRERRESSBENESEENERS

Eine Fläche kann nicht nur mit einer Farbe, sondern
auch mit einem Muster gefüllt werden. Das Muster muß
eine Breite von 16 Punkten und die Höhe einer
Zweierpotenz also 1,2,4,8....usw. haben. Die Bildda-
ten für das Muster werden, wie auch bei einem Image
(siehe Kapitel 3) der Tiefe 1, in einem Array von
USHORT Zahlen gespeichert, von denen jeder einer
Bildzeile entspricht. In diesen Zahlen ist dann jedes
Bit stellvertretend für einen Punkt. Ist das Bit
gesetzt, so erscheint dieser Punkt in dem Muster, ist
es gelöscht, dann erscheint er nicht. Ein horizonta-
les Streifenmuster, das abwechselnd aus einer Zeile
gesetzter und nicht gesetzter Punkte besteht, hat
somit diese Form:

1111111111111111
0000000000000000

und muß wie folgt definiert werden:

USHORT Muster [] = {Oxffff,
| 0x0000

};

Ein so erzeugtes Muster können Sie mittels SetAfPen
einem Rastport zuordnen. Dazu müssen Sie diese Rou-
tine wie folgt Aufrufen:

SetAfPen(Rast, &Muster, Rows);

101

Kapitel5 Polygone, Flaechen, Fuellmuster

Hier bedeutet Rast einen Zeiger auf einen Rastport,
Muster das Array, in dem die Bilddaten gespeichert
sind, und Rows eine Zweierpotenz, die die Anzahl der
Zeilen des Musters bestimmt (in unserem Beispiel
müßte hier eine 1 stehen, denn 2 hoch 1 = 2).
Nach diesem Aufruf wird beim Füllen bis auf weiteres
dieses Muster verwendet, d.h. es werden nur die in
dem Muster gesetzten Punkte in die Fläche hineinge-
zeichnet (Zumindest wenn Sie als Zeichenmodus JAMI
benutzen). Wichtig ist, daß bei der Verwendung von
Mustern alle Füllroutinen, also auch RectFill und
Flood auch im outline-Modus einen TempRas benötigen!

Um das Füllmuster auszuschalten, rufen Sie SetAfPen
mit NULL als Zeiger auf Bilddaten und 00 als Anzahl
der Zeilen auf.

Ein Beispiel für die Verwendung von Füllmustern
finden Sie in dem Programm Fill am Ende dieses
Kapitels.

VUCTUPUETEUTS VCC UUOCTEO VTE V EET
CRO e ee err eee SIE rer
Pee cee eee eee ee eee eee ee ee 2)

Cem neem meee resaresereaerernoneers
Seem ee emer ee Tiere

eee rma mene teense ssseesesesenecere .
eRe eee eee eee eee eee TR

.....

6 Farbmuster eee ee eee
See D eee w eres reer neraaHeversereesesees
BO eee mame verter ern“

Seema e ranma ruse reer ereneesesesetesnese
Perens neerrecreeeorere

Die Farbmuster sind eine Variante der normalen
Füllmuster, die es möglich macht, Flächen auch mehr-
farbig zu füllen. Dabei geben Sie für jede Bitplane
ihrer Anzeige ein eigenes Muster an. Beim Füllen wird
dann jede Bitplane mit dem zu Ihr gehörenden Muster
gefüllt. Dadurch können Sie für jeden Punkt ihres
Musters eine eigene Farbe angeben. Zur Verdeutlichung
stellen Sie sich einmal vor, daß Sie für einen aus
zwei Bitplanes bestehenden Screen folgendes Muster
definieren:

102

Kapitel 5 Polygone, Flaechen, Fuellmuster

Bitplane 0

1111111111111111
1111111111111111
0000000000000000
0000000000000000

Bitplane 1

0000000000000000
1111111111111111
1111111111111111
0000000000000000

Da die erste Zeile des Musters nur in der Bitplane
Einsen hat, werden alle Punkte in dieser Zeile die
Farbe binär 01 = dezimal 1 haben. In der zweiten
Zeile gibt es sowohl in der Bitplane 0 als auch in
der Bitplane 1 Einsen, so daß diese Zeile die. Farbe
binär 11 = dezimal 3 haben wird. Analog werden die
vorletzte Zeile, wo sich alle Einsen in der Bitplane
1 befinden die Farbe binär 10 = dezimal 2, und die
letzte, die in beiden Bitplanes nur Nullen hat, die
Farbe 0 haben. Man könnte natürlich auch durch
entsprechendes Abwechseln von Nullen und Einsen alle
vier Farben innerhalb einer Zeile mischen. Die Bild-
daten des Farbmusters werden, wie es auch bei den
normalen Mustern der Fall war, in einem USHORT Array
gespeichert, wobei die Daten für die einzelnen Bit-
planes einfach hintereinander angeordnet sind.

Die Bildaten zu dem soebenen besprochenen Farbmu-
ster sehen demnach folgendermaßen aus:

103

Kapitel 5 Polygone, Flaechen, Fuellmuster

USHORT Farbmuster [] = {Oxffff, /* Bitplane 0 */
Oxf FFF,
0x0000,
0x0000,

0x0000, /* Bitplane 1 */
Oxf fff,
Oxf FFF,
0x0000 |

Auch die Zuordnung des Muster an einen Rastport
sieht hier fast genauso wie bei den Fiillmustern aus.
Der einzige Unterschied besteht darin, daß die
Zweierpotenz, die die Anzahl der Zeilen bestimmt, als
eine negative Zahl angegeben wird. Um unser Beispiel-
muster einem Rastport mit der Adresse Rast zuzuord-
nen, müßte man also folgendermaßen vorgehen:

SetAfPen(Rast, &Farbmuster, -2);

Zum Abschluß des Kapitels noch ein Beipielprogramm,
daß die Anwendung der PolyFill-Routine und der Füll-
und Farbmuster demonstriert. Es definiert ein Füll-
und ein Farbmuster, und zeichnet dann mit jedem eine
gefüllte Raute.

Programm 5.4 Muster

#include "Display.h"
#include "Areakxtras.h"
#include “graphi cs/gfxmacros.h"

struct Window *Window;
struct RastPort *Rast;

104

Kapitel 5 Polygone, Flaechen, Fuellmuster

short Polyl [] = {320, 15,
630, 125,
320, 245,
10, 125
7

short Poly2 [] = {320, 50,
520, 125,
320, 205,
120, 125

hi

USHORT Pattern [] = {Oxffff,
Oxfoof,
Oxfoof,
Oxffff

hi

USHORT ColPattern [] = { Oxffff,
| Oxfoof,

OxfO0F,
Oxf FFF,
Oxf FFF,
Ox0ffO,
Ox0ffO,
Oxf ffF

hi

main ()

USHORT code;
ULONG Class;

OpenIntui();
OpenGfx ();

105

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* Fenster mit Close- und Depth-Gadget und IDCHP-
Port öffnen. */
Window = (struct Window *)MakeWindow(0,0,640,250,0,

0,"Fill",SMART_ REFRESH;
WINDOWCLOSE /WINDOWDEPTH, CLOSEWINDOW, NULL Ji
if(Window == NULL) /* Fehler beim Öffnen. */
exit(FALSE);

Rast = Window->RPort; /* Adresse des Rastports. */

/* Flähenmuster zum Füllen einstellen, */
SetAfPt(Rast,&Pattern[0],2);

/* und ein gefülltes Polygon zeichnen. */
PolyFill(Rast, &Poly1[0],4);

/* Farbmuster zum Füllen einstellen, */
SetAfPt(Rast,&ColPattern[0],-2);

/* und ein gefülltes Polygon zeichnen. */
PolyFill(Rast,&Poly2[0],4);

/* Auf Close-Gadget warten und Fenster schließen. */
Class = WaitEvent(Window,&code);

/* Auf Close Gadget warten */
CloseWindow(Window);

106

Kapitel 6 Prozeduren und Tricks

Kapitel 6

Nützliche Prozeduren und Tricks

107

Kapitel 6 Prozeduren und Tricks

Bis auf die Textausgabe und die Handhabung der
Fonts, sollten Sie die Grundlagen der Grafikprogram-
mierung auf dem Amiga beherrschen, bevor Sie in die-
sem Kapitel weiter vordringen. In diesem Kapitel wer-
den wir noch ein paar Dinge erwähnen, die in keines
der vorangegegangenen Kapitel so richtig passen, ob-
wohl diese für die Grundlegende Grafikprogrammierung
durchaus nützlich sind. Auf die etwas komplexeren
Themen wie Blitter, eigene Viewports etc. werden wir
uns dann im nächsten Kapitel stürzen. Einige dieser
Themen, wie z.B. die Forbid und Permit Routinen, ha-
ben zwar vordergründlich nichts mit der Grafik-
Library zu tun, der erfahrene Programmierer weiß
aber, daß er sie früher oder später auch bei der
Grafikprogrammierung benötigen wird.

Diese beiden globalen Strukturen werden beim Öffnen
der entsprechenden Library initialisiert, wobei die
OpenLibrary Prozedur jeweils die Adresse als Ergebnis
liefert. Falls Sie zum Öffnen der Library die in Ka-
pitel 2 vorgestellte Prozedur OpenIntui bzw. OpenGfx
benutzen, dann steht Ihnen diese Adresse in der glo-
balen GfxBase- bzw. IntuitionBase-Variable direkt zur
Verfügung. In der GfxBase-Struktur finden Sie unter
anderem die Adresse des aktiven Viewports (im Feld
ActiveView-ViewPort), die Liste der verfügbaren Fonts
(in TextFonts), die Interrupts für Blitter und Timer
(in Timsrv bzw. Bltsrv) und die aktuellen Display-
Flags (in DisplayFlags).

108

Kapitel 6 Prozeduren und Tricks

Um beispielsweise die Adresse des momentan aktiven
Viewports in View einzulesen, müssen Sie also folgen-
dermaßen vorgehen:

View = GfxBase->ActiveView->ViewPort;

Die IntuitionBase-Struktur enthält noch um einiges
mehr an wichtigen Informationen. Dazu gehören z.B.die
Adressen des aktiven Screens und des aktiven Fensters
(in ActiveScreen bzw. ActiveWindow) ‚ein Zeiger auf die
Preferences-Struktur (in Preferences), die Adressen
der Image-Strukturen einiger Systemimages (in Check-
Image bzw. Amigalcon) und die Zeiger auf die System-
gadgets (in SysGadgets).

Besonderes niitzlich ist auch die Adresse des ersten
Screens der Intuition Screenliste, die Sie in First-
Screen finden. Durch untersuchen des WNextScreen-Fel-
des dieser Screen-Struktur können Sie die Adresse des
nächsten ermitteln, und von dort auf die gleiche Wei-
se die des übernächsten usw., so daß Sie die Mög-
lichkeit haben, auf alle Screens zuzugreifen.

In der Screen-Struktur befindet sich übrigens ein
Feld namens FirstWindow, das einen Zeiger auf das
erste Fenster dieses Screens beinhaltet. Da jedes
Fenster in NextWindow die Adresse des nächsten bein-
haltet, stehen Ihnen so auch alle Fenster zur Manipu-
lation offen!

109

Kapitel6 — Prozeduren und Tricks

seat S hof po hun }e| [fun tem
Y Besen 7 euer} > fun Ho | | tom
+
ma

n
Secon atom © fee | [hm ee

y |

NULL

Bild 6.1 - Die Verknüpfung von Screens und Windows

Eine vollständige Behandlung der GfxBase-und Intui-
tionBase-Strukturen ist hier weder möglich noch not-
wendig.

Strukturen in den entprechenden include-Files
(graphics/gfxbase., bzw. intuition/intuitionbase.)
genauer ansehen. Wichtig ist, daß alle Felder zwar
bedenkenlos gelesen werden können, jedoch nur mit
duBerster Vorsicht verändert werden dürfen.

Ein Beispiel für einen sinnvollen Gebrauch der In-
tuitionBase-Struktur finden Sie im nächsten Beispiel-
programm.

110

Kapitel 6 | | Prozeduren und Tricks

Oe TRE KOO E CECE ET EEE TEILE TEETER EES
RITTER EEE TFT TEE ORO ED
er HET HE TH HEE HEHEHE OE DESHDEDEES OES D DESERT EE HERE DES SEREEPHOF PEDO EO OTTTTT EU T TE TTETTTE
OPH e HHO OE HEH HRD DHE R REED EEO HEED EH DESEO TEED OSE E HEHE OO SEES EDO POOH POOP OEOOCED EH DT I ENTE
Pee Terr TOO EHH HHH EH REE FEED ORE HD EHH BERS HORE EE DED HEHEHE OE DEO EEE EEE VETOED EO OE RET ED DONE
Lb emer Perv e OORT HHH HE EH HERE ERED OHO PEE ERED REDE EREREE HOOF EHH EEHE HELO REDE HOHE OO SEED
Seer Veer Seer eee 2 SECC e rer errrry Tiree ee eee errr Creer ere “Serre ee TI eee es

POP CH DOO RODE THEE RTO HERE OO EO DERE PHP RE DETER EEO HEED DEED
bh POOH HHO HT ORE TOD RHE HELO HERE EDEH EOE EEE DED UTH OE EOOESO HED EO DELETE ES
bp CORO HH Teo E HH HH ERE HE ROE EHO DEH REREE HERR URES EESO SEE EE EHR D EET OREN OE
RPO COOH ROHR EH HERA E EERE HEE EHO OEE HEED EERO EEE TE EEO EOD
PC OOO HORM OP Dre rH HEHEHE EOHEH ED EO THERE EEE HORE EEHO EOF TORE ORO LEED EEE ED
REVETACARTRALAETALAATAT ITVS STE SSER ESE RERE EERE SAREE ERERERURRE TEER ARREST ENE)

Scrollen bedeutet nichts anderes, als ein verschie-
ben von Auschnitten eines Bildes, und ist jedem von
Ihnen von Spielprogrammen sicherlich bekannt. Die
Graphics-Library enthält eine Prozedur, mit deren
Hilfe ein Rechteck innerhalb eines Rastports um einen
beliebigen Betrag in x- oder y-Richtung gescrollt
werden kann.

Es handelt sich dabei um die Routine ScrollRaster,
die als Eingabe die Rastportadresse (Rast), den zu
scrollenden x- und y-Betrag (dx,dy) in Pixel und die
Position und Größe des Rechtecks braucht (x1, yl für
die rechte obere Ecke, x2, y2 für die linke untere
Ecke). Der Aufruf sieht dann so aus:

ScrollRaster(Rast ,dx,dy,x1,y1,x2,y2);

Um also ein Quadrat mit der Seitenlänge 50 Pixel,
dessen linke obere Ecke bei (10,20) liegt,um 30 Pixel
nach rechts und 15 nach unten zu Scrollen, müssen Sie
Scroll Rast wie Folgt benutzen: |

ScrollRast(Rast,-30,-15,10,20,60,70);

Nach diesem Aufruf wird der gewünschte Bereich
blitzschnell um den angegebenen Betrag bewegt und der
freigewordene Platz mit der aktuellen Hintergrundfar-
be gefüllt. Um den oft erwünschten Effekt des langsa-
men Scrollens zu erreichen, müssen Sie statt einmal

111

Kapitel 6 Prozeduren und Tricks

um einen großen Betrag, mehrmals um einen kleinen
Scrollen, wobei gegebenfalls zwischen den einzelnen
Scrollschritten eine Warteschleife anzubringen ist.
Eine weitere oft erwünschte Variante des Scrollens
ist das Rollen, d.h. daß das, was auf der einen Seite
weggescrollt wird, auf der anderen wieder erscheint.
Dies kann einfach dadurch erreicht werden, daß man
den Bereich der "verschwinden" wird kopiert, bevor
man anfängt zu Scrollen, und nach dem Scrollen auf
der anderen Seite wieder einsetzt. Obwohl Kopierrou-
tinen zu dem Thema Blitter gehören, das erst später
behandelt wird, wollen wir hier wieder mal ein biß-
chen vorgreifen und eine solche Prozedur vorstellen.
Sie heißt C7ipBlit und erlaubt das Kopieren von Aus-
schnitten eines Rastports.

Das Aufrufformat hat die folgende Form:

ClipBlit(From,x1,y1,To,x2,y2,w,h,mask);

From und To sind hier die Zeiger auf den Quell-bzw.
Zielrastport, x1 und yl geben die Koordinaten an, an
den sich die linke obere Ecke des zu kopierenden Be-
reiches befindet. Die Stelle, an die der Ausschnitt
im To Rastport kopiert wird, ist durch x2 und y2
(wieder die Koordinaten der linken oberen Ecke), sei-
ne Größe durch # und h (Breite und Höhe), bestimmt.
Die Bedeutung des letzten Paramter werden wir später
im Zusammnenhang mit weiteren Blitterroutinen kennen-
lernen. Falls Sie mit dieser Routine nicht zwischen
zwei verschiedenen Rastports, sondern innerhalb eines
und desselben kopieren wollen, dann weisen Sie
einfach From und To den gleichen Wert zu. Genau dies
tun wir auch in dem hier abgedruckten Beispielpro-
gramm, mit dem sich der gesamte momentan aktiver
Screen einmal "herumrollt". Dazu wird 639 mal die

112

Kapitel 6 Prozeduren und Tricks

vorletzte Spalte der Anzeige in die erste kopiert und
dann der ganze Rastport des Screens um ein Pixel nach
rechts gescrollt. Dabei geht leider das, was sich vor
dem Starten des Programms in der ersten Spalte be-
fand, verloren, wir kommen dafür aber ohne einen zu-
sätzlichen Rastport als Zwischenspeicher aus
(Das korrekte Verfahren sähe so aus: die vorletzte
Spalte vor jedem Scrollschritt in einen anderen Rast-
port kopieren, und erst danach in die erste Spalte
einsetzten!). |

Um die Adresse des Rastports des aktiven Screens
zu ermitteln, wird wie im vorigen Abschnitt beschrie-
ben, auf die IntuitionBase-Struktur zugegeriffen.

Programm 6.1 ScreenWrap

#include "exec/types.h"
#include "intuition/intuition.h"
#include "intuition/intuitionbase.h"
#include "graphics/gfx.h"
#include "Display.h"
#include "stdio.h"

struct Screen *Screen;
struct RastPort *Rast;

main ()

SHORT 7;

OpenIntui ();
OpenGfx ();

113

Kapitel6 .-—s 7 Prozeduren und Tricks

/* Adresse des aktiven Screens und dessen Rastports
u | ermitteln */

IntuitionBase->ActiveScreen;
&((*Screen).RastPort);

Screen
Rast.

/* Und den aktiven Screen ein mal herumrscrollen */
for(i = 1; i < 640; i++) |
{
ClipBlit(Rast,639,1,Rast,1,1,1,255,0x00c0);
/* Eine Spalte kopieren */ |
ScrollRaster(Rast,-1,0,1,1,639,255);
/* Um eine Spalte Scrollen */ |

J

Oft, wie z.B. bei Malprogrammen, wird der Benutzer
Ihres Programms irgend etwas mit Hilfe des Mauszei-
gers eingeben müssen. Dabei wäre es in vielen Fällen
schön, wenn der Mauspfeil eine Form hätte, die dem
Zweck der Eingabe verdeutlicht, er also etwa wie ein
Zeichenstift oder Pinsel aussehen würde. Der Maus-
zeiger darf, ähnlich wie ein Image (siehe Kapitel 3)
beliebig hoch, aber nur 16 Pixel breit sein. Da der
Zeiger ein Sprite ist, besteht er immer aus zwei Bit-
planes, also bis zu vier Farben. Wichtig ist, daß die
Farbe Null hier nicht dem Farbregister Null des
Screens, sondern dem Screenfarbregister 32 enspricht
(dies ist das Spritefarbregister Null). Ein wesent-
licher Unterschied zur Definition von Imagedaten be-
steht auch darin, daß die Daten der beiden Bitplanes
nicht in Blöcken hintereinander, sondern abwechse Ind

114

Kapitel6 — | Prozeduren und Tricks

eine Zeile (als ein Wort= eine USHORT Zahl) der einen
und der anderen, gespeichert werden. Ein zwei Zeilen
hoher Zeiger, der in der Bitplane 0 nur Einsen (ge-
setzte Punkte) und in der Biplane 1 nur Nullen (nicht
gesetzte Punkte), also die Spritefarbe 1 hat, müßte
demnach solche Bilddaten haben: |

Abb 6.1 Beispiel für Mauszeigerdaten

INT data[] = {Oxffff, /* Bitplane 0 Zeile 1 */
0x0000, /* Bitplane 1 Zeile 1 */
Oxffff, /* Bitplane 0 Zeile 2 */
0x0000 /* Bitplane 1 Zeile 2 */
’

Wie auch bei einem Image, müssen sich diese Daten
im CHIP-RAM befinden. Wie Sie den notwendigen CHIP-
Speicher allozieren, und die Daten dorthin kopieren
können, haben wir bereits in Kapitel 3 gezeigt.

Wenn Sie die Daten von unserem Beispiel in einen
CHIP-RAM Bereich kopiert haben, dessen Adresse in Da-
ta steht, dann durch diesen SetPointer Aufruf:

SetPointer(Window,Data,16,2,8,1);

der neue Zeiger wird dem durch Window gegebenen Fen-
ster zugewiesen (Window ist ein Zeiger auf die Win-
dow-Struktur). Um die Zuweisung wieder rückgängig zu
machen, also um den normalen Mauspfeil wieder zu be-
kommen, können Sie ClearPointer mit dem Zeiger auf
das Fenster so benutzen:

ClearPointer(Window);

115

Kapitel 6 Prozeduren und Tricks ©

Wie die Erzeugung eines eigenen Mauszeigers in der
Praxis aussieht, können Sie auch an Hand des nachfol-
genden Beispielprogramms sehen. In diesem Programm
wird auch eine weitere "lustige" Routine verwendet.
Gemeint ist die Prozedur DisplayBeep, die Aufblitzen~
des gesamten Screens verursacht. Sie wird z.B. dazu
verwendet die Aufmerksamkeit des Benutzer auf das
Auftreten eines Fehlers, oder eines anderen wichtigen
Ereignisses zu lenken. Falls Sie der Routine als
Screenzeiger NULL übergeben, werden alle Screens auf-
blitzen.

Programm 6.2 Pointer.c

#include "intuition/intuition.h"
#include "exec/memory.h"
struct Window *Window;

USHORT Pointer[] = {0x0000,0x0000,
0x600c,0x8001, /* 2011000000001102 */
0x0c30,0x8001, /* 2000110000110002 */

0x03c0,0x8001, /* 2000001111000002 */
0x03c0,0x8001, /* 2000001111000002 */
0x0c30,0x8001, /* 2000110000110002 */ ©
0x600c,0x8001, /* 2011000000001102 */
0xc003,0xffff, /* 3322222222222233 */

[4

main ()

SHORT i;
USHORT code;
ULONG Class;
APTR PData;

116

Kapitel 6 Prozeduren und Tricks

OpenIntui();
* Fenster mit Close- und Depth Gadget und IDCHP-

Port öffnen. */
Window = (struct Window *)MakeWindow(0,0,640,100,

0,0,"Pointer", SHART REFRESH!
WINDOWCL OSE, CL OSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim Öffnen. */
exit(FALSE);

/* CHIP-Memory ftir Pointerdaten allozieren */
PDa ta = AllocHem(sizeof(Pointer),

MEMF CHIP ! MEMF _ PUBLIC);
if (PData == NULL) /* Fehler beim Allozieren */
exit(FALSE); Ä

/* und Daten dorthin kopieren. */
CopyMem(&Pointer[0],PData,sizeof(Pointer));

/* Und den Pointer dem Fenster zuweisen */
SetPointer(Window, PData,8,16,-8,-4);

/* Screen blinken lassen */
Class_= WaitEvent (Window, &code);
_ /* Auf Close Gadget Warten. */

/* Speicher für Pointerdaten wieder freigeben und
alles schließen. */

C loseWindow(Window) ;
FreeMem(PData, sizeof(Pointer));

117

Kapitel6 Prozeduren und Tricks

Oe eo emo ee mee HOH RH HH OTA H EEE EE HEHE SEE CREO OOOH ETEEETEOHEEREO RHEE CHEESE HEHE ED EREE HH EH ER EOS
Ree Rae Oe ee rea H EET ONE H EEO EHH EHP EEE EEE ODEO EEE HERE THEM EHH EHTS OHHH EH HEHE COOH EER ELLE
Re eee eee eee em eee ed OHH OH HOES DED STEHT HH OO TEED OEE LOHRES EEE EEEHO EHH COTE DED E FEE REDO E ESS
SUPERP eee ee eee eee eee eee ee eee eee ee eee eee eee eee ee eee eee eee eee eee eee ee)
Pee CORO eee eae E HEMET ESE EED OTE R REE HEEE EEO HO EUTIN
Sree cee eee eee ee eee ee ee ee ee eee eee eee eee eee eee ee eee eee eee eee ee eee eee ZI
Serer Lae” Chee eReee \EeEeP CF DEREN SEI

DT IT eee eee ee ERDE O UOTE TE OD RT TUT TE
De ee a ee ee er Se re ee er er er Er re rer er ee re ee
DUOC ET eee Te HEHEHE E EHO O RHEE DH ERO R DD ER OSES ESED ECE ER ERO OH ED FED EEE TEE HED ED DOOD
OOOOH EEE EERE HEE RE HSESEEE HD ETH THERE EEO EP ER DEDEDE SESE H SEH OED HES O PRED DIR DET EIER ED SOD EH EET OD
BOM Came EEE REET ESET HEE REO EM EHF DE HOPE ERS E RE EO TEESE EEO EED FOE HSE OHH SOD DE IT EDER EEE CEH EDEL OED
PREVEMREERERERERRE TEESE AAA EREEREEE RETEST AS SERRE RE RAE EE SEER ERR ERR Eee eee eee

Wie jeder Amiga-Benutzer wahrscheinlich weiß, kann
die Darstellung von komplexen Grafiken auch am Amiga
sehr lange dauern. Es ist daher oft erwünscht, für
das eigene Programm, das eine solche Grafik erzeugt,
möglichst viel Rechenzeit zu bekommen. Dies bedeutet,
daß man diese Zeit anderen parallel laufenden Pro-
grammen "klaut". Wir wollen hier ein paar Routinen
vorstellen, mit deren Hilfe es möglich ist, den An-
teil der Rechenzeit, die Ihrem Programm zur Verfügung
steht, zu vergrößern, bzw. im Extremfall alles andere
(inklusive Maus und Tastaturabfrage !) abzuschalten,
und somit die gesamte beträchtliche Rechenleistung
des Amiga's im Dienste ihres Programms zu stellen. An
dieser Stelle noch eine Warnung: Das Multitasking ist
ein sehr empfindliches System, daß bei unüberlegten
Manipulationen sehr schnell und oft auf sehr merkwür-
dige Art und Weise abstürzt (so daß nicht mal ein Re-
set hilft, und nur der Griff zum Powerschalter übrig-
bleibt). |

Die mildeste Art den Rechenzeitanteil eines Pro-
gramms der Prozedur SetTaskPri mit dem Zeiger auf
die Task (Task) und einer Zahl zwischen -127 und 127,
die die gewünschte Priorität angibt (Pri), so aufru-
fen: |

SetTaskPri(Task,Pri);

Der Zeiger auf den eigenen Task kann so mit der
FindTask-Routine ermittelt werden:

Task = FindTask(NULL);

118

Kapitel6 Prozeduren und Tricks

Eine normale Task hat eine Priorität von -20, sehr
wichtige Systemtasks von bis zu +20. Sollten Sie die
Priorität ihres Programms viel größer als die +20
machen, dann können Sie gleich alle anderen Tasks ab-
schalten, weil sowieso nichts mehr läuft, sollten Sie
sie dafür viel kleiner als die -20 machen, dann kön-
nen Sie Ihr Programm genausogut abschalten, weil es
sowieso keine Rechenzeit mehr abbekommt.

Wenn Sie sich dafür entschieden haben, alle anderen
Tasks abzuschalten, dann können Sie die parameter lose
Forbid-Prozedur aufrufen. Mit Hilfe der ebenso para-
meterlosen Permit- Routine können Sie diese wieder
einschalten. Beachten Sie, daß es sehr unhöflich und
darüberhinaus ein sehr schlechter Programierstil ist,
über eine längere Zeit alle anderen Programme einfach
auszuschalten!

Alle hier besprochenen Prozeduren sind in exec/
tasks. zu finden.

119

Kapitel 6 Prozeduren und Tricks

120

Kapitel 7 Textdarstellung

Kapitel 7

121

Kapitel 7 Textdarstellung

Auf Grund der Tatsache, daß der Amiga keinen ge-
trennten Textbildschirm besitzt, sondern den Text als
Grafik darstellt, kann die Textausgabe extrem flexi-
bel gestaltet werden. So kann der Text nicht nur Zei-
len- bzw. Spaltenweise, sondern Pixelweise positio-
niert werden. Auch die Anzahl der möglichen Schrift-
arten ist praktisch unbegrenzt. Diese können sich
nicht nur in der Form, sondern auch in der Höhe,
Breite, sowie im Zeichenabstand unterscheiden. Wie es
aber bei leistungsfähigen Systemen ist, ist es lei-
der nicht ganz einfach, die angebotenen Möglichkeiten
auszuschöpfen. Aus diesem Grund ist auch dieses Kapi-
tel ein bißchen länger geraten. Wir versuchen hier,
Ihnen an Hand einfacher Beispiele zu zeigen, was und
wie es auf dem Amiga möglich ist.

Als erstes wollen wir uns mit der Text-Routine be-
fassen, die die Ausgabe einer beliebigen Zeichenkette
in einem Rastport ermöglicht. Beim Aufruf wird ihr
ein Zeiger auf den Rastport in dem der Text erschei-
nen soll, die Adresse der Zeichenkette und die Anzahl
der auszugebenen Zeichen übergeben. Sie können also
z.B. den Text "Hallo" wie folgt in den durch Rast be-
stimmten Rastport ausgeben:

Text(Rast, "Hallo" ,5);

122

Kapitel 7 Textdarstellung

Um nur den Text "Hal", also die drei ersten Zeichen
der Zeichenkette auszugeben, müßten Sie eine 3 statt
der 5 übergeben. Vieleicht haben Sie sich gewundert,
daß keine Bildschirmposition für den Text angegeben
wurde. Dies liegt daran, daß die Text-Prozedur den
Text an der aktuellen Position des Grafikcursors in
dem betroffenen Rastport ausgibt. Um den Text zu po-
sitionieren, müssen Sie also vorher die schon bekann-
te Prozedur Move aufrufen. Die Ausgabe der in String
gespeicherten Zeichenkette an der Bildschirmposition
(x,y) sieht also so aus: |

Move(Rast,x,y);
Text (Rast ,&String,Len);

Auch die Farben, Zeichenmodus und Schriftart (nicht
Font) können durch den Aufruf entsprechender Prozedu-
ren für die Textausgabe voreingestellt werden. Die
Prozeduren SetAPen, SetBPen, und SetDrMd, die zur
Einstellung der ersten beiden Eigenschaften dienen,
sind Ihnen ja schon bekannt (siehe Kapitel 4). In dem
nächsten Beispielprogramm werden Sie die für die
Textdarstellung interessanten Zeichenmodi finden. Da-
bei handelt es sich um die Modi JAM1, JAMZ, INVERSVID
und deren Kombinationen. Die Schriftart kann mit Hil-
fe von SetSoftStyle bestimmt werden. Diese ermöglicht
Ihnen die Wahl einer Schrift die kursiv, fett, unter-
strichen oder alles zu gleich ist.

Der Aufruf der Routine sieht wie folgt aus:

OldStyle = SetSoftStyle(Rast ‚Styles ‚Enable);

123

Kapitel 7 Textdarstellung

Rast ist hier wie immer ein Zeiger auf einen Rast-
port. In Enable müssen Sie die Flags (siehe Tabelle),
die den gewünschten Schriftarten entsprechen, über-
bergeben. Als Funktionsergebnis gibt Ihnen die Proze-
dur die der alten Schriftart entsprechenden Flags zu-
rück. Die FontStyle-Flags werden in ULONG-Variablen
gespeichert.

Abb 7.1 Die FontStyle-F lags

«nn mu Cone ames cme Gere ee Gere arms ome eee emey Gene Ge me Gee Cee ee OFS Ee Cm awe ome ee O88 HR eee ee oe oe oe ee
oe oe ae drum SE SEN dee dumm Geiste GI Glen = (rum Cum GR ES Gee cnee aunt Gem ones me eo Ge ome cee aD oe ee oe owe ee = Gwe Gee ee ee oe ee ee ee

I Gesetzte Flags ! Resultierende Schriftart !
! FSF BOLD I Fettschrift !

U FSFLITALIC 1 Kursivschrift a
| FSF UNDERLINED ! Unterstrichen !
U FSNORML 8 Normale Schrift =!

Durch Verknüpfen der Flags mit oder (!) können Sie
die erwähnte Mischung verschiedener Schriftarten er-
reichen (also z.B. fett und unterstrichen durch set-
zen von Enable auf FSF_BOLD ! FSF_UNDERLINED).

In der Variable Styles müssen die Flags aller für
den aktuellen Font noch verfügbaren Schriftarten ste-
hen, bzw. 255 wenn alle Schriftarten verfügbar sind.
Diese können Sie durch einen Aufruf der AskSoftStyle-
Prozedur wie folgt ermitteln:

Fonts = AskSoftStyle(Rast);

124

Kapitel 7 Textdarstellung

Um eine eingestellte Schriftart zu verändern, müs-
sen Sie zuerst mit FS NORMAL die "normale" Schrift
einschalten und dann durch einen wiederholten Aufruf
von SetSoftStyle die neue setzen. Dies gilt aller-
dings nicht, wenn Sie zu der aktuellen Schriftart ei-
ne andere hinzufügen wollen (also z.B.aus Fettschrift
fette Kursivschrift machen wollen).

In diesem Fall können SetSoftStyle direkt das ent-
sprechende Flag übergeben. Zum besseren Verständnis
des Umgangs mit den verschiedenen Schriftarten und
Zeichenmodi folgt wieder ein Beispielprogramm. Es
öffnet ein Fenster, ermittelt mit Hilfe von AskSoft-
Style die verfügbaren Schriftarten und gibt Texte mit
verschiedenen Zeichenmodi und Schriftarten in dem
Fenster aus.

Programm 7.1 Text

#include "intuition/intuition.h"
#include "graphics/gfxmacros.h"
#include "graphics/gfx.h"

struct Window *Window;
struct RastPort *Rast;

main ()

SHORT i;
USHORT code;
ULONG Class, Styles, OldStyle;

OpenIntui();
/* Fenster öffnen und die Adresse des Rastports

lesen. */

125

Kapitel 7 Textdarstellung

Window = (struct Window *)MakeWindow(120,40,400,
130,0,0,"Text",SMART REFRESH!
WIDOWCLOSE , CLOSEWINDOW, NULL);

if (Window == NULL)
/* Fehler beim Offnen. */

exit(FALSE);
Rast = Window->RPort;

/* Verfügbare Schriftarten ermitteln */
Styles = AskSoftStyle(Rast);

SetAPen(Rast,1);

Move(Rast,2,15);
Text(Rast, "Normal",6);

SetBPen(Rast,2);
SetDrMd(Rast,JAM2);
Move(Rast,2,30);
Text(Rast, "JAM2-Modus",10);

SetDrMd(Rast, JAM2!INVERSVID);
Move(Rast,2,45);
Text(Rast, "JAM2/COMPLEMENT-Modus",21);

SetBPen(Rast, 0);

SetDrMd(Rast, JAH1);
OldStyle = SetSoftStyle(Rast, Styles,FSF_ITALIC);
Move(Rast,2,60);
Text (Rast, "Kurs ivschrift " 13);
OldStyle = SetSoftStyle(Rast, Styles, FSF BOLD);
Move(Rast,2,75);
Text (Rast, "Fette Kursivschrift",19);

OldStyle = SetSoftStyle(Rast, Styles, FSF UNDERLINED);
Move(Rast, 2, 90); |

126

Kapitel 7 Textdarstellung

OldStyle = SetSoftStyle(Rast,Styles-OldStyle,255);
OldStyle = SetSoftStyle(Rast,Styles,FSF BOLD);
Move(Rast,2,105);
Text(Rast, "Nur Fettschrift",15);

OldStyle = SetSoftStyle(Rast, Styles-OldStyle, 255);
OldStyle = SetSoftStyle(Rast,Styles,FSF_ UNDERLINED);
Move(Rast,2,120);
Text (Rast, "Nur unterstrichen",17);

/* Auf Close Gadget warten und Fenster schließen. */
Class = WaitEvent(Window,&code);
CloseWindow(Window);

YP Pe oP ORO HO ROTO E HOHE DEERE EHO E HEH EEOH EH ETE REED EERO SER ES HD EOE SED DE EEE®D
bree e Ore HHH DO HOHE HHH LEHE HEC HEP EEE RETESET ENO OEE SEO OE
POOP TR eT DEH OOH OHH EHF ORD ED RO DREHER HP EEO SEES OH OLEH EHH EER EES ERE HOD
PO RCMP TRH Hm OHHH ERED ER HR DORE HSE REHEES EERE COTO TEMES EEO HEE REE RHEE EOE
PERT EPO EEE TEL TE ER
SERRE TEE ET eee ee TE ET ET ee

DEEELERLERREZEITITEISTISETERIELIEIIIIIESEIIIIEIZIEIDIIIIEISEPEIIITERET" Dre
peer meee Her re PEE HE ORE HH OBER EES OOERE AOR O EERE EEO ESTEE DERE EEEHO REED OER EO OLE SEED
POC COTE EHH OOH ECE H PO DAH OEE PESO CREED EH EDE EHEC LOD EHREOEOE SS ORE DORE OEE ED EH ORE DERY
SEITELFERFTEETE pees soo. .
bc veccasetereres Opec cerca verevoevece v—.n0n of
FERREERRERRETTN TUETELTLLLLLe LSS SSE Le ESL S LTS LESS Se Te Lee Tee Lee T eee eee ee

Der Begriff Fonts müßte eigentlich jedem Amiga Be-
sitzer bekannt sein. Im Gegensatz zu älteren Compu-
tern, die nur einen Zeichensatz besaBen, den sie bes-
tenfalls in verschiedenen Variationen wie fett oder
invers darstellen konnten, kann der Amiga beliebige
frei definierbare Zeichensätze (Fonts) verwenden. Die
von der normalen Workbench bekannte Schrift heißt
Topaz und ist im im ROM des Computers gespeichert.
Alle anderen Fonts müssen entweder durch ein Programm
definiert, oder von Diskette geladen und dann dem
System zur Verfügung gestellt werden. Es ist dabei
durchaus möglich, gleichzeitig in verschiedenen Fen-
stern verschiedene Fonts zu benutzen. Das System hat
eine Liste der verfügbaren Fonts, aus der Sie Ihre
Möglichkeiten schöpfen können.

127

Kapitel 7 Textdarstellung

Wie dies im Detail bewerkstelligt werden muß, wer-
den Sie in späteren Abschnitten erfahren. Hier wollen
wir zunächst ein paar allgemeine Worte zu den Fonts
sagen. Wie schon gesagt, ist ein Font ein vollständi-
ger Zeichensatz. Dies heißt, daß er aus 1 bis 255 be-
liebig definierten Zeichen bestehen kann. Sie können
sich also einen Font erzeugen, der nur aus Grafikzei-
chen oder aber auch aus russischen oder griechischen
Buchstaben besteht. Zu der Fontdefinition gehört die
Angabe der Zeichenanzahl, deren Höhe, Breite, verfüg-
baren Schriftarten sowie einiger anderer besonderer
Eigenschaften. Das Aussehen der Zeichen wird ähnlich
wie ein Image Pixelweise durch Setzen einzelner Bits
bestimmt.

Die auf Diskette gespeicherten Fonts befinden sich
in der fonts-Directory der Systemdiskette. Dort ge-
hört zu jedem Font ein eigenes Verzeichnis, in dem
mehrere, sich in der Größe unterscheidende Versionen
des Fonts stehen können. Falls Sie ihre eigenen Fonts
aus einer anderen Directory verwenden wollen, müssen
Sie dies dem System in der startup-sequence oder spä-
ter im CLI-Fenster wie folgt mitteilen:

assign FONTS: MyFonts

Statt MyFonts müssen Sie hier natürlich den Namen
ihres Verzeichnisses angeben. Beachten Sie dabei, daß
ab dann alle fonts in Ihrem Verzeichnis gesucht wer-
den.

128

Kapitel 7 Textdarstellung

TELELTLITEREXTELKERZVEELZEREELEIKERILIEREEREZZIITELEEEZERIEREEERTKETZTEIZERIREIENEN
re CeCe eee Te eee ee ee eee ee eee ee ee re
eee eee Ree Orme HEED O aE HE EEO REECE ERT HERE CREE OEO EOE DEO E EEE S SEDER OEE EHEC LED
POLITE Cee eee eee eee eee eee eee eee ee eee eee ee ee ee ee ee ee rn
SITLL Ce eee eee ce ee cee ee eee ee eee ee ee ee eo ee ee
pe eee reer ee meee em EEO EHH HO RP OEE HEHE HED EER EES HP EEO ROE HEE HEHE REO H EEE LOH EREHO EES

Pere eH TEE ETC TE E OHO EES ERE SED OES
perme em EERE Oe da sem H em HHO HHO EH ERED EH ET HEED HSER H DESC DEEO EHH EE HEHEHE HED OH EH OE EDE
SPE ren eee cee eee ee eee eee ee ee eee eee ee LT eee ee |
eet Tee eee eee eee eee eee eee eee eee eee eee es re eee eee ee eee ee ee eee ee
PIPE CPE ee eee eee See eee ee Pee eee eee ee Cee eee Cee eee eee ee
MRRRERERERRREREZESNERESEENSENEENNENENZERENEERSRENSERREREEESREENKESEREKRERZERBENRER]

Hier können Sie nun definitiv erkennen und sehen,
ob ein bestimmter Font geladen werden kann. Sie
können alle Fonts, die für das System verfügbar sind,
mit der AvailFonts-Prozedur der Diskfont-Library auf-
gelistet werden. So einfach sich dies anhört, es ist
leider mit einigen Aufwand verbunden. Beim Aufruf
erzeugt AvailFonts eine Liste von AvailFonts-Struktu-
ren, die von einer AvailFontsHeader-Struktur einge-
leitet wird. Die letztere beinhaltet nur die Anzahl
der folgenden AvailFonts-Datensätzen und sieht so
aus.

Abb 7.2 Die AvaiFontsHeader-Struktur

struct AvailFontsHeader

{
UWORD afh NumEntries;
/* struct AvailFonts afh AF [] */

hi

Wie sie der Abbildung entnehmen können, liegen die
AvailFonts-Strukturen, die die eigentliche Informa-
tion über die Fonts enthalten, direkt nach AvailFonts
Header. Jede dieser Strukturen steht für einen Ver-
fügbaren Font und sieht folgendermaßen aus:

129

Kapitel 7 Textdarstellung

Abb 7.3 Die AvailFonts-Struktur

struct AvailFonts

{
UWORD af Type;
struct TextAttr af Attr;

7

In af Type wird der Fonttyp durch eine der folgen-
den Flags angegeben:

! Flag ! Bedeutung !

I AFF_MEMORY ! Font befindet sich im Speicher. !

! AFF DISK ! Font befindet sich auf Diskette. !

Die Daten des Fonts, also sein Name, seine Größe
etc. sind in dem Feld af Attr in einer weiteren Da-
tenstruktur zu finden. Es handelt sich dabei um die
TextAttr-Struktur, die zu den wichtigsten Strukturen
der Grafik-Library gehört.
Sie ist wie folgt aufgebaut:

Abb 7.4 Die TextAttr-Struktur

Struct TextAttr

APTR ta Name;
UWORD ta YSize;
UBYTE ta Style;
ye ta Flags;

130

Kapitel 7 Textdarstellung

Den Zeiger auf den Namen des Fonts finden Sie in
ta Name, die Höhe der Zeichen in ta YSize, und die
Flags der verfügbaren Schriftarten “ (siehe Abschnitt
1) in ta_Style. Das letze Feld, ta Flags enthält ein
oder meherere FontFlags, die folgende Bedeutung ha-
ben.

Abb 7.5 Die Font-Flags

! Flag ! Bedeutung
! FPF__ROMFONT ! Font befindet sich im ROM
I FPF_DISKFONT ! Font ist auf Diskette
! FPF REVPATH ! Font wird von links nach
! ! rechts geschrieben
! FPF TALLDOT ! Font für non-interlace hires
1 !

I I

I |

!

| !

! FPF WIDEOUT ! Font für lowres/inter lace
I FPF PROPORTIONAL ! Font mit Proportionalschrift
! FPF DESIGNED ! Fontbreite nicht einheitlich
! FPF REMOVED ! Font wurde aus der Fontliste

! entfernt v
u
n

G
u
m

(
e
i

G
u
m

G
u
m

C
o
m

6
2
8

G
e
l

C
o
S

G
u
t

O
w
n

Die Zusammenhänge zwischen den Strukturen verdeut-
licht das Bild 7.1:

|FontContentsHeader | AvailFontsHeader

fh NumeEntri foh FileiD
fch_NumEntries

FontContents. i -

Bild 7.1 - Die Speicherung der Fontliste

131

Kapitel 7 Textdarstellung

Nach dieser relativ langweiligen Aufzählung der
Datenstrukturen, können wir dazu übergehen, eine
Fontliste zu erstellen. Als erstes muß für die Liste
der AvailFonts-Strukturen genug Speicher alloziert
werden. Dazu können Sie, in der aus den vorherigen
Kapiteln bekannten Weise, die AllocMem-Routine von
Exec verwenden. Der benötigte Speicher braucht nicht
im CHIP-RAM zu liegen und sollte ca. 1000 Bytes groß
sein. Sowohl den Zeiger auf den allozierten Speicher,
als auch seine Länge, müssen Sie dann an AvailFonts
übergeben. Als dritten Parameter müssen Sie die ange-
angesiedelten Fonts, nur die Diskfonts oder beides
auflisten wollen. Sollte es sich heraustellen, daß
der von Ihnen allozierte Speicher nicht ausreicht, so
bekommen sie als Funktionsergebnis von Typ long die
Anzahl der fehlenden Bytes zurück. Sonst gibt die
Prozedur 0 zurück. Das Erstellen einer Fontliste
sieht also so aus:

Buffer = (struct AvailFontsHeader *)AllocHem
(1000L ,MEMF PUBLIC);

e = Avail Fonts(Buffer,1000L, Type);

Um nur die im Speicher befindlichen Fonts aufzulis-
ten geben Sie fiir Type eine 2 an. Die Diskfonts be-
kommen Sie durch die Angabe einer 1, beides durch ei-
ne 3 aufgelistet. |

Wie Sie die Daten aus der Fontliste herauslesen,
ist der vorangegangenen Erklärung des Aufbaus dieser
Liste leicht zu entnehmen. Da Sie in Buffer die
Adresse des Headers ihrer Liste also der AvailFonts
Header-Struktur haben, können Sie die Anzahl der ge-
lesenen Fonts leicht wie folgt ermitteln:

132

Kapitel 7 Textdarstellung

Number = Buffer>af_NumEntries;

Als nächstes müssen wir uns einen Zeiger auf die
erste AvailFonts-Struktur beschaffen. Diese befindet
sich aber an der Adresse von AvailFontsHeader plus
der Länge des Feldes af NumEntries.

Ihre Adresse kann also so ermittelt werden:

FirstFont = (struct AvailFonts *)&Buffer[1];

Nun können Sie in einer for-Schleife, in der Sie
FirstFont inkrementieren und die AvailFontsHeader-af
NumEntries-mal durchlaufen wird, die Daten aller
Fonts auslesen.

Wie dies im einzelnen gemacht wird, können Sie dem
nachfolgenden Programm entnehmen. Beachten Sie, daß
die Diskfont-Library geöffnet werden muß.

#include "Tibraries/diskfont.h"
#include "graphics/gfx.h"
#include "Display.h"
#include "stdio.h"
#include "exec/memory.h"

struct AvailFonts *AFonts;
struct AvailFontsHeader *AFHeader;

ULONG DosBase;
ULONG DiskfontBase;
main ()

LONG e;
SHORT 1;

133

Kapitel 7 Textdarstellung

/* Dos- und Diskfontlibrary öffnen. */
OpenGFfx();
if ((DiskfontBase = OpenLibrary("diskfont. library"

,0)) == NULL)
exit(FALSE);

if((DosBase = OpenLibrary("dos. library",0)) ==
NULL)

/* Speicher fiir die AvialFontsHeader-Struktur
allozieren */

AFHeader = (struct AvailFontsHeader *) AllocHem
(5000,MEHF CLEAR);

if (AFHeader == NULL) u
exit(FALSE);

/* Fehler beim Allozieren */

/* Liste der verfügbaren Memory- und Diskfonts
einlesen. */

e = AvailFonts(AFHeader, 5000L , 3);

/* Die eingelesenen Fonts auflisten. */
AFonts = (struct AvailFonts *)&AFHeader[1];

./* Header tiber lesen. */

for (i = 0; i < (AFHeader->afh NumEntries); i++)
/* Alle Einträge listen. */

/* Den Namen und die Größe des Fonts ausgeben */
printf("Font Nr %-2d %-24s Größe %d \n",i,AFonts

->af Attr.ta_Name,Afonts>af Attr.ta_YSize);

AFonts++; /* Nächster Font. */

}

}

134

Kapitel 7 Textdarstellung

aoe
oe
oe
ae
..

ae
ee
ve

A

Hat man erst herausgefunden, welche Fonts einem ei-
gentlich zur Verfiigung stehen, wird man woh] auch zu-
mindestens einen laden wollen. Dazu benutzt man die
schon aus dem vorherigen Abschnitt bekannte TextAttr-
Struktur. Dort trägt man den Namen, die Größe und die
Art des Fonts (Disk oder Speicher) ein.

Die Adresse der so initialisierten Struktur über-
gibt man dann der OpenFont bzw. der OpenDiskFont-Pro-
zedur. Welche der beiden man nun benutzt hängt davon
ab, ob Sie auch nicht vergessen, am Anfang des Pro-
gramms die Diskfont-Library zu öffnen. Ganz egal wel-
che der Prozeduren Sie verwendet haben, das Ergebnis
bleibt gleich. Falls der gewünschte Font geladen wer-
den konnte, liefern beide einen Zeiger auf die Text-
Font-Struktur des neuen Fonts (anderenfalls bekommen
Sie NULL zurück). Diese Struktur, die Sie im nächsten
Abschnitt genauer kennenlernen werden, liefert eine
genaue Beschreibung des Fonts.

Sie beinhaltet alles, was die Systemsoftware
braucht, um mit diesem Font zu arbeiten, wie z.B. den
Zeiger auf die Bilddaten der einzelnen Zeichen. Nach-
dem der Font erfolgreich geöffnet wurde, haben Sie
zwei Möglichkeiten mit ihm zu arbeiten. Die erste be-
steht darin, ihm mit Hilfe der SetFont-Prozedur an
einen Rastport (z.B. den eines Fensters oder eines
Screens) zuzuweisen. Das Öffnen eines Fonts und die
Zuweisung an einen Rastport Rast kann also aussehen,
wie folgt:

TextFont = (struct TextFont *)OpenDiskFont(TextAttr);
if(TextFont != NULL) SetFont(Rast,TextFont);

135

Kapitel 7 Textdarstellung

Wir haben hier vorausgesetzt, daß TextAttr auf ei-
ne initialisierte TextAttr-Struktur zeigt. Für alle
Texte, die dann in diesem Rastport mit Text ausgege-
ben werden, wird nun der neue Font verwendet.

Ein Beispiel für das Öffnen eines Diskfonts und de-
ren Zuweisung an einen Rastport finden sie in dem an
diesem Abschnitt folgenden Programm. Es gibt einen
Text mit dem Standardfont des Fensters aus, Öffnet
dann nacheinander zwei neue Fonts und benutzt diese
ebenfalls zur Textausgabe. Die von dem Programm ver-
wendetet Fonts: Emerald 17 und Emerald 20.

Wenn Sie ihren Amiga von einer Diskette gebootet
haben, auf der diese Fonts nicht vorhanden sind, dann
müssen Sie vor dem Programmstart die Workbench ins
Laufwerk schieben und mit assign eine neue FONTS: de-
vice setzen (siehe Abschnitt 2).

Programm 7.3 Diskfont

#include "Display.h"
#include "intuition/intuition.h"
#include "graphics/gfx.h"
#include "Tibraries/Diskfont.h"
struct Window *Window;
struct RastPort *Rast;
struct Font *DFont;
struct TextFont *TFont;

struct TextAttr ITFont = {“Emerald.Font",
17,
0,
FPF DISKFONT

hi

136

Kapitel 7 Textdarstellung

ULONG DiskfontBase;

main ()

{
SHORT i;
USHORT code;
ULONG Class, Styles, OldStyle;
OpenIntui();
OpenGfx();

/* Diskfontlibrary öffnen */
DiskfontBase = OpenLibrary("diskfont. library",0);
if(DiskfontBase == NULL) ;

/* Fehler beim Offnen */
exit (FALSE);

/* Fenster öffnen un die Adresse des Rastports
lesen. */

Window = (struct Window *)MakeWindow(120,10,400,
-100,0,0, "DiskFonts",

SMART REFRESH {WI NDOWCL OSE} ! WINDOWDEP TH,
CL OSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim Öffnen. */
exit (FALSE);

Rast = Window->RPort;

Move(Rast, 120, 30);
/* Text im Standardfont ausgeben */

Text(Rast, "Standardfont",12);

TFont = OpenDiskFont(&ITFont); |
/* Emerald 17 öffnen */

if(TFont == OL) Ä
/* Fehler ? */

exit(FALSE);
SetFont(Rast,TFont);

137

Kapitel 7 Textdarstellung

/* Nein -> dem Rastport zuweisen */

Move(Rast,120,50);
/* und Text mit Emerald 17 printen. */

Text (Rast, "Emerald 17\n",11);

ITFont.ta YSize = 20; /* Emerald 20 öffnen */
TFont = OpenD iskFont (&ITFont);
if(TFont == OL) /* Fehler ?_ */
exit(FALSE);

SetFont (Rast, TFont);
/* Nein -> dem Rastport zuweisen */

Move(Rast, 120,75);
Text (Rast, "Emerald 20\n",11);

/* und Text mit Emerald 20 printen. */

/* Auf Close Gadget warten und Fenster schließen. */
C loseWindow(Window); |

[]iDiskFonts | aie ia

Standardfont

Emerald 17

emerald 20

Bild 7.2 - Die Ausgabe des Programms DiskFont

Als nächstes sollte noch die zweite Möglichkeit,
einen geöffneten Font zu nutzen, erläutert werden.
Dazu wird der Font mit AddFont an die Fontliste des
Systems angehängt und kann von anderen Programmen be-
nutzt werden. Ist TextFont ein Zeiger auf die ent-
sprechende TextFont-Struktur, dann sieht dies folgen-
dermaBen aus:

138

Kapitel 7 Textdarstellung

AddFont(TextFont);

Für ihr eigenes Programm ist das Einfügen des Fonts
in die Systemliste immer dann wichtig, wenn Sie mit
Prozeduren oder Datenstrukturen arbeiten, den eine
TextAttr-Struktur statt einer TextFont-Struktur über-
geben werden muß. Dies ist z.B. dann der Fall, wenn
Sie beim Öffnen eines Screens oder Fenster einen ei-
genen Font als Standardfont haben wollen.

Sowohl die NewWindow als auch die NewScreen-Struk-
tur beinhalten ein Feld, in dem Sie die Adresse einer
TextAttr-Struktur angeben können. Sie muß dann mit
den gleichen Werten initialisiert sein, die Sie zum
Öffnen des Fonts verwendet haben, damit Sie auch die
gleiche Struktur verwenden. Auf ähnliche Weise kann
der Font bei der Textausgabe mit IntuiText bestimmt
werden, die wir noch im letzten Abschnitt dieses Ka-
pitels besprechen.

Wem das Laden fertiger Fonts nicht genug ist, für
den wollen wir jetzt beschreiben wie man sich einen
eigenen definieren und in das System einfügen kann.

Die Grundlage dafür ist die bereits vorher ange-
sprochene TextFont-Struktur. Diese sieht folgenderma-
Ben aus:

Abb. 7.6 Die TextFont-Struktur

struct TextFont

struct Message tf Message;
UWORD tf YSize;
UBYTE tf Style;
UBYTE tf Flags;
UWORD tf XSize;
UWORD tf Baseline;

139

Kapitel 7 Textdarstellung

UWORD tf BoldSmear;
UWORD tf Accessors;
UBYTE tf LoChar;
UBYTE tf HiChar;
APTR tf CharData;
UWORD tf Modu lo;
APTR tf CharLoc;
APTR tf CharSpace;
APTR tf _CharKern;

hi

In dem Feld tf Message befindet sich eine gewöhnli-
che Message-Struktur von Exec, die notwendig ist, da-
mit der Font in die Fontliste eingefügt werden kann.
Deswegen muß dieses Feld wie folgt initialisiert wer-
den:

TextFont.tf Message.mn_Node. In_Type = NT FONT;
TextFont.tf Message.mn Node. In Name = Name;
TextFont.tf Message.mn Length

TextFont muß hier natürlich eine Variable vom Typ
TextFont sein. Name ist ein Zeiger auf den Namen des
Fonts und Len der Speicherbedarf aller zu diesem Font
gehörenden Daten. Wie dieser berechnet wird, werden
wir später erläutern. Die nächsten vier Felder tf
YSize, tf Style, tf Flags und tf XSize bestimmen die
Höhe, die verfügbaren Schriftarten, die Art und die
Breite des Fonts. Die Flags (tf Flags) und die
Schriftarten entsprechen den von TextAttr bzw. Set
SoftStyle bekannten (siehe Abb 7.5 bzw 7.1).

In tf Baseline wird der Abstand der untersten Zei-
le des Textes von oben festgelegt. Wenn Sie z.B. un-
ten Platz zum Unterstreichen lassen wollen, dann mü-
ssen Sie hier einen Wert, der kleiner als die Font-
höhe ist, angeben. Durch Angabe einer 1 in tf Bold

140

Kapitel 7 Textdarstellung

Smear können Sie die Erzeugung der Fettschrift durch
"Verschmieren" zulassen. Das nächste Feld: tf Acces-
sors ist nur für das System wichtig und sollte mit 0
initialisiert werden. Der Rest der TextFont-Struktur
bezieht sich direkt auf die Zeichendaten. Zunächst
werden durch tf LoChar und tf HiChar die ASCII-Werte
des ersten und des letzten Zeichens des Fonts angege-
ben. Die Werte können zwischen 0 und 255 liegen, wo-
bei tf LoChar natürlich kleiner als tf HiChar sein
muß. Die Adresse des Speicherbereiches, in dem die
Bildaten der Zeichen stehen, befindet sich in tf
CharData. Wie es bei Bilddaten üblich ist, wird jeder
Punkt durch ein Bit und jede Bildzeile durch eine
Bitreihe repräsentiert, so daß die Zeichendaten in
einem Array vom Typ UWORD definiert werden können.
Die Zeichen werden "nebeneinander" gespeichert, d.h
auf die erste Zeile des ersten Zeichens folgt die er-
ste des zweiten, darauf die erste des dritten etc.
Danach kommen auf die gleiche Art angeordnet die
zweiten, dritten, vierten usw. Zeilen. Wie Sie se-
hen, ist die Anzahl der Bytes, die übersprungen wer-
den müssen, um von einer Zeile eines Zeichens zur
nächsten zu kommen, von Zeichensatz zu Zeichensatz
verschieden (Es liegen ja die Zeilendaten der anderen
Zeichen dazwischen !). Aus diesem Grunde muß die An-
zahl der zwischen zwei Zeilen eines Zeichens liegen-
den Bytes in tf Modulo angegeben werden. Bei einem
Font, der 10 Zeichen enthält, die alle 16 Punkte
breit sind (also genau zwei Bytes belegen), wärend es
logischerweise 20 - da dieser Wert für alle Zeilen
gleich bleibt, müssen alle Zeilen eines Zeichens auch
gleich breit sein.

Das soll aber natürlich nicht heißen, daß alle Zei-
chen quadratich sein müssen. Wo kein Punkt erschei-
nen soll, kann ja in den Daten eine Null gesetzt wer-
den. Da die Zeichenbreite aber nicht auf ganzzahlige
Vielfache von 8 oder 16 beschränkt ist, wird in der

141

Kapitel 7 Textdarstellung

Regel eine Zeile eines Zeichens nicht durch eine be-
stimmte Anzahl von Bytes oder Words dargestellt. Es
ist auch nicht unbedingt notwendig, daß alle Zeichen
die gleiche Breite haben. So können in zwei Bytes ei-
ner Zeile eines 10 und eines 6 Bits breiten Zeichens
gespeichert werden. Damit der Amiga in diesem Durch-
einander überhaupt zurecht kommt, müssen in einem zu-
sätzlichen Speicherbereich nacheinander der Abstand
des Anfangs der ersten Zeile von Anfang der Bildaten
und die Breite der Daten einer Zeile in Bits für je-
des Zeichen angegeben werden. Ein Zeiger auf diesen
Speicherbereich ist in tf CharLoc einzutragen.

Die Breite des Zeichens wird für jedes Zeichen in
einem weiteren Array, dessen Adresse in tf CharSpace
steht, übergeben. Der aufmerksame Leser wird an die-
ser Stelle wahrscheinlich verwundert sein, denn nun
haben wir tf CharLoc und tf CharSpace)! Der Grund da-
für ist darin zu suchen, daß es sich jedesmal um eine
"andere" Breite handelt. In tf XSize wurde angegeben,
wie viel Platz jedes Zeichen unabhängig von seiner
Breite bei einem nicht proportionalen Zeichensatz auf
dem Bildschirm horizontal einimmt. Dieser Wert ist
für alle Zeichen des Zeichensatzes gleich und wird
deswegen global in der TextFont-Struktur festgelegt.
Die Breite, die in tf CharSpace bestimmt wird, kann
von Zeichen zu Zeichen verschieden sein. Diese Brei-
te wird immer, also auch bei proportionalen Fonts,
beibehalten. Sie gibt Ihnen die Möglichkeit jedem
Zeichen so viel Platz zuzuordnen, wie Sie es für eine
gute Lesbarkeit, oder schönes Aussehen des Zeichen-
satzes für angebracht halten. Die in tf CharLoc ste-
hende Breite, gibt schlieBlich die Breite der Daten
jedes Zeichens an. Dies ist auch die maximale Anzahl
der horizontal gesetzen Punkte eines Zeichens. Die
Differenz aus dieser und der vorigen Breite wird als
freier Raum rechts vom Zeichen dargestellt. Damit Sie
den Rand auch Links lassen oder das Zeichen zentrie-

142

Kapitel 7 Textdarstellung

ren können, gibt es noch in TextFont das Feld tf Char
Kern. Dort steht ein Zeiger auf ein Array, das für
jedes Zeichen den Abstand des ersten Datenbits einer
Zeile vom Anfang der Zeile, also die Verschiebung der
Daten nach rechts, sprich den linken Rand angibt.

Alles klar? Nicht? Also noch ein Beispiel: bei ei-
nem Zeichen mit einer Datenbreite von 8 Bits, und ei-
ner Zeichenbreite von 10 Bits müßte hier eine Eins
stehen, damit es links und rechts den gleichen Rand
hat.

Für die, die immer noch verwirrt sind, haben wir
ein (hoffentlich) einfaches Beispiel: Dazu stellen Sie
sich bitte zunächst einen Zeichensatz vor, der nur aus
zwei Zeichen besteht, die je 3 Zeilen hoch sind. Die

Zeichen sollen so aussehen:

Zeichen 1 Zeichen 2

111111111 101
100000001 010
111111111 101

Die Datenbreite des ersten Zeichens ist 9, die des
zweiten 3, die Gesamtbreite einer Zeile also 12 Bits.
Für die Zeilendaten brauchen wir also je ein Word (2
Bytes). Die Daten sehen so aus:

ULONG CharData [] = {Oxffa0,
0x80a0,
Oxf fd0 | he

Der tf Modulo-Wert in dem zugehörenden TextFont-
Datensatz mu' hier den Wert 2 haben. In tf Charloc
muB die Adresse des folgenden Arrays stehen:

143

Kapitel 7 | Textdarstellung

ULONG CharLoc [] = {0x0000,0x0009,
0x0009,0x0003

1

Falls Sie noch wollen, daß beim ersten Zeichen so-
wohl links als auch rechts zwei Pixel freigelassen
werden, während das zweite Zeichen um 3 Pixel nach
links verschoben wird, dann müssen tf ChaSpace und
tf CharKern wie folgt aussehen:

UWORD CharSpace [] = {13,6}

Mit den so erzeugten Rändern sehen die beiden Zei-
chen nun so aus.

Zeichen 1 Zeichen 2

0011111111100 10100
0010000000100 01000
0011111111100 10100

Wenn Sie die Fontdaten Ihres Zeichensatzes wie be-
schrieben erzeugt und die TextFont-Struktur initiali-
sert haben, können Sie den Font auch sofort benutzen.
Da Sie die Adresse der TextFont-Struktur schon ken-
nen (Sie haben sie ja immerhin erzeugt!), brauchen
Sie weder die OpenFont-noch die OpenDiskFont- Routine
aufzurufen. Es reicht wenn Sie den Zeiger auf Ihre
TextFont-Struktur an SetFont oder AddFont übergeben
(siehe Abschnitt 3).

Wie die Konstruktion eines neuen Zeichensatzes im
einzelnen verläuft, können Sie sich nochmals an Hand
des nachfolgenden Programms klarmachen. Es definiert
sich fünf Grafikzeichen, deren ASCII-Werte zwischen

144

Kapitel 7 Textdarstellung

65 und 70 liegen. Diese Zeichen werden also immer
dann ausgegeben, wenn bei dem normalen Font die Buch-
staben "A" bis "E" erscheinen würden. Wichtig ist,
daß alle anderen Zeichen nicht etwa im alten Font er-
scheinen, sondern überhaupt nicht verfügbar sind.

Bei dem Versuch Sie auszugeben wird gar nichts,
oder eventuell nur Müll erscheinen.

Programm 7.4 NewFont

#include "graphics/gfx.h"
#include "graphics/text.h"
#include "Tibraries/Diskfont.h"
#inc lude_"exec/memory.h"

struct Window *Window;
struct RastPort *Rast;
struct TextFont *NewFont;

/* Definition des neuen Fonts für folgender Grafik-
zeichen */
/* mit den ASCII-Codes von 65 bis 70: */

/* 1111111111111111 0000001111000000 1111111111111111
00000000 11001100 */
/* 1100000000000011 0000001111000000 0000000000000000
00000000 11001100 */
/* 1100000000000011 0000001111000000 1111111111111111
00000000 11001100 */
/* 1100000000000011 0000001111000000 0000000000000000
00000000 11001100 */
/* 1100000000000011 0000001111000000 1111111111111111
00000000 11001100 */
/* 1100000000000011 0000001111000000 0000000000000000
00000000 11001100 */
/* 1100000000000011 1111111111111111 1111111111111111

145

Kapitel 7 Textdarstellung

00000000 11001100 */
/* 1111111111111111 1111111111111111 0000000000000000
00000000 11001100 */

UWORD FontData [] = {Oxffff,0x03c0,0xffff,0x00cc,
0xc003,0x03c0,0x0000,0x00cc,
0xc003,0x03c0,0xffff,0x00cc,
0xc003,0x03c0,0x0000,0x00cc,
0xc003,0x03c0,0xffff,0x00cc,
0xc003,0x03c0,0x0000,0x00cc,
0xc003, Oxf f fF, OxfffF,0Ox00cc,
Oxf FFF, Oxf ffF,0x0000,0x00cc,

hi

/* Die Adressen der Zeichen im Zeichensatz */
UWORD Loc [] = {0x0000,0x0010,0x0010,0x0010,0x0020,

0x0010,0x0030,0x0008,0x0038,0x0008
7

/* Zeichenbreite */
UWORD Kern[] ={0,0,0,0,0};

ULONG DiskfontBase;

main ()

SHORT i;
USHORT code;
ULONG Class, Len;

OpenIntui();
OpenGfx();

/* Diskfontlibrary öffnen */
DiskfontBase = OpenLibrary("diskfont. Tibrary",0);
if(DiskfontBase == NULL) /* Fehler beim Öffnen */
exit(FALSE); |

146

Kapitel 7 Textdarstellung

/* Fenster öffnen un die Adresse des Rastports
lesen. */

Window = (struct Window *)MakeWindow(220, 100,200,
100,0,0, "NewFont", "

SMART REFRESH /WINDOWCL OSE: ! WINDOWDEP TH,
CLOSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim Öffnen. */
exit(FALSE);

Rast = Window->RPort;

/* Speicherplatz für die TextFont-Struktur des
neuen Fonts allozieren */

NewFont = AllocMem(sizeof(struct TextFont),
MEMF PUBLIC jMEMF CL EAR);

if(NewFont == NULL) u
exit(FALSE);

/* Länge der Fontdaten berechnen */
Len = sizeof(struct TextFont) + sizeof(FontData) +

sizeof (Loc)+ sizeof (Width) +
sizeof (Kern);

/* Und diese initialisieren */
NewFont->tf Message.mn Node. In Type NT FONT;

/* Message Port */
NewFont->tf Message.mn Node. In Name "Demofont";
NewFont->tf_Message.mn Length = Len;

/* Eigentlicher TextFont */
NewFont->tf_YSize = 8;

/* Höhe des Fonts */
NewFont->tf Style = NULL;
NewFont->tf Flags = FPF DESIGNED;
NewFont->tf XSize = 16;

147

Kapitel 7 Textdarstellung

/* Breite der Zeichen */
NewFont->tf Baseline = 0;
NewFont->tf BoldSmear = 1;
NewFont->tf Accessors = NULL;
NewFont->tf LoChar = 65;
NewFont->tf HiChar = 70;
NewFont->tf CharData = &FontData[0];
NewFont->tf Modulo = 8;
NewFont->tf CharLoc = &Loc[0];
NewFont->tf CharSpace = &Width[0];
NewFont->tf CharKern = &Kern[0];

AddFont(NewFont);
/* Font in die Systemliste einfügen */

Move(Rast,50,20);
/* Text im Standardfont ausgeben */

Text(Rast, "Standardfont:",13);
Move(Rast,60,40);
Text(Rast, "ADBDCDE",7);
Move(Rast,50,60);
Text(Rast, "Neuer Font:" ‚11);

SetFont(Rast,NewFont);
/* Neuen Font dem Rastport zuweisen */

Move(Rast,50,75); u
/* und den Text mit diesen printen. */

Text(Rast, "ADBDCDE",7); |

/* Auf Close Gadget warten und Fenster sch] ießen. */
Class = WaitEvent(Window,&code);
RemFont(NewFont);

148

Kapitel 7 Textdarstellung

HL JNewFont © ie)
Standardfont:

ADBDCDE

Never Font:

OL = il

Bild 7.3 - Die Ausgabe des Programms NewFont

POH OHC THO TETHER EHH TREE OEE EE EHH HEE OES OET EOE TE ETH TH ESTEE EEE COTE EOE ECHR ETHE TERT H ETE SHE HHHUHEET EOE OOS
DPEPESEELETESESERELERTREREREE ETRE TERRE ERATE EERE ERLE EERE ELITE TEETER 0000u | SETETSOSISEESTOCORESITOSSOSISSSCOSSESISSCOSISISESTCSSESETISESSIORTTTECEOSEST ESOT S SEES EST SPESSESUSTSTSES SSS 2

on

te HEHHRHHHEHER H
ONES:: au SKEUC GE

|
1 |

4
ps | EERE 0» > > 2 > 2 > 2 2 2 > 2» 2 2 2 2 > 2 > 2 2.7 2 0 2 2 2 2 2 2 2 7 2 0 2 2 2 2 2 2 2 > 2 2 2 2 2 > 2 2 2 > 2 2 2 22 2 2 22 2 2 2 2 > 2 2 2 2 2 2 2 9 2 2 2 2 2 9 2 2 2

Wer einen eigenen Font erzeugen und auf Diskette
speichern will, wird gewöhnlich zu einem der vielen
Hilfsprogramme, mit deren Hilfe man die einzelnen
Zeichen zeichnerisch erstellen kann, greifen.

Trotzdem mag es Sie vieleicht interessieren, wie
dies genau funktioniert. Wenn ein Diskfont mit Open
DiskFont geladen wird, dann wird, wie Sie sich viel-
leicht erinnern, ein TextFont-Datensatz erzeugt, wie
er im vorigen Abschnitt beschrieben wurde. Es ist da-
her durchaus nicht verwunderlich, daß die Fontdaten
auf Diskette ebenfalls in einer sehr ähnlichen Form
vorliegen. Der wesentliche Unterschied besteht indem,
was sich um die eigentlichen Zeichendaten herum be-
findet. Wenn Sie einen Blick in die fonts-Directory
der Workbenchdiskette werfen, dann werden Sie sehen,
daß sich dort zu jedem Font zunächst mal ein gleich-
namiges Verzeichnis und ein File befindet, deren Name
aus dem Namen des Fonts und einem ".font"besteht. Für
den aus Abschnitt 4 bekannten "Emerald"-Font sieht
dies aus, wie folgt:

149

Kapitel 7 Textdarstellung

emerald (Dir)
emerald.font

In der ermerald Directory stehen dann nur folgende
Files:

17
20

Was steckt dahinter? In dem ".font"-File befindet
sich eine FontContentsHeader-Struktur, der eine oder
mehrere FontContents-Strukturen folgen (ähnlich wie
es auch bei AvailFontsHeader und AvailFonts der Fall
war). FontContentsHeader gibt an, wieviele Fonts mit
diesem Namen verfügbar sind und sieht so aus:

Abb 7.7 Die FontContentsHeader-Struktur

{
UWORD fch FileID;
UWORD fch NumEntries;
/* struct FontContents [] */

Das Feld fch FileID kennzeichnet diese Sorte von
Dateien und sollte immer Of00 sein. In fch NumEntries
steht dann die Anzahl der nachfolgenden FileContents-
Strukturen. Jede dieser Strukturen ist stellvertre-
tend für einen "Unterfont" (z.B. emerald 17 oder eme-
rald 20) und ist wie folgt gebaut:

Abb 7.8 Die FontContents-Struktur

struct FontContents

{
char fc FileName[MAXFONTPATH];
UWORD fc YSize;
UBYTE fc Style;
UBYTE fc Flags;

7

150

Kapitel 7 | Textdarstellung

Die fe YSize, fc Style und fc Flags Felder be-
schreiben die Eigenschaften des Fonts und haben die
gleiche Bedeutung wie die gleichnamigen Felder der
TextAttr- und TextFont-Strukturen. fc FileName gibt
den Pfad, unter dem der Font in der FONTS: Directory
zu finden ist. In unserem Beispiel mit dem emerald-
Font muß hier ein Zeiger auf die Zeichenkette" eme-
rald/17" oder "emerald/20" (Je nachdem, zu welchen
der beiden Fonts diese Struktur gehört) stehen.

Die Datei, die den eigentlichen Zeichensatz bein-
haltet, besteht dann aus folgenden vier Teilen:

(1) Eine einleitende DiskFontHeader-Struktur.

(2) Die TextFont-Struktur des Zeichensatzes.

(3) Die Bilddaten der Zeichen.

(4) Die CharLoc, CharSpace und CharKern Daten
(siehe TextFont-Struktur). |

Die Funktion der DiskFontHeader-Struktur liegt da-
rin, das Laden des Fonts mit dem LoadSeg-Befehl zu
ermöglichen. Dadurch kann ein Zeichensatzfile wie ein
gelinktes Programm behandelt, und im Speicher instal-
liert werden. Hier die DiskFontHeader-Struktur im
Detail:

Abb 7.9 Die DiskFontHeader-Struktur

struct DiskFontHeader

f
/* ULONG dfh NextSegment */
/* ULONG dfh ReturnCode */

151

Kapitel 7 Textdarstellung

struct Node dfh DF;
UWORD dfh Revision;
LONG dfh Segment;
char dfh Name[MAXFONTNAME];
struct TextFont dfh_TF;

7

Die ersten beiden Felder befinden sich in Kommen-
tarklammern, weil sie zwar immer am Anfang der Struk-
tur erscheinen, aber trotzdem nicht richtig dazu ge-
hören.

In dfh ReturnCode stehen für den Fall, daß jemand
probieren sollte, das File als Programm zu starten,
folgende Assemblerbefehle:

MOVEQ #0,D0
RTS

Die den Rücksprung zum aufrufenden Programm veran-
lassen und so einen Absturz verhindern.

In der Node-Struktur, die sich in dfh DF befindet,
sind nur die Felder In Type und In Name ungleich
Null. Das Erste beinhaltet den Typ des Nodes, also
NT FONT, das Zweite einen Zeiger auf den Namen des
Fonts. Die letzten drei Felder von DiskFontHeader ha-
ben immer die Werte DFH ID, 1 und 0. Als nächstes
folgen der Fontname (kein Zeiger auf den Namen!) in
dfh Name und die TextFont-Struktur. |

Zur Erzeugung dieser Struktur, die in der im vori-
gen Abschnitt besprochene Art einen Zeichensatzes de-
finiert, benutzen Sie am besten einen Assembler. Die
Definition sieht dann schematisch so aus: |

152

Kapitel 7 Textdarstellung

INCLUDE "exec/types.i"
INCLUDE "exec/nodes.i"

“Definition der DiskFontHeader-Struktur

MOVEQ #0,D0
RTS
DC.L 0
Di cece cee reeccccce an

ann cece reece cceeeeeeee

DS.B MAXFONTNAME

‘Definition der TextFont-Struktur

font: |
DC.L 0
an cece ccc cccecoees aaa

DC.L 0
DC.L fontEnd- font
PAR ccc ccccecececece an.

DC.W 8
DC.L fontLoc
DC.L fontSpace
DC.L fontKern

*Hier kommen die Bilddaten
fontData:
DC.W OxX..... , IX......
eeenreo@e0se3#eees5eeeev#r#ee#nrereee»e#e#ee#et ®e

*Hier kommen die CharLoc-Daten

fontLoc:
DC.L oe

153

Kapitel7 ~~ Textdarstellung

fontSpace:
oo... ..— . 2". ..”.o.„—e 0er 0 9 08 90

eoeoe@e7e+eosnr@ee#eeeeee#eeee#ee#e#e#7fee#e#e#er#s#e@eee#ees#e oe

* Und hier ist es zu Ende
fontEnd:
END

Wenn Sie nun Ihren Zeichensatz so eingetippt haben,
dann müssen Sie ihn nur noch assemblieren, linken und
unter dem richtigen Namen in der FONTS: Directory ab-
speichern. Die Datei, die die FontContentsHeader und
die FontContents- Struktur beinhaltet kann übrigens
auf die gleiche Weise mit dem Assembler und Linker
erzeugt werden. |

ee ee ee ee
Ome cero sree ener nee reessaroaeseee
CR e ctr een enseveseneserases
eee eee RE Cer reer ee eee eer eee es eee eee ee re eet
Perec ccewnees
CO oer adores eranesesereoses

Berner ern
IKESTIEIIIIITER SEID

DH OO Ree PERSE OEE OES ADO ODEO OOOO SOE H ER OED
Cee oom me mene ree HEE EEE EH DER ee De EEEEDOE HEN EEE EEE HEED

Neben der schon im ersten Abschnitt vorgestellten
Textausgabeprozedur Text,die der Grafik-Library ange-
hört, bietet auch Intuition eine interessante Proze-
dur zur Textausgabe. Sie ähnelt stark der schon be-
kannten DrawImage-Routie, die ein durch eine Image-
Struktur definiertes Bild ausgibt. Die Prozedur, von
der wir sprechen, heißt PrintIText und die zugehörige
Struktur IntuiText. In dieser Struktur definieren Sie
sich einen Text, den Sie dann wiederholt an verschie-
denen Bildschirmpositionen ausgeben können. Das Schö-
ne daran ist, daß Sie für diesen Text einen anderen
Font und/oder eine andere Schriftart als die eben ge-

154

Kapitel 7 Textdarstellung

nannte verwenden können. Mit Hilfe eines Verket-
tungszeigers mehrere dieser Strukturen zu einem zu-
sammenhängenden formatierten "Text zu verbinden.

Wie dies alles zu machen ist, können Sie der fol-
genden Beschreibung der IntuiText-Struktur entnehmen:

Abb 7.10 Die IntuiText-Struktur

struct IntuiText
{ |

UBYTE FrontPen, BackPen;
UBYTE DrawMode;
SHORT LeftEdge;
SHORT TopEdge;
struct TextAttr *ITextFont;
UBYTE *IText;
struct IntuiText *NextText;

7

Die Felder FrontPen und BackPen bestimmen, wie den
Namen leicht anzusehen ist, die Vorder- und Hinter-
grundfarbe. Der Zeichenmodus wird durch DrawHode be-
stimmt. Dort können Sie die gleichen Werte, die an
die SetDrMd-Prozedur übergeben werden, einsetzen. Die
nächsten beiden Felder, LeftEdge und TopEdge geben
den Abstand des Textes von der Bildschirmposition,
die beim Aufruf von PrintIText angegeben wurde, an.

Der Font, der für die Ausgabe des Textes benutzt
wird, wird durch die TextAttr-Struktur, auf die IText
Font zeigt, spezifiziert. Wichtig ist, daß der ausge-
suchte Zeichensatz in der Systemfontliste verfügbar
ist. Falls Sie den Standardfont des Rastports verwen-
den wollen, dann geben Sie hier NULL an. Der auszuge-
bende Text selbst wendet sich an die Adresse, die in
IText steht. Er muß selbstverständlich durch eine 0
agbeschlossen sein. Wenn Sie mehrere IntulText-Struk-

15

Kapitel 7 Textdarstellung

turen verketten wollen, dann können Sie dies über
NextText tun. Schreiben Sie dort einfach die Adresse
der nächsten Struktur ein. Um eine solche Kette aus-
zugeben, brauchen Sie, nachdem Sie die einzelnen
Strukturen initialisiert haben, nur noch die PrintI
Text Prozedur wie folgt aufzurufen:

PrintIText(Rast,IText,x,y)

In Text übergeben Sie der Prozedur die Adresse der
ersten IntuiText-Struktur. Die Koordinaten, die in x,
y übergeben werden, bestimmen die Position an der
Text erscheinen soll. Dabei ist zu beachten, daß er
nur dann genau an der Stelle x,y erscheint, wenn die
LeftEdge und TopEdge Felder von IntuiText beide Null
sind. Diese werden nämlich zu x,y addiert, um die
endgültige Textposition zu ermitteln. Dadurch haben
Sie die Möglichkeit, mit mehreren verketetten Intui
Text-Strukturen, die die entsprechenden LeftEdge- und
TopEdge-Werte haben, einen ganzen Textbildschirm, mit
verchiedenen Fonts, Schriftarten und Farben aufzubau-
en und immer wieder mit einem einzigen Aufruf von
PrintIText auszugeben.

Zum Abschluß des Kapitels noch ein kurzes Beispiel
für die Anwendung von IntuiText. In dem nachfolgenden
Programm wird ein Text auf die soeben beschriebene
Weise dreimal ausgegeben. Dabei wird beim ersten mal
der Standardfont des Rastports, beim zweiten der
Font "topaz 9" und beim dritten "topaz 8" verwendet.

Da es sich bei beiden um ROM-Fonts handelt, brau-
chen Sie nicht extra geöffnet zu werden. Normalerwei-
se wird einer der beiden Zeichensätze auch als Stan-
dardfont verwendet, so daß Sie sich nicht wundern
müssen, sich zu entscheiden. Auch der Unterschied
zwischen den beiden "topaz" Fonts hält sich in Gren-
zen, so daß er vielleicht erst nach genauerem hinse-

156

Kapitel 7 Textdarstellung

hen auffält.
sie zu verwenden,
zeigen.

Wir haben uns trotzdem entschlossen,

Programm 7.5 IntuiText

#include "intuition/intuition.h"
#include "graphics/gfx.h"

struct Window *Window;
struct RastPort *Rast;

struct IntuiText InText = {1,0,
/*

/*

/*

/*

/*

/*

Vorder und Hintergrundfarbe
JAMl,

Zeichenmodus
0,0,

Linker und rechter Offset
NULL,

Default Font benutzen
| NULL,
Noch kein Text

NULL
Kein Nachfolger

7

struct TextAttr ITFont = {"Topaz.Font",
/* Daten des zu öffnenden Fonts

8 7

/* Dies ist ein Standardfont
0

/* der sich im ROH-befindet
FPF_ROMFONT

/

*/

*/

*/

*/

*/

*/

um die Anwendung der ROM-Fonts zu

*/

*/

*/

157

Kapitel 7 | Textdarstellung

main ()

SHORT i;
ULONG Class, Styles, OldStyle;

OpenIntui();
/* Graphics- und Intuitionlibrary öffnen */

OpenGFfx();

/* Fenster öffnen un die Adresse des Rastports
lesen. */

Window = (struct Window*)MakeWindow(200,10,200,
50,0,0, "IntuiText", SMART REFRESH!

WI NDOWCLOSE, CLOSEWI NDOW, NULL):
if(Window == NULL) |

| /* Fehler beim Offnen. */
exit(FALSE);

Rast = Window->RPort;

InText.IText = "Ganz normaler Font';
/* Auszugebenden Text eintragen */

PrintI Text(Rast, &InText, 10, 15);
/* und ausgeben A

InText.IText = “Topaz Größe 9 ";
/* Fontname ändern, */

InText.ITextFont = &ITFont;
/* in Inuti Text eintragen */

PrintIText(Rast,&InText ‚10, 25); |
/* und Text ausgeben */

InText.IText = "Topaz Größe 8";
/* Der nächste Font. 7,

158

Kapitel 7 | Textdarstellung

ITFont.ta_YSize = 8;
/* GréBe einstellen, */

InText.ITextFont = &ITFont;
/* In IntuiText eintragen */

PrintIText(Rast, &InText, 10,35);
/* und Text ausgeben */

/* Auf Close Gadget warten und Fenster schließen. */
Class = WaitEvent(Window, &code);
C loseWindow(Window) ;

}

159

Kapitel 7 Textdarstellung

160

Kapitel 8 Sonderdarstellungsmodi

Kapitel 8

Die Sonderdarstellungsmodi des Amiga

161

Kapitel8 _ Sonderdarstellungsmodi

Nachdem Sie in den vorangegangnen Kapiteln die
Grundlagen der Grafikprogrammierung am Amiga kennen-
gelernt haben, wollen wir uns hier einigen Besonder-
heiten zuwenden. Erst diese Sondermodi, mit den wir
uns in diesem Kapitel beschäftigen wollen, heben die
Grafik des Amiga wesentlich unter den meisten ande-
ren Computern hervor. Linien und Kreise mit einer
halbwegs passablen Auflösung konnten schon Computer
in der Klasse des C-64 zeichnen. Besonderes der HAM-
Modus, der eine gleichzeitige Darstellung aller 4096
Farbe ermöglicht, sollte das Herz eines jeden Gra-
fikprogrammierers höher schlagen lassen. Dazu werden
Sie in diesem Kapitel noch erfahren, wie Sie eine
extrabreite Anzeige (bis 1024x1024 Pixel), eine
Unterteilung des Displays in zwei Tiefenstufen (Dual-
Playfield) und einige andere interessante Effekte
ausnutzen können. An vielen Stellen dieses Kapitels
wird vorausgesetzt, daß der Leser mit dem Inhalt der
vorangegangenen Kapitel, vor allem der über Intuition
(Kapitel 2) und Farbeinstellung (Kapitel 3), vertraut
ist.

Pee meme ee rm eter meee ee
See eee ee ee
See ee ee ee ee ee ee ee ee ee EEE rer
Sere eee ee eee eee ee ee ee ee ee ee ee ee ee ee SE Er
Se ee ee ee ee ee ee ee ee ee rr a i ory
See eee eee eee ee eee eee eee eee ee ee ee ee eee ee ee ee ee ey

Tee eee ee eee eee eee eee ee eee eee ee re re eee ee ere ee er
eee ee eee eee eee eee eee eee eee eee ee ee ee eee eee eee ee ee ee!
eee eee ee eee eee ee eee eee eee eee eee eee eee ee ee ee eS

See eee eee eee ee eee ee ee eee ee ee eee ee eee eee eee eee ee ee
pec e eer era a rere r arcs nee ns rear essere emer serene esse eer erer He HseH HOH EDO eH EE EEE?

Diesen Modus haben wir schon ganz am Anfang dieses
Buches im Zusammenhang mit den verschiednen Auf lésun-
gen eines Screens erwähnt. Er kann durch setzen des
INTERLACE Flags in dem ViewModes-Feld der NewScreen-
Struktur beim Eröffnen eines Screens eingeschaltet
werden (siehe Kapitel 2). Dadurch wird die verti-
kale Auflösung des Sreens verdoppelt (kann also bei
der deutschen Version des Amiga bis zu 512 Zeilen
betragen).

162

Kapitel 8 Sonderdarstellungsmodi

Leider hat die Sache einen Haken: die Verdoppelung
der Anzahl der Zeichen wird dadurch erreicht, daß
beim Zeichnen des Bildes auf dem Monitor immer
abwechselnd die geraden und die ungeraden Zeilen
durchlaufen werden. So ergibt sich sowohl für die
geraden, als auch für die ungeraden Zeilen, eine
Bildwiederholungsfrequenz, die um die Hälfte geringer
ist als im normalen Modus. Die logische Folge davon
ist, daß das Bild zu flackern beginnt. Besonders
schlimm wird es, wenn sie nicht nur Bilder, sondern
vorwiegend Text darstellen wollen, denn dieser ist
nur mit einiger Anstrengung zu lesen. Ganz vermeiden
läßt sich dieser Effekt eigentlich nur durch den Kauf
eines entsprechend guten (und teuren !!) Monitors.
Aus diesem Grund sollte man, bevor für ein Programm
den Interlace-Modus wählt, erst mal überlegen ob dies
wirklich unvermeidlich ist. Haben Sie sich einmal für
die Interlace-Darstellung entschieden, dann sollten
Sie zumindest darauf achten, von einer Zeile zur
anderen keine plötzlichen Farbwechsel zu verwenden.
Der Flimmereffekt ist nämlich an solchen Stellen
besonders deutlich. Statt dessen können Sie bei dem
Übergang von einer Farbe zur anderen stufenweise
vorgehen. Dazu legen Sie zwischen die beiden Zeilen,
einige Zeilen, die Mischfarben beinhalten, so daß ein
sanfter Wechsel entsteht. Auf die Weise läßt sich
das Flimmern auf ein erträgliches Niveau reduzieren.

163

Kapitel 8 Sonderdarstellungsmodi

LD Orem ORO OE RH OHH EERE ERODE OTOH EEE O HEHE OOOOH SHE RO TEES ESS OREO EDEOEES
Le Ome tO eee e Dee H HEHE EEE H HOH EH ETCHED EHH E EEE O OOOO EERO REESE COS OTERO Tee
Lee eee EHH ee er SH ETHP ORE HH DEE EEE SHEL ED OT ERE EOEE HESS HOSED EEO HHO €
PUPRERCCPCREE EEE EeePC ee eee eee eee ee eee ee ee ee ee eee ee ee eee eee eee ee ee ee
Le eee eee ee hem eH HOCH SHOE EHH HP RT EERE EHEE EEL ESO OE ERERES EE ESOT EH OEE HOHE EOED
mete re eee rH EEO E ECHO PHP OEE DEES TO EEEEHEDES CHER ESO ETO HDH FSH OD RBC OHEED

PR ROP Ce Hosmer REO DHE E HEED EO REO UOT EHH HOR OTHE ET FOS OPER E ORD H ADE DE ED EH HOT OOOH EEE O TEE EESE DRED ROSETTE RSS DEH EERO OOF ER EOS CEM essere
Done TEE HO EDEL EEE EF ESTE DAE ESET ERED OOS HOE PEF OHH EREE EEE HESS OUT EEE ED DOOD DED
PURER OE TOO PER EEE SES SHO OEE SHH OEE DED EOEOH OOP OOOH OOH ET EEHESO DOOR TETHERED HEEPSOETES EHO ODEO SE OEHOED
DORE O REDE ROR ODE TERE REE EE HOO EOP ODEO OEE RSET DEO O TESS E DEE E CDRS ORH HOF OOOO OPP ERED EO EEE ED
L COOH EO EERE DEO HP E DDH E AHHH DERE SH EHO EH HOHE EHH EEE HDEHERESEE DORE SHOE HO OEP OPH PEEO TOC ODES SEEDED DORED
oe eee err res ee ess Deen e es oe en ae roe errr ere ee Der ee ose sere eres e aera roerv ern sere reer eer eesese serene sdonesereserrsereree rere ere erees eset done

r19th=Modus

Da zu einem Screen bekanntlich höchstens 32-
Farbregister gehören können, sind normalerweise auch
nicht mehr verschiedene Farben gleichzeitig darstell-
bar. Um diese Anzahl jedoch zu verdoppeln, haben sich
die Amiga-Entwickler einen raffinierten Trick einfal-
len lassen. Durch Verwendung einer sechsten Bitplane
besteht die Möglichkeit, jede dieser 32 Farben mit
der halben Helligkeit darzustellen (daher auch der
Name, Half-Bright = "halbhell"). Diese Möglichkeit
ist vor allem bei der Darstellung dreidimensionaler
Objekte oder Schatten besonders nützlich. Die Farben
werden im Extra-Half-Brigth-Modus ganz normal wie bei
einer Anzeige der Tiefe 5 gewählt. Zu der Nummer der
Farbe wird dann, falls diese in der halben Helligkeit
erscheinen soll, 32 addiert. Dies entspricht dem
Setzen des entprechenden Bits in der sechsten Bit-
plane. Für die Farbe Nr. 15 ergibt sich dann die
Nummer 32 + 15 also 47. Wenn Sie diese Farbe nun zum
Zeichnen gebrauchen wollen, können Sie sie wie immer
mit SetAPen bzw. SetBPen an die Vorder- bzw. Hin-
tergrundfarbe eines Rastports zuweisen.

Um den Extra-Half-Brigth Modus einzuschalten,
müssen Sie nur einen Screen der Tiefe 6 aufmachen.
Wie auch schon bei einer Tiefe von 5 ist dabei die
Auflösung auf lowres, also höchstens 320x256 Pixel
beschränkt.

164

Kapitel 8 Sonderdarstellungsmodi

TEREREREELELEKEREREERETZERTEERZELLLLERTNIRZELZIENTEENZIKELEETENZSEZEIEERZESIEEZERTELIEELEELTERZIINZIEZERZEN)
erste EEE TELLER EAE OE
ee mee REO HEE HEROES HEHEHE REE HHO HERE EOP EES EOE E ODED EOE AERO EEE TEILE EIER EEE TEUER TITELSEITE Tee
meee EOE HE OEE HEHE HEH HEHEHE HEEB EEE PETE EOE SEED OOD H CEO EO ETH OHH OHH ESET ERO H EEE EH SEO ES ORO OH EEO REO EEE
bp meer ee romero mae RHEE HEE HE THEE HOOP EEF HEHEHE COED E AHH EST EHO THERETO SOHO EDDEE EEE DE HHO ROO EH SESE SHE SES ELAS ORE DOSED
heme eer Oe meme ere EEE HE OPER ETE HEE REESE DEES HEHEHE HEE DED ETE SHRED HH OCHS ESSE OHEH EEO EH EF EO OCC HESS ORTHO EE OO EH ER

meer eH DEO EOE EHH EOE ET OTE OH EMOTE ED ESHA HEED ES EDH OOH OTEE COED EP EOE HHO HEEHE SEO TE SESE OEE EEE EH HSEO OOO ODDO OENS
bo ere eRe EEE DCT EDS ORTH EER EH EERE TOOT E SHEE EEE EEE OER ERE F EOE E HELO DEERME OT ER HEE HOLE REDE EOEE
be meee ee ee mehr He eH H EH DELETE HEHE HEC HSEEHEE EPC TEEEHETEDEEE HEC SE HEHEHE OD ETE E HSER SEEOH CC HRE FESO SHOES
hme d eed ere eC eer a HEH OEE HET SOOTHE OEO SHELF ETOH RETR EHH IT EHH EHO HEES
pee e ee ewe ree eee see EMRE HEE EEC OHH HOHE EHD CSER EEE HS EEEOOSHEHE FETCHES EH OHHH TOS EEEHEEHHSEO SEHR ECO HEHAEN FERRO EEE
Loe ste e eters ees tener renee seer eo eee e etre ne eer e ees en set ere eae ees eessererssrare tes rer ernsseasorersaesrssossssnseese

Die 64 Farben, die im Extra-Half-Bright Modus
verfügbar sind, sollten eigentlich für die meisten
Zwecke genügen. Sie sind aber noch nicht das Beste,
was Ihr Amiga zu bieten hat! Mit einigen Einschrän-
kungen ist es nämlich möglich, im HAM-Modus alle 4096
Farben nebeneinander auf den Bildschirm zu bringen.
In diesem Modus werden sechs Bitplanes bei einer
Auflösung von 320 x 200 Punkten verwendet. Die
Einschränkungen bestehen darin, daß sich zwei
horizontal benachbarte Punkte nur in einer der drei
Komponenten: Rot, Grün oder Blau unterscheiden
dürfen. Da man eine solche Farbvielfalt in der Regel
sowieso nur dazu braucht, sanfte Farübergänge zu
erreichen (z.B. um durch eine ensprechende Schat-
tierung einen 3-D Effekt zu erzeugen), ist diese Ein-
schränkung nicht so bedeutend wie man vielleicht
glauben könnte. Um zu verstehen, wie sie zustande
kommt, muß man zunächst die Farbdarstellung im HAM-
Modus betrachten. Da eine direkte Speicherung der
4096 Farbnummern in Bitplanes nicht möglich ist (man
bräuchte dafür 12 Bitplanes und ungefähr 750 KByte),
haben sich die Amiga Entwickler wieder mal einen
Trick einfallen lassen. Von den sechs Bitplanes, die
für HAM-Darstellung gebraucht werden, werden die
zwei oberen (Bitplane 5 und 6, also Bits 4 und 5) als
"Schalter" benutzt. Sie bestimmen, welche Bedeutung
den restlichen Bitplanes bei der Bestimmung der Farbe
eines Punktes zukommt. Dabei gibt es die folgenden
vier Möglichkeiten.

165

Kapitel8 Sonderdarstellungsmodi

(1) Die Bits 0 bis 3 (Bitplanes 1 bis 4) werden als
Nummer eines der Farbregister 0 bis 15 interpretiert.
Der Punkt nimmt dann die durch dieses Register
bestimmte Farbe an.

(2) Der rote und der grüne RGB-Anteil der Farbe des
Punktes werden von dem linken Nachbarn übernommen.
Der Blauanteil wird durch die Bits 0 bis 3 bestimmt
(mit 4 Bits kann man gerade die Zahlen 0 bis
15 darstellen).

(3) Der blaue und der grüne RGB-Anteil der Farbe des
Punktes werden von dem linken Nachbarn übernommen.
Der Rotanteil wird durch die Bits 0 bis 3 bestimmt.

(4) Der blaue und der rote RGB-Anteil der Farbe des
Punktes werden von dem linken Nachbarn übernommen.
Der Grünanteil wird durch die Bits 0 bis 3 bestimmt.

Diese vier Modi werden durch die folgenden vier
Kombination der Bits 4 und 5 ausgewählt:

Abb 8.1 Die Bedeutung der Bits 4 und 5 im HAM-Modus

| Bits ! Modus |

| 00 | 1 |
; Ol ı 2 |
; 10 i 3 |
; 11 ; = 4 |

166

Kapitel8 — | Sonderdarstellungsmodi

Wie sieht also die Farbzuweisung im HAM-Modus
praktisch aus? Wir wollen uns das mal an Hand
einiger konkreter Beispiele ansehen. Als erstes soll
einem Punkt einfach eine von 16 vordefinierten Far-
ben zugewiesen werden. Wie der obigen Aufzählung zu
entnehmen ist, müssen Sie dazu die oberen beiden
Bitplanes (also die oberen beiden Bits der Farbnum-
mer) auf 00 setzen, und mit den unteren vier die
Farbe als eine Zahl zwischen 0 und 15 angeben. Haben
Sie sich z.B. für die Farbe Nr. 10 entschieden,
ergibt sich der Farbwert aus:

0 + 10 = 10

Dabei wird durch die 0 der Modus 1 und durch die 10
das entsprechende Farbregister angewählt. Diese Farbe
kann dann wie schon bekannt mit SetAPen zur Vorder-
grundfarbe gemacht werden. Mit den in den früheren
Kapiteln beschriebenen Zeichenroutinen können Sie
dann beliebigen Punkten Ihrer Anzeige diese Farbe
zuordnen. : | | _ Ä :

Einfach, nicht wahr? Aber natürlich auch langwei-
lig, denn das können Sie auch mit einem normalen
Screen der Tiefe 4 machen!

Als nächstes wollen wir mal in einer Zeile von
links nach rechts einen kleinen Regenbogen zeichnen.
Dabei soll der erste Punkt von Links schwarz sein
(RGB-Zusammensetzung 0,0,0) und der letzte die Farbe
der RGB-Zusammensetzung 15,15,15 haben. Dabei soll
von links nach rechts zunächst der Blauanteil, dann
der Rotanteil und schließlich der Grünanteil bis 15
ansteigen. Insgesamt wären das 15 + 15 + 15 also 45
verschiedene Farben in einer Zeile. Nachdem Sie den
ersten Punkt auf die gerade beschriebene Art
schwarzgemacht haben, wollen Sie für den daneben
liegenden Punkt die grüne und die rote Farbkomponente

167

Kapitel 8 Sonderdarstellungsmodi

übernehmen (also O lassen !) und die blaue auf 1
setzen. Die unteren 4 Bits der Farbnummer müssen also
den Wert 0001 haben (Binärzahl 1), während die oberen
beiden 01 sein müssen. Das ergibt das folgende
Bitmuster:

01 0001

Die Farbnummer ist also:

1*2Hoch4 +1=16+1 =17

Bei den nun nachfolgenden Punkten setzen sie analog
den Blauanteil immer höher (die Farbnummern sind dann
18, 19 etc. Es verändern sich also nur die 4 unteren
Bits) bis dieser bei 15 angelangt ist. Nun ist es an
der Zeit den Rotanteil zu verändern. Die oberen Bits
müssen hierzu 10 sein, die unteren durchlaufen
wieder alle die Zahlen 1 bis 15 (also binär 0001 bis
1111). Die Farbnummer für den sechszehnten Punkt von
links ist demnach:

1*2 Hoch 5 + 1 = 32 +1 = 33

Bei den Punkten 30 bis 44 wird analog der Rotanteil
schrittweise vergrößert wobei zu beachten ist, daß
die beiden oberen Bits nun 11 sind. Auf eine ähnliche
Art und Weise werden in dem folgenden Beispielpro-
gramm 256 Farben als Linien nebeneinander darge-
stellt.

168

Kapitel 8 Sonderdarstellungsmodi

Programm 8.1 HAM

#inc lude"Display.h"
#inc lude"graphics/gfx.h"
#inc lude"intuition/intuition.h"
struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;
struct ViewPort *View;

main ()

USHORT code, i, j, h; ULONG Class;

OpenIntui();
OpenGfx();

/* Einen low-res Screen öffnen. */
Screen = (struct Screen *)MakeScr(0,0,320,250,

“HAM-Demo",6,HAM,NULL , NULL);
if (Screen == NULL)
exit(FALSE);

/* Ein Fenster auf dem neuen Screen öffnen */
Window = (struct Window *)MakeWindow(20,50,270,

100,0,0, "Ham-Demo",WINDOWCLOSE ! ACTIVATE,
MOUSEBUTTONS | CLOSEWINDOW, Screen);

if(Window == NULL) /* Fehler beim Offnen ?_ */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort; |
View = &((*(Window->WScreen)).ViewPort); —

SetRGB4(View,0,5,0,0);
/* Hintergrundfarbe schwarz */

for(i = 0; i <= 15; i++)

169

Kapitel 8 Sonderdarstellungsmodi

for(j = 0; j< 15; j+t)

SetAPen(Rast, 32+j);
Move (Rast, 1*16+j,0);
Draw(Rast, i*16+j,100);

hi
SetAPen(Rast,16+i);
Move(Rast, i*16+15,0);

ppraw(Rast, i*16+15,100);

/* Auf Close-Gadget warten und alles schließen */

Class = WaitEvent(Window,&code);
C loseWindow(Window);
C loseScreen(Screen);

Da die Farbe eines Punktes im HAM-Modus beim
Zeichnen nicht nur von der aktuellen Vorder- bzw.
Hintergrundfarbe, sondern auch von der Farbe seiner
Nachbarn abhängt, sollte man mit Prozeduren, die
ganze Figuren zeichnen (also z.B. Draw oder
DrawCircle) vorsichtig umgehen. Es ist nämlich nicht
unbedingt gesagt, daß die gesamte Figur dann in der
gewünschten Farbe erscheint. Ein weiteres Problem
ergibt sich aus der Tatsache, daß der erste Punkt von
links (also der mit der x-Koordinate 0) keinen linken
Nachbarn hat. Dies heißt, daß man seine Farbe immer
direkt, also im Modus 1, setzen muß.

170

Kapitel 8 Sonderdarstellungsmodi

Bevor wir mit der Beschreibung weiterer Darstel-
lungsmodi fortfahren, wollen wir den Bilddarstel-
lungsmechanismus noch einmal genauer unter die Lupe
nehmen. Wir wollen dabei versuchen, ein Bild ganz
ohne Zuhilfenahme von Intuition, also ohne Screens
und Fenster, zu erzeugen. Dazu müssen wir zuerst die
ViewPort- und View-Strukturen der Grafik-library und
ihre genaue Funktion untersuchen. Das gesamte Bild,
das zu einem gegebenen Zeitpunkt angezeigt wird, wird
durch die View-Struktur bestimmt. Diese umfaßt dann
mehrere ViewPort-Strukturen, die ihrerseits die ein-
zelnen Displayelemente beschreiben. Die View an sich
besagt weder etwas über die Auflösung, noch über die
Größe der Anzeige. Sie beinhaltet lediglich Informa-
tionen über die Anordnung der Viewports. So kann das
Bild zu jedem Zeitpunkt aus mehreren Ausschnitten
(Viewports) verschiedener Auflösung und Größe beste-
hen. Genau das sehen Sie, wenn Sie mehrere Screens
verschiedener Auflösung übereinander schieben. Jedem
Screen ist nämlich eine ViewPort-Struktur, die seine
Eigenschaften bestimmt, zugeordnet. Diese wird dann,
wenn der Screen sichtbar wird, von Intuition an die
Liste der ViewPort der aktuallen View angehängt. Soll
der Screen wieder verschwinden, dann. wird dieser
Eintrag einfach wieder entfernt. Neben View und
ViewPorts sind für den Aufbau eines Bildes noch zwei
weitere, aus früheren Kapiteln schon bekannte, Struk-
turen notwendig: die BitMap- und die RastPort-Struk-
tur. Die erste stellt die Verbindung zu dem Spei-
cherbereich her, in dem die Bilddaten liegen, während
die zweite bekanntlich den "Zeichenstift" beschreibt.
Beide gehören zu einem einzelnen ViewPort, nicht zu
einer View. Die Verbindung zwischen dem ViewPort und

171

Kapitel 8 Sonderdarstellungsmodi

der BitMap stellt eine weitere Struktur, nämlich
RasInfo her. So beinhaltet ViewPort einen Zeiger auf
RasInfo und RasInfo einen Zeiger auf die BitMap. Die
Adresse der BitMap ist selbstverständlich auch im
RastPort zu finden. Einen Überblick über die be-
schriebenen Beziehungen dieser Strukturen können Sie
sich auch anhand der nachfolgenden Abbildung ver-
schaffen:

Bild 8.1 - Die Verknüpfung der View-Strukturen.

Aus der obigen Beschreibung ergibt sich nun die
folgende Vorgehensweise beim Erstellen einer eige-
nen Anzeige:

(1) Erzeuge und initialisiere eine View-Struktur.

(2) Für jedes Element der Anzeige erzeuge und initia-
lisiere eine ViewPort-Struktur.

(3) Für jede ViewPort-Struktur erzeuge eine RasInfo-
Struktur und trage ihre Adresse in ViewPort ein.

172

Kapitel 8 Sonderdarstellungsmodi

(4) Für jedes Anzeigeelement muß eine BitMap (die
eigentliche BitMap-Struktur und der dazu gehörige
Speicher für Bilddaten) erzeugt und in die ent-
sprechende RasInfo-Struktur eingetragen werden.

(5) Damit in jedes Element der Anzeige auch mit Hilfe
der Grafikroutinen der Grafik-Library gezeichnet
werden kann, müssen noch RastPort-Strukturen
erzeugt und initialisiert werden. In jeden Rast-
Port muß dann die Adresse der dazu gehörigen Bit-
Map eingetragen werden. Falls Sie kein Rastport
erzeugen, müssen Sie durch direktes Schreiben in
den Bilddatenspeicher zeichnen, was recht mühsam
ist.

(6) Bringe die eigenen View zur Anzeige.

Dies ist selbstverständlich nur ein grober
"Schlachtplan" der noch näherer Erläuterung bedarf.
Wir werden allerdings dabei auf die genaue Beschrei-
bung der einzelnen recht umfangreichen Strukturen im
Rahmen dieses Kapitels verzichten. Deren genauen
Beschreibung finden Sie im Anhang B. Der erste Punkt,
die Initialisierung der View-Struktur, ist recht
einfach. Sie brauchen nur eine Variable des Typs
struct View zu vereinbaren:

struct View View;

und übergeben Ihre Adresse wie folgt an die Prozedur
InitView:

InitView(&View);

173

Kapitel8_ Ä Sonderdarstellungsmodi

Diese trägt in alle Felder der Struktur die Werte 0
bzw. -1 ein. Als nächstes werden analog, diesmal mit
Hilfe der InitVPort-Prozedur, die ViewPorts erzeugt.
Sie müssen dazu noch einige Felder der ViewPort-
Strukturen wie folgt initialisieren:

DWitdh,DHeight:
Gewünschte Höhe und Breite des neuen Viewports.

Dxöffset, DyOffset:
Die Lage des neuen Viewports im Bezug auf die
linke obere Ecke der Anzeige. Zwischen zwei Viewports
muß immer mindestens eine Bildzeile Abstand gelassen
werden. Das heißt auch, daß Viewports zwar unterein-
ander, nie aber nebeneinander liegen können.

Modes:
Der Anzeigemodus, also die Auflösung und die gewün-
schten Sondermodi. Hier können Sie die gleichen Werte
wie im Kapitel 2 für das ViewModes-Feld der
NewScreen-Struktur beschrieben, eingesetzt werden
(Also z.B. HIRES ! MAM).

Co lorHap:
Hier wird die Adresse einer ColorMap-Struktur, die
die RGB-Zusammensetzung der für den Viewport gültigen
Farben beinhaltet, eingetragen.

RasInfo:
Die Adresse der dazu gehörigen RasInfo-Struktur. Wie
diese initialisert werden muß, wird später beschrie-
ben.

Eine korrekt initialisierte ColorMap-Struktur be-
kommen Sie, wenn Sie die Routine GetColorMap(n)
aufrufen. Sie liefert als Funktionsergebnis die
Adresse einer solchen, vollständig initialiserten
Struktur, die n Farben aufnehmen kann. An die

174

Kapitel8 — = Sonderdarstellungsmodi

Adresse ,die durch das ColorTable-Feld dieser Struktur
angegeben wird, können Sie dann die gewünschten Farb-
werte kopieren. Die kann im Programm etwa wie folgt
aussehen: \ |

struct ColorMap *CHap;
oee3e5e¢e#eeee

eoeee#ee##te @

CMap = GetCo TorHap(4);
CopyMem(Colors,CMapB>ColorTable,8);

Beachten Sie dabei, daß die Anzahl der zulässigen
Farben von der Tiefe der Bitmap Ihres Viewports
abhängt (siehe unten). Um den Viewport ganz fertig-
zustellen, fehlt nur noch die RasInfo-Struktur. Bevor
Sie in den Viewport eingetragen wird, müssen die
folgenden Felder initialisiert werden: |

Next:
Dieses Feld hat nur für den DualPlayfield-Modus eine
Bedeutung und sollte sonst unbedingt auf NULL
gesetzt werden. |

RxOffset, RyOffset:
Die Position der linken oberen Ecke der Bitmap in
Bezug auf die linke obere Ecke des Viewports. Diese
Felder können, wie Sie später sehen werden, sehr gut
zum Scrollen benutzt werden.

BitMap:
Hier wird die Adresse der BitMap-Struktur des View-
ports eingetragen. Die BitMap-Struktur, deren Adresse
in das letzte Feld von RasInfo eingetragen werden
muß, beinhaltet Angaben zur Tiefe, Breite und Höhe
der Bitmap, sowie eine Tabelle mit den Adressen der

175

Kapitel 8 Sonderdarstellungsmodi

Bitplanes (also der Speicherbereiche, wo die eigent-
liche Bildinformation gespeichert ist). Um sie zu
erstellen müssen Sie zweierlei tun: Zuerst rufen Sie
die Prozedur InitBitMap mit der Adresse einer nicht
initialisierten BitMap-Struktur (BMap), der Tiefe
(Depth), der Breite in Pixel (Width) und der Höhe
(Height) wie unten dargestellt, auf.

InitBitMap(BMap,Depth,Width,Height);

Wichtig ist, daß dieser Aufruf lediglich die Felder
der Struktur initialisiert, und keine neue BitMap-
Struktur erzeugt. Auch die Allozierung des für die
Bitplanes benötigten Speicherbereiche und das Eintra-
gen ihrer Adressen in das Planes[]-Feld der Struktur
müssen Sie selbst in die Hand nehmen. Dies geschieht
am besten in einer for-Schleife mit Hilfe der schon
bekannten AllocMem-Routine.

for(i = 1; i <= Depth; i++)
BMap->P lanes[i-1]=A1locMem((Width*He ight),
MEMF CHIP /MEMF CLEAR));

Vergessen Sie dabei nicht, daß diese Speicherbe-
reiche im CHIP-RAM liegen miissen. Es ist auch durch-
aus sinnvoll, durch Setzen des MEMF CLEAR-Flags den
Speicher gleich mit Nullen zu füllen (sonst werden
Sie nach dem Einschalten des Viewports irgendei-
nen "Müll" zu sehen bekommen). Nachdem alle zu der
View gehörenden Strukturen wie beschrieben erstellt
wurden, kann sie endlich auf den Bildschirm gebracht
werden. Dazu sind nur noch die folgenden drei Aufrufe
notwendig:

176

Kapitel 8 Sonderdarstellungsmodi

MakeVPort(&View,&ViewPort);
MrgCop(&View);
LoadView(&View);

Die ersten beiden sorgen dafiir, daB die Befehls-
listen für den Coprozessor (Copperlisten), die für
die Bilddarstellung notwendig sind, erstellt werden
(siehe Kapitel 10). Eingeschaltet wird unsere View
mit dem letzten Befehl. Er bewirkt, daß alles was
bisher auf dem Bildschirm zu sehen war, verschwindet
und durch unsere, zunächst leere Anzeige ersetzt
wird. Zum Zeichnen in den Viewports können Sie
entweder direkt in die Bitplanes schreiben, oder zu
jedem Viewport einen eigenen Rastport erzeugen, indem
Sie alle Grafikbefehle anwenden können. Zur Erstel-
lung des Rastports übergeben Sie einfach die Adresse
einer RastPort-Struktur an die InitRastPort-Prozedur,
und tragen dann in das BitMap-Feld der Struktur die
Adresse der zu dem Viewport gehörenden BitMap.

Das sieht dann im Programm z.B. so aus:

InitRastPort(&Rast);
Rast.BitMap = ViewPort.RasInfo.BitMap;

An dieser Stelle noch ein Tip. Falls Sie irgend-
wann wieder zu der alten Anzeige (also z.B. zum Work-
bench-Screen) zurückkehren wollen, dann sollten Sie
sich vor dem Aufruf von LoadView die Adresse der
aktuellen View merken. Sie können sie wie folgt aus
der GfxBase-Struktur auslesen:

oldView = GfxBase->ActiView;

177

Kapitel 8 . | Sonderdarstellungsmodi

Neben der Wiederherstellung des alten Bildschirmin-
haltes sollten Sie auch an die Freigabe des nicht
mehr benötigten Speichers denken. Dabei handelt es
sich um die Bitplanes, die ColorMaps und die Copper-
listen. Die Deallozierung der Bitplanes geschieht in
einer zu der Allozierung analogen Weise mit Hilfe
der FreeMem-Prozedur. Die ColorMaps und die Copper-
listen der einzelnen Viewports können folgendermaßen
mit Hilfe der FreeColorMap und FreeVPortCopLists Rou-
tinen freigegeben werden.

FreeVPortCopL ists(&ViewPort);
FreeColorMap(&Co Map);

Als letztes muß nur noch die Copperliste der gesam-
ten View mittels FreeCprList so gelöscht werden:

FreeCprList(View.LOFCprList);

Zum Abschluß dieses recht langen Abschnittes ein
Beispielprogramm. Es erzeugt eine View (V) mit zwei
untereinanderliegenden Viewports (Viewl und View2)
verschiedner Auflösung (320 x 200 und 640 x 200).
Interessant ist dabei die Tatsache, daß beide View-
ports die gleiche RasInfo-Struktur, also auch die
gleiche Bitmap haben. Dadurch wird alles, was in den
einen Viewport gezeichnet wird, auch im anderen
sichtbar ist, allerdings in einer anderen Auflösung.
Um diesen Effekt zu demonstrieren, wird durch die
Programmeigene Prozedur CreateDisplay in den eben-
falls gemeinsamen Rastport der Vieports eine aus
vielen Ellipsen bestehende Figur langsam gezeichnet.
Sie können dies deutlich beobachten, da die Figur in
den beiden Viewports gleichzeitig entsteht. Ä

178

Kapitel 8 | Sonderdarstellungsmodi

Zur Erzeugung und Freigabe der Bitmap benutzt das
Programm Prozeduren, die wir in einem späteren Ab-
schnitt im Zusammenhang mit einem neuem include-File
vorstellen werden.

Programm 8.2 Viewports

#include "exec/types.h"
#include "exec/memory.h"
#include "graphics/gfx.h"
#include "graphics/view.h"
#include "graphics/copper.h"
#include "DisplayTools.h"
#define DEPTH 1
#define WIDTH 300
#define HEIGHT 120
#define X0 160
#define YO 130

struct View YV, *oldView;
struct ViewPort Viewl, View2;
struct ColorMap *CMap;
struct RasInfo RInfo;
struct RastPort Rast;
struct BitMap *BMap;
short Colors [] = {0x00A, 0x040};

/* Farbtabelle: Blau und Grün */
ma in()

OpenGFfx();

BHap = MakeBitMap(DEPTH, WIDTH, HEIGHT);
/* BitMap erzeugen */

179

Kapitel 8 Sonderdarstellungsmodi

/* Initialisiere die View und Viewport
Strukturen beider Viewports */

InitView(&V);
InitVPort(&Viewl);
V.ViewPort = &Viewl;

/* ViewPort und View verknüpfen */
InitVPort(&View2);
Viewl.Next = &View2;

/* Nächsten Viewport anknüpfen */

/* RasInfo initialisieren */
RInfo.BitHap = BMap;
RInfo.Rx0ffset = 0;
RInfo.RyOffset = 0;
RInfo.Next = NULL;

/* Farbtabelle erstellen */
CMap = GetColorMap(2);

/* Allozieren */
CopyMem(Colors,CMap->ColorTable,sizeof(Colors));
/* Farben eintragen */

/* Alles in den ersten ViewPort und */
Viewl.RasInfo = &RInfo;
Viewl.ColorMap = CMap;
Viewl.DWidth = WIDTH;
Viewl.DHeight = HEIGHT;

/* in den zweiten ViewPort eintragen */
View2.RasInfo = &RInfo;
View2.ColorMap = CMap;
View2.DWidth = WIDTH;
View2.DHeight = HEIGHT;
View2.Dx0ffset = X0;

180

Kapitel 8 Sonderdarstellungsmodi

/* ViewPort nach unten versetzt */
View2.DyOffset = YO;
View2.Modes = HIRES;

/* Copperliste für die Viewports erzeugen */
MakeVPort(&V,&Viewl);
MakeVPort(&V, &View2);
MrgCop(&V);

/* Einen Rastport erzeugen und initialisieren */
InitRastPort(&Rast);
Rast.BitMap = BMap;

/* Aktuelle View retten und die eigene in
Vordergrund bringen, */

oldView = GfxBase->ActiView;
LoadView(&V);

/* etwas in den neuen Viewport zeichnen */
CreateDisplay(&Rast);

/* und den alten Zustand wiederherstellen x/
LoadView(oldView);
FreeAll();

FreeAll{)

/* Copperlisten freigeben */
FreeVPortCopl ists(&View1);
FreeVPortCopLists(&View2);
FreeCprList(V.LOFCprList);

/* BitMap samt Bitplanes freigeben */
FreeBitMap(BMap);

181

Kapitel 8 . Sonderdarstellungsmodi

/* Farbtabelle freigeben */
FreeCo lorMap(CMap);

}

CreateDisplay(Rast)

struct RastPort *Rast;

{ ,%$
int 1,J ;

/* Text ausgeben */
Hove(Rast,70,8);
SetAPen(Rast,1);
Text(Rast, "Hallo hier bin ich !!",20);

/* Einige Ellipsen zeichnen */
for(i = 0; i<100; i++)

DrawE llipse(Rast, 150,70, 1,50-i/2);
for(j = 0; j<6000; j++);

182

Kapitel8_ Sonderdarstellungsmodi

DERKKKEKZEIKEIKEKEEZRLELELKIKENEITIZITT
Da se a ee ee

DRZELZLLTELLETEELTITIEFLERII IT TEE

DERLKELTERIIIIIIIIEITETIETTEIE TIERE

::5.: Manip lieren: eines: Viewports: ScroliVPort
IIEETEITEIRTIITTEIDERTT

...
IREREIEITE

IKZIEITTT
Boe ees ee be oe eons a ee poses eer serarenseaesavose assy sess pone o voee

Wenn man sich die ViewPort-und die RasInfo Struktu-
ren näher anschaut, sieht man, daß es durchaus
interessant sein könnte, einige ihrer Felder zu
modifizieren. Dabei sind vor allem DxOffset, DyOffset
(in ViewPort) bzw. RxOffset, RyOffset (in RastPort)
gemeint. Durch Veränderung dieser Felder kann die Po-
sition des Viewports innerhalb der View bzw. der
Bitmap innerhalb des Viewports verändert werden.
Dadurch lassen sich sehr leicht fließende Scrollef-
fekte erzielen. Dieses Verfahren wird auch von Intui-
tion beim Verschieben und Ubereinanderschieben von
Screens angewandt. Der Vorteil gegenüber dem bekann-
ten Scrolling mittels ScrollRaster liegt darin, daß
hierbei Teile des Bildes zwar vom Bildschirm ver-
schwinden können, dabei aber nicht gelöscht werden.
Sie können also durch Scrollen um den gleichen Betrag
in umgekehrte Richtung den alten Bildschirminhalt
wieder herstellen. Das Verändern der Komponenten des
Viewports allein reicht allerdings nicht ganz aus,
um eine Veränderung des Bildes zu erzielen. Wenn Sie
es versuchen, werden Sie feststellen, daß sich nichts
tut. Das liegt daran,daß sich die Hardware (der
Copper) die für die Bilderstellung relevante Informa-
tion nicht direkt aus den Datenstrukturen, sondern
aus den daraus aufgebauten Copperlisten holt. Um
diese zu modifizieren, müssen Sie nach jeder Ver-
änderung in der ViewPort- bzw. RasInfo-Struktur
ScrollVPort mit der Adresse der ViewPort-Struktur
aufrufen. Ein Beispiel für Scrollen nach dem oben
beschriebenen Prinzip werden Sie in dem nächsten
Programm finden. |

183

Kapitel 8 Sonderdarstellungsmodi

“or...

In diesem Modus besteht ein Viewport aus zwei
Schichten (Playfields). Eine von ihnen befindet sich
dabei im Vordergrund, die andere im Hintergrund. Das
Besondere ist, daß ein beliebiger Pixel jeder Schicht
durchsichtig gemacht werden kann. Es kann auch jedes
Playfield unabhängig vom anderen beschrieben werden.
Das heißt, daß Sie etwas in die vordere Schicht
schreiben können, ohne den Inhalt der hinteren
Schicht an der gleichen Position zu löschen. Wenn Sie
das erste Playfield später an dieser Stelle wieder
durchsichtig machen, kommt der unveränderte Inhalt
des Hinteren wieder zum Vorschein. Dies ist besonde-
res für Spieleprogrammierung sehr nützlich. Sie kön-
nen z.B. die vordere Schicht bis auf einen kleinen
durchsichtigen Kreis schwarz machen und das eigent-
liche Bild in die hintere Schicht zeichnen. Wenn Sie
nun eines der beiden Playfields Scrollen, entsteht
der Eindruck eines bewegten Fernrohres.

Wir wollen zuerst die Einrichtung eines Dual-
Playfield-Displays auf der Viewport-Ebene betrachten.
Später werden Sie anhand eines Beispielprogramms
sehen, wie sich ein Dual-Playfield Screen öffnen
läßt. Ein Dual-Playfield Viewport unterscheidet sich
von einem "normalen" in zwei Punkten:

(1) Das DUALPF-Bit des Modes Feldes der ViewPort-
Struktur ist gesetzt. Falls Sie wollen, daß nicht
das erste, sondern das zweite Playfield im Vorder-
grundliegt, müssen Sie auch das Bit setzen.

(2) Die ViewPort-Struktur beinhaltet zwei RasInfo-
Strukturen, von den jede die Adresse einer anderen

184

Kapitel 8 Sonderdarstellungsmodi

Bitmap beinhaltet. Die Adresse der ersten RasInfo-
Struktur steht wie immer in dem RasInfo-Feld der
ViewPort-Struktur, die Adresse der zweiten in dem
Next-Feld der ersten. Jede der RasInfo-Strukturen ist
für eines der beiden Playfields stellvertretend (da-
her auch die verschiedenen Bitmaps, für jedes Play-
field eine eigene).

Da man gewöhnlich in jede Schicht etwas zeichnen
oder schreiben möchte, sollte man auch zwei RastPort-
Strukturen erzeugen (siehe Abschnitt 5). Jede dieser
Strukturen beinhaltet einen Zeiger auf die Bitmap des
entsprechenden Playfields. Da sich der Zeiger auf die
ColorMap-Struktur in der ViewPort-Struktur befindet,
ist sie für beide Playfields gemeinsam da. Damit
trotzdem jedes Playfield seine eigenen Farben benut-
zen kann, ist die erste Hälfte der Farbtabelle für
das erste, und die Zweite für das zweite Playfield
reserviert. Wenn also das erste Playfield die Tiefe 1
(also 2 Farben) hat, dann wird die Farbe 1 des
zweiten Playfields in Wirklichkeit die Farbe 3 sein.
Denken Sie auch daran, daß die Farbe 0 bei bei den
Playfields Duchrsichtigkeit bedeutet. Die maximale
Anzahl der Farben eines Playfields ist 8, da die
Summe der Tiefen der Playfields, also die Tiefe der
gesamten Anzeige, höchstens 6 sein darf. Je nach
Gesamttiefe der Anzeige können die einzelnen Play-
fields nur folgende Tiefen haben:

185

Kapitel 8 Sonderdarstellungsmodi

Abb. 8. Die Bitplaneverteilung bei Dual-Playfield

| Gesamt | Playfield 1 Playfield 2
| Tiefe | Tiefe Tiefe

1 1 0
2 1 1
3 2 l

| 4 | 2 2

| SY 3 | 2 |
a 3 | 3 |

Zum Schluß noch einmal ein Überblick darüber, was
zur Erstellung eines Dual- “Playfield Viewports getan
werden muß:

(1) Eine ViewPort-Struktur mit gesetzen DUALPF-Bit
erzeugen.

(2) Zwei Bitmaps (BitMap-Strukturen + allozierte Bit-
planes) für die beiden Playfields erzeugen. Die
Bitmaps müssen nicht unbedingt gleich groß sein.

(3) Zwei RasInfo-Strukturen erstellen, über das Next-
Feld verketten und die Adressen der Bitmaps ein-
tragen.

(4) Die Adresse der ersten RasInfo-Struktur in den
Viewport eintragen.

(5) Zum Zeichnen für jedes Playfield einen Rastport
erzeugen. |

186

Kapitel 8 Sonderdarstellungsmodi

Bei dieser Aufzählung haben wir natürlich nur das
erwähnt, was speziell für den Dual-Playfield Modus
wichtig ist (siehe Abschnitt 5).

.....

7. Öffnen eines Dual-Playfield Screens Kesunueroervernes Pr Per Se eee VEE SET IEEE TIVO LUS CSUR SESEASS USES. - (SUR D De ee En BEE Op rin DE TITTLE En Be
DEO e meme RHEE OH HEE HE HH FORE RESO ODER OHH ETOP EHUD DEH EEEE REEDED TH HEP EDHER SHE DORE DEO EES EDS

Cee eee mae HO HEH DAERAH EE EHTE MEE OTEHREHHORESE HEEL EDHO OTE Zr EH SASDEEESEEH ETD ED POH EDR EOR DORE ES SCHED HETERO ROEDER ORE DOO DES
POOR ROMs HMO eo eee HOO HD OHHH EE DEH SEH EE EHO THE REPO TUE DEREN EITHER EEE TEE EM EEDED

COCO E RHO TEE E PRPS REEDS ESTEE SHOE FOO EHS E HEP ECHO ETE OEE EEE PEO DD HEHEHE OEL HEHEHE EOEEH ESR TEES OERD
COOPERATE EHS OEE HE EOD POT DETECT ESES HEHE TEESE H ODED EEE OSOEES EHUD SUEDE TH EOE SETHE RESO HERD EDOED

Im Allgemeinen ist es bequemer, mit Screens und
Fenstern, als mit Viewports zu arbeiten. Dies gilt
auch für den Dual-Playfield-Modus. Wenn Sie sich an
Kapitel 2 erinnern, dann wissen Sie noch, daß in dem
ViewModes-Feld der NewScreen-Struktur, die die Dis-
playeigenschaften bestimmt, auch das DUALPF-Flag ge-
setzt werden kann. Man kommt da in Versuchung, dieses
Flag erst einmal zu setzen, und zu hoffen, daß nach
dem Aufruf von OpenScreen ein Dual-Playfield-Screen
geöffnet wird. Leider ist die Sache aber nicht ganz
so einfach. Es wird zwar das entsprechende Flag im
Viewport des Screens gesetzt und eine zweite RasInfo-
Struktur erzeugt und angehängt, aber keine zweite
Bitmap erstellt. Die OpenScreen-Routine ignoriert
auch die Tatsache, daß im Dual-Playfield-Modus die
Gesamttiefe der Anzeige unter die Playfields verteilt
wird, und trägt eine Bimap der Gesamttiefe in die
erste RasInfo-Struktur ein. Um einen Dual-Playfield-
Screen zu erzeugen, müssen Sie also die Erstellung
und das Eintragen der Bitmaps selbst in die Hand
nehmen. Dazu setzen Sie beim Öffnen des Screens
zusätzlich das CUSTOMBITMAP-Flag des Type-Feldes der
NewScreen-Struktur und tragen die Adresse der Bitmap
des ersten Playfields in das Bitmap-Feld ein. Dazu
müssen Sie die Bitmap selbstverständlich vorher
erstellt haben!

187

Kapitel 8 Sonderdarstellungsmodi

Damit eine genügend große Farbtabelle erzeugt wird,
geben Sie als Tiefe die Gesamttiefe, also die Summe
der Tiefen der Playfields an. Ist der Screen ge-
öffnet, so muß nur noch die Adresse der Bitmap des
zweiten Playfields (sie muß vorher natürlich auch
erstellt werden !) in die zweite RasInfo-Struktur
des Viewports des Screens eingetragen werden. Damit
das System die zweite Bitmap wahrnimmt, müssen Sie
zum Schluß noch die ScrolIVPort-Prozedur aufrufen.
Wenn Screen ein Zeiger auf den neuen Screen ist, dann
sieht es so aus:

Screen->ViewPort. RasInfo->Next->BitMap = BitMap2;
ScrolIVPort(&(Screen->ViewPort));

Die RastPort-Struktur, die in der Screen-Struktur
enthalten ist, gehört selbstverständlich zu dem er-
sten Playfield. Daher sollten Sie sich einen zweiten
Rastport für das zweite Playfield erzeugen. Da das
Offnen eines Dual-Playfield-Screens recht mühsam ist,
haben wir in dem am Ende des Kapitels abgedruckten
include-File eine Routine geschrieben, die dies für
Sie tut. Sie benutzt zum Öffnen des Screens die
MakeScreen-Routine aus dem include-File Display.h aus
dem zweiten Kapitel.

Im nachfolgenden Beispielprogramm benutzen wir
diese Routine, um einen Dual-Playfield Screen zu
Öffnen. Dann wird in jedem Playfield ein Gitter aus
kleinen Quadraten erzeugt. Diese Gitter werden dann
hin und her gescrollt. Dabei können Sie sehr gut
beobachten, daß das eine Gitter sich immer vor dem
anderen befindet. Beim Scrollen benutzen wir die im
vorigen Abschnitt besprochene Methode des Veränderns
der X und Y-Offsets eines Viewports.

188

Kapitel 8 Sonderdarstellungsmodi

Programm 8.3 Dual-Playfield

#inc Iude"graphics/gfx.h"
#inc Iude" intuition/intuition.h"
#inc lude"stdio.h"
#inc lude"DisplayTools.h"

struct Screen *Screen;
struct RastPort *Rastl, *Rast2;

main ()

short n,J;
long i;

OpenIntui(); OpenGfx();
/* Einen low-res Screen öffnen. */
Screen = (struct Screen *)MakeDPFScr(0,0,320,250,

"Dua IPlayfield",4,NULL,NULL,&Rast1,&Rast2);

/* Ein Durchsichtiges Viereck im Playfield 1 an
der Mausposition */

SetAPen(Rast1,1);
SetAPen(Rast2,1);
for (i = 5; i <= 15; i++)

for (j = 3; j <= 12; j++)

RectFil](Rast1,15*i, 15*j,15*i+8,15*j+8);
RectFill(Rast2,15*1+5,15%j+5,15*1+12,15*j+12);

;

for (i = 0; i <= 5; itt)

vor (j = 0; j <= 50; j+t)

189

Kapitel 8 | Sonderdarstellungsmodi

(Screen->ViewPort).RasInfo->Next->Rx0ffset += 1
ScrollVPort(&(Screen->ViewPort));

.

DB | | for (j = 0; J <= 100; j++)
(Screen->ViewPort).RasInfo->Next->Rx0ffset -= 1;
ScrollVPort(&(Screen->ViewPort)); —

for (j = 0; j <= 50; j++)

(Screen->ViewPort).RasInfo->Next->Rx0ffset += 1
ScrolIVPort(&(Screen->ViewPort));

S
e

4

Fi

/* Screen schließen */
CloseDPFScreen(Screen);

}

Das Beispielprogramm und die obige Beschreibung
bezogen sich auf einen Screen. Was ist aber wenn man
im Dual-Playfield Modus die Vorteile der Fenstertech-
nik nutzen will (Menus, IDCMP, etc.) ? Nun, da ein
Fenster weder einen eigenen Viewport noch (in der
Regel) eine eigene Bitmap besitzt, kann man verständ-
licherweise kein Dual-Playfield-Fenster auf einem
normalen Screen öffnen. Andererseits spricht aber
nichts dagegen, ein Fenster auf einem Dual-Playfield
Screen zu öffnen. Beachten muß man dabei nur, daß
Rahmene lemente bzw. Gadgets nicht die Farbe 0 haben,
also nicht durchsichtig sind.

190

Kapitel 8 Sonderdarstellungsmodi

POSTOTITTESISECTTORTESSETETESESESTRETEESITET TORT STETESESET TITEL ETT EE EE TET ee Ro cccccccccscccceccecsseccwecsccccerocsenesaccccerceescercsesesccccccencseccecre Pciasccecccccctcascdsvcccccccccsuccsccccreccsccceascrcee DL ecccccdccnccccc tne Gre sccc ccs c ces eccesteasetsetceevercccnccsccsatserccsceneene

DLIILZIRETTT 2eeeeee es
RO ee remem E He eH Rae Eee HHH EE DEERE EE EO SHER OES EDS H SEH EO EH EER OR EHS DDEBOL OSE ER OE EDE
Deore EEE TEUFEL ET FO ODOUR STORES EE OED
poem neun ORO HEEFT POR HHO OEE RHEE EHR O LEDER ESO CHER EEO TEE TORI EEE ET ET EEE EOD
bP mdm eee eee HEHEHE HET EHEH OSE H EMOTE OT EEEH EPH SESE OSE HEHEHE ODED OEE DESH EE EED OO HEEE
boar ee es vee s eens er sere s doer stor seeereesorsreeaeseesssesasretsrerotessseevessossges

Die Größe des Bildes, das auf dem Bildschirm zu
sehen ist, ist wie Sie bereits wissen, auf höchstens
620x400 Pixel begrenzt. Die Betonung liegt dabei
allerdings auf den Zusatz "das zu sehen ist". Wenn
Sie mit eigenen Viewports oder mit Screens mit einer
eigenen Bitmap arbeiten, dann kann Ihr Bild unabhän-
gig von der Auflösung bis zu 1024x1024 Pixel groß
sein. Welcher Teil des Bildes gerade gezeigt wird,
können Sie durch die RxOffset und RyOffset-Felder der
zugehörigen RasInfo-Struktur (siehe Programm 8.3)
bestimmen. Da diese beiden Felder die Lage der Bitmap
innerhalb des Viewports angeben, können Sie durch
Angabe entsprecheder Werte einen beliebigen Aus-
schnitt zur Anzeige bringen. Diese Technik ist beson-
deres für sehr schnelles fließendes Scrolling, wie es
etwa bei Action-Spielen benötigt wird, sehr gut
geeignet. Das entscheidene dabei ist, daß nicht immer
wieder nach jedem Scrollschritt das Bild am Rande
aufgebaut werden muß.

5 14 rm ver... Lan Tere v rs
Ver TER TR

PECREREPEPESERSECESRCECOCSS ESE ECE REE EES CECE SEE CELOS Ee CECE CESS CORE Eee SEE Eee eee.
eRe eee eee eee eee eee eee ee ee eee ee ee eee eee eee eee eee eee eee eee eee ee ee eee)
ECP Cee PEPECEeCCCee eee ee eee ee eee ee eee eee eee Pee e Seer Cee eee Eee eee sey
CCH eee ee ee ested eT Here CEE EE EEEE CRETE SES EERE DB OOED
PETTITTE RET CRE eee eRe eX eee Pere ee eee Se ees
EIER TEIRERT TEREEENETEE TE SEREARER. LEED eee uno. u... ae cone
eres 9 eee) oe . ° on yoo
See, Pee! oe . . . ome og.
ZELIZEr? 40 Boe oe . | Be of oR.
pe ecesaWecceneengeeeeer oe eocee boom ceesene eevee tes
PCCP OOOO E ERR H oer RETO HHH EOS EH EEO EE EN Se HE DH DO MEER OEE DS OEEE OH ERS
POOH OMe a DORE e em ee EM HOHE H EH OO HOE DFE E DEH EH EEEEH EMER DEE EEDE

PRPC PHA O EOE H EHH DEH E EH OEE EH EEO SES EERE OHH E DEERE SORES OCHO eH OCR O EE
PROPOR e OEE E HEE RHEE EEHE TSHR DEO DEH ED HOE FORE EEEH EH EE OEE eEEHE
POO a teem een een ee

Dieses include-File beinhaltet Prozeduren, die
Ihnen das Arbeiten mit den verschiedenen Sondermodi
und miteigenen Viewports erleichtern. Die erste,
MakeBitMap dient dazu, eine Bitmap der Tiefe Depth,
der Höhe Height Zeilen und der Breite Width Pixel zu
erstellen und gibt einen Zeiger auf die BitMap-
Struktur zurück. Dabei wird auch der für die

191

Kapitel 8 Sonderdarstellungsmodi

Bitplanes notwendige Speicher alloziert und in das
Planes-Feld der Struktur eingetragen. Um eine so
erstellte Bitmap samt Bitplanes wieder freizugeben,
können Sie die nächste Routine: FreeBitMap benutzen.
Ihr wird lediglich der Zeiger auf die BitMap-Struktur
übergeben.

Die Routine MakeDPFScr hilft Ihnen, einen Dual-
Playfield-Screen wie in Abschnitt 7 beschrieben zu
Öffnen. MakeDPFScreen gibt als Funktionsergebnis die
Adresse des fertigen Dual-Playfield-Screens zurück
und schreibt in Rastl und Rast2 die Zeiger auf die
Rasports der beiden Playfields. Als Tiefe müssen Sie
die Gesamttiefe, übergeben. Zum schließen eines so
erzeugten Screens haben wir die CloseDPFScreen Proze-
dur bereitgestellt. Zum Abschluß noch eine Übersicht
über die 4 Routinen und ihre Parameter:

Eine Bitmap erzeugen.

MakeBitMap(Depth, Width, Height)
int Depth, Width, Height;

Eine Bitmap freigeben.

FreeBitHap(BMap)
struct BitMap *BMap;

Einen Dual Playfield Screen 6ffnen.

HakeDPFScr (x, ¥, w, h, Name, d, flags,
font, Rast1,Rast2)
struct RastPort *(*Rast1), *(*Rast2);
short X, ¥, Ww, h, d;
LONG flags, font;
char *Name ;

192

Kapitel 8 Sonderdarstellungsmodi

‚Einen Dual-Playfield Screen schließen.

CloseDPFScreen(Screen)
struct Screen *Screen;

Programm 8.4 Dual-Playfield

#include "graphics/gfx.h"
#include "graphics/gfxbase.h"
#include "exec/memory.h"
#include "Display.h"#include "stdio.h"

MakeBitMap(Depth, Width, Height)

int Depth, Width, Height;

struct BitHap *BMap;
int I;

BMap = AllocMem(sizeof(struct BitHap),NULL);
if (BMap == NULL)
exit(FALSE); /* Fehler */
/* BitMap-Struktur initialisieren */
InitBitHap(BMap, Depth, Width, Height);

Width = (Width +7) /8;

/* Speicher fiir alle Bitplanes der Bitmap
allozieren */

for(i = 1; i <= Depth; i++)
if ((BMap->P lanes[i -1]=AllocMem((Width*He ight),

MEMF CHIP !MEMF CLEAR)) == NULL)
exit(FALSE); 7 /* Fehler beim allozieren

einer Bitplane */
return(BMap); |

193

Kapitel 8 Sonderdarstellungsmodi

FreeBitMap(BMap) /* Gibt den Speicher einer */
Bitmap samt Bitplanes */

/* frei */

+

struct BitMap *BMap;

int 1;

if(BMap == NULL) exit(FALSE);

/* Bitplanes freigeben */
for(i = 0; i < (BMap->Depth); i++)
FreeMem(BHap->P lanes[i], (BHap->BytesPerRow)*

(BMap->Rows));

/* BitMap Struktur freigeben */
FreeMem(BMap,sizeof(struct BitHap));

MakeDPFScr (x, y, w, h, Name, d, flags, font,
Rast1, Rast2)

_ struct RastPort *(*Rast1), *(*Rast2);
short X, Yı w, h, d;
LONG flags, font;
char — *Name ;

struct Screen *Screen;
struct BitMap *BitMapl, *BitMap2;
short i,j, depth;

194

Kapitel 8 Sonderdarstellungsmodi

depth = d / 2+d % 2; |
printf(" depth %d \n",depth);

/* Bitmaps für die Playfields erzeugen */
BitMapl = MakeBitMap(depth,w,h);
BitMap2 = MakeBitMap(d/2,w,h);

Screen = (struct Screen *)MakeScr(x,y,w,h,Name,depth,
flags ! DUALPF,font,BitHap1);

if(Screen == NULL) /* Fehler ? */
exit(FALSE);

/* Und die Bitplanes des zweiten Playfields
eintragen */

/* RastPort-Struktur initialiseren und die
neue Bitmap eintragen */

*Rast2 = AllocMem(sizeof(struct RastPort),NULL);
if (*Rast2 == NULL)
exit(FALSE);

InitRastPort((*Rast2));

(*Rast2)->BitMap = BitMap2;
*Rastl = &(Screen->RastPort);
Screen->ViewPort.RasInfo->Next->BitMap = BitHap2;
ScrollVPort(&(Screen->ViewPort));

return(Screen);

CloseDPFScreen(Screen)
struct Screen *Screen;

{
FreeBitMap((Screen->ViewPort).RasInfo->Next->BitHap);

/*FreeBitMap((Screen->ViewPort).RasInfo->BitHap) ; */
CloseScreen(Screen);

195

Kapitel 8 Sonderdarstellungsmodi

196

Kapitel 9 Der Blitter

Kapitel 9

Der Blitter

197

Kapitel 9 Der Blitter

Inzwischen ist der Amiga nicht mehr der einzige er-
schwingliche Computer mit einem 68xxx Prozessor, gra-
fischer Fensteroberfläche und sehr guten Grafikmög-
lichkeiten. Was ihn aber nach wie vor von der Konku-
renz abhebt sind seine Sonderchips, von denen der
Blitter (aus dem Englischen Block Image Transferrer)
mit der wichtigste ist. Er ist für das flexible und
schnelle Kopieren und Füllen von Speicherbereichen
zuständig und somit für Grafikanwendungen unentbehr-
lich. Ohne Blitter würden viele Operationen, die mit
der Bildschirmausgabe zu tun haben, um Potenzen lang-
samer sein. Wir wollen Sie in diesem Kapitel aber
nicht nur mit den Möglichkeiten des Blitters, sondern
auch mit seiner Bedienung bekannt machen. Dabei wer-
den Sie am Anfang die Blitterroutinen des Systems und
anschließend die direkte Hardwareprogrammierung ken-
nenlernen. Bei dieser werden wir uns im wesentlichen
auf die Bereiche beschränken, die über Systemprozedu-
ren nicht zugänglich sind.

Einfach nur zu sagen der Blitter diene zum Kopieren,
ist eigentlich eine grobe Untertreibung, auch wenn
dies eine wichtige Anwendung ist. Das gute Stück kann
nämlich eine ganze Menge mehr als nur stupide Bits
von einer Stelle zur anderen zu schaufeln. Wir wollen
an dieser Stelle eine kurze Übersicht über seine Fä-
higkeiten geben:

(1) Extrem schnelles kopieren (über 15 Millionen Bits
pro Sekunde) zwischen mehreren Speicherbereichen bis
zur einer Größe von 1024x1024.

198

Kapitel 9 Der Blitter

(2) Die Quell (source)- und Zielbereiche können durch
eine beliebige logische Funktion verknüpft werden.
Die logische Verknüpfung bezieht sich auf die Bits
der beiden Speicherbereiche. So könnte man bestimmen,
daß beim Kopieren nur dort im Zielbereich Bits ge-
setzt werden, wo vorher weder in der Quelle noch im
Ziel etwas gesetzt war.

(3) Unterstützung von "rechteckigen Bereichen", d.h.,
daß die zu bearbeitenden Bereiche in Zeilen und Spal-
ten eingeteilt werden können. Diese Eigenschaft ist
natürlich für die Grafikprogrammierung besonderes
nützlich.

(4) Füllen beliebiger Flächen mit vorgegebenen Füll-
mustern.

(5) Zeichnen von Linien mit beliebigen Strichmustern.

(6) Bitweises "shiften" von Speicher- oder Bildberei-
chen.

Die meisten dieser Möglichkeiten werden bereits so
gut von der Systemsoftware unterstützt, daß man ohne
direkten Hardwarezugriff auskommt. Dabei wird auch
die Zusammenarbeit mit anderen Elementen des Grafik-
systems wie Bitplanes und Rastports, sowie die Ein-
bindung in das Multitasking-System berücksichtigt.

Bekanntlich ist Nichts perfekt und so hat auch der
Blitter eine wichtige Einschränkung. Die Speicher-
auschnitte, die er bearbeiten kann müssen im CHIP-
RAM liegen. Ein Versuch eine Adresse im FAST-RAM für
eine Blitteroperation anzugeben würde im Überschrei-
ben eines unbestimmten Bereiches des CHIP-RAMs resul-
tieren.

199

Kapitel 9 Der Blitter

SS eee EEE ee
2. :Lagische: Verkniipfungen von: Bereichen: |
E IHEH) : F IEHRZEN] eee |

a
=

=

Ein nicht ganz banales Problem beim Kopieren ist
die Verkniipfung der Quelle(n) mit dem Ziel, die durch
den sogenannten Minterm bestimmt wird. Theoretisch
existieren 256 Méglichkeiten das endgiiltige Aussehen
des Ziels festzulegen, wobei eine logische Verknüp-
fung zwischen den Quellbereichen und dem Zielbereich,
sowie Shiftoperationen stattfinden können. Neben den
raffinierten Verknüpfungen ist natürlich auch ein
einfaches Kopieren oder Invertieren möglich. Um eine
dieser Möglichkeiten auszuwählen muß zuerst der dazu-
gehörende Wert des Minterms bestimmt und an den Blit-
ter oder eine entsprechende Prozedur übergeben wer-
den. Wir wollen hier zuerst die Shiftoperationen
weglassen, da sie von den Systemprozeduren nicht di-
rekt unterstützt werden. Ein Kopiervorgang mit dem
Blitter (kurz: ein Blitt) kann immer als eine Ver-
knüpfung von bis zu drei Bereichen zu einem Vierten
betrachtet werden. Dabei wird eine Kombination der
drei logischen Grundoperationen

AND (und)
OR (oder)
NOT (Negation)

auf die korrespondierenden Bits der Quellen angewandt
und das Ergebnis in das entsprechende Bit des Ziels
hineingeschrieben. Zur Demonstration betrachten wir
die drei folgenden drei Bit breiten Quellen A, B und
C:

001
110
010 H
B

io
w

u

200

Kapitel 9 Der Blitter

aus denen das Ziel D als

D = A OR (B AND C) hervorgeht.

Das Ergebnis ist dann also:
Bit 0 = 0 OR (1 AND 0) = 0
Bit 1 = 0 OR (1 AND 1) = 1
Bit 2 = 1 OR (0 AND O) =1

und somit:

D = O11
é

Bei den Blitteroperationen, die von Systemprozedu-
ren unterstützt werden, können immer nur zwei Bit-
planes berücksichtigt werden. Dabei wird die Quell-
bitmap mit der Zielbitmap verknüpft und das Ergebnis
in die Zielbitmap geschrieben.

Wie wird die gewünschte Verknüpfung nun mit Hilfe
des Minterms ausgewählt? Es ist jeder Dreierkombina-
tion von Bitwerten der drei Quellbereiche A, B und C
ein Wert folgendermaßen zugeordnet:

m
r
e

e
e

C
D

O
O

O
O

e
a
e

O
O
O

Re

RH

O
O

201

Kapitel 9 Der Blitter

Möchte man, daß immer beim Auftreten einer bestimm-
ten dieser Kombinationen im Zielbereich das entspre-
chende Bit gesetzt wird, dann gibt man dem Minterm
den aus der Tabelle abzulesenden Wert. Man kann na-
türlich auch festlegen, daß es mehrere Möglichkeiten
gibt, die zum Setzen des Bits führen. In diesem Fall
wird einfach die Summe aus den entsprechenden Werten
als Minterm benutzt. Wer mit formaler Logik nicht
vertraut ist, wird sich vieleicht fragen, was diese
Wertetabelle mit logischen Verknüpfungen zu tun hat.
Angenommen man möchte, daß im Ziel D ein Bit gesetzt
wird, wenn die Bits der drei Quellen A, B und C an
den dazugehörenden Stellen bestimmte Werte haben, so
läßt sich dies als AND-Verknüpfung dieser Bits dar-
stellen.

Die erste Zeile der Tabelle liest man sinnvollerweise
SO:

D = NOT A AND NOT B AND NOT C

oder kurz

D = “A**B*°C (NOT wird durch “, AND durch * ersetzt)

Durch OR-Verknüpfungen solcher Terme kann festge-
legt werden, daß nicht nur eine, sondern mehrere Zei-
len der Tabelle zum Setzen des Bits führen können.
Mit solchen OR-Verknüpfungen der in der Tabelle auf-
geführten Werte kann dann auch jede beliebige andere
Verknüpfung der Bereiche dargestellt werden. Die Be-
stimmung des Minterms erfolgt also in folgenden 3
Schritten: |

(1) Die gewünschte logische Verknüpfung finden.

(2) Diese als OR-Verknüpfung der Kombinatinen aus der
Tabelle darstellen.

202

Kapitel 9 Der Blitter

(3) Die gefundenen Werte aus der Tabelle aufsummie-
ren.

Um Ihnen die beiden letzten Schritte (der zweite
kann recht schwierig sein) zu ersparen, folgt eine
Tabelle, mit einigen wichtigen Verknüpfungen und die
dazugehörenden Minterme. Wir haben der Übersichtlich-
keit halber das NOT überall durch ~, das AND durch *
und das OR durch + ersetzt.

Funktion Wert

D=A $f0

D= A SOF

D=B $cc
D= “B $33
D=C $aa
D=C $55
D=A*C — $a
D=A* °C $50
D="A*C $0a
D="A* °C $05
D=A+B $fc
D="ArB $cf
D=A+C $fa
D=A+tC Saf
D=B+C $ee
D="B+C $bb
D=A*B $c0
D=A* B $30

D="A*B $0c
D=A* “B $03
D=B*C $88
D=B* °C $44
D="“B*C $22
D=B* °C $11

203

Kapitel 9 Der Blitter

D=A+t “B $f3
D= A+ B $3f
D=A+" $f5
D=Ar+r °C $5f
D=B+ “CE $dd
D=B+C $77
D=A* B+ °A*E $ca

Eine der Grundanwendungen des Blitters ist das Ko-
pieren von Bildauschnitten zwischen zwei oder auch
innerhalb eines Rastports. Dies wird z.B. beim Ver-
schieben, Vergrößern und Verkleinern von Fenstern
oder bei der Ausgabe von Gadgets benötigt. Die Gra-
phics-Library beinhaltet eine Prozedur namens Clip-
Blit, mit deren Hilfe Rastport-Abschnitte besonders
einfach kopiert werden können. Die C/ipB/lit-Prozedur,
die die einfachste Blitter Kopierprozedur ist,
braucht folgende Eingaben:

(1) Die Adresse der RastPort-Datenstrukturen der bei-
den betroffene Rastports. Dabei darf der Quell-
rastport nach Bedarf mit dem Zielrastport iden-
tisch sein.

(2) Die Koordinaten der linken oberen Ecke des zu
kopierenden Ausschnittes innerhalb des Quellrast-
ports.

(3) Die Koordinaten innerhalb des Zielrastports, an
der die linke oberen Ecke des Ausschnittes ko-
piert werden soll.

204

Kapitel 9 Der Blitter

(4) Die Breite und die Höhe des zu kopierenden Aus-
schnittes.

(5) Ein MinTerm, der die logische Verknüpfung der
Ziel- und Quellbereiche angibt. Der Minterm wird
bestimmt wie im vorigen Abschnitt beschrieben.

Die ClipBlitt-Routine kann wie folgt aufgerufen
werden, um den Bereich von der Position (xl,y1) der
Breite dx und der Höhe dy aus dem Rastport Rastl in
den Rastport Rast2 an die Position (x2,y2) zu kopie-
ren:

ClipBlit(Rast1,x1,y1,Rast2,x2,y2,dx,dy,192);

Für den Fall, daß die Positionsangaben oder die
Größe nicht mit den Maßen des Rastports übereinstim-
men, wird die entsprechende Anpassung (Clipping) von
der Routine automatisch vorgenommen, so daß kein Ab-
sturz passieren kann/sollte. Auch die Bestimmung der
Bitplanes, die von der Aktion betroffen werden, er-
folgt automatisch.Die Anwendung der C/ipBlit-Prozedur
zeigt eingehend das nachfolgende Beispielprogramm. Es
macht auf dem Workbench-Screen ein Fenster auf und
zeichnet dort zwei Rechtecke, eins mit der Farbe 1
und eins mit der Farbe 3; Diese werden dann anschlie-
Bend samt der rechts von Ihnen liegenden leeren Be-
reichen mit verschiedenen Minterms nach unten ko-
piert. Dabei werden, um die Auswirkung der logischen
Verknüpfungen zu zeigen, die kopierten Rechtecke
teilweise übereinander kopiert.

205

Kapitel 9 Der Blitter

Programm 9.1 BlittDemo

#include"Display.h"
#inc lude"graphics/gfxbase.h"
#inc Iude"intuition/intuition.h"

struct Window *Window;
struct RastPort *Rast;

main ()

USHORT code, i, J, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Ein Fenster auf dem Workbench-Screen öffnen */
Window = (struct Window *)MakeWindow(100,20,400,200,

0,0,"BlittDemo", WINDOWCLOSE !ACTIVATE,
CLOSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim öffnen 7? */
exit (FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;

/* Vierecke zeichnen */
SetAPen(Rast,1);
RectFill(Rast,100,10,200, 30);

SetAPen(Rast,3); RectFill(Rast,125,15,175,25);

/* Rechteck 1 mittels Blitter nach Unten kopieren
| (MinTerm = 192) */

ClipBlit(Rast,100,10,Rast,100,40,200,20,192);

206

Kapitel 9 Der Blitter

/* Rechteck 1 mittels Blitter nach Unten inverse
kopieren (HinTerm = 48) */

ClipBlit(Rast,100,10,Rast,100,70,200,20,48);

/* Rechteck 1 mittels Blitter nach Unten inverse
kopieren (HinTerm = 48) */

ClipBlit(Rast,100,10,Rast,100,100,200,20,48);

/* Rechtecke 1 und 3 mittels Blitter mit 3 OR
verkniipfen (MinTerm = 224) */

ClipBlit(Rast,100,10,Rast,100,100,200,20,224);

SetAPen(Rast,1);
RectFill(Rast,150,130,250,155);

/* Rechteck 1 mittels Blitter drüber NAND kopieren
(MinTerm = 112) */

ClipBlit(Rast,100,10,Rast,100,130,200,20,112);

SetAPen(Rast,1);
RectFill(Rast,150,160,250,185);

/* Rechteck 1 mittels Blitter drüber NOR kopieren
(MinTerm = 16) */.

ClipBlit(Rast,100,10,Rast,100,160,200,20,16);

Class = WaitEvent(Window,&code);
CloseWindow(Window);

207

Kapitel 9 | Der Blitter

LP eh EEE He OOH RE RTE HO TEILS TUE IIERELIIIIEIIIIIEEITELZIITENDN

heehee mane teense eo ar ter baseeedervennene
vere recnee rns e reuse essere
heat eee essere neueren nee nennen ne

pe). RS Weitere Kopfermöglichkeiten | Beosare

pee ree secseencesseneesnedesaseoes

bstess

bp eee meee HEC HR ORTH R EEO ERD HEH EOD EH ESE TE TEE UT EO EOS

Nachdem im vorigen Abschnitt ein einfaches Beispiel
der Blitteranwendung gezeigt wurde, werden Sie nun
die ganze Palette der Blitterkopierroutinen kennen-
lernen. Hierbei handelt es sich um Prozeduren, die
sich auf Bitmaps beziehen. Die durch die Graphics-Li-
brary zur Verfügung gestellten Routinen unterstützen
nicht nur das Kopieren von einzelnen Bitplanes son-
dern auch der gesammten Bitmap, wobei die betroffe-
nen Bitplanes selbstverständlich frei ausgewählt wer-
den können. Die einfachste dieser Prozeduren heißt
BItBitMap.

Zu den bei ClipBlit beschriebenen Parametern kommen
bei ihr noch zwei weitere dazu:

(1) Eine Maske, die die betroffenen Bitplanes angibt.
(2) Falls innerhalb einer einzigen Bitmap gearbeitet

wird, kann zur Beschleunigung ein Zwischenpuffer
angegeben werden.

Logischerweise werden anstelle der Rastport-Adres-
sen an gleicher Stelle die Adressen der entsprechen-
den BitMap - Datenstrukturen übergeben. Die Maske,
die die zu kopierende Bitplanes bestimmt, ist ein
Byte in dem jedes Bit stellvertretend für eine Bit-
plane ist. Ist dieses Bit gesetzt, so wird diese
Bitplane von der Kopieroperation betroffen, ist es
gelöscht so wird sie ausgelassen. Falls Sie also nur
die Planes 1 und 3 (oder deren Auschnitte) transfe-
rieren wollen, dann müssen Sie als Maske den Wert
2 Hoch 1 + 2 Hoch 3 = 2 + 8 = 10 benutzen. ,

208

Kapitel 9 Der Blitter

Um den Bereich von der Position (xl,yl) der Breite
dx und der Höhe dy aus der Bitmap Bitl in die Bitmap
Bit2 an die Position (x2,y2) zu kopieren genügt der
folgende Aufruf:

BItBitMap(Bit1,x1,y1,Bit2,x2,y2,dx,dy,192,Mask,NULL);

Die NULL als letzter Parameter bedeutet, daß kein
Puffer zur Verfügung gestellt wird.

Es ist auch möglich, Bildaten aus einer Bitmap in
einen Rastport zu transferieren. Dazu gibt es die
BltBitMapRastPort-Prozedur. Sie wird ähnlich wie
ClipBlit aufgerufen. Der Unterschied besteht darin,
daß der erste Parameter ein Adreßzeiger auf eine
Bitmap ist ‚auf die sich auch die ersten beiden Para-
meter beziehen. Die Angabe der zu kopierenden Bit-
planes kann mit Hilfe des Mask-Feldes der RastPort-
Datenstruktur erfolgen. Für den dort stehenden Wert
gilt das gleiche wie für den Mask Parameter von
BltBitMap. Durch die Beinflussung dieses Feldes kann
übrigens auch die Auswahl der Bitmaps bei Verwendung
der ClipBlit-Prozedur erfolgen.

Die letzte Prozedur, die wir in diesem Abschnitt
vorstellen wollen ist eigentlich nur eine Abwandlun-
gen von BItBitMapRastPort. Sie heißt BItHaskBitHap-
RastPort und besitzt einen zusätzlichen Parameter,
der einen Adreßzeiger auf eine "Schablonenbitmap"
ist. Diese Schablone muß die Maße des Ziels haben und
bestimmt welche Punkte durch den Blitt beinflußt wer-
den. Alle Punkte die in der Schablonenbitmap nicht
gesetzt sind, wirken bei der Blitteroperation als
Sperren, d.h. die korrespondierenden Punkte des Ziels
werden von der Blitteroperation nicht betroffen. Als
Beispiel betrachten wir wieder zwei "Minibitmaps" A

209

Kapitel 9 Der Blitter

und B, sowie eine Schablonenbitmap C mit je einer
Bitplane, je einer Zeile und 3 Spalten. Wenn sie vor
der Operation so ausehen:

A = 110
B = 001
C = 010

dann wird nach dem Blitt in B

011

stehen. Es wurde also nur das Bit 1, das in der Scha-
blonenbitplane gesetzt ist kopiert. Die Bits 0 und 2
blieben unverändert, da die Schablone dort "undurch-
sichtig" ist. In dem nachfolgenden Programm finden
Sie alle der oben besprochenen Prozeduren wieder. Es
öffnet zwei Fenster auf dem Workbench-Screen und
zeichnet in das obere, kleinere ein Viereck der Farbe
3. Dieser wird dann mit verschiedenen Blitterprozedu-
ren (BItBitMapRastPort, BItBitMap und BItMaskBitMap-
RastPort) und verschiedener Bitplanesauswahl mehrmals
in das untere Fenster kopiert. Vor der Anwendung der
BltMaskBitMapRastPort- Prozedur wird zunächst die
"Schablonenbitmapplane" mit der drunter definierten
MakeMaskP Jane-Prozedur erzeugt und mit horizontalen
Streifen gefüllt. Daher wird dann auch das kopierte
Rechteck gestreift erscheinen.

Programm 9.2 BitMapBlitt

#inc Iude"exec/memory.h"
#inc lude"Display.h"
#inc lude"graphics/gfxbase.h"
#inc Iude" intuition/intuition.h"

210

Kapitel 9 | Der Blitter

/* Koordinaten der linken oberen Ecke des ersten
Fensters */

#define Winx 200
#define Winy 10

/* Koordinaten der linken oberen Ecke des zweiten
Fensters */

#define Win2x 100
#define Win2y 60

struct Window *Window, *Window2;
struct RastPort *Rast, *Rast2;
struct BitMap *Bit, *Bit2;

char *Mask;

LONG Len;

main (){
USHORT code, 1, J, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Ein Fenster auf dem Workbench-Screen öffnen */
Window = (struct Window *)MakeWindow(Winx,Winy,239,

40,0,0, "Window 1",WINDOWCLOSE /ACTIVATE,
CLOSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim Öffnen ? */
exit(FALSE);

/* Adresse des Rastports und der Bitmap holen */
Rast = Window->RPort;
Bit = Rast->BitMap;

211

Kapitel 9 Der Blitter

Window2 = (struct Window *)MakeWindow(Win2x,Win2y,
439,190,0,0, "Window 2",ACTIVATE,

CLOSEWINDOW, NULL);

if(Window2 == NULL) /* Fehler beim Öffnen ?_ */
exit(FALSE);

/* Adresse des Rastports und der Bitmap holen */
Rast2 = Window2->RPort;
Bit2 Rast2->BitMap;

/* Viereck im ersten Fenster zeichnen */
SetAPen(Rast, 3);
RectFill(Rast,70,15,180, 35);

/* Aus der Bitmap des ersten Fensters in den
Rastport des zweiten blitten */

BItBitHapRastPort(Bit2Z, 70+Winx, 10+Winy, Rast2, 50,
20, 100, 20,192);

Rast2->Mask = 1;
BItBitHapRastPort(Bit2, 70+Winx,10+Winy,Rast2,160,

20,100,20,192);

Rast2->Mask = 2;
BItBitHapRastPort(Bit2,70+Winx,10+Winy,Rast2,270,

20,100,20,192);

/* Aus der Bitmap des ersten Fensters in die Bitmap
des zweiten blitten */

BItBitHMap(Bit,70+Winx,10+Winy,Bit2,50+Win2x,60+Win
2y,100,20,192,3,NULL);

BItBitMap(Bit,70+Winx,10+Winy,Bit2,160+Win2x, 60+Win
2y,100,20,192,1, NULL);

BItBitHap(Bit,70+Winx,10+Winy,B j t2,270+Win2x,60+Win
2y,100,20,192,2,NULL);

212

Kapitel 9 | Der Blitter

/* Aus der Bitmap des ersten Fensters in die Bitmap
des zweiten blitten */

/* Dabei wird eine Blittmaske benutzt */
Mask = MakeMaskP lane(Bit);
Rast2->Mask = 3;
BltMaskBitMapRastPort (Bit, 70+Winx, 10+Winy, Rast2, 50,

100,100,20,192,Hask);
Rast2->Mask = 1;
BItMaskBitMapRastPort(Bit,70+Winx,10+Winy,Rast2,160,

100,100,20,192,Mask);
Rast2->Mask = 2;
BItMaskBitMapRastPort(Bit,70+Winx,10+Winy,Rast2,270,

100,100,20,192,Hask);

FreeHem(Mask, (Bit->BytesPerRow) * (Bit->Rows));
Class= WaitEvent(Window,&code); CloseWindow(Window);
CloseWindow(Window2);

MakeMaskP lane (BMap)

/* Diese Prozedur erzeugt eine Schablonenbitplane */
/* Sie wird mit diinnen horizontalen Streifen

geftillt */
guet BitMap *BMap;

char *Mem;
LONG Len, End;

Mem = NULL; |
Len = (BMap->BytesPerRow) * (BMap->Rows);
Mem = AllocMem(Len,MEMF CHIP!MEMF CLEAR);
if(Mem == NULL) u u
exit(FALSE):
for(End = Len + Mem; Mem < End; ++Hem)
*(Mem++) = 12;
return(Mem-Len);

213

Kapitel 9 Der Blitter

KEREFSILLZETTEIITILELIENTERLEELLERSTERLIIEITITEN

ee Noch mehr: Biiitterrautinen
EEELLLFTITTIILTIITEIEIEFTITTTTRTIET ST TTTTeT

. eee ogo og on IERSRZZESERURZEENERERAN RER! Cte eto aso re ee reresseesesacre es bc ns pes ys oe 2

Neben den reinen Kopierroutinen, die bis jetzt vor-
gestellt wurden, gibt es in der Graphics-Library noch
drei weitere niitztliche Prozeduren. Dies sind:

(1) BltClear
(2) BltPattern
(3) BltTemp late

Die erste dient zum Löschen (also mit Nullen fül-
len) eines Speicherbereiches. Sie wird als:

BltClear(MemPtr,Bytes,Flags)

aufgerufen, wobei MemPtr ein Adreßzeiger auf den
Speicherbereich und Bytes die Größe des zu löschenden
Bereiches ist. Der dritte Parameter, Flags gibt wei-
tere Informationen zum Löschmodus an. Bit 1 gibt hier
an, ob das Programm gestoppt werden soll, bis die 0-
peration beendet ist (Bit gesetzt) oder nicht (Bit
gelöscht). Das zweite Bit entscheidet darüber, ob der
Speicherbereich als "normaler" Speicher (Bit ge-
löscht), oder als eine Bitplane (Bit gesetzt) inter-
pretiert werden soll. Im ersten Fall wird Bytes ganz
normal als Anzahl der zu löschenden Bytes interpre-
tiert und der Bereich wird gelöscht. Im zweiten Fall
werden allerdings die oberen 16 Bits von Bytes als
die Anzahl der zu löschenden Zeilen, und die unteren
als die Anzahl der zu löschenden Bytes pro Zeile an-
gesehen. So können beliebige Bildausschnitte sehr
einfach gelöscht werden.

214

Kapitel 9 Der Blitter

Die zweite Prozedur, B/tPattern ist eine Abwandlung
der BItMaskBitMapRastPort-Prozedur. Sie hat das Auf-
rufformat:

BltPattern(Rast,Mask,x1,y1,x2,y2,Bytes)

Dabei wird der Bereich des Rastports Rast mit der
linken oberen Ecke bei (x1,y1) und der rechten unte-
ren Ecke bei (x2,y2) mit dem Muster gefüllt, auf das
Mask zeigt. Das Muster wird in Form einer "Schablo-
nenbitplane" gespeichert. Diese muß mindestens genau-
so groß wie das zu füllende Rechteck sein. Seine
Breite in Bytes wird in Bytes angegeben. Um z.B. ein
Rechteck der Breite 10 Pixel zu füllen, muB in Bytes
2 angegeben werde, was bedeutet, daß die Schablone 2
Byte breit ist. Schablonen dürfen nur ganze Vielfache
von 8, also 8, 16, 24 etc. Pixel breit sein und mü-
ssen selbstverständlich in CHIP-RAM liegen.

Die letzte der Routinen, die wir in diesem Ab-
schnitt beschreiben wollen, BltTemplate, dient dazu,
in "gepackten Arrays" gespeicherte Daten auszulesen.
Solche "gepackten Arrays" haben Sie schon im Zusam-
menhang mit der Speicherung der Bilddaten der Fonts
im Kapitel 7 kennengelernt. Zur Errinnerung:

Es werden Daten für einzelne Bilder zeilenweise
(also alle erste Zeilen hintereinander, dann alle
zweiten Zeilen hintereinander usw.) gespeichert, wo-
bei jedes Zeichen eine andere Breite in Punkten haben
kann. So können also das eine mal in einem Wort drei
Daten einer Bildzeile von 2 Zeichen haben (wenn z.B.
jedes 8 Bit breit ist) und das andere mal von 2.5
Zeichen (z.B. 2 a 6 Bit und die Hälfte von einem 8
Bit breitem). Um jetzt ein in so gestalteten Font-
bilddaten gespeichertes Zeichen der Breite Width und

215

Kapitel 9 Der Blitter

der Höhe Height an der Position (x,y) des Rastports
Rast auszugeben muß BltTemplate wie folgt aufgerufen
werden:

BitTemp late(Source,BitPos,Mod,Rast,x,y,Width, Height);

In Source muß die Anfangsadresse der Bildaten ste-
hen. Der Parameter BitPos gibt die Anfangsposition
des auszugebenden Zeichens innerhalb der Arrays in
Bits an.

Die Anzahl der Bytes, die überspringen werden müssen
um von einer Zeile zur anderen zu gelangen, müssen
Sie in Mod angeben.

216

Kapitel 9 Der Blitter

(EIZTETTE
IRRTERTEFITTITTIIE Teer

.edseosennnnnnnse nenne
Panes a enact een nneese

Cee Meee mao ROTE OEP OO TOES ODOT ESD OSH FEE OD EERE DS

6. Der Blitter und das: Multitasking g
i

weer nennenecnes
DOOR ee RRO SOR ERE U DT HOT HOE HERO RDO CHES OOD EE DERE ES

no...
.

eee ee oe ee ee ones eee roe eee ree eee rs eet see ease eeseeeeorepesese res ponte

Der Amiga ist bekanntlich ein Multitaskingrechner,
es laufen also gleichzeitig mehrere Programme ab. Das
bedeutet auch, daß es durchaus möglich ist, daß meh-
rere Tasks gleichzeitig auf die Idee kommen, den
Blitter zu benutzen. Da dieser aber nur sequentiell
arbeitet, gibt es im Betriebssystem Mechanismen, die
solche Konflikte beseitigen und einem Programm den
alleinigen Zugriff auf den Blitter sichern. Die ein-
fachste Alternative ist hier die Anwendung der Para-
meterlosen WaitBlit-, OwnBlitter- und DisownBlitter-
Prozeduren. Die erste dient dazu, solange zu warten,
bis der Blitter frei ist. Der Aufruf der OwnBlitter-
Routine bewirkt, daß das aufrufende Programm den
Blitter in Besitz nimmt und bis zur Freigabe uneinge-
schränkt benutzten kann.

Die Freigabe erfolgt mit DisownBlitt. Es ist für
den Amiga lebenswichtig, nach Beendigung des Blitter-
zugriffs diesen wieder freizugeben, da ohne Blitter
die gesamte Bildschirmausgabe und einige andere Funk-
tionen nicht ablaufen können. Vor dem Aufruf der Sy-
stemprozeduren, die bis jetzt vorgestellt wurden,
braucht man sich normalerweise den Blitter nicht noch
extra mittels OwnBlitter zu sichern, da diese dies
intern erledigen. Will man aber, daß eine Reihe von
Blitterbefehlen ohne zeitliche Verzögerung hinterein-
ander ausgeführt wird, dann muß die gesamte Sequenz
derart aufgebaut sein:

WaitBlit();
OwnBlitter();
<Blitterrout inen>
DisownB litter();

217

Kapitel 9 Der Blitter

Dadurch wird verhindert, daß zwischen den Aufrufen
der einzelnen Blitterroutinen ihr Programm den Blit-
ter verliert. Unentbehrlich ist die Beschaffung des
Blitters natürlich bei den direkten Hardwarezugrif-
fen, wie sie in späteren Abschnitten vorgestellt wer-
den.

Bei der Hardwareprogrammierung bedient man sich
auch oft einer anderen Methode, den Blitter für sein
Programm zu sichern. Sie hat den Vorteil, daß solche
Anfragen Vorrang vor OwnBlitter haben und außerdem
eine Synchronisierung des Vorgangs mit dem Elektro-
nenstrahl, der das Bild auf dem Monitor zeichnet,
möglich ist.

So kann man z.B. den Bildschirmspeicher modifizie-
ren, während der Strahl sich außerhalb des Bild-
schirms befindet. Die Grundlage dieses Verfahrens ist
die Datenstruktur bitnode. Im System existiert eine
Liste solcher Strukturen. Jede von ihnen beschreibt
einen sogenannten "Blitterjob", der nichts weiter als
eine Liste von Blitteroperationen ist. Die Blitter-
jobs werden in der Reihenfolge der b/tnode-Strukturen
in der Liste abgearbeitet. Durch einen Aufruf von
QBlit können Sie eine solche Struktur, die Ihren
eigenen Blitterjob beinhaltet, an das Ende dieser
Liste einfügen. Bei der Initialisierung von bltnode
muß folgendes getan werden:

(1) Die Adresse des Codes der Funktion, die die Blit-
teroperationen ausführt, muß in das Feld function
eingetragen werden. Dieser Code sollte eigentlich
so in Assembler geschrieben sein, daß er sowohl
im User als auch in Superwisermodus (Prozessormo-
di des MC68000) läuft. Der Code wird solange auf-
gerufen und der Blitter nicht freigegeben,bis die
Funktion in dem Datenregister DO des MC68000 eine
0 zurückgibt. Da "C" bei einem return-Aufruf das

218

Kapitel 9 Der Blitter

Ergebnis ebenfalls in DO zurückgibt, kann not-
falls auch eine "C"-Funktion verwendet werden.

(2) Die Adresse einer "Cleanup"-Routine, die nach der
letzten Blitteroperation ausgeführt wird, oder
NULL wird in das cleanup-Feld geschrieben. So ist
es möglich am Ende des Blitterjobs, ihn wieder in
die Jobschleife einzufügen.

(3) Je nachdem ob eine "Cleanup"-Routine aufgerufen
werden soll oder nicht, muß der Wert CLEANUP
($040) oder 0 in das stat-Feld hineingeschrieben
werden.

Beim Aufruf von QB/Jitt wird als einziger Parameter
die Adresse einer so initialisierten Struktur überge-
ben. Wenn Sie wollen, daß mit der Ausführung ihres
Blitterjobs gewartet wird, bis eine bestimmte Posi-
tion des Elektronenstrahl auf dem Bildschirm erreicht
wird, dann müssen Sie sich der 0BSBlit Prozedur be-
dienen. Sie wird genauso wie QB/itt benutzt. Sie müs-
sen allerdings bei der Initialisierung der b/tnode-
Struktur das beamsync Feld mit der Nummer der Zeile
belegen, bei deren Durchlauf ihr Blitterjob ausge-
führt werden soll. Auf Grund des Multitaskings
(dieses Liste ist global für alle Tasks) kann es
hierbei allerdings zu zeitlichen Konflikten kommen.
Es kann nämlich sein, daß ein anderer Benutzer den
Blitter solange behält, daß Ihre Position verpaßt
wird. |

Es ist wichtig, daß die Funktion, deren Adresse im
function-Feld von bltnode eingetragen wird, keine der
Blitterroutinen der Graphics-Library aufruft. Diese
Prozeduren warten nämlich intern auf den Blitter, den
sie allerdings nicht bekommen können, weil ihn ihre
Funktion besitzt. Ein Beispiel für die Anwendung der
bItnode-Strukturen finden Sie im nächsten Abschnitt.

219

Kapitel 9 Der Blitter

Die Blitterroutinen sind zwar sehr flexibel und be-
quem, um jedoch den Blitter optimal auszunutzen, wird
man ihm direkt durch Registerzugriffe ansteuern. Dies
ermöglicht ein Arbeiten ohne auf die Graphics- oder
Intuition-Library zugreifen zu müssen, wie man es
z.B. bei der Programmierung eines Vorspanns machen
muß. Wir werden deswegen in diesem Abschnitt den
Hardwareaufbau des Blitters und seine Funktionsweise
kurz beschreiben. Der Blitter ist kein eigenständiger
Chip. Er ist in den Sonderchip AGNUS des Amiga inte-
griert. Daher liegen auch seine Register, wie auch
alle Register der Sonderchips, bei $dff000 plus einen
registerspezifischen Offset. Um sie von "C" aus anzu-
sprechen benutzt man am besten die Custom-Datenstruk-
tur. Die Komponenten dieser Datenstruktur entsprechen
sowohl in der Reihenfolge, als auch in ihrer jeweili-
gen Länge den Registern der Customchips. Wenn man al-
so eine solche Struktur an der Adresse $dff000 ver-
einbart, dann kann man einfach über ihre Komponenten
auf die Register zugreifen, ohne sich um die Offsets
Gedanken machen zu müssen. Sie werden diese Funkti-
onsweise in dem Beispielprogramm des nächsten Ab-
schnitts sehen.

Nun zu den Registern des Blitters. Er besitzt acht
16-Bit Adreßregister, die paarweise zu 4 32-Bit A-
dreßregistern organisiert sind, vier Moduloregister
(je eins zu einem AdreBregister), zwei Controllregi-
ster, vier Datenregister, zwei Maskenregister und ein
Größenregister, das gleichzeitig zur Aktivierung ei-
nes Blitts dient. Um eine Blitteroperation durchzu-
führen, muß folgendes getan werden:

220

Kapitel 9 Der Blitter

(1) Die Adressen der drei Quellen und des Ziels müs-
sen in die Adressregister eingetragen werden.
Dies sind die Regsiter:

BLTAPTH Quelle A Hi
BLTAPTL Quelle A Lo

BLTBPTH Quelle B Hi
BLTBPTL Quelle B Lo

BLTCPTH Quelle C Hi
BLTCPTL Quelle C Lo
BLTDPTH Ziel Hi
BLTDPTL Ziel Lo

Wie Sie sehen, müssen Sie die Adressen in High- und
Lowteil aufteilen. Dies ergäbe bei der Adresse
$f fff0000

SFFFF
$0000

Hi
Lo

(2) Die Modulowerte fiir die 3 Quellen und das Ziel in
die Moduloregister holen:

BLTAMOD Modulowert für Quelle A
BLTBMOD Modulowert für Quelle B
BLTCHOD Modulowert für Quelle C
BLTDMOD Modulowert für Ziel

Der Modulowert beinhaltet die Anzahl der Worte in
einer Zeile. Er wird nach dem Bearbeiten einer Zeile
zu der Adresse addiert, um mit der nächsten fortfah-
ren zu können. |

(3) Durch Setzen der Bits 0 bis 7 des Controlregi-
sters BLTCONO die gewünschte logische Verknüpfung
wählen. Sie müssen diese Bits einfach auf einen

221

Kapitel 9 Der Blitter

entsprechenden Wert setzen, wie bereits in Ab-
schnitt 2 besprochen.

(4) Die restlichen Bits des Controllregisters BLTCONO
initialiseren. Es sind die Bits 8 bis 11 für das
Einschalten der DMA-Kanäle für die Quellen A bis
C und des Ziels zuständig, sowie die Bits 12 bis
15 für die Verschiebung der Quelle A (siehe An-
hang E).

(5) Durch entsprechedes initialiseren der Bits 0 bis
4 des BLTCONI Controllregisters den Modus auswäh-
len. Zum "normalen" kopieren müssen diese Bits
alle gelöscht sein (siehe Anhang E).

(6) Die restlichen Bits des Controllregisters BLTCONO
initialiseren. Es sind die Bits 12 bis 15 für die
Verschiebung der Quelle A zuständig (siehe Anhang
E). Die Bits 5 bis 11 haben keine Bedeutung. |

(7) Die Größe des zu bearbeitenden Bereiches in das
BLTSIZE-Register schreiben. Die unteren 6 Bits
(Bits 0 bis 5) geben die Breite in Wörtern (Ein
Wort = 2 Bytes = 16 Bit), die oberen 10 (Bits 6
bis 15) die Höhe in Zeilen an. Eine Höhe von 0
wird dabei als 1024 interpetiert. Der Wert dieses
Registers muß also (Höhe AND $3ff)*64 + (Breite
$3f) sein. Das BLTSIZE-Register muß als letztes
beschrieben werden, da ein Schreibzugriff auf
dieses Register die Blitteroperation startet. Wir
haben in diesem Abschnitt nur vom Kopieren von
Zeilen gesprochen. Wenn einen nicht in Zeilen
eingeteilter Bereich des Speichers kopiert werden
soll, dann müssen Sie die Modulowerte einfach auf
1 setzen.

Ein einfaches Beispiel für die hardwaremäßige Blit-
terprogrammierung finden Sie im nachfolgenden Bei-

222

Kapitel 9 Der Blitter

spielprogramm. Es bindet mittels
chen Kopierjob in die Jobliste ein

#inc lude"hardware/custom. h"
#inc lude"hardware/blit.h"
#include"Display.h"
#inc lude“graphics/gfxbase.h"
#inc lude"intuition/intuition. h"

#define Winx 100
#define Winy 20

struct Window *Window;
struct RastPort *Rast;
struct BitHap *BitMap;

struct Custom *Custom;

struct bltnode myNode;

long Blitt();

main ()

USHORT code, i, j, h;
ULONG Class;

OpenI ntu i();
OpenGfx();

QBlitt einen einfa-

/* Ein Fenster auf dem Workbench-Screen öffnen */
Window = (struct Window *)MakeWindow(Winx,Winy, 400,

200,0,0, "BlittDemo" ,WINDOWCLOSE /ACTIVATE,
CLOSEWINDOW, NULL);

223

Kapitel 9 Der Blitter

if(Window == NULL) /* Fehler beim Öffnen ? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;
BitMap = Rast->BitMap;

/* Anfangsadresse der Customchips laden */
Custom = Oxdff000;

myNode. function = Blitt;
myNode.cleanup = NULL;
myNode.stat = 0;

OBlit(&myNode);

/* Alles schließen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);

}

long Blitt()

{
Custom->bltalwm = Oxffff;
Custom->bitafwm = Oxffff;
Custom->bltamod = BitMap->BytesPerRow;
Custom->bltbmod = BitMap->BytesPerRow;
Custom->bltcmod = BitHap->BytesPerRow;
Custom->bltdmod = BitMap->BytesPerRow;
Custom->bltapt BitHap->P lanes[0];
Custom->bItbpt BitHap->P lanes[0];

/*+ Winy *(640/16) + Winx/16; */
Custom->bltcpt BitMap->Planes[0];
Custom->bItdpt BitMap->Planes[1];
Custom->bltconO = 192+SRCA+SRCB+DEST; n

u

w
h

4

224

Kapitel 9 | Der Blitter

Custom->bltconl = 0;
Custom->bltsize = 266;
while(Custom->dmacon && 1>>14);
return(0);

}

int Blitt()

BlittLine();
return(0);

int fuck(b)

short b;
{ short a;

a= b;
return(0);

Ce]
chrittene: Qptionen beim Kopieren::

Bis jetzt wurde beschrieben, wie eine Standardko-
pieroperation durchgeführt werden kann. Ein großer
Nachteil bei dieser Operation besteht darin, daß nur
ganze Wörter kopiert werden können. Nun weiß man aber
von den Blitterroutinen der Graphics-Library, daß es
möglich ist, Blitteroperationen auf Bereiche anzuwen-
den, die weder an Wortgrenzen liegen, noch eine durch
16 teilbare Breite haben. Dies wird durch zwei noch

225

Kapitel 9 Der Blitter

nicht erklärte Fähigkeiten des Blitters ermöglicht:
Shiften und Maskieren. Schon im vorigen Abschnitt
wurde gesagt, daß die oberen Bits der beiden Con-
trollregister die Verschiebung der Quelle A bzw. B in
Bits angeben. Das heißt, daß jedes Wort, das aus der
entsprechenden Quelle geholt wird, um die in diesen
Bits angegebene Anzahl von Stellen (0 bis 15) nach
rechts verschoben wird. Dabei werden die Bits,die bei
einem Wort nach rechts "hinausgeschoben" werden, an
die durch Verschieben freiwerdenden Anfangsstellen
des nächsten Wortes der Zeile geschrieben. Dadurch
kann eine gesamte Zeile geschiftet werden. In die
freigewordenen Bits des ersten Wortes einer Zeile
werden Nullen hineingeschiftet. Eine aus den zwei
folgenden Worten:

1111000011111111 0101010101000000

bestehende Zeile wird nach einem Shift um 3 Bits wie
folgt ausehen:

0001111000011111 1110101010101000

Auf diese Art kann ein Bild an eine Stelle kopiert
werden, die nicht an einer Wortgrenze liegt. Wenn Sie
einen Auschnitt an eine Position, die 4 Bits rechts
von einer Wortgrenze liegt, kopieren wollen, dann
brauchen Sie die Quelle(n) nur um diese 4 Bits zu
verschieben. Dazu müssen Sie zu dem entsprechenden
Controllregister (BLTCONO für Quelle A, BLTCONI für
Quelle B) die Zahl |

4 * 2 Hoch 11

addieren. Ein Problem bei dieser Methode wird deut-
lich wenn man daran denkt, daB beim Shiften um n Bits
am Anfang einer Zeile n Nullen dazukommen, während
die letzten n Bits verlorengehen. Man kann die letz-

226

Kapitel 9 Der Blitter

ten Bits selbstverständlich retten, indem man ein
Wort mehr kopiert, dabei kopiert man aber einige un-
erwünschte Bits mit.

Die Lösung dieses Problem bietet das Maskieren.
Hinter diesem zunächst mysteriös anmutenden Wort ver-
birgt sich die Möglichkeit, für das erste und das
letzte Wort einer Zeile 1 - Wort Masken anzugeben,
die bestimmen welche Bits kopiert werden und welche
nicht. Somit kann man die beim Shiften entstandenen
Nullen im ersten Wort und die durch Kopieren eines
zusätzlichen Wortes dazugekommenen unerwünschten Bits
beseitigen. Die Maske für das erste Wort wird in
das BLTAFWM-, die für das letzte in das BLTALWM-
Register hineingeschrieben.

Es werden dann nur die Bits des ersten bzw. letzten
Wortes kopiert, die in der Maske gesetzt sind. Um al-
so hineingeschobene Nullen am Anfang zu beseitigen,
muß man nur die n ersten Bits im BLTAFWM-Register auf
Null, die restlichen auf 1 setzen. Analog können die
uerwünschten Bits in dem letzen Wort durch Setzen der
letzten Bits von BLTALWM auf Null ausgeblendet wer-
den.

Das Maskieren kann übrigens auch benutzt werden, um
ein Auschnitt, der ausserhalb einer Wortgrenze an-
fängt bzw. aufhört, zu kopieren. Man rundet den Be-
reich einfach auf Wortgrenzen auf und blendet das un-
erwünschte durch Maskieren aus. Leider kann eine Mas-
ke nur für die Quelle A angegeben werden. Es können
aber trotzdem alle Operationen mit Maskieren durchge-
führt werden. Notfalls muß man halt mehrmals kopie-
ren.

Ein Problem über das bis jetzt noch nicht gespro-
chen wurde, ist das Kopieren von sich überlappenden
Bereichen. Solange Sie abwärts kopieren also z.B die

227

Kapitel 9 Der Blitter

Zeilen 12 bis 17 einer Bitplane in die Zeilen 10 bis
15 der gleiche Bitplane übertragen wollen, läuft al-
les reibungslos. Zuerst wird die Zeile 12 in die Zei-
le 10, dann die 13 in die 11, dann 14 in 12 usw. ko-
piert. Wenn Sie allerdings probieren umgekehrt vorzu-
gehen, gibt es Schwierigkeiten. Bei Kopieren der Zei-
len 10 bis 15 in die Zeilen 12 bis 17 wird zuerst die
Zeile 10 in die Zeile 12 dann die 11 in die 13 usw.
kopiert. Dabei wird aber der Inhalt der Zeilen 12 bis
15 zerstört, bevor er umkopiert werden kann! Um auch
solche Situationen. zu meistern, kann durch Setzen des
Bits 1 des BLTCONI-Registers die Richtung des Kopier-
vorgangs umgekehrt werden (dieser Modus wird Descen-
ding-Mode genannt). Wenn Sie dieses Bit setzen, dann
müssen Sie statt der Anfangsadresse der Quellen und
des Ziels die Endadressen angeben. Der Blitter ko-
piert dann von Hinten, in unserem Beispiel also zu-
erst die Zeile 15 in die Zeile 17, dann 14 in 16 dann
13 in 15 usw.

ee a ee a
PCC eRe ere EOE He ERE EE DEOL HEE E ETE STEER EE EHE HEHE R HOH EDD ROOT ORE EHH EHF Ome EH eee

bP Rem eee eRe Re HOE RAH HE TERME HOO EO ESD ICEHO HEE SES TOE SED EEE EOE DESH SED EEO EEEDS
Penner ET LT TEE ET TEE Le

Pe CHAR HO EHH HH ee HH HEEH EH OOH EEO HE SHEEP EEE CE HEH OEE ETOH ERED HEHSO SES Se
PEO ORO RR HOU mmo rH EEE HER HEH HEHE PHOS EES ED EDO RE SEES HEH HOSES OHH ODED SEDO DESH OH DERE CES
bp eS CHET EHR eee EE ERE RECTED AHA E ETO REEEE EET EEE EHH E TEED ET ESF EEAH TETRA EAE EES
ROP e acer e rer eee se rere sese Hs asHereEAeR sree esas ue Fee rer I
PCC OTC CROCHET HELO EHEC H ATES E EHH EE HOHE EEH ETHERS TEETER TET EHC COH EHR O EEE
RETEKLERAARRARERERETARREPAEREEEREREREEEE ERE EERE EERE EES)

Eine Fahigkeit des Blitters, die die Blitterrouti-
nen des Systems nicht offenbaren, ist das Zeichnen
von Linien. Durch Setzen des LINE-Bits (Bit 1) des
Controllregisters BLTCONI kann der Linienmodus einge-
schaltet werden. Die Angabe der gewünschten Anfangs-
und Endkoordinaten der Linie ist leider nicht ganz
einfach. Der Blitter beschreibt eine Linie, die vom
Punkt (x1,y1) zum Punkt (x2,y2) geht, durch folgende
Parameter:

228

Kapitel 9 Der Blitter

(1) Oktant:
Dieser Parameter ordnet die Linie auf Grund ihrer

Richtung einem der acht gleicher Kreisteile zu. Die
Einteilung des Kreises in Oktanten sieht in etwa so
aus:

Die Zahlen geben die Oktantennummern an. Um den
richtigen Oktanten für Ihre Linie zu finden, können
Sie sich der nachfolgenden Tabelle bedienen. Neben
der Linienkoordinaten werden dort die Werte dx und dy
benutzt,die die Differenzen der x- bzw. y-Koordinaten
der Anfangs- und Endpunkte sind: Sie werden als

dx = abs(x1 - x2)
dy = abs(yl - y2)

berechnet.
J

Oktant | Voraussetzungen

0 | x1<=x2: yl<=y2; dx>=dy
1 | xl<=x2; yl<=y2; dx<=dy
2 | x1>=x2; yl<=y2; dx<=dy
3 | xX1>=x2; yl<=y2; dx>=dy
4 | x1l>=x2; yl>=y2; dx>=dy
5 | x1>=x2; yl>=y2; dx<=dy
6 | x1<=x2; yl>=y2; dx<=dy
7 | xl<=x2; yl>=y2; dx>=dy

229

Kapitel 9 Der Blitter

(2) Die Steigung
Zur Berechnung der Steigung werden wieder die bei

der Oktantenbestimmung berechneten Werte dx und dy
benötigt. Zuerst müssen der kleinere und der größere
der beiden Werte bestimmt werden. Wir bezeichnen den
kleineren mit kd und den größeren mit gd. Es ist also

kd = minimum(dx, dy)
gd = max imum(dx,dy)

Mit diesen Bezeichnern wird die Steigung durch drei
Ausdrucke festgelegt:

(1) 2*kd
(2) 2*kd-gd
(3) 2*kd -2*gd

Zusätzlich muß noch geprüft werden ob 2*kd größer
als gd ist

(3) Die Anfangsadresse des Startpunktes
Gemeint ist hier die Adresse im Bildspeicher, an der

das Wort mit dem ersten Punkt der Linie liegt. Wenn
die Bitplane, in der die Linie gezeichnet wird, in
Plane gespeichert ist und die Bitplane Lines Zeilen a
Bytes Bytes hat, dann berechnet sich die gesuchte An-
fangsadresse durch:

Plane + (Lines -y1-1)*Bytes + 2*(x1/16)

(4) Die Position des Startpunktes im Wort
Wenn der Anfangspunkt der Linie nicht an einer

Wortgrenze liegt, muB noch der Abstand von dem Wort-

230

Kapitel 9 Der Blitter

anfang angegeben werden. Wenn die x-Koordinate z.B.
bei 17 liegt, dann beträgt der Abstand 1, da bei 16
ein neues Wort anfängt.

Nachdem Sie nun den Verlauf der Linie auf diese Art
Blittergerecht formuliert haben, können Sie die Blit-
teroperation anlaufen lassen. Die Blitterregister
müssen dazu folgendermaßen initialisiert werden:

(1) Den Wert $8000 in BLTADAT schreiben.

(2) Die Maske für das Zeichnen der Linie in BLTBDAT
en. Für eine durchgehende Linie ist dies
ffff. |

(3) Die Register BLTAFWM und BLTALWM auf $ffff set-
zen.

(4) Die Moduloregister folgendermaßen initialiseren:

BLTAMOD = 2*kd - 2*gd
BLTBHOD = 2*kd
BLTCHOD = Die Breite der gesamten Bitplane in Bytes
BLTDMOD = Die Breite der gesamten Bitplane in Bytes

(5) In die Quellen- und das Zielregister folgendes
schreiben:

BLTAPT = 2*kd - gd
BLTBPT = unbenutzt
BLTCPT = Die Adresse des ersten Pixels der Linie.
BLTDPT = Die Adresse des ersten Pixels der Linie.

(6) In die Bits 15 bis 12 des BLTCONO-Registers die
Position des Anfangspunktes innerhalb des Wortes
(also x1 modulo 15) schreiben.

231

Kapitel 9 Der Blitter

(7) Bits 8,9,11 des BLTCONO-Regsiters auf 1, Bit 10
auf 0 setzen.

(8) Den Wert $CA für die logische Verknüpfung AB+AC
in die unteren 8 Bits (Bits 0 bis 7) von BLTCONO
schreiben.

(9) Die Bits des BLTCONI Registers folgendermaßen
setzen:

Bits 12 bis 15: Hier die Stelle angeben, an der das
in BLTBDAT bestimmte Muster in der
Linie anfangen soll, angeben
(normalerweise 0).

Bits 7 bis 11: Unbenutzt.

Bit 6 = 1 falls 2*kd gd, = 0 sonst.

Bit 5 = 0 (unbenutzt)

Bits 2 bis 4 = Diese Bits geben die Nummer des Qua-
dranten an. Jedem Quadranten wird ein Wert zugeord-
net, den diese Bits annehmen müssen. Hier die Zuord-
nungstabelle:

Oktant } Wert |

232

Kapitel 9 Der Blitter

Bit 1 =1;

Bit 0 = 1 (Linienmodus einschalten)

(10) Die unteren 6 Bits (Bits 0 bis 5) von BLTSIZE
auf 2, die oberen (Bit 6 bis 15) auf gd+1 set-
zen.

Auch beim Zeichnen von Linien ist darauf zu achten,
daß das BLTSIZE-Register, daß die Operation startet,
als letztes beschrieben wird.

COE HCO P Or Cerra m ree E eee H OHHH EROS EH EH EE HERE SED EEE HEHE DES EHS EREE HOES OHH EEE EEE ES
ae Dee e eee rere rer mens EHO EEE EMRE HOEEHEHOHHEE EHO FEET ERT EE HTH HOC E DEERE RO eH BEDE OS
Serv Eeeeeeer CeCe CC cer reece eee ee ee eee Cee eee eee ee eee ET eee ee ee ce eee eee ee)
Lec m edt erm ees eran m ee aes eer Oe Oe HD EHR DET T ERE HR HOUR REDO RED TEETOEEDEESEO HED EER EDE
SPEC EPeULacereerre rer er errr rere rere rr ere ree cee Cece re ee eee ee eee eee ee eee eee)

ST eee eee eee eee ee ee eee ee eee ee eee eee eee eee eee
See eee eee ee eee ee ee ee eee eee eee ee eee ee eee
Prsrsccceressccercccsccesesecraccescecncerscuccccsceersseccerresey Bo eeveseevenee
ee ee ee ee eee ee eee ee

Per eRe eRe ree m dere eee ee EE DTH HHT E ERECT EDS ESO ES OOH EHRD ERED PS ERESHS ESOT HEED EE HSE

Die letzte noch nicht besprochenen Anwendung des
Blitters ist das Füllen von Flächen. Das Füllen kann
ohne Zeitverlust in den Kopiervorgang integriert wer-
den. Die Daten, die aus den drei Quellen gemäß der
angegebenen Verknüpfungsvorschrift erzeugt und in
BLTDDAT geschrieben werden, werden vor der Ubertra-
gung in den Zielbereich entsprechend behandelt. Zum
Füllen braucht der Blitter eine durch 1 - Bit breite
durchgehende Linien seitlich bergrenzte Fläche. Diese
könnte beispielsweise diese Form haben: |

00100000000000001000
00100001000100001000
00100000000000001000

233

Kapitel 9 Der Blitter

Die Fülloperation wird durch setzen des EFE (Bit 4)
oder des IFE-Bits (Bit 3) des BLTCONI Registers ein-
geschaltet. Alle anderen Einstellungen gleichen den
beim Kopieren.Je nach dem welches der beiden Bits ge-
setzt ist, werden die Begrenzungsbits mit ins Bild
übernommen (IFE = Inclusive Fill Enable) oder wegge-
lassen (EFE = Exclusive Fill Enable). Im EFE Modus
würde die Beispielfläche nach dem Füllen so aussehen:

00011111111111110000
00011110000011110000
00011111111111110000

Wenn man dagegen den IFE-Modus benutzt, dann blei-
ben die Begrenzungen bestehen. Das Ergebnis sieht
dann so aus:

00111111111111111000
00111111000111111000
00111111111111111000

Falls man man möchte, daß nicht innerhalb der Be-
grenzung, sondern ausserhalb gefüllt wird, dann kann
muß man zusätzlich noch das FCI (Fill Carry In) Bit
(Bit 2) des BLTCON1-Register setzen. Im IFE-Modus er-
gibt sich dann für die Beispielfläche nach dem Fül-
len:

11100000000000001111
11100001111100001111
11100000000000001111

Eine Besonderheit des Füllens liegt darin, daß er
nur im Descending-Mode (also Bit 1 von BLTCONI = 1
siehe Abschnitt 8) funktioniert.

234

Kapitel 9 Der Blitter

Am Anfang dieses Abschnitts wurde bereits gesagt,
daß das Füllen während einer Kopieroperation erledigt
wird. Wenn Sie also einen Bereich Füllen wollen, dann
müssen Sie ihn auf sich selbst kopieren und dabei den
gewünschten Füllmodus einschalten.

235

Kapitel 9 Der Blitter

236

Kapitel 10 Der Copper

KAPITEL 10

Der Copper

237

Kapitel 10 Der Copper

In diesem Kapitel wollen wir den zweiten Graphikco-
prozessor des Amiga vorstellen. Während der Blitter
diverse Dienstleistungen übernimmt, ohne die eine
schnelle Graphikdarstellung nicht denkbar wäre, ist
der Copper für die Koordinierung des Aufbaus des Dis-
plays zuständigt. Er ist dafür verantwortlich, daß
zum richtigen Zeitpunkt (der Zeitpunkt wird durch die
Position des Rasterelektronenstrahls bestimmt) die
richtigen Werte in den richtigen Regsitern stehen, so
daß an jeder Bildschirmposition die Daten angezeigt
werden, die auch dorthin gehören. Alle Angaben, die
bezüglich der Anordnung und Art der gerade angezeig-
ten Viewports gemacht werden, werden vom System in
Listen von Copperanweisungen übersetzt. Somit braucht
sich der Hauptprozessor um die Bildausgabe nicht zu
kümmern und ist frei für andere Aufgaben.

pececccccerccecs

oT POPESTTESNTTNESTITS STLISCCTTT . TILPELT TITS TTT TT Te

co Die Runkttonen: des::Coppers::
Busse
beceeerens

Der Copper ist ein eigenständiger Prozessor, der
Programme in ihm verständlicher Sprache ausführen
kann. Allerdings ist er in seinem Befehlsatz sehr be-
schränkt. Er verfügt lediglich über drei Befehle:
WAIT, MOVE und SKIP, sowie sieben Register.

Außerdem ist der Adreßbereich, auf den der Copper
zugreifen kann, auf die Register der Customchips be-
schränkt. So wenig dies ist, für den Zweck den der
Copper zu erfüllen hat reicht es völlig aus. Die Be-
einflussung der Custom-Chipregister ist alles was nö-
tig ist, um das Ausgabebild zu steuern. Zusätzlich
kann der Copper den Blitter benutzen (seine Register
liegen auf den Customchips) und somit indirekt auf
den gesamten CHIP-Speicher zugreifen.

238

Kapitel 10 Der Copper

Es ist weiterhin möglich, daß der Copper einen In-
terrupt beim 68000 auslöst und so den CPU in seine
Dienste stellt.

Das Copperprogramm befindet sich in der sogenannten
Copperliste. Sie ist ein Speicherbereich in dem Cop-
peranweiungen aneinandergereiht sind und dessen
Adresse in einem der Copperregister befindet.

Nun zu den drei Copperbefehlen. Sie haben folgende
Funktionen:

(1) MOVE
Dieser Befehl erlaubt es einen bestimmten Wert in

eines der Register der Customchips zu schreiben. Nor-
malerweise sind die Register $00 bis $20 vom Copper-
zugriff ausgeschlossen. Durch Setzen eines bestimmten
Bits in einem der Copperregister sind für ihn aber
auch die Register $10 bis $20 erreichbar.

(2) WAIT
Der WAIT-Befehl wartet darauf, daß der Elektronen-

strahl eine bestimmte Position erreicht hat.

(3) SKIP
Ein SKIP-Befehl veranlaßt den Copper dazu, den

nachfolgenden Befehl zu überspringen, wenn die aktu-
elle Position des Strahls größer oder gleich ist, als
die bei dem Befehl angegebenen Werte. Mit seiner Hil-
fe läßt sich durch Manipulation der Copperregister
(Der Copper kann ja auch auf seine eigenen Register
zugreifen) eine bedingte Verzweigung realisieren.

239

Kapitel 10 Der Copper

Die Copperlisten bestehen normalerweise aus einer
Abfolge von Blöcken der Form

WAIT
<Mehrere Move-Anweisungen>

Sinnvollerweise sollten diese Anweisungsblöcke in
der Reihenfolge der bei den WAIT-Befehlen angegebenen
Elektronenstrahlpositionen geordnet sein. Wäre dies
nicht der Fall, dann könnte es sein, daß bestimmte
Anweisungen nie zur Ausführung kommen.

OE ee ee ae
PRR ERROR EHO O TEETER OOS MHL OR SER ESOO RES ETE DER EEEEH PETE DORR O REECE ED EEOC OEEE
POCO CeCe eee TE EEF OH EHTS EEOC HEE SOO HOSED ESOT EES EHO HOEOR DEH EOE DEORE OS
eRe Peo meee TERE HEH EHH ESET H EOE EH RHEE OEE E EERE TEEPE EEHEEH ECHR EHER ETHER EE HA OEE
RERERESETEERECSE ET ORCC S ECE EEE ESE OCES ESO LESCECESSOE ES SOESCE COS TIERE
Pee ee er eee mre aH DOH HEE ERE REF OE OOO ETCH HERO CRED SHEE SEO TOSE OEE EH OOF ESE DHHS HOHE ES ENE
SPREE CURE Eee REPRE PEPE SCPE EES SECC Ee rere erer er Par ery Cree EEE ee

PAM H eee ara OHO Ee HET EHP EEE ET HARA OHEH OORT HEEREETE OTERO TES QM ET HEC OA ETE EEE STE HAEEEE TET ESOT EHEESEEEEH EOE DEC EMSTesorecEYrror
Peer eRe HET EAE HE HH EER EET EL ERIK EEE EEH ESSE HESEH OH EEDEEEOEEEREAO HODES OEE H HD ERE TEED

Deren eee HEH HR OEE HO REO HERE ERE HER SEH RHEE SS HEH EF OSH DERE OEE EHH EREOH HOSE HOSE EE OE
Pee T RETO ERE EEE E EHTS SEP EHEC L ER EEEF HERPES EO HEED FEM PEP HEH ORE RTO DESERET EO ODD ESET ESR EFED

Aus vorigen Kapiteln ist Ihnen bekannt, daß die
Bildanzeige aus Viewports besteht, von denen jeder
eine andere Auflösung, Farbzusammensetzung, und Größe
haben und seine Bilddaten in einer eigenen Bitmap la-
gern kann.Diese Viewports werden zu einer View (siehe
Kapitel 8) zusammengefaßt. Nun stellt sich die Frage,
wie aus diesen getrennt gespeicherten Bausteinen das
Bild des Gesamtdisplays entsteht und welche Rolle da-
bei der Copper spielt. Um diesen Vorgang zu verste-
hen, muß man zuerst etwas über die Grafikdarstellung
auf Hardwareebene wissen. Die Erzeugung des Bildsig-
nals aus Daten die in einem Speicherbereich liegen,
wird bekanntlich von den Customchips übernommen. Die-
se müssen aber die Speicheradressen kennen, wo sich
die darzustellenden Daten befinden (der Amiga verfügt
nicht wie einige andere Computer über einen festen
Bildschirmspeicher) und wie sie dargestellt werden
sollen, also welche Farben, Auflösung etc. benutzt
werden sollen. Zu diesem Zweck verfügen sie über eine
Gruppe von Registern, die große Ähnlichkeit mit eini-

240

Kapitel 10 Der Copper

gen aus vorherigen Kapiteln bekannten Strukturen der
Graphics-Library haben. Der wesentliche Unterschied
besteht darin, daß jede Veränderung dieser Register
auch eine sofortige Veränderung des Ausgabebildes be-
wirkt. Die in den Strukturen der Graphics- und der
Intuition-Librarary gespeicherten Daten gewinnen erst
dadurch Bedeutung, daß Sie im richtigen Augenblick in
die entsprechenden Register übertragen werden. Wir
wollen hier einige wichtige auflisten und beschrei-
ben. Wir geben dabei für die Assemblerprogrammierung
die relative Lage der Register zu $dff000 (siehe Ka-
pitel 9)und für "C" den Namen der entsprechenden Kom-
ponente der Custom-Datenstruktur. Diese Datenstruktur
muß selbstverständlich wie im Kapitel 9 beschrieben,
an der Speicherstelle $dff000 liegen, damit ein Zu-
griff möglich wird. Wenn ein "x" im Namen steht, dann
bedeutet dies, daß es mehrere solche Register gibt,
die an dieser Position durchnummeriert sind.

(1) Die Bitplane Pointer Register (BPLxPT)

Diese Register entsprechen den Adreßzeigern auf
die einzelnen Bitplanes, die sich in jedem BitMap Da-
tensatz befinden. Sie beinhalten die Adresse der Bit-
planes, die momentan angezeigt werden. Es gibt sechs
BPLxPT-Register, so wie es maximal sechs Bitplanes
geben kann. Sie liegen ab $EO im Speicher, können nur
beschrieben werden und sind je vier Bytes Lang (zwei
Bytes für Adresse High-Byte und zwei Byte für Adresse
LowByte). Von "C" aus sind sie als Custom. bpIitp[x]
(x = Nummer der Plane 1 bis 6) ansprechbar.

(2) Die Playfield Controlregister (BPLCONx)

Es gibt drei dieser Register (0 bis 2). Sie sind je
zwei Byte lang und liegen bei $100. Von "C" sind sie

241

Kapitel 10 Der Copper

durch Custom.bplconO, Custom.bplconl und Custom.-
bplcon2 zu erreichen. Besonderes interessant sind
folgende Bits des BPLCONO-Registers:

Bit 15 - Schaltet den HiRes-Modus ein.
Bits 12 bis 14 - Geben die Anzahl der benutzen Bit-

planes an.
Bit 11 - Schaltet den HAM-Modus ein.
Bit 10 - Schaltet den Dual-Playfield-Modus

ein.
Bit 2 - Schaltet den Interlace-Modus ein.

Dieses Register entspricht also dem
ViewMode-Feld der ViewPort-Daten-
struktur.

(3) Die Color Register (COLORxx)
Diese Register entsprechen der zu jedem Viewport

gehörenden ColorMap. Jedes dieser 32 Register (0 bis
31) ist 16 Bit lang und beinhaltet die RGB Zusammen-
setzung der momentan angezeigten Farben. Diese Regi-
ster liegen bei $180. In der Custom Struktur sind sie
als color[32] definiert.

Den direkten Zugriff auf eines dieser Register, das
BPLPTI-Register demonstriert das nachfolgende Pro-
gramm. Es schreibt den Adreßzeiger auf die Bitplane 0
des aktiven Screen in dieses Register. Dadurch wird
der Hardware vorgetäuscht, daß die Bitplanes O und 1
des Screens identisch seien, und alles auf dem Screen
erscheint in der Farbe 3.

Programm 10.1 CustomPoke

#include"exec/types.h"
#inc lude"hardware/Custom. h"
#inc lude"Display.h"

242

Kapitel 10 Der Copper

struct Custom *Custom;
APTR Plane;

main()

long i;
OpenIntui();

/* Zeiger auf Bitplane O0 des aktiven Screens
holen */

Plane= IntuitionBase->ActiveScreen->BitMap.Planes[0];

Custom = Oxdff000; /* Basisadresse der
Customchips */

for(i = 0; i < 100000; i++)

/* Zeiger auf die Bitplane 0 des aktiven Screens
als Hardwarebitplane 1 */

Custom->bpIpt[1] = Plane;

Was ist nun hierbei die Aufgabe des Coppers? Nun,
sobald der Elektronenstrahl eine Position erreicht,
an der ein neuer Viewport (z.B. ein Screen der zur
Hälfte nach unten geschoben wurde) anfängt, erreicht
wird, schreibt der Copper die entsprechenden Werte
in die Customchip-Register. Dazu gehören unter ande-
rem die Adreßzeiger auf die Bitplanes mit den Bildda-
ten und der Inhalt der Farbregister. Beim nächsten
Durchlauf des Strahls werden dann wieder die Werte
des oben liegenden Vieports eingetragen.

Ein letztes nützliches Register das wir hier erwäh-
nen wollen, ist das INTREG-Register (liegt bei $9c
von "C" als Custom->intereq ansprechbar). Durch Set-
zen des vierten Bits dieses Registers kann der Copper
einen Prozessorinterrupt auslösen.

243

Kapitel 10 Der Copper

ur TEER H OECD EERE HEH EEE HH TERED ETE O DEES E TEESE HOSED DESEO TORO P EDD EH OOH OEE EEE HD
Seer rrrrrrerrrrrrrerree rere reer eer eee eee eee eee ee ee
CCRC Ree REO CORT EH OAH E ROME ET EHRESE MEET HHO EMORH ESET ESTED ERE EE RET ES ERECTA REDE
CCPH ROE EOC OEE EHO HH OSE EEE DAERAH EOE HEE S EMOTE EERE HM EDEEO EEO TE O EHH USERS eTE
Re eee eae Oe Hee eB LOH a EEE OH EOE EH EERE THEE EE EEe
SOPPVTURERU PUREE C COREE REPO eee eee ee es

ERTEILT OY Ceeee Cee eee eee eee ee eee

CORR C eam Emo ee He Re HED Merve res veneer nacre ererbansess beers Hae seeeeeeseeese
POOP mee O ROHR RHR E HMO EH eH HOH ESTEE OE DORO HEH ERHEEEE EHO ESHO EE EEE DH OSHC CE DEED DEE ED
meee eee HORTLE DEA EEOAEO RSET DRO CEH DONTE EETEOOHE THEE ACOH OOH EH DEES OEE REED
LR eee HCP K ROE Ree ROHR EOE HEE HEME E DHE E ESSERE EOE TET HOE DERE EOE ROLE HOD DD OOOH HEE OEE
Lee eee eee eee HH Hee HD HORE EEE REESE HERS OO REDD HHSETESE HEE OT ET EEO RESO RECEDED EEE SHED EATS

Wie bereits gesagt, werden sämtliche Informationen,
die das Aussehen einer View betreffen, also die An-
ordnung und Form der Viewports, sowie eventuell vor-
handene Sprites, in Form von Copperlisten kodiert.
Jeder Viewport besitzt in der VriewPort-Datenstruktur
in den Komponenten DspIns, SprIns und CIrIns Adreß-
zeiger auf CopList-Strukturen. Jede solche Daten-
struktur beschreibt eine eigene Copperliste. Die er-
ste (in DspIns für Display Instructions) beinhaltet
Befehle, die zum Aufbau der Anzeige des Viewports
benötigt werden. Diese Copperliste wird beim MakeV-
Port-Befehl aus den Daten in den ViewPort- und Ras-
Info-Datenstrukturen erzeugt. Aus diesem Grund be-
wirken nur Veränderungen in einer der beiden Struk-
turen ohne einen MakeVPort-Aufruf keine Änderung des
Ausgabebildes. Die beiden anderen werden für Sprites
benötigt. Zusätztlich gibt es in der UCopIns-Kompo-
nente einen Adreßzeiger auf eine UCopl ist-Datenstruk-
tur, die die sogennante User Copperliste beinhaltet.
Mit Hilfe dieser Datenstruktur kann eine weitere,
benutzerdefinierte Copperliste in die Viewportliste
eingefügt werden. Alle diese Copperlisten sind wie
verlangt nach Elektronenstrahlpositionen geordnet.

Da die Viewports nur als Teile einer View angezeigt
werden können, reicht es nicht, daß jeder Viewport
seine eigenen Copperlisten hat. Die Einzelnen Listen
müssen, bevor sie die Bildausgabe beinflussen können,
zu einer weiteren geordneten Einheit verbunden wer-
den.

Diese Aufgabe erledigt der HrgCop-Befehl. Er arbei-
tet sich durch alle Viewports einer View durch und

244

Kapitel 10 Der Copper

verknüpft dann geordnet alle ihre Copperlisten. In
der View-Struktur selbst gibt es auch zwei Felder, in
die eine Copperliste eingetragen wird: LofCpreList
und ShfCprList. In dem ersten Feld befindet sich im-
mer ein Zeiger auf eine Copperliste. Das zweite Feld
wird nur im Interlace-Modus benötigt und enthält die
Copperliste, die beim zweiten Durchlauf, also für die
geraden Zeilen, benötigt wird.

Der letzte Schritt bei der Erzeugung des Ausgabe-
bildes ist das Eintragen der Copperliste der gerade
aktiven View in das entsprechende Hardwareregister
des Coppers. Diese Aufgabe wird von der LoadView-Pro-
zedur erledigt.

so...
Sere eeressseocesecerees

POO ORO M CCR E HD EO HEHE EEEO OT AEHSEEHSEHHC REO HEH RESE HERE ODED ENDO OHEED

un...
IKERZELT

:4 Erstellen: und Anbinden einer: neuen Copper lists:
Poe eee eRe nee eeeeeesseroeeseeseseEsecseseenesersare
bee eR AH OHO OEE ROE HER HSH THOT ETETHERE REESE OEE AEHEHOEEOOHEEHES HOHE SHOE EOEHS ERE EERE DEED
PORCH HOCH EOE OEE HEHE EEE EH EO THEME OSEE ELE TREEHOUSE OEO OEE ESESF EOE EEEDH TCS EECESOE DET E TE DEE ORE OS
CCC CERRO RHEE EHH HEE OEE T SHEET ER ESOU ELE HEE ER ESE EEDEEEO ES EHEEE OEE EOE R EEOC EE EEEFOCEEAEERET OREO ERE E EOD ECE OED
pee meee e eee seer eed HEH HEHEHE HTH EEEHE TELE THESE RE REET EEEEH CHEESE HES ERE OERE HE SOTHO EH ERESEE EEE REDE ES EONS
PRUEESEPEERERESECETERARERERERERERERERERE EER ESRERSE ESE RESET EE SERA ESERAR EERE S ER EERE ESSERE Se) obese seesese

Nun sind Sie in der Lage das im Kapitel 8 beschrie-
bene Verfahren zur Erstellung einer eigenen View und
auch einige andere Dinge, die mit der Bildausgabe zu-
sammenhängen, genau zu verstehen. Der nächste Schritt
besteht darin, aktiv in das Geschehen einzugreifen
und die Anzeige mit Hilfe eines eigenen Programms zu
verändern. Die beste Möglichkeit hierzu besteht da-
rin, eine eigene Copperliste zu erstellen und sie an
die aktive View anzubinden. Den Zeiger auf die aktive
View holt man sich auf die bekannte Art über die Gfx-
Base-Datenstruktur. Die Anbindung erfolgt einfach
durch Eintragen einer UCopList-Datenstruktur in das
UCopIns-Feld eines der Viewports dieser View. Diese
Datenstruktur muß selbstverständlich vorher mit der
gewünschten Copperliste initialisiert werden, denn es
macht wenig Sinn eine leere Copperliste anzubinden.
Die Initialiserung erfolgt in folgenden Schritten:

245

Kapitel 10 Der Copper

(1) Zuerst muß die Datenstruktur selbst erzeugt wer-
den. Sie können sie nicht einfach als Variable

vereinbaren, denn sie muß im CHIP-RAM liegen. Die
Allozierung kann so ausehen:

CopList = AllocMem(sizeof(struct UCopList),MEMF_CHIP
/MEMF_CLEAR/MEHF PUBLIC);

(2) Die Befehlssequenz muß in die Struktur eingetra-
gen werden. Zu diesem Zweck gibt es in "graphics/
gfxmacros.h" folgende zwei Makros: CWAIT und C-
MOVE. Das erste dient dazu, den WAIT-Befehl des
Coppers in die Liste einzutragen. Als Parameter
werden ihm die Adresse der User-Copperliste über-
geben, sowie die Zeile und Spalte, auf die gewar-
tet werden soll. Um also in die Liste List den
WAIT-Befehl auf Zeile 10 Spalte 0 einzutragen,
genügt folgender Aufruf:

CWAIT(List,10,0);

Dem zweiten Makro, das einen MOVE-Befehl der Liste
hinzuftigt, wird ebenfalls als erstes Argument die A-
dresse der User-Copperliste tibergeben. Die beiden
anderen Argumente geben dann die Adresse des betrof-
fenen Customchipregisters und den einzutragenden 16
Bit Wert an. Der Befehl

CMOVE(List,Custom->color[1],0)

bewirkt das Eintragen des MOVE-Befehls, der eine Null
in das Colorregister 0 schreibt, in die UserCopperli-
ste List.

246

Kapitel 10 Der Copper

(3) Die Copperliste muß mit Hilfe des CEND-Makros ab-
geschlossen werden. Es wird mit der Adresse der
Liste als einziger Parameter aufgerufen.

Nach dem Eintragen der fertigen Liste in den View-
port müssen nur noch die Prozeduren MakeVPort, Mrg-
Cop, und LoadView in dieser Reihenfolge aufgerufen
werden, um die Änderung zur Anzeige zu bringen.

In dem nachfolgenden Beispielprogramm haben wir auf
die soeben beschriebene Weise eine Copperliste, die
den von diversen PD-Demos bekannten "Rainbow"-Effekt
erzeugt,an die aktive View herangehängt. Sie bewirkt,
daß zwischen den Zeilen 10 und 200 nach jeweils 10
Zeilen der Hintegrund eine um eine RGB-Stufe dunk le-
ren Blauwert annimmt. Es werden also auf dem Work-
benchscreen, der eine Tiefe von zwei hat, 20 Farben
gleichzeitig angezeigt werden. Es wird dazu einfach
in der neuen User-Copperliste mit der Zeile 20 begin-
nend auf jede nächste durch zehn Teilbare Zeile mit
WAIT gewartet und dann der neue Farbenwert in das
COLOROO-Hardwareregister eingetragen. Die entspre-
chende Copperliste kann einfach in einer for-
Schleife erstellt werden.

Damit Sie nach dem Starten dieses Programms auch
wieder die normale Anzeige bekommen, wird nach kurzen
Warten die neue Copperliste entfernt.

Programm 10.2 Stripes

#inc lude"exec/types.h"
#inc lude"exec/memory.h"
#inc lude“hardware/Custom. h"
#inc lude"Display.h"
#inc lude"graphics/gfxmacros.h"

247

Kapitel 10 Der Copper

struct Custom *Custom;
struct View *View;
struct ViewPort *VPort;
struct UCopList *CopList, *oldCopList;
main()

long i;

OpenGfx();
OpenIntui();

/* Zeiger auf die aktive View holen */
View = GfxBase->ActiView;

/* Zeiger auf den Viewport des aktiven Screens
lesen */

VPort = &(IntuitionBase->ActiveScreen->ViewPort);

/* Basisadresse der Customchips */
Custom = Oxdff000;

/* Copperliste Allozieren */

CopList = AllocMem(sizeof(struct UCopL ist) ,MEMF
CHIP/MEMF CLEAR/HEMF PUBLIC),

if (CopList == NULL) u u
exit(FALSE);

/* Eigene Copperliste mit den Systemmakros
erstellen */

for(i = 10; i <= 200; i += 10)

CWAIT(CopList,i,0); /* Warten bis der
Strahl zehn Zeilen weiter ist */

CHOVE (CopL ist, Custom->co lor[0], 1/10);
} /* Farbregister 0 verändern */

248

Kapitel 10 Der Copper

CEND(CopList); /* Copperliste abschließen */

/* Copperliste in den Viewport einbinden */

oldCopList = VPort->UCopIns; /* Alte User
Copper liste merken */

VPort->UCopIns = CopList; /* Neue eintragen
*/

MakeVPort (View, VPort); /* Und in die
globalen Liste einbinden */

MrgCop(View);
LoadView(View);

for(i = 0; i < 500000; i++); /* Abwarten */

/* Die Alte Copperliste wieder einbinden */
VPort->VCopIns = oldCopList;

/* Alte Kopperlist wieder eintragen */
MakeVPort (View, VPort);

/* Und in die globalen Liste einbinden */
MrgCop(View);
LoadView(View);

FreeMem(CopList,sizeof(struct UCopList));

249

Kapitel 10 Der Copper

PU ROMO Oe ORT a DOR ROO EERE PERE H HO HOT R PEF EER REE DANO EEE OH OAR O REEDED EH OE DESEO RPE DE
TErrrerrrrrerr rrr rrr rere rec eee ee eee eee eee ee Cee ee ee ee eee ee eee eee eee eee ee eee
Ve rere teeter errr eee ee eee eee eee ee eee eee Cee eee eee eee eS eee eee eee ey
TCT Tree cere eee eee ee ee eee eee eee eee eee ee eee eee ee eee eee ec eee eee ee
TELE T TTC rr errr Cee eee ee eee eee ee ee eee eee ee eee See eee ee ee ee ee
PRO H eee eee HERE RHEE EEE EEHHNE HETERO OE OER ERS HO EEE ED EEE DEEEHE EE OOH RHODE LEED

eee e rears nence Pere EEE EEG ee Sr ar Se Cher eee eee ee (eee ee

De ee ee re Sa Were
Deu TERRE EOD Tr EEE PES HOO HERO ODE POR EOOE ER OFESOED EDO ROOES
De errr rere reer rrrererrrrrerrrrrrrrererrrrerer errr re rre sy)
Pee eC Oe EHR OHO OED RE DES EHO EE OE EED STEP ERE ESET EEO ESE HHEEEH EOE EEE HOH ERE SHED EOE
Denen TELLER EL ESE EOE EHRER DEED SEE OES
PRELERERESEREARAR ERE EEERERECRESER EERE ESE SRE SEE ESE eee fTeesnreeeeeeee eee

Zum Schluß dieses Kapitels wollen wir für die, die
direkt mit der Copperhardware arbeiten möchten, die
Copperregister, sowie das dazugehörige Befehlsformat
beschreiben. Der Copper besitzt die folgenden sieben
Register:

COPILCH, COPILCL ($80 in "C" Custom->cop1Ic)

Diese Register beinhalten die 18 Bit-Adresse der
ersten Copperliste.

COP2LCH, COP2LCL ($84 in "C" Custom->cop21c)

Diese Register beinhalten die 18 Bit-Adresse der
zweiten Copperliste.

COPJMP1 ($88 in "C" Custom->copjmp1)

Durch Beschreiben dieses Registers wird der Copper
veranlaßt, die in COPILC1 stehende Adresse als die A-
dresse des nächsten auszuführenden Befehls zu über-
nehmen.

COPJMP2 ($88 in "C" Custom->copjmp2)

Durch Beschreiben dieses Registers wird der Copper
veranlaßt, die in COPILC2 stehende Adresse als die
Adresse des nächsten auszuführenden Befehls zu über-
nehmen.

COPCON ($02e in "C" Custom->copcon)

250

Kapitel 10 Der Copper

Dies ist das Kontrollregister des Coppers. Es ent-
hält nur ein einziges Bit (Bit 0). Dieses Bit gibt
an, ob der Copper auch auf die Register $10 bis $1f
zugreifen kann (Bit 0 gesetzt) oder nicht (Bit 0 ge-
löscht).

Wie der obigen Registerbeschreibung zu entnehmen
ist, muß man, um eine neue Copperliste anzuhängen,
ihre Adresse in das COPILC-Register (unter diesem Na-
men fassen wir die COPILCH- und COPILCL-Register zu-
sammen) schreiben und dann auf das COPJMP1-Register
zugreifen, damit der Copper dieses Adresse übernimmt.
Die COP2LC - und COPJMP2-Register werden für bedingte
Sprünge mit Hilfe des Skip-Befehls gebraucht. Die in
COPJMP1 stehende Adresse wird jedes mal übernommen,
wenn der Rasterstrahl die Position (0,0) erreicht.

Auf diese Art wird die Copperliste bei jedem Durch-
lauf des Elektronenstrahls aufs neue durchlaufen, so
daß das gewünschte Anzeigebild permanent aufrechter-
halten wird. Da es keinen Stopbefehl für den Copper
gibt, muß am Ende einer jeden Liste ein WAIT auf eine
unmögliche Strahlpostion stehen. Dadurch wird gewähr-
leistet, daß an dieser Stelle gewartet wird, bis beim
Erreichen der Position (0,0) die Abarbeitung der Cop-
perliste von Vorne beginnt. Ein solcher Befehl ist
Z.B., |

WAIT(SFF,$SFF)

da es keine Horizontalen Positionen, die größer als
$E2 sind, gibt. Alles was Sie jetzt noch wissen müs-
sen, um eigene Copperlisten zu erstellen, ist das Be-
fehlsformat. Alle drei Copperbefehle bestehen aus
zwei Prozessorworten. Die Bits 0 der beiden Worte
bestimmen folgendermaßen, um welchen Befehl es sich
handelt:

251

Kapitel 10 Der Copper

Bit O0 Wort 1 ; Bit O Wort 2 ! Befehl |

0 | 0 I MOVE |!
0 | 1 I MOVE !
1 | 0 I WAIT |
1 | 1 I SKIP |

Wie Sie sehen wird der MOVE-Befehl
erste Wort bestimmt.

allein durch das
Die Bedeutung der restlichen

Bits der beiden Befehlsworte für die einzelnen Befeh-
le können Sie der nachfolgenden Auflistung entnehmen:

MOVE

Wort 1
Bit 0
Bits 1

Bits 9

Wort 2
Bits 0

WAIT

Wort 1
Bit 0
Bits 1

bis 8

bis 15

bis 15

bis 7

Bits 8 bis 15

Wort 2
Bit 0
Bits 1

252

bis 7

Immer 1 (Befehlserkennung).
Die Adresse (Nummer) des Zielregi-
sters.
Unbenutzt, auf O0 setzen.

Das Datenwort, das in das Zielregi-
ster geschrieben wird.

Immer 0 (Befehlserkennung)
Angabe der horizontalen Strahlposi-
tion.
Angabe der vertikalen Strahlpositi-
on.

Immer 0 (Befehlserkennung)
Maske für die horizontale Strahlposi-

Kapitel 10 Der Copper

tion.
Bits 8 bis 14 - Maske für die vertikale Strahlpositi-

on.
Bit 15 - Blitter Finish Disable Bit

SKIP

Wort 1
Bit 0 - Immer 1 (Befehlserkennung)
Bits 1 bis 7 - Angabe der horizontalen Strahlposi-

tion
Bits 8 bis 15 - Angabe der vertikalen Strahlpositi-

on.

Wort 2
Bit 0 - Immer 1 (Befehlserkennung)
Bits 1 bis 7 - Maske für die horizontale Strahlposi-

tion. |
Bits 8 bis 14 - Maske für die vertikale Strahlpositi-

on.
Bit 15 - Blitter Finish Disable Bit

Die Bedeutung der Maskenbits in den zweiten Be-
fehlswörtern der Befehle WAIT und SKIP bedarf noch
einer Erläuterung: Sie geben an, welche Bits in der
Angabe der horizontalen bzw. vertikalen Strahlposi-
tion für den Vergleich mit den beim Befehl angegebe-
nen Werten von Bedeutung sind. Es werden nur die Bits
getestet, die in der Maske gesetzt sind. Für alle an-
deren wird der Test als TRUE angenommen. Setzt man
z.B. sowohl die Maske der vertikalen Position als
auch die Position selbst auf $08, dann trifft auf
diese Angabe jede achte Position zu. Wenn man, wie es
meistens der Fall ist, nur an einer bestimmten verti-
kalen Position interessiert ist, dann sollte man eine
Null in der Maske für die horizontale Position ange-
ben.

253

Kapitel 10 Der Copper

Zur Verdeutlichung des Umgangs mit den Befehlen be-
trachten Sie die folgende Copperliste:

WAIT($Of,0)
MOVE ($180, $ff FF)
WAIT(fF, Fe)

Diese Liste bringt den Copper dazu, jeweils beim
Erreichen der Zeile 50 in das Farbregister 0 die Far-
be Weiss zu schreiben. Die letzte WAIT-Anweisung
dient nur dem Abschluß der Liste durch Warten auf
eine unmögliche Position. In Hexzahlen umgesetzt wür-
de diese Liste so aussehen:

$ofo1 $ff0o /* WAIT($OF,O) */
$0180 S$FFFF /* MOVE($180,$ff FF) */
SfFFF $fffe /*WAIT(TF, fe) */

Zum Schluß noch ein Paar Worte zum SKIP-Befehl. Da-
zu betrachten Sie das Konstrukt der Form:

MOVE(COPILC,Marke)Marke:
<Anwe isungen>
SKIP(Position,Maske)
MOVE (COPJMP1,0)
MOVE(COPILC,AlterWert)
<Rest der Liste>

Solange die in Skip angegebene Position nicht er-
reicht ist, erfolgt ein Schreibzugriff auf das COP-
1LC-Register, wodurch der Copper zu der Adresse Marke
verzweigt (Sie wurde am Anfang ja in COPILC hineinge-
schrieben).

Dadurch werden die Anweisungen zwischen der Marke

254

Kapitel 10 Der Copper

und dem SKIP-Befehl in einer Schleife immer wieder
ausgeführt. Erst wenn die angegebene Position über-
schritten wurde, wird der Zugriff auf COPJMP1 unter-
lassen. Es erfolgt also kein Rücksprung und die Abar-
beitung der Liste wird sequentiell fortgesetzt.

Falls wie in diesem Beispiel der Wert in COPILC
während der Abarbeitung der Copperliste verändert
wurde, dann ist unbedingt darauf zu achten, daß der
alte Wert vor dem Erreichen des Endes der Copperliste
wiederhergestellt wird. Dies ist notwendig, damit der
Copper den Anfang der Liste wieder anspringen kann.

255

Kapitel 10 Der Copper

256

Kapitel 11 Graphikerzeugung 1

Kapitel 11

257

Kapitel 11 Graphikerzeugung 1

In diesem Kapitel wollen wir Ihnen möglichst viele
konkrete Beispiele der "einfachen" Grafikprogrammie-
rung geben. Dabei kommt es uns nicht so sehr auf die
Vollständigkeit der Behandlung der einzelnen Themen
an, sondern wir möchten Ihnen vielmehr möglichst vie-
le verschiedene Beispiele geben. Daher wird am Ende
eines jeden Abschnittes eine Rubrik "Tips" stehen, in
denen wir Ihnen noch zahlreiche Anregungen zu dem
jeweiligen Thema geben werden. Nachdem wir Ihnen
also die Grundzüge einer jeweiligen Grafikprogram-
miertechnik vor Augen geführt haben, animieren die
nachfolgenden Tips Sie hoffentlich dazu, selbst Hand |
an die Algorithmen zu legen. Dabei sind diese Tips
wirklich nur als Anregung aufzufassen und sollten
Ihre eigene Kreativität in keiner Weise beeinträch-
tigen.

Will man mit möglichst geringem Programmieraufwand
bereits grafische Effekte auf dem Bildschirm erzeu-
gen, so eignen sich dazu besonders die FOR-Schlaufen
in Verbindung mit dem Line, Polygon, oder Circle-Be-
fehl. Bei dieser Technik liegt oft mehr Programmier-
arbeit in der "Definition" der Arbeitsumgebung, also
öffnen eines Screens, eines Fensters und ganz wich-
tig: das Zuweisen der Farbregister. Gerade auf dem
Amiga sollte man bei der Grafikprogrammierung, bis
auf wenige Ausnahmen, sich mit weniger als 32 Farben
nicht zufriedengeben. So stehen Ihnen also in diesem
Fall 32 aus 4096 Möglichkeiten der Farbregisterbele-
gung zur Verfügung.

Doch gerade mit der Farbauswahl kann man den
"Betrachtungswert" einer Grafik vervielfachen, so daß

258

Kapitel 11 Graphikerzeugung 1

es sich lohnt, wenn Sie sich dafür genügend Zeit neh-
men.

Die einfachste Art eine Schlaufe mit einem Grafik-
befehl zu belegen, ist das direkte Einsetzen der
Schlaufenzählvariable in einen Grafikbefehl, so daß
also zum Beispiel der Radius einer Folge von Kreisen
verändert wird. Die so entstehenden Bilder erscheinen
aber meißt schon sehr bald langweilig, da die Verän-
derungen ja grundsätzlich linear sind. Wesentlich in-
teressanter wird es, wenn man stattdessen einen
Funktionswert der Schlaufenzählvariable einsetzt.

Optisch geeignet sind hier besonders die Sinus- und
die Kosinusfunktion, aber auch mit den Exponential-,
Logarithmus- und Exponentialfunktionen, sowie deren
beliebigen Kombination lassen sich abwechs lungsreiche
Effekte erzielen. Wir beschränken uns zunächst einmal
auf den Sinus und Kosinus, da Sie gegenüber anderen
Funktionen einen gewaltigen Vorteil haben: Ganz egal
was für Werte man einsetzt, wie groß oder wie klein
sie auch sein mögen, der Funktionswert liegt immer
zwischen -1 und +1. Dies erspart uns Kopfzerbrechen
darüber ‚mit was wir den erhaltenen Funktionswert mul-
tiplizieren müssen, damit ein Wert herauskommt, der
auch im Gültigkeitsbereich unseres Fensters liegt.
Gehen wir von einem Fenster der Breite 320 Pixels und
der Höhe 230 Pixels (dann ist oben noch Platz für die
Titelbalken des Screens und Fensters), so multipli-
zieren wir lediglich die Funktionswerte mit der hal-
ben Höhe, bzw. Breite und addieren anschließend den
gleichen Wert noch einmal. Nach der Multiplikation
erhalten wir also Werte zwischen -160 und +160 (-115
und +115), nach der nochmaligen Addition Werte zwi-
schen 0 und 320 (0 und 230). Jetzt können wir losle-
gen und in einer Schlaufe Werte in die soeben neu de-
finierten Funktionen einsetzen. Das Ergebnis können
wir direkt als x- und y-Koordinate auf den Bildschirm

259

Kapitel 11 Graphikerzeugung 1

werfen. Eine sich über den Bildschirm schwingend
fortbewegende Linie erhalten wir durch den folgenden
Algorithmus:

Linie (a,b)
float a,b;
/* a im Bereich von 0.0 und 360.0 und b > a */

fx = 75; /* Beliebiger x-Schwingungsfaktor */
fy = 200; /* Beliebiger y-Schwingungsfaktor */
Calculate(a); /* Initialisierung von x und y */
for (n=a; /* Schlaufe: von a */

n<b; /* bis b */
n+=1); /* n inkrementieren */
{Calculate (n); /* neues Koordinatenpaar
| berechnen */
Line(xold,yold,x,y,farbe); /* Verbinden mit

den alten Werten */
xold = x; /* Zwischenspeichern der

aktuellen */
yold = y; /* x- und y-Werte */

e
FG

}

Calculate (i)
/* Berechnen der aktuellen Koordinaten */
oe i;

x = sin(i*pi/fx) * 160.0 + 160.0; /* Berechne
x-Koordinate */

y = cos(i*pi/fy) * 115.0 + 115.0;
/* Berechne

; y-Koordinate */

260

Kapitel 11 Graphikerzeugung 1

Bild 11.1 - Ausgabe des Algorithmus "Linie".

(mRTITE = [0]

KIN

Um ein funktionsfähiges Programm zu erhalten, muß
natürlich die Arbeitsumgebung entsprechend gesetzt,
vor allem aber ein (GZZ-)Fenster der Größe 320/230
geöffnet sein. Die so entstehende, schwingende Linie
können Sie variieren, indem Sie den Schwingungsfakto-
ren einen Wert zwischen jeweils 30 und 270 zuordnen.
In unserem Programm Linie, daß Sie auf der Begleit-
diskette finden, werden weiterhin auch den jeweiligen
Kurvenabschnitten zyklisch die verschiedenen, ge-
setzten Farben zugewiesen.

Wir können die entstehenden Grafiken verschönern,
indem wir der Linie einen Partner geben, der zwar
ähnlich, aber doch völlig unabhängig schwingt. Dazu
führen wir zwei weitere Schwingungsfaktoren fxl und
fyl ein, sowie 2 weitere xy-Koordinatenpaare. So er-
halten wir also zwei Kurven, die wir zusätzlich noch
Schrittweise miteinander verbinden.

261

Kapitel 11 Graphikerzeugung 1

Linien (a,b)

/* a im Bereich von 0.0 und 360.0 und b>a */
float a,b;

fx = 75;
/* Beliebiger x-Schwingungsfaktor */

fy = 200;
/* Beliebiger y-Schwingungsfaktor */

fx1 = 100;
/* zweites Schwingungsfaktorpaar */
fyl = 130;

Calculate(a);
/* Initialisierung der ersten 2 Koordinatenpaare
for{ n = a; /* Schlaufe: von a

n<b; /* bis b
n+=1; /* Schlaufenzähler erhöhen
Calculate(n);

Me

262

/* nächste 2 Koordinatenpaare

Line(x,y,x1,y1, farbe);
/* Verbinden beider Linien

Line(xold, yold,x,y,farbe); /* 1. Linie
Line(xold1, yold1,x1,y1,farbe); /* 2. Linie

xold = x; /* Zwischenspeichern der
yold = y; /* aktuellen x- und y-Werte
xoldl = x1; |

/* Zwischenspeichern der 2. Werte
yoldl = yl;

Kapitel 11 Graphikerzeugung 1

Calculate (i)
/* Berechnen der aktuellen Koordinaten */
float x,y;

x = sin(i*pi/fx) * 160.0 + 160.0;
/* Berechne 1.x-Koordinate */

y = cos(i*pi/fy) * 115.0 + 115.0;
/* Berechne 1.y-Koordinate */

x1 = sin(i*pi/fx1) * 160.0 + 160.0;
/* Berechne 2.x-Koordinate */

yl = cos(i*pi/fyl) * 115.0 + 115.0;
/* Berechne 2.y-Koordinate */

Bild 11.2 - Ausgabe des Algorithmus "Linien".

263

Kapitel 11 Graphikerzeugung 1

Dieses Bild haben Sie bestimmt schon einmal in die-
ser oder ähnlicher Form gesehen. Das Lines-Demo der
Workbenchdiskette funktioniert genauso. Obwohl hier
nur Linien gezeichnet werden, entsteht jedoch ein
räumlicher Effekt, der dem Bild eine scheinbare Tiefe
verleiht. Ahnliche Effekte lassen sich aber auch mit
Polygonen oder Kreisen erzeugen. Setzen wir statt der
Line-Befehle in unserer Schlaufe den Polygon-Befehl
wie folgt ein, so werden die einzelnen Flächen sofort
ausgemalt auf dem Bildschirm erscheinen.

Polygon(xold, yold,xold1,yold1,x1,y1,x,y,farbe, TRUE);

Die vollständigen Programme zu diesen Algorithmen
finden Sie wieder auf der Begleitdiskette, und zwar
unter den Namen Linien und Flächen. Abschließend noch
ein Beispiel mit Kreisen, wobei nicht nur die Positi-
on der einzelnen Kreise von unserer Funktion berech-
net wird, sondern auch dessen Radius.

Kreise (a,b)
float a,b;
/* a im Bereich von 0.0 und 360.0 und b >a */

{
fx = 175; /* Beliebiger

x-Schwingungsfaktor */
fy = 80; /* Beliebiger

y-Schwingungsfaktor */
fr = 95; /* Schwingungsfaktor

des Radius‘ */
for(n=a; /* Schlaufe: von a */

n<b; /* bis b */
n++)

{Calculate(n);
/* nächste 2 Koordinatenpaare */

Circle(x,y,r,farbe); /* Zeichne Kreis */

264

Kapitel 11 Graphikerzeugung 1

n+=1; /* Schlaufenzähler erhöhen */
Fi |

Calculate (i) /* Berechnen der aktuellen Werte */

{ a
x = sin(i*pi/fx) * 110.0 + 160.0;

/* Berechne 1.x-Koordinate */
y = cos(i*pi/fy) * 65.0 + 65.0;

/* Berechne 1. y-Koordinate */
r = sin(i*pi/fr) * 24.0 + 26.0;

/* Berechne den Radius */

Bild 11.3 - Ausgabe des Algorithmus "Kreise"

toy

ee.
wee.

265

Kapitel 11 | Graphikerzeugung 1

Auf der Begleitdiskette ist dieser Algorithmus als
vollständiges Programm unter den Namen Kreise gespei- —
chert.

Tips:

- Zur Farbgebung dieser Grafiken noch folgendes: an-
statt die Farbpalette beliebig zu wählen (wie in
den Beispielprogrammen der Begleitdiskette) können
Sie den 3D-Effekt dieser Bilder erhöhen, indem Sie
nur eine oder zwei verschiedene Farben auswählen
und die restlichen Farbregister mit verschieden
Intensitäten dieser Farbe(n) belegen.

- Bei der Auswahl der Schlaufenlänge, sowie deren
Start- und Endwerte, kann der Computer behilflich
sein: benutzen Sie den Zufallsgenerator!

- Für Start- und Endwerte können Sie bestimmte Bedin-
gungen einführen. Im Beispielprogramm "Kreise" ha-
ben wir das Schleifenende so gewählt, daß der Radi-
us der Kreise fast Null ist. Somit entsteht immer
höchstens ein offenes "Schlauchende".

Phere remem REO H RAE HR HE EEH TEESE PEED OTOH ODES EH EE SE EP EOE HEP ETE ODE HEES OOH EOP REESE OER EUS E EERE HEED ODED EERE
COO meee eee m eT eR EHC EH ET EOE E DO EEOEEAEA TE OE EMT PSE EE ERO R EE OTE RHEE EOHEEE EERE EERE HEE EEE DEH H EERE
POOR ee meee eee ae roe ROTHER EH RODEO EPEHO EEO TERE OHOOE HSER EHH E EER ETESH OSE REDES OT EHO EE OHNE M ES OEE EEO EEO R SEES

Ve ee meee eae mda n eee ESSERE EEE EEE EHS EEE EEE DETER EEF EE HDD E HEE ETOH ES OE REDE OSES HES E EEE EREE EOE DEER ESO EESS
Pee emer meme meee TEE CHE ADEE DEH EH TED ETES SERED H HE OER EOE OHH OEE OD
Pree eer eo eR ree ERR HOHE OSES OEE SE THREE TH HEHEHE DORE HHEEEEH EEE EH HOSED EH OH RECESS HOSED OHS ODE EDEEOEE DEES EOS
UL” . LARRY (ORR ERE OSS e ee Se eee eee eee! EEE EEE Ver IeEeeeee. WEIT PEE

Pe Fem ero eater oaseerenmeens scores Murnau nenne
SPECeeeeee eee eRe ee
POP PHO eee E EAE OHO TOTO RE ORE RETA SEOEEH HAO SERASH OSE EEO HEATH SEES ESOC ET REE RE HEe EES
ROPERS HHO HE RTE HATH EEE EEM EH EE EOE EH EOE EDE OES EES HEE EE OEE REDDER ESDE CORE DEES OEE EH EEE
PORCH eae EEE ET EDERHO HEED EDESES PEDROS ERE DEE BOSE

Einen Sternenhimmel kann man bereits durch zufälli-
ges setzen von mehr oder weniger hellen, weißen Punk-
ten auf einen schwarzen Hintergrund erzeugen. Nun ja,
das wird niemanden vom Hocker reißen, der, auf welche
Weise auch immer, schon einmal mit einem Weltraum-
ballerspiel konfrontiert worden ist. Wesentlich in-
teressanter wird das Bild, wenn man einen Spiralnebel
einsetzt. Zur Verwirklichung benötigt man lediglich
eine Funktion, die eine Spirale zeichnet. Diese darf
natürlich nicht direkt auf den Bildschirm gebracht

266

Kapitel 11 Graphikerzeugung 1

werden, sondern muß "verschmiert" werden. Dazu benut-
zen wir ein Unterprogramm, daß mit Hilfe von Zufalls-
zahlen eine Sternenwolke erzeugt. Dabei wird die Grö-
Be der Wolke durch einen angegebenen Radius bestimmt.
Vor dem Setzen eines Punktes überprüfen wir zunächst,
ob dieser schon gesetzt ist. Ist dies der Fall so
wird sein Farbwert um eins erhöht, so daß er heller
erscheint. Die Spiralfunktion schließlich leiten wir
aus der Kreisfunktion ab. Ein Kreis entsteht beim
Durchlaufen der Funktion x = sin(alpha) und y = cos
(alpha) für alpha = 0 bis alpha = 2 * Pi. Eine Spira-
le erhält man, wenn man jeweils x und y mit einem
linear ansteigenden Wert multipliziert. Da sich die
Spirale so zu langsam ausdehnt multiplizieren wir je-
doch nicht direkt mit der Schlaufenvariablen, sondern
mit deren Quadrat. Als vollständiges Programm sieht
das dann so aus:

/* SpiralNebel von Olaf Pfeiffer,
C-Version von Paul Lukowicz */

#inc lude"Display.h"
#inc lude"gfxTools.h"
#inc lude"intuition/intuition.h"
#include"math.h"

struct Window Window;
struct Screen *Screen;
struct RastPort *Rast;

int Col[]={ 0, 0, 0, 0, 1, 4, 0, 1, 6, 0, 2, 7,
/* Farbwerte mit unter- */

0, 2, 9, 1, 2,10, 1, 3,11, 1, 4,12,
/* schiedlichen Inten- */ |

2, 4,12, 2, 5,13, 2, 6,13, 3, 8,14,
/* sitäten für die Dar- */

4,10,14, 7,11,15, 10,13,15, 15,15,15 /
* stellung der Sterne. */

267

Kapitel 11 Graphikerzeugung 1

hi
main ()

USHORT code, i, J, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Einen low-res Screen öffnen. */
Screen = (struct Screen *)MakeScr(0,0,320,250,

"Nebel",4,NULL,NULL,NULL);
if (Screen == NULL)
 exit(FALSE);

/* Ein Fenster auf dem neuen Screen öffnen */
Window = (struct Window *)MakeWindow(20,50,270,

| 100,0,0,"Spiralnebel",WINDOWCLOSE JACTIVATE,
CLOSEWINDOW,Screen);.

if(Window == NULL) /* Fehler beim Öffnen ? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;

/* Farbregister initialisieren */
SetCo lors (Screen, &Col1,15);

Background (); /* Hintergrund zeichnen */
Cloud(160,120,25.0); /* Sternwolke Zeichnen */
Spirale (); /* Spirale Zeichnen */

/* Auf Close-Gadget warten und alles schließen */
Class = WaitEvent(Window, &code yi
CloseWindow(Window);
C loseScreen(Screen);

268

Kapitel 11 Graphikerzeugung 1

Background () /* Setzt in dem Fenster verschiedene
"Sterne" mit unterschiedlichen
Intensitäten zur Gestaltung des
Hintergrundes. */

{
int n, X, Yı C, J;

= Random();
for(n= 1; n <= ((int) (Random() * 150.0) + 200);

= (int) (Random() * 320.0); net)
/* Zufällige x-Koordinate */

y = (int) (Random() * 230.0) + 10;
/* Zufällige y-Koordinate */

= (int) (Random() * 15.0) + 1;
/* Zufällige Intensit*t */

SetPixel(Rast,x,y,c);
/* Punkt (=Stern) setzen */

} r

Cloud (x, y, z) /* Setzt eine Sternenwolke mit
einen von z abhängigem */

/* Durchmesser an die Stelle
(x,y) */

int X, Yi
float z;

{
int on, c, x1, yl;
float r;

r =z * (Random()+1.5);
/* Radius der Sternwolke */
for(n = 0; n <= ((int) (z * z * (Random() +

1.0)) + 10); n++)

269

Kapitel 11 Graphikerzeugung 1

xl = x + (int) (cos(2.0 * pi * Random()) *
r * Random());

yl = y + (int) (sin(2.0 * pi * Random()) *
r * Random());

c = ReadPixel(Window->RastPort,x1,y1);
if(c < 15) /* Wird ein Punkt nochmal an

die gleiche Stelle */
++C} /* gesetzt, so erhöhe seine

Intensität. */
SetPixel(Rast,x1,yl1,c);

/* Setzte tern */
Fi

}

Spirale ()
/* Zeichnet auf einer Spiral-Kurve Sternenwolken. */

float z, hz;

z = 0.05;
do {
hz = 1.0 + z* z * 0.60; /* Schrittweite zwischen

den einz. Wolken. */
Cloud((int) (cos(z)*hz*1.25)+160, (int) (sin(z+pi)

*hz)+120,z);
Cloud((int) (cos(ztpi)*hz*1.25)+160, (int) (sin(z)

*hz)+120,z);
z = z + Random() * 0.20 + 0.05; /* Radius der

Wolke vergrößern. */
} while (z <= 4.25 * pi);

Die beste Wirkung erzielt das so erstellte Bild,
wenn Sie Ihren Monitor etwas dunkler und den Kontrast
stärker stellen.

270

Kapitel 11 Graphikerzeugung 1

Tips:

- Im vorliegenden Programm sieht man den Spiralnebel
direkt von "oben", daß heißt er ist im wesentlichen
kreisrund. Von der Erde aus gesehen, sind dies je-
doch die wenigsten. Versuchen Sie doch mal durch
geeignete Multiplikation der x- und y-Achsen mit
einem variablen Wert, einen Spiralnebel zu erzeu-
gen, der die äußere Form einer Ellipse hat, die am
besten auch noch diagonal auf dem Bildschirm liegt.

271

Kapitel 11 Graphikerzeugung 1

Serrrrrerreyrererrsevererrevevevereseererrvrererseressressess IBSETTrrerTee IERETEFKETTEr ER PIII DI : SESTESESSETESECTSSSECTSSSOSESICOSISSSTTOSSSET IESHEEESEFSESSSSHESSRESERESESESSSTER : SERSESSSSSESESSSSESSSSSSSEIESESSIERSEESESSS SEE SEI SEES EEE SESESSESESESESISESESTOTONISITESSSISSTSTITSSTTSTS) |
on

PESCLTEL TEER EL TTERET EEE ECT ESET SETTER EET ELE EEE EE CETTE EEE TEETER STE EEEEEe
4 |
.
.

. fer: 7 .
.

pect ee teeter e ett ht ee .
Pca e eee eer nenne b eet sense Pee eee eee OEE EHO eee rar eneeeerene 4 |
SOPCTeeL STS ee TTT eeL eee eee eee ee Se Tee Tee S Lee SECTS TTC TST SSS ESTL ESE ESE TES TLS TTS TLS SELES ETP EL TTT ee eeeree .

Porumusrornnennenne nenn er ET u...
DEREREERTTRRRERFSRERFESTSESSEISETERERERISEIEIFEFBSESEFEERSSEREERRESESPREFBESBERESSEFRISSFERRRRFEREFPFEFSTDD .

Eee
RISE” CREE SEER, LER TEETER PLE)
Saeed Deere) 5x)

5: Su

x:
 er Bu at isd
 en ox
 er x m»

= EL

HH

A:

re

eee
¢ °

 3
=

oe

Neulich stellte uns jemand die Frage: "Was heißt
das denn? - Fraktal?". Da dies ein Begriff ist der
heute im Zusammenhang mit der Computergrafik zwar oft
verwendet aber nur selten erklärt wird, wollen wir
dies hier kurz tun: allgemein bezeichnet man damit
Gebilde und Erscheinungen (die wir durchaus auch in
der Natur wiederfinden) die eine wichtige Gemeinsam-
keit besitzen: die Selbstähnlichkeit. Das heißt
nichts anderes,als daß man beim vergrößern eines Aus-
schnittes aus diesem Gebilde wiederum ein dem ur-
sprünglichen ähnliches Gebilde erhält. Bei den frak-
talen Kurven geht es in erster Linie um Grafiken, die
nur durch eine bestimmte Anordunug von gleichlangen
Strichen entstehen, die alle miteinander in bestimm-
ten Winkeln verbunden sind. Dabei gibt es praktisch
nur drei Zeichenbefehle, mit denen der Grafik-Cursor
gesteuert wird. Diese Ansteuerung erfolgt durch In-
terpretation einer Zeichenkette, wobei alle Zeichen
der Kette durchgegangen werden, Ist das folgende
Zeichen ein "F", so bewegt sich der Cursor um eine
Längeneinheit nach vorne (forward) und zeichnet so
eine Linie. Ist das nächste Zeichen ein "+" oder ein
"-" so dreht sich der Cursor um eine Winkeleinheit
delta nach rechts oder links. Andere Zeichen sollen
zunächst einmal ohne Wirkung bleiben. Das Wesent-
liche bei dieser Technik ist aber die Enttehung
dieser Zeichenkette. Dabei wird die Zeichenkette
zunächst einmal Initialisiert, ihr werden also ein
oder mehrere Zeichen zugeordnet. Diese Zeichenkette
werden wir ab jetzt Axiom nennen. Als nächstes gibt
es eine oder mehrere Regeln, die jeweils ein be-
stimmtes Zeichen des Axioms durch eine andere Zei-
chenkette ersetzten. Diese Regeln werden in einer

272

Kapitel 11 Graphikerzeugung 1

Schlaufe auf das ganze Axiom angewendet.Dazu erstmal
ein Beispiel: Axiom sei "F++F++F", daß heißt bei
einer Winkeleinheit von Delta = pi/3 (60 Grad) er-
halten wir bei der oben definierten Interpretation
ein gleichseitiges Dreieck.

Lautet die Regel “F"->"F-F++F-F", so bedeutet das,
daß jedes "F" aus unserem Axiom durch die Zeichenket-
te "F-F++F-F" ersetzt werden soll. Lassen wir diese
Regel auf unsere Zeichenkette los, so erhalten wir
als neue Zeichenkette:

"F-F++F-F+#+F-FrH+F-Ft+F-F+t+F-F"

Schicken wir unseren Grafik-Cursor los, dann erhal-
ten wir einen sechszackigen Stern. Nun kann man aber
diese Regel beliebig oft anwenden und erhält somit
nicht nur wesentlich längerer Zeichenketten, sondern
auch dementsprechend "verwinkeltere" Figuren. In
unserem Fall sähe die Zeichenkette nach dem nächsten
Schritt so aus:

"F-F ++ -F-F-F++F-F+th -F ++ -F -F-F+t+F -F ++
F-F++F-F-F-F++F-F++F-F+#+F-F-F-F++F-FH+
F-F++F-F-F-F++F-F++F-F+#+F-F-F-FHHF-F"

Lassen wir die Regel noch ein paarmal auf unsere
Zeichenkette los, so entsteht eine Art Schneeflocke,
wie in Bild 11.4. |

273

Kapitel 11 Graphikerzeugung 1

Bild 11.4 - Die Schneef locken-Kurve.

Verwendete Werte:
Axion: FeF44E, Regel: F -) F-FesF-F, Delta: pi/3, Tiefe: 4

In den Bildern 11.5, 11.6 und 11.7 finden sie wei-
tere Beispiele mit anderen Axiomen und Reproduktions-
regeln. Die jeweiligen verwendeten Werte finden Sie
ebenfalls in den Bildern abgedruckt.

Bild 11.5 - Noch eine Schneef locke, diesmal die Spit-
zen nach innen "geklappt".

Axion: FeeFee?, Regel: F -) FeF--FaF, Delta: pi/2, Tiefe: 4

274

Kapitel 11 Graphikerzeugung 1

Bild 11.6 - Das sogenannte "Quadratic Island".

Ilifraktale Kurven - Quadratic [si ands = = fa)

eng 2

a Mgr wing
ff

ae

Axion: F+eFePef, Regel: F -) FeF-F-FTFAF4F-F, Delta: pi/2, Tiefe: 3

Bild 11.7 - Die sogenannte "Drachenkurve" benötigt
bereits zwei verschiedene Reproduktionsregeln.

IBERHEE rtpyen = Lrachsnkupve

ws
DIESER
De CH
re.

Oa
we ees
eae ele,

we s
Ob te beet
CSTE ee ee ee

> COREE
Vee ee eas

eae a oe eas oe
CE Se HE HE)

>" CEC
ee a as
ur003
eee. Cee

«Kor rr
News> 6G

cose?

ons
Cene

Axion: X, Regein: X -) X*¥F+, Y -) -FX-Y, Delta: pi/2, Tiefe: 13

275

Kapitel 11 Graphikerzeugung 1

Bei den L-Systemen (benannt nach Lindenmayer) be-
nutzt man die gleiche Technik wie bei den Fraktalen
Kurven, es werden lediglich noch zwei weitere Zeichen
und deren Interpretationen eingeführt.

Das Zeichen "[" soll heißen: hier beginnt eine Ver-
zweigung und das Zeichen "]": hier endet ein "Able-
ger", deshalb gehe zurück zur letzten Verzweigung und
mache dort weiter. Somit ist es möglich, fiktive
Pflanzen zu erzeugen, die teilweise eine verblüffende
Ähnlichkeit zu existierenden Pflanzen haben (Siehe
Bild 11.8 und 11.9). Programmtechnisch muß also ein
Stack (Zwischenspeicher, der die zuletzt eingege-
benen Werte zuerst wieder ausgibt) angelegt werden,
der sich an einer Verzweigung "|" nicht nur die aktu-
elle Position merkt, sondern auch die Richtung, in
die der Cursor sich weiterbewegen würde. Bei einem
"|" müssen sie dann wieder als die aktuelle Po-
sition und Richtung benutzt werden. In dem hier vor-
liegenden Programm müssen Sie außerdem noch die
Startkoordinaten und die Startrichtung angeben, von
der aus mit dem Zeichnen begonnen werden soll.

Bild 11.8 - Ein "buschiges Gestrüpp".

Cite Sys tone. fe]!

BEN Ts

Kar: al.

‘ NA) Sue
oy

(erwendete Werte
Axion: FJ, Reged: F -) FRe(+F-F-Fi-{-FePaP)], Delta: pi/8, Tiefe: 3

276

Kapitel 11 Graphikerzeugung 1

Bild 11.9 - Ein "Florius Fictivicus".

- sy —— I]

xıon: FJ, Regel: F -) FE+FIFI-FIF, Delta: pi/6, Tiefe: 4

Zur grafischen Interpretation der erzeugten Zei-
chenkette empfielt sich die Verwendung von sogenann-
ten Turtle-Befehlen, mit denen ein fiktiver Zeichen-
stift über den Bildschirm geschickt werden kann. Der
Name Turtle (engl.:Schildkröte) läßt erahnen, wie
langsam die ersten Implementationen dieser Grafikbe-
fehle gewesen sein müssen...

Da der Amiga standardmäßig über diese Befehle nicht
verfügt, geben wir hier nur einen vereinfachten
"Pseudo-Algorithmus" zur grafischen Interpretation
der Zeichenkette an. Neben den Turtle-Befehlen werden
Funktionen zur String- (Length(String) liefert die
Länge einer Zeichenkette und GetChar(n,String) das
nte Zeichen der Zeichenkette) und Stack-Behandlung
benutzt (Push(value) legt den Wert value auf den
Stack ab, Pop holt den obersten wieder vom Stack
runter). |

277

Kapitel 11 Graphikerzeugung 1

InitTurt le
/* Den Zeichenstift initialisieren,

also an eine bestimnte Position
setzen und eine Bewegungsr ichtung
festlegen. */

for n := 1 to Length(String) do
/* In einer Schlaufe alle Zeichen der

Zeichenkette durchgehen. */

char := GetChar(n, String);
/* n-tes Zeichen aus der Zeichenkette

holen. */

"F" then MoveForward
/* Bei "F" Zeichenstift vorwärts

bewegen. */

if char

"+" then TurnRight
/* Bei "+" die Bewegungsrichtung des

Zeichenstiftes um eine Einheit nach
rechts drehen. */

elsif char

"~" then TurnLeft
/* Bei "-" die Bewegungsrichtung des

Zeichenstiftes um eine Einheit nach
links drehen. */

"[" then Push(Direction)
/* Bei "[" die Bewegungsrichtung des

Zeichenstiftes, sowie */

elsif char

elsif char

Push(YPosition)
/* die y-Koordinate und */

Push(XPos ition)
/* die x-Koorinate der Position des

Zeichenstiftes auf den Stack legen. */

278

Kapitel 11 Graphikerzeugung 1

elsif char = "]" then PenUp
/* Bei "]" den Zeichenstift aufheben, */

MoveTo(Pop,Pop)
/* ihn zu der zuletzt auf den Stack

gelegten Position bewegen und */

TurnTo(Pop)
/* ihm die vorherige Bewegungsrichtung

zurückgeben. */

PenDown
/* AbschlieBend Zeichenstift wieder

absetzen. */
end

Tips:

- Auch hier spielt die Farbwahl wieder eine große
Rolle. Bei den L-Systemen erscheint es sinnvoll die
Farbe von der Verzweigungstiefe abhängig zu machen.
So kann man die Äste immer heller, bzw. grüner
machen als den Stamm.

- Die Enden der Zweige sollten sie mit Blättern oder
gemischt mit Blüten verzieren. Dazu müssen sie ledig-
lich eine Unteroutine schreiben, die z.B. an der
aktuellen Position einen bunten Kreis setzt und
jedesmal bei dem Zeichen "]" mitaufgerufen wird.

279

Kapitel 11 Graphikerzeugung 1

......
......

[REREERSBEZEZZSESERBBIRESZERZ]

Lassen Sie uns hier zunächst bemerken, daß es
grundsätzlich zwei Arten von Grafikprogrammierern
gibt: die einen Schalten Ihr "komplexes Rechenwerk"
an, geben ein paar komplexe Werte in Ihr komplexes
Programm und - gehen ins Bett... Am nächsten Morgen
(manchmal auch erst am übernächsten) ist es dann
soweit: "Oh was für eine schöne, komplexe Darstellung
einer komplexen Zahlenmenge!" - Und dann sind da noch
die Grafikprogrammierer, die ohne "komplexe" arbei-
ten: diese muten ihrem Computer nur soviel zu, wie er
in wenigen Minuten anhand schneller Algorithmen erle-
digen kann. - Bevor da irgendein Zweifel aufkommt:
wir gehören zu den letzteren!

Wie sie Anhand dieser Einleitung sicher schon
bemerkt haben, kommen wir zu einer Technik die je
nach Anwendung sehr lange dauern kann. Der Grundge-
danke dabei ist folgender: An einer mehr oder
weniger zufälligen Stelle am Rand des Fensters wird
ein Pixel losgeschickt. Losgeschickt deshalb, weil er
sich ab nun jeweils zufällig in eine beliebige
Richtung mit der Schrittweite eins weiterbewegt.
Dieser Vorgang wird solange wiederholt, bis er entwe-
der das Fenster verläßt (dann wird ein neuer losge-
schickt) oder er auf einen anderen Pixel stößt. Ist
dies der Fall, so friert er an dieser Stelle fest und
erhält bestenfalls noch eine bestimmte Farbe. Die
Zeit, die das Programm zur Erstellung einer solchen
Grafik braucht, wird dabei im wesentlichen durch die
Dimensionen des Fensters und der Anzahl der anfangs-
gesetzten Pixel bestimmt.

280

Kapitel 11 Graphikerzeugung 1

Öffnen sie also ein größtmögliches Fenster und
setzten zum Beginn nur ein Punkt in der Mitte, so
können sie bei diesem Algorithmus, wenn Sie Pech
haben, erst nach einer halben Stunde das atembe-
raubende Ereignis miterleben, wie zwei Pixel mitei-
nander verschmelzen! So wird dieser Algorithmus auch
in einer deutschsprachigen Wissenschaftszeitschrift
auf den Leser losgelassen. Immerhin wird in diesem
Artikel auch zugegeben, daß dieser Algorithmus auf
einem IBM XT "vier bis fünf Stunden" braucht. Dabei
kann man durch ein paar Veränderungen den Algorithmus
um einiges schneller gestalten, ohne die entstehende
Grafik grundlegend zu verändern. Anstatt einen Pixel
am Rande des Fensters zu Starten, schicken wir ihn
vom äußeren Rand der entstehenden Figur los. Darüber-
hinaus lassen wir den Pixel nicht bis zum Fensterrand
wandern, ehe wir ihn für ungültig erklären, sondern
betrachten ihn bereits als verloren, wenn er um einen
gewissen Betrag hinter den eben erwähnten äußeren
Rand gewandert ist. Wählt man die Dimension nicht
allzu groß, erhält man bereits nach wenigen Minuten
die fertige Grafik, eine Art Korallenstock. Das so
verschnellerte vollständige Programm sieht wie folgt
aus:

/* RandomP ixe 1s

von Olaf Pfeiffer, C-Version von Paul Lukowicz */

#inc lude"Display.h"
#inc lude"gfxTools.h"
#inc lude"intuition/intuition.h"
#inc lude"math.h"

#define Modus 2
struct Window *Window;
struct Screen *Screen;

281

Kapitel 11 Graphikerzeugung 1

struct RastPort *Rast;

/* Setzen der Farben */
int Col [] = { 0, 0, 0, 1,13, 3, 0, 4, 4,

ı Jı 2, 2, 5, 1, 2, 6, 0,

4, 7, 1, 4, 7, 2, 5, 8, 2,
6, 9, 4, 7, 9, 5, 7,10, 4,
8,11, 6, 9,11, 7, 9,12, 6,

10,13, 8, 11,13, 9, 11,14, 8,
12,15,10, 13, 15, 11, 13,14,10,
14,12,12, 15,11, 13, 15,10,14,

.
f

int Dim, Dimx, Dimy,
/* Dimensionen der Grafik */

rfig, rmax,
/* aktueller und maximaler Radius der Figur */

x, ¥, xalt, yalt;
/* aktuelle und alte Koordinaten des Punktes */

main ()

USHORT code, i, J, h;
ULONG Class;
int xalt, yalt, Cont, Color;
char ch;

OpenIntui();
OpenGfx();

/* Einen low-res Screen öffnen. */
Screen =

"RandomPixels",5,NULL, NULL ‚NULL);
if(Screen == NULL)
exit(FALSE);

282

(struct Screen *)MakeScr(0,0,320,250,

Kapitel 11 Graphikerzeugung 1

/* Ein Fenster auf dem neuen Screen öffnen */
Window = (struct Window *)MakeWindow(20,50,270,100,

0,0, "RandomP ixels",WINDOWCLOSE /ACTIVATE,
CLOSEWINDOW, Screen);

if(Window == NULL) /* Fehler beim Öffnen ? */
exit (FALSE);

/* Adresse des Rastports holen */
Rast = Window->RPort;

/* Farbregister initialisieren */
SetColors(Screen,&C01,15);

Dimx = Dim / 2 + 5;
/* Berechnen der halben x-Dimension */

Dimy = Dimx + 10;
/* Berechnen der halben y-Dimension */

Line(Rast,Dimx-1,Dimy-1,Dimx+1,Dimy+1,2);
/* initialisieren der Figur */

rfig = 1; |
| /* aktueller Radius der Figur */
rmax = 81;

/* maximaler Radius der Figur */
do

StartPixel ();
/* Schicke einen Punkt auf die "Reise" */

do

RandomMove (); /* Bewege den Punkt */
Cont = Valid(x,y,rmax);

/* überprüfe die Gültigkeit */

Color = Found(x,y) + 1;
/* Durchschnittsfarbwert der Umgebung */

283

Kapitel 11 Graphikerzeugung 1

} while((Cont == TRUE) && (Color <= 1));
/* bis Ungültig oder Kollision

if(Color > 32)
/* größter Farbwert erreicht ?

Color = 2; /* also Farbwert zurücksetzen
if(Cont = TRUE)

/* Es gab eine Kollision mit der Figur

SetPixel(Rast,x,y,Color);
/* Punkt mit der neuen Farbe setzen

if(Valid(x,y,(rfig * rfig)) == FALSE)

{ /* Überprüfen der Radien der Figur
rmax = rmax + 2 * (rfig + 8) + 1;

/* berechnen des neuen max. Radius
++rfig;

Fi
}
else

/* aktuellen Radius erhöhen

/* Der Punkt hat den
/* Gültigkeitsbereich

SetPixel(Rast,x,y,0); /* verlassen, also wieder
/* löschen.

} while(rfig > Dim / 2 - 10);
/* wiederholen bis Radius > Dimension

/* Auf Close-Gadget warten und alles schließen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);
CloseScreen(Screen);

}

284

*/

*/
*/

*/

*/

*/

*/

*/

*/

Kapitel 11 Graphikerzeugung 1

/* Liegt der Punkt (x,y) im Gültigkeitsbereich ? */

int Valid(x, y, rq)

int x, y, rg;
/* x- und y-Position, rfig zum Quadrat */

int ok; /* Rückgabe-Variable */

x = x - Dim; /* x-Entfernung vom Ursprung */
y=y - Dimy; /* y-Entfernung vom Ursprung */
if(x *x+y*y< rq) |
ok = TRUE; /* Punkt ist gültig */
else

ok = FALSE; /* Punkt ist ungültig */
return ok;

/* Prüfen auf Kollision */

int Found(x, y)

int x, y; /* x- und y-Koordinaten des Punktes */

int a, b,
/* Schleifenzähler für die Nachbarpunkte */

Z, 29
/* Zähler für gesetzte Nachbarpunkte und

deren Farbwerte */

c; /* aktueller Farbwert eines
Nachbarpunktes */

/* Initialisieren der Zähler */

285

Kapitel 11 Graphikerzeugung 1

for(a = -1; a <= 1; ar)
{ /* linke und rechte

Nachbarpunkte */
for(b = -1; b <= 1; b++)

{ /* obere und untere
Nachbarpunkte */

if((a != 0) && (b != 0))
{ /* den Punkt selbst

ausschlieBen */
c = Rea af ixeI(Rast, xta,ytb);
if(c>0)
{ /* ein Nachbarpunkt

ist gesetzt */
zg += C; /* Farbwerte

aufaddieren */
++Z; /* Zähler

incrementieren */

}
hi

; }

if(z!=0) /* Falls Punkt gesetzt, */
zg=2zg/ Zz; /* Durchschnittsfarbwert

berechnen */
return zg; /* und zurückgeben */

/* Einen Punkt auf die "Reise" schicken */

StartPixel ()

float alpha, rf; /* Startwinkel und -radius */

do
{ alpha = Random() * 2.0 * pi;

/* zufälli iger Startwinkel */

286

Kapitel 11 Graphikerzeugung 1

rf = (float) (rfig) + 5.0;
/* und zufälliger Startradius */

= (int) (sin(alpha) * rf -

Random() * rf / Modus) + Dimx;

y = (int) (cos(alpha) * rf -
Random() * rf / Modus) + Dimy;

} while(Found(x,y) != 0);
/* wiederholen bis Punkt gültig */

SetPixe](Rast,x,y,1); /* Punkt setzen */
xalt = x; /* und Koordinaten merken */
yalt = y; |

/* Bewegen des Punktes um einen Schritt */

RandomMove ()

float b;

b = Random();
if(b < 0.25)
++y; /* y inkrementieren */

else if(b<0.5)
--(y); /* y dekrementieren */

else if(b < 0. 75)
+tX; /* x inkrementieren */

else
--(x); /* x dekrementieren */

SetPixel(Rast,xalt,yalt,0); /* alten Punkt
| löschen */

SetPixel(Rast,x,y,1); /* und an neuer
Position setzen */

xalt = x; /* Koordinaten merken */

yalt = y;

287

Kapitel 11 Graphikerzeugung 1

Bild 11.10 - Ein durch den Algorithmus "Randomixels"
erzeugter "Korallenstock".

Randon Pıxels (aa ie)

Ga il [}]Randon Pixels —

Für die Dimension 75 rechnet der Amiga (ohne Abschal-
ten anderer Tasks) unter drei Minuten, allerding
benötigt er für die Dimension 200 immernoch etwas
über eine halbe Stunde. Deshalb haben wir in unserem
vollständigen Programm RandomPixels der Begleit-
diskette einen weiteren Verschnellerungsfaktor einge-
baut, der jedoch die entstehende Figur in einem
stärkeren Maße beeinträchtigt. Ein Pixel wird dann
nicht mehr nur auf den "Umkreis" der Figur losge-
schickt, sondern innerhalb eines Ringes gestartet,
der in die Figur hineinreicht. Dabei ist der äußere
Radius dieses Ringes der gleiche wie vorher und der
innere um den Flächenfüllfaktor kleiner. Diesen Namen
haben wir ihm gegeben, da die so entstehenden Figuren
sich bei gleichem Umfang aus wesentlich mehr Pixel
zusammensetzen.

288

Kapitel 11 Graphikerzeugung 1

Tips:

- Zur Initialisierung kann man auch mehrere Pixels
oder gar Linien verwenden, die nicht unbedingt in der
Mitte des Bildschirms stehen müssen. Beachten Sie
dann aber, daß Sie die Definition des äußeren Randes
der Figur eventuell neu vornehmen müssen. So erhalten
Sie zum Beispiel durch setzen einer Linie am unteren
Fensterrand und entsprechender Definition der Start-
und Abbruchbedingungen Gewächse, die an ÜUnterwas-
serpf lanzen erinnern.

- Ein Vorschlag der nochmals eine wesentliche Ver-
schnellerung bewirkt: sorgen Sie dafür, daß ein Pixel
sich immer auf die Figur zubewegt und sich nicht von
ihr entfernt. Zugegeben, bei unserer ursprünglichen
Figur ist das eine nicht ganz so einfache Aufgabe,
aber um so leichter ist es bei den eben ange-
sprochenen Gewächsen. Erhöhen Sie in der Prozedur
RandomMove den Vergleichswert 0.25 vor dem INC(y) von
auf einen Wert kleiner als 0.5. Je näher dieser Wert
bei 0.5 liegt, desto größer die Wahrscheinlichkeit,
daß sich der Pixel nach unten bewegt.

- Das wesentliche Erscheinungsbild können Sie auch
auf folgende Art verändern: fügen Sie bei der Kolli-
sion einen Zufallswert ein, ob der Punkt hier ein-
frieren soll oder nicht. Dadurch werden die einzelnen
Aste der Figur dicker, wobei wir jedoch nicht verges-
sen dürfen zu erwähnen, daß dadurch das Programm
wieder langsamer wird.

289

Kapitel 11 Graphikerzeugung 1

290

Kapitel 12 Graphikerzeugung 2

Kapitel 12

Techniken der dreidimensionalen Grafikerzeugung

291

Kapitel 12 _ Graphikerzeugung 2

Während wir uns im letzten Kapitel nur mit der
zweidimensionalen Grafik beschäftigt haben, werden
wir hier anhand einiger Beispiele zeigen, wie man
dreidimensionale Objekte auf dem Bildschirm dar-
stellt. Am Ende der Abschnitte mit den Programmbei-
spielen finden sie wieder Tips, die Ihnen Anregungen
zur Veränderung der Programme geben.

Schlägt man in einem Grafikbuch das erste Kapitel
über dreidimensionale Grafik auf, so wird man meiß-
tens mit jeder Menge Mathematik konfrontiert. Dort
stehen dann oft seitenlange Einführungen in die
Vektorrechnung die manchmal sogar über den dreidi-
mensionalen Raum hinausgeht. Da eine Darstellung von
mehr als drei Dimensionen für uns hier absolut
unbedeutend ist, betrachten wir also ab jetzt aus-
schließlich den dreidimensionalen Raum. Wir verzich-
ten an dieser Stelle bewußt auf die Theorie der
Vektorrechnung und gehen davon aus, daß Ihnen ein
"Vektor in einem dreidimensionalen Raum" ein bekann-
ter Begriff ist. Auch sollten Sie sich darüber klar
sein, daß jeder Körper im Raum durch Vektoren darge-
stellt werden kann. Ansonsten werden wir uns auf die
reine Anwendung der entsprechenden Formeln beschrän-
ken, ohne Sie erst zu beweisen, da Sie für uns reine
Hilfsmittel seien sollen. Zunächst aber erst einmal
zu den beiden Definitionen der drei Koordinatenach-
sen. Bei der mathematischen Definition geht man von
eine (x,y)-Ebene aus, auf der die z-Werte senkrecht
aufgetragen werden. Auf Computern trifft man jedoch
oft auf folgende Definiton der x-, y- und z-Achse:

292

Kapitel 12 Graphikerzeugung 2

Als x- und y-Achse definieren wir die gleichen wie
im zweidimensionalen. Sitzt also der Ursprung dieses
Koordinatensystems in der Bildschirmmitte, so geht
die x-Achse nach rechts und die y-Achse nach oben!
Die z-Achse ist nun die dritte, neue Achse, die jedem
Punkt auf dem Bildschirm auch noch eine "Tiefe"
zuordnet. Diese verläuft also in Ihren Monitor
"hinein". Bei diesen beiden Systemen werden also die
y- und z-Achsen miteinader vertauscht. Abgesehen von
der Berechnung mathematischer Funktionen werden wir
uns im wesentlichen an das zweite System halten.

CEEESEXEIEKEXELXZKCEEEEEE EEE
IEIRELLLLEILLEIPIIIEIIEIEE

[BELLEITTT
Tee eesereresaseorevea

IRELLTTETER
Terre eee)
a

ae "TE Seen 6 Da eee N
POPC OHH ESOC O RHEE HEREC EERO SR REEHHEE EHR EH HERERO OE HS OEEERESEE ODER REET EN NR
COP FPO OHHH UH THEO ORDERED EOD ROOD ORS EORE REED
Peo eter eer err ereneonenn
ee nn0er
ones

Hierbei handelt es sich um ein Hilfsmittel, daß es
uns erlaubt einen Vektor und somit einen beliebigen
Punkt im Raum um einen beliebigen Winkel um die drei
Koordinatenachsen zu drehen. Damit ist es dann auch
möglich, beliebige Körper und Flächen auf dem Bild-
schirm zu drehen. Da in vielen Anwendungen nur eine
Drehung um ein oder zwei Winkel nötig ist, kann diese
Matrix verkürzt werden, indem die nichtveränderbaren
Winkel direkt eingesetzt und ausgerechnet werden.
Dies haben wir auch in den nächsten beiden Abschnit-
ten so gehandhabt.

Hier nun die Definition der Rotationsmatrix:

RM[1,1]= cos(wz)* cos(wy);
RH[2,1J]=-cos(wz)* sin(wy);
RM[3,1]= sin(wz);

293

Kapitel 12 Graphikerzeugung 2

RH[1,2]= sin(wx)*sin(wy)-cos(wx)*cos(wy)*sin(wz);
RM[2,2]= sin(wx)*cos(wy)+cos(wx)*sin(wy)*sin(wz);
RM[3,2]= cos(wx)*cos(wz);
RM[1,3]= cos(wx)*sin(wy)+sin(wx)*cos(wy)*sin(wz);
RM[2,3]= cos(wx)*cos(wy)-s in(wx)*s in(wy)*sin(wz);
RM[3,3]=-s in(wx)*cos (wz);

Dabei sind wx, wy und wz die gewünschten Drehwinkel
um die jeweilige Achse (im BogenmaB). Beachten Sie
dabei, daß die Drehungen um die x-Achse nach vorne,
um die y-Achse nach rechts und um die z-Achse im
Uhrzeigersinn erfolgen! Die Übertragung auf unser
definiertes Koordinatensystem erhalten wir durch fol-
gende Multiplikation mit den jeweiligen Koordinaten
x, y und z:

xnew = RM[1,1] * x + RM[2,1] * y + RM[3,1] * z;
ynew = RM[1,2] * x + RM[2,2] * y + RM[3,2] * z;
znew = RM[1,3] * x + RM[2,3] * y + RM[3,3] * z;

Dabei ist es selten erforderlich znew wirklich
auszurechnen, da uns zur Darstellung auf dem Bild-
schirm meißtens die x- und y-Koordinate eines Punktes
ausreicht. |

Als Anwendungsbeispiel nehmen wir den Punkt
(10,20,0). Gehen wir von unserem Ursprung in der
Bildschirmmitte aus, so liegt dieser Punkt 10 nach
rechts, 20 nach oben und 0 nach hinten vom Ursprung.
Gedreht werden soll er: 30 Grad nach vorne um die
x-Achse, 90 Grad nach rechts um die y-Achse und 45
Grad im Uhrzeigersinn um die z-Achse. Die neuen
Koordinaten xnew, ynew und znew erhalten wir, wenn
wir die Winkel wx := Pi/3, wy := Pi, wz := Pi/2
setzen und anschließend die oben gezeigte Multiplika-

294

Kapitel 12 Graphikerzeugung 2

tion mit den Koordinatenpunkten durchführen. So er-
halten wir den "gedrehten" Punkt: (10,5,13).

..
DESKEKIZERTERESULENCHIEZTLILEILEIKERLEELEXIIIIE "DIE DE CE EEE Er rl

eae

CORREO o REET O HHH HEHE RES RREEEOOE TEESE ESTOS FEES H SOO HHOEEHE SHEESH ETHRECREDEOOHE HE ETEOE SERED EEE HOES
PERERAREREUREEETAELE REE ERE EEE PERE E EE EEARERE REE EE EPEC REE EERE TEE REE ERERERE ERA ERRE OR RRAE RR EREE CRRA CRE ERS ERE SEE)
Duni as SE

Wir werden hier als Beispiel das Koordinatensystem
auf dem Bildschirm darstellen und es um beliebige
Winkel drehen. Dazu benötigen wir zunächst die x-, y-
und z-Koordinaten der Punkte die durch Linien oder
Linienzüge miteinander verbunden sind. Haben wir alle
Punkte erfaßt, so lassen wir lediglich noch die Rota-
tionsmatrix mit den gewünschten Winkeln auf alle
diese Punkte los und erhalten die "gedrehten" Werte.
Den Wert znew berechnen wir dabei nicht, da wir nur
die x- und y-Koordinaten zur Bildschirmdarstellung
benötigen.

/* Koordinaten af

#inc lude"Display.h"
#inc lude"gfxTools.h"
#inc lude"intuition/intuition. h"
#inc lude"math. h"

struct Window *Window;
struct RastPort *Rast; =
float wx,wy,WZ; /* Die Drehwinkel um die einzel-

nen Koordinatenachsen */
int Posx,Posy,Posx1,Posyl,xm,ym,n;
char ch; |

295

Kapitel 12 Graphikerzeugung 2

float L [18] [3] ={0,0,0, 100,0,0, 90,0,0, 100,0,10,
100,0,0, 90,0,10,

0,0,0, 0,100,0, 0,90,0, 10,100,0,
10,100,0, 10,90,0,

0,5,95, 0,10,90
0,0,0, 0,0,100, 0,0,90, 0,10,100,

};

/* Die Vektorenpaare (x1,yl,z1,x2,y2,z2) die jeweils
eine Linie im Raum definieren. */

float M [3] [3]; /* Die Rotationsmatrix */

main ()

USHORT code, i, J, hi.
ULONG Class;

OpenIntui();
OpenGfx();

printf(" \n >> Erstellung eines 3D-Koordinatensys-
tems << |n");

printf ("==== ==== == ====== |n");
printf(" Drehwinkel um die x-Achse: ");
scanf("sd ",&n);
wx =n * pi / 180.0; |
printf(" Drehwinkel um die y-Achse: ");
scant ("4d ",&n);
wy =n * pi / 180.0;
printf(" Drehwinkel um die z-Achse: ");
scanf("4d ",&n);
z=n* pi / 180.0;

printf(" Drehwinkel um die Achsen: %e %e %e \n ",
WX, WY, WZ);

/* Ein Fenster auf dem Workbench-Screen öffnen */
Window = (struct Window *)MakeWindow(0,0,639,230,0,

0, "Koordinaten",

296

Kapitel 12 | Graphikerzeugung 2

WINDOWCLOSE /ACTIVATE , CLOSEWINDOW, NULL); |
if(Window == NULL) /* Fehler beim Offnen ?_ */

exit (FALSE); :
/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;

RotMatrix (); /* Die zugehörige Rotationsma-
trix ausrechnen */

for(n = 0; n <= 17; nt=2)

{ Transfer (LinJL OL EEnjEI tinsel);
/* Startpunkt einer Linie *

Posxl = Posx; Posyl = Posy;
/* Bildschirmkoordinaten merken */

Transfer(L[n+1][0],L[nt1][1],L[n+1][2]);
/* Endpunkt einer Linie */

Line(Window->RPort,Posx,Posy,Posx1,Posyl,n / 6+1);
Fi

/* Auf Close-Gadget warten und alles schließen */
Class = WaitEvent(Window,&code);
C loseWindow(Window) ;

RotMatrix ()

{ M[0][0] = cos(wz) * cos(wy);
M[1J][0] =-cos(wz) * sin(wy);
M[2][0] = sin(wz);
M[o][1] = sin(wx) * sin(wy) - cos(wx) * cos(wy)

* sin(wz);
M[1][1] = sin(wx) * cos(wy) + cos(wx) * sin(wy)

* sin(wz);
M[2][1] = cos(wx) * cos(wz);
M[o][2] = cos(wx) * sin(wy) + sin(wx) * cos(wy)

* sin(wz);

297

Kapitel 12 Graphikerzeugung 2

M[1][2] = cos(wx) * cos(wy) - sin(wx) * sin(wy)
* sin(wz);

M[2][2] =-sin(wx) * cos(wz);

Transfer (x,y,z)
/* Einen Punkt im 3D-System mit Hilfe der

Rotationsmatrix drehen. */
pont X, Yı Z;

float x1, yl, zl;

xl = M[0][0] * x + M[1][0] * y + M[2][0] * z;
yl = M[OJ[1] * x + M[1][1] * y + M[2]J[L1] * z;
zl = M[OJ[2] * x + M[1][2] * y + M[2][2] * z;
Posx = 320 + (int) x1 *2; /* Umrechnung in Bild-

schirmkoordinaten */ |
Posy = 130 - (int) yl;

Zunächst nochmals kurz zur Erinnerung: Ein "norma-
ler" Graf einer Funktion y = f(x) hat zwei Koordina-
tenachsen, wird also zweidimensional dargestellt. Re-
det man von einer 3D-Funktion so ist damit eine Funk-
tion der Form z = f(x,y) gemeint.

Anschaulich bilden die Koordinatenachsen x und y
eine Ebene, auf der sich die Funktion, z.B. in Form
von Sinusschwingungen, erhebt. Programmtechnisch wer-
den wir also einen doppelt dimensionierten Array in
Abhängigkeit von x und y anlegen, der zu den Koordin-
atenpaaren (x,y) den entsprechenden Funktionswert
enthält. Das Programm läßt sich in zwei wesentliche
Abschnitte teilen: das Ausrechnen der einzelnen Funk-
tionswerte und die Darstellung auf den Bildschirm.

298

Kapitel 12 Graphikerzeugung 2

Beachten Sie bei Funktionen bitte immer, daß Sie ei-
nen sinnvollen Definitionsbereich auswählen, so daß
es gar nicht erst zu einem "Division by Zero"- Error
kommen kann.

Die allgemein übliche Form der Ausgabe solcher
Funktionen ist die eines Gitternetzes, welches sich
aus vielen kleinen Vierecken zusammensetzt. Betrach-
ten wir jedes dieser Vierecke für sich, so haben wir
Polygone, die durch ihre Eckkoordinaten gegeben sind.
Diese können wir bereits auch beliebig gedreht auf
dem Bildschirm darstellen. Um das gesamte Gitternetz
auszugeben, müssen wir lediglich eine Schlaufe pro-
grammieren, die alle Vierecke zeichnet. Zuvor lohnt
sich aber noch eine Überlegung zum Thema verdeckte
Linien: Linien, die im Hintergrund liegen, also durch
davorstehende verdeckt werden, sollen auch wirklich
nicht erscheinen.

Um jetzt aber vor dem Zeichnen einer Linie nicht
erst nachrechnen zu müssen, ob diese sichtbar ist
oder nicht, bedienen wir uns eines einfachen Tricks.
Wir zeichnen nicht einfache Polygone, sondern umran-
dete, mit der Hintergrundfarbe ausgefüllte Polygone.
Nun legen wir die Schlaufen, die die einzelnen
Vierecke ausgeben, so, daß die hintenstehenden Vier-
ecke zuerst, die vornestehenden zuletzt gezeichnet
werden. Sollte es "verdeckte" Linien geben, dann
werden sie bei diesem System von den im: Vordergrund
stehenden übermalt.

Auch bei der beliebigen Drehung des Gitternetzes
sind einige Einschränkungen durchaus sinnvoll. Auf
eine Drehung um die von uns definierte z-Achse können
wir verzichten, wodurch sich die Rotationsmatrix um
einiges vereinfacht, wenn wir für den Winkel wz
sofort 0 einsetzten.

299

Kapitel 12 Graphikerzeugung 2

/* Funktionen-Plotter */

#include"Display.h"
#inc Iude"graphics/gfx.h"
#include"intuition/intuition.h"
#include"math.h"
#include"AreaExtras.h"

#define Dim 64 /* Die Größe des Koordinaten-
netzes */

#define pi 3.14159

struct Coordinates

SHORT xK,yK; fi

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;
struct ViewPort *View;

SHORT F[65][65],
/* Das Koordinatennetz */

Ox[65][65], Dy[65][65];
/* Die Bildschimkoordinaten jedes Punktes */
USHORT code,i,Jj;
ULONG Class;

main ()

printf(">>> 3D Funk- Plotter<<<");
OpenIntui();
OpenGfx();

300

Kapitel 12 Graphikerzeugung 2

Init();
/* Berechnen der Funktion */
OpenAll(&Window,&Screen,&Rast,&View);

/* Öffnen der Grafikausgabe */
Ausgabeberechnung();

/* Berechnung der Bildschirmkoordinaten */
DrawLand();

/* Ausgabe der Funktion */

/* Auf Close-Gadget warten und alles schließen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);
CloseScreen(Screen);
}

OpenAl1(Wind, Scr, RastP, ViewP)

struct Window *4Wind;struct Screen **Scr;
struct RastPort **RastP;
struct ViewPort **ViewP;

{

/* Einen low-res Screen öffnen. */
*Scr = (struct Screen *)MakeScr(0,0,639,255,

"Fractals",2,HIRES,NULL,NULL);
if (*Scr == NULL)
exit (FALSE);

/* Ein Fenster auf dem neuen Screen öffnen */
*Wind = (struct Window *)MakeWindow(0,0,639,255,

0,0, "Funktionen",WINDOWCLOSE ! ACTIVATE,
CL OSEWINDOW, *Scr);

if(*Wind == NULL) /* Fehler beim Öffnen ?_ */
exit(FALSE):

301

Kapitel 12 Graphikerzeugung 2

/* Adresse des Viewports und des Rastports holen */
*RastP = (*Wind)->RPort;
ViewP = &((((*Wind)->WScreen)).ViewPort);

Init() /* Das Koordinatennetz mit einer Funktion
belegen */

short i,j;

for (i = 0; i <= 64; i++)

for (j = 0; j <= 64; j++)
F[il [3] = sin(i/16. AR * cos(j/16.0*pi) * 40.0;

r

Ausgabeberechnung ()
/* Berechnet zu den Werten F[x,y] die zugehörigen

Bildschirmkoordinaten */

SHORT X,Y;

Dx[x][y] = 512 - (SHORT)(((FToat)(2*y+192))/22. 0*
((Float)x)) + 2*y;

Dy[x]ly] = 80 + 2*%y - F[x][y];

302

Kapitel 12° Graphikerzeugung 2

++X/

} while (x <= Dim);

Hy;
y while (y <= Dim);

DrawLand ()
/* Grafische Ausgabe in das Fenster auf dem

LoRes-Screen. */

SHORT x, y;
struct Coordinates P[5];

P[O].xK = Dx[x]ly];
P[0].yK = rh eek P[1].xK = Dx[x+1][y];
P[1].yK = Dy[x+1]ly];
P[2].xK = Dx[x+1][y+1J;

P[2].yK = bed ytl];
P[3].xK = Dx[x][17;
P[3].yK = Dy[x]ly+1];
P[4].xK = FLO]. XK;
P[4]. 0].yK;
Move Rast a xK,P[0].yK);
SetAPen(Rast, 0);
PolyFill(Rast, P,5);
SetAPen(Rast,1);
Po IyDraw(Rast, 5,P);
+t+X;

} wh i Te (x < Dim-1);
++

} while vy, < Dim-1);

303

Kapitel 12 | Graphikerzeugung 2

Bild 12.1 - Die Funktion z = sin(x)*sinh(y).
HEzJ[3D-Dars teHung "von -2D-Funktionen > == =I Il

Kin [hy
| hs iN ? ii N/

N ti]
¢ FR , Hin /;

i / . i ! ! ! i} i \

N reper N,

RO»,
be

B
i
n

a
n

EN

ak

i IR N f

i \ In Wyn Hl DR My ia
INU U

IN aN
jg UBS a

NN
‘i) LES

RE SP

S
g

NG

N

:
Vervendete Werte:
Fix, ylicsin(xdasinh(y) (KB bis 6pı,y:8 bis ni/2), wxiz2@ Grad, wyir3@ Grad

Bild 12.2 - Noch ‘ne Funktion.
HCU3b-barstetleny von 2b-Funktionen. = =n le]!

Verwendete Werte:
Fin,yl tz xph2/Cxt2ty4) (-2 bis #2), x i= 40 mad, wy tz 60 Grad

304

Kapitel 12 Graphikerzeugung 2

Tips

- Auch hier läßt sich optisch durch die Farbgebung
viel gewinnen. Benutzen sie doch mal Farbgebungen
wie bei den Landschaften aus dem nächsten Ab-
schnitt.

- Bevor Sie eigene Funktionen ausprobieren, machen
Sie sich, um Meditationspausen zu umgehen, immer
vorher klar, was dabei für Werte herauskommen,
bzw. ob überhaupt etwas herauskommt.

POOR m eH eee me HELE SEH ERO ROTOR EE EES H TERETE CESSES IREEITIIPOSSERIIPIIIEREEIIePeeeerIre ee
Perm m ee eae H AREF OH EHEC ETE DEH ARES COT EEEAH HOSED EH SH TET HH DE ROT ELSE EHO EE DEE OEE
POO ae ee mere COLO ERECTOR EH EEE HORTA E SOE E ROH ET ETO OE HO ER HOES REDE ESHER EEE E EE
CP e emer eee rH ae eee m em EHD ETH HE EEETEO THESE DEH OOHE EDEN OHO COOH EEH HEED LEE EES EHEC ES
Pere mere COE E eH HEREC RHEE HHO ETOH ETH AAE SEE DHREEOSE HED GHEE HEE E EH E SESE HEEEBAS
PPUEREP PREECE RESEP SEER ESSE SECO S COREE CREPES ECE SECO PR CCE COREE ECOSTORE CREE eee ee!

5. Künstf iche Landschaften
CMCC eee HO HME ERE DERE E SE ELECTOR DET ERD HEE CEEH OEE EEE HERE EDO HHO SHO EER SONS ECE EOED
COC eae e remem Hee rede Hee HOE H ESET ED HEHEHE ERECT EEEEES ESE OSES ERE EHHHOEEOEO ESTEE EEOEFE OSE EEE DDO R Oe

Wir werden Ihnen hier eine einfache Technik vor-
stellen, mit der Sie mit wenig Rechenzeit eine
künstliche Landschaft erzeugen und auf dem Bildschirm
darstellen können.

Als Ausgangsfigur benutzen wir dabei wieder das
dreidimensionale Netz, das bereits aus dem vorherge-
henden Abschnitt bekannt ist. Diesmal wird dieses
Netz jedoch nicht mit einer Funktion "belegt", son-
dern es wird jedem Punkt in diesem Netz eine bestimm-
te Höhe so zugeordnet, daß eine Landschaft entsteht.

Um die dazu benutzte Technik einfach verständlich
zu machen, übertragen wir sie zunächst auf ein
zweidimensionales Modell. Diese sind Ihnen gewiß auch
aus Atlanten als Landschaftsquerschnitte bekannt.
Nehmen wir an, wir wollten einen Querschnitt durch
eine zufällige Gebirgslandschaft erzeugen. Eine sol-
che Linie, die die verschiedenen Höhen anzeigt, kann
man als Modell wie folgt erhalten: Stellen Sie sich
vor, Sie befestigen ein Gummiseil waagerecht auf
einer Pinnwand. Haben Sie es nur an den Enden

305

Kapitel 12 — Graphikerzeugung 2

befestigt, so kann es jetzt in der Mitte auf- und
abschwingen. Fassen Sie das Gummi in der Mitte an,
ziehen es ein Stück nach oben oder nach unten und
befestigen es dort duch eine weitere Nadel. Wiederho-
len Sie diesen Vorgang mit den neu entstandenden
Gummiabschnitten zwischen zwei Nadeln solange bis Sie
keine Lust mehr haben, oder der Abstand zwischen zwei
Nadeln zu klein wird. - Haben Sie mit dem nach oben
oder unten ziehen nicht übertrieben, so müßten Sie
jetzt einen mehr oder weniger typischen Landschaft-
querschnitt vor sich haben. Die Übertragung dieses
Modells auf drei Dimensionen erledigen wir gleich
anhand unseres Netzes. Damit wir immer wieder halbie-
ren können, muß die Dimension des Netzes eine Zweier-
potenz sein, 64 soll für unsere Zwecke reichen. Wem
dies zur Verdeutlichung leichter fällt, kann sich
dieses Netz wieder aus einzelnen Gummiseilen zusam-
mengef lochten vorstellen. Das hier vollständig Abge-
druckte Programm macht nun nichts anderes als die
anfänglich gegebene Fläche der Ausmaße 64x64 in immer
kleinere Quadrate zu unterteilen und diese wiederum
per Zufall ein kleines Stück nach oben oder nach
unten zu ziehen. Bei der Darstellung auf den Monitor
kann einerseits wieder die bereits bekannte Prozedur
zur Ausgabe eines solchen Netztes verwendet werden,
andererseits ist es möglich den Berechnungsvorgang zu
beschleunigen, wenn man auf eine variable Darstellung
verzichtet. Zur Demonstration verwenden wir diese
Technik in unserem Programm "Fraktale Landschaft".
Darüberhinaus benutzen wir den bereits aus dem vorhe-
rigen Abschnitt bekannten Trick um hinter Erhebun-
gen liegende Flächen zu verdecken. Negative Werte
werden ausserdem auf Null gesetzt, wodurch Täler bis
zur Höhe Null "aufgefüllt" werden. Durch entsprechen-
de Farbenwahl entstehen so Seen oder Meere. Ansonsten
ist auch hier die Farbgebung primitiv gehalten, da
dies ein Punkt ist, der die Programmlänge explosions-
artig vergrößern kann. Auch hierzu haben wir wieder

306

Kapitel 12 Graphikerzeugung 2

einen Bildschirmausdruck (Bild 12.3), der jedoch
einen erheblichen Teil seines Reizes verloren hat.
Die erzeugten Landschaften entfalten Ihre volle Wir-
kung nur auf dem (Farb-) Monitor.

Bild 12.3 - Eine zufällig erzeugte Landschaft.

/* Landscape */

#include "exec/types.h"
#inc lude“graphics/gfx.h"
#inc Iude"intuition/intuition.h" —
#inc lude"math.h"
#inc lude"Display.h"
#inc lude“AreaExtras.h"

#define maxDepth 6 jt Die ‘Berechnungstiefe", legt
auch die Dimension des Koordinatennetzes fest (Dim =
2 Hoch maxDepth) */

307

Kapitel 12 Graphikerzeugung 2

struct Coordinates

{
SHORT xK,yK;
e

?

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;
struct ViewPort *View;

/* Farbwerte für die einzeInen Farbregister */
int CI [] =T 0,0,2, 2,4,10, 0,5,1, 0,6,1, 1,6,2,
1,7,2, 1,8,2, 2, 8,3,

2,9,3, 2,10,3, 2,11,3, 3,11,4, 4,11,
4, 4,12,4, 5,9,3, 7,6,0,

6,6,1, 5,5,2, 5,4,3, 3,3,3, 4,4,4,

5,5,3, 6,6,6, Y,Iı!,

8,8,8, 9,9,9,. 10,10,10, 11,11,11,
12,12,12, 13,13,13,

14,14,14, 15,15,15 };

SHORT F[65][65], /* Koordinatennetz */

Ox[65][65], Dy[65][65],
/* Bildschirmkoordinaten */

Height [65][65], /* Durchschnittlicher
Höhenwert eines Polygons */

Grad[65][65],
/* Steigung eines Polygons */

Dim,
/* Dimension des Koordinatennetzes */

Depth,
/* augenblickliche Berechnungstiefe */

D, d,
/* Hi Ifsvariab len für die Berchnungst tefe */

| diff, maxh, Net;
float sigma ‚de Ita, /* Höhenstartwerte */

Hoeva, /* Höhenvarianz */

308

Kapitel 12 Graphikerzeugung 2

Smooth, /* Glättungsfaktor */
addrnd, pap;

long seed; /* Zufallsgenerator-
Initialisierung */
char ch;
USHORT code, i, j, h;
ULONG Class;

main ()

OpenIntui();
OpenGfx();

printf(">>> Programm zur Erstellung fraktaler
Landschaften <<<");
printfÜ"===================================2=2====");
do {scanf("Seed (lange, beliebige Zahl für den

Zufallsgenerator) : %1\n",seed);
} while(0 != 0);
do { scanf(" Hooke (von 10 bis 100) : 4d \n",sigma);
} while((sigma <= 10.0)!! (sigma >= 100.0));
do {scanf(" Hoehenvarianz (von 0.75 bis 2.25) : an

",Hoeva
} while((Hoeva <= 0.75) |} (Hoeva >= 2. 25));
do {scanf(" Glaettungsfaktor (von 0.0 bis 1.0) :

%d\n", Smooth);
} while((Smooth <= 0.0) !! (Smooth >= 1.0));
do {scanf(" Ausgabe als >>N<< etz oder een mM;

4c \n",ch);
} while((ch != 'n') && (ch != 'r')); if (ch == 'n')
Net = 1;

else
Net = 0;

Init();
OpenA11(&Window, &Screen, &Rast , &View);

309

Kapitel 12 Graphikerzeugung 2

/* SetColors(Screen,&C01,32); */

Depth = 2;
do {
Next(); /* Nächste Berechnungstiefe */
if(Depth > 1) a

Class = WaitEvent (Window, &code);
Class = WaitEvent (Window, &code);
Ausgabeberechnung(); /* Umwandlung in Bi Idschirm-

koordinaten */
Move(Rast,0,10);
ClearScreen(Rast);
DrawLand(); /* Ausgabe der Landschaft */

++Depth;
} while((Depth <= maxDepth));

/* Auf Close-Gadget warten und alles schließen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);
CloseScreen(Screen);
}

OpenAll(Wind,Scr,RastP,ViewP)

struct Window **W/ ind;
struct Screen *%$cr;
struct RastPort **RastP;
struct ViewPort **ViewP;

{

/* Einen low-res Screen öffnen. */
*Scr = (struct Screen *)MakeScr(0,0,320,250,

"Fractals",5,NULL,NULL,NULL);
if (*Scr == NULL)

310

Kapitel 12 Graphikerzeugung 2

exit(FALSE);

/* Ein Fenster auf dem neuen Screen öffnen */
*Wind = (struct Window *)MakeWindow(0,0, 319,250,

0,0, "Fractals",WINDOWCLOSE / ACTIVATE,
MOUSEBU TTONS | ! CLOSEWI NDOW, *Scr);

if(*Wind == NULL) /* Fehler beim Öffnen 2? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
*RastP = (*Wind)->RPort;
ViewP = &((((*Wind)->WScreen)).ViewPort);

SHORT Av3(a,b,c) /* Average3 berchnet den
Durchschnitt dreier Zahlen und

addiert einen zufälligen Wert */
SHORT a,b,c;

return ((a+b+c)/3 + (SHORT)(delta * ((rnd()*
Fi -0-1.0))));

SHORT Av4(a,b,c,d)
/* Average4 berchnet den Durchschnitt vierer Zahlen

und addiert einen zufälligen Wert */

SHORT a,b,c,d;

return ((atb+c)/3 + (SHORT)(delta * ((rnd()*
5 0-1.0)))); |

ComputePos (a, b) /* Berechnet die Zwischenpunkte
(3.Stufe) */

311

Kapitel 12 Graphikerzeugung 2

SHORT a,b;

SHORT x, y, hx, hy;
x =a;
hx = ytd;
while((x <= Dim-d) && (hy <= Dim))

y = 5;
hy = ytd;
while ((y <= Dim-d) && (hy <= Dim))

{
rind yd = Av4(F[x] [hy], F[x] ly-d],F[hx] Ly],

hy = ytd; F[x-d] [y])

fi += D;
ve = xtd;

} 7

AddRandom(a,b) /* Addiert zu den Höhenwerten einen
zufälligen Wert */

SHORT a,b;

SHORT x,y;
x =a;
do {

do {
F[x] fy] =F[x] [y] + (delta * ((rnd()*2.0-1.0)));

P unite (y <= b);
x += D;

} while (x <= b);

312

Kapitel 12 Graphikerzeugung 2

Init() /* Initialisierung der Eckpunkte */

t SHORT t;
float f;
Dim = PowerInt(2,maxDepth);
t = 0;
delta = sigma;
t = (delta * rnd());
Flo] [0] = t + 50.01;

* t = (delta * (rnd()*2.0-1.0));
F[0] [Dim] = t + 20.01;
f = rnd();
t = (delta * f);
F[Dim] [0] = t + 80.01;
t = (delta * (0.0-rnd()));
F[Dim] [Dim] = t + 60.1;
D = Dim / 2;
t = (delta * (rnd()*2.0-1.0));
F[D] [D] = t + 70.01;
d=D/2;

Next() /* Nächste Berechnungstiefe */

SHORT x, y;

delta = delta * Pow(0.5,Hoeva); /* Höhenwert delta
verkleinern */

/* Erste Stufe der Berechnung: Alle Punkte ermitteln
die diagonal zwischen vier bereits bekannten Höhen-
werte liegen. */ |

313

Kapitel 12 Graphikerzeugung 2

x=d; dof{
y=d
do {
F[x] [y] = Av4(F[x]ly+d],F[x+d][y-d],F[x-d]

ly+d], Fx ally.al);
y t= D;

} while (!(y > Dim-d));
x += D;

} while (!(x > Dim-d));

addrnd = rnd();
if (addrnd > Smooth)
AddRandom(0, Dim);

delta = delta * Pow(0.5,Hoeva);
/* Höhenwert delta verkleinern */

/* Zweite Stufe der Berechnung: Alle Randpunkte er-
mitteln, die zwischen drei bereits bekannten Höhen-
werte liegen. */

F[x] [0] = Av3(F[x+d] [0],F[x-d] [0],F[x] [d]);
rp flag io in) = Av3(F[x+d] [Dim],F[x-d] [Dim],F[x]

im-d]);

F[0] [x] = Av3(F[0] [x+d],F[O][x-d],F[d][x]);
f Full = Av3(F[Dim] [x+d],F[Dim] [x-d],F[Dim-d]

Xl)r
x += D; |

} while (!(x > Dim-d));

/* Dritte Stufe der Berechnung: Alle noch übrigge-
bliebenen Zwischenpunkte ermitteln. */

ComputePos(d,D);
ComputePos(D,d);

314

Kapitel 12 Graphikerzeugung 2

addrnd = rnd();
if (addrnd > Smooth)

i ddRandom(0,Dim); AddRandom(d,Dim-d);

D=D/2; /* Hilfsvariablen auf den nächsten Ver-
kleinerungsschritt */

d=d/2; /* vorbereiten. */

Ausgabeberechnung ()
/* Berechnet zu den Werten F[x,y] die zugehörigen x-
und y-Koordinaten */
/* sowie die Höhe und die Steigung der einzelnen
Polygone.

SHORT X,YıyT:
float yr;

y = 0;
do {
x = 0;
d
oxtaTLy] = 256 - (SHORT)(((float)(2*y+192))/

64. 0*((float)x)) + y;
if (F[x][y] <= 0) /* Punkt liegt unter dem

Meeresspiegel */
Dy[xJ[yJ] = 111 + 2*y;

else /* Punkt liegt über dem
Meeresspiegel */

Pytx Hyd = 111 + 2*y - F[x]ly]i
X = e

} while (x <= Dim);

315

Kapitel 12 Graphikerzeugung 2

y t= D;
} while (y <= Dim);

maxh = 29;

/* Durchschnittshöhe der Polygone berechnen */

He ightLxILyI - (Fx Ly J+ [x If y+D]+F [x+0 Jly+]+F [x4]
J. r

if (((F[x]ly]>0) |) (FEx][y+D]>0) !! (F[x+D]
[y]>0) !! (F[x+D][y+DJ>0)) && (Height[x][y]<=0))

/* Meerespiegel für dieses Polygon nur setzen, wenn
alle Eckpunkte im "Wasser" Tiegen. */

Height[x]ly] = 1;

/* Steigung des Polygons bestimmen */
Grad[x][y] = abs(abs(F[x][y]) + abs(F[x+D][y]) -

2*Height[x][y]) / 0;
if (Grad[x][y] > 7)
Grad[x][y] = 7;

if (maxh < Height[x][y])
maxh = Height[x][y];

x += D;
} while (x <= (Dim-D));
y t= D;

y while (y <= (Dim-D));

316

Kapitel 12 Graphikerzeugung 2

DrawLand ()
/* Grafische Ausgabe in das Fenster auf dem LoRes-
Screen. */

{
SHORT x, Y, C, S;
float dh, ds, h;
struct Coordinates P[5];

dh = ((float) maxh)/29.0;

y = 0;
di 0

x = 0; |
do { Ä
P[O].xk = Dx[x]ly];

P[O].yK = Dy[xJLy];
P[1].xK = Dx[x+D][y];
P[1].yK = Dy[x+D][y];
P[2].xK = Dx[x+D][y+D];
P[2].yK = Dy[x+D][y+D];
P[3].xK = Dx[x][y+D];

PE3].yK = Dylx][y+D];
P[4].xK = P[O].xK;

P[4].yK = P[0].yK;
/* Farbbestimmung, dazu in h einen Höhenwert von

maximal 30 */
h = ((float)Height[x][y])/dh;
s = Grad[x][y];
if (h <= 0.0) /* H;he <= 0, also Meer(blau) */
c = I;

else
if (h > 24.0) /* Höhe > 24, also Steingrau bis

Schneeweis */
c = (2.5 + h);

else
if (s > 3) /* Steigung > 50 Grad, Also

Felsgrau */
c = 2/7 -S;

317

Kapitel 12 | Graphikerzeugung 2

else /* sonst "normale" Höhenlinie */
c =2.5 + h;

Move(Rast,P[0].xK,P[0].yK);
SetAPen(Rast,0);
PolyFill(Rast,P,5);
SetAPen(Rast,c);
PolyDraw(Rast,5,P);

x += D;
} while (x <= Dim-D);
y += D;

} while (y <= Dim-D);

Tips:

Die so erzeugten Grafiken lassen sich um ein
vielfaches verschönern, indem Sie mehr Farben ein-
setzten und die Auflösung erhöhen, also das 64x64
große Netz durch ein 128x128 oder gar 256x256
großes ersetzen. Dabei kann es allerdings Probleme
mit dem Compiler geben, da ein doppelt dimensio-
niertes Feld nicht beliebig groß werden kann.
Eventuell müssen Sie ein großes Netz aus mehreren
64x64 großen Feldern zusammensetzten.
Lassen Sie uns noch folgende Anregungen zur Farbge-
bung geben. Im Normalfall setzt sich die Landschaft
aus 64x64 Feldern zusammen. Von jedem dieser Felder
kennen wir die vier Höhenwerte der Eckpunkte. Da-
raus läßt sich nicht nur die Durchschnittshöhe je-
des einzelnen Feldes errechnen, sondern auch Stei-
gung, bzw. Neigung um die x- und yAchse. Entspre-
chend der Durchschnittshöhe setzt man Farben wie
Meeresblau für die Höhe Null, verschiedene Grün-
töne für die folgenden Höhen, sowie über einige

318

Kapitel 12 Graphikerzeugung 2

Grautöne, schließlich weiß für den Schnee auf den
Bergspitzen. Ab einer gewissen Steigung können Sie
verschieden Grautöne verwenden um zu verdeutlichen,
daß es sich um felsige Gebiete handelt.

- Um auch eine gewisse Schattierung hereinzubringen,
kann man die Neigung zum Betrachter oder einer
imaginären Lichtquelle berechnen. Je stärker sich
ein Feld von diesen Werten neigt, desto schwächer
wird Licht reflektiert, also um so dunkler muß die-
ses Feld erscheinen.

DELETE EEE EHE OTTO EURER RP PORE TORE.
De ee ee ee er OHH RHE HP EEEE REE OD

CUCM R em ae Oe HOSE rE HEHEHE DEH EL OEE BEDE O OLEH ERE EH OSD EDEL E REE HEHE OEP
eeReer Pe See eee eee!

SEPSCETTETTETELESESETESTSTOSTOSETTES ESTE ERT ST ET ET TEE]

SEETSEPESSCUTESSCEE SCT ES eeTeeeT ESSE SSS ETT T eee reitengrac Bi |

SPRTITLCTTESTCEP ELE ES

.
2 oes |
PEVUPETETTEEETESEEESTEEECEETIL EE ET EET TOUTEPETECLESOLESTESTSIT TS CISC ESTE, tence
SEPOPTESETTLISELESSSETESTRETESE ETI E ... oe sees sasacees .. |
Peronneoooseeenennenenn nenne nee nennen nu TETTTTErerer reer erry’ suronsere PPPPPeSErEVeTeErereee rer’ verserceocce .
PERERRERTTERTERTERERERERERERESERETEERRERERTTTERT PRETTERR Serresrrarerrerr rs Lieezepessergpregerogecreors Seergeroer>e .

Abschließend befassen wir uns mit der Darstellung
einer Kugeloberfläche mit Hilfe von Längen- und Brei-
tengraden. Es entsteht also lediglich ein Gittermo-
dell einer Kugel, dessen Auflösung wir dadurch erhö-
hen, daß wir sie nicht aus einzelnen Linien, sondern
aus einzelnen Punkten zusammensetzen. Dieses Verfah-
ren ist zwar etwas zeitaufwendiger, aber setzt man
die Kugel aus nur wenigen Längen- und Breitengraden
zusammen, so erscheint bereits nach wenigen Minuten
die fertige Kugel auf dem Bildschirm. Zur Erstellung
betrachten wir zunächst nur die Längengrade. In
unserem definierten Koordinatensystem sind dies
Kreise, die alle den gleichen Radius haben, nämlich
den der Kugel. Der Mittelpunkt eines jeden Kreises
befindet sich im Ursprung des Koordinatensystems. Den
Nullmeridian legen wir in die xy-Ebene, er erscheint
also auf dem Bildschirm als Kreis. Dieser Kreis kann
mit Hilfe der Rotationsmatrix wie folgt berechnet
werden: die Schnittpunkte des Kreises mit der x-Achse
sind uns durch den Radius bekannt. Drehen wir nun mit
Hilfe der Rotationsmatrix einen dieser Punkte

319

Kapitel 12 Graphikerzeugung 2

schrittweise um die z-Achse, so erhalten wir die
Punkte, die auf dem Kreis liegen. Der erste Meridian
wäre somit berechnet. Die anderen erhalten wir, wenn
wir diesen Meridian Schrittweise um die y-Achse
drehen.

Die Breitengrade dagegen haben nicht alle den
gleichen Radius. Der Äquator hat den größten Radius,
den der Kugel, während die anderen zu den Polen hin
immer kleiner werden. Diese Kreise sind alle parallel
zu der xz-Ebene und ihre Mittelpunkte liegen alle auf
der y-Achse, der des Aquators im Ursprung des Koordi-
natensystems. Diesmal liegt unser Ausgangspunkt zur
Berechnung der Kreise nicht auf einer der Koordina-
tenachsen, sondern auf dem Nullmeridian. Tasten wir
diesen Schrittweise ab und drehen diese Punkte um die |
y-Achse, so erhalten wir bereits die gewollten Brei-
tenkreise.

In der Praxis ist es über die Rotationsmatrix mög-
lich „ diese Kugel auch noch beliebig zu drehen,
indem wir einfach die gewünschten Drehwinkel wie
bekannt in die Rotationsmatrix einsetzen. Dabei ist
es hier ein Leichtes, die hintenliegenden Punkte aus-
zurechnen und gar nicht erst zu zeichnen. Bei unserer
Kugel sind alle Punkte unsichtbar, die hinter der xy-
Ebene liegen, also negative z-Koordinaten haben. Hat
also ein Punkt eine z-Koordinate kleiner als Null, so
wird er nicht gesetzt. Der wesentliche Programmteil
sieht so aus:

/* Kugel von Olaf Pfeiffer,
C-Version von Paul Lukowicz */

#include"Display.h"
#inc lude"graphics/gfx.h"
#include"intuition/intuition. h"

320

Kapitel 12 Graphikerzeugung 2

#include"math.h"
#include"stdio.h"

#define pi 3.14
#define wx 0.62 /* Drehung um die x-Achse */
#define wz 0.39 /* Drehung um die z-Achse */
#define wy 0.0 /* Drehung um die y-Achse

(uninteressant) */
#define Radius 75.0

/* Kugelradius in Pixeln (10 - 100) */
#define Laengen 12.0

/* Anzahl der Längengerade (2 - 32) */
#define Breiten 11.0

/* Anzahl der Breitengerade (1 - 31)*/

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;
struct ViewPort *View;

float s;
float M [5] [5];

int Col [] ={0, 0, 2, 2, 4,10, 0, 5, 1, 9,
6, 1, 1, 6, 2, 1, 7, 2,

1, 8, 2, 2, 8, 3, 2, 9, 3, 2,

10, 3, 2,11, 3, 3,11, 4,
4,11, 4, 4,12, 4, 5, 9, 3, 7,

6, 0, 6, 6, 1, 5, 5, 2,
5, 4, 3, 3, 3, 3, 4, 4, 4, 5,

5, 5, 6, 6, 6, 7, 7, 7,

8, 8, 8, 9, 9, 9, 10,10,10, 11,
11,11, 12,12,12, 13,13,13, 14,14,
14, 15,15,15 } |

321

Kapitel 12 Graphikerzeugung 2

main ()

USHORT code, i, j, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Einen low-res Screen öffnen. */
Screen = (struct Screen *)MakeScr(0,0,320,250,

"HAM-Demo",5,NULL,NULL,NULL);
if (Screen == NULL)
exit(FALSE);

/* Ein Fenster auf dem neuen Screen öffnen */
Window = (struct Window *)MakeWindow(0,0,320,

250,0,0, "Ham-Demo",
WI NDOWCL OSE ! ACTI VA TE ! WINDOWDRAG,
CLOSEWINDOW, Screen);

if(Window == NULL) /* Fehler beim Öffnen ?_ */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen,
Farben setzten */

Rast = (Window)->RPort; Ä
View = &((*(Window->WScreen)).ViewPort);
/*for(i = 0; i<32;SetRGB4 (View, (i+=3),Col[i-3],Col

[i-2],Col[i-1]));*/
s =1.0 / Radius;
Matrix ();
LCircle(Laengen);
BCircle(Breiten);

/* Auf Close-Gadget warten und alles schlieBen */
Class = WaitEvent(Window, &code ji
CloseWindow(Window);
CloseScreen(Screen);

322

Kapitel 12 Graphikerzeugung 2

/* Belegen der Rotationsmatrix */

Matrix ()

{ M[1] [1] = cos(wz) * cos(wy);
M[2] [1] =-cos(wz) * sin(wy);
M[3] [1] = sin(wz);
M[1] [2] = cos(wx) * sin(wy) + sin(wx)

* cos(wy) * sin(wz);
M[2] [2] = cos(wx) * cos(wy) - sin(wx)

* sin(wy) * sin(wz);
M[3] [2] =-sin(wx) * cos(wz);
M[1] [3] = sin(wx) * sin(wy) - cos(wx)

* cos(wy) * sin(wz);
M[2] [3] = sin(wx) * cos(wy) + cos(wx)

* sin(wy) * sin(wz);
; M[3] [3] = cos(wx) * cos(wz);

Drawxyz(p, q)

float p,q;

{
float x,y,zZ,X1,yl,z1;
int Posx,Posy,Cc;

* = cos(q) * cos(p);
= cos(q) * RA

z = ‚sin(q);
- M11] * x + M[2][1] * y + M[3J][1] * z;

yı = M[1]J[2] * x + M[2][2] * y + M[3][2] * z;
zl = M[1][3] * x + M[2]J[3] * y + M[3][3] * z;

if(yl >= 0.0)

Posx = 160 + (int)(Radius * x1);
Posy = 130 + (int)(Radius * z1);

323

Kapitel 12 Graphikerzeugung 2

c = (int)(yl * 30.0) + 2;
SetAPen(Rast,c);
WritePixel(Rast,Posx,Posy);

7

}

LCircle (step)

float step;

float p, gq, st,pi2;

st = pi/step;
pi2 = 2.0 * pi;
for(p = 0.0; p< pi; p= ptst)
for(q = 0.0; q < pi2;Drawxyz(p,q), q = q +s);

BCircle(step)

float step;

{
Float p,q,st,pi2,pi3;

pi2 = pit / 2.0;
pi3 = pi * 2.0;
st = pi / (step +1);
for(q = (-pi2 + st);q <= (pi2 - st);p = p)

for(p = 0.0; p < pi3;Drawxyz((p),q),p = pts);
q=qt st;

}

324

Kapitel 12 Graphikerzeugung 2

Bild 12.4 - Kollage von mehreren durch das Programm
"Kugel" erzeugte Kugeln.

Kugel Cc

TC] Kugel \ DC E

Be Te «st tn

Tips:

Wiedereinmal zur Farbgebung: in diesem Beispiel ist
die Farbe abhängig von der Tiefe, von der z-Koordi-
nate eines Punktes. Wählt man die Farben entspre-
chend, entsteht der Eindruck unser Modell würde
direkt von vorne beleuchtet. Wollen Sie eine seit-
liche Beleuchtungsquelle simulieren, so müssen Sie
die Farbgebung winkelabhängig machen. Von jedem
Punkt kennen Sie durch die Koordinaten auch die
Winkel, in denen er zu den einzelnen Achsen steht.
Setzen Sie beispielsweise den Punkt der höchsten
Reflexion, also der Punkt der auf der Kugelober-
fläche am hellsten erscheint, so, daß er zu allen
drei Achsen im Winkel Pi/4 steht. Je größer nun der
Unterschied der drei Winkel eines Punktes zu dem

325

Kapitel 12 Graphikerzeugung 2

gesetzten Wert (Pi/4) ist, desto dunkler muß dieser
Punkt werden.

DERKENKERKIEKKZRLLZEKEKZEKERKISZERKIZILINSERTERTZENTT
Peessossoenarenunane en een naar ernennen ee
Derbenen nenne LE LT ET
PPPETETPESSTEE ESL ELEL ESS S CEL EL EERER FETTE Tee

oC. Absch ljeßende: Anregungen: für Fortgeschrittene.
Bee REHOME EERE rer
Per soon ee OEP ERED OSH H EOC O ERED EH EH EH OEE ET ERO EET OH EHO REDHEAD EO EEE UT TUE OTTO EHP SED ERROR
be RPO Re mer m Ere H ee HH OER O EEE H REESE EH OE OOP DEERE EEE ESOE HOE HE SEM POD ESE ROSE ROTH HED EDEEE DEM OHO ORO RE HOED
Ree eae tee eae eT EMRE HTT RAE E HE OEE HEHE MH EEE RETTET EL THESES EHO E SEF EEE DESERET ER SEESEESESOPEDESS HEE SHAD EU EOS SESS ED ED DSS EOSEEHEHED DH OOD
PRM HOHE eee CEE O Me AEE DETER HORS HOE R SHEED RH EEH EET SORE OHO R SEER ON THEE HERAT RHR RHET ETOH ETAT PEROT ED AERE ROTH RASA ETE SHAE ESE HESES ODEO ESOT OOH EERE EHO SEHOES
PVPRETETERRARERERERE EERE SEPERATE EEE ES SEREEEEORE PERCE E SE ERE ER ST SEES EEE PER ARE TAREE PERE RTE SRERERARERE TERE RERERA SERRE TERE ES PERO RE SERRE EERO RRE ER EERE EERE ERE

Wir haben Ihnen nun viele verschieden Techniken
vorgestellt, mit denen Sie innerhalb kurzer Zeit zum
Teil bereits recht verblüffende Computergrafiken er-
stellen können. Für diejenigen unter Ihnen, die be-
reits eigene Änderungen, Erweiterungen oder Verbes-
serungen an diesen zum Teil recht einfachen Grafikal-
gorithmen vorgenommen haben noch ein Vorschlag: ver-
suchen Sie die Techniken miteinander zu verknüpfen!
Erstellen Sie doch zum Beispiel einen Landschafts-
auschnitt und "bepflanzen" Sie diesen mit verschie-
denen Gewächsen der L-Systeme, womöglich auch noch in
Abhängigkeit von der jeweiligen Höhe.

Oder eine andere Idee: schreiben Sie das Programm
zur Erstellung der Kugeln so um, daß nicht mehr Punkt
für Punkt sondern nur noch Schnittpunkt für Schnitt-
punkt (von Längen- und Breitengrad) berechnet wird
und diese dann durch Linien verbunden werden. So ist
es nicht mehr weit bis zu dem Punkt, wo Sie das Netz
der fraktalen Landschaft auf diese Kugel projezieren
können. Somit hätten Sie dann ein Programm zur
Erstellung Ihrer eigenen Planeten oder, je nach
Farbgebung und Höhenvarianz, Monde und Kometen.

326

Anhang A

Anhang A

Die Datenstrukturen der Intuition

327

Anhang A

Dieser Teil des Anhangs enthält die wichtigsten Da-
tenstrukturen der Intuition in alphabetischer Reihen-
folge. Dabei haben wir vor allem die ausgewählt, die
für die Programmierung und insbesondere die Grafik-
programmierung wichtig sind. Da einige der Daten-
strukturen relativ lang sind, haben wir uns bei den
Datenstrukturen Window und Preferences auf die
wesentlichen Teile beschränkt.

Border |

Diese Struktur wird von der Routine DrawBorder ver-
wendet, um einen beliebigen Rahmen zu zeichnen. Sie
beinhaltet alle Informationen, die Draw-Border für
das Zeichnen der Umrandung braucht. Sie können über
NextBorder mehrere Border-Strukturen verketten, um
sie mit einem DrawBorder-Aufruf ausgeben zu können.

struct Border

SHORT LeftEdge, TopEdge;
UBYTE FrontPen, BackPen, DrawMode;
BYTE Count;J
struct Border *NextBorder;

7

LeftEdge, TopEdge: Hierbei handelt es sich um die zum
Rastport relative Position des Rahmens (x- und y-Ko-
ordinate in Pixels).

328 328

Anhang A

FrontPen: Die Nummer des Farbregisters mit dem Farb-
wert, der als Vordergrundfarbe beim Zeichnen des Rah-
mens benutzt werden soll. |

BackPen: Die Hintergrundfarbe.

DrawMode: Der Zeichenmodus, in dem der Rahmen ge-
zeichnet werden soll. (Siehe Prozedur Draw)

Count: Anzahl der XY-Koordinatenpaare, die die Eck-
punkte des Rahmens bilden.

*XY: Die Koordinatenpaare relativ zur linken oberen
Ecke. Sie werden in einem Speicherbereich, auf den XY
zeigt, abgelegt.

*NextBorder: Zeiger auf die nächste Border-Struktur,
die ebenfalls noch ausgeführt werden soll.

Ist dieser Wert gleich NULL, so wird keine weitere
Umrandug gezeichnet.

ICEINZERLIEZELZERIIIELZEITEN]
ELRLLZERFERTEIT OT
REPEC eePEPEeeeeereree rer ee es
Cada aeemeressersessesecserns
eee cero mesereccrassssencone

poe eee cnc an ereesreseeeanees
Seer CEPR

VOR e ewan ses ee "re
pee es mer eneersoseareeeessonrs
bh Ove eee eee em eesenareaeoneener
Po enerewecesvonsensesseeesene

Codec ecco reserasreteeseses
ReRERRR REA ER Ee

Dies ist eine kurze Struktur fiir die einfache Uber-
tragung von Grafikausschnitten zu einem RastPort mit
Hilfe der DrawImage-Prozedur. Zusätzlich bietet diese
Struktur über PlanePick und PlaneOnOff die Möglich-
keit, dabei die Daten in ausgewählte Bitplanes des
Screens zu schreiben.

329

Anhang A

struct Image

SHORT LeftEdge,TopEdge, Width, Height, Depth;
USHORT *ImageData;
UBYTE PlanePick, PlaneOndff;
struct Image *NextImage;

hi

LeftEdge, TopEdge: Position der linken oberen Ecke
des Bildausschnitts relativ zum Rastport (x- und y-
Koordinaten in Pixels).

Width, Height: Die Breite und Höhe des Ausschnitts in
Pixel. |

Depth: Die Tiefe der Grafik, also die Anzahl der Bit-
planes.

*ImageData: Ein Zeiger auf den Anfang der Grafikdaten
im Speicher (muß CHIP-RAM sein) Die Datem sind Bit-
planeweise hintereinander gespeichert.

PlanePick: Hier geben Sie an, in welche Bitplanes des
Rastports die Bildaten des Images geschrieben werden
sollen.

Plane0OnOff: Gibt an, welche Farbe den Punkten zuge-
ordnet wird, die in den Imagedaten den Wert NULL ha-
ben.

*NextImage: Zeiger auf die nächste Image-Struktur,
die auch noch ausgegeben werden soll. Ist dieser Wert
gleich NULL, so wird kein weiteres Image gezeichnet.

330

Anhang A

CROP eH ERROR EH SAR EME H FOO e EHEC ERE EEH OHHH EDR DO EEE
PORTH EE POH OHO R ER EHR EER ERE ROSH HS HSER DED OOH ED EDEDE

PTRECCEC eee e Cee C eee eT eee eee ee ee ee eT
ORO meme meee Demme er ewes sDeDHaE HOHE HeeDareH nD seEne®
POMOC eee rer er rese ues ereHeneeeuesoreee
Core eee era reer e reer ee

Pea Er creer me mimes ert eseesweraceenesusseese

psc eer vere saer reser reser esse erases ee » Qe rereseneress
ecm t mere r ee saree ne SED ene Has etesesvesmeseresesed
PROVE RETEREEEEE EEE EN
PTREPEPEEEC ECE CeP eee ee eee ee Cee CeCe ee eee eee ee

Rem emer anno TE ees she nerereaeHenesene
PPIPTTRAALALEAAEEESSTESATAE TERRE REE ETTORE RNR Eee

Diese Struktur wird von Intuition benutzt, um Sys-
temnachrichten über Ereignisse in einem Fenster zu
übermitteln. |

guet Intuillessage;

struct Message ExecHessage;
ULONG Class;
USHORT Code,Qualifier;
APTR IAddress;
SHORT HouseX, MouseY;
ULONG Seconds, Micros;
struct Window *IDCMPWindow;
struct IntuiMessage *Specia lL ink;

Class: Dieses Feld enthalt die IDCMPFlags der in ei-
nem Fenster aufgetretenen IO-Ereignisse, oder NULL
falls keine Ereignisse in dem Fenster registrert wur-
den, zu dem die Struktur gehört. Zur Bedeutung der
Flags siehe unten. Ä

Code: In diesem Feld werden weitere Werte, wie z.B.
die Menü-Nummern oder der ASCII-Code der gedrückten
Taste.

Qualifier: Dies ist eine Kopie des aktuellen Eingabe-
Qualifiers (z.B. gedrückte ALT-Taste).

331

Anhang A

IAddress: Ein Zeiger auf die Adresse des Intuition-
Gebildes, das diese Nachricht auslöste, z.B. ein Zei-
ger auf eine Gadget oder Requester-Struktur.

MouseX, MouseY: Dies sind die x-und y-Koordinaten der
Mausposition (relativ zur linken oberen Ecke des ak-
tuellen Fensters) zur Zeit des Eintreffens der Nach-
richt.

Seconds, Micros: Die Systemzeit in Sekunden und Mi-
krosekunden, zu der die Nachricht geschickt wurde.

*IDCMPWindow: Zeiger auf das Fenster, zu dem diese
Struktur gehört.

Folgende IntuiMessage- IDCMPFlags können abgefragt
werden (In der dahinter stehenden Bemerkung wird kurz
erklärt, was es bedeutet, wenn dieses Bit gesetzt
ist): Ä

SIZEVERIFY 0x00000001
Der Benutzer will die Fenstergröße verändern.

NEWSWIZE 0x00000002
Die Größe des Fensters hat sich verändert.

REFRESHWINDOW 0x00000004
Die Refresh-Routine soll aufgerufen werden.

MOUSEBUTTONS 0x00000008
Ein Mausknopf wurde betätigt. In Code kann stehen:

SELECTDOWN, SELECTUP: Die linke Taste wurde ge-
drückt, bzw. wieder losge-
lassen.

MENUDOWN, MENUUP: Analog für die rechte Taste.

. 332

Anhang A

MOUSEMOVE 0x00000010
Die Maus wurde bewegt.

GADGETDOWN 0x00000020
Die Maustaste wird über einen Gadget "gedrückt" ge-

halten. Die Adresse des Gadgets finden Sie in IAdd-
ress.

GADGETUP 0x00000040
Die Maustaste wurde über einem Gadget "losgela-

ssen". Die Adresse des Gadgets finden Sie in IAdd-
ress.

REQSET 0x00000080
Ein Requester wurde aktiviert.

MENUPICK ~ 0x00000100
Ein Menüpunkt ist ausgewählt worden. Die Menti-Num-

mer (in der Form eines Intuition MenuNumber) finden
Sie in Code.

CLOSEWINDOW 0x00000200
Das Close-Gadget wurde angeklickt.

RAWKEY 0x00000400
Eine Taste wurde gedrückt. Code enthält die Nummer

der Taste. Zusätzliche Information wie z.B. gedrückte
Alt- oder Amiga-Taste in Qualifier.

REQVERIFY 0x00000800
Der Benutzer versucht ein Requester zu aktivieren.

REQCLEAR 0x00001000
Der letzte Requester vom Screen wurde gelöscht.

MENUVERIFY 0x00002000
Der Benutzer versucht ein Menü zu aktivieren.

333

Anhang A

NEWPREFS 0x00004000
Neue Preferences wurden eingelesen.

DISKINSERTED 0x00008000
Eine neue Diskette wurde eingelegt.

DISKREMOVED 0x00010000
Eine Diskette wurde herausgennomen.

WBENCHMESSAGE 0x00020000
Es ist eine Nachricht der Workbench vorhanden.

ACTIVEWWINDOW 0x00040000
Das Fenster wurde aktiviert (angeklickt).

INACTIVEWWINDOW 0x00080000
Das Fenster wurde inaktiviert (Ein anderes also an-

geklickt) !

DELTAMOVE 0x00100000 .
Die Maus wurde bewegt. Die angegebenen Mauskoordi-

naten sind hier relative Koordinaten.

VANILLAKEY 0x00200000
Eine Taste wurde gedrückt. Der Tastencode wurde in

ASCII-Codes umgewandelt und liegt in Code vor. (Falls
eine Taste gedrückt wurde).

INTUITICKS 0x00400000
Es liegt eine Timer-Nachricht vor.

LONELYMESSAGE 0x80000000
Ist dieses Bit gelöscht, so ist es eine Systemnach-

richt an einen Task, sonst eine von einem Task.

334

Anhang A

. eee 2 |
. ur ennn0e °

ere ee ee ed
“orte reraunse .

4 |
cross

ernennen.

IntuiText |
PRFRRTERREREREN

Die Datenstruktur IntuiText ermöglicht die Ausgabe
einer oder mehrerer Zeichenketten, mit der Ausgabe-
routine PrintIText. Dabei können etliche Eigenschaf-
ten des Textes unabhängig von den Einstellungen des
Rastports bestimmt werden.

struct IntuiText

UBYTE FrontPen, BackPen, DrawHode;
SHORT LeftEdge, TopEdge;
struct TextAttr *ITextFont;
UBYTE *IText;
struct IntutText *NextText;

7

FrontPen, BackPen: Die Nummer der Farbregister, deren
Farbwert als Vordergrund-, bzw. Hintergrundfarbe für
den Text benutzt wird.

DrawMode: Der Zeichenmodus, in dem geschrieben werden
soll.

Leftedge, TopEdge: Die zum aktuellen Fenster relative
x- und y-Koordinate, an der die linke, obere Ecke des
Textes stehen soll.

ITextFont: Dies ist der Zeiger auf den Zeichensatz
(Eigentlich TextAttr-Struktur), der für die Textaus-
gabe benutzt werden soll. Ist dieser gleich NULL
gesetzt, so wird der aktuelle Zeichensatz verwendet.

335

Anhang A

*IText: Zeiger auf den auszugebenen Textstring, der
mit einer Null enden muß.

*NextText: Zeiger auf die nächste IntuiText-Struktur,
die noch ausgegeben werden soll, oder NULL für Ende.

oe ee ee oe acces oo pose oes on

Diese Struktur wird jedesmal benutzt, wenn ein neu-
er Screen geöffnet wird. Beachten Sie auch die Struk-
tur Screen, die nach dem Öffnen weitere Informationen
eines Screens enthält.

guet NewScreen

SHORT LeftEdge, TopEdge, Width, Height, Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewHodes, Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct BitHap *CustomBitMap;

}i

336

Anhang A

LeftEdge, TopEdge: Die x- und y-Koordinaten der lin-
ken, oberen Ecke der Screenbegrenzung, wobei LeftEdge
nicht benutzt wird, da der Screen immer am linken
Bildschirmrand beginnt.

Width, Height: Die Gesamtbreite und -höhe des Screens
in Pixel.

Depth: Die Tiefe des Screens, also die Anzahl der
verwendetete Bitmaps. Im allgemeinen stehen dann 2
hoch dieser Zahl Farben in diesem Screen zur Verfü-
gung.

DetailPen: Die Nummer des Farbregisters, das den
Farbwert enthält, mit dem der "Zeichenstift" in die-
sem Screen zeichnen, bzw. schreiben soll.

BlockPen: Die Nummer des Farbegisters, das den Farb-
wert enthält, mit dem die Menüzeile mit dem Titel und
den Gadgets gezeichnet werden soll.

ViewModes: Bestimmt die Anzeigemodi des neuen
Screens. Sie können hier einen oder mehrere folgender
Flags übergeben: |

HIRES:
tye Modus an (640 Pixels horizon-
tal).

INTERLACE:
Interlacemodus an (max 512 Bildzeilen).

DUALPF:
Dual Playfields Modus an

HAM:
Hold-And-Modify Modus an.

337

Anhang A

SPRITES:
Sprites können auf dem Screen dargestellt wer-
den.

Wird HIRES und/oder INTERLACE nicht gesetzt, dann
wird ein LowRes (320 Pixel horizontal) und/oder Nor-
malmodus eingeschaltet.

Type: Dieser Wert gibt an, ob es sich um einen Work-
bench-Screen oder Custom-Screen handelt.

*Font: Dies ist ein Zeiger auf den Zeichensatz, der
innerhalb dieses Screens verwendet werden soll. |

*DefaultTitle: Ein Zeiger auf den Textstring, der
den Titel dieses Screens beinhaltet. Dieser erscheint
dann in der Menüleiste.

*Gadgets: Dies ist ein nicht benutzter Zeiger, den
Sie auf NULL setzten sollten.

*CustomBitMap: Öffnen Sie einen Custom-Screen (und
nicht ein Workbench-Screen),so haben Sie die Möglich-
keit,eine eigene Bitmap zu verwenden. Setzen Sie dazu
in Types die CUSTOMBITMAP-Flags und stellen Sie die-
sen Zeiger auf die BitMap-Struktur dieser Bitmap.

Wird ein neues Fenster auf einem Screen geöffnet,
so wird diese Struktur benutzt, um die Daten des neu-
en Fensters an OpenWindow zu übergeben. Dabei ist die
Struktur Window wieder diejenige, die nach dem Öffnen
weitere Informationen über ein Fenster enthält.

338

Anhang A

ut NewWindow

SHORT LeftEdge, TopEdge, Width, Height;J
ULONG IDCHPFlags, Flags;
struct Gadget *FirstGadget;
struct Image *CheckMark;
UBYTE *TITLE
struct Screen *Screen
struct BitMap *BitMap;
SHORT MinWidth, MinHeight, MaxWidth, MaxHeight;
USHORT Type;

hi

LeftEdge, TopEdge: Die x- und y-Koordinaten der lin-
ken oberen Ecke des Fensters in Pixels relativ zum
Screen.

Width, Height: Die Gesamtbreite und -höhe des Fen-
sters in Pixels.

DetailPen: Die Nummer des Farbregisters, die den
Farbwert enthält, mit dem der imaginäre Zeichenstift
in diesem Fenster zeichnen, bzw. schreiben soll.

BlockPen: Die Nummer des Farbegisters, die den Farb-
wert enthält, mit dem die Menüzeile mit dem Titel und
den Gadgets, sowie der Rahmen gezeichnet werden soll.

IDCMPFlags: Hier geben Sie die IDCMP-Flags, die
gleich beim Öffnen des Fensters gesetzt werden sol-
len, an. Zur Bedeutung der Flags siehe IDCMPMessage
und Window. | Ä

339

Anhang A

Flags: Die WindowFlags, die einige wichtige Eigen-
schaften des Fensters bestimmen. Das Setzen eines
Flags veranlaßt OpenWindow dazu, das Fenster beim
Offnen mit der entsprechenden Eigenschaft auszustat-
ten.

WINDOWSIZING: In dem Fenster erscheint unten links das
Sizing-Gadget, welches dem Benutzer erlaubt,die Größe
des Fensters zu verändern. Dabei können Sie durch die
Flags SIZE(B)RIGHT oder SIZEBOTTOM bestimmen, ob das
Gadget dem rechten, dem unteren oder beiden Rändern
zugeordnet werden soll.

WINDOWDEPTH: Mit diesem Flag ermöglichen Sie es dem
Anwender, das Fenster in den Vorder- oder Hintergrund
zu schalten, denn die dafür verantwortlichen Gadgets
erscheinen in der oberen rechten Ecke des Fensters.

WINDOWCLOSE: Das Close-Gadget zum Schließen des Fen-
sters erscheint in der linken oberen Ecke des Fen-
sters. Wird es vom Benutzer angeklickt, so erhalten
Sie von der Intuition eine entsprechende Message.

WINDOWDRAG:Haben Sie dieses Flag gesetzt, so kann der
Benutzer das Fenster durch Ziehen der Titelleiste
verschieben.

GIMMEZEROZERO: Aktiviert ein GZZ-Fenster, d.h. der Ko-
ordinaten-Nullpunkt liegt in der inneren - oberen
-linken Ecke des Fensters.

SIMPLE REFRESH: Wird ein Teil des Fensters von einem
anderen enthüllt, so muß der Inhalt neu aufgebaut
werden. |

SMART REFRESH: Der Inhalt des Fensters muß nur neu
aufgebaut werden, wenn das Fenster vergrößert wird.

340

Anhang A

SUPER BITMAP: Setzen Sie dieses Bit, um ein SuperBit-
map-Window zu erhalten. Vergessen Sie nicht, daß BIT-
MAP dabei auf Ihre eigene BitMap-Struktur zeigen muß.
BACKDROP: Aktiviert das Fenster als ein Backdrop-Fen-
ster.

REPORTMOUSE: Das Fenster erhält die Mauszeigerbewe-
gungen als x- und y-Koordinaten.

BORDERLESS: Das Fenster erscheint ohne Rahmen. Beach-
ten Sie dabei, daß jedoch Rahmenteile erscheinen
können, wenn Sie System-Gadgets oder einen Titeltext
definiert haben.

ACTIVATE: Das Fenster wird beim Öffnen auch automa-
tisch aktiviert. Eine logische Folge ist die inakti-
vierung eines eventuell vorhandenen aktiven Fensters,
daß möglicherweise gerade zur Tastatureingabe benutzt
wird. Es kann also passieren, daß Sie dem Anwender
"den Boden unter den Füßen wegziehen", indem Sie ihm
die Kontrolle über sein Fenster klauen.

NOCAREREFRESH: Setzen Sie dieses Bit, wenn Sie keine
Refresh-Messages von der Intuition erhalten wollen.

RMBTRAP: Durch Setzen dieses Bits legen Sie fest, daß
zu diesem Fenster keine Menüleiste definiert ist. Sie
erhalten jedoch weiterhin die MouseButtonEvents.

*FirstGadget: Dies ist ein Zeiger auf eine Gadget-
Struktur, mit der Sie die zu diesem Fenster gehören-
den Gadgets definieren können. Achtung! die System-
Gadgets werden durch Flags aktiviert.

*CheckMark: Dies ist ein Zeiger auf die Image-Struk-
tur der Grafik des Menü-Checkmarks. Das ist die Gra-
fik, die in Auswahlmenüs erscheinen soll, wenn diese
Auswahl (z.B. eine bestimmte Schriftart) aktiviert

341

Anhang A

ist. Steht hier eine Null, so wird die voreingestell-
te Grafik (ein Haken) benutzt.

*Title: Der Zeiger auf den Textstring, der oben im
Fenster als Titel erscheinen soll.

*Sceen: Dieser Zeiger braucht Sie nur zu interessie-
ren, wenn sie ein Custom-Screen eröffnet haben, und
wollen, daß dieses Fenster dort geöffnet wird. In
diesem Fall muß dieser Zeiger auf die entsprechende
Screen-Struktur zeigen.

*Bitmap: Wenn Sie für dieses Fenster eine eigene Bit-
Map verwenden wollen (siehe auch SUPERBITMAP-Flag),
so muß hier der Zeiger auf Ihre BitMap-Struktur steh-
en.

MinWidth, MinHeigth, MaxWidth, MaxHeight: Diese Vari-
ablen brauchen Sie nur zu interessieren, wenn Sie das
Sizing-Gadget zum Verstellen der Fenstergröße mit der
Maus, aktiviert haben. Soll es dem Benutzer also er-
laubt sein, die Größe dieses Fensters zu verädern, So
können Sie hier die Minimum-, bzw Maximumwerte einge-
ben, über die hinaus das Fenster nicht vergrößert o-
der -kleinert werden darf. Es handelt sich dabei wie-
der um relative x- und y-Koordinaten zur linken,
oberen Ecke des Fensters.

Type: Hier steht, um welchen Fenster-Typ es sich han-
delt. Näheres darüber finden Sie in der Screen-Struk-
tur.

342

Anhang A

beccece

POOR HPT H PELE HE HESH SORES ES EDO HORSES SERED DDEDOD
Tear” SEE eee er

apeenees
DOOM OHM MRO RARE O HOHE OOH O HE OER ee

Coe mee DU DH VOM OHH DR EDO ee
POCO R OOO e ROTH E SHOE DER DOES OEE H HDHD EET E OD

Die Datenstruktur Preferences beinhaltet sämtliche
Einstellungen, die Sie von der Workbench aus einge-
stellt haben, oder die noch voreingestellt sind. Sie
ehört zu den längsten Datenstrukturen, so daß wir

sie hier nicht auflisten, sondern lediglich ein paar
interessante Werte herauspicken und beschreiben. Da-
bei gibt die Zahl hinter der Variablen den Offset an,
also ihre Position in der Struktur.

PointerMatrix USHORT, 28: Die Grafik des Default-
Mauszeigers, zerlegt in 36 Wörter des Typen USHORT.

X0ffset, YOffset BYTE, 100: Die x- und y-Position
(von der linken oberen Ecke) des Aktivierungspunktes
des Default-Mauszeigers, also z.B. die Position der
Pfeilspitze. |

color17, color18, color19 USHORT, 102: Die drei Far-
ben des Default-Mauszeigers.

color0, colorl, color2, color3 USHORT, 110: Die vier
Farben des Workbench- Screens.

ViewXOffset, ViewYOffset BYTE, 118: Die Position des
Workbench-Screen relativ zum Viewport.

ViewInitX, ViewInitY WORD ,120: Die Initialisierungs-
werte des Offsets zum Viewport.

PrintImage USHORT, 168: Hier wird über das erste Bit
angegeben, ob Grafiken negativ oder positiv zum Dru-
cker ausgegeben werden. Ist das Bit gesetzt, so heißt
das, daß der Grafikausdruck "negativ" erfolgt.

343

Anhang A

PrintAspect USHORT, 170: Ist hier das erste Bit ge-
setzt, so werden Grafiken vertikal, also um 90 Grad
verdreht auf dem Drucker ausgegeben. Bei gelöschtem
Bit erfolgt ein "normaler", horizontaler Ausdruck.

PrintThreshold WORD, 174: Haben Sie in PrintShade die
Ausgabe in Graustufen ausgewählt, so können Sie hier
die Graustufen den Farben zuordnen.

DIET EIER
..

LEE Teee
Benoa aver te bene Er

KERZEREKEREELLIEZERNEREELLESZERERE)

Dies ist bereits eine etwas längere Struktur, so
daß wir sie hier zwar vollständig auflisten, jedoch
uns in der Beschreibung auf das wichtigste Beschrän-
ken.

struct Screen *NextScreen;
struct Window *FirstWindow;
SHORT LeftEdge, TopEdge, Width, Height, MouseY,
USHORT Flags; MouseX;
UBYTE *Title, *DefaultTitle; |
BYTE BarHeight, BarVBorder, BarHBorder, MenuHBord
BYTE WBorTop, WBorLeft, WBorRight, WBorBottom; ©":
struct TextAttr *Font;J
struct RastPort RastPort;
struct BitMap BitMap;
struct Layer Info LayerInfo;
struct Gadget *FirstGadget
UBYTE DetailPen, BlockPen;
USHORT SaveCo loro;
struct Layer *BarLayer;
UBYTE *ExtData, *UserData;

}i

344

Anhang A

*NextScreen: Dies ist ein Zeiger auf den nächsten
Screen in der Intuition-Screenliste. Ist er gleich
NULL, so ist es der letzte, bzw. der einzige
Screen.

*FirstWindow: Hierbei handelt es sich um einen Zeiger
auf das erste von mehreren zu dem Screen gehörenden
Fenstern. Ist dieser Wert gleich NULL, so wurden
keine Fenster definiert.

LeftEdge, TopEdge, Width, Height: Diese Werte geben
die Dimensionen des Screens an und werden wie in der
Struktur NewScreen benutzt.

MouseY, MouseX: Die Position des Mauszeigers auf die-
sem Screen.

Flags:
SCREENTYPE Ox000F Wird von der Intution zur Erken-
WBENCHSCREEN 0x0001 nung des Screens verwendet (Work-
CUSTOMSCREEN OxO00F bench- oder Custom-Screen).
SHOWTITLE 0x0010 Anzeigen der Menüleiste.

BEEPING 0x0020 Ist gesetzt, wenn der Screen
gerade blinkt.

CUSTOMBITMAP 0x0040 Dieses Bit ist gesetzt, wenn Sie
eine eigene BitMap benutzen.

SCREENBEHIND 0x0080 Der Screen wird im Hintergrund
geöffnet.

SCREENQUIET 0x0100 Es ist keine Menüleiste auf die-
| sem Screen vorhanden.

*Title, *DefaultTitle: Zeiger auf den Titeltext des
Screens und den Titeltext für Screens mit Fenstern.

BarHeight, BarVBorder, BarHborder, MenuVBorder, Menu-
HBorder: Die folgenden Variablen sind Größenangaben
zu den Menüleisten und Rändern des Screens und allen

345

Anhang A

auf ihr erscheinenden Fenstern. Zunächst also die Höhe
der Menüleiste dieses Screens in Pixels, sowie die
vertikale und horizontale Breite des Menüleistenran-
des.

WBorTop, WBorLeft, WBorRight, WBorBottom: Die Breite
der Fensterränder. Getrennt nach oberem, linkem,
rechtem und unterem Rand.

*Font: Dies ist ein Zeiger auf den Zeichensatz, der
innerhalb dieses Screens als der aktuelle benutzt
werden soll.

ee
Reece erate wes eresesrrHesenecerene
ee
Besseres eres meses asranrre ern nue
Pos eenenenen es er ereenneenn ne
ee tener es eeeeerseressne
Reece eo mera re etre nennen.
cc TE Bcc ces ERRILZEREREREE
be eees af aovennee
Prem. HAB» ol en eerase
ma, AO . or] r..
boven eter ese eee eee eee ets erenes
Ler tener rer vee e sees rennen nee
Looe reer e sees ear eee aerenesereeves
Prem er se decree neste reeserteectoee
Deren nen
ee

Eine solche Datenstruktur gehört zu jedem geöffne-
ten Fenster. Sie ist relativ umfangreich und wir ha-
ben diese hier mehr der Vollständikeit halber aufge-
führt. Bei der Erklärung beschränken wir uns wieder
auf das Wesentliche. Ansonsten finden Sie die Grund-
legenden Variablen und Flags auch in der Stuktur New-
Window.

guet Window

struct Window *NextWindow;
SHORT LeftEdge, TopEdge, Width, Height, MouseY,

MouseX;
SHORT MinWidth, MinHeight, MaxWidth, MaxHeight;
ULONG Flags;
struct Menu *MenuStrip;
UBYTE *Title; |
struct Requester *FirstRequest;
struct Requester *DMRequest;

346

Anhang A

SHORT ReqCount;
struct Screen *WScreen;
struct Rastport *RPort;
BYTE BorderLeft, BorderTop, BorderRight, Border-

Bottom;
struct RastPort *BorderRPort;
struct Gadget *FirstGadget;
struct Window *Parent, *Descendant;
USHORT *Pointer;
BYTE PtrHeight, PtrWidth, XOffset, YOffset;
ULONG IDCHPF lags;
struct MsgPort *UserPort, *WindowPort;
struct IntuiMessage *MessageKey;
UBYTE DetailPen, BlockPen;
struct Image *CheckMark;
UBYTE *ScreenTitle;
SHORT GZZMouseX, GZZMouseY, GZZWidth, GZZHe ight;
UBYTE *ExtData;
BYTE *UserData;
struct Layer *WLayer;

}

Flags: siehe NewWindow.

*MenuStrip: Dies ist ein Zeiger auf die Liste der Me-
nis. Diese werden in verketteten Menu- und Menultem-
Datenstrukturen gespeichert.

*Screen: Zeiger auf den Screen, zu dem dieses Fenster
gehört.

*Port: Dies ist ein Zeiger auf dem zu diesem Fenster
gehörigen Rastport.

*RPort:Dies ist ein Zeiger auf den zu diesem Fenster,
einschließlich des Fensterrandes, gehörigen Rastport.

347

Anhang A

*FirstGadget: Ein Zeiger auf die Liste der zu diesem
Fenster definierten Gadgets, aber ohne die Systemgad-
gets der Titelleiste. Diese werden über die IDCMP-
Flags aktiviert.

*Pointer: Ein Zeiger auf die Grafikdaten des Mauszei
gers dieses Fensters. Dieser ersetzt den voreinge-
stellten, wenn das zugehörige Fenster angeklickt
wird und bleibt nur solange bestehen, wie das Fen-
ster aktiviert ist.

PtrHeight, PtrHeight: Die Höhe und Breite der Grafik
des Mauszeigers in Pixels, wobei die Breite kleiner
oder gleich 16 sein muß.

X0ffset,YOffset: Der Offset des Mauszeigers, also die
x- und y-Koordinaten des Aktivierungspunktes der
Mauszeigergrafik von der linken oberen Ecke aus. (Im
allgemeinen wird es sich dabei um die Pfeilspitze o-
der das Zentrum eines Fadenkreuzes handeln.)

IDCMPFlags: Im allgemeinen gilt hier: ist ein Bit ge-
setzt, so erhalten Sie von der Intuition eine
Message, falls der entsprechende Fall eintritt. Daher
haben wir hier auch nicht alle Flags beschrieben. Für
weitere Informationen vergleichen Sie dazu bitte die
IDCMP-Flags der IntuiMessage-Struktur (weiter oben).

SIZEVERIFY 0x00000001

Sie bekommen eine Nachricht, wenn der Benutzer ver-
sucht, die Größe des Fensters zu verändern. Damit die
Größe tatsächlich verändert werden kann, müssen Sie
die Nachricht erst mal beantworten.

348

Anhang A

NEWSWIZE 0x00000002

Es wird eine IDCMP-Message gesendet, sobald sich
die Größe des Fensters verändert.

REFRESHWINDOW 0x00000004

Bei SIMPLE REFRESH und SMART REFRESH Fenstern wird
eine Message gesendet, wenn das Fenster "Refreshed"
werden soll.

MOUSEBUTTONS 0x00000008

Sie werden benachrichtigt, wenn die Mausknöpfe be-
tätigt werden. Ausnahme: die Intuition erkennt das
anklicken von Gadgets selbstständig und meldet dies
nicht. Das Drücken der rechten Maustaste wird nur
dann gemeldet, wenn zusätzlich das RMBTRAP-WindowF lag
gesetzt ist.

MOUSEMOVE 0x00000010

Mausbewgungen werden gemeldet, wenn auch das Flag
REPORTMOUSE gesetzt ist.

GADGETDOWN -0x00000020

Es wird das Drücken der Maustaste über einem Gadget
gemeldet.

GADGETUP 0x00000040

Es wird das Loslassen der Maustaste über einem Gad-
get gemeldet.

349

Anhang A

REQSET 0x00000080

Es wird Ihnen mitgeteilt, wenn in dem Fenster ein
Requester gedffnet wird.

REQVERIFY 0x00000800
_ Im gegensatz zu REQSET werden Sie bereits vor dem
Offnen eines Requesters informiert.

MENUVERIFY 0x00002000

Sie werden benachrichtigt, wenn der Benutzer ver-
sucht ein Menü zu aktivieren. Das Menü wird erst dann
wirklich aktiviert, wenn Sie diese Nachricht beant-
worten.

VANILLAKEY 0x00200000

Das Drücken einer Taste wird gemeldet. Der Tasta-
tur-Code wird umgewandelt in den entsprechenden
ASCII-Code.

INTUITICKS 0x00400000

Ist das Fenster aktiv, so erhält Ihr Programm unge-
fähr zehnmal pro Sekunde einen timer-event.

*UserPort, *WindowPort: Zeiger auf zwei MsgPort-Exec-
Strukturen, die dem Fenster zur Kommunikation mit der
Außenwelt dienen (z.B. für die Console-Device).

GZZMouseX, GZZMouseY: Handelt es sich bei diesem Fen-
ster um ein GZZ-Fenster, so stehen hier die x- und y-
Koordinaten des Mauszeigers, diesmal jedoch relativ
zu der linken, oberen Ecke innerhalb des Fensters.
Rahmen und Titelleiste stehen in diesem Modus ausser-
halb des Koordinatennetzes.

350

Anhang A

GZZWidth, GZZHeight: Bei einem GZZ-Fenster stehen
hier die Dimensionen des inneren Fensters, ohne Rand
und Titelleiste.

*ExtData, *UserData: Diesen Zeiger können Sie auf ei-
gene Erweiterungen setzten, die bei diesem Fenster e-
benfalls beachtet werden sollen.

351

Anhang A

352

Anhang B

Anhang B

Die Datenstrukturen der Graphics-Library

353

Anhang B

Dieser Teil des Anhangs enthält die wichtigsten Da-
tenstrukturen der Graphics-Library in alphabetischer
Reihenfolge. Bei der Beschreibung der einzelnen Para-
meter haben wir uns, gerade bei den längeren Struktu-
ren, auf die wesentlichsten beschränkt.

Boos er cere mame e
Deemer etree nennen nn

Levu meme ere re enr ernennen
bere nec eraser a rene tas sree beraten
bester SER Sey Ua

PRUE ELEC ECe eT eT Pere eee ree eee

bende meee eee er beeen estes eseseereberstere
bores rere ere sn eee reser eer seesettoerses DG

Diese Struktur wird durch InitArea angelegt und
enthält im wesentlichen die Koordinaten der einzelnen
Punkte, die von den Area-Befehlen betroffen werden.

struct AreaInfo

{
SHORT *VctrTbl, *VctrPtr;
BYTE *FlagTbl, *FlagPtr;
SHORT Count, MaxCount, FirstX, FirstY;
Fi

*VstrTbl: Zeiger auf die Tabelle mit den Koordinaten-
werten der entsprechenden Punkte.

*Vctrptr: Zeiger auf den nächsten freien Platz in
dieser Tabelle.

*FlagTbl, *FlagPtr: 77?

Count: Anzahl der Punkte, die in der Tabelle zur Zeit
gespeichert sind.

MaxCount: Maximale Anzahl an Punkten, die in der Ta-
belle Platz finden können.

354

Anhang B

FirstX, FirstY: Startpunkt für die AreaMove-Routine.

.....

or nsnnnne.
rer essere

Diese Datenstruktur enthält die Informationen über
die zu einem RastPort angelegte Bitmap.

struct BitMap

UWORD BytesPerRow, Rows;
UBYTE Flags, Depth;
UWORD pad;
PLANEPTR Planes[8];
}

BytesPerRow: Breite der Bitmap in Bytes.

Rows: Höhe der Bitmap in Punkten.

Flags: Vom System benutzte Marke.

Depth: Anzahl der Bitplanes, die zu dieser Bitmap
gehoren

pad: Füllbyte

Planes: Tabelle mit den Zeigern auf die einzelnen
Bitplanes dieser Bitmap.

355

Anhang B

GEIITKERTEKIZEWKELZERERZELBZLERTTEEREIE
hee beer asreeesenresereneeneses
Lecce ese see nsec ser scene seresesinevereons
bP mec ee ree never seer ees ereensererensesenes
eee redeemed nen are ernennen nee

Peco seme seeneesseroonrecsel
IPERLERLLSTETTTET

„oounsose

Die ColorMap ist die Tabelle der Farbegister. Sie
ist einem RastPort zugeordnet und enthält für diesen
die bis zu 32 Farbwerte.

struct ColorMap

{
UBYTE Flags, Type;
UWORD Count;
APTR ColorTable;

hi

Flags: Vom System immer noch ungenutzt.

Type: Bis jetzt ist die einzige Definition fiir diesen
Wert Null.

Count: Aktuelle Anzahl der maximal 32 Farbeinträge in
die Farbtabelle.

ColorTable: Zeiger auf den Beginn der Farbtabelle.
Ein Eintrag besteht aus einem ULONG-Wert, dessen er-
Sten vier Bits den Blauanteil, die nachsten vier Bits
den Grünanteil und die folgenden Bits den Rotanteil
der zugewiesenen Farbe beschreiben.

356

Anhang B

—onenone
oar eeseennne

“unse

ee

Du

w
 er
.)

2 os oot oe

Eine RasInfo-Struktur gehört zu jedem Rastport. Sie
stellt die Verbindung zu dem eigentlichen Display-
Speicherbereich her. Der Display-Speicherbereich ist
der Bereich, der schließlich direkt auf den Bild-
schirm gebracht wird.

struct RasInfo

struct RasInfo *Next;
struct BitMap *BitMap;
SHORT RxOffset, RyOffset; 7

hi

*Next: Zeiger auf die nächste asInfo-Struktur, nur
im Zusammenhang mit dem Dual-Playfield-Modus benutzt.

*BitMap: Zeiger auf die zu diesem Viewport gehörige
Bitmap-Struktur.

RxOffset, RyOffset: Relative Koordinaten der Bitmap
zum Viewport.

Sassacanae . siccccccccseccccccccnccccrccace : sosecccccccasccecscocccsccsoced 3
| SESPESSESSST ECTS ESET EP

cececetcccccssacceee 2.

RaSEPORE ::: 1

Diese Datenstruktur ist wohl für die Grafikausgabe
die wichtigste, da über diese alle Grafikbefehle aus-
geführt werden. In der RastPort-Struktur finden wir

357

Anhang B

die wesentlichsten Voreinstellungen, wie z.B. Zei-
chenmodus und -Farben. Da dies wieder eine der länge-
ren Datenstrukturen ist, haben wir wieder nur die we-
sentlichen Felder beschrieben.

struct RastPort

struct Layer *Layer, BitHap *BitMap;
USHORT *AreaPtrn;
struct TmpRas *TmpRas, AreaInfo *AreaInfo, Gels-
Info *GelsInfo;
UBYTE Mask;
BYTE FgPen, BgPen, A0OlPen, DrawHode, AreaPtSz,
linpatcnt, dummy;
USHORT Flags, LinePtrn;
SHORT cp x, cp y;
UBYTE minterms]8];
SHORT PenWidth, PenHeight;
struct TextFont *Font;
UBYTE AlgoStyle, TxF lags;
UWORD TxHeight, TxWidth, TxBaseline;
WORD TxSpacing;
APTR *RP User;
ULONG longreserved[2];
#ifndef GFX RASTPORT 1 2
UWORD wordreserved[7];—
UBYTE reserved[8];
#endif};

*Layer, *Bitmap: Hierbei handelt es sich wieder um
Zeiger auf die Adressen der zu diesem Rastport ge-
hörigen Layer- und Bitmap-Strukturen.

*AreaPtrn: Dies ist der Zeiger auf das zu diesem
Rastport definierte Flächenfüllmuster.

358

Anhang B

Mask: Dies ist eine 8-Bit Maske, deren einzelnen Bits
festlegen, ob in den dazugehörenden Bitmapebenen mo-
mentan geschrieben und gezeichnet werden kann. Ist
ein Bit gesetzt, so kann die entsprechende Bitplane
beschrieben werden, sonst nicht.

FgPen, BgPen: In diesen Feldern stehen die Farbcodes
für die momentan aktive Vordergrund- und Hintergrund-
farbe.

AO1Pen: Der Farbcode für den Areafill-Outline-Pen-,
den zweiten wichtigen Zeichenstift.

Drawmode: Der in diesem Rastport verwendete Zeichen-
modus.

$00 JAM1: Einfarbiges Raster.
$01 JAM2: Zweifarbiges Raster.
$02 COMPLEMENT: XOR-B Verkniipfung.
$04 INVERSVID: Inverse Darstellung (z.B. von Text).

AreaPtSz: Enthält die Höhe des Flächenfüllmusters.

Flags: Folgende Werte sind definiert:

1 FRST DOT Erster Punkt einer Linie auch zeichnen.
2 ONE DOT Linien im EinBPunktBModus zeichnen.
4 DBUFFER Rastport ist doppelt gepuffert.
8 AREAOUTLINE Wird verwendet beim Flächenfüllen.

32 NOCROSSFILL Kollision beim Flächenfüllen.

LinePtrn: Zeiger auf das zu diesem Rastport definier-
te Linienfüllmuster.

cp x, cp_y: Momentane x- und y-Koordinaten des Gra-
fikcursors.

359

Anhang B

PenWidth, PenHeight: Breite und Höhe des Zeichenstif-
tes, der von den Systemgrafikroutinen verwendet wird.

Font: Zeiger auf den Zeichensatz, der diesem Rastport
zugeordnet ist.

TxHeight, TxWidth: Höhe und Durchschnittsbreite des
aktuellen Zeichensatzes.

TxBaseline: Relativer Abstandswert

IIEERZERFIETZERTETT
meter ed

DEIERETTTRERSTITERETELZERTTRIIETTI N
Perea reser essere sseeseseseesaereres

BEREITETE Dee
[KRANKKEREN)

Enthält die Textattribute, wie z.B. die Schrift-
art, die bei einem Font gerade gültig sind.

struct TextAttr

{
STRPTR ta Name;
UWORD ta YSize;
UBYTE ta Style;
UBYTE ta Flags;

7

ta Name: Name der momentan verwendeten Font.

ta YSize: Höhe dieses Zeichensatztes in Pixel.

ta_ Style: Momentan verwendete Schriftart, abzulesen
aus folgenden gesetzten Bits:

0 FS NORMAL Textzeichen normal.
1 FSB UNDERLINED Textzeichen unterstrichen.
2 FSB_BOLD Textzeichen fett.

360

Anhang B

4 FSB_ITALIC Textzeichen kursiv.
8 FSB EXTENDED Textzeichen gedehnt.

ta Flags: Folgende Bits sind definiert:

1 FPB ROMFONT Font aus ROM geladen.
2 FPB_DISKFONT Font von Disk geladen.
4 FPB REVPATH Von links nach rechts schreiben.
8 FPB TALLDOT Font für HiRes-Modus.

16 FPB WIDEDOT Font für LoRes/Interlace-Modus.
32 FPB_PROPORTIONAL Font mit Proportionalschrift.
64 FPB_DESIGNED Fontgröße nicht alg. gültig.

128 FPB REMOVED Font nicht aktiv.

peerereceses werner easee |
pe se naceresorrecresesoecens sonen. ...
5 oon0n0es = qd

. al
|

4 Bonen eseroreasece 2 | eaves

ext Fonti:: |

Eine solche Struktur gehört zu jedem Rastport und
beinhaltet die Parameter zu dem aktuellen Font.

Struct TextFont

struct Message tf Message;
UWORD tf YSize; —
UBYTE tf Style, tf Flags;
UWORD ef XSize, ef _Base Tine, tf BoldSmear,
UBYTE tf LoChar, tf _HiChar;J .
UWORD tf Modulo; tf_Accessors;

APTR tf CharLoc, tf CharSpace, tf_CharKern;
°

7

tf Size: Die Höhe der Textzeichen des Fonts in Pi-
xe ln. |

361

Anhang B

tf Style, tf_Flags: Haben die gleiche Belegung wie in
der TextAttr-Struktur.

tf XSize: Die voreingestellte Breite der Textzeichen
des Fonts in Pixeln.
tf Baseline: Die Unterlänge der Textzeichen in ein-
zelnen Zeilen.

tf BoldSmear: Bei der Berechnung von "fetten" Zeichen
verwendeter Schmierfaktor.

tf_Accessors: Anzahl der Routinen, Programme und
Tasks, die auf diesen Font zugreifen.

tf_LoChar, tf_HiChar: Der kleinste, bzw. größte ASCII
Wert, für den ein Textzeichen in diesem Font vorhan-
den ist.

tf_CharSpace: Bei Proportionalschrift ist dies ein
Zeiger auf ein Feld von Ganzzahlen, die jeweils die
Breite der einzelnen Textzeichen enthalten. Ist die-
ser Wert NULL, so gilt der in tf XSize voreinge-
stellte Wert. u

SPP TELELITEEIEKIERZELEEZELENZ]
Proseeunronnen erneuern near
be meer ener onen nennen nn
Deon one una eee eRe eee eee se nn
Leva h ese ee sees rarne an eseesenesnar
bree e rasan een nenne nennen or ne
Dover ne anne

DESZEZZLTITT Peeeeee Teer eee eee es
eee rere eer ee tareesaeeeeceesaces
PRECRERESEC TRE Se See e eee eee)
DERTERTERTTZERTTITTERTETEETERTT
De err errr ren)
Poe e rn treet soso sasesacessassoangy

Diese Struktur wird von den Area-Routinen ge-
braucht. Sie muß durch InitTmpRas initialisiert und
einem Rastport zugeordnet werden.

struct TmpRas

BYTE *RasPtr;
LONG Size;

e
7

362

Anhang B

*RasPtr: Zeiger auf einen Pufferspeicher.

Size: Größe des Pufferspeichers in Bytes. Sicher-
heitshalber sollte er die Größe einer Bitplane ha-
ben.

DERZITERTTERTETITIIEIE III
pee creer asersesrenesroesece

Pee h ee naseresesetnssees
paces enservene

tt oscsescepeccereccccesers
oe SOPeeT eT ererser

BOR aera ne reereresasanenere
De ee
IDLFTLRLTELEERFEITERTETTTT

Pessunnureueuenranenanenanee
Vernreueneerertennetaes«

Beinhaltet die für die Aufteilung des Gesamt-Dis-
plays notwendigen Daten in die Viewports.

struct View

struct ViewPort *ViewPort, cprlist *LOFCprList,
cprlist *SHFCprL ist;
short Dy0ffset, Dx0ffset;
UWORD Modes;

7

*ViewPort: Zeiger auf die zu dieser Struktur gehören-
den ViewPort-Struktur.

*LOFCprList: Zeiger auf die "Long-Frame-Copper-List".

*SHFCprList:Zeiger auf die "Short-Frame-Copper-List".

DyOffset, DxOffset: x- und y- Koordinaten der Positi-
on der linken oberen Ecke dieses ViewPorts auf dem
Monitor.

Modes: Folgende Werte sind definiert:

4 LACE Inter lJace-Modus
64 PFBA Erstes Playfield im Vorder-

grund

363

Anhang B

128 EXTRA HALFBRITE Extra-Halfbright-Modus
1024 DUALPF Dual-Playfields-Modus
2048 HAM Ho Id-And-Modify-Modus
8192 VP HIDE Ist Viewport im Hintergrund ?

32768 HIRES High-Reso lution-Modus

Diese Struktur enthält die Informationen der View-
ports, über die der wesentliche Teil der Bildschirm-
Ausgabe abläuft.

struct ViewPort

struct ViewPort *Next, ColorMap *ColorMap, CopList*
DspIns, CopList *SprIns, CopList *CIrIns, UCopList*
UCopIns;
SHORT DWidth,DHeight, DxOffset,Dy0ffset;
UWORD Hodes;
UBYTE SpritePriorities, reserved;
struct RasInfo *RasInfo;

h

*Next: Adreßzeiger auf den nächsten Viewport, falls
noch einer vorhanden ist.

*ColorMap: Zeiger auf die zu diesem Viewport gehö-
rende ColorMap-Struktur.

DWidth, DHeight: Breite und Höhe dieses Viewports in
Pixel.

Dx0ffset, DyOffset: Koordinatenpaar das die Position
der linken oberen Ecke dieses Viewports auf dem Ge-
samtdisplay angibt.

364

Anhang B

Modes: Folgende Werte sind möglich:

4 LACE Inter lace-Modus
64 PFBA Erstes Playfield vorn

128 EXTRA HALFBRITE Extra-Halfbright-Modus
1024 DUALPF Dual-Playfields-Modus
2048 HAM Ho Id-And-Modify-Modus
8192 VP HIDE Ist Viewport im Hintergrund ?

32768 HIRES High-Resolution-Modus

*RasInfo: Zeiger auf die zu diesem Viewport gehö-
rende RasInfo-Struktur.

365

Anhang B

366

Anhang C

Anhang C

367

Anhang C

Dieser Teil des Anhangs enthält die für die Grafik-
programmierung wichtigsten Systemfunktionen der Intu-
ition-Library in alphabetischer Reihenfolge.

‘OTHE
DRELZUNILEIZKEILEENTIIITLIIT IT)

on

iR:

B
A

©:

Haben Sie sich zu einem Fenster einen eigenen Maus-
zeiger erstellt und diesen aktiviert, so können Sie
ihn mit dieser Routine wieder desaktivieren. Es er-
scheint dann wieder der in den Preferences voreinge-
stellte Mauszeiger.

ClearPointer (Window)
AO

Window: Zeiger auf das Fenster, auf das sich diese
Routine bezieht.

Haben Sie einen eigenen Screen geöffnet, können Sie
ihn mit dieser Routine wieder schließen, der entspre-
chende Speicherplatz wird wieder freigegeben. Zuvor
alle Fenster durch CloseWindow schließen !

CloseScreen(Screen)
AO

368

Anhang C

Screen: Adresse des Screens, der geschlossen werden
kann. |

ÜRKKLKHKKKLEXZLEKZZLZUKSIEZESEKITEZTTLEZZZIREIERZINE
Deren EEE re
PO oe ee eee mere ree reo er Hen eee ee
REPRE ee oe nee

CROP eee Orr err HEH eae mae teseesesneeses
PECrer et CRC eReCCeee rere reece ee eee ee!

vir "DEREEN (eee es

Cee eer ea ree sere rere rneseceresenreenetes
Beemer oerenerersecsecereseneres

PRO eer meat Eroseresees
Che oe eee eeeere rend enesaraserenevenete

CORO H CCRC E HOH DRE REE E EER HERES RO OEE
eee eeeeeeeeeeee ne eee ee

Mit dieser Routine können Sie ein Fenster schließen,
der belegte Speicherplatz wird wieder freigegeben.
Haben Sie einen IDCMP-Port geöffnet, so müssen Sie
vorher sicherstellen, daß keine Nachricht mehr auf
Antwort wartet. |

CloseWindow(Window)
AO

Window: Zeiger auf das zu schließende Fenster.

IKREIFEITTTIERTERFREIDTIEIIIIE RE

[EBRLLELERLLENT
Ovecvace

Coder eee asesccnsenaas
.....

Zeichnet die einer Border-Struktur entsprechenden
Linien in dem angegebenen Rastport.

DrawBorder (RastPort, Border, LeftOffset, TopOffset)
AO Al DO D1

RastPort: Zeiger auf die Rastport-Struktur in der die
Linien gezeichnet werden sollen.

369

Anhang C

Border: Zeiger auf die Border-Struktur in der die In-
formationen über die zu zeichnenden Linien stehen.

LeftOffset, TopOffset: Relative x- und y-Koordinaten,
die zu jedem der Werte aus der Border-Struktur ad-
diert werden.

EESCE RER ELEREIEIELLENBERZERIKEZZEENIIZEN:
DERTTEITETDPERSTIRITITEITTIETTRIRTTTERE TER
DERZERTITITTETERELTIIDEIERSTERIIIIIEF ee
poo eRe dere m resem erode rererenedseteesereeeents
SITTER ECCOCL ECC Cee ee eee Pee eee eee eee eae
Peete er emer s eran seHO eae Heer evereseeseeees
POPES ROCST SET ETE LTT EERE ee ee

perce ese rere ere ea reser ernest MBrresasssrese
TOrrerrrrrrerrrrrrrr rrr rr eeRer rere rere eens

Rede eee dere meee atts ea seoeereeeerereeseese
mercer cree reece te ssaetosernasesarounsseae
POR ee eae reer meen sees ssoetesreeeenesoreeena
PPETIRELTEAESRART SAREE EERE EEE EEE ee Se!

Zeichnet ein Image an eine beliebige Stelle in ei-
nen Rastport.

DrawImage(RastPort, Image, LeftOffset, TopOffset)
AO Al DO Di

RastPort: Zeiger auf die Rastport-Struktur in der das
Image gezeichnet werden soll.

Image: Zeiger auf die Image-Struktur in der die In-
formationen über das zu zeichnende Image stehen.

LeftOffset, TopOffset: Relative x- und y-Koordinaten,
die zu dem Image addiert werden.

Bewegt einen Screen relativ zu seiner jetzigen Po-
sition nach unten oder nach oben.

370

Anhang C

MoveScreen(Screen, DeltaX, DeltaY)
AO DO D1

Screen: Zeiger auf die Screen-Struktur von dem
Screen, den Sie verschieben wollen.

DeltaX, DeltaY: Setzen Sie deltax auf Null, da eine
Verschiebung in der x-Achsen-Richtung noch nicht im-
plementiert ist. Der Wert deltay bestimmt die Anzahl
der Pixel, um die der Screen in vertikaler Richtung
verschoben werden soll. Dabei bewirken negative Werte
eine Verschiebung nach oben, positive nach unten.

OOo esate ens eseveeeesorarererecersees
PRETIETERIEPER TREE PSEC EPEC E SECC ee ee ee ee ee ee

Beem e reser sesereeeeserserearans
oho rere res eanonserene

Reece, ee ce eee? Peery

Seeders reecrc eer Eee
Pde m eee serreer es esac seenetrecervereasenae

Bae ee ener eerrereerereseneeececrrsseserenese
Meee e nett ae errr sare mssnnerreeeresoneasaees

Casas deeerresccrseaerrecsereeserereesens

Diese Routine bewirkt durch die Intuition eine Ver-
schiebung eines Fensters um angegebene Delta-Werte.

MoveWindow(Window, DeltaX, DeltaY)
AO DO D1

Window: Adresse der Window-Struktur des Fensters, das
verschoben werden soll. |

DeltaX, DeltaY: Anzahl der Pixel, um die das Fenster
verschoben werden soll. Positive Werte bewirken eine
Verschiebung nach unten (bzw. nach rechts), negative
Werte in die entgegengesetzte Richtung. a |

Wichtig(!): Bevor Sie diese Routine aufrufen, prüfen
Sie unbedingt, ob das Fenster nach dem Verschieben

371

Anhang C

noch komplett im Gültigkeitsbereich (innerhalb des
Screens) liegt, da Ihnen sonst ein unvermeidlicher
Absturz bevorsteht.

IKILLLELIPIITIRERIEIET

Pee era Oe Des emereneeseesDnereeee

ecopenSereen |
Ver ee

IKEZELLZELITETERFEITFFTTT TR
eee e CeCe eee eee eee er
Fede ecer reser e rere neesarrenenene
(REREREREEEEREERERERERERERE REE ERE SE EO

Offnet einen neuen Screen mit den in einer New-
Screen-Struktur (siehe Anhang A) angegebenen Parame-
tern und legt eine Screen-Struktur an. Die NewScreen-
Struktur wird anschließend nicht mehr benötigt und
kann aus dem Speicher gelöscht werden.

ScreenPointer = OpenScreen(NewScreen);
AO

NewScreen: Zeiger auf eine NewScreen-Struktur, die
die für diesen Screen geltenden Parameter enthält.

Rückgabe: ScreenPointer wird NULL, wenn der Screen
nicht geöffnet werden konnte, ansonsten enthält er
die Adresse der Screen-Datenstruktur des geöffneten
Screens.

oo...
s.....0.0,

Offnet ein Fenster mit den in einer NewWindow-
Struktur (siehe Anhang A) angegebenen Parametern und
legt eine Window-Struktur an. Die NewWindow-Struktur
wird anschließend nicht mehr benötigt und kann aus
dem Speicher gelöscht werden.

372

Anhang C

WindowPointer = OpenWindow(NewWindow) ;
AO

NewWindow: Zeiger auf eine NewWindow-Struktur, die die
für dieses Fenster. geltenden Parameter enthält.

Rückgabe: WindowPointer wird NULL, wenn das Fenster
nicht geöffnet werden konnte, ansonsten enthält er
die Adresse des geöffneten Fensters.

Printliext |

Ein durch die IntuiText-Struktur vorgegebener Text
wird in dem angegebenen R astport aneiner durch
die x-und y-Koordinaten bestimmte Stelle ausgegeben.

PrintIText(RastPort, IText, LeftEdge, TopEdge)
AO Al DO D1

RastPort: Zeiger auf den Rastport in dem der Text
ausgegeben werden soll.

IText: Zeiger auf die IntuiText-Struktur mit dem aus-
zugebenden Text und den dazugehörigen Parametern über
die Schriftart.

LeftEdge, TopEdge: Position des Textes innerhalb des
Rastports, relativ zur linken, oberen Ecke.

373

Setzt einen beliebigen Screen in den Hintergrund.

ScreenToBack (Screen)
AO

Screen: Zeiger auf den in den Hintergrund zu setzen-
den Screen.

Setzt einen beliebigen Screen in den Vordergrund.

ScreenToFront(Screen)

Screen: Zeiger auf den in den Vordergrund zu setzen-
den Screen.

Ordnet einem Fenster einen eigenen Mauszeiger zu,
der immer dann erscheint, wenn das Fenster aktiv ist.

SetPointer(Window, Pointer ‚Height ,Width,XOff,YOff);
AQ Al DO Dl D2 D3

374

Anhang C

Window: Zeiger auf das Fenster für das ein eigener
Zeiger definiert werden soll.

Pointer: Zeiger auf die Grafik-Daten des Mauszeigers.

Height, Width: Höhe und Breite des Zeigers, wobei die
Breite kleiner oder gleich 16 sein muß.

XOff, Yoff: Offset-Werte für den "Hot-Spot" relativ
zur linken oberen Ecke. Handelt es sich bei dem Zei-
ger um einen Pfeil, der seine Spitze in der linken
oberen Ecke hat, dann setzen Sie diese Werte auf
Null. Ist dagegen die Pfeilspitze oben rechts, so se-
tzen Sie XOff auf 15 (vorausgesetzt der Zeiger ist 16
Punkte breit).

See cw eee neede
Coen eceoanmaaeenees

«
. won.

sone . «
. . .

eae wu...
e a

Mit Hilfe dieser Routine können Sie die Screen-Ti-
telleiste bei Uberlagerung mit einem BackDrop-Fenster
in den Vorder- oder Hintergrund bringen.

Showitle(Screen, ShowIt);
AO DO

Screen: Zeiger auf den Screen mit der zu beeinflus-
senden Screen-Titelleiste.

ShowIt: Setzen Sie diesen Wert auf TRUE um die Titel-
leiste in den Vordergrund und auf FALSE um sie in den
Hintergrund zu bringen.

375

Anhang C

oh
|

[REIEELITEITE
Veneessäreerereenennene

Cowes uonnnne > .
sto ceceroneae :
seenenennenune Tl
PeETeeTeT eee ee eee eee reese ee N :

‘aWindow |

Diese Routine fordert Intuition auf, ein Fenster
um die angegebenen Delta-Werte zu vergrößern, bzw.
zu verkleinern. Intuition führt dann diese Ver-
änderung ohne vorherige Kontrolle der übergebenen
Werte durch.

SizwWindow(Window, DeltaX, DeltaY);
AO DO D1

Window: Zeiger auf das Fenster, dessen Größe verän-
dert werden soll.

DeltaX, DeltaY: Anzahl an Punkten, um die die Größe
des Fensters in x- und y-Richtung verändert werden
soll. Dabei bedeutet ein negatives Vorzeichen ver-
kleinern, positives vergrößern.

Bemerkung: Um einen Systemabsturz mit den Worten der
Orginal-Beschreibung (siehe Literaturverzeichnis) zu
umschreiben: "Diese Routine macht keine Fehlerkon-
trolle! Beschreiben Ihre Delta-Werte irgendeine ent-
fernte Ecke des Universums, so wird Intuition versu-
chen, das Fenster bis dorthin zu vergrößern. Aufgrund
der Dehnungen die im Raum-Zeit Kontinuum, vorhergesagt
durch die Spezielle Relativität, entstehen können,
ist das Ergebnis dieses Versuches im allgemeinen
nicht wünschenswert."

S

376

Anhang C

.orn0.

Ly DORR CLOTHE ER EHH HEE ET ED EEE HOES ODESH HF EDD DES EE DOSEN HEC OEEDE
POORER CHEER ESE EHO OEE H TEETER ERS EE HOHE SESE EDO OO EHO H DESH REEDED

PEPE CeRECeeree eee Ree ee eee Pee eee ee eee ee ee ee ey
Pp ORO REE HERO SHEE OOH MEER EERE HEME EERE EE HEDE DOV ONES HEE OND OES
DP OPPO O ESE REE H EERE EEO SERED OOOH HHELEH EP ETE HER EH EDS EDD OE EDD
gov ses ree yo bo se vos oe ss ge oo oe po cnt pes ong so pp pp pine a oo no oc a

Bestimmt zu einem beliebigen Fenster die Adresse
des zugehörigen Viewports. Diese Adresse brauchen Sie
fiir die meisten Grafik- und Text-Routinen.

ViewPort = ViewPortAddress(Window) ;

Window: Zeiger auf das Fenster, von dem Sie die Adre-
sse des Viewports haben wollen.

OO ee ee ee ee ee ee
COC COD Hero RHE eH SEDO ORDERED RDO DED HEN DO Or ERE ED

POCO OOOO RH OOO HERE HEH ORO EERO HES REDE DED OOD EE DOO OEE
PRU O VO FOES ERD ERE OR DOSER EOE EHD HESS DD

CHOC CECE TT OHA H ODE eE eae Lae esaeeeeesOneeees
he eee reese mero e Hered erasers esesereeeseenererEnt

u...

PTEreerrrr re vrrrererererreey ere er eee rere creer ey
COO roar meme eres ser eeneeeseredneeserenevereate
RPP PEPPER EEEPRPE TERE Cee SEE Se CeCe CEP eee rey

ERR RERE SECC CECE EERE C SESE PEC Eee ee Serres ©
Tomer eee eee rrosereees Cece eeenncederenven

Pewee seer aeesresesecereseeseoesee

Mit dieser Routine können Sie zu einem Fenster neue
Maximum- und Minimum-Dimensionen setzen. Mit dem Si-
zing-Gadget kann dann dieses Fenster nur innerhalb
dieser Werte vergrößert oder verkleinert werden.

boole = WindowL imits (Window ‚MinX ,MinY ,MaxX ‚MaxY) ;
AO DO D1 D2 D3

Window: Zeiger auf das Fenster, dessen maximale und
minimale Dimension Sie festlegen wollen.

MinX, MinY: Minimale x- und y- Werte, die beim Ver-
kleinern des Fensters nicht mehr über- bzw. unter-
schritten werden können.

377

Anhang C

MaxX, MaxY: Maximale x- und y- Werte, die beim Ver-
größern des Fensters nicht mehr über- bzw. unter-
schritten werden können.

ERST LTLIIEEEREXEKRTIKEKEERERELDENZERTRRERTERITEIERT
DEREBERFERRRRLEFERETTERSRITETRLTETTFIIETIIr rer
ee
BERRSTEPRREREFTFTEEFTITIIEIT III TRIEB
FRERRRERFFRIEISTRTRERTERETTTITERTERTTESERRRERTREITERN
BERRERRERTEETERITEERRERUTREITRITERTETEIEREIERDRFTTT
Serer te RE See” Te ne

PRPPETITETUTETEOERTULEL ESE EEECERE REPEC ETE REET Ey
DOPPTTETTETELTTEREETITE EERE EEE EEE TERE LeEeE
PEPSCTTTETELELT ESTEE TEESE OTELE SEER RESET E EERE e ETT TT

PRVITECRAELLCRAETEETAER EERE EEREERERER TEER ECE EERE EES!

Veranlaßt Intuition ein ausgewähltes Fenster in den
Hintergrund zu setzen.

WindowToBack (Window)
AO

Window: Zeiger auf das in den Hintergrund zu setzende
Fenster.

Veranlaßt Intuition ein ausgewähltes Fenster in den
Vordergrund zu setzen. |

WindowToFront(Window)
AQ

Window: Zeiger auf das in den Vordergrund zu setzen-
de Fenster.

378

Anhang D

Anhang D

—
up Game ew eee Grew Gate GES GE Gees Ga GER eee oom — | “un. Tu owe oe owe

379

Anhang D

Dieser Teil des Anhangs enthält die für die Grafik-
programmierung wichtigsten Systemfunktionen der Gra-
phics-Library in alphabetischer Reihenfolge.

Fügt einen Font .in die System-Font-Liste ein, damit
er im Speicher zur schnelleren Verfügung steht.

AddFont(TextFont), GraphicsLib
Al A6

TextFont: Ein Zeiger auf eine TextFont-Struktur des
einzufügenden Fonts. |

EN ockaster
seer ere desesenseooser

oneness aesesresvevesa
eRe eeee ey

Ruft die notwendigen Allocate-Routinen auf, um den
Speicherplatz fiir eine Bitplane zu belegen.

Al locRaster (width, height)
DO D1

width, height: Breite und Höhe der Bitplane, für die
dieser Speicherplatz reserviert werden soll.

Rückgabe: Ein Zeiger auf den Anfang des reservierten
Speicherplatzes oder 0 falls die Belegung nicht er-
folgreich war.

380

Anhang D

Peraooe

DEIRLELELIEFIREERFUEIRITERT
DELLRELTELEITFEELLTEREZERTIERLERTERTT
DERTILIERTERTELTERTRELTERZTERT
pace cee sccs secre nevesecseeeerersreeseese
DELTLELEIEITTRFIETRRR
SWERVE RECARO ARERR RRR R ERE EAE SA REE)

Ein weitere Punkt des auszufiillenden Polygons wird
in die Liste der Polygon-Eckpunkte eingefügt.

error = (int) AreaDraw(RastPort, x, y)
Al DO Di

RastPort: Zeiger auf die RastPort-Struktur, in der
das Polygon gezeichnet werden soll.

X, y: Koordinaten des Polygon-Eckpunktes.

Rückgabe: Bei erfolgreicher Durchführung 0 sonst -1.

‘Areaknd He

Zeichnet ein ausgefülltes Polygon, dessen Eckpunkte
durch AreaDraw eingegeben wurden.

error = AreaEnd(RastPort)
Al

RastPort: Zeiger auf die RastPort-Struktur, in der
das Polygon gezeichnet werden soll.

Rückgabe: Bei erfolgreicher Durchführung 0 sonst -1.

381

Anhang D

DERZERTERTERSZERELTEETSSLEREETEIEREN
Pesrnonuoonseenannenenon nenn nenernee
Dee ene s eer none neerecareessesebonene

Perso eee ss esse ner ne nennen ee
BERTPTEOAETEREEE EST CT EREERESEE OSES ES «
Peasose . . . anne ‘|
peeeves, a Io u “nu00. a]
peeves ıB + oO Ree Am Bers cc eee D
Pecans Mo en Og nn... D
ee ee ee
Peete rennen re
a Be ee
a re es er eo
Peer nmen nee re nee
PERZEERANZERERERENREREREHERBERZERRREREN)

Setzt den Startpunkt eines zu füllenden Polygons.
Sollte das letzte Polygon noch nicht abgeschlossen
worden sein, so wird dies von dieser Routine automa-
tisch erledigt.

error = AreaMove(RastPort, x, y)
Al DO Di

RastPort: Zeiger auf die RastPort-Struktur, in der
das Polygon gezeichnet werden soll.

X, y: Koordinaten des Polygon-Startpunktes.

Rückgabe: Bei erfolgreicher Durchführung 0 sonst -1.

Perser nnunne
pec c ene w er eneteeeneaseonaeecseseuns
Personen er
RISTELERFERZITOSITIIIIerDereereeeee
PER HOR onn our ee er een era
Pareo ne er rer ne

Erzeugt eine TextAttr-Struktur, die die Parameter
des aktuellen Zeichensatzes enthalten.

Askfont(RastPort, TextAttr)
Al AO

RastPort: Zeiger auf den RastPort, dessen Font-Attri-
bute in der TextAttr-Struktur abgelegt werden sollen.

TextAttr: Zeiger auf die TextAttr-Struktur, in der
die Informationen abgelegt werden.

382

Anhang D

.......0..
IERTTEIETERIEITT

SOn Cem esrrenererersesunenserasseneendos
COO Cee a sree omen eee eeeeaHeEeseserenesaeHes
Tere Pere ee ee eee eee Ce Cee eee ee ee eee eee
Coe eee ease esac rener esters re re

IEREZSRESEBERRERERSEENBENZERESERZEREEERHRRNENEN]

Mit Hilfe dieser Routine können Sie erfahren,
welche Schriftarten des aktuellen Fonts eines
Rastports Ihnen noch zur Verfügung stehen.

bits = AskSoftStyle(RastPort)
Al

RastPort: Zeiger auf den Rastport, von dessen Font
Sie wissen wollen, welche Schriftarten Ihnen zur Ver-
fügung stehen.

Rückgabe: Liefert die Font-Style-Flags zurück, die
noch durch SetSoftStyle gesetzt werden können.

oe

e
g
 P_

E
I
E
R

E
e
e
"

T
U

Mit dieser Routine können Sie den Blitter veranlas-
sen, ein Rechteck aus einer Bitmap in eine andere zu
kopieren, innerhalb einer Bitmap zu verschieben oder
mit einem anderen Rechteck zu verknüpfen.

planes = BItBitMap(Srcx, Srcy,Destx,Desty,width,
DO DO Di D2 D3 D4

height, Minterm, Mask, ScrBitMap, DestBitMap, Tempa)
D5 D6 D7 AO Al A2

383

Anhang D

ScrBitMap: Zeiger auf die Source-Bitmap (Quell-Bit-
map), also diejenige von der Sie ein Rechteck kopie-
ren wollen.

Srcx, Srcy: Koordinaten der linken oberen Ecke des zu
kopierenden Rechtecks innerhalb der Quell-Bitmap.

DestBitMap: Zeiger auf die Destination-Bitmap (Ziel-
Bitmap),also diejenige in die Sie ein Rechteck hinein
kopieren wollen. Diese kann mit der Source-Bitmap
identisch sein.

Destx, Desty: Koordinaten innerhalb der Ziel-Bitmap,
an der dann die linke obere Ecke des kopierten Recht-
eckes liegt.

width, heigth: Breite und Höhe des kopierten Recht-
ecks in Pixel.

Minterm: Die logische Verknüpfung, die beim Kopieren
des Rechteckes in das Zielrechteck vorgenommen wird.
Bezeichnen wir das Quellrechteck mit Q und das Ziel-
rechteck mit Z, so bewirken die einzelnen Bits fol-
gende Verknüpfungen:

0x10 Q AND Z
0x20 Q AND NOT(Z)
0x40 NOT(Q) AND Z
0x80 NOT(Q) AND NOT(Z)

So bewirkt das Setzen von mehreren dieser Bits zum
Beispiel:

0x30 Invertieren von Q.
0x50 Invertieren von Z.
OxCO Kopieren ohne Werte zu verändern.

384

Anhang D

Mask: Hier können Sie durch Setzen der einzelnen Bits
festlegen, welche einzelnen Bitplanes einer Bitmap
kopiert werden sollen. Setzen sie zum Beispiel Bit 0
auf 1, so wird die Bitplane 1 kopiert.

TempA: Zeiger auf einen Zwischenspeicher, der nur be-
nutzt wird, wenn sich das Quellrechteck mit dem Ziel-
rechteck überschneidet.

IKRFERZEITEIDIEE
IKEILSEELTTTT

OTe eee eee rene revreresereoereresed
Seems renee scercseresecsces

DEUZZLSZUEEREELTLERLELRENER Perr eee re reese rs Seer eee)
DEERE OHH EH PE HEE HEE DE SHH SSD EDEO RD ES DORE OHoDDODED

TICE e CeCe Ce errr errr rere eee eee Teer Se Le eee eee eee eee ee es
Denon mee D HERO EHO OER THRO HHO RESO OHO EHF OHH ED DS BODeoEDEDeoE ED SHEET EDM
Pee mem rere e Hr HELE EER LET HOP EEE EEE EEE ee
EHENEEREESKENESEENZEHZERKERNZSRRLZZZRZERNSEERIZZZRSELLZZZERZERZEREN,

Mit dieser Routine können Sie den Blitter veranlas-
sen ein Rechteck aus einer Bitmap in einen RastPort
zu kopieren. Die Parameter sind im wesentlichen die
gleichen wie bei BItBitMap. Daher haben wir hier auch
nur den von BItBitMap verschiedenen Parameter angege-
ben.

boole= B1tBitMapRastPort(Srcx,Srcy,Destx,Desty,width,
DO DI D2 D3 D4

height ,Minterm, ScrBitMap,DestRast)
D5 D6 AO Al

DestRast: Zeiger auf den Destination-RastPort (Ziel-
RastPort).

Destx, Desty: Relative Koordinaten innerhalb des
Ziel-RastPortes, an der dann die linke obere Ecke des
kopierten Rechteckes liegt.

385

Anhang D

TIELIIIIELEIKKEELEIDERELEITELT]
BERBEITTIIERBETESTIITREIDEI RT
Peo neun een een ne
Dee carserveesensone

eo eee rescence nassraceessaogeres
hese ceoaenserrenerereosecesenes

DELLZIERLERIESELETERZERTE
LILIRZERERRLTTTETERTITER
DIIRZTERERITIERZEIZIEIETT
TORE Tee Pere Pe eee cee ree
Pr emeweeesanesasesscenors
TERSRARRERERREREEBENEZERN

Löscht einen angegebenen Speicherbereich (= belegen
mit 0) im Chip-RAM.

BitClear(memblock, bytecount, flags)
Al DO D1

bytecount: Anzahl der zu löschenden Bytes in Abhdn-
gigkeit von flags.

flags: Ist Bit 0 gesetzt, so wartet das Programm, bis
der Blitter den Löschvorgang beendet hat, ansonsten
läuft es während des Löschens weiter. Ist Bit 1 ge-
löscht, so werden soviel Bytes gelöscht wie in byte-
count angegeben, ist es gesetzt, so wird ein Rechteck
gelöscht, das durch die oberen und unteren 16 Bits
von bytecount gegeben ist. Dabei entsprechen die un-
teren 16 Bit der Anzahl der zu löschenden Bytes per
Zeile und die oberen 16 Bit der Anzahl der zu 16-
schenden Zeilen.

bP CP a eRe made TE TEE TREE TOT LETTER DED
POT Ce THEME EEE THD EO HEHEHE HEE SETH OHHH EEOEEETTHEEHH ER EASE HET HOOH ECE ESE CREE EEO OS
PEC CCE R THERE CHORES OES CERES TOE HERECERE ERE TEESE HEE OH EHEC RE DED OEE EOE SEE EE OE ES
Poem e eee e er He RO RTAE SEO REET TEH EEE ES EO ELE E EHTS EES EROS H SHED EO EEE eH HedEaereEee®
pe oe CRORE DOE HE ee eEH EOP OEE EEE HEHEHE EHEEH EEE EEOEEE ESHER CE EE DEO O ED EROS EEE BENE OD
PoC THe Hee reese DESEO OEE EASE HORE EE DELETE EDO ED EESE HES CE ESEODELERED ES OLEH EEES

SOE eee eee eee ee eee eee eee) LCCC ee eee ee ee
pCO Re eam Re HOH HEH HH HEHEHE RH THEO EEE REDE EE RESO DE LEER DRC OH OO EE
SPCC O CRC e eee See eee CeCe Cee eS ee eee eee eee ee ee
TERRES Ee Cee eee eee ee eee eee eee ee eee eee eee eee eee rer
SRP ee Re eee ee eee ee eee eee eee eee eee ee ee Tee ee ee ee ee)

Diese Funktion bewirkt im Wesentlichen das gleiche
wie BItBitMap. Sie haben jedoch zusätzlich die Még-.
lichkeit beim kopieren eine Bitmap als "Maske" zu be-
nutzen, die wie eine Schablone. wirkt und nur da
durchlässig ist, wo die Bits gesetzt sind. Da auch
hier die Parameter größtenteils mit denen von BltBit-

386

Anhang D

Map und BItBitMapRastPort übereinstimmen, haben wir
hier nur den hinzugekommenen dokumentiert.

boole = BItMaskBitMapRastPort
(ScrBitMap, Srcx, Srcy, DestRast
AQ DO D1 Al

Destx, Desty, width, height, Minterm, B1tMask)
D2 D3 D4 D5 D6 A2

BitMask: Zeiger auf die Bitplane, die als Maske
dient.

DELETE ee
eee ee ee
Beurer nenne

.orseserease»

Füllt ein Rechteck, in Abhängigkeit von einer Maske
(wie bei BltMaskBitMapRastPort), in einen Rastport
mit den aktuellen Parametern (Farbe, Füllmuster etc.)

BltPattern(RastPort, Mask, xl, yl, x2, y2, Bytes)
Al AO DO Di D2 D3 D4

RastPort: Zeiger auf den Rastport, in dem ein Recht-
eck gezeichnet werden soll.

Mask: Zeiger auf eine BitPlane, die mindestens so
groß sein muß wie Bytes und die beim Füllen als Scha-
blone dient.

xl, yl, x2, y2: Koordinaten der linken oberen und der
_ unteren rechten Ecke des Rechtecks.

Bytes: Breite des Rechtecks in Bytes. Also in 8er
Schritten aufgerundet, da 1 Byte = 8 Bit.

387

Anhang D

CEIERKEILIEIERTTEEEKIRERZTEREIZERZTIEIZTE)
Docc center erase cera eto neeeneeetsoseones
Roeder eee nese neseerrareseereresesseresel
ROVETETETELE PETER RE TREE
ecm ccc ccc se reser retorts vseereraresseose®
Pee e cere ccc rear eerste r ete oenseresereese et

CMe emer eer erent enrsarersveresaroorseenl
Perser eer een re re
DERTETEITIETERTEIIOREII EEE eee eee ee
eco ee ee oe eee e a PDO REDE HH EHH HEEHE SE ROEED
Cree erm ere sare ena eeeesesereesacesessoesl
eee peters ces serena ser seees vers sees + oe a

Löscht eine Zeile ab der aktuellen Cursor-Position
bis zum Ende der Zeile (End Of Line). Die Breite der
gelöschten Zeile hängt von der aktuellen Text-Höhe
ab.

ClearEOL(RastPort), GraphicsLib
Al A6

RastPort: Zeiger auf den RastPort, in dem die Zeile
gelöscht werden soll.

EEE EI KEIKELSIKEELZZZWKEZTZZLELKZZZZLIIENTTZTITITTN
Dee EEE TE TE TEE LET THEO OS
Beeren er EEE ET EEE TOT»
bree rere OOH HEP ee a ee
PERO REE OP HO REE EDR ROH HOH OCHS OO DO PDO REF EDO OOF ORES DOOD
See ee

Decco rere ete eee seer tere eeten
Por esre rn re TER LEO PORT FUTTER TECH
DERZTERTIRTETEITERTERTITEE TESTER
TELTZEIZEREFEITIITISDERZERZIIII IS
Deeeesenueen benennen nennen ee
SRR eee

Freigeben des Blitters fiir andere Tasks, nachdem er
durch OwnBlitter fiir einen Task reserviert wurde.

DisownBlitter()

Per eenwenenaracerenseese
Ca ee enmecsrsacrescccscsce

eee eee ne ssanesesseses

oo...
IKRLKLITIIER

ee
Pee eee eeerereenseserreoeeere
ee
DETLRTIRTEITERERIIIITE
EIITERTEIITT PIE eee eee ee

Zeichnet eine Linie zwischen der aktuellen Cursor-
Position und den angegebenen Koordinaten.

Draw(RastPort, x, y)
Al DO DI

388

Anhang D

RastPort: Zeiger auf den RastPort, in der die Linie
gezeichnet werden soll.

X, Y: Koordinaten der neuen aktuellen Cusor-Position,
die mit der alten durch eine Linie verbunden wird.

DREFPIERTETTPILETTIITITEITEI TFT
co rn|onee

nonserse
CIRIZERLEELIITNN

DKFERZERENT un Ba ERSEIRLIREITLER

LEITETE
.

Zeichnet im angegebenen RastPort eine Ellipse.

DrawEllipse(RastPort, xm, ym, xr, yr)
Al DO DI D2 D3

RastPort: Zeiger auf den RastPort, in der die Ellipse
gezeichnet werden soll.

xm, ym: Koordinaten des Mittelpunktes der Ellipse.
xr, yr: x- und y-Radius der Ellipse.

ee
...... . oe

ee eee
se

. .

|;

.
. . ee

m. .
.

. oe . .
vo..... .

u —— 000. “
wearers ssesvee .

. cone D
CRINZZIIIEIIIZERZEN HRREEEEEHEIEEEEEG g

e
n
e
n

GE

Ge:

Füllen einer zusammenhängenden Fläche.

Flood(RastPort, mode, X, y)
Al DD DO DI

RastPort: Zeiger auf den RastPort, in der sich die zu
füllende Fläche befindet.

mode: Füllmodus

X, y: x- und y-Koordinate des Punktes, ab dem mit dem
Füllen begonnen wird. |

389

Anhang D

eee eee ee eee ee
IDEE TELLEFTRIETEE IT

.
Bower na ee neers eran erevers

fe Fraala prMap:

Löschen der ColorMap-Struktur durch Freigegeben des
von ihr belegten Speichers.

FreeColorMap(colormap)
AO

colormap: Zeiger auf die ColorMap-Struktur, die frei-
gegeben werden kann.

IKELESTERERTERTTITEITORTERTS
IEZITEFLETTRT

en.
...u0.0

[ERRZENSKEBZIERERSERZIRSTERZENZDS

Freigeben eines Speicherbereiches, der von einer
Bitmap durch die AllocRaster-Routine belegt wird.

FreeRaster(p, width, height)
AO DO D1

p: Zeiger auf den Speicherbereich, der durch die Bit-
plane belegt wird. |

width, height: Breite und ‘Hohe der Bitplane, deren
Speicherplatz wieder freigegeben. werden kann.

Wichtig(!): Benutzen Sie für width und ‘height die
gleichen Werte die Sie auch bei AllocRaster verwendet
haben! Sie laufen sonst Gefahr eine Guru Meditation"
zu erhalten.

390

Anhang D

DENKIIENKEXKEKELIEXZEILKEZZERIEEN)
IRRLFLELLERITFRTITEITIIREEIE EDIT
Coe eee neneseseeranesesosesesseares

Ooo ene een reneeeesaeesenes
POO meer ee meneseeosrersseeseeeees

........

LERTYLELT)
raeoseeve

EnGetColorMap: |
|

vee oof

Diese Routine legt eine ColorMap-Struktur an.

cm = GetColorMap(entries)
DO DO

entries: Anzahl der Farben, die in die Liste einge-
‚tragen werden sollen.

Rückgabe: Zeiger auf die initialisierte ColorMap-
Struktur.

ni
el
el
ei
el
si
ch
äs
ie
is
he
in
is
hc
hd
ei
l

GetRaBA
ences

Routine zum Auslesen der einzelnen Farbwerte aus
den Farbregistern.

value = GetRGB4(colormap, entry)
DO AQ DO

colormap: Zeiger auf die ColorMap-Struktur, aus der
Sie die Farbwerte lesen wollen.

entry: Nummer des Farbregisters, von dem Sie die
Farbwerte wissen wollen.

Riickgabe: Sie erhalten -1, wenn das Farbregister mit
keiner gültigen Farbe belegt ist. Ansonsten ist value

391

Anhang D

ein Wort dessen ersten vier Bits (0-3) den Blauanteil
die nächsten vier Bits (4-7), den Grünanteil und die
folgenden vier Bits (8-11), den Rotanteil der Farbe
beinhalten.

DEREIRIER

‘|

tiicetssssacsccess esas |
|
a

Bevor Sie die Area-Befehle benutzen können, müssen
Sie durch diese Routine eine Arealnfo-Struktur initi-
alisieren.

InitArea(Arealnfo, Buffer, Count)
AO Al DO

Arealnfo: Zeiger auf die zu initialisierende Area-
Info-Struktur.

Buffer: Zeiger auf einen freien Speicherbereich, der
den Area-Befehlen als Zwischenspeicher dient.

Count: Maximale Anzahl der Punkte die im Zwischen-
speicher platz finden können. Für jeden Punkt werden
dann 5 Bytes Speicher reserviert.

Prorsoseeeee
EIIELERLLRITETTEIEIITILTERTII TI

oreesee

EILZERZTEERTEN
seuss AREREUEENDN

Diese Routine dient dazu, eine BitMap-Struktur zu
initialisieren.

InitBitMap(BitMap, depth, width, height)
AO D1 D2 D3

392

Anhang D

BitMap: Zeiger auf die zu initialisierende BitMap.

depth: Anzahl der Bitplanes, die diese Bitmap hat.

width, height: Breite und Höhe der Bitmap in Pixel.

Initialisieren einer RastPort-Struktur mit den
Standardwerten (Modus = JAM2; Mask, FgPen, AOLPen und
LinePtrn = -1; restliche Werte = 0)

InitRastPort(RastPort)
Al

RastPort: Zeiger auf den zu initialsierenden Rast-
Port.

En Eu TTT Tee TT TUT TTT UT TT TTT Ter Tre rely
Petre ere doe ere nse reeeser eee ssr eee renereneters
PRIA ERE TEETER TERETE)
Pee eer a emo h ere eset beter esereresDeenesesesreees
pee mee re mE R OH ETE HHO EO OO EH HEH OEE EHH HOOF ES OHES

Cer c etree necseees

Initialisieren einer TmpRas-Struktur, die einem Rast
Port als Zwischenspeicher dient.

InitTmpRas(tmpras, buffer, size)
AO Al DO

393

Anhang D

tmpras: Zeiger auf die zu initialisierende TnpRas-
Struktur.

buffer: Zeiger auf einen freien Speicherbereich.

size: Größe von buffer in Bytes. Im allgemeinen soll-
ten Sie den Zwischenspeicher so groß wie eine Bit-
plane dieses RastPorts wählen.

Diese Routine initialisiert die angegebene ViewPort
Struktur durch Setzten der wichtigsten Werte.

InitView(view)
Al

view: Zeiger auf die zu initialisierende ViewPort-
Struktur.

ee
SISTER ICCP UES eee ee ee ee ee ee ee os
SORERERR CCRC eee ee eee eee ee eee eee
Peer season reer eee eee eee eee eee eS eee
SaRERE ERR e EER ee eee eee eee eer!
Pere IE eer rr rere rere er ee ee ee ee ee ee

Terre rerr eres eee eee ee ee ey

Seer ere ree er ee ee eee ee ee ee
See eee ree ee eee ee eee ee ee ee ee ee es
eee ee ete mee messes ere se hers rereneseressere
See eee eee eee eee ee eee ee ey
Pee ee eee eee ee eee H eer Heer rer nr eaveneeees
Pte tem eee meee en ear eee reo ere meetsrenrssereee

Initialisiert eine ViewPort-Struktur mit den Stan-
dard Werten. |

InitVPort(ViewPort)
AO

ViewPort: Zeiger auf die zu initialisierende View-
Port-Struktur.

394

Anhang D

IRSTTETTIITETTERTTTT

—uroneooneneeseee
IKELERELZERESTLIRILIIIEITEEE
Core mene rneneseresesece

een ernennen
oo oo +p 6 og ote oo 5 pp 6 pn og so po ne poo

Kopiert eine Farbpalette mit den entsprechenden
Einträgen in einen Viewport.

LoadRGB4(ViewPort, ColorMap, Count)
AO Al DO

ViewPort: Zeiger auf den ViewPort, dessen Farbeinträ-
ge Sie ändern möchten.

ColorMap: Zeiger auf einen Array von UWORD-Variablen,
die die Farbwerte der Farbregister enthalten.

Count: Anzahl der Farbregister die in dem Array Color
Map gespeichert sind.

Durch diese Routine werden die Copperlisten, die
Sie durch MakeVPort berechnet haben, ausgeführt.

LoadView (View);
Al

View: Adresse der View-Struktur, die die bereits be-
rechneten Copperlisten enthält.

395

Anhang D

CHWIXZEKLIKKZKZENEEKKEKIZLIILKIIKEIIZZN
oo per eeeresorseeeeerercerene
POR mee EP EDA BOOT E HHO EHD ede HO HOE EE ED DECOS
ROP O Meee Rd eased aeeseserseaenrereseeeseaeee
Peed ese rvesenereeroeneresosseerssenresesas
DOM deer er eee eae terse ee Haevesaeeveseraose

per eee reese etree tree ue oesereeResrereeenenne
Pee er mR meee EE EH OH a EEE EH HEED EH oer eS ED DOOD
PIT eee ee eee ee eo ee
Seyret rt eeeer errr reer eee eee eee eee Se eee ee
BOAO eee ea er nd aerate arandsnreenersoateres
een pas ee oe ean eo weno ae enna se oo eee pen eo oe

Bereitet einen Viewport auf, indem seine Zwischen-
Copperlisten berechnet werden.

MakeVPort(View, ViewPort);
AO Al

View: Zeiger auf die View-Struktur, dem dieser View-
port zugeordnet ist.

ViewPort: Zeiger auf die ViewPort-Struktur, deren
Zwischen-Copperlisten berechnet werden sollen.

Bewegt den grafischen Zeichenstift zu einer (x,y)-
Position, (relativ zur linken oberen Ecke des Rast-
ports) ohne dabei irgend etwas zu zeichnen.

Move(RastPort, x, y);
Al DO DI

RastPort: Adresse der RastPort-Struktur, in der die
Position des Zeichenstiftes neu gesetzt wird.

X, y: Koordinaten des Punktes, auf den der Zeichen-
stift gesetzt werden soll.

396

Anhang D

Oe ee eee eee eee EET)
doer reese sereerareseeeewersrsarereneee

Demo ere ress ness ror seeeeseeeenesernerel
orten en

Cone e mene e ete sae eeressrarncereresesee
pee e cee ser ererereeessasresenesesseneregd

meet Pee eee eee

Beemer een serrenereseoes
Bemeaeeesecnsnvessees
.eoruneenerenen

soo...

IMIREERERT

Öffnen des Fonts der System-Font-Liste, der am ehe-
sten einer vorgegebenen TextAttr-Struktur entspricht.

font = OpenFont(TextAttr), GraphicsLib
DO AQ A6

TextAttr: Zeiger auf die TextAttr-Struktur, zu der
ein Font geladen werden soll.

Rückgabe: font ist 0, falls kein passender Font ge-
funden wurde, sonst enthält font den Zeiger auf die
initialisierte TextFont-Struktur.

woos0.

Ownbiiitter

Reserviert den Blitter für Ihre eigenen Zwecke.
Stellen Sie jedoch vorher durch WaitBlit sicher, daß
der Blitter gerade nicht arbeitet.

OwnBlitter();

“on...
Ce ee ten ennnee
orten nennen.
CoO er ere teeresterannereserers
Peer eres creer een ee ne

eeeteoos

ees eWererecsecseteree

.
bee .
pee
4 +

rose
erneuern nne eee

pe cece reer ersesesessecneeseseseserorre
Corres enenresorevess

Zeichnet einen vorher definierten Linienzug (bzw.
ein Polygon, falls der Startpunkt gleich dem EndPunkt
ist) in den angegebenen RastPort.

397

Anhang D

PolyDraw(RastPort, count, array)
Al DO AO

RastPort: Zeiger auf den RastPort, in dem der Linien-
zug gezeichnet werden soll.

count: Anzahl der vorher definierten Eckpunkte.

array: Zeiger auf den Speicherbereich, wo die Koordi-
naten der Eckpunkte stehen.

Liest die Farbe eines Punktes eines Rastports.

pen = (int)ReadPixel(RastPort, x, y)
DO Al DO Di

RastPort: Zeiger auf den RastPort, aus dem ein Punkt
"gelesen" werden soll. |

x, y: Relative (zur linken oberen Ecke des RastPorts)
Koordinaten des Punktes, von dem Sie wissen wollen,
mit welcher Farbe er gesetzt wurde.

Rückgabe: Liefert -1 falls der Punkt nicht gelesen
werden kann, ansonsten die Nummer des entsprechenden
Farbregisters.

398

Anhang D

Diese Routine zeichnet ein ausgefülltes Rechteck
mit den aktuellen Werten (z.B.: ZeichenModus, Farbe,
Füllmuster, etc.).

RectFill(RastPort, xmin, ymin, xmax, ymax)
Al DO D1 D2 D3

RastPort: Zeiger auf den RastPort, in dem das Recht-
eck gezeichnet werden soll.

xmin, ymin: Koordinaten der linken oberen Ecke des zu
zeichnenden Rechtecks.

xmax, ymax: Koordinaten der rechten unteren Ecke des
zu zeichnenden Rechtecks.

ee
Reader sors er ese rater eeereresesvennd
bee e cece acces asec sane meets nsesssoanrad
paeeerrecerevereeroseseresesseseesera”
Padres as eres eet sereeeeesrnreseesaoed
be Savor ee rre eres eeeesereneesereeerneoed
Peer rn nn oe ep re COP

DR DE r ee re Er
Peuesrerenaesee nern rer ern nd
TERZELLTETERTTTRLEIRTEITEIZEITIEE I
DERERETTEITTITIe DEI
TERTERETERTTIRTITIIITET III ID

Entfernt einen Font aus der System-Font-Liste.

error = RemFont(TextFont) ,GraphicsLib
DO Al A6

TextFont: Adresse der TextFont-Struktur, die wieder
freigegeben werden kann.

Rückgabe: Ist error = 0, so konnte der Font nicht
entfernt werden.

399

Anhang D

emcee rer eres ren eaeseeoeenereeesesboene
were rere et

Dome ere eee O OER REET ETE OH TOD ERO OE OHO ON®
(PEREREEEETTRAREE EARS RE PARES REAR ESET

Mit dieser Routine können Sie ein Rechteck in einem
Rastport scrollen, also seinen Inhalt verschieben.

ScrollRaster(RastPort, dx, dy,Xmin, Ymin,Xmax,Ymax);
AO DO Di D2 D3 D4 D5

RastPort: Zeiger auf den Rastport, in dem Sie ein
Rechteck scrollen wollen.

dx, dy: Anzahl der Punkte, um die der Inhalt des
Rechtecks verschoben wird. Positive Werte bewirken
eine Verschiebung nach links, negative nach rechts.

Xmin, Ymin: Koordinaten der linken oberen Ecke des
Rechtecks. |

Xmax, Ymax: Koordinaten der linken oberen Ecke des
Rechtecks.

400

Anhang D

SetAPen: a
vorne.

Benossoesuone
werrere ree

une
IKEERESSHEREBENRN]

Setzen der neuen Vordergrundfarbe (Primary pen).

SetAPen(RastPort, pen)
Al DO

RastPort: Zeiger auf den RastPort, für den dieser
Farbstift neu gesetzt werden soll.

pen: Nummer des Farbregisters, mit dessen Farbe die-
ser Farbstift belegt wird.

POO eer acre reweesoreteenesecssasscand
PRESET RERET EEE EERSTE eee
We cee eee ere re eeeeeraneeeeretessseres
pee cece e eee teem ae arue reese nesesssned
pee ere ene eee eres eee nee verses ssaenecad
eee re aseee rence sereseresesesnsssred

pe carta r nner eeseesersnereererentosead
Team ew eerererornsereetreneoreeserena

Pee errs near rece n eer eee eresersoasend
eee meee ene se rereeeeesoereseneeneeeea
pee tence errr rere enusereseesseeresera

Setzen der neuen Hintergrundfarbe (Secondary pen).

SetBPen(RastPort, pen)
Al DO

RastPort: Zeiger auf den RastPort, fiir den dieser
Farbstift neu gesetzt werden soll.

pen: Nummer des Farbregisters, mit dessen Farbe die-
ser Farbstift belegt wird.

401

Anhang D

Peco eect er tenon entre rer etesecsonea
Rete c mete e arate ee een ernennen rn n ned
Lome ree mrme reese ees ar eeevrereneeserem
Pte ew cere ese ase tes enererertsseeed
SRST ECOT ETE TESEOLESETEES EEE EE ETE ES.
Perereoeronesnennnecnnnerer rennen ned

ERPEFLLTETTETETTIELEIT TIERE
Tererereteene te er
IRRTTERTELFTEFTERETOTELTORr LEI
DIETSTITERTITTITIETTERTERTEITREREIET
Perso onueosunun nennen nd
SERERESIRIRERZEREIEERERERERERENEEREEN

Setzt einen neuen Zeichenmodus.

SetDrMd(RastPort, Mode);
Al DO

RastPort: Addresse der RastPort-Struktur, deren Zei-
chenmodus Sie neu festlegen möchten.

Mode: Die folgenden vier Modi können auch beliebig.
miteinander verknüpft werden, wenn dies auch nicht
immer sinnvoll ist.

JAM1 0 Gesetzte Bits mit APen zeichnen.
JAM2 1 Wie JAMl, aber gelöschte Bits mit

BPen zeichnen.
COMPLEMENT 2 Punkte vorm zeichnen "XOR"en.
INVERSVID 4 Invertieren (z.B von Textzeichen)

VPPTTPPTETPTITTERSTIS TTT eT TT TTT YT
Re ree eta eee a tesa seeeercerrertesed

bb cee crea eer sess seasssssccrveseersrondn
Verena ec

Lecce een e eee nausea eaerseesensovressoed
Bm en ee Rem eee e Rta ea reenter eroetessoed
pee eer teense rar as aseessserinsseond”
Peers TIER Ki WERE LR,

LD tee oer mee eae een onen nee ee
ee errr
ete m me mmc rede rennen nee
peewee rose ee ee rears eerseseseesens ood
Deemer o eae wewesserereeecasorssseneed

Ordnet dem angegebenen RastPort einen neuen Zei-
chensatz zu.

error = SetFont(RastPort, Font) ,GraphicsLib
DO Al AO A6

RastPort: Zeiger auf den RastPort, fiir den der Font
neu gesetzt werden soll.

Font: Zeiger auf die bereits durch OpenFont vorberei-
tete TextFont-Struktur.

402

Anhang D

ERKEELERZERRERZERTEREZLILIRITERZEENE
Lecce coos wen teren teren en ned
Re eee use m eee erer rns erereerreresereed
re q
POVEVET TREC E CeCe Sere eee eee eee eee?
ern e mart oevvervrererrnocrasszerrennea
SITS Cee ree re eT ee ere ee See
Deren. . . D ero Cee
beoracse . IKERE EEE
Deosnnes . . 7 CR
besees ‘ a . 8.» ie renın
seer eer em sesewrenreeeeeerErsorrerel
Looe rere resectosronesreseesseseetser®
Pee set rec eereo rere essed eresersreseead
Pree oe onen ern q
POVTTETRP EPC RRR OER eee eee ee ee
(ELAN ETAREREERESE ARENSON EE REE E!

Setzen der neuen Umrandungsfarbe (Outline pen).

SetOPen(RastPort, pen)
Al DO

RastPort: Zeiger auf den RastPort, fiir den dieser
Farbstift neu gesetzt werden soll.

pen: Nummer des Farbregisters, mit dessen Farbe die-
ser Farbstift belegt wird.

Oe ee eee
een Terre
DERSEITETEREI EEE
Branson er er
Beurer ne

Due Be a ee ea ee eeeneseseosare

..o..d
ee eerneceresoged

Seem e reece nvronseresesneserereersem
perce sese rover esecsssasreeenenacoened

Ce saeeorreaseccensesesesessserrera”

Mit dieser Routine können Sie die Farbregister ei-
nes Viewports mit neuen Farben belegen.

SetRGB4(ViewPort, Number, Red, Green, Blue);
AD DO DI D2 D3

ViewPort: Zeiger auf die ViewPort-Struktur.

Number: Nummer des Farbregisters (0-31).

Red, Green, Blue: Die neuen Farbanteile (0-15).

403

Anhang D

Cree sewersenaesone
were ere re scerenee
ee ee ee
[KERZE
[EELLILLELTERIERT
nern tnnee

IKEERERTT

SERTERTTELTITEULIERLTERTET
PPT eee eee ee ee eee eee
DRERERTELZTTIEZEZERIIIZEIER
SIEIRELZERNTEREESTERELEIEN
beer eee reactor aereeeenernee

Pe een tesco ses te nesses seses

Gibt an der aktuellen Position des Zeichenstiftes
einen beliebigen Text aus.

error = Text(RastPort, String, Count)
DO Al AQ DO

RastPort: Zeiger auf den RastPort, in dem der Text
ausgegeben wird.

String: Adresse der Zeichenkette, die Sie ausgegeben
mochten.

Count: Anzahl der einzelnen Zeichen, die die Zeichen-
kette enthält.

Rückgabe: Bei erfolgreicher Durchführung 0 sonst -1.

DEKEKKEKEXLZEIKKEKIEEZEXIKEZZILZELEZXZZIIEITELTS
Cede meee een aet RISSE III
TET eee eee eee ee eee es
SHOOT PRED ET EEE DDE ORO ERE OO BeOS
Poor eae e dare ses eeeeesereseereeretareeres
Cem eee eee eno eronee reser Eee ehersnnerene

IRELLILETETEREUTETERETT Serer reeeeereey
eee merece reese ses eeraseraneeseerecae

OC eae occeseseeseesesseeete
Cero men se renee eeewenssereonescessenaeoes

(WREREE RRR EERE RARE SO

Mit dieser Routine können Sie die eigentliche Länge
(in Punkten) eines Textes, unter Berücksichtigung des
aktuellen Fonts, ermitteln. |

length = TextLength(RastPort, String, Count);
DO Al AO DO-0:16

404

Anhang D

RastPort: Zeiger auf den RastPort, in dem der Text
erscheinen soll.

String: Adresse der Zeichenkette, die Sie ausgegeben
möchten.

Count: Anzahl der einzelnen Zeichen, die die Zeichen-
kette enthält.

seecnes
aoe eer eeenenve

ee cer eeeroencesenen
Poeeeneesenereseauaceoenn

Corecess easaceres neces rensere
Peewee erent III

sonaser

POPP CeO OH HR EET HEDGE RE OES EHE ODE DED EE DO
a beonene

CeCe eee rem nsscnameresaceeeesered
be ee reece reese messes esenseaseeesenne

POO e rw ere ee eoerecesrererssnsenesecseaee
esersen

Gibt Ihnen die Zeilennummer an, in der sich der E-
lektronenstrahl, der das aktuelle Bild wiedergibt,
befindet. Der Wert ist im allgemeinen recht ungenau,
wir verwenden ihn lediglich, um eine Zufallszahl zu
erhalten.

position = VBeamPos();

Rückgabe: Ein Wert zwischen 0 und 255.

TELXIZIXZIE
SPICER Pee CeCe Cee eee eee eee ee eee
b POPC H EO PCH rer EERE ERED HOD OR ESD SEHD

pereerse ree er eter as eatose
.... +

... eaee dl
aeae +
.... d

. ‘
. une .

TERERLIELTEIELEETETERERTTN

u. ..0.

Piiiiilnn

SEHBRHE PEs Se HIN
Sees # 2 = a 4 @ 0 2 © 9 2 4 4 92 spa 0 9 4 0 = .

Malte Seperr 92 eS oe

ee

Wartet bis der Blitter seine augenblickliche Ko-
pierarbeit beendet hat, damit Sie die Routine Own-
Blitter benutzen können.

WaitBlit();

Bemerkung: Diese Routine arbeitet leider nicht immer
fehlerfrei, sondern verzichtet manchmal auf weiteres

405

Anhang D

Warten, obwohl der Blitter noch einen Kopiervorgang
zu erledigen hat.

Deren emer rere seer reverses nenne
kee were er Sr ee er er Zr
er rer
a se ee
Boos eos e eee ere Hee er er een
Peroornoseesen nee ren

eee er erences seeenereresinesenestcesasas
bb teeters eres eseerertereeeeeeseaeeeseoess
bb Rootes eco esesvaernenerereseresaesesnacs

Wartet bis der Elektronenstrahl, der das Bild eines
Viewports zeichnet, an seinem unteren Rand angekommen
ist.

WaitBOVP(ViewPort);
AO

ViewPort: Zeiger auf den Viewport, auf dessen voll-
ständige Darstellung Sie warten wollen.

Poeosouonoonuu nenne rer ne
Peso heen eee none ee ren“
a ee ee ee eee eee eee eee eee
eee ener rece eee prea EL ar veseeeseDDr oer nes
ee ee ee
Reve Peewee meee me ROO RE Dee ESE HEROD e ODE ED OO DE

or weenee

pen eames acess ee eeesreeeseeseeseseeeeesereerran®
Peer ee essere sso eeeresanereserenessseesnevaser
PEPVTEERETETTERESE EERE EEE
be veneers sees eererersreresese
be eee re eonae

Setzt einen Pixel an der Position x,y.

Writepixel(RastPort, x, y)
Al DO Di

RastPort: Zeiger auf den RastPort, in dem ein Punkt
gesetzt werden soll.

x, y: Relative (zur linken oberen Ecke des RastPorts)
Koordinaten des zu setzenden Punktes.

406

Anhang E

Anhang E

Die Blitter-Hardware-Registerbeschreibung

407

Anhang E

In diesem Anhang finden Sie für die Hardwarepro-
grammierung des Blitters eine kurze Beschreibung
seiner Register.

BLTAFWM (044)

(BLiTter: source A, First Word Mask)

BLTALWM (046)

(BLiTter: source A, Last Word Mask)

Die Bitmuster dieser beiden Register werden mit dem
ersten, beziehungsweise letzten Wort jeder kopierten
Daten-Zeile "geANDet". Somit ist es möglich den
Anfang und das Ende einer zu kopierenden Daten-Zeile
der Quelle A nicht nur Wortweise, sondern auch
Bitweise festzulegen. Beim Füllen oder Lienien zeich-
nen mit dem Blitter sollten diese Bits alle auf 1
gesetzt sein.

BLTCONO (040)

(BLiTer CONtrol register 0)

BLTCON1 (042)
(BLiTer CONtrol register 1)

Diese beiden Kontrollregister werden zusammen für
die Steuerung der Blitter-Operationen benutzt. Je-
weils einer der beiden Modi Area und Line wird durch
das Bit 0 aus BLTCON] aktiviert. Die folgende Tabelle
ordnet den einzelnen Bits fiir die beiden Modi jeweils
verschieden Namen zu. Die jeweilige Bedeutung eines
gesetzten Bits entnehmen Sie bitte der darauffolgen-
den Beschreibung:

408

Anhang E

Area-Modus

LFO

FCI
DESC
LINE

Line-Modus

BLTCONO BLTCON1

START3 TEXTURE3
START2 TEXTURE2
START1 TEXTURE1
STARTO TEXTUREO

1 0
0 0
1 0
1 0

LF7 0
LF6 SIGN
LF5 0
LF4 SUD
LF3 SUL
LF2 AUL
LF1 SING
LFO LINE

Die wichtigen Bits im Area-Modus:

ASH3-0:
BSH3-0:
USEA-C:
USED
LF7-0O :

EFE
IFE
FCI
DESC

LINE

Der "Shift"-Verschiebewert der Quelle A.
Der "Shift"-Verschiebewert der Quelle B.
Modus-Kontrollbit fiir die Quellen A, B und C.

: Modus-Kontrollbit für das Ziel D.
(Logic Function) Diese Bits enthalten das
Minterm.

läuft rückwärts.

: (Exclusive Fill Enable)
: (Inclusive Fill Enable)
: (Fill Carry Input)
: (DEScending Control bit) Der Kopiervorgang

: Für den Area-Modus gelöscht.

409

Anhang E

Die wichtigen Bits im Line-Modus:

START3-0 : Diese Bits geben den Startpunkt der Linie
an.

TEXTURE3-0:
LF7-0 : (Logic Function) Diese Bits enthalten das

Minterm.
LINE : Für den Line-Modus gesetzt.

Die Bits SUD, SUL und AUL legen den Oktanten fest,
indem die Linie gezeichnet wird:

Okt SUD SUL AUL

N
A
O

B
R
W
H
E
F
O

P
F
O
O
r
m
o
o
m

o
o
r
m
o
r
m
r
m
r
o
m

S
O
o
O
O
r
R
P
R
H
M
m
O

BLTSIZE (058)

(BLiTter start and SIZE)

Im Area-Modus enthält dieses Register die Breite und
die Höhe der Blitter-Operation. Im Line-Modus muß die
Breite auf zwei gesetzt werden, die Höhe entspricht
dann der Länge der Linie. Dabei enthalten die Bits 0
bis 5 die Breite in Worten, die Bits 6 bis 15 die
Höhe (Länge) in Pixeln. ACHTUNG: wird dieses Register
beschrieben, so startet der Blitter sofort mit seiner
Operation, also dieses Register bitte als letztes
beschreiben.

410

Anhang E

BLTxDAT (074)

(BLiTter source x DATa register)

Diese drei Register (das "x" steht für eine der
Quellen A, B oder C) halten interne Daten für den
Blitter bereit. Für den Line-Modus gilt noch folgen-
des: BLTADAT wird als Indexregister benutzt und muß
mit 8000 initialisiert sein. BLTBDAT wird zur Muste-
rung der Linie benutzt. Soll kein Linienmuster ver-
wendet werden, muß BLTBDAT auf $FF gesetzt werden.

BLTxMOD (064)

(BLiTter MODulo)

Diese vier Register (das "x" steht für eine der
Quellen A, B, C oder das Ziel D) enthalten den
Modulo Wert, der am Ende einer Zeile automatisch zu
dem jeweiligen Adreßzeiger hinzugezählt wird. Damit
wird am Ende einer Zeile automatisch zu dem Anfang
der nächsten gesprungen.

BLTxPTH (050)
(BLiTter PoinTer to x, High)
BLTxPTL (052)
(BLiTter PoinTer to x, Low)

Diese vier Registerpaare (das "x" steht für eine
der Quellen A, B, C oder das Ziel D) enthalten
jeweils den Low- und High-Anteil des Adreßzeigers auf
den zu "x" gehörenden Speicherbereich. Diese AdreB-
zeiger sind jeweils 18 Bits lang, wobei in BLTXPTL
die 15 Low-Bits und in BLTxPTH die übrigen drei High-

411

Anhang E

Bits stehen. Am Anfang der Blitteroperation zeigen
diese Adreßzeiger auf das jeweils erste betroffene
Wort, am Ende auf das jeweils zuletzt betroffene.

412

Literatur

Literaturverzeichnis:

William M. Newman, Robert F. Sproull
Grundzüge der Interaktiven Computergrafik
McGraw-Hill Book Company GmBH

In diesem Buch werden die wesentlichen Themen der
Computergrafik in Theorie und Praxis (PASCAL) behan-
delt.

Heinz-Otto Peitgen, Dietmar Saupe
The Science of Fractal Images
Springer-Verlag

Enthält nicht nur die Theorie über Berechnungen von
fraktalen Grafiken, also auch L-Systeme und Land-
schaften, sondern neben zahlreichen Abbildungen auch
die dazu notwendigen Algorithmen in einem gut ver-
ständlichen, Modu la- 2 Code. |

Melvin L. Prueitt
Art and the Computer
McGraw-Hill Book Company

Ein Bildband mit fast 300 farbigen Abbildungen, die
fast alle im Los Alamos National Laboratory entstan-
den. Es enthält leider nur wenig Hinweise über die
Entstehung der Grafiken, ist jedoch dem ComputerGra-
fiker zur Inspiration durchaus zu empfehlen.

413

Literatur

Amiga ROM Kernel Reference Manual: Includes & Auto-
docs Addison Wesley

Eines der englischen Standard-Werke zum Amiga, das
nicht nur die dokumentierten Include-Files enthält,
sondern auch sämtliche Systemroutinen beschreibt.

Amiga Hardware Reference Manual
Addison Wesley

Wer näheres über die Hardware der Coprozessor wis-
sen möchte, findet in diesem Buch sämtliche Register
der einzelnen Prozessoren gut dokumentiert.

Ernst A. Heinz
Amiga Basic Profibuch
Maxon

Nicht nur ein Buch für den BASIC-Programmierer,
sondern für jeden, der in die Geheimnisse der System-
programmierung des Amigas eingeweiht werden möchte.

Wolf-Gideon Bleek, Bruno Jennrich, Peter Schulz
Amiga Intern Band 2
Data Becker

Für den "aktiven" Programmierer ein wichtiges Nach-
schlagewerk, vor allem wegen der ausführlichen Auf-
listung der Systemroutinen der Libraries und Devices.

414

Grafik in © auf dem Amiga

WICHTIGE MERKMALE:

Das Buch stellt ein umfassendes Werk über die Grafikprogrammierung in
C auf dem Amiga dar. Es behandelt praktisch alles, was für diese Pro-

grammierung wichtig ist. So werden nicht nur die grundlegenden Zei-

chenroutinen der Amiga System-Libraries erklärt — es wird auch ausführ-

lich die Programmierung des „Drumherum“ erläutert.

AUS DEM INHALT:

e Der Umgang mit Screens, Windows, Maus-Zeigern
¢ Scroll-Routinen und das Multitasking-System
« Die Grafik-Modi des Amiga
« Die Programmierung der Spezialprozessoren Blitter und Copper

¢ Die Techniken zur Grafikerzeugung (fraktale Kurven und L-Systeme für
die Darstellung von Pflanzen, 3D-Routinen zur Darstellung von drei-
dimensionalen Körpern und fraktalen Landschaften)

« Die Routinen und Datenstrukturen der Intuition- und Graphics-Library

ISBN 3-923250-91-6
Bestell-Nr. B-506
DM 59 - Diskette

mit Ubungsbeispielen

