o)

. Lukowicz/O. Pfeiffer

- Auf 3'/,"-Diskette enthalten:
” 'm wrla Samtliche Beispielprogramme des Buches
und nitzliche Hilfsprogramme

|

m

P. Lukowicz/O. Pfeiffer

- Auf 31/,"-Diskette enthalten:
” lm wrla Samtliche Beispielprogramme des Buches
- und nutzliche Hilfsprogramme

Grafik in C auf dem Amiga
Lukowicz/Pfeiffer

— 1. Auflage — Darmstadt: 4fefm , 1990
ISBN 3-923250-91-6

© Copyright 1990

beim #fefm -Verlag - Organisation + Datentechnik
Heidelberger Landstr. 194 - 6100 Darmstadt

Telefon 06151-56057

Alle Rechte vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des
+elm - -Verlages in irgendeiner Form reproduziert oder in eine von Maschinen, insbe-
sondere auch von Datenverarbeitungsmaschinen, verwendete Sprache oder Aufzeich-
nungs bzw. Wiedergabeart iibertragen oder lbersetzt werden.

Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen
in dem Buch berechtigt nicht zu der Annahme, daB diese von jedermann frei benutzt wer-
den dirfen. Es kann sich auch dann um eingetragene Warenzeichen oder sonstige ge-
setzlich geschitzte Kennzeichen handeln, wenn sie nicht als solche besonders
gekennzeichnet sind.

Druck: Druckerei der #4€71r2 OHG, 6100 Darmstadt.

Inhalt

Vorwortcceiiiiiiiiecenseercccsscnscnsannns 1
EinTeditungcciiiiiiiiiiiinienenrienenncnnns 3
Kapitel 1 - Grafikdarstellung 5
1. Aufbau des Grafikbildschirms 6
2. Die Grafikmodi des Amigacevveveveennns 9
3. Speicherplatzbelegung einzelner Grafikmodi 11
4. Die Playfields covvveeereennececencancnnanes 12
5. Die Grafikhardwarecccviiiiiiiiiinnnn. 13
6. Die Textausgabeccvvvieviencncricncneeess 14
Kapitel 2 - Fenster und Screens ceetesesanans 15
1. Was ist ein Screenccvvevennnneceenennns 16
2. Offnen eines Screensccevevveneecnnnns 18
3. Die Fenster ..ovviiiiiiriiiieniiiinieeeennns 23
4., Offnen eines Fensterscioevevvecnennnnens 27
5. Der IDCMP-Port ...ceevveneennences cesesssess 33
6. Das Display Programmcocveeueeernnnns 39
Kapitel 3 - Zeichenroutinen der Intuition 45
1. Zeichnen von Umrandungen: Draw Border 46
2. Die Speicherallozierungccoeeveveeeneens 52

3. Die IMages ceveerveresnsenecocsossncasncannes 54

Inhalt

Kapitel 4 - Farbeinstellung und Graphik 63
1. Der Rastport coveiviiiiiienneenennccnnnnnaas 64
2. Punkte und Linien ..ivviiiiiiiiiiennnnnnnnns 68
3. Rechtecke, Kreise und Ellipsen 73
4. Die RGB-Werte der Farbenccovuennnn 76

Kapitel 5 - Polygone, Fléchen, Fiillmuster 83
1. PolyDraw: Zeichnen von Vielecken 84
2. Flachen fiillen: TempRas und Arealnfo 88
3. Die Fiillprozedurencciiiiviriinenennnns 94
4. Gefiillte Polygoneoovvivennnienncnnnans 99
5. Fldchenmusterciuiiiiiinieiennnnnenns 101
6. Farbmusterciiiiiiiiiiiiiiiiiiieeenann 102

Kapitel 6 - Prozeduren und Tricks s 107
1. Die GfxBase-und IntuitionBase-Strukturen ... 108
2. Scrollen eines Rastportscovvenevnenenne 111
3. Definition eines eigenen Mauszeigers 114
4. Beeinflussung des Multitaskings 118

7. Kapitel - Textdarstellungccoevvvuenn 121
1. Die Text-Prozedurcceiiiiivuiennnnnnn 122
2. Die Fonts des Amiga eeeiesecans ceeees 127
3. Auflisten der Fonts vesessvee 129
4. Offnen eines Fonts ..vviviiiniiniiennnnnenns 135
5. Erzeugen eines neuen Fonts auf Diskette 149
6. Textausgabe mit IntuiTextovvvveeennnns 154

Inhalt

8. Kapitel - Sonderdarstellungsmodi 161
1. Der Interlace-Modusceceeveevsencnnnans 162
2. Der Extra-Half-Bright-Modus 164
3. Der HAM-ModUS +.vevevrinenenrensnonsncnsnnns 165
4. Erstellen eigener V1ewports 171
5. Manipulieren eines Viewports: ScrollVPort .. 183
6. Der Dual-Playfield Modusc..t. 184
7. Offnen eines Dual-Playfield Screens 187
8. "UbergroBe"-ANnzeigeeeveeierennnenannnn. 191
9. Das DisplayTools.h include-File 191

9. Kapitel - Der Blitterociiiiiiiinnnnn, 197
1. Die Moglichkeiten des Blitters 198
2. Logische Verkniipfung von Bereichen 200
3. Einfaches Kopieren zwischen zwei Rastports 204
4. Weitere Kopiermdglichkeiten 208
5. Noch mehr Blitterroutinencovon. 214
6. Der Blitter und das Multitasking 217
7. Die Blitterhardwarecviveveirivnncnnnns 220
8. Fortgeschrittene Optionen beim Kopieren 225
9. Zeichnen von Linien ...uvvieiiieniieienennnns 228

10. Fillen von Flachencvvvviriiiennnnnnnnns 233

10. Kapitel - Der Coppercccviiiincnnnnnnns 237
1. Die Funktionen des Coppersceeeeeeveees 238
2. Der hardwaremdBige Aufbau des Disp]ays 240
3. Copper]1sten und Views ivivenenerncnnnncnes 244
4. Erstellen einer neuen Copper1lste 245
5. Die Copperhardwarecccoceveieneneenens 250

Inhalt

11. Kapitel - Zweidimensionale Graphikerzeugung 257

1. Erste Schritte ..ivvviiiniiinininnennnnnns 258
2. Erzeugen eines Spiralnebelscevvuvunnen 266
3. Fraktale Kurven und L-Systeme 272
4. Random Pixels s.viverenenesncncnnnas cevenann 280

12. Kapitel - Dreidimensionale Graphikerzeugung 291

1. Das Koordinatensystem ceseenes 292
2. Die Rotationsmatrixceieveviennernncnnas 293
3. 3D-Darstellung von Objektencccvven.. 295
4. 3D-Funktionenceeieeeececrececcccacans 298
5. Kiinstliche Landschaften cecetssresenas 305
6. Kugeln mit Langen- und Breitengrade 319
7. AbschlieBene Anregungenceeveveneeans 326
Anhang A - Datenstrukturen der Intuition..... cees 327
Anhang B - Datenstrukturen der Graphics-Library 353
Anhang C - Systemfunktionen der Intuition-Library 367
Anhang D - Systemfunktionen der Graphics-Library 379
Anhang E - Blitter-Hardware-Registerbeschreibung 407

Literaturverzeichniscvevevnnnens Ceeeenenn 413

Vorwort

Schreibt man ein Grafikbuch iber den Amiga, so
bleibt einem an dieser Selle wohl kaum etwas anderes
tibrig, als die besonderen Grafikleistungen des Amigas
hervorzuheben. Dabei wollen wir es dann aber auch be-
lassen, da Ihnen ja wohl die theoretischen Grafik-
fahigkeiten Ihres Computers bekannt sein diirften, und
sei es nur aus irgendwelchen Spielen, Grafikdemos
oder auch Malprogrammen. Sobald man aber die Gra-
fikmdglichkeiten durch eigene Programme nutzen mdch-
te, stellt man sehr schnell fest, wie unergriindlich
die Wege durch den Amiga sind. Nach endlosen Compi-
ler-Durchldufen und bei der dazugehérenden Fehler-
suche endet man schlieBlich in einem Zustand, bei dem
jede "Guru Meditation" einen in Trance versetzten
kann. Solche Erfahrungen méchten wir Ihnen, zumindest
im Bereich der Grafikprogrammierung, durch dieses
- Buch gerne ersparen. Dabei sei jedoch gesagt, daB bei
aktiver Amiga-Programmierung niemand vor solchen
Erlebnissen sicher ist, auch mit noch sovielen guten
Biichern nicht. Man kann allerdings nicht leugnen, daB
gerade in diesem Fall, Biicher iiber die Systemprogram-
mierung einen unschétzbaren Wert darstellen. So er-
~ freut es einen dann auch, wenn gerade dieser recht
trockene Stoff bereits im Orginal nicht todernst be-
handelt wird. Beschreibungen wie die der Fehlerwar-
nung der SizeWindow-Routine (siehe Anhang C) geben
einem durchaus wieder neue Hoffnung, zumindest bis zu
dem Zeitpunkt wo der Amiga wiedereinmal seine spiri-
tistischen Neigungen rausldBt. Alles in allem hat uns
das Schreiben dieses Buches jedoch eine Menge ge-
bracht: SpaB, Arger, weniger Schlaf, einen gréBeren
Kalorienverbrauch in der Zeit zwischen 22 und 2 Uhr,
sowie eine gehdrige Portion Selbstbeherrschung. Uns

Vorwort

bleibt abschlieBend nichts weiter librig, als Ihnen
bei den nun folgenden Sitzungen mit Ihrem Amiga viel
SpaB und méglichst wenig "Gurus" zu wiinschen.

Einleitung

Wir moéchten Ihnen hier zundchst ein paar Richt-
linien vermitteln, die Ihnen beim VerstdndniB der
einzelnen Abschnitte von Nutzen sein werden. Hdlt man
iiber Computer etwas schriftlich fest so hat man
grundsdtzlich zwei Moglichkeiten: entweder man iiber-
setzt konsequent Begriffe ins Deutsche, oder man
verwendet Sie direkt und geht davon aus, daB jeder
weiB was gemeint ist.

Diese beiden, von den Verlagshdusern unterschied-
lich gehandhabten "Philosophien", haben sicherlich
Vor- und Nachteile, die wir jedoch garnicht erst
versucht haben gegeneinander aufzuwiegen. Wir haben
uns ohne zoégern fiir den umgangssprachlichen Ton
entschieden, der die Amiga-spezifischen Begriffe
"natiirlich" in ihrem Orginal beldBt. Bei der System-
nahen Programmierung ist dies besonders sinnvoll, da
dort Begriffe und Parameter auftauchen, die Sie auch
bei TIhrem C-Compiler wiederfinden. Dabei seien be-
reits hier die Include-Files bemerkt, die Sie bei
ihrem C-Compiler in dem Directory "include" finden.
Dort sind samtliche Routinen und Datenstrukturen des
Amiga-Betriebssytems definiert und zwar ‘"natiirlich"
in Englisch.

Da dieses Buch keine Einfiihrung in die Programmier-
sprache-C sein soll, setzen wir bei Ihnen ein Minimum
an Amiga-Wissen voraus, daB Begriffe wie "Icon",
"Pixel" und "Screen" beinhalted. Umgangssprachlich
bedeutet aber auch, daB wir Begriffe wie "Intuition"
oder "RastPort" verschieden verwenden. Reden wir von

Einleitung

dem RastPort oder dem ViewPort, so meinen wir in
erster Linie die RastPort-Datenstruktur, bzw. die
ViewPort-Datenstruktur. Ein Zeiger auf einen solchen
"Port" ist dann logischerweise ein AdreBzeiger auf
die zugehdrige Datenstruktur. Sagen Ihnen auch diese
Begriffe noch nichts, dann sollten Sie in diesem Buch
keine Abschnitte oder Kapitel iiberspringen, da
Begriffe nur bei der Einfiihrung erkldrt werden. Die
Abschnitte und Kapitel bauen aufeinander auf, so daB
wir nach der Einfiihrung von Begriffen meiBtens bei
der kiirzeren, umgangssprachlichen Form bleiben. So
kommt es, daB Sie Worte wie "Bildschirmwiederhol-
speicherbereich" in diesem Buch nicht finden werden,
sieht man mal von dieser Stelle hier ab.

Kapitel 1 Grafikdarstellung

Kapitel 1

Kapitel 1 Grafikdarstellung

In diesem Kapitel geht es um die Grafikdarstellung
auf dem Bildschirm und um die Grafikmdglichkeiten des
Amiga. Es wird nicht nur auf die einzelnen Grafikmodi
LoRes, HighRes, Interlace, Extra-Halfbright und Hold-
And-Modify, sowie die Playfields eingegangen, sondern
auch auf die Grafikhardware, also z.B. den Copro-
zessor Blitter, der bei der Grafikprogrammierung eine
wichtige Rolle spielt. In diesem Zusammenhang werden
auch die Verschiedenen Arten des Speichers: CHIP- und
FAST-Memory erldutert.

In diesem Abschnitt geht es um die Unterschiede in
den Qualitdten der Bildschirmausgabe und um Begriffe
wie Pixel, RGB, Bitplane und BitMap.

Bei der Bildschirmausgabe eines Computers trifft
man auf die unterschiedlichsten Qualitdten und Dar-
stellungsméglichkeiten der verschiedenen Systeme. Im
Grunde arbeiten sie jedoch alle nach dem gleichen
Prinzip. Das Bild setzt sich aus vielen kleinen Punk-
ten, genannt Pixels, zusammen. Die Qualitdtsunter-
schiede verschiedener Systeme und/oder Grafikmodi
entstehen im wesentlichen durch drei Faktoren:

I. Die Aufldésung, also aus wievielen Punkten sich
das Bild zusammensetzt.

IT. Die Intensitdt und Farbmdglichkeiten jedes ein-
zelnen Pixels, also wieviel verschiedene Hellig-
keits und Farbstufen jeder Pixel annehmen kann.

IIT. Die Frequenz, mit der die Bilder aufgebaut wer-

Kapitel 1 Grafikdarstellung

den, also wieviel Bilder letztendlich pro Sekun-
de auf dem Bildschirm erscheinen.

Die Auflosung ist verantwortlich fiir die Schérfe
des Bildes, Intensitdt und Farbmdglichkeiten fiir
Farbabstufungen und flieBende Farbiibergdnge, sowie
schlieBlich die Frequenz fiir die flimmerfreie Dar-
stellung auf dem Bildschirm.

Computerintern sieht das ganze ungefdhr so aus:
-Jedem Pixel ist genau ein Bit im Speicher des Compu-
ters zugeordnet. Ist es gesetzt (18,'50 ist der Pixel
an, andernfalls (0) aus. Der Bildschirm ist eine Zu-
sammensetzung aus "Einser" und "Nullen", die die Bit-
plane ergeben. Bildhaft gesehen ist die Bitplane eine
Flache von Nullen und Einsen. Damit hdtten wir jedoch
lediglich die Moglichkeit, einen Punkt auf dem Bild-
schirm zu setzen oder nicht. Um die Farbe der Pixels
zu beeinflussen, braucht man jedoch mehr Information,
als ein Bit. Dazu legt der Amiga mehrere Bitplanes
an, die sich "iiberlappen". Bei zwei Bitplanes setzt
sich die Information fiir ein Pixel aus einem Bit aus
der ersten Bitplane und einem Bit aus der zweiten
Bitplane zusammen. Somit kann man jedem Pixel bereits
vier Farben zuordnen, eben die Bindrkombinationen 00,
01, 10 und 11. Durch hinzufiigen weiterer Bitplanes,
kann man jedem Pixel 2 hoch (Anzahl an Bitplanes)
Farben iiber die Farbregister zuordnen.

Kapitel 1 Grafikdarstellung

Bitplane 0

010101000010011100000¢,
0110011001 N0NNT1ANNT T 11
T1T0000101010100001001110000¢
0oo0001l01100120010nn1NANT 11T
11000cj010101000010011100000
0000001100711 0n100N10N0N1 111
01010100001001110000 (]
00000110110011001000100011711,
010101]770000000000000000000,
1111114100000101110000100010¢(,
1111111070101 01000010710101711
IREEEEI CEEEEREEEEREEEE RS
10101111t I I 1111111
1101014711111010101011110101
10101¢}101011101010101010111
B}l 10101010101010101010
1010101010710100071010

Bitplane 1

Bitplane 2

Bitplane 3

BILD 1.1.: Farbdaréte]Iung durch Bitplanes

In den Farbregistern steht dann der eigentliche
Farbwert (einer von 4096), den das Farbsignal als
RGB-Signal an den Monitor leitet. Dieses Farbsignal
setzt sich aus den Grundfarben Rot, Griin und Blau,
eben RGB, zusammen. Das Benutzen mehrerer Bitplanes
und deren "Uberlappen" nennt man Bitmapping.

Kapitel 1 Grafikdarstellung

In Bezug auf die Qualitdt der Bildschirmausgabe
stehen uns beim Amiga mehrere Moglichkeiten, sprich
Grafikmodi, zur Verfiigung. Aus den Preferences der
Workbench wissen Sie, daB die Farbpalette des Amiga
sich aus den Farben Rot, Griin und Blau zusammen-
setzt, die in verschiedenen Abstufungen miteinander
gemischt werden kénnen. Da es fiir jede der drei Far-
ben 16 Abstufungen gibt, stehen uns also insgesamt
4096 (16 hoch drei) Farben zur Verfiigung. Was die
Aufldsung betrifft,so ist der Amiga ebenfalls bestens
ausgeriistet, wobei Amiga nicht gleich Amiga ist. Die
amerikanische Version verfiigt lediglich liber maximal
400 Zeilen, wdhrend sein deutscher Bruder bis zu 512
Zeilen auf den Monitor bringen kann. Zu diesen Unter-
schieden kommt es durch die verschiedenen Fernseh-
Normen, wobei die deutsche "PAL"-Version des Amiga
eben den Vorteil hat, mehrere Zeilen darstellen zu
konnen, demgegeniiber kann die amerikanische Version
mit einem flimmerfreieren Bild aufwarten. In diesem
Zusammenhang beachten Sie bitte, daB wir im folgenden
von der PAL-Version ausgehen. Sollten Sie also noch
eine Version der Workbench 1.1 benutzen, sollten Sie
sich schleunigst eine neuere Version besorgen, da
diese Version von maximal 400 Zeilen ausgeht und so-
mit nicht die volle Aufldsung unterstiitzt. Doch nun
zu den einzelnen Grafikmodi:

(1.) LoRes:

Im LoRes-Modus (Low Resolution; Niedrige Aufldsung)
stehen uns auf dem Bildschirm 320 (x-Achse) mal 256
(x-Achse) Pixel mit je 32 Farbmdglichkeiten zur Ver-
fligung. Die Beschrankung auf 32 Farben ergibt sich
durch die begrenzte Anzahl von 32 Farbregistern.

Kapitel 1 Grafikdarstellung

(2.) HighRes:

Der HighRes-Modus (High Resolution; Hohe Aufldsung)
erlaubt uns eine Aufldsung von 640 (x-Achse) mal 256
(y-Achse) Pixel, die jeweils eine von 16 Farben an-
nehmen kdénnen. In diesem Modus kann der Amiga maximal
vier Bitplanes anlegen, deshalb 16 (2 hoch 4) Farben.

(3.) Extra Halfbright:

Der Extra-Halfbright-Modus ist eine Sonderform des
LoRes, wobei dieser Modus jedoch in der Lage ist,
sechs Bitplanes anzulegen und somit 64 (2 hoch 6)
verschiedene Farben auf den Bildschirm zu bringen.
Dabei gibt es jedoch eine Einschrankung, denn wie be-
reits erwdhnt, stehen dem Amiga nur 32 Farbregister
zur Verfiigung. Im Extra-Halfbright-Modus (wortlich i-
bersetzt: ("Besonderer-Halbhel1-Modus") kann man
selbst nur 32 Farben iiber die Farbregister aussuchen,
die restlichen 32 Farben errechnet sich der Amiga aus
den 32 zugeordneten. Dabei verringert er die Farb-
werte so, daB eine in etwa halb so helle Farbe ent-
steht. So wird beispielsweise aus einem Rot ein Oran-
ge, aus einem Dunkelgrau eben ein Hellgrau.

(4.) Hold-And-Modify:

Der H.A.M.- Modus ist ebenfalls eine Besonderheit
des LoRes und erlaubt es, alle 4096 Farben auf den
Bildschirm zu bringen. Allerdings gibt es auch hier
Einschrankungen, ebenfalls hervorgerufen durch die
Farbregister.

Im Gegensatz zu den anderen Modi besteht nicht nur
die Méglichkeit, den einzelnen Pixeln direkt iiber den
Farbregistern eine bestimmte Farbe zuzuordnen, son-
dern man kann ihm eine Farbe relativ zum letzten Pi-
xel geben. Konkret kann jeweils eines der drei Farb-
signale Rot, Griin und Blau verdandert, bzw. neu einge-
stellt werden. Um eine Farbverdnderung iiber alle drei

10

Kapitel 1 Grafikdarstellung

Farbsignale zu erreichen, muB man sich also iiber eine
Strecke von drei Pixels bewegen. Die ersten zwei Bit-
planes sind dafiir verantwortlich, ob der Pixel einen
direkten Farbwert, oder einen relativen annehmen
soll. Also ob das Rot, Griin oder Blau Signal verédn-
dert werden soll, oder ob die vier Bits der letzten
vier Bitplanes dem Pixel iiber die Farbregister direkt
einen Farbwert zuweisen.

(5.) Interlace:

Der Interlace - Modus 1dBt sich mit allen oben ge-
nannten Grafikmodi kombinieren. Er vergrdBert die
vertikale Aufldsung (y-Achse) von 256 auf 512, aller-
dings verstdrkt sich dabei das Flimmern des Bild-
schirms. Der Amiga teilt sich das vergroBerte Bild
in zwei Halften ein, die er abwechselnd um einen hal-
ben Pixel (vertikal) versetzt auf den Bildschirm
bringt. Dabei enthdlt das erste Teilbild alle unge-
raden Zeilennummern (1,3,5,...,511) und das zweite
alle geraden(2,4,6,...,512). Das Flimmern entsteht,
da jetzt nicht mehr 50, sondern nur noch 25 Bilder
pro Sekunde auf dem Bildschirm erscheinen (Bei der
amerikanischen Norm von 60 Hz sind es immerhin noch
30 Bilder pro Sekunde).

Die Speicherplatzbelegung kann man wie folgt selbst
fiir jeden Modi berechnen: Die Anzahl der Pixel, und
somit auch der Bits einer Bitplane erhdlt man durch
das Produkt der Pixel der x-Achse und der Pixel der
y-Achse. Im LoRes (und nicht Interlace) also:

11

Kapitel 1 Grafikdarstellung

320 x 256 = 81920

Teilen wir durch 8, erhalten wir die Anzahl an
Bytes, die eine Bitplane im Speicher belegt, in die-
sem Fall 10240 Bytes, also genau 10 KByte (1KByte =
1024Bit). Bei HighRes und Interlace sind es dann
schon 40 KByte pro Bitplane. Nun ist die Anzahl der
Bitplanes zwar auf sechs beschrankt, um jedoch noch
einmal den Speicheraufwand von Grafiken zu verdeutli-
chen noch ein abschlieBendes Rechenbeispiel: Wdre es
méglich bei hochster Auflésung alle 4069 Farben di-
rekt addressiert auf den Bildschirm zu bringen, bend-
tigte man zw61f Bitplanes (2 hoch 12 = 4096) und
einen Speicherplatz von:

640 x 512 x 12 Bit = 480 KByte!

Als Playfield (Spielfeld) wird beim Amiga das gra-
fische Ausgabefenster bezeichnet. Es ist eine Ar-
beitsfldche, die sich vorzugsweise iiber den ganzen
Bildschirm erstreckt und einen beliebigen Grafikmodus
annehmen kann. Dabei muB das Playfield nicht unbe-
dingt die gleiche GroBe, wie das eigentliche Ausgabe-
fenster haben, sondern darf auch gréBer sein.

Es wird dann jedoch immer nur ein Ausschnitt des
Playfields gezeigt, der aber durch den Verschiebebe-
feh1l Scroll ruckfrei (SmoothScrolling) iiber das ganze
Playfield verschoben werden kann. Eine weitere Beson-
derheit sind die Dual-Playfields, bei denen zwei
Playfields sich so iiberlagern kdnnen, daB ein Play-

12

Kapitel 1 Grafikdarstellung

field im Vordergrund und eines im Hintergrund er-
scheint. Als Beispiel-hierzu stellen Sie sich einen
Flugsimulator vor, bei dem das Playfield im Vorder-
grund das Cockpit zeigt, wdhrend auf dem Playfield im
Hintergrund alles das dargestellt wird, was sich au-
Berhalb des Cockpits befindet.

Betreffend der Sonderchips des Amigas interessieren
uns im Zusammenhang mit Grafik und ihrer Darstellung
auf dem Bildschirm vor allem Agnus und Blitter, wobei
Agnus fiir die gesamte Videoausgabe, also das Umwan-
deln der Bitplanes in Video- bzw. RGB-Signale,verant-
wortlich ist. Fiir den Grafikprogrammierer ist jedoch
der Blitter der wichtigere. Seine eigentliche Aufgabe
ist es, Daten der Bitplanes zu kopieren, verschieben
und zu verdndern. Man kann mit ihm relativ einfach
verschiedene Teile der Bitplanes, z.B. die Fen-
ster, in andere Speicherbereiche kopieren, also ver-
schieben. Des weiteren beinhaltet sein Befehlssatz
auch Befehle zum Zeichnen von Linien zwischen zwei
Punkten und zum Fiillen von Fldchen. Gerade beim Fiil-
len von Fldchen erkennt man die wahre Geschwindig-
keit des Blitters. Obwohl Pixel fiir Pixel gesetzt
wird, sieht es so aus, als ob auf dem Bildschirm
eine Fldche einfach nur "eingeschaltet" und nicht
erst aufgebaut wird.

Eine Besonderheit der Grafikhardware, die fiir die
Programmierung von besonderer Bedeutung ist, ist die
Tatsache, daB die Grafikchips nur auf das erste
(je nach Versiobn halbe oder ganze) MByte zugreifen

13

Kapitel 1 Grafikdarstellung

kénnen. Dieser Speicherbereich wird daher CHIP-Memory
genannt. Wir werden sehen, daB es daher in vielen
Féllen wichtig ist, daB bestimmte Daten in diesem
Speicherbereich liegen. Das Betriebssystem stellt uns
einige Prozeduren zur Verfiigung, mit deren Hilfe man
einen CHIP-Memory Bereich fiir eigene Zwecke reser-
vieren kann. Damit Ihre Programme auf allen Amiga
Versionen lauff&hig sind, sollten Sie CHIP-RAM immer
explizit allozieren. Sie sollten dies immer beach-
ten, auch wenn Ihr Rechner nur 512 KByte hat (also
nur CHIP-Memory).

In der Textausgabe wunterscheidet sich der Amiga
durchaus von anderen Computersystemen. Wihrend viele
Computer eine getrennte Text-und Grafikausgabe haben,
verfiigt der Amiga gewissermaBen nur iliber die Grafik-
ausgabe. Bei vielen anderen Computern wire eine reine
Grafikausgabe zu langsam, so daB bei der Textausgabe
meistens nur die ASCII-Codes der Schriftzeichen im
Speicher stehen und nicht deren grafischen Binédr-
codes. Der Amiga ist aber besonders auf dem Gebiet
der Grafik einer der schnelleren Rechner, so daB die-
se Technik nicht ndtig ist und der Text ebenfalls als
Grafik ausgegeben wird. Dadurch Tlassen sich Schrift-
arten aber auch einfacher verédndern und es sind auch
Zeichensdtze (die Fonts des Amiga) méglich, die vor
allem nicht an eine bestimmte GroBe gebunden sind.
Als Beispiel hierzu ist das Programm Notepad aus der
Workbench zu empfehlen. Mit ihm lassen sich verschie-
dEne Zeichensdtze laden, benutzen und auch ausdru-
cken.

14

Kapitel 2 Fenster und Screens

Kapitel 2

Fenster und Screens

15

Kapitel 2 Fenster und Screens

Im ersten Kapitel haben wir uns mit den durch die
Hardware bedingten Aspekten der Videodarstellung be-
schaftigt. Fiir die Grafikprogrammierung ist es aber
unabdingbar, sich auch mit der Art und Weise ausein-
anderzusetzten, wie die Systemsoftware die Moglich-
keiten der Hardware ausnutzt und die Videoanzeige
verwaltet. Die fiir den Benutzer sichtbare Anzeige mit
den bekannten Fenstern, Menus, Gadgets etc., auf der
wir spdter auch unsere Grafiken darstellen wollen,
wird von einem Teil des Betriebssystems verwaltet,
der Intuition genannt wird. Die Programmierung der
Intuition ist ein sehr komplexes Thema, das allein
schon ausreichen wiirde, um dieses Buch zu fiillen. Wir
werden uns deswegen hier auf eine kurze Einfiihrung
der wichtigsten Eigenschaften beschrdnken. Gegen Ende
dieses Kapitels wird auch das Programm Display.h vor-
gestellt, das einige wichtige Routinen implementiert,
die im Verlauf dieses Buches bendtigt werden. Es be-
findet sich auch im "include" Verzeichnis der Be-
gleitdiskette, aus welchem Sie es unbedingt in das
gleichnamige Verzeichnis ihrer Arbeitsdiskette kopie-
ren sollten, falls Sie mit den hier abgedruckten Pro-
grammen experimentieren wollen.

Vieleicht haben Sie schon bei irgendeinem Programm
gesehen, daB es moglich ist, zur gleichen Zeit mehre-
re Bildteile mit verschiedener Aufldsung zu erzeugen,
wobei jeder der Bildteile samt Inhalt hoch und run-
ter bewegt werden kann. Ein solcher Bildteil wird vom
Englischen her Screen (Bildschirm) genannt und steht
an der untersten Stufe der Intuition-Anzeige. Ein
Beispiel dafiir ist der Workbench-Screen, der immer

16

Kapitel 2 Fenster und Screens

dann erscheint, wenn Sie eine Diskette "gebootet" ha-
ben. Es konnen auch mehrere solcher Screens iiberein-
ander liegen. Man kann dann mit Hilfe des Depth-Gad-
gets (der kleine schwarzer Kasten in der rechten
oberen Ecke) den momentan im Vordergrund 1liegenden
Screen nach hinten befdrdern, wobei dann der darun-
terliegende zum Vorschein kommt. Auf einem Screen
kénnen Sie dann entweder direkt verschiedene Objekte
darstellen (z.B. Text oder Grafik) oder ein bzw. meh-
rere Fenster aufmachen, die dann zur Darstellung ge-
braucht werden. Fiir uns liegt die besondere Bedeutung
der Screens darin, daB man fiir eine Anzeige mit ei-
ner Aufldsung, die nicht mit der der Workbench iiber-
einstimmt, einen eigenen Screen aufmachen muB. Dabei
wird auch die maximale Anzahl von Farben und ihre
RGB-Zusammensetzung festgelegt. Auch die im ersten
Kapitel angesprochenen Sondermodi: H.A.M. und Dual-
Playfield konnen nur auf einem extra dafiir erstellten
Screen verwendet werden. Beim Offnen eines Screens
reserviert das Betriebssystem den fiir die Bitplanes
notwendigen Speicher, in dem dann die Bilddaten ge-
schrieben werden, und initialisiert die Farbregister.
Wie Sie sehen, ist ein Screen im Grunde eine eigen-
stédndige, softwaremdBig verwaltete Videoanzeige. Die
Leistung der Intuition besteht unter anderem darin,
der Hardware mitzuteilen, aus welchem Screen sie die
Bild- und Farbdaten lesen muB. Dazu wird einfach in
dem Hardwaregister, der auf den aktuellen Bildschirm-
speicher zeigt, die Adresse der Bitmap des entspre-
chenden Screens hineingeschrieben. Um mehrere Screens
gleichzeitig untereinander darzustellen, wird erneut
umgeschaltet, sobald der Strahl, der das Bild zeich-
net, die Zeile erreicht hat, in der der neue Screen
anfangt. Es ist leider nicht méglich, verschiedene
Screens nebeneinander darzustellen, sodaB ein Screen
immer ganz Links anfangen muB. Eine weitere Ein-
schrankung ist dadurch gegeben, daB der untere Rand
eines jeden Screens am unteren Bildschirmrand liegen

17

Kapitel 2 Fenster und Screens

muB. Folglich muB die Summe aus der Screenhohe in
Zeilen und der Nummer der Zeile, in der die obere
Grenze des Screens liegt, die maximale Zeilenanzahl
bei der verwendeten Aufldsung ergeben (512 bei Inter-
lace, sonst 256.).

Nachdem Sie nun mit den wichtigsten Eigenschaften
eines Screens vertraut sind, konnen wir uns daran ma-
chen, einen eigenen Screen zu erzeugen. Zu diesem
Zweck stellt Intution die Funktion OpenScreen zur
Verfiigung. Diese Routine verlangt als Eingabe einen
Zeiger auf die NewScreen-Struktur, in der sich alle
Informationen liber die gewiinschten Eigenschaften des
neuen Screens befinden. Dieser Datensatz sieht fol-
gendermaBen aus:

Abb. 2.1 Die Screen-Struktur.
struct NewScreen {

SHORT LeftEdge, TopEdge

Width, Height,

Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewModes,

Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadgets *Gadgets;
struct Bitamp *CustomBitMap;

}

18

Kapitel 2 Fenster und Screens

Die Felder LeftEdge und TopEdge geben die Koordina-
ten der Tlinken oberen Ecke des Screens an. Dabei muf
LeftEdge immer 0 sein! Width und Height sind entspre-
chend die Breite und Hohe. Bei der Breite sollten Sie
darauf achten, daB diese mit der Auflésung (siehe un-
ten) iibereinstimmt. Depth ist fiir die Anzahl der Bit-
ebenen, also fiir die maximale Anzahl der Farben zu-
stdndig. Dabei ist die Farbenanzahl 2 hoch Depth.
Beachten Sie bei der Wahl der Tiefe die im ersten Ka-
pitel beschrieben Einschrdnkungen, die sich aus der
gewdhlten Aufldsung ergeben. Die beiden Parameter:
DetailPen und BlockPen bestimmen die Farbe der
Schrift im Screenbalken und des Balkens selbst. Der
Titel, der in dem Screenbalken erscheint, ist durch
*Default Title gegeben. Type gibt an, ob es sich um
einen Workbench-Screen oder um einen besonderen, vom
Benutzer erstellten Screen handelt und kann in der
aktuellen Intuition - Version nur die Werte
WBENCHSCREEN und CUSTOMSCREEN annehmen. Wenn Sie
Ihren eigenen Screen aufmachen miissen Sie Type auf
CUSTOMSCREEN setzen. Am wichtigsten ist das Feld
ViewModes, da es die Aufldsung und die Sondermodi des
Screens kontrolliert. Die folgende Tabelle wird Ihnen
iber die Werte, die die Auflosung bestimmen, Auf-
schluB geben:

Abb 2.2 Die Aufldsung eines Screens

! Gesetzte Flags ! Resultierende -Auf1dsung !
U INTERELACE 1320 x 512 (interlace) !
| WIRES | INTERLACE ! 640 x 512 (interlace) !

Kapitel 2 Fenster und Screens

Zusdtzlich gibt es noch die HAM- und DUALPF-Flags,
durch die Sie die H.A.M bzw Dual-Playfield Modi ein-
schalten konnen. Ein H.A.M Screen mit der Aufldsung
640 x 512 kann also durch den folgenden Wert von
Viewlodes erzeugt werden:

HIRES | INTERLACE | HAM

Die iibrigen Felder der NewScreen-Struktur haben fiir
uns momentan keine Bedeutung und sollten mit NULL
initialisiert werden. Wir werden auf sie in spdteren
Kapiteln zuriickkommen.

Wenn Sie nun die OpenScreen-Funktion aufrufen, wer-
den Sie einen Zeiger auf die Screen-Struktur von In-
tution bekommen. In dieser Struktur speichert das Be-
triebssystem die wichtigsten Daten eines Screens, wie
z.B. GroBe, Position, Koordinaten des Mauspfeils etc.
Eine genaue Beschreibung der Screen-Struktur finden
Sie im Anhang A.

Zum AbschluB dieses Abschnittes folgt ein Beispiel-

programm, das ein TowRes (320x256) Screen offnet, ei-
nen Augenblick wartet und ihn wieder schlieBt. :

Programm 2.1 Screen

#include "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;
/* NewScreen-Struktur zum (ffnen des Screens */

struct NewScreen NewScreen =

20

Kapitel 2 Fenster und Screens

{ .

0, /* x-Koordinate, muB 0 sein ! */
0, /* y-Koordinate. */
320, /* Breite des Screens. */
200, /* Héhe des Screens. */
4, /* Tiefe = 4 --> max 16 Farben. */
0, /* Vordergrundfarbe. */
1, /* Hintergrundfarbe. */
NULL, /* "Normaler" lowres-Screen. */
CUSTOMSCREEN, /* Screentyp: Eigener Screen. */
NULL, /* Standardfont benutzen. */
"“Beispielscreen”, /* Name des Screens. */
NULL, /* Keine besonderen Gadgets. */

main ()

struct Screen *Screen;
LONG J:

/* IntuitionLibrary 6ffnen, falls Fehler dann
Programm beenden.*/

IntuitionBase = (struct IntuitionBase *) OpenLibrary
("intuition. library”,0);

if (IntuitionBase == NULL)

exit(FALSE);

/* Den neuen Screen 6ffnen, falls Fehler, dann
Programm beenden. */
Screen = (struct Screen *)
OpenScreen(&NewScreen); if (Screen == NULL) exit
FALSE);
for (j = 0; j < 1000000; j++); /* Abwarten */

CloseScreen(Screen); /* Screen schlieBen */

21

Kapitel 2 Fenster und Screens

Beachten Sie, daB vor einem Zugriff auf die Struk-
turen und Prozeduren der Intution die entsprechende
Library gedffnet werden muB. Es ist auch ratsam, im-
mer wieder durch Vergleichen des Resultats mit WNULL
zu priifen, ob beim Offnen der Library bzw. spiter des
Screens kein Fehler aufgetreten ist.

In der Intuition-Library gibt es neben OpenScreen
und CloseScreen noch folgende Routinen zum Umgang mit
den Screens:

MakeScreen
MoveScreen
ScreenToBack
ScreenToFront
ShowTit]e

22

Kapitel 2 Fenster und Screens

DaB ein Fenster eines "dieser Rechtecke, die man
auf dem Bildschirm schieben, verkleinern etc. kann,
und in denen alles Modgliche erscheint" ist, sollte
eigentlich jeder Amiga Benutzer wissen. Um aber die
Fenster sinnvoll zur grafischen Darstellung verwenden
zu kdonnen muB man sich auch die Art und Weise an-
schauen, wie sie von Intution verwaltet werden. Ein
Fenster ist eigentlich ein selbstandiger Terminal,
in dem ein Programm samt Ein-/Ausgabe ablaufen kann.
Es wird beim Offnen einem Screen zugewiesen, und kann
nur als sein Teil existieren. Es kann natiirlich auch
nicht aus ihm herausbewegt werden. Die Aufldsung,
RGB-Zusammensetzung der Farben und Anzeigemodi werden
wie schon gesagt von dem Screen iibernommen.

usw.

Hindé;l

Bild 2.1. Die Intuition-Anzeige

23

Kapitel 2 Fenster und Screens

Gewdhnlich hat ein Fenster auch keine eigene Bit-
map, was z.B. daran zu erkennen ist, daB beim CLI-
Fenster der Inhalt geldscht wird, wenn das Fenster
verkleinert wird. Andererseits geht aber der Inhalt
des CLI-Fensters nicht verloren, wenn dieses in den
Hintergrund geklickt wird. Unter welchen Umstdnden
der Fensterinhalt beibehalten wird, hdngt von dem so-
genannten Refresh-Modus ab (engl. auffrischen), der
beim Offnen des Fensters eingestellt wird. Es stehen
folgende Modi zur Verfiigung:

(1) SimpleRefresh: In diesem Modus wird der Inhalt
des Fensters nie zwischengespeichert, was zur Folge
hat, daB beim Verkleinern, oder Verdecken durch ein
anderes Fenster der Inhalt verloren geht.

(2) SmartRefresh: In diesem Modus wird nur der Inhalt
eines Fensters, das durch ein anderes iiberdeckt wird,
zwischengespeichert, und spdter wieder hergestellt.

(3) SuperBitMap: Ein solches Fenster besitzt eine ei-
gene, vom Screen unabhdngige Bitmap, so daB sein In-
halt immer beibehalten wird. Der Nachteil dieses Ver-
fahrens ist, daB es sehr speicheraufwendig ist..

Neben den verschieden Refresh-Arten gibt es noch
einige weitere interessante Eigenschaften, mit denen
ein Fenster ausgestattet werden kann. Hier sind sie
alle samt kurzer Beschreibung aufgelistet. Wir werden
spater auf einige besonders wichtige noch genauer
eingehen.

24

Kapitel 2 Fenster und Screens

(1) Die Gadgets

Dies sind Objekte, die 1in dem Fenster gezeichnet
werden, und jedesmal wenn sich der Mauspfeil iiber ih-
nen befindet, ein Ereignis ausldsen kdnnen. Intuition
stellt folgende Systemgadgets zur Verfiigung:

Close-Gadget: Ein Quadrat mit einem Punkt, der sich
in der linken oberen Ecke des Fensters befindet. Sein
Klicken soll das Programm zum SchlieBen des Fensters
veranlassen (Das Fenster wird aber nicht automatisch
geschlossen).

Sizing-Gadget: Befindet sich in der rechten unteren
Ecke des Fensters und erlaubt dem Benutzer seine
GroBe zu verdndern (Die GroBenverdnderung wird auto-
matisch von Intution vorgenommen).

Drag-Gadget: Befindet sich in der Titelleiste und er-
moglicht dem Benutzer, das Fenster zu verschieben,
wobei die Verschiebung automatisch von Intuition
durchgefiihrt wird.

Depth-Gadget: Die beiden Quadrate, die sich in der
rechten oberen Ecke des Fensters befinden. Durch An-
klicken eines der beiden Quadrate kann der Benutzer
Intution dazu veranlassen, das Fenster in den Vorder-
grund, bzw. in den Hintergrund zu setzen.

Zusatzlich besteht auch noch die Moglichkeit eigene
Gadgets (Custom-Gadgets) beliebigen Aussehens zu ent-
werfen, deren Handhabung jedoch eine sehr umfangrei-
che Beschreibung bendtigen wiirde, so daB wir sie hier
nur der Vollstandigkeit halber erwdhnen.

(2) Die Menus:

Jedem Fenster kann ein Pulldown-Menu System zuge-
ordnet werden. Es erscheint in der Screenleiste beim
Driicken der rechten Maustaste. Das Arbeiten mit sol-

25

Kapitel 2 Fenster und Screens

chen Meniis ist ebenfalls ein sehr komplexes Thema,
das allerdings mit Grafik nichts zu tun hat, und des-
halb ebenfalls hier nicht genauer erlautert wird.

(3) Der IDCMP-Port: Dies ist eine Schnittstelle, iiber
die Intuition Ihr Programm iiber das Auftreten ver-
schiedener Ereignisse in einem Fenster informieren
kann (siehe Abschnitt 5).

(4) GZZ-Fenster: Ein Fenster hat gewdhnlicherweise
einen Rahmen und einen Titelbalken. In einem '"norma-
len" Fenster ist die Koordinate (0,0), die linke obe-
re Ecke des Rahmens (genauer des Titelbalkens), die
als Bezugspunkt fiir alle Positionsangaben wie z.B.
beim Zeichnen, dient. Beim GZZ-Fenster beziehen sich
alle Koordinatenangaben auf die linke obere Ecke der
innerhalb des Rahmens liegenden Fldche, so daB der
Programmierer die Rahmenbreite nicht mehr zu beriick-
sichtigen braucht.

(5) Borderless-Fenster: Ein solches Fenster hat, wie
der Name schon sagt keinen Rahmen. Falls Sie keine
Gadgets und keinen Titel angegeben haben, erscheint
auch kein Titelbalken.

(6) Backdrop-Fenster: Dieser Fenstertyp bleibt immer
im Hintergrund, d.h. auch wenn bei einem anderen Fen-
ster das Depth-Gadget angeklickt wird, kann dieses
Fenster nicht nach Vorne geholt werden.

26

Kapitel 2 Fenster und Screens

Das Offnen eines Fensters spielt sich nach dem
gleichen Prinzip wie das Offnen eines Screens ab. Es
muB eine Struktur, die NewWindow-Struktur, mit den
Werten fiir das gewﬂnschte Fenster intia]isiert, und
ihre Adresse an die Intuition Funktion OpenWindow
iibergeben werden. Als Ergebnis bekommt man, falls das
Offnen erfolgreich verlaufen ist, einen Zeiger auf
die Window-Struktur, in der Ihtuition alle relevanten
Information iiber das Fenster speichert. Ist ein Feh-
ler aufgetreten, so gibt diese Prozedur NULL zuriick.
Die NewWindow-Struktur ist folgendermaBen definiert:

Abb 2.3 Die NewWindow-Struktur

struct NewWindow {4}

SHORT LeftEdge, TopEdge;
SHORT Width, Height;
UBYTE DetailPen, BlockPen;
ULONG IDCMPFlags;

ULONG Flags;;

struct Gadget *FirstGadget;
struct Image *CheckMark;
UBYTE *Title;

struct Screen *Screen;
struct BitMap *BitMap;
SHORT MinWidth, MinHeight;
SHORT MaxWidth, MaxHeight;
USHORT Type;

}i

27

Kapitel 2 Fenster und Screens

Die ersten sechs Felder haben die gleiche Bedeutung
wie bei der NewScreen-Struktur: x,y-Koordinate, Brei-
te, Hohe, und die Farbe der Titelschrift, bzw. des
Titelbalkens des Fensters. Die Koordinaten beziehen
sich auf die linke obere Ecke des Screens. Die Summe
aus der x-Koordinate und Breite bzw. y-Koordinate und
Hohe darf dann selbstverstdndlich nicht groBer sein
als die Breite bzw. die Hohe des Screens.

Die IDCMP-Flags dienen dazu, einen IDCMP-Port ein-
zurichten und zu gestalten (siehe Abschnitt 5). NULL
bedeutet hier gar keinen IDCMP-Port. Die im vorigen
Abschnitt besprochenen besonderen Eigenschaften des
neuen Fensters, konnen mittels des Flags-Feldes durch
die folgenden Window-Flags eingestellt werden :

Abb 2.4 Die Window-Flags

Flag! Eigenschaft!

! WINDOWSIZING ! Sizing-Gadget !
! WINDOWDEPTH ! Depth-Gadget !
! ! Close-Gadget !
1 1 !

! WINDOWCLOSE

! WINDOWDRAG Drag-Gadget

! SMART REFRESH ! Smart-Refresh Modus !
! SIMPLE REFRESH ! Simple-Refresh Modus !
! SUPER BITHMAP ! Ein SuperBitMap-Fenster !
! GIMMEZEROZERO ! Ein GZZ-Fenster !
! BACKDROP ! Ein Backdrop-Fenster !
! BORDERLESS ! Ein Fenster ohne Rahmen !

Kapitel 2 Fenster und Screens

Ein weiteres niitzliches Flag ist das ACTIVATE-Flag,
das dariiber entscheidet, ob ein Fenster beim Offnen
aktiv wird oder nicht. Die Texteingabe und Uberwa-
chung der Mausaktivitdten konnen nur im aktiven Fen-
ster erfolgen. Um nun z.B. ein mit den Close-und Drag
Gadgets und SmartRefresh ausgestattetes Fenster zu
o6ffnen, miissen sie folgende Flags setzen:

WINDOWDRAG | WINDOWCLOSE | SMART REFRESH

In dem Feld Title miissen Sie die Adresse einer Zei-
chenkette, die dann im Titelbalken des Fensters er-
scheinen wird, iibergeben. Die Adresse des Screens,
auf dem das neue Fenster erscheinen soll, muB in
Screen iibergeben werden. Falls Sie hier NULL iiberge-
ben, wird das Fenster auf dem Workbench-Screen gedff-
net. Je nachdem, ob Sie sich fiir einen eigenen, oder
den Workbench-Screen entscheiden, setzen Sie Type auf
CUSTOMSCREEN (eigener Screen) oder NULL (Workbench
Screen).

Die Variablen MinWidth, MinHeight, MaxWidth, und
MaxHeight bestimmen die minimalen bzw. maximalen Di-
mensionen des Fensters. Diese Felder sind nur fiir
Fenster, die mit einem Drag-Gadget ausgestattet sind,
wichtig. Sie bestimmen dann, inwieweit der Benutzer
die GroBe des Fensters verdndern kann. Die restlichen
Komponenten der NewWindow-Struktur sind fiir uns im
Moment nicht von Bedeutung und sollten mit Null ini-
tialisiert werden. Sie kdnnen Ihre Bedeutung dem An-
hang A entnehmen.

Nach dieser Einfiihrung kommt nun ein Beispiel, in
dem ein einfaches Fenster ohne Gadgets und IDCMP-Port
mit SmartRefresh auf dem Workbench-Screen gedffnet,
und nach einer kurzen Pause wieder gechlossen wird.

29

Kapitel 2 Fenster und Screens

Programm 2.2 Fenster.

#inc lude "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;
main ()

struct NewWindow NewWindow;
struct Window *Window;
LONG J:

/* Intution-Library Offnen, falls Fehler, dann
Programm beenden.

IntuitionBase = (struct IntuitionBase *)
OpenL ibrary ("intuition. library",0);
if (IntuitionBase == NULL) exit(FALSE);

/* NewWindow-Struktur zum (ffnen des Fensters
initialisieren

NewWindow.LeftEdge = 1; /* x-Koordinate.
NewWindow. TopEdge = 1; /* y-Koordinate.
NewWindow.Width = 300;
NewWindow.Height = 150; /* Héhe des Fensters.
NewWindow.BlockPen = 1; /* Vordergrundfarbe.
NewWindow.DetailPen = 0; /* Hintergrundfarbe.
/* Name des Fensters.

NewlWindow.Title = "BeispielFenster";

/* Keine Gadgets; "Smart-Refresh".

NewWindow.Flags = SMART REFRESH | ACTIVATE;

30

/* Breite des Fensters.

*/

*/
*/
*/
*/
*/
*/
*/

Kapitel 2 Fenster und Screens

NewWindow. IDCMPF lags = NULL;
/* Kein Nachrichtenport (IDCHMP). */

Newl/indow. Type = WBENCHSCREEN;
/* Fenstertyp: Workbenchfenster. */

NewWindow. FirstGadget = NULL;
/* Keine Gadgets. */

NewWindow.CheckMark = NULL;
/* Standard "Checkmark". */

NewWindow.Screen = NULL;
/* Auf dem Workbench-Screen. */

NewWindow.BitMap = NULL;
/* Keine eigene Bitmap. */

NewiWindow.MinWidth = 1;
/* Minimale Breite = 1. */

NewWindow.MinHeight = 1;
/* Minimale Hohe = 1. */

NewWindow.MaxWidth = 300;
/* Maximale Breite unwichtig. */

NewWindow.MaxHeight = 150;
/* Maximale Héhe unwichtig. */

/* Das neue Fenster é6ffnen, falls Fehler, dann
Programm beenden. */

Window = (struct Window *)

OpenWindow(&NewWindow); if (Window==NULL) exit(FALSE);
for (j = 0; j < 1000000; j++); /* Abwarten */
CloseWindow(Window); /* Fenster schlieBen */

31

Kapitel 2 Fenster und Screens

Bild 2.2 - Die Ausgabe des Programms Fenster

Zum AbschluB noch eine kurze Aufzdhlung der Intui-
tion-Prozeduren zum Arbeiten mit Fenstern.

ActivatelWindow
CloselWindow
Hovel indow
OpenWindow

SetWindowTitles
SizeWindow
Windowl imits
WindowToBack

WindowToFront

32

Kapitel 2 Fenster und Screens

Eine der Besonderheiten des Amiga ist die Tatsache,
daB alle Eingaben, sowohl die, die iiber die Tastatur,
als auch die, die durch die Maus erfolgen, immer nur
fensterbezogen sind. So wird z.B. ein Text nur in dem
Fenster eingegeben, in dem zuletzt die Maus geklickt
wurde. Der IDCMP-Port ist die Schnittstelle, die
dafiir sorgt, daB Ihr Programm alles, was in einem
Fenster passiert, {iberwachen kann. Durch Setzen der
entsprechenden Flags kdnnen Sie Intuition dazu veran-
lassen, Ihnen jedesma] eine Nachricht zu schicken,
wenn der Benutzer in einem Fenster z.B. die Maus
bewegt, ein Menii auswdhlt,oder eine Taste driickt. Das
Setzen dieser Flags kann entweder direkt beim Offnen
des Fensters durch entsprechendes Initialisieren des
IDCMPF lags-Feldes der NewWindow-Struktur erfolgen,
oder spdter mit Hilfe der Intuition Prozedur_HModify-
IDCHP. Falls Sie also immer dann, wenn die Maus be-
wegt wird oder wenn das Close-Gadget geklickt wird,
informiert werden wollen, miissen Sie diesem Feld den
Wert:

MOUSEMOVE | CLOSEWINDOW

zuweisen, oder ModifyIDCMP fo]gendermaBen aufrufen:
ModifyIDCMP(Window, MOUSEMOVE | CLOSEWINDOW);

Window muB selbstverstdndlich ein Zeiger auf die
Window-Struktur Ihres Fensters sein!

33

Kapitel 2 Fenster und Screens

Hier die wichtigsten IDCMP-Flags und die zugehdrigen
Ereignisse:

MOUSEBUTTONS

Driicken/Loslassen einer Maustaste. Je nach dem ob das
MBTRAP Window-Flag gesetzt ist, wird dabei die rechte
Taste mit beriicksichtigt oder nicht.

MOUSEMOVE
Verdanderung der Mausposition.

CLOSEWINDOW
Ancklicken des Close-Gadgets.

NEWSIZE
Verdnderung der FenstergroBe.

ACTIVEWINDOW/INACTIVEWINDOW

Falls Sie dieses Flag setzen, werden Sie eine Nach-
richt erhalten, wenn das Fenster durch Klicken der
Maus in seinem innerem aktiviert, bzw. durch Klicken
in einem anderem Fenster inaktiviert wird.

VANILLAKEY
Die gedriickte Taste.

DISKINSERTED/DISKRENOVED
Sie bekommen eine Nachricht, falls eine Diskette
eingelegt bzw. aus dem Laufwerk herausgenommen wurde.

Nachdem Sie nun einen IDCMP-Port entsprechend Ihrer
Bediirfnisse eingerichtet haben, konnen Sie diesen je-
derzeit wahrend des Programmablaufes abfragen. Norma-
lerweise wird dabei zuerst die Exec-Prozedur WaitPort
aufgerufen, die dafiir sorgt, daB Ihr Programm solange
angehalten wird, bis irgendeine Nachricht an das Fen-
ster gekommen ist. Hiernach kann mit GetMsg ihre Ad-
resse ermittelt werden. Beide Prozeduren brauchen als

34

Kapitel 2 Fenster und Screens

Eingabe lediglich das UserPort-Feld der Window-Struk-
tur. Bei dem Zeiger, den GetMsg zuriick gibt, handelt
es sich um die Adresse der IntuiMessage-Struktur, in
der die Nachricht gespeichert ist. Diese ist wie
folgt aufgebaut:

Abb 2.5 Die IntuiMessage-Struktur
struct IntuiMessage {

struct Message ExecMessage;
ULONG Class;

USHORT Code;

USHORT Qualifier;

APTR IAddress;

SHORT MouseX, MouseY;

ULONG Seconds, Micros;

struct Window *IDCMPWindow;
struct IntuiMesage *Speciall ink;

}:

Die Art der Nachricht kann dem Feld Class entnom-
men werden. Eventuelle zusdtzliche Informationen, wie
z.B. der ASCII-Code des Zeichens, der der gedriickten
Taste entspricht, stehen in der (ode-Variable. In
Mousex und Mousey finden Sie immer die aktuellen
Koordinaten des Mauszeigers. Falls seit- der letzten
Abfrage des Ports zwei Ereignisse aufgetreten sind,
die entweder vom gleichen Typ sind oder beide das
Code-Feld fiir sich beanspruchen, wird das zweite Er-
eignis als eine weitere Nachricht eingetragen, die in
eine Warteschleife eingefiigt wird. Nachdem die Nach-
richt empfangen und untersucht wurde, muB durch Auf-
ruf der ReplyMsg-Routine dies dem System mitgeteilt
werden. Nun wird die alte IntuiMessage-Struktur ver-
gessen und Sie konnen auf die eben beschriebene Wei-

35

Kapitel 2 Fenster und Screens

se die ndachste Nachricht holen. Um Ihnen das ganze
auf den ersten Blick vielleicht ein wenig verwirrende
Verfahren zu veranschaulichen, haben wir hier wieder
ein Beispielprogramm abgedruckt.

Es 6ffnet ein Fenster mit einem IDCMP-Port und war-
tet vor dem SchlieBen bis das Close-Gadget angeklickt
wird. Die while-Schleife wdre an dieser Stelle ei-
gentlich nicht notwendig, da dies das einzige Ereig-
nis ist, daB von Intution in diesem Fall registriert
wird (es ist nur das CLOSEWINDOW-Flag gesetzt !), so
daB das Programm allein durch WaitPort angehalten
wird.

Programm 2.3 IDCMP

#include "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;

main ()

struct NewWindow NewWindow;

struct Window *Window;

struct IntuiMessage *IntuiMessage;

LONG J:

ULONG Type;
/* Intution-Library éffnen, falls Fehler,dann

Programm beenden.*/

IntuitionBase =(struct IntuitionBase *) OpenLibrary
("intuition. library",0);

if (IntuitionBase == NULL) exit(FALSE);

36

Kapitel 2 Fenster und Screens

/* NewWindow-Struktur zum Offnen des Fensters
initialisieren
NewWindow.LeftEdge = 1; /* x-Koordinate.
NewWindow. TopEdge = 1; /* y-Koordinate.
NewWindow.Width = 300; /* Breite des Fensters.
NewlWindow.Height = 150; /* Héhe des Fensters.
NewWindow.BlockPen = 1; /* Vordergrundfarbe.
NewlWindow.DetailPen = 0;/* Hintergrundfarbe.
/* Name des Fensters.
NewWindow.Title = "BeispielFenster";
/* Alle Gadgets, "Smart-Refresh”.

NewWindow.Flags = SHART REFRESH | ACTIVATE |

*/

WINDOWCLOSE | WINDOWDRAG]WINDOWDEPTH | WINDOWSIZING;

/* Close Gadget Message schicken:

NewWindow. IDCMPF lags = CLOSEWINDOW;
NewWindow. Type = WBENCHSCREEN;
/* Fenstertyp: Workbench Fenster.

NewWindow. FirstGadget = NULL;
/* Keine Gadgets.

NewWindow.CheckMark = NULL;
/* Standard "Checkmark".

NewWindow.Screen = NULL;
/* Auf dem Workbench-Screen.

NewWindow.BitMap = NULL;
/* Keine eigene Bitmap.

NewWindow.MinWidth = 1;

/* Minimale Breite = 1.
NewWindow.MinHeight = 1;
/* Minimale Héhe = 1.

*/

*

*/

*/

*/

*/

*/

*/

37

Kapitel 2 Fenster und Screens

NewWindow.MaxWidth = 300;

/*
Wi

/* Maximale Breite unwichtig. */

Das neue Fenster 6ffnen, falls Fehler, dann
Programm beenden. */

ndow = (struct Window *)OpenWindow(&NewWindow);

if (Window == NULL) exit(FALSE);

Type = 0;

/* Auf Nachricht warten bis Close-

Gadget angeclickt. */
while (Type < CLOSEWINDOW)

/* Auf Nachricht warten */
WaitPort(Window->UserPort);

/* Art der Nachricht merken. */
IntuiMessage = GetMsg(Window->UserPort);
Type = IntuiMessage->Class;

/* Fenster schlieBen */

38

CloseWindow(Window);

Kapitel 2 Fenster und Screens

Wie Sie sehen, ist der Gebrauch der Fenster und
Screens mit einigem Aufwand verbunden. Um uns in Zu-
kunft diese Arbeit zu ersparen, wird nun ein Programm
vorgestellt, in dem einige niitzliche Prozeduren defi-
niert werden. Wir werden dann spdter ohne weiteren
Kommentar auf diese Routinen zugreifen.

Das Programm, das wir Display.h genannt haben, be-
inhaltet folgende Prozeduren:

Openlntui ()

Diese Prozedur 6ffnet die Intution-Library.

OpenGfx ()

Diese Prozedur 6ffnet die Graphics-Library

MakeScr (x,y,w,h,Name,d,flags,font,BMap)

Offnet einen neuen ‘Screen, wobei die Parameter den
wichtigsten Feldern der NewScreen-Struktur entspre-
chen. Die Variablen x,y,w,h bestimmen die Koordina-
ten der linken oberen Ecke, die Breite und die Hohe.
Die Tiefe wird in d angegeben. flags entspricht dem
ViewModes-Feld von NewScreen, dient also zur Auswahl
der Auflésung und der Sondermodi. In font bzw. BMap
kénnen Sie schlieBlich einen eigenen Font, bzw. Bit-
Map fiir diesen Screen angeben. Normalerweise sollten
diese Parameter auf NULL gesetzt werden.

MakeWindow (x,y,w,h,mw,mh,Name,flags,Idcmp,screen)
6ffnet ein Fenster wobei die (iibergebenen Parameter
die wichtigsten Felder der NewWindow-Struktur bestim-
men. Die Variablen x,y,w,h,mw,mh stehen in dieser
Reihenfolge fiir die Koordinaten der Tlinken oberen

39

Kapitel 2 Fenster und Screens

Ecke, Breite, Hohe und die maximalen Abmessungen des
Fensters. Name ist eine Zeichenkette, die den Titel
des Fensters beinhaltet. In flags bzw. Idcmp kdnnen
Sie die gewiinschten Window bzw.IDCHMP-Flags iibergeben.
Der letzte Parameter, screen, ist ein Zeiger auf den
Screen, auf dem das Fenster gedffnet wird. NULL be-
deutet hier, den Workbench-Screen

WaitEvent (wind,code)

Diese Prozedur wartet, bis an das Fenster, deren
Adresse in wind iibergeben wurde, eine IDCMP-Nach-
richt kommt und gibt den Inhalt des Class-Feldes der
IntuiMessage-Struktur (also die Art der Nachricht!)
zuriick. In code wird dabei der Inhalt des Code-Fel-
des von IntuiMessage geschrieben.

GetMouse(wind,x,y)

ermittelt die aktuelle Position des Mauszeigers in
dem durch wind bestimmten Fenster.

#include "exec/types.h"
#include "intuition/intuition.h"

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;

/* Diese Prozedur éffnet die Intution-Library */
VOID OpenIntui ()

/* Intution-Library 6ffnen, falls Fehler dann
Programm beenden.*/
IntuitionBase = (struct IntuitionBase *)
OpenL ibrary("intuition. library",0);
; if (IntuitionBase == NULL) exit(FALSE);

40

Kapitel 2 Fenster und Screens

/* Diese Prozedur 6ffnet die Graphics-Library */
VOID OpenGfx ()

GfxBase = (struct GfxBase *) OpenlLibrary("graphics.
library"”,0);
if (IntuitionBase == NULL) exit(FALSE);

}

/* Diese Prozedur éffnet einen neuen Screen. */
MakeScr (x, y, w, h, Name, d, flags, font, BMap)
APTR Name, BMap, font;

SHORT «x, y, w, h, d;

ULONG flags;

struct NewScreen NewScreen;

/* NewScreen-Struktur initialisieren. */
NewScreen.LeftEdge = X;

NewScreen. TopEdge =y;
NewScreen.Width = w;
NewScreen.Height = h;
NewScreen.Depth =d;
NewScreen.DetailPen = 0;
NewScreen.BlockPen = 1;
NewScreen. ViewModes = flags;
NewScreen. Type = CUSTOMSCREEN;
NewScreen.Font = font; '
NewScreen.Title = Name;
NewScreen. Gadgets = NULL;
NewScreen.CustomBitMap = NULL;

/* Den neuen Screen éffnen. */
return (OpenScreen(&NewScreen));

41

Kapitel 2 Fenster und Screens

/* Diese Prozedur 6ffnet ein neues Fenster */

MakeWindow (x, y, w, h, mw, mh, Name, flags, Idcmp,
screen)

struct Screen *screen;

APTR Name ;

SHORT x, y, w, h, mw, mh;

ULONG flags, Idcmp;

struct NewWindow NewWindow;

ULONG SType;

/* Wokbenchfenster oder nicht ? */
SType = CUSTOMSCREEN;

if(screen == NULL)

SType = WBENCHSCREEN;

OpenIntui(); /* Intuition Library 6ffnen */

/* NewWindow-Struktur initialisieren */
NewWindow.LeftEdge = Xx;

Newl/indow. TopEdge =y
NewWindow.Width = Wy
NewWindow.Height = h;
NewW/indow. B lockPen =1;
NewWindow.DetailPen =0;
NewlWindow.Title = Name;
NewWindow.F lags = flags;
NewWindow.IDCMPF lags = Idcmp;
NewWindow. Type = SType;
NewWindow.FirstGadget = NULL;
NewWindow. CheckMark = NULL;
NewWindow. Screen = screen;
NewWindow. BitMap = NULL;
NewWindow.MinWidth =1;
NewWindow.MinHe ight =1;
NewlWindow.MaxWidth = mw;
NewWindow.MaxHeight = mh;

return (OpenWindow(&NewW mdow));

42

Kapitel 2 Fenster und Screens

/* Diese Prozedur wartet auf eine Intution Nachricht,

holt die Art des */

/* Ereignisses ("Class") und gegebenfalls die

gelesene GréBe (“Code").*/

WaitEvent (wind, code)

struct Window *wind;
USHORT *code;

struct IntuiMessage *IntuiMessage;

/*

Auf Nachricht warten */

Wait(1 << wind->UserPort->mp SigBit);

/*

Nachricht holen. */

IntuiMessage = GetMsg(wind->UserPort);

/*

Inhalt merken und Art der Nachricht
zuriickgeben. */

*code = IntuiMessage->Code;
return (IntuiMessage->Class);

/* Diese Prozedur holt die aktuellen Koordinaten

des Mauszeigers im Fenster. */

GetMouse(wind, x,y)

struct Window *wind;
SHORT *x, *y;

{

*x
*
'y

/*

ty

4

}

wind->MouseX;
wind->HouseY;

Ist dies ein GZZ-Fenster ? */
*x = wind->GZZMouseX;
wind->GZZMouseY;

43

Kapitel 2 Fenster und Scréens

Als Beispiel fiir die Anwendung der soeben definier-
ten Routinen folgt ein Programm, das ein Fenster auf
einem neuen Screen 6ffnet, auf Eingabe von "E" wartet
und es wieder schlieBt.

Programm 2.5 DisplayDemo
#include "Display.h"
main ()

struct Screen *Screen;
struct Window *Window;
ULONG Class;
short Code;

OpenIntui ();

/* Einen low-res Screen éffnen. */

Screen = MakeScr(0,0,320,200, "Lowres",2,NULL,
NULL,NULL);

if (Screen == NULL) exit(FALSE);

/* Fenster auf dem neuen Screen éffnen. */
Window = MakeWindow (0,0,200,200,200,200, "Hallo",

SMART REFRESH, VANILLAKEY,Screen);
if(Window == NULL) B

/*{ Warten bis "E" gedriickt wird */
do
/* Auf Nachricht warten */
Class = WaitEvent(Window,&Code);
} while (Code != 69);

/* Fenster und Screen schlieBen */

CloseWindow(Window);
CloseScreen(Screen);

44

Kapitel 3 Zeichenroutinen der Intuition

Kapitel 3

45

Kapitel 3 Zeichenroutinen der Intuition

Obwoh1 sich die Mehrheit der Grafikprozeduren logi-
scherweise in der Graphics-Library befindet, bietet
auch Intuition mit DrawImage und DrawBorder zwei sehr
niitzliche Routinen. Sie werden vom System zur Dar-
stellung der Fenstergrenzen und der Gadgets bendtigt
und ermoglichen das Zeichnen von beliebigen Bildern
und Umrandungen. Sie werden in diesem Kapitel 1im Zu-
sammenhang mit den Images auch mit Routinen zur Allo-
zierung und Deallozierung von Speicherbereichen ver-
traut gemacht werden, die wir spdter noch sehr oft
benétigen werden. Besonderes wichtig ist dabei, daB
Sie sich von Anfang an angewdhnen, nicht mehr bené-
tigten Speicher auch wieder freizugeben, auch wenn es
sich um scheinbar kleine Mengen handelt.

Zur Umrandung diverser Objekte bietet Intuition die
DrawBorder-Prozedur. Diese benétigt eine mit entspre-
chenden Parametern initialisierte Border-Struktur, in
der unter anderem die Koordinaten der Eckpunkte ent-
halten sind. Nachdem Sie eine Umrandung(Border) durch
Erstellen eines solchen Datensatzes erzeugt haben,
konnen Sie diese mehrmals an verschiedenen Stellen
des Bildschirms ausgeben. Auf diese Weise lassen sich
mit einfachen Mitteln relativ komplexe Gebilde auf
dem Bildschirm darstellen. Obwohl wir hier von Umran-
dungen sprechen, konnen nicht nur geschlossene Li-
nienziige gezeichnet werden. Durch die Mdglichkeit,
mehrere solcher Borders miteinander zu verketten,
konnen auch nicht zusammehdngende Figuren definiert
und dargestellt werden. Der erste Schritt in der
Definition einer Umrandung ist die Festlegung der
Eckkoordinaten. Diese konnen als Zahlen 1in einem

46

Kapitel 3 Zeichenroutinen der Intuition

SHORT-Arrray gespeichert werden. Ein Dreieck, dessen
Spitze bei (10,0) liegt, kann also wie folgt defi-
niert werden:

SHORT Dreieck [] = {10,0,
0,10,
10,0};

Als ndchstes miissen Sie eine Border-Struktur fol-
gender Form erzeugen:

Abb 3.1 Die Border-Struktur.
struct Border {

SHORT LeftEdge, TopEdge;
SHORT FrontPen, BackPen;
SHORT Count;

SHORT *XY;

struct Border *NextBorder;

}

In LeftEdge und TopEdge miissen Sie den sogenannten
Offset eintragen, das heiBt die x- und y-Entfernung
beim Zeichnen mit DrawBorder angegeben wurde. Haben
Sie also beim Zeichnen als Koordinaten z.B. (100,100)
und als Offset (10,10) angegeben, dann wird der erste
Punkt des in Abbildung 3.1 definierten Dreiecks bei

100 + 10 + 10
100 + 10

X
y

also (120,110) gezeichnet.

47

Kapitel 3 Zeichenroutinen der Intuition

FrontPen bestimmt die Farbe, die zum Zeichnen be-
nutzt wird, falls DrawHode den Wert JAMI hat.(BackPen
hat in der aktuellen Intuition Version keine Bedeu-
tung). Im Falle des anderen zuldssigen DrawMode-Wer-
tes: XOR, wird beim Zeichnen die Farbe des Hinter-
grundes invertiert. Fiir die Form Umrandung sind die
Variablen XY und Count verantwortlich. In der ersten
geben Sie die Adresse des Feldes an, in dem die Koor-
dinaten der Eckpunkte enthalten sind, wdhrend die
zweite die Anzahl der Ecken bestimmt, die tatsachlich
gezeichnet werden. Um von unserem Dreieck nur die
zwei ersten Seiten zu zeichnen, miiBte man Count
gleich 3 setzen (Anfangspunkt, erste Ecke, zweite
Ecke). Das letzte Feld der Border-Struktur, NextBor-
der, ist dazu da, mehrere solcher Figuren zu verket-
ten, indem dort die Adresse einer weiteren solchen
Struktur eingetragen wird. Eine solche Kette kann
dann mit einem einzigen DrawBorder-Befehl gezeichnet
werden. Der Aufruf dieser Prozedur sieht immer aus,
wie folgt:

DrawBorder(RPort,Border,x,y)

In Border wird dann die Adresse der initialisier-
ten Border-Struktur, in x,y die Position, an der die-
se auszugeben ist, libergeben. RPort bezeichnet die
Adresse eines Rastports. Was dieser nun genauer ist,
erkldren wir spdter. Um die Umrandung in einem Screen
darzustellen, geben Sie hier die Adresse des Rast-
Port-Feldes der Screen-Struktur an.

In dem folgenden abgedruckten Programm Border haben
wir versucht, Ihnen vor allem die nicht ganz so tri-
viale Anwendug der Offsets und der Verkettung von Um-
randungen zu verdeutlichen. Dazu werden zwei zundchst
nicht verkettete Borders definiert:

48

Kapitel 3 Zeichenroutinen der Intuition

(1) Rect - Quadratisch
(2) Tria - Dreieckig

Sie werden dann in einer for-Schleife untereinander
mit zwei DrawBorder Aufrufen gezeichnet. Hiernach
wird die Adresse von Tria in das NextBorder Feld von
Rect eingetragen, und Rect wird wieder in einer for-
Schleife gezeichnet. Da die beiden aber nun verkettet
sind, wird ja das Dreieck mitgezeichnet und die re-
sultierende Figur sieht in etwa so aus:

Zum AbschluB wird dann noch der y-Offset (TopEdge)
von Tria auf -25 gesetzt, so daB das Dreieck nun ii-
ber dem Quadrat, also wie folgt ausgegeben wird:

49

Kapitel 3

Zeichenroutinen der Intuition

Programm 3.1 Border

#inc lude
#inc lude
#inc lude

"Display.h"
"exec/types.h"
struct Window *Window;

SHORT Cornersl [] = {0,

50,
0,
0,

SHORT Corners2 [] = {25,

4

0,
25’

struct Border Rect = {0,
1

“intuition/intuition.h"

0, /*

7

25,
25,
0};

0,
25,
25,
0};
0,
0

Ein Quadrat

Ein Dreieck

/*

JAMI,

5

&Ebrnersl,

NULL};

struct Border Tria = {0,

0,

Y 14
JAMI1,

4

&&brnersz,

NULL};

main ()
SHORT 1;

USHORT code;
ULONG Class;

50

*/

*/

Kapitel 3 Zeichenroutinen der Intuition

/* Ein Fenster auf dem Workbench Screen éffnen */
Window = (struct Window *)MakeWindow(0,0,640,250,

640,250, "Border-Beispiel”,

WINDOWCLOSE | SMART REFRESH, CLOSEWINDOW, NULL);

if(Window == NULL) /* Fehler beim Offnen 7 */
exit(FALSE);

for(i = 5; i <= 600; i = i + 55)
/* Beide Borders getrennt zeichnen. */

DrawBorder (Window->RPort,&Rect, i,20);

/* Das Quadrat Zeichnen. */
DrawBorder (Window->RPort, &Tria,i,70);

/* Das Dreieck Zeichnen. */

/* Zweite Umrandung an die erste "anhingen". */
Rect.NextBorder = &Tria;

/* Und beide 10 mal gleichzeitig zeichnen. */
for(i = 5; i <= 600; i = i + 55)

DrawBorder (Window->RPort,&Rect, i,130);
/* Offset des Dreiecks verédndern */
Tria.TopEdge = -25;
/* Und beide Borders wieder 10 mal gleichzeitig
zeichnen. */
for(i = 5; i <= 600; i = i + 55)
DrawBorder (Window->RPort,&Rect, i,210);
Class = WaitEvent(Window,&code);

/* Auf Close-Gadget warten. */
CloseWindow(Window); /* Fenster schlieBen. */

51

Kapitel 3 Zeichenroutinen der Intuition

ARNNEEEEEE
AAAAAAAAAANA

NANANANANNNNNN

Bild 3.1 - Die Ausgabe des Programms Border.

Bevor wir uns mit den Images (Bilder) befassen kon-
nen, ist ein kleiner Exkurs in die Speicherverwaltung
fallig. Wir missen ndmlich, um die Bilddaten fiir die
Grafikchips zugédngig zu machen, sicherstellen, daB
sie sich im CHIP-Ram befinden. Tut man es nicht, so
stiirzt das Programm auf so manchem Amiga prompt ab.

Als erstes muB der fiir die Daten notwendige Spei-
cherplatz mit Hilfe der Exec-Prozedur A7locMem reser-
viert (alloziert) werden. Dazu miissen die GroBe des
bendtigten Speichers in Bytes und die Anforderungen,
die an diesen Speicher gestellt werden, (iibergeben
werden. Die letzteren werden durch ein Set folgender
Flags bestimmt:

52

Kapitel 3 Zeichenroutinen der Intuition

MEMF_CHIP: Es wird CHIP-Ram bendtigt.

MEMF_CLEAR: Der Speicher soll beim Allozieren mit
Nullen initialisiert werden.

~ MEMF LARGEST: Es wird ein zusammenhdngender Speicher-
block benstigt.

Als Ergebnis liefert dann AllocMem einen Zeiger auf
den reservierten Speicher. Um z.B. Speicher fiir Bild-
arten, die sich in der Variable Data befinden zu al-
lozieren miissen Sie so vorgehen:

DataPtr=A1llocMem(sizeof (Data),MEMF_CHIP!MEMF CLEAR);

Dabei wird die bendtigte Speichermenge mit Hilfe
der sizeof-Funktion ermittelt.

Exec stellt auch eine Routine zum Kopieren von
Speicherinhalten zur Verfiigung. Sie heiBt CopyMem und
bendtigt folgende Eingaben:
source: Die Adresse von der kopiert wird.
dest: Die Adresse zu der kopiert werden soll.

size: Die GroBe des zu kopierenden Bereiches in
Bytes.

Die Daten vom vorigen Beispiel kdnnen also so ko-
piert werden:

CopyMem(&Data,DataPtr,sizeof(Data));

Es werden auf diese Weise die Adresse und GroBe des
Speichers als Eingabe gebraucht. Also z.B.:

FreeMem(DataPtr,sizeof(Data));

Dabei ist Vorsicht geboten, denn ein Versuch, einen

53

Kapitel 3 : Zeichenroutinen der Intuition

nicht allozierten Speicher zu deallozieren, endet oft
mit Absturz.

Die Images (engl. Bilder) gestatten es Ihnen, das
Aussehen von Objekten Pixel fiir Pixel zu bestimmen.
Analog wie bei den Borders konnen sie dann mehrmals,
auch verkettet, gezeichnet werden. Die Bilddaten wer-
den in einer Folge von USHORT-Zahlen (Prozessorwdr-
ter) gespeichert, deren Bitzusammensetzung der Pixel-
zusammensetzung des Bildes entspricht. Die Farbe wird
hierbei nicht mehr einheitlich fiir das ganze Objekt
angegeben, sondern wie bei der Videoanzeige durch
iiberlappende Bitplanes bestimmt. Die Anzahl der Bit-
planes eines Images kann zwischen 1 und der Tiefe des
Screens, auf dem dieser ausgegeben wird, liegen (bzw.
zu dem das Fenster, in dem dieser ausgegeben wird,
gehdrt). Eintachheitshalber wollen wir uns zuerst mit
einem Image der Tiefe 1, das die Form eines Kreuzes
hat, beschdftigen. Zuerst missen wir uns das Bild so
wie es spdat dargestellt wird, aufzeichnen, also mit
Hilfe von gesetzten oder nicht gesetzten Punkten.

Abb 3.2 Ein einfaches Image

0000111111110000
0000111111110000
1111111111111111
1111111111111111
0000111111110000
0000111111110000

54

Kapitel 3 Zeichenroutinen der Intuition

Durch die Darstellung in Form von Nullen und Einsen
haben wir es geschafft, das Bild in eine Folge von 16
Bit Dualzahlen umzuwandeln. Diese kdnnen nun in Dezi-
mal bzw. Hexadezimalsystem umgerechnet werden und
entsprechen von der Lange jeweils einem Prozessorwort
(WORD). Nach dieser Umwandlung kénnte man nun unser
Kreuz wie folgt als hexadezimale Bilddaten Speichern:

USHORT Bild [] = {0x0ff0,
0x0f 0,
OXffff,
OXffFff,
0x0ff0,
0x0ff0};

Wie Sie sehen, entspricht bei der Umrechnung eine
Hexadezimalziffer einer vier Bit langen Dualzahl.

In diesem Beispiel wurde das Bild so gewdhlt, daB
es die Breite von 16 Punkten hat. Falls die Breite
geringer ist, wird trotzdem jede Zeile durch eine
16-Bit Zahl bestimmt. Die nicht benutzten Bits miissen
dann halt Null sein. Fiir Bilder, die breiter als die
16 Punkte sind, werden zur Definition jeder Zeile
einfach mehr 16-Bit Zahlen genommen. Es ist jetzt a-
ber 18 Punkte breit:

0000011111111000 0000000000000000
0000011111111000 0000000000000000
1111111111111111 1100000000000000
1111111111111111 1100000000000000
0000011111111000 0000000000000000
0000011111111000 0000000000000000
erste Zahl zweite Zahl

55

Kapitel 3 Zeichenroutinen der Intuition

Die zugehorigen Daten wiirden dann so aussehen:

USHORT Bild [] = {0x07f8,0x0000
0x07f8,0x0000
Oxffff,0xc000
Oxffff,0xc000
0x07f8,0x0000
0x07f8,0x0000} ;

Fiir Bilder, die aus mehreren Bitplanes bestehen,
werden die einzelnen Bitplanes in der soeben be-
schriebenen Weise definiert und dann hintereinander
in den Daten gespeichert. Ein zweifarbiger Streifen,
der folgendermaBen aussieht:

Bitebene 1
000000000000000
111111111111111

Bitebene 2
111111111111111
000000000000000

Wird durch folgende Daten definiert:

USHORT Bild [] = {0x0000, /* Bitplane 1 */
Oxffff,
Oxffff, /* Bitplane 2 */
0x0000}

Es ist natiirlich auch erlaubt, daB Teile des Bildes
in beiden Bitebenen gleichzeitig liegen.

Der nadchste Schritt nach dem Erstellen der Bildaten

ist das Initialisieren der Image-Struktur. Diese ist
wie folgt definiert:

56

Kapitel 3 Zeichenroutinen der Intuition

Abb 3.3 Die Image Struktur.
struct Image {

SHORT LeftEdge, TopEdge;
SHORT Width, Height, Depth;
SHORT *ImageData;

UBYTE PlanePick, PlaneOnOff;
struct Image *NextImage;

}

LeftEdge und TopEdge sind hier wie bei der Border-
Struktur die x- und y-Offsets. Die Breite und Hdohe
des Bildes in Pixels wird in Width und Height iiberge-
ben. Depth bestimmt die Tiefe, also die Anzahl der
Bitebenen. In ImageData miissen Sie die Adresse der
Bilddaten hineinschreiben. Diese miissen im CHIP-Ram
liegen! Die nédchsten beiden Felder, PlanePick und
PlaneOn0ff, sind fiir die Farbwahl zustdndig. Das er-
ste besagt, welche Bitebenen des Bildschirms fiir die
Darstellung des Images verwendet werden, das zweite,
welche Farbe die Punkte bekommen, die in den Bilda-
ten nicht gesetzt sind. Um das Kreuz von Abb.3.2 in
Farbe 1, seinen Hintergrund in Farbe 3 zu zeichnen,
missen Sie also fiir PlanePick 1, fiir PlaneOnOff 3 an-
geben. Mit Hilfe von PlaneOnOff konnen Sie auch, ohne
irgendwelche Bildaten ein gefiilltes Rechteck einer
beliebigen Farbe erzeugen. Dazu setzen Sie ImageData
auf Null, Width und Height auf die gewiinschte GrofBe
des Rechtecks und tragen seine Farbe in PlaneOnOff
ein. Da keine Bildaten existieren, besteht fiir Intui-
tion das gesamte Bild aus Nullen, und wird daher in
der gewiinschten Farbe dargestellt.

57

Kapitel 3 Zeichenroutinen der Intuition

Um das durch die Image-Struktur beschriebene Bild
darzustellen, miissen Sie die DrawImage-Prozedur so
aufrufen:

DrawImage(RPort, ImagePtr,x,y);

Wie bei der DrawBorder-Routine ist RPort hier die
Adresse eines Rastports. ImagePtr ist der Zeiger auf
die Image-Struktur, x,y die Koordinaten, an denen das
Bild erscheinen soll.

In dem nun folgendem Beispielprogramm haben wir uns
bemiiht, Ihnen vor allem die Bedeutung von PlanePick
und PlaneOnOff klarzumachen. Am Anfang wird ein Bild
eines Computers, mit der Tiefe 1 definiert. PlanePick
wird auf 1, PlaneOnOff auf 0 gesetzt und das Bild
wird gezeichnet. Es erscheint in der Vordergrundfar-
be. Hiernach wird PlanePick eine 2 zugewiesen und das
Bild wird nochmal ausgegeben. Es erscheint diesmal in
der Farbe Nummer 2. Als letztes wird dann noch Plane-
0nOff auf 1 gesetzt. Die Farbe des Computers é&ndert
sich hierbei zwar nicht, sein Hintergrund nimmt aber
die Farbe 1 an. Jedesmal, wenn Sie die 1linke Mausta-
ste driicken, gibt das Programm ein neues Bild aus. Um
es abzubrechen, klicken Sie das Close-Gadget an.

Beachten Sie auch, daB die Bilddaten vor dem Zeich-
nen in einen allozierten CHIP-Ram Breich kopiert wer-
den.

58

Kapitel 3

Zeichenroutinen der Intuition

Programm 3.2 Image.

#include "Display.h"
#include "intuition/intuition.
#include "exec/types.h"
#inc lude "exec/memory.h"
struct Window *Window;
struct Screen *Screen;
/* Bilddaten
USHORT Data [] = { 0x3ffc, /*
0x300c, /*
0x300c, /*
0x300c, /*
0x300c, /*
0x300c, /*
0x3ffc, /*
oxoffo, /*
Oxffff, /*
Oxfffl, /*
Oxffff, /*
0x4002} ; /*
struct Image Bild = {0, 0,
16,12,
1,
O0x1,0x0,
NULL};

main ()

APTR IData;
USHORT code;
SHORT x, y;
ULONG Class;

hll

001111111111111100
001100000000001100
001100000000001100
001100000000001100
001100000000001100
001100000000001100
001111111111111100
000011111111110000
111111111111111111
111111111111110001
111111111111111111
010000000000000010

59

Kapitel 3 Zeichenroutinen der Intuition

OpenIntui();

/* Einen low-res Screen éffnen. */
Screen = (struct Screen *)MakeScr(0,0,320,250,
“"Low-res",2,NULL,NULL,NULL);
if (Screen == NULL)
exit(FALSE);

/* Ein GZZ-Fenster auf dem neuen Screen 6ffnen */
Window = (struct Window *)MakeWindow(0,0,320,250,
300,250, "Image-Beispiel”,
WINDOWCLOSE | GIMMEZEROZERO | ACTIVATE,
MOUSEBUTTONS | CLOSEWINDOW,Screen);

if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* CHIP-Memory fiir Bildaten allozieren */
IData = AllocHem(sizeof(Data),MEMF CHIP | MEMF

‘ B PUBLIC);
if (IData == NULL) /* Fehler beim Allozieren */
exit(FALSE);

/* und Daten dorthin kopieren. */
CopyMem(&Data[0], IData,sizeof (Data));

/* Zeiger in der Image-Struktur auf Bildaten setzen
Bild.ImageData = IData;

/* Image Zeichnen */
DrawImage(Window->RPort,&Bild,120,120);
Bild.PlanePick = 0x02;

/* und Image zeichnen. */
DrawImage(Window->RPort,&Bild,140,120);

/* Andere Bitplane fiir "Nullpunkte" wihlen */
Bild.PlaneOnOff = 0x01;

60

Kapitel 3 Zeichenroutinen der Intuition

/* und Image zeichnen. */
DrawImage(Window->RPort,&Bild,160,120);

/* Alte Bitplane fiir "Nullpunkte" wihlen. */
Bild.PlaneOnOff = 0x00;

while (WaitEvent(Window,&code) != CLOSEWINDOW)

GetMouse(Window,&x,8y);
DrawImage(Window->RPort, &Bild,x,y);

/* Datenspeicher wieder freigeben und alles
schlieBen. */
FreeMem(IData,sizeof(Data));
Class = WaitEvent(Window,code);
CloseWindow(Window);
CloseScreen(Screen);

61

Kapitel 3 Zeichenroutinen der Intuition

Slgig

]
wl
=1 ==y EE:

2 2
2 &
=Qioooag

Bild 3.2 - Eine Beispielausgabe des Programms Image

62

Kapitel 4 Farbeinstellung und Graphik

Kapitel 4

[—— —— = e o e o e o e e e o e

63

Kapitel 4 Farbeinstellung und Graphik

Nachdem wir uns in den ersten drei Kapiteln mit In-
tuition befaBt haben, kommen wir nun endlich dazu,
die eigentlichen Grafikroutinen zu betrachten. Wir
wollen hier zuerst am Beispiel einiger einfacher Zei-
chenprozeduren zeigen, wie die Nummer der Zeichenfar-
be, ihre RGB-Zusammensetzung, der Zeichenmodus und
das fiir die Linie verwendete Muster eingestellt wer-
den kdénnen. Dabei werden Sie die beiden grundlegenden
Strukturen der Graphics-Library: RastPort und View
Port sowie ihre Bedeutung kennenlernen. Vor allem der
Rastport wird Ihnen bei der Grafikprogrammierung noch
sehr oft begegnen. Beachten Sie, daB Sie die Files
grahics/graphics.h und eventuell graphics/gfxmacros.h
mittels 7nclude in Ihr Programm einbinden miissen, um
auf die hier verwendeten Prozeduren und Strukturen
zugreifen zu konnen.

Die Screens und Fenster sind zwar vom Standpunkt
des Benutzers aus die elementaren Anzeigenelemente,
vom System aus gesehen stehen diese aber auf einer
ziemlich hohen Stufe, werden also unter Verwendung
anderer grafischer Routinen und "Bauteile" von Intui-
tion aufgebaut.

Damit man die Zeichenroutinen sowohl 1in einem Fen-
ster als auch in einem Screen oder einem selbster-
zeugten Display verwenden kann, wird diesen nicht ein
Zeiger auf ein Fenster, sondern die Adresse einer
allgemeineren Struktur, die Bestandteil jeder Anzeige
ist, ibergeben.

64

Kapitel 4 Farbeinstellung und Graphik

Es handelt sich dabei um die RastPort-Struktur.
Diese bestimmt sozusagen alle Eigenschaften des "Zei-
chenstiftes", also z.B. die Vorder- und Hintergrund-
farbe, den Zeichenmodus, die Schriftart etc., die in
einer Anzeige verwendet wird. Die Adresse des zu ei-
nem Fenster oder Screen gehdrenden Rastports, kdnnen
Sie wie in Kapitel 3 beschrieben, der Screen- bzw.
Window-Struktur entnehmen.

Da RastPort sehr viele Felder enthdlt, die nur fiir
das System von Bedeutung sind, verzichten wir hier
auf die vollstédndige Auflistung dieser Struktur und
gehen nur auf die wichtigsten Felder ein.

*BitMap: Zeiger auf die Bitmap, (also den "Bild-
speicher") die Anzeige, zu der dieser
Rastport gehort.

*AreaPtrn: Das Muster, das zum Fiillen von Fldchen
verwendet wird.

FgPen,BgPen: Die Vorder- und Hintergrundfarben, die
zum Zeichnen benutzt werden.

AQOTPen: Bestimmt die Umrandungsfarbe fiir gefiill-
te Flachen.

DrawMode: Der Zeichenmodus.

LinePtrn: Ein Muster fiir die Linien (z.B.gestri-

. chelt).

CR cp x,cp_y: Die momentanen Koordinaten des Grafik-
cursors.

*CR Font: Der in diesem Rastport verwendete
Schriftfont.

TxWidth, TxHeight, TxSpacing: Diese Felder geben die
Breite, Hohe und den Abstand zwischen

65

Kapitel 4 Farbeinstellung und Graphik

den Zeichen des aktuellen Fonts an. Der
Zeichenabstand kann durch verdandern des
TxSpacing-Wertes verdandert werden, wéah-
rend die anderen Werte nur gelesen werden
kénnen.

Der obigen Auflistung kénnen Sie entnehmen, wie die
zum Zeichnen verwendete Farbe gespeichert wird. Um
diese zu verdandern, konnen Sie auf die SetAPen-Proze-
dur zuriickgreifen. Ist Rast ein Zeiger auf einen Rast
Port, so kann die dort giiltige Vordergrundfarbe so
auf 2 gesetzt werden:

SetAPen(Rast,2);

Analog kann die Hintergrundfarbe mit

SetBPen(Rast,Farbe);

modifiziert werden, wobei Farbe natiirlich ein giil-
tiger Farbwert sein muB. Beachten Sie, daB die Verdn-
derung der Hintergrundfarbe nicht die Verdnderung
des Hintergrundes auf dem Bildschirm zur Folge hat.
Es wird nur festgelegt, daB ab sofort, iiberall da, wo
irgend etwas mit der Hintergrundfarbe gezeichnet oder
gefiillt werden soll, der neue Farbwert verwendet
wird. Wann dies der Fall ist, wird weitgehend durch
den Zeichenmodus bestimmt.

Dabei gibt es vier Modi:
(1) JAM1: Dies ist der Standardmodus. Es wird zum

Zeichnen nur die Vordergrundfarbe ge-
braucht.

66

Kapitel 4 Farbeinstellung und Graphik

(2) JAM2: Dieser Modus ist vor allem fiir die Linien-
und Fiillmuster wichtig, auf die wir noch
zu sprechen kommen. Es werden die gesetz-
ten Punkte des Musters mit der Vorder-,
die nicht gesetzten mit der Hintergrund-
farbe gezeichnet.

(3) Complement: In Diesem Modus wird jeder Punkt in
der Farbe gezeichnet, die dem bindren Kom-
plement seiner bisherigen Farbnummer ent-
spricht. Hatte ein Punkt also in einem
Screen der Tiefe 2 bisher die Farbe Nummer
2 (bindr 10), dann wird er nun mit der
Farbe 1 (bindr 01) gezeichnet. In einem
Screen der Tiefe 5 wiirde er aber in der
Farbe 13 (bindr 1101 als das Komplement
von 0010 = 2) dargestellt werden.

(4) Inversevid: Ist vorwiegend bei der Textdarstel-
lung von Bedeutung. In Verbindung mit JAM1
"~ bewirkt diser Modus, daB der Hintergrund
des Zeichens in der Vordergrundfarbe dar-
gestellt wird, wadhrend das Zeichen selbst
durchsichtig ist. Der Unterschied bei Ver-
wendung zusammen mit JAMZ liegt darin, daB
dann das Zeichen in der Hintergrundfarbe
erscheint.

Der Zeichenmodus wird iiber Flags, die entsprechend
JAMI, JAM2, COMPLEMENT, und INVERSEVID heiBen, mit
Hilfe der SetDrMd-Prozedur z.B. wie folgt:

SetDrMd(Rast, JAM2);

eingestellt. Direkte Zugriffe auf die Datenstrukturen
sollten so weit wie moglich vermieden werden, um das

67

Kapitel 4 Farbeinstellung und Graphik

Programm auch zu eventuellen spateren Systemversio-
nen, bei denen diese vieleicht modifiziert werden,
kompatibel zu halten.

Punkte kdnnen an beliebiger Bildschirmposition mit
der Prozedur_WritePixel mit der aktuellen Farbe und
den aktuellen Zeichenmodus gezeichnet werden.

Als Parameter miissen Sie nur den Zeiger auf den
Rastport und die Koordinaten iibergeben. Ein Aufruf
kann also so aussehen:

WritePixel(Rast,610,10);

0ft ist es wichtig zu wissen, welche Farbe ein be-
stimmter Punkt hat. Fiir diese Situationen gibt es in
der Graphics-Library die Routine ReadPixel, die sozu-
sagen die Umkehrung von WritePixel ist, also beim:
Aufruf die Farbe des Punktes an der angegebenen Posi-
tion als Funktionsergebnis vom Typ int liefert.

Linien kdnnen mit Hilfe der Grafikprozeduren nur ab
der aktuellen Position des Grafikcursors gezeichnet
werden. Diese ist, wie dem vorangegangenen Abschnitt
zu entnehmen ist, in der RastPort - Struktur gespei-
chert. Um den Grafikcursor neu zu positionieren mii-
ssen Sie die Prozedur Move wie folgt aufrufen:

Move(Rast,x,y);

68

Kapitel 4 Farbeinstellung und Graphik

Dabei ist Rast ein Zeiger auf einen Rasport und x
und y die gewiinschten Koordinaten. Eine Linie von der
auf diese Weise bestimmten Position zu irgendeiner
anderen Stelle auf dem Bilschirm kann dann mit der
Draw-Prozedur dargestellt werden. Diese braucht als
Eingabe wieder die Rastportadresse und die Koordina-
ten des Zielpunktes. Um also eine Linie von (10,10)
nach(100,100) zu zeichnen, miissen Sie so vorgehen:

Move(Rast,10,10);
Draw(Rast,100,100);

Fiir viele Anwendungen ist die Moglichkeit, Linien
mit verschiedenen Mustern zu zeichnen, also z.B.ge-
strichelt oder punktiert, sehr interessant. Der Be-
fehl SetDrPt erlaubt Ihnen, ein 16 Punkte langes Mus-
ter einem Rastport zuzuordnen. Dieses wird dann bis
auf weiteres fiir alle in diesem Rastport gezeichneten
Linien verwendet. Das Muster wird in einem SHORT-Wert
gespeichert, dessen Bits den ein oder ausgeschalteten
Punkten entsprechen. Die Linie wird dann als Aneinan-
derreihung solcher 16 Punkte 1langen Abschnitte ge-
zeichnet. Einer gestrichelten Linie, die aus diesen
16-Punkte Abschnitten besteht:

1111111100000000
(Einsen stehen fiir gesetzte Punkte) entspricht dem
hexadezimalen Wert ff00. Der dazugehdrende Aufruf von
SetDrPt sieht dann so aus:
SetDrPt (Rast, Oxff00);

Um wieder noramle Linien zeichnen zu kdénnen, rufen
Sie SetDrPt mit -1 als Musterwert auf.

69

Kapitel 4 Farbeinstellung und Graphik

In dem nun folgenden Programm kdnnen Sie sehen, wie
Linien mit verschiedenen Farben, Mustern und Zeichen-
modi erzeugt werden kdnnen. In der ersten for-Schlei-
fe wird jedesmal, bevor eine Linie gezeichnet wird,
eine neue Vordergrundfarbe gewdhlt. In der zweiten
wird bei jedem Durchlauf ein neues Linienmuster ge-
wdh1t, und dann eine Linie zuerst mit dem JAMI- und
dann mit dem JAM2-Modus gezeichnet. Wie Sie sehen,
werden beim JAMZ Modus die in dem Muster auf 0 ge-
setzten Punkte nun mit der vorhin gewdhlten Hinter-
grundfarbe gezeichnet. Probieren Sie doch mal aus,
was passiert, wenn sie die anderen Zeichenmodi, oder
deren Mischung an dieser Stelle verwenden.

Programm 4.1 Draw

#include "Display.h"

#include "intuition/intuition.h"
#include "exec/types.h"
#include "graphics/gfx.h"
#include "graphics/gfxmacros.h"

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;

/* Einige Linienmuster definieren. */
SHORT LPattern [] =
{ Oxffo0, /* 1111111100000000 */
O0xfOf0, /* 1111000011110000 */
Oxcccc, /* 1100110011001100 */
Oxaaaa, /* 1010101010101010 */

}i
main()

USHORT code;

70

Kapitel 4 Farbeinstellung und Graphik

SHORT i;

OpenIntui();
OpenGfx ();

/* E inen lowres Screen der Tiefe 4 (16 Farben)
6ffnen. */
Screen = (struct Screen *)MakeScr(0,0,320,250,
“Linien”,4, NULL NULL,NULL);
if (Screen == NULL) /* Fehler be1m off'nen */
exit(FALSE);

. /* Ein GZZ-Fenster auf dem neuen Screen 6ffnen */
Window = (struct Window *)MakeWindow(0,0,320,250,

320, 250, "Linien-Beispiel”,

WINDOWCLOSE | GIMMEZEROZERO | ACTIVATE,

CLOSEWINDOW,Screen);

if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Die Adresse des Rastports des Fensters
ermitteln. */

Rast = Window->RPort;

/* 15 Linien mit verschiedenen Farben zeichnen */
for(i = 1; i < 16; i++)

SetAPen(Rast, i); /* Neue Farbe auswéhlen. */
Move(Rast,10,1%*5); /* Grafikcursor positionieren.*/
Draw(Rast, 300,i*5); /* Linie zeichnen. */

/* Farbe 1 als Vorder- und 2 als Hintergrund
wihlen. */

SetAPen(Rast,1);

/* Und 5 neue Linien mit verschiedenen Mustern und
Zeichenmodi. */

7

Kapitel 4

Farbeinstellung und Graphik

for(i = 1; i < 6; i++)

{

SetDrHd(Rast,JAM1);

/* Normaler Zeichenmodus. */

SetDrPt(Rast,LPattern[i-1]);

/* Neues Muster auswédhlen. */

Move(Rast,b10,1*10+100); /*
Draw(Rast,300,i*10+100); /*
SetDrMd(Rast,JJAMZ); /*
Move(Rast,10, i*10+5+100); /*

Draw(Rast, 300, i*10+5+100);/*

/* Auf Close Gadget warten */

i

= WaitEvent(Window,&code);

/* und alles schlieBen */
CloseWindow(Window);
CloseScreen(Screen);

Grafikcursor
positionieren. */
Linie zeichnen. */
Neuer Zeichenmodus?*/
Grafikcursor
positionieren. */
Linie zeichnen. */

Bild 4.1 - Die Ausgabe des Programms Draw

72

Kapitel 4 Farbeinstellung und Graphik

Fiir komplexere Grafikobjekte geniigt es allerdings
nicht mehr, Punkte und Linien zu zeichnen. Da alle
aus Linien bestehenden Figuren wie Rechtecke und
Dreiecke mit Hilfe mehrere Aufrufe der Draw, oder wie
wir spdter sehen werden, eines Aufrufs der PolyDraw-
Prozedur, miihelos erzeugt werden kdnnen, bietet der
Amiga keine eigenstdndige Prozedur zum Zeichnen die-
ser Objekte. Zum Zeichnen von Kreisen und Ellipsen
gibt es dagegen die DrawCircle- und DrawEllipse-Rou-
tinen. DrawCircle, das in ‘"gfxmacros. h" definiert
wird, bendtigt als Eingabe die Adresse des Rastports,
die Koordinaten des Kreismittelpunktes und den Radi-
us. Ein Kreis mit dem Radius 50 wird also auf diese
Weise an der Position (150,100) gezeichnet:

DrawCircle(Rast,150,100,50);

Leider beachtet diese Prozedur nicht die Aufldsung
des verwendeten Displays, so daB der Kreis nur auf
einem lowres oder einem hires-interlace Screen wirk-
lich rund ist.

Um eine beliebige Ellipse zu =zeichnen, geniigt ein
folgender Aufruf von DrawEllipse:

DrawE1lipse(Rast,x,y,rx,ry);

Dabei ist Rast ein Zeiger auf den Rastport, x,y die
Koordinaten des Mittelpunktes und rx,ry der x- bzw.y-
Radius der Ellipse.

73

Kapitel 4 Farbeinstellung und Graphik

Das Zeichnen verschiedener Figuren wird in dem fol-
genden kurzen Programm vorgefiihrt. Es zeichnet zuerst
konzentrische Kreise und Ellipsen mit verschiedenen
Radien. Dann werden mittels einer dafiir neu definier-
ten Prozedur mehrere gegeneinander verschobene Recht-
ecke erzeugt. Beachten Sie, daB das Programm in einem
Screen und nicht in einem Fenster arbeitet.

Programm 4.2 Figuren

#include "Display.h"

#include "intuition/intuition.h"
#include "exec/types.h"
#include "graphics/gfx.h"
#include "graphics/gfxmacros.h"

struct Screen *Screen;
struct RastPort *Rast;

main ()

long j;
SHORT 1i;

OpenIntui();
OpenGfx ();
/* Einen hi-res Screen der Tiefe 2 (4 Farben)
6ffnen. */
Screen = (struct Screen *)MakeScr(0,0,320,250,
"Figuren",2, NU[L NUlL),
if (Screen == NULL) /* Fehler be1m 0ffhen */
exit(FALSE);
/* Die Adresse des Rastports des Screens
ermitteln. */
Rast = &((*Screen).RastPort);

/* Die erste Figurenreihe zeichnen. */
for(i =1; i < 5; i++)

74

Kapitel 4 Farbeinstellung und Graphik

{ . . o
DrawCircle(Rast,70,70,i*10); /* Kreis zeichnen. */
Drawkt 11ipse(Rast, 250,70, i*10,50-1i*10);

; /* Ellipse Zeichnen. */

/* Und einige Vierecke zeichnen. */
for(i = 1; i < 10; i++)

Rect(Rast,50+i*5,150+1%2,220+1%*5,200+i*2);
/* Abwarten und dann Screen schlieBen */
for(j = 1; j < 400000; j++);
CloseScreen(Screen);

/* Diese Prozedur zeichnet ein Rechteck */
Rect(R,x1,y1,x2,y2)

APTR *R;

SHORT x1, y1, x2, y2;

Move(R,x1,y1);
Draw(R,x2,y1);
Draw(R,x2,y2);
Draw(R,x1,y2);
Draw(R,x1,y1);

Firguwuren [© |]

Bild 4.2 - Die Ausgabe Programms Figuren

75

Kapitel 4 Farbeinstellung und Graphik

Bisher sind wir nur in der Lage, durch Angabe einer
Nummer, eine der maximal 32 Farben, die fiir den
Screen voreingestellt sind, zu wdhlen. Der Amiga gibt
Ihnen aber die Méglichkeit, eine aus einer Palette
von 4096 verschiedenen Farben auszusuchen. Sie kodnnen
diese normalerweise zwar nicht alle gleichzeitig be-
nutzen, dafiir aber mit der SetRGB4-Prozedur die RGB-
Anteile, der zur jeder Nummer gehdrenden Farbe wdh-
len (jeweils zwischen 0 und 15 liegende Rot-, Griin-
und Blau-Anteile). Die Prozedur SetRGB4 braucht neben
der Nummer der Farbe und der neuen RGB-Werte einen
Zeiger auf die ViewPort-Struktur. Dies ist die grund-
legende Struktur jeder eigensténdigen Anzeige, also
eines Screens oder eines selbsterzeugten Displays. So
wie die Eigenschaften eines "Zeichenstiftes" in der
RastPort-Struktur gespeichert sind, konnen Sie die
wichtigsten Eigenschaften des Displays dem Viewport
entnehmen. Sie werden spdter noch sehen, wie man mit
Hilfe eines neuen Viewports diverse unter Intuition
nicht zuldssige Anzeigen realisieren kann, und dabei
auch den genauen Aufbau der ViewPort-Struktur und die
Bedeutung ihrer Felder kennenlernen.

Um nun beispielsweise der Farbe Nummer 1 eine Mi-
schung aus 7 Anteilen Griin und 7 Anteilen Blau zuzu-
ordnen rufen Sie SetRGB4 folgendermaBen auf:

SetRGB4(View,1,0,7,7);
View ist selbstverstdndlich ein Zeiger auf die

ViewPort-Struktur. Je nachdem, ob Sie direkt in einem
Screen, oder in einem Fenster arbeiten, miissen Sie

76

Kapitel 4 Farbeinstellung und Graphik

unterschiedlich vorgehen, um diesen zu ermitteln. Um
den Viewport eines Fensters zu finden, koénnen Sie
sich der Intuition-Prozedur ViewPortAdress bedienen,
die als Eingabe einen Zeiger auf ein Fenster braucht,
und als Ergebnis die gesuchte Adresse des Viewports
liefert. Der Viewport eines Screens ist direkt in der
Screen-Struktur zu finden. Seine Adresse kann also
wie folgt z.B. in die Variable View eingelesen wer-
den:

View = &((*Screen).Viewport);

Dabei wird natiirlich vorausgesetzt, -daB Screen ein
Zeiger auf den Screen ist. Beachten Sie auch, daB
sich die gesamte ViewPort-Struktur, nicht nur Ihre
Adresse in der Screen-Struktur befindet.

Die RGB-Werte fiir die Farben kénnen selbstverstdnd-
lich nicht nur verédndert, sondern auch jederzeit ge-
lesen werden. Notwendig ist das beispielsweise, um
die von vielen Zeichenprogrammen bekannte Color-
Cycle-Funktion, die die Werte der Farbregister zyk-
lisch verdndert, zu verwirklichen.

Die gewiinschten Werte werden Ihnen von der Proze-
dur GetRGB4 geliefert. Sie gibt Ihnen eine Zahl, in
der die drei gesuchten Werte enthalten sind, zuriick.

Falls Sie sich wundern sollten, wie das geht, dann
denken Sie bitte daran, daB jeder Wert zwischen 0 und
15 Tiegt, also nur 4 Bit braucht, so daB eine 16 Bit-
Zah1 vd11ig ausreicht, um alle drei Komponenten zu
speichern. Den Anteil einer bestimmten Farbe kann man
mit Hilfe einer AND-Verkniipfung der erhaltenen Zahl,
mit einem Wert, der den zu dieser Farbe gehdrenden
Bits entspricht, erhalten. Die untersten 4 Bit sind
fiir die Farbe Blau reserviert, die ndchsten 4 fiir

77

Kapitel 4 . - Farbeinstellung und Graphik

Griin und die dariiberliegenden fiir Rot. Die obersten 4
Bits sind bedeutungslos. Daraus folgt, daB man den
Roten Anteil durch eine AND-Verkniipfung mit hexadezi-
mal 0f00 (dezimal 3840), den Griinen mit 00f0 (240)
und den Blauen mit 000f (15) bekommen kann. Hier ein
Beispiel:

View = ViewPortAddress(Window);
Colors = GetRGB4(CMap,1);

Rot = Colors & 3840;

Gruen = Colors & 240;

Blau = Colors & 15;J

In diesem Beispiel miissen Window ein Zeiger auf ein
Fenster und CMap die Adresse einer ColorMap-Struktur
sein. Die letztere konnen Sie aus der ViewPort-Struk-
tur folgendermaBen ermitteln:

CHap = View->ColorMap;

Wie das in der Praxis funktioniert, konnen Sie sich
in dem folgenden Programm ansehen. In einer for-
Schleife wird dort der Blauanteil aller Farben des
Screens auf Werte von 0 bis 15 gesetzt. Dann werden
mit jeder Farbe fiinf konzentrische Kreise mit immer
groBer werdenden Radien gezeichnet, so daB durch die
zunehmende Helligkeit der Eindruck eines dreidimensi-
onalen Tunnels entsteht. Die Adresse des Viewports
wird hier nicht mit der ViewPortAdress-Prozedur, son-
dern iliber den zu dem Fester gehdrenden Screen ermit-
telt. Zum SchluB wird wieder in einer for-Schleife
immer wieder der Blauanteil von zwei benachbarten
Farbregistern vertauscht, so daB der schon erwdhnte
Color-Cycle Effekt entsteht. Da die Rot und Griin An-
teile aller Farben null sind, wdre hier die AND Ver-

78

Kapitel 4 Farbeinstellung und Graphik

kniipfung nicht notwendig, um den Blauanteil zu erhal-
ten. Wir haben sie aber trotzdem zur Demonstration
verwendet.

Programm 4.3 ColorCycle

#include "Display.h"

#include "intuition/intuition.h"
#include "exec/types.h"
#include "graphics/gfx.h"J
#include "stdio.h"

struct Screen *Screen;
struct Window *Window;
struct RastPort *Rast;
struct ViewPort *View;
struct ColorMap *CMap;

main ()

long j, Color;
SHORT i, k, *CAdr;

OpenIntui();
OpenGfx ();

/* Einen low-res Screen der Tiefe 4 (16 Farben)
gffnen. */
Screen = (struct Screen *)MakeScr(0,0,320,200,
“Figuren”,5,NULL,NULL);
if (Screen == NULL) /* Fehler beim Offnen. */
exit(FALSE);

79

Kapitel 4 Farbeinstellung und Graphik

/* Fenster auf dem neuen Screen (ffnen. */
Window = (struct Window*)MakeWindow(0,0,320,200,
0,0,"Hallo",SMART REFRESH]
BORDERLESS, IIULZ., Screen);
if(Window == NULL) /* Fehler beim Offnen. */
exit(FALSE);

/* Adresse des Rastports, des Viewports und der
' ColorMap. */

Rast = Window->RPort;
View = &((*Screen).ViewPort);
CHap = View ->ColorMap;

/* Farbregister 2 bis 15 initialisieren. */
SetRGB4(View,0,0,0,0); /* Hintergrundfarbe
schwarz */
for(i = 1; i < 16; i++)
SetRGB4(View,i,0,0,17);
/* 80 Konzentrische Kreise zeichnen. */
for(i = 2; 1 < 16; i++)

SetAPen(Rast,i);
/* Neue Farbe wéhlen und */
for(k = 1; k < 6; k++)
/* 5 Kreise in dieser Farbe. */
DrawCircle(Rast, 160,100, i*5+k);
}
}
/* Farben 50 mal vertauschen. */
for(i= 2; i < 50; i++)
for(k = 1; k < 16; k++)
Color = GetRGB4(CMap, k)&15;

SetRGB4(View,k,0,0,GetRGB4(CHap, (k+1)%14+2)&15);
SetRGB4(View, (k+1)%14+2,0,0,Color);

80

Kapitel 4 Farbeinstellung und Graphik

oo . .
for(j = 1; j < 30000; j++);

CloseWindow(Window);
CloseScreen(Screen);

}

81

Kapitel 4

Farbeinstellung und Graphik

82

Kapitel 5 Polygone, Flaechen, Fuellmuster

Kapitel 5

Polygone, gefiillte Flachen und Fiillmuster

83

Kapitel 5 Polygone, Flaechen, Fuellmuster

Nach den doch noch ein biBchen primitiven Zeichen-
routinen, die Sie im vierten Kapitel kennengelernt
haben, wollen wir uns hier einem komplizierteren,
aber dafiir auch interessanteren Thema zuwenden. Dabei
handelt es sich um das Zeichnen von Vielecken und ge-
fiillten Flachen. Dabei gibt es noch eine Besonder-
heit: die Moglichkeit, fir diese Fldchen verschiede-
ne Muster bzw. Farbmuster zu verwenden. In diesem
Zusammenhang wird ein include-File vorgestellt, das
Ihnen bei der Initialisierung der von den Fiillrouti-
nen bendétigten Strukturen (TempRas und AreaInfo) be-
hilflich sein soll. Er erhdlt auch eine Prozedur,
die Ihnen beim Zeichnen von gefiillten Polygonen eini-
ge Arbeit abnehmen wird.

Gute Grafik 1aBt sich nur schwer aus Rechtecken
und E1lipsen allein aufbauen. Mit der DrawBorder-Pro-
zedur haben Sie bereits eine Moglichkeit kennenge-
lernt, beliebige Vielecke bzw. Linienziige zu zeich-
nen. Eine einfacherere Méglichkeit stellt die Poly-
Draw-Prozedur der Graphics-Library dar. Diese braucht
als Eingabe die Anzahl der Ecken, sowie einen Zeiger
auf den Rastport und auf einen Speicherbereich, in
dem die Koordinaten der Eckpunkte des zu zeichnenden
Vielecks als Zahlenpaare gespeichert sind. Ein Aufruf
muB also wie folgt aussehen, wenn iiber den n Ecken der
in Koordinaten gespeicherten Werten ein Polygon ge-
zeichnet werden soll:

PolyDraw(Rast,n,&Koordinaten[0]);

84

Kapitel 5 Polygone, Flaechen, Fuellmuster

Am besten ist es, wenn Sie ihre Koordinaten in
einem Array von SHORT-Zahlen speichern und deren
Adresse dann an diese Prozedur weitergeben. Da Sie
die Anzahl der Ecken extra angeben, konnen Sie wahl-
weise auch nur einen Teil des Vielecks zeichnen Tlas-
sen. Zu beachten ist lediglich, daB die Prozedur das
Polygon nicht von selbst abschlieBt, d.h. daB Sie, um
eine geschlossene Figur zu erhalten, die Koordinaten
des ersten Punktes auch am Ende als Koordinaten des
letzten Punktes angeben miissen. Wichtig ist auch, daB
vor dem Zeichnen des Polygons der Grafikcursor an die
Position der ersten Ecke gebracht wird, da ansonsten
diese mit seiner aktuellen Position verbunden wird.

Als Beispiel fiir die Anwendung der PolyDraw-
Prozedur folgt ein Programm, das dem Benutzer die
Eingabe der Eckkoordinaten durch Klicken der Maus
erlaubt. Die Position der Maus beim Driicken der lin-
ken Taste wird in dem Array Polygon, das spdter an
PolyDraw iibergeben wird, gespeichert, und legt somit
die Position einer Ecke fest. Sobald die rechte Taste
gedriickt wird, wird die Eingabe beendet, der Grafik-
cursor positioniert und das Polygon gezeichnet. Durch
Anfiigen des ersten Koordinatenpaares am Ende des
Arrays wird das Polygon abgeschlossen.

Programm 5.1 Polygon

#include "Display.h"

#include "intuition/intuition.h"
#include "exec/types.h"
#include "graphics/gfx.h"

struct Screen *Screen;

struct Window *Window;
struct RastPort *Rast;

85

Kapitel 5 Polygone, Flaechen, Fuellmuster

main ()

SHORT x, y, Corners, Polygon[100];
USHORT code;
ULONG Class;

OpenIntui();
OpenGfx ();

/* Einen hi-res Screen der Tiefe 2 (4 Farben)
éffnen. */
Screen = (struct Screen *)MakeScr(0,0,640,250,
“Polygon”,2,HIRES,NULL);
if (Screen == NULL) /* Fehler beim Offnen. */
exit(FALSE);

/* Rahmenloses Fenster mit Close Gadget und IDCHP-
Port offnen. */

Window = (struct Window *)MakeWindow(0,0,640,250,0,
0, "Polygon”,

SMART REFRESH! BORDERLESS | WINDOWCLOSE | RMBTRAP,
- CLOSEWINDOW!MOUSEBUTTONS, Screen);

if(Window == NULL) .

exit(FALSE); /* Fehler beim Offnen. */

/* Adresse des Rastports. */
Rast = Window->RPort;
/* Ecken einlesen und Polygon zeichnen. */
Corr{rers = 0; /* Eckenzahl initialisieren. */
do
Class = WaitEvent(Window,&code);
if((codeSMENUUP) == MENUUP)
/* Ende der Eingabe ? */
break; /* Ja -> Schleifenabbruch. */
if((code&SELECTUP) == SELECTUP)
/* Ecke eingegeben ? */

GetMouse(Window,&x,&y);

86

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* Ja -> Mauskoordinaten lesen, */
WritePixel(Rast,x,y);

/* Punkt makieren, */
Polygon[2*Corners] = x;

/* Koordinaten merken */
Polygon[2*Corners+1] = y;
Corners++; /* und Eckenanzahl erhéhen, */

}
} while (Corners < 50);

/* Das Polygon zeichnen. */
Po lygon[2*Corners] = Polygon[0];

/* Polygon abschlieBen */
Polygon[2*Corners+1] = Polygon[1]; :
Kove(Rast,Polygon[0],Polygon[1]);
PolyDraw(Rast,Corners+1,&(Polygon[0]));

/* Auf Close Gadget warten und alles schlieBen. */
while((WaitEvent(Window,&code) != CLOSEWINDOW));
CloseWindow(Window);

CloseScreen(Screen);

Lo]

Bild 5.1 -Eine Beispielausgabe des Programms Polygone

87

Kapitel 5 Polygone, Flaechen, Fuellmuster

Die Befehle zur Erzeugung gefiillter Fldchen sind in
sich relativ simpel, vor ihrer Anwendung miissen aber
in der Regel einige Vorbereitungen getroffen werden.
Der Grund dafiir ist darin zu suchen, daB das System
um komplizierter geformte Flachen korrekt und schnell
zu fiillen, zusdtzlichen freien Speicher als Zwischen-
ablage fiir Bilddaten und Eckkoordinaten bendtigt. Die
Verfiigbarkeit, GrdBe und Adresse dieses Speichers
entnehmen die Grafikprozeduren den Datenstrukturen
TempRas und_ArealInfo, deren Adressen in der RastPort-
Struktur eingetragen werden miissen.

Um diese Strukturen initialisieren zu kdnnnen, miis-
sen Sie zuerst den bendtigten Speicher reservieren.
Der Bildatenzwischenspeicher, der durch TempRas be-
schrieben wird, muB im CHIP-Ram 1liegen, und groB
genug sein, um den gesamten in jeweils einer Bitplane
liegenden Teil der zu fiillenden Fléche komplett auf-
zunehmen. Beachten Sie dabei, daB sich die GroBe des
fiir eine Figur bendtigten Speichers aus dem Produkt
ihrer maximalen Hohe und Breite ergibt. Fiir ein Drei-
eck der Hohe 90 Pixel un Breite 70 Pixel brauchen Sie
also einen Speicher von 90x70 Bit, was aufgerundet
(Speicherplatz wird ja nur in ganzen Bytes verwal-
tet!) 12x10 = 120 Bytes = 6x5 Prozessorwortern,
entspricht. Um eine TempRas-Struktur zu initialisie-
ren, muB, nach dem der Speicher alloziert wurde, die
InitTempRas-Routine der Graphics-Library folgenderma-
Ben aufgerufen werden:

InitTmpRas(&TRas,Memory,Size)

88

Kapitel 5 Polygone, Flaechen, Fuellmuster

Memory ist dabei der Zeiger auf den allozierten
Speicherbereich und Size seine GroBe. In TRas wird
ein Zeiger auf die initialisierte TempRas-Struktur
zuriickgegeben (TRas muB also vom Typ TempRas sein).
Diesen miissen Sie, um den so erzeugten TempRas einem
Rastport zur Verfiigung zu stellen, nur noch wie folgt
in die entsprechende RastPort-Struktur eintragen:

Rast->TempRas = TRas;

Denken Sie daran, daB Sie den Speicher spdter durch
Deallozieren wieder freigeben und das TempRas-Feld
des Rastports wieder auf NULL setzen.

Als ndchstes muB die ArealInfo-Struktur erzeugt wer-
den. Der dafiir bendétigte Speicher hdangt davon ab,
welche Fiillroutine Sie gebrauchen wollen. Grundsdtz-
lich gilt, daB pro Ecke der zu zeichnenden Figur 10
Bytes bendtigt werden. Fiir ein Polygon mit 10 Ecken
brdauchten Sie also einen 100 Byte groBen Buffer. Die
AreaInfo-Struktur wird nach der Allozierung des
Speichers: durch den folgenden Aufruf der InitArea-
Prozedur initialisiert:

InitArea(&AInfo,Buffer,Size);

In den beiden Parametern Buffer und Size miissen Sie
die Adresse des Buffers und die Anzahl der Ecken mal
2 angeben. In AInfo wird dann ein Zeiger auf die ini-
tialisierte AreaInfo-Struktur zuriickgegeben, den Sie
wieder in die RastPort-Struktur wie folgt eintragen
missen.

Rast->ArealInfo = &Areal;
Wie Sie sehen, 1ist die Vorbereitung zum Fiillen

von Fldchen doch relativ aufwendig. Um Ihnen zukiinf-
tig die damit verbundene Miihe zu ersparen, wird in

89

Kapitel 5 Polygone, Flaechen, Fuellmuster

dem hier abgedruckten "include"-File die Prozedur
NewArea definiert, die alle oben beschriebenen MaB-
nahmen fiir Sie erledigt. Zusdtzlich beinhaltet die-
ser File auch noch eine Prozedur, die den von Tempras

und AreaInfo belegten Speicher wieder freigibt
(CloseArea) und eine, die ein gefiilltes Polygon

zeichnet (PolyFill). Auf die Funktionsweise und das
Aufrufformat der letzten Prozedur werden wir in einem
spdteren Abschnitt zuriickkommen. In NewArea wird eine
neue Art Speicherplatz zu allozieren verwendet. Bei
dieser Methode wird die Intuition-Routine AllocRemem-
ber aufgerufen, die den gewiinschten Speicher reser-

viert und seine GroBe in einer Remember- Struktur
speichert. Neben der GroBe und Art des bendtigten
Speichers miissen Sie der Routine auch noch die

Adresse eines Zeigers auf eine solche Struktur ({ber-
geben. Falls dieser Zeiger NULL ist, wird dort die
Adresse einer neuen Remember-Struktur hinein ge-
schrieben. Sie konnen spdter wenn Sie weitere Spei-
cherbereiche allozieren, diesen Zeiger wieder verwen-
den, wodurch die neue Remember-Struktur einfach an
die alte "angehdngt" wird. Der Vorteil dieses Verfah-

rens
reiche,

liegt darin,
die so alloziert wurden,
Zeitpunkt durch einen einzigen Aufruf von
ber wieder freizugeben.

daB es mdéglich ist,

mal die GroBe dieser Bereiche zu merken.

mehrere Be-
zu einem spéteren
FreeRemem-
Man braucht sich dabei nicht

Remember

Remember

Remember

NextRemember

NextRemember

—> Usw.—»

NextRemember

—— NULL

Size

Size

Size

Memory

Memory

Memory

Gweicber) @Peicher)

Bild
strukturen

90

5.2 - Die interne Verwaltung der Remember-

Kapitel 5 Polygone, Flaechen, Fuellmuster

Programm 5.2 AreaExtras

#include "intuition/intuition.h"
#include "exec/types.h"

#include "exec/memory.h"
#include "graphics/gfx.h"

/* Diese Prozedur initialisirt ein TempRas und
ein AreaInfo */
NewArea (Rast,Corners,RPointer)

SHORT Corners;APTR *RPointer;
struct RastPort *Rast;

static struct TmpRas TRast;
static struct Arealnfo Areal;
struct Remember *Rm;

APTR TBuffer, ABuffer;
Tong PlaneSize;

Rm = NULL;
/* CHIP-Memory fiir Temprast und AreaBuffer
allozieren. */
PlaneSize = (Rast->BitMap->BytesPerRow)*(Rast->
BitMap->Rows);
TBuffer = AllocRemember(&Rm,PlaneSize, MEMF CHIP |
/, MEMF PUBLIC);
if (TBuffer == NULL) /* Fehler beim Allozieren ? */
exit(FALSE);
ABuffer = AllocRemember(&Rm,Corners*10,MEMF CHIP |
MEMF PUBLIC);
if (TBuffer == NULL) /* Fehler beim Allozieren 7 */
exit(FALSE);
/* TempRas und Arealnfo initialisieren, */
InitArea(&Areal,ABuffer,2*Corners);
InitTmpRas(&TRast, TBuffer,PlaneSize);

91

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* und seine Adresse im Rastport eintragen. */
Rast->TmpRas = &TRast;

Rast->Arealnfo = &Areal;

*RPointer = Rm;

}

/* Diese Prozedur gibt den fiir TempRas und ArealInfo
nétigen Speicher frei */
void CloseArea(Rast,RPointer)

APTR RPointer;
struct RastPort *Rast;

FreeRemember(&RPointer, TRUE); /* Speicher
freigeben. */

Rast->AreaInfo = NULL;

/* Eintrag im RastPort léschen. */

Rast->TmpRas = NULL;

/* Diese Prozedur erzeugt ein gefiilltes Polygon. */
void PolyFill(Rast,Polygon,Corners)

struct RastPort *Rast;
SHORT *Polygon;
SHORT Corners;

{ .
SHORT i;
APTR Remember;

/* TempRas und Arealnfo initialisieren. */
NewArea(Rast, Corners,&Remember);

/* Grafikcursor zum Startpunkt, Ecken erzeugen und
Polygon zeichnen. */

AreaMove(Rast, *Po lygon, *(Po lygon+1));

for(i = 1; i < Corners; i++)

92

Kapitel 5 Polygone, Flaechen, Fuellmuster

AreaDraw(Rast, *(Polygon+2*i), *(Polygon+2*i+1));
AreaEnd(Rast);

/* TempRas und Arealnfo léschen. */
CloseArea(Rast,Remember);

Wie dem Listing zu entnehmen ist, konnen Sie die
NewArea und CloseArea Prozeduren folgendermaBen ge-
brauchen:

NewArea(Rast,Corners,RPointer);
CloseArea(Rast,RPointer);

Die Parameter haben dabei folgende Bedeutung:

Rast: Zeiger auf den Rastport.

Corners: Die Anzahl der Ecken.

RPointer: Die Adresse eines Zeigers auf eine
Remember-Struktur.

Da man im voraus oft nicht genau sagen kann, wie
groB die zu fiillende Fldache ist, ist es am sinnvoll-
sten, fiir den TempRas eine ganze Bitplane zu reser-
vieren. Genau das tut auch das obige AreaExtras Pro-
gramm, das die GroBe der Bitplane wie folgt ermit-
telt:

b = Rast->BitMap->BytesPerRow;
h = Rast->BitMap->Rows;
PlaneSize = b*h;

Dabei wird iiber den in Rast enthaltenen Zeiger auf
die RastPort-Struktur auf die BitMap-Struktur zuge-
griffen, wo die Anzahl der Bytes pro Zeile (BytesPer-
Row) und die Anzahl solcher Zeilen(Rows) gespeichert
sind. Auf der Programmdiskette befindet sich des oben
abgedruckte File in der Directory include unter dem
Namen AreaExtras.h.

93

Kapitel 5 Polygone, Flaechen, Fuellmuster

Als erstes wollen wir in diesem Abschnitt die
Flood-Routine, die eine beliebige geschlossene Fldche
um die angegebenen Koordinaten fiillt, betrachten.
Diese wird wie folgt

Flood(Rast, Mode, x, y);

aufgerufen und kann dazu verwendet werden, eine
mit den schon beschriebenen Zeichenprozeduren erzeug-
te Figur nachtrdglich zu fiillen. Dafiir stehen Ihnen
zwei Modi, die durch die Mode-Variable ausgewdhlt
werden kénnen, zur Verfiigung:

(1) outline mode

Falls Sie diesen Modus wdhlen, werden alle Punkte
um x,y, die nicht die Area-QOutline Farbe haben, in
der aktuellen Vordergrundfarbe gezeichnet.
Der Fiillvorgang wird also dann gestoppt, wenn eine
mit der Area-Outline Farbe gezeichnete Umrandung
erreicht wird. Die Area-Qutline Farbe in dem Rastport
Rast kann mit Hilfe der_SetOPen Routine so auf den in
Color enthaltenen Wert gesetzt werden:

SetOPen(Rast,Color);

Dieser Modus wird eingeschaltet, wenn Mode den
Wert 0 hat.

94

Kapitel 5 Polygone, Flaechen, Fuelimuster

(2) color mode

In diesem Modus werden alle Punkte mit der aktu-
ellen Vordergrundfarbe gefiillt, die um x,y liegen und
die die gleiche Farbe besitzen, die der Punkt an
der Position x,y hat. Der Fiillvorgang wird hier been-
det, wenn irgendeine geschlossenen Umrandung er-
reicht wird. Dies ist der am hdufigsten verwendete
Modus. Um ihn auszuwdhlen, setzen Sie Mode auf 1.

Im Qutline-Modus konnen Sie die Flood-Routine ver-
wenden, ohne vorher einen TempRas eingerichtet zu
haben. Da das Fiillen dabei extrem langsam vor sich
geht, sollte man dies jedoch nach Mdglichkeit vermei-
den. Ein Versuch, ohne TempRas im color-Modus zu
Fiillen, bleibt entweder ohne Wirkung, oder endet mit
einem Besuch beim Guru!

Wenn Sie ein Rechteck, eine Ellipse oder einen
Kreis direkt ausgefiillt zeichnen wollen, dann kdnnen
Sie sich der_RectFill, AreaEllipse, oder AreaCircle-
Prozeduren bedienen. RectFill kann auch ohne einen-
TempRas gebraucht werden und erzeugt, wie der Name
schon sagt, ein gefiilltes Rechteck. Ein Rechteck,
dessen 1linke obere Ecke bei (10,10) und rechte
untere bei (110,110) liegen (Daraus ergibt sich Hohe
=Breite = 100 Pixel), kann in dem durch Rast bestimm-
ten Rastport so gezeichnet werden:

RectFill(Rast,6 10,10,110,110);

Fiir AreaEllipse und AreaCircle miissen wie im
vorigen Abschnitt beschrieben, ein TempRas und Area-
Info initialisiert werden. Die Anzahl der Ecken ist
dabei auf 4 zu setzen. Um eine E1lipse mit den Radien
90 (x-Radius) und 50 (y-Radius) und einen Kreis mit
dem Radius 110 um den Punkt (320, 100) zu erzeugen
muB man, nachdem die ensprechenden Vorbereitungen

95

Kapitel 5 Polygone, Flaechen, Fuellmuster

(TempRas, ArealInfo) getroffen wurden, die beiden Pro-
zeduren so aufrufen:

AreaE]lipse(Rast,320,100,90,50);<<Return>>AreaCircle
(Rast,320,100,110);

AreaCircle ist in graphics/gfxmacros definiert.

Die schon im Zusammenhang mit Flood erwdhnte Area-
Qutline Farbe bietet zusdtzlich noch die Moglichkeit,
gefiillte Figuren mit einer Umrandung zu zeichnen.
Dazu miissen Sie vor dem Aufruf der gewiinschten
Zeichenroutine mit Hilfe von SetOPen eine Farbe aus-
wdhlen. Gleichzeitig wird dabei ein Flag im RastPort
gesetzt, der dem System mitteilt, daB alle Fldchen
umrandet werden sollen. Um diesen Flag wieder zu
16schen, konnen Sie das BNDRYOFF-Macro benutzen, das
in graphics/gfxmacros definiert ist. Der Aufruf sieht
SO aus:

BNDRYOFF (RAST);

Die Anwendung der soeben besprochenen Prozeduren
kdnnen Sie sich an Hand des folgenden Programms
klarmachen. Es erdffnet ein Fenster und zeichnet dort
zwei sich {iberlappende Ellipsen. Danach wird die
Area-Qutline Farbe auf die Farbe der zweiten Ellipse
gesetzt, und diese im Qutline-Modus gefiil1t. Obwohl
sich die Ellipsen iiberlappen, wird die gesamte rechte
E1lipse gefiillt, da das Fiillen erst dort aufhért, wo
sich die Area-Outline Farbe befindet. Wiirden Sie hier
den color-Modus verwenden, dann wiirde die E1lipse nur
bis zur Uber]appung gefu]]t werden. Als ndchstes wird
mit RectFill ein Viereck gezeichnet und dann mit
Hilfe der in AreaExtras.h definierten NewArea-Proze-

96

Kapitel 5 Polygone, Flaechen, Fuellmuster

dur ein TempRas und ein AreaInfo fiir die nachfolgen-
den Flood und AreaEllipse Aufruf bereitgestellt.
Beachten Sie um wieviel schneller das Fiillen mit
Flood nun geht. Zum AbschluB werden mit CloseArea der
TempRas und AreaInfo wieder geschlossen.

Programm 5.3 Fill

#include "Display.h"

#include "AreaExtras.h"

#include "exec/types.h"

#include "intuition/intuition.h"
#include "graphics/gfx.h"
#include "graphics/gfxmacros.h"

struct Window *Window;
struct RastPort *Rast;
struct Remember *Remember;

main ()

USHORT code;
ULONG Class;

OpenIntui();
OpenGfx ();
/* Fenster mit Close- und Depth Gadget und IDCHP-
Port dffnen. */
Window = (struct Window *)MakeWindow(0,0,640,250,0,
0,"Fill",SMART REFRESH/
NTNDONT[OSE/NYWDONDEPTH,CLOSEMHwﬂMhNUlL);
if(Window == NULL) /* Fehler beim Offnen. */
exit(FALSE); '
Rast = Window->RPort; /* Adresse des Rastports. */

97

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* Zwei liberschneidende E1lipsen mit verschiedenen
Farben zeichnen. */
SetAPen(Rast,1);
DrawE11ipse(Rast,220,50,150,40);
SetAPen(Rast,2);
/* Neue Vordergrundfarbe ! */
DrawE 11ipse(Rast,440,50,150,40);
/* Zweite Ellipse im Fiillmodus O Fiillen. */
SetOPen(Rast,2);
/* Neues Area Outline Pen und */
SetAPen(Rast,2);
/* Vordergrundfarbe. */
Flood(Rast,0,440,50);
/* Ellipse 2 im Modus 0 fiillen */

/* Ein gefiilltes Rechteck mit Farbe 1 und Umran-
dung 2 Zeichnen */

SetAPen(Rast,1);

RectFill(Rast,100,110,540,170);

/* TempRas und ArealInfo initialiseren */
NewArea(Rast,4,&Remember);

/* Ellipse 1 im Hodus 1 fiillen */
Flood(Rast,1,120,50);

/* Eine Gefiillte Ellipse mit farbe 2 Zeichnen. */
SetAPen(Rast,2);

AreaE1lipse(Rast,320,200,150,40);

Class = AreaEnd(Rast);

/* Auf Close Gadget warten und Fenster schlieBen */
Class = WaitEvent(Window,&code);
/* Auf Close Gadget warten */
CloseArea(Rast,Remember);
/* Speicher deallozieren */
CloseWindow(Window);

98

Kapitel 5 Polygone, Flaechen, Fuelimuster

Falls Sie sich die in AreaExtras definierte Proze-
dur PolyFill angesehen haben, werden Sie gemerkt
haben, daB das Zeichnen von gefiillten Vielecken nicht
ganz so einfach vor sich geht, wie es bei normalen
Polygonen der Fall ist. Zundchst miissen, wie auch bei
den Kreisen und Ellipsen, TempRas und AreaInfo ent-
sprechend der GroBe und Eckenzahl des Polygons ini-
tialisiert werden. Als ndchstes muB mit AreaMove der
Anfangspunkt des Polygons bestimmt werden. Nun kdnnen
z.B. in einer for-Schleife die erwiinschten Eckkoordi-
naten mit AreaDraw dem System mitgeteilt werden, und
schlieBlich das Polygon mit AreaEnd ausgegeben wer-
den. An AreaMove und AreaDraw wird derZeiger auf den
Rastport und das Koordinatenpaar iibergeben, an
AreaEnd nur der Zeiger auf den Rastport. So kann ein
gefiilltes Dreieck mit den Eckkoordinaten (100,10),
(200,100), (0,200) nach diesem Verfahren, wie folgt
gezeichnet werden.

Fig 5.1 Zeichnen eines gefiillten Polygons.

NewArea(Rast, 3,&Remember);
AreaMove(Rast,100,10);

AreaDraw(Rast,100,10);
AreaDraw(Rast,200,100);
AreaDrwa(Rast,0,200);

AreaEnd(Rast);

99

Kapitel 5 Polygone, Flaechen, Fuellmuster

Einfachheitshalber haben wir hier zur Initialisie-
rung des TempRas und AreaInfo die Prozedur NewArea
benutzt. Wesentlich einfacher konnen Sie ein gefiill-
tes Vieleck unter Anwendung der schon erwdhnten
PolyFill-Prozedur erzeugen, die wir fiir Sie in
AreaExtras vereinbart haben. Diese iibernimmt nicht
nur die AreaMove, AreaDraw und AreaEnd Aufrufe,
sondern auch die Allozierung und Deallozierung des
TempRas und des Arealnfo.

Als Eingabe braucht PolyFill wie auch die bekannte
Systemroutine PolyDraw nur die Anzahl der Ecken, und
die Adressen des Rastports und eines Arrays, in dem
die Koordinaten der Ecken gespeichert sind. Um unser
Dreieck auf diese Weise zu zeichnen, missen Sie also
folgendes tun:

(1) Ein Koordinatenarray so vereinbaren:

short Dreieck [] = {100,10, 200,100, 0,200};

(2) PolyFill so aufrufen:
PolyFill(Rast,&Dreieck[0],3);
Ein weiteres Beispiel fiir die Anwendug dieser

Routine finden Sie im letzen Beispielprogramm dieses
Kapitels.

100

Kapitel 5 Polygone, Flaechen, Fuellmuster

Eine Fldche kann nicht nur mit einer Farbe, sondern
auch mit einem Muster gefiillt werden. Das Muster muB
eine Breite von 16 Punkten und die HBhe einer
Zweierpotenz also 1,2,4,8....usw. haben. Die Bildda-
ten fiir das Muster werden, wie auch bei einem Image
(siehe Kapitel 3) der Tiefe 1, 1in einem Array von
USHORT Zahlen gespeichert, von denen jeder einer
Bildzeile entspricht. In diesen Zahlen ist dann jedes
Bit stellvertretend fiir einen Punkt. Ist das Bit
gesetzt, so erscheint dieser Punkt in dem Muster, ist
es geldoscht, dann erscheint er nicht. Ein horizonta-
les Streifenmuster, das abwechselnd aus einer Zeile
gesetzter und nicht gesetzter Punkte besteht, hat
somit diese Form:

1111111111111111
0000000000000000

und muB wie folgt definiert werden:

USHORT Muster [] = {Oxffff,
0x0000

}i

Ein so erzeugtes Muster kdnnen Sie mittels SetAfPen
einem Rastport zuordnen. Dazu miissen Sie diese Rou-
tine wie folgt Aufrufen:

SetAfPen(Rast,&Muster,Rows);

101

Kapitel 5 Polygone, Flaechen, Fuellmuster

Hier bedeutet Rast einen Zeiger auf einen Rastport,
Muster das Array, in dem die Bilddaten gespeichert
sind, und Rows eine Zweierpotenz, die die Anzahl der
Zeilen des Musters bestimmt (in unserem Beispiel
miBte hier eine 1 stehen, denn 2 hoch 1 = 2).
Nach diesem Aufruf wird beim Fiillen bis auf weiteres
dieses Muster verwendet, d.h. es werden nur die in
dem Muster gesetzten Punkte in die Fldche hineinge-
zeichnet (Zumindest wenn Sie als Zeichenmodus JAM1
benutzen). Wichtig ist, daB bei der Verwendung von
Mustern alle Fiillroutinen, also auch RectFill und
Flood auch im outline-Modus einen TempRas bendtigen!

Um das Fiillmuster auszuschalten, rufen Sie SetAfPen
mit WNULL als Zeiger auf Bilddaten und 00 als Anzahl
der Zeilen auf.

Ein Beispiel fiir die Verwendung von Fiillmustern
finden Sie in dem Programm Fill am Ende dieses
Kapitels.

Die Farbmuster sind eine Variante der normalen
Fiillmuster, die es méglich macht, Flachen auch mehr-
farbig zu fiillen. Dabei geben Sie fiir jede Bitplane
ihrer Anzeige ein eigenes Muster an. Beim Fiillen wird
dann jede Bitplane mit dem zu Ihr gehdrenden Muster
gefiil1t. Dadurch konnen Sie fiir jeden Punkt ihres
Musters eine eigene Farbe angeben. Zur Verdeutlichung
stellen Sie sich einmal vor, daB Sie fiir einen aus
zwei Bitplanes bestehenden Screen folgendes Muster
definieren:

102

Kapitel 5 Polygone, Flaechen, Fuellimuster

Bitplane 0

1111111111111111
1111111111111111
0000000000000000
0000000000000000

Bitplane 1

0000000000000000
1111111111111111
1111111111111111
0000000000000000

Da die erste Zeile des Musters nur in der Bitplane
Einsen hat, werden alle Punkte in dieser Zeile die
Farbe bindr 01 = dezimal 1 haben. In der zweiten
Zeile gibt es sowohl in der Bitplane 0 als auch in
der Bitplane 1 Einsen, so daB diese Zeile die. Farbe
bindr 11 = dezimal 3 haben wird. Analog werden die
vorletzte Zeile, wo sich alle Einsen in der Bitplane
1 befinden die Farbe bindr 10 = dezimal 2, und die
letzte, die in beiden Bitplanes nur Nullen hat, die
Farbe 0 haben. Man konnte natiirlich auch durch
entsprechendes Abwechseln von Nullen und Einsen alle
vier Farben innerhalb einer Zeile mischen. Die Bild-
daten des Farbmusters werden, wie es auch bei den
normalen Mustern der Fall war, in einem USHORT Array
gespeichert, wobei die Daten fiir die einzelnen Bit-
planes einfach hintereinander angeordnet sind.

Die Bildaten zu dem soebenen besprochenen Farbmu-
ster sehen demnach folgendermaBen aus:

103

Kapitei 5 Polygone, Flaechen, Fuellmuster

USHORT Farbmuster [] = {Oxffff, /* Bitplane 0 */
Oxffff,
0x0000,
0x0000,

0x0000, /* Bitplane 1 */
Oxffff,
Oxffff,
0x0000

Auch die Zuordnung des Muster an einen Rastport
sieht hier fast genauso wie bei den Fiillmustern aus.
Der einzige Unterschied besteht darin, daB die
Iweierpotenz, die die Anzahl der Zeilen bestimmt, als
eine negative Zahl angegeben wird. Um unser Beispiel-
muster einem Rastport mit der Adresse Rast zuzuord-
nen, miiBte man also folgendermaBen vorgehen:

SetAfPen(Rast,&Farbmuster,-2);

Zum AbschluB des Kapitels noch ein Beipielprogramm,
daB die Anwendung der PolyFill-Routine und der Fill-
und Farbmuster demonstriert. Es definiert ein Fill-
und ein Farbmuster, und zeichnet dann mit jedem eine
gefiillte Raute.

Programm 5.4 Muster

#include "Display.h"

#include "AreaExtras.h"
#include "graphics/gfxmacros.h"

struct Window *Window;
struct RastPort *Rast;

104

Kapitel 5 Polygone, Flaechen, Fuellmuster

short Polyl [] = {320, 15,
630, 125,
320, 245,
10, 125

4

short Poly2 [] = {320, 50,
520, 125,
320, 205,
120, 125

}l

USHORT Pattern [] = {Oxffff,
Oxfoof,
Oxfo0f,
Oxffff

}I

USHORT ColPattern [] = { Oxffff,
Oxfoof,
Oxf00f,
Oxffff,
Oxffff,
oxoffo,
0x0ff0,
OxXffff

}l

main ()

USHORT code;
ULONG Class;

OpenIntui();
OpenGfx ();

105

Kapitel 5 Polygone, Flaechen, Fuellmuster

/* Fenster mit Close- und Depth-Gadget und IDCHP-

Port offnen. */

Window = (struct Window *)MakeWindow(0,0,640,250,0,
0,"Fill",SHART REFRESH/

WINDOWCLOSE | WINDOWDEPTH, CLOSEWINDDN NULL)i

if(Window == NULL) /* Fehler beim Offnen. */

exit(FALSE);
Rast = Window->RPort; /* Adresse des Rastports. */

/* Fldhenmuster zum Fiillen einstellen, */
SetAfPt(Rast, &Pattern[0],2);

/* und ein gefiilltes Polygon zeichnen. */
PolyFill(Rast,&Poly1[0],4);

/* Farbmuster zum Fiillen einstellen, */
SetAfPt(Rast,&ColPattern[0],-2);

/* und ein gefiilltes Polygon zeichnen. */
PolyFill(Rast,&Poly2[0],4);

/* Auf Close-Gadget warten und Fenster schlieBen. */
Class = WaitEvent(Window,&code);

/* Auf Close Gadget warten */
CloseWindow(Window);

106

Kapitel 6 Prozeduren und Tricks

Kapitel 6

=

107

Kapitel 6 Prozeduren und Tricks

Bis auf die Textausgabe und die Handhabung der
Fonts, sollten Sie die Grundlagen der Grafikprogram-
mierung auf dem Amiga beherrschen, bevor Sie in die-
sem Kapitel weiter vordringen. In diesem Kapitel wer-
den wir noch ein paar Dinge erwdhnen, die in keines
der vorangegegangenen Kapitel so richtig passen, ob-
wohl diese fiir die Grundlegende Grafikprogrammierung
durchaus niitzlich sind. Auf die etwas komplexeren
Themen wie Blitter, eigene Viewports etc. werden wir
uns dann im ndchsten Kapitel stiirzen. Einige dieser
Themen, wie z.B. die Forbid und Permit Routinen, ha-
ben zwar vordergriindlich nichts mit der Grafik-
Library zu tun, der erfahrene Programmierer weiB
aber, daB er sie friiher oder spdater auch bei der
Grafikprogrammierung bendétigen wird.

Diese beiden globalen Strukturen werden beim Offnen
der entsprechenden Library initialisiert, wobei die
OpenL ibrary Prozedur jeweils die Adresse als Ergebnis
liefert. Falls Sie zum Offnen der Library die in Ka-
pitel 2 vorgestellte Prozedur OpenIntui bzw. OpenGfx
benutzen, dann steht Ihnen diese Adresse in der glo-
balen GfxBase- bzw. IntuitionBase-Variable direkt zur
Verfiigung. In der GfxBase-Struktur finden Sie unter
anderem die Adresse des aktiven Viewports (im Feld
ActiveView-ViewPort), die Liste der verfiigharen Fonts
(in TextFonts), die Interrupts fiir Blitter und Timer
(in Timsrv bzw. Bltsrv) und die aktuellen Display-
Flags (in DisplayFlags).

108

Kapitel 6 Prozeduren und Tricks

Um beispielsweise die Adresse des momentan aktiven
Viewports in View einzulesen, miissen Sie also folgen-
dermaBen vorgehen:

View = GfxBase->ActiveView->ViewPort;

Die IntuitionBase-Struktur enthdlt noch um einiges
mehr an wichtigen Informationen. Dazu gehéren z.B.die
Adressen des aktiven Screens und des aktiven Fensters
(in ActiveScreen bzw.ActiveWindow),ein Zeiger auf die
Preferences-Struktur (in Preferences), die Adressen
der Image-Strukturen einiger Systemimages (in Check-
Image bzw. AmigaIcon) und die Zeiger auf die System-
gadgets (in SysGadgets).

Besonderes niitzlich ist auch die Adresse des ersten
Screens der Intuition Screenliste, die Sie in First-
Screen finden. Durch untersuchen des NextScreen-Fel-
des dieser Screen-Struktur konnen Sie die Adresse des
nachsten ermitteln, und von dort auf die gleiche Wei-
se die des iiberndchsten usw., so daB Sie die Mdg-
lichkeit haben, auf alle Screens zuzugreifen.

In der Screen-Struktur befindet sich iibrigens ein
Feld namens FirstWindow, das einen Zeiger auf das
erste Fenster dieses Screens beinhaltet. Da jedes
Fenster in NextWindow die Adresse des ndachsten bein-
haltet, stehen Ihnen so auch alle Fenster zur Manipu-
lation offen!

109

Kapitel 6 Prozeduren und Tricks

!Scre:!m W|ndow+—>}mndow 2’—»' INULL
[Scretr 2 |-p{ Window]— Window z]—»l INULL

v
lScre:I Mnaowj—plrﬂ:ow z]—»l INULL

NULL

Bild 6.1 - Die Verkniipfung von Screens und Windows

Eine vollstdndige Behandlung der GfxBase-und Intui-
tionBase-Strukturen ist hier weder moéglich noch not-
wendig.

Strukturen in den entprechenden include-Files
(graphics/gfxbase., bzw. intuition/intuitionbase.)
genauer ansehen. Wichtig ist, daB alle Felder zwar
bedenkenlos gelesen werden koénnen, Jjedoch nur mit
duBerster Vorsicht verdndert werden diirfen.

Ein Beispiel fiir einen sinnvollen Gebrauch der In-

tuitionBase-Struktur finden Sie im ndchsten Beispiel-
programm.

110

Kapitel 6 ; Prozeduren und Tricks

Scrollen bedeutet nichts anderes, als ein verschie-
ben von Auschnitten eines Bildes, und ist jedem von
Ihnen von Spielprogrammen sicherlich bekannt. Die
Graphics-Library enthdlt eine Prozedur, mit deren
Hilfe ein Rechteck innerhalb eines Rastports um einen
beliebigen Betrag in x- oder y-Richtung gescrollt
werden kann.

Es handelt sich dabei um die Routine ScrollRaster,
die als Eingabe die Rastportadresse (Rast), den zu
scrollenden x- und y-Betrag (dx,dy) in Pixel und die
Position und GroBe des Rechtecks braucht (x1, yl fiir
die rechte obere Ecke, x2, y2 fiir die linke untere
Ecke). Der Aufruf sieht dann so aus:

ScrollRaster(Rast,dx,dy,x1,yl,x2,y2);

Um also ein Quadrat mit der Seitenldnge 50 Pixel,
dessen linke obere Ecke bei (10,20) liegt,um 30 Pixel
nach rechts und 15 nach unten zu Scrollen, miissen Sie
ScrollRast wie folgt benutzen:

ScrollRast(Rast,-30,-15,10,20,60,70);

Nach diesem Aufruf wird der gewiinschte Bereich
blitzschnell um den angegebenen Betrag bewegt und der
freigewordene Platz mit der aktuellen Hintergrundfar-
be gefiillt. Um den oft erwiinschten Effekt des langsa-
men Scrollens zu erreichen, miissen Sie statt einmal

111

Kapitel 6 Prozeduren und Tricks

um einen groBen Betrag, mehrmals um einen kleinen
Scrollen, wobei gegebenfalls zwischen den einzelnen
Scrollschritten eine Warteschleife anzubringen ist.
Eine weitere oft erwiinschte Variante des Scrollens
ist das Rollen, d.h. daB das, was auf der einen Seite
weggescrollt wird, auf der anderen wieder erscheint.
Dies kann einfach dadurch erreicht werden, daB man
den Bereich der 'verschwinden" wird kopiert, bevor
man anfangt zu Scrollen, und nach dem Scrollen auf
der anderen Seite wieder einsetzt. Obwohl Kopierrou-
tinen zu dem Thema Blitter gehdren, das erst spater
behandelt wird, wollen wir hier wieder mal ein biB-
chen vorgreifen und eine solche Prozedur vorstellen.
Sie heiBt ClipB1it und erlaubt das Kopieren von Aus-
schnitten eines Rastports.

Das Aufrufformat hat die folgende Form:

ClipBlit(From,x1,yl,To,x2,y2,w,h,mask);

From und To sind hier die Zeiger auf den Quell-bzw.
Zielrastport, xI und yI geben die Koordinaten an, an
den sich die Tinke obere Ecke des zu kopierenden Be-
reiches befindet. Die Stelle, an die der Ausschnitt
im To Rastport kopiert wird, ist durch x2 und y2
(wieder die Koordinaten der linken oberen Ecke), sei-
ne GroBe durch wund A (Breite und Hohe), bestimmt.
Die Bedeutung des letzten Paramter werden wir spdter
im Zusammnenhang mit weiteren Blitterroutinen kennen-
lernen. Falls Sie mit dieser Routine nicht zwischen
zwei verschiedenen Rastports, sondern innerhalb eines
und desselben kopieren wollen, dann weisen Sie
einfach From und To den gleichen Wert zu. Genau dies
tun wir auch in dem hier abgedruckten Beispielpro-
gramm, mit dem sich der gesamte momentan aktiver
Screen einmal "herumrollt". Dazu wird 639 mal die

112

Kapitel 6 Prozeduren und Tricks

vorletzte Spalte der Anzeige in die erste kopiert und
dann der ganze Rastport des Screens um ein Pixel nach
rechts gescrollt. Dabei geht leider das, was sich vor
dem Starten des Programms in der ersten Spalte be-
fand, verloren, wir kommen dafiir aber ohne einen zu-
satzlichen Rastport als Zwischenspeicher aus
(Das korrekte Verfahren sidhe so aus: die vorletzte
Spalte vor jedem Scrollschritt in einen anderen Rast-
port kopieren, und erst danach in die erste Spalte
einsetzten!).

Um die Adresse des Rastports des aktiven Screens
zu ermitteln, wird wie im vorigen Abschnitt beschrie-
ben, auf die IntuitionBase-Struktur zugegeriffen.

Programm 6.1 ScreenWrap

#inc lude "exec/types.h"

#include "intuition/intuition.h"
#include "intuition/intuitionbase.h"
#include "graphics/gfx.h"

#include "Display.h"

#include "stdio.h"

struct Screen *Screen;
struct RastPort *Rast;
main ()

SHORT i;

OpenIntui ();
OpenGfx ();

113

Kapitel 6 - Prozeduren und Tricks

/* Adresse des aktiven Screens und dessen Rastports
ermitteln */

IntuitionBase->ActiveScreen;

&((*Screen).RastPort);

Screen
Rast

hn

/* Und den aktiven Screen ein mal herumrscrollen */
for(i = 1; i < 640; i++)

{CI1pBI1t(Rast 639,1,Rast,1,1,1,255, 0x00€0),
/* Eine Spalte kop1eren */
ScrollRaster(Rast,-1,0,1,1,639,255);

/* Um eine Spalte Scrollen */

}
}

0ft, wie z.B. bei Malprogrammen, wird der Benutzer
Ihres Programms irgend etwas mit Hilfe des Mauszei-
gers eingeben miissen. Dabei wdre es in vielen Fdllen
schon, wenn der Mauspfeil eine Form hdtte, die dem
IZweck der Eingabe verdeutlicht, er also etwa wie ein
Zeichenstift oder Pinsel aussehen wiirde. Der Maus-
zeiger darf, dhnlich wie ein Image (siehe Kapitel 3)
beliebig hoch, aber nur 16 Pixel breit sein. Da der
Zeiger ein Sprite ist, besteht er immer aus zwei Bit-
planes, also bis zu vier Farben. Wichtig ist, daB die
Farbe Null hier nicht dem Farbregister Null des
Screens, sondern dem Screenfarbregister 32 enspricht
(dies ist das Spritefarbregister Null). Ein wesent-
licher Unterschied zur Definition von Imagedaten be-
steht auch darin, daB die Daten der beiden Bitplanes
nicht in Blocken hintereinander, sondern abwechselnd

114

Kapitel 6 Prozeduren und Tricks

eine Zeile (als ein Wort= eine USHORT Zahl) der einen
und der anderen, gespeichert werden. Ein zwei Zeilen
hoher Zeiger, der in der Bitplane 0 nur Einsen (ge-
setzte Punkte) und in der Biplane 1 nur Nullen (nicht
gesetzte Punkte), also die Spritefarbe 1 hat, miBte
demnach solche Bilddaten haben:

Abb 6.1 Beispiel fiir Mauszeigerdaten

INT data[] = {Oxffff, /* Bitplane 0 Zeile 1 */
0x0000, /* Bitplane 1 Zeile 1 */
Oxffff, /* Bitplane 0 Zeile 2 */
0x0000 /* Bitplane 1 Zeile 2 */

’

Wie auch bei einem Image, miissen sich diese Daten
im CHIP-RAM befinden. Wie Sie den notwendigen CHIP-
Speicher allozieren, und die Daten dorthin kopieren
kénnen, haben wir bereits in Kapitel 3 gezeigt.

Wenn Sie die Daten von unserem Beispiel in einen
CHIP-RAM Bereich kopiert haben, dessen Adresse in Da-
ta steht, dann durch diesen SetPointer Aufruf:

SetPointer(Window,Data,16,2,8,1);

der neue Zeiger wird dem durch Window gegebenen Fen-
ster zugewiesen (Window ist ein Zeiger auf die Win-
dow-Struktur). Um die Zuweisung wieder riickgédngig zu
machen, also um den normalen Mauspfeil wieder zu be-
kommen, konnen Sie ClearPointer mit dem Zeiger auf
das Fenster so benutzen:

ClearPointer(Window);

115

Kapitel 6 Prozeduren und Tricks -

Wie die Erzeugung eines eigenen Mauszeigers in der
Praxis aussieht, konnen Sie auch an Hand des nachfol-
genden Beispielprogramms sehen. In diesem Programm
wird auch eine weitere "lustige" Routine verwendet.
Gemeint ist die Prozedur DisplayBeep, die Aufblitzen
des gesamten Screens verursacht. Sie wird z.B. dazu
verwendet die Aufmerksamkeit des Benutzer auf das
Auftreten eines Fehlers, oder eines anderen wichtigen
Ereignisses zu lenken. Falls Sie der Routine als
Screenzeiger NULL iibergeben, werden alle Screens auf-
blitzen.

Programm 6.2 Pointer.c

#include "intuition/intuition.h"
#inc lude "exec/memory.h"
struct Window *Window;

USHORT Pointer[] = {0x0000,0x0000,
0x600c,0x8001, /* 2011000000001102 */
0x0c30,0x8001, /* 2000110000110002 */
0x03c0,0x8001, /* 2000001111000002 */
0x03c0,0x8001, /* 2000001111000002 */
0x0c30,0x8001, /* 2000110000110002 */
0x600c,0x8001, /* 2011000000001102 */
O0xc003,0xffff, /* 3322222222222233 */

main ()

SHORT 1i;
USHORT code;
ULONG Class;
APTR PData;

116

Kapitel 6 Prozeduren und Tricks

OpenIntui();
/’,* Fenster mit Close- und Depth Gadget und IDCMP-

Port éffnen. */
Window = (struct Window *)MakeWindow(0,0,640,100,
0,0, "Pointer”, SMART REFRESH !
WINDOWCLOSE CLOSEWINDDI‘/ NULL) !
if(Window == NULL) /* Fehler beim Offnen. */
exit(FALSE);

/* CHIP-Memory fiir Pointerdaten allozieren */
PDa ta = AllocMem(sizeof(Pointer),
MEMF CHIP | MEMF PUBLIC),
if (PData == NULL) /* Fehler bem Allozieren */
exit(FALSE); »

/* und Daten dorthin kopieren. */
CopyMem(&Pointer[0],PData,sizeof (Pointer));

/* Und den Pointer dem Fenster zuweisen */
SetPointer(Window,PData,8,16,-8,-4);

/* Screen blinken lassen */
c 7&5}= WaitEvent(Window,&code);
/ /* Auf Close Gadget Warten. */

/* ‘Speicher fiir Pointerdaten wieder freigeben und
alles schlieBen. */

CloselWindow(Window);
FreeMem(PData,sizeof(Pointer));

117

Kapitel 6 Prozeduren und Tricks

Wie jeder Amiga-Benutzer wahrscheinlich weiB, kann
die Darstellung von komplexen Grafiken auch am Amiga
sehr lange dauern. Es ist daher oft erwiinscht, fir
das eigene Programm, das eine solche Grafik erzeugt,
moglichst viel Rechenzeit zu bekommen. Dies bedeutet,
daB man diese Zeit anderen parallel Tlaufenden Pro-
grammen "kTlaut". Wir wollen hier ein paar Routinen
vorstellen, mit deren Hilfe es méglich ist, den An-
teil der Rechenzeit, die Ihrem Programm zur Verfiigung
steht, zu vergrdBern, bzw. im Extremfall alles andere
(inklusive Maus und Tastaturabfrage !) abzuschalten,
und somit die gesamte betrdchtliche Rechenleistung
des Amiga's im Dienste ihres Programms zu stellen. An
dieser Stelle noch eine Warnung: Das Multitasking ist
ein sehr empfindliches System, daB bei uniiberlegten
Manipulationen sehr schnell und oft auf sehr merkwiir-
dige Art und Weise abstiirzt (so daB nicht mal ein Re-
set hilft, und nur der Griff zum Powerschalter iibrig-
bleibt).

Die mildeste Art den Rechenzeitanteil eines Pro-
gramms der Prozedur SetTaskPri mit dem Zeiger auf
die Task (Task) und einer Zahl zwischen -127 und 127,
gie die gewiinschte Prioritdt angibt (Pri), so aufru-

en:

SetTaskPri(Task,Pri);
Der Zeiger auf den eigenen Task kann so mit der
FindTask-Routine ermittelt werden:

Task = FindTask(NULL);

118

Kapitel 6 Prozeduren und Tricks

"Eine normale Task hat eine Prioritdt von -20, sehr
wichtige Systemtasks von bis zu +20. Sollten Sie die
Prioritdat ihres Programms viel grdBer als die +20
machen, dann kdnnen Sie gleich alle anderen Tasks ab-
schalten, weil sowieso nichts mehr lauft, sollten Sie
sie dafiir viel kleiner als die -20 machen, dann kon-
nen Sie Ihr Programm genausogut abschalten, weil es
sowieso keine Rechenzeit mehr abbekommt.

Wenn Sie sich dafiir entschieden haben, alle anderen
Tasks abzuschalten, dann kdnnen Sie die parameterlose
Forbid-Prozedur aufrufen. Mit Hilfe der ebenso para-
meterlosen Permit- Routine konnen Sie diese wieder
einschalten. Beachten Sie, daB es sehr unhdflich und
dariiberhinaus ein sehr schlechter Programierstil ist,
iiber eine langere Zeit alle anderen Programme einfach
auszuschalten!

Alle hier besprochenen Prozeduren sind in exec/
tasks. zu finden.

119

Kapitel 6 Prozeduren und Tricks

120

Kapitel 7 Textdarstellung

Kapitel 7

121

Kapitel 7 Textdarstellung

Auf Grund der Tatsache, daB der Amiga keinen ge-
trennten Textbildschirm besitzt, sondern den Text als
Grafik darstellt, kann die Textausgabe extrem flexi-
bel gestaltet werden. So kann der Text nicht nur Zei-
len- bzw. Spaltenweise, sondern Pixelweise positio-
niert werden. Auch die Anzahl der moglichen Schrift-
arten ist praktisch unbegrenzt. Diese konnen sich
nicht nur in der Form, sondern auch in der Hohe,
Breite, sowie im Zeichenabstand unterscheiden. Wie es
aber bei leistungsfahigen Systemen ist, ist es lei-
der nicht ganz einfach, die angebotenen Moglichkeiten
auszuschopfen. Aus diesem Grund ist auch dieses Kapi-
tel ein biBchen langer geraten. Wir versuchen hier,
Ihnen an Hand einfacher Beispiele zu zeigen, was und
wie es auf dem Amiga méglich ist.

Als erstes wollen wir uns mit der Text-Routine be-
fassen, die die Ausgabe einer beliebigen Zeichenkette
in einem Rastport ermdéglicht. Beim Aufruf wird ihr
ein Zeiger auf den Rastport in dem der Text erschei-
nen soll, die Adresse der Zeichenkette und die Anzahl
der auszugebenen Zeichen iibergeben. Sie kdénnen also
z.B. den Text "Hallo" wie folgt in den durch Rast be-
stimmten Rastport ausgeben:

Text(Rast,"Hallo",5);

122

Kapitel 7 Textdarstellung

Um nur den Text "Hal", also die drei ersten Zeichen
der Zeichenkette auszugeben, miiBten Sie eine 3 statt
der 5 iibergeben. Vieleicht haben Sie sich gewundert,
daB keine Bildschirmposition fiir den Text angegeben
wurde. Dies liegt daran, daB die Text-Prozedur den
Text an der aktuellen Position des Grafikcursors in
dem betroffenen Rastport ausgibt. Um den Text zu po-
sitionieren, miissen Sie also vorher die schon bekann-
te Prozedur Move aufrufen. Die Ausgabe der in String
gespeicherten Zeichenkette an der Bildschirmposition
(x,y) sieht also so aus:

Move(Rast,x,y);
Text(Rast,&String,Len);

Auch die Farben, Zeichenmodus und Schriftart (nicht
Font) konnen durch den Aufruf entsprechender Prozedu-
ren fiir die Textausgabe voreingestellt werden. Die
Prozeduren SetAPen, SetBPen, und SetDrMd, die zur
Einstellung der ersten beiden Eigenschaften dienen,
sind Ihnen ja schon bekannt (siehe Kapitel 4). In dem
ndchsten Beispielprogramm werden Sie die fiir die
Textdarstellung interessanten Zeichenmodi finden. Da-
bei handelt es sich um die Modi JAMI1, JAMZ2, INVERSVID
und deren Kombinationen. Die Schriftart kann mit Hil-
fe von SetSoftStyle bestimmt werden. Diese ermdéglicht
Ihnen die Wahl einer Schrift die kursiv, fett, unter-
strichen oder alles zu gleich ist.

Der Aufruf der Routine sieht wie folgt aus:

01dStyle = SetSoftStyle(Rast,Styles,Enable);

123

Kapitel 7 Textdarstellung

Rast ist hier wie immer ein Zeiger auf einen Rast-
port. In Enable miissen Sie die Flags (siehe Tabelle),
die den gewiinschten Schriftarten entsprechen, iiber-
bergeben. Als Funktionsergebnis gibt Ihnen die Proze-
dur die der alten Schriftart entsprechenden Flags zu-
riick. Die FontStyle-Flags werden in ULONG-Variablen
gespeichert.

Abb 7.1 Die FontStyle-Flags

! Gesetzte Flags ! Resultierende Schriftart !

! FSF_BOLD ! Fettschrift !
UFSFITALIC ! Kursivschrift 1
UFSF_UNDERLINED ! Unterstrichen !
UFSNORMAL ! Normale Schrift !

Durch Verkniipfen der Flags mit oder (]) konnen Sie
die erwdhnte Mischung verschiedener Schriftarten er-
reichen (also z.B. fett und unterstrichen durch set-
zen von Enable auf FSF_BOLD | FSF_UNDERLINED).

In der Variable Styles miissen die Flags aller fiir
den aktuellen Font noch verfiigharen Schriftarten ste-
hen, bzw. 255 wenn alle Schriftarten verfiighar sind.
Diese kénnen Sie durch einen Aufruf der AskSoftStyle-
Prozedur wie folgt ermitteln:

Fonts = AskSoftStyle(Rast);

124

Kapitel 7 Textdarsteliung

Um eine eingestellte Schriftart zu verdndern, miis-
sen Sie zuerst mit FS_NORMAL die '"normale" Schrift
einschalten und dann durch einen wiederholten Aufruf
von SetSoftStyle die neue setzen. Dies gilt aller-
dings nicht, wenn Sie zu der aktuellen Schriftart ei-
ne andere hinzufiigen wollen (also z.B.aus Fettschrift
fette Kursivschrift machen wollen).

In diesem Fall kdnnen SetSoftStyle direkt das ent-
sprechende Flag iibergeben. Zum besseren Verstandnis
des Umgangs mit den verschiedenen Schriftarten und
Zeichenmodi folgt wieder ein Beispielprogramm. Es
0ffnet ein Fenster, ermittelt mit Hilfe von AskSoft-
Style die verfiigbaren Schriftarten und gibt Texte mit
verschiedenen Zeichenmodi und Schriftarten in dem
Fenster aus.

Programm 7.1 Text

#include "intuition/intuition.h"
#include "graphics/gfxmacros.h"
#include "graphics/gfx.h"

struct Window *Window;
struct RastPort *Rast;

main ()
SHORT i;
USHORT code;
ULONG Class, Styles, 0ldStyle;

3penIntu1'();
* Fenster 6ffnen und die Adresse des Rastports

lesen. */

125

Kapitel 7 Textdarstellung

Window = (struct Window *)MakeWindow(120,40,400,
130,0,0, "Text",SMART REFRESH/
WIDOWCLOSE , CLOSEWINDOW,NULL) ;
if(Window == NULL)

/* Fehler beim Offnen. */
exit(FALSE);
Rast = Window->RPort;

/* Verflighare Schriftarten ermitteln */
Styles = AskSoftStyle(Rast);

SetAPen(Rast,1);

Move(Rast,2,15);
Text(Rast, "Normal",6);

SetBPen(Rast,2);
SetDrMd(Rast,JAM2);
Move(Rast,2,30);

Text(Rast, "JAM2-Modus",10);

SetDrMd(Rast,JAM2 | INVERSVID);
Move(Rast,2,45);
Text(Rast, "JAM2/COMPLEMENT -Modus ",21); ‘

SetBPen(Rast,0);

SetDrMd(Rast,JAM1);

0ldStyle = SetSoftStyle(Rast,Styles,FSF_ITALIC);
Move(Rast,2,60);

Text(Rast, ”I(urs1vschr1ft" 13);

0ldStyle = SetSaftSter(Rast Styles,FSF_BOLD);
Hove(Rast,2,75);

Text(Rast, "Fette Kursivschrift”, 19);

OldStyle = SetSoftStyle(Rast,Styles,FSF_UNDERLINED);
Move(Rast,2,90);

126

Kapitel 7 Textdarstellung

0ldStyle = SetSoftStyle(Rast,Styles-01dStyle,255);
0ldStyle = SetSoftStyle(Rast,Styles,FSF_BOLD);
Mbve(%;st,2,105);

Text(Rast, "Nur Fettschrift”, 15);

01dStyle = SetSoftStyle(Rast,Styles-01dStyle,255);
01dStyle = SetSoftStyle(Rast,Styles,FSF UNDERLINED);
Mbve(%;st,z,lzo); -

Text(Rast, "Nur unterstrichen",17);

/* Auf Close Gadget warten und Fenster schlieBen.?*/
Class = WaitEvent(Window,&code);
CloseWindow(Window);

Der Begriff Fonts miiBte eigentlich jedem Amiga Be-
sitzer bekannt sein. Im Gegensatz zu dlteren Compu-
tern, die nur einen Zeichensatz besaBen, den sie bes-
tenfalls in verschiedenen Variationen wie fett oder
invers darstellen konnten, kann der Amiga beliebige
frei definierbare Zeichensdtze (Fonts) verwenden. Die
von der normalen Workbench bekannte Schrift heiBit
Topaz und ist im im ROM des Computers gespeichert.
Alle anderen Fonts miissen entweder durch ein Programm
definiert, oder von Diskette geladen und dann dem
System zur Verfiigung gestellt werden. Es ist dabei
durchaus méglich, gleichzeitig in verschiedenen Fen-
stern verschiedene Fonts zu benutzen. Das System hat
eine Liste der verfiigbaren Fonts, aus der Sie Ihre
Moglichkeiten schopfen kdnnen.

127

Kapitel 7 Textdarstellung

Wie dies im Detail bewerkstelligt werden muB, wer-
den Sie in spateren Abschnitten erfahren. Hier wollen
wir zundchst ein paar allgemeine Worte zu den Fonts
sagen. Wie schon gesagt, ist ein Font ein vollstdndi-
ger Zeichensatz. Dies heiBt, daB er aus 1 bis 255 be-
liebig definierten Zeichen bestehen kann. Sie kdnnen
sich also einen Font erzeugen, der nur aus Grafikzei-
chen oder aber auch aus russischen oder griechischen
Buchstaben besteht. Zu der Fontdefinition gehdrt die
Angabe der Zeichenanzahl, deren Hohe, Breite, verfiig-
baren Schriftarten sowie einiger anderer besonderer
Eigenschaften. Das Aussehen der Zeichen wird d&hnlich
wie ein Image Pixelweise durch Setzen einzelner Bits
bestimmt.

Die auf Diskette gespeicherten Fonts befinden sich
in der fonts-Directory der Systemdiskette. Dort ge-
hort zu jedem Font ein eigenes Verzeichnis, in dem
mehrere, sich in der GroéBe unterscheidende Versionen
des Fonts stehen kdonnen. Falls Sie ihre eigenen Fonts
aus einer anderen Directory verwenden wollen, miissen
Sie dies dem System in der startup-sequence oder spa-
ter im CLI-Fenster wie folgt mitteilen:

assign FONTS: MyFonts

Statt MyFonts miissen Sie hier natiirlich den Namen
ihres Verzeichnisses angeben. Beachten Sie dabei, daB
ab dann alle fonts in Ihrem Verzeichnis gesucht wer-
den.

128

Kapitel 7 Textdarstellung

Hier konnen Sie nun definitiv erkennen und sehen,
ob ein bestimmter Font geladen werden kann. Sie
konnen alle Fonts, die fiir das System verfiigbar sind,
mit der AvailFonts-Prozedur der Diskfont-Library auf-
gelistet werden. So einfach sich dies anhért, es ist
leider mit einigen Aufwand verbunden. Beim Aufruf
erzeugt AvailFonts eine Liste von AvailFonts-Struktu-
ren, die von einer AvailFontsHeader-Struktur einge-
leitet wird. Die letztere beinhaltet nur die Anzahl
der folgenden AvailFonts-Datensdtzen und sieht so
aus.

Abb 7.2 Die AvaiFontsHeader-Struktur

struct AvailFontsHeader

{
UWORD afh_NumEntries;
/* struct AvailFonts afh AF [] */

4

Wie sie der Abbildung entnehmen konnen, liegen die
AvailFonts-Strukturen, die die eigentliche Informa-
tion tiber die Fonts enthalten, direkt nach AvailFonts
Header. Jede dieser Strukturen steht fiir einen Ver-
fiigharen Font und sieht folgendermaBen aus:

129

Kapitel 7 Textdarstellung

Abb 7.3 Die AvailFonts-Struktur
struct AvailFonts

{
UWORD af Type;
struct TextAttr af Attr;

}

In af Type wird der Fonttyp durch eine der folgen-
den Flags angegeben:

! Flag ! Bedeutung !
! AFF_MEMORY ! Font befindet sich im Speicher. !
! AFF_DISK ! Font befindet sich auf Diskette. !

Die Daten des Fonts, also sein Name, seine GrodBe
etc. sind in dem Feld af Attr in einer weiteren Da-
tenstruktur zu finden. Es handelt sich dabei um die
TextAttr-Struktur, die zu den wichtigsten Strukturen
der Grafik-Library gehort.

Sie ist wie folgt aufgebaut:

Abb 7.4 Die TextAttr-Struktur
struct TextAttr

APTR ta_Name;

UWORD ta YSize;

UBYTE ta_Style;
UBYTE ta_Flags;

b

130

Kapitel 7 Textdarstellung

Den Zeiger auf den Namen des Fonts finden Sie in
ta Name, die HOhe der Zeichen in ta YSize, und die
Flags der verfiigharen Schriftarten ~(siehe Abschnitt
1) in ta Style. Das letze Feld, ta Flags enthdlt ein
oder meherere FontFlags, die folgende Bedeutung ha-
ben.

Abb 7.5 Die Font-Flags

! Flag ! Bedeutung !
! FPF__ROMFONT ! Font befindet sich im ROM !
! FPF_DISKFONT ! Font ist auf Diskette !
! FPF_REVPATH ! Font wird von Tinks nach !
! ! rechts geschrieben !
! FPF_TALLDOT ! Font fiir non-interlace hires !
! FPF_WIDEOUT ! Font fiir lowres/interlace !
! FPF_PROPORTIONAL ! Font mit Proportionalschrift !
! FPF_DESIGNED ! Fontbreite nicht einheitlich !
! FPF_REMOVED ! Font wurde aus der Fontliste !
! ! entfernt !

Die Zusammenhdnge zwischen den Strukturen verdeut-
licht das Bild 7.1:

| FontContentsHeader AvailFontsHeader
fh NumEntri

fch_NumEntries

o AvailFonts 1 -
FontContents .. 1. SRR SNy |

Arvai/ Fonts

FontContents = 2:

. i AvailFonts n .
FontContents i :

Bild 7.1 - Die Speicherung der Fontliste

131

Kapitel 7 Textdarstellung

Nach dieser relativ Tlangweiligen Aufzéhlung der
Datenstrukturen, konnen wir dazu iibergehen, eine
Fontliste zu erstellen. Als erstes muB fiir die Liste
der AvailFonts-Strukturen genug Speicher alloziert
werden. Dazu konnen Sie, in der aus den vorherigen
Kapiteln bekannten Weise, die AllocMem-Routine von
Exec verwenden. Der bendtigte Speicher braucht nicht
im CHIP-RAM zu liegen und sollte ca. 1000 Bytes groB
sein. Sowohl den Zeiger auf den allozierten Speicher,
als auch seine Ldnge, miissen Sie dann an AvailFonts
ibergeben. Als dritten Parameter miissen Sie die ange-
angesiedelten Fonts, nur die Diskfonts oder beides
auflisten wollen. Sollte es sich heraustellen, daB
der von Ihnen allozierte Speicher nicht ausreicht, so
bekommen sie als Funktionsergebnis von Typ long die
Anzahl der fehlenden Bytes zuriick. Sonst gibt die
Prozedur 0 zuriick. Das Erstellen einer Fontliste
sieht also so aus:

Buffer = (struct AvailFontsHeader *)AllocHem
(1000L, HEMF PUBLIC);
e = AvailFonts(Buffer,1000L, Type);

Um nur die im Speicher befindlichen Fonts aufzulis-
ten geben Sie fiir Type eine 2 an. Die Diskfonts be-
kommen Sie durch die Angabe einer 1, beides durch ei-
ne 3 aufgelistet.

Wie Sie die Daten aus der Fontliste herauslesen,
ist der vorangegangenen Erkldrung des Aufbaus dieser
Liste leicht zu entnehmen. Da Sie in Buffer die
Adresse des Headers ihrer Liste also der AvailFonts
Header-Struktur haben, konnen Sie die Anzahl der ge-
lesenen Fonts leicht wie folgt ermitteln:

132

Kapitel 7 Textdarstellung

Number = Buffer>af NumEntries;

Als ndchstes missen wir uns einen Zeiger auf die
erste AvailFonts-Struktur beschaffen. Diese befindet
sich aber an der Adresse von AvailFontsHeader plus
der Ldnge des Feldes af NumEntries.

Ihre Adresse kann also so ermittelt werden:
FirstFont = (struct AvailFonts *)&Buffer[1];

Nun koOnnen Sie in einer for-Schleife, in der Sie
FirstFont inkrementieren und die AvailFontsHeader-af_
NumEntries-mal durchlaufen wird, die Daten aller
Fonts auslesen.

Wie dies im einzelnen gemacht wird, konnen Sie dem
nachfolgenden Programm entnehmen. Beachten Sie, daB
die Diskfont-Library gedffnet werden muB.

#include "libraries/diskfont.h"
#include "graphics/gfx.h"
#include "Display.h"

#include “stdio.h"

#inc lude "exec/memory.h"

struct AvailFonts *AFonts;
struct AvailFontsHeader *AFHeader;

ULONG DosBase;
ULONG DiskfontBase;
main ()

LONG e;
SHORT 1i;

133

Kapitel 7 Textdarstellung

/* Dos- und Diskfontlibrary éffnen. */

OpenGfx();

if((DiskfontBase = OpenlLibrary("diskfont. 1ibrary"
,0)) == NULL)

exit(FALSE);

if((DosBase = OpenLibrary("dos. library",0)) ==
NULL)

/* Speicher fiir die AvialFontsHeader-Struktur
allozieren */
AFHeader = (struct AvailFontsHeader *) AllocMem
(5000, MEMF CLEAR);
if (AFHeader == NULL) -
exit(FALSE);
/* Fehler beim Allozieren */

/* Liste der verfiigharen Memory- und Diskfonts
einlesen. */

e = AvailFonts(AFHeader,b 5000L,3);
/* Die eingelesenen Fonts auflisten. */
AFonts = (struct AvailFonts *)&AFHeader[1];
/* Header liber]lesen. */

for (i = 0; i < (AFHeader->afh NumEntries); i++)
/* Alle Eintrdge listen. */

/* Den Namen und die GréBe des Fonts ausgeben */
printf("Font Nr %-2d %-24s GréBe %d \n",i,AFonts
->af_Attr.ta_Name,Afonts>af Attr.ta YSize);

AFonts++; /* Nédchster Font. */

}
}

134

Kapitel 7 Textdarstellung

Hat man erst herausgefunden, welche Fonts einem ei-
gentlich zur Verfiigung stehen, wird man wohl auch zu-
mindestens einen laden wollen. Dazu benutzt man die
schon aus dem vorherigen Abschnitt bekannte TextAttr-
Struktur. Dort trdgt man den Namen, die GréBe und die
Art des Fonts (Disk oder Speicher) ein.

Die Adresse der so initialisierten Struktur iiber-
gibt man dann der Openfont bzw. der OpenDiskFont-Pro-
zedur. Welche der beiden man nun benutzt hdangt davon
ab, ob Sie auch nicht vergessen, am Anfang des Pro-
gramms die Diskfont-Library zu 6ffnen. Ganz egal wel-
che der Prozeduren Sie verwendet haben, das Ergebnis
bleibt gleich. Falls der gewiinschte Font geladen wer-
den konnte, liefern beide einen Zeiger auf die Text-
Font-Struktur des neuen Fonts (anderenfalls bekommen
Sie NULL zuriick). Diese Struktur, die Sie im ndchsten
Abschnitt genauer kennenlernen werden, liefert eine
genaue Beschreibung des Fonts.

Sie beinhaltet alles, was die Systemsoftware
braucht, um mit diesem Font zu arbeiten, wie z.B. den
Zeiger auf die Bilddaten der einzelnen Zeichen. Nach-
dem der Font erfolgreich gedffnet wurde, haben Sie
zwei Moglichkeiten mit ihm zu arbeiten. Die erste be-
steht darin, ihm mit Hilfe der SetFont-Prozedur an
einen Rastport (z.B. den eines Fensters oder eines
Screens) zuzuweisen. Das Offnen eines Fonts und die
Zuweisung an einen Rastport Rast kann also aussehen,
wie folgt:

TextFont = (struct TextFont *)OpenDiskFont(TextAttr);
if(TextFont != NULL) Setfont(Rast,Textfont);

135

Kapitel 7 Textdarstellung

Wir haben hier vorausgesetzt, daB TextAttr auf ei-
ne initialisierte TextAttr-Struktur zeigt. Fiir alle
Texte, die dann in diesem Rastport mit Text ausgege-
ben werden, wird nun der neue Font verwendet.

Ein Beispiel fiir das Offnen eines Diskfonts und de-
ren Zuweisung an einen Rastport finden sie in dem an
diesem Abschnitt folgenden Programm. Es gibt einen
Text mit dem Standardfont des Fensters aus, oOffnet
dann nacheinander zwei neue Fonts und benutzt diese
ebenfalls zur Textausgabe. Die von dem Programm ver-
wendetet Fonts: Emerald 17 und Emerald 20.

Wenn Sie ihren Amiga von einer Diskette gebootet
haben, auf der diese Fonts nicht vorhanden sind, dann
miissen Sie vor dem Programmstart die Workbench ins
Laufwerk schieben und mit assign eine neue FONTS: de-
vice setzen (siehe Abschnitt 2).

Programm 7.3 Diskfont

#include "Display.h"

#include "intuition/intuition.h"
#include "graphics/gfx.h"
#include "libraries/Diskfont.h"
struct Window *Window;

struct RastPort *Rast;

struct Font *DFont;

struct TextFont *TFont;

struct TextAttr ITFont = {"Emerald.Font",
17,
0,
FPF_DISKFONT

}i

136

Kapitel 7 Textdarstellung

ULONG DiskfontBase;

main ()

{

SHORT i;

USHORT code;

ULONG Class, Styles, 0ldStyle;
OpenIntui();

OpenGfx();

/* Diskfontlibrary 6ffnen */
DiskfontBase = OpenLibrary("diskfont. library”,0);
if(DiskfontBase == NULL) .
/* Fehler beim Offnen */
exit{FALSE);

/* Fenster 6ffnen un die Adresse des Rastports
lesen. */
Window = (struct Window *)MakeWindow(120,10,400,
100,0,0, "DiskFonts",
SHART REFRESH!WINDOWCLOSE WINDOWDEPTH,
- CLOSEWINDOW,NULL);

if(Window == NULL) /* Fehler beim Offnen. */
exit(FALSE);
Rast = Window->RPort;

Move(Rast,120,30);
/* Text im Standardfont ausgeben */
Text(Rast, "Standardfont”,12);

TFont = OpenDiskFont(&ITFont);
/* Emerald 17 éffnen */

if(TFont == OL)
/* Fehler 7 */

exit(FALSE);
SetFont(Rast,TFont);

137

Kapitel 7 Textdarstellung

/* Nein -> dem Rastport zuweisen */

Move(Rast,120,50);
/* und Text mit Emerald 17 printen. */
Text(Rast, "Emerald 17\n",11);

ITFont.ta YSize = 20; /* Emerald 20 éffnen */
TFont = OpenDiskFont(&ITFont);

if(TFont == OL) /* Fehler 2 */
exit(FALSE);
SetFont(Rast,TFont);
/* Nein -> dem Rastport zuweisen */
Move(Rast,120,75);

Text(Rast, "Emerald 20\n",11);
/* und Text mit Emerald 20 printen. */

/* Auf Close Gadget warten und Fenster schlieBen.*/
CloseWindow(Window);

[J|D1skFonts |

Standardfont

emerald 17
emerald 20

Bild 7.2 - Die Ausgabe des Programms DiskFont

Als ndchstes sollte noch die zweite Moglichkeit,
einen gedffneten Font zu nutzen, erldutert werden.
Dazu wird der Font mit AddFont an die Fontliste des
Systems angehdngt und kann von anderen Programmen be-
nutzt werden. 1Ist TextFont ein Zeiger auf die ent-
sprechende TextFont-Struktur, dann sieht dies folgen-
dermaBen aus:

138

Kapitel 7 Textdarstellung

AddFont(TextFont);

Fiir ihr eigenes Programm ist-das Einfiigen des Fonts
in die Systemliste immer dann wichtig, wenn Sie mit
Prozeduren oder Datenstrukturen arbeiten, den eine
TextAttr-Struktur statt einer TextFont-Struktur iiber-
geben werden muB. Dies ist z.B. dann der Fall, wenn
Sie beim Offnen eines Screens oder Fenster einen ei-
genen Font als Standardfont haben wollen.

Sowoh1 die NewWindow als auch die NewScreen-Struk-
tur beinhalten ein Feld, in dem Sie die Adresse einer
TextAttr-Struktur angeben koénnen. Sie muB dann mit
den gleichen Werten initialisiert sein, die Sie zum
Offnen des Fonts verwendet haben, damit Sie auch die
gleiche Struktur verwenden. Auf &hnliche Weise kann
der Font bei der Textausgabe mit IntuiText bestimmt
werden, die wir noch im letzten Abschnitt dieses Ka-
pitels besprechen.

Wem das Laden fertiger Fonts nicht genug ist, fir
den wollen wir jetzt beschreiben wie man sich einen
eigenen definieren und in das System einfiigen kann.

Die Grundlage dafiir ist die bereits vorher ange-
sprochene TextFont-Struktur. Diese sieht folgenderma-
Ben aus:

Abb. 7.6 Die TextFont-Struktur
struct TextFont

struct Message tf Message;
UWORD tf YSize;

UBYTE tf Style;

UBYTE tf Flags;

UWORD tf XSize;

UWORD tf Baseline;

139

Kapitel 7 Textdarstellung

UWORD tf BoldSmear;
UWORD tf Accessors;
UBYTE tf LoChar;
UBYTE tf HiChar;
APTR tf CharData;
UWORD tf Modulo;
APTR tf Charloc;
APTR tf CharSpace;
APTR tf _CharKern;

4

In dem Feld tf Message befindet sich eine gewdhnli-
che Message-Struktur von Exec, die notwendig ist, da-
mit der Font in die Fontliste eingefiigt werden kann.
Deswegen muB dieses Feld wie folgt initialisiert wer-
den:

TextFont.tf Message.mn_Node.In_Type = NT_FONT;
TextFont.tf Message.mn_Node.In Name = Name;
TextFont.tf Message.mn_Length Len;

TextFont muB hier natiirlich eine Variable vom Typ
TextFont sein. Name ist ein Zeiger auf den Namen des
Fonts und Len der Speicherbedarf aller zu diesem Font
gehérenden Daten. Wie dieser berechnet wird, werden
wir spdter erldutern. Die ndchsten vier Felder #f_
YSize, tf Style, tf Flags und tf XSize bestimmen die
Hohe, die verfiigharen Schriftarten, die Art und die
Breite des Fonts. Die Flags (%f Flags) und die
Schriftarten entsprechen den von TextAttr bzw. Set
SoftStyle bekannten (siehe Abb 7.5 bzw 7.1).

In ¢f _Baseline wird der Abstand der untersten Zei-
le des Textes von oben festgelegt. Wenn Sie z.B. un-
ten Platz zum Unterstreichen lassen wollen, dann mii-
ssen Sie hier einen Wert, der kleiner als die Font-
hohe ist, angeben. Durch Angabe einer 1 in ¢f Bold

140

Kapitel 7 Textdarstellung

Smear konnen Sie die Erzeugung der Fettschrift durch
"Verschmieren" zulassen. Das ndchste Feld: #&f Acces-
sors ist nur fiir das System wichtig und sollte mit 0
initialisiert werden. Der Rest der TextFont-Struktur
bezieht sich direkt auf die Zeichendaten. Zundchst
werden durch tf LoChar und tf HiChar die ASCII-Werte
des ersten und des letzten Zeichens des Fonts angege-
ben. Die Werte konnen zwischen 0 und 255 liegen, wo-
bei tf LoChar natiirlich kleiner als ¢f HiChar sein
muB. Die Adresse des Speicherbereiches,” in dem die
Bildaten der Zeichen stehen, befindet sich in ¢f_
CharData. Wie es bei Bilddaten iblich ist, wird jeder
Punkt durch ein Bit und jede Bildzeile durch eine
Bitreihe reprdsentiert, so daB die Zeichendaten in
einem Array vom Typ UWORD definiert werden kénnen.
Die Zeichen werden "nebeneinander" gespeichert, d.h
auf die erste Zeile des ersten Zeichens folgt die er-
ste des zweiten, darauf die erste des dritten etc.
Danach kommen auf die gleiche Art angeordnet die
zweiten, dritten, vierten usw. Zeilen. Wie Sie se-
hen, ist die Anzahl der Bytes, die iibersprungen wer-
den miissen, um von einer Zeile eines Zeichens zur
ndchsten zu kommen, von Zeichensatz zu Zeichensatz
verschieden (Es liegen ja die Zeilendaten der anderen
Zeichen dazwischen !). Aus diesem Grunde muB die An-
zahl der zwischen zwei Zeilen eines Zeichens liegen-
den Bytes in ¢f Modulo angegeben werden. Bei einem
Font, der 10 Zeichen enthdlt, die alle 16 Punkte
breit sind (also genau zwei Bytes belegen), wdrend es
logischerweise 20 - da dieser Wert fiir alle Zeilen
gleich bleibt, miissen alle Zeilen eines Zeichens auch
gleich breit sein.

Das soll aber natiirlich nicht heiBen, daB alle Zei-
chen quadratich sein miissen. Wo kein Punkt erschei-
nen soll, kann ja in den Daten eine Null gesetzt wer-
den. Da die Zeichenbreite aber nicht auf ganzzahlige
Vielfache von 8 oder 16 beschrdnkt ist, wird in der

141

Kapitel 7 Textdarstellung

Regel eine Zeile eines Zeichens nicht durch eine be-
stimmte Anzahl von Bytes oder Words dargestellt. Es
ist auch nicht unbedingt notwendig, daB alle Zeichen
die gleiche Breite haben. So kdnnen in zwei Bytes ei-
ner Zeile eines 10 und eines 6 Bits breiten Zeichens
gespeichert werden. Damit der Amiga in diesem Durch-
einander iiberhaupt zurecht kommt, miissen in einem zu-
sdtzlichen Speicherbereich nacheinander der Abstand
des Anfangs der ersten Zeile von Anfang der Bildaten
und die Breite der Daten einer Zeile in Bits fiir je-
des Zeichen angegeben werden. Ein Zeiger auf diesen
Speicherbereich ist in #f_CharLoc einzutragen.

Die Breite des Zeichens wird fiir jedes Zeichen in
einem weiteren Array, dessen Adresse in ¢f CharSpace
steht, iibergeben. Der aufmerksame Leser wird an die-
ser Stelle wahrscheinlich verwundert sein, denn nun
haben wir tf CharLoc und tf CharSpace)! Der Grund da-
fiir ist darin zu suchen, daB es sich jedesmal um eine
"andere" Breite handelt. In tf XSize wurde angegeben,
wie viel Platz jedes Zeichen unabhdngig von seiner
Breite bei einem nicht proportionalen Zeichensatz auf
dem Bildschirm horizontal einimmt. Dieser Wert ist
fiir alle Zeichen des Zeichensatzes gleich und wird
deswegen global in der TextFont-Struktur festgelegt.
Die Breite, die in ¢f CharSpace bestimmt wird, kann
von Zeichen zu Zeichen verschieden sein. Diese Brei-
te wird immer, also auch bei proportionalen Fonts,
beibehalten. Sie gibt Ihnen die Moglichkeit jedem
Zeichen so viel Platz zuzuordnen, wie Sie es fiir eine
gute Lesbarkeit, oder schones Aussehen des Zeichen-
satzes fiir angebracht halten. Die in tf Charloc ste-
hende Breite, gibt schlieBlich die Breite der Daten
jedes Zeichens an. Dies ist auch die maximale Anzahl
der horizontal gesetzen Punkte eines Zeichens. Die
Differenz aus dieser und der vorigen Breite wird als
freier Raum rechts vom Zeichen dargestellt. Damit Sie
den Rand auch Links lassen oder das Zeichen zentrie-

142

Kapitel 7 Textdarstellung

ren koénnen, gibt es noch in TextFont das Feld tf_Char
Kern. Dort steht ein Zeiger auf ein Array, das fiir
jedes Zeichen den Abstand des ersten Datenbits einer
Zeile vom Anfang der Zeile, also die Verschiebung der
Daten nach rechts, sprich den linken Rand angibt.

Alles klar? Nicht? Also noch ein Beispiel: bei ei-
nem Zeichen mit einer Datenbreite von 8 Bits, und ei-
ner Zeichenbreite von 10 Bits miiBte hier eine Eins
stehen, damit es links und rechts den gleichen Rand
hat.

Fiir die, die immer noch verwirrt sind, haben wir
ein (hoffentlich) einfaches Beispiel: Dazu stellen Sie
sich bitte zundchst einen Zeichensatz vor, der nur aus
zwei Zeichen besteht, die je 3 Zeilen hoch sind. Die

Zeichen sollen so aussehen:

Zeichen 1 Zeichen 2
111111111 101
100000001 010
111111111 101

Die Datenbreite des ersten Zeichens ist 9, die des
zweiten 3, die Gesamtbreite einer Zeile also 12 Bits.
Fiir die Zeilendaten brauchen wir also je ein Word (2
Bytes). Die Daten sehen so aus:

ULONG CharData [] = {0xffdo,
0x80a0,
Oxffdo

b
Der tf Modulo-Wert in dem zugehdrenden TextFont-

Datensatz mu' hier den Wert 2 haben. In tf_CharLoc
muB die Adresse des folgenden Arrays stehen:

143

Kapitel 7 Textdarstellung

ULONG CharLoc [] = {0x0000,0x0009,
0x0009,0x0003

4

Falls Sie noch wollen, daB beim ersten Zeichen so-
woh1l links als auch rechts zwei Pixel freigelassen
werden, wdhrend das zweite Zeichen um 3 Pixel nach
links verschoben wird, dann miissen tf ChaSpace und
tf_CharKern wie folgt aussehen: -

UWORD CharSpace [] = {13,6}

Mit den so erzeugten Randern sehen die beiden Zei-
chen nun so aus.

Zeichen 1 Zeichen 2
0011111111100 10100
0010000000100 01000
0011111111100 10100

Wenn Sie die Fontdaten Ihres Zeichensatzes wie be-
schrieben erzeugt und die TextFont-Struktur initiali-
sert haben, konnen Sie den Font auch sofort benutzen.
Da Sie die Adresse der TextFont-Struktur schon ken-
nen (Sie haben sie ja immerhin erzeugt!), brauchen
Sie weder die OpenFont-noch die OpenDiskFont- Routine
aufzurufen. Es reicht wenn Sie den Zeiger auf Ihre
TextFont-Struktur an SetFont oder AddFont iibergeben
(siehe Abschnitt 3).

Wie die Konstruktion eines neuen Zeichensatzes im
einzelnen verlduft, konnen Sie sich nochmals an Hand
des nachfolgenden Programms klarmachen. Es definiert
sich fiinf Grafikzeichen, deren ASCII-Werte zwischen

144

Kapitel 7 Textdarstellung

65 und 70 liegen. Diese Zeichen werden also immer
dann ausgegeben, wenn bei dem normalen Font die Buch-
staben "A" bis "E" erscheinen wiirden. Wichtig ist,
daB alle anderen Zeichen nicht etwa im alten Font er-
scheinen, sondern iiberhaupt nicht verfiighar sind.

Bei dem Versuch Sie auszugeben wird gar nichts,
oder eventuell nur Mill erscheinen.

Programm 7.4 NewFont

#include "graphics/gfx.h"
#include "graphics/text.h"
#include "libraries/Diskfont.h"
#include "exec/memory.h"

struct Window *Window;
struct RastPort *Rast;
struct TextFont *NewFont;

/* Definition des neuen Fonts fiir folgender Grafik-
zeichen */
/* mit den ASCII-Codes von 65 bis 70: */

/* 1111111111111111 0000001111000000 1111111111111111
00000000 11001100 */
/* 1100000000000011 0000001111000000 0000000000000000
00000000 11001100 */
/* 1100000000000011 0000001111000000 1111111111111111
00000000 11001100 */
/* 1100000000000011 0000001111000000 0000000000000000
00000000 11001100 */
/* 1100000000000011 0000001111000000 1111111111111111
00000000 11001100 */
/* 1100000000000011 0000001111000000 0000000000000000
00000000 11001100 */
/* 1100000000000011 1111111111111111 1111111111111111

145

Kapitel 7 Textdarstellung

00000000 11001100 */
/* 1111111111111111 1111111111111111 0000000000000000
00000000 11001100 */

UWORD FontData [] = {Oxffff,0x03c0,0xffff,0x00cc,
0xc003,0x03c0,0x0000,0x00cc,
0xc003,0x03c0,0xffff,0x00cc,
0xc003, 0x03c0, 0x0000, 0x00cc,
0xc003,0x03c0,0xffff,0x00cc,
0xc003,0x03c0,0x0000,0x00cc,
0xc003,0xffff,0xffff,0x00cc,

Oxffff,O0xffff,0x0000,0x00cc,

}i

/* Die Adressen der Zeichen im Zeichensatz */
UWORD Loc [] = {0x0000,0x0010,0x0010,0x0010,0x0020,
0x0010,0x0030, 0x0008, 0x0038, 0x0008

4

/* Zeichenbreite */
UWORD Kern[] ={0,0,0,0,0};

ULONG DiskfontBase;
main ()

SHORT i;

USHORT code;

ULONG Class, Len;

OpenIntui();
OpenGfx();

/* Diskfontlibrary éffnen */

DiskfontBase = Openl ibrary("diskfont. library”,0);
if(DiskfontBase == NULL) /* Fehler beim Offnen */
exit(FALSE);

146

Kapitel 7 Textdarstellung

/* Fenster 6ffnen un die Adresse des Rastports
lesen. */
Window = (struct Window *)MakeWindow(220,100,200,
100,0,0, "NewFont",
SHART_REFRESH {WINDOWCLOSE {WINDOWDEPTH,
CLOSEWINDOW,NULL);

if(Window == NULL) /* Fehler beim Offnen. */
exit(FALSE);

Rast = Window->RPort;

/* Speicherplatz fiir die TextFont-Struktur des
neuen Fonts allozieren */
NewFont = AllocMem(sizeof(struct TextFont),
MEMF PUBLIC!MEMF CLEAR);
if(NewFont == NULL) - -
exit(FALSE);

/* Lédnge der Fontdaten berechnen */

Len = sizeof(struct TextFont) + sizeof(FontData) +
sizeof(Loc)+ sizeof(Width) +
sizeof(Kern);

/* Und diese initialisieren */
NewFont->tf Message.mn_Node.In Type = NT_FONT;

/* Message Port */

NewFont->tf Message.mn Node.In Name = "Demofont";

NewFont->tf Message.mn_Length ~ Len;
/* Eigentlicher TextFont */
NewFont->tf YSize = 8;

/* Héhe des Fonts */

NewFont->tf Style = NULL;
NewFont->tf Flags = FPF_DESIGNED;
NewFont->tf XSize = 16;

147

Kapitel 7 Textdarstellung

/* Breite der Zeichen */
NewFont->tf Baseline = 0;
NewFont->tf BoldSmear = 1;
NewFont->tf Accessors = NULL;
NewFont->tf LoChar = 65;
NewFont->tf HiChar = 70;
NewFont->tf CharData = &FontData[O];
NewFont->tf Modulo = 8;
NewFont->tf CharlLoc = &loc[0];
NewFont->tf CharSpace = &Width[0];
NewFont->tf_CharKern = &ern[0];

AddFont (NewFont);
/* Font in die Systemliste einfiigen */

Move(Rast,50,20);
/* Text im Standardfont ausgeben */

Text(Rast, "Standardfont:",13);
Move(Rast,60,40);

Text(Rast, "ADBDCDE",7);
Move(Rast 50,60);

Text(Rast, "Neuer Font:" 11),

SetFont(Rast, NewFont);
/* Neuen Font dem Rastport zuweisen */

Move(Rast,50,75);
/* und den Text mit diesen printen. */
Text(Rast, "ADBDCDE",7);

/* Auf Close Gadget warten und Fenster schheBen */

Class = WaitEvent(Window,&code);
RemFont (NewFont);

148

Kapitel 7 Textdarstellung

(DlNeukont 110
$tandardfont:

ADBDCDE

Neuer Font:

OL=EI

Bild 7.3 - Die Ausgabe des Programms NewFont

Wer einen eigenen Font erzeugen und auf Diskette
speichern will, wird gewdhnlich zu einem der vielen
Hilfsprogramme, mit deren Hilfe man die einzelnen
Zeichen zeichnerisch erstellen kann, greifen.

Trotzdem mag es Sie vieleicht interessieren, wie
dies genau funktioniert. Wenn ein Diskfont mit Open
DiskFont geladen wird, dann wird, wie Sie sich viel-
leicht erinnern, ein TextFont-Datensatz erzeugt, wie
er im vorigen Abschnitt beschrieben wurde. Es ist da-
her durchaus nicht verwunderlich, daB die Fontdaten
auf Diskette ebenfalls in einer sehr dhnlichen Form
vorliegen. Der wesentliche Unterschied besteht indem,
was sich um die eigentlichen Zeichendaten herum be-
findet. Wenn Sie einen Blick in die fonts-Directory
der Workbenchdiskette werfen, dann werden Sie sehen,
daB sich dort zu jedem Font zundchst mal ein gleich-
namiges Verzeichnis und ein File befindet, deren Name
aus dem Namen des Fonts und einem ".font"besteht. Fiir
den aus Abschnitt 4 bekannten "Emerald"-Font sieht
dies aus, wie folgt:

149

Kapitel 7 Textdarstellung

emerald (Dir)
emerald.font

In der ermerald Directory stehen dann nur folgende
Files:
17

20

Was steckt dahinter? In dem ".font"-File befindet
sich eine FontContentsHeader-Struktur, der eine oder
mehrere FontContents-Strukturen folgen (&hnlich wie
es auch bei AvailFontsHeader und AvailFonts der Fall
war). FontContentsHeader gibt an, wieviele Fonts mit
diesem Namen verfiigbar sind und sieht so aus:

Abb 7.7 Die FontContentsHeader-Struktur

{

UWORD fch FilelID;

UWORD fch NumEntries;

/* struct FontContents [] */

7
Das Feld fch FileID kennzeichnet diese Sorte von
Dateien und sol1¥e immer 0f00 sein. In fch NumEntries
steht dann die Anzahl der nachfolgenden FileContents-
Strukturen. Jede dieser Strukturen ist stellvertre-
tend fiir einen "Unterfont" (z.B. emerald 17 oder eme-
rald 20) und ist wie folgt gebaut:

Abb 7.8 Die FontContents-Struktur
struct FontContents

{

char fc FileName[MAXFONTPATH];
UWORD fT _YSize;

UBYTE fc Style;

UBYTE fc_Flags;

4

150

Kapitel 7 Textdarstellung

Die fc_YSize, fc_Style und fc_Flags Felder be-
schreiben"die Eigenschaften des Fonts und haben die
gleiche Bedeutung wie die gleichnamigen Felder der
TextAttr- und TextFont-Strukturen. fc FileName gibt
den Pfad, unter dem der Font in der FONTS: Directory
zu finden ist. In unserem Beispiel mit dem emerald-
Font muB hier ein Zeiger auf die Zeichenkette" eme-
rald/17" oder ‘"emerald/20" (Je nachdem, zu welchen
der beiden Fonts diese Struktur gehort) stehen.

Die Datei, die den eigentlichen Zeichensatz bein-
haltet, besteht dann aus folgenden vier Teilen:

(1) Eine einleitende DiskFontHeader-Struktur.
(2) Die TextFont-Struktur des Zeichensatzes.
(3) Die Bilddaten der Zeichen.

(4) Die CharLoc, CharSpace und CharKern Daten
(siehe TextFont-Struktur). :

Die Funktion der DiskFontHeader-Struktur liegt da-
rin, das Laden des Fonts mit dem LoadSeg-Befehl zu
ermdoglichen. Dadurch kann ein Zeichensatzfile wie ein
gelinktes Programm behandelt, und im Speicher instal-
liert werden. Hier die DiskFontHeader-Struktur im
Detail:

Abb 7.9 Die DiskFontHeader-Struktur
struct DiskFontHeader

{
/* ULONG dfh NextSegment */
/* ULONG dfh_ReturnCode */

151

Kapitel 7 Textdarstellung

struct Node dfh DF;

UWORD dfh Revision;

LONG dfh Segment;

char dfh Name[MAXFONTNAME];
struct TextFont dfh_TF;

7

Die ersten beiden Felder befinden sich in Kommen-
tarklammern, weil sie zwar immer am Anfang der Struk-
tur erscheinen, aber trotzdem nicht richtig dazu ge-
horen.

In dfh_ReturnCode stehen fiir den Fall, daB jemand
probieren sollte, das File als Programm zu starten,
folgende Assemblerbefehle:

MOVEQ #0,D0
RTS

Die den Riicksprung zum aufrufenden Programm veran-
lassen und so einen Absturz verhindern.

In der Node-Struktur, die sich in dfh DF befindet,
sind nur die Felder In Type und In Name ungleich
Null. Das Erste beinhaltet den Typ des Nodes, also
NT FONT, das Zweite einen Zeiger auf den Namen des
Fonts. Die letzten drei Felder von DiskFontHeader ha-
ben immer die Werte DFH_ID, 1 und 0. Als ndchstes
folgen der Fontname (kein Zeiger auf den Namen!) in
dfh_Name und die TextFont-Struktur.

Zur Erzeugung dieser Struktur, die in der im vori-
gen Abschnitt besprochene Art einen Zeichensatzes de-
finiert, benutzen Sie am besten einen Assembler. Die
Definition sieht dann schematisch so aus:

152

Kapitel 7 Textdarstellung

INCLUDE "exec/types.i"
INCLUDE "exec/nodes.i"

*Definition der DiskFontHeader-Struktur

MOVEQ #0,D0

RTS

DC.L 0
e AR
AL LA LLL

DS.B MAXFONTNAME

*Definition der TextFont-Struktur

font:

DC.L 0
DCL fontName
DC.L 0
DC.L fontEnd-font
DCL fontDa ta
DC.W 8
DC.L fontlLoc
DC.L fontSpace
DC.L fontKern
*Hier kommen die Bilddaten
fontData:

DC.W Ox..... /) R

ooooooooooooooooooooooooo

*Hier kommen die CharLoc-Daten

fontlLoc:
pc.L

153

Kapitel 7 Textdarstellung

fontSpace:

ooooooooooooooooooooooooo

oooooooooooooooooooooooooo

* Und hier ist es zu Ende
fontEnd:
END

Wenn Sie nun Ihren Zeichensatz so eingetippt haben,
dann miissen Sie ihn nur noch assemblieren, linken und
unter dem richtigen Namen in der FONTS: Directory ab-
speichern. Die Datei, die die FontContentsHeader und
die FontContents- Struktur beinhaltet kann iibrigens
auf die gleiche Weise mit dem Assembler und Linker
erzeugt werden.

Neben der schon im ersten Abschnitt vorgestellten
Textausgabeprozedur Text,die der Grafik-Library ange-
hort, bietet auch Intuition eine interessante Proze-
dur zur Textausgabe. Sie dhnelt stark der schon be-
kannten DrawImage-Routie, die ein durch eine Image-
Struktur definiertes Bild ausgibt. Die Prozedur, von
der wir sprechen, heiBt PrintIText und die zugehdrige
Struktur IntuiText. In dieser Struktur definieren Sie
sich einen Text, den Sie dann wiederholt an verschie-
denen Bildschirmpositionen ausgeben kdnnen. Das Scho-
ne daran ist, daB Sie fiir diesen Text einen anderen
Font und/oder eine andere Schriftart als die eben ge-

154

Kapitel 7 Textdarstellung

nannte verwenden kdnnen. Mit Hilfe eines Verket-
tungszeigers mehrere dieser Strukturen zu einem zu-
sammenhéngenden formatierten -Text zu verbinden.

Wie dies alles zu machen ist, konnen Sie der fol-
genden Beschreibung der IntuiText-Struktur entnehmen:

Abb 7.10 Die IntuiText-Struktur
struct IntuiText

{

UBYTE FrontPen, BackPen;
UBYTE DrawMode;

SHORT LeftEdge;

SHORT TopEdge;

struct TextAttr *ITextFont;
UBYTE *IText;

struct IntuiText *NextText;

7

Die Felder FrontPen und BackPen bestimmen, wie den
Namen leicht anzusehen ist, die Vorder- und Hinter-
grundfarbe. Der Zeichenmodus wird durch DrawMode be-
stimmt. Dort kénnen Sie die gleichen Werte, die an
die SetDrMd-Prozedur iibergeben werden, einsetzen. Die
ndchsten beiden Felder, LeftEdge und TopEdge geben
den Abstand des Textes von der Bildschirmposition,
die beim Aufruf von PrintIText angegeben wurde, an.

Der Font, der fiir die Ausgabe des Textes benutzt
wird, wird durch die TextAttr-Struktur, auf die IText
Font zeigt, spezifiziert. Wichtig ist, daB der ausge-
suchte Zeichensatz in der Systemfontliste verfiigbar
ist. Falls Sie den Standardfont des Rastports verwen-
den wollen, dann geben Sie hier NULL an. Der auszuge-
bende Text selbst wendet sich an die Adresse, die in
IText steht. Er muB selbstverstdandlich durch eine 0
agbeschlossen sein. Wenn Sie mehrere IntuiText-Struk-

165

Kapitel 7 Textdarsteliung

turen verketten wollen, dann kdénnen Sie dies iiber
NextText tun. Schreiben Sie dort einfach die Adresse
der ndchsten Struktur ein. Um eine solche Kette aus-
zugeben, brauchen Sie, nachdem Sie die einzelnen
Strukturen initialisiert haben, nur noch die PrintI
Text Prozedur wie folgt aufzurufen:

PrintIText(Rast,IText,x,y)

In Text iibergeben Sie der Prozedur die Adresse der
ersten IntuiText-Struktur. Die Koordinaten, die in x,
y (ubergeben werden, bestimmen die Position an der
Text erscheinen soll. Dabei ist zu beachten, daB er
nur dann genau an der Stelle x,y erscheint, wenn die
LeftEdge und TopEdge Felder von IntuiText beide Null
sind. Diese werden né&mlich zu x,y addiert, um die
endgiiltige Textposition zu ermitteln. Dadurch haben
Sie die Moglichkeit, mit mehreren verketetten Intui
Text-Strukturen, die die entsprechenden LeftEdge- und
TopEdge-Werte haben, einen ganzen Textbildschirm, mit
verchiedenen Fonts, Schriftarten und Farben aufzubau-
en und immer wieder mit einem einzigen Aufruf von
PrintIText auszugeben.

Zum AbschluB des Kapitels noch ein kurzes Beispiel
fiir die Anwendung von IntuiText. In dem nachfolgenden
Programm wird ein Text auf die soeben beschriebene
Weise dreimal ausgegeben. Dabei wird beim ersten mal
der Standardfont des Rastports, beim zweiten der
Font "topaz 9" und beim dritten "topaz 8" verwendet.

Da es sich bei beiden um ROM-Fonts handelt, brau-
chen Sie nicht extra gedffnet zu werden. Normalerwei-
se wird einer der beiden Zeichensdtze auch als Stan-
dardfont verwendet, so daB Sie sich nicht wundern
missen, sich zu entscheiden. Auch der Unterschied
zwischen den beiden "topaz" Fonts hdlt sich in Gren-
zen, so daB er vielleicht erst nach genauerem hinse-

156

Kapitel 7

Textdarstellung

hen auffalt.

sie zu verwenden,

zeigen.

Wir haben uns trotzdem entschlossen,

Programm 7.5 IntuiText

#include "intuition/intuition.h"
#include "graphics/gfx.h"

struct Window *Window;
struct RastPort *Rast;

struct IntuiText InText = {1,0,

/*
/*
/*
/*
/*
/*

Vorder und Hintergrundfarbe
JAMI,
Zeichenmodus
0,0,
Linker und rechter Offset
NULL,
Default Font benutzen
NULL,
Noch kein Text
NULL
Kein Nachfolger

4

struct TextAttr ITFont = {"Topaz.Font",

/* Daten des zu o6ffnenden Fonts

8

’
/* Dies ist ein Standardfont

0

/* der sich im ROM-befindet

FPF_ROMFONT

4

*/
*/
*/
*/
*/
*/

um die Anwendung der ROM-Fonts zu

*/
*/
*/

157

Kapitel 7 Textdarstellung

main ()

SHORT 1i;
ULONG Class, Styles, 0ldStyle;

OpenIntui();
/* Graphics- und Intuitionlibrary 6ffnen */
OpenGfx();

/* Fenster 6ffnen un die Adresse des Rastports
lesen. */
Window = (struct Window*)MakeWindow(200,10,200,
50,0,0, "IntuiText",SHART REFRESH!
WINDOWCLOSE,CLOSEWINDOW,NULL);

if(Window == NULL)]
/* Fehler beim (ffnen. */

exit(FALSE);
Rast = Window->RPort;

InText.IText = "Ganz normaler Font";
/* Auszugebenden Text eintragen */

PrintIText(Rast,&InText, 10,15);
/* und ausgeben 4

InText.IText = "Topaz GroBe 9 ";
/* Fontname é&ndern, */

InText.ITextFont = &ITFont;
/* in Inuti Text eintragen */

PrintIText(Rast,&InText,10,25);
/* und Text ausgeben */

InText.IText = "Topaz GrioBe 8";
/* Der néchste Font. */

158

Kapitel 7 Textdarstellung

ITFont.ta_YSize = 8;
/* GroBe einstellen, */

InText.ITextFont = &ITFont;
/* In IntuiText eintragen */

PrintIText(Rast,&InText,10,35);
/* und Text ausgeben */

/* Auf Close Gadget warten und Fenster schlieBen.*/

Class = WaitEvent(Window,&code);
CloseWindow(Window);

}

159

Kapitel 7 Textdarstellung

160

Kapitel 8 Sonderdarstellungsmodi

Kapitel 8
Die Sonderdarstellungsmodi des Amiga

161

Kapitel 8 Sonderdarstellungsmodi

Nachdem Sie in den vorangegangnen Kapiteln die
Grundlagen der Grafikprogrammierung am Amiga kennen-
gelernt haben, wollen wir uns hier einigen Besonder-
heiten zuwenden. Erst diese Sondermodi, mit den wir
uns in diesem Kapitel beschaftigen wollen, heben die
Grafik des Amiga wesentlich unter den meisten ande-
ren Computern hervor. Linien und Kreise mit einer
halbwegs passablen Aufldsung konnten schon Computer
in der Klasse des C-64 zeichnen. Besonderes der HAM-
Modus, der eine gleichzeitige Darstellung aller 4096
Farbe erméglicht, sollte das Herz eines jeden Gra-
fikprogrammierers héher schlagen lassen. Dazu werden
Sie in diesem Kapitel noch erfahren, wie Sie eine
extrabreite Anzeige (bis 1024x1024 Pixel), eine
Unterteilung des Displays in zwei Tiefenstufen (Dual-
Playfield) und einige andere interessante Effekte
ausnutzen kénnen. An vielen Stellen dieses Kapitels
wird vorausgesetzt, daB der Leser mit dem Inhalt der
vorangegangenen Kapitel, vor allem der iiber Intuition
(Kapitel 2) und Farbeinstellung (Kapitel 3), vertraut
ist.

Diesen Modus haben wir schon ganz am Anfang dieses
Buches im Zusammenhang mit den verschiednen Aufldsun-
gen eines Screens erwdhnt. Er kann durch setzen des
INTERLACE Flags in dem ViewModes-Feld der NewScreen-
Struktur beim Eréffnen eines Screens eingeschaltet
werden (siehe Kapitel 2). Dadurch wird die verti-
kale Aufldsung des Sreens verdoppelt (kann also bei
der deutschen Version des Amiga bis zu 512 Zeilen
betragen).

162

Kapitel 8 Sonderdarstellungsmodi

Leider hat die Sache einen Haken: die Verdoppelung
der Anzahl der Zeichen wird dadurch erreicht, daB
beim Zeichnen des Bildes auf dem Monitor immer
abwechselnd die geraden und die ungeraden Zeilen
durchlaufen werden. So ergibt sich sowohl fiir die
geraden, als auch fiir die ungeraden Zeilen, eine
Bildwiederholungsfrequenz, die um die Halfte geringer
ist als im normalen Modus. Die logische Folge davon
ist, daB das Bild zu flackern beginnt. Besonders
schlimm wird es, wenn sie nicht nur Bilder, sondern
vorwiegend Text darstellen wollen, denn dieser ist
nur mit einiger Anstrengung zu lesen. Ganz vermeiden
1aBt sich dieser Effekt eigentlich nur durch den Kauf
eines entsprechend guten (und teuren !!) Monitors.
Aus diesem Grund sollte man, bevor fiir ein Programm
den Interlace-Modus wdhlt, erst mal iiberlegen ob dies
wirklich unvermeidlich ist. Haben Sie sich einmal fiir
die Interlace-Darstellung entschieden, dann sollten
Sie zumindest darauf achten, von einer Zeile zur
anderen keine plétzlichen Farbwechsel zu verwenden.
Der Flimmereffekt ist namlich an solchen Stellen
besonders deutlich. Statt dessen kdnnen Sie bei dem
Ubergang von einer Farbe zur anderen stufenweise
vorgehen. Dazu legen Sie zwischen die beiden Zeilen,
einige Zeilen, die Mischfarben beinhalten, so daB ein
sanfter Wechsel entsteht. Auf die Weise 1dBt sich
das Flimmern auf ein ertrdgliches Niveau reduzieren.

163

Kapitel 8 Sonderdarstellungsmodi

Da zu einem Screen bekanntlich héchstens 32-
Farbregister gehdren kénnen, sind normalerweise auch
nicht mehr verschiedene Farben gleichzeitig darstell-
bar. Um diese Anzahl jedoch zu verdoppeln, haben sich
die Amiga-Entwickler einen raffinierten Trick einfal-
len lassen. Durch Verwendung einer sechsten Bitplane
besteht die Moglichkeit, Jjede dieser 32 Farben mit
der halben Helligkeit darzustellen (daher auch der
Name, Half-Bright = "halbhell"). Diese Moglichkeit
ist vor allem bei der Darstellung dreidimensionaler
Objekte oder Schatten besonders niitzlich. Die Farben
werden im Extra-Half-Brigth-Modus ganz normal wie bei
einer Anzeige der Tiefe 5 gewdhlt. Zu der Nummer der
Farbe wird dann, falls diese in der halben Helligkeit
erscheinen soll, 32 addiert. Dies entspricht dem
Setzen des entprechenden Bits in der sechsten Bit-
plane. Fir die Farbe Nr. 15 ergibt sich dann die
Nummer 32 + 15 also 47. Wenn Sie diese Farbe nun zum
Zeichnen gebrauchen wollen, konnen Sie sie wie immer
mit SetAPen bzw. SetBPen an die Vorder- bzw. Hin-
tergrundfarbe eines Rastports zuweisen.

Um den Extra-Half-Brigth Modus einzuschalten,
miissen Sie nur einen Screen der Tiefe 6 aufmachen.
Wie auch schon bei einer Tiefe von 5 ist dabei die
Auf16sung auf Towres, also hochstens 320x256 Pixel
beschrdnkt.

164

Kapitel 8 Sonderdarstellungsmodi

Die 64 Farben, die im Extra-Half-Bright Modus
verfiighar sind, sollten eigentlich fiir die meisten
Zwecke geniigen. Sie sind aber noch nicht das Beste,
was Ihr Amiga zu bieten hat! Mit einigen Einschrén-
kungen ist es némlich méglich, im HAM-Modus alle 4096
‘Farben nebeneinander auf den Bildschirm zu bringen.
In diesem Modus werden sechs Bitplanes bei einer
Aufldsung von 320 x 200 Punkten verwendet. Die
Einschrankungen bestehen darin, daB sich zwei
horizontal benachbarte Punkte nur in einer der drei
Komponenten: Rot, Griin oder Blau unterscheiden
diirfen. Da man eine solche Farbvielfalt in der Regel
sowieso nur dazu braucht, sanfte Fariibergdnge zu
erreichen (z.B. um durch eine ensprechende Schat-
tierung einen 3-D Effekt zu erzeugeng, ist diese Ein-
schrankung nicht so bedeutend wie man vielleicht
glauben kdnnte. Um zu verstehen, wie sie zustande
kommt, muB man zundchst die Farbdarstellung im HAM-
Modus betrachten. Da eine direkte Speicherung der
4096 Farbnummern in Bitplanes nicht mdglich ist (man
brduchte dafiir 12 Bitplanes und ungefdhr 750 KByte),
haben sich die Amiga Entwickler wieder mal einen
Trick einfallen lassen. Von den sechs Bitplanes, die
fiir HAM-Darstellung gebraucht werden, werden die
zwei oberen (Bitplane 5 und 6, also Bits 4 und 5) als
"Schalter" benutzt. Sie bestimmen, welche Bedeutung
den restlichen Bitplanes bei der Bestimmung der Farbe
eines Punktes zukommt. Dabei gibt es die folgenden
vier Méglichkeiten.

165

Kapitel 8 Sonderdarstellungsmodi

(1) Die Bits 0 bis 3 (Bitplanes 1 bis 4) werden als
Nummer eines der Farbregister 0 bis 15 interpretiert.
Der Punkt nimmt dann die durch dieses Register
bestimmte Farbe an.

(2) Der rote und der griine RGB-Anteil der Farbe des
Punktes werden von dem linken Nachbarn (ibernommen.
Der Blauanteil wird durch die Bits 0 bis 3 bestimmt
(mit 4 Bits kann man gerade die Zahlen 0 bis
15 darstellen).

(3) Der blaue und der griine RGB-Anteil der Farbe des
Punktes werden von dem linken Nachbarn (ibernommen.
Der Rotanteil wird durch die Bits 0 bis 3 bestimmt.

(4) Der blaue und der rote RGB-Anteil der Farbe des
Punktes werden von dem linken Nachbarn iibernommen.
Der Griinanteil wird durch die Bits 0 bis 3 bestimmt.

Diese vier Modi werden durch die folgenden vier
Kombination der Bits 4 und 5 ausgewdhlt:

Abb 8.1 Die Bedeutung der Bits 4 und 5 im HAM-Modus

! Bits | Modus |
i 00 | 1 |
1 01 | 2 |
100 b3
P11 P4 |

166

Kapitel 8 Sonderdarstellungsmodi

Wie sieht also die Farbzuweisung 1im HAM-Modus
praktisch aus? Wir wollen uns das mal an Hand
einiger konkreter Beispiele ansehen. Als erstes soll
einem Punkt einfach eine von 16 vordefinierten Far-
ben zugewiesen werden. Wie der obigen Aufzdhlung zu
entnehmen ist, missen Sie dazu die oberen beiden
Bitplanes (also die oberen beiden Bits der Farbnum-
merg auf 00 setzen, und mit den unteren vier die
Farbe als eine Zahl zwischen 0 und 15 angeben. Haben
Sie sich z.B. fiir die Farbe Nr. 10 entschieden,
ergibt sich der Farbwert aus:

0+ 10 =10

Dabei wird durch die 0 der Modus 1 und durch die 10
das entsprechende Farbregister angewdhlt. Diese Farbe
kann dann wie schon bekannt mit SetAPen zur Vorder-
grundfarbe gemacht werden. Mit den in den friiheren
Kapiteln beschriebenen Zeichenroutinen konnen Sie
dann beliebigen Punkten Ihrer Anzeige diese Farbe
zuordnen. » :

Einfach, nicht wahr? Aber natiirlich auch langwei-
1lig, denn das konnen Sie auch mit einem normalen
Screen der Tiefe 4 machen!

Als nachstes wollen wir mal in einer Zeile von
links nach rechts einen kleinen Regenbogen zeichnen.
Dabei soll der erste Punkt von Links schwarz sein
(RGB-Zusammensetzung 0,0,0) und der letzte die Farbe
der RGB-Zusammensetzung 15,15,15 haben. Dabei soll
von links nach rechts zundchst der Blauanteil, dann
der Rotanteil und schlieBlich der Griinanteil bis 15
ansteigen. Insgesamt wédren das 15 + 15 + 15 also 45
verschiedene Farben in einer Zeile. Nachdem Sie den
ersten Punkt auf die gerade beschriebene Art
schwarzgemacht haben, wollen Sie fiir den daneben
liegenden Punkt die griine und die rote Farbkomponente

167

Kapitel 8 Sonderdarstellungsmodi

iibernehmen (also 0 lassen !) und die blaue auf 1
setzen. Die unteren 4 Bits der Farbnummer miissen also
den Wert 0001 haben (Bindrzahl 1), wdhrend die oberen
beiden 01 sein miissen. Das ergibt das folgende
Bitmuster:

01 0001
Die Farbnummer ist also:

1*2Hoch4 +1=16+1 =17

Bei den nun nachfolgenden Punkten setzen sie analog
den Blauanteil immer héher (die Farbnummern sind dann
18, 19 etc. Es verdndern sich also nur die 4 unteren
Bits) bis dieser bei 15 angelangt ist. Nun ist es an
der Zeit den Rotanteil zu verdndern. Die oberen Bits
missen hierzu 10 sein, die unteren durchlaufen
wieder alle die Zahlen 1 bis 15 (also bindr 0001 bis
1111). Die Farbnummer fiir den sechszehnten Punkt von
links ist demnach:

1*2Hoch5+1=32+1-=233

Bei den Punkten 30 bis 44 wird analog der Rotanteil
schrittweise vergroBert wobei zu beachten ist, daB
die beiden oberen Bits nun 11 sind. Auf eine dhnliche
Art und Weise werden in dem folgenden Beispielpro-
gramm 256 Farben als Linien nebeneinander darge-
stellt.

168

Kapitel 8 Sonderdarstellungsmodi

Programm 8.1 HAM

#include"Display.h"

#inc lude "graphics/gfx.h"
#include"intuition/intuition.h"
struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;

struct ViewPort *View;

main ()
USHORT code, i, j, h; ULONG Class;

OpenIntui();
OpenGfx();

/* Einen low-res Screen éffnen. */

Screen = (struct Screen *)MakeScr(0,0,320,250,
"HAM-Demo", 6, HAM, NULL ,NULL);

if (Screen == NULL)

exit(FALSE);

/* Ein Fenster auf dem neuen Screen 6ffnen */
Window = (struct Window *)MakeWindow(20,50,270,
100,0,0, "Ham-Demo ", WINDOWCLOSE | ACTIVATE,
MOUSEBUTTONS | CLOSEWINDOW,Screen);
if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;
View = &((*(Window->WScreen)).ViewPort);

SetRGB4(View,0,5,0,0);

/* Hintergrundfarbe schwarz */
for(i = 0; i <= 15; i++)

169

Kapitel 8 Sonderdarstellungsmodi

for(j = 0; j< 15; j++)

SetAPen(Rast,32+j);
Move(Rast, i*16+j,0);
Draw(Rast, i*16+j,100);

}i ,
SetAPen(Rast,16+1);
Hove(Rast, i*16+15,0);
}Draw(Rast,i*16+15,100);

/* Auf Close-Gadget warten und alles schlieBen */

Class = WaitEvent(Window,&code);
CloseWindow(Window);
CloseScreen(Screen);

Da die Farbe eines Punktes im HAM-Modus beim
Zeichnen nicht nur von der aktuellen Vorder- bzw.
Hintergrundfarbe, sondern auch von der Farbe seiner
Nachbarn abhdngt, solite man mit Prozeduren, die
ganze Figuren zeichnen (also z.B. Draw oder
DrawCircle) vorsichtig umgehen. Es ist ndmlich nicht
unbedingt gesagt, daB die gesamte Figur dann in der
gewiinschten Farbe erscheint. Ein weiteres Problem
ergibt sich aus der Tatsache, daB der erste Punkt von
Tinks (also der mit der x-Koordinate 0) keinen linken
Nachbarn hat. Dies heiBt, daB man seine Farbe immer
direkt, also im Modus 1, setzen muB.

170

Kapitel 8 Sonderdarstellungsmodi

Bevor wir mit der Beschreibung weiterer Darstel-
lungsmodi fortfahren, wollen wir den Bilddarstel-
lungsmechanismus noch einmal genauer unter die Lupe
nehmen. Wir wollen dabei versuchen, ein Bild ganz
ohne Zuhilfenahme von Intuition, also ohne Screens
und Fenster, zu erzeugen. Dazu miissen wir zuerst die
ViewPort- und View-Strukturen der Grafik-Tibrary und
ihre genaue Funktion untersuchen. Das gesamte Bild,
das zu einem gegebenen Zeitpunkt angezeigt wird, wird
durch die View-Struktur bestimmt. Diese umfaBt dann
mehrere ViewPort-Strukturen, die ihrerseits die ein-
zelnen Displayelemente beschreiben. Die View an sich
besagt weder etwas iiber die Aufldésung, noch iiber die
GroBe der Anzeige. Sie beinhaltet lediglich Informa-
tionen iiber die Anordnung der Viewports. So kann das
Bild zu jedem Zeitpunkt aus mehreren Ausschnitten
(viewports) verschiedener Aufldosung und GroBe beste-
hen. Genau das sehen Sie, wenn Sie mehrere Screens
verschiedener Aufldsung iibereinander schieben. Jedem
Screen ist namlich eine ViewPort-Struktur, die seine
Eigenschaften bestimmt, zugeordnet. Diese wird dann,
wenn der Screen sichtbar wird, von Intuition an die
Liste der ViewPort der aktuallen View angehdngt. Soll
der Screen wieder verschwinden, dann- wird dieser
Eintrag einfach wieder entfernt. Neben View und
ViewPorts sind fiir den Aufbau eines Bildes noch zwei
weitere, aus friiheren Kapiteln schon bekannte, Struk-
turen notwendig: die BitMap- und die RastPort-Struk-
tur. Die erste stellt die Verbindung zu dem Spei-
cherbereich her, in dem die Bilddaten liegen, wdhrend
die zweite bekanntlich den "Zeichenstift" beschreibt.
Beide gehdren zu einem einzelnen ViewPort, nicht zu
einer View. Die Verbindung zwischen dem ViewPort und

171

Kapitel 8 Sonderdarstellungsmodi

der BitMap stellt eine weitere Struktur, né&mlich
RasInfo her. So beinhaltet ViewPort einen Zeiger auf
RasInfo und RasInfo einen Zeiger auf die BitMap. Die
Adresse der BitMap ist selbstverstdndlich auch im
RastPort zu finden. Einen Uberblick iiber die be-
schriebenen Beziehungen dieser Strukturen kdnnen Sie
sich auch anhand der nachfolgenden Abbildung ver-
schaffen:

Bild 8.1 - Die Verkniipfung der View-Strukturen.

Aus der obigen Beschreibung ergibt sich nun die
folgende Vorgehensweise beim Erstellen einer eige-
nen Anzeige:

(1) Erzeuge und initialisiere eine View-Struktur.

(2) Fir jedes Element der Anzeige erzeuge und initia-
lisiere eine ViewPort-Struktur.

(3) Fiir jede ViewPort-Struktur erzeuge eine RasInfo-
Struktur und trage ihre Adresse in ViewPort ein.

172

Kapitel 8 Sonderdarstellungsmodi

(4) Fiir jedes Anzeigeelement muB eine BitMap (die
eigentliche BitMap-Struktur und der dazu gehérige
Speicher fiir Bilddaten) erzeugt und in die ent-
sprechende RasInfo-Struktur eingetragen werden.

(5) Damit in jedes Element der Anzeige auch mit Hilfe
der Grafikroutinen der Grafik-Library gezeichnet
werden kann, miissen noch RastPort-Strukturen
erzeugt und initialisiert werden. In jeden Rast-
Port muB dann die Adresse der dazu gehdrigen Bit-
Map eingetragen werden. Falls Sie kein Rastport
erzeugen, miissen Sie durch direktes Schreiben in
den Bilddatenspeicher zeichnen, was recht mihsam
ist.

(6) Bringe die eigenen View zur Anzeige.

Dies 1ist selbstverstdndlich nur ein grober
"Schlachtplan" der noch ndherer Erléduterung bedarf.
Wir werden allerdings dabei auf die genaue Beschrei-
bung der einzelnen recht umfangreichen Strukturen im
Rahmen dieses Kapitels verzichten. Deren genauen
Beschreibung finden Sie im Anhang B. Der erste Punkt,
die Initialisierung der View-Struktur, ist recht
einfach. Sie brauchen nur eine Variable des Typs
struct View zu vereinbaren:

struct View View;
und iibergeben Ihre Adresse wie folgt an die Prozedur

InitView:

InitView(&View);

173

Kapitel 8 Sonderdarstellungsmodi

Diese trédgt in alle Felder der Struktur die Werte 0
bzw. -1 ein. Als nédchstes werden analog, diesmal mit
Hilfe der InitVPort-Prozedur, die ViewPorts erzeugt.
Sie miissen dazu noch einige Felder der ViewPort-
Strukturen wie folgt initialisieren:

DWitdh,DHeight:
Gewiinschte Hohe und Breite des neuen Viewports.

DxOffset, DyOffset:

Die Lage des neuen Viewports im Bezug auf die
linke obere Ecke der Anzeige. Zwischen zwei Viewports
muB immer mindestens eine Bildzeile Abstand gelassen
werden. Das heiBt auch, daB Viewports zwar unterein-
ander, nie aber nebeneinander liegen kdnnen.

Modes:

Der Anzeigemodus, also die Aufldésung und die gewiin-
schten Sondermodi. Hier konnen Sie die gleichen Werte
wie im Kapitel 2 fiir das ViewModes-Feld der
NewScreen-Struktur beschrieben, eingesetzt werden
(A1so z.B. HIRES | MAM).

ColorMap:

Hier wird die Adresse einer ColorMap-Struktur, die
die RGB-Zusammensetzung der fiir den Viewport giiltigen
Farben beinhaltet, eingetragen.

RasInfo:

Die Adresse der dazu gehdrigen RasInfo-Struktur. Wie
diese initialisert werden muB, wird spéter beschrie-
ben.

Eine korrekt initialisierte ColorMap-Struktur be-
kommen Sie, wenn Sie die Routine GetColorMap(n)
aufrufen. Sie Tliefert als Funktionsergebnis die
Adresse einer solchen, vollstédndig initialiserten
Struktur, die n Farben aufnehmen kann. An die

174

Kapitel 8 Sonderdarstellungsmodi

Adresse,die durch das ColorTable-Feld dieser Struktur
angegeben wird, kdénnen Sie dann die gewiinschten Farb-
werte kopieren. Die kann im Programm etwa wie folgt
aussehen:

struct ColorMap *CMap;

oooooooo

ooooooooo

CHap = GetColorMap(4);
CopyMem(Co lors,CMapB>Co lorTable,8);

Beachten Sie dabei, daB die Anzahl der zulédssigen
Farben von der Tiefe der Bitmap Ihres Viewports
abhéngt (siehe unten). Um den Viewport ganz fertig-
zustellen, fehlt nur noch die RasInfo-Struktur. Bevor
Sie in den Viewport eingetragen wird, missen die
folgenden Felder initialisiert werden:

Next:

Dieses Feld hat nur fiir den DualPlayfield-Modus eine
Bedeutung und sollte sonst unbedingt auf NULL
gesetzt werden.

Rx0ffset, RyOffset:

Die Position der linken oberen Ecke der Bitmap in
Bezug auf die linke obere Ecke des Viewports. Diese
Felder konnen, wie Sie spdter sehen werden, sehr gut
zum Scrollen benutzt werden.

BitMap:

Hier wird die Adresse der BitMap-Struktur des View-
ports eingetragen. Die BitMap-Struktur, deren Adresse
in das letzte Feld von RasInfo eingetragen werden
muB, beinhaltet Angaben zur Tiefe, Breite und Hohe
der Bitmap, sowie eine Tabelle mit den Adressen der

175

Kapitel 8 Sonderdarstellungsmodi

Bitplanes (also der Speicherbereiche, wo die eigent-
liche Bildinformation gespeichert ist). Um sie zu
erstellen miissen Sie zweierlei tun: Zuerst rufen Sie
die Prozedur InitBitMap mit der Adresse einer nicht
initialisierten BitMap-Struktur (BMap), der Tiefe
(Depth), der Breite in Pixel (Width) und der Hohe
(Height) wie unten dargestellt, auf.

InitBitMap(BMap,Depth,Width,Height);

Wichtig ist, daB dieser Aufruf lediglich die Felder
der Struktur initialisiert, und keine neue BitMap-
Struktur erzeugt. Auch die Allozierung des fir die
Bitplanes bendtigten Speicherbereiche und das Eintra-
gen ihrer Adressen in das Planes[]-Feld der Struktur
missen Sie selbst in die Hand nehmen. Dies geschieht
am besten in einer for-Schleife mit Hilfe der schon
bekannten AllocMem-Routine.

for(i = 1; i <= Depth; i++)
BMap->P lanes[i-1]=A1locMem((Width*Height),
MEMF_CHIP/MEMF_CIEAR));

Vergessen Sie dabei nicht, daB diese Speicherbe-
reiche im CHIP-RAM liegen miissen. Es ist auch durch-
aus sinnvoll, durch Setzen des MEMF CLEAR-Flags den
Speicher gleich mit Nullen zu fiillen (sonst werden
Sie nach dem Einschalten des Viewports irgendei-
nen "Mi11" zu sehen bekommen). Nachdem alle zu der
View gehdrenden Strukturen wie beschrieben erstellt
wurden, kann sie endlich auf den Bildschirm gebracht
werden. Dazu sind nur noch die folgenden drei Aufrufe
notwendig:

176

Kapitel 8 Sonderdarstellungsmodi

MakeVPort(&View,&ViewPort);
MrgCop(&View);
LoadView(&View);

Die ersten beiden sorgen dafiir, daB die Befehls-
Tisten fiir den Coprozessor (Copperlisten), die fir
die Bilddarstellung notwendig sind, erstellt werden
(siehe Kapitel 10 ?. Eingeschaltet wird unsere View
mit dem letzten Befehl. Er bewirkt, daB alles was
bisher auf dem Bildschirm zu sehen war, verschwindet
und durch unsere, zundachst leere Anzeige ersetzt
wird. Zum Zeichnen in den Viewports konnen Sie
entweder direkt in die Bitplanes schreiben, oder zu
jedem Viewport einen eigenen Rastport erzeugen, indem
Sie alle Grafikbefehle anwenden konnen. Zur Erstel-
lung des Rastports iibergeben Sie einfach die Adresse
einer RastPort-Struktur an die InitRastPort-Prozedur,
und tragen dann in das BitMap-Feld der Struktur die
Adresse der zu dem Viewport gehdrenden BitMap.

Das sieht dann im Programm z.B. so aus:

InitRastPort(&Rast);
Rast.BitMap = ViewPort.RasInfo.BitMap;

An dieser Stelle noch ein Tip. Falls Sie irgend-
wann wieder zu der alten Anzeige (also z.B. zum Work-
bench-Screen) zuriickkehren wollen, dann sollten Sie
sich vor dem Aufruf von LoadView die Adresse der
aktuellen View merken. Sie kdnnen sie wie folgt aus
der GfxBase-Struktur auslesen:

oldView = GfxBase->ActiView;

177

Kapitel 8 Sonderdarstellungsmodi

Neben der Wiederherstellung des alten Bildschirmin-
haltes sollten Sie auch an die Freigabe des nicht
mehr bendtigten Speichers denken. Dabei handelt es
sich um die Bitplanes, die ColorMaps und die Copper-
listen. Die Deallozierung der Bitplanes geschieht in
einer zu der Allozierung analogen Weise mit Hilfe
der FreeMem-Prozedur. Die ColorMaps und die Copper-
listen der einzelnen Viewports kénnen folgendermaBen
mit Hilfe der FreeColorMap und FreeVPortCopLists Rou-
tinen freigegeben werden.

FreeVPortCopL ists(&ViewPort);
FreeColorMap(&ColMap);

Als Tletztes muB nur noch die Copperliste der gesam-
ten View mittels FreeCprList so geldscht werden:

FreeCprList(View.LOFCprList);

Zum AbschluB dieses recht langen Abschnittes ein
Beispielprogramm. Es erzeugt eine View (V) mit zwei
untereinanderliegenden Viewports (Viewl und View2)
verschiedner Auflésung (320 x 200 und 640 x 200).
Interessant ist dabei die Tatsache, daB beide View-
ports die gleiche RasInfo-Struktur, also auch die
gleiche Bitmap haben. Dadurch wird alles, was in den
einen Viewport gezeichnet wird, auch 1im anderen
sichtbar ist, allerdings in einer anderen Aufldsung.
Um diesen Effekt zu demonstrieren, wird durch die
Programmeigene Prozedur CreateDisplay in den eben-
falls gemeinsamen Rastport der Vieports eine aus
vielen Ellipsen bestehende Figur langsam gezeichnet.
Sie konnen dies deutlich beobachten, da die Figur in
den beiden Viewports gleichzeitig entsteht.

178

Kapitel 8 Sonderdarstellungsmodi

Zur Erzeugung und Freigabe der Bitmap benutzt das
Programm Prozeduren, die wir in einem spateren Ab-
schnitt im Zusammenhang mit einem neuem include-File
vorstellen werden.

Programm 8.2 Viewports

#include ‘"exec/types.h"
#include "exec/memory.h"
#include "graphics/gfx.h"
#include ‘“graphics/view.h"
#include ‘"graphics/copper.h"
#include ‘"DisplayTools.h"
#define DEPTH 1

#define WIDTH 300

#define HEIGHT 120

#define X0 160
#define Y0 130
struct View V, *oldView;

struct ViewPort Viewl, View2;
struct ColorMap *CMap;

struct RasInfo RInfo;

struct RastPort Rast;

struct BitMap *BMap;

short Colors [] = {0x00A, 0x0A0};

/* Farbtabelle: Blau und Griin */
main()
OpenGfx();

BMap = MakeBitMap(DEPTH,WIDTH,HEIGHT);
/* BitMap erzeugen */

179

Kapitel 8 Sonderdarstellungsmodi

/* Initialisiere die View und Viewport
Strukturen beider Viewports */

InitView(&V);
InitVPort(&Viewl);
V.ViewPort = &Viewl;

/* ViewPort und View verkniipfen */
InitVPort(&View2);
Viewl.Next = &View2;

/* Ndchsten Viewport ankniipfen */

/* RasInfo initialisieren */

RInfo.BitMap = BMap;
RInfo.Rx0ffset = 0;
RInfo.RyOffset = 0;
RInfo.Next = NULL;

/* Farbtabelle erstellen */
CMap = GetColorMap(2);

/* Allozieren */
CopyMem(Colors,CMap->ColorTable,sizeof(Colors));
/* Farben eintragen */

/* Alles in den ersten ViewPort und */

Viewl.RasInfo = &RInfo;
Viewl.ColorMap = CMap;

Viewl.DWidth = WIDTH;
Viewl.DHeight = HEIGHT;

/* in den zweiten ViewPort eintragen */
View2.RasInfo = &RInfo;

View2.ColorMap = CHMap;
View2.DWidth = WIDTH;
View2.DHeight = HEIGHT;

View2.Dx0ffset = X0;

180

Kapitel 8 Sonderdarstellungsmodi

/* ViewPort nach unten versetzt */
View2.DyOffset = Y0;
View2.Modes = HIRES;

/* Copperliste fiir die Viewports erzeugen */
MakeVPort(&V,&Viewl);

MakeVPort(&V,&View2);

MrgCop(&V);

/* Einen Rastport erzeugen und initialisieren */
" InitRastPort(&Rast);
Rast.BitMap = BMap;

/* Aktuelle View retten und die eigene in
Vordergrund bringen, */

oldView = GfxBase->ActiView;

LoadView(&V);

/* etwas in den neuen Viewport zeichnen */
CreateDisplay(&Rast);

/* und den alten Zustand wiederherstellen */
LoadView(oldView);
FreeAll();

FreeAll()
{

/* Copperlisten freigeben */
FreeVPortCopLists(&Viewl);
FreeVPortCopLists(&View2);
FreeCprList(V.LOFCprList);

/* BitMap samt Bitplanes freigeben */
FreeBitMap(BMap);

181

Kapitel 8 Sonderdarstellungsmodi

/* Farbtabelle freigeben */
FreeColorMap(CMap);

}

CreateDisplay(Rast)

struct RastPort *Rast;
{. . ..
int i,J ;

/* Text ausgeben */
Hove(Rast,70,8);

SetAPen(Rast,1);

Text(Rast, "Hallo hier bin ich !!",20);

/* Einige Ellipsen zeichnen */
for(i = 0; i<100; i++)

DrawE11ipse(Rast, 150,70, i,50-1i/2);
for(j = 0; j<6000; j++);

182

Kapitel 8 Sonderdarstellungsmodi

Wenn man sich die ViewPort-und die RasInfo Struktu-
ren naher anschaut, sieht man, daB es durchaus
interessant sein kdénnte, einige ihrer Felder zu
modifizieren. Dabei sind vor allem DxOffset, DyOffset
(in ViewPort) bzw. RxOffset, RyOffset (in RastPort)
gemeint. Durch Verdnderung dieser Felder kann die Po-
sition des Viewports innerhalb der View bzw. der
Bitmap innerhalb des Viewports verdndert werden.
Dadurch 1lassen sich sehr leicht flieBende Scrollef-
fekte erzielen. Dieses Verfahren wird auch von Intui-
tion beim Verschieben und (Ubereinanderschieben von
Screens angewandt. Der Vorteil gegeniiber dem bekann-
ten Scrolling mittels ScrollRaster liegt darin, daB
hierbei Teile des Bildes zwar vom Bildschirm ver-
schwinden konnen, dabei aber nicht geldscht werden.
Sie konnen also durch Scrollen um den gleichen Betrag
in umgekehrte Richtung den alten Bildschirminhalt
wieder herstellen. Das Verdndern der Komponenten des
Viewports allein reicht allerdings nicht ganz aus,
um eine Verdnderung des Bildes zu erzielen. Wenn Sie
es versuchen, werden Sie feststellen, daB sich nichts
tut. Das liegt daran,daB sich die Hardware (der
Copper) die fiir die Bilderstellung relevante Informa-
tion nicht direkt aus den Datenstrukturen, sondern
aus den daraus aufgebauten Copperlisten holt. Um
diese zu modifizieren, miissen Sie nach jeder Ver-
dnderung 1in der ViewPort- bzw. RasInfo-Struktur
ScrollVPort mit der Adresse der ViewPort-Struktur
aufrufen. Ein Beispiel fiir Scrollen nach dem oben
beschriebenen Prinzip werden Sie 1in dem néchsten
Programm finden.

183

Kapitel 8 Sonderdarstellungsmodi

In diesem Modus besteht ein Viewport aus zwei
Schichten (Playfields). Eine von ihnen befindet sich
dabei im Vordergrund, die andere im Hintergrund. Das
Besondere ist, daB ein beliebiger Pixel jeder Schicht
durchsichtig gemacht werden kann. Es kann auch jedes
Playfield unabhdngig vom anderen beschrieben werden.
Das heiBt, daB Sie etwas in die vordere Schicht
schreiben konnen, ohne den Inhalt der hinteren
Schicht an der gleichen Position zu 18schen. Wenn Sie
das erste Playfield spater an dieser Stelle wieder
durchsichtig machen, kommt der unverdnderte Inhalt
des Hinteren wieder zum Vorschein. Dies ist besonde-
res fiir Spieleprogrammierung sehr niitzlich. Sie kon-
nen z.B. die vordere Schicht bis auf einen kleinen
durchsichtigen Kreis schwarz machen und das eigent-
liche Bild in die hintere Schicht zeichnen. Wenn Sie
nun eines der beiden Playfields Scrollen, entsteht
der Eindruck eines bewegten Fernrohres.

Wir wollen zuerst die Einrichtung eines Dual-
Playfield-Displays auf der Viewport-Ebene betrachten.
Spdter werden Sie anhand eines Beispielprogramms
sehen, wie sich ein Dual-Playfield Screen 6ffnen
1a8t. Ein Dual-Playfield Viewport unterscheidet sich
von einem "normalen" in zwei Punkten:

(1) Das DUALPF-Bit des Modes Feldes der ViewPort-
Struktur ist gesetzt. Falls Sie wollen, daB nicht
das erste, sondern das zweite Playfield im Vorder-
grundliegt, miissen Sie auch das Bit setzen.

(2) Die ViewPort-Struktur beinhaltet zwei RasInfo-
Strukturen, von den jede die Adresse einer anderen

184

Kapitel 8 Sonderdarstellungsmodi

Bitmap beinhaltet. Die Adresse der ersten RasInfo-
Struktur steht wie immer in dem RasInfo-Feld der
ViewPort-Struktur, die Adresse der zweiten in dem
Next-Feld der ersten. Jede der RasInfo-Strukturen ist
fiir eines der beiden Playfields stellvertretend (da-
her auch die verschiedenen Bitmaps, fiir jedes Play-
field eine eigene).

Da man gewdhnlich in jede Schicht etwas zeichnen
oder schreiben méchte, sollte man auch zwei RastPort-
Strukturen erzeugen (siehe Abschnitt 5). Jede dieser
Strukturen beinhaltet einen Zeiger auf die Bitmap des
entsprechenden Playfields. Da sich der Zeiger auf die
ColorMap-Struktur in der ViewPort-Struktur befindet,
ist sie fir beide Playfields gemeinsam da. Damit
trotzdem jedes Playfield seine eigenen Farben benut-
zen kann, ist die erste Halfte der Farbtabelle fiir
das erste, und die Zweite fiir das zweite Playfield
reserviert. Wenn also das erste Playfield die Tiefe 1
(also 2 Farben) hat, dann wird die Farbe 1 des
zweiten Playfields in Wirklichkeit die Farbe 3 sein.
Denken Sie auch daran, daB die Farbe 0 bei bei den
Playfields Duchrsichtigkeit bedeutet. Die maximale
Anzahl der Farben eines Playfields ist 8, da die
Summe der Tiefen der Playfields, also die Tiefe der
gesamten Anzeige, hdchstens 6 sein darf. Je nach
Gesamttiefe der Anzeige konnen die einzelnen Play-
fields nur folgende Tiefen haben:

185

Kapitel 8 Sonderdarstellungsmodi

Abb. 8. Die Bitplaneverteilung bei Dual-Playfield

| Gesamt | Playfield 1 | Playfield 2 |
! Tiefe | Tiefe ! Tiefe |
| 1 | 1 | 0 |
e
| S | | I
IR A
| 5 | 3 | 2 |
6 3 | 3 |

Zum SchluB noch einmal ein Uberblick dariiber,

was

zur Erstellung eines Dual-Playfield-Viewports getan

werden muf3:

(1) Eine ViewPort-Struktur mit gesetzen DUALPF-

erzeugen.

Bit

(2) Zwei Bitmaps (BitMap-Strukturen + allozierte Bit-

planes) fiir die beiden Playfields erzeugen.

Die

Bitmaps miissen nicht unbedingt gleich groB sein.

(3) Zwei RasInfo-Strukturen erstellen, iiber das Next-
Feld verketten und die Adressen der Bitmaps ein-

tragen.

(4) Die Adresse der ersten RasInfo-Struktur in
Viewport eintragen.

den

(5) Zum Zeichnen fiir jedes Playfield einen Rastport

erzeugen.

186

Kapitel 8 Sonderdarstellungsmodi

Bei dieser Aufzdhlung haben wir natiirlich nur das
erwdhnt, was speziell fiir den Dual-Playfield Modus
wichtig ist (siehe Abschnitt 5).

Im Allgemeinen ist es bequemer, mit Screens und
Fenstern, als mit Viewports zu arbeiten. Dies gilt
auch fir den Dual-Playfield-Modus. Wenn Sie sich an
Kapitel 2 erinnern, dann wissen Sie noch, daB in dem
ViewModes-Feld der NewScreen-Struktur, die die Dis-
playeigenschaften bestimmt, auch das DUALPF-Flag ge-
setzt werden kann. Man kommt da in Versuchung, dieses
Flag erst einmal zu setzen, und zu hoffen, daB nach
dem Aufruf von OpenScreen ein Dual-Playfield-Screen
gedffnet wird. Leider ist die Sache aber nicht ganz
so einfach. Es wird zwar das entsprechende Flag im
Viewport des Screens gesetzt und eine zweite RasInfo-
Struktur erzeugt und angehdngt, aber keine zweite
Bitmap erstellt. Die OpenScreen-Routine ignoriert
auch die Tatsache, daB im Dual-Playfield-Modus die
Gesamttiefe der Anzeige unter die Playfields verteilt
wird, und trdgt eine Bimap der Gesamttiefe in die
erste RasInfo-Struktur ein. Um einen Dual-Playfield-
Screen zu erzeugen, miissen Sie also die Erstellung
und das Eintragen der Bitmaps selbst in die Hand
nehmen. Dazu setzen Sie beim Offnen des Screens
zusdtzlich das CUSTOMBITMAP-Flag des Type-Feldes der
NewScreen-Struktur und tragen die Adresse der Bitmap
des ersten Playfields in das Bitmap-Feld ein. Dazu
missen Sie die Bitmap selbstverstandlich vorher
erstellt haben!

187

Kapitel 8 Sonderdarstellungsmodi

Damit eine geniigend groBe Farbtabelle erzeugt wird,
geben Sie als Tiefe die Gesamttiefe, also die Summe
der Tiefen der Playfields an. Ist der Screen ge-
offnet, so muB nur noch die Adresse der Bitmap des
zweiten Playfields (sie muB vorher natiirlich auch
erstellt werden !) in die zweite RasInfo-Struktur
des Viewports des Screens eingetragen werden. Damit
das System die zweite Bitmap wahrnimmt, miissen Sie
zum SchluB noch die ScrollVPort-Prozedur aufrufen.
Wenn Screen ein Zeiger auf den neuen Screen ist, dann
sieht es so aus:

Screen->ViewPort.RasInfo->Next->BitMap = BitMap2;
ScrollVPort(&(Screen->ViewPort));

Die RastPort-Struktur, die in der Screen-Struktur
enthalten ist, gehort selbstverstdndlich zu dem er-
sten Playfield. Daher sollten Sie sich einen zweiten
Rastport fiir das zweite Playfield erzeugen. Da das
Offnen eines Dual-Playfield-Screens recht miihsam ist,
haben wir in dem am Ende des Kapitels abgedruckten
include-File eine Routine geschrieben, die dies fiir
Sie tut. Sie benutzt zum Offnen des Screens die
MakeScreen-Routine aus dem include-File Display.h aus
dem zweiten Kapitel.

Im nachfolgenden Beispielprogramm benutzen wir
diese Routine, um einen Dual-Playfield Screen zu
Offnen. Dann wird in jedem Playfield ein Gitter aus
kleinen Quadraten erzeugt. Diese Gitter werden dann
hin und her gescrollt. Dabei kdnnen Sie sehr gut
beobachten, daB das eine Gitter sich immer vor dem
anderen befindet. Beim Scrollen benutzen wir die im
vorigen Abschnitt besprochene Methode des Verénderns
der X und Y-Offsets eines Viewports.

188

Kapitel 8 Sonderdarstellungsmodi

Programm 8.3 Dual-Playfield

#inc lude "graphics/gfx.h"
#include"intuition/intuition.h"
#inc lude "stdio.h"
#include"DisplayTools.h"

struct Screen *Screen;
.struct RastPort *Rastl, *Rast2;

main ()

short n,j;
Tong 1i;

OpenIntui(); OpenGfx();

/[’)r Einen low-res Screen éffnen. */

Screen = (struct Screen *)MakeDPFScr(0,0,320,250,
“DualPlayfield",4,NULL,NULL ,&Rast1,&Rast2);

/* Ein Durchsichtiges Viereck im Playfield 1 an
der Mausposition */
SetAPen(Rastl,1);
SetAPen(Rast2,1);
for (i = 5; i <= 15; i++)
for (j = 3; j <= 12; j++)

RectFill(Rastl, 15%i,15%j,15*i+8,15*j+8);
RectFill(Rast2,15%i+5,15%j+5,15%i+12,15*j+12);

}i

for (i = 0; i <= 5; i++)

{
;pr (J =0; j <= 50; j++)

189

Kapitel 8 Sonderdarstellungsmodi

(Screen->ViewPort).RasInfo->Next->Rx0ffset += 1;
Scrol1VPort(&(Screen->ViewPort));

b . .
for (j = 0; j <= 100; j++)

(Screen->ViewPort).RasInfo->Next->Rx0ffset -= 1
ScrollVPort(&(Screen->ViewPort));

~e

}.
for (j = 0; J <= 50; j++)

(Screen->ViewPort).RasInfo->Next->Rx0ffset += 1
Scrol1VPort(&(Screen->ViewPort));

7

}:

/* Screen schlieBen */
CloseDPFScreen(Screen);

}

e

Das Beispielprogramm und die obige Beschreibung
bezogen sich auf einen Screen. Was ist aber wenn man
im Dual-Playfield Modus die Vorteile der Fenstertech-
nik nutzen will (Menus, IDCMP, etc.) ? Nun, da ein
Fenster weder einen eigenen Viewport noch (in der
Regel) eine eigene Bitmap besitzt, kann man verstand-
licherweise kein Dual-Playfield-Fenster auf einem
normalen Screen dffnen. Andererseits spricht aber
nichts dagegen, ein Fenster auf einem Dual-Playfield
Screen zu 6ffnen. Beachten muB man dabei nur, daB
Rahmenelemente bzw. Gadgets nicht die Farbe 0 haben,
also nicht durchsichtig sind.

190

Kapitel 8 Sonderdarstellungsmodi

Die GroBe des Bildes, das auf dem Bildschirm zu
sehen ist, ist wie Sie bereits wissen, auf hochstens
620x400 Pixel begrenzt. Die Betonung 1liegt dabei
allerdings auf den Zusatz "das zu sehen ist". Wenn
Sie mit eigenen Viewports oder mit Screens mit einer
eigenen Bitmap arbeiten, dann kann Ihr Bild unabhén-
gig von der Aufldsung bis zu 1024x1024 Pixel groB
sein. Welcher Teil des Bildes gerade gezeigt wird,
kénnen Sie durch die RxOffset und RyOffset-Felder der
zugehdrigen RasInfo-Struktur (siehe Programm 8.3)
bestimmen. Da diese beiden Felder die Lage der Bitmap
innerhalb des Viewports angeben, koénnen Sie durch
Angabe entsprecheder Werte einen beliebigen Aus-
schnitt zur Anzeige bringen. Diese Technik ist beson-
deres fiir sehr schnelles flieBendes Scrolling, wie es
etwa bei Action-Spielen bendtigt wird, sehr gut
geeignet. Das entscheidene dabei ist, daB nicht immer
wieder nach jedem Scrollschritt das Bild am Rande
aufgebaut werden muB.

Dieses 1include-File beinhaltet Prozeduren, die
Ihnen das Arbeiten mit den verschiedenen Sondermodi
und miteigenen Viewports erleichtern. Die erste,
MakeBitMap dient dazu, eine Bitmap der Tiefe Depth,
der Hohe Height Zeilen und der Breite Width Pixel zu
erstellen und gibt einen Zeiger auf die BitMap-
Struktur zuriick. Dabei wird auch der fiir die

191

Kapitel 8 Sonderdarstellungsmodi

Bitplanes notwendige Speicher alloziert und in das
Planes-Feld der Struktur eingetragen. Um eine so
erstellte Bitmap samt Bitplanes wieder freizugeben,
konnen Sie die nédchste Routine: FreeBitMap benutzen.
Ihr wird lediglich der Zeiger auf die BitMap-Struktur
ibergeben.

Die Routine MakeDPFScr hilft Ihnen, einen Dual-
Playfield-Screen wie -in Abschnitt 7 beschrieben zu
Offnen. MakeDPFScreen gibt als Funktionsergebnis die
Adresse des fertigen Dual-Playfield-Screens zuriick
und schreibt in Rastl und Rast2 die Zeiger auf die
Rasports der beiden Playfields. Als Tiefe miissen Sie
die Gesamttiefe, {ibergeben. Zum schlieBen eines so
erzeugten Screens haben wir die CloseDPFScreen Proze-
dur bereitgestellt. Zum AbschiuB noch eine Ubersicht
iiber die 4 Routinen und ihre Parameter:

Eine Bitmap erzeugen.
MakeBitMap(Depth, Width, Height)
int Depth, Width, Height;
Eine Bitmap freigeben.

FreeBitMap(BMap)
struct BitMap *BMap;

Einen Dual Playfield Screen &ffnen.

MakeDPFScr (x, y, w, h, Name, d, flags,
font, Rastl,Rast2)
struct RastPort *(*Rastl), *(*Rast2);

short x, y, w, h, d;
LONG flags, font;
char *Name ;

192

Kapitel 8 Sonderdarstellungsmodi

.Einen Dual-Playfield Screen schlieBen.

CloseDPFScreen(Screen)
struct Screen *Screen;

Programm 8.4 Dual-Playfield

#include "graphics/gfx.h"

#inc lude "graphics/gfxbase.h"

#inc lude "exec/memory.h"

#include "Display.h"#include "stdio.h"

MakeBitMap(Depth, Width, Height)
int Depth, Width, Height;

struct BitMap *BMap;
int i;

BMap = AllocMem(sizeof(struct BitMap), NULL);
if (BMap == NULL)

exit(FALSE); /* Fehler */

/* BitMap-Struktur initialisieren */
InitBitMap(BMap,Depth, Width,Height);

Width = (Width +7) /8;

/* Speicher fiir alle Bitplanes der Bitmap
allozieren */
for(i = 1; i <= Depth; i++)
if((BMap->P Ianes[i; -1]=AllocMem((Width*Height),
MEMF CHIP!MEMF CLEAR)) == NULL)
exit(FALSE); "~ /* Fehler beim allozieren
einer Bitplane */
return(BMap);

193

Kapitel 8 Sonderdarstellungsmodi

FreeBitMap(BMap) /* Gibt den Speicher einer */
/* Bitmap samt Bitplanes */
/* frei *

struct BitMap *BMap;
{

int i;

if(BMap == NULL) exit(FALSE);
/* Bitplanes freigeben */
for(i = 0; i < (BMap->De]pth); i++)

FreeMem(BMap->P lanes[i], (BMap->BytesPerRow)*
(BMap->Rows)) ;

/* BitHMap Struktur freigeben */
FreeMem(BMap,sizeof(struct BitMap));

MakeDPFScr (x, y, w, h, Name, d, flags, font,
Rastl, Rast2)

struct RastPort *(*Rastl), *(*Rast2);

short X, y, w, h, d;
LONG flags, font;
char *Name;

struct Screen *Screen;
struct BitMap *BitMapl, *BitMap2;
short i,J, depth;

194

Kapitel 8 Sonderdarstellungsmodi

depth = d / 2+d % 2;
printf(" depth %d \n",6depth);

/* Bitmaps fiir die Playfields erzeugen */
BitMapl = MakeBitMap(depth,w, h);
BitMap2 = MakeBitMap(d/2,w,h);

Screen = (struct Screen *)MakeScr(x,y,w,h,Name,depth,
flags | DUALPF,font,BitHapl);
if(Screen == NULL) /* Fehler ? */
exit(FALSE);

/* Und die Bitplanes des zweiten Playfields
eintragen */

/* RastPort-Struktur initialiseren und die
neue Bitmap eintragen */

*Rast2 = AllocMem(sizeof(struct RastPort),NULL);
if (*Rast2 == NULL)

exit(FALSE);

InitRastPort((*Rast2));

(*Rast2)->BitMap = BitMap2;

*Rastl = &(Screen->RastPort);
Screen->ViewPort.RasInfo->Next->BitMap = BitMap2;
ScrollVPort(&(Screen->ViewPort));

return(Screen);

CloseDPFScreen(Screen)
struct Screen *Screen;

{

FreeBitMap((Screen->ViewPort).RasInfo->Next->BitMap);
/*FreeBitMap((Screen->ViewPort).RasInfo->BitMap);*/
CloseScreen(Screen);

195

Kapitel 8 Sonderdarstellungsmodi

196

Kapitel 9 Der Blitter

Kapitel 9

197

Kapitel 9 Der Blitter

Inzwischen ist der Amiga nicht mehr der einzige er-
schwingliche Computer mit einem 68xxx Prozessor, gra-
fischer Fensteroberfldache und sehr guten Grafikmég-
lichkeiten. Was ihn aber nach wie vor von der Konku-
renz abhebt sind seine Sonderchips, von denen der
Blitter (aus dem Englischen Block Image Transferrer)
mit der wichtigste ist. Er ist fiir das flexible und
schnelle Kopieren und Fiillen von Speicherbereichen
zustdndig und somit fiir Grafikanwendungen unentbehr-
lich. Ohne Blitter wiirden viele Operationen, die mit
der Bildschirmausgabe zu tun haben, um Potenzen lang-
samer sein. Wir wollen Sie in diesem Kapitel aber
nicht nur mit den Méglichkeiten des Blitters, sondern
auch mit seiner Bedienung bekannt machen. Dabei wer-
den Sie am Anfang die Blitterroutinen des Systems und
anschlieBend die direkte Hardwareprogrammierung ken-
nenlernen. Bei dieser werden wir uns im wesentlichen
auf die Bereiche beschréanken, die iliber Systemprozedu-
ren nicht zugédnglich sind.

Einfach nur zu sagen der Blitter diene zum Kopieren,
ist eigentlich eine grobe Untertreibung, auch wenn
dies eine wichtige Anwendung ist. Das gute Stiick kann
namlich eine ganze Menge mehr als nur stupide Bits
von einer Stelle zur anderen zu schaufeln. Wir wollen
an dieser Stelle eine kurze Ubersicht iiber seine F&-
higkeiten geben:

(1) Extrem schnelles kopieren (iiber 15 Millionen Bits
pro Sekunde) zwischen mehreren Speicherbereichen bis
zur einer GroBe von 1024x1024.

198

Kapitel 9 Der Blitter

(2) Die Quell (source)- und Zielbereiche kénnen durch
eine beliebige 1logische Funktion verkniipft werden.
Die logische Verkniipfung bezieht sich auf die Bits
der beiden Speicherbereiche. So kénnte man bestimmen,
daB beim Kopieren nur dort im Zielbereich Bits ge-
setzt werden, wo vorher weder in der Quelle noch im
Ziel etwas gesetzt war.

(3) Unterstiitzung von "rechteckigen Bereichen", d.h.,
daB die zu bearbeitenden Bereiche in Zeilen und Spal-
ten eingeteilt werden kdnnen. Diese Eigenschaft ist
natirlich fiir d1e Grafikprogrammierung besonderes
niitzlich.

(4) Fiillen beliebiger Fldchen mit vorgegebenen Fiill-
mustern.

(5) Zeichnen von Linien mit beliebigen Strichmustern.

(6) Bitweises "shiften" von Speicher- oder B11dbere1-
chen.

Die meisten dieser Mdéglichkeiten werden bereits so
gut von der Systemsoftware unterstiitzt, daB man ohne
direkten Hardwarezugriff auskommt. Dabei wird auch
die Zusammenarbeit mit anderen Elementen des Grafik-
systems wie Bitplanes und Rastports, sowie die Ein-
bindung in das Multitasking-System beriicksichtigt.

Bekanntlich ist Nichts perfekt und so hat auch der
Blitter eine wichtige Einschrdnkung. Die Speicher-
auschnitte, die er bearbeiten kann miissen im CHIP-
RAM liegen. Ein Versuch eine Adresse im FAST-RAM fiir
eine Blitteroperation anzugeben wiirde im Uberschrei-
ben eines unbestimmten Bereiches des CHIP-RAMs resul-
tieren.

199

Kapitel 9 Der Blitter

Ein nicht ganz banales Problem beim Kopieren ist
die Verkniipfung der Quelle(n) mit dem Ziel, die durch
den sogenannten Minterm bestimmt wird. Theoretisch
existieren 256 Mdglichkeiten das endgiiltige Aussehen
des Ziels festzulegen, wobei eine logische Verkniip-
fung zwischen den Quellbereichen und dem Zielbereich,
sowie Shiftoperationen stattfinden konnen. Neben den
raffinierten Verkniipfungen ist natirlich auch ein
einfaches Kopieren oder Invertieren méglich. Um eine
dieser Moglichkeiten auszuwdhlen muB zuerst der dazu-
gehdrende Wert des Minterms bestimmt und an den Blit-
ter oder eine entsprechende Prozedur iibergeben wer-
den. Wir wollen hier zuerst die Shiftoperationen
weglassen, da sie von den Systemprozeduren nicht di-
rekt unterstiitzt werden. Ein Kopiervorgang mit dem
Blitter (kurz: ein Blitt) kann immer als eine Ver-
kniipfung von bis zu drei Bereichen zu einem Vierten
betrachtet werden. Dabei wird eine Kombination der
drei Tlogischen Grundoperationen

AND (und)
OR (oder)
NOT (Negation)

auf die korrespondierenden Bits der Quellen angewandt
und das Ergebnis in das entsprechende Bit des Ziels
hineingeschrieben. Zur Demonstration betrachten wir
die drei folgenden drei Bit breiten Quellen A, B und

001
110
010

STx O
nonon

200

Kapitel 9 Der Blitter

aus denen das Ziel D als
D = A OR (B AND C) hervorgeht.

Das Ergebnis ist dann also:
Bit 0 = 0 OR (1 AND 0) =
Bit 1 =0 OR (1 AND 1

0
) =1
Bit 2 =1 OR (0 AND 0) = 1

i n
n ni

und somit:
D = 011

Bei den Blitteroperationen, die von Systemprozedu-
ren unterstiitzt werden, konnen immer nur zwei Bit-
planes beriicksichtigt werden. Dabei wird die Quell-
bitmap mit der Zielbitmap verkniipft und das Ergebnis
in die Zielbitmap geschrieben.

Wie wird die gewiinschte Verkniipfung nun mit Hilfe
des Minterms ausgewdhl1t? Es ist jeder Dreierkombina-
tion von Bitwerten der drei Quellbereiche A, B und C
ein Wert folgendermaBen zugeordnet:

>
w
o
=
@

S

‘—F

= = = OO0 0
P OO R OO

201

Kapitel 9 Der Blitter

Méchte man, daB immer beim Auftreten einer bestimm-
ten dieser Kombinationen im Zielbereich das entspre-
chende Bit gesetzt wird, dann gibt man dem Minterm
den aus der Tabelle abzulesenden Wert. Man kann na-
tiirlich auch festlegen, daB es mehrere Mdglichkeiten
gibt, die zum Setzen des Bits fiihren. In diesem Fall
wird einfach die Summe aus den entsprechenden Werten
als Minterm benutzt. Wer mit formaler Logik nicht
vertraut ist, wird sich vieleicht fragen, was diese
Wertetabelle mit Tlogischen Verkniipfungen zu tun hat.
Angenommen man mdchte, daB im Ziel D ein Bit gesetzt
wird, wenn die Bits der drei Quellen A, B und C an
den dazugehdrenden Stellen bestimmte Werte haben, so
188t sich dies als AND-Verkniipfung dieser Bits dar-
stellen.

Die erste Zeile der Tabelle liest man sinnvollerweise
So:

D = NOT A AND NOT B AND NOT C
oder kurz
D = “A*“B*~C (NOT wird durch ~, AND durch * ersetzt)

Durch OR-Verkniipfungen solcher Terme kann festge-
legt werden, daB nicht nur eine, sondern mehrere Zei-
len der Tabelle zum Setzen des Bits fiihren konnen.
Mit solchen OR-Verkniipfungen der in der Tabelle auf-
gefiihrten Werte kann dann auch jede beliebige andere
Verkniipfung der Bereiche dargestellt werden. Die Be-
stimmung des Minterms erfolgt also in folgenden 3
Schritten:

(1) Die gewiinschte logische Verkniipfung finden.
(2) Diese als OR-Verkniipfung der Kombinatinen aus der

Tabelle darstellen.

202

Kapitel 9 Der Blitter

(3) Die gefundenen Werte aus der Tabelle aufsummie-
ren,

Um Ihnen die beiden letzten Schritte (der zweite
kann recht schwierig sein) zu ersparen, folgt eine
Tabelle, mit einigen wichtigen Verkniipfungen und die
dazugehdérenden Minterme. Wir haben der Ubersichtlich-
keit halber das NOT iiberall durch ~, das AND durch *
und das OR durch + ersetzt.

Funktion Wert

OO UUUUOUUDLUUULUULULDUUOOOUD
[LA U U | | T | (T | N A O | Y Y (Y [[Y [' N [
b
+
L)
>
"]

203

Kapitel 9 Der Blitter

D=A+"B $f3
D="4+"B $3F
D=A+"T $f5
D="4+"7T $5F
D=8B+" $dd
D="8B+"° 377
D=A*B+ ™A *(C Sca

Eine der Grundanwendungen des Blitters ist das Ko-
pieren von Bildauschnitten zwischen zwei oder auch
innerhalb eines Rastports. Dies wird z.B. beim Ver-
schieben, VergroBern und Verkleinern von Fenstern
oder bei der Ausgabe von Gadgets benétigt. Die Gra-
phics-Library beinhaltet eine Prozedur namens Clip-
B1it, mit deren Hilfe Rastport-Abschnitte besonders
einfach kopiert werden koénnen. Die ClipBlit-Prozedur,
die die einfachste Blitter Kopierprozedur ist,
braucht folgende Eingaben:

(1) Die Adresse der RastPort-Datenstrukturen der bei-
den betroffene Rastports. Dabei darf der Quell-
rastport nach Bedarf mit dem Zielrastport iden-
tisch sein.

(2) Die Koordinaten der Tlinken oberen Ecke des zu
kopierenden Ausschnittes innerhalb des Quellrast-
ports.

(3) Die Koordinaten innerhalb des Zielrastports, an

der die linke oberen Ecke des Ausschnittes ko-
piert werden soll.

204

Kapitel 9 Der Blitter

(4) Die Breite und die Hohe des zu kopierenden Aus-
schnittes.

(5) Ein MinTerm, der die logische Verkniipfung der
Ziel- und Quellbereiche angibt. Der Minterm wird
bestimmt wie im vorigen Abschnitt beschrieben.

Die ClipBlitt-Routine kann wie folgt aufgerufen
werden, um den Bereich von der Position (xI,y1) der
Breite dx und der Hohe dy aus dem Rastport Rastl in
den Rastport Rast2 an die Position (x2,y2) zu kopie-
ren:

ClipBlit(Rastl,x1,yl,Rast2,x2,y2,dx,dy,192);

Fiir den Fall, daB die Positionsangaben oder die
GroBe nicht mit den MaBen des Rastports iibereinstim-
men, wird die entsprechende Anpassung (Clipping) von
der Routine automatisch vorgenommen, so daB kein Ab-
sturz passieren kann/sollte. Auch die Bestimmung der
Bitplanes, die von der Aktion betroffen werden, er-
folgt automatisch.Die Anwendung der ClipBlit-Prozedur
zeigt eingehend das nachfolgende Beispielprogramm. Es
macht auf dem Workbench-Screen ein Fenster auf und
zeichnet dort zwei Rechtecke, eins mit der Farbe 1
und eins mit der Farbe 3; Diese werden dann anschlie-
Bend samt der rechts von Ihnen liegenden Tleeren Be-
reichen mit verschiedenen Minterms nach unten ko-
piert. Dabei werden, um die Auswirkung der logischen
Verkniipfungen zu zeigen, die kopierten Rechtecke
teilweise iibereinander kopiert.

205

Kapitel 9 Der Blitter

Programm 9.1 BlittDemo

#include"Display.h"
#inc lude "graphics/gfxbase. h"
#inc lude "intuition/intuition.h"

struct Window *Window;
struct RastPort *Rast;

main ()

USHORT code, i, j, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Ein Fenster auf dem Workbench-Screen 6ffnen */
Window = (struct Window *)MakeWindow(100,20,400,200,
0,0,"BlittDemo", WINDOWCLOSE]ACTIVATE,
CLOSEWINDOW,NULL);
if(Window == NULL) /* Fehler beim 6ffnen 7 */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;

/* Vierecke zeichnen */

SetAPen(Rast,1);

RectFill(Rast,100,10,200,30);

SetAPen(Rast,3); RectFill(Rast, 125,15,175,25);

/* Rechteck 1 mittels Blitter nach Unten kopieren

(MinTerm = 192) */
ClipBlit(Rast,100,10,Rast,100,40,200,20,192);

206

Kapitel 9 Der Blitter

/* Rechteck 1 mittels Blitter nach Unten inverse
kopieren (MinTerm = 48) */
ClipBlit(Rast,100,10,Rast,100,70,200,20,48);

/* Rechteck 1 mittels Blitter nach Unten inverse
kopieren (MinTerm = 48) */
ClipBlit(Rast,6100,10,Rast,100,100,200,20,48);

/* Rechtecke 1 und 3 mittels Blitter mit 3 OR
verkniipfen (HinTerm = 224) */
ClipBlit(Rast,100,10,Rast,100,100,200,20,224);

SetAPen(Rast,1);
RectFill(Rast,150,130,250,155);

/* Rechteck 1 mittels Blitter driiber NAND kopieren
(MinTerm = 112) */
ClipBlit(Rast,100,10,Rast,100,130,200,20,112);

SetAPen(Rast,1);
RectFill(Rast,150,160,250,185);

/* Rechteck 1 mittels Blitter driiber NOR kopieren
(MinTerm = 16) */
ClipBlit(Rast,100,10,Rast,100,160,200,20,16);

Class = WaitEvent(Window,&code);
CloseWindow(Window);

207

Kapitel 9 Der Blitter

Nachdem im vorigen Abschnitt ein einfaches Beispiel
der Blitteranwendung gezeigt wurde, werden Sie nun
die ganze Palette der Blitterkopierroutinen kennen-
lernen. Hierbei handelt es sich um Prozeduren, die
sich auf Bitmaps beziehen. Die durch die Graphics-Li-
brary zur Verfiigung gestellten Routinen unterstiitzen
nicht nur das Kopieren von einzelnen Bitplanes son-
dern auch der gesammten Bitmap, wobei die betroffe-
nen Bitplanes selbstverstdandlich frei ausgewdhlt wer-
den kénnen. Die einfachste dieser Prozeduren heiBt
BltBitMap.

Zu den bei ClipBlit beschriebenen Parametern kommen
bei ihr noch zwei weitere dazu:

(1) Eine Maske, die die betroffenen Bitplanes angibt.

(2) Falls innerhalb einer einzigen Bitmap gearbeitet
wird, kann zur Beschleunigung ein Zwischenpuffer
angegeben werden.

Logischerweise werden anstelle der Rastport-Adres-
sen an gleicher Stelle die Adressen der entsprechen-
den BitMap - Datenstrukturen iibergeben. Die Maske,
die die zu kopierende Bitplanes bestimmt, ist ein
Byte in dem jedes Bit stellvertretend fiir eine Bit-
plane ist. Ist dieses Bit gesetzt, so wird diese
Bitplane von der Kopieroperation betroffen, ist es
geldscht so wird sie ausgelassen. Falls Sie also nur
die Planes 1 und 3 (oder deren Auschnitte) transfe-
rieren wollen, dann miissen Sie als Maske den Wert
2 Hoch 1 + 2 Hoch 3 = 2 + 8 = 10 benutzen.

208

Kapitel 9 Der Blitter

Um den Bereich von der Position (x1,yl) der Breite
dx und der Hohe dy aus der Bitmap Bitl in die Bitmap
Bit2 an die Position (x2,y2) zu kopieren geniigt der
folgende Aufruf:

B1tBitMap(Bitl, x1,y1,Bit2,x2,y2,dx,dy,192,Mask ,NULL);

Die NULL als letzter Parameter bedeutet, daB kein
Puffer zur Verfiigung gestellt wird.

Es ist auch méglich, Bildaten aus einer Bitmap in
einen Rastport zu transferieren. Dazu gibt es die
BltBitMapRastPort-Prozedur. Sie wird dhnlich wie
ClipBlit aufgerufen. Der Unterschied besteht darin,
daB der erste Parameter ein AdreBzeiger auf eine
Bitmap ist ,auf die sich auch die ersten beiden Para-
meter beziehen. Die Angabe der zu kopierenden Bit-
planes kann mit Hilfe des Mask-Feldes der RastPort-
Datenstruktur erfolgen. Fiir den dort stehenden Wert
gilt das gleiche wie fiir den Mask Parameter von
BItBitMap. Durch die Beinflussung dieses Feldes kann
iibrigens auch die Auswahl der Bitmaps bei Verwendung
der ClipBlit-Prozedur erfolgen.

Die letzte Prozedur, die wir in diesem Abschnitt
vorstellen wollen ist eigentlich nur eine Abwandlun-
gen von BItBitMapRastPort. Sie heiBt BItMaskBitMap-
RastPort und besitzt einen zusdtzlichen Parameter,
der einen AdreBzeiger auf eine "Schablonenbitmap"
ist. Diese Schablone muB die MaBe des Ziels haben und
bestimmt welche Punkte durch den Blitt beinfluBt wer-
den. Alle Punkte die in der Schablonenbitmap nicht
gesetzt sind, wirken bei der Blitteroperation als
Sperren, d.h. die korrespondierenden Punkte des Ziels
werden von der Blitteroperation nicht betroffen. Als
Beispiel betrachten wir wieder zwei "Minibitmaps" A

209

Kapitel 9 Der Blitter

und B, sowie eine Schablonenbitmap C mit je einer
Bitplane, je einer Zeile und 3 Spalten. Wenn sie vor
der Operation so ausehen:

A =110
B = 001
¢ =010

dann wird nach dem B1litt in B
011

stehen. Es wurde also nur das Bit 1, das in der Scha-
blonenbitplane gesetzt ist kopiert. Die Bits 0 und 2
blieben unverdndert, da die Schablone dort "undurch-
sichtig" ist. In dem nachfolgenden Programm finden
Sie alle der oben besprochenen Prozeduren wieder. Es
offnet zwei Fenster auf dem Workbench-Screen und
zeichnet in das obere, kleinere ein Viereck der Farbe
3. Dieser wird dann mit verschiedenen Blitterprozedu-
ren (BItBitMapRastPort, BItBitMap und BIltMaskBitMap-
RastPort) und verschiedener Bitplanesauswahl mehrmals
in das untere Fenster kopiert. Vor der Anwendung der
BltMaskBitMapRastPort- Prozedur wird zundchst die
"Schablonenbitmapplane" mit der drunter definierten
MakeMaskP lane-Prozedur erzeugt und mit horizontalen
Streifen gefiillt. Daher wird dann auch das kopierte
Rechteck gestreift erscheinen.

Programm 9.2 BitMapBlitt

#inc lude "exec/memory.h"

#inc lude"Display.h"

#inc lude "graphics/gfxbase.h"
#inc lude"intuition/intuition.h"

210

Kapitel 9 Der Blitter

/* Koordinaten der linken oberen Ecke des ersten
Fensters */

#define Winx 200

#define Winy 10

/* Koordinaten der 1linken oberen Ecke des zweiten
Fensters */

#define Win2x 100

#define Win2y 60

struct Window *Window, *Window2;
struct RastPort *Rast, *Rast2;
struct BitMap *Bit, *Bit2;

char *Mask;
LONG Len;

main (){
USHORT code, i, J, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Ein Fenster auf dem Workbench-Screen éffnen */

Window = (struct Window *)MakeWindow(Winx,Winy,239,
40,0,0, "Window 1",WINDOWCLOSE !ACTIVATE,
CLOSEWINDOW,NULL);

if(Window == NULL) /* Fehler beim (ffnen 7 */
exit(FALSE);

/* Adresse des Rastports und der Bitmap holen */

Rast = Window->RPort;
Bit = Rast->BitMap;

211

Kapitel 9 Der Blitter

Window2 = (struct Window *)MakeWindow(Win2x,Win2y,
439,190,0,0, "Window 2",ACTIVATE,
CLOSEWINDOW,NULL);

if(Window? == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Adresse des Rastports und der Bitmap holen */
Rast2 = Window2->RPort;
Bit2 = Rast2->BitMap;

/* Viereck im ersten Fenster ze1chnen */
SetAPen(Rast,3);
RectFill(Rast,70,15,180,35);

/* Aus der Bitmap des ersten Fensters in den
Rastport des zweiten blitten */

BItBitMapRastPort(Bit2,70+Winx,10+Winy,Rast2,50,
20, 100 20,192);

Rast2->Mask = 1;
BItB1tMapRastPort(B1t2 70+Winx,10+Winy, Rast2,160,
20,100,20,192);

Rast2->Mask = 2;
B1tBitMapRastPort(Bit2,70+Winx,10+Winy,Rast2,270,
20,100,20,192);

/* Aus der Bitmap des ersten Fensters in die Bitmap
des zweiten blitten */
BItBitMap(Bit,70+Winx,10+Winy,Bit2,50+Win2x,60+Win
2y,100,20,192,3,NULL);

BItBitMap(Bit,70+Winx,10+Winy,Bit2,160+Win2x,60+Win
2y,100,20,192,1,NULL);

BItBitMap(Bit, 70+Winx, 10+Winy, Bit2,270+Win2x, 60+Win
2y,100,20,192,2,NULL);

212

Kapitel 9 Der Blitter

/* Aus der Bitmap des ersten Fensters in die Bitmap
des zweiten blitten */

/* Dabei wird eine Blittmaske benutzt */

Mask = MakeMaskPlane(Bit);

Rast2->Mask = 3;

Bl1tMaskBitMapRastPort(Bit,70+Winx,10+Winy,Rast2,50,
100,100,20,192,Mask);

Rast2->Mask = 1;

B1tMaskBitMapRastPort(Bit,70+Winx,10+Winy,Rast2,160,
100,100,20,192,Mask);

Rast2->Mask = 2;

B1tMaskBitMapRastPort(Bit,70+Winx,10+Winy,Rast2,270,
100,100,20,192,Mask);

FreeMem(Mask, (Bit->BytesPerRow) * (Bit->Rows));
Class= WaitEvent(Window,&code); CloseWindow(Window);
CloseWindow(Window2);

}
MakeMaskP lane (BMap)

/* Diese Prozedur erzeugt eine Schablonenbitplane */
/* Sie wird mit diinnen horizontalen Streifen

gefillt */
struct BitMap *BMap;

char *Mem;
LONG Len, End;

Mem = NULL;

Len = (BMap->BytesPerRow) * (BMap->Rows);

Mem = AllocMem(Len,MEMF CHIP]MEMF CLEAR);
if(Mem == NULL) - -
exit(FALSE);

for(End = Len + Mem; Mem < End; ++Mem)
*(Mem++) = 12;

return(Mem-Len);

213

Kapitel 9 Der Blitter

Neben den reinen Kopierroutinen, die bis jetzt vor-
gestellt wurden, gibt es in der Graphics-Library noch
drei weitere niitztliche Prozeduren. Dies sind:

(1) BltClear
(2) BltPattern
(3) BltTemplate

Die erste dient zum Loschen (also mit Nullen fiil-
len) eines Speicherbereiches. Sie wird als:

B1tClear(MemPtr,Bytes,Flags)

aufgerufen, wobei MemPtr ein AdreBzeiger auf den
Speicherbereich und Bytes die GroBe des zu 16schenden
Bereiches ist. Der dritte Parameter, Flags gibt wei-
tere Informationen zum Loschmodus an. Bit 1 gibt hier
an, ob das Programm gestoppt werden soll, bis die O-
peration beendet ist (Bit gesetzt) oder nicht (Bit
geloscht). Das zweite Bit entscheidet dariiber, ob der
Speicherbereich als "normaler" Speicher (Bit ge-
16scht), oder als eine Bitplane (Bit gesetzt) inter-
pretiert werden soll. Im ersten Fall wird Bytes ganz
normal als Anzahl der zu 16schenden Bytes interpre-
tiert und der Bereich wird geloscht. Im zweiten Fall
werden allerdings die oberen 16 Bits von Bytes als
die Anzahl der zu loschenden Zeilen, und die unteren
als die Anzahl der zu 16schenden Bytes pro Zeile an-
gesehen. So kdénnen beliebige Bildausschnitte sehr
einfach geléscht werden.

214

Kapitel 9 Der Blitter

Die zweite Prozedur, BltPattern ist eine Abwandlung
der BltMaskBitMapRastPort-Prozedur. Sie hat das Auf-
rufformat:

BltPattern(Rast, Mask,x1,yl,x2,y2,Bytes)

Dabei wird der Bereich des Rastports Rast mit der
Tinken oberen Ecke bei (x1,y1) und der rechten unte-
ren Ecke bei (x2,y2) mit dem Muster gefiillt, auf das
Mask zeigt. Das Muster wird in Form einer "Schablo-
nenbitplane" gespeichert. Diese muB mindestens genau-
so groB wie das zu fiillende Rechteck sein. Seine
Breite in Bytes wird in Bytes angegeben. Um z.B. ein
Rechteck der Breite 10 Pixel zu fiillen, muB in Bytes
2 angegeben werde, was bedeutet, daB die Schablone 2
Byte breit ist. Schablonen diirfen nur ganze Vielfache
von 8, also 8, 16, 24 etc. Pixel breit sein und mi-
ssen selbstverstandlich in CHIP-RAM Tiegen.

Die letzte der Routinen, die wir in diesem Ab-
schnitt beschreiben wollen, BItTemplate, dient dazu,
in "gepackten Arrays" gespeicherte Daten auszulesen.
Solche "gepackten Arrays" haben Sie schon im Zusam-
menhang mit der Speicherung der Bilddaten der Fonts
im Kapitel 7 kennengelernt. Zur Errinnerung:

Es werden Daten fiir einzelne Bilder zeilenweise
(also alle erste Zeilen hintereinander, dann alle
zweiten Zeilen hintereinander usw.) gespeichert, wo-
bei jedes Zeichen eine andere Breite in Punkten haben
kann. So konnen also das eine mal in einem Wort drei
Daten einer Bildzeile von 2 Zeichen haben (wenn z.B.
jedes 8 Bit breit ist) und das andere mal von 2.5
Zeichen (z.B. 2 a 6 Bit und die H&1fte von einem 8
Bit breitem). Um jetzt ein 1in so gestalteten Font-
bilddaten gespeichertes Zeichen der Breite Width und

215

Kapitel 9 Der Blitter

der Hohe Height an der Position (x,y) des Rastports
Rast auszugeben muB BTtTemplate wie folgt aufgerufen
werden:

B1tTemplate(Source,BitPos,Mod,Rast, x,y,Width,Height);

In Source muB die Anfangsadresse der Bildaten ste-
hen. Der Parameter BitPos g¢ibt die Anfangsposition
des auszugebenden Zeichens innerhalb der Arrays in
Bits an.

Die Anzahl der Bytes, die iiberspringen werden miissen

um von einer Zeile zur anderen zu gelangen, miissen
Sie in Mod angeben.

216

Kapitel 9 Der Blitter

Der Amiga ist bekanntlich ein Multitaskingrechner,
es laufen also gleichzeitig mehrere Programme ab. Das
bedeutet auch, daB es durchaus moglich ist, daB meh-
rere Tasks gleichzeitig auf die Idee kommen, den
Blitter zu benutzen. Da dieser aber nur sequentiell
arbeitet, gibt es im Betriebssystem Mechanismen, die
solche Konflikte beseitigen und einem Programm den
alleinigen Zugriff auf den Blitter sichern. Die ein-
fachste Alternative ist hier die Anwendung der Para-
meterlosen WaitBlit-, OwnBlitter- und DisownBlitter-
Prozeduren. Die erste dient dazu, solange zu warten,
bis der Blitter frei ist. Der Aufruf der OwnBlitter-
Routine bewirkt, daB das aufrufende Programm den
Blitter in Besitz nimmt und bis zur Freigabe uneinge-
schréankt benutzten kann.

Die Freigabe erfolgt mit DisownBlitt. Es ist fir
den Amiga lebenswichtig, nach Beendigung des Blitter-
zugriffs diesen wieder freizugeben, da ohne Blitter
die gesamte Bildschirmausgabe und einige andere Funk-
tionen nicht ablaufen konnen. Vor dem Aufruf der Sy-
stemprozeduren, die bis jetzt vorgestellt wurden,
braucht man sich normalerweise den Blitter nicht noch
extra mittels OwnBlitter zu sichern, da diese dies
intern erledigen. Will man aber, daB eine Reihe von
Blitterbefehlen ohne zeitliche Verzdgerung hinterein-
ander ausgefiihrt wird, dann muB die gesamte Sequenz
derart aufgebaut sein:

WaitBlit();
OownBlitter();
<Blitterroutinen>
DisownBlitter();

217

Kapitel 9 Der Blitter

Dadurch wird verhindert, daB zwischen den Aufrufen
der einzelnen Blitterroutinen ihr Programm den Blit-
ter verliert. Unentbehrlich ist die Beschaffung des
Blitters natiirlich bei den direkten Hardwarezugrif-
fen, wie sie in spdteren Abschnitten vorgestellt wer-
den.

Bei der Hardwareprogrammierung bedient man sich
auch oft einer anderen Methode, den Blitter fiir sein
Programm zu sichern. Sie hat den Vorteil, daB solche
Anfragen Vorrang vor OwnBlitter haben und auBerdem
eine Synchronisierung des Vorgangs mit dem Elektro-
nenstrahl, der das Bild auf dem Monitor zeichnet,
méglich ist.

So kann man z.B. den Bildschirmspeicher modifizie-
ren, wdhrend der Strahl sich auBerhalb des Bild-
schirms befindet. Die Grundlage dieses Verfahrens ist
die Datenstruktur b7tnode. Im System existiert eine
Liste solcher Strukturen. Jede von ihnen beschreibt
einen sogenannten "Blitterjob", der nichts weiter als
eine Liste von Blitteroperationen ist. Die Blitter-
jobs werden in der Reihenfolge der bIltnode-Strukturen
in der Liste abgearbeitet. Durch einen Aufruf von
@B1it koénnen Sie eine solche Struktur, die Ihren
eigenen Blitterjob beinhaltet, an das Ende dieser
Liste einfiigen. Bei der Initialisierung von bItnode
muB folgendes getan werden:

(1) Die Adresse des Codes der Funktion, die die Blit-
teroperationen ausfiihrt, muB in das Feld function
eingetragen werden. Dieser Code sollte eigentlich
so in Assembler geschrieben sein, daB er sowohl
im User als auch in Superwisermodus (Prozessormo-
di des MC68000) lauft. Der Code wird solange auf-
gerufen und der Blitter nicht freigegeben,bis die
Funktion in dem Datenregister DO des MC68000 eine
0 zuriickgibt. Da "C" bei einem return-Aufruf das

218

Kapitel 9 Der Blitter

Ergebnis ebenfalls in DO zuriickgibt, kann not-
falls auch eine "C"-Funktion verwendet werden.

(2) Die Adresse einer "Cleanup"-Routine, die nach der
letzten Blitteroperation ausgefiihrt wird, oder
NULL wird in das cleanup-Feld geschrieben. So ist
es moglich am Ende des Blitterjobs, ihn wieder in
die Jobschleife einzufiigen.

(3) Je nachdem ob eine "Cleanup"-Routine aufgerufen
werden soll oder nicht, muB der Wert CLEANUP
($040) oder 0 in das stat-Feld hineingeschrieben
werden.

Beim Aufruf von @BTitt wird als einziger Parameter
die Adresse einer so initialisierten Struktur iiberge-
ben. Wenn Sie wollen, daB mit der Ausfiihrung ihres
Blitterjobs gewartet wird, bis eine bestimmte Posi-
tion des Elektronenstrahl auf dem Bildschirm erreicht
wird, dann miissen Sie sich der @BSBIit Prozedur be-
dienen. Sie wird genauso wie @BIitt benutzt. Sie miis-
sen allerdings bei der Initialisierung der bltnode-
Struktur das beamsync Feld mit der Nummer der Zeile
belegen, bei deren Durchlauf ihr Blitterjob ausge-
fiilhrt werden soll. Auf Grund des Multitaskings
(dieses Liste ist global fiir alle Tasks) kann es
hierbei allerdings zu zeitlichen Konflikten kommen.
Es kann ndmlich sein, daB ein anderer Benutzer den
Blitter solange behdlt, daB Ihre Position verpaBt
wird.

Es ist wichtig, daB die Funktion, deren Adresse im
function-Feld von bltnode eingetragen wird, keine der
Blitterroutinen der Graphics-Library aufruft. Diese
Prozeduren warten namlich intern auf den Blitter, den
sie allerdings nicht bekommen kdnnen, weil ihn ihre
Funktion besitzt. Ein Beispiel fiir die Anwendung der
bTItnode-Strukturen finden Sie im néchsten Abschnitt.

219

Kapitel 9 Der Blitter

Die Blitterroutinen sind zwar sehr flexibel und be-
quem, um jedoch den Blitter optimal auszunutzen, wird
man ihm direkt durch Registerzugriffe ansteuern. Dies
ermbglicht ein Arbeiten ohne auf die Graphics- oder
Intuition-Library zugreifen zu miissen, wie man es
z.B. bei der Programmierung eines Vorspanns machen
muB. Wir werden deswegen in diesem Abschnitt den
Hardwareaufbau des Blitters und seine Funktionsweise
kurz beschreiben. Der Blitter ist kein eigenstdndiger
Chip. Er ist in den Sonderchip AGNUS des Amiga inte-
griert. Daher liegen auch seine Register, wie auch
alle Register der Sonderchips, bei $dff000 plus einen
registerspezifischen Offset. Um sie von "C" aus anzu-
sprechen benutzt man am besten die Custom-Datenstruk-
tur. Die Komponenten dieser Datenstruktur entsprechen
sowoh1 in der Reihenfolge, als auch in ihrer jeweili-
gen Ldnge den Registern der Customchips. Wenn man al-
so eine solche Struktur an der Adresse $dff000 ver-
einbart, dann kann man einfach iiber ihre Komponenten
auf die Register zugreifen, ohne sich um die Offsets
Gedanken machen zu miissen. Sie werden diese Funkti-
onsweise in dem Beispielprogramm des ndchsten Ab-
schnitts sehen.

Nun zu den Registern des Blitters. Er besitzt acht
16-Bit AdreBregister, die paarweise zu 4 32-Bit A-
drefBregistern organisiert sind, vier Moduloregister
(je eins zu einem AdreBregister), zwei Controllregi-
ster, vier Datenregister, zwei Maskenregister und ein
GroBenregister, das gleichzeitig zur Aktivierung ei-
nes Blitts dient. Um eine Blitteroperation durchzu-
fiihren, muB folgendes getan werden:

220

Kapitel 9 Der Blitter

(1) Die Adressen der drei Quellen und des Ziels miis-
sen in die Adressregister eingetragen werden.
Dies sind die Regsiter:

BLTAPTH Quelle A Hi
BLTAPTL Quelle A Lo

BLTBPTH Quelle B Hi
BLTBPTL Quelle B Lo

BLTCPTH Quelle C Hi
BLTCPTL Quelle C Lo
BLTDPTH Ziel Hi
BLTDPTL Ziel Lo

Wie Sie sehen, missen Sie die Adressen in High- und
Lowteil aufteilen. Dies ergdbe bei der Adresse
$FFF£0000

SFFFf
$0000

Hi
Lo

(2) Die Modulowerte fiir die 3 Quellen und das Ziel in
die Moduloregister holen:

BLTAMOD Modulowert fiir Quelle A
BLTBMOD Modulowert fiir Quelle B
BLTCHMOD Modulowert fiir Quelle C
BLTDMOD Modulowert fiir Ziel

Der Modulowert beinhaltet die Anzahl der Worte in
einer Zeile. Er wird nach dem Bearbeiten einer Zeile
zu der Adresse addiert, um mit der nédchsten fortfah-
ren zu konnen.

(3) Durch Setzen der Bits 0 bis 7 des Controlregi-

sters BLTCONO die gewiinschte logische Verkniipfung
wdhlen. Sie miissen diese Bits einfach auf einen

221

Kapitel 9 Der Blitter

entsprechenden Wert setzen, wie bereits in Ab-
schnitt 2 besprochen.

(4) Die restlichen Bits des Controllregisters BLTCONO
initialiseren. Es sind die Bits 8 bis 11 fiir das
Einschalten der DMA-Kandle fiir die Quellen A bis
C und des Ziels zustdndig, sowie die Bits 12 bis
15 fiir die Verschiebung der Quelle A (siehe An-
hang E).

(5) Durch entsprechedes initialiseren der Bits 0 bis
4 des BLTCON1 Controllregisters den Modus auswdh-
len. Zum "normalen" kopieren miissen diese Bits
alle geloscht sein (siehe Anhang E).

(6) Die restlichen Bits des Controllregisters BLTCONO
initialiseren. Es sind die Bits 12 bis 15 fiir die
Verschiebung der Quelle A zustdndig (siehe Anhang
E). Die Bits 5 bis 11 haben keine Bedeutung.

(7) Die GroBe des zu bearbeitenden Bereiches in das
BLTSIZE-Register schreiben. Die unteren 6 Bits
(Bits 0 bis 5) geben die Breite in Wortern (Ein
Wort = 2 Bytes = 16 Bit), die oberen 10 (Bits 6
bis 15) die Héhe in Zeilen an. Eine Hohe von 0
wird dabei als 1024 interpetiert. Der Wert dieses
Registers muB also (H6he AND $3ff)*64 + (Breite
$3f) sein. Das BLTSIZE-Register muB als letztes
beschrieben werden, da ein Schreibzugriff auf
dieses Register die Blitteroperation startet. Wir
haben 1in diesem Abschnitt nur vom Kopieren von
Zeilen gesprochen. Wenn einen nicht in Zeilen
eingeteilter Bereich des Speichers kopiert werden
soll, dann miissen Sie die Modulowerte einfach auf
1 setzen.

Ein einfaches Beispiel fiir die hardwaremdBige Blit-
terprogrammierung finden Sie im nachfolgenden Bei-

222

Kapitel 9

Der Blitter

spielprogramm. Es bindet mittels QBlitt einen einfa-

chen Kopierjob in die Jobliste ein.

#inc lude "hardware/custom. h"
#inc lude "hardware/b1it.h"
#include"Display.h"

#inc lude "graphics/gfxbase.h"
#include"intuition/intuition.h"

#define Winx 100
#define Winy 20

struct Window *Window;
struct RastPort *Rast;
struct BitMap *BitMap;
struct Custom *Custom;
struct bltnode myNode;

long Blitt();

main ()

USHORT code, i, Jj, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Ein Fenster auf dem Workbench-Screen é6ffnen */
Window = (struct Window *)MakeWindow(Winx,Winy,400,
200,0,0, "BlittDemo" , WINDOWCLOSE |ACTIVATE,

CLOSEWINDOW,NULL) ;

223

Kapitel 9 Der Blitter

if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;
BitMap = Rast->BitMap;

/* Anfangsadresse der Customchips Iladen */
Custom = Oxdff000;

myNode. function = Blitt;
myNode.cleanup = NULL;
myNode.stat = 0;

QB1it(&myNode);

/* Alles schlieBen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);

}

Tong Blitt()
{

Custom->b1ta Iwm
Custom->b1tafwm = OXffff;
Custom->b1tamod = BitMap->BytesPerRow;
Custom->b1tbmod = BitMap->BytesPerRow;
Custom->b1tcmod = BitMap->BytesPerRow;
Custom->b1tdmod = BitMap->BytesPerRow;
Custom->bItapt BitMap->Planes[0];
Custom->b1tbpt = BitMap->Planes[0];
/*+ Winy *(640/16) + Winx/16; */
Custom->b1tcpt BitMap->Planes[0];
Custom->b1tdpt BitMap->Planes[1];
Custom->b1tcon0 = 192+SRCA+SRCB+DEST;

Oxffff;

o % un

224

Kapitel 9 Der Blitter

Custom->bltconl = 0;
Custom->bltsize = 266;
while(Custom->dmacon && 1>>14);
return(0);

}

int Blitt()

BlittLine();
return(0);
int fuck(b)

short b;
{ short a;

a=h;
return(0);

Bis jetzt wurde beschrieben, wie eine Standardko-
pieroperation durchgefiihrt werden kann. Ein groBer
Nachteil bei dieser Operation besteht darin, daB nur
ganze Worter kopiert werden kénnen. Nun weiB man aber
von den Blitterroutinen der Graphics-Library, daB es
méglich ist, Blitteroperationen auf Bereiche anzuwen-
den, die weder an Wortgrenzen liegen, noch eine durch
16 teilbare Breite haben. Dies wird durch zwei noch

225

Kapitel 9 Der Blitter

nicht erkldrte Fdhigkeiten des Blitters ermdglicht:
Shiften und Maskieren. Schon im vorigen Abschnitt
wurde gesagt, daB die oberen Bits der beiden Con-
trollregister die Verschiebung der Quelle A bzw. B in
Bits angeben. Das heiBt, daB jedes Wort, das aus der
entsprechenden Quelle geholt wird, um die in diesen
Bits angegebene Anzahl von Stellen (0 bis 15) nach
rechts verschoben wird. Dabei werden die Bits,die bei
einem Wort nach rechts "hinausgeschoben" werden, an
die durch Verschieben freiwerdenden Anfangsstellen
des ndchsten Wortes der Zeile geschrieben. Dadurch
kann eine gesamte Zeile geschiftet werden. In die
freigewordenen Bits des ersten Wortes einer Zeile
werden Nullen hineingeschiftet. Eine aus den zwei
folgenden Worten:

1111000011111111 0101010101000000

bestehende Zeile wird nach einem Shift um 3 Bits wie
folgt ausehen:

0001111000011111 1110101010101000

Auf diese Art kann ein Bild an eine Stelle kopiert
werden, die nicht an einer Wortgrenze liegt. Wenn Sie
einen Auschnitt an eine Position, die 4 Bits rechts
von einer Wortgrenze liegt, kopieren wollen, dann
brauchen Sie die Que]]e(ng nur um diese 4 Bits zu
verschieben. Dazu miissen Sie zu dem entsprechenden
Controllregister (BLTCONO fiir Quelle A, BLTCON1 fiir
Quelle B) die Zahl

4 * 2 Hoch 11
addieren. Ein Problem bei dieser Methode wird deut-
lich wenn man daran denkt, daB beim Shiften um n Bits

am Anfang einer Zeile n Nullen dazukommen, wéhrend
die letzten n Bits verlorengehen. Man kann die letz-

226

Kapitel 9 Der Blitter

ten Bits selbstverstdndlich retten, indem man ein
Wort mehr kopiert, dabei kop1ert man aber einige un-
erwiinschte Bits mit.

Die Losung dieses Problem bietet das Maskieren.
Hinter diesem zundchst mysterids anmutenden Wort ver-
birgt sich die Moglichkeit, fir das erste und das
letzte Wort einer Zeile 1 - Wort Masken anzugeben,
die bestimmen welche Bits kopiert werden und welche
nicht. Somit kann man die beim Shiften entstandenen
Nullen im ersten Wort und die durch Kopieren eines
zusdtzlichen Wortes dazugekommenen unerwiinschten Bits
beseitigen. Die Maske fiir das erste Wort wird in
das BLTAFWM-, die fiir das letzte in das BLTALWM-
Register hineingeschrieben.

Es werden dann nur die Bits des ersten bzw. letzten
Wortes kopiert, die in der Maske gesetzt sind. Um al-
so hineingeschobene Nullen am Anfang zu beseitigen,
muB man nur die n ersten Bits im BLTAFWM-Register auf
Null, die restlichen auf 1 setzen. Analog konnen die
uerwiinschten Bits in dem letzen Wort durch Setzen der
letzten Bits von BLTALWM auf Null ausgeblendet wer-
den.

Das Maskieren kann iibrigens auch benutzt werden, um
ein Auschnitt, der ausserhalb einer Wortgrenze an-
fangt bzw. aufhort, zu kopieren. Man rundet den Be-
reich einfach auf Wortgrenzen auf und blendet das un-
erwiinschte durch Maskieren aus. Leider kann eine Mas-
ke nur fiir die Quelle A angegeben werden. Es konnen
aber trotzdem alle Operationen mit Maskieren durchge-
fihrt werden. Notfalls muB man halt mehrmals kopie-
ren.

Ein Problem iiber das bis jetzt noch nicht gespro-

chen wurde, ist das Kopieren von sich iiberlappenden
Bereichen. Solange Sie abwdrts kopieren also z.B die

227

Kapitel 9 Der Blitter

Zeilen 12 bis 17 einer Bitplane in die Zeilen 10 bis
15 der gleiche Bitplane {ibertragen wollen, lduft al-
les reibungslos. Zuerst wird die Zeile 12 in die Zei-
le 10, dann die 13 in die 11, dann 14 in 12 usw. ko-
piert. Wenn Sie allerdings probieren umgekehrt vorzu-
gehen, gibt es Schwierigkeiten. Bei Kopieren der Zei-
len 10 bis 15 in die Zeilen 12 bis 17 wird zuerst die
Zeile 10 in die Zeile 12 dann die 11 in die 13 usw.
kopiert. Dabei wird aber der Inhalt der Zeilen 12 bis
15 zerstort, bevor er umkopiert werden kann! Um auch
solche Situationen zu meistern, kann durch Setzen des
Bits 1 des BLTCONl-Registers die Richtung des Kopier-
vorgangs umgekehrt werden (dieser Modus wird Descen-
ding-Mode genannt). Wenn Sie dieses Bit setzen, dann
missen Sie statt der Anfangsadresse der Quellen und
des Ziels die Endadressen angeben. Der Blitter ko-
piert dann von Hinten, 1in unserem Beispiel also zu-
erst die Zeile 15 in die Zeile 17, dann 14 in 16 dann
13 in 15 usw.

Eine Fahigkeit des Blitters, die die Blitterrouti-
nen des Systems nicht offenbaren, ist das Zeichnen
von Linien. Durch Setzen des LINE-Bits (Bit 1) des
Controllregisters BLTCON1 kann der Linienmodus einge-
schaltet werden. Die Angabe der gewiinschten Anfangs-
und Endkoordinaten der Linie ist leider nicht ganz
einfach. Der Blitter beschreibt eine Linie, die vom
Punkt (x1,y1) zum Punkt (x2,y2) geht, durch folgende
Parameter:

228

Kapitel 9 Der Blitter

(1) Oktant:

Dieser Parameter ordnet die Linie auf Grund ihrer
Richtung einem der acht gleicher Kreisteile zu. Die
Einteilung des Kreises in Oktanten sieht in etwa so
aus:

Die Zahlen geben die Oktantennummern an. Um den
richtigen Oktanten fiir Ihre Linie zu finden, konnen
Sie sich der nachfolgenden Tabelle bedienen. Neben
der Linienkoordinaten werden dort die Werte dx und dy
benutzt,die die Differenzen der x- bzw. y-Koordinaten
der Anfangs- und Endpunkte sind: Sie werden als

dx = abs(xl - x2)

dy = abs(yl - y2)

berechnet.

Oktant ! Voraussetzungen !
o xl<=x2; yl<=y2; dx>=dy |

229

Kapitel 9 Der Blitter

(2) Die Steigung

Zur Berechnung der Steigung werden wieder die bei
der Oktantenbestimmung berechneten Werte dx und dy
bendtigt. Zuerst miissen der kleinere und der grdBere
der beiden Werte bestimmt werden. Wir bezeichnen den
kleineren mit kd und den groBeren mit gd. Es ist also

kd = minimum(dx, dy)
gd = maximum(dx,dy)

Mit diesen Bezeichnern wird die Steigung durch drei
Ausdrucke festgelegt:

(1) 2*d
(2) 2*d-gd
(3) 2*d -2*qd

Zusatzlich muB noch gepriift werden ob 2%*kd groBer
als gd ist

(3) Die Anfangsadresse des Startpunktes

Gemeint ist hier die Adresse im Bildspeicher, an der
das Wort mit dem ersten Punkt der Linie liegt. Wenn
die Bitplane, in der die Linie gezeichnet wird, in
Plane gespeichert ist und die Bitplane Lines Zeilen a
Bytes Bytes hat, dann berechnet sich die gesuchte An-
fangsadresse durch:

Plane + (Lines -yl-1)*Bytes + 2*(x1/16)

(4) Die Position des Startpunktes im Wort
Wenn der Anfangspunkt der Linie nicht an einer
Wortgrenze liegt, muB noch der Abstand von dem Wort-

230

Kapitel 9 Der Blitter

anfang angegeben werden. Wenn die x-Koordinate z.B.
bei 17 liegt, dann betrdgt der Abstand 1, da bei 16
ein neues Wort anfédngt.

Nachdem Sie nun den Verlauf der Linie auf diese Art
Blittergerecht formuliert haben, konnen Sie die Blit-
teroperation anlaufen 1lassen. Die Blitterregister
missen dazu folgendermaBen initialisiert werden:

(1) Den Wert $8000 in BLTADAT schreiben.

(2) Die Maske fiir das Zeichnen der Linie in BLTBDAT
;chreiben. Fiir eine durchgehende Linie ist dies
ffff.

(3) Die Register BLTAFWM und BLTALWM auf $ffff set-
zen.

(4) Die Moduloregister folgendermaBen initialiseren:

BLTAMOD = 2*kd - 2*gd

BLTBMOD = 2*kd

BLTCHOD = Die Breite der gesamten Bitplane in Bytes
BLTDMOD = Die Breite der gesamten Bitplane in Bytes

(5) In die Quellen- und das Zielregister folgendes
schreiben:

BLTAPT = 2*d - gd
BLTBPT = unbenutzt
BLTCPT = Die Adresse des ersten Pixels der Linie.
BLTDPT = Die Adresse des ersten Pixels der Linie.

(6) In die Bits 15 bis 12 des BLTCONO-Registers die

Position des Anfangspunktes innerhalb des Wortes
(also x1 modulo 15? schreiben.

231

Kapitel 9 Der Blitter

(7) Bits 8,9,11 des BLTCONO-Regsiters auf 1, Bit 10
auf 0 setzen.

(8) Den Wert $CA fiir die logische Verkniipfung AB+AC
in die unteren 8 Bits (Bits 0 bis 7) von BLTCONO
schreiben.

(9) Die Bits des BLTCON1 Registers folgendermaBen
setzen:

Bits 12 bis 15: Hier die Stelle angeben, an der das
in BLTBDAT bestimmte Muster in der
Linie anfangen soll, angeben
(normalerweise 0).

Bits 7 bis 11: Unbenutzt.

Bit 6

1 falls 2*kd gd, = 0 sonst.

Bit 5 = 0 (unbenutzt)

Bits 2 bis 4 = Diese Bits geben die Nummer des Qua-
dranten an. Jedem Quadranten wird ein Wert zugeord-
net, den diese Bits annehmen miissen. Hier die Zuord-
nungstabelle:

Oktant | Wert |

232

Kapitel 9 Der Blitter

Bit 1

1;

Bit 0

1 (Linienmodus einschalten)

(10) Die unteren 6 Bits (Bits 0 bis 5) von BLTSIZE
auf 2, die oberen (Bit 6 bis 15) auf gd+l set-
zen.

Auch beim Zeichnen von Linien ist darauf zu achten,
daB das BLTSIZE-Register, daB die Operation startet,
als letztes beschrieben wird.

Die letzte noch nicht besprochenen Anwendung des
Blitters ist das Fiillen von Fldchen. Das Fiillen kann
ohne Zeitverlust in den Kopiervorgang integriert wer-
den. Die Daten, die aus den drei Quellen gemdB der
angegebenen Verkniipfungsvorschrift erzeugt und in
BLTDDAT geschrieben werden, werden vor der Ubertra-
gung in den Zielbereich entsprechend behandelt. Zum
Fiillen braucht der Blitter eine durch 1 - Bit breite
durchgehende Linien seitlich bergrenzte Fldche. Diese
konnte beispielsweise diese Form haben: -

00100000000000001000

00100001000100001000
00100000000000001000

233

Kapitel 9 Der Blitter

Die Fiilloperation wird durch setzen des EFE (Bit 4)
oder des IFE-Bits (Bit 3) des BLTCON1 Registers ein-
geschaltet. Alle anderen Einstellungen gleichen den
beim Kopieren.Je nach dem welches der beiden Bits ge-
setzt ist, werden die Begrenzungsbhits mit ins Bild
ibernommen (IFE = Inclusive Fill Enable) oder wegge-
lassen (EFE = Exclusive Fill Enable). Im EFE Modus
wiirde die Beispielfldche nach dem Fiillen so aussehen:

00011111111111110000
00011110000011110000
00011111111111110000

Wenn man dagegen den IFE-Modus benutzt, dann blei-
ben die Begrenzungen bestehen. Das Ergebnis sieht
dann so aus:

00111111111111111000
00111111000111111000
00111111111111111000

Falls man man méchte, daB nicht innerhalb der Be-
grenzung, sondern ausserhalb gefiillt wird, dann kann
muB man zusdtzlich noch das FCI (Fill Carry In) Bit
(Bit 2) des BLTCON1-Register setzen. Im IFE-Modus er-
gibt sich dann fiir die Beispielfldache nach dem Fiil-
len:

11100000000000001111
11100001111100001111
11100000000000001111

Eine Besonderheit des Fiillens liegt darin, daB er
nur im Descending-Mode (also Bit 1 von BLTCON1 =1
siehe Abschnitt 8) funktioniert.

234

Kapitel 9 Der Blitter

Am Anfang dieses Abschnitts wurde bereits gesagt,
daB das Fiillen wdhrend einer Kopieroperation erledigt
wird. Wenn Sie also einen Bereich Fiillen wollen, dann
missen Sie ihn auf sich selbst kopieren und dabei den
gewiinschten Fiillmodus einschalten.

235

Kapitel 9 Der Blitter

236

Kapitel 10 Der Copper

KAPITEL 10

237

Kapitel 10 Der Copper

In diesem Kapitel wollen wir den zweiten Graphikco-
prozessor des Amiga vorstellen. Wéahrend der Blitter
diverse Dienstleistungen iibernimmt, ohne die eine
schnelle Graphikdarstellung nicht denkbar widre, ist
der Copper fiir die Koordinierung des Aufbaus des Dis-
plays zustdndigt. Er ist dafiir verantwortlich, daB
zum richtigen Zeitpunkt (der Zeitpunkt wird durch die
Position des Rasterelektronenstrahls bestimmt) die
richtigen Werte in den richtigen Regsitern stehen, so
daB an jeder Bildschirmposition die Daten angezeigt
werden, die auch dorthin gehéren. Alle Angaben, die
beziiglich der Anordnung und Art der gerade angezeig-
ten Viewports gemacht werden, werden vom System in
Listen von Copperanweisungen iibersetzt. Somit braucht
sich der Hauptprozessor um die Bildausgabe nicht zu
kiimmern und ist frei fiir andere Aufgaben.

Der Copper ist ein eigenstdandiger Prozessor, der
Programme in ihm versténdlicher Sprache ausfiihren
kann. Allerdings ist er in seinem Befehlsatz sehr be-
schrankt. Er verfiigt lediglich iiber drei Befehle:
WAIT, MOVE und SKIP, sowie sieben Register.

AuBerdem ist der AdreBbereich, auf den der Copper
zugreifen kann, auf die Register der Customchips be-
schrankt. So wenig dies ist, fiir den Zweck den der
Copper zu erfiillen hat reicht es vél1lig aus. Die Be-
einflussung der Custom-Chipregister ist alles was no-
tig ist, um das Ausgabebild zu steuern. Zusdtzlich
kann der Copper den Blitter benutzen (seine Register
Tiegen auf den Customchips) und somit indirekt auf
den gesamten CHIP-Speicher zugreifen.

238

Kapitel 10 Der Copper

Es ist weiterhin méglich, daB der Copper einen In-
terrupt beim 68000 auslést und so den CPU in seine
Dienste stellt.

Das Copperprogramm befindet sich in der sogenannten
Copperliste. Sie ist ein Speicherbereich in dem Cop-
peranweiungen aneinandergereiht sind und dessen
Adresse in einem der Copperregister befindet.

Nun zu den drei Copperbefehlen. Sie haben folgende
Funktionen:

(1) MOVE

Dieser Befehl erlaubt es einen bestimmten Wert in
eines der Register der Customchips zu schreiben. Nor-
malerweise sind die Register $00 bis $20 vom Copper-
zugriff ausgeschlossen. Durch Setzen eines bestimmten
Bits in einem der Copperregister sind fiir ihn aber
auch die Register $10 bis $20 erreichbar.

(2) WAIT
Der WAIT-Befehl wartet darauf, daB der Elektronen-
strahl eine bestimmte Position erreicht hat.

(3) SKIP

Ein SKIP-Befehl veranlaBt den Copper dazu, den
nachfolgenden Befehl zu iiberspringen, wenn die aktu-
elle Position des Strahls groBer oder gleich ist, als
die bei dem Befehl angegebenen Werte. Mit seiner Hil-
fe 1aBt sich durch Manipulation der Copperregister
(Der Copper kann ja auch auf seine eigenen Register
zugreifen) eine bedingte Verzweigung realisieren.

239

Kapitel 10 Der Copper

Die Copperlisten bestehen normalerweise aus einer
Abfolge von Blécken der Form

WAIT
<Mehrere Move-Anweisungen>

Sinnvollerweise sollten diese Anweisungsbldcke in
der Reihenfolge der bei den WAIT-Befehlen angegebenen
Elektronenstrahlpositionen geordnet sein. Ware dies
nicht der Fall, dann konnte es sein, daB bestimmte
Anweisungen nie zur Ausfiihrung kommen.

Aus vorigen Kapiteln ist Ihnen bekannt, daB die
Bildanzeige aus Viewports besteht, von denen jeder
eine andere Aufldsung, Farbzusammensetzung, und GrdBe
haben und seine Bilddaten in einer eigenen Bitmap la-
gern kann.Diese Viewports werden zu einer View (siehe
Kapitel 8) zusammengefaBt. Nun stellt sich die Frage,
wie aus diesen getrennt gespeicherten Bausteinen das
Bild des Gesamtdisplays entsteht und welche Rolle da-
bei der Copper spielt. Um diesen Vorgang zu verste-
hen, muB man zuerst etwas iiber die Grafikdarstellung
auf Hardwareebene wissen. Die Erzeugung des Bildsig-
nals aus Daten die in einem Speicherbereich liegen,
wird bekanntlich von den Customchips iibernommen. Die-
se missen aber die Speicheradressen kennen, wo sich
die darzustellenden Daten befinden (der Amiga verfiigt
nicht wie einige andere Computer iiber einen festen
Bildschirmspeicher) und wie sie dargestellt werden
sollen, also welche Farben, Aufldsung etc. benutzt
werden sollen. Zu diesem Zweck verfiigen sie iliber eine
Gruppe von Registern, die groBe Ahnlichkeit mit eini-

240

Kapitel 10 Der Copper

gen aus vorherigen Kapiteln bekannten Strukturen der
Graphics-Library haben. Der wesentliche Unterschied
besteht darin, daB jede Verdnderung dieser Register
auch eine sofortige Verdnderung des Ausgabebildes be-
wirkt. Die in den Strukturen der Graphics- und der
Intuition-Librarary gespeicherten Daten gewinnen erst
dadurch Bedeutung, daB Sie im richtigen Augenblick in
die entsprechenden Register iibertragen werden. Wir
wollen hier einige wichtige auflisten und beschrei-
ben. Wir geben dabei fiir die Assemblerprogrammierung
die relative Lage der Register zu $dff000 (siehe Ka-
pitel 9)und fiir "C" den Namen der entsprechenden Kom-
ponente der Custom-Datenstruktur. Diese Datenstruktur
muB selbstverstdndlich wie im Kapitel 9 beschrieben,
an der Speicherstelle $dff000 liegen, damit ein Zu-
griff méglich wird. Wenn ein "x" im Namen steht, dann
bedeutet dies, daB es mehrere solche Register gibt,
die an dieser Position durchnummeriert sind.

(1) Die Bitplane Pointer Register (BPLxPT)

Diese Register entsprechen den AdreBzeigern auf
die einzelnen Bitplanes, die sich in jedem BitMap Da-
tensatz befinden. Sie beinhalten die Adresse der Bit-
planes, die momentan angezeigt werden. Es gibt sechs
BPLXPT-Register, so wie es maximal sechs Bitplanes
geben kann. Sie liegen ab $E0 im Speicher, konnen nur
beschrieben werden und sind je vier Bytes Lang (zwei
Bytes fiir Adresse High-Byte und zwei Byte fiir Adresse
LowByte). Von "C" aus sind sie als Custom.bpltp[x]
(x = Nummer der Plane 1 bis 6) ansprechbar.

(2) Die Playfield Controlregister (BPLCONXx)

Es gibt drei dieser Register (0 bis 2). Sie sind je
zwei Byte lang und liegen bei $100. Von "C" sind sie

241

Kapitel 10 Der Copper

durch Custom.bplcon0, Custom.bplconl und Custom.-
bplcon2 zu erreichen. Besonderes interessant sind
folgende Bits des BPLCONO-Registers:

Bit 15 - Schaltet den HiRes-Modus ein.

Bits 12 bis 14 - Geben die Anzahl der benutzen Bit-
planes an.

Bit 11 - Schaltet den HAM-Modus ein.

Bit 10 - Schaltet den Dual-Playfield-Modus
ein.

Bit 2 - Schaltet den Interlace-Modus ein.

Dieses Register entspricht also dem
ViewMode-Feld der ViewPort-Daten-
struktur.

(3) Die Color Register (COLORxx)

Diese Register entsprechen der zu jedem Viewport
gehdrenden ColorMap. Jedes dieser 32 Register (0 bis
31) ist 16 Bit lang und beinhaltet die RGB Zusammen-
setzung der momentan angezeigten Farben. Diese Regi-
ster liegen bei $180. In der Custom Struktur sind sie
als color[32] definiert.

Den direkten Zugriff auf eines dieser Register, das
BPLPT1-Register demonstriert das nachfolgende Pro-
gramm. Es schreibt den AdreBzeiger auf die Bitplane 0
des aktiven Screen in dieses Register. Dadurch wird
der Hardware vorgetduscht, daB die Bitplanes 0 und 1
des Screens identisch seien, und alles auf dem Screen
erscheint in der Farbe 3.

Programm 10.1 CustomPoke
#inc lude "exec/types.h"

#inc lude "hardware/Custom. h"
#include"Display.h"

242

Kapitel 10 Der Copper

struct Custom *Custom;
APTR Plane;

main()

Iong i;
OpenIntui();

/* Zeiger auf Bitplane 0 des aktiven Screens
holen */

Plane= IntuitionBase->ActiveScreen->BitHap.Planes[0];

Custom = Oxdff000; /* Basisadresse der
Customchips */
for(i = 0; i < 100000; i++)

/* Zeiger auf die Bitplane 0 des aktiven Screens
als Hardwarebitplane 1 */

Custom->bpIpt[1] = Plane;

Was ist nun hierbei die Aufgabe des Coppers? Nun,
sobald der Elektronenstrahl eine Position erreicht,
an der ein neuer Viewport (z.B. ein Screen der zur
Halfte nach unten geschoben wurde) anfdngt, erreicht
wird, schreibt der Copper die entsprechenden Werte
in die Customchip-Register. Dazu gehdren unter ande-
rem die AdreBzeiger auf die Bitplanes mit den Bildda-
ten und der Inhalt der Farbregister. Beim ndchsten
Durchlauf des Strahls werden dann wieder die Werte
des oben liegenden Vieports eingetragen.

Ein letztes niitzliches Register das wir hier erwédh-
nen wollen, ist das INTREG-Register (liegt bei $9c
von "C" als Custom->intereq ansprechbar). Durch Set-
zen des vierten Bits dieses Registers kann der Copper
einen Prozessorinterrupt ausldsen.

243

Kapitel 10 Der Copper

Wie bereits gesagt, werden samtliche Informationen,
die das Aussehen einer View betreffen, also die An-
ordnung und Form der Viewports, sowie eventuell vor-
handene Sprites, 1in Form von Copperlisten kodiert.
Jeder Viewport besitzt in der ViewPort-Datenstruktur
in den Komponenten DspIns, SpriIns und ClIrIns AdreB-
zeiger auf CopList-Strukturen. Jede solche Daten-
struktur beschreibt eine eigene Copperliste. Die er-
ste (in DspIns fir Display Instructions) beinhaltet
Befehle, die zum Aufbau der Anzeige des Viewports
bendtigt werden. Diese Copperliste wird beim MakeV-
Port-Befehl aus den Daten in den ViewPort- und Ras-
Info-Datenstrukturen erzeugt. Aus diesem Grund be-
wirken nur Verdnderungen in einer der beiden Struk-
turen ohne einen MakeVPort-Aufruf keine Anderung des
Ausgabebildes. Die beiden anderen werden fiir Sprites
bendtigt. Zusatztlich gibt es in der UCopIns-Kompo-
nente einen AdreBzeiger auf eine UCopl ist-Datenstruk-
tur, die die sogennante User Copperliste beinhaltet.
Mit Hilfe dieser Datenstruktur kann eine weitere,
benutzerdefinierte Copperliste in die Viewportliste
eingefiigt werden. Alle diese Copperlisten sind wie
verlangt nach Elektronenstrahlpositionen geordnet.

Da die Viewports nur als Teile einer View angezeigt
werden kénnen, reicht es nicht, daB jeder Viewport
seine eigenen Copperlisten hat. Die Einzelnen Listen
missen, bevor sie die Bildausgabe beinflussen konnen,
zu einer weiteren geordneten Einheit verbunden wer-
den.

Diese Aufgabe erledigt der MrgCop-Befehl. Er arbei-
tet sich durch alle Viewports einer View durch und

244

Kapitel 10 Der Copper

verkniipft dann geordnet alle ihre Copperlisten. In
der View-Struktur selbst gibt es auch zwei Felder, in
die eine Copperliste eingetragen wird: LofCprelList
und ShfCprList. In dem ersten Feld befindet sich im-
mer ein Zeiger auf eine Copperliste. Das zweite Feld
wird nur im Interlace-Modus bendtigt und enthdlt die
Copperliste, die beim zweiten Durchlauf, also fiir die
geraden Zeilen, bendtigt wird.

Der Tletzte Schritt bei der Erzeugung des Ausgabe-
bildes ist das Eintragen der Copperliste der gerade
aktiven View 1in das entsprechende Hardwareregister
des Coppers. Diese Aufgabe wird von der LoadView-Pro-
zedur erledigt.

Nun sind Sie in der Lage das im Kapitel 8 beschrie-
bene Verfahren zur Erstellung einer eigenen View und
auch einige andere Dinge, die mit der Bildausgabe zu-
sammenhdngen, genau zu verstehen. Der nédchste Schritt
besteht darin, aktiv in das Geschehen einzugreifen
und die Anzeige mit Hilfe eines eigenen Programms zu
verdndern. Die beste Mdglichkeit hierzu besteht da-
rin, eine eigene Copperliste zu erstellen und sie an
die aktive View anzubinden. Den Zeiger auf die aktive
View holt man sich auf die bekannte Art iiber die Gfx-
Base-Datenstruktur. Die Anbindung erfolgt einfach
durch Eintragen einer UCopList-Datenstruktur in das
UCopIns-Feld eines der Viewports dieser View. Diese
Datenstruktur muB selbstversténdlich vorher mit der
gewiinschten Copperliste initialisiert werden, denn es
macht wenig Sinn eine leere Copperliste anzubinden.
Die Initialiserung erfolgt in folgenden Schritten:

245

Kapitel 10 Der Copper

(1) Zuerst muB die Datenstruktur selbst erzeugt wer-
den. Sie konnen sie nicht einfach als Variable
vereinbaren, denn sie muB im CHIP-RAM liegen. Die
Allozierung kann so ausehen:

CopList = AllocMem(sizeof(struct UCopList),MEMF_CHIP
/MEMT;CIEHR/MEMF;PUBLIC);

(2) Die Befehlssequenz muB in die Struktur eingetra-
gen werden. Zu diesem Zweck gibt es in "graphics/
gfxmacros.h" folgende zwei Makros: CWAIT und C-
MOVE. Das erste dient dazu, den WAIT-Befehl des
Coppers in die Liste einzutragen. Als Parameter
werden ihm die Adresse der User-Copperliste iiber-
geben, sowie die Zeile und Spalte, auf die gewar-
tet werden soll. Um also in die Liste List den
WAIT-Befehl auf Zeile 10 Spalte 0 einzutragen,
geniigt folgender Aufruf:

CWAIT(List,10,0);

Dem zweiten Makro, das einen MOVE-Befehl der Liste
hinzufiigt, wird ebenfalls als erstes Argument die A-
dresse der User-Copperliste iibergeben. Die beiden
anderen Argumente geben dann die Adresse des betrof-
fenen Customchipregisters und den einzutragenden 16
Bit Wert an. Der Befehl

CMOVE(L ist,Custom->color[1],0)
bewirkt das Eintragen des MOVE-Befehls, der eine Null

in das Colorregister 0 schreibt, in die UserCopperli-
ste List.

246

Kapitel 10 Der Copper

(3) Die Copperliste muB mit Hilfe des CEND-Makros ab-
geschlossen werden. Es wird mit der Adresse der
Liste als einziger Parameter aufgerufen.

Nach dem Eintragen der fertigen Liste in den View-
port missen nur noch die Prozeduren MakeVPort, Mrg-
Cop, und LoadView in dieser Reihenfolge aufgerufen
werden, um die Anderung zur Anzeige zu bringen.

In dem nachfolgenden Beispielprogramm haben wir auf
die soeben beschriebene Weise eine Copperliste, die
den von diversen PD-Demos bekannten "Rainbow"-Effekt
erzeugt,an die aktive View herangehdangt. Sie bewirkt,
daB zwischen den Zeilen 10 und 200 nach jeweils 10
Zeilen der Hintegrund eine um eine RGB-Stufe dunkle-
ren Blauwert annimmt. Es werden also auf dem Work-
benchscreen, der eine Tiefe von zwei hat, 20 Farben
gleichzeitig angezeigt werden. Es wird dazu einfach
in der neuen User-Copperliste mit der Zeile 20 begin-
nend auf jede ndchste durch zehn Teilbare Zeile mit
WAIT gewartet und dann der neue Farbenwert in das
COLOROO-Hardwareregister eingetragen. Die entspre-
chende Copperliste kann einfach in einer for-
Schleife erstellt werden.

Damit Sie nach dem Starten dieses Programms auch
wieder die normale Anzeige bekommen, wird nach kurzen
Warten die neue Copperliste entfernt.

Programm 10.2 Stripes

#inc lude "exec/types.h"

#inc lude "exec/memory. h"

#1inc lude "hardware/Custom. h"
#include"Display.h"

#inc lude "graphics/gfxmacros.h"

247

Kapitel 10 Der Copper

struct Custom *Custom;

struct View *View;

struct ViewPort *VPort;

struct UCopList *CopList, *oldCopList;
main()

{

Tong i;

OpenGfx();
OpenIntui();

/* Zeiger auf die aktive View holen */
View = GfxBase->ActiView;

/* Zeiger auf den Viewport des aktiven Screens
lesen */
VPort = &(IntuitionBase->ActiveScreen->ViewPort);

/* Basisadresse der Customchips */
Custom = Oxdff000;

/* Copperliste Allozieren */

CopList = AllocMem(sizeof(struct UCopList),MEMF
CHIP!MEMF CLEARMEMF PUBLIC);
if (CopList == NULL) B -
exit(FALSE);

/* Eigene Copperliste mit den Systemmakros
erstellen */
for(i = 10; i <= 200; i += 10)

{
CWAIT(CopList,i,0); /* Warten bis der
Strahl zehn Zeilen weiter ist */
CHMOVE (CopL ist, Custom->color[0],1/10);
; /* Farbregister 0 verindern */

248

Kapitel 10 Der Copper

CEND(CopList); /* Copperliste abschlieBen */
/* Copperliste in den Viewport einbinden */

oldCopList = VPort->UCopIns; /* Alte User

Copperliste merken */
VPort->UCopIns = CoplList; /* Neue eintragen
*/
MakeVPort(View, VPort); /* Und in die
globalen Liste einbinden */
MrgCop(View);
LoadView(View);

for(i = 0; i < 500000; i++); /* Abwarten */

/* Die Alte Copperliste wieder einbinden */
VPort->UCopIns = oldCopList;

/* Alte Kopperlist wieder eintragen */
MakeVPort(View, VPort);

/* Und in die globalen Liste einbinden */
MrgCop(View);
LoadView(View);

FreeMem(CopL ist,sizeof(struct UCopList));

249

Kapitel 10 Der Copper

Zum SchluB dieses Kapitels wollen wir fiir die, die
direkt mit der Copperhardware arbeiten mdchten, die
Copperregister, sowie das dazugehorige Befehlsformat
beschreiben. Der Copper besitzt die folgenden sieben
Register:

COP1LCH, COP1LCL ($80 in "C" Custom->coplic)

Diese Register beinhalten die 18 Bit-Adresse der
ersten Copperliste.

COP2LCH, COP2LCL ($84 in "C" Custom->cop2lc)

Diese Register beinhalten die 18 Bit-Adresse der
zweiten Copperliste.

COPJMP1 ($88 in "C" Custom->copjmpl)

Durch Beschreiben dieses Registers wird der Copper
veranlaBt, die in COPI1LC1 stehende Adresse als die A-
dresse des ndchsten auszufiihrenden Befehls zu iiber-
nehmen.

CoPJMP2 ($88 in "C" Custom->copjmp2)
Durch Beschreiben dieses Registers wird der Copper
veranlaBt, die in COP1LC2 stehende Adresse als die

Adresse des ndchsten auszufiihrenden Befehls zu iiber-
nehmen.

COPCON ($02e in "C" Custom->copcon)

250

Kapitel 10 Der Copper

Dies ist das Kontrollregister des Coppers. Es ent-
hd1t nur ein einziges Bit (Bit 0). Dieses Bit gibt
an, ob der Copper auch auf die Register $10 bis $1f
zugreifen kann (Bit 0 gesetzt) oder nicht (Bit 0 ge-
16scht).

Wie der obigen Registerbeschreibung zu entnehmen
ist, muB man, um eine neue Copperliste anzuhdngen,
ihre Adresse in das COP1LC-Register (unter diesem Na-
men fassen wir die COP1LCH- und COP1LCL-Register zu-
sammen) schreiben und dann auf das COPJMP1-Register
zugreifen, damit der Copper dieses Adresse iibernimmt.
Die COP2LC - und COPJMP2-Register werden fiir bedingte
Spriinge mit Hilfe des Skip-Befehls gebraucht. Die in
COPJMP1 stehende Adresse wird jedes mal ilibernommen,
wenn der Rasterstrahl die Position (0,0) erreicht.

Auf diese Art wird die Copperliste bei jedem Durch-
lauf des Elektronenstrahls aufs neue durchlaufen, so
daB das gewiinschte Anzeigebild permanent aufrechter-
halten wird. Da es keinen Stopbefehl fiir den Copper
gibt, muB am Ende einer jeden Liste ein WAIT auf eine
unmégliche Strahlpostion stehen. Dadurch wird gewdhr-
leistet, daB an dieser Stelle gewartet wird, bis beim
Erreichen der Position (0,0) die Abarbeitung der Cop-
perliste von Vorne beginnt. Ein solcher Befehl ist
z.B.,

WAIT($ff, $ff)

da es keine Horizontalen Positionen, die groBer als
$E2 sind, gibt. Alles was Sie jetzt noch wissen miis-
sen, um eigene Copperlisten zu erstellen, ist das Be-

fehlsformat. Alle drei Copperbefehle bestehen aus

zwei Prozessorworten. Die Bits 0 der beiden Worte
ResgiTmen folgendermaBen, um welchen Befehl es sich
andelt:

251

Kapitel 10

Der Copper

Bit 0 Wort 1 | Bit O Wort 2 | Befehl |

Wie Sie sehen wird der MOVE-Befehl allein durch das
erste Wort bestimmt. Die Bedeutung der restlichen
Bits der beiden Befehlsworte fiir die einzelnen Befeh-
le kdnnen Sie der nachfolgenden Auflistung entnehmen:

MOVE

Wort 1

Bit 0 - Immer 1 (Befehlserkennung).

Bits 1 bis 8 - Die Adresse (Nummer) des Zielregi-

sters.
Bits 9 bis 15

Wort 2
Bits 0 bis 15

ster geschrieben wird.

Unbenutzt, auf 0 setzen.

Das Datenwort, das in das Zielregi-

WAIT

Wort 1

Bit 0 - Immer 0 (Befehlserkennung)

Bits 1 bis 7 - Angabe der horizontalen Strahlposi-

tion.

Bits 8 bis 15

Angabe der vertikalen Strahlpositi-

on.
Wort 2
Bit 0 - Immer 0 (Befehlserkennung)
Bits 1 bis 7 - Maske fiir die horizontale Strahlposi-

252

Kapitel 10 Der Copper

tion.

Bits 8 bis 14 - Maske fiir die vertikale Strahlpositi-
on.

Bit 15 - Blitter Finish Disable Bit

SKIP

Wort 1

Bit 0 - Immer 1 (Befehlserkennung)

Bits 1 bis 7 - Angabe der horizontalen Strahlposi-
tion

Bits 8 bis 15 - Angabe der vertikalen Strahlpositi-
on.

Wort 2

Bit 0 - Immer 1 (Befehlserkennung)

Bits 1 bis 7 - Maske fiir die horizontale Strahlposi-
tion.

Bits 8 bis 14 - Maske fiir die vertikale Strahlpositi-
on.

Bit 15 - Blitter Finish Disable Bit

Die Bedeutung der Maskenbits in den zweiten Be-
fehlswortern der Befehle WAIT und SKIP bedarf noch
einer Erlduterung: Sie geben an, welche Bits in der
Angabe der horizontalen bzw. vertikalen Strahlposi-
tion fiir den Vergleich mit den beim Befehl angegebe-
nen Werten von Bedeutung sind. Es werden nur die Bits
getestet, die in der Maske gesetzt sind. Fiir alle an-
deren wird der Test als TRUE angenommen. Setzt man
z.B. sowohl die Maske der vertikalen Position als
auch die Position selbst auf $08, dann trifft auf
diese Angabe jede achte Position zu. Wenn man, wie es
meistens der Fall ist, nur an einer bestimmten verti-
kalen Position interessiert ist, dann sollte man eine
Null in der Maske fiir die horizontale Position ange-
ben.

253

Kapitel 10 Der Copper

Zur Verdeutlichung des Umgangs mit den Befehlen be-
trachten Sie die folgende Copperliste:

WAIT($0f,0)
MOVE($180, $ffff)
WAIT(ff,fe)

Diese Liste bringt den Copper dazu, Jjeweils beim
Erreichen der Zeile 50 in das Farbregister 0 die Far-
be Weiss zu schreiben. Die letzte WAIT-Anweisung
dient nur dem AbschluB der Liste durch Warten auf
eine unmégliche Position. In Hexzahlen umgesetzt wiir-
de diese Liste so aussehen:

$0f01 $ff00 /* WAIT($0f,0) */
30180 $ffff /* MOVE($180,$FFFf) */
SFFff $fffe /*WAIT(fF,fe) */

Zum SchluB noch ein Paar Worte zum SKIP-Befehl. Da-
zu betrachten Sie das Konstrukt der Form:

HOVE(COPILC,Marke)Harke :
<Anwe isungen>
SKIP(Position,Maske)
MOVE(COPJMP1,0)
MOVE(COPILC,ATterWert)
<Rest der Liste>

Solange die in Skip angegebene Position nicht er-
reicht ist, erfolgt ein Schreibzugriff auf das COP-
1LC-Register, wodurch der Copper zu der Adresse Marke
verzweigt (Sie wurde am Anfang ja in COPILC hineinge-
schrieben).

Dadurch werden die Anweisungen zwischen der Marke

254

Kapitel 10 Der Copper

und dem SKIP-Befehl 1in einer Schleife immer wieder
ausgefiihrt. Erst wenn die angegebene Position iiber-
schritten wurde, wird der Zugriff auf COPJMP1 unter-
lassen. Es erfolgt also kein Riicksprung und die Abar-
beitung der Liste wird sequentiell fortgesetzt.

Falls wie in diesem Beispiel der Wert in COP1LC
wdhrend der Abarbeitung der Copperliste verdndert
wurde, dann ist unbedingt darauf zu achten, daB der
alte Wert vor dem Erreichen des Endes der Copperliste
wiederhergestellt wird. Dies ist notwendig, damit der
Copper den Anfang der Liste wieder anspringen kann.

255

Kapitel 10 Der Copper

256

Kapitel 11 Graphikerzeugung 1

Kapitel 11

257

Kapitel 11 Graphikerzeugung 1

In diesem Kapitel wollen wir Ihnen méglichst viele
konkrete Beispiele der "einfachen" Grafikprogrammie-
rung geben. Dabei kommt es uns nicht so sehr auf die
Vollstandigkeit der Behandlung der einzelnen Themen
an, sondern wir mdchten Ihnen vielmehr mdglichst vie-
le verschiedene Beispiele geben. Daher wird am Ende
eines jeden Abschnittes eine Rubrik "Tips" stehen, in
denen wir Ihnen noch zahlreiche Anregungen zu dem
jeweiligen Thema geben werden. Nachdem wir Ihnen
also die Grundziige einer jeweiligen Grafikprogram-
miertechnik vor Augen gefiihrt haben, animieren die
nachfolgenden Tips Sie hoffentlich dazu, selbst Hand
an die Algorithmen zu legen. Dabei sind diese Tips
wirklich nur als Anregung aufzufassen und sollten
Ihre eigene Kreativitdt in keiner Weise beeintrdch-
tigen.

Will man mit mdglichst geringem Programmieraufwand
bereits grafische Effekte auf dem Bildschirm erzeu-
gen, so eignen sich dazu besonders die FOR-Schlaufen
in Verbindung mit dem Line, Polygon, oder Circle-Be-
fehl. Bei dieser Technik Tiegt oft mehr Programmier-
arbeit in der "Definition" der Arbeitsumgebung, also
offnen eines Screens, eines Fensters und ganz wich-
tig: das Zuweisen der Farbregister. Gerade auf dem
Amiga sollte man bei der Grafikprogrammierung, bis
auf wenige Ausnahmen, sich mit weniger als 32 Farben
nicht zufriedengeben. So stehen Ihnen also in diesem
Fall 32 aus 4096 Moglichkeiten der Farbregisterbele-
gung zur Verfiigung.

Doch gerade mit der Farbauswahl kann man den
"Betrachtungswert" einer Grafik vervielfachen, so daB

258

Kapitel 11 Graphikerzeugung 1

es sich lohnt, wenn Sie sich dafiir geniigend Zeit neh-
men.

Die einfachste Art eine Schlaufe mit einem Grafik-
befehl zu belegen, ist das direkte Einsetzen der
Schlaufenzdhlvariable in einen Grafikbefehl, so daB
also zum Beispiel der Radius einer Folge von Kreisen
verdndert wird. Die so entstehenden Bilder erscheinen
aber meiBt schon sehr bald langweilig, da die Verdn-
derungen ja grundsdtzlich Tinear sind. Wesentlich in-
teressanter wird es, wenn man stattdessen einen
Funktionswert der Schlaufenzdhlvariable einsetzt.

Optisch geeignet sind hier besonders die Sinus- und
die Kosinusfunktion, aber auch mit den Exponential-,
Logarithmus- und Exponentialfunktionen, sowie deren
beliebigen Kombination lassen sich abwechslungsreiche
Effekte erzielen. Wir beschrénken uns zundchst einmal
auf den Sinus und Kosinus, da Sie gegeniiber anderen
Funktionen einen gewaltigen Vorteil haben: Ganz egal
was fiir Werte man einsetzt, wie groB oder wie klein
sie auch sein mégen, der Funktionswert liegt immer
zwischen -1 und +1. Dies erspart uns Kopfzerbrechen
dariiber,mit was wir den erhaltenen Funktionswert mul-
tiplizieren miissen, damit ein Wert herauskommt, der
auch im Giiltigkeitsbereich unseres Fensters liegt.
Gehen wir von einem Fenster der Breite 320 Pixels und
der Hohe 230 Pixels (dann ist oben noch Platz fiir die
Titelbalken des Screens und Fensters), so multipli-
zieren wir lediglich die Funktionswerte mit der hal-
ben Hohe, bzw. Breite und addieren anschlieBend den
gleichen Wert noch einmal. Nach der Multiplikation
erhalten wir also Werte zwischen -160 und +160 (-115
und +115), nach der nochmaligen Addition Werte zwi-
schen 0 und 320 (0 und 230). Jetzt koénnen wir losle-
gen und in einer Schlaufe Werte in die soeben neu de-
finierten Funktionen einsetzen. Das Ergebnis koénnen
wir direkt als x- und y-Koordinate auf den Bildschirm

259

Kapitel 11 Graphikerzeugung 1

werfen. Eine sich iiber den Bildschirm schwingend
fortbewegende Linie erhalten wir durch den folgenden
Algorithmus:

Linie (a,b)
float a,b;
/* a im Bereich von 0.0 und 360.0 und b > a */

I}

fx = 75; /* Beliebiger x-Schwingungsfaktor */
fy = 200; /* Beliebiger y-Schwingungsfaktor */
Calculate(a); /* Initialisierung von x und y */
for (n = a; /* Schlaufe: von a */
n<b»b; [/* bis b */
n+=1); /* n inkrementieren */
{Calculate (n); /* neues Koordinatenpaar
‘ berechnen */
Line(xold,yold,x,y, farbe); /* Verbinden mit
den alten Werten */
xold = x; /* Zwischenspeichern der
aktuellen */
yold = y; /* x- und y-Werte */

.
I 4

}

Calculate (1)
/* Berechnen der aktuellen Koordinaten */
floot i;

{
x = sin(i*pi/fx) * 160.0 + 160.0; /* Berechne
x-Koordinate */
y = cos(i*pi/fy) * 115.0 + 115.0;
/* Berechne
; y-Koordinate */

260

Kapitel 11 Graphikerzeugung 1

Bild 11.1 - Ausgabe des Algorithmus "Linie".

Um ein funktionsfdhiges Programm zu erhalten, muB
natiirlich die Arbeitsumgebung entsprechend gesetzt,
vor allem aber ein (GZZ-)Fenster der GroBe 320/230
gedffnet sein. Die so entstehende, schwingende Linie
kénnen Sie variieren, indem Sie den Schwingungsfakto-
ren einen Wert zwischen jeweils 30 und 270 zuordnen.
In unserem Programm Linie, daB Sie auf der Begleit-
diskette finden, werden weiterhin auch den jeweiligen
Kurvenabschnitten zyklisch die verschiedenen, ge-
setzten Farben zugewiesen.

Wir konnen die entstehenden Grafiken verschonern,
indem wir der Linie einen Partner geben, der zwar
dhnlich, aber doch v611ig unabhédngig schwingt. Dazu
fiihren wir zwei weitere Schwingungsfaktoren fxI und
fyl ein, sowie 2 weitere xy-Koordinatenpaare. So er-
halten wir also zwei Kurven, die wir zusdtzlich noch
Schrittweise miteinander verbinden.

261

Kapitel 11

Graphikerzeugung 1

Linien (a,b)

/* a im Bereich von 0.0 und 360.0 und b > a */
float a,b;

fx = 75;
/* Beliebiger x-Schwingungsfaktor */

fy = 200;

/* Beliebiger y-Schwingungsfaktor */

fx1 = 100;

/* zweites Schwingungsfaktorpaar */

fyl = 130;

Calculate(a);

/* Initialisierung der ersten 2 Koordinatenpaare

for{ n = a; /* Schlaufe: von a
n < b; /* bis b
n+=1; /* Schlaufenzdhler erhéhen
Calculate(n);

}i

262

/* ndchste 2 Koordinatenpaare

Line(x,y,x1,yl, farbe);
/* Verbinden beider Linien

Line(xold,yold,x,y, farbe); /* 1. Linie
Line(xoldl,yoldl,x1,yl,farbe); /* 2. Linie

xold = x; /* Zwischenspeichern der
yold = y; /* aktuellen x- und y-Werte
xoldl = x1;

/* Zwischenspeichern der 2. Werte
yoldl = y1;

Kapitel 11 Graphikerzeugung 1

Calculate (i)
/* Berechnen der aktuellen Koordinaten */

float x,y;

x = sin(i*pi/fx) * 160.0 + 160.0;

/* Berechne 1.x-Koordinate */
y = cos(i*pi/fy) * 115.0 + 115.0;

/* Berechne 1.y-Koordinate */

x1 = sin(i*pi/fx1) * 160.0 + 160.0;
/* Berechne 2.x-Koordinate */
yl = cos(i*pi/fyl) * 115.0 + 115.0;

/* Berechne 2.y-Koordinate */

Bild 11.2 - Ausgabe des Algorithmus “Linien".

263

Kapitel 11 Graphikerzeugung 1

Dieses Bild haben Sie bestimmt schon einmal in die-
ser oder dhnlicher Form gesehen. Das Lines-Demo der
Workbenchdiskette funktioniert genauso. Obwohl hier
nur Linien gezeichnet werden, entsteht jedoch ein
raumlicher Effekt, der dem Bild eine scheinbare Tiefe
verleiht. Ahnliche Effekte lassen sich aber auch mit
Polygonen oder Kreisen erzeugen. Setzen wir statt der
Line-Befehle in unserer Schlaufe den Polygon-Befehl
wie folgt ein, so werden die einzelnen Fldchen sofort
ausgemalt auf dem Bildschirm erscheinen.

Polygon(xold,yold,xoldl,yoldl,x1,y1,x,y, farbe, TRUE);

Die vollstdndigen Programme zu diesen Algorithmen
finden Sie wieder auf der Begleitdiskette, und zwar
unter den Namen Linien und Fldachen. AbschlieBend noch
ein Beispiel mit Kreisen, wobei nicht nur die Positi-
on der einzelnen Kreise von unserer Funktion berech-
net wird, sondern auch dessen Radius.

Kreise (a,b)
float a,b;
/* a im Bereich von 0.0 und 360.0 und b > a */

{
fx = 175; /* Beliebiger
x-Schwingungsfaktor */
fy = 80; /* Beliebiger
y-Schwingungsfaktor */
fr = 95; /* Schwingungsfaktor
des Radius® */
for(n = a; /* Schlaufe: von a */
n<bhb; /* bis b */
n++)
{Calculate(n);
/* ndchste 2 Koordinatenpaare */
Circle(x,y,r, farbe); /* Zeichne Kreis */

264

Kapitel 11 Graphikerzeugung 1

n+=1; /* Schlaufenzdhler erhéhen */
}:
Calculate (1) /* Berechnen der aktuellen Werte */
f
x = sin(i*pi/fx) * 110.0 + 160.0;
/* Berechne 1.x-Koordinate */
y = cos(i*pi/fy) * 65.0 + 65.0;
/* Berechne 1.y-Koordinate */
r = sin(i*pi/fr) * 24.0 + 26.0;
) /* Berechne den Radius */

Bild 11.3 - Ausgabe des Algorithmus "Kreise"

[C1[Kre 156 = — INE|
AT
J

7 ;;:::*\i R
(\(\-«.@j’) '““‘\

S
‘;“i\
/"54"4"!‘"7"'\'3"‘;&*"
RS SRRONY

iv.

S (& N
e «l’,‘, "% o, 22200
\‘ {, // "\‘\‘ e !
‘g&qq!gg “"%%ha"ii;fgzk_“,

R :;_‘: R }‘4§§4422 2

. "","‘ 5 .;:Q ;;;’$'Q’; ‘é‘l\-&\f ‘:,‘ ;‘
LN NN
g

\

el
‘\‘“!‘
b

265

Kapitel 11 Graphikerzeugung 1

Auf der Begleitdiskette ist dieser Algorithmus als
vollstdndiges Programm unter den Namen Kreise gespei-
chert.

Tips:

- Zur Farbgebung dieser Grafiken noch folgendes: an-
statt die Farbpalette beliebig zu wdhlen (wie in
den Beispielprogrammen der Begleitdiskette) konnen
Sie den 3D-Effekt dieser Bilder erhdhen, indem Sie
nur eine oder zwei verschiedene Farben auswdhlen
und die restlichen Farbregister mit verschieden
Intensitédten dieser Farbe(ng belegen.

- Bei der Auswahl der Schlaufenlédnge, sowie deren
Start- und Endwerte, kann der Computer behilflich
sein: benutzen Sie den Zufallsgenerator!

- Fiir Start- und Endwerte konnen Sie bestimmte Bedin-
gungen einfiihren. Im Beispielprogramm "Kreise" ha-
ben wir das Schleifenende so gewdhlt, daB der Radi-
us der Kreise fast Null ist. Somit entsteht immer
hochstens ein offenes "Schlauchende".

Einen Sternenhimmel kann man bereits durch zufdlli-
ges setzen von mehr oder weniger hellen, weiBen Punk-
ten auf einen schwarzen Hintergrund erzeugen. Nun ja,
das wird niemanden vom Hocker reiBen, der, auf welche
Weise auch immer, schon einmal mit einem Weltraum-
ballerspiel konfrontiert worden ist. Wesentlich in-
teressanter wird das Bild, wenn man einen Spiralnebel
einsetzt. Zur Verwirklichung ben6tigt man lediglich
eine Funktion, die eine Spirale zeichnet. Diese darf
natiirlich nicht direkt auf den Bildschirm gebracht

266

Kapitel 11 Graphikerzeugung 1

werden, sondern muB "verschmiert" werden. Dazu benut-
zen wir ein Unterprogramm, daB mit Hilfe von Zufalls-
zahlen eine Sternenwolke erzeugt. Dabei wird die Gro-
Be der Wolke durch einen angegebenen Radius bestimmt.
Vor dem Setzen eines Punktes iiberpriifen wir zundchst,
ob dieser schon gesetzt ist. Ist dies der Fall so
wird sein Farbwert um eins erhoht, so daB er heller
erscheint. Die Spiralfunktion schlieBlich leiten wir
aus der Kreisfunktion ab. Ein Kreis entsteht beim
Durchlaufen der Funktion x = sin(alpha) und y = cos
(alpha) fiir alpha = 0 bis alpha = 2 * Pi. Eine Spira-
le erhdlt man, wenn man Jjeweils x und y mit einem
linear ansteigenden Wert multipliziert. Da sich die
Spirale so zu langsam ausdehnt multiplizieren wir je-
doch nicht direkt mit der Schlaufenvariablen, sondern
mit deren Quadrat. Als vollstdandiges Programm sieht
das dann so aus:

/* SpiralNebel von Olaf Pfeiffer,
C-Version von Paul Lukowicz */

#include"Display.h"

#inc lude"gfxTools.h"
#include"intuition/intuition.h"
#inc lude"math.h"

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;

int Cbl[]={ 0,00 01 4, 0, 1, 6, 0, 2, 7,
/* Farbwerte mit unter- */
0,2, 9, 1, 2,10, 1, 3,11, 1, 4,12,
/* schiedlichen Inten- */
2, 4,12, 2, 5,13, 2, 6,13, 3, 8,14,
/* sitdten fiir die Dar- */
4,10,14, 7,11,15, 10,13,15, 15,15,15 /
* stellung der Sterne. */

267

Kapitel 11 Graphikerzeugung 1

}

main ()

USHORT code, i, j, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Einen low-res Screen é6ffnen. */

Screen = (struct Screen *)MakeScr(0,0,320,250,
"Nebel",4,NULL,NULL,NULL);

if (Screen == NULL)

exit(FALSE);

/* Ein Fenster auf dem neuen Screen éffnen */

Window = (struct Window *)MakeWindow(20,50,270,
100,0,0, "Spiralnebel", WINDOWCLOSE /ACTIVATE,
CLOSEWINDOW,Screen);

if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;

/* Farbregister initialisieren */
SetColors(Screen,&Col,15);

Background (); /* Hintergrund zeichnen */
Cloud(160,120,25.0); /* Sternwolke Zeichnen */
Spirale (); /* Spirale Zeichnen */

/* Auf Close-Gadget warten und alles schlieBen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);

CloseScreen(Screen);

268

Kapitel 11 Graphikerzeugung 1

Background () /* Setzt in dem Fenster verschiedene
“Sterne" mit unterschiedlichen
Intensitdten zur Gestaltung des
Hintergrundes. */

{

int n, x, y, ¢, J;

J = Random();
for(n = 1; n <= ((int) (Random() * 150.0) + 200);

x = (int) (Random() * 320.0); n#+)
/* Zufdllige x-Koordinate */
y = (int) (Random() * 230.0) + 10;
/* Zufdllige y-Koordinate */
¢ = (int) (Random() * 15.0) + 1;
/* Zufdllige Intensit*t */
SetPixel(Rast,x,y,c);
/* Punkt (=Stern) setzen */

} 4

Cloud (x, y, z) /* Setzt eine Sternenwolke mit
einen von z abhingigem */
/* Durchmesser an die Stelle
(x,y) */

int X, ¥

float 2z;

{
int n, ¢, x1, yl;
float r;

r = z * (Random()+1.5);

/* Radius der Sternwolke */

for(n = 0; n <= ((int) (z * z * (Random() +
1.0)) + 10); n++)

269

Kapitel 11 Graphikerzeugung 1

{ xl1 = x + (int) (cos(2.0 * pi * Random()) *
r * Random());
yl =y + (int) (sin(2.0 * pi * Random()) *
r * Random());
¢ = ReadPixel(Window->RastPort,x1,yl);

if(c < 15) /* Wird ein Punkt nochmal an
die gleiche Stelle */

++C} /* gesetzt, so erhéhe seine
Intensitédt. */

SetPixel(Rast,x1,yl,c);
/f}Setzte tern */

7
}

Spirale ()
/* Zeichnet auf einer Spiral-Kurve Sternenwolken. */

float z, hz;

z = 0.05;
do {
hz = 1.0 + z * z * 0.60; /* Schrittweite zwischen
den einz. Wolken. */
Cloud((int) (cos(z)*hz*1.25)+160, (int) (sin(z+pi)
*hz)+120,z);
Cloud((int) (cos(z+pi)*hz*1.25)+160,(int) (sin(z)
*hz)+120,z);
z = z + Random() * 0.20 + 0.05; /* Radius der
Wolke vergréBern. */
} while (z <= 4.25 * pi);

Die beste Wirkung erzielt das so erstellte Bild,
wenn Sie Ihren Monitor etwas dunkler und den Kontrast
stdarker stellen.

270

Kapitel 11 Graphikerzeugung 1

Tips:

- Im vorliegenden Programm sieht man den Spiralnebel
direkt von "oben", daB heiBt er ist im wesentlichen
kreisrund. Von der Erde aus gesehen, sind dies je-
doch die wenigsten. Versuchen Sie doch mal durch
geeignete Multiplikation der x- und y-Achsen mit
einem variablen Wert, einen Spiralnebel zu erzeu-
gen, der die duBere Form einer Ellipse hat, die am
besten auch noch diagonal auf dem Bildschirm liegt.

271

Kapitel 11 Graphikerzeugung 1

Neulich stellte uns jemand die Frage: "Was heiBit
das denn? - Fraktal?". Da dies ein Begriff ist der
heute im Zusammenhang mit der Computergrafik zwar oft
verwendet aber nur selten erklart wird, wollen wir
dies hier kurz tun: allgemein bezeichnet man damit
Gebilde und Erscheinungen (die wir durchaus auch in
der Natur wiederfinden) die eine wichtige Gemeinsam-
keit besitzen: die Selbst&hnlichkeit. Das heiBt
nichts anderes,als daB man beim vergroBern eines Aus-
schnittes aus diesem Gebilde wiederum ein dem ur-
spriinglichen &hnliches Gebilde erhdlt. Bei den frak-
talen Kurven geht es in erster Linie um Grafiken, die
nur durch eine bestimmte Anordunug von gleichlangen
Strichen entstehen, die alle miteinander in bestimm-
ten Winkeln verbunden sind. Dabei gibt es praktisch
nur drei Zeichenbefehle, mit denen der Grafik-Cursor
gesteuert wird. Diese Ansteuerung erfolgt durch In-
terpretation einer Zeichenkette, wobei alle Zeichen
der Kette durchgegangen werden. Ist das folgende
Zeichen ein "F", so bewegt sich der Cursor um eine
Léngeneinheit nach vorne (forward) und zeichnet so
eine Linie. Ist das ndchste Zeichen ein "+" oder ein
"-" so dreht sich der Cursor um eine Winkeleinheit
delta nach rechts oder links. Andere Zeichen sollen
zundchst einmal ohne Wirkung bleiben. Das Wesent-
liche bei dieser Technik ist aber die Enttehung
dieser Zeichenkette. Dabei wird die Zeichenkette
zundchst einmal Initialisiert, ihr werden also ein
oder mehrere Zeichen zugeordnet. Diese Zeichenkette
werden wir ab jetzt Axiom nennen. Als ndchstes gibt
es eine oder mehrere Regeln, die jeweils ein be-
stimmtes Zeichen des Axioms durch eine andere Zei-
chenkette ersetzten. Diese Regeln werden in einer

272

Kapitel 11 Graphikerzeugung 1

Schlaufe auf das ganze Axiom angewendet.Dazu erstmal
ein Beispiel: Axiom sei "F++F++F", daB heiBt bei
einer Winkeleinheit von Delta = pi/3 (60 Grad) er-
halten wir bei der oben definierten Interpretation
ein gleichseitiges Dreieck.

Lautet die Regel "F"->"F-F++F-F", so bedeutet das,
daB jedes "F" aus unserem Axiom durch die Zeichenket-
te “F-F++F-F" ersetzt werden soll. Lassen wir diese
Regel auf unsere Zeichenkette los, so erhalten wir
als neue Zeichenkette:

"F-F++F-F++F-F#+F -F#+F-F++F-F"

Schicken wir unseren Grafik-Cursor los, dann erhal-
ten wir einen sechszackigen Stern. Nun kann man aber
diese Regel beliebig oft anwenden und erhdlt somit
nicht nur wesentlich léngerer Zeichenketten, sondern
auch dementsprechend "verwinkeltere" Figuren. In
unserem Fall sdhe die Zeichenkette nach dem ndchsten
Schritt so aus:

"F-F++F~F-F-F++F-F++F-F++F-F-F-F++F-F++
F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++
F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F"

Lassen wir die Regel noch ein paarmal auf unsere

Zeichenkette los, so entsteht eine Art Schneeflocke,
wie in Bild 11.4.

273

Kapitel 11 Graphikerzeugung 1

Bild 11.4 - Die Schneeflocken-Kurve.
- \chneef locke :—:—-————,—-———

Vervendate Werte:
AXion FHEHE, Regel! F -) FFHE-F, Delta: pi/3, Tiefe: 4

In den Bildern 11.5, 11.6 und 11.7 finden sie wei-
tere Beispiele mit anderen Axiomen und Reproduktions-
regeln. Die jeweiligen verwendeten Werte finden Sie
ebenfalls in den Bildern abgedruckt.

Bild 11.5 - Noch eine Schneeflocke, diesmal die Spit-
zen nach innen "geklappt".

Acon: FHEHF, Regel: F -) Fof--F4F, Delta: pif3, Tiete: 4
274

Kapitel 11 Graphikerzeugung 1

Bild 11.6 - Das sogenannte "Quadratic Island".
(E ek tale Rurven - Quadratyc Yshands I 10

R

Axion: F+T4F¢F, Regel: [-) FeF-F-ITFF4F-F, Belta: pi/2, Tiefe: 3

Bild 11.7 - Die sogenannte "Drachenkurve" benétigt
bereits zwei verschiedene Reproduktionsregeln.

== 0§

Nden: X, Regeln: X =) X¢YF+, ¥ =) <FX-Y, Delta: pi/2, Tiefe: 13

275

Kapitel 11 Graphikerzeugung 1

Bei den L-Systemen (benannt nach Lindenmayer) be-
nutzt man die gleiche Technik wie bei den Fraktalen
Kurven, es werden lediglich noch zwei weitere Zeichen
und deren Interpretationen eingefiihrt.

Das Zeichen "[" soll heiBen: hier beginnt eine Ver-
zweigung und das Zeichen "]": hier endet ein "Able-
ger", deshalb gehe zuriick zur letzten Verzweigung und
mache dort weiter. Somit ist es mdglich, fiktive
Pflanzen zu erzeugen, die teilweise eine verbliiffende
Ahnlichkeit zu existierenden Pflanzen haben (Siehe
Bild 11.8 und 11.9). Programmtechnisch muB also ein
Stack (Zwischenspeicher, der die zuletzt eingege-
benen Werte zuerst wieder ausgibt) angelegt werden,
der sich an einer Verzweigung "[" nicht nur die aktu-
elle Position merkt, sondern auch die Richtung, in
die der Cursor sich weiterbewegen wiirde. Bei einem
"1" missen sie dann wieder als die aktuelle Po-
sition und Richtung benutzt werden. In dem hier vor-
liegenden Programm miissen Sie auBerdem noch die
Startkoordinaten und die Startrichtung angeben, von
der aus mit dem Zeichnen begonnen werden soll.

Bild 11.8 - Ein "buschiges Gestriipp".
(LS ys terw: =

Verwendete Werte.
Axion: F1, Regel: F -) FT(4F-F-Fi-{-F4F+F], Delta! pi/8, Tiefe: 3

276

Kapitel 11 Graphikerzeugung 1

Bild 11.9 - Ein "Florius Fictivicus".

xioh: F1, Regel: F -) FU4FIFI-FIF, Delta: pi/6, Tiefe: 4

Zur grafischen Interpretation der erzeugten Zei-
chenkette empfielt sich die Verwendung von sogenann-
ten Turtle-Befehlen, mit denen ein fiktiver Zeichen-
stift iiber den Bildschirm geschickt werden kann. Der
Name Turtle (engl.:Schildkrote) 148t erahnen, wie
langsam die ersten Implementationen dieser Grafikbe-
fehle gewesen sein miissen...

Da der Amiga standardméBig iiber diese Befehle nicht
verfiigt, geben wir hier nur einen vereinfachten
"Pseudo-Algorithmus" zur grafischen Interpretation
der Zeichenkette an. Neben den Turtle-Befehlen werden
Funktionen zur String- (Length(String) liefert die
Lénge einer Zeichenkette und GetChar(n,String) das
nte Zeichen der Zeichenkette) und Stack-Behandlung
benutzt (Push(value) 1legt den Wert value auf den
Stack ab, Pop holt den obersten wieder vom Stack
runter).

277

Kapitel 11 Graphikerzeugung 1

InitTurtle
/* Den Zeichenstift initialisieren,
also an eine bestimmte Position
setzen und eine Bewegungsrichtung
festlegen. */

for n := 1 to Length(String) do
/* In einer Schlaufe alle Zeichen der
Zeichenkette durchgehen. */

char := GetChar(n,String);
/* n-tes Zeichen aus der Zeichenkette

holen. */

"F" then MoveForward
/* Bei "F" Zeichenstift vorwérts
bewegen. */

if char

“+" then TurnRight

/* Bei "+" die Bewegungsrichtung des
Zeichenstiftes um eine Einheit nach
rechts drehen. */

elsif char

“-" then TurnLeft
/* Bei "-" die Bewegungsrichtung des
Zeichenstiftes um eine Einheit nach
links drehen. */
“[" then Push(Direction)
/* Bei "[" die Bewegungsrichtung des
Zeichenstiftes, sowie */

elsif char

elsif char

Push(YPosition)
/* die y-Koordinate und */
Push(XPosition)
/* die x-Koorinate der Position des
Zeichenstiftes auf den Stack legen. */

278

Kapitel 11 Graphikerzeugung 1

elsif char = "“J" then PenUp
/* Bei "]" den Zeichenstift aufheben, */

MoveTo(Pop,Pop)
/* ihn zu der zuletzt auf den Stack
gelegten Position bewegen und */

TurnTo(Pop)
/* ihm die vorherige Bewegungsrichtung
zuriickgeben. */

PenDown
/* AbschlieBend Zeichenstift wieder
absetzen. */
end

Tips:

- Auch hier spielt die Farbwahl wieder eine groBe
Rolle. Bei den L-Systemen erscheint es sinnvoll die
Farbe von der Verzweigungstiefe abhdngig zu machen.
So kann man die Aste 1immer heller, bzw. griiner
machen als den Stamm.

- Die Enden der Zweige sollten sie mit Bldttern oder
gemischt mit Bliiten verzieren. Dazu miissen sie ledig-
lich eine Unteroutine schreiben, die z.B. an der
aktuellen Position einen bunten Kreis setzt und
jedesmal bei dem Zeichen "]" mitaufgerufen wird.

279

Kapitel 11 Graphikerzeugung 1

Lassen Sie uns hier zundchst bemerken, daB es
grundsdtzlich zwei Arten von Grafikprogrammierern
gibt: die einen Schalten Ihr "komplexes Rechenwerk"
an, geben ein paar komplexe Werte in Ihr komplexes
Programm und - gehen ins Bett... Am ndachsten Morgen
(manchmal auch erst am iiberndchsten) ist es dann
soweit: "Oh was fiir eine schone, komplexe Darstellung
einer komplexen Zahlenmenge!" - Und dann sind da noch
die Grafikprogrammierer, die ohne "komplexe" arbei-
ten: diese muten ihrem Computer nur soviel zu, wie er
in wenigen Minuten anhand schneller Algorithmen erle-
digen kann. - Bevor da irgendein Zweifel aufkommt:
wir gehdren zu den letzteren!

Wie sie Anhand dieser Einleitung sicher schon
bemerkt haben, kommen wir zu einer Technik die je
nach Anwendung sehr lange dauern kann. Der Grundge-
danke dabei ist folgender: An einer mehr oder
weniger zufdlligen Stelle am Rand des Fensters wird
ein Pixel Tosgeschickt. Losgeschickt deshalb, weil er
sich ab nun Jjeweils zufdallig in eine beliebige
Richtung mit der Schrittweite eins weiterbewegt.
Dieser Vorgang wird solange wiederholt, bis er entwe-
der das Fenster verldBt (dann wird ein neuer Tlosge-
schickt) oder er auf einen anderen Pixel stoBt. Ist
dies der Fall, so friert er an dieser Stelle fest und
erhdalt bestenfalls noch eine bestimmte Farbe. Die
Zeit, die das Programm zur Erstellung einer solchen
Grafik braucht, wird dabei im wesentlichen durch die
Dimensionen des Fensters und der Anzahl der anfangs-
gesetzten Pixel bestimmt.

280

Kapitel 11 Graphikerzeugung 1

Offnen sie also ein groBtmdégliches Fenster und
setzten zum Beginn nur ein Punkt in der Mitte, so
konnen sie bei diesem Algorithmus, wenn Sie Pech
haben, erst nach einer halben Stunde das atembe-
raubende Ereignis miterleben, wie zwei Pixel mitei-
nander verschmelzen! So wird dieser Algorithmus auch
in einer deutschsprachigen Wissenschaftszeitschrift
auf den Leser losgelassen. Immerhin wird in diesem
Artikel auch zugegeben, daB dieser Algorithmus auf
einem IBM XT "vier bis fiinf Stunden" braucht. Dabei
kann man durch ein paar Verdnderungen den Algorithmus
um einiges schneller gestalten, ohne die entstehende
Grafik grundiegend zu verdndern. Anstatt einen Pixel
am Rande des Fensters zu Starten, schicken wir ihn
vom &uBeren Rand der entstehenden Figur los. Dariiber-
hinaus lassen wir den Pixel nicht bis zum Fensterrand
wandern, ehe wir ihn fiir ungiiltig erkldren, sondern
betrachten ihn bereits als verloren, wenn er um einen
gewissen Betrag hinter den eben erwdhnten &uBeren
Rand gewandert ist. W&hlt man die Dimension nicht
allzu groB, erhdlt man bereits nach wenigen Minuten
die fertige Grafik, eine Art Korallenstock. Das so
verschnellerte vollstdndige Programm sieht wie folgt
aus:

/* RandomPixels
von Olaf Pfeiffer, C-Version von Paul Lukowicz */
#include"Display.h"
#include"gfxTools.h"
#include"intuition/intuition.h"
#include"math.h"
#define Modus 2

struct Window *Window;
struct Screen *Screen;

281

Kapitel 11

Graphikerzeugung 1

struct RastPort *Rast;

/* Setzen der Farben */

int col [] = {0, 0, 0, 1,13, 3, 0, 4, 4, 0,
r 7 21 21 5: 11 21 61 01 31

4, 7,1, 4,7, 2, 5 8, 2, 6,

6, 9,4, 7,9, 5, 7,10, 4, 8,

8,11, 6, 9,11, 7, 9,12, 6, 10,

10,13, 8, 11,13, 9, 11,14, 8, 12,

12,15,10, 13:15:11, 13,14,10, 14,13,11,

14,12,12, 15,11,13, 15,10,14, 15, 9,15

4

int Dim, Dimx, Dimy,
/* Dimensionen der Grafik */

rfig, rmax,

/* aktueller und maximaler Radius der Figur */

X, y, xalt, yalt;

/* aktuelle und alte Koordinaten des Punktes */

main ()

USHORT code, i, j, h;

ULONG Class;

int xalt, yalt, Cont, Color;
char ch;

OpenIntui();
OpenGfx();

/* Einen low-res Screen éffnen. */

Screen = (struct Screen *)MakeScr(0,0,320,250,
“RandomPixels",5,NULL ,NULL ,NULL);

if(Screen == NULL)

exit(FALSE);

282

Kapitel 11 Graphikerzeugung 1

/* Ein Fenster auf dem neuen Screen éffnen */

Window = (struct Window *)MakeWindow(20,50,270,100,
0,0, "RandomPixels ", WINDOWCLOSE |[ACTIVATE,
CLOSEWINDOW,Screen);

if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Adresse des Rastports holen */
Rast = Window->RPort;

/* Farbregister initialisieren */
SetColors(Screen,&Col,15);

Dimx = Dim / 2 + 5;
/* Berechnen der halben x-Dimension */

Dimy = Dimx + 10;
/* Berechnen der halben y-Dimension */

Line(Rast,Dimx-1,Dimy-1,Dimx+1,Dimy+1,2);

/* initialisieren der Figur */
rfig = 1;

/* aktueller Radius der Figur */
rmax = 81;

/* maximaler Radius der Figur */
do

StartPixel (); .
/* Schicke einen Punkt auf die "Reise" */
do

RandomMove (); /* Bewege den Punkt */
Cont = Valid(x,y,rmax);
/* liberpriife die Giiltigkeit */
Color = Found(x,y) + 1;
/* Durchschnittsfarbwert der Umgebung */

283

Kapitel 11 Graphikerzeugung

1

} while((Cont == TRUE) && (Color <= 1));
/* bis Ungiiltig oder Kollision

if(Color > 32)
/* groBter Farbwert erreicht ?
Color = 2; /* also Farbwert zuriicksetzen
if(Cont = TRUE)
/* Es gab eine Kollision mit der Figur

SetPixel(Rast,x,y,Color);
/* Punkt mit der neuen Farbe setzen

if(Valid(x,y,(rfig * rfig)) == FALSE)

{ /* Uberpriifen der Radien der Figur
rmax = rmax + 2 * (rfig + 8) + 1;
/* berechnen des neuen max. Radius
++rfig;

}
}

else

/* aktuellen Radius erhéhen

/* Der Punkt hat den
/* Giiltigkeitsbereich
SetPixel(Rast,x,y,0); /* verlassen, also wieder
/* léschen.
} while(rfig > Dim / 2 - 10);
/* wiederholen bis Radius > Dimension

/* Auf Close-Gadget warten und alles schlieBen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);

CloseScreen(Screen);

}

284

*/

*/
*/

*/

*/

*/

*/
*/

Kapitel 11 Graphikerzeugung 1

/* Liegt der Punkt (x,y) im Giiltigkeitsbereich ? */
int Valid(x, y, rq)
int x, y, rq;

/* x- und y-Position, rfig zum Quadrat */

int ok; /* Riickgabe-Variable */

x - Dimx; /* x-Entfernung vom Ursprung */

X
y =y - Dimy; /* y-Entfernung vom Ursprung */
if(x *x+y*y<rq)

ok = TRUE; /* Punkt ist giiltig */
else
ok = FALSE; /* Punkt ist ungiiltig */

return ok;

/* Priifen auf Kollision */
int Found(x, y)

int x, y; /* x- und y-Koordinaten des Punktes */

{

int a, b,
/* Schleifenzihler fiir die Nachbarpunkte */
z, zg,
/* Zédhler fiir gesetzte Nachbarpunkte und
deren Farbwerte */

c; /* aktueller Farbwert eines
Nachbarpunktes */

/* Initialisieren der Zihler */

285

Kapitel 11 Graphikerzeugung 1

for(a = -1; a <= 1; a++)
{ /* linke und rechte
Nachbarpunkte */
for(b = -1; b <= 1; b++)
{ /* obere und untere

Nachbarpunkte */

if((a !=0) & (b !=0))
{ /* den Punkt selbst
ausschlieBen */

¢ = Re adP7er(Rast x+a,y+b);
if(c>0)
{ /* ein Nachbarpunkt
ist gesetzt */
zg += c; /* Farbwerte
aufaddieren */
++2Z; /* Zdhler
incrementieren */
}
}i
}
if(z I=0) /* Falls Punkt gesetzt, */
=zq / z; /* Durchschnittsfarbwert
berechnen */
return zg; /* und zuriickgeben */

/* Einen Punkt auf die "Reise" schicken */

StartPixel ()

float alpha, rf; /* Startwinkel und -radius */

do
{ alpha = Random() * 2.0 * pi;
/* zuf§11i iger Startwinkel */

286

Kapitel 11 Graphikerzeugung 1

rf = (float) (rfig) + 5.0;
/* und zufdlliger Startradius */

x = (int) (sin(alpha) * rf -
Random() * rf / Modus) + Dimx;

y = (int) (cos(alpha) * rf -
Random() * rf / Modus) + Dimy;
} while(Found(x,y) != 0);
/* wiederholen bis Punkt giiltig */

SetPixel(Rast,x,y,1); /* Punkt setzen */
xalt = x; /* und Koordinaten merken */
yalt = y;

/* Bewegen des Punktes um einen Schritt */
RandomMove ()
float b;

b = Random();

if(b < 0.25)

t+y; /* y inkrementieren */
else if(b < 0.5)

v); /* y dekrementieren */
else if(b < 0.75)

++X} /* x inkrementieren */
else
--(x); /* x dekrementieren */
SetPixel(Rast, xalt,yalt,0); /* alten Punkt
léschen */
SetPixel(Rast,x,y,1); /* und an neuer
Position setzen */
xalt = x; /* Koordinaten merken */
yalt = y;

287

Kapitel 11 Graphikerzeugung 1

Bild 11.10 - Ein durch den Algorithmus "Randomixels"
erzeugter "Korallenstock".
[Randon Pixels . []0
=1C | 0]

[MTRandon Pixels ———

Fiir die Dimension 75 rechnet der Amiga (ohne Abschal-
ten anderer Tasks) unter drei Minuten, allerding
bendtigt er fiir die Dimension 200 immernoch etwas
iber eine halbe Stunde. Deshalb haben wir in unserem
vollstdndigen Programm RandomPixels der Begleit-
diskette einen weiteren Verschnellerungsfaktor einge-
baut, der jedoch die entstehende Figur in einem
stdrkeren MaBe beeintrdchtigt. Ein Pixel wird dann
nicht mehr nur auf den "Umkreis" der Figur Tlosge-
schickt, sondern innerhalb eines Ringes gestartet,
der in die Figur hineinreicht. Dabei ist der d&uBere
Radius dieses Ringes der gleiche wie vorher und der
innere um den Fléachenfiillfaktor kleiner. Diesen Namen
haben wir ihm gegeben, da die so entstehenden Figuren
sich bei gleichem Umfang aus wesentlich mehr Pixel
zusammensetzen.

288

Kapitel 11 Graphikerzeugung 1

Tips:

- Zur Initialisierung kann man auch mehrere Pixels
oder gar Linien verwenden, die nicht unbedingt in der
Mitte des Bildschirms stehen miissen. Beachten Sie
dann aber, daB Sie die Definition des duBeren Randes
der Figur eventuell neu vornehmen miissen. So erhalten
Sie zum Beispiel durch setzen einer Linie am unteren
Fensterrand und entsprechender Definition der Start-
und Abbruchbedingungen Gewdchse, die an Unterwas-
serpflanzen erinnern.

- Ein Vorschlag der nochmals eine wesentliche Ver-
schnellerung bewirkt: sorgen Sie dafiir, daB ein Pixel
sich immer auf die Figur zubewegt und sich nicht von
ihr entfernt. Zugegeben, bei unserer urspriinglichen
Figur 1ist das eine nicht ganz so einfache Aufgabe,
aber um so Tleichter ist es bei den eben ange-
sprochenen Gewdchsen. Erhdhen Sie in der Prozedur
RandomMove den Vergleichswert 0.25 vor dem INC(y) von
auf einen Wert kleiner als 0.5. Je ndher dieser Wert
bei 0.5 Tiegt, desto groBer die Wahrscheinlichkeit,
daB sich der Pixel nach unten bewegt.

- Das wesentliche Erscheinungsbild kdnnen Sie auch
auf folgende Art verdndern: fiigen Sie bei der Kolli-
sion einen Zufallswert ein, ob der Punkt hier ein-
frieren soll oder nicht. Dadurch werden die einzelnen
Aste der Figur dicker, wobei wir jedoch nicht verges-
sen dirfen zu erwdhnen, daB dadurch das Programm
wieder langsamer wird.

289

Kapitel 11 Graphikerzeugung 1

290

Kapitel 12 Graphikerzeugung 2

Kapitel 12

Techniken der dreidimensionalen Grafikerzeugung

291

Kapitel 12 Graphikerzeugung 2

Wahrend wir uns im letzten Kapitel nur mit der
zweidimensionalen Grafik beschdftigt haben, werden
wir hier anhand einiger Beispiele zeigen, wie man
dreidimensionale Objekte auf dem Bildschirm dar-
stellt. Am Ende der Abschnitte mit den Programmbei-
spielen finden sie wieder Tips, die Ihnen Anregungen
zur Verdnderung der Programme geben.

Schlagt man in einem Grafikbuch das erste Kapitel
iiber dreidimensionale Grafik auf, so wird man meiB-
tens mit jeder Menge Mathematik konfrontiert. Dort
stehen dann oft seitenlange Einfiihrungen in die
Vektorrechnung die manchmal sogar iiber den dreidi-
mensionalen Raum hinausgeht. Da eine Darstellung von
mehr als drei Dimensionen fiir uns hier absolut
unbedeutend ist, betrachten wir also ab jetzt aus-
schlieBlich den dreidimensionalen Raum. Wir verzich-
ten an dieser Stelle bewuBt auf die Theorie der
Vektorrechnung und gehen davon aus, daB Ihnen ein
"Vektor in einem dreidimensionalen Raum" ein bekann-
ter Begriff ist. Auch sollten Sie sich dariiber klar
sein, daB jeder Korper im Raum durch Vektoren darge-
stellt werden kann. Ansonsten werden wir uns auf die
reine Anwendung der entsprechenden Formeln beschrén-
ken, ohne Sie erst zu beweisen, da Sie fiir uns reine
Hilfsmittel seien sollen. Zundchst aber erst einmal
zu den beiden Definitionen der drei Koordinatenach-
sen. Bei der mathematischen Definition geht man von
eine (x,y)-Ebene aus, auf der die z-Werte senkrecht
aufgetragen werden. Auf Computern trifft man jedoch
oft auf folgende Definiton der x-, y- und z-Achse:

292

Kapitel 12 Graphikerzeugung 2

Als x- und y-Achse definieren wir die gleichen wie
im zweidimensionalen. Sitzt also der Ursprung dieses
Koordinatensystems in der Bildschirmmitte, so geht
die x-Achse nach rechts und die y-Achse nach oben!
Die z-Achse ist nun die dritte, neue Achse, die jedem
Punkt auf dem Bildschirm auch noch eine "Tiefe"
zuordnet. Diese verldauft also in Ihren Monitor
"hinein". Bei diesen beiden Systemen werden also die
y- und z-Achsen miteinader vertauscht. Abgesehen von
der Berechnung mathematischer Funktionen werden wir
uns im wesentlichen an das zweite System halten.

Hierbei handelt es sich um ein Hilfsmittel, daB es
uns erlaubt einen Vektor und somit einen beliebigen
Punkt im Raum um einen beliebigen Winkel um die drei
Koordinatenachsen zu drehen. Damit ist es dann auch
méglich, beliebige Kérper und Flachen auf dem Bild-
schirm zu drehen. Da in vielen Anwendungen nur eine
Drehung um ein oder zwei Winkel nétig ist, kann diese
Matrix verkiirzt werden, indem die nichtverdnderbaren
Winkel direkt eingesetzt und ausgerechnet werden.
Dies haben wir auch in den ndachsten beiden Abschnit-
ten so gehandhabt.

Hier nun die Definition der Rotationsmatrix:
RM[1,1]= cos(wz)* cos(wy);

RM[2,1]=-cos(wz)* sin(wy);
RM[3,1]= sin(wz);

293

Kapitel 12 Graphikerzeugung 2

RM[1,2]= sin(wx)*sin(wy)-cos(wx)*cos(wy)*sin(wz);
RM[2,2]= sin(wx)*cos(wy)+cos(wx)*sin(wy)*sin(wz);
RM[3,2]= cos(wx)*cos(wz);
RM[1,3]= cos(wx)*sin(wy)+sin(wx)*cos(wy)*sin(wz);
RM[2,3]= cos(wx)*cos(wy)-sin(wx)*sin(wy)*sin(wz);
RM[3,3]=-sin(wx)*cos(wz);

Dabei sind wx, wy und wz die gewiinschten Drehwinkel
um die jeweilige Achse (im BogenmaB). Beachten Sie
dabei, daB die Drehungen um die x-Achse nach vorne,
um die y-Achse nach rechts und um die z-Achse im
Uhrzeigersinn erfolgen! Die Ubertragung auf unser
definiertes Koordinatensystem erhalten wir durch fol-
gende Multiplikation mit den jeweiligen Koordinaten
X, y und z:

xnew = RM[1,1] * x + RM[2,1] * y + RM[3,1] * z;
ynew = RM[1,2] * x + RM[2,2] * y + RM[3,2] * z;
znew = RM[1,3] * x + RM[2,3] * y + RM[3,3] * z;

Dabei ist es selten erforderlich znew wirklich
auszurechnen, da uns zur Darstellung auf dem Bild-
schirm meiBtens die x- und y-Koordinate eines Punktes
ausreicht. '

Als Anwendungsbeispiel nehmen wir den Punkt
(10,20,0). Gehen wir von unserem Ursprung in der
Bildschirmmitte aus, so liegt dieser Punkt 10 nach
rechts, 20 nach oben und 0 nach hinten vom Ursprung.
Gedreht werden soll er: 30 Grad nach vorne um die
x-Achse, 90 Grad nach rechts um die y-Achse und 45
Grad im Uhrzeigersinn um die z-Achse. Die neuen
Koordinaten xmew, ynew und znew erhalten wir, wenn
wir die Winkel wx := Pi/3, wy :=Pi, wz := Pi/2
setzen und anschlieBend die oben gezeigte Multiplika-

294

Kapitel 12 Graphikerzeugung 2

tion mit den Koordinatenpunkten durchfiihren. So er-
halten wir den "gedrehten" Punkt: (10,5,13).

Wir werden hier als Beispiel das Koordinatensystem
auf dem Bildschirm darstellen und es um beliebige
Winkel drehen. Dazu benétigen wir zundachst die x-, y-
und z-Koordinaten der Punkte die durch Linien oder
Linienziige miteinander verbunden sind. Haben wir alle
Punkte erfaBt, so lassen wir lediglich noch die Rota-
tionsmatrix mit den gewiinschten Winkeln auf alle
diese Punkte los und erhalten die "gedrehten" Werte.
Den Wert znew berechnen wir dabei nicht, da wir nur
die x- und y-Koordinaten zur Bildschirmdarstellung
bendtigen.

/* Koordinaten */

#include"Display.h"

#inc lude"gfxTools.h"
#include"intuition/intuition.h"
#inc lude "math. h"

struct Window *Window;

struct RastPort *Rast;

float wx,wy,wz; /* Die Drehwinkel um die einzel-
nen Koordinatenachsen */

int Posx,Posy,Posx1,Posyl, xm,ym,n;

char ch;

295

Kapitel 12 Graphikerzeugung 2

float L [18] [3] ={0,0,0, 100,0,0, 90,0,0, 100,0,10,
100,0,0, 90,0,10,
0,0,0, 0,100,0, 0,90,0, 10,100,0,

10,100,0, 10,90,0,
0,0,0, 0,0,100, 0,0,90, 0,10,100,
0,5,95, 0,10,90

} .
/* Die Vektarenpaare’ (x1,y1,z1,x2,y2,z2) die jeweils
eine Linie im Raum definieren. */
float M [3] [3]; /* Die Rotationsmatrix */

main ()

USHORT code, i, j, h;
ULONG Class;

OpenIntui();

OpenGfx();

printf(" \n >> Erstellung eines 3D-Koordinatensys-
tems << \n");

printf(”:--.._:: ==== S L \n");

printf(" Drehwinkel um die x-Achse: ");
scanf("%d ",&n);

wx =n * pi / 180.0;

printf(" Drehwinkel um die y-Achse: ");
scanf("%d ",&n);

wy =n * pi/ 180.0;
printf(" Drehwinkel um die z-Achse: ");
scanf("%d ",&n);

z =n * pi / 180.0;
printf(" Drehwinkel um die Achsen: %e %e %e \n *,
WX, Wy, WZ);

/* Ein Fenster auf dem Workbench-Screen éffnen */

Window = (struct Window *)MakeWindow(0,0,639,230,0,
0, "Koordinaten",

296

Kapitel 12 , Graphikerzeugung 2

WINDOWCLOSE |ACTIVATE,CLOSEWINDOW,NULL);

if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
Rast = Window->RPort;

RotMatrix (); /* Die zugehérige Rotationsma-
trix ausrechnen */

for(n =0; n<=17; n+=2)
{ Transfer(L[n][O],L[n][1]7L[n][2]);

/* Startpunkt einer Linie *
Posxl = Posx; Posyl = Posy;

/* Bildschirmkoordinaten merken */
Transfer(L[n+1][0],L[n+1][1],L[n+1][2]);

/* Endpunkt einer Linie */
L ine(Window->RPort,Posx,Posy,Posx1,Posyl,n / 6+1);

}i

/* Auf Close-Gadget warten und alles schlieBen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);

RotMatrix ()

{
M[0][0] = cos(wz) * cos(wy);
M[1][0] =-cos(wz) * sin(wy);
H[2][0] = sin(wz);
M[0][1] = sin(wx) * sin(wy) - cos(wx) * cos(wy)

* sin(wz);

M[1][1] = sin(wx) * cos(wy) + cos(wx) * sin(wy)
* sin(wz);

M[2][1] = cos(wx) * cos(wz);

M[0][2] = cos(wx) * sin(wy) + sin(wx) * cos(wy)

* sin(wz);

297

Kapitel 12 Graphikerzeugung 2

M[1][2] = cos(wx) * cos(wy) - sin(wx) * sin(wy)
* sin(wz);
M[2][2] =-sin(wx) * cos(wz);

Transfer(x,y,z)

/* Einen Punkt im 3D-System mit Hilfe der
Rotationsmatrix drehen. */

float x, y, z;

{

flaat x1, yl1, z1;
M[O][U] *x + M[1][0] * y + H[2][0] * z;
.V1 MOJ[1] * x + M[1][1] * + H[2][1] * z;
z1 = M[0][2] * x + M[1][2] * y + H[2][2] * z;
Posx = 320 + (int) x1 *2; /* Umrechnung in Bild-
schirmkoordinaten */
Posy = 130 - (int) y1;

Zundchst nochmals kurz zur Erinnerung: Ein "norma-
ler" Graf einer Funktion y = f(x) hat zwei Koordina-
tenachsen, wird also zweidimensional dargestellt. Re-
det man von einer 3D-Funktion so ist damit eine Funk-
tion der Form z = f(x,y) gemeint.

Anschaulich bilden die Koordinatenachsen x und vy
eine Ebene, auf der sich die Funktion, z.B. in Form
von Sinusschwingungen, erhebt. Programmtechnisch wer-
den wir also einen doppelt dimensionierten Array in
Abhangigkeit von x und y anlegen, der zu den Koordin-
atenpaaren (x,y) den entsprechenden Funktionswert
enthdlt. Das Programm 148t sich in zwei wesentliche
Abschnitte teilen: das Ausrechnen der einzelnen Funk-
tionswerte und die Darstellung auf den Bildschirm.

298

Kapitel 12 Graphikerzeugung 2

Beachten Sie bei Funktionen bitte immer, daB Sie ei-
nen sinnvollen Definitionsbereich auswdhlen, so daB
es gar nicht erst zu einem "Division by Zero"-Error
kommen kann.

Die allgemein {ibliche Form der Ausgabe solcher
Funktionen ist die eines Gitternetzes, welches sich
aus vielen kleinen Vierecken zusammensetzt. Betrach-
ten wir jedes dieser Vierecke fiir sich, so haben wir
Polygone, die durch ihre Eckkoordinaten gegeben sind.
Diese konnen wir bereits auch beliebig gedreht auf
dem Bildschirm darstellen. Um das gesamte Gitternetz
auszugeben, miissen wir lediglich eine Schlaufe pro-
grammieren, die alle Vierecke zeichnet. Zuvor lohnt
sich aber noch eine Uberlegung zum Thema verdeckte
Linien: Linien, die im Hintergrund liegen, also durch
davorstehende verdeckt werden, sollen auch wirklich
nicht erscheinen.

Um jetzt aber vor dem Zeichnen einer Linie nicht
erst nachrechnen zu miissen, ob diese sichtbar ist
oder nicht, bedienen wir uns eines einfachen Tricks.
Wir zeichnen nicht einfache Polygone, sondern umran-
dete, mit der Hintergrundfarbe ausgefiillte Polygone.
Nun legen wir die Schlaufen, die die einzelnen
Vierecke ausgeben, so, daB die hintenstehenden Vier-
ecke zuerst, die vornestehenden zuletzt gezeichnet
werden. Sollte es "verdeckte" Linien geben, dann
werden sie bei diesem System von den im- Vordergrund
stehenden iibermalt.

Auch bei der beliebigen Drehung des Gitternetzes
sind einige Einschrdankungen durchaus sinnvoll. Auf
eine Drehung um die von uns definierte z-Achse kdnnen
wir verzichten, wodurch sich die Rotationsmatrix um
einiges vereinfacht, wenn wir fir den Winkel wz
sofort 0 einsetzten.

299

Kapitel 12 Graphikerzeugung 2

/* Funktionen-Plotter */

#include"Display.h"

#inc lude "graphics/gfx.h"
#include”intuition/intuition.h"
#inc lude"math. h"

#inc lude"AreaExtras.h"

#define Dim 64 /* Die GroBe des Koordinaten-
netzes */

#define pi 3.14159

struct Coordinates

{
SHORT xK,yK; }:

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;
struct ViewPort *View;

SHORT F[65][65],

/* Das Koordinatennetz */
Dx[65][65],Dy[65][65];

/* Die Bildschimkoordinaten jedes Punktes */

USHORT code,1,j;

ULONG Class;

main ()

printf(">>> 3D Funk- PIotter<<<”),
OpenIntui();
OpenGfx();

300

Kapitel 12 Graphikerzeugung 2

Init();
/* Berechnen der Funktion */
OpenAll1(&Window,&Screen,&Rast,&View);
/* Offnen der Grafikausgabe */
Ausgabeberechnung();
/* Berechnung der Bildschirmkoordinaten */
DrawLand();
/* Ausgabe der Funktion */

/* Auf Close-Gadget warten und alles schlieBen */
Class = WaitEvent(Window,&code);
CloseWindow(Window);

CloseScreen(Screen);

OpenAll(Wind,Scr,RastP,ViewP)

struct Window **ind;struct Screen **Scr;
struct RastPort **RastP;
struct ViewPort **ViewP;

{

/* Einen low-res Screen 6ffnen. */

*Scr = (struct Screen *)MakeScr(0,0,639,255,
"Fractals",2,HIRES,NULL ,NULL);

if (*Scr == NULL)

exit(FALSE);

/* Ein Fenster auf dem neuen Screen éffnen #*/

*Wind = (struct Window *)MakeWindow(0,0,639,255,
0,0, "Funktionen", WINDOWCLOSE | ACTIVATE,
CLOSEWINDOW, *Scr) ;

if(*Wind == NULL) /* Fehler beim (ffnen 7 */

exit(FALSE);

301

Kapitel 12 Graphikerzeugung 2

/* Adresse des Viewports und des Rastports holen */
*RastP = (*Wind)->RPort;
ViewP = &((((*Wind)->WScreen)).ViewPort);

Init() /* Das Koordinatennetz mit einer Funktion
belegen */

short 1,7j;

for (i = 0; i <= 64; i++)

for (j = 0; j <= 64; j++)
F[i] [j] = sin(i/16. 0*p1) * cos(j/16.0%*pi) * 40.0;

I

Ausgabeberechnung ()
/* Berechnet zu den Werten F[x,y] die zugehérigen
Bildschirmkoordinaten */

{
SHORT X,y:

Dx[x][y] = 512 - (SHORT)(((float)(z*y+192))/32 0*
((float)x)) + 2*y;
Dy[xIly] = 80 + 2*y - F[x]I[yl;

302

Kapitel 12 Graphikerzeugung 2

++X;
} while (x <= Dim);

+y;
} while (y <= Dim);

DrawLand ()
/* Grafische Ausgabe in das Fenster auf dem
LoRes-Screen. */

SHORT x, y;
struct Coordinates P[5];

P[1].xK = Dx[x+1][y];

.P[Z] xK = Dx[x+1][+1 1:
PLZT. K - Dy[X+1][y iy
P[3].xK = Dx[x][y+1];
P[3].yK = Dy[x][y+1];
P[4].xK = P[0].xK;
P[4]. 0].yK;
Hove Rast P[0] xK,P[0].yK);
SetAPen(Rast 0);
PonF1II(Rast P,5);
SetAPen(Rast, 1),
PolyDraw(Rast 5,P);
++X;
} while (x < Dim-1);
++

} wh1le (y < Dim-1);

303

Kapitel 12 Graphikerzeugung 2

Bild 12.1 - Die Funktion z = sin(x)*sinh(y).
{Cz1[30-Dans tellung von 2D-Funktionen - == 1l (=]}

,'-"\ | ' ’ AL
Y !" %%v /I// %’I"}i',.'w,

7 7,
v

Ui
\\\‘\\'\\\\‘

Vervendete Wepte; .
Flx,y)izsin(x)#sinh(y) (x:8 bis 6p1.y'8 bis ni/2), wx!=26 Grad, wy:=38 Grad

Bild 12.2 - Noch 'ne Funktion.

Vervendete Werte:)
Fix,y] 1= x*2/(x*24pA4) (-2 bis 42), x != 40 Grad, w := 60 Grad

304

Kapitel 12 Graphikerzeugung 2

Tips

- Auch hier 1aBt sich optisch durch die Farbgebung
viel gewinnen. Benutzen sie doch mal Farbgebungen
wie bei den Landschaften aus dem ndchsten Ab-
schnitt.

- Bevor Sie eigene Funktionen ausprobieren, machen
Sie sich, um Meditationspausen zu umgehen, immer
vorher klar, was dabei fiir Werte herauskommen,
bzw. ob iiberhaupt etwas herauskommt.

Wir werden Ihnen hier eine einfache Technik vor-
stellen, mit der Sie mit wenig Rechenzeit eine
kiinstTiche Landschaft erzeugen und auf dem Bildschirm
darstellen konnen.

Als Ausgangsfigur benutzen wir dabei wieder das
dreidimensionale Netz, das bereits aus dem vorherge-
henden Abschnitt bekannt ist. Diesmal wird dieses
Netz jedoch nicht mit einer Funktion "belegt", son-
dern es wird jedem Punkt in diesem Netz eine bestimm-
te Hohe so zugeordnet, daB eine Landschaft entsteht.

Um die dazu benutzte Technik einfach ~verstdndlich
zu machen, (bertragen wir sie zundchst auf ein
zweidimensionales Modell. Diese sind Ihnen gewiB auch
aus Atlanten als Landschaftsquerschnitte bekannt.
Nehmen wir an, wir wollten einen Querschnitt durch
eine zufédllige Gebirgslandschaft erzeugen. Eine sol-
che Linie, die die verschiedenen Héhen anzeigt, kann
man als Modell wie folgt erhalten: Stellen Sie sich
vor, Sie befestigen ein Gummiseil waagerecht auf
einer Pinnwand. Haben Sie es nur an den Enden

305

Kapitel 12 Graphikerzeugung 2

befestigt, so kann es jetzt in der Mitte auf- und
abschwingen. Fassen Sie das Gummi in der Mitte an,
ziehen es ein Stiick nach oben oder nach unten und
befestigen es dort duch eine weitere Nadel. Wiederho-
len Sie diesen Vorgang mit den neu entstandenden
Gummiabschnitten zwischen zwei Nadeln solange bis Sie
keine Lust mehr haben, oder der Abstand zwischen zwei
Nadeln zu klein wird. - Haben Sie mit dem nach oben
oder unten ziehen nicht ibertrieben, so miBten Sie
jetzt einen mehr oder weniger typ1schen Landschaft-
querschnitt vor sich haben. Die Ubertragung dieses
Mode11ls auf drei Dimensionen erledigen wir gleich
anhand unseres Netzes. Damit wir immer wieder halbie-
ren kénnen, muB die Dimension des Netzes eine Zweier-
potenz sein, 64 soll fiir unsere Zwecke reichen. Wem
dies zur Verdeutlichung leichter fallt, kann sich
dieses Netz wieder aus einzelnen Gummiseilen zusam-
mengef lochten vorstellen. Das hier vollstdandig Abge-
druckte Programm macht nun nichts anderes als die
anfanglich gegebene Fldche der AusmaBe 64x64 in immer
kleinere Quadrate zu unterteilen und diese wiederum
per Zufall ein kleines Stiick nach oben oder nach
unten zu ziehen. Bei der Darstellung auf den Monitor
kann einerseits wieder die bereits bekannte Prozedur
zur Ausgabe eines solchen Netztes verwendet werden,
andererseits ist es mdoglich den Berechnungsvorgang zu
beschleunigen, wenn man auf eine variable Darstellung
verzichtet. Zur Demonstration verwenden wir diese
Technik 1in unserem Programm "Fraktale Landschaft".
Dariiberhinaus benutzen wir den bereits aus dem vorhe-
rigen Abschnitt bekannten Trick um hinter Erhebun-
gen liegende Flachen zu verdecken. Negative Werte
werden ausserdem auf Null gesetzt, wodurch Tdler bis
zur Hohe Null "“aufgefiillt" werden. Durch entsprechen-
de Farbenwahl entstehen so Seen oder Meere. Ansonsten
ist auch hier die Farbgebung primitiv gehalten, da
dies ein Punkt ist, der die Programmldnge explosions-
artig vergroBern kann. Auch hierzu haben wir wieder

306

Kapitel 12 Graphikerzeugung 2

einen Bildschirmausdruck (Bild 12.3), der jedoch
einen erheblichen Teil seines Reizes verloren hat.
Die erzeugten Landschaften entfalten Ihre volle Wir-
kung nur auf dem (Farb-) Monitor.

Bild 12.3 - Eine zufdllig erzeugte Landschaft.

/* Landscape */

#include "exec/types.h"

#inc lude "graphics/gfx.h"
#include"intuition/intuition.h"
#inc lude "math.h"

#inc lude"Display.h"

#inc lude"AreaExtras.h"

#define maxDepth 6 /* Die "Berechnungstiefe", legt

auch die Dimension des Koordinatennetzes fest (Dim =
2 Hoch maxDepth) */

307

Kapitel 12 Graphikerzeugung 2

struct Coordinates

{
SHORT xK,yK;

'4

struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;
struct ViewPort *View;

/* Farbwerte fiir die einzelnen Farbregister */
int Col [] ={0,0,2, 2,4,10, 0,5,1, 0,6,1, 1,6,2,
1,72, 1,8,2, 2,8,3,

2,9,3, 2,10,3, 2,11,3, 3,11,4, 4,11,
4, 4,12,4, 5,9,3, 7,6,0,

6,6,1, 5,5,2, 5,4,3, 3,3,3, 4,4,4,
5I5I5I 6l6l6l 7I7I7I

8,8,8, 9,9,9, 10,10,10, 11,11,11,
12,12,12, 13,13,13,

14,14,14, 15,15,15 b

SHORT F[65][65], /* Koordinatennetz */
Dx[65][65],Dy[65][65],
/* Bildschirmkoordinaten */
Height[65][65], /* Durchschnittlicher
Héhenwert eines Polygons */
Grad[65][65],
/* Steigung eines Polygons */
Dim,
/* Dimension des Koordinatennetzes */
Depth,
/* augenblickliche Berechnungstiefe */

4 7
/* Hilfsvariablen fiir die Berchnungstiefe */
diff, maxh, Net; _
float sigma,delta, /* Hohenstartwerte */
Hoeva, /* Héhenvarianz */

308

Kapitel 12 Graphikerzeugung 2

Smooth, /* Gldttungsfaktor */
addrnd, pap;
Tong seed; /* Zufallsgenerator-
Initialisierung */
char ch;

USHORT code, i, Jj, h;
ULONG Class;

main ()

OpenIntui();
OpenGfx();

printf(">>> Programm zur Erstellung fraktaler
Landschaften <<<");

do {scanf("Seed (lange, beliebige Zahl fiir den
Zufallsgenerator) : %1\n",seed);
} while(0 != 0);
do { scanf(" Hoehe (von 10 bis 100) : %d \n",sigma);
} while((sigma <= 10.0)!! (sigma >= 100.0));
do {scanf(" Hoehenvarianz (von 0.75 bis 2.25) : %d)n
", Hoeva
} while((Hoeva <= 0.75) !! (Hoeva >= 2.25));
do {scanf(" Glaettungsfaktor (von 0.0 bis 1.0) :
%d\n",Smooth);
} while((Smooth <= 0.0) !! (Smooth >= 1.0));
do {scanf(" Ausgabe als >>N<< etz oder >>R<<\ea7 ?)
%c \n",ch);
} while((ch != 'n') & (ch != 'r')); if (ch == 'n’)

.
7

Net = 1;
else

Net = 0;
Init();

OpenAl1(&Window,8Screen,&Rast,&View);

309

Kapitel 12 Graphikerzeugung 2

/* SetColors(Screen,&Col,32); */

Depth = 2;
do {

Next(); /* Nédchste Berechnungstiefe */
if(Depth > 1)

Class = WaitEvent(Window,&code);

Class = WaitEvent(Window,&code);

Ausgabeberechnung(); /* Umwandlung in Bildschirm-
koordinaten */

Move(Rast,0,10);

ClearScreen(Rast);

DrawLand(); /* Ausgabe der Landschaft */

+-'I-Depth;
} while((Depth <= maxDepth));

/* Auf Close-Gadget warten und alles schlieBen */
Class = WaitEvent(Window,é&code);
CloseWindow(Window);

CloseScreen(Screen);

}
OpenAl1(Wind,Scr,RastP,ViewP)
struct Window **Wind;
struct Screen **Scr;

struct RastPort **RastP;
struct ViewPort **ViewP;

{

/* Einen low-res Screen éffnen. */

*Scr = (struct Screen *)MakeScr(0,0,320,250,
"Fractals"”,5,NULL,NULL,NULL);

if (*Scr == NULL)

310

Kapitel 12 Graphikerzeugung 2

exit(FALSE);

/* Ein Fenster auf dem neuen Screen éffnen */
*Wind = (struct Window *)MakeWindow(0,0,319,6250,
0,0, "Fractals",WINDOWCLOSE | ACTIVATE,
MOUSEBUTTONS ! CLOSENINDOW *Scr);
if(*Wind == NULL) /* Fehler beim Offnen ?2 */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen */
*RastP = (*Wind)->RPort;
ViewP = &((((*Wind)->WScreen)).ViewPort);

SHORT Av3(a,b,c) /* Average3 berchnet den
Durchschnitt dreier Zahlen und

addiert einen zufdlligen Wert */
SHORT a,b,c;

{return ((a+b+c)/3 + (SHORT)(delta * ((rnd()*
5 .0-1.0))));

SHORT Avd(a,b,c,d)
/* Averaged berchnet den Durchschnitt vierer Zahlen
und addiert einen zufdlligen Wert */
SHORT a,b,c,d;

{return ((a+b+c)/3 + (SHORT)(delta * ((rnd()*
i’ .0-1.0))));

ComputePos(&,b) /* Berechnet die Zwischenpunkte
(3.Stufe) */

311

Kapitel 12 Graphikerzeugung 2

SHORT a,b;

{

SHORT x, y, hx, hy;

X =a;

hx = y+d;

whﬂe((x <= Dim-d) && (hy <= Dim))

y =b;
hy = y+d
while ((y <= Dim-d) && (hy <= Dim))

{F[XJ[y] = Av4(F[x] [hy]l,F[x] [y-d],F[hx] [y],
%yi f'id; Flx-d] [y])
x;+= D;
I‘rx = x+d;
%

AddRandom(a,b) /* Addiert zu den Héhenwerten einen
zufdlligen Wert */

SHORT a,b;

{
SHORT x,y;
X =a;
do {
y =a,;

o {
F[X] [J.’] =F[x] [y] + (delta * ((rnd()*2.0-1.0)));
}ywhﬂe (y <= b);

X += D;
} while (x <= b);

312

Kapitel 12 Graphikerzeugung 2

Init() /* Initialisierung der Eckpunkte */

{

SHORT ¢t;

float f;

Dim = PowerInt(2,maxDepth);
t =0;

delta = sigma;

t = (delta * rnd());

F[o] [0] = t + 50.01;

t = (delta * (rnd()*2.0-1.0));
F[0] [Dim] = t + 20.01;

f = rnd();

t = (delta * f);

F[Dim] [0] = t + 80.01;

t = (delta * (0.0-rnd()));

F[Dim] [Dim] = t + 60.1;

D =Dim / 2;

t = (delta * (rnd()*2.0-1.0));
F[D] [D] = t + 70.01;
d=0D/2;

Next() /* Ndchste Berechnungstiefe */

SHORT x, y;

delta = delta * Pow(0.5,Hoeva); /* Hohenwert delta
verkleinern */

/* Erste Stufe der Berechnung: Alle Punkte ermitteln

die diagonal zwischen vier bereits bekannten Hohen-
werte liegen. */

313

Kapitel 12 Graphikerzeugung 2

x=d; do{
y =4d;
do {
FIx] [y] = Av4(F[x][y+d],F[x+d][y-d],F[x-d]
[y+d],F[x dj[y-d]);

y *

} whﬂe (!(y > Dim-d));
x +=D;
} while (!(x > Dim-d));

addrnd = rnd();
if (addrnd > Smooth)
AddRandom(0,Dim);

delta = delta * Pow(0.5,6Hoeva);
/* Héhenwert delta verkleinern */

/* Zweite Stufe der Berechnung: Alle Randpunkte er-
mitteln, die zwischen drei bereits bekannten Héhen-
werte liegen. */

X =d;
do

{F[X] [0] = Av3(F[x+d] [0] F[x-d] [0],F[x] [d]);
o 'F[Z_]I)[Dimj = Av3(F[x+d] [Dim],F[x-d] [Dim],F[x]
im-d]);
F[0] [x] = Av3(F[0] [x+d],F[0][x-d],F[d][x]);
[]I)-'[Dim][x] = Av3(F[Dim] [x+d],F[Dim] [x-d],F[Dim-d]
X1)7
x += D;
} while (!(x > Dim-d));

/* Dritte Stufe der Berechnung: Alle noch iibrigge-
bliebenen Zwischenpunkte ermitteln. */

ComputePos(d,D);
ComputePos(D,d);

314

Kapitel 12 Graphikerzeugung 2

addrnd = rnd();
if (addrnd > Smooth)

{
AddRandom(0,Dim); AddRandom(d,Dim-d);

.
’

=D/ 2; /* Hilfsvariablen auf den nichsten Ver-
kleinerungsschritt */
d=d/2; /* vorbereiten. */

Ausgabeberechnung ()

/* Berechnet zu den Werten F[x,y] die zugehérigen x-
und y-Koordinaten */

/* sowie die Hohe und d1e Steigung der einzelnen
Polygone.

SHORT X, y,yi;
float yr;
y=0;

do {

x =0;

d
fox][y] 256 - (SHORT)(((float)(2*y+192))/
64.0*((float)x)) + y;

if (F[x][y] <= 0) /* Punkt liegt unter dem
Meeresspiegel */

Dy[x][y] = 111 + 2*y;

else /* Punkt liegt iiber dem

Meeresspiegel */

Dy[xg[y] 111 + 2*y - F[x][yl;
x +=D;
} while (x <= Dim);

315

Kapitel 12 Graphikerzeugung 2

y +=D;
} while (y <= Dim);

maxh = 29;

/* Durchschnittshéhe der Polygone berechnen */
I[ie }.c)J%[XJ[y] (FIxI[yJ+F[xJ[y+D]+F[x+D][y+D]+F[x+D]
J.)

if (((F[xI[y]>0) !! (F[x][y+D]>0) !! (F[x+D]
[y]>0) ! (F[X+DJ[.V+DJ>0)) & (He1ght[XJ[y]< 0))

/* Meerespiegel fiir dieses Polygon nur setzen, wenn
alle Eckpunkte im "Wasser” liegen. */

Height[x][y] =

/* Steigung des Polygons bestimmen */
Grad[x][y] = abs{abS(F[X][y]) + abS(F[X+D][y]) -
2*Height[x][y]) /
if (Grad[x][y] > 7)
Grad[(x][y] = 7;
if (maxh < He1ght[x][y])
maxh = Height[x][y]:
X += D;
} while (x <= (Dim-D));
y +=D;
}} while (y <= (Dim-D));

316

Kapitel 12 Graphikerzeugung 2

DrawLand ()
/* Grafische Ausgabe in das Fenster auf dem LoRes-
Screen. */

{
SHORT «x, y, ¢, s;

float dh, ds, h;
struct Coordinates P[5];

dh = ((float) maxh)/29.0;
y =0;

d .
z[OJ.XI(= Dx[x][yl;
PLOJ. K = DyxILy];
P[1].xK = Dx[x+D][y];
PL1]. K = Dy[x+D][y];
P[2].xK = Dx[x+D][y+D];
P[2].¥K = Dy[x+D][y+D1;
P[3].xK = Dx[x][y+D];
PL3].YK = DylxIly+0];
P[4].xK = P[0].xK;
PLAT.yK = PL0].yK;

/* Farbbestimmung, dazu in h einen Hohenwert von

maximal 30 */
h = ((float)Height[x][y])/dh;
s = Grad[x][yl];
if (h <= 0.0) /* H;he <= 0, also Meer(blau) */

c=1;

else

if (h > 24.0) /* Héhe > 24, also Steingrau bis
Schneeweis */

c=(2.5+h);

else

if (s > 3) /* Steigung > 50 Grad, Also
Felsgrau */

c =27 -s;

317

Kapitel 12 Graphikerzeugung 2

else /* sonst "normale"” Héhenlinie */
=2.5+h;

Move(Rast,P[0].xK,P[0].yK);
SetAPen(Rast,0);
PolyFill(Rast,P,5);
SetAPen(Rast,c);
PolyDraw(Rast,5,P);

X += D;
} while (x <= Dim-D);
y +=D;
} whrle (y <= Dim-D);

Tips:

Die so erzeugten Grafiken Tlassen sich um ein
vielfaches verschénern, indem Sie mehr Farben ein-
setzten und die Aufldsung erhdhen, also das 64x64
groBe Netz durch ein 128x128 oder gar 256x256
groBes ersetzen. Dabei kann es allerdings Probleme
mit dem Compiler geben, da ein doppelt dimensio-
niertes Feld nicht beliebig groB werden kann.
Eventuell miissen Sie ein groBes Netz aus mehreren
64x64 groBen Feldern zusammensetzten.

Lassen Sie uns noch folgende Anregungen zur Farbge-
bung geben. Im Normalfall setzt sich die Landschaft
aus 64x64 Feldern zusammen. Von jedem dieser Felder
kennen wir die vier Hohenwerte der Eckpunkte. Da-
raus 148t sich nicht nur die Durchschnittshéhe je-
des einzelnen Feldes errechnen, sondern auch Stei-
gung, bzw. Neigung um die x- und yAchse. Entspre-
chend der Durchschnittshéhe setzt man Farben wie
Meeresblau fiir die Hohe Null, verschiedene Griin-
tone fiir die folgenden Hohen, sowie iiber einige

318

Kapitel 12 Graphikerzeugung 2

Grautdéne, schlieBlich weiB fiir den Schnee auf den
Bergspitzen. Ab einer gewissen Steigung kdnnen Sie
verschieden Grauténe verwenden um zu verdeutlichen,
daB es sich um felsige Gebiete handelt.

- Um auch eine gewisse Schattierung hereinzubringen,
kann man die Neigung zum Betrachter oder einer
imagindren Lichtquelle berechnen. Je stdrker sich
ein Feld von diesen Werten neigt, desto schwédcher
wird Licht reflektiert, also um so dunkler muB die-
ses Feld erscheinen.

AbschlieBend befassen wir uns mit der Darstellung
einer Kugeloberflédche mit Hilfe von Langen- und Brei-
tengraden. Es entsteht also lediglich ein Gittermo-
del1l einer Kugel, dessen Aufldsung wir dadurch erho-
hen, daB wir sie nicht aus einzelnen Linien, sondern
aus einzelnen Punkten zusammensetzen. Dieses Verfah-
ren ist zwar etwas zeitaufwendiger, aber setzt man
die Kugel aus nur wenigen Lédngen- und Breitengraden
zusammen, so erscheint bereits nach wenigen Minuten
die fertige Kugel auf dem Bildschirm. Zur Erstellung
betrachten wir zundchst nur die Ldngengrade. In
unserem definierten Koordinatensystem sind dies
Kreise, die alle den gleichen Radius haben, ndmlich
den der Kugel. Der Mittelpunkt eines jeden Kreises
befindet sich im Ursprung des Koordinatensystems. Den
Nullmeridian legen wir in die xy-Ebene, er erscheint
also auf dem Bildschirm als Kreis. Dieser Kreis kann
mit Hilfe der Rotationsmatrix wie folgt berechnet
werden: die Schnittpunkte des Kreises mit der x-Achse
sind uns durch den Radius bekannt. Drehen wir nun mit
Hilfe der Rotationsmatrix einen dieser Punkte

319

Kapitel 12 Graphikerzeugung 2

schrittweise um die z-Achse, so erhalten wir die
Punkte, die auf dem Kreis liegen. Der erste Meridian
wdre somit berechnet. Die anderen erhalten wir, wenn
wir diesen Meridian Schrittweise um die y-Achse
drehen.

Die Breitengrade dagegen haben nicht alle den
gleichen Radius. Der Aquator hat den groBten Radius,
den der Kugel, wdhrend die anderen zu den Polen hin
immer kleiner werden. Diese Kreise sind alle parallel
zu der xz-Ebene und ihre Mittelpunkte liegen alle auf
der y-Achse, der des Aquators im Ursprung des Koordi-
natensystems. Diesmal Tiegt unser Ausgangspunkt zur
Berechnung der Kreise nicht auf einer der Koordina-
tenachsen, sondern auf dem Nullmeridian. Tasten wir
diesen Schrittweise ab und drehen diese Punkte um die
y-Achse, so erhalten wir bereits die gewollten Brei-
tenkreise.

In der Praxis ist es iiber die Rotationsmatrix mog-
lich , diese Kugel auch noch beliebig zu drehen,
indem wir einfach die gewiinschten Drehwinkel wie
bekannt in die Rotationsmatrix einsetzen. Dabei ist
es hier ein Leichtes, die hintenliegenden Punkte aus-
zurechnen und gar nicht erst zu zeichnen. Bei unserer
Kugel sind alle Punkte unsichtbar, die hinter der xy-
Ebene Tiegen, also negative z-Koordinaten haben. Hat
also ein Punkt eine z-Koordinate kleiner als Null, so
wird er nicht gesetzt. Der wesentliche Programmteil
sieht so aus:

/* Kugel von Olaf Pfeiffer,
C-Version von Paul Lukowicz */
#include"Display.h"

#inc lude "graphics/gfx.h"
#include"intuition/intuition.h"

320

Kapitel 12

Graphikerzeugung 2

#inc lude "math.h"
#include"stdio.h"

/* Drehung um die x-Achse */
/* Drehung um die z-Achse */
/* Drehung um die y-Achse

(uninteressant) */

/* Kugelradius in Pixeln (10 - 100) */
/* Anzahl der Lingengerade (2 - 32) */

#define pi 3.14
#define wx 0.62
#define wz 0.39
#define wy 0.0
#define Radius 75.0
#define Laengen 12.0

/* Anzahl der Breitengerade (1 - 31)*/

#define Breiten 11.0
struct Window *Window;
struct Screen *Screen;
struct RastPort *Rast;
struct ViewPort *View;
float s;
float M [5] [5];
int Col [] ={0, 0, 2,
6, 1, 1,6, 2, 1,7, 2,
1, 8, 2,
10, 3, 2,11, 3, 3,11,
4,11, 4,
6, 0, 6, 6,1, 5,65, 2,
5 4, 3,
5,5, 6,6,6, 7,7,7,
8, 8, 8,
11,11, 12,12,12, 13,13,1
14, 15,15,15
}:

2, 4,10, 0, 5, 1, 0,
2,8 3 29 3 2,
" 4,12, 4, 5, 9,3, 7,
3,3 3 4,4,4, 5,
9, 9, 9, 10,10,10, 11,
14,14,

321

Kapitel 12 Graphikerzeugung 2

main ()

USHORT code, i, j, h;
ULONG Class;

OpenIntui();
OpenGfx();

/* Einen low-res Screen éffnen. */

Screen = (struct Screen *)MakeScr(0,0,320,250,
"HAM-Demo",5,NULL ,NULL ,NULL);

if (Screen == NULL)

exit(FALSE);

/* Ein Fenster auf dem neuen Screen 6ffnen */
Window = (struct Window *)MakeWindow(0,0,320,
250,0,0, "Ham-Demo ",
WINDOWCLOSE | ACTIVATE | WINDOWDRAG,
CLOSEWINDOW, Screen); .
if(Window == NULL) /* Fehler beim Offnen ? */
exit(FALSE);

/* Adresse des Viewports und des Rastports holen,
Farben setzten */

Rast = (Window)->RPort;

View = &((*(Window->WScreen)).ViewPort);

/*for(i = 0; i<32;SetRGB4(View, (i+=3),Col[i-3],Col
[i-2],Col[i-1]));*/

s = 1.0 / Radius;

Matrix ();

LCircle(Laengen);

BCircle(Breiten);

/* Auf Close-Gadget warten und alles schlieBen */
Class = WaitEvent(Window,é&code);
CloseWindow(Window);

CloseScreen(Screen);

322

Kapitel 12 Graphikerzeugung 2

/* Belegen der Rotationsmatrix */

Matrix ()

{ M[1] [1] = cos(wz) * cos(wy);
M[2] [1] =-cos(wz) * sin(wy);
M[3] [1] = sin(wz);
M[1] [2] = cos(wx) * sin(wy) + sin(wx)
* cos(wy) * sin(wz);
M[2] [2] = cos(wx) * cos(wy) - sin(wx)
* sin(wy) * sin(wz);
M[3] [2] =-sin(wx) * cos(wz);
M[1] [3] = sin(wx) * sin(wy) - cos(wx)
* cos(wy) * sin(wz);
(2] [3] = sin(wx) * cos(wy) + cos(wx)
* sin(wy) * sin(wz);
; H[3] [3] = cos(wx) * cos(wz);

Drawxyz(p, q)
float p,q;

{
float x,y,z,x1,yl,z1;

int Posx,Posy,c;

x = coSs * cos(p);
= cas?% * sm/)

z = sin(q);

x1 = M[1][1] * x + M[2][1] * y + H[3][1] * z;

yl =HM[1][2] * x + M[2][2] * y + H[3][2] * z;

zl = M[1][3] * x + M[2][3] * y + M[3][3] * z;

if(y1 >= 0.0)

Posx = 160 + (int)(Radius * x1);
Posy = 130 + (int)(Radius * z1);

323

Kapitel 12 Graphikerzeugung 2

c = (int)(yl * 30.0) + 2;
SetAPen(Rast,c);
WritePixel(Rast,Posx,Posy);

7

}

LCircle (step)

float step;

float p, q, st,pi2;

st = pi/step;
pi2 = 2.0 * pi;
for(p = 0.0; p< pi; p= ptst)
for(q = 0.0; q < pi2;Drawxyz(p,q), q = q +s);

BCircle(step)

float step;

{
float p,q,st,pi2,pi3;

pi2 = pi / 2.0;
pi3 = pi * 2.0;
st = pi / (step +1);
for(q = (-pi2 + st);q <= (pi2 - st);p = p)
for(p = 0.0; p < pi3;Drawxyz((p),q).p = p*s);
q=q+st;

}

4

324

Kapitel 12 Graphikerzeugung 2

Bild 12.4 - Kollage von mehreren durch das Programm

"Kugel" erzeugte Kugeln.

Kugel C
1 KXugel } C

Tips:

Wiedereinmal zur Farbgebung: in diesem Beispiel ist
die Farbe abhdngig von der Tiefe, von der z-Koordi-
nate eines Punktes. Wahlt man die Farben entspre-
chend, entsteht der Eindruck unser Modell wiirde
direkt von vorne beleuchtet. Wollen Sie eine seit-
Tiche Beleuchtungsquelle simulieren, so miissen Sie
die Farbgebung winkelabhédngig machen. Von jedem
Punkt kennen Sie durch die Koordinaten auch die
Winkel, 1in denen er zu den einzelnen Achsen steht.
Setzen Sie beispielsweise den Punkt der héchsten
Reflexion, also der Punkt der auf der Kugelober-
flache am hellsten erscheint, so, daB er zu allen
drei Achsen im Winkel Pi/4 steht. Je grdBer nun der
Unterschied der drei Winkel eines Punktes zu dem

325

Kapitel 12 Graphikerzeugung 2

gesetzten Wert (Pi/4) ist, desto dunkler muB dieser
Punkt werden.

Wir haben Ihnen nun viele verschieden Techniken
vorgestellt, mit denen Sie innerhalb kurzer Zeit zum
Teil bereits recht verbliffende Computergrafiken er-
stellen kénnen. Fiir diejenigen unter Ihnen, die be-
reits eigene Anderungen, Erweiterungen oder Verbes-
serungen an diesen zum Teil recht einfachen Grafikal-
gorithmen vorgenommen haben noch ein Vorschlag: ver-
suchen Sie die Techniken miteinander zu verkniipfen!
Erstellen Sie doch zum Beispiel einen Landschafts-
auschnitt und "bepflanzen" Sie diesen mit verschie-
denen Gewdchsen der L-Systeme, womdglich auch noch in
Abhdngigkeit von der jeweiligen Hohe.

Oder eine andere Idee: schreiben Sie das Programm
zur Erstellung der Kugeln so um, daB nicht mehr Punkt
fiir Punkt sondern nur noch Schnittpunkt fiir Schnitt-
punkt (von Lédngen- und Breitengrad) berechnet wird
und diese dann durch Linien verbunden werden. So ist
es nicht mehr weit bis zu dem Punkt, wo Sie das Netz
der fraktalen Landschaft auf diese Kugel projezieren
kénnen. Somit hdatten Sie dann ein Programm zur
Erstellung Ihrer eigenen Planeten oder, Jje nach
Farbgebung und Héhenvarianz, Monde und Kometen.

326

Anhang A

Anhang A

327

Anhang A

Dieser Teil des Anhangs enthdlt die wichtigsten Da-
tenstrukturen der Intuition in alphabetischer Reihen-
folge. Dabei haben wir vor allem die ausgewdhlt, die
fiir die Programmierung und insbesondere die Grafik-
programmierung wichtig sind. Da einige der Daten-
strukturen relativ lang sind, haben wir uns bei den
Datenstrukturen Window und Preferences auf die
wesentlichen Teile beschridnkt.

Diese Struktur wird von der Routine DrawBorder ver-
wendet, um einen beliebigen Rahmen zu zeichnen. Sie
beinhaltet alle Informationen, die Draw-Border fiir
das Zeichnen der Umrandung braucht. Sie konnen iiber
NextBorder mehrere Border-Strukturen verketten, um
sie mit einem DrawBorder-Aufruf ausgeben zu kdnnen.

struct Border

SHORT LeftEdge, TopEdge;

UBYTE FrontPen, BackPen, DrawMode;
BYTE Count;J

struct Border *NextBorder;

4

LeftEdge, TopEdge: Hierbei handelt es sich um die zum
Rastport relative Position des Rahmens (x- und y-Ko-
ordinate in Pixels).

328 328

Anhang A

FrontPen: Die Nummer des Farbregisters mit dem Farb-
wert, der als Vordergrundfarbe beim Zeichnen des Rah--
mens benutzt werden soll.

BackPen: Die Hintergrundfarbe.

DrawMode: Der Zeichenmodus, in dem der Rahmen ge-
zeichnet werden soll. (Siehe Prozedur Draw)

Count: Anzahl der XY-Koordinatenpaare, die die Eck-
punkte des Rahmens bilden.

*XY: Die Koordinatenpaare relativ zur linken oberen
Ecke. Sie werden in einem Speicherbereich, auf den XY
zeigt, abgelegt.

*NextBorder: Zeiger auf die ndchste Border-Struktur,
die ebenfalls noch ausgefiihrt werden soll.

Ist dieser Wert gleich NULL, so wird keine weitere
Umrandug gezeichnet.

Dies ist eine kurze Struktur fiir die einfache Uber-
tragung von Grafikausschnitten zu einem RastPort mit
Hilfe der DrawImage-Prozedur. Zusdtzlich bietet diese
Struktur iiber PlanePick und PlaneOn0ff die Méglich-
keit, dabei die Daten in ausgewdhlte Bitplanes des
Screens zu schreiben.

329

Anhang A

struct Image

SHORT LeftEdge,TopEdge, Width, Height, Depth;
USHORT *ImageData;

UBYTE PlanePick, PlaneOnOff;

struct Image *NextImage;

}i

LeftEdge, TopEdge: Position der Tlinken oberen Ecke
des Bildausschnitts relativ zum Rastport (x- und y-
Koordinaten in Pixels).

Width, Height: Die Breite und Hohe des Ausschnitts in
Pixel.

Depth: Die Tiefe der Grafik, also die Anzahl der Bit-
planes.

*ImageData: Ein Zeiger auf den Anfang der Grafikdaten
im Speicher (muB CHIP-RAM sein) Die Datem sind Bit-
planeweise hintereinander gespeichert.

PlanePick: Hier geben Sie an, in welche Bitplanes des
Rastports die Bildaten des Images geschrieben werden
sollen.

PlaneOn0ff: Gibt an, welche Farbe den Punkten zuge-
ordnet wird, die in den Imagedaten den Wert NULL ha-
ben.

*NextImage: Zeiger auf die ndchste Image-Struktur,

die auch noch ausgegeben werden soll. Ist dieser Wert
gleich NULL, so wird kein weiteres Image gezeichnet.

330

Anhang A

Diese Struktur wird von Intuition benutzt, um Sys-
temnachrichten iliber Ereignisse in einem Fenster zu
tibermitteln.

struct IntuiMessage;

struct Message ExecMessage;
ULONG Class;

USHORT Code,Qualifier;

APTR IAddress;

SHORT MouseX, MouseY;

ULONG Seconds, Micros;

struct Window *IDCHMPWindow;
struct IntuiMessage *Speciall ink;

Class: Dieses Feld enthdlt die IDCMPFlags der in ei-
nem Fenster aufgetretenen I10-Ereignisse, oder NULL
falls keine Ereignisse in dem Fenster registrert wur-
den, zu dem die Struktur gehdrt. Zur Bedeutung der
Flags siehe unten.

Code: In diesem Feld werden weitere Werte, wie z.B.
die Menii-Nummern oder der ASCII-Code der gedriickten
Taste.

Qualifier: Dies ist eine Kopie des aktuellen Eingabe-
Qualifiers (z.B. gedriickte ALT-Taste).

331

Anhang A

IAddress: Ein Zeiger auf die Adresse des Intuition-
Gebildes, das diese Nachricht ausldéste, z.B. ein Zei-
ger auf eine Gadget oder Requester-Struktur.

MouseX, MouseY: Dies sind die x-und y-Koordinaten der
Mausposition (relativ zur linken oberen Ecke des ak-
tuellen Fensters) zur Zeit des Eintreffens der Nach-
richt.

Seconds, Micros: Die Systemzeit 1in Sekunden und Mi-
krosekunden, zu der die Nachricht geschickt wurde.

*IDCMPWindow: Zeiger auf das Fenster, zu dem diese
Struktur gehort.

Folgende IntuiMessage- IDCMPFlags konnen abgefragt
werden (In der dahinter stehenden Bemerkung wird kurz
erk}ért, was es bedeutet, wenn dieses Bit gesetzt
ist): »

SIZEVERIFY 0x00000001
Der Benutzer will die FenstergroBe verdndern.

NEWSWIZE 0x00000002
Die GroBe des Fensters hat sich verédndert.

REFRESHWINDOW 0x00000004
Die Refresh-Routine soll aufgerufen werden.

MOUSEBUTTONS 0x00000008
Ein Mausknopf wurde betdtigt. In Code kann stehen:

SELECTDOWN, SELECTUP: Die linke Taste wurde ge-
driickt, bzw. wieder Tlosge-
lassen.

MENUDOWN, MENUUP: Analog fiir die rechte Taste.

. 332

Anhang A

MOUSEMOVE 0x00000010
Die Maus wurde bewegt.

GADGETDOWN 0x00000020

Die Maustaste wird iiber einen Gadget "gedriickt" ge-
halten. Die Adresse des Gadgets finden Sie in IAdd-
ress.

GADGETUP 0x00000040

Die Maustaste wurde iiber einem Gadget "losgela-
ssen". Die Adresse des Gadgets finden Sie in IAdd-
ress.

REQSET 0x00000080
Ein Requester wurde aktiviert.

MENUPICK 0x00000100

Ein Meniipunkt ist ausgewdhlt worden. Die Menii-Num-
mer (in der Form eines Intuition MenuNumber) finden
Sie in Code.

CLOSEWINDOW 0x00000200
Das Close-Gadget wurde angeklickt.

RAWKEY 0x00000400

Eine Taste wurde gedriickt. Code enthdlt die Nummer
der Taste. Zusdtzliche Information wie z.B. gedriickte
Alt- oder Amiga-Taste in Qualifier.

REQVERIFY 0x00000800
Der Benutzer versucht ein Requester zu aktivieren.

REQCLEAR 0x00001000
Der letzte Requester vom Screen wurde geldscht.

MENUVERIFY 0x00002000
Der Benutzer versucht ein Menii zu aktivieren.

333

Anhang A

NEWPREFS 0x00004000
Neue Preferences wurden eingelesen.

DISKINSERTED 0x00008000
Eine neue Diskette wurde eingelegt.

DISKREMOVED 0x00010000
Eine Diskette wurde herausgennomen.

WBENCHMESSAGE 0x00020000
Es ist eine Nachricht der Workbench vorhanden.

ACTIVEWWINDOW 0x00040000
Das Fenster wurde aktiviert (angeklickt).

INACTIVEWWINDOW 0x00080000
Das Fenster wurde inaktiviert (Ein anderes also an-
gekTlickt) !

DELTAMOVE 0x00100000
Die Maus wurde bewegt. Die angegebenen Mauskoordi-
naten sind hier relative Koordinaten.

VANILLAKEY 0x00200000

Eine Taste wurde gedriickt. Der Tastencode wurde in
ASCII-Codes umgewandelt und Tiegt in Code vor. (Falls
eine Taste gedriickt wurde).

INTUITICKS 0x00400000
Es liegt eine Timer-Nachricht vor.

LONELYMESSAGE 0x80000000

Ist dieses Bit geldscht, so ist es eine Systemnach-
richt an einen Task, sonst eine von einem Task.

334

Anhang A

Die Datenstruktur IntuiText ermdglicht die Ausgabe
einer oder mehrerer Zeichenketten, mit der Ausgabe-
routine PrintIText. Dabei konnen etliche Eigenschaf-
ten des Textes unabhdngig von den Einstellungen des
Rastports bestimmt werden.

struct IntuiText

UBYTE FrontPen, BackPen, DrawMode;
SHORT LeftEdge, TopEdge;

struct TextAttr *ITextFont;

UBYTE *IText;

struct IntuiText *NextText;

}i

FrontPen, BackPen: Die Nummer der Farbregister, deren
Farbwert als Vordergrund-, bzw. Hintergrundfarbe fiir
den Text benutzt wird.

DrawMode: Der Zeichenmodus, in dem geschrieben werden
soll.

Leftedge, TopEdge: Die zum aktuellen Fenster relative
x- und y-Koordinate, an der die linke, obere Ecke des
Textes stehen soll.

ITextFont: Dies ist der Zeiger auf den Zeichensatz
(Eigentlich TextAttr-Struktur?, der fiir die Textaus-
gabe benutzt werden soll. Ist dieser gleich NULL
gesetzt, so wird der aktuelle Zeichensatz verwendet.

335

Anhang A

*IText: Zeiger auf den auszugebenen Textstring, der
mit einer Null enden muB.

*NextText: Zeiger auf die ndchste IntuiText-Struktur,
die noch ausgegeben werden soll, oder NULL fiir Ende.

Diese Struktur wird jedesmal benutzt, wenn ein neu-
er Screen gedffnet wird. Beachten Sie auch die Struk-
tur Screen, die nach dem (ffnen weitere Informationen
eines Screens enthdlt.

?truct NewScreen
SHORT LeftEdge, TopEdge, Width, Height, Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewHodes, Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct BitMap *CustomBitMap;

ki

336

Anhang A

LeftEdge, TopEdge: Die x- und y-Koordinaten der lin-
ken, oberen Ecke der Screenbegrenzung, wobei LeftEdge "
nicht benutzt wird, da der Screen immer am Tinken
Bildschirmrand beginnt.

Width, Height: Die Gesamtbreite und -héhe des Screens
in Pixel.

Depth: Die Tiefe des Screens, also die Anzahl der
verwendetete Bitmaps. Im allgemeinen stehen dann 2
hoch dieser Zahl Farben 1in diesem Screen zur Verfii-

gung.

DetailPen: Die Nummer des Farbregisters, das den
Farbwert enthdlt, mit dem der "Zeichenstift" in die-
sem Screen zeichnen, bzw. schreiben soll.

BlockPen: Die Nummer des Farbegisters, das den Farb-
wert enthdlt, mit dem die Meniizeile mit dem Titel und
den Gadgets gezeichnet werden soll.

ViewModes: Bestimmt die Anzeigemodi des neuen
Screens. Sie konnen hier einen oder mehrere folgender
Flags lbergeben:

HIRES:
Hig?-Reso]ution Modus an (640 Pixels horizon-
tal).

INTERLACE:
Interlacemodus an (max 512 Bildzeilen).

DUALPF:
Dual Playfields Modus an

HAM:
Hold-And-Modify Modus an.

337

Anhang A

SPRITES:
Sprites konnen auf dem Screen dargestellt wer-
den.

Wird HIRES und/oder INTERLACE nicht gesetzt, dann
wird ein LowRes (320 Pixel horizontal) und/oder Nor-
malmodus eingeschaltet.

Type: Dieser Wert gibt an, ob es sich um einen Work-
bench-Screen oder Custom-Screen handelt.

*Font: Dies ist ein Zeiger auf den Zeichensatz, der
innerhalb dieses Screens verwendet werden soll.

*DefaultTitle: Ein Zeiger auf den Textstring, der
den Titel dieses Screens beinhaltet. Dieser erscheint
dann in der Meniileiste.

*Gadgets: Dies ist ein nicht benutzter Zeiger, den
Sie auf NULL setzten sollten.

*CustomBitMap: Offnen Sie einen Custom-Screen (und
nicht ein Workbench-Screen),so haben Sie die Méglich-
keit,eine eigene Bitmap zu verwenden. Setzen Sie dazu
in Types die CUSTOMBITMAP-Flags und stellen Sie die-
sen Zeiger auf die BitMap-Struktur dieser Bitmap.

Wird ein neues Fenster auf einem Screen gedffnet,
so wird diese Struktur benutzt, um die Daten des neu-
en Fensters an OpenWindow zu iibergeben. Dabei ist die
Struktur Window wieder diejenige, die nach dem Offnen
‘weitere Informationen iiber ein Fenster enthdlt.

338

Anhang A

?truct Newl/indow
SHORT LeftEdge, TopEdge, Width, Height;J
ULONG IDCMPFlags, Flags;
struct Gadget *FirstGadget;
struct Image *CheckMark;
UBYTE *TITLE
struct Screen *Screen
struct BitMap *BitMap;
SHORT HMinWidth, MinHeight, MaxWidth, MaxHeight;
USHORT Type;

b

LeftEdge, TopEdge: Die x- und y-Koordinaten der lin-
ken oberen Ecke des Fensters in Pixels relativ zum
Screen.

Width, Height: Die Gesamtbreite und -h6he des Fen-
sters in Pixels.

DetailPen: Die Nummer des Farbregisters, die den
Farbwert enthdlt, mit dem der 1imagindre Zeichenstift
in diesem Fenster zeichnen, bzw. schreiben soll.

BlockPen: Die Nummer des Farbegisters, die den Farb-
wert enthdlt, mit dem die Meniizeile mit dem Titel und
den Gadgets, sowie der Rahmen gezeichnet werden soll.

IDCMPFlags: Hier geben Sie die IDCMP-Flags, die
gleich beim (ffnen des Fensters gesetzt werden sol-
len, an. Zur Bedeutung der Flags siehe IDCMPMessage
und Window.

339

Anhang A

Flags: Die WindowFlags, die einige wichtige Eigen-
schaften des Fensters bestimmen. Das Setzen eines
Flags veranlaBt OpenWindow dazu, das Fenster beim
Offnen mit der entsprechenden Eigenschaft auszustat-
ten.

WINDOWSIZING:In dem Fenster erscheint unten links das
Sizing-Gadget, welches dem Benutzer erlaubt,die GroBe
des Fensters zu verdndern. Dabei kdnnen Sie durch die
Flags SIZE(B)RIGHT oder SIZEBOTTOM bestimmen, ob das
Gadget dem rechten, dem unteren oder beiden Randern
zugeordnet werden soll.

WINDOWDEPTH: Mit diesem Flag erméglichen Sie es dem
Anwender, das Fenster in den Vorder- oder Hintergrund
zu schalten, denn die dafiir verantwortlichen Gadgets
erscheinen in der oberen rechten Ecke des Fensters.

WINDOWCLOSE: Das Close-Gadget zum SchlieBen des Fen-
sters erscheint in der linken oberen Ecke des Fen-
sters. Wird es vom Benutzer angeklickt, so erhalten
Sie von der Intuition eine entsprechende Message.

WINDOWDRAG:Haben Sie dieses Flag gesetzt, so kann der
Benutzer das Fenster durch Ziehen der Titelleiste
verschieben.

GIMMEZEROZERO:Aktiviert ein GZZ-Fenster, d.h. der Ko-
ordinaten-Nullpunkt 1liegt 1in der 1inneren - oberen
-linken Ecke des Fensters.

SIMPLE_REFRESH: Wird ein Teil des Fensters von einem
anderen enthiil1t, so muB der Inhalt neu aufgebaut
werden.

SMART REFRESH: Der Inhalt des Fensters muB nur neu
aufgebaut werden, wenn das Fenster vergréBert wird.

340

Anhang A

SUPER BITMAP: Setzen Sie dieses Bit, um ein SuperBit-
map-Window zu erhalten. Vergessen Sie nicht, daB BIT-
MAP dabei auf Ihre eigene BitMap-Struktur zeigen muB.
BACKDROP: Aktiviert das Fenster als ein Backdrop-Fen-
ster.

REPORTMOUSE: Das Fenster erhdlt die Mauszeigerbewe-
gungen als x- und y-Koordinaten.

BORDERLESS: Das Fenster erscheint ohne Rahmen. Beach-
ten Sie dabei, daB jedoch Rahmenteile erscheinen
konnen, wenn Sie System-Gadgets oder einen Titeltext
definiert haben.

ACTIVATE: Das Fenster wird beim Offnen auch automa-
tisch aktiviert. Eine logische Folge ist die inakti-
vierung eines eventuell vorhandenen aktiven Fensters,
daB méglicherweise gerade zur Tastatureingabe benutzt
wird. Es kann also passieren, daB Sie dem Anwender
“den Boden unter den FiiBen wegziehen", indem Sie ihm
die Kontrolle iiber sein Fenster klauen.

NOCAREREFRESH: Setzen Sie dieses Bit, wenn Sie keine
Refresh-Messages von der Intuition erhalten wollen.

RMBTRAP: Durch Setzen dieses Bits legen Sie fest, daB
zu diesem Fenster keine Meniileiste definiert ist. Sie
erhalten jedoch weiterhin die MouseButtonEvents.

*FirstGadget: Dies ist ein Zeiger auf eine Gadget-
Struktur, mit der Sie die zu diesem Fenster gehodren-
den Gadgets definieren koénnen. Achtung! die System-
Gadgets werden durch Flags aktiviert.

*CheckMark: Dies ist ein Zeiger auf die Image-Struk-
tur der Grafik des Menii-Checkmarks. Das ist die Gra-
fik, die in Auswahlmeniis erscheinen soll, wenn diese
Auswahl (z.B. eine bestimmte Schriftart) aktiviert

341

Anhang A

ist. Steht hier eine Null, so wird die voreingestell-
te Grafik (ein Haken) benutzt.

*Title: Der Zeiger auf den Textstring, der oben im
Fenster als Titel erscheinen soll.

*Sceen: Dieser Zeiger braucht Sie nur zu interessie-
ren, wenn sie ein Custom-Screen er6éffnet haben, und
wollen, daB dieses Fenster dort geéffnet wird. In
diesem Fall muB dieser Zeiger auf die entsprechende
Screen-Struktur zeigen.

*Bitmap: Wenn Sie fiir dieses Fenster eine eigene Bit-
Map verwenden wollen (siehe auch SUPERBITMAP-Flag),
so muB hier der Zeiger auf Ihre BitMap-Struktur steh-
en.

MinWidth, MinHeigth, MaxWidth, MaxHeight: Diese Vari-
ablen brauchen Sie nur zu interessieren, wenn Sie das
Sizing-Gadget zum Verstellen der FenstergrdoBe mit der
Maus, aktiviert haben. Soll es dem Benutzer also er-
laubt sein, die GroBe dieses Fensters zu veradern, so
koénnen Sie hier die Minimum-, bzw Maximumwerte einge-
ben, iiber die hinaus das Fenster nicht vergréBert o-
der -kleinert werden darf. Es handelt sich dabei wie-
der um relative x- und y-Koordinaten =zur linken,
oberen Ecke des Fensters.

Type: Hier steht, um welchen Fenster-Typ es sich han-

delt. Ndheres dariiber finden Sie in der Screen-Struk-
tur.

342

Anhang A

Die Datenstruktur Preferences beinhaltet samtliche
Einstellungen, die Sie von der Workbench aus einge-
stellt haben, oder die noch voreingestellt sind. Sie
gehdrt zu den langsten Datenstrukturen, so daB wir
sie hier nicht auflisten, sondern lediglich ein paar
interessante Werte herauspicken und beschreiben. Da-
bei gibt die Zahl hinter der Variablen den Offset an,
also ihre Position in der Struktur.

PointerMatrix USHORT, 28: Die Grafik des Default-
Mauszeigers, zerlegt in 36 Worter des Typen USHORT.

X0ffset, YOffset BYTE, 100: Die x- und y-Position
(von der linken oberen Ecke) des Aktivierungspunktes
des Default-Mauszeigers, also z.B. die Position der
Pfeilspitze.

colorl7, colorl8, colorl9 USHORT, 102: Die drei Far-
ben des Default-Mauszeigers.

color0, colorl, color2, color3 USHORT, 110: Die vier
Farben des Workbench-Screens.

ViewX0ffset, ViewYOffset BYTE, 118: Die Position des
Workbench-Screen relativ zum Viewport.

ViewInitX, ViewInitY WORD,120: Die Initia]isierungs-\
werte des Offsets zum Viewport.

PrintImage USHORT, 168: Hier wird iiber das erste Bit
angegeben, ob Grafiken negativ oder positiv zum Dru-
cker ausgegeben werden. Ist das Bit gesetzt, so heiBt
das, daB der Grafikausdruck "negativ" erfolgt.

343

Anhang A

PrintAspect USHORT, 170: 1Ist hier das erste Bit ge-
setzt, so werden Grafiken vertikal, also um 90 Grad
verdreht auf dem Drucker ausgegeben. Bei geldschtem
Bit erfolgt ein "normaler", horizontaler Ausdruck.

PrintThreshold WORD, 174: Haben Sie in PrintShade die
Ausgabe in Graustufen ausgewdhlt, so kénnen Sie hier
die Graustufen den Farben zuordnen.

Dies ist bereits eine etwas ldngere Struktur, so
daB wir sie hier zwar vollstdndig auflisten, jedoch
uns in der Beschreibung auf das wichtigste Beschrédn-
ken.

{

struct Screen *NextScreen;

struct Window *FirstWindow;

SHORT LeftEdge, TopEdge, Width, Height, MouseY,
USHORT Flags; MouseX;
UBYTE *Title, *DefaultTitle; '
BYTE BarHeight, BarVBorder, BarHBorder, MenuHBord
BYTE WBorTop, WBorLeft, WBorRight, WBorBottom;€"s
struct TextAttr *Font;J

struct RastPort RastPort;

struct BitMap BitMap;

struct Layer Info LayerInfo;

struct Gadget *FirstGadget

UBYTE DetailPen, BlockPen;

USHORT SaveColor0;

struct Layer *BarLayer;

UBYTE *ExtData, *UserData;

344

Anhang A

*NextScreen: Dies ist ein Zeiger auf den ndchsten
Screen in der Intuition-Screenliste. Ist er gleich
NULL, so ist es der letzte, bzw. der einzige
Screen.

*FirstWindow: Hierbei handelt es sich um einen Zeiger
auf das erste von mehreren zu dem Screen gehdrenden
Fenstern. Ist dieser Wert gleich NULL, so wurden
keine Fenster definiert.

LeftEdge, TopEdge, Width, Height: Diese Werte geben
die Dimensionen des Screens an und werden wie in der
Struktur NewScreen benutzt.

MouseY, MouseX: Die Position des Mauszeigers auf die-
sem Screen.

Flags:

SCREENTYPE 0x000F Wird von der Intution zur Erken-
WBENCHSCREEN 0x0001 nung des Screens verwendet (Work-
CUSTOMSCREEN 0x000F bench- oder Custom-Screen).
SHOWTITLE 0x0010 Anzeigen der Meniileiste.

BEEPING 0x0020 Ist gesetzt, wenn der Screen
gerade blinkt.

CUSTOMBITMAP 0x0040 Dieses Bit ist gesetzt, wenn Sie
eine eigene BitMap benutzen.

SCREENBEHIND 0x0080 Der Screen wird im Hintergrund
gedffnet. '

SCREENQUIET 0x0100 Es ist keine Meniileiste auf die-
sem Screen vorhanden.

*Title, *DefaultTitle: Zeiger auf den Titeltext des
Screens und den Titeltext fiir Screens mit Fenstern.

BarHeight, BarVBorder, BarHborder, MenuVBorder, Menu-

HBorder: Die folgenden Variablen sind GroBenangaben
zu den Meniileisten und Réndern des Screens und allen

345

Anhang A

auf ihr erscheinenden Fenstern.Zundchst also die Hdhe
der Meniileiste dieses Screens in Pixels, sowie die
vertikale und horizontale Breite des Meniileistenran-
des.

WBorTop, WBorLeft, WBorRight, WBorBottom: Die Breite
der Fensterrdnder. Getrennt nach oberem, Tinkem,
rechtem und unterem Rand.

*Font: Dies ist ein Zeiger auf den Zeichensatz, der
innerhalb dieses Screens als der aktuelle benutzt
werden soll.

Eine solche Datenstruktur gehdrt zu jedem gedéffne-
ten Fenster. Sie ist relativ umfangreich und wir ha-
ben diese hier mehr der Vollstdndikeit halber aufge-
fiihrt. Bei der Erkldrung beschranken wir uns wieder
auf das Wesentliche. Ansonsten finden Sie die Grund-
legenden Variablen und Flags auch in der Stuktur New-
Window.

;truct Window

struct Window *NextWindow;

SHORT LeftEdge, TopEdge, Width, Height, MouseY,
MHouseX;

SHORT HMinWidth, MinHeight, MaxWidth, MaxHeight;

ULONG Flags;

struct Menu *MenuStrip;

UBYTE *Title;

struct Requester *FirstRequest;

struct Requester *DMRequest;

346

Anhang A

SHORT ReqCount;

struct Screen *WScreen;

struct Rastport *RPort;

BYTE BorderLeft, BorderTop, BorderRight, Border-
Bottom;

struct RastPort *BorderRPort;

struct Gadget *FirstGadget;

struct Window *Parent, *Descendant;

USHORT *Pointer;

BYTE PtrHeight, PtrWidth, XOffset, YOffset;

ULONG IDCMPFlags;

struct MsgPort *UserPort, *WindowPort;

struct IntuiMessage *MessageKey;

UBYTE DetailPen, BlockPen;

struct Image *CheckMark;

UBYTE *ScreenTitle;

SHORT GZZMouseX, GZZMouseY, GZZWidth, GZZHeight;

UBYTE *ExtData;

BYTE *UserData;

struct Layer *WlLayer;

}

Flags: siehe NewWindow.

*MenuStrip: Dies ist ein Zeiger auf die Liste der Me-
niis. Diese werden in verketteten Menu- und Menultem-

Datenstrukturen gespeichert.

*Screen: Zeiger auf den Screen, zu dem dieses Fenster
gehort.

*Port: Dies ist ein Zeiger auf dem zu diesem Fenster
gehdrigen Rastport.

*RPort:Dies ist ein Zeiger auf den zu diesem Fenster,
einschlieBlich des Fensterrandes, gehorigen Rastport.

347

Anhang A

*FirstGadget: Ein Zeiger auf die Liste der zu diesem
Fenster definierten Gadgets, aber ohne die Systemgad-
gets der Titelleiste. Diese werden iiber die IDCMP-
Flags aktiviert.

*Pointer: Ein Zeiger auf die Grafikdaten des Mauszei
gers dieses Fensters. Dieser ersetzt den voreinge-
stellten, wenn das zugehdrige Fenster angeklickt
wird und bleibt nur solange bestehen, wie das Fen-
ster aktiviert ist.

PtrHeight, PtrHeight: Die Hohe und Breite der Grafik
des Mauszeigers in Pixels, wobei die Breite kleiner
oder gleich 16 sein muB.

X0ffset,YOffset: Der Offset des Mauszeigers, also die
x- und y-Koordinaten des Aktivierungspunktes der
Mauszeigergrafik von der linken oberen Ecke aus. (Im
allgemeinen wird es sich dabei um die Pfeilspitze o-
der das Zentrum eines Fadenkreuzes handeln.)

IDCMPFlags: Im allgemeinen gilt hier: ist ein Bit ge-
setzt, so erhalten Sie von der Intuition eine
Message, falls der entsprechende Fall eintritt. Daher
haben wir hier auch nicht alle Flags beschrieben. Fiir
weitere Informationen vergleichen Sie dazu bitte die
IDCMP-Flags der IntuiMessage-Struktur (weiter oben).

SIZEVERIFY 0x00000001

Sie bekommen eine Nachricht, wenn der Benutzer ver-
sucht, die GrdéBe des Fensters zu verdndern. Damit die
GroBe tatsdchlich verandert werden kann, miissen Sie
die Nachricht erst mal beantworten.

348

Anhang A

NEWSWIZE 0x00000002

Es wird eine IDCMP-Message gesendet, sobald sich
die GroBe des Fensters verdndert.

REFRESHWINDOW 0x00000004
Bei SIMPLE REFRESH und SMART REFRESH Fenstern wird

eine Message gesendet, wenn das Fenster "Refreshed"
werden soll.

MOUSEBUTTONS 0x00000008

Sie werden benachrichtigt, wenn die Mauskndpfe be-
tdtigt werden. Ausnahme: die Intuition erkennt das
anklicken von Gadgets selbststdndig und meldet dies
nicht. Das Driicken der rechten Maustaste wird nur

dann gemeldet, wenn zusdtzlich das RMBTRAP-WindowFlag
gesetzt ist.

MOUSEMOVE 0x00000010

Mausbewgungen werden gemeldet, wenn auch das Flag
REPORTMOUSE gesetzt ist.

GADGETDOWN 0x00000020

Es wird das Driicken der Maustaste iiber einem Gadget
gemeldet.

GADGETUP 0x00000040

Es wird das Loslassen der Maustaste iliber einem Gad-
get gemeldet.

349

Anhang A

REQSET 0x00000080

Es wird Ihnen mitgeteilt, wenn in dem Fenster ein
Requester gedffnet wird.

REQVERIFY 0x00000800
. Im gegensatz zu REQSET werden Sie bereits vor dem
Offnen eines Requesters informiert.

MENUVERIFY 0x00002000

Sie werden benachrichtigt, wenn der Benutzer ver-
sucht ein Menii zu aktivieren. Das Menii wird erst dann
wirklich aktiviert, wenn Sie diese Nachricht beant-
worten.

VANILLAKEY 0x00200000

Das Driicken einer Taste wird gemeldet. Der Tasta-
tur-Code wird umgewandelt in den entsprechenden
ASCII-Code.

INTUITICKS 0x00400000

Ist das Fenster aktiv, so erhdlt Ihr Programm unge-
fahr zehnmal pro Sekunde einen timer-event.

*UserPort, *WindowPort: Zeiger auf zwei MsgPort-Exec-
Strukturen, die dem Fenster zur Kommunikation mit der
AuBenwelt dienen (z.B. fiir die Console-Device).

GZZMouseX, GZZMouseY: Handelt es sich bei diesem Fen-
ster um ein GZZ-Fenster, so stehen hier die x- und y-
Koordinaten des Mauszeigers, diesmal jedoch relativ
zu der Tlinken, oberen Ecke innerhalb des Fensters.
Rahmen und Titelleiste stehen in diesem Modus ausser-
halb des Koordinatennetzes.

350

Anhang A

GZZWidth, GZZHeight: Bei einem GZZ-Fenster stehen
hier die Dimensionen des inneren Fensters, ohne Rand
und Titelleiste.

*ExtData, *UserData: Diesen Zeiger koénnen Sie auf ei-

gene Erweiterungen setzten, die bei diesem Fenster e-
benfalls beachtet werden sollen.

351

Anhang A

352

Anhang B

Anhang B
Die Datenstrukturen der Graphics-Library

353

Anhang B

Dieser Teil des Anhangs enthdlt die wichtigsten Da-
tenstrukturen der Graphics-Library in alphabetischer
Reihenfolge. Bei der Beschreibung der einzelnen Para-
meter haben wir uns, gerade bei den ldngeren Struktu-
ren, auf die wesentlichsten beschrdnkt.

Diese Struktur wird durch InitArea angelegt und
enthdlt im wesentlichen die Koordinaten der einzelnen
Punkte, die von den Area-Befehlen betroffen werden.

struct Arealnfo

{

SHORT *VctrTbl, *VctrPtr;

BYTE *FlagThl, *FlagPtr;

SHORT Count, MaxCount, FirstX, FirstY;

1

*VstrTh1: Zeiger auf die Tabelle mit den Koordinaten-
werten der entsprechenden Punkte.

*Vctrptr: Zeiger auf den ndchsten freien Platz in
dieser Tabelle.

*FlagTh1, *FlagPtr: 777

Count: Anzahl der Punkte, die in der Tabelle zur Zeit
gespeichert sind.

MaxCount: Maximale Anzahl an Punkten, die in der Ta-
belle Platz finden konnen.

354

Anhang B

FirstX, FirstY: Startpunkt fiir die AreaMove-Routine.

Diese Datenstruktur enthdlt die Informationen iiber
die zu einem RastPort angelegte Bitmap.
struct BitMap
UWORD BytesPerRow, Rows;
UBYTE Flags, Depth;

UWORD pad;
PLANEPTR Planes[8];

}

BytesPerRow: Breite der Bitmap in Bytes.
Rows: Hohe der Bitmap in Punkten.

Flags: Vom System benutzte Marke.

Depth: Anzahl der Bitplanes, die zu dieser Bitmap
gehoren

pad: Fiillbyte

Planes: Tabelle mit den Zeigern auf die einzelnen
Bitplanes dieser Bitmap.

355

Anhang B

Die ColorMap ist die Tabelle der Farbegister. Sie
ist einem RastPort zugeordnet und enthdlt fiir diesen
die bis zu 32 Farbwerte.

struct ColorMap

{

UBYTE Flags, Type;
UWORD Count;

APTR ColorTable;

}

Flags: Vom System immer noch ungenutzt.

Type: Bis jetzt ist die einzige Definition fiir diesen
Wert Null.

Count: Aktuelle Anzahl der maximal 32 Farbeintrdge in
die Farbtabelle.

ColorTable: Zeiger auf den Beginn der Farbtabelle.
Ein Eintrag besteht aus einem ULONG-Wert, dessen er-
sten vier Bits den Blauanteil, die ndchsten vier Bits
den Griinanteil und die folgenden Bits den Rotanteil
der zugewiesenen Farbe beschreiben.

356

Anhang B

Eine RasInfo-Struktur gehdrt zu jedem Rastport. Sie
stellt die Verbindung zu dem eigentlichen Display-
Speicherbereich her. Der Display-Speicherbereich ist
der Bereich, der schlieBlich direkt auf den Bild-
schirm gebracht wird.

struct RasInfo

struct RasInfo *Next;
struct BitMap *BitMap;
SHORT RxOffset, RyOffset;

}i
*Next: Zeiger auf die ndachste asInfo-Struktur, nur

im Zusammenhang mit dem Dual-Playfield-Modus benutzt.

*BitMap: Zeiger auf die zu diesem Viewport gehérige
Bitmap-Struktur.

Rx0ffset, RyOffset: Relative Koordinaten der Bitmap
zum Viewport.

Diese Datenstruktur ist wohl fiir die Grafikausgabe
die wichtigste, da iiber diese alle Grafikbefehle aus-
gefiihrt werden. 1In der RastPort-Struktur finden wir

357

Anhang B

die wesentlichsten Voreinstellungen, wie z.B. Zei-
chenmodus und -Farben. Da dies wieder eine der lange-
ren Datenstrukturen ist, haben wir wieder nur die we-
sentlichen Felder beschrieben.

struct RastPort

struct Layer *Layer, BitMap *BitMap;
USHORT *AreaPtrn;

struct TmpRas *TmpRas, ArealInfo *Arealnfo, Gels-
Info *GelsInfo;

UBYTE Mask;

BYTE FgPen, BgPen, AOI1Pen, DrawMode, AreaPtSz,
linpatcnt, dummy;

USHORT Flags, LinePtrn;

SHORT cp x, cp y;

UBYTE minterms[8];

SHORT PenWidth, PenHeight;

struct TextFont *Font;

UBYTE AlgoStyle, TxFlags;

UWORD TxHeight, TxWidth, TxBaseline;
WORD TxSpacing;

APTR *RP User;

ULONG Tlongreserved[2];

#ifndef GFX RASTPORT 1 2

UWORD wordreserved[7];”

UBYTE reserved[8];

#endif};

*Layer, *Bitmap: Hierbei handelt es sich wieder um
Zeiger auf die Adressen der zu diesem Rastport ge-
horigen Layer- und Bitmap-Strukturen.

*AreaPtrn: Dies ist der Zeiger auf das zu diesem
Rastport definierte Fldchenfiillmuster.

358

Anhang B

Mask: Dies ist eine 8-Bit Maske, deren einzelnen Bits
festlegen, ob in den dazugehdrenden Bitmapebenen mo-
mentan geschrieben und gezeichnet werden kann. Ist
ein Bit gesetzt, so kann die entsprechende Bitplane
beschrieben werden, sonst nicht.

FgPen; BgPen: In diesen Feldern stehen die Farbcodes
fiir die momentan aktive Vordergrund- und Hintergrund-
farbe.

AOTPen: Der Farbcode fiir den Areafill-Outline-Pen-,
den zweiten wichtigen Zeichenstift.

Drawmode: Der in diesem Rastport verwendete Zeichen-
modus.

$00 JAML: Einfarbiges Raster.

$01 JAM2: Zweifarbiges Raster.

$02 COMPLEMENT: XOR-B Verkniipfung.

$04 INVERSVID: Inverse Darstellung (z.B. von Text).

AreaPtSz: Enthdlt die HOhe des Flachenfiil Imusters.
Flags: Folgende Werte sind definiert:

1 FRST DOT Erster Punkt einer Linie auch zeichnen.
2 ONE DoOT Linien im EinBPunktBModus zeichnen.

4 DBUFFER Rastport ist doppelt gepuffert.

8 AREAQUTLINE Wird verwendet beim Fl&achenfiillen.
32 NOCROSSFILL Kollision beim Flachenfiillen.

LinePtrn: Zeiger auf das zu diesem Rastport definier-
te Linienfiillmuster.

cp _x, cp_y: Momentane x- und y-Koordinaten des Gra-
fikcursors.

359

Anhang B

PenWidth, PenHeight: Breite und Hohe des Zeichenstif-
tes, der von den Systemgrafikroutinen verwendet wird.

Font: Zeiger auf den Zeichensatz, der diesem Rastport
zugeordnet ist.

TxHeight, TxWidth: Hohe und Durchschnittsbreite des
aktuellen Zeichensatzes.

TxBaseline: Relativer Abstandswert

Enthdlt die Textattribute, wie z.B. die Schrift-
art, die bei einem Font gerade giiltig sind.

struct TextAttr

{

STRPTR ta Name;
UWORD ta YSize;
UBYTE ta_Style;
UBYTE ta_Flags;

I 4

ta_Name: Name der momentan verwendeten Font.
ta_YSize: Hohe dieses Zeichensatztes in Pixel.

ta_Style: Momentan verwendete Schriftart, abzulesen
aus folgenden gesetzten Bits:

0 FS_NORMAL Textzeichen normal.
1 FSB_UNDERLINED Textzeichen unterstrichen.
2 FSB_BOLD Textzeichen fett.

360

Anhang B

4 FSB_ITALIC Textzeichen kursiv.
8 FSB_EXTENDED Textzeichen gedehnt.

ta_Flags: Folgende Bits sind definiert:

1 FPB_ROMFONT Font aus ROM geladen.
2 FPB_DISKFONT Font von Disk geladen.
4 FPB REVPATH Von links nach rechts schreiben.
8 FPB TALLDOT Font fiir HiRes-Modus.
16 FPB WIDEDOT Font fiir LoRes/Interlace-Modus.

32 FPB_PROPORTIONAL Font mit Proportionalschrift.
64 FPB_DESIGNED FontgroBe nicht alg. giiltig.
128 FPB_REMOVED Font nicht aktiv.

Eine solche Struktur gehdért zu jedem Rastport und
beinhaltet die Parameter zu dem aktuellen Font.

struct TextFont

struct Message tf Message;

UWORD tf YSize; ~

UBYTE tf Style, tf Flags;

UWORD t;:X$1ze, tf;paselrne, tf_BoldSmear,

UBYTE tf LoChar, tf_HiChar;J .
UWORD tf Modulo; tf Accessors;
APTR tf CharLoc, tf_CharSpace, tf_CharKern;

.
4

thYSize: Die Hohe der Textzeichen des Fonts in Pi-
xeln.

361

Anhang B

tf_Style, tf_Flags: Haben die gleiche Belegung wie in
der TextAttr-Struktur.

tf XSize: Die voreingestellte Breite der Textzeichen
des Fonts in Pixeln.

tf Baseline: Die Unterlénge der Textzeichen in ein-
zeTnen Zeilen.

tf BoldSmear: Bei der Berechnung von "fetten" Zeichen
verwendeter Schmierfaktor.

tf_Accessors: Anzahl der Routinen, Programme und
Tasks, die auf diesen Font zugreifen.

tf_LoChar, tf HiChar: Der kleinste, bzw. groBte ASCII
Wert, fiir den ein Textzeichen in diesem Font vorhan-
den ist.

tf CharSpace: Bei Proportionalschrift ist dies ein
Zeiger auf ein Feld von Ganzzahlen, die jeweils die
Breite der einzelnen Textzeichen enthalten. Ist die-
ser Wert NULL, so gilt der in tf XSize voreinge-
stellte Wert. -

Diese Struktur wird von den Area-Routinen ge-
braucht. Sie muB durch InitTmpRas initialisiert und
einem Rastport zugeordnet werden.

struct TmpRas

BYTE *RasPtr;
LONG Size;

4

362

Anhang B

*RasPtr: Zeiger auf einen Pufferspeicher.

Size: GroBe des Pufferspeichers 1in Bytes. Sicher-
heitshalber sollte er die GroBe einer Bitplane ha-
ben.

Beinhaltet die fiir die Aufteilung des Gesamt-Dis-
plays notwendigen Daten in die Viewports.

struct View

struct ViewPort *ViewPort, cprlist *LOFCprlList,
cprlist *SHFCprList;

short DyOffset,DxOffset;

UWORD Modes;

4

*ViewPort: Zeiger auf die zu dieser Struktur gehdren-
den ViewPort-Struktur.

*LOFCprList: Zeiger auf die "Long-Frame-Copper-List".
*SHFCprList:Zeiger auf die "Short-Frame-Copper-List".
DyOffset, DxOffset: x- und y- Koordinaten der Positi-
on der Tlinken oberen Ecke dieses ViewPorts auf dem
Monitor.

Modes: Folgende Werte sind definiert:

4 LACE Interlace-Modus
64 PFBA Erstes Playfield im Vorder-
grund

363

Anhang B

128 EXTRA HALFBRITE Extra-Halfbright-Modus

1024 DUALPF Dual-Playfields-Modus

2048 HAM Hold-And-Modify-Modus

8192 VP HIDE Ist Viewport im Hintergrund ?
32768 HIRES High-Resolution-Modus

Diese Struktur enthdlt die Informationen der View-
ports, iiber die der wesentliche Teil der Bildschirm-
Ausgabe ablduft.

struct ViewPort

struct ViewPort *Next, ColorMap *ColorMap, CopList*
DspIns, CoplList *SprIns, CopList *ClIrIns, UCopList*
UCopIns;

SHORT DWidth,DHeight, DxOffset,DyOffset;

UWORD Modes ;

UBYTE SpritePriorities, reserved;

struct RasInfo *RasInfo;

}i

*Next: AdreBzeiger auf den nachsten Viewport, falls
noch einer vorhanden ist.

*ColorMap: Zeiger auf die zu diesem Viewport gehd-
rende ColorMap-Struktur.

DWidth, DHeight: Breite und Hohe dieses Viewports in
Pixel.

Dx0ffset, DyOffset: Koordinatenpaar das die Position

der linken oberen Ecke dieses Viewports auf dem Ge-
samtdisplay angibt.

364

Anhang B

Modes: Folgende Werte sind méglich:

4 LACE Interlace-Modus
64 PFBA Erstes Playfield vorn
128 EXTRA HALFBRITE Extra-Halfbright-Modus
1024 DUALPF Dual-Playfields-Modus
2048 HAM Hold-And-Modify-Modus
8192 VP HIDE Ist Viewport im Hintergrund ?
32768 HIRES High-Resolution-Modus

*RasInfo: Zeiger auf die zu diesem Viewport geho-
rende RasInfo-Struktur.

365

Anhang B

366

Anhang C

Anhang C

367

Anhang C

Dieser Teil des Anhangs enthilt die fiir die Grafik-
programmierung wichtigsten Systemfunktionen der Intu-
ition-Library in alphabetischer Reihenfolge.

Haben Sie sich zu einem Fenster einen eigenen Maus-
zeiger erstellt und diesen aktiviert, so kénnen Sie
ihn mit dieser Routine wieder desaktivieren. Es er-
scheint dann wieder der in den Preferences voreinge-
stellte Mauszeiger.

ClearPointer(Window)
A0

Window: Zeiger auf das Fenster, auf das sich diese
Routine bezieht.

Haben Sie einen eigenen Screen gedéffnet, konnen Sie
ihn mit dieser Routine wieder schlieBen, der entspre-
chende Speicherplatz wird wieder freigegeben. Zuvor
alle Fenster durch CloseWindow schlieBen !

CloseScreen(Screen)
A0

368

Anhang C

Screen: Adresse des Screens, der geschlossen werden
kann. '

Mit dieser Routine kdénnen Sie ein Fenster schlieBen,
der belegte Speicherplatz wird wieder freigegeben.
Haben Sie einen IDCMP-Port gedéffnet, so miissen Sie
vorher sicherstellen, daB keine Nachricht mehr auf
Antwort wartet.

CloseWindow(Window)
A0

Window: Zeiger auf das zu schlieBende Fenster.

Zeichnet die einer Border-Struktur entsprechenden
Linien in dem angegebenen Rastport.

DrawBorder(RastPort, Border, LeftOffset, TopOffset)
A0 Al DO D1

RastPort: Zeiger auf die Rastport-Struktur in der die
Linien gezeichnet werden sollen.

369

Anhang C

Border: Zeiger auf die Border-Struktur in der die In-
formationen iiber die zu zeichnenden Linien stehen.

LeftOffset, TopOffset: Relative x- und y-Koordinaten,
die zu jedem der Werte aus der Border-Struktur ad-
diert werden.

Zeichnet ein Image an eine beliebige Stelle in ei-
nen Rastport.

DrawImage(RastPort, Image, LeftOffset, TopOffset)
A0 Al DO D1

RastPort: Zeiger auf die Rastport-Struktur in der das
Image gezeichnet werden soll.

Image: Zeiger auf die Image-Struktur in der die In-
formationen iliber das zu zeichnende Image stehen.

LeftOffset, TopOffset: Relative x- und y-Koordinaten,
die zu dem Image addiert werden.

Bewegt einen Screen relativ zu seiner jetzigen Po-
sition nach unten oder nach oben.

370

Anhang C

MoveScreen(Screen, DeltaX, DeltaY)
AQ DO D1

Screen: Zeiger auf die Screen-Struktur von dem
Screen, den Sie verschieben wollen.

DeltaX, DeltaY: Setzen Sie deltax auf Null, da eine
Verschiebung in der x-Achsen-Richtung noch nicht im-
plementiert ist. Der Wert deltay bestimmt die Anzahl
der Pixel, um die der Screen in vertikaler Richtung
verschoben werden soll. Dabei bewirken negative Werte
eine Verschiebung nach oben, positive nach unten.

Diese Routine bewirkt durch die Intuition eine Ver-
schiebung eines Fensters um angegebene Delta-Werte.

MoveWindow(Window, DeltaX, DeltaY)
A0 DO D1

Window: Adresse der Window-Struktur des Fensters, das
verschoben werden soll.

DeltaX, Delta¥: Anzahl der Pixel, um die das Fenster
verschoben werden soll. Positive Werte bewirken eine
Verschiebung nach unten (bzw. nach rechts), negative
Werte in die entgegengesetzte Richtung.

Wichtig(!): Bevor Sie diese Routine aufrufen, priifen
Sie unbedingt, ob das Fenster nach dem Verschieben

371

Anhang C

noch komplett im Giiltigkeitsbereich (innerhalb des
Screens) liegt, da Ihnen sonst ein unvermeidlicher
Absturz bevorsteht.

Offnet einen neuen Screen mit den in einer New-
Screen-Struktur (siehe Anhang A) angegebenen Parame-
tern und legt eine Screen-Struktur an. Die NewScreen-
Struktur wird anschlieBend nicht mehr bendtigt und
kann aus dem Speicher geldscht werden.

ScreenPointer = OpenScreen(NewScreen);
A0

NewScreen: Zeiger auf eine NewScreen-Struktur, die
die fiir diesen Screen geltenden Parameter enthdlt.

Riickgabe: ScreenPointer wird NULL, wenn der Screen
nicht gedffnet werden konnte, ansonsten enthdlt er
die Adresse der Screen-Datenstruktur des gedffneten
Screens.

Offnet ein Fenster mit den in einer NewWindow-
Struktur (siehe Anhang A) angegebenen Parametern und
legt -eine Window-Struktur an. Die NewWindow-Struktur
wird anschlieBend nicht mehr bendtigt und kann aus
dem Speicher geléscht werden.

372

Anhang C

WindowPointer = OpenWindow(NewWindow);
A0

NewWindow:Zeiger auf eine NewWindow-Struktur, die die
fiir dieses Fenster geltenden Parameter enthdlt.

Riickgabe: WindowPointer wird NULL, wenn das Fenster
nicht gedéffnet werden konnte, ansonsten enthdlt er
die Adresse des gedffneten Fensters.

Ein durch die IntuiText-Struktur vorgegebener Text
wird in dem angegebenen R astport aneiner durch
die x-und y-Koordinaten bestimmte Stelle ausgegeben.

PrintIText(RastPort, IText, LeftEdge, TopEdge)
AO Al DO D1

RastPort: Zeiger auf den Rastport in dem der Text
ausgegeben werden soll.

IText: Zeiger auf die IntuiText-Struktur mit dem aus-
zugebenden Text und den dazugehdrigen Parametern iiber
die Schriftart.

LeftEdge, TopEdge: Position des Textes innerhalb des
Rastports, relativ zur linken, oberen Ecke.

373

Anhang C

Setzt einen beliebigen Screen in den Hintergrund.
ScreenToBack (Screen)
AO

Screen: Zeiger auf den in den Hintergrund zu setzen-
den Screen.

Setzt einen beliebigen Screen in den Vordergrund.

ScreenToFront(Screen)

Screen: Zeiger auf den in den Vordergrund zu setzen-
den Screen.

Ordnet einem Fenster einen eigenen Mauszeiger zu,
der immer dann erscheint, wenn das Fenster aktiv ist.

SetPointer(Window,Pointer, Height,Width,X0ff,YOff);
A0 Al DO D1 D2 D3

374

Anhang C

Window: Zeiger auf das Fenster fiir das ein eigener
Zeiger definiert werden soll.

Pointer: Zeiger auf die Grafik-Daten des Mauszeigers.

Height, Width: Hohe und Breite des Zeigers, wobei die
Breite kleiner oder gleich 16 sein muB.

X0ff, YOff: Offset-Werte fiir den "Hot-Spot" relativ
zur linken oberen Ecke. Handelt es sich bei dem Zei-
ger um einen Pfeil, der seine Spitze in der linken
oberen Ecke hat, dann setzen Sie diese Werte auf
Null. Ist dagegen die Pfeilspitze oben rechts, so se-
tzen Sie XOff auf 15 (vorausgesetzt der Zeiger ist 16
Punkte breit).

Mit Hilfe dieser Routine kdnnen Sie die Screen-Ti-
telleiste bei Uberlagerung mit einem BackDrop-Fenster
in den Vorder- oder Hintergrund bringen.

Showitle(Screen, Showlt);
A0 DO

Screen: Zeiger auf den Screen mit der zu beeinflus-
senden Screen-Titelleiste.

ShowIt: Setzen Sie diesen Wert auf TRUE um die Titel-
leiste in den Vordergrund und auf FALSE um sie in den
Hintergrund zu bringen.

375

Anhang C

Diese Routine fordert Intuition auf, ein Fenster
um die angegebenen Delta-Werte zu vergréBern, bzw.
zu verkleinern. Intuition fiihrt dann diese Ver-
dnderung ohne vorherige Kontrolle der iibergebenen
Werte durch.

SizwWindow(Window, DeltaX, DeltaY);
AO DO D1

Window: Zeiger auf das Fenster, dessen GroBe verdn-
dert werden soll.

DeltaX, DeltaY: Anzahl an Punkten, um die die GroBe
des Fensters in x- und y-Richtung verandert werden
soll. Dabei bedeutet ein negatives Vorzeichen ver-
kleinern, positives vergroBern.

Bemerkung: Um einen Systemabsturz mit den Worten der
Orginal-Beschreibung (siehe Literaturverzeichnis) zu
umschreiben: "Diese Routine macht keine Fehlerkon-
trolle! Beschreiben Ihre Delta-Werte irgendeine ent-
fernte Ecke des Universums, so wird Intuition versu-
chen, das Fenster bis dorthin zu vergréBern. Aufgrund
der Dehnungen die im Raum-Zeit Kontinuum,vorhergesagt
durch die Spezielle Relativitdt, entstehen konnen,
ist das Ergebnis dieses Versuches im allgemeinen
nicht wiinschenswert."

[
(%

376

Anhang C

Bestimmt zu einem beliebigen Fenster die Adresse
des zugehdrigen Viewports. Diese Adresse brauchen Sie
fiir die meisten Grafik- und Text-Routinen.

ViewPort = ViewPortAddress(Window);

Window: Zeiger auf das Fenster, von dem Sie die Adre-
sse des Viewports haben wollen.

Mit dieser Routine konnen Sie zu einem Fenster neue
Maximum- und Minimum-Dimensionen setzen. Mit dem Si-
zing-Gadget kann dann dieses Fenster nur innerhalb
dieser Werte vergroBert oder verkleinert werden.

boole = WindowLimits(Window,MinX,MinY,MaxX,MaxY);
A0 DO D1 D2 D3

Window: Zeiger auf das Fenster, dessen maximale und
minimale Dimension Sie festlegen wollen.

MinX, MinY: Minimale x- und y- Werte, die beim Ver-

kleinern des Fensters nicht mehr iiber- bzw. unter-
schritten werden kénnen.

377

Anhang C

MaxX, MaxY: Maximale x- und y- Werte, die beim Ver-
groBern des Fensters nicht mehr (iber- bzw. unter-
schritten werden konnen.

VeranlaBt Intuition ein ausgewdhltes Fenster in den
Hintergrund zu setzen.

WindowToBack (Window)
AO

Window: Zeiger auf das in den Hintergrund zu setzende
Fenster.

VeranlaBt Intuition ein ausgewdhltes Fenster in den
Vordergrund zu setzen.

WindowToFront (Window)
AQ

Window: Zeiger auf das in den Vordergrund zu setzen-
de Fenster.

378

Anhang D

379

Anhang D

Dieser Teil des Anhangs enthdlt die fUr die Grafik-
programmierung wichtigsten Systemfunktionen der Gra-
phics-Library in alphabetischer Reihenfolge.

Fiigt einen Font .in die System-Font-Liste ein, damit
er im Speicher zur schnelleren Verfiigung steht.

AddFont(TextFont), GraphicsLib
Al A6

TextFont: Ein Zeiger auf eine TextFont-Struktur des
einzufiigenden Fonts. :

Ruft die notwendigen Allocate-Routinen auf, um den
Speicherplatz fiir eine Bitplane zu belegen.

AllocRaster(width, height)
DO D1

width, height: Breite und Hohe der Bitplane, fiir die
dieser Speicherplatz reserviert werden soll.

Riickgabe: Ein Zeiger auf den Anfang des reservierten

Speicherplatzes oder 0 falls die Belegung nicht er-
folgreich war.

380

Anhang D

Ein weitere Punkt des auszufiillenden Polygons wird
in die Liste der Polygon-Eckpunkte eingefiigt.

error = (int) AreaDraw(RastPort, x,)

Al DO D1
RastPort: Zeiger auf die RastPort-Struktur, in der
das Polygon gezeichnet werden soll.

X, y: Koordinaten des Polygon-Eckpunktes.

Riickgabe: Bei erfolgreicher Durchfiihrung 0 sonst -1.

Zeichnet ein ausgefiilltes Polygon, dessen Eckpunkte
durch AreaDraw eingegeben wurden.

error = AreaEnd(RastPort)
RastPort: Zeiger auf die RastPort-Struktur, in der
das Polygon gezeichnet werden soll.

Riickgabe: Bei erfolgreicher Durchfiihrung 0 sonst -1.

381

Anhang D

Setzt den Startpunkt eines zu fiillenden Polygons.
Sollte das letzte Polygon noch nicht abgeschlossen
worden sein, so wird dies von dieser Routine automa-
tisch erledigt.

error = AreaMove(RastPort, x,)
Al DO D1
RastPort: Zeiger auf die RastPort-Struktur, in der
das Polygon gezeichnet werden soll.

X, y: Koordinaten des Polygon-Startpunktes.

Riickgabe: Bei erfolgreicher Durchfiihrung 0 sonst -1.

Erzeugt eine TextAttr-Struktur, die die Parameter
des aktuellen Zeichensatzes enthalten.

Askfont(RastPort, TextAttr)
Al AO

RastPort: Zeiger auf den RastPort, dessen Font-Attri-
bute in der TextAttr-Struktur abgelegt werden sollen.

TextAttr: Zeiger auf die TextAttr-Struktur, in der
die Informationen abgelegt werden.

382

Anhang D

Mit Hilfe dieser Routine koOnnen Sie erfahren,
welche Schriftarten des aktuellen Fonts eines
Rastports Ihnen noch zur Verfiigung stehen.

bits = AskSoftStyle(RastPort)
Al

RastPort: Zeiger auf den Rastport, von dessen Font
Sie wissen wollen, welche Schriftarten Ihnen zur Ver-
fligung stehen.

Riickgabe: Liefert die Font-Style-Flags zuriick, die
noch durch SetSoftStyle gesetzt werden kdnnen.

)
)

Mit dieser Routine konnen Sie den Blitter veranlas-
sen, ein Rechteck aus einer Bitmap in eine andere zu
kopieren, innerhalb einer Bitmap zu verschieben oder
mit einem anderen Rechteck zu verkniipfen.

planes = B1tBitMap(Srcx, Srcy,Destx,Desty,width,
DO DO D1 D2 D3 D4

height, Minterm, Mask, ScrBitMap, DestBitMap,Tempa)
D5 D6 D7 AO Al A2

383

Anhang D

ScrBitMap: Zeiger auf die Source-Bitmap (Quell-Bit-
map), also diejenige von der Sie ein Rechteck kopie-
ren wollen.

Srcx, Srcy: Koordinaten der Tinken oberen Ecke des zu
kopierenden Rechtecks innerhalb der Quell-Bitmap.

DestBitMap: Zeiger auf die Destination-Bitmap (Ziel-
Bitmap),also diejenige in die Sie ein Rechteck hinein
kopieren wollen. Diese kann mit der Source-Bitmap
identisch sein.

Destx, Desty: Koordinaten innerhalb der Ziel-Bitmap,
an der dann die linke obere Ecke des kopierten Recht-
eckes liegt.

width, heigth: Breite und Hohe des kopierten Recht-
ecks in Pixel.

Minterm: Die logische Verkniipfung, die beim Kopieren
des Rechteckes in das Zielrechteck vorgenommen wird.
Bezeichnen wir das Quellrechteck mit Q und das Ziel-
rechteck mit Z, so bewirken die einzelnen Bits fol-
gende Verkniipfungen:

0x10 Q AND Z

0x20 Q AND NOT(Z)

0x40 NOT(Q) AND Z
0x80 NOT(Q) AND NOT(Z)

So bewirkt das Setzen von mehreren dieser Bits zum
Beispiel:

0x30 Invertieren von (.

0x50 Invertieren von Z.
0xCO Kopieren ohne Werte zu verdndern.

384

Anhang D

Mask: Hier konnen Sie durch Setzen der einzelnen Bits
festlegen, welche einzelnen Bitplanes einer Bitmap"
kopiert werden sollen. Setzen sie zum Beispiel Bit 0
auf 1, so wird die Bitplane 1 kopiert.

TempA: Zeiger auf einen Zwischenspeicher, der nur be-
nutzt wird, wenn sich das Quellrechteck mit dem Ziel-
rechteck iiberschneidet.

Mit dieser Routine konnen Sie den Blitter veranlas-
sen ein Rechteck aus einer Bitmap in einen RastPort
zu kopieren. Die Parameter sind im wesentlichen die
gleichen wie bei B1tBitMap. Daher haben wir hier auch
nur den von B1tBitMap verschiedenen Parameter angege-
ben.

boole= B1tBitMapRastPort(Srcx,Srcy,Destx,Desty,width,
DO D1 D2 D3 D4
height,Minterm,ScrBitMap,DestRast)
D5 D6 AO Al

DestRast: Zeiger auf den Destination-RastPort (Ziel-
RastPort).

Destx, Desty: Relative Koordinaten innerhalb des

Ziel-RastPortes, an der dann die linke obere Ecke des
kopierten Rechteckes liegt.

385

Anhang D

Loscht einen angegebenen Speicherbereich (= belegen
mit 0) im Chip-RAM.

B1tClear(memblock, bytecount, flags)
Al DO D1

bytecount: Anzahl der zu 16schenden Bytes in Abhdn-
gigkeit von flags.

flags: Ist Bit 0 gesetzt, so wartet das Programm, bis
der Blitter den Loschvorgang beendet hat, ansonsten
lauft es wdhrend des Loschens weiter. Ist Bit 1 ge-
16scht, so werden soviel Bytes geldscht wie in byte-
count angegeben, ist es gesetzt, so wird ein Rechteck
geldscht, das durch die oberen und unteren 16 Bits
von bytecount gegeben ist. Dabei entsprechen die un-
teren 16 Bit der Anzahl der zu T16schenden Bytes per
Zeile und die oberen 16 Bit der Anzahl der zu 16-
schenden Zeilen.

Diese Funktion bewirkt im Wesentlichen das gleiche
wie B1tBitMap. Sie haben jedoch zusadtzlich die Mog-
- lichkeit beim kopieren eine Bitmap als "Maske" zu be-
nutzen, die wie eine Schablone wirkt und nur da
durchldssig ist, wo die Bits gesetzt sind. Da auch
hier die Parameter groBtenteils mit denen von BItBit-

386

Anhang D

Map und B1tBitMapRastPort iibereinstimmen, haben wir
hier nur den hinzugekommenen dokumentiert.

boole = B1tMaskBitMapRastPort
(ScrBitMap, Srcx, Srcy, DestRast

A0 DO D1 Al
Destx, Desty, width, height, Minterm, BltMask)
D2 D3 D4 D5 D6 A2

B1tMask: Zeiger auf die Bitplane, die als Maske
dient.

Fil1t ein Rechteck, in Abhdngigkeit von einer Maske
(wie bei Bl1tMaskBitMapRastPort), in einen Rastport
mit den aktuellen Parametern (Farbe, Fiillmuster etc.)

B1tPattern(RastPort, Mask, x1, yl, x2, y2, Bytes)
Al AO DO D1 D2 D3 D4

RastPort: Zeiger auf den Rastport, in dem ein Recht-
eck gezeichnet werden soll.

Mask: Zeiger auf eine BitPlane, die mindestens so
groB sein muB wie Bytes und die beim Fiillen als Scha-
blone dient.

x1, yl, x2, y2: Koordinaten der linken oberen und der
unteren rechten Ecke des Rechtecks.

Bytes: Breite des Rechtecks in Bytes. Also in 8er
Schritten aufgerundet, da 1 Byte = 8 Bit.

387

Anhang D

Léscht eine Zeile ab der aktuellen Cursor-Position
bis zum Ende der Zeile (End Of Line). Die Breite der
geldoschten Zeile hdngt von der aktuellen Text-Hohe
ab.

ClearEOL(RastPort), GraphicsLib
Al A6

RastPort: Zeiger auf den RastPort, in dem die Zeile
geldscht werden soll.

Freigeben des Blitters fiir andere Tasks, nachdem er
durch OwnBlitter fiir einen Task reserviert wurde.

DisownBlitter()

Zeichnet eine Linie zwischen der aktuellen Cursor-
Position und den angegebenen Koordinaten.

Draw(RastPort, x,)
Al DO D1

388

Anhang D

RastPort: Zeiger auf den RastPort, in der die Linie
gezeichnet werden soll.

X, y: Koordinaten der neuen aktuellen Cusor-Position,
die mit der alten durch eine Linie verbunden wird.

Zeichnet im angegebenen RastPort eine Ellipse.

DrawE11lipse(RastPort, xm, ym, xr, yr)
Al DO D1 D2 D3

RastPort: Zeiger auf den RastPort, in der die Ellipse
gezeichnet werden soll.

xm, ym: Koordinaten des Mittelpunktes der Ellipse.
xr, yr: x- und y-Radius der Ellipse.

Fiillen einer zusammenhdngenden Fléche.

Flood(RastPort, mode, x,)
Al D2 DO D1

RastPort: Zeiger auf den RastPort, in der sich die zu
flillende Fldche befindet.

mode: Fiillmodus

X, y: x- und y-Koordinate des Punktes, ab dem mit dem
Fiillen begonnen wird.

389

Anhang D

Léschen der ColorMap-Struktur durch Freigegeben des
von ihr belegten Speichers.

FreeColorMap(colormap)
AQ

colormap: Zeiger auf die ColorMap-Struktur, die frei-
gegeben werden kann.

Freigeben eines Speicherbereiches, der von einer
Bitmap durch die AllocRaster-Routine belegt wird.

FreeRaster(p, width, height)
A0 DO D1

p: Zeiger auf den Speicherbereich, der durch die Bit-
plane belegt wird.

width, height: Breite und Hohe der Bitplane, deren
Speicherplatz wieder freigegeben werden kann.

Wichtig(!): Benutzen Sie fiir width und height die
gleichen Werte die Sie auch bei AllocRaster verwendet
haben! Sie laufen sonst Gefahr eine "Guru Meditation"
zu erhalten.

390

Anhang D

Diese Routine legt eine ColorMap-Struktur an.

cm = GetColorMap(entries)

DO DO

entries: Anzahl der Farben, die in die Liste einge-

tragen werden sollen.

Riickgabe: Zeiger auf die initialisierte ColorMap-
Struktur.

Routine zum Auslesen der einzelnen Farbwerte aus
den Farbregistern.

value = GetRGB4(colormap, entry)
DO AO DO
colormap: Zeiger auf die ColorMap-Struktur, aus der

Sie die Farbwerte lesen wollen.

entry: Nummer des Farbregisters, von dem Sie die
Farbwerte wissen wollen.

Riickgabe: Sie erhalten -1, wenn das Farbregister mit
keiner giiltigen Farbe belegt ist. Ansonsten ist value

391

Anhang D

ein Wort dessen ersten vier Bits (0-3) den Blauanteil
die nédchsten vier Bits (4-7), den Griinanteil und die
folgenden vier Bits (8-11), den Rotanteil der Farbe
beinhalten.

Bevor Sie die Area-Befehle benutzen kénnen, miissen
Sie durch diese Routine eine AreaInfo-Struktur initi-
alisieren.

InitArea(Arealnfo, Buffer, Count)
A0 Al DO

AreaInfo: Zeiger auf die zu initialisierende Area-
Info-Struktur.

Buffer: Zeiger auf einen freien Speicherbereich, der
den Area-Befehlen als Zwischenspeicher dient.

Count: Maximale Anzahl der Punkte die im Zwischen-
speicher platz finden koénnen. Fiir jeden Punkt werden
dann 5 Bytes Speicher reserviert.

Diese Routine dient dazu, eine BitMap-Struktur zu
initialisieren.

InitBitMap(BitMap, depth, width, height)
A0 D1 D2 D3

392

Anhang D

BitMap: Zeiger auf die zu initialisierende BitMap.
depth: Anzahl der Bitplanes, die diese Bitmap hat.

width, height: Breite und Hohe der Bitmap in Pixel.

Initialisieren einer RastPort-Struktur mit den
Standardwerten (Modus = JAM2; Mask, FgPen, AOLPen und
LinePtrn = -1; restliche Werte = 0)

InitRastPort(RastPort)
Al

RastPort: Zeiger auf den zu initialsierenden Rast-
Port.

Initialisieren einer TmpRas-Struktur, die einem Rast
Port als Zwischenspeicher dient.

InitTmpRas(tmpras, buffer, size)
AO Al DO

393

Anhang D

tmpras: Zeiger auf die zu initialisierende TnpRas-
Struktur.

buffer: Zeiger auf einen freien Speicherbereich.
size: GroBe von buffer in Bytes. Im allgemeinen soll-

ten Sie den Zwischenspeicher so groB wie eine Bit-
plane dieses RastPorts wdahlen.

Diese Routine initialisiert die angegebene ViewPort
Struktur durch Setzten der wichtigsten Werte.

InitView(view)

view: Zeiger auf die zu initialisierende ViewPort-
Struktur.

Initialisiert eine ViewPort-Struktur mit den Stan-
dard Werten.

InitVPort(ViewPort)
AO

ViewPort: Zeiger auf die zu initialisierende View-
Port-Struktur.

394

Anhang D

Kopiert eine Farbpalette mit den entsprechenden
Eintrégen in einen Viewport.

LoadRGB4(ViewPort, ColorMap, Count)
A0 Al DO

ViewPort: Zeiger auf den ViewPort, dessen Farbeintra-
ge Sie andern mochten.

ColorMap: Zeiger auf einen Array von UWORD-Variablen,
die die Farbwerte der Farbregister enthalten.

Count: Anzahl der Farbregister die in dem Array Color
Map gespeichert sind.

Durch diese Routine werden die Copperlisten, die
Sie durch MakeVPort berechnet haben, ausgefiihrt.

LoadView (View);
Al

View: Adresse der View-Struktur, die die bereits be-
rechneten Copperlisten enthdlt.

395

Anhang D

Bereitet einen Viewport auf, indem seine Zwischen-
Copperlisten berechnet werden.

MakeVPort(View, ViewPort);
A0 Al

View: Zeiger auf die View-Struktur, dem dieser View-
port zugeordnet ist.

ViewPort: Zeiger auf die ViewPort-Struktur, deren
Zwischen-Copperlisten berechnet werden sollen.

' Bewegt den grafischen Zeichenstift zu einer (x,y)-
Position, (relativ zur linken oberen Ecke des Rast-
ports) ohne dabei irgend etwas zu zeichnen.

Move(RastPort, x, Yy);
Al DO D1
RastPort: Adresse der RastPort-Struktur, in der die

Position des Zeichenstiftes neu gesetzt wird.

X, y: Koordinaten des Punktes, auf den der Zeichen-
stift gesetzt werden soll.

396

Anhang D

Offnen des Fonts der System-Font-Liste, der am ehe-
sten einer vorgegebenen TextAttr-Struktur entspricht.

font = OpenFont(TextAttr), GraphicsLib
DO A0 A6

TextAttr: Zeiger auf die TextAttr-Struktur, zu der
ein Font geladen werden soll.

Riickgabe: font ist 0, falls kein passender Font ge-
funden wurde, sonst enthdlt font den Zeiger auf die
initialisierte TextFont-Struktur.

Reserviert den Blitter fiir Thre eigenen Zwecke.
Stellen Sie jedoch vorher durch WaitBlit sicher, daB
der Blitter gerade nicht arbeitet.

OwnBlitter();

Zeichnet einen vorher definierten Linienzug (bzw.
ein Polygon, falls der Startpunkt gleich dem EndPunkt
ist) in den angegebenen RastPort.

397

Anhang D

PolyDraw(RastPort, count, array)
Al DO A0

RastPort: Zeiger auf den RastPort, in dem der Linien-
zug gezeichnet werden soll.
count: Anzahl der vorher definierten Eckpunkte.

array: Zeiger auf den Speicherbereich, wo die Koordi-
naten der Eckpunkte stehen.

Liest die Farbe eines Punktes eines Rastports.

pen = (int)ReadPixel(RastPort, x, y)
DO Al DO D1

RastPort: Zeiger auf den RastPort, aus dem ein Punkt
"gelesen" werden soll.

x, y: Relative (zur linken oberen Ecke des RastPorts)
Koordinaten des Punktes, von dem Sie wissen wollen,
mit welcher Farbe er gesetzt wurde.

Riickgabe: Liefert -1 falls der Punkt nicht gelesen

werden kann, ansonsten die Nummer des entsprechenden
Farbregisters.

398

Anhang D

Diese Routine zeichnet ein ausgefiilltes Rechteck
mit den aktuellen Werten (z.B.: ZeichenModus, Farbe,
Fiillmuster, etc.).

RectFil1(RastPort, xmin, ymin, xmax, ymax)
Al DO D1 D2 D3

RastPort: Zeiger auf den RastPort, in dem das Recht-
eck gezeichnet werden soll.

xmin, ymin: Koordinaten der linken oberen Ecke des zu
zeichnenden Rechtecks.

xmax, ymax: Koordinaten der rechten unteren Ecke des
zu zeichnenden Rechtecks.

Entfernt einen Font aus der System-Font-Liste.

error = RemFont(TextFont),GraphicsLib
DO Al A6

TextFont: Adresse der TextFont-Struktur, die wieder
freigegeben werden kann.

Riickgabe: Ist error =0, so konnte der Font nicht
entfernt werden.

399

Anhang D

Mit dieser Routine kdénnen Sie ein Rechteck in einem
Rastport scrollen, also seinen Inhalt verschieben.

ScrollRaster(RastPort, dx, dy,Xmin,Ymin, Xmax,Ymax);
AQ DO DI D2 D3 D4 D5

RastPort: Zeiger auf den Rastport, in dem Sie ein

Rechteck scrollen wollen.

dx, dy: Anzahl der Punkte, um die der Inhalt des

Rechtecks verschoben wird. Positive Werte bewirken

eine Verschiebung nach links, negative nach rechts.

Xmin, Ymin: Koordinaten der 1linken oberen Ecke des
Rechtecks.

Xmax, Ymax: Koordinaten der Tlinken oberen Ecke des
Rechtecks.

400

Anhang D

Setzen der neuen Vordergrundfarbe (Primary pen).
SetAPen(RastPort, pen)
Al DO

RastPort: Zeiger auf den RastPort, fiir den dieser
Farbstift neu gesetzt werden soll.

pen: Nummer des Farbregisters, mit dessen Farbe die-
ser Farbstift belegt wird.

Setzen der neuen Hintergrundfarbe (Secondary pen).
SetBPen(RastPort, pen)

Al DO
RastPort: Zeiger auf den RastPort, fiir den dieser

Farbstift neu gesetzt werden soll.

pen: Nummer des Farbregisters, mit dessen Farbe die-
ser Farbstift belegt wird.

401

Anhang D

Setzt einen neuen Zeichenmodus.

SetDrMd(RastPort, Mode);
Al DO

RastPort: Addresse der RastPort-Struktur, deren Zei-
chenmodus Sie neu festlegen mochten.

Mode: Die folgenden vier Modi kénnen auch beliebig
miteinander verkniipft werden, wenn dies auch nicht
immer sinnvoll ist.

JAM1 0 Gesetzte Bits mit APen zeichnen.

JAM2 1 Wie JAM1, aber geldschte Bits mit
BPen zeichnen.

COMPLEMENT 2 Punkte vorm zeichnen "XOR"en.

INVERSVID 4 Invertieren (z.B von Textzeichen)

Ordnet dem angegebenen RastPort einen neuen Zei-
chensatz zu.

error = SetFont(RastPort, Font),GraphicsLib
DO Al A0 A6

RastPort: Zeiger auf den RastPort, fiir den der Font
neu gesetzt werden soll.

Font: Zeiger auf die bereits durch OpenFont vorberei-
tete TextFont-Struktur.

402

Anhang D

Setzen der neuen Umrandungsfarbe (Outline pen).

SetOPen(RastPort, pen)
Al DO

RastPort: Zeiger auf den RastPort, fiir den dieser
Farbstift neu gesetzt werden soll.

pen: Nummer des Farbregisters, mit dessen Farbe die-
ser Farbstift belegt wird.

Mit dieser Routine kdnnen Sie die Farbregister ei-
nes Viewports mit neuen Farben belegen.

SetRGB4(ViewPort, Number, Red, Green, Blue);
AQ DO D1 D2 D3

ViewPort: Zeiger auf die ViewPort-Struktur.

Number: Nummer des Farbregisters (0-31).

Red, Green, Blue: Die neuen Farbanteile (0-15).

403

Anhang D

Gibt an der aktuellen Position des Zeichenstiftes
einen beliebigen Text aus.

error = Text(RastPort, String, Count)
DO Al A0 DO
RastPort: Zeiger auf den RastPort, in dem der Text

ausgegeben wird.

String: Adresse der Zeichenkette, die Sie ausgegeben
mochten.

Count: Anzahl der einzelnen Zeichen, die die Zeichen-
kette enthdlt.

Riickgabe: Bei erfolgreicher Durchfiihrung 0 sonst -1.

Mit dieser Routine kdnnen Sie die eigentliche Ldnge
(in Punkten) eines Textes, unter Beriicksichtigung des
aktuellen Fonts, ermitteln.

length = TextLength(RastPort, String, Count);
DO Al AQ D0-0:16

404

Anhang D

RastPort: Zeiger auf den RastPort, in dem der Text
erscheinen soll.

String: Adresse der Zeichenkette, die Sie ausgegeben
mochten.

Count: Anzahl der einzelnen Zeichen, die die Zeichen-
kette enthdlt.

Gibt Ihnen die Zeilennummer an, in der sich der E-
lektronenstrahl, der das aktuelle Bild wiedergibt,
befindet. Der Wert ist im allgemeinen recht ungenau,
wir verwenden ihn 1lediglich, um eine Zufallszahl zu
erhalten.

position = VBeamPos();

Riickgabe: Ein Wert zwischen 0 und 255.

Wartet bis der Blitter seine augenblickliche Ko-
pierarbeit beendet hat, damit Sie die Routine Own-
Blitter benutzen kénnen.

WaitBlit();

Bemerkung: Diese Routine arbeitet leider nicht immer
fehlerfrei, sondern verzichtet manchmal auf weiteres

405

Anhang D

Warten, obwoh1 der Blitter noch einen Kopiervorgang
zu erledigen hat.

Wartet bis der Elektronenstrahl, der das Bild eines
Viewports zeichnet, an seinem unteren Rand angekommen
ist.

WaitBOVP(ViewPort);
AO

ViewPort: Zeiger auf den Viewport, auf dessen voll-
stdndige Darstellung Sie warten wollen.

Setzt einen Pixel an der Position x,y.

Writepixel(RastPort, x,)
Al DO D1

RastPort: Zeiger auf den RastPort, in dem ein Punkt
gesetzt werden soll.

X, y: Relative (zur linken oberen Ecke des RastPorts)
Koordinaten des zu setzenden Punktes.

406

Anhang E

Anhang E
Die Blitter-Hardware-Registerbeschreibung

407

Anhang E

In diesem Anhang finden Sie fiir die Hardwarepro-
grammierung des Blitters eine kurze Beschreibung
seiner Register.

BLTAFWM (044)
(BLiTter: source A, First Word Mask)
BLTALWM (046)
(BLiTter: source A, Last Word Mask)

Die Bitmuster dieser beiden Register werden mit dem
ersten, beziehungsweise letzten Wort jeder kopierten
Daten-Zeile "geANDet". Somit ist es moglich den
Anfang und das Ende einer zu kopierenden Daten-Zeile
der Quelle A nicht nur Wortweise, sondern auch
Bitweise festzulegen. Beim Fiillen oder Lienien zeich-
nen mit dem Blitter sollten diese Bits alle auf 1
gesetzt sein.

BLTCONO (040)
(BLiTer CONtrol register 0)

BLTCON1 (042)
(BLiTer CONtrol register 1)

Diese beiden Kontrollregister werden zusammen fiir
die Steuerung der Blitter-Operationen benutzt. Je-
weils einer der beiden Modi Area und Line wird durch
das Bit 0 aus BLTCON1 aktiviert. Die folgende Tabelle
ordnet den einzelnen Bits fiir die beiden Modi jeweils
verschieden Namen zu. Die jeweilige Bedeutung eines
gesetzten Bits entnehmen Sie bitte der darauffolgen-
den Beschreibung:

408

Anhang E

Area-Modus Line-Modus
BLTCONO BLTCON1 BLTCONO BLTCON1
ASH3 BSH3 START3 TEXTURE3
ASH2 BSH2 START2 TEXTURE2
ASH1 BSH1 START1 TEXTURE1
ASAO BSHO STARTO TEXTUREOQ
USEA X 1 0

USEB X 0 0

USEC X 1 0

USED X 1 0

LF7 X LF7 0

LF6 X LFé6 SIGN

LF5 X LF5 0

LF4 EFE LF4 SuD

LF3 IFE LF3 SUL

LF2 FCI LF2 AUL

LF1 DESC LF1 SING

LFO LINE LFO LINE

Die wichtigen Bits im Area-Modus:

ASH3-0:
BSH3-0:
USEA-C:
USED
LF7-0 :

EFE
IFE
FCI
DESC

LINE

Der "Shift"-Verschiebewert der Quelle A.
Der "Shift"-Verschiebewert der Quelle B.
Modus-Kontrollbit fiir die Quellen A, B und C.

¢ Modus-Kontrollbit fiir das Ziel D.

(Logic Function) Diese Bits enthalten das
Minterm.

: (Exclusive Fill Enable)
: (Inclusive Fill Enable)
: (Fi1l1 Carry Input)

: (DEScending Control

bit) Der Kopiervorgang
lauft riickwdrts.

: Fiir den Area-Modus geldscht.

409

Anhang E

Die wichtigen Bits im Line-Modus:

START3-0 : Diese Bits geben den Startpunkt der Linie
an.
TEXTURE3-0:

LF7-0 : (Logic Function) Diese Bits enthalten das
Minterm.
LINE : Flir den Line-Modus gesetzt.

Die Bits SUD, SUL und AUL legen den Oktanten fest,
indem die Linie gezeichnet wird:

Okt SUD SUL AUL

NOUIRWNHO
FOORKHOOK
CORORMHOM
COORRRERO

BLTSIZE (058)
(BLiTter start and SIZE)

Im Area-Modus enthdlt dieses Register die Breite und
die Hohe der Blitter-Operation. Im Line-Modus muB die
Breite auf zwei gesetzt werden, die Héhe entspricht
dann der Ldnge der Linie. Dabei enthalten die Bits 0
bis 5 die Breite in Worten, die Bits 6 bis 15 die
Hohe (Lénge) in Pixeln. ACHTUNG: wird dieses Register
beschrieben, so startet der Blitter sofort mit seiner
Operation, also dieses Register bitte als Tletztes
beschreiben.

410

Anhang E

BLTxDAT (074)
(BLiTter source x DATa register)

Diese drei Register (das "x" steht fir eine der
Quellen A, B oder C) halten interne Daten fiir den
Blitter bereit. Fiir den Line-Modus gilt noch folgen-
des: BLTADAT wird als Indexregister benutzt und muB
mit 8000 initialisiert sein. BLTBDAT wird zur Muste-
rung der Linie benutzt. Soll kein Linienmuster ver-
wendet werden, muB BLTBDAT auf $FF gesetzt werden.

BLTXMOD (064)
(BLiTter MODulo)

Diese vier Register (das "x" steht fiir eine der
Quellen A, B, C oder das Ziel D) enthalten den
Modulo Wert, der am Ende einer Zeile automatisch zu
dem jeweiligen AdreBzeiger hinzugezdhlt wird. Damit
wird am Ende einer Zeile automatisch zu dem Anfang
der ndchsten gesprungen.

BLTxPTH (050)
(BLiTter PoinTer to x, High)
BLTxPTL (052)
(BLiTter PoinTer to x, Low)

Diese vier Registerpaare (das "x" steht fir eine
der Quellen A, B, C oder das Ziel D) enthalten
jeweils den Low- und High-Anteil des AdreBzeigers auf
den zu "x" gehdrenden Speicherbereich. Diese AdreB-
zeiger sind jeweils 18 Bits lang, wobei in BLTxPTL
die 15 Low-Bits und in BLTxPTH die i{ibrigen drei High-

411

Anhang E

Bits stehen. Am Anfang der Blitteroperation zeigen
diese AdreBzeiger auf das jeweils erste betroffene
Wort, am Ende auf das jeweils zuletzt betroffene.

412

Literatur

Literaturverzeichnis:

William M. Newman, Robert F. Sproull
Grundziige der Interaktiven Computergrafik
McGraw-Hi11 Book Company GmBH

In diesem Buch werden die wesentlichen Themen der
Computergrafik in Theorie und Praxis (PASCAL) behan-
delt.

Heinz-Otto Peitgen, Dietmar Saupe
The Science of Fractal Images
Springer-Verlag

Enthdlt nicht nur die Theorie iiber Berechnungen von
fraktalen Grafiken, also auch L-Systeme und Land-
schaften, sondern neben zahlreichen Abbildungen auch
die dazu notwendigen Algorithmen in einem gut ver-
stdndlichen, Modula-2 Code.

Melvin L. Prueitt
Art and the Computer
McGraw-Hi11 Book Company

Ein Bildband mit fast 300 farbigen Abbildungen, die
fast alle im Los Alamos National Laboratory entstan-
den. Es enthdlt Tleider nur wenig Hinweise iiber die
Entstehung der Grafiken, ist jedoch dem ComputerGra-
fiker zur Inspiration durchaus zu empfehlen.

413

Literatur

Amiga ROM Kernel Reference Manual: Includes & Auto-
docs Addison Wesley

Eines der englischen Standard-Werke zum Amiga, das
nicht nur die dokumentierten Include-Files enthdlt,
sondern auch samtliche Systemroutinen beschreibt.

Amiga Hardware Reference Manual
Addison Wesley

Wer ndheres iiber die Hardware der Coprozessor wis-
sen mochte, findet in diesem Buch samtliche Register
der einzelnen Prozessoren gut dokumentiert.

Ernst A. Heinz
Amiga Basic Profibuch
Maxon

Nicht nur ein Buch fiir den BASIC-Programmierer,
sondern fiir jeden, der in die Geheimnisse der System-
programmierung des Amigas eingeweiht werden mochte.

Wolf-Gideon Bleek, Bruno Jennrich, Peter Schulz
Amiga Intern Band 2
Data Becker

Fiir den "aktiven" Programmierer ein wichtiges Nach-

schlagewerk, vor allem wegen der ausfiihrlichen Auf-
Tistung der Systemroutinen der Libraries und Devices.

414

Grafik in G auf dem Amiga

WICHTIGE MERKMALE:

Das Buch stellt ein umfassendes Werk Gber die Grafikprogrammierung in
C auf dem Amiga dar. Es behandelt praktisch alles, was fur diese Pro-
grammierung wichtig ist. So werden nicht nur die grundlegenden Zei-
chenroutinen der Amiga System-Libraries erklart — es wird auch ausfihr-
lich die Programmierung des ,Drumherum* erlautert.

AUS DEM INHALT:

« Der Umgang mit Screens, Windows, Maus-Zeigern

« Scroll-Routinen und das Multitasking-System

« Die Grafik-Modi des Amiga

« Die Programmierung der Spezialprozessoren Blitter und Copper

» Die Techniken zur Grafikerzeugung (fraktale Kurven und L-Systeme fiir
die Darstellung von Pflanzen, 3D-Routinen zur Darstellung von drei-
dimensionalen Kérpern und fraktalen Landschaften)

- Die Routinen und Datenstrukturen der Intuition- und Graphics-Library

ISBN 3-923250-91-6 8
Bestell-Nr. B-506

DM 59’_ Diskette

mit Gbungsbeispielen

