
Leo J. Scanlon

Die 68’000er
Grundlagen und Programmierung

nn EEE Sen,
R ae | | oe i

 N

N

MN ee co
i

In I Pad

FIR

AMOR HE

REN
im
PN

gia
14

ah UD N
La N DENE 3 WANT TS, 1

: | ‘= uam

l RAR

i 2 Be
i MM rl rn . ,

ae Me Ke

ero

Ci

fi all Bde Pe eee

 NET " net |
i

rh |
ca

1
Pais Mi uf

er |
4)

ii HR ul,

f Ba

BE 2.27) N “ ...

a Ne)
MW ‘

i h
bY mm. 9%

NDAD

AT Verlag

Leo J. Scanion
ist Documentation Manager fur den
Bereich Mikroelektronik der Rock-
well International in Anaheim, CA. Er
ist Autor verschiedener Artikel über
Mikrocomputer und Programm-
Engineering in der Weltraum-
industrie sowie zweier weiterer in
den USA erschienener Bücher.

Leo J. Scanlon

Die 68 OOOer
Grundlagen und Programmierung

AT Verlag Aarau - Stuttgart

Sonderdruck aus der internationalen Fachzeitschrift

fiir praktische Elektronik «Elektroniker»

Die Originalausgabe erschien unter dem Titel
«The 68 000: Principals and Programming»

bei Howard W. Sams & Co., Inc. Indianapolis, Indiana 46268, USA

ISBN 0-672-21853-4

Für die deutschsprachige Ausgabe:

© 1983 AT Verlag Aarau (Schweiz)
Übersetzer: Hans Iseli
Umschlag: AT-Grafik, Aarau

Herstellung: Grafische Betriebe Aargauer Tagblatt AG,

Aarau (Schweiz)
Printed in Switzerland

ISBN 3-85502-152-X

Inhaltsverzeichnis

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.3.3

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.6
2.7

_ Einfuhrung in den Mikroprozessor MC 68 000

Uberblick
Softwaremöglichkeiten

Privilegierte Zustände

Eingebaute Fehlersuchhilfsmittel.

Speicherzuweisung

Unterbruchstruktur (Interrupts)

Bausteinanschlüsse

Interne Register

Allgemein verwendbare Register

Programmzähler

Statusregister

Entwurfsphilosophie

Der Stand der Mikroprozessortechnologie

Begründung für die Entwicklung des MC 68 000

Realisierung der Entwurfsideen

Cross-Makro-Assembler

Umfang

Assemblerbefehle

Aufbau

Das Labelfeld

Das Mnemonikfeld

Das Operandenfeld

Das Kommentarfeld

Reine Kommentarzeilen

Assembleranweisungen

Zweck

Assemblierungssteueranweisungen

Symboldefinitionsanweisung
Speicherdefinitionsanweisung
Ausdrücke im Operandenfeld

Symbole

Konstanten

Algebraische Operatoren

Auswahl von Ausdrücken

Bedingte Assemblierung

Makros

Zeilendruckerformat

9

10
10
11
11
11

12
12
15
15
17
17
18
19

21

21
22
22
22
22
23
24
24
24
24
26
26
27
29
29
29
29
30
30
31
33

3.

3.1
3.2
3.2.1
3.2.2
3.2.3

3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9

Der Befehlssatz des MC 68000

Das Befehlsformat im Speicher
Adressierarten

Adressierart Register direkt

Adressierart Adressregister indirekt

Adressregister indirekt mit Nachinkrementierung

oder Vordekrementierung

Adressregister indiret mit Verschiebung

Adressregister indirekt mit Index

Absolute Datenadressierung

Programmzähler-relative Adressierung

Unmittelbare Datenadressierung

Implizite Adressierung

3.2.10 Adressierarten, die Adressen oder Daten

3.3 |
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8

5.2.1
5.2.2
5.2.3

5.3
5.3.1
5.3.2
5.4
5.4.1

vorzeichenerweitern

Einteilung der Adressierarten nach Verwendungszweck

Befehlsarten

Datentransportbefehle

Befehle für ganzzahlige Arithmetik

Logische Befehle

Schiebe- und Rotierbefehle

Bitmanipulationsbefehle

BCD-Befehle

Programmsteuerbefehle

LINK- und UNLK-Befehle

Systemsteuerungsbefehle
Zusammenfassung

Mathematische Routinen

Multiplikation

32 Bit x 32-Bit-Multiplikation ohne Vorzeichen
32 Bit x 32-Bit-Mulitplikation mit Vorzeichen
Division

Division ohne Uberlauf
Division mit Uberlauf
Quadratwurzel

Listen und Konversionstabellen

Organisation von Daten

Ungeordnete Listen

Zufügen von Daten zu einer ungeordneten Liste

Löschen eines Elementes aus einer ungeordneten Liste

Finden der Minimal- und Maximalwerte in einer

ungeordneten Liste

Eine einfache Sortierungstechnik

Die Technik des «Bubble Sort»

Sortieren mit 16-Bit-Elementen

Geordnete Listen

Absuchen einer geordneten Liste

35

35
36
37
37

38
40
41
42
43
45
47

48
49
51
54
61
70
71
74
75
77
90
91
93

95

95
95
99

104
104
105
107

111

111
111
112
113

114
116
116
118
120
121

5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.6

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.8

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
1.5
7.5.1
7.5.2
7.5.3

8.1
8.2
8.3
8.3.1
8.3.2
8.3.3

Zufügen eines Wertes in eine geordnete Liste

Löschen eines Elementes aus einer geordneten Liste

Konversionstabellen («Look-up tables»)

Beispiel Telefonbuch

Konversionstabellen ersetzen Gleichungen

Konversionstabellen fihren Codewandlungen durch

Sprungtabellen

Hardware des Mikroprozessors 68 000

Takt-, Speisung- und Masseleitungen

Der Daten- und Adressenbus

Funktionsstatussignale

Asynchrone Bussteuerung

Die asynchronen Steuerleitungen

Zeitbedingungen für asynchrone Datenübertragung

Synchrone Steuersignale

Busaussperrungssignale

Systemsteuerungssignale

Interrupt-Steuersignale

Verarbeitungszustände, privilegierte Zustände
und Ausnahmebetrieb

Verarbeitungszustände

Privilegierte Zustände

Überwachungs- und Benützerzustand

Wechsel im privilegierten Status

Ausnahmezustände

Verarbeitung der Ausnahmen

Mehrfachausnahmen |
Intern erzeugte Ausnahmen

Befehle, die Ausnahmen herbeiführen können

Verletzung privilegierter Befehle

Tracing .

Illegale Adressen

Illegaler Befehl

Nichtimplementierte Befehle

Extern erzeugte Ausnahmen

Rücksetzung (RESET)

Unterbrüche (Interrupts)
Busfehler

Anschluss von Peripheriebausteinen

Peripheriebausteine der 68 000er-Familie

Peripheriebausteine der 6800er-Familie

Anschluss eines PIA an den 68000

Der PIA 6821

Schnittstelle für 16-Bit-Datentransfer

Einfache 16-Bit-Transfers mit PIA

124
126
127
127
127
132
133

135

136
136
136
138
138
140
140
142
143
144

147

147
147
147
149
150
150
153
154
154
156
156
157
159
159
162
162
163
166

169

169
171
172
172
173
174

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.2
9.2.1
9.2.2
9.3
9.4
9.5

Unterstützung für den MC 68000

M 68 000 - eine Prozessorfamilie
MC 68000
MC 68008
MC 68010
MC 68020
Peripheriebausteine
Spezielle Bausteine der 68 000er-Familie

Weitere geeignete Bausteine

Lehrsystem

VME-Bus

Entwicklungssysteme

Anhang

177

177
177
177
179
180
180
180
180
180
183
184

185

1. Einführung in den Mikroprozessor MC 68000

1.1 Überblick

Der MC 68000 verfügt über 17 allgemein verwendbare Regi-

ster, jedes 32 Bit lang, über einen 32-Bit-Programmzähler und
ein 16-Bit-Statusregister. Acht der allgemeinen Register werden

verwendet als Datenregister für Byte-(8 Bit), Wort-(16-Bit-) und
Doppelwort-(32-Bit-)Operationen. Die andern 9 allgemeinen
Register sind Adressregister, die als Stapelzeiger und Basis-
adressregister verwendet werden. Alle 17 allgemeinen Register
können auch als Indexregister verwendet werden.
Obwohl der Programmzähler 32 Bit lang ist, werden nur die tie-
ferwertigen 24Bit verwendet. Diese 24Bit geben dem MC

68000 einen Adressbereich von 16 MByte - der gleiche Adress-
bereich wie ein IBM System/370! Dieser Adressbereich
erlaubt es, zusammen mit einem zusätzlichen Speicherverwal-
tungsbaustein, grosse modulare Programme zu entwickeln und
auszuführen, ohne komplizierte und schwierige softwaremässi-

ge Speicherverwaltungsmassnahmen.

1.1.1 Softwaremöglichkeiten

Die Softwaremöglichkeiten des MC 68000 sind recht eindrück-
lich und zeigen, dass dieser Mikroprozessor von Programmie-
rern für Programmierer entwickelt wurde. Wie später in Kapitel
3 gezeigt wird, bieten viele der Befehle in Kombination mit den

vielseitigen Adressierungsmodi fast den Komfort und die Mög-
lichkeit höherer Sprachen.

Der MC 68000 kann mit 5 verschiedenen Datenarten Verarbei-
tungen durchführen:
— 1Bit

— 4Bit (BCD-Werte)
— 8 Bit (Byte)
- 16 Bit (Worte)

— 32 Bit (Doppelworte)

Eine Byteadressierung ist möglich, indem das höherwertige

Byte dieselbe gerade Adresse wie das entsprechende Wort hat,
während das niederwertige Byte die um 1 erhöhte ungerade
Adresse tragt. Das Befehlsrepertoire umfasst 56 Grundbefehle.

Einführung in den Mikroprozessor MC68 000

Dazu stehen 14 verschiedene Adressierungsmodi zur Verfü-
gung. Die Kombination der 56 Grundbefehle mit den 14 Adres-
sierungsmodi und den 5 Datenarten ergibt mehr als 1000 ver-
schiedene Kombinationen, die der MC 68000 ausführen kann.
Zusätzlich gibt es zwei nicht benützte Operationscodes, die
nach den Wünschen des Benützers spezifiziert werden können.
Der MC 68000 wird angeboten in 4-, 6-, 8- und 10-MHz-Versio-
nen, denen Taktperioden von 250, 167, 125 und 100ns entspre-
chen.

Der schnellste Befehl, zum Beispiel fiir das Kopieren des Inhalts
eines Registers in ein anderes Register, benötigt als Ausfüh-
rungszeit 4 Taktzyklen oder 500 ns bei 8 MHz.
Der langsamste Befehl, eine Division eines 32-Bit-Doppelwor-
tes durch ein 16-Bit-Wort mit Vorzeichen, kann bis zu 170 Takt-
zyklen beanspruchen oder 21,25 us bei 8 MHz.

1.1.2 Privilegierte Zustände

Zur Unterstützung von Systemen mit mehreren Benützern ver-
fügt der MC 68000 über zwei verschiedene Zustände: einen
Benützerzustand für normale Funktionen und einen Überwa-
chungszustand für die Systemkontrolle. Im Überwachungszu-
stand können alle Befehle ausgeführt werden, im Benützerzu-
stand können einige privilegierte Befehle, zum Beispiel Reset
und Stop nicht benützt werden. Diese Möglichkeiten geben dem
System eine gewisse Sicherheit, da der Datenzugriff kontrolliert
ist und dadurch die gegenseitige Beeinflussung von Daten ver-
schiedener Benützer verhindert wird.

1.1.3 Eingebaute Fehlersuchhilfsmittel

In Anbetracht der Tatsache, dass das Beheben von Fehlern in

der SW im allgemeinen mehr Zeit in Anspruch nimmt als das
Schreiben der SW selbst, haben die Entwickler des MC 68000
eine ganze Anzahl von Fehlersuchhilfsmitteln eingebaut. Als
Beispiel führen

illegale Befehle,

die Verletzung von privilegierten Zuständen,
fehlerhafte Adressierung, |

— Division durch Null,

illegale Speicherzugriffe usw.

|

den Mikroprozessor in den Überwachungszustand.

Der MC 68000 verfügt auch über einen sogenannten Tracemo-
dus für die Fehlerbehebung in der SW. In diesem Modus verar-
beitet der MC 68000 Befehle Schritt für Schritt, indem nach der
Ausführung jedes einzelnen Befehls in eine Serviceroutine ver-
zweigt wird.

10

Einführung in den Mikroprozessor MC68 000

1.1.4 Speicherzuweisung

Sehr wenige Speicherzellen sind für spezielle Aufgaben fest
zugewiesen. Die tiefsten 8Byte des Speichers enthalten den
Rücksetzvektor und sind demzufolge als ROM ausgeführt.

Zusätzliche Speicherzellen in den ersten 1024 Bit sind Unter-
bruchsvektoren, Fehlervektoren sowie Vektoren für verschiede-
ne andere Arten von Ausnahmezuständen zugewiesen. Diese
Speicherbereiche können entweder als ROM oder als Lese- und
Schreibspeicher ausgeführt sein. Der verbleibende Rest des 16-
MByte-Speichers des MC 68000 kann für jede beliebige Auf-
gabe verwendet werden.

Selbstverständlich werden einige Speicheradressen für zugeord-
nete Ein- und Ausgabebausteine im System verwendet, weil der
MC 68000, wie übrigens alle Motorola-Mikroprozessoren, die
Ein- und Ausgabeoperationen über den Speicher ausführt. Der

MC 68000 verfügt über keine separaten Ein- und Ausgabebe-
fehle, «sieht» aber periphere Bausteine als Speicherzellen im 16-
MByte-Speicher. Bei der Programmierung von Ein- und Aus-
gabeoperationen für den Datentransfer von und zu peripheren
Geräten werden die gleichen Befehle verwendet wie für den
Datenaustausch mit dem Speicher.

1.1.5 Unterbruchstruktur (Interrupts)

Die Unterbruchstruktur des MC 68000 ist ähnlich wie die der

meisten Minicomputer. Es stehen 7 verschiedene Unterbruchs-
ebenen zu Verfügung. Mit einer Maske im Statusregister kön-
nen Unterbrüche auf derselben oder auf tieferen Ebenen als der
in Betrieb stehenden blockiert werden.

Wenn der MC 68000 eine Unterbruchsanforderung erhält,
sendet er ein Quittierungsanforderungssignal zu allen im

System vorhandenen Bausteinen. Nach dem Empfang der Quit-
tung muss der unterbrechende Baustein eine Vektornummer auf

den Datenbus einspeisen. Dieser Vektor wählt eine der 192

Unterbruchroutinen im-Speicher aus. Auch Bausteine, die keine
Vektornummer erzeugen können, haben die Möglichkeit, den
MC 68000 zu unterbrechen. Sie veranlassen den Mikroprozes-
sor mittels «Autovektor», zu einer Subroutine zu verzweigen,
die der Unterbruchsebene des unterbrochenen Bausteins zuge-
ordnet ist. Der MC 68000 verfügt über 7 Autovektoren.

1.1.6 Bausteinanschlüsse

Der MC 68000 wird in einem Dual-in-line-Gehäuse mit 64
Anschlüssen geliefert (entspricht ungefähr der Grösse eines nor-
malen Feuerzeuges).

Die Adressen für Befehle und Daten werden über ein System
von 25 Adressleitungen zugeführt: ein 23 Leitungen umfassen-
der Adressbus (mit dem ein Wort im Speicher angewählt wird)

11

Einführung in den Mikroprozessor MC68 000

und 2 Byte-Select-Leitungen (eine zum Anwählen des tieferwer-
tigen Byte des Wortes, das andere zum Anwählen des höher-
wertigen Byte des Wortes). Daten werden über einen 16-Bit-

Datenbus transferiert. Wie die meisten 8-Bit-Mikroprozessoren
(aber nicht wie die 16-Bit-Systeme Intel 8086 und Zilog Z8000)
wird der Datenbus und der Adressbus über separate Leitungen

geführt.
Die Entwickler bei Motorola stellten fest, dass eine Multiplexie-
rung dieser Bussysteme zwar zu einem kleineren Gehäuse
geführt hätte, jedoch auch eine Verkleinerung der Leistung um
mehr als dreissig Prozent zur Folge gehabt hätte. Der MC
68000 kann sowohl mit asynchronen peripheren Geräten wie
auch mit langsameren synchronen peripheren Geräten (wie sie
auch für den MC 6800 und andere 8-Bit-Mikroprozessoren ver-
wendet werden) verbunden werden. Er verfügt über separate
Kontrolleitungen für jeden Typ von peripheren Schaltungen.
Der MC 68000 benützt eine einzige Speisespannung von +5 V

und verfügt über je zwei Plus-/Minusanschlüsse. Ein Anschluss
ist für den TIL-kompatiblen Takteingang vorgesehen.
Eingeführt wurde der MC 68000 im Jahre 1979. Er ist erhältlich
von Motorola (als MC 68000) und als Lizenzfabrikate von

Rockwell International (R 68000), Hitachi (HD 68000),
Mostek (MK 68000) und Signetics (SP 68000). In Europa wird

der 68000 auch von Efcis hergestellt, einer Firma im Besitz von
Thomson-CSF und der franzOsischen Atomenergiekommis-
sion.

1.2 Interne Register

Da wir uns vor allem mit der Programmierung des MC 68000
befassen, sind für den Einstieg zuerst die internen Register,
die zur Verfügung der Programmierer stehen, interessant.

Bild 1.1 zeigt die 17 allgemein verwendbaren Register, den

32-Bit-Programmzähler und das 16-Bit-Statusregister des MC
68000.

1.2.1 Allgemein verwendbare Register

Acht der allgemein verwendbaren Register sind Datenregister,
7 sind Adressregister und 2 sind Stapelzeigerregister (eines für
Benützerprogramme, das andere für Überwachungsprogram-
me). Die acht Datenregister (DO ... D7) können verwendet wer-

den für Operationen mit Byte, Wort und Doppelwort. Die ver-
wendete Datenlänge wird spezifiziert durch einen Datenlängen-
code im Befehl. Byteoperationen werden immer mit den tiefer-
wertigen 8Bit eines Datenregisters (Bit 0 ... 7) durchgeführt;
Wortoperationen werden immer mit den tieferwertigen 16Bit

eines Datenregisters (Bit O.... 15) durchgeführt, wie in Bild 1.1
durch die gestrichelte Linie angedeutet ist. Wenn ein Byte- oder

12

Bild 1.1
Registeranordnung im Mikropro-
zessor MC 68000 (Programmie-
rungsmodell)

Einführung in den Mikroprozessor MC68 000

31 16 15 87 0

D0

Df

02

03 Acht Datenregister
D4

| DS

Dé

07 bo

ee
 a

$
e
e

| Ao
| 41

| A2
| A3 Sieben Adressregister
| 44
| 45

| A6

m Mr u u De aa a ee on

Benützer- Stapelzeiger | A? Zwei Stapelzeiger

Veberwachungs - Stapelzeiger |

| Programm - Zähler

15 87 0

|] | sf | Status- Register

ls tenn. Benützer-
Byte Byte

Wortoperand in einem Befehl vorkommt, wird immer das tiefer-
wertige Byte oder Wort des Datenregisters verwendet. Die ver-

bleibende Information im Register wird nicht berührt.
Die sieben Adressregister (AO... A6) dienen als Basisadressre-
gister und als Softwarezeiger zu benützerdefinierten Speicher-

bereichen. Sie können auch zur temporären Aufnahme von
Adresswerten verwendet werden, so dass diese Adressen
irgendwo im Programm nicht wieder neu berechnet werden
müssen. Die Adressregister können verwendet werden für den
Zugriff zu Bytes, Worten und Doppelworten im Speicher. Wie
in Bild 1.2 gezeigt, werden diese Daten in der Ordnung höher zu
tiefer gespeichert, das heisst, dass Byte 0, Wort O und Doppel-
wort 0 die höchste Wertigkeit aufweisen.

Byte können gerade Adressen (Byte 0, 2 und 4 in Bild 1.2) oder
ungerade Adressen (Byte 1, 3 und 5) haben, Worte und Doppel-
worte können nur gerade Adressen haben. Das bedeutet also,
dass Worte und Doppelworte immer mit einer geraden Adresse
beginnen müssen. Wenn also ein Wort sich an der Adresse N,
wobei N gerade ist, befindet, ist das nächste Wort an der Adres-

13

Einführung in den Mikroprozessor MC68000

6 87 0 15 0

n BYTEO \BYTET | nef n Wort 0

n+2 |BYTE 2 |BYTE3 | n+3 n+2 Wort 1

nt4 |BYTE4 |BYTES | nts nth Wort 2

a) Byteformat b) Wortformat

1§ d

f ee En unge m | mans aed

Doppelwort 0
nt | ___ LI

Doppelwort 1 Bild 1.2
ntéE Datenformate im Speicher:

N.nolen$D | a) Byteformat (8 Bit)
Dop P elwort 2 b) Wortformat (16 Bit)
c) Doppelwortformat c) Doppelwortformat (32 Bit)

se N + 2. Ahnlich ist es bei Doppelworten. Wenn ein Doppel-
wort sich an der Adresse N, wiederum gerade, befindet, ist das
nachste Doppelwort an der Adresse N + 4. Die gestrichelte

Linie zwischen Bit 15 und Bit 16 im Bild 1.1 zeigt an, dass sich die
Information in einem Adressregister auf ein 16-Bit-Wort (in Bit
0... 15) oder auf ein 32-Bit-Doppelwort beziehen kann. Viele
Befehle des MC 68000 beziehen sich auf zwei Operanden, einen
Quellenoperanden und einen Bestimmungsoperanden. Wenn
ein Adressregister verwendet wird als Quellenoperand, wird
entweder das tieferwertige Wort oder das ganze Doppelwort
verwendet, je nach Abhängigkeit der Operationslänge. Wird ein
Adressregister als Bestimmungsoperand verwendet, so wird das
ganze Register beeinflusst, unabhängig der Operationslänge.
Operationen mit Adressregistern beeinflussen das Statusregi-
ster des MC 68000 nicht. Diese Tatsache erlaubt es, innerhalb
von Datenoperationen Adressen zu ändern, ohne sich Gedan-
ken machen zu müssen, ob der Programmstatus geändert haben
könnte.

Der MC 68000 verfügt über zwei Stapelzeiger, wobei zu einer
bestimmten Zeit nur einer aktiv sein kann. Der Benützer-Stapel-
zeiger, der zur Sicherung der Rückkehradresse während Sub-
routinenaufrufen benützt wird, ist aktiv, wenn der Prozessor im
Benützerstatus arbeitet. Der Überwachungsstatus-Stapelzeiger,
der die Rückkehradresse und den Statusregisterinhalt während
Trap- und Unterbruchroutinen aufnimmt, ist aktiv, wenn der
MC 68000 sich im Überwachungsstatus befindet. Weil die bei-
den Stapelzeiger nicht gleichzeitig aktiv sein können, sind sie in

Bild 1.1 als ein einziger Bestimmungsort A7 dargestellt. Jedes der
17 allgemein verwendbaren Register kann auch als Indexregi-

14

Einführung in den Mikroprozessor MC68 000

Bild 1.3
Das Statusregister (Flags) des MC

68 000

ster verwendet werden. Die Indexierung wird behandelt im
Zusammenhang mit der Diskussion der Adressierungsmodi in
Kapitel 3.

1.2.2 Programmzähler

Wie alle Mikroprozessoren, führt auch der MC 68000 Pro-
gramme aus, indem er einen Befehl vom Speicher holt, ihn aus-
führt und dann den nächsten Befehl holt. Beim MC 68000
belegt ein Befehl 1 bis 5 Wörter im Speicher, wobei der Pro-
grammzähler bestimmt, welches Befehlswort als nächstes
geholt wird. Der Programmzähler ist 32 Bit lang. In den bisher
produzierten Bausteinen wurden jedoch nur die 24 tieferwerti-
gen Bit verwendet. Weil die Befehle aus Worten bestehen, ent-
hält der Programmzähler immer eine gerade Adresse. Mit den
24 Bit des Programmzählers können 8M-Worte adressiert wer-
den (8388608 Worte, Adressenbereich 0 ... hexadezimal
FFFFFE).

1.2.3 Statusregister

Das Statusregister des MC 68000 ist aufgeteilt in ein Bentitzer-

byte und ein Systembyte wie in Bild 1.3 dargestellt. Gelesen wer-
den kann der gesamte Inhalt des Statusregisters jederzeit, hinge-
gen kann das Systembyte nur im Überwachungsmodus geän-
dert werden. Das Benützerbyte, oft auch Bedingungscoderegi-

ster genannt, enthält fünf Flagbit, die Information über ausge-
führte Befehle enthalten.

Systembyte Benützerbyte
AL AL

\ Ff

15 4 | 0

Ts MW cIele NEIDRKIZT
m /

Tracemodus

Veberwachungsstatus
Unterbruchsmaske

 Erweiterung

Negativ _—
Bedienungscode Noll

Veberlauf
Vebertrag

Die fünf Flagbit im Benützerbyte bedeuten im einzelnen:

- Bit 0, Übertrag (Carry C):

Dieses Bit wird auf 1 gesetzt, wenn bei einer Addition ein Über-

trag entsteht oder bei einer Subtraktion ein Entlehnwert benö-
tigt wird, andernfalls ist es 0.

15

Einführung in den Mikroprozessor MC68 000

Das Übertragsbit wird ebenfalls für die Aufnahme des Werts
eines Bit verwendet, das aus einem Datenregister oder Speicher-
platz geschoben oder rotiert wurde, und es enthält auch das

Resultat einer Vergleichsoperation.

- Bit 1, Uberlauf (Overflow V):

Dieses Bit hat nur eine Bedeutung wahrend Operationen mit
vorzeichenbehafteten Zahlen. Es wird auf 1 gesetzt, wenn die
Addition von zwei Werten mit gleichen Vorzeichen oder die

Subtraktion von zwei Werten mit ungleichen Vorzeichen ein
Resultat ergeben, das den Bereich des Zweierkomplements des
Operanden tiberschreitet, andernfalls ist es 0.

Es wird ebenfalls gesetzt, wenn das hochstwertige Bit des
Operanden zu irgendeinem Zeitpunkt wahrend einer arithmeti-
schen Schiebeoperation andert.

— Bit 2, Null (Zero Z): |

Dieses Bit wird auf 1 gesetzt, wenn das Resultat einer Operation

0 ist.

— Bit 3, Negativ (Negative N):

Dieses Bit hat nur eine Bedeutung bei Operationen mit vorzei-

chenbehafteten Werten. Es wird dann auf 1 gesetzt, wenn eine
arithmetische, logische, Schiebe- oder Rotieroperation zu einem

negativen Resultat führt. Mit andern Worten gesagt, folgt das
N-Bit dem höchstwertigen Bit des Operanden, unabhängig

davon, ober 8, 16 oder 32 Bit lang ist.

— Bit 4, Erweiterung (X):

Dieses Bit funktioniert als Uberlaufbit fiir Operationen mit
erhohter Genauigkeit. Es wird durch Additions-, Subtraktions-,
Negier-, Schiebe- und Rotierbefehle beeinflusst, indem es wäh-
rend deren Ausfiihrung den Status des Ubertragsbit (C)
annimmt.

Der MC 68000 verfügt über bedingte Verzweigbefehle, die den

Zustand der Bit C, V, Z, N prüfen und je nach Resultat das Pro-
gramm weiterlaufen oder eine bestimmte Adresse anspringen
lassen. Die Bedingungscodebit werden immer dann beeinflusst,
wenn Operationen den Inhalt von Datenregistern ändern, aber
nie bei Operationen mit Adressregistern.

Das Systembyte des Statusregisters besteht aus drei Feldern:

— Bit 8 bis 10:

Diese Bit enthalten eine Unterbruchsmaske (IO, Il und 12), mit
der die Prioritätsebene der Unterbruchsanforderungen

bestimmt werden kann. Diese 3-Bit-Maske kann zur Festset-
zung von einer aus sieben Prioritätsebenen verwendet werden
(die achte Ebene, alles 0, bedeutet, dass jede Priorität akzeptiert

16

Einführung in den Mikroprozessor MC68 000

wird) und veranlasst den MC 68000, alle Unterbrechungsanfor-
derungen auf oder unter dieser Prioritätsebene nicht zu beach-
ten.

— Bit 13, Überwachung (S):

Dieses Bit zeigt an, ob der MC 68000 sich im Überwachungszu-
stand (S = 1), oder im Benützerzustand (S = 0) befindet.

— Bit 15, Tracemodus (T):

Dieses Bit steuert die eingebaute Fehlersuchschaltung. Wenn
das T-Bit auf 1 gesetzt ist, arbeitet der MC 68000 ein Programm
Schritt fur Schritt ab. Das bedeutet, dass der Prozessor nach

jedem ausgeführten Befehl in den Uberwachungszustand
(S=1) übergeführt wird und zu einem durch den Anwender

geschriebenen Trace-Unterprogramm verzweigt. Dieses Trace-
Unterprogramm kann zum Beispiel verwendet werden zur Prü-
fung des Inhalts von ausgewählten Registern oder Speicherplät-
zen, zur Statusprüfung oder zur Durchführung irgendwelcher
anderer Fehlersuchaufgaben.

Die nichtbenützten Bit des Statusregisters werden immer als 0
gelesen. :

1.3 Entwurfsphilosophie

Mit den bisherigen Ausführungen haben wir einen allgemeinen
Überblick über die Möglichkeiten des Mikroprozessors MC
68000 gewonnen. Die weiteren Kapitel werden diese Informa-
tion bis ins Detail vertiefen und einen Überblick geben über die
Anwendungsmöglichkeiten des MC 68000. Bevor wir jedoch

auf die Details eintreten, soll noch einige Information zur Ent-
wurfsphilosophie des MC 68000 vermittelt werden.

1.3.1 Der Stand der Mikroprozessortechnologie

Die leistungsfähigen Mikroprozessoren und die zugehörigen
Bausteine, die heute zur Verfügung stehen, sind der Ausdruck
einer enormen Entwicklung der Technologie der integrierten
Schaltungen in der vergangenen Zeit. Seit der Entwicklung der
MOS-Halbleiter in den späten fünfziger Jahren verdoppelte sich

die Komplexität der Schaltungen in den siebziger Jahren jedes

Jahr. Während frühere Mikroprozessoren 5000 bis 10000
Transistorfunktionen pro Baustein aufwiesen, verfügen heutige
Prozessoren über 100000 Transistorfunktionen. Primäre Fak-
toren für diese Entwicklung sind eine höhere Dichte der Schal-

tungen und die Fortschritte im Schaltungsentwurf, die generell
zu höheren Geschwindigkeiten und zu geringerem Leistungs-
verbrauch führen. Die Entwicklungsrate hat sich etwas ver-
langsamt durch gewisse technologische Grenzen, die Fort-
schritte sind jedoch immer noch enorm. Gegenwärtig wird die

17

Einführung in den Mikroprozessor MC68 000

Schaltungsdichte und die Schaltungsgeschwindigkeit alle zwei
Jahre verdoppelt, während in der gleichen Zeit das Leistungs-
Geschwindigkeits-Produkt um den Faktor 4 gesunken ist.
Gleichzeitig sanken die Produktionskosten, was sich in einem
reduzierten Produktpreis auswirkte, was wiederum zu erhöhtem
Bedarf, neuen Anwendungen und neuen Märkten führt.

1.3.2 Begründung für die Entwicklung
des MC 68000

Die eben beschriebenen Fortschritte machten einen komple-
xen Mikroprozessor technisch möglich, dazu kamen zusätzli-

che Faktoren als Motivation für Motorola, die zur Entwicklung
des MC 68000 führten. Nach Edward Stritter und Tom Gunter,
zwei der Hauptverantwortlichen für die Entwicklung des MC
68000, leitet sich eine der Motivationen her aus dem Bedarf für
Produkte, die über die vielfältigen Möglichkeiten eingebauter
Mikroprozessoren verfügen. Dieser Bedarf zeigt sich im allge-

meinen Markt für Mikroprozessoren, der jährliche Zuwachsra-
ten von 25% aufweist und zu einem jährlichen Volumen von
200 Millionen Einheiten im Jahre 1983 führen dürfte, mit einem
Marktwert von ungefähr 1Milliarde Franken. (Schätzungen

lauten dahin, dass bis ins Jahr 2000 5 bis 10 Milliarden Mikro-

prozessoren und Mikrocomputer in Betrieb stehen werden, das
heisst ungefähr 1 System pro dannzumal auf der Erde lebende
Person!) Beim Entwurf des MC 68000 waren sich die Entwick-
ler im klaren, dass ihr Produkt auf Anwendungen zugeschnitten

sein musste, für die 16-Bit-Mikroprozessoren im Vordergrund

stehen, wie zum Beispiel Anwendungen mit Multiprocessing
und Multitasking. — Eine zweite Motivation für die Entwicklung
des MC 68000 kam von der Seite der hohen Kosten für die Soft-

ware-Entwicklung. Mit gegenwärtigen Kosten von 20 bis 40
Franken für jede Zeile getesteten Codes ist es nicht unüblich, für

ein einfaches Programm auf Software-Entwicklungskosten von
200000 Franken oder mehr zu kommen, was in keinem ver-

gleichbaren Massstab mit den Hardwarekosten von einigen

hundert bis allenfalls einigen tausend Franken steht. Als Gegen-
massnahme zu dieser Entwicklung fördert Motorola konse-
quent die Unterstützung von höheren Programmiersprachen

und ein klar strukturiertes Vorgehen bei der Programmierung.
Zudem wird versucht, mit der 68000-Software Fehlersuche und
Selbstprüfung so einfach wie möglich zu machen. - Ein dritter
die Entwicklung des MC 68000 beeinflussender Faktor waren
die hohen Kosten des Entwurfs und der Fabrikation von neuen
Mikroprozessoren. Sowohl die Personalkosten wie auch die
Kosten für Entwurf und Fabrikation von Ausrüstungen sind
enorm und erreichen für die wichtigsten Hersteller Millionen

von Franken pro Jahr. Die Entwickler begegnen diesem Pro-
blem auf verschiedene Weise. Erstens ist ein geradliniger Ent-
wurf unter Verwendung von optimalen Strukturen leichter zu

18

Einfiihrung in den Mikroprozessor MC68 000

realisieren, zu testen und herzustellen. Selbstverständlich führt
ein geradliniger Entwurf auch zu einem verbesserten Produk-
tionszyklus und damit zu einer Verbesserung der Wettbewerbs-
fähigkeit des Herstellers. Zweitens muss eine neue Architektur

auf so lange Zeit hinaus wie möglich geplant werden und für die
Zukunft einfach zu erweitern sein. Die Hersteller sind nicht
mehr in der Lage, jedes Jahr neue Architekturen zu produzie-

ren. Erfahrungen mit dem Versuch zur Erweiterung und Verbes-
serung früherer 8-Bit-Mikroprozessoren zeigten die Notwendig-
keit für verbesserte Planung. Die Entwerfer müssen auf mög-
lichst wenig Beschränkungen in ihren Entwürfen achten, so
dass zukünftige Verbesserungen des Bausteins unter den best-
möglichen Voraussetzungen gemacht werden können. Zu den
grundsätzlichen Mängeln in der Vergangenheit gehörten ein
begrenzter Adressbereich sowie das Fehlen von zum Zeitpunkt
des Entwurfs freien Operationscodes für zukünftige Befehle.

1.3.3 Realisierung der Entwurfsideen

Die Entwickler des MC 68000 hatten die nicht leichte Aufgabe,

die im vorhergehenden Abschnitt beschriebenen Motive und
Begründungen bei der Realisierung des Mikroprozessors zu
berücksichtigen. Ihre Wahl fiel auf die schnelle n-Kanal-Silizi-

um-Technologie HMOS (high density, short-channel MOS),
die ursprünglich von der Intel Corp. entwickelt wurde. Diese
Technologie bietet rund die doppelte Schaltungsdichte sowie
das vierfach bessere Geschwindigkeits-Leistungsprodukt ge-
genüber der Standard-NMOS-Technologie. Als Resultat ver-

fügt die gegenwärtige Version des MC 68000 über etwa 68 000
Transistorfunktionen auf dem Baustein (Bild 1.4).

Im Hinblick auf den potentionellen Anwenderkreis wählten die
Entwickler für den MC 68000 eine Architektur in Richtung all-
gemeine Verwendung und statteten ihn mit einem 16-MByte-
Adressbereich aus. Zusätzlich wurden Funktionen wie separate
Überwachungs- und Anwenderstati zur Unterstützung von
Multiprocessing und Multitasking vorgesehen.
Zur Eindämmung der hohen Kosten von Software-Entwicklun-

gen unternahmen die Entwickler des MC 68000 alle Anstren-
gungen, die Programmierung so einfach wie möglich zu
machen. Ein Weg zur Erreichung dieses Zieles ist eine soge-
nannte orthogonale Auslegung, das heisst, dass alle Datenregi-
ster und alle Adressregister in derselben Weise funktionieren
und ebenfalls als Indexregister verwendet werden können. Im

weiteren können die meisten Befehle mit Byte, Worten und Dop-
pelworten operieren. Die Anzahl der Mnemocodes im Befehls-
repertoire wurde auf ein Minimum beschränkt, indem Gruppen

von ähnlichen Funktionen gebildet wurden.

Diese Auslegung steht im Gegensatz zu einer grossen Anzahl

von spezialisierten Lade-, Speicher- und Transferbefehlen, wie

19

Einfiihrung in den Mikroprozessor MC68 000

sie oft bei 8-Bit-Mikroprozessoren vorkommen. Im weiteren
betrachteten die Entwickler nicht nur die statisch häufigen
Befehle (das sind diejenigen, die in einem Listing häufig
erscheinen), sondern gingen einen Schritt weiter und hielten
Ausschau nach dynamisch häufigen Befehlen, das heisst jenen,
die tatsächlich häufig ausgeführt werden. Unter diesem Aspekt
wurde versucht, so kurze Befehle wie möglich zu entwickeln.
Zur Unterstützung von höheren Sprachen bestehen komplexe

Befehle, welche Operationen ausführen, für die normalerweise
eine ganze Anzahl Zeilencodes benötigt werden. Ein gutes Bei-
spiel für diesen Fall sind die LINK- und UNLK-Befehle, die im
Stapel Platz zuweisen und freigeben für den Aufruf von ver-
schachtelten Unterprogrammen sowie der CHK-Befehl, der
erlaubt, die Grenzen einer speziellen Speicheranordnung auf
Überlaufbedingungen zu prüfen. Beim Festlegen des Befehlsre-
pertoires wurde ebenfalls darauf geachtet, dass die meisten
Befehle mit allen möglichen Adressierungsmodi verwendet wer-
den können und dadurch Compilern das effiziente Generieren
von Code erlauben. Schliesslich wurde im Hinblick auf die
Reduktion von Entwicklungskosten für zukünftige Entwick-
lungsänderungen und Verbesserungen des Mikroprozessors
eine Architektur gewählt, die es erlaubt, verschiedene Versionen
oder sogenannte Implementierungen zu produzieren. Die
gegenwärtige Version unter dem Namen MC 68000 stellt im
Prinzip nur ein Subset der kompletten 68000-Architektur dar.

Das zeigt sich zum Beispiel darin, dass der MC 68000, obschon
er ein 16-Bit-Mikroprozessor ist, über eine interne 32-Bit-Archi-
tektur verfügt. Das heisst, dass alle adressierbaren Register, mit
Ausnahme des Statusregisters, 32 Bit lang sind. Auch der Pro-
grammzähler ist 32 Bit lang, wobei bei den bisher produzierten
Bausteinen nur die tieferwertigen 24 Bit herausgeführt wurden.
Bei einer allfälligen zukünftigen Version des 68000, die alle 32
Bit zur Verfügung stellt, würde das einen Adressbereich von
mehr als 4 Milliarden Byte bedeuten. Selbstverständlich sind
auf dem Chip auch der Datenbus und der Adressbus je 32 Bit

lang.

20

2. Cross-Makro-Assembler

2.1 Umfang

Es gibt mittlerweile eine Vielzahl von Systemen, mit denen Soft-
ware für 68000-Anwendungen entwickelt werden kann. Die
einen werden ihre Programme auf Motorolacomputern wie
EXORciser®- oder EXORmacs*-Entwicklungssystemen ent-
wickeln, die andern verwenden dafür Mini-, Grosscomputer

oder Universalentwicklungssysteme. Ungeachtet dessen, was
für ein System benützt wird, nehmen wir an, dass alle Benützer
in einer Assemblersprache und nicht in Maschinencode pro-

grammieren werden. Somit wird ein Übersetzungsprogramm,
der sogenannte Assembler gebraucht, um den Assemblerquel-
lencode in Maschinensprache oder Objektcode zu übersetzen,

damit der Mikroprozessor ihn ausführen kann. Wir kennen
zwei Assemblergrundtypen.
Ein Cross-Assembler läuft auf einem anderen Rechner als dem-
jenigen, der den assemblierten Code ausführen wird. Der Rech-
ner, mit dem assembliert wird, hat normalerweise eine umfang-

reiche Softwareunterstützung und schnelle Peripheriegeräte,
wie zum Beispiel die Systeme IBM 360, 370 oder ein PDP 11.
Als resident wird ein Assembler bezeichnet, wenn er auf dem
gleichen Rechner läuft wie die Anwendung. Das EXORmacs"-
Entwicklungssystem hat zum Beispiel einen residenten Assem-

bler für den MC 68000.

Dieses Kapitel bezieht sich auf den Motorola «Cross Macro
Assembler». Der Cross-Makro-Assembler kann auf einem

EXORciser®-Entwicklungssystem, auf einem IBM 370 oder

auf einem DEC PDP11 laufen. Er ist zudem ein Makro-Assem-

bler, weil er dem Programmierer die Definition von Instruk-
tionssequenzen als Makros erlaubt. Der Begriff Makro wird in
diesem Kapitel etwas später exakter behandelt.
Dieses Kapitel soll nicht eine genaue, umfassende Beschreibung
des Cross-Makro-Assemblers (im weiteren nur noch Assembler
genannt) geben, sondern nur eine Zusammenfassung der grund-
sätzlichen Eigenschaften sein. Für die speziellen Details wird
auf die entsprechende Bedienungsanleitung hingewiesen.

Quellenbefehle

Ein Quellenprogramm ist eine logische Sequenz von Quellenbe-

21

Cross-Makro-Assembler

fehlen, die dazu bestimmt ist, eine spezifische Aufgabe auszu-
führen. Ein Quellenbefehl kann entweder ein Assemblerbefehl,
ein Kommentar oder eine Assembleranweisung sein.

2.2 Assemblerbefehle
2.2.1 Aufbau

Ein Assemblerbefehl besteht aus bis zu fünf Feldern:
Zeilennummer |Label] Mnemonik [Operand] [Kommentar].
Die Zeilennummer wird entweder vom Editor oder vom Assem-
bler generiert, um die Quellencodezeile zu bezeichnen. Die Zei-
lennummern können bis zu vier Dezimalstellen aufweisen. Die
andern vier Felder sind vom Anwender zu programmieren,
wobei nur das mnemonische Feld für einen Befehl obligatorisch
ist. Label- und Kommentarfeld sind fakultativ (dargestellt
durch die eckigen Klammern). Das Operandenfeld wird nur
verwendet, falls der Befehl das verlangt, andernfalls wird es

weggelassen. | |
Der MC 68000-Assembler verwendet ein freies Format, in dem
die verschiedenen Felder irgendwo auf einer Zeile stehen kön-
nen. Jedes Feld muss jedoch vom vorhergehenden mindestens

durch eine Leerstelle getrennt sein.

2.2.2 DasLabelfeld

Das Labelfeld ist das erste, vom Anwender geschriebene Feld
einer Zeile. Jeder Befehl kann ein Label tragen. Es wird meistens

nur in Verbindung mit einem Sprung- oder einem Sprung-zur-
Subroutine-Befehl gebraucht. Diese Befehle laden den Pro-
grammzähler mit einem neuen Wert. Dabei wechselt die sequen-

tielle Ausführung eines Programmes.
Das Label weist auf jenen Befehl, bei dem das Programm
weiterfahren soll.
Das Label ist ein Ausdruck von 1 bis 30 alphanumerischen Zei-
chen, wobei das erste Zeichen ein Buchstabe (AZ) sein muss.
Alle 30 Zeichen sind signifikant, obwohl nur die ersten 8 ausge-
druckt werden. Die Zeichen AO bis A7, DO bis D7, CCR, SR,
SP und USP werden vom Assembler als Register erkannt und
dürfen somit nicht als Label gebraucht werden.
Wenn in der ersten Kolonne ein Label gesetzt wird, so muss
danach mindestens eine Leerstelle folgen. Steht das Label in
einer anderen Kolonne, so muss direkt danach ein Doppelpunkt

(:) stehen.

2.2.3 Das Mnemonikfeld

Das Mnemonikfeld kann Assembler-Befehlsausdrücke von drei
bis fünf Buchstaben enthalten. Der Assembler verwendet eine
interne Tabelle, um die Befehlsausdrücke (Mnemonik) in Binär-
code umzuwandeln.

22

Cross-Makro-Assembler

Einige der Befehle des MC 68000 brauchen einen, beziehungs-
weise zwei Operanden, andere keinen. Die Mnemoniks geben
dem Assembler Anzahl und Typ der Operanden an. Die Mne-
monikliste wird in Kapitel 3 ausführlich beschrieben.

Wie schon im Kapitel 1 erwähnt wurde, kann der MC 68000
Daten als Byte, Wort und Doppelwort verarbeiten. Einige
Befehle können nur mit einer Datenlänge arbeiten; andere dage-

gen mit zwei oder sogar mit allen drei Datenlängen. Für Befehle,
die mehrere Datenlängen haben können, muss dem MC 68000
«gesagt» werden, welche Datenlänge nun verarbeitet werden

soll. Das wird erreicht, indem der Mnemonik eine Nachsilbe
(Datenlängen-Code) angehängt wird. Ein Befehl, der den Wert
vom Datenregister DO zum Inhalt von D1 addiert, sieht wie
folgt aus:

ADD.X DO, D1

wobei .X die zu addierende Datenlange der beiden Register DO,
D1 bedeutet. Es gibt für .X folgende Möglichkeiten:

.B Byte (8 Bit)

.W Wort (16 Bit)

.L Doppelwort (Long) (32 Bit)

Falls der Datenlangencode weggelassen wird, nimmt der

Assembler die Datenlange eines Wortes. Damit gibt es fiir den
ADD-Befehl folgende Moglichkeiten:

ADD.B DO, D1 (Byte)
ADD.W DO, D1 (Wort)
ADD DO, D1 (Wort)
ADD.L (Doppelwort)

2.2.4 Das Operandenfeld

Je nach Befehl wird das Operandenfeld benutzt oder nicht. Die-
ses Feld enthalt entweder einen oder zwei Operanden und ist

mindestens durch eine Leerstelle vom Mnemonikfeld getrennt.
Falls zwei Operanden verlangt sind, mtissen diese durch ein
Komma (,) getrennt werden. Für diesen Befehlstyp bedeutet der
erste Operand die Quelle (source) und der zweite die Senke (sink
oder Bestimmungsort). Der Quellenoperand bestimmt den
Wert, der zu etwas addiert, von etwas subtrahiert, mit etwas ver-
glichen oder im Bestimmungsoperanden abgespeichert wird.

Aus diesem Grunde kann der Quellenoperand nie durch eine
Operation verändert werden. Der Bestimmungsoperand (Sen-
ke) dagegen wird praktisch immer durch die Operation verän-
dert. In Kapitel 3 werden wir für jeden Befehl des MC 68000 die
Adressiermöglichkeiten der Operanden behandeln.

23

Cross-Makro-Assembler

2.2.5 Das Kommentarfeld

Das nicht obligatorische Kommentarfeld wird vom Program-
mierer verwendet, um das Programm lesbarer und verständli-
cher zu machen. Dieses Feld wird vom Assembler nicht beach-
tet, aber gleichwohl ausgedruckt. Wenn ein Kommentar

geschrieben wird, muss dieser mit mindestens einer Leerstelle
vom vorhergehenden Element getrennt sein.

2.2.6 Reine Kommentarzeilen

Es können auch reine Kommentarzeilen geschrieben werden,
um ein Programm oder einen Codeteil, die Registerkonfigura-
tion, die Speicherzuteilung oder sonst etwas zu dokumentieren.
Diese Kommentare werden mit einem * in der ersten Kolonne
markiert. Während der Assemblierung wird der Assembler den
Beginn der Kommentarzeile erkennen und den Kommentar
nicht beachten.

2.3 Assembleranweisungen
2.3.1 Zweck

Assembleranweisungen oder «Pseudooperationen» stellen eine
spezielle Gruppe von Anweisungen an den Assembler dar. Sie
ordnen dem Objektprogramm einen gewissen Speicherbereich

zu, definieren Symbole, weisen bestimmte Speicheradressen für
temporäre Speicherung zu, steuern das Ausdruckformat und
führen eine Anzahl kleiner Verwaltungsfunktionen aus. Mit
Ausnahme der Konstantendefinition werden diese Befehle nicht
in Objektcode übersetzt.

Die Assembleranweisungen haben, wie die Assemblerbefehle,
bis zu fünf Felder:

Zeilennummer [Label] Anweisung [Operand] [Kommentar].
Hier gilt das gleiche wie fiir die Assemblerbefehle. Die Zeilen-
nummer ist eine editor- oder assemblergenerierte Quellenzei-
lenidentifikation, die bis zu vier Dezimalziffern lang sein kann.
Die andern vier Felder werden vom Anwender definiert. Von
diesen ist nur das Anweisungsfeld immer notwendig. Die Felder
in eckigen Klammern sind fakultativ.

Dazu mussen noch einige Erklarungen gegeben werden. Das
Kommentarfeld ist das einzige, das immer beliebig gesetzt oder

weggelassen werden kann. Labels können nur in fünf Fällen ver-
wendet werden, und Operanden können nur mit Anweisungen
gebraucht werden, die diese verlangen. Tabelle 2.1 fasst die
Assembleranweisungen und ihr entsprechendes Format zusam-
men.

Die Assembleranweisungen können wie die Befehle in einem
freien Format eingegeben werden. Die Felder können also
irgendwo auf einer Zeile erscheinen. Sie müssen allerdings
durch mindestens eine Leerstelle getrennt sein.

24

Cross-Makro-Assembler

Anweisung Bedeutung Format

Assemblierungssteuerung

ORG Absolute Adresszuweisung ORG Ausdruck
ORG.L Ausdruck

RORG Relative Adresszuweisung RORG Ausdruck
End Ende des Quellenprogramms END

Symboldefinition

EQU Symbol gleich dem Wert
(permanent) Label EQU Ausdruck

SET Setze Symbolwert (temporär) Label SET Ausdruck

Speicherzuteilung

DC Definiert eine Konstante [Label] DC.B Operand(en)
[Label] DC[.W] Operand(en)
[Label] DC.L Operand(en)

DS Definiert einen Speicherplatz [Label] DS.B Operand
[Label] DS[.W] Operand
[Label] DS.L Operand

Ausdrucksteuerung

PAGE Neue Seite PAGE
LIST Druckt das Assemblierte LIST
NO LIST Druckt das Assemblierte nicht NO LIST

NOL

SPC n Spring n Zeilen der Assemblierliste SPC n
NO PAGE Keine Seiten numerieren NO PAGE
LLEN m Setze Zeilenlange m LLEN m
TTL Drucke Titel auf jede Seite TTL Titelname

NOOBJ Kein Objektcode NOOBJ
FAIL Drucke Fehlermitteilung FAIL Ausdruck

G Konstantencode G

Bedingte Assemblierung

IFEQ Assembliere falls = 0 IFEQ Ausdruck
IFNE Assembliere falls# 0 IFNE Ausdruck
ENDC Ende des bedingten Assemblierens ENDC

Makrodefinition

MACRO Definiert ein Makro Label MACRO
ENDM Ende des Makros ENDM
MEXIT Spring auf das Ende des Makros MEXIT

Tabelle 2.1. Ubersicht der Assemblierungsanweisungen

25

Cross-Makro-Assembler

2.3.2 Assemblierungssteueranweisungen

Der Assembler hat zwei «Origin»-Anweisungen, die absolute
(ORG) und die relative (RORG). Diese erlauben dem Anwen-
der, seine Programme, ‘Subroutinen und Daten irgendwo im
Speicher zu laden. Programme und Daten können, in Abhän-
gigkeit der Speicherkonfiguration, in verschiedene Speicher-
bereiche geladen werden. Der Assembler hat einen Speicher-
platzzeiger (vergleichbar mit dem internen Programmzähler des
MC 68000), der auf die Speicheradresse weist, wo der Objekt-
code des nächsten Befehls oder Daten zu holen sind. ORG wie
RORG veranlassen den Assembler, eine neue, spezifizierte
Adresse in den Speicherplatzzeiger zu laden, um danach die
Speicherzuweisung der folgenden Ausdrücke auszuführen.
ORG weist einen absoluten Speicherplatz zu, RORG dagegen
nur den relativen.
Die ORG-Anweisung wird verwendet, wenn man eine Start-
adresse auswählt, bei der ein Programm oder Daten abgespei-

chert werden sollen. Die zwei gültigen Formate ORG und
ORG.L bewirken das gleiche wie die Befehle, die sich auf einen
Label beziehen und im Programm assembliert werden.

Wenn ORG eingesetzt ist, werden Befehle, die sich auf einen fol-
genden Label beziehen, in einer kurzen, schnell durchgeführten
Art assembliert. Die Labels müssen aber innerhalb der hexade-
zimalen Adressen O ... 7FFF liegen. Wird ORG.L gebraucht,
so werden die gleichen Befehle in einer langen, viel Zeit kosten-
den Art assembliert. Dafür können sich die Labels irgendwo im
Speicher befinden.
Die RORG-Zuweisung ist für verschiedene Anwendungen
nützlich:
— Mischen von Assemblerprogrammen mit Programmen, die

in einer höheren Sprache geschrieben werden, ohne dass man
sich darum kümmern muss, wo der Objektcode hinkommt.

— Entwicklung von verschiebbaren Subroutinen, die von
irgendwo im Speicher geholt und ausgeführt werden können.

- Konstruktion von Programmkomponenten, die später zu
einem grossen Programm zusammengesetzt werden.

Die letzte Assemblierungskontrollanweisung, «Ende des Quel-
lenprogrammes» (END), teilt dem Assembler mit, dass er das
Ende des Quellenprogramms erreicht hat.

2.3.3 Symboldefinitionsanweisung

Die beiden Anweisungen, EQU, «Gleich dem Wert» und SET,
«Setze den Wert», werden gebraucht, um Symbolen im Pro-
gramm numerische Werte zuzuweisen. In beiden Fällen nimmt
der Assembler den Ausdruck im Operandenfeld und weist das
Resultat dem Symbol im Labelfeld zu. Symbole, die mit SET
zugewiesen werden, können später im Programm neu definiert
werden. Dagegen können die durch EQU definierten Symbole

26

Cross-Makro-Assembler

nicht verändert werden. Ausdrücke und Symbole werden später
in diesem Kapitel vollständig beschrieben. Kurz erklärt ist ein
Ausdruck eine Kombination von Symbolen, Konstanten, alge-
braischen Operatoren und Klammern (vergleichbar mit der
rechten Seite einer algebraischen Gleichung), während ein Sym-
bol eine Serie von alphanumerischen Zeichen wie zum Beispiel
ein Label ist. Für die EQU- und SET-Anweisung muss der Aus-
druck eine ganze Zahl sein, damit er eine Adresse oder ein
Datenwert sein kann.

Da die EQU-Anweisung permanent ist, wird sie angewendet,
um Subroutinen- und Geräteadressen, oft gebrauchte Konstan-
ten usw. zu definieren. Dazu einige Beispiele:

SUBR EQU $2000
CONST EQU 5634
PIA2 EQU $FEFFOO

Man kann auch Symbole mit andern Symbolen definieren:

LAST EQU FINAL
STRT3 EQU START+3

Das Symbol im Operandenfeld muss natürlich vorher definiert
sein.
Da die SET-Anweisung temporär sein kann, wird sie für die
Definition von variablen Daten wie Maskenmuster oder Kon-
versionsfaktoren verwendet. Die folgenden SET-Anweisungen
können zum Beispiel im gleichen Programm auftreten:

MASKI SET $FFFE
MASKI SET $FFFD

Wenn das Programm assembliert ist, werden alle MASK]
durch den Wert $FFFE ersetzt bis zum zweiten SET. Danach
wird dem Symbol MASK 1 der Wert $FFFD zugeordnet.

2.3.4 Speicherdefinitionsanweisung

Die Definitionsanweisungen fiir Speicherkonstanten (DC) und
Speicherplatz (DS) konnen eine oder mehrere Adressen in
einem Lese- und Schreibspeicher definieren. Zugewiesene Spei-
cherplätze können entweder mit Werten initialisiert (DC) oder

einfach für spätere Verwendung durch das Programm reserviert
werden (DS). Zu beachten ist, dass die in Tabelle 1 aufgeführten
Assembleranweisungen DC und DS mit Datenlängencodes zu
ergänzen sind, um Byte, Wörter oder Doppelwörter zu bestim-

men.

Die DC-Anweisung kann zum Aufstellen von Datentabellen
wie ASCII-Mitteilungstabellen, indirekte Adressen usw. einge-

setzt werden. Der Assembler wird jeden Ausdruck im Operan-
denfeld als Zahlenwert verstehen und diesen Wert in den ent-

27

Cross-Makro-Assembler

sprechenden Speicherplatz schreiben. Mehrere Operanden
müssen durch Kommas getrennt werden. Dazu einige Beispiele:

TABLE DC.W 10, 5, 7, 2

Beginnend bei der Adresse TABLE werden die Dezimalzahlen

10, 5, 7 und 2 wortweise (.W) hintereinander in binärer Form in
den Speicher geschrieben.

ALBL DC LABEL +1

Bei der Adresse ALBL wird die Adresse LABEL plus 1 als

Wort eingetragen.

TABLI DC.L 10, 5, 7, 2

Beginnend bei der Adresse TABL1 werden die Dezimalzahlen
10, 5, 7 und 2 doppelwortweise (long .L) in binärer Form rechts-
bündig in den Speicher geschrieben.
ASCII-Zeichenausdrücke müssen nicht durch Kommas
getrennt werden, sondern nur am Anfang und am Ende des
Ausdrucks durch ein Apostroph (‘) gekennzeichnet sein, ausser

eine weitere DC.B-Anweisung folge.

CONST DC.B 43

Der Speicherplatz erhält den Wert 43. Das übrigbleibende Byte
wird Null sein, ausser der nächste Befehl sei wieder eine DC.B-
Anweisung.
Wenn man eine ungerade Anzahl von ASCII-Operanden mit
DC.W- oder DC.L-Anweisungen eingibt, so wird der Assem-

bler die restlichen Byte der rechten Seite mit Nullen auffüllen.
Zum Beispiel:

NUMBR DC.L 12345’

Der Speicher wird in den acht folgenden Byte die Werte «1234»
und «5000» enthalten.

Ni DC ’X’

Der Speicher wird in den zwei folgenden Byte «X0» haben.
Die DS-Anweisung erlaubt, einem Speicherbereich einen
Namen und die folgende Anzahl Byte zuzuordnen, ohne dabei
diesen Speicherbereich in irgendeiner Weise zu initialisieren.
Zum Beispiel:

TEMPO DS.B 10

Die 10 nächsten Byte sind von der Adresse TEMPO an reser-
viert.

TEMPI DS.W 10

Die 10 nächsten Wörter sind von TEMP1 an reserviert.

Die DS-Anweisung hat keinen eingebauten Schutz gegen
Adressierungsungenauigkeit. Wenn man wortbreite Daten

28

Cross-Makro-Assembler

erzwingen will, muss nach dem Befehl DS.B noch DS 0 beige-
fügt werden. |
Die Steueranweisungen zum Drucken werden hier nicht
beschrieben, da die meisten selbsterklärend sind und alle im
MC68000-Cross-Macro-Assembler-Handbuch von Motorola

vollständig erklärt sind.

2.4 Ausdrücke im Operandenfeld

Ein Ausdruck ist eine Kombination von Symbolen, Konstan-
ten, algebraischen Operatoren und Klammern, die vom Assem-
'bler als ganzzahlige Daten- oder Adressoperanden erkannt wer-
den.

2.4.1 Symbole

Wie die Labels bestehen auch Symbole aus 1 bis 30 alphanume-
rischen Zeichen, die mit einem Buchstaben (A bis Z) beginnen.
Alle 30 Zeichen sind signifikant. Beim Ausdrucken werden
immer nur die ersten 8 Zeichen ausgegeben. Die Symbole AO...
A7, DO ... D7, CCR, SR, SP und USP sind spezielle, vom
Assembler erkannte Registernamen, die wohl im Operanden-
feld, aber nicht im Labelfeld erscheinen diirfen. |

Ein Symbol kann einen absoluten oder einen relativen Wert
haben. Ein Symbol hat einen absoluten Wert, falls es durch

EQU oder SET mit einem absoluten Wert definiert wurde oder
falls ein ORG-Befehl der Symboldefinition vorangegangen ist.
Ein Symbol hat einen relativen Wert, falls es durch EQU oder
SET mit einem relativen Wert definiert wurde oder falls ein

RORG-Befehl der Symboldefinition vorausgegangen ist oder
falls weder ORG noch RORG der Symboldefinition vorausge-
gangen ist (das heisst der «Defaultwert» ist RORG 0).

2.4.2 Konstanten

Der Assembler akzeptiert sowohl numerische Konstanten als
auch ASCII-Zeichen. Eine Folge von dezimalen Ziffern (zum
Beispiel 12345) wird als Dezimalzahl interpretiert, eine Folge
von hexadezimalen Ziffern, die mit einem Dollarzeichen beginnt
(zum Beispiel $A5C7), wird als hexadezimale Zahl betrachtet.
Ein ASCII-Ausdruck ist eine Folge von bis zu vier ASCII-Zei-
chen, die mit je einem Apostroph eingeklammert sind (zum Bei-

spiel’ABCD’).

2.4.3 Algebraische Operatoren

Der Assembler erlaubt, Elemente eines Ausdrucks mit vier
arithmetischen, vier logischen und einem speziellen Operator zu
‘kombinieren. Die arithmetischen Operatoren sind: + (addie-

29

Cross-Makro-Assembler

ren), — (subtrahieren), * (multiplizieren) und / (dividieren). Die
EQU-Sequenz, zum Beispiel

START EQU $2000
STARTP6 EQU START +6
STARTMI EQU START -1

weist den Symbolen STARTP6 und STARTMI die Adressen

$2006 beziehungsweise $1FFF zu.

Die logischen Operatoren haben folgende Definitionen:
- Logisches UND (AND) bewirkt, dass jedes Bit des linken

Ausdruckes mit dem entsprechenden Bit des rechten logisch
UND-verknüpft wird.

- Logisches ODER (OR) bewirkt, dass jedes Bit des linken

Ausdruckes mit dem entsprechenden Bit des linken logisch
ODER-verknüpft wird.

— Links schieben (<) bewirkt, dass der linke Ausdruck um die
Anzahl (rechter Ausdruck) Bitpositionen nach links gescho-

ben wird.
— Rechts schieben (>) bewirkt, dass der linke Ausdruck um die

Anzahl (rechter Ausdruck) Bitpositionen nach rechts
geschoben wird.

Der Spezialoperator, das Komplement-Minus, bewirkt, dass ein
Teil eines Ausdruckes negiert oder von null subtrahiert wird.
Dieser Operator kann nur zu Beginn eines Ausdruckes oder

direkt vor einer linken Klammer auftreten.

2.4.4 Auswahl von Ausdrücken

Wie schon erwähnt, sind Ausdrücke eine Kombination von
Symbolen, Konstanten, algebraischen Operatoren und Klam-
mern. Während der Assemblierung sucht der Assembler zuerst

die Ausdrücke und arbeitet Klammern von innen nach aussen
ab. Danach werden die Operatoren in folgender Reihenfolge
behandelt:

Komplement-Minus, Schieben, UND oder ODER, Multiplika-
tion und Division, Addition und Subtraktion.
Operatoren der gleichen Priorität (zum Beispiel «*» und «/»)
werden von links nach rechts der Reihe nach verarbeitet. Alle
dazwischenliegenden Werte werden zu einem ganzzahligen 32-
Bit-Wert verarbeitet. Das Resultat eines Ausdruckes ist somit
ein ganzzahliger, 32 Bit langer Wert.

2.5 Bedingte Assemblierung

Die Möglichkeit, bedingt zu assemblieren, erlaubt dem Anwen-
der, je nach denzur Zeitder Assemblierung bestehenden Bedin-
gungen, Quellenprogrammteile ein- oder auszuschliessen. Eini-
ge Anwendungen für bedingte Assemblierung:

30

Cross-Makro-Assembler

— Ein- oder Ausschliessen bestimmter Variablen,

- Setzen von Diagnostik- oder speziellen Bedingungen für die
folgenden Testläufe,

- Generieren spezieller Versionen von mehrfach verwendeten
Programmen.

Für den MC68000-Assembler müssen den Quellenprogramm-

teilen, die entweder ein- oder ausgeschlossen werden sollen, eine
der beiden Anweisungen vorangehen: IFEQ und IFNE, gefolgt
von ENDC am Programmteilende. Wenn eine IFEQ-Anwei-
sung verwendet wird, kann der Programmteil nur assembliert
werden, falls der Ausdruck im Operandenfeld gleich Null ist.
Wenn IFNE gebraucht wird, kann der Programmteil nur

assembliert werden, falls der Ausdruck verschieden von Null
ist.

Die bedingte Assemblierung wird zum Beispiel dort eingesetzt,
wo es möglich sein soll, ein Programm zu schreiben, dessen Ein-
und Ausgaberoutine davon abhängig gemacht wird, ob ein
Disk- oder ein Lochstreifensystem verwendet wird. Dazu ist zu
bemerken, dass es ein Flag DORT gibt, das anzeigt, ob Disk-
oder Lochstreifen-Ein- und -Ausgabe verwendet wird. Wenn
DORT Null ist, so wird das Programm für ein Disksystem,
andernfalls für ein Lochstreifensystem assembliert.

2.6 Makros

Der Anwender wird oft in die Situation kommen, eine bestimm-
te Sequenz mehrmals in einem Programm ausführen zu müssen.
Anstatt jedesmal die Befehlssequenz zu schreiben, kann diese
auf zwei verschiedene Arten nur einmal geschrieben werden:
entweder als Subroutine oder als Makro.

Wie die meisten Leser schon wissen, ist die Subroutine eine
Befehlssequenz, die nur einmal in einem Programm erscheint.

Jedesmal, wenn die Subroutine fertig durchlaufen ist, geht die
Steuerung durch einen «Return»-Befehl wieder an das aufrufen-
de Programm zurück. Subroutinen sind im Kapitel 3 im Detail
beschrieben.
Wie die Subroutinen, erlauben auch die Makros dem Anwen-
der, einer Befehlssequenz einen Namen zu geben. Jedesmal,
wenn der Name in einem Operandenfeld eines Quellenpro-
gramms auftaucht, wird der Assembler diesen Makronamen

durch die entsprechenden Instruktionen ersetzen. Darin liegt
der Unterschied zwischen Subroutine und Makro: Die Subrou-
tinenbefehle werden während der Programmausführung einge-

setzt, während die Makrobefehle beim Assemblieren eingesetzt
werden.

Makros haben folgende Vorteile:
— Kiurzere Quellenprogramme,
— Bessere Programmdokumentation,
— Verwendung von ausgetesteten Befehlssequenzen. Ist einmal _

31

Cross-Makro-Assembler

ein Makro fehlerfrei, so kann man sicher sein, dass bei Ver-
wendung dieses Makros darin keine Fehler mehr auftreten.

— Einfach abzuändern. Wird ein Makro abgeändert, so ändert
der Assembler jedesmal automatisch bei einem Einsatz den
Makrobefehl.

— Makros können gebraucht werden, um eine Makrobibliothek
aufzubauen, die ein oder mehrere Programmierer fir die Pro-
grammerstellung brauchen können.

— Schnelle Ausführung. Der Mikroprozessor wird nicht wie bei
Subroutinen durch Aufruf- und Rückkehrbefehle verzögert.

Nachteile der Makros:

— Wiederholung der gleichen Befehlssequenz, da das Makro
jedesmal, wenn es aufgerufen wird, das Programm vergrös-
sert.

— Ein einziges Makro kann eine Menge Befehle erzeugen.
— Fehlen von Standards.

— Mögliche unerwünschte Effekte in Registern und Statusbit,
falls diese Probleme zuwenig beachtet werden.

Makrodefinition

Jede Makrodefinition besteht aus drei Teilen:
1. Makrokopf, bestehend aus MACRO-Anweisung mit dem

Makronamen und dem Labelfeld.
2. Makrokorper, bestehend aus den Befehlen, die den Makro-

code ausmachen.

3. Makroende, bestehend aus ENDM-Anweisung, die das Ende
der Makrodefinition anzeigt.

400 002000 D840 LABEL ADD.W DO,D4 Addiere zwei Register
mn Nm my! - 7 nd N? N ng od Nr meme

Bild 2.1 Standardformat des Objektlistings, wie es der Makroassembler liefert

32

I Kommentarfeld

Operandenfeld

Mnemonikfeld

.Labelfeld

zweites Operandenwort
falls gebraucht (Hex.)

erstes Operandenwort
falls gebraucht (Hex.)

_ Operationscode
(Hex.)

momentaner Adresswert
(Hex.)

Quellenzeilennummer

(Dezimal)

Cross-Makro-Assembler

Der Assembler erlaubt dem Anwender, bis zu neun Parameter
in ein Makro zu überführen. Diese Parameter müssen dann im

Operandenfeld des Makroaufrufes stehen. Der Assembler lässt
auch variable Datenlängencode in einem Makro zu.
Es gibt noch eine Makroanweisung, die bis jetzt noch nicht
erwähnt worden ist: MEXIT. Diese Anweisung wird mit der

bedingten Assemblierung gebraucht, um die übrigbleibenden
Befehle des Makros zu überspringen.

2.7 Zeilendruckerformat

Bild 2.1 zeigt das Zeilenformat eines Objektlistings, das vom
Assembler ausgedruckt wird. Jede Seite des Listings kann einen

Seitenkopf, Kommentarzeilen, Erweiterungszeilen und Fehler-
zeilen haben. Die letzte Seite enthält die Zusammenstellung aller
Fehlerzeilen und die Symboltabelle.

33

3. Der Befehlssatz des MC 68 000

Bild 3.1
Befehlsformat im Speicher

Das Kapitel 3 gibt eine detaillierte Beschreibung des Befehlssat-
zes des MC 68000 und seiner 14 Adressierungsarten. Die
Befehle werden für die Behandlung durch Zusammenfassen
ähnlicher Befehle nach funktionellen Kriterien geordnet. So
werden Additionsbefehle zusammen mit Subtraktionsbefehlen,

Schiebebefehle mit Rotierbefehlen usw. behandelt. Durch dieses
Vorgehen kann die Verwandtschaft einzelner Befehle sehr ein-
fach aufgezeigt werden.

3.1 Das Befehlsformat im Speicher

Befehle belegen, wie in Bild 3.1 gezeigt, eine bis fünf Speicher-
zeilen. In der ersten Zeile steht das sogenannte Operationswort,
das den Befehl, die Adressierart(en) sowie die Länge des Befehls
bestimmt. Die zusätzlichen Zeilen sind belegt, falls der Befehl
mit unmittelbarer Adressierung, Absolutadressierung oder mit
Verschiebungsangabe arbeitet. Der längste Befehl besteht aus 5

Wörtern, dem Befehlswort, gefolgt von je 2 Wörtern für das Ziel
der effektiven Adresserweiterung.
Zweiwort - (oder «lange») Operanden im Falle der unmittelba-
ren oder absoluten Adressierung werden im Speicher in der
Rangfolge höheres Wort/tieferes Wort abgelegt. Falls das höhe-
re Wort an Adresse ADDR abgespeichert ist, befindet sich das
tiefere Wort an der Adresse ADDR+2. Dieser Grundsatz ist
gültig für den MC 68000 und muss bei der Programmierung
eingehalten werden.

15 10 5 0

Befehlswort

Bestimmt Befehlstyp, Adressierart(en) sowie Länge

des Befehls

direkter Operand

(Falls benötigt: Ein oder zwei Wörter)

Quelle der effektiven Adresserweiterung

(Falls benötigt: Ein oder zwei Wörter)

Ziel der effektiven Adresserweiterung (Falls benötigt: Ein oder zwei Wörter)

35

Der Befehlssatz des MC 68000

3.2 Adressierarten

Der MC 68000 besitzt 14 Adressierarten. Sie sind in Tabelle 3.1
dargestellt und können 6 Gruppen zugeordnet werden: Register
direkt, Register indirekt, absolute Adressierung, relative Adres-
sierung, unmittelbare Adressierung, implizite Adressierung. In
der genannten Tabelle ist pro Adressierungsart die Formel
angegeben, mit der die effektive Adresse berechnet wird, sowie

die Assemblersyntax und die Zahl allfälliger Erweiterungs-

worte.

Art Adresserzeugung Assembler- Erweite-
syntax rungs-

worte

Register direkt
Datenregister direkt EA = Dn Dn —
Adressregister direkt EA=An An _

Adressregister indirekt
Adressregister indirekt EA=(An) (An) -
Adressregister indirekt EA =(An) Ane An+N (An)+ _
mit Postdekrement
Adressregister indirekt An«-An-N,EA=(An) -(An) -

mit Predekrement
Adressregister indirekt EA=(An)+d,, d(An) 1
mit Erweiterung
Adressregister indirekt EA =(An)+(Ri)+d, d(An,Ri) 1
mit Index und Erweiterung

Absolute Adressierung
Absolut kurz EA = (Nächstes Wort) XXXX 1
Absolut lang EA = (Nächstes und XXXXXXXX 2

übernächstes Wort)

Relative Adressierung
Relativ mit Verschiebung EA =(PC)+d,, d 1
Relativ mit Index und Verschiebung EA=(PC)+{Ri)+d, d(Ri) 1

Unmittelbare Adressierung
Unmittelbar Daten = nachstes Wort oder tt XXXX 1 oder 2

nachste Worter
Unmittelbar schnell Daten im Befehlswort enthalten +xx _

Implizierte Adressierung
Implizierte Register EA = SR, USP, SP, PC _

Tabelle 3.1 Die Adressierarten des MC 68 000

EA = Effektive Adresse SP = Aktiver Systemstapelzeiger
An = Adressregister USP = Benutzerstapelzeiger
Dn = Datenregister ds = 8-Bit-Verschiebungsangabe
Ri = Adress- oder Datenregister, dj; = 16-Bit-Verschiebungsangabe

verwendet als Indexregister N = | fiir Byte; 2 fiir Wort; 4 fiir Doppelwort
SR = Statusregister Q = Inhalt von
PC = Programmzähler > = Ersetzt

36

Der Befehlssatz des MC 68000

Falls ein Operand adressiert wird, der im Speicher abgelegt ist

(was der Fall ist bei unmittelbarer, absoluter oder Adressierung
mit Verschiebung), so müssen die Adressierregeln des MC
68000 angewendet werden:
1. Auf Byteoperanden kann entweder durch gerade oder

ungerade Adressen zugegriffen werden. |
2. Auf Wort- und Doppeloperanden muss durch eine gerade

Adresse zugegriffen werden.
Falls obige Regel nicht eingehalten wird, gibt der MC 68000
eine Fehlermeldung (siehe Kapitel 7).
Die meisten der nachfolgenden Beschreibungen der Adressier-
arten enthalten zur Verdeutlichung Beispiele, die den MOVE-
Befehl enthalten. Der MOVE-Befehl hat das folgende allge-
meine Format:

MOVE.X (EA queie) (EAzieı) (EA: effektive Adresse)

X steht als Datenlängecode der zu verschiebenden Daten (B, W
oder L; siehe Kapitel 2). Der MOVE-Befehl hat immer 2
Operanden; der erste adressiert den Speicherplatz oder das
Register, das die zu transferierenden Daten enthält (Quelle), der
zweite adressiert den Speicherplatz oder das Register, wo die
verschobenen Daten abzulegen sind (Ziel/Bestimmungsort).

Der MOVE-Befehl gehört zu den wirksamsten Befehlen des

MC 68000. Abhängig von der Adressierart für Quelle und Ziel
können durch ihn Daten transportiert werden von Register zu
Register, von Register an einen Speicherplatz, vom Speicher-
platz zu einem Register oder von einem Speicherplatz zu einem
anderen ohne Beeinflussung eines Registers. Es ist sogar mög-
lich, mit ihm unmittelbar folgende Daten in ein Register oder zu
einem Speicherplatz zu transportieren.

3.2.1 Adressierart Register direkt

Die Adressierungsart «Register direkt» holt Datenoperanden
von irgendeinem (oder lädt ihn in irgendein) Daten- oder

Adressregister. Der Befehl

MOVE.L AO,D1

ladt zum Beispiel den 32-Bit-Inhalt des Adressregisters AO in

das Datenregister D1, ohne den Inhalt von AO zu verandern.

3.2.2 Adressierart Adressregister indirekt

In dieser Gruppe «zeigt» der Inhalt eines Adressregisters auf
einen Operanden. Das bedeutet, dass das spezifizierte Adressre-
gister eine Basisadresse enthalt, die der MC 68000 zur Berech-

nung der effektiven Operandenadresse benützt (falls der Befehl
ein Sprungbefehl ist, ist der Operand eine Adresse; sonst ist er

37

Der Befehlssatz des MC 68000

ein Datenwort). Der Zusammenhang zwischen Basisadresse

und der effektiven Adresse hängt davon ab, welche der 5 mögli-
chen indirekten Adressierarten verwendet wird.
Bei der einfachsten Art der Gruppe, Adressregister indirekt,
enthält das Adressregister die effektive Adresse selbst. Der
Befehl

MOVE.W (A0Q,)D1

lädt das Wort, das an Adresse AO abgespeichert ist, in die 16 tie-
feren Bit des Datenregisters D1. Bild 3.2 illustriert den MOVE-
Befehl, wo AO auf den Speicherplatz $53F00 zeigt, der den
Wert $1C9A enthält.

MOVE.W (AO),Dl
on

AO | $00053F00 | Speicher

\ ser

$53F00

$53F02

$53F04

Ue

3.2.3 Adressregister indirekt mit Nach-
inkrementierung oder Vordekrementierung

Die beiden indirekten Adressierarten mit Nachinkrementierung
bzw. Vordekrementierung ermöglichen, mit einem Befehl auf
Daten in einem Speicherplatz zuzugreifen und sie zu verschie-
ben sowie die Adresszeiger entweder vor der Operation zu
dekrementieren oder nach der Operation zu inkrementieren.
Damit ist es sehr leicht, benachbarte Daten im Speicher, zum
Beispiel bei Tabellen oder Datenfolgen, zu bearbeiten.
Die erste dieser beiden Arten, Adressregister indirekt mit

Nachinkrementierung, addiert nach der Bearbeitung des
Operanden 1, 2 oder 4 zum Wert des Adressregisters. Bei einer

Byteoperation wird 1, bei einer Wortoperation 2 und bei einer
Doppelwortoperation 4 addiert. Der Befehl

MOVE.W (A0)+,(A1)+

ladt zum Beispiel das Wort, das an Adresse AO abgespeichert
ist, in den Speicherplatz an Adresse Al und erhöht anschlies-
send beide Adresszeiger um 2. Dieser MOVE-Befehl kann

38

Bild 3.2

Adressierungsart «Adressregister
indirekt»

Der Befehlssatz des MC 68 000

Bild 3.3
Nachinkrementieren eines Adress-

registers mittels MOVE.W (A0)+,

(A1)+

a) vor Ausführen, b) nach Ausführen des

Befehls

natürlich in einer Schleifenanweisung verwendet werden, um
eine Anzahl von Datenworten von einem Teil des Speichers in
einen andern zu verschieben. Bild 3.3 illustriert, wie der. MOVE-
Befehl ausgeführt wird, falls die beiden Adresszeiger zuerst auf
die Adressen $53F00 bzw. $60000 zeigen und die Quellen-
adresse den Wert $1C9A enthält.

Speicher

Adress-Register

S53EFE

AO | $00053F02 | $53F00 $1C9A

$53F02

Ss Ss
S5FFFE

Al | $00060002 | $60000 $1C9OA

$60002

Speicher

Adress-Register

5 S53EFE

AO | $00053F00 P S53F00 $1C9A

$53F02

TT >

S5FFFE

Al | $00060000 | > S60000

$60002

In ähnlicher Weise wie bei der vorbeschriebenen Art subtrahiert

die Art «Adressregister indirekt mit Vordekrementierung» 1, 2
oder 4 vom Wert des Adressregisters, bevor der Operand bear-
beitet wird. Auch diese Art kann verwendet werden, um Daten-
blöcke von einem Speicherbereich in einen andern zu transferie-
ren, nur werden hier die Adressregister vor der Befehlsausfüh-

rung dekrementiert. Der Befehl

MOVE.W -(A0),-(A1l)

kopiert zum Beispiel ein Datenwort vom Quellenplatz zum Ziel-
platz, nachdem die beiden Adressregister um je 2 dekrementiert

worden sind.
Wie in Kapitel 1 erwähnt, können alle 8 Adressregister des MC
68000 als Stapelzeiger verwendet werden. Dabei wird A7 als
Systemstapelzeiger gebraucht, während AO bis A6 als Anwen-
derstapelzeiger zur Verfügung stehen. Daraus folgt, dass der
MC 68000 bis zu 8 Anwenderstapel im Speicher behandeln

kann.

39

Der Befehlssatz des MC 68000

Aus den vorhergehenden Abschnitten ist ersichtlich, dass die
Adressierarten mit Nachinkrementierung und Vordekrementie-
rung sehr gut verwendet werden können, um Stapel zu bearbei-
ten. Falls AO als Anwenderstapelzeiger verwendet wird,

schreibt der Befehl

MOVE.L DO,-(A0)

den 32-Bit-Inhalt von DO in den Stapel und der Befehl

MOVE.L (A0)+,D0

speichert den ursprünglichen Inhalt von DO wieder zurück.
Zusätzlich gibt es noch eine Variante des MOVE-Befehls, -
genannt «Transportiere mehrere Register» (MOVEM), um
Gruppen von Registern in den Stapel zu schieben bzw. wieder

herauszuholen.
Die noch zu beschreibenden zwei Adressierarten unterstützen
den Tabellenzugriff, indem sie die Addition von Verschiebungen

und Indizes zum Adressregister ermöglichen.

3.2.4 Adressregister indirekt mit Verschiebung |

In dieser Adressierart wird vor der Befehlsausführung eine im
Befehl spezifizierte, maximal 16 Bit lange ganze Zahl zum
Inhalt des Adressregisters addiert und mit der resultierenden
Adresse zu einem Datenwort im Speicher zugegriffen. Die

Adressierart eignet sich besonders gut für die Bearbeitung von

Listen oder Tabellen, wo das Adressregister die Anfangsadresse
enthält und die zu addierende Zahl die relative Verschiebung zur

Anfangsadresse spezifiziert.
Die Verschiebung wird in Byte angegeben. Das bedeutet, dass in
Datentabellen, die als Datenelemente Byte enthalten, die Ver-
schiebung gleich der Elementnummer ist; in Tabellen, die als
Datenelemente Wörter enthalten, ist die Verschiebung gleich
der Elementnummer multipliziert mit 2, in Tabellen mit Doppel-

Speicher

$53F00 ELEMENT 0

MOVE.W 14, (A0),D1

ao| $00053F00 ~~ |—-@)

H
W
A

D
e

W
H

OX

1 GG@7> sic | $53F0E| $1C9A)

_

40

Bild 3.4

Anwenden einer Verschiebung
zum Adressregister

Der Befehlssatz des MC 68000

wörtern gleich der Elementnummer multipliziert mit 4. Da-
durch, dass die Verschiebung eine maximal 16 Bit lange ganze
Z,ahl ist, ergeben sich folgende Verschiebungswerte.

Datenelement Verschiebung

positiv negativ

Byte 32 767 Byte 32 768 Byte

Wort 16 383 Wörter 16 384 Wörter

Doppelwort 8191 Doppelwörter 8192 Doppelwörter

Als Beispiel für diese Adressierart wird der Befehl

MOVE.W 14(A0),D1

diskutiert. AO enthält die Startadresse einer wortorientierten
Tabelle. Der obige Befehl lädt den Inhalt des 8. Elements (Ele-
ment 7) in das tieferwertige Wort von Datenregister D1. Bild 3.4
illustriert diese Operation.

3.2.5 Adressregister indirekt mit Index

Dies ist die letzte zu beschreibende Adressierart aus der Gruppe
der indirekten Adressierarten. Die effektive Operandenadresse

wird berechnet, indem zum Adressregister der Inhalt eines
Indexregisters (Daten- oder Adressregister) sowie eine maximal
8 Bit lange ganze Zahl addiert werden. Dies ergibt für die
Berechnung der Effektivadresse folgende Formel:

EA = (An) +(Ri) + d,

Es besteht die Moglichkeit, entweder das ganze Indexregister
oder nur das tieferwertige Wort davon zu verwenden. Im ersten
Fall muss zum Indexregister .L, im zweiten Fall .W gesetzt wer-
den. Die Befehlsausftihrungszeit ist in beiden Fallen gleich.
Weil diese Adressierart zwei verschiedene Offsets anbietet, ist
sie nutzlich fur die Anwendung in zweidimensionalen Arrays.
In solchen Fallen enthalt das Adressregister gewohnlich die

Startadresse des Arrays, wahrend die Verschiebung und das
Indexregister den Reihen- und Kolonnenoffset angeben (oder

umgekehrt). Der Index ist normalerweise als Byteanzahl ange-
geben und in einem Datenregister enthalten; für die Verschie-
bung (in Byte) wird ein Symbol verwendet.
Zur Illustration dieser Adressierart wird angenommen, dass ein

auf dem MC 68000 basierendes System eine chemische Pro-
duktionsanlage mit 6 Druck ventilen überwacht. Das System lie-
fert jede halbe Stunde die Werte der 6 Ventile und speichert diese

ab. In der Zeit einer Woche ergibt dies einen Array mit 366
Blöcken zu je 6 Werten.

4l

Der Befehlssatz des MC 68 000

In Bild 3.5. wird das Lesen des Wertes von Ventil 4 in der zweiten

Leseoperation (Ablesung 1) gezeigt. Der entsprechende Befehl
lautet:

MOVE.W VALVE (A0,D0.W),D1

Die Startadresse des Arrays ist $53F00.

$53F00

MOVE.W VALVE (AQ, DO.Ww), D1 , Ablesung

Ablesung
LE 1 /

wf § o00¢ | ©

J
——$:53F0C|(yaıve 0) |)

| (VALVE 1)
VALVE=8 (VALVE 2) een

(are) 7
$53F 141 $ICIA

[VALVE 5

D1 ZZ SH 7

Ablesung
335

3.2.6 Absolute Datenadressierung

Bei der absoluten Datenadressierung ist die effektive Adresse
selbst als Operand spezifiziert. Es gibt zwei absolute Adressier-
arten: «Absolut kurz» und «absolut lang». Im ersten Fall ist der
Operand eine 16-Bit-Adresse, im zweiten Fall eine 32-Bit-
Adresse.

«Absolut kurz» erlaubt, entweder zu den ersten 32 KByte im

Speicher (0... $7 FFF) oder zu den höchsten 32 KByte im Spei-
cher ($FF8000...$FFFFFF) zuzugreifen.
«Absolut lang» gibt die Möglichkeit, zu irgendeinem Speicher-
platz des 16-MByte-Speichers des MC 68000 zuzugreifen.
Befehle mit «absolut kurz» belegen im Speicher 2 Wörter und
benötigen zur Ausführung 12 Prozessorzyklen, solche mit
«absolut lang» 3 Wörter respektive 16 Zyklen. Mit diesen zwei

42

Bild 3.5

Ermittlung eines Datenwertes aus
einem zweidimensionalen Array

Der Befehlssatz des MC 68000

absoluten Adressierarten unterstützt der MC 68000 Anwen-
dungen mit einem sehr grossen Adressierraum, ohne die Effekti-
vität von Anwendungen zu beeinträchtigen, die nur einen
kleinen Adressierraum benötigen. «Absolut kurz» wird aber
auch in Anwendungen mit grossem Adressierraum eingesetzt,
um zu häufig gebrauchten oder zwischengespeicherten Daten,

die in den höchsten 32 KByte des Speichers abgespeichert sind,
zuzugreifen.
Beispiele:

Absolut kurz (2 Wörter, 12 Zyklen)
MOVE.W $3F00,D1

Absolut lang (3 Wörter, 16 Zyklen)
MOVE.W $03F00,D1

Beide Befehle laden das Wort an Adresse $3F00 in das tieferlie-
gende Wort des Datenregisters D1. Der Datenlangecode .W

bezieht sich auf die Grösse der verschobenen Daten.
Der Operand eines Befehls mit absoluter Adressierung ist
anstelle einer hexadezimalen Zahl oft mit einem Label spezifi-
ziert. Dies wird illustriert am Befehl

MOVE.L TABLE(DO.L),D1

Mit diesem Befehl wird das Doppelwort, das sich an Adresse
Table befindet, in das Adressregister AO geladen. Bei dieser Art
von Befehlsdeklarierung ist von Interesse, ob fiir die Ausfiih-
rung «absolut kurz» oder «absolut lang» verwendet wird. Die
Antwort ist abhängig davon, ob Table in einer höheren oder
einer tieferen Adresse als der MOVE-Befehl abgelegt ist: |

— Falls Table in einer tieferen Adresse als der MOVE-Befehl
abgelegt ist (es wird rückwärts referenziert), wird der Assem-
bler die geeignete kurze oder lange Adresse generieren.

- Falls Table in einer höheren Adresse als der MOVE-Befehl
abgelegt ist (es wird vorwärts referenziert) und der MOVE-
Befehl unter eine ORG-Anweisung fällt, wird der Assembler

versuchen, eine kurze Adresse zu generieren. Bei Vorwärts-
Referenz kann der Assembler durch eine ORG.L-Anweisung

gezwungen werden, eine lange Adresse zu nehmen.

Hinweis: Der Assembler generiert absolute Adressen für Befeh-
le, die unter einer ORG-Anweisung, relative Adressen für

Befehle, die unter einer RORG-Anweisung stehen.

3.2.7 Programmzahler-relative Adressierung

Die zum Programmzahler relativen Adressierarten geben die
Möglichkeit, positionsunabhängige, das heisst «umplazierbare»

(relocatable) Programme zu entwickeln, die, wenn einmal
geschrieben und assembliert, irgendwo im Speicher ausgeführt

43

Der Befehlssatz des MC 68 000

werden können. Bei den zum Programmzahler relativen Adres-
sierarten berechnet der MC 68000 die effektiven Adressen,
indem er zu der im Programmzähler enthaltenen Adresse eine
Verschiebung addiert. Der Programmzähler zeigt im Berech-
nungszeitpunkt der effektiven Adresse auf das Erweiterungs-
wort des in Ausführung begriffenen Befehls. Der Wert der Ver-
schiebung ist in diesem Erweiterungswort enthalten.
Die zwei zum Programmzähler relativen Adressierarten, die der

MC 68000 anbietet - «Relativ mit Verschiebung» und «Relativ
mit Index» —, werden verwendet, um zu Operanden zuzugreifen,
die im Speicher einige Byte hoher oder tiefer liegen als der in

Ausführung begriffene Befehl. Beiden Adressierarten ist
gemeinsam, dass die Verschiebung in Symbolen angegeben wer-
den darf, da der Assembler die Verschiebung zur Zeit der
Assemblierung berechnen kann (vergleiche die nachfolgend dis-
kutierten Beispiele).
Die Umplazierbarkeit der Programme bleibt dann aber nur
gewahrleistet, wenn den betreffenden Befehlen eine RORG-
Anweisung vorausgeht. Die RORG-Anweisung bewirkt, dass
der Assembler die zum Programmzahler relative Adressierung
verwendet, wahrend die ORG-Anweisung bewirkt, dass der
Assembler absolute Adressierung verwendet. |

3.2.7.1 Relativ mit Verschiebung

«Relativ mit Verschiebung» ist die einfachere der beiden Adres-

sierarten. Die effektive Adresse EA berechnet sich als Summe
aus der Adresse im Programmzähler und der vorzeichenbehaf-
teten 16-Bit-Verschiebung im Erweiterungswort des Befehls:

FA=(PC) +d,,

3.2.7.2 Relativ mit Index

Die effektive Adresse ist in diesem Fall die Summe der Adresse
des Erweiterungswortes, das im Programmzähler enthalten ist,
des Inhalts eines Indexregisters (entweder ein Daten- oder ein
Adressregister) und einer maximal 8 Bit langen, vorzeichenbe-
hafteten ganzen Zahl, die im Erweiterungswort des in Ausfüh-
rung begriffenen Befehls enthalten ist. Formelmässig kann dies
wie folgt geschrieben werden:

EA = (PC) + (Ri) + d,

Diese Art ist besonders ntitzlich, um Werte aus einer Liste oder
einer Datentabelle zu lesen. Im Falle solcher Anwendungen

adressiert die Summe des Programmzählers und der 8-Bit-Ver-
schiebung den Anfang der Tabelle, und das Indexregister gibt

den Abstand des gewünschten Datenelements vom Tabellen-

anfang an. Dies wird illustriert in Bild 3.6.

44

Bild 3.6
Adressierungsart «Programm-
zähler-relativ mit Index»

Der Befehlssatz des MC 68000

Speicher

OP - WORT

Programmzahler
zeigt hrerhin ——> | ERW. WORT

Startadresse der 5

Datentabelle (PC+ dg) ”

Daten
Tabelle

Gewünschte Daten

(Pe +Ri +45)
Es ist möglich, entweder nur das tieferwertige Wort des Indexre-
gisters oder seinen ganzen, 32 Bit langen Inhalt zu verwenden,
indem im Befehl zum Symbol des Registers entweder ein .W

oder in .L gesetzt wird (im Falle, dass der Datenlängecode aus-
gelassen wird, setzt der Assembler als Defaultwert ein .W).

Als Beispiel für die Anwendung dieser Adressierart dient der

folgende Befehl:

MOVE.W TABLE(DO.L),D1

Bei der Assemblierung wird der Assembler aufgrund dieses
Befehls die Verschiebung in Byte zwischen dessen Erwei-
terungswort und der Position Table, der Startadresse der
Datentabelle, berechnen und mit dem Ergebnis das Erwei-
terungswort bilden. Der Mikroprozessor wird bei der Befehls-

ausführung den 32-Bit-Inhalt des Datenregisters DO zur
berechneten Startadresse der Datentabelle addieren und dann
den 16-Bit-Inhalt des durch die erhaltene Effektivadresse adres-
sierten Speicherplatzes in die 16 tieferwertigen Bit des Datenre-
gisters D1 laden. Weil die Verschiebung eine 8 Bit lange, vorzei-
chenbehaftete ganze Zahl ist, darf Table sich nicht mehr als 63
Worte höher und nicht mehr als 64 Worte tiefer im Speicher

befinden als das Erweiterungswort.

3.2.8 Unmittelbare Datenadressierung

Unmittelbare Datenadressierung wird verwendet, um eine Kon-
stante als Quellenoperanden zu spezifizieren. Diese Konstante

45

Der Befehlssatz des MC 68000

ist Bestandteil des Befehls. Es gibt zwei Adressierarten, die zur
unmittelbaren Datenadressierung gezählt werden: «unmittel-
bar» und «unmittelbar schnell».

3.2.8.1 Unmittelbar

In der Art «unmittelbar» kann ein Byte, ein Wort oder ein Dop-

pelwort als Konstante spezifiziert werden. Die Grösse der Kon-
stante bestimmt das Befehlsformat. Im Falle eines Byte oder
eines Wortes umfasst der Befehl ein Erweiterungswort, im Falle
eines Doppelwortes zwei Erweiterungsworte. Dies wird gezeigt
in Bild 3.7.

| Wort |
oder

Höherwerlig

Tieferwertig

Bei der Befehlsausführung werden zwei Fälle unterschieden:
Falls das Ziel ein Adressregister ist, werden Konstante von der
Länge eines Byte oder eines Wortes auf ein Doppelwort vorzei-
chenerweitert; im Falle, dass das Ziel ein Datenregister ist, gibt
es keine Vorzeichenerweiterung. Dazu zwei Beispiele:
1. Beispiel: |

MOVE.W +$834E,D0

Der Befehl lädt den Wert $834E in das tieferwertige Wort des
Datenregisters DO. ’
2. Beispiel:

MOVE.W +$834E,A0

Der Befehl ladt den Wert SFFFF834E in das Adressregister AO
und beeinflusst damit alle 32 Bit.

3.2.8.2 Unmittelbar schnell

Es gibt nur 3 Befehlstypen, mit denen die Art «unmittelbar
schnell» verwendet werden kann:

~ ADDQ(addiere schnell, Q = quick)

— SUBQ (subtrahiere schnell)
— MOVERQ (transportiere schnell)

Die Befehle ADDQ und SUBQ geben die Möglichkeit, zu einem
Register oder einer Speicherzelle eine ganze Zahl zwischen 1

46

Bild 3.7
Formate der Erweiterungsworte

fur die Adressierart «unmittelbar»

Der Befehlssatz des MC 68 000

und 8 zu addieren oder davon zu subtrahieren. Sie sind damit
die Inkrementier- beziehungsweise Dekrementierbefehle des
MC 68000.

Der Befehl MOVEQ ermöglicht, eine vorzeichenbehaftete Kon-
stante in der Grösse von maximal einem Byte (-128 bis +127)
in ein Datenregister zu laden. Die Konstante wird zeichener-

weitert auf ein Doppelwort, so dass alle 32 Bit des Datenregi-
sters betroffen sind. Ein Beispiel soll dies verdeutlichen:

MOVEQ +#-2,D0

Der Befehl lädt den Wert $FFFFFFFE (das Zweierkomple-
ment von -2, zeichenerweitert auf ein Doppelwort) in das
Datenregister DO.
Die drei zuvor beschriebenen Adressierarten sind mit «schnell»

bezeichnet, weil sie im Speicher nur ein Wort belegen (die Kon-
stante ist in das Operationswort eingebettet). Aus diesem Grun-
de ist die Ausführungszeit viel kürzer als für die gewöhnlichen
«unmittelbar»-Arten.

3.2.9 Implizite Adressierung
\

Einige Befehle verwenden bei der Befehlsausführung ein
bestimmtes internes Register, ohne dass dieses im Operanden
identifiziert sein muss. Die Adressierung eines solchen Registers
wird implizit genannt. Der Sprungbefehl (JMP) lädt beispiels-
weise immer eine Adresse in den Programmzähler (PC), obwohl

der Programmzähler im Befehl nicht explizit als Zielregister
identifiziert wird. Als implizite Register werden neben dem Pro-
grammzähler (PC) noch folgende Register verwendet: System-
stapelzeiger (SP), Anwenderstapelzeiger (USP), Überwa-
chungsstapelzeiger (SSP), Statusregister (SR). In Tabelle 3.2
sind die Befehle, die die implizite Adressierung verwenden,
sowie die betreffenden impliziten Register aufgeführt.

Befehl Implizite Register

Bedingter Sprung (Bcc), PC
Unbedingter Sprung (BRA)

Sprung zu Subroutine (BSR) PC,SP

Prüfe Register auf Grenzen (CHK) SSP,SR

Prüfe Bedingung, vermindere und springe PC
(DBcc)

Division mit Vorzeichen (DIVS) SSP,SR

Division ohne Vorzeichen (DIVU) SSP,SR

Sprung (JMP) PC

Sprung zur Subroutine (JSR) PC,SP

4

Der Befehlssatz des MC 68 000

Implizite Register

Zuweisung (LINK) SP

Transportiere Bedingungscode SR
(MOVECCR)

Transportiere Statusregister(MOVESR) SR

Transportiere Benutzerstapelzeiger USP
(MOVE USP)

Eintragen der effektiven Adresse(PEA) SP

Rückkehr von Ausnahme (RTE) PC,SP,SR

Rückkehr und Rückladung Bedingungs- PC,SP,SR
code (RTR)

Rtickkehr aus Subroutine (RTS) PC,SP

Falle (TRAP) SSP,SR

Falle bei Uberlauf (TRAPV) SSP,SR
: Ä Tabelle 3.2

Freigabe (UNLK) SP Implizite Befehle

3.2.10 Adressierarten, die Adressen oder Daten
vorzeichenerweitern

Obwohl die Daten- und Adressregister des MC 68000 grund-
sätzlich universell verwendbar sind, werden die Datenregister in
erster Linie verwendet, um Daten abzuspeichern, und die
Adressregister, um die 32-Bit-Speicheradressen abzuspeichern.

Adressierungsart Art der Vorzeichenerweiterung

Adressregister direkt Wortadresse verlängert zu
(als Bestimmung) Doppelwort

Adressregister indirekt Wortverschiebung verlangert zu
mit Verschiebung Doppelwort

Adressregister indirekt 1. Byteverschiebung verlangert
mit Index zu Doppelwort

2. Wortindex verlangert zu
Doppelwort

Absolute Adresse kurz Wortadresse verlangert zu

Doppelwort

Programmzahler relativ Wortverschiebung verlangert zu
mit Verschiebung Doppelwort

Programmzahler relativ 1. Byteverschiebung verlängert zu
mit Index Doppelwort

2. Wortindex verlängert zu Tabelle 3.3
Doppelwort Adressierungsarten mit

48

Vorzeichenerweiterung

Der Befehissatz des MC 68 000

Dies ist die Begründung dafür, dass durch die zur Verfügung
stehenden Adressierarten Information, die in Datenregister ge-
laden wird, nicht vorzeichenerweitert wird, dagegen Informa-
tion, die in Adressregister geladen wird, immer vorzeichenerwei-
tert wird. In Tabelle 3.3 sind die Adressierarten aufgeführt, die
Ursache für Vorzeichenerweiterungen sind. In einem späteren
Abschnitt des Kapitels 3 werden die Befehle diskutiert, die
Ursache für Vorzeichenerweiterungen sind.

3.3 Einteilung der Adressierarten nach
Verwendungszweck

Wie in den vorhergehenden Abschnitten dieses Kapitels aufge-
zeigt wurde, erfüllt jede der 14 Adressierarten des MC 68000
eine bestimmte Adressierfunktion. Einige davon können ver-
wendet werden, um zu einem Operanden in einem Register,

andere um zu einem Operanden an einer bestimmten Speicher-
adresse oder zu einem Operanden mit einer Verschiebung zu
einer bestimmten Speicheradresse zuzugreifen, usw. Einige

andere Arten können verwendet werden, um zu irgendeiner von:
verschiedenen Informationsarten zuzugreifen (beispielsweise
kann mit Adressregistern indirekt zu Daten oder Adressen im

Speicher zugegriffen werden), während andere in ihrer Verwen-
dung eingeschränkt sind (Adressregister direkt kann sich bei-
spielsweise nur auf einen Adressoperanden, jedoch nicht auf
einen Datenoperanden beziehen). Aus den hier geschilderten
Gründen können die einzelnen Adressierarten durch die vier fol-
genden Adresskategorien charakterisiert werden:

I. Daten

Falls eine Adressierart verwendet werden kann, um zu Daten
zuzugreifen, wird sie als Adressierart für Daten bezeichnet.

2. Speicher

Falls mit einer Adressierart zu Speicheroperanden zugegriffen
werden kann, wird sie als Speicheradressierart bezeichnet.

3. Steuerung

Falls eine Adressierart verwendet werden kann, um zu Spei-
cheroperanden ohne Grössenangabe zuzugreifen, wird sie als

Steuerungs-Adressierart bezeichnet.

4. Änderbar

Falls mit einer Adressierart zu änderbaren (schreibbaren)
Adressierarten zugegriffen werden kann, wird sie als änderbar

bezeichnet.

Tabelle 3.4 zeigt, welchen Adresskategorien jede der Adressier-
arten des MC 68000 angehört. Diese Tabelle ist für den Pro-
grammierer wichtig, weil viele der Befehle die Operanden auf
bestimmte Kategorien oder Kombinationen von Kategorien
beschränken.

49

Der Befehlssatz des MC 68 000

Adressierungsarten Adressierungskategorien Assembler-
Daten Speicher Steue- ander- syntax

rung bar

Datenregister direkt X X Dn
Adressregister direkt X An
Register indirekt X X xX X (An)
Register indirekt X X x (An)+

nachinkrementiert
Register indirekt X X X -(An)
vordekrementiert |
Register indirekt m. Verschiebung X X X X d(An)
Register indirekt mit Index X X xX xX d(An,Ri)
Absolut kurz X X xX x XXXX

Absolut lang xX xX X X XXXXXXXX
Relativ mit Verschiebung X X X d

Relativ mit Index X X X d(Ri)
Unmittelbar X X 4EXXKX

Tabelle 3.4 Effektive Adressierungsarten

So hat z.B. der «addiere schnell»-Befehl die allgemeine Form

ADDQ +#<data>,<ea>

Als effektive Adresse sind für diesen Befehl nur «änderbare»

Adressierarten erlaubt. Dies bedeutet, dass irgendeine Adres-
sierart mit Ausnahme von relativer und unmittelbarer Adressie-

rung verwendet werden kann. Aus diesem Grunde ist ADDQ
+2,A0 erlaubt, ADDQ +2,42 jedoch nicht.

Ein Befehl, der eine Kombination von Kategorien im Operan-

denfeld benützen kann, ist der MOVE-Befehl mit der allge-
meinen Form

MOVE <ea>, <ea>

Bei diesem Befehl sind für das Quellenfeld alle Adressierarten
zugelassen mit Ausnahme der Adressierungsart «Register
direkt» bei Byteverarbeitung. Beim Bestimmungsfeld sind nur
die Adressierungsarten «Daten änderbar» erlaubt. Das bedeu-
tet für das Bestimmungsfeld, dass sowohl die Kategorien der
Datenadressierarten wie auch die der anderbaren Adressie-
rungsarten zugelassen sind. So beinhaltet die Adressierungsart
«Daten änderbar» die Datenregister direkt, Adressregister indi-

rekt und die absoluten Adressierungsarten. Umgekehrt sind
die Arten «Adressregister direkt», «Programmzähler relativ»
und die «unmittelbaren» Arten ausgeschlossen.

Muss man nun annehmen, in ein Adressregister könne kein
Transfer gemacht werden, weil Adressregister direkt keine

50

Der Befehlssatz des MC 68000

«Daten änderbar»-Adressierungsart ist? Selbstverständlich

nicht, denn es muss natürlich einen Weg geben, um diese Regi-
ster initialisieren zu können. Dieser Weg führt nicht über
MOVE, sondern der MC 68000 verfügt für diese Aufgabe über
einen anderen Befehl, MOVEA, transportiere Adresse.
Obschon im MC-68000-Benutzerhandbuch MOVE und
MOVEA als zwei verschiedene Befehle definiert sind, erlauben
die meisten MC-68000-Assembler, eingeschlossen der von
Motorola, die Spezifikation eines Adressregisters im Bestim-
mungsfeld eines MOVE-Befehls. Diese Assembler interpretie-
ren den MOVE-Befehl einfach als MOVEA und erzeugen den
entsprechenden Objektcode.

3.4 Befehlsarten

Wie bereits erwähnt, verfügt der MC 68000 über 56 Grundbe-
fehle. Die mnemonische Schreibweise und die Beschreibung die-
ser Befehle sind in Tabelle 3.5 zusammengestellt. Im weiteren
verfügen 8 dieser Befehle über Variationen zur Ausführung von

speziellen Operationen; diese Variationen sind in Tabelle 3.6
zusammengestellt.

Beschreibung
Mnemonic englisch deutsch

ABCD Add Decimal with Extend Addiere dezimal mit Erweiterungsbit
ADD Add Addiere binär
AND Logical And Logisches UND

ASL Arithmetic Shift Left Arithmetische Verschiebung links
ASR Arithmetic Shift Right Arithmetische Verschiebung rechts

Bcc Branch Conditionally Bedingter Sprung
BCHG Bit Test and Chance Prüfe ein Bit und ändere es
BCLR Bit Test and Clear Prüfe ein Bit und setze es auf O
BRA Branch Always Unbedingter Sprung
BSET Bit Test and Set Prüfe ein Bit und setze es
BSR Branch to Subroutine Sprung zum Unterprogramm
BTST Bit Test Prüfe ein Bit

CHK Check Register Against Bounds Prüfe Register auf Grenzen
CLR Clear Operand Setze Operand auf O0
CMP Compare Vergleiche

DBcc Test Cond., Decrement and Prüfe Bedingung, vermindere und
Branch springe

DIVS Signed Divide Divison mit Vorzeichen
DIVU Unsigned Divide Division ohne Vorzeichen

EOR Exclusive OR Logical Logisches exklusiv ODER
EXG Exchange Registers Vertausche Daten zwischen Registern
EXT Sign Extend Vorzeichenerweiterung

51

Der Befehlssatz des MC 68000

Beschreibung
Mnemonic englisch deutsch

JMP Jump Springe
JSR Jump to Subroutine Springe zum Unterprogramm

LEA Load Effective Address Lade die effektive Adresse
LINK Link and Allocate Zuweisung
LSL Logical Shift Left Logische Verschiebung nach links
LSR Logical Shift Right Logische Verschiebung nach rechts

MOVE _ Move Date from Source to Transportiere Daten von der Quelle
Destination zum Ziel

MOVEM Move Multiple Registers Transportiere mehrere Register
MOVEP Move Peripheral Data Transportiere periphere Daten
MULS Signed Multiply Multiplikation mit Vorzeichen
MULU Unsigned Multiply Multiplikation ohne Vorzeichen

NBCD Negate Decimal with Extend Negiere dezimal mit Erweiterungsbit

NEG Negate Negiere
NOP No Operation Keine Operation
NOT One’s Complement Einerkomplement

OR Logical Or Logisches ODER

PEA Push Effective Address Eintragen der effektiven Adresse

RESET Reset External Devices Normieren externer Einheiten
ROL Rotate Left without Extend Ringverschiebung links o. Erw.-Bit

ROR Rotate Right without Extend Ringverschiebung rechts o. Erw.-Bit
ROXL Rotate Left with Extend Ringverschiebung links m. Erw.-Bit
ROXR Rotate Right with Extend Ringverschiebung rechts m. Erw.-Bit
RTE Return from Exception Ruckkehr von Ausnahme
RTR Return and Restore Rtickkehr, Rtickladen Bedingungscodes
RTS Return from Subroutine Zurück vom Unterprogramm

SBCD Subtract Decimal with Extend Subtrahiere dezimal m. Erw.-Bit
Scc Set on Condition Setze in Abhängigkeit der Bedingung
STOP Stop Lade das Statusregister und halte an

SUB Subtract Subtrahiere binär.
SWAP Swap Data Register Halves Vertausche Registerhälften

TAS Test an Set Operand Prüfe und setze Operand

TRAP Trap Fale _
TRAPV Trap on Overflow Falle bei Uberlauf
TST Test Prufe einen Operanden

UNLK Unlink Freigabe

Tabelle 3.5

Die 56 Grundbefehle des MC 68 000

52

Der Befehlssatz des MC 68 000

Der ganze Befehlssatz kann in 8 funktionelle Gruppen eingeteilt
werden:

1. Datentransportbefehle verschieben Information zwischen
Speicherzellen, Ein- und Ausgabegeräten und allgemein ver-

wendbaren Registern in jeder Kombination.
. Befehle für ganzzahlige Arithmetik führen arithmetische
Operationen mit binären Zahlen in einfacher und mehrfacher

Genauigkeit durch.
. Logische Befehle führen logische Operationen UND, ODER
und EXKLUSIV-ODER mit Speicherzellen und Registern
aus.

. Schiebe- und Rotierbefehle schieben und rotieren den Inhalt
von Speicherzellen und Registern.

. Bitmanipulationsbefehle prüfen den Zustand individueller

Bit und führen je nach Resultat dieser Prüfungen Operatio-
nen aus.

. Binärcodierte Dezimalbefehle (BCD) addieren und subtra-
hieren BCD-Werte.

. Programmsteuerbefehle führen Verzweigungen, Sprünge

Subroutinenaufrufe aus und steuern so den Ablauf der Pro-

grammausführung.
. Systemsteuerbefehle, eingeschlossen privilegierte Befehle,
Trap-Erzeugungsbefehle und Befehle, die das Statusregister

benützen oder ändern.

In diesem Kapitel wird der Befehlssatz in der gerade präsentier-
ten Ordnung beschrieben. Wir beginnen mit den Datentrans-
portbefehlen, mit den jetzt bekannten MOVE-Befehlen.

Befehlsart Variation Beschreibung englisch Beschreibung deutsch

ADD ADD Add Addiere
ADDA Add Address Addiere Adresse
ADDQ Add Quick Addiere schnell
ADDI Add Immediate Addiere unmittelbar

ADDX Add With Extend Addiere mit Erweiterung

AND AND Logical AND Logisch UND
ANDI AND Immediate UND unmittelbar

CMP .CMP Compare Vergleiche
CMPA Compare Address Vergleiche Adresse
CMPM Compare Memory Vergleiche Speicher
CMPI Compare Immediate Vergleiche unmittelbar

EOR EOR Exclusiv-OR Exklusiv ODER
EORI Exclusiv-OR Immediate Exklusiv ODER unmittelbar

53

Der Befehlssatz des MC 68 000

Befehlsart Variation Beschreibung englisch Beschreibung deutsch

MOVE MOVE Move Transportiere
MOVEA Move Address Transportiere Adresse
MOVEQ Move Quick
MOVEf.SR Move from Status Register
MOVEtoSR Moveto Status Register

Transportiere schnell
Transportiere vom Statusreg.
Transportiere zum Statusreg.

MOVE to Move to Condition Codes Transportiere zu den

CCR Bedingungscodes
MOVEUSP Move User Stack Pointer Transp. Benutzerstapelzeiger

NEG NEG Negate Negiere
NEGX Negate With Extend Negiere mit Erweiterung

OR OR Logical OR Logisch ODER
ORI OR Immediate ODER unmittelbar

SUB SUB Subtract Subtrahiere
SUBA Subtract Address Subtrahiere Adresse
SUBI Subtract Immediate Subtrahiere unmittelbar

SUBQ Subtract Quick Subtrahiere schnell
SUBX Subtract With Extend Subtrahiere mit Erweiterung

Tabelle 3.6

Variationen von Befehlen

3.4.1 Datentransportbefehle

Die Datentransportbefehle gemäss Tabelle 3.7 werden verwen-
det, um Informationen zwischen Speicher und Daten- oder
Adressregistern zu transferieren. Diese Gruppe enthält zwei
zusätzliche Befehle, LINK und UNLINK; sie werden vorwie-
gend mit Subroutinen verwendet, so dass wir sie separat,
anschliessend an die Diskussion der Programmsteuerbefehle,
beschreiben. |

3.4.1.1 MOVE-Befehl
Der grundsätzliche Befehl in dieser Gruppe ist der MOVE-

Befehl, der verwendet werden kann, zum Transfer von Byte-,

Wort- oder Doppelwortdaten zwischen zwei Speicherzellen,
zwischen einer Speicherzelle und einem Datenregister oder zwi-
schen zwei Datenregistern.
Wenn der MC 68000 im Benützerstatus ist, erlaubt der MOVE-
Befehl das Nachführen des Bedingungscoderegisters (MOVE

<ea> , CCR) oder das Lesen des gesamten Statusregisters
(MOVE SR, <ea>). Im Überwachungsstatus erlaubt der

MOVE-Befehl das Nachführen des Statusregisters (MOVE
<ea>, SR), das Lesen des Benützerstapelzeigers (MOVE,

USP, An), oder das Schreiben des Benützerstapelzeigers
(MOVE An, USP). In den vorangegangenen Feldern darf für
die effektive Adresse (mit <ea> bezeichnet) kein Adressregister

als Quelle oder Bestimmungsort verwendet werden.

54

Der Befehlssatz des MC 68000

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-

grosse codes

| Quelle Ziel XNZVC

| EXG EXG Rx,Ry 32 Dn oder An DnoderAn £-----

LEA LEA <ea>,An 32 Kontrolle An -<--=-=-=

MOVE MOVE <ea>,<ea> 8, 16, 32 Alle (1) Daten änderbar -**00

MOVE <ea>,CCR 16 Daten CCR ek ok ok oR

MOVE <ea>,SR (2) 16 Daten SR ei

MOVESR,<ea> 16 SR Datenänderbar -----
MOVEUSP,An (2) 32 USP An 2020202.

MOVE An,USP (2) 32 An UP 00-0022 -

MOVEA MOVEA <ea>,An 16, 32 Alle An} 202.0. -.-

MOVEM MOVEM <list>,<ea> 16,32 Kontrolle #8 -----

änderbar -(An)
MOVEM <ea>,<list> 16,32 Kontrolleoder = -----=

(An)+

MOVEP MOVEP Dx,d(Ay) 16, 32 Dn d(An) -----
MOVEP d(Ay),Dx 16, 32 d(An) Don 0.0 =----

MOVEQ MOVEQ #d,Dn 32 #d (3) Dn -**00

NOP NOP PV>-2- PC 702 een

PEA PEA <ea> 32 Kontrolle een

SWAP SWAPDn 16 Duo een

Tabelle 3.7 _ Datentransportbefehle

Bemerkungen:

(1) Bei Byteverarbeitung ist die Adressierungsart

«Adressregister direkt» nicht erlaubt
(2) Privilegierte Operation

(3) Acht Bit der unmittelbaren Daten, die zu

einem Langwortoperand vorzeichenerweitert

werden

3.4.1.2 Benützung von MOVE mit den Stapeln

Der MOVE-Befehl kann auch benützt werden, um Daten von
den Stapeln in den Speicher zu transportieren und umgekehrt.
Das schliesst sowohl die Systemstapel (Überwachungsstapel

und Benützerstapel) als auch benützerdefinierte Stapel ein.
Durch die Anordnung der Stapel im Speicher mit Adresse 0
kann die Adressierungsart «Adressregister indirekt mit Vor-
dekrement» verwendet werden, um Daten in den Stapel zu

bringen.
Zum Beispiel bringt der Befehl

MOVE DO,-(SP)

das tiefere Wort von DO in den aktiven Systemstapel. Umge-
kehrt holt die Adressierart «Adressregister indirekt mit Nachin-
krementierung» Daten vom Stapel; zum Beispiel holt der Befehl

MOVE (SP)+, DO

das nächste Wort des aktiven Systemstapels und lädt es in das
tiefere Wort von DO.

55

Der Befehlssatz des MC 68 000

3.4.1.3 MOVEM, transportiere mehrere Register

Ofters wird die Aufgabe gestellt sein, den Inhalt mehrerer Regi-
ster zu transferieren. Ein grundsätzliches Beispiel dazu ist die
Sicherung einer Anzahl allgemein verwendbarer Register in den
Stapeln während der Ausführung einer Subroutine, um die Sub-
routine damit reentrant zu machen. Eine Subroutine ist reent-
rant, wenn sie unterbrochen und durch das unterbrechende Pro-
gramm wieder aufgerufen werden kann. Der Befehl MOVEM,
transportiere mehrere Register, kann verwendet werden zum
Transfer von bis zu 16 Registern (Datenregister DO... D7 und
Adressregister AO... A7) zum oder vom Speicher.

Formate:

MOVEM <list>, <ea> Transfer Register-zu-Speicher

MOVEM <ea>, <list> Transfer Speicher-zu-Register
In beiden Fallen bedeutet <list> die Register, die transportiert
werden sollen. Der Assembler erlaubt zwei Arten, Register zu
«listen». Ein Weg ist die Auflistung individueller Registerna-

men, getrennt durch einen Schrägstrich (/).

Zum Beispiel transferiert der Befehl

MOVEM D3/D4/D5/A1,$53F00

das tiefere Wort von D3, D4, D5 und A1 in die vier aufeinander-
folgenden Worte, die mit derAdresse $53F00 beginnen. (In die-
sem Fall werden die Register in der Ordnung gespeichert, wie sie
im Befehl aufgeführt sind; das ist jedoch nicht immer der Fall,

wie wir noch sehen werden.)
Wenn die Registerliste aufeinanderfolgende Daten oder Adress-
register enthält, erlaubt es der Assembler, nur das erste und letz-

MOVEM D3-DS/A1.- (SP) SP——e| 23

vor Aus-
führung Dé

c BREEEEEREREREERR z

._—— Af

SP —>
nach Aus.
führung

MOVEM (SP)+ A1/D3-D5 Pa | 23
5 z führung 24

2|»|»|»|»|2|»Io[AlAlA[AlAlATA|A b (lzielalelslelalalalalalzlalelel 25
__. 41

SP —
nach Aus-

führung Bild 3.8
bsp Beispiele zum Befehl MOVEM

MOVEM D3-DS/A1.$53F00 $53 nd — a) Datenordnung mit Vordekrementierung
b) Datenordnung mit Nachinkrementie-

DID|D|D|DIDIDIDIAIAIAIA|A|AIAIA c BBB Ble lalelaiselsleis] #aror | >= rung
__ $53F06 A1 c) Datenordnung mit absoluter Adressie- rung

56

Der Befehlssatz des MC 68 000

Bild 3.9
Beispiele zum Befehl LEA

te Register aufzuführen, getrennt durch einen Bindestich (-). So
könnte das vorhergehende Beispiel geschrieben werden als

MOVEM D3-D5/A1,$53F00

Der MOVEM-Befehl transferiert immer Registerinhalte zu und
vom Speicher in einer vorbestimmten Sequenz, unabhängig
davon, wie sie in der Registerliste geordnet sind. Bei der Adres-
sierungsart «Adressregister indirekt mit Vordekrementierung»

werden die Register in der Ordnung A7 bis AO, dann D7 bis DO
transferiert. Demgegenüber werden für alle Steuerarten und für
die Adressierungsart «Adressregister indirekt mit Nachinkre-
mentierung» Register in der umgekehrten Ordnung, DO bis D7,
dann AO bis A7 transferiert. Diese Unterschiede erlauben das
Bilden von Stapeln und Listen in der einen Richtung und den
Zugriff zu ihnen in der entgegengesetzten Richtung. Bild 3.8
zeigt einige Beispiele dazu.

3.4.1.4 Adresstransferbefehle(MOVEA, LEA, PEA)

Der MC 68000 verfügt über drei Befehle, die speziell für den
Transfer von Adressen entworfen wurden. Zwei dieser Befehle,
transportiere Adresse (MOVEA) und lade effektive Adresse
(LEA) sind ähnlich und können leicht durch die Programmierer
verwechselt werden. Beide veranlassen das Laden einer Adresse
in ein Adressregister; während aber LEA die effektive Adresse
des referenzierten Operanden lädt (ein Speicherplatz), lädt
MOVEA den Inhalt des referenzierten Operanden (ein Spei-
cherplatz, ein Register oder ein unmittelbarer Wert) und nimmt
an, dass er eine Adresse darstellt.
LEA behandelt immer eine 32-Bit-Adresse, während MOVEA

sowohl 16-Bit-Wort-Adressen als auch 32-Bit-Doppelwort-
Adressen behandeln kann. Bild 3.9 zeigt zwei Beispiele des
LEA-Befehls.

Registerinhalte A0 [000.53700] 40 [00053700]

ror LEA mim) a

BEFEHL LEA [A0).A1 LEA 4(A0.D0).A1

AUSFUHRUNG 0005300 0005300
FFFF8000

+ 00000004

10004+BF04

Registerinhalte AO | %
nach LEA M 20

At

57

Der Befehlssatz des MC 68000

Wie man sehen kann, sind LEA und MOVEA äusserst prakti-
sche Befehle. Wenn ein Programm die Berechnung verschiede-
ner Adressen in verschiedenen Befehlen erfordert, muss die

Adresse mit LEA nur einmal berechnet werden und in einem
Adressregister abgelegt werden. Später kann jeder Bezug zu
den adressierten Operanden mit der «Adressregister indirekt»-

Adressierungsart gemacht werden. Das spart nicht nur Pro-
grammierungsaufwand, sondern benötigt auch weniger Spei-
cherplatz und erlaubt eine schnellere Ausführung des Pro-
gramms. Warum ist das so? Weil die Adressierungsart « Adress-
register indirekt» keine speicherplatzbenötigenden Erwei-

terungsworte zu einem Befehl erfordert. Die Ausführungszeit
zur Berechnung der Adresse ist mit dieser Art vier bis acht
Zyklen schneller als mit den Adressierungsarten «A dressregi-
ster indirekt mit Verschiebung» und «Absolut- oder Programm-
zähler relativ».
Der Befehl MOVEA ist nützlich beim Zugriff zu Adressen, die
im Speicher gespeichert sind. Zum Beispiel erhalten wir bei einer
verbundenen Liste im Speicher, in der jeder Knoten mit einem
Zeiger auf den nächsten Knoten beginnt, die Adresse des zwei-
ten Knotens mit |

MOVEA.L LIST, AO

und die Adresse des dritten und der folgenden Knoten erhalten
wir mit |

MOVEA.L (AO), AO

Zu erwahnen ist noch, dass ein MOVEA-Befehl, dessen Quel-
lenoperand ein unmittelbares Label ist, einem LEA-Befehl ent-
spricht. Das bedeutet, dass MOVEA.L # LABEL, AO und
LEA LABEL, AO äquivalente Befehle sind. Dazu ist zu sagen,
dass der MOVEA-Befehl 20 Zyklen für die Ausführung benö-

tigt, währenddem der LEA-Befehl nur 12 Zyklen benötigt, so
dass in diesem Falldem LEA-Befehl der Vorzug zu geben ist.
Der letzte der drei Adresstransferbefehle, PEA (Push Effective
Address) Eintragen der effektiven Adresse, ist ähnlich wie LEA,
doch transferiert er berechnete effektive Adressen statt den
Inhalt adressierter Speicherzeilen. Mit PEA wird die Adresse in
den aktiven Systemstapel eingetragen (Benützerstapel oder
Überwachungstapel). Der PEA-Befehl kann verwendet werden

für die Übergabe von Parametern an eine Subroutine, indem die
Adresse eines Parameters oder die Startadresse mehrerer hin-
tereinander folgender Parameter in den Stapel eingetragen wird.
Zum Beispiel kann die Eintrage- und Aufrufoperation mit der
folgenden Befehlssequenz ausgeführt werden:

PEA PARAM
JSR SUBER

58

Der Befehlssatz des MC 68000

Weil der JSR-Befehl eine 4-Byte-Rückkehradresse in den Stapel
schreibt, nachdem der PEA-Befehl seine 4-Byte-Adresse in den
Stapel eingetragen hat, muss zur Parameteradresse mittels
Überspringen der Rückkehradresse zugegriffen werden, wie mit
dem Befehl

MOVEA.L 4(SP), AO

Mit dem Zurtickholen der Parameteradresse aus dem Stapel
bereinigt die Subroutine den Stapel mittels Verschiebung der
Ruckkehradresse um ein Doppelwort hoher in den Speicher und
Nachführung des Stapelzeigers. Beide Aufgaben können mit
einem Befehl ausgeführt werden:

MOVE.L

3.4.1.5 Der MOVE-Befehl

Wie im Kapitel 1 erwähnt wurde, können am MC 68000 sowohl
ältere synchrone 8-Bit-Peripheriebausteine als auch neuere
asynchrone 16-Bit-Bausteine angeschlossen werden. Der MC
68000 verfügt über separate Steuerleitungen für jeden Typ von

Peripheriebausteinen. |
Leser, die 8-Bit-Systeme programmiert haben, wissen, dass die
angeschlossenen Peripheriebausteine normalerweise über Regi-

ster verfügen, die eine Anzahl aufeinanderfolgender Byte im
Speicher belegen.
Der Befehl MOVEP, transportiere periphere Daten, ist
bestimmt zum Transfer von Information zwischen einem MC-
68000-Datenregister und einem angeschlossenen 8-Bit-Periphe-
riebaustein in Paketen von zwei oder vier Byte. Im MC-68000-

System müssen 8-Bit-Peripheriebausteine entweder an die höhe-
ren 8 Bit des Datenbus angeschlossen werden (Linien D8 ...

D15) oder an die tieferen 8 Bit des Datenbus (Linien DO... D7).
Der MOVEP-Befehl verkehrt mit der Peripherie mit der höhe-
ren Hälfte des Bus durch die Verwendung von gerade numerier-
ten Adressen und mit der Peripherie auf der tieferen Hälfte des
Bus unter Verwendung von ungerade numerierten Adressen. In
einer Speicherabbildung würden diese Peripheriebausteine

abwechselnd aufeinanderfolgende gerade Byte oder aufeinan-
derfolgende ungerade Byte belegen.

Zwei-Byte-Transfers werden mittels Spezifikation eines Wort-

operanden (MOVEP oder MOVEP.W) und 4-Byte-Transfers

mittels eines Doppelwortoperanden (MOVEP.L) gemacht.
Peripheriebausteine werden unter Verwendung der Adressierart
«Register indirekt mit Verschiebung» adressiert. Bild 3.10 zeigt
zwei Beispiele des MOVEP-Befehls — einen Doppelworttransfer
mit einer geraden Adresse und einen Worttransfer mit einer
ungeraden Adresse. Zu bemerken ist, dass der MOVEP-Befehl

59

Der Befehlssatz des MC 68000

gerade ungerade

höher

MOVEP.L DO.2(A0) tiefer

31 24 | 23 1615 8,7 0 tiefer

a DO| Hörer |hitte hoher| Mitte tiefer| tiefer |

gerade ungerade

Ao

MOVEP.W DO.2 (AO)

3 2423 16 | (5 8,7 0
b Dol | | höher | tiefer |

der einzige MC-68000-Befehl ist, der die Benützung einer
ungeraden Adresse mit einem Wort- oder einem Doppelwort-
operanden erlaubt!
Die Ausführungszeit des MOVEP-Befehls hängt davon ab, ob
Daten zu oder von asynchronen oder synchronen Peripherie-
bausteinen transferiert werden. Ein Register-zu-Speicher-
Transfer benötigt bei asynchronen Peripheriebausteinen 18
Zyklen (Worttransfer) oder 28 Zyklen (Doppelworttransfer), |
während ein Speicher-zu-Register-Transfer 16 Zyklen bei Wort-
transfer oder 24 Zyklen bei Doppelworttransfer benötigt.
Transfers zu oder von synchronen Peripherieschaltungen wer-
den etwas mehr Zeit benötigen, weil der MC 68000 mit einem
Takt synchronisieren muss, der nur /,, des Systemtakts ist. Die
Kapitel 6 und 8 werden dazu nähere Erläuterungen enthalten.

3.4.1.6 MOVEGQ, transportiere schnell

Weil Programmierer öfters mit kleinen Konstanten operieren
müssen, versahen die Entwickler des MC 68000 diesen mit drei
sogenannt «schnellen» Befehlen: transportiere schnell, addiere
schnell und subtrahiere schnell. Diese Befehle erlauben die Spe-
zifikation einer kleinen Konstante im Operationswort. Der erste
dieser Befehle, transportiere schnell (MOVEQ, move quick),
kann einen spezifizierten, ein Byte langen Wert um das Vorzei-
chen erweitern auf 32 Bit und in ein Datenregister laden. Weil
die Konstante 8 Bit lang ist, kann jeder ganzzahlige Wert zwi-

schen -128 und + 127 in ein Datenregister transferiert werden.
Der MOVERQ-Befehl belegt nur ein Wort im Speicher und benö-
tigt vier Zyklen zur Ausführung. Im Gegensatz dazu benötigt
der Befehl «transportiere unmittelbar» (MOVE.L +#d,, Dn)

60

Bild 3.10
Byte-Transfers mittels MOVEP

a) Doppelworttransfer mit gerader Adresse
b) Worttransfer mit ungerader Adresse

Der Befehlssatz des MC 68000

zwei Worte im Speicher und 20 Zyklen zur Ausführung. Die
meisten Assembler, eingeschlossen derjenige von Motorola,
nützen diese Sparmöglichkeiten aus, indem sie einen geeigneten
«transportiere unmittelbar»-Befehl als MOVERQ interpretieren
und den entsprechenden Objektcode erzeugen.

3.4.1.7 SWAP und EXG, Registervertausch und
Registeraustausch

Diese zwei ähnlichen Befehle haben einen ganz verschiedenen
Verwendungszweck. Der Befehl SWAP, vertausche Register-

hälften, vertauscht die höheren 16 Bit eines 32-Bit-Datenregi-
sters mit den tieferen 16 Bit. Dieser Befehl gestattet den Zugriff
zum Inhalt des oberen Wortes eines Registers und ist notwen-

dig, weil Wortoperationen immer mit dem tieferen Wort ausge-
führt werden. Ähnlich kann SWAP verwendet werden für den
Zugriff zu den höheren zwei Byte eines Datenregisters. SWAP
allein wird zum mittleren höheren Byte zugreifen; ein SWAP

plus ein Rotierbefehl wird zum höchstwertigen Byte des Daten-
registers zugreifen.

Der Registeraustauschbefehl (EXG) tauscht den gesamten
Inhalt von zwei Registern aus. Er kann drei Formate haben:

EXG Dx,Dy- Austausch zweier Datenregister;
EXG Ax,Ay - Austausch zweier Adressregister;
EXG Dx,Ay- Austausch eines Datenregisters und eines

Adressregisters.

3.4.1.8 NOP, keine Operation

Der Befehl «keine Operation» (NOP) wird normalerweise nur
während der Programmentwicklung verwendet. Er führt keine
Operationen durch. Er ändert weder Statusbit noch Register
(mit Ausnahme des Programmzählers), noch Speicherzellen,
aber er erfüllt die nützliche Funktion der Platzreservierung im
Speicher.
Programmierer verwenden den NOP-Befehl häufig in einem

Quellenprogramm, um Platz zu reservieren für später einzufü-
gende Befehle. Weil jeder NOP-Befehl nur ein Wort im Speicher
belegt, sind mindestens zwei NOP (besser sind drei) am Ort, wo
der Platz reserviert werden soll, einzufügen.
NOP-Befehle können auch in Objektprogrammen eingefügt
werden, um Befehle zu ersetzen, die entfernt wurden, so dass
das Programm nicht neu assembliert werden muss. In diesem
Fall sollte man für jedes Wort des entfernten Befehls $4E71 ein-
fügen, das ist der hexadezimale Wert des NOP-Befehls.

3.4.2 Befehle für ganzzahlige Arithmetik

Der MC 68000 kann zwei binäre Operanden addieren, subtra-
hieren, multiplizieren, dividieren und vergleichen. Er kann auch
einen einzelnen, spezifischen Operanden löschen, prüfen, das

61

Der Befehlssatz des MC 68 000

Bedingungs-

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten

grösse codes

Quelle Ziel XNZVC

ADD ADD <ea>,Dn 8, 16, 32 Alle (1) Dn ve
ADD Dn,<ea> 8, 16, 32 Dn anderbar eK Re

ADDA ADDA <ea>,An 16, 32 All An HH ==

ADDI ADDI +d,<ea> 8, 16, 32 ted Daten änderbar BE

ADDQ ADDRQ #d,<ea> 8, 16, 32 +d (2) änderbar (1)

ADDX ADDX Dy,Dx 8, 16, 32 Dn Dn ee eR
ADDX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) ee eR

CLR CLR <ea> 8, 16, 32 Daten änderbar -0100

CMP CMP <ea>,Dn 8, 16, 32 All (1) Dn rk

CMPA CMPA <ea>,An 16, 32 All An re

CMPI CMPI +d,<ea> 8, 16, 32 +d Daten änderbar a

CMPM CMPM (Ay)+,(Ax)+ 8, 16,32 (An)+ (An)+ re

DIVS DIVS <ea>,Dn 16 Daten Dn Fr)

DIVU DIVU <ea>,Dn 16 Daten Dn —_* **Q

EXT EXT Dn 16, 32 Dn -** 00

MULS MULS <ea>,Dn 16 Daten Dn -**00

MULU MULU <ea>,Dn 16 Daten Dn -**00

NEG NEG <ea> 8, 16, 32 Daten änderbar * eK KF

NEGX NEGX <ea> 8, 16, 32 Daten anderbar rer

SUB SUB <ea>,Dn 8, 16, 32 Alle (1) Dn ee eK

SUB Dn,<ea> 8 16, 32 Dn anderbar * eK RF

SUBA SUBA <ea>,An 16, 32 Alle An)) ====-

SUBI SUBI #d,<ea> 8, 16, 32 +d Daten anderbar ee KR

SUBQ SUBQ +#d,<ea> 8, 16, 32 +#d (2) änderbar (1) ve

SUBX SUBX Dy,Dx 8, 16, 32 Dn Dn eee
SUBX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) ee ee

TAS TAS <ea> 8 Daten änderbar -**00

TST TST <ea> 8, 16, 32 Daten änderbar -** QO

Bemerkungen: (1) Bei Byteoperationen ist die Adressierungsart «Adressregister direkt» nicht gestattet
(2) Unmittelbarer Operand im Wertebereich 1 bis 8

Tabelle 3.8 Befehle für ganzzahlige Arithmetik

Vorzeichen erweitern und negieren (2er-Komplement). Die
Befehle für diese Operationen sind in der Tabelle 3.8 zusammen-
gestellt.

3.4.2.1 Addierbefehle

Es bestehen fünf Befehle zur Addition von binären Zahlen. Der
erste, «addiere binär» (ADD) addiert zwei Byte-, Wort- oder
Doppelwortoperanden. Weil diese Operanden als Datenwerte
betrachtet werden, muss einer in einem Datenregister sein, der

andere kann im Speicher sein, in einem Adressregister (sofern
nicht Byteoperanden addiert werden sollen) oder einem andern
Datenregister. Der ADD-Befehl kann alle fünf Bedingungsco-
des beeinflussen, wie folgt:

62

Der Befehlssatz des MC 68 000

1. Übertrag (C) wird gesetzt, wenn das Resultat nicht im
Bestimmungsoperand Platz hat; sonst ist C gelöscht.

2. Überlauf (V) wird gesetzt, wenn zwei Zahlen mit gleichen
Vorzeichen (beide positiv oder beide negativ) addiert werden
und das Resultat den Bereich des 2er-Komplements der

Operanden überschreitet, was zum Wechsel des Vorzeichen-
bit führt; sonst ist V gelöscht.

3. Null (Z) wird gesetzt, wenn das Resultat null ist; sonst ist Z
gelöscht.

4. Negativ (N) wird gesetzt, wenn das Vorzeichenbit des Resul-
tats logisch 1 ist; sonst ist N gelöscht.

5. Erweiterung (X) wird in den gleichen Zustand gesetzt wie der
Übertrag (C).

Bei den ADD-Befehlen ist der Status der V- und N-Flags nur
von Bedeutung, wenn Werte mit Vorzeichen addiert werden.
Wenn der Bestimmungsoperand ein Adressregister ist, werden
die Bedingungscodes nicht beeinflusst. Der Assembler erkennt

diese Form des Additionsbefehls als Variante, «addiere Adres-
se» (ADDA) genannt.

Der ADD-Befehl wird eingesetzt zur Addition zweier Byte-,
Wort- oder Doppelwortoperanden, sofern sich mindestens einer
der Operanden in einem Datenregister befindet. Viele Anwen-

dungen verlangen jedoch bei der Addition mehrfache Genauig-
keit, oder es befinden sich beide Operanden im Speicher. Für
diese Anwendungen verfügt der MC 68000 über den Befehl
ADDX (erweiterte Addition). Damit kann der Inhalt zweier
Datenregister oder zweier Speicherplätze addiert werden. Der

ADDX-Befehl beeinflusst die C-, V-, N- und X-Flags gleich wie

der ADD-Befehl. Das Z-Flag jedoch wird bei ADDX gelöscht,
wenn das Resultat ungleich 0 ist, andernfalls wird Z nicht beein-
flusst. Diese Charakteristik ist sehr praktisch bei Operationen
mit erhöhter Genauigkeit, weil Z den Null/Nicht-null-Status

einer ganzen Additionsoperation zeigt und nicht nur gerade den
der letzten Teiloperation.
Wenn sich die Operanden im Datenregister befinden, geht dem
ADDX-Befehl normalerweise ein ADD-Befehl voraus. Zum
Beispiel addiert die folgende Sequenz einen ganzzahligen 64-
Bit-Wert in DO und D1 zu einem andern ganzzahligen 64-Bit-
WertinD2 und D3:

ADD.L DO, D2 Addiere die 32 tieferen Bit
ADDX.L D1, D3 Addiere die 32 hoheren Bit

Wenn sich die Operanden im Speicher befinden, müssen vor der
Additionsoperation X gelöscht und Z gesetzt werden (es sei dar-
an erinnert, dass Z gesetzt bleibt, wenn jede nachfolgende Addi-
tion als Resultat null ergibt). Speicherplatz-zu-Speicherplatzad-
ditionen verlangen immer vordekrementierte Adressierung, das

63

Der Befehlssatz des MC 68 000

heisst, dass die Adressregister zuerst auf die höheren Bit, Worte
oder Doppelworte im Speicher hinweisen und nachher auf die
tieferen. Wenn zum Beispiel AO und Al auf zwei 64-Bit-
Operanden im Speicher zeigen, können diese Operanden mit der
folgenden Sequenz addiert werden:

MOVE + 4,CCR Setze Z = 1, alle andern Bit = 0
ADDX.L - (A0O),-(A1)| Addiere die 32 tieferen Bit

| ADDX.L - (A0),-(Al) | Addiere die 32 höheren Bit

Speicher

Höher
A1 .

nach ——= |Hitte Höher aes timmungs-
ty, erand Addition Witte Tiefer Pp

Tiefer

Af
vor oo
Addition

> >

Hoher
Ao -

nach ——=|Mifte Höher Quellen -
Addition Mitte Tiefer Operand

Tiefer |

Ao
vor er .
Addition Bild 3.11

Addition zweier 64-Bit-Operanden

im Speicher

Bild 3.11 zeigt die Anordnung der Operanden im Speicher und
wie die Zeiger bei der Additionsoperation beeinflusst werden.
Die letzten zwei Additionsbefehle, «addiere unmittelbar»

(ADDI) und «addiere schnell» (ADDQ) werden verwendet, um
einen konstanten Wert zu einem adressierten Operanden zu
addieren. Bei ADDI kann die Konstante ein Bit, Wort oder

Doppelwort sein und der Befehl belegt zwei bis fünf Worte im
Speicher. Bei ADDQ kann die Konstante nur einen Wert zwi-
schen 1 und 8 haben, der Befehl belegt aber auch nur ein bis drei
Worte im Speicher. Im weiteren kann ADDQ verwendet wer-
den zur Addition eines Werts zu einem Adressregister, während
ADDI das nicht kann. ADDQ ersetzt den Inkrementbefehl in

bisherigen 8-Bit-Mikroprozessoren.

64

Der Befehlssatz des MC 68000

3.4.2.2 Subtraktionsbefehle

Der MC 68000 verfügt über die äquivalenten Subtraktionsbe-
fehle wie die Additionsbefehle. Drei dieser Befehle, «subtrahiere
binär» (SUB), «subtrahiere unmittelbar» (SUBI) und «subtra-
hiere schnell» (SUBQ) beeinflussen die Bedingungscode wie

folgt:

1. Der Übertrag (C) wird gesetzt, wenn die Subtraktion einen
Entlehnwert (borrow) benötigt, was anzeigt, dass das Resul-
tat nicht im Bestimmungsoperanden Platz hat; sonst ist C
gelöscht.

2. Überlauf (V) ist gesetzt, wenn zwei Zahlen mit ungleichem
Vorzeichen (eines positiv, das andere negativ) subtrahiert

werden und das Resultat den Bereich des 2er-Komplements
der Werte überschreitet; sonst ist V gelöscht.

3. Null (Z) wird gesetzt, wenn das Resultat null ist; sonst ist Z
gelöscht.

4. Negativ (N) ist gesetzt, wenn das Vorzeichenbit des Resultats
logisch 1 ist; sonst ist N gelöscht.

5. Erweiterung (X) wird gleich gesetzt wie der Übertrag (C).
Der Subtraktionsbefehl für mehrfache Genauigkeit «subtrahie-
re mit Erweiterung» (SUBX) beeinflusst C, V,N und X in der
gleichen Art, löscht aber Z, wenn das Resultat nicht null ist;
sonst wird Z nicht beeinflusst. Der fünfte Subtraktionsbefehl
«subtrahiere Adresse» (SUBA) beeinflusst keine Flags.

3.4.2.3 Negierbefehle

Mit zwei subtraktionsähnlichen Befehlen kann das 2er-Komple-
ment eines Byte-, Wort- oder Doppelwortoperanden im Spei-
cher oder in einem Datenregister erzeugt werden. Diese Befehle

«negiere» (NEG) und «negiere erweitert» (NEGX) erzeugen
das 2er-Komplement durch Subtraktion des Operanden von
null. Der NEG-Befehl beeinflusst die Bedingungscode in der
gleichen Weise wie der SUB-Befehl; während aber hier ein
Operand null ist, können über die Bedingungen, die die Flags
setzen, eindeutigere Aussagen gemacht werden. Für NEG gilt:
1. Übertrag (C) und Negativ (N) werden gesetzt, wenn der

adressierte Operand eine positive, von null verschiedene Zahl
ist; sonst wird C und N gelöscht.

2. Überlauf (V) wird gesetzt, wenn der adressierte Operand
einen Wert hat von $80 (Byte), $8000 (Wort) oder
$80.000 000 (Doppelwort); sonst ist V geloscht.

3. Null (Z) wird gesetzt, wenn der adressierte Operand null ist;
sonst ist Z geloscht.

4. Erweiterung (X) wird in der gleichen Weise gesetzt wie der
Uberlauf (C).

Der NEGX-Befehl beeinflusst in der gleichen Art C, V, N und
X, löscht aber Z nur, wenn das Resultat nicht null ist. X wird
nicht beeinflusst, wenn das Resultat null ist. Wie bereits beim
ADDX-Befehl erklärt, zeigt damit Z den Status null/nicht-null

65

Der Befehlssatz des MC 68 000

einer ganzen Operation mit mehrfacher Genauigkeit, und nicht
nur gerade denjenigen der letzten Teiloperation.

3.4.2.4 Multiplizier- und Dividierbefehle

Der MC 68000 verfügt über zwei Multiplizierbefehle: «multipli-
ziere mit Vorzeichen» (MULS) und «multipliziere ohne Vorzei-
chen» (MULU). Diese Befehle multiplizieren zwei Wortoperan-
den und speichern das 32-Bit-Produkt in einem Datenregister.
Zahlen, die länger sind als 16 Bit können ebenfalls mit MULS
und MULU multipliziert werden. Wir werden davon Beispiele
im Kapitel 4 sehen, wo zwei 32-Bit-Zahlen multipliziert werden,

und zwar sowohl für Werte mit wie auch ohne Vorzeichen.

Der MC 68000 verfügt auch über zwei Divisionsbefehle: «divi-
diere mit Vorzeichen» (DIVS) und «dividiere ohne Vorzeichen»

(DIVU). Diese Befehle dividieren einen 32-Bit-Dividenden (in
einem Datenregister) durch einen 16-Bit-Divisor (im Speicher

oder in einem Datenregister) und legen den 16-Bit-Quotienten
und den 16-Bit-Rest je in die untere und obere Hälfte eines
Datenregisters. Beim Versuch, durch null zu dividieren, wird der
MC 68000 einen Trap erzeugen (im Kapitel 7 beschrieben).

Eine Division, mit oder ohne Vorzeichen, wird die Bedingungs-
codes wie folgt beeinflussen:
1. Übertrag (C) wird immer gelöscht.
2. Überlauf (V) wird gesetzt, wenn Divisionsüberlauf angezeigt

wird; sonst ist V gelöscht.

3. Null (Z) wird gesetzt, wenn der Quotient null ist; sonst ist Z
gelöscht. Der Zustand von Z ist in Überlauffällen nicht
definiert.

4. Negativ (N) wird gesetzt, wenn der Quotient negativ ist (für
DIVS), oder wenn das höchstwertige Bit des Quotienten

gesetzt wird (für DIVU); sonst ist N gelöscht. Der Zustand
von N istin Überlauffällen nicht definiert.

5. Erweiterung (X) wird nicht beeinflusst.

In Überlauffällen setzt der MC 68000 das V-Flag und beendet
die Operation, ohne den Divisor oder Dividenden zu beeinflus-
sen. Überlauf wird dann erzeugt, wenn der Dividend so viel
grösser ist als der Divisor, dass der Quotient nicht in 16 Bit
Platz hat. Für eine Division ohne Vorzeichen muss der Divi-
dend mindestens 65536mal grösser sein als der Divisor, damit

Überlauf erreicht wird. Für eine Division mit Vorzeichen muss
der Quotient +32767 oder -32768 übersteigen, damit Überlauf

erreicht wird. Es ist möglich, ein Programm zu schreiben, das
immer einen gültigen Quotienten und Rest ergibt, unabhängig

davon, ob ein Überlauf entsteht. Ein solches Programm wird im
Kapitel 4 vorgestellt. |

66

Der Befehlssatz des MC 68 000

Bild 3.12
Funktion des Befehls EXT

a) Vorzeichenerweiterung
von Byte zu Wort

b) Vorzeichenerweiterung
von Wort zu Doppelwort

3.4.2.5 Vorzeichenerweiterung (EXT)

Der MC 68000 ermöglicht Operationen mit verschiedenen
Datenlängen, und zwar mit einem Befehl genannt «Vorzeichen-

erweiterung» (EXT). Dieser Befehl erweitert das Vorzeichen-
bit (das höchstwertige Bit) eines Wertes in einem Datenregister
von einem Byte zu einem Wort oder von einem Wort zu einem
Doppelwort, wie Bild 3.12 zeigt. Damit ermöglicht der EXT-

Befehl die Ausführung von Operationen wie zum Beispiel der
Addition eines Byte zu einem Wort oder der Multiplikation
eines Wortes mit einem Byte.

6 IS 87

> 2 VOR ZA er »

31 16 5 0

b) Dn [- |]ear.ı Dn

3.4.2.6 Löschbefehl(CLR)

Ein weiterer Befehl dieser Gruppe, «lösche» (CLR), setzt das
adressierte Byte, Wort oder Doppelwort auf null. Er kann ver-
wendet werden zum Löschen eines Datenregisters oder eines
Speicherplatzes, aber nicht für ein Adressregister. (Der Fall,

dass ein Adressregister gelöscht werden soll, ist nicht häufig,

aber für diesen Fall kann mit dem Befehl SUBA.L An, An
diese Operation ausgeführt werden.)
Bei zeitkritischen Anwendungen ist es nützlich zu wissen, dass
CLR gegenüber dem entsprechenden MOVE +0, <ea> dann
schneller ist, wenn das tiefere Byte oder tiefere Wort eines
Datenregisters gelöscht werden soll. Wenn alle 32 Bit eines

Datenregisters gelöscht werden sollen, ist der MOVEO +0, Dn
zwei Zyklen schneller als CLR.L DN. In den meisten Fällen

benötigt das Löschen eines Speicherplatzes mit MOVE.x #0,
<ea> (wobei x = B, W oder DW) die gleiche Zeit wie CLR.x
<ea>. Tatsächlich wird bei Benützung der indirekten Adressie-
rungsart mit Vordekrementierung der Befehl MOVE.x #0,-
(An) den Speicherplatz zwei Zyklen schneller löschen als

CLR.x -(An).

3.4.2.7 Vergleichbefehle

Die meisten Programme arbeiten Befehle nicht hintereinander
ab, wie sie im Speicher gespeichert sind, sondern beinhalten
Sprünge, Verzweigungen, Schlaufen, Subroutinenaufrufe und
andere Bedingungen, die die Programmausführung von einem
Platz im Speicher zu einem andern transferieren können. Die
Befehle, die diese Transfers veranlassen, werden später in die-

67

Der Befehlssatz des MC 68 000

-sem Kapitel beschrieben, wenn wir die Programmsteuerbefehle
des MC 68000 behandeln. Hier werden nur die Vergleichsbefeh-
le diskutiert, die normalerweise verwendet werden, um die
Bedingungscode zu steuern, nach welchen die Programmsteuer-

befehle ihre Entscheide bezüglich Transfer/kein-Transfer
machen.

Die vier Vergleichsbefehle des MC 68000 arbeiten sehr ähnlich
wie Subtraktionsbefehle. Das bedeutet, dass jeder dieser Befehle
einen Quellenoperanden von einem Bestimmungsoperanden

subtrahiert und dabei die Bedingungs-Flags je nach Resultat
setzt (siehe Tabelle 3.9). Im Gegensatz zu den Subtraktionsbe-
fehlen wird bei den Vergleichbefehlen das Resultat der Sub-
traktion nicht gespeichert. Ihr einziger Grund ist die Steuerung
der Bedingungscode für Entscheide der nachfolgenden Pro-
grammsteuerbefehle.

Bedingung xX N* Z v* C

Quelle < Bestimmung - 0 0 0/1 0
Quelle = Bestimmung — 0 1 0 0
Quelle > Bestimmung - 1 0 0/1 1

* Zutreffend, wenn Zahlen im Zweierkomplement verglichen

werden.

Der Vergleichsbefehl (CMP) vergleicht einen Quellenoperanden
mit einem Byte-, Wort- oder Doppelwortoperanden in einem
Datenregister. Wort- oder Doppelwortadressen können unter
Verwendung einer Variante von CMP, genannt «vergleiche
Adresse» (CMPA), mit Adressregistern verglichen werden. Der
Befehl «vergleiche unmittelbar» (CMPI) vergleicht ein Byte,
Wort oder Doppelwort mit einem Bestimmungsoperanden. Der
Befehl «vergleiche Speicher» (CMPM), vergleicht zwei Operan-
den im Speicher unter Verwendung indirekter Adressierung mit
Nachinkrementierung. Dieser CMPM-Befehl wird vor allem
dann eingesetzt, wenn Zeichenfolgen verglichen werden müs-
sen, wie in einem Beispiel später in diesem Kapitel gezeigt wird
(Beispiel 3.3).

3.4.2.8 Vergleich mit Null

Wie in Kap. 3.4.2.3 beschrieben, sind Negierbefehle NEG und
NEGX eigentlich Subtraktionsbefehle, die spezialisierte Auf-
gaben übernehmen. Sie subtrahieren einen Operanden von null.
Vergleichbar dazu verfügt der MC 68000 über einen speziali-

sierten Vergleichsbefehl, «prüfe einen Operanden (TST), der
einen Operanden mit null vergleicht. Wie die Vergleichsbefehle
subtrahiert auch TST den Operanden von null und setzt oder
löscht die Bedingungs-Flags anhand des Resultates, speichert
aber das Resultat nicht ab. Die Bedingungscodes werden durch
TST wie folgt beeinflusst:

68

Tabelle 3.9

Resultate der Vergleichsbefehle

Der Befehlssatz des MC 68 000

Bild 3.13

Speicherzuweisung mit dem Befehl

TAS

an
y . Übertrag (C) und Überlauf (V) werden immer gelöscht.

2. Null (Z) wird gesetzt, wenn der adressierte Operand null ist;
sonst wird Z gelöscht.

3. Negativ (N) wird gelöscht, wenn der adressierte Operand
eine positive Zahl ist; sonst ist N gelöscht.

4. Erweiterung (X) wird nicht beeinflusst.

3.4.2.9 Prüfe und setze einen Operanden (TAS)

Der Befehl «priife und setze einen Operanden» (TAS) arbeitet
grundsatzlich gleich wie der TST-Befehl (er vergleicht den
Operanden mit null und setzt oder löscht die Bedingungscode je

nach Resultat), wobei TAS das höchstwertige Bit des Operan-
den bedingungslos immer setzt. Im weiteren arbeitet TAS nur
mit Byteoperanden, so dass er also Bit 7 eines Byte setzen wird.
Trotz der ähnlichen Arbeitsweisen haben TST und TAS sehr
verschiedene Funktionen. Wie wir im vorderen Abschnitt gese-
hen haben, wird TST verwendet, um herauszufinden, ob ein

Operand den Wert null hat. TAS hingegen wird vor allem
gebraucht zur Statusprüfung eines Flags im Speicher und zum
Setzen dieses Flags. Das ist vor allem bei Multi-tasking-Anwen-
dungen äusserst praktisch, um den verschiedenen Aufgaben
(Tasks) Speicherplatz zuzuweisen. In Multiprocessing-Anwen-
dungen kann er verwendet werden als Zugriffschutz zu Spei-
cherbereichen, die bestimmten Prozessoren zugeordnet sind.

f SEKTION 0

FLAG BYTE

SEKTION

19 setze Zeiger
auf oberste
Adresse

\
| SEKTION 1 |

FLAG BYTE TAS

SEKTION | aus-
1 < führen

> > ja gewünschte

yy N=02 Speichersektion
1 benützen

c | SEK T. ION Nein

FLAG BYTE subtrahiere eine!

Sektionslange
SEKTION vom Zeiger

N-2 < Ss <

| Nein Zeiger < kein
f SEKTION letzte Platz

| N-1 Sektion
FLAG BYTE SEKTION

N-1 < Ss S
69

Der Befehlssatz des MC 68000

Bild 3.13 zeigt die Verwendung von TAS in Multi-tasking-
Anwendungen. Das Beispiel zeigt einen Speicherbereich, der in
N Sektionen unterteilt wurde und gibt ein einfaches Flussdia-
gramm eines Algorithmus, der zur Lokalisierung der nächsten
verfügbaren Sektion verwendet werden kann. Dieser Algorith-
mus benötigt zwei Adressregister, eines zur Aufnahme eines
Zeigers, der auf die zu prüfende Sektion zeigt, und ein anderes
zur Aufnahme eines Zeigers, der auf die letzte Sektion (Sektion
0) zeigt. Das Programm für diesen Algerithmus schliesst einige

schon beschriebene Befehle ein wie MOVEA oder LEA
(zur Initialisierung der Testzeiger), SUBA_(zur Dekremen-
tierung des Testzeigers) und CMPA (zum Vergleichen der zwei
Zeiger). Es sind auch bedingte Verzweigungsbefehle verwendet,
die unter den Programmsteuerbefehlen behandelt werden.
In einer Multiprocessing-Anwendung erlaubt TAS einem Pro-
zessor die Interpretation eines Prüfbyte (mittels der Bedin-
gungscodes) und das Setzen einer 1 in das höchstwertige Bit des
Byte. Falls der Speicher besetzt ist, kann das Programm die
Abfrage aufrechterhalten, bis er frei wird. Die folgende Routine
übernimmt diese Aufgabe:

MFREE TAS TEST Prüfe und setze das Byte TEST.
BNE MFREE Wenn TEST nicht = 0, prüfe

weiter.

(Prozessor Programmbefehle)

CLR.B TEST Losche TAS Byte.
Es ist wichtig, zu wissen, dass TAS der einzige MC-68000-
Befehl ist, der einen nicht unterteilbaren «lese-ändere-schrei-

be»-Zyklus ausführen kann. Das verunmöglicht jegliche Beein-
flussung durch einen anderen Prozessor, sobald die TAS-

Operation eingeleitet wurde.

3.4.3 Logische Befehle

Es bestehen sieben logische Befehle, dargestellt in Tabelle 3.10.
Die Basisbefehle in dieser Gruppe sind «logisch und» (AND),
«exklusiv oder» (EOR), «oder» (OR). Diese drei Befehle kön-
nen mit Byte-, Wort- oder Doppelwortoperanden arbeiten.

Einer dieser Operanden muss sich in einem Datenregister befin-
den. Der zweite Operand kann für den AND- und OR-Befehl im
Speicher, einem Datenregister oder einem Adressregister sein,
fur den EOR-Befehl nur im Speicher oder in einem Datenregi-
ster. EOR kann nicht mit Adressregistern operieren.
Ein weiterer Befehl, «logisches Komplement» (NOT), kann das
Einerkomplement eines Datenregisters oder eines Speicherplat-
zes erzeugen. Mit NOT können Operanden ohne Vorzeichen,

mit NEG oder NEGX vorzeichenbehaftete Operanden komple-

70

Der Befehlssatz des MC 68 000

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-

grösse codes

Quelle Ziel XNZVC

AND AND <ea>,Dn 8, 16, 32 Daten Dn -**00

AND Dn,<ea> 8, 16, 32 Dn anderbar -**00

ANDI ANDI +d,<ea> 8, 16, 32 +#+d Daten änderbar -**00

ANDI #d,SR (1) 8, 16 ted SR el

EOR EOR Dn,<ea> 8, 16, 32 Dn Daten anderbar ~** QO

EORI EORI #d,<ea> 8, 16, 32 +d -**00
EORI +#d,SR (1) 8, 16 ted SR * ee

NOT NOT <ea> 8, 16, 32 Daten anderbar -**00

OR OR <ea>,Dn 8, 16,32 Daten Dn -**:00
OR Dn,<ea> 8, 16, 32 Dn änderbar -**00

ORI ORI +d,<ea> 8, 16, 32 +#d Daten änderbar —** QO

ORI #d,SR (1) 8, 16 ted SR ee eK

Bemerkung: (1) Wenn die Operandengrösse Byte ist, werden nur die tieferen 8 Bit des Statusregisters
beeinflusst. Wenn die Operandengrösse Wort ist, werden alle 16 Bit des Statusregi-
sters beeinflusst und der Befehl ist privilegiert.

Tabelle 3.10 Logische Befehle

mentiert werden. Variationen der AND-, OR- und EOR-Befeh-
le erlauben die Verwendung von Konstanten als Quellendaten.
Diese Variationen, «und unmittelbar» (ANDI), «exklusiv- oder

unmittelbar» (EORI) und «oder unmittelbar» (ORI) arbeiten
mit Speicher- oder Datenregisteroperanden jeder Länge. Sie
sind auch anwendbar für Operationen mit dem Statusregister
oder mit den Bedingungscode. Operationen mit dem Statusregi-

ster (SR) sind privilegiert.

3.4.4 Schiebe- und Rotierbefehle

Der MC 68000 verfügt über vier Schiebebefehle und vier
Rotierbefehle. Tabelle 3.11 zeigt diese Befehle, und Bild 3.14
zeigt ihre Funktionsweise. Wie in Tabelle 3.11 dargestellt, ver-
fügt jeder Befehl über drei Varianten: zwei, die mit einem Daten-
register operieren (Byte, Wort oder Doppelwort), und eine, die
mit dem Speicher arbeitet (nur Worte).

Wenn die Operation mit einem Datenregister ausgeführt wird,
kann der Schiebe- oder Rotierwert spezifiziert werden mit dem

Inhalt eines andern Datenregisters (Wert = O bis 63, wobei 0
einen Wert von 64 erzeugt), oder als unmittelbarer Wert zwi-

schen 1 und 8. Ein Wortoperand im Speicher kann nur um eine
Bitposition geschoben oder rotiert werden.

3.4.4.1 Schiebebefehle

Zahlen mit Vorzeichen können geschoben werden unter Ver-
wendung der Befehle «arithmetisch schieben links» (ASL) und
«arithmetisch schieben rechts» (ASR). ASR schützt das Vor-

zeichen des Operanden durch Reproduktion des Vorzeichens

während der ganzen Schiebeoperation. Bei ASL wird das Vor-

71

Der Befehlssatz des MC 68000

 | ASL

OY
LSL

ISR 0 —t

ROR rt

ROXL

|

>| |

 P
H

ROXR T

zeichenbit nicht geschiitzt, aber das Uberlaufbit (V) wird
gesetzt, wenn das Vorzeichenbit geändert wird.

Zahlen ohne Vorzeichen lassen sich unter Verwendung der
Befehle «logisch schieben links» (LSL) und «logisch schieben
rechts» (LSR) bearbeiten. Bei allen vier Befehlen werden Bit, die
aus dem Operanden geschoben werden, in den Übertrag (C)
und die Erweiterung (X) der Bedingungscode übernommen.
Zusätzlich zur Anwendung dieser Befehle in allgemeinen
Datenmanipulationen führen diese Schiebebefehle auch schnel-
le Multiplizier- und Dividieroperationen durch: Jedes Links-

schieben bedeutet eine Multiplikation des Operanden mit zwei
und jedes Rechtsschieben eine Division des Operanden durch
zwei.

3.4.4.2 Rotierbefehle

Bei allen vier Rotierbefehlen werden Bit ausserhalb des Operan-
den in den Übertrag geschrieben. Für den Befehl «rotiere links»

(ROL) und «rotiere rechts» (ROR) werden die Bit, die an einem
Ende des Operanden herausrotiert werden, auf der entgegenge-
setzten Seite des Operanden wieder eingeschrieben. Bei «rotiere
links mit Erweiterung» (ROXL) und «rotiere rechts mit Erwei-

72

Bild 3.14

Funktionsweise der Schiebe- und

Rotierbefehle

Der Befehlssatz des MC 68000

terung» (ROXR) werden die an einem Ende des Operanden her-
ausrotierten Bit in das Erweiterungs-Flag (X) und in den Uber-
trag (C) geschrieben, und der vorherige Wert von X wird in das
entgegengesetzte Ende des Operanden eingeschrieben.
Die «rotiere mit Erweiterung»-Befehle verfügen über Möglich-
keiten, die bis jetzt nicht zur Verfügung standen: die Fähigkeit
des Zugriffes zu den drei höherwertigen Byte in einem Datenre-
gister. Wir erinnern uns, dass alle Byteoperationen mit dem
tiefstwertigen Byte eines Datenregisters ausgeführt werden.
Wie kann man nun mit dem zweiten Byte (das «tiefere mittlere»)

eines Registers operieren? Das ist möglich, indem man dieses
Byte in die tiefstwertige Position bringt, unter Verwendung der

Befehle ROL #8, Dn oder ROR #8, Dn. So kann auch auf das
«höhere mittlere» und das höchstwertige Byte eines Datenregi-
sters zugegriffen werden. Das höhere mittlere mit einem

SWAP-Befehl, das höchstwertige mit einem ROL.L #8, DN.
Aufeinanderfolgend kann zu den höheren drei Byte zugegriffen
werden (wie zum Beispiel in Zeichenfolgen) unter Ausführung
von drei Befehlen ROR.L 48, Dn.

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-

grösse codes

Quelle Ziel XNZVC

ASL ASL Dx,Dy 8, 16, 32 Dn (1) Dn ve
ASL #d,Dn 8, 16, 32 #d (2) Dn eR
ASL <ea> 16 Speicher dnderbar *****

ASR ASR Dx,Dy 8, 16, 32 Dn (1) Dn eK
ASR +#d,Dn 8, 16, 32 +#d (2) Dn
ASR <ea> 16 Speicher änderbar *****

LSL LSL Dx,Dy 8, 16, 32 Dn (1) Dn eee QO *
LSL #d,Dn 8, 16, 32 +td (2) Dn eee QO *
LSL <ea> 16 Speicher änderbar ***0*

LSR LSR Dx,Dy 8, 16, 32 Dn (1) Dn *O*O*
LSR #d,Dn 8, 16, 32 +td (2) Dn *0*0*
LSR <ea> 16 Speicheränderbar *0*0*

ROL ROL Dx,Dy 8, 16, 32 Dn (1) Dn -**Q*
ROL +d,Dn 8, 16, 32 ‘ded (2) Dn _**Q*

ROL <ea> 16 | Speicheränderbar -**0*

ROR ROR Dx,Dy 8, 16, 32 Dn (1) Dn —_**Q*
ROR +#d,Dn 8, 16, 32 +d (2) Dn —_**Q*
ROR <ea> 16 Speicher dnderbar -**0*

ROXL ROXL Dx,Dy 8, 16, 32 Dn (1) Dn x EQ *
ROXL +d,Dn 8, 16, 32 +#d (2) Dn * ee *
ROXL <ea> 16 Speicher anderbar ***0*

ROXR ROXR Dx,Dy 8, 16, 32 Dn (1) Dn eee QO *
ROXR +#d,Dn 8, 16, 32 +d (2) Dn regt
ROXR <ea> 16 Speicher änderbar ***0*

Bemerkungen: (1) Das Quellendatenregister enthält den Schiebewert.
Wert =Obis 63, wobei 0 eine Verschiebung von 64 erzeugt.

(2) Die Daten sind der Schiebewert 1 bis 8.

Tabelle 3.11 Schiebe- und Rotierbefehle

73

Der Befehlssatz des MC 68000

3.4.4.3 Schnellere Schiebe- und Rotieroperationen

Weil Worte im Speicher pro Operation nur um eine Bitposition
geschoben oder rotiert werden können, dauert eine Schiebe-
oder Rotieroperation um n Bit mindestens n-mal länger als eine
1-Bit-Schiebe- oder -Rotieroperation. Das Schieben oder Rotie-
ren eines Worts im Speicher benötigt 9+ Zyklen, wobei «+» die
Zeit für die Berechnung der effektiven Adresse angibt. Dadurch

wird eine 2-Bit-Schiebeoperation 2x 9+ Zyklen benötigen,
usw.
Das Schieben oder Rotieren eines Datenregisters um nBit

benötigt 6+2n Zyklen, eine 1-Bit-Schiebeoperation also 8
Zyklen, eine 2-Bit-Schiebeoperation 10 Zyklen usw. Es ist klar,
dass für einige Werte von n die Ausführungszeit beträchtlich
gesenkt werden kann, indem man einen Speicheroperanden in
ein Datenregister liest, das Register schiebt (oder rotiert) und
dann das Resultat in den Speicher zurückschreibt. Das benötigt
drei Befehle. Unter Verwendung von Tabellen über die Ausfüh-

rungszeiten, die wir später kennenlernen, können wir die totale
Ausführungszeit wie folgt berechnen:

Befehl Ausführungszeit

MOVE <ea>,Dn 4+
ASL #n, Dn 6+ 2n
MOVE Dn, <ea> 5+

Totalzeit (15+) + 2n

Zusammengefasst benötigt also eine n-Bit-Schiebe- oder -Ro-
tieroperation nx 9+ Zyklen im Speicher und [(15+) + 2n]
Zyklen in einem Datenregister. Von welchem Punkt an bringt es
nun Vorteile, die Operation in einem Datenregister durchzufüh-
ren? Es ist klar, dass eine 1-Bit-Schiebeoperation sicher im

Speicher durchgeführt werden muss (9+ Zyklen im Speicher
gegenüber 17+ Zyklen in, einem Register). Auch eine 2-Bit-
Schiebeoperation sollte noch so durchgeführt werden (18+
Zyklen im Speicher gegenüber 19+ Zyklen in einem Register).
Hingegen benötigt eine 3-Bit-Schiebeoperation 27+ Zyklen im
Speicher, aber nur 21+ Zyklen in einem Datenregister! Schluss-
folgerung: Wenn das Verschieben oder Rotieren im Speicher um
mehr als 3 Bit-Positionen nötig ist, sollte die Operation in einem

Datenregister vorgenommen werden.

3.4.5 Bitmanipulationsbefehle

Diese vier Befehle können den Zustand eines spezifizierten Bit
in einem Datenregister oder einem Byte im Speicher prüfen.
Diese in der Tabelle 3.12 zusammengefassten Befehle speichern
den Zustand des spezifizierten Bit im Bedingungscode, Flag
Null (Z): wenn das Bit 0 ist, wird Z = 1; wenn das Bit 1 ist, wird
Z=0.

74

Der Befehlssatz des MC 68000

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-

grösse codes

Quelle Ziel XNZVC

BTST BTST Dn,<ea> 8,32 Dn Daten, ausgenom- --*--
BTST #d,<ea> 8,32 +d menunmittelbar --*--

BSET BSET Dn,<ea> 8, 32 Dn a
BSET #d,<ea> 8,32 +d __*__

BCLR BCLR Dn,<ea> 8,32 Dn Daten --*__

BCLR +d,<ea> 8,32 #d änderbar —_~*__

BCHG BCHG Dn,<ea> 8,32 Dn --*__
BCHG +#d,<ea> 8,32 #d __*__

Tabelle 3.12 Befehle für Bitmanipulationen

Drei der Bitmanipulationsbefehle ändern das Bit unbedingt, wie

folgt:

Befehl Durchgeführte Operation
mit dem Bit

BTST (Bit prüfen) Bit wird nicht beeinflusst
BSET (Bit prüfen und setzen) Bit wird auflogisch 1 gesetzt
BCLR (Bitprüfen undlöschen) Bit wird auflogisch 0 gesetzt
BCHG (Bit prüfen und wechseln) Zustand des Bit wird

umgekehrt

3.4.6 BCD-Befehle

Im Zusammenhang mit den arithmetischen Befehlen wurde

erwähnt, dass der MC 68000 über drei Befehle verfügt, mit
denen Operationen mit BCD-Werten ausgeführt werden kön-
nen. Alle diese Befehle (Tabelle 3.13) arbeiten mit bytelangen
Daten, wobei ein Byte immer zwei BCD-Werte mit 4 Bit enthält.
Im weiteren schliessen die BCD-Befehle wie auch die erweiter-
ten Binärarithmetikbefehle das X-Bit in die Operationen ein und
wechseln das Z-Bit dann, wenn ein Resultat generiert wird, das
verschieden von null ist. In diesem Fall muss vor Ausführung
der BCD-Befehle das X-Bit mit 0 und das Z-Bit mit 1 initiali-

siert werden. Am einfachsten kann dies mit dem Befehl MOVE

#4,CCR erreicht werden.

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grösse codes

Quelle Ziel XNZVC

ABCD ABCD Dy,Dx 8 Dn Dn * U* U*
ABCD -(Ay),-Ax) 8 -(An) -(An) * U* U*

SBCD SBCD Dy,Dx 8 Dn Dn * U* U*

SBCD -(Ay),-(Ax) 8 -(An) -(An) * j* U*

NBCD NBCD <ea> 8 Daten änderbar * U* U*

Tabelle 3.13 BCD-Befehle

75

Der Befehlssatz des MC 68000

3.4.6.1 BCD-Addition (ABCD) und -Subtraktion (SBCD)

Mit den Befehlen «addiere dezimal mit Erweiterung» (ABCD)
und «subtrahiere dezimal mit Erweiterung» (SBCD) können
dezimale Additionen und Subtraktionen mit den tieferwertigen
Byte von zwei Datenregistern oder mit zwei Byte im Speicher

ausgeführt werden. Die Befehle ABCD und SBCD beeinflussen
die fünf Bedingungscodebit wie folgt: | .
1. Der Übertrag (C) wird gesetzt, wenn ABCD einen Übertrag

erzeugt oder SBCD einen Entlehnwert benötigt, sonst ist C
gelöscht.

2. Überlauf (V) und Negativ (N) sind für beide Befehle nicht
definiert.

3. Null (Z) wird gelöscht, wenn das Resultat nicht gleich null ist,
sonst bleibt Z unverändert. Bei Mehrbyteoperationen zeigt
dadurch Z den Status der gesamten Operation und nicht nur

gerade den der letzten Byte.

4. Die Erweiterung (X) wird wie der Übertrag C gesetzt.

Obschon die BCD-Befehle eine gewisse Ähnlichkeit mit den
erweiterten Binärarithmetikbefehlen aufweisen, bedeutet die
Tatsache, dass die BCD-Befehle auf Byteoperationen
beschränkt sind doch, dass bei der Programmierung Unter-
schiede beachtet werden müssen. Zum Beispiel wird es offen-
sichtlich mehr Befehle erfordern, um BCD-Mehrbyteadditionen
oder -subtraktionen auszuführen, als für die gleichen Binärope-

rationen nötig wären, da bei binären Mehrbytezahlen die
Wort- und Doppelwortkombinationen verwendet werden kön-
nen.

Weniger augenscheinlich ist die Tatsache, dass in den meisten
Fällen die Datenregister auf die Ausführung von Additionen
und Subtraktionen mit Zweidigit-BCD-Werten beschränkt

sind, und zwar wegen des Zugriffs auf das mittlere Byte von
Datenregistern. Dieses Byte müsste zuerst in die tiefstwertige
Byteposition rotiert werden, wobei wiederum zu beachten ist,
dass die dafür benötigten Befehle ROR, ROL, ROXR und
ROXL immer das Z-Bit beeinflussen und damit den Zwischen-

status null der Mehrbyte-BCD-Operationen zerstören! Wenn
man also nicht einen speziellen Schutz der CCR-Werte vor und
nach der Rotieroperation vorsieht, sollten Mehrbyte-BCD-
Operationen eher mit Werten im Speicher als in Datenregistern
vorgenommen werden.

Wenn Additionen und Subtraktionen von Mehrbyte-BCD-
Operanden im Speicher ausgeführt werden, müssen diese
Operanden, wie bei Mehrbyte-Binäroperanden, in der Ordnung
höher nach tiefer gespeichert sein (siehe wieder Bild 1.1). Diese
Anordnung ist verständlich, wenn die Adressierungsart im Spei-
cher für ABCD- und SBCD-Befehle betrachtet wird.

76

Der Befehlssatz des MC 68 000

Bild 3.15

Addition von zwei BCD-Zahlen

mit je 4Byte

Im folgenden Beispiel werden mit der Befehlsequenz

MOVE #4,CCR
ABCD -(A0), -(Al)
ABCD -(A0), -(A1)
ABCD -(A0), -(Al)
ABCD -(A0), -(A1)

zwei 8-Digit-BCD-Zahlen (4 Byte) im Speicher addiert. Bild
3.15 zeigt, wie diese Zahlen gespeichert sind und die Zeiger AO
(Quelle) und Al (Ziel) durch die Additionssequenz verändert

werden.

Speicher

A1 (nach — , 2

. —-| höh h Addition) öher |milte höher 4-Byte-Ziel

mitte tiefer\ tiefer

At (vor
Addition)

35

AO (nach

Addition)

Ao (vor
Addition)

—-| hoher \mitte höher

mitte tiefer| tiefer
} 4- Byte- Quelle

3.4.6.2 BCD-Negierbefehl (NBCD)
Der NBCD-Befehl subtrahiert den adressierten Byteoperanden
(in einem Datenregister oder im Speicher) und das Erwei-
terungsbit (X) von null. Wenn X = 0 ist, wird das Zehnerkom-
plement erzeugt; wenn X = 1 ist, das Neunerkomplement.

3.4.7 Programmsteuerbefehle

Wie bei der Behandlung der Vergleichbefehle erwahnt, werden
Programmbefehle im Speicher fortlaufend abgelegt, jedoch in
den seltensten Fällen in dieser Reihenfolge ausgeführt. Auch
das einfachste Programm verfügt über Verzweigungen, Sprünge
und Subroutinenaufrufe, die die Ablaufsequenz ändern. Die
Programmsteuerbefehle (Tabelle 3.14) ermöglichen dem MC
68000 den Wechsel der Programmausführung von einem Teil

71

Der Befehlssatz des MC 68 000

des Speichers in einen anderen. Diese Befehlsgruppe kann in
drei Kategorien unterteilt werden: bedingte, unbedingte und
Rückkehrbefehle.

3.4.7.1 Bedingte Befehle

Die drei ersten Eintragungen in Tabelle 3.14 sind bedingte
Befehle für den MC 68000. Ihr Operationsmodus hängt ab vom
Zustand eines oder mehrerer Flags im Bedingungscoderegister.
Anders als in den vorhergehenden Befehlstabellen dieses Kapi-

tels zeigt die Tabelle 3.14 nicht die Mnemonik für diesen Be-
fehlstyp, sondern die symbolische Form Bcc, DBcc und Scc,
wobei cc die geprüfte Bedingung darstellt. Die cc-Anhänge sind
in Tabelle 3.15 dargestellt. Der Bcc-Befehl akzeptiert die Bedin-
gung «immer wahr» (T) und «immer falsch» (F) nicht, mit den
DBecc-und Scc-Befehlen hingegen können alle 16 Bedingungen
geprüft werden. Die 14 bedingten Verzweigungsbefehle (Bcc)
des MC 68000 sind die gleichen wie beim MC 6800. Mit diesen
Befehlen verzweigt die Programmsteuerung bei erfüllter Bedin-
gung zum Befehl im Speicherplatz mit der Adresse (PC)+ Ver-
schiebung. (PC = Programmzahler)

Wenn die Bedingung nicht erfüllt ist, wird der Programmablauf
mit dem nächsten Befehl weitergeführt. Der Wert im PC ent-
spricht dem Speicherplatz des Bcc-Befehls + 2. Die Verschie-
bung ist ein ganzzahliger Zweierkomplementwert, der der
Anzahl Byte zwischen dem PC-Wert und dem Speicherplatz.
des Labels entspricht. Wenn der Operand ein Label ist (was nor-
malerweise der Fall ist), wird der Assembler die Verschiebung

berechnen.

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grösse | codes

Quelle Ziel XNZVC

Bedingte Befehle

Bcc Bcc <label> 8,16 Ifcc,thenPC+d>PC) -----
DBcc DBcc . Dn,<label> 16 Ifec,then Dn-1>-Dn;) -----

if Dn + -1,

then PC +d> PC
Scc Scc <ea> 8 If cc, then 1s > (ea); Daten -----

Os — (ea) veränderbar

Unbedingte Befehle

BRA BRA <label> 8,16 PC+d>PC ren
BSR BSR <label> 8,16 PC>-SP; ==.

PC +d> PC
JMP JMP <ea> <ea>>PC Steuerung -----
JSR JSR <ea> PC>-(SP); <ea>>PC Steuerung -----

Rückkehrbefehle
RTR RTR (SP)+>CCR; Krk

(SPA) +>PC
RTS RTS (SP)+>-PC 222

Tabelle 3.14 Befehle für die Programmsteuerung

78

Der Befehlssatz des MC 68 000

* Zweierkomplement-Arithmetik Anhang «cc» Bedingung

Trifft zu wenn

Symbole: A = UND EQ Gleich Z=1
[I = ODER NE Nicht gleich Z=0
© = EXKLUSIV MI Minus N=1

ODER PL Plus N=0

"GT Grösser als ZA(NOV)=0
*LT Kleiner als NOV=1
*GE Grosser oder gleich NOV=0
*LE Kleiner oder gleich ZO(NOV)=1
HI Hoher als CAZ=0
LS tiefer oder gleich COZ=1
CS Ubertrag gesetzt C=1

CC Übertrag gelöscht C=0
"VS Überlauf V=1
*VC ~ Kein Uberlauf V=0

Tabelle 3.15 T Immer wahr
Bedingungsprüfungen F Immer falsch

Wenn der Befehl die Form

BNE *+10

hat, spezifiziert der Operand den Wert der Verschiebung (in die-
sem Fall dezimal 10) in Byte. Die Bcc-Befehle können ein Wort
oder zwei Worte lang sein. Mit der Form

Bcc.S

wird der Assembler einen Einwortbefehl mit einer relativen, vor-

zeichenbehafteten 8-Bit-Verschiebung, die im Operationswort
eingebettet ist, generieren. In dieser Form kann sich der ange-
zielte Verzweigungsbefehl bis zu 128 Byte höher oder tiefer im

Speicher befinden, als das Bcc-Operationswort plus zwei. Wird
der Anhang «.S» weggelassen, erzeugt der Assembler einen
Zweiwortbefehl mit einer relativen, vorzeichenbehafteten 16-
Bit-Verschiebung im zweiten Wort. In dieser Form kann sich
der angezielte Verzweigungsbefehl bis zu 32 KByte höher oder

tiefer im Speicher befinden als das Bcc-Operationswort plus
zwei (das Verschiebungswort). Wenn also der Bec-Befehl am
Speicherplatz N beginnt, gestattet die Form Bcc.S einen Ver-

zweigungsbereich zwischen N+$80 und N-$7E, die Form Bcc
einen solchen zwischen N+$8000 und N-$7FFE.
Hier einige Beispiele bedingter Verzweigbefehle:

1.) Die Sequenz

ADD DO0O,DI
BCS TOOBIG

79

Der Befehlssatz des MC 68 000

verzweigt zum Label TOOBIG, wenn die Addition einen Uber-
trag ausserhalb des tiefern Wortes in D1 ergibt.
2.) Die Sequenz

SUB DO,D1
BEQ ZERO

verzweigt zum Label ZERO, wenn die Subtraktion im tiefern
Wort von D1 Null ergibt.

3.) Zum blossen Test, ob die tiefern Wörter von DO und DI
gleich sind, wird, ohne Register zu beeinflussen, anstelle eines
Subtraktionsbefehls besser ein Vergleichbefehl verwendet.
Die Sequenz

CMP D0, D1
BEQ ZERO

verzweigt zum Label ZERO, wenn die tiefern Worte in DO und
D1 gleich sind.

4.) Einige Tests erfordern die Wahl zwischen zwei verschiede-
nen Bcc-Befehlen, je nachdem ob das Resultat einer Operation
von Werten mit oder ohne Vorzeichen geprüft werden soll. Zur
Erläuterung nehmen wir an, dass zum Label DIMORE ver-
zweigt werden soll, wenn das tiefere Wort in DI grösser ist als
das tiefere Wort in DO.
Folgende Sequenzen sind zu verwenden:

CMP D0, Di für Werte von DO und D1
BHI DIMORE ohne Vorzeichen

CMP Do, D1 für vorzeichenbehaftete Werte
BGT DIMORE vonD0Ound D1

Die bedingten Verzweigbefehle werden häufig als letzter Befehl
in einer Schlaufe eingesetzt, um diese verlassen zu können,
wenn eine bestimmte «cc»-Bedingung eingetreten ist. Das Bei-

spiel 3 zeigt diese Methode mit einem Programm, das einen aus-
gewählten Speicherbereich nach einem spezifizierten Wortwert

absucht. Die Start- und Endadressen im Speicher befinden sich
in AO beziehungsweise Al, und der gesuchte Wert befindet sich
im tiefern Wort von DO.

Dieses Programm verwendet eine Schlaufe, in der der Wert, auf
den AO zeigt, mit dem Wert in DO verglichen wird. Wenn der
gesuchte Wert gefunden ist, verzweigt BEQ.S DONE den
Mikroprozessor zu DONE, wo AO dekrementiert wird. (Das ist
nötig, weil AO immer nachher inkrementiert wurde, und dann
am Schluss auf ein Wort nach dem Speicherplatz des vergliche-
nen Werts zeigt.) Wenn kein gleicher Wert gefunden wird, prüft

80

Der Befehlssatz des MC 68000

CMPA.L AO, A1 auf die Bereichsgrenze und springt auf LOOP
zuruck, wenn AO kleiner oder gleich A1 ist (wahr wenn C = 0,
da BCC.S als Abschlussbefehl verwendet wird).

Programmbeispiel 3.1

* DIESES PROGRAMM PRUEFT, OB EIN AUS-
*GEWÄHLTER SPEICHERBEREICH EINEN
*SPEZIFIZIERTEN WORTWERTENTHAELT. VOR
* DER AUSFUEHRUNG MUESSEN AOUND AI DIE
* ANFANGS- UND ENDADRESSEN DES BEREICHS
*ENTHALTEN. DAS TIEFERE WORT VON DO MUSS
*DEN WERT, DER GESUCHT WIRD, ENTHALTEN.
* AM SCHLUSS, WENN DER WERT GEFUNDEN
* WURDE, IST Z = 1 UND AO ENTHAELT DIE
* ADRESSE, WO DER WERT GEFUNDEN WURDE.
*FALLS DER WERT NICHT GEFUNDEN WURDE,
*ISTZ=O0OUND AO=AIl

ORG 82000

LOOP CMP (A0)+,D0 WERT GEFUNDEN?
BEQ.S DONE JA, AUFHOEREN
CMPA.LAO,A1 GRENZE DES

BEREICHS?
BCC.S LOOP NEIN, WEITERFAHREN

DONE SUBA.L #2,A0 FERTIG. AO ANPASSEN

Leser, die 8-Bit-Mikroprozessoren programmiert haben, wissen
gut, dass Schlaufen gewohnlich mit einer Art Zahler, normaler-
weise einem Register, realisiert werden. Nach jedem Schlaufen-

durchgang wird der Zähler um 1 dekrementiert, und die Schlau-
fe wırd dann verlassen, wenn der Zähler null wird. Diese Proze-
dur benötigt immer mindestens zwei Befehle: einen Dekrement-
befehl und einen bedingten Verzweigbefehl. Mit dem MC 68000
kann diese Aufgabe kombiniert werden mit einer Anzahl von
Prüf-, Dekrement- und Verzweigbefehlen (DBcc: test, decre-
ment and branch).
Bei der Ausführung eines DBcc-Befehls fragt der MC 68000 die

Bedingungscode ab, um herauszufinden, ob die spezifizierte
Bedingung (irgendeine der 16 Bedingungen aus Tabelle 3.15)
gesetzt ist. Falls dies der Fall ist, geht das Programm zum näch-

sten Befehl. Wenn die Bedingung nicht erfüllt ist, dekrementiert
der MC 68000 das tiefere Wort eines spezifierten Datenregisters
um eins. Wenn der Wert im Datenregister -1 erreicht hat, wird
der nächste Befehl ausgeführt, andernfalls verzweigt der
MC 68000 zum spezifizierten Label im Speicher. Zum besseren

Verständnis dieses Ablaufs sei auf Bild 3.16 hingewiesen.
Es wird ausdrücklich darauf aufmerksam gemacht, dass mit
dem einfachen Befehl DBcc wie zum Beispiel

81

Der Befehlssatz des MC 68000

BNE DO0,LOOP

die gleichen Operationen wie mit der Befehlssequenz

BNE.S NEXT
SUBQ +#1,D0
BPL LOOP

NEXT

ausgeführt werden. Zum Wegfall von zwei Zeilen Quellencode
kommt dazu, dass ein DBcc-Befehl im Speicher zwei Worte
weniger benötigt als die äquivalente Befehlssequenz (zwei Wor-
te für DBcc gegen vier Worte für die Sequenz). Ein DBcc-Befehl
wird also normalerweise doppelt so schnell ausgeführt werden
wie die entsprechende 3-Befehls-Sequenz. Ein DBcc-Befehl

benötigt 10 Zyklen, wenn die Verzweigung ausgeführt wird, und
12 Zyklen, wenn nicht verzweigt wird. Demgegenüber benötigt
die Sequenz bei ausgeführter Verzweigung 22 Zyklen, und 10

DBcc Dn.<label>

Befehl

ausführen

Verzweigung weiter bei
zu nächstem

<label> Befehl

82

Bild 3.16
Wirkungsweise der Befehle DBcc

Der Befehlssatz des MC 68000

oder 22 Zyklen, wenn nicht verzweigt wird (je nachdem ob die
«cc»-Bedingung erfüllt ist oder der Zähler auf -1 dekrementiert
wurde).

Die Annahme, dass die DBcc-Befehle nur gerade als Bcc-mit-
Zähler-Befehle eingesetzt werden können, wäre aber falsch. Es
gibt vielmehr einige wichtige Unterschiede zwischen den DBcc-
und den Bcc-Befehlen, die beachtet werden müssen:

1. Die DBcc-Befehle arbeiten in umgekehrter Art als die Bcc-
Befehle, das heisst, dass die Bcc-Befehle verzweigen, wenn
die Bedingung erfüllt ist, während die DBcc-Befehle nicht

verzweigen, wenn die Bedingung erfüllt ist, und das Pro-
gramm den nächsten Befehl ausführt.

2. Bei den DBcc-Befehlen führen zwei Wege aus der Schlaufe,

da sie sowohl bei erfüllter Bedingung als auch beim Erreichen
des Werts -1 im Zähler zum nächsten Befehl gehen. Daher
besitzen die DBcc-Befehle auch die Charakteristik eines

Befehls «mache bis gleich» (auf -1).

3. Ein Bcc-Befehl kann in einem Programm vorwärts und rück-
wärts verzweigen, ein DBcc-Befehl hingegen nur rückwärts,
das heisst zu einer tieferen Speicheradresse. Die Verzwei-

gungsmarke darf nicht mehr als 32 766 Byte ($7FFE) tiefer
als der DBcc-Befehl liegen.

4. Bcc-Befehle können Ein- oder Zweiwortbefehle sein, DBcc-
Befehle sind immer Zweiwortbefehle. Daher ist die Form
DBcc:S illegal.

Wie bereits erwähnt, können die DBcc-Befehle mit allen 16
«cc»-Anhängen verwendet werden, also inklusive Tund F. Der
T-Anhang verlangt die Befehlsform

DBT Dn, «Label»

die immer zum nächsten Befehl führt und daher nichts anderes
ist als eine Zweiwort-Nulloperation! Der nützlichere F-Anhang
gestattet es, die Bedingungsabfrage zu unterlassen und die Ent-
scheidung verzweigen/nicht verzweigen allein auf den Zustand
des Zählers abzustützen. Das Beispiel 3.2 zeigt, wie unter Ver-
wendung des DBF-Befehls ein Datenblock im Speicher ver-
schoben werden kann. Es ist zu beachten, dass der Zähler DO
mit dem Wert der Anzahl Doppelworte minus eins initialisiert
wird, weil ja bis auf -1 dekrementiert wird. Wenn acht Doppel-
worte verschoben werden sollen, muss DO mit dem Wort $0007
initialisiert werden. Dieses Programm dürfte vor allem Pro-

grammierer beeindrucken, die bereits Datenverschiebungen in
einem 8-Bit-Mikroprozessor programmiert haben, denn das
Programm besteht nur aus zwei Befehlen, besetzt lediglich drei
Worte im Speicher und ist auch schnell. Der MOVE.L-Befehl

83

Der Befehlssatz des MC 68 000

benötigt 22 Zyklen und der DBF-Befehl entweder 10 (falls ver-
zweigt wird) oder 14 Zyklen (wenn nicht verzweigt wird).
Daher werden bei der Verschiebung von N Doppelworten
32N+4 Zyklen benötigt, für 100 Doppelworte also z.B. 3204

Zyklen oder 400,5 us bei 8MHz.

Programmbeispiel 3.2

* DIESES PROGRAMM KOPIERT EINEN DATEN-
* BLOCK VON EINEM TEIL DES SPEICHERS IN EINEN
* ANDERN. DO ENTHAELT DIE ANZAHL DOPPEL-
* WORTE, DIE VERSCHOBEN WERDEN SOLLEN, -1.
* AO ENTHAELT DIE URSPRUNGSADRESSE, A1 DIE
* ZIELADRESSE

ORG $2000
BLKMOV MOVE.L (A0)+,(Al)+ VERSCHIEBE EIN

DOPPELWORT
DBF DO,BLK MOVE DURCHLAUFE

SCHLAUFE BIS
DO + 1 BLOECKE
VERSCHOBEN

END SIND.
Als einzige bedingte Befehle, die bis jetzt nicht diskutiert wur-
den, bleiben noch die «Setze gemäss Bedingung»-(Scc-)Befehle.
Diese Befehle prüfen die spezifizierte «cc»-Bedingung (irgend-
eine aus Tabelle 3.15) und setzen im adressierten Byte alle Bit
auf 1, falls die Bedingung erfüllt ist, beziehungsweise alle Bit auf
0, wenn die Bedingung nicht erfüllt ist. Da diese Befehle den

Bedingungscode nicht beeinflussen, werden sie zur Bildung von
Indikatoren eingesetzt, die nicht unmittelbar geprüft werden
müssen, sondern später abgefragt werden können.

3.4.7.2. Such-Subroutine für ASCII-Zeichenfolgen

Zur Vertiefung des bisher vermittelten Stoffes betrachten wir ein
Programmbeispiel, das eine gute Auswahl der bis jetzt diskutier-
ten Befehle aufweist. Das Beispiel 3.3 ist eine Subroutine, die
das erste Erscheinen einer ASCII-Zeichenfolge (die sogenannte
Testzeichenfolge oder «test string») in einer anderen ASCII-
Zeichenfolge (die sogenannte Hauptzeichenfolge oder «main
string») im Speicher priift. Das Beispiel hat nicht nur theoreti-
schen Wert, sondern wird im Zusammenhang mit Textverarbei-
tung häufig verwendet.
Im Programm zeigt das Adressregister AO auf die Hauptzei-
chenfolge (die Zeichenfolge, in der gesucht wird). In einer Text-
verarbeitungsanwendung ist die Testzeichenfolge wahrschein-
lich ein Wort, ein Satz, ein Name, eine Telefonnummer oder
etwas Ahnliches, zu dem fiir eine Verwendung mit einer

84

Der Befehlssatz des MC 68000

* DIESE SUBROUTINE SUCHT EINE ASCII-FOLGE IM
* SPEICHER («HAUPTFOLGE» GENANNT) NACH
* DEM VORHANDENSEIN EINER ANDERN ASCI-
* FOLGE («TESTFOLGE» GENANNT). DIE HAUPT-
* FOLGE WIRD MIT EINEM *-ZEICHEN BEENDET.
* VOR AUFRUF DER SUBROUTINE MUESSEN DIE
* STARTADRESSEN VON HAUPTFOLGE UND TEST-
* FOLGE IN DEN REGISTERN AO UND A1 SEIN, UND
* DIE LAENGE DER TESTFOLGE IN BYTE MUSS IM
* DATENREGISTER DO ENTHALTEN SEIN.
* DAS ERGEBNIS DER SUCHE WIRD IN A2
* GESCHRIEBEN. WENN DIE TESTFOLGE
* GEFUNDEN WIRD, ENTHAELT A2 IHRE ADRESSE
*IN DER HAUPTFOLGE. WENN DIE TESTFOLGE
* NICHT GEFUNDEN WIRD, ENTHAELT A2 NULL.
* A2 IST DAS EINZIGE BEEINFLUSSTE REGISTER.

ORG $ 1000

ASEARCHMOVEM _ D1/D3,-(SP) SICHERE DATEN-
MOVEM.L A0/A3,-(SP) REGISTER UND

ADRESSREGISTER
IM STAPEL

SUCHE ERSTES ZEICHEN DER TEST-
FOLGE

*

MOVE.B (A1),D3 LIES ERSTES
TESTZEICHEN IN

D3
FIRST SUBA.L A2,A2 _ A2=0 FUER

BEGINN
CHKEND CMPLB +#’*’,(AO) ENDE HAUPT-

FOLGE
BEQ.S RETRN JA. ZURUECK.

CMP.B (A0)+,D3 HAUPTZEICHEN=
TESTZEICHEN?

BNE.S CHKEND NEIN. WEITER-

SUCHEN

ERSTES TESTZEICHEN GEFUNDEN,
VERGLEICHE REST DER TESTFOLGE

MOVE DO,D 1 BRINGE LAENGE
DER TESTFOLGE
IN D1.

SUBQ +#2,D1 D1=LAENGE -2.
MOVEA.L A1,A3 BRINGE ADR.

"TESTFOLGE’ IN
A3.

85

Der Befehlssatz des MC 68000

ADDQ.L #1,A3 A3 ZEIGT AUF
ZWEITES TEST-
ZEICHEN.

MOVEA.L A0,A2 A2= LAUFENDE
ADR. 'HAUPT-
FOLGE!

SUBQ.L +#1,A2
LOOP _CMPLB +#*(A0) = ENDEHAUPT-

FOLGE?

BEQS RETRN WENNJA,
ZURUECK.

CMPM.B (A3)+,(A0+) HAUPTZEICHEN =
TESTZEICHEN?

BNES FIRST NEIN. WEITER-
FAHREN

DBF D1,LOOP JA. VERGLEICH
WEITERFAHREN.

RETRN MOVEM.L (SP)+,A0/A3 REGISTER
ZURUECK-
SPEICHERN

MOVEM (SP)+,D1/D3
END

anschliessenden Operation zugegriffen werden soll. Der einzige
weitere Parameter, der spezifiziert werden muss, ist die Länge
der Testzeichenfolge. Dieser Wert in Byte wird im tiefern Wort
des Datenregisters DO eingeschrieben.
Das Resultat der Suche wird in das Adressregister A2 geschrie-

ben. Wenn die Testzeichenfolge in der Hauptzeichenfolge liegt,
wird A2 die Adresse dieser Hauptzeichenfolge enthalten. Falls
die Testzeichenfolge nicht in der Hauptzeichenfolge ist, wird A2

null enthalten.
Die ASEARCH-Subroutine im Beispiel 3.3 beginnt mit der Ver-
schiebung von zwei Datenregistern und zwei Adressregistern

zum Systemstapel, so dass sie nach der Rückkehr aus der Sub-
routine unverändert sind. Der Rest der Subroutine besteht aus
zwei Teilen. Im ersten Teil liest der MC 68000 das erste Zeichen
der Testzeichenfolge in das Datenregister D3 und durchläuft
dann eine Schlaufe (CHKEND), in der dieses Zeichen mit
jedem Byte in der Hauptzeichenfolge verglichen wird. Das Zei-
chen in D3 wird auch mit dem Endezeichen (hier *) verglichen,
um festzustellen, dass beim Durchsuchen der gesamten Haupt-
zeichenfolge kein gleicher Wert gefunden wurde.
Wenn das erste Zeichen der Testzeichenfolge irgendwo in der
Hauptzeichenfolge gefunden wird, springt der MC 68000 in den

untern Teil der Subroutine, in der die restliche Testzeichenfolge

86

Programmbeispiel 3.3

ASCII-Zeichen-Suchroutine

Der Befehlssatz des MC 68000

mit der Hauptfolge verglichen wird. Für diesen Vergleich wird
der Bytezählerwert der Testzeichenfolge in D1 geschrieben,
dann 2 davon subtrahiert, weil der DBF-Befehl auf -1 prüft und
weil das zweite Byte der Testfolge bearbeitet wird. An diesem
Punkt wird die möglicherweise zutreffende Hauptzeichenfolge-
adresse in A2 festgehalten. Die LOOP-Sequenz dieses Teils der
Subroutine vergleicht den Rest der Testfolge und verzweigt
zurück zu FIRST, wenn noch nicht die ganze Testfolge lokali-

siert ist. Die Subroutine endet mit zwei MOVEM-Befehlen, um
die gesicherten Register aus dem Stapel zurückzuholen, und
einem RTS-Befehl, mit dem die Rückkehradresse geholt wird
und damit die Kontrolle an das aufrufende Programm zurück-
gegeben wird.

3.4.7.3 Unbedingte Sprünge und Verzweigungen, Rückkehr-
befehle

Wie beim früheren 8-Bit-Mikroprozessor MC 6800 hat Moto-
rola auch den MC 68000 mit Sprung- und Subroutinenaufruf-
befehlen je in Kurz- und Langformat ausgerüstet. Die Sprung-
befehle werden «springe immer» (JMP) und «verzweige immer»
(BRA) genannt. Die Subroutinenaufrufbefehle werden «springe
zur Subroutine» (JSR) und «verzweige zur Subroutine» (BSR)

genannt.

Das Langformat dieser Befehle, JMP und JSR, kann verwendet
werden, um die Programmsteuerung irgendwohin in den 16-
MByte-Speicherbereich zu transferieren, wahrend das Kurzfor-

mat, BRA und BRS, beschränkt ist auf Verschiebungen relativ
zu den Verzweigbefehlen. Wie die bedingten Verzweigbefehle

(Bcc), können BRA und BSR sowohl für 8-Bit- als auch für 16-
Bit-Verschiebungen verwendet werden, wobei die 8-Bit-Ver-
schiebung mit dem Anhang .S angewählt wird (BRA.S oder

BSR.S).

Alle vier Befehle veranlassen einen Transfer der Programm-
steuerung durch das Laden einer neuen Adresse in den Pro-
srammzähler. Die Subroutinenaufrufbefehle JSR und BSR si-
chern selbstverständlich die Rückkehr des MC 68000 zu dem

JSR und BSR folgenden Befehl, indem die Adresse dieses
Befehls in den Stapel gerettet wird.

Im Gegensatz zu allen andern Stapeloperationen bringen die
JSR- und BSR-Befehle zuerst das höhere Wort der Adresse in
den Stapel und veranlassen damit die Speicherung der Rück-
kehradresse in der Ordnung tieferes Wort höheres Wort.
Der Befehl «Rückkehr von Subroutine» (RTS) holt die Rück-
kehradresse vom Stapel und lädt sie in den Programmzähler.
Daher muss RTS der letzte ausgeführte Befehl jeder Subroutine

sein. Zur Erläuterung von Subroutinenaufruf und -rückkehr be-
trachten wir ein Programm mit den zwei Befehlen:

87

Der Befehlssatz des MC 68000

Programm- Befehl Kommentar
zahler

$A2000 JSR $4EFE Subroutinenaufruf
$A2004 MOVE D0O,D1 nächster Befehl

Bild 3.17 zeigt den Programmzähler und den Stapel zu drei Zeit-
punkten: vor dem JSR-Befehl (3.17a), nach dem JSR-Befehl
(3.17b) und nach der Ausführung des RTS-Befehls (3.17c).

Speicher

a PC | $000A2000 |

SP

b PC| $O00004EFE | SP—»| $2004
2 000A

Bild 3.17
c PC[800042008 | $ 2004 Subroutinenaufruf und -riickkehr

£ 000A a) vor Ausfiihrung von JSR$4EFE
SP— b)nach Ausführung von JSR$4EFE

c)nach Ausführung von RTS

In früheren Diskussionen der Datentransferbefehle sahen wir,
dass die Befehlsform

MOVEM (lisb,-(SP)

zur Rettung ausgewählter Register im Stapel während der Sub-
routinenausführung verwendet werden kann, und zwar um die-
se unterbrechbar (reentrant) zu machen. In vielen Anwendun-
gen müssen auch die Bedingungscode gesichert werden, so dass
die Zusammenhänge des Programms während der Ausführung
der Subroutine erhalten bleiben. Dies ist ebenfalls mit einem
bereits besprochenen Befehl möglich.

MOVE SR,-(SP)

88

Der Befehlssatz des MC 68000

Selbstverständlich müssen vor der Rückkehr aus der Subrou-
tine die gesicherten Werte wieder aus dem Stapel geholt werden.
Dies kann mit der Sequenz

MOVEM (SP)+,.isb
MOVE (SP)+,CCR

gemacht werden. Dennoch verfügt der MC 68000 über eine spe-
zielle Version des RTS-Befehls, «Rückkehr und Rückspeiche-
rung der Bedingungscode» (RTR) genannt, der das Bedin-
gungscoderegister wie die Rückkehradresse aus dem Stapel
holt. Beispiel 3.4 zeigt, wie die Bedingungscode und gewisse
Arbeitsregister während der Subroutine erhalten werden und
wie mit RTR die Rückkehr veranlasst wird.

Programmbeispiel 3.4

JSR SUBR SUBROUTINE-
AUFRUF

MOVE DO,D1 NAECHSTER,
DIREKTER
BEFEHL

SUBR MOVE SR,-(SP) SICHERE STATUS-
REGISTER IM

STAPEL.
MOVEM.L D3-D5/A1,-(SP) SICHERE

REGISTER IM
STAPEL.

WEITERE SUB-
ROUTINEN-
BEFEHLE

*¥
&¢

&€
&

MOVEM.L (SP)+,A1/D3-D5 REGISTER
ZURUECK-

SPEICHERN.
RTR Ä RUECKKEHR

UND RUECK-

SPEICHERN
BEDINGUNGS-
CODE.

89

Der Befehlssatz des MC 68 000 .

3.4.8 LINK- und UNLK-Befehle

Die LINK- und UNLK-Befehle (Tabelle 3.16) werden zur
Zuweisung und Freigabe von Datenbereichen im Systemstapel
für verschachtelte Subroutinen, verbundene Listen und andere
Prozeduren verwendet. Nach dem Aufruf (zum Beispiel einer

verschachtelten Subroutine) setzt LINK einen Adressregister-
zeiger zum Datenbereich und verschiebt den Stapelzeiger im

Speicher nach unten, genau nach dem Datenbereich. Nach
Ausführen der Subroutine kehrt UNLK diese Sequenz um und
setzt dabei den Stapelzeiger und die Adressregister auf ihre Ori-
ginalwerte, das heisst auf die Werte von LINK.

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grösse codes

Quelle Ziel XNZVC

LINK LINK An,#d unbestimmt VS

UNLK UNLK An unbestimmt An 0020.

Tabelle 3.16 LINK- und UNLK- Befehle

Der LINK-Befehl hat zwei Operanden, ein Adressregister und
einen 16Bit langen, vorzeichenbehafteten Verschiebungswert.
Während die verschachtelte Subroutine ausgeführt wird, ent-
hält das Adressregister die Startadresse des Datenbereichs für
diese Subroutine im Stapel.

Dieses Adressregister wird Rahmenzeiger (RZ oder FP, fra-
me pointer) genannt. Der Verschiebungswert spezifiziert in Byte
den Speicherbedarf im Stapel, der dem Datenbereich zugewie-
sen wird. Wenn LINK ausgeführt wird, bringt der MC 68000
den 32-Bit-Inhalt des FP in den Stapel, dekrementiert den Sta-
pelzeiger (SZ oder SP) um vier, lädt diesen SP-Wert in den FP

und addiert dann den Verschiebungswert zum SP. Erwähnens-
wert ist, dass der Verschiebungswert zwei Charakteristiken
aufweist:

1.) Weil der Stapelzeigerwert immer gerade sein muss, muss der

Verschiebungswert eine gerade Zahl sein, und
2.) weil der Verschiebungswert zum Stapelzeiger addiert wird,

sollte er für die meisten Anwendungen negativ sein.
Nach der Ausführung von LINK enthält das Adressregister die
Startadresse des Datenbereichs und der Stapelzeiger weist auf
die dem Datenbereich folgende Speicherzeile. Ab diesem Punkt
kann die Subroutine den Datenbereich sehr einfach benützen,
durch indirekten Zugriff mit Adressregister und Verschiebungs-
oder Indexmodus.. Bild 3.18a und 3.18b zeigt den Systemstapel
nach dem Subroutinenaufruf und nach LINK.

90

SZ —

RZ ——

Rückkehr-
adresse

Parameter

Platz

für A

Lokale

Variable

für A

vorheriger

RZ

Der Befehlssatz des MC 68000

6 ° tt} @
SZ —

Platz

für B

gesicherte
Register

SZ —= | Lokale | Lokale
Vartable d Variable

für B \ for A

RZ | AZ für A RZ —e | AZ für
Rückkehr-

SZ adresse

z
u
n
e
h
m
e
n
d
e

A
d
r
e
s
s
e
n

RZ a | Yorheriger

put
Bild 3.18 Zuweisung und Freigabe von Speicherplatz mit den Befehlen
LINK und UNLK

a) nach Subroutinenaufruf, b) nach LINK, c) vor UNLK,d) nach UNLK
(SZ: Stapelzeiger, RZ: Rahmenzeiger)

Bild 3.18c zeigt die Stapelzeigeradressierung einer geraden, tie-
feren Speicherzeile. Diese Darstellung soll zeigen, dass der

UNLK-Befehl eine normale Riickkehr einleitet (in Bild 3.18d

gezeigt), ohne Rticksicht darauf, ob der Stapelzeiger inzwischen
geandert haben konnte. Der UNLK-Befehl, der normalerweise
unmittelbar vor der Rtickkehr aus der Subroutine ausgefiihrt
wird, ladt einfach den Stapelzeiger aus dem Rahmenzeigerregi-
ster und reinitialisiert dann den Rahmenzeiger, indem der Ori-
ginalwert zuoberst aus dem Stapel geladen wird. Nach UNLK
enthalten sowohl der Rahmenzeiger wie der Stapelzeiger die
Werte, die sie vor LINK enthielten.

3.4.9 Systemsteuerungsbefehle

Tabelle 3.17 enthält diejenigen Befehle, die in den Herstellerun-
terlagen als Systemsteuerungsbefehle (system control instruc-
tions) bezeichnet werden. Es sind drei Typen zu unterscheiden:
privilegierte Befehle, Trap-Erzeugungsbefehl und Statusregi-
sterbefehle. Die Statusregisterbefehle wurden in diesem K apitel
bereits behandelt, und ihre Beschreibung soll nicht wiederholt
werden.

3.4.9.1 Privilegierte Befehle

Wie bekannt ist, konnen privilegierte Befehle nur ausgefiihrt
werden, wenn sich der MC 68000 im Uberwachungsmodus
befindet. Jeder Versuch, im Anwendermodus einen privilegier-

91

Der Befehlssatz des MC 68000

Operanden- Erlaubte Adressierungsarten

Mnemonik Assemblersyntax Bedingungs-

grosse codes
Quelle Ziel XNZVC

Privilegierte Befehle

RESET RESET On
RTE RTE (SP)+>SP;(SP)+>PC ek
STOP STOP #d 16 +#d> SR, then STOP a
ANDI ANDI #d,SR (1) 16 +d SR -**00
EORI EORI +#d,SR (1) 16 ted SR -**Q0
ORI ORI #d,SR (1) 16 +#d SR -**00
MOVE MOVE <ea>,SR (2) 16 Data SR Re

MOVE USP,An (2) 32 USP An ----=-
MOVE An,USP (2) 32 An UP _ =-----

Trap-Erzeugungsbefehle

TRAP TRAP #<vector> PC>-(SP); nn
SR > -(SP);
#<vector> >PC

TRAPV TRAPV IfV=1,thenTRAP <= — --~+--
CHK CHK <ea>,Dn 16 IFDn<OorDn> (ea), Daten - * UUU

then TRAP

Status-Registerbefehle

ANDI ANDLB #d,SR (1) 8 +d CCR -**00
EORI EORLB +#d,SR (1) 8 +d CCR -**00
ORI ORI.B #d,SR (1) 8 4d CCR -**00
MOVE MOVE <ea>,CCR (2) 16 Data CCR eK

MOVE SR,<ea> (2) 16 SR Daten —-----

änderbar
Bem.: (1) Beschrieben bei der Gruppe der logischen Befehle (Tabelle 3.10 und Text).

(2) Beschrieben bei der Gruppe der Datentransferbefehle (Tabelle 3.7 und Text).

Tabelle 3.17 Systemsteuerungsbefehle

ten Befehl auszuftihren, wird einen Ausnahmezustand herbei-
fiihren (in K apitel 7 behandelt).
Der RESET-Befehl (Rticksetzen externer Bausteine) aktiviert
den RESET-Anschluss des MC 68000 während 124 Taktzy-
klen. Dieser Anschluss ist normalerweise mit allen externen

Bausteinen im System verbunden und veranlasst das Rückset-
zen dieser Bausteine, ohne den Prozessor zu beeinflussen. Der
RESET-Befehl kann zum Wiederanlauf nach schwerwiegenden
Systemfehlern verwendet werden. |
Wie im Kapitel 7 gezeigt werden wird, veranlassen Unterbrüche
und andere Ausnahmezustände, dass das 16-Bit-Statusregister
und der 32-Bit-Programmzähler in den Überwachungsstapel
geschrieben werden, damit der Programmstatus bei Erscheinen
des Ausnahmefalles gesichert wird.
Der RTE-Befehl (Riickkehr aus dem Ausnahmezustand, return
from exception) bringt diese Werte aus dem Stapel zuriick,

nachdem die Ausnahmeroutine ausgefiihrt wurde. RTE ent-
spricht also für Ausnahmezustände den Befehlen RTS und
RTR für Subroutinen.

92

Der Befehlssatz des MC 68000

Der «Stopp Programmausführung»-Befehl (STOP) lädt einen
Wert in das Statusregister und veranlasst den MC 68000, das
Holen und Ausführen von Befehlen zu stoppen. Die Ausfüh-
rung wird nicht wiederaufgenommen, bis der MC 68000 einen

Unterbruch hinreichend hoher Priorität empfängt oder extern
zurückgesetzt wird. STOP wird im praktischen Gebrauch oft
benützt, um die Unterbruchsmaske zu ändern, und kann als
erweiterter «warte auf Unterbruch»-(WAI-)Befehl des 8-Bit-
Mikroprozessors MC 6800 betrachtet werden.

3.4.9.2 Trap-Erzeugungsbefehle

Traps («Fallen») veranlassen wie Unterbrüche, dass der Pro-
grammzähler mit einer bestimmten Adresse im Speicher gela-
den wird, je nach «Vektornummer», die dem Prozessor geliefert
wird. Bei Unterbrüchen werden alle Vektornummern durch
externe Bausteine geliefert, bei Traps werden sie intern erzeugt.

Wie später dargestellt wird (Kapitel 7), werden Traps automa-
tisch durch gewisse Fehlerbedingungen erzeugt; sie lassen sich
aber auch durch Software mit irgendeinem der drei hier
beschriebenen Befehle erzeugen.

Der TRAP-Befehl initialisiert eine unbedingte Trap-Operation
und liefert eine Vektornummer (0 bis 15) im Operanden. TRAP
kann also zur Erzeugung von irgendeinem von 16 Softwareun-
terbruchen verwendet werden.
Der Befehl «Trap bei Uberlauf» (TRAPV) priift das Uberlaufbit

(V) im Bedingungscoderegister und führt bei gesetztem V zu
einer spezifizierten Speicheradresse. Wenn V nicht gesetzt ist,
wird der nächstfolgende Befehl ausgeführt. Auch der dritte
Trap-Befehl, «Prüfe Register auf Grenzen» (CHK) operiert
unbedingt. Dieser Befehl prüft den Inhalt eines Datenregisters
und verzweigt zu einer spezifizierten Speicherzeile, wenn der
Registerinhalt einen Wert aufweist, der kleiner als null oder
grösser als ein adressierter «obere Grenze»-Operand ist. Diese
Art der Prüfung hilft, Datenbereiche in den definierten Grenzen

zu halten.

3.5 Zusammenfassung

In diesem Kapitel wurden die 14 Adressierungsarten und ihre
Anwendung behandelt. Sie bieten alle Möglichkeiten früherer 8-
Bit-Mikroprozessoren sowie eine ganze Anzahl wertvoller
Ergänzungen. Die Fähigkeit, eine Adresse vor der eigentlichen
Operation zu dekrementieren oder nachher zu inkrementieren,
eröffnet dem Programmierer einen schnellen, wirkungsvollen
Weg zur Behandlung von Zeichenfolgen und Tabellen. Weiter
ermöglicht der Einbezug der Adressierungsarten mit Verschie-

bungswerten und Indizes einfachen Zugriff zu Datenbereichen.
Ebenfalls in diesem Kapitel wurden alle 56 mikrocodierten
Befehle des MC 68000 behandelt. Wie bei den Adressierungsar-

93

Der Befehlssatz des MC 68000

ten dürften auch viele Befehle den Lesern mit Programmierer-
fahrung auf dem MC 6800 oder andern 8-Bit-Mikroprozesso-
ren bekannt vorkommen, wobei aber auch hier verbesserte Ver-
sionen und eine einfachere Anwendung angeboten werden.
Zum Beispiel wurden die Lade-, Speicher- und Registertransfer-
befehle in einem einzigen, MOVE genannten Befehl kombiniert.

Andere häufig verwendete Operationen, die normalerweise
mehrere Zeilen Code benötigen, sind zu Einzelbefehlen kom-
biniert worden. So finden wir im MC 68000 Befehle wie «prüfe,
dekrementiere und verzweige» (DBcc), «inkrementiere mehr-
fach» (ADDQ) und «dekrementiere mehrfach» (SUBQ).
Im Hinblick auf die spezielle Unterstützung höherer Program-
miersprachen stehen zum erstenmal Befehle wie «prüfe Register

auf Grenzen» (CHK) und für die Zuweisung und Freigabe von
Platz im Stapel für lokale Variable während Prozeduraufrufen
(LINK und UNLK) zur Verfügung. Im weiteren erlaubt der
enorme Adressbereich des MC 68000 (16 MByte) Multitasking
und Multiprocessing, wobei ein «Speicherzuweisungsbefehl»

(TAS) eingesetzt werden kann.

Mit dieser Übersicht über die Programmiermöglichkeiten des
MC 68000 soll nun in den nächsten zwei Kapiteln deren Einsatz
an praktischen Anwendungen im Zusammenhang mit mathe-
matischen Operationen und Verarbeitung von Listen und Kon-
versionstabellen dargestellt werden.

94

4. Mathematische Routinen

Leser, die ihre ersten Erfahrungen in der Mikrocomputerpro-
grammierung mit 4-Bit- oder 8-Bit-Mikroprozessoren gemacht
haben, werden von den arithmetischen Möglichkeiten des
MC 68000 beeindruckt sein. Zum Beispiel bringt die Tatsache,
dass der MC 68000 über Multiplizier- und Dividierbefehle so-
wohl mit wie ohne Vorzeichen verfügt, einen Gewinn von Stun-
den (wenn nicht Tagen oder Wochen) bei der Entwicklung von
Multiplikations- oder Divisionssubroutinen.

In diesem Kapitel werden wir auf der Basis der angebotenen
Multiplikations- und Divisionsmöglichkeiten einige mathemati-
sche Aufgaben behandeln. Wir beginnen mit Multiplikations-
operationen (32 Bitx 32 Bit) mit und ohne Vorzeichen. Dann
werden Überlaufsituationen bei Divisionen behandelt, und zum
Schluss wird ein Programm entwickelt, mit dem die Quadrat-
wurzel einer 32-Bit-Zahl ermittelt werden kann.

4.1 Multiplikation

Im Kapitel 3 lernten wir die Multiplikationsbefehle MULS
«Multiplikation mit Vorzeichen» und MULU «Multiplikation
ohne Vorzeichen» kennen und nahmen zur Kenntnis, dass sie
nur mit 16-Bit-Werten (Wortlänge) operieren können. Wie wer-
den nun Werte von 32 Bit oder länger multipliziert? Wie jeder-
mann weiss, der ein Multiplikationsprogramm für einen 8-Bit-

Mikroprozessor geschrieben hat, genügt die Existenz eines
Multiplikationsbefehls irgendeiner Länge, um ihn dann für

bestimmte Anforderungen zu erweitern. |

4.1.1 32 Bit x 32-Bit-Multiplikation

ohne Vorzeichen

Zahlen mit Mehrfachgenauigkeit ohne Vorzeichen können
multipliziert werden unter Verwendung des MULU-Befehls
mittels Erzeugen einer Serie von 32-Bit-Zwischenprodukten, die
dann zum endgültigen Produkt summiert werden. Die gleiche
Methode wird verwendet zum Multiplizieren von Dezimalzah-
len von Hand, mit Papier und Bleistift. Wie der Leser sich viel-
leicht erinnern wird (im Zeitalter der Taschenrechner vielleicht

95

Mathematische Routinen

nicht selbstverständlich!), werden die Faktoren untereinander-
oder nebeneinander geschrieben und die Multiplikation in einer
Serie von einzelnen Multiplikationen für jede Stelle im Multipli-
kator durchgeführt. Jedes Zwischenprodukt wird direkt unter
die entsprechende Stelle im Multiplikator geschrieben. Wenn
alle Zwischenprodukte berechnet sind, werden sie addiert zum
Resultat. Zum Beispiel wird die Multiplikation von 124 x 103 in
der folgenden Art geschrieben:

Die Zwischenprodukte werden versetzt, um das dezimale Ge-

wicht der einzelnen Multiplikatorstellen berechnen zu können.
In diesem Beispiel ist die 3 die Einerstelle, die O die Zehnerstelle
und die 1 die Hunderterstelle. Dadurch kann das Beispiel in der
folgenden Art geschrieben werden:

103 x 124=(3 x 124) + (0x 124) + (100 x 124)
oder

103 x 124=(3 x 10°x 124) + (0x 10' x 124) + (1 x 10? x 124)

In diesem Abschnitt werden wir eine Subroutine entwickeln,um
zwei 32-Bit-Zahlen ohne Vorzeichen zu multiplizieren, was ein

64-Bit-Produkt ohne Vorzeichen ergibt. Ohne einen Multipli-
zierbefehl würde das bedeuten, dass 32 Multiplikationsoperatio-
nen, eine für jedes Bit im Multiplikator, durchgeführt werden
müssten. Glücklicherweise verfügt der MC 68000 über einen
Befehl, der 16-Bit-Zahlen ohne Vorzeichen direkt multipliziert.
Dieser Befehl MULU erlaubt uns, die 32-Bit-Faktoren als zwei-
stellige Zahlen zu betrachten, jede Stelle mit 16 Bit. Dadurch
sind nur vier Multiplikationen erforderlich, um das 64-Bit-Pro-
dukt zu erzeugen. Bild 4.1 zeigt die symbolische Darstellung der
Faktoren und erläutert, wie die Zwischenprodukte angeordnet
werden müssen, um das 64-Bit-Endprodukt zu berechnen. Die
eingekreisten Zahlen in Bild 4.1 zeigen die vier 16-Bit-Additio-
nen, die zur Berechnung des Produkts durchzuführen sind.

Unter Verwendung von Bild 4.1 ist es möglich, eine Subroutine
zu entwickeln, die zwei 32-Bit-Zahlen ohne Vorzeichen multipli-
zieren kann. Programmbeispiel 4.1 zeigt eine solche Subroutine,

MULU32 genannt, in der die Faktoren in den Datenregistern
D2 und DI eingeschrieben sind. Das 64-Bit-Produkt wird in die
gleichen Register zurückgeschrieben, D1 (die 32 tieferen Bit)
und D2 (die 32 höheren Bit).

Die durch die MULU32-Subroutine durchgeführten Operatio-
nen werden genau in der Reihenfolge von Bild 4.1 ausgeführt,
wie aus den Befehlen und den entsprechenden Kommentaren

96

Bild 4.1

Erzeugung eines 64-Bit-Produktes

mittels vier 16 Bit x 16-Bit-Multi-

plikationen.

Mathematische Routinen

fc 1: D_ | Moltiplikand

x

=

»
 B | Moltiplikator

_—

BxD | Produkt #1

' l

©:
I Bxe | Produkt #2

1 ! I

| @ | @ |
AxD Produkt #3

|

| @ |
[" AxC | Produkt #4

s

Wy

Total= 64-Bit- Endprodukt

ersichtlich ist. Die MULU32-Subroutine beginnt mit dem
Retten des Inhalts der drei allgemein verwendbaren Register
D3, D4 und D5 im Stapel und der Erstellung einer Kopie des
Multiplikators in D3 und D4. Der nächste Befehl vertauscht die
16-Bit-Hälften von D4. Dieses Vertauschen ist eine notwendige
Vorbereitung zur Erzeugung des zweiten und vierten Zwischen-
produkts (siehe Bild 4.1), die das höhere Wort des ersten Multi-
plikanden beinhalten. Dieses Vertauschen ist notwendig, weil
der MULU-Befehl nur die tiefern Worte von zwei Datenregi-
stern miteinander multiplizieren kann. Dieser Swap-Befehl ist
der erste einer ganzen Anzahl in der Subroutine. Ein Swap-D5-
Befehl wird zwei Instruktionen später verwendet, um das dritte
und vierte Teilprodukt zu erzeugen.

Jetzt kann, mit all den Multiplikationsoperanden am richtigen
Ort, die eigentliche Multiplikation ausgeführt werden. Die Sub-
routine hat vier aufeinanderfolgende MULU-Befehle, welche die
Zwischenprodukte eins, zwei, drei und vier in die Datenregister
D1, D2, D3 und D4 bringen. Die verbleibende Aufgabe ist, die
Summe dieser Zwischenprodukte zu bilden, unter Berücksichti-
gung ihrer Stellenwerte, um das 64-Bit-Produkt zu erhalten.
Die eingekreisten Zahlen in Bild 4.1 bestimmen die vier Paare
von 16-Bit-Wörtern, die in der entsprechenden Reihenfolge
addiert werden müssen. Im Programmbeispiel 4.1 folgt den vier
aufeinanderfolgenden MULU-Befehlen ein SWAP-Befehl, der
die Wortinhalte von D1 umtauscht (Zwischenprodukt #1). Die-
ser Tausch ist eine notwendige Vorbereitung für die erste Addi-
tionsoperation, weil der Additionsbefehl wie der MULU-Befehl

97

Mathematische Routinen

Programmbeispiel 4.1: Subroutine für die Multiplikation von zwei 32-Bit-Werten ohne Vorzeichen.

nur die tieferen Werte von zwei Datenregistern berücksichtigt.
Nach Durchführen der ersten Addition wird der Übertrag dieser
Operation (in X) nach D4 gebracht (Zwischenprodukt #4)

unter Benützung des Registers D5 (enthält Null) als Hilfs-
operand für die «addiere-erweitert»-Operation. In der zweiten
Additionsoperation wird das tiefere Wort von D3 (Zwischen-
produkt #3) zum tieferen Wort von D1 addiert, welches das
Resultat der ersten Additionsoperation enthält, und ein allfäl-
liger Übertrag wird wiederum in D4 eingeschrieben. Zu diesem
Zeitpunkt sind die tieferen 32 Bit des Endprodukts im Daten-
register 1 jedoch nicht in der richtigen Ordnung. Ein SWAP-
D1-Befehl bereinigt dieses Problem, und der 68 000 ist bereit zur

Akkumulierung der 32 höheren Bit des Produkts. Das bedingt
die Addition des höheren Wortinhaltes von Datenregister 2 und

98

Mathematische Routinen

3 (Teilprodukte #2 und #3) zum tieferen Wortinhalt des Daten-
registers D4 (Teilprodukt #4). Die tieferen Wörter sowohl von
D2 wie auch D3 enthalten unnötige Daten von den zwei ersten
Additionen, so dass beide Wörter gelöscht werden und in die
höhere Wortposition dieser Register getauscht werden. Zwei
«addiere-lang»-Befehle setzen die tieferwertigen 32 Bit des End-
produkts in Datenregister D2. Nach der Rückspeicherung des

Inhalts der Datenregister D3, D4 und D5 vom Stapel endet die
‚Subroutine. Die MULU32-Subroutine benötigt zur Ausführung
ein Maximum von 460 Zyklen oder 57,5 us. Weil ein 32-Bit-

Operand Zahlen ohne Vorzeichen bis 4,294 x 10° darstellen
kann, verlangen viele Anwendungen keine Multiplikations-

subroutinen mit grösseren Zahlen (diese würde wahrscheinlich
Fliesskommaarithmetik verlangen). Es ist aber möglich, Mul-
tiplikationssubroutinen zu schreiben für 64-Bit- oder längere
Zahlen mit dem in Beispiel 4.1 verwendeten Prinzip. Aller-
dings wird man bald über zuwenig Arbeitsregister verfügen
und benötigt dann Speicherplatz für Zwischenspeicherung.

4.1.2 32 Bit x 32-Bit-Multiplikation
mit Vorzeichen

Obschon das Multiplikationsbeispiel 4.1 als Subroutine zur
Multiplikation von zwei nicht vorzeichenbehafteten Zahlen
geschrieben wurde, wird es auch zwei Zahlen mit Vorzeichen
korrekt multiplizieren, solange beide positiv sind. Das heisst,
das Beispiel 4.1 ist eine 32 Bit x 32-Bit-Multipliziersubroutine

fur nicht negative Zahlen. Diese Subroutine kann indessen nicht
zwei negative Zahlen multiplizieren, weil solche Zahlen nor-
malerweise in Zweierkomplementform vorhanden sind. Wie
aber können zwei Zahlen mit Vorzeichen multipliziert werden,
wenn eine oder beide negativ sind? Eine Lösung wäre, den oder
die negativen Operanden zu negieren, die Multiplikation durch-
zuführen, dann das Produkt zu berichtigen, sofern erforderlich.
Wenn nur einer der beiden Operanden negativ ist, muss das
Resultat in Zweierkomplement gesetzt werden. Wenn beide
Operanden negativ sind, ist das (positive) Produkt korrekt. Die-

ses einfache Vorgehen ist im Programmbeispiel 4.2 angewendet,
in dem die tieferen Bit des Datenregisters D6 zur Aufnahme
eines Negativindikators dienen.

Dieser Indikator, mit Null initialisiert, wird auf alles Eins
gesetzt, wenn nur einer der beiden Operanden negativ ist. Er
bleibt aber Null, wenn beide Operanden entweder positiv oder
negativ sind. Dann, nach Aufruf der MULU32-Subroutine zur
Durchführung der 32 Bit x 32-Bit-Multiplikation, wird der

Negativindikator verwendet, um festzustellen, ob das Produkt
korrekt ist (Indikator Null) oder negiert werden muss (Indika-
tor nicht Null). Die Subroutine MULS32 im Programmbeispiel
4.2 wird eine Ausführungszeit benötigen, die abhängig davon

99

Mathematische Routinen

Programmbeispiel 4.2: Eine 32 Bit x 32-Bit-Multiplikationssubroutine fur vorzeichenbehaftete Zahlen.

ist, ob die Operanden beide positiv oder beide negativ sind oder
beide entgegengesetzte Vorzeichen haben. Die Ausfiihrungszeit
‚von MULS32 (eingeschlossen die aufgerufene Subroutine

MULU32) ist wie folgt:

Operanden Maximale Zeit Maximale Zeit

(in Zyklen) (Mikrosekunden)

Beide positiv 561 70,125 \
Vorzeichen verschieden 579 72,375
Beide negativ 577 72,125

Eine schnellere Lösung, die nicht die Änderung eines Operan-
den verlangt, kann unter Beachtung des nachfolgenden Algo-
rithmus ausgeführt werden:

Wenn einer oder beide Operanden negativ sind, führe die
Multiplikation durch und modifiziere das Produkt in einer
von zwei Arten:

1. Wenn nur ein Operand negativ ist, subtrahiere den
anderen Operanden (das heisst den positiven Operan-
den) vom höherwertigen Teil des Produkts.

2. Wenn beide Operanden negativ sind, subtrahiere beide
Operanden vom höherwertigen Teil des Produkts.

100

Mathematische Routinen

Sind Sie skeptisch? Zur Priifung dieses Algorithmus wollen wir
das Beispiel 103 x 124 noch einmal durchftihren, aber mit
einem negativen Multiplikator (-103). Die Papier- und Bleistift-
methode sieht wie folgt aus:

01111100 Multiplikand = +124
x 10011001 Multiplikator = -103

01111100
0.0000 000

00.0000 00
01111100

01111100
0.0000 000

00000000
01111100

0100 10100001 1100 Produkt = +18972

Wenn wir das Resultat mit dem korrekten Wert (-12 772) ver-
gleichen, sehen wir, dass unser Resultat Unsinn ist. Es ist
nicht nur zu gross, es hat auch das falsche Vorzeichen. Nun
wollen wir das Verfahren mit dem erwähnten Algorithmus

betrachten. Der Algorithmus verlangt die Subtraktion des
positiven Operanden (+124, ein einfaches Byte) vom höher-
wertigen Byte des Produkts. In Binärform ist es einfacher für
uns, zu addieren statt zu subtrahieren, so wird das Zweierkom-
plement des positiven Operanden zum höherwertigen Byte des
Produkts addiert:

0100 1010 0001 1100 Originalprodukt = + 18972
+ 10000100 Zweierkomplement

Multiplikand = -124

1100 1110 0001 1100 Neues Produkt = -12 772

Jetzt ist das Produkt korrekt. Schritt zwei des Algorithmus
kann durch Anwendung der Papier- und Bleistiftmethode
auf das Produkt (-103) x (-124) verifiziert werden.

Bild 4.2 zeigt die zusätzlichen Schritte, die nötig sind für die
Multiplikation von Zahlen beliebiger Länge mit Vorzeichen.

Wie man in Bild 4.2 sehen kann, erlaubt dieser Algorithmus das
Verwenden unserer früher beschriebenen Multiplikationssub-
routine für Zahlen ohne Vorzeichen (Programmbeispiel 4.1) zur
Durchführung der Initialisierungsmultiplikation. Es besteht
jedoch die zusätzliche Anforderung, dass der Originalmultipli-
kator und der Originalmultiplikand geschützt werden für die
Produktkorrekturbefehle. Programmbeispiel 4.3 zeigt die neue

effizientere 32 Bit x 32-Bit-Multiplikationssubroutine für vor-
zeichenbehaftete Zahlen.

101

Mathematische Routinen

Programmbeispiel 4.3:
Eine verbesserte 32 Bit x 32-Bit-Multiplikationssubroutine für Zahlen mit Vorzeichen.

102

Mathematische Routinen

Bild 4.2

Ein Multiplikationsalgorithmus für

vorzeichenbehaftete Zahlen.

(start +)

Ausführung
Multiplikation

| ohne Vorzeichen

Nein
 Multiplikator

negativ 2

subtrahiere
Multiplikand vom

| höheren Produkt

—

Mul we Nein
negativ?

subtrahiere
Multiplikator vom
höheren Produkt
 ED

(ints)

Diese Subroutine MLTS32 ist nichts anderes als die MULU32-

Subroutine von Beispiel 4.1 mit einigen zusätzlichen Befehlen
am Anfang zum Schützen des Multiplikators und des Multipli-
kanden (in D7 und D6) sowie einigen zusätzlichen Befehlen am

103

Mathematische Routinen

Schluss zur Prüfung der Operandenvorzeichen und Korrektur
des Produkts, sofern nötig.

Die Ausführungszeiten der MLTS32-Subroutine sind wie folgt:

Operanden Maximale Zeit Maximale Zeit

(in Zyklen) (in Mikrosekunden)

Beide positiv 532 66,5

Vorzeichen verschieden 536 67,0
Beide negativ 540 | 67,5

4.2 Division

4.2.1 Division ohne Uberlauf

Es gibt viele Anwendungen fiir die Divisionen, wobei eine der
häufigsten die der Mittelwertbildung einer Anzahl Zahlen ist,
zum Beispiel die Resultate einer Serie von Laborversuchen. Pro-

grammbeispiel 4.4 zeigt eine typische Routine für eine solche
Aufgabe. Dieses Programm, genannt AVERAGE, mittelt eine
spezifizierte Anzahl von Werten ohne Vorzeichen, auf die AO
zeigt, wobei die Anzahl der Werte im tieferen Wort von DO ent-
halten ist. Der Mittelwert wird zurückgeschrieben als ganze
Zahl in das tiefere Wort von D1 und ein Rest in das höhere

Wort Di. Das AVERAGE-Programm verwendet zwei

Programmbeispiel 4.4: Routine für Mittelwertbildung.

104

Mathematische Routinen

Scratch-Register D2 (zur Aufnahme der Anzahl Werte) und D3
(zur Aufnahme der Werte, die aus dem Speicher gelesen wer-
den), beeinflusst aber keine anderen Register als D1.

Es ist klar, dass die Dividieroperation in Beispiel 4.4 abbricht,
wenn DO beim Eintritt 0 enthalt. Aber kann sie auch abge-
brochen werden durch eine Uberlaufbedingung? Nein, Uberlauf
kann es hier nicht geben, weil das Verhaltnis des Dividenden

(Wertetotal) zum Divisor (Werteanzahl) nie den Wert von
65 536 überschreiten kann. Hingegen könnte es Überlauf geben,
wenn Langwortwerte verwendet werden zur Mittelwertbildung.
Für diesen Fall ist es günstig, eine Prozedur zu kennen, mit der
ein gültiger Quotient erhalten wird, unabhängig davon, ob ein
Überlauf entsteht oder nicht.

4.2.2 Division mit Überlauf

Wie wir von Kapitel 3 wissen, setzt der MC 68000 das Über-
laufbit (V) und beendet die Operation, wenn ein Überlauf wäh-
rend der Ausführung der Division mit Vorzeichen (DIVS) oder
ohne Vorzeichen (DIVU) entsteht, ohne Beeinflussung von
Divisor oder Dividend. Überlauf entsteht dann, wenn der Divi-
dend so viel grösser ist als der Divisor, dass der Quotient nicht
ineinem 16-Bit-Wort untergebracht werden kann.
In einigen Anwendungen soll Überlauf zu Fehlerbedingungen
führen. In anderen Anwendungen kann ein Überlauf akzeptiert
werden, bedeutet aber, dass ein Quotient mit mehr als 16 Bit
resultiert. Weil die Division abgebrochen wird, wenn der

MC 68000 eine Überlaufbedingung feststellt, muss eine neue
Lösung gesucht werden, falls ein solcher Quotient entsteht. Der
vielleicht einfachste Weg zur Behandlung dieses Quotienten ist
das Teilen des 32-Bit-Dividenden: in zwei 16-Bit-Zahlen, um
dann zwei 16 Bit: 16-Bit-Divisionsoperationen durchzuführen
(die keinen Überlauf produzieren). Wenn der Divisor eine
16-Bit-Zahl ist (X) und der Dividend eine 32-Bit-Zahl (Y,, Y),
kann die Divisionsoperation betrachtet werden als

x[Y,Y,

oder, sauberer dargestellt, als

X [| Y,-2'°+Y,

Die Division erzeugt zwei 16-Bit-Quotientenstellen (Q, und Q,)
und zwei 16-Bit-Reststellen (R, und R,) wie folgt:

Q:° 2"

X|¥,-2% undR, - 2"

Qo
X | (R, +2) + Y¥, und Ry

105

Mathematische Routinen

Wie man sehen kann, ist das Resultat dieser zwei Operationen
ein 32-Bit-Quotient Q,, Q, und ein 32-Bit-Rest R, (der
Zwischenrest R,, wenn überhaupt erzeugt, wird immer null
während der zweiten Divisionsoperation). Wenn kein Überlauf
entsteht, wird Q, Null sein und das Resultat wird zurückge-
schrieben als Q,=0OundR,=0.
Ausgehend von den obigen Betrachtungen ist es möglich, eine
Divisionssubroutine zu entwickeln, die immer einen gültigen

Quotienten und einen gültigen Rest ergibt, unabhängig davon,
ob Überlauf entsteht oder nicht. Das Programmbeispiel 4.5
zeigt die Subroutine DIVUO, welche diese Funktion ausführt.

Programmbeispiel 4.5: Eine Divisionssubroutine mit Behandlung von Überlauf.

106

Bild 4.3

Divisionsresultate

a) mit Überlauf
b) ohne Überlauf

Mathematische Routinen

Sie dividiert einen 32-Bit-Dividenden in D1 durch einen 16-Bit-
Divisor in DO und priift dann auf Uberlauf. Falls ein Uberlauf
entsteht, verwendet die Subroutine die Datenregister D2 und
D3, um die Korrektur durchzuftihren. Nach diesen Divisionen
(sofern sie notwendig sind) führt der MC 68000 die Befehle bei
FORMAT aus, wo der 32-Bit-Quotient in D1 und der 16-Bit-
Rest in das tiefere Wort von DO geladen wird. Wenn ein Uber-
lauf entsteht, wird D1 Q,, Q, enthalten und DO R, wie in Bild

4.3 a dargestellt. Wenn kein Überlauf entsteht, enthält das tiefe-
re Wort von D1 Q und von DO R und das höhere Wort beider
Register enthält Null wie in Bild 4.3 b dargestellt.

a) | b)

LG | % | 27 [oo] a |]

[oso | ko | 20 [oo] r |]

4.3 Quadratwurzel

Im letzten Teil dieses Kapitels wird ein Programm entwickelt,
mit dem die Quadratwurzel einer 32 Bit langen, ganzen Zahl
berechnet werden kann.

Die Berechnung wird mit Hilfe der klassischen Methode der
sukzessiven Approximation durchgeführt. Zur Erläuterung
dieser Methode nehmen wir an, dass die Zahl, deren Wurzel zu
bestimmen ist, den Wert N haben soll. Die erste Approximation
für die Quadratwurzel ist aus dem Wert (N/200) + 2 abgeleitet.
N wird durch diesen Wert dividiert. Das Resultat wird zur
ersten Approximation addiert und die Summe durch zwei divi-
diert. Dieses Resultat ist unsere nächste Approximation.
Zum Beispiel für die Quadratwurzel von 10000:

N = 10000; erste Approximation ist (10000/200) + 2 oder 52
10000/ 52=192, (192+52)/2=122
10000/122= 81, (122 +81)/2=101
10000/101= 99, (101 + 99)/2 = 100
10000/100 = 100

Wir sehen, dass die Quadratwurzel von 10000 gleich 100 ist.
Wir wissen natürlich, dass 100 die Quadratwurzel von 10000
ist, weil ja 100 mit sich selbst multipliziert den Originalwert er-
gibt. Dieser spezielle Wert 10000 hat eine ganzzahlige Quadrat-
wurzel. Aber wir können nicht annehmen, dass die Lösung im

allgemeinen eine ganzzahlige Quadratwurzel ist. Die Quadrat-
wurzel für 9999 zum Beispiel ist keine ganze Zahl. Das bedeu-
tet, dass bei der Berechnung der Quadratwurzel von 9999 der
MC68000 die Berechnung laufend fortsetzt. Der Prozessor

107

Mathematische Routinen

Programmbeispiel 4.6: Subroutine für die Berechnung der Quadratwurzel aus einer 32-Bit-Zahl mittels suk-

zessiver Approximation.

wird fortfahren, die Approximationsbefehle zu durchlaufen,
weil das Quadrat der ganzzahligen Approximation nie gleich
9999 sein wird. Daher muss ein Weg gefunden werden, um den
Prozessor zu stoppen, wenn er den bestmöglichen Wert für die
Quadratwurzel gefunden hat. Es gibt verschiedene Methoden
zur Beendigung der Approximationsprozeduren. Die gewählte
Methode ist abhängig von der gewünschten Genauigkeit und
der zur Verfügung stehenden Ausführungszeit. Eine Lösung

besteht darin, die Schlaufe zehnmal zu durchlaufen und anzu-
nehmen, dass die Antwort genau genug ist. Diese Methode
genügt für viele Anwendungen, ist ihrer Natur nach jedoch sehr
willkürlich. Eine andere, genauere Lösung ist diejenige, den
MC 68000 die Schlaufe solange durchlaufen zu lassen, bis zwei
aufeinanderfolgende Approximationen identisch sind oder sich

nur durch den Wert Eins unterscheiden. Diese Methode wird in.
unserem Beispiel verwendet. Programmbeispiel 4.6 zeigt eine
Subroutine (SQRT32), welche die ganzzahlige Quadratwurzel
einer 32-Bit-Zahl durch sukzessive Approximation berechnet.
Bei dieser Subroutine enthält das Datenregister DO die 32-Bit-
Zahl; die 16-Bit-Quadratwurzel wird in Datenregister D1
geschrieben. Die Subroutine beginnt mit der Approximation
unter Verwendung der Beziehung (N/200) + 2. Der Rest der

108

Mathematische Routinen

Subroutine ist eine Schlaufe, beginnend mit NXTAPP, in der
der MC 68 000 eine neue Approximation berechnet durch Divi-
sion der ganzzahligen 32-Bit-Zahl durch die vorhergehende
Approximation und der Bildung des Mittelwertes beider Appro-
ximationen. Vor der Mittelwertbildung prüft der MC 68000 die
Endbedingung dadurch, ob die neue Approximation gleich, um
Eins grösser oder um Eins kleiner als die vorhergehende Appro-
ximation ist. Wenn eine dieser drei Bedingungen erfüllt ist, ver-
lässt der MC 68000 die Subroutine, wobei die 16-Bit-Quadrat-
wurzel sich im Datenregister D1 befindet.

109

5. Listen und Konversionstabellen

5.1 Organisation von Daten

Es gibt verschiedene Methoden, wie Speicherinformationen für
die Bearbeitung organisiert werden können. Diese Organisa-
tionstechniken sind für jede Anwendung verschieden. Sie wer-
den unter die Begriffe Listen, Arrays, Strings, Konversionsta-
bellen und Vektoren eingeordnet. Wir konzentrieren uns auf
zwei Organisationstypen, die Listen und Konversionstabellen.
Listen sind wahrscheinlich das meistverwendete Datenspeicher-
format. Sie bestehen aus Dateneinheiten (ein oder mehrere
Byte), sprich Elemente, die hintereinander abgespeichert sind.
Die Sequenzen der Elemente können direkt aufeinanderfolgen,
indem jedes Element ein oder mehrere benachbarte Speicher-

plätze besetzt. Sie können auch verkettet sein, indem jedem
Datenelement ein Zeiger folgt, der auf das nächste Element
zeigt.
Im weiteren können die Datenelemente zufallsweise, in aufstei-
gender oder in absteigender Ordnung, gespeichert sein.
Die Konversionstabellen sind Datenstrukturen, die eine spezifi-
sche Eigenschaft haben. Damit will der Anwender Information

(weniger Daten oder Adressen) erhalten, die eine wohldefinierte
Beziehung zu einem bekannten Wort hat. Das Telefonbuch ist
dafür ein gutes Beispiel. Ist der Name bekannt, so kann die ent-
sprechende Telefonnummer herausgelesen werden.

5.2 UngeordneteListen

In unserer geordneten Gesellschaft, wo die Telefonbücher al-
phabetisch geordnet, die Hausnummern systematisch zu- oder
abnehmen, kommt es uns merkwürdig an, von etwas Ungeord-
netem zu sprechen.
Ungeordnete Listen sind auch das «Gift» für den Programmie-
rer, weil sie sehr schwierig anzuwenden sind. Um einen
bestimmten Wert in einer solchen Liste zu finden, muss jedes-
mal vom Anfang an mit der Suche danach begonnen werden. Es
muss jedes Element gelesen werden, bis das richtige gefunden
oder das Listenende erreicht worden ist. Ob man will oder nicht,
kommen ungeordnete Listen in vielen Anwendungen des

111

Listen und Konversionstabellen

Lebens vor. Sie bieten eine grundsätzliche Möglichkeit, zufälli-
ge, chronologisch abhängige oder dynamisch sich verändernde
Daten abzuspeichern.

5.2.1 Zufügen von Daten zu einer ungeordneten
Liste

Die Subroutine ADD2UL (Programmbeispiel 5.1) zeigt, wie
der Anwender eine ungeordnete Liste kreieren oder ein neues
Element dazugeben könnte. In diesem Beispiel beinhaltet diese
Liste wortlange Werte (mit oder ohne Vorzeichen).

Programmbeispiel 5.1:
Zufugen eines Elementes zu einer ungeordneten Liste

* Diese Subroutine fiigt das untere Wort des Datenregisters DO einer ungeordneten
* Liste bei, wenn es nicht schon in der Liste ist.
* Die Startadresse der Liste steht im Adressregister AO.
* Die Lange der Liste, in Worten, ist im ersten Wort der Liste untergebracht.

ORG $2000
ADD2UL MOVEM.L D1/A1,-(SP) Rette Arbeitsregister.

MOVEA.L AO,A1 Kopiere Startadresse in Al
MOVE (Al)+,D1 und den Wortzähler
SUBQ #1,D1 minus lin D1.

NXTEL CMP (A1)+,D0 Element schon vorhanden?
BEQ.S ITSIN Ja, es ist in der Liste.
DBI D1,NXTEL Nein! Schaue weiter.
MOVE DO, (A1) Füge Element am Ende an,
ADDQ #1,(A0) inkrementiere d. Wortzähler.

ITSIN MOVEM.L (SP)+,D1/Al Hole Arbeitsregister zurück.
RTS
END

Diese Subroutine sucht einfach die Liste Element um Element
ab, um das Vorkommen des Wertes, der beigefügt werden soll,
zu überprüfen. Wenn der Wert schon in der Liste ist, kehrt der
68000 von der Subroutine zurück, weil der Anwender keinen
Wert duplizieren will. Ist der Wert noch nicht vorhanden, so
wird er am Ende der Liste angehängt. Die Listenstartadresse ist
im Adressregister AO. Das erste Listenelement (ein Wort) zeigt
die Listenlange in Worten an. So kann diese Liste maximal
64 K Worte lang sein.
Es gibt nichts Besonderes in dieser Subroutine. Sie kopiert die
Listenstartadresse von AO in Al. Danach liest sie den Wortzäh-
ler aus dem ersten Wort der Liste und deponiert diesen in D1.
Dieser Zahler wird sogleich dekrementiert, weil die Suche abge-
brochen wird, falls der Zähler den Wert -1 hat. Die Suche

112

Listen und Konversionstabellen

beginnt bei NXTEL und vergleicht die Listenelemente mit DO.
Wenn der Wert schon in der Liste ist, springt der 68000 auf
ITSIN und kehrt zum Hauptprogramm zurtick. Ist der Wert
nicht vorhanden, so wird er am Listenende angehängt und der
Elementzähler wird mit einer ADDQ-Instruktion um 1 grösser.
Wie lange wird dieser Subroutinen-Durchlauf dauern? Offen-
sichtlich hängt das von der Zahl der Listenelemente ab und ob
das Element schon vorhanden ist oder nicht.
Für alle, auch für die kleinste Liste, hängt die Ausführungszeit
dieser Subroutine von der Anzahl Durchläufe der 3-Befehls-
Schleife von NXTEL ab. Untersuchen wir einmal die Zeit für
die Fälle, wenn das Element in der Liste ist und wenn es nicht
dort ist. Die Liste hat N Elemente.
Wenn der gesuchte Wert nicht in der Liste ist, wird die NXTEL-
Schleife N-mal durchlaufen. Für die N-1 ersten Ausführungen
wird die Schleife 26 Zyklen brauchen; für die letzte 30 Zyklen.
Die übrigbleibenden Instruktionen der Subroutine werden nur
einmal ausgeführt und brauchen 110 Zyklen.

110 + 26 (N-1)+30
26N + 114 Zyklen

Totale Ausführungszeit

So werden also, um ein Element einer Liste mit 100 Elementen
beizufügen, 2714 Zyklen oder 339,25 us gebraucht.
Wenn der gesuchte Wert bereits in der Liste ist, wird der 68000
im Mittel N/2 Vergleiche machen müssen, um den betreffenden
Wert zu finden. Er braucht so viel, da der gesuchte Wert zu je
50% in der ersten oder zweiten Listenhälfte sein wird. Für alle
N/2 ohne den letzten Vergleich werden 26 Zyklen Ausführungs-
zeit gebraucht. Für den letzten, bei welchem der gesuchte Wert
in der Liste gefunden wird, werden 18 Zyklen gebraucht. Die
restlichen Instruktionen werden noch 88 Zyklen ausmachen.

88 + 26(N/2-1)+18 Totale Ausführungszeit =
— 13N + 80 Zyklen

Im Fall der ungeordneten Liste mit 100 Elementen gibt das
1380 Zyklen oder 172,5 us.

5,2.2 Löschen eines Elementes aus einer
ungeordneten Liste

Um ein Element aus einer ungeordneten Liste zu entfernen,
muss es zuerst gefunden werden. Danach werden alle folgenden
Listenelemente um einen Platz nachrutschen. Sie überschreiben
das gelöschte Element. Mit diesem Elementlöschen ist eines
weniger in der Liste. Somit muss auch der Elementzähler um 1
dekrementiert werden.
Die DELEUL-Subroutine gibt ein Beispiel (5.2), wie eine solche
Operation durchgeführt werden kann. Dabei wird das untere
Wort vom Datenregister DO den zu löschenden Wert enthalten,

113

Listen und Konversionstabellen —

Programmbeispiel 5.2:
Loschen eines Elementes aus einer ungeordneten Liste

* Diese Subroutine I6scht den Wert im unteren Datenwort des Registers DO einer
* ungeordneten Liste, falls dieser Wert in der Liste vorkommt.
* Die Listenstartadresse steht im Adressregister AO.
* Die Listenlänge, in Worten, ist im ersten Wort der Liste untergebracht.
*

ORG $1000
DELEUL MOVEM.L D1/A1,-(SP) Retten des Arbeitsregisters.

MOVEA.L A0,Al Kopiere die Startadresse in Al

MOVE (A1)+,D1 und den Wortzahler
SUBQ #1,D1 minus lin D1.

NEXTEL CMP (A1)+,D0 Kann geloscht werden?
NEQ.S DELETE Ja, lösche dieses Element.
DBF D1,NEXTEL Nein, suche bis Listenende.
BRA.S ALLDUN Element nicht vorhanden.

*

* LOsche ein Element, indem alle folgenden Elemente um ein Wort nachgeschoben

* werden
*

DELETE MOVE (Al)+,-4(Al) Schiebeein Wort nach.
DBF D1,DELETE Alle Elemente nachgesch.?
SUBQ #1,(A0) Ja, dekrementiere Elementz.

ALLDUN MOVEM.L (SP)+,D1/Al Hole Arbeitsregister zurück.
RTS
END

und wie im Programmbeispiel 5.1 wird die Listenstartadresse im
Adressregister AO gespeichert sein.
Der erste Subroutineteil (DELEUL bis NEXTEL) löscht die
Listenstartadresse in Al, wo der Elementzähler gespeichert ist.
Danach wird der Elementzähler minus eins im D1-Register
abgespeichert. Diese Instruktionen sind bis hierher die gleichen
wie in 5.1. Die NEXTEL-Schleife vergleicht jedes Listenele-
ment mit dem Wert im Register DO. Wenn das entsprechende
Element gefunden wird, springt der 68000 auf die DELETE-
Schleife, die jedes folgende Element um ein Wort aufschliessen
lässt. Der Elementzahler wird dann um 1 dekrementiert.

5.2.3 Finden der Minimal- und Maximalwerte in
einer ungeordneten Liste

Die Aufgabe, einen Minimal- oder Maximalwert in einer Liste
zu finden, wird in mancher Anwendung gefordert, speziell dann,
wenn Textdaten oder Statistikinformation verarbeitet werden
sollen. Eine Methode geht davon aus, dass bei jedem neuen

114

Listen und Konversionstabellen

Suchen das erste Datenelement als der entsprechende Wert
betrachtet wird. Danach wird jedes weitere Element mit diesem
Minimal- bzw. Maximalwert verglichen. Findet nun das Pro-
gramm einen Wert, der kleiner bzw. grösser als das momentan
gültige Minimum bzw. Maximum ist, dann wird dieser Wert das
neue Minimum bzw. Maximum sein.
Die Subroutine MINMAX im Beispiel 5.3 wendet diese Metho-
de auf eine ungeordnete Liste von Elementen ohne Vorzeichen
an. Mit dem Aufrufen der Subroutine muss die Listenstart-
adresse in AO sein. Nach der Rtickkehr von der Subroutine zum
Hauptprogramm sind die beiden Werte (Minimum, Maximum)

in den zwei symbolischen Speicherplatzen MINVAL und

MAXVAL verfügbar.

Programmbeispiel 5.3:
Finden des Minimal- und Maximalwertes

in einer ungeordneten Liste

* Diese Subroutine findet den Minimal- und Maximalwert in einer ungeordneten Liste.
* Der Minimalwert wird im Speicherplatz MINVAL, der Maximalwert in MAXVAL

* zurückgegeben.
* Die Listenadresse steht im Adressregister AO.

*

MINVAL
MAXVAL
MINMAX

CHKMIN

CHKMAX

CONT

ORG
DS.W
DS.W
MOVEM.L
MOVE
SUBQ
MOVE
MOVE
MOVE
CMP

BEQ.S
BCC.S
MOVE
BRA.S
CMP
BLS.S
MOVE
DBF
MOVEM.L (SP)+,A0/D0/D1

RTS
END

* Die Listenlänge, in Worten, ist im ersten Listenelement abgespeichert.

$3000
1 Minimalwertspeicherplatz,
1 Maximalwertspeicherplatz.
A0/D0/D1,-(SP) Rette Arbeitsregister.
(A0)+,D1 Schiebe Elementzähler in Di
#1,D1 und dekrementiere ihn.
(AO), MINVAL 1. Element in MIN.
(A0)+,MAXVAL 1.ElementinMAX.
(A0)+, D0 Lade nächstes Elem. in DO.
MINVAL,DO Ist das Element ein neues

Minimum?

CONT
CHKMAX
D0,MINVAL Ja, führe MINVAL nach.
CONT
MAXVAL,DO Ist das Element ein
CONT neues Maximum?
D0,MAXVAL Ja, führe MAXVAL nach.
D1,CHKMIN Listenende?

Hole Arbeitsregister zurück.

115

Listen und Konversionstabellen

Im Beispiel 5.3 laden die Instruktionen zwischen MINMAX

und CHKMIN den Elementzähler minus eins in das Datenregi-
ster D1 und speichern den ersten Datenelementswert in MIN-
VAL und MAXVAL.

Bei CHKMIN wird das nächste Element in DO geladen und
danach mit MINVAL verglichen. Von diesem Punkt aus kön-
nen drei Wege beschritten werden:

1. Wenn der Wert in DO gleich wie MINVAL ist (Null-Flag
gesetzt), springt der 68000 nach CONT, um zu priifen, ob
alle Elemente bearbeitet worden sind. .

2. Wenn der Wert in DO grösser als MINVAL ist (Übertrag-
Flag ist gelöscht), springt der 68000 nach CHKMAX, wo
DO mit MAXVAL verglichen wird. .

3. Wenn der Wert in DO kleiner als MINVAL ist (Ubertrag-
Flag gesetzt), geht der 68000 tiber die Instruktion BCC.S
CHMAX weg und speichert das Wort DO als neues MIN-
VAL ab.

Im Fall 2 oder 3 prüft die Schleifenbedingungsinstruktion bei
CONT (DBF DI, CHKMIN), ob alle Elemente der Liste
behandelt worden sind, und springt nach CHKMIN, falls das
nicht der Fall ist.
Wie früher schon erwähnt, bearbeitet diese spezielle Subroutine
Listen, die mit wortlangen Worten ohne Vorzeichen arbeiten.

Wenn der Anwender das Minimum und Maximum in einer Li-
ste, bestehend aus wortlangen Werten mit Vorzeichen, finden

möchte, kann er einfach BCC.S CHKMAX mit BPL.S
CHKMAX und BLS.S CONT mit BLE.S CONT ersetzen. Die
anderen Instruktionen bleiben sich gleich.

5.3 Eine einfache Sortierungstechnik

5.3.1 Die Technik des «Bubble Sort»

Ungeordnete Daten sind für viele Anwendungen gerade richtig.
Demgegenüber sind geordnete Daten einfacher zu analysieren

und machen das Finden eines Elementes leichter. Wie kann nun
eine ungeordnete Liste geordnet werden? Es existiert darüber
eine beachtliche Menge an Literatur.
Eine der einfachsten Techniken wird «Seifenblasen sortieren»
genannt («Bubble Sort»).
Gerade wie Seifenblasen gegen den Himmel hinaufsteigen, stei-
gen die Listenelemente während des Sortierens im Speicher
hoch. (Die Daten können in auf- oder absteigender Ordnung
sortiert werden. Hier ist nur das aufsteigende Ordnen beschrie-
ben).

Während des Sortierens werden die Listenelemente, beginnend
mit dem ersten Element, sequentiell gelesen. Sie werden dann

mit dem nächsten verglichen. Wenn ein Element grösser als

116

Listen und Konversionstabellen

das folgende Listenelement ist, werden diese beiden ausge-
tauscht. Danach wird das nachste Paar verglichen und je nach-
dem ausgetauscht usw. Wenn der 68000 beim letzten Listenele-
ment angekommen ist, wird das grösste Element in die letzte
Listenposition hochgekommen sein.

Wenn dieser Seifenblasen-Sortierungsalgorithmus verwendet
wird, muss der Mikroprozessor gewöhnlich mehrere Male

durch die Liste sortieren. Im folgenden Beispiel kann das gut
erkannt werden. Nehmen wir eine Liste von 5 Elementen an:

5 3 4 1 2

Nach einem Durchgang sieht diese Liste so aus:

3 4 1 2 5

Element 5 ist als grösstes der Liste ans Listenende gelangt. Der
nächste Durchlauf ergibt diese Folge:

3 1 2 4 5

Element 4 ist auf den zweitletzten Listenplatz geschoben wor-
den. Das Resultat nach dem nächsten Sortieren:

1 2 3 4 5

Dieses Beispiel zeigt nicht nur, wie der Seifenblasen-Sortieralgo-
rithmus funktioniert, sondern gibt uns auch einen Hinweis, was
für eine Leistung von diesem Algorithmus wir erwarten können.
Man bemerke, dass drei Durchläufe von 5 Elementen gebraucht
werden, um eine teilweise geordnete Liste zu sortieren. Ist die
Liste schon zu Beginn geordnet, genügt ein Durchlauf. Umge-
kehrt braucht der Seifenblasen-Sortieralgorithmus 5 Durchläu-
fe für eine Liste, die zu Beginn gerade in absteigender Ordnung
vorliegt (schlimmster Fall), 4 zum Ordnen und einen zum Fest-
stellen, dass keine weiteren Elemente auszutauschen sind. Aus
dieser Beobachtung können wir festhalten, dass der 68000 von
1 bis N Durchläufe durch eine Liste von N Elementen machen
muss, um diese Liste zu sortieren. Im Mittel ergibt das N/2
Durchläufe.
Wieviel Befehle und Ausführungszeit werden für einen Durch-
lauf benötigt? Das hängt vor allem vom verwendeten Algorith-
mus ab. Es gibt die beschriebene Art, die ganze Liste nach und
nach zu überarbeiten, bis das Programm einen Durchlauf
macht, in dem keine Elemente mehr ausgewechselt werden müs-
sen. Mit dieser Methode wird das gesteckte Ziel erreicht, aber
mit zu viel Zeitaufwand. Warum das? Der Grund liegt in der
Tatsache, dass Elemente mit bereits «hochgesprudelten» Ele-
menten noch verglichen werden. Diese Vergleiche sind nicht
mehr notwendig. Eine schnellere und effizientere Methode ist,
nur mit den noch nicht zu Ende bearbeiteten Elementen zu ver-
gleichen.
Bemerke, dass für jede gegebene Liste beide Methoden gleich

117

Listen und Konversionstabellen

viele Durchläufe brauchen. Die Differenz der Ausführungszei-
ten ist dagegen sehr beachtlich. Wenn wir das oben genannte
Mittel von N/2 Durchläufen für eine Liste von N Elementen
nehmen, können wir folgende Rechnung erstellen: Mit der
ersten Methode vergleicht man in jedem der N/2 Durchläufe N
Elemente. Mit der zweiten Methode vergleicht man in ebenfalls
N/2 Durchläufen immer ein Element weniger als im ersten
Durchgang. Das heisst, im ersten Durchlauf werden N Verglei-
che, im zweiten N-1 usw. gemacht.
Während des letzten Durchlaufs werden nur noch zwei Elemen-
te verglichen. Um ein Gefühl zu bekommen, wieviel mit der
Methode an Zeit eingespart werden kann, nehmen wir folgendes
an: Um eine Liste von 100 Elementen zu sortieren, braucht man
mit der ersten Methode 4950 Vergleiche und mit der zweiten nur
deren 3675, das bedeutet einen Viertel weniger.

5.3.2 Sortieren mit 16-Bit-Elementen

Mit dem vorangegangenen Wissen der Seifenblasenmethode
wollen wir nun ein aktuelles Problem angehen. Es geht um eine
Liste mit 16-Bit-Elementen ohne Vorzeichen. Bild 5.1 zeigt ein
Flussdiagramm, das die benötigten Schritte dieser Aufgabe dar-
stellt.
Wenn der Leser die Beschreibung des Seifenblasen-Sortieralgo-
rithmus verstanden hat, sollte dieses Flussdiagramm ihm keine
Mühe bereiten. Zu bemerken ist, dass ein Indikator dem 68000
signalisiert, wann die Liste komplett sortiert ist.
Dieser Indikator, genannt Auswechsel-Flag, wird nach jedem
Durchgang geprüft. Es wird gesetzt (logisch 1), wenn minde-
stens noch eine Auswechslung während des vorangegangenen
Durchlaufs gemacht wurde. Sonst ist dieses Flag gelöscht
(logisch 0).

Die entsprechende Subroutine dieses Flussdiagramms ist im
Programmbeispiel 5.4 aufgeschrieben. Wie der Leser daraus
entnehmen kann, muss die Listenstartadresse im Adressregister
AO sein. Während der Ausführung der Subroutine behält AO die
Adresse des ersten Datenelements. Diese Adresse wird zu
Beginn jedes Durchganges in Al geschoben.
Neben AO und Al verwendet die Subroutine SORT noch wei-
tere vier Datenregister. Bit 7 von D1 ist das Auswechsel-Flag.
Register D3 ist der Zähler der nicht sortierten Elemente. D3
unterstützt DO mit diesem Zähler zu Beginn jedes Durchgangs
und wird nach jedem Durchlauf durch die DBF-Instruktion
dekrementiert. D2 enthält während der Vergleichprozedur
immer ein Element.

Die zwei Instruktionen nach DBF sollten übrigens noch näher
betrachtet werden. Die Instruktion NOT.B D1 bildet das Einer-
komplement des Auswechsel-Flags in D1, und BPL.S LOOP
initialisiert einen neuen Sortierungsdurchgang, falls die NOT-

118

Listen und Konversionstabellen

Auswechse l-
Flag =0

!
Hole

Wortzahler
Le

L_

Hole Adresse des
ersten Listenelementes

!
Wortzähler =

Wortzähler - 1

!
Lade Wortzähler
in den Zahler

7

—t

Hole neves
Element

Wechsle dıe beiden
Elemente aus

t
Setze die Aus-
wechsel - Flag

=]
x

Zähler =
Zähler -1

 wechsel- Flag
gesetzt 2

Lösche Aus-
wechsel-Flag

|
Bild 5.1
Flussdiagramm fur den Sortieral-
gorithmus nach dem «Seifenbla-
senprinzip» («Bubble-sort»).

119

Listen und Konversionstabellen

Programmbeispiel 5.4:
Eine 16-Bit-Seifenblasen-Sortierungsroutine

* Diese Subroutine ordnet im Speicher 16-Bit-Listenelemente in aufsteigender Reihen-

* folge. Sie verwendet den Seifenblasen-Sortieralgorithmus.
* Die Listenadresse ist in AO, die Listenlänge, in Anzahl Worten, im ersten Listenwort.
*

ORG $4000
SORT MOVEM.L D0-D3/A0/ Rette Arbeitsregister.

Al, -(SP)

CLR.B D1 Auswechsel-Flag = 0.
MOVE (A0)+,D3 Lade Wertzahler in D3.

LOOP MOVEA.L AO, Al Lade Elementadtresse in Al.
SUBQ #1,D3 Dekrementiere Wortzähler
MOVE D3,DO und lade ihn in DO.

COMP MOVE (A1)+,D2 Bringe Element nach D2.
CMP (A1),D2 Nächstes Element grösser?
BLS,S DECCTR Ja, fahre weiter.
MOVE (A1),-2(A1) Nein, wechsle
MOVE D2,(A1) diese beiden aus.
TAS D1 Setze Auswechsel-Flag.

DECCTR DBF DO, COMP Listenende?
NOT,B D1 Ja, ist Auswechsel-Flag gesetzt?
BPL.S LOOP Ja, starte neuen Durchlauf.
MOVEM.L (SP)+,D0-D3/ Hole Arbeitsregister zurück.
RTS A0/A1
END

Operation das Flag auf 0 gesetzt hat. Das bedeutet, dass der
Sprung auf LOOP nur ausgeführt wird, falls das Auswechsel-
Flag auf 1 war, bevor die NOT-Instruktion ausgeführt wurde.
In vielen Anwendungen reicht das Format 8, 16 oder 32 Bit für
ein Listenelement nicht aus. Der Programmierer muss dann

dafür eine spezielle Sortierungsroutine für noch längere Elemen-
te selbst entwickeln.
Die vorangegangenen Kommentare sollten genügend Wissen
gegeben haben, um ein Sortierprogramm für irgendeine Ele-
mentlänge zu entwickeln.

5,4 GeordneteListen

Wir haben nun gelernt, eine Liste zu ordnen, und wollen jetzt
betrachten, wie eine Liste nach einem bekannten Wert abzusu-
chen ist. Danach wollen wir zeigen, wie zwei gemeinsame
Operationen, Elemente zufügen und herausnehmen, program-
miert werden können.

120

Listen und Konversionstabellen

5.4.1 Absuchen einer geordneten Liste

Wir haben gesehen, dass zum Finden eines Elementes in einer
ungeordneten Liste diese sequentiell, Element für Element,
abgesucht werden muss. Für eine Liste von N Elementen
braucht das im Durchschnitt N/2 Vergleiche. Wenn nun eine
Liste geordnet ist, kann jede Art von Suchtechnik angewen-

det werden. Für jede, auch für die kürzeste Liste, werden die
meisten dieser Techniken schneller und effizienter sein als das
sequentielle Absuchen.
Eine der bekanntesten Absuchtechniken für geordnete Listen
wird «Binäres Suchen» genannt. Der Name kommt von der
Tatsache, dass diese Technik die Liste in eine Serie von stetig
kleineren Hälften teilt, bis das Element schliesslich gefunden
wird. Das binäre Suchen beginnt in der Listenmitte und
bestimmt, in welcher Listenhälfte der gesuchte Wert ist. Danach
wird diese Listenhälfte genommen und halbiert usw.
Das Flussdiagramm in Bild 5.2 zeigt, wie das binäre Suchen
einer geordneten Liste ausgeführt wird. Nach dem Absuchen
wird als Resultat eine Adresse zurückgegeben. Wenn der
gesuchte Wert in der Liste gefunden wurde, wird es die Adresse
des entsprechenden Elementes sein. Falls der Wert nicht in der
Liste enthalten ist, wird es die Adresse des zuletzt verglichenen
Elementes sein. Man kann dann feststellen, welche der beiden
Adressen herausgegeben wird, indem das Element gelesen und
mit dem gesuchten verglichen wird.

Programmbeispiel 5.5 stellt eine Subroutine dar, die zum Absu-

chen einer geordneten Liste gebraucht werden kann. Diese Liste
besteht nur aus positiven Elementwerten. Die Instruktionen von
BSRCH bis CALCI führen die ersten Tests zwischen der unte-
ren und der oberen Listengrenze durch. Diese Sequenz prüft, ob
der gesuchte Wert in diesem Bereich ist oder nicht. Die restli-
chen Befehle (von CALCI weg) suchen die Liste mit dem nach
Bild 5.2 laufenden Algorithmus ab.

Programmbeispiel 5.3:
Subroutine zum binären Suchen eines 16-Bit-Wortes

* Diese Subroutine sucht eine geordnete Liste nach dem wortlangen Wert in Daten-
*register DO ab. Die Startadresse der Liste ist im Adressregister AO und der Wort-
* zähler im ersten Listenplatz abgespeichert. Die Resultate sind in den Registern Al
* (alle 32 Bit) und DI (untere 16 Bit) wie folgt abgespeichert:
*1. Falls der Wert in der Liste ist, so ist D1 = 0, und Al enthält die Adresse des
* gesuchten Wertes in der Liste.
*2. Falls der Wert nicht in der Liste enthalten ist, ist Di = 0, und Al enthält die
* Adresse des zuletzt verglichenen Wortes.
*

121

Listen und Konversionstabellen

ORG $1000
BSRCH MOVEA.L A0,Al Listenadressein Al.

CLR.L D1 Losche Indexregister.

* Prüfe, ob der gesuchte Wert innerhalb des Listenbereichs liegt.

CMP 2(A1), DO Gesuchter Wert < untere
Grenze?

BHI.S TRYHI Nein, prüfe obere Grenze.
BNE.S CALCA Ja, prüfe ob Wert > untere
MOVEQ #2,D1 Grenze.

CALCA ADDQ.L #2,Al
RTS

TRYHI MOVE (A1),D1 Hole Wortzahler und
LSL #1,D1 mache ihn zum Byte-Index.
CMP 0(A1,D1),D0 Gesuchter Wert > obere
BLS.S EQHI Grenze?
ADDA.L D1,Al1 Ja, berechne Adresse und
CLR D1 losche D1.

RTS
EQHI BNE.S CALCI Nein, prüfe ob Wert = obere

ADDA.L D1,Al Grenze.

RTS
*

* Gesuchter Wert liegt innerhalb der Listengrenzen. Fahre mit suchen weiter.
*

CALCI LSR #1,D1 Teile Index durch 2.
ANDI.B #S$FE,D1 Zwinge Index zu Wortgrenze.
BEQ.S RETRN Index = 0?
ADDA.L D1,Al Nein, berechne Suchadresse.

COMP CMP (A1), DO Gesuchter Wert gefunden?
BNE.S CHKLOW

RETRN RTS Ja, Ausgang m. Adresse in Al.
CHKLOW BCC.S CALCI Nein, gesuchter Wert ist höher.

LSR #1,D1 Nein, gesuchter Wert ist tiefer.
ANDI.B #S$FE,D1 Berechne neuen Index.
BEQ.S : RETRN
SUBA.L D1,Al Berechne neue Suchadresse
BRA.S COMP und vergleiche wieder.
END

Wie in früheren Beispielen in diesem Kapitel wird die Listen-
startadresse über AO der Subroutine übergeben. Die Subroutine
wird diese Adresse nicht verändern. Die Resultatsadresse ist in
Al enthalten und der gefundene bzw. nicht gefundene Indikator
in D1. Obwohl die BSRCH-Subroutine mit wortlangen Werten
operiert, muss jedesmal der neu berechnete Index einen geraden
Wert haben. Das erreicht man, indem die unteren 8 Bit des (16-

122

Listen und Konversionstabellen

Hole Index
(Wortzähler)

|
Dividrere

Index durch 2

Suchadresse =

Adresse + /ndex

gesuchter nein

Wert gefunden
2

ja

Kehre zurück l

e-

Suchler Wer
ist höher in der

Liste ?
nein, tiefer

Ja

Dividiere Index

durch 2

ja
nein

Suchadresse =
Adresse -/ndex

Bild 5.2
Der binare Suchalgorithmus |

123

Listen und Konversionstabellen

Bit-)Index mit dem hexadezimalen Wert $FE UND-verknüpft
wird.
Wie viel effizienter ist nun das binäre Suchen als das einfache
sequentielle Vergleichen (vergleiche Beispiel 5.1)? Die mathe-
matische Untersuchung zeigt, dass beim sequentiellen Suchen
in einer Liste von N Elementen im Mittel N/2 Vergleiche
gemacht werden müssen. Mit dem binären Suchen dagegen
braucht es für die gleiche Liste log,(N) Vergleiche. Für eine
Liste mit 100 Elementen braucht also die sequentielle Lösung
50 und die binäre ungefähr 7 Vergleiche!

5.4.2 Zufügen eines Wertes in eine geordnete Liste

Das Zufügen eines Wertes in eine geordnete Liste kann in vier
Schritte unterteilt werden:

1. Herausfinden, wo der Wert eingefügt werden muss.
2. Bereitstellen eines Platzes für den neuen Wert, indem alle

höherwertigen Elemente um einen Platz nach oben verscho-
ben werden.

3. Einfügen des neuen Wertes an die freigemachte Stelle.
4. Nachführen der Listenlänge um 1.

Die eben beschriebene Subroutine, BSRCH (Beispiel 5.5), gibt
uns gerade den Ort, wo das Element eingefügt werden muss, da
sie die Adresse des zuletzt verglichenen Elementes ausgibt. Wir
müssen nur noch bestimmen, um Schritt 1 zu erfüllen, ob der
neue Wert vor oder nach dieser Adresse eingefügt werden soll.
Das kann erreicht werden, indem das letzte Element mit dem
neuen verglichen wird.
Da wir nun die vier Schritte kennen, können wir eine entspre-
chende Subroutine entwickeln. Eine mögliche Lösung ist mit
der Subroutine ADD2OL im Programmbeispiel 5.6 gegeben.
Diese Subroutine beginnt mit BSRCH, um festzustellen, ob der
Wert schon in der Liste ist oder nicht. BSRCH gibt eine Adresse
in Al und den gefundenen/nicht gefundenen Indikator in DI
zurück.
Nach der Rückkehr von BSRCH fragt ADD2OL das Register
D1 ab und beendet die Verarbeitung, falls D1 = 0 (das neue Ele-
ment ist schon in der Liste) ist. Falls D1 = 0 ist, berechnet die
Subroutine die Adresse des Listenendes. Danach wird der
Inhalt von Al von dieser Adresse abgezogen und das Resultat
einmal nach rechts geschoben. Der 68000 berechnet die Anzahl
Worte, die im Speicher verschoben werden müssen (Element-
Umladezähler), um Platz für das neue Element zu machen.
Wenn das neue Element kleiner als das zuletzt verglichene ist,
muss auch dieses noch verschoben werden. Damit wird der
Umladezähler um 1 erhöht.
Falls das Eingabeelement grösser als das letzte Listenelement
ist, dann wird die Eingabe zuhinterst angehängt. Andernfalls

124

Programmbeispiel 5.6:
Zufügen eines Elementes in eine geordnete Liste

Listen und Konversionstabellen

* Diese Subroutine fügt das untere Wort von DO zu einer geordneten Liste zu, falls der
* Wert nicht schon in der Liste vorhanden ist.
* Die Listenadresse ist in AO und der Wortzähler im ersten Wort der Liste abgespei-
* chert. Die BSRCH-Subroutine (Beispiel 5.5) wird aufgerufen, um die Elementsuche
* auszuführen.
*

ADD20L

INCCNT
MOVEL

ADDIT

ITISIN

ORG
MOVEM.L

JSR
TST
BNE.S
MOVE. L
ADD.L
MOVEA.L
ADDQ.L
SUB.L
LSR.L
SUBQ.L
CMP

BCS.L
TST.L
BEQ.S
BRA.S
ADDQ.L
MOVE
DBF
MOVE
ADDQ

MOVEM.L
RTS
END

$2000
D1/D2/A1/
A2,-(SP)
BSRCH
D1
ITSIN
A0,D2
(A0),D2
D2,A2
#2, A2
A1,D2
#1,D2
#1,D2
(A1),DO

INCCNT
D2
ADDIT
MOVEL
#1,D2
-(A2),2(A2)
D2,MOVEL
D0,(A2)
#1,(A0)

(SP)+,D1/
D2/A1/A2

Rette Arbeitsregister

Suche Liste nach Eingabe ab.
Ist Eingabe schon in Liste?
Ja, fertig.
Nein, berechne Listenendadresse.

Lade Ende + 2ins A2.

Berechne Anzahl zu verschie-
bende Worte und
subtrahiere 1 von diesem Zähler.
Verglichenes Element auch
verschieben?
Ja, erhöhe diesen Zähler.
Nein, füge Eingabe an Listenende.

Inkrementiere Umladezahler.

Verschiebe nächstes Wort.
Alle Worte verschoben?

Ja, füge neues Element in die
Liste ein und erhöhe Element-

zähler.
Restauriere Arbeitsregister

wird dieser Wert in die Liste eingefügt, was ein Verschieben aller
folgenden Elemente um eine Wortposition notwendig macht.
Die zwei Instruktionen lange Schlaufe bei MOVEL verschiebt,
beginnend am Listenende, Element um Element. Nach der Ver-
schiebung wird von ADDIT weg das Eingabeelement in die
Liste eingefügt und der Wortzähler um 1 erhöht.

125

Listen und Konversionstabellen

5,4.3 Löschen eines Elementes aus einer
geordneten Liste

Es ist viel einfacher, ein Element aus einer geordneten Liste zu
löschen, als eines neu einzufügen, weil der 68000 nur das Ele-

ment finden, die andern Elemente nachschieben und den Wort-

zähler dekrementieren muss.
Das Beispiel 5.7 zeigt eine typische Lösch-Subroutine DELOL,
die die BSRCH-Subroutine verwendet (Beispiel 5.5), um das zu
löschende Element zu finden. Wie üblich ist die Listenstart-
adresse in AO zu übergeben, der zu löschende Wert im untern
Wort von DO.
Falls BSRCH den gesuchten Wert in der Liste angibt, kann
die Subroutine DELOL diese Adresse und die Listenandresse
verwenden, um die Anzahl Elemente zu berechnen, die verscho-
ben werden müssen. Die zwei Instruktionen lange Schlaufe bei
DELETE führt diese Operation aus. Wenn alle Elemente nach-
geschoben worden sind, wird der Elementzähler im ersten
Listenwort um 1 dekrementiert.

Programmbeispiel 5.7:
Löschen eines Elementes aus einer geordneten Liste

* Diese Subroutine löscht den Wert im unteren Wort von DO aus einer geordneten
* Liste, falls dieser Wert in der Liste steht. Die Startadresse der Liste ist in AO und die
* Listenlange im ersten Wort der Liste abgespeichert. Die BSRCH-Subroutine (Bei-

* spiel 5.5) wird fiir die Elementsuche verwendet.

ORG $3000

DELOL MOVEM.L D1/D2/
Al,-(SP) Rette Arbeitsregister.

JSR BSRCH Suche Liste nach Element ab.
TST D1 Element vorhanden?
BEQ.S EXIT Nein, kehre zurück.
MOVE. L AO, D2 Ja, berechne Listenadresse.
ADD.L (AO), D2
SUB.L A1l,D2 Berechne Anzahl zu verschiebende
LSR.L #1,D2 Worte und
SUBQ.L #1,D2 subtrahiere 1 von diesem Zahler.

BEQ.S DECCNT |
DELETE MOVE 2(A1),(A1) + Verschieben eines Wortes.

DBF D2, DELETE Alle Worte verschoben?
DECCNT SUBQ #1,(A0) Ja, dekrementiere Elementzähler.
EXIT MOVEM.L (SP) +,D1/ Hole Arbeitsregister zurtick.

RTS D2/A1
END

126

Listen und Konversionstabellen

5.5 Konversionstabellen («Look-up tables»)

5.5.1 Beispiel Telefonbuch

Viele Mikroprozessorprogramme verwenden spezifische Werte,
die zuerst geholt werden müssen, bevor sie verarbeitet werden
können. Diese Werte können aus einem Test oder aus einer
Berechnung stammen. Das könnte zum Beispiel der Sinus eines
Winkels oder eine Temperatur in Grad Celsius sein. Der ver-
langte Wert könnte auch ein Parameter sein, der eine bestimmte
Beziehung zu einem Programmeinsprung hat, die nicht berech-
net werden kann. Als Beispiel kann die Telefonnummer erwähnt
werden, die zu einem Namen gehört. Anwendungen wie diese
lassen sich mit einer Konversionstabelle lösen. Wie der engli-

sche Name «Look-up table» schon sagt, kann für einen bekann-
ten Wert (Argument) die entsprechende Information (Funk-
tionswert) aus einer solchen Tabelle nachgeschaut werden.
Konversionstabellen ersetzen oft komplizierte oder zeitaufwen-
dige Umwandlungsoperationen, wie das Berechnen der Qua-
drat- oder kubischen Wurzel einer Zahl oder einer trigonometri-
schen Funktion (Sinus, Cosinus usw.) eines Winkels. Diese
Tabellen sind speziell für Funktionen anzuwenden, die nur auf
einen kleinen Bereich des Argumentes beschränkt sind. Mit der
Verwendung von Konversionstabellen muss der Mikroprozes-
sor keine komplexen Berechnungen durchführen. Der Anwen-
der wird bald merken, dass in den allermeisten Fällen von Bezie-
hungen die Konversionstabellen die Ausführungszeit stark

reduzieren. Es ist typisch für die Tabellen, dass sie viel Spei-
cherplatz brauchen. Sie sind am effizientesten, falls mehr Spei-
cherplatz zugunsten der Ausführungszeit geopfert werden kann.

5.5.2 Konversionstabellen ersetzen Gleichungen

Man kann Prozessorzeit und Programmentwicklungszeit

gewinnen, indem die Resultate von komplexeren Gleichungen in

Konversionstabellen abgespeichert werden. In diesem Ab-
schnitt werden wir eine haufige Anwendung, das Berechnen des
Sinus eines Winkels in Grad betrachten.

Der Sinus aller Winkel zwischen 0° und 360° kann wie in Bild
5.3b aufgezeichnet werden. Diese Kurve lässt sich mathema-
tisch durch die in Bild 5.3a gegebene Reihe annähern.
Selbstverständlich kann ein Programm für diese Approxima-

tion entwickelt werden. Falls die Anwendung eine hohe Genau-
igkeit der Funktion verlangt, ist man gezwungen, dafür ein
solches Programm zu schreiben, wobei dessen Ausführungszeit

beachtlich lang sein wird. Für Anwendungen mit weniger ho-
hen Anforderungen an die Genauigkeit kann jedoch eine Win-

kel-zu-Sinus-K onversionstabelle eingesetzt werden.

127

Listen und Konversionstabellen

Man beachte in Bild 5.3, dass der Sinus eines jeden Winkels zwi-
schen 0° und 180° positiv und zwischen grösser als 180° und
kleiner als 360° negativ ist.

Bild 5.3

a) Mathematische Näherung für

die Sinusfunktion

b) Sinusfunktion der Winkel zwi-

schen 0° und 360°
Wie man aus Bild 5.3 weiter entnehmen kann, ist der Sinus von
91° derselbe wie der von 89°. Das Gleiche gilt auch für den
Sinus von 179° und 1°. Daraus kann geschlossen werden:

für 00<X< 90° > mannehme sin (X)
für 90° < X< 180° > man nehme sin (180°- X)

oder sin (90°- [X - 90°])

Zum Beispiel:

sin(170°) = sin(90°-[170°-90°])
— sin (90°- 80°)
— sin (10°)

Weiter gilt, dass die Winkel des 3. und 4. Quadranten einen
Sinus gleicher Grösse haben, doch verschiedenes Vorzeichen

gegenüber den Quadranten 1 und 2 aufweisen. Diese Beobach-
tung erlaubt uns, folgendes festzuhalten:

für 180°<X< 270° > man nehme -sin (X-180°)
für 270° <X< 360° > mat nehme -sin (360°-X)

oder -sin (90°-[X-270°])

128

Listen und Konversionstabellen

Zum Beispiel:

sin (190°) = -sin (190°-180°)
= -sin (10°)

sin (290°) = -sin (90° - [290°- 270°])
-sin (90°- 20°)
-sin (70°)

Die vorhergehenden Beziehungen zeigen uns, dass der Sinus
jedes Winkels zwischen 0° und 360° mit dem Sinus zwischen 0°
und 90° ausgedrückt werden kann. Für eine Konversionstabel-
lenanwendung ist das bedeutend, weil die Tabelle nur die Sinus-
werte von Winkeln zwischen 0° und 90° haben muss.
Diese Beziehungen erlauben uns also, ein Flussdiagramm für
eine Winkel-zu-Sinus-Umwandlung zu konstruieren. Dieses
Flussdiagramm, dargestellt in- Bild 5.4, leitet den Sinus aus
einem Wert, bestehend aus Grösse und Vorzeichen, ab.
Beispiel 5.8 zeigt die Winkel-zu-Sinus-Umwandlungsroutine für
den 68000. Diese Subroutine nimmt Winkel zwischen 0° und
360° im Datenregister DO an und gibt den kompletten 8-Bit-
Sinuswert über D1 zurück. In dieser Subroutine SINANG wird
mit der Prüfung begonnen, ob der Winkel kleiner als 181° ist.
Wenn dem so ist, springt das Programm auf SINPOS. Andern-
falls wird das Vorzeichenbit gesetzt. Von diesem Winkel
(>180°) werden dann 180° subtrahiert.
Mit dem Vorzeichenbit in Bit 7 von DI vergleicht die CMPI-
Instruktion bei SINPOS den aktuellen Winkelwert mit 91°.
Wenn der Winkel grösser oder gleich 91° ist, wird der Winkel-
wert von 180° subtrahiert. Die einfachste Art, diese Subtraktion
auszuführen, wäre mit dem Befehl SUBI DO, #180, doch lässt
der 68000 diese Subtraktion nicht zu (nur SUBI +#data, Dn).
Darum muss man die Subtraktion über das Zweierkomplement
von DO auf eine Addition zurückführen. Die folgenden zwei
Instruktionen laden die Startadresse der Konversionstabelle
(SINTAB) in AO. Danach wird der Sinus aus der Tabelle her-
ausgelesen, indem das Adressregister indirekt mit der Index-
adressierung eingesetzt wird. Das Ganze wird noch mit dem
Vorzeichenbit in DI ergänzt. Die SINTAB-Tabelle enthält 91
Byte Sinuswerte, um alle Grade zwischen 0° und 90° darstellen
zu können. Tabelle 5.1 enthält die SINTAB-Werte.

Die SINANG-Subroutine braucht 19 Speicherworte. Ihre Aus-
führungszeit hängt davon ab, in welchem Quadaranten der
Winkel liegt. In den folgenden Ausführungszeiten sind die JSR-
und RTS-Instruktionen nicht inbegriffen.

Winkel zwischen AnzahlZyklen Ausführungszeit (us)

0° und 90° 62 1,75
91° und 270° 72 9,0

271° und 360° 82 10,25

129

Listen und Konversionstabellen

Programmbeispiel 5.8:
Finden des Sinus eines Winkels

* Dieses Programm berechnet den binären Sinuswert eines Winkels (0... 360°), der im
* unteren Wort von DO abgespeichert ist. Es wird eine Konversionstabelle verwendet.
* Der mit Vorzeichen versehene Sinus wird im unteren Byte von D1 zurückgegeben.
* DO bleibt unverändert.
* ü

ORG $1000
SINANG MOVE DO, -(SP) Rette Arbeitsregister.

MOVE.L AO, -(SP)

CLR.B D1 Losche das Sinus-Byte.
CMPI #180, DO Ist der Winkel < 181°?
BLS.S SINPOS Ja, Vorzeichen = 0.
TAS D1 Nein, setze Vorzeichen = 1.
SUBI #180, DO Subtrahiere vom Winkel 180°.

SINPOS CMPI #91,D0 Ist der Winkel < 91°?
BMI.S GETSIN Ja, hole den Sinus.
NEG DO Nein, subtrahiere
ADDI #180, DO vom Winkel 180°.

GETSIN LEA SINTAB, AO Lade Tabellenadresse,
OR.B 0(A0,D0),D1 gebe Vorzeichen dazu.

. MOVE.L (SP) +, AO Hole Arbeitsregister zurück.
MOVE (SP) +, DO

* Sinustabelle (wie Tabelle 5.1)

'SINTAB DC.B 0, 2, 4, 8, $B, SD, SF, $11,914,916...

usw. (Rest der Tabelle, total 91 Byte)

Winkel Sinus Winkel Sinus

Grad dezimal dual Grad dezimal dual

0.00 .0000 00000000 45.00 .7071 01011010
1.00 .0175 00000010 46.00 .7193 01011100
2.00 .0349 00000100 47.00 .7313 01011101

3.00 .0523 00000110 48.00 .7431 01011111
4.00 .0698 00001000 49.00 .7547 01100000 —
5.00 .0872 00001011 50.00 .7660 01100010
6.00 .1045 00001101 51.00 .7771 01100011
7.00 .1219 00001111 52.00 .7880 01100100
8.00 .1392 00010001 53.00 .7986 01100110
9.00 .1564 00010100 54.00 8090 01100111

10.00 .1736 00010110 55.00 8191 01101000

130

Listen und Konversionstabellen

Winkel Sinus Winkel Sinus

Grad dezimal dual Grad dezimal dual

11.00 .1908 00011000 56.00 8290 01101010
12.00 .2079 00011010 57.00 8387 01101011
13.00 .2250 00011100 58.00 8480 01101100
14.00 .2419 00011110 59.00 8572 01101101
15.00 .2588 00100001 60.00 .8660 01101110
16.00 .2756 00100011 61.00 8746 O1101111
17.00 .2924 00100101 62.00 8829 01110001
18.00 .3090 00100111 63.00 8910 01110010
19.00 .3256 00101001 64.00 8988 01110011
20.00 .3420 00101011 65.00 .9063 01110100

21.00 .3584 00101101 66.00 9135 01110100
22.00 .3746 00101111 67.00 9205 01110101
23.00 .3907 00110010 68.00 9272 01110110
24.00 .4067 00110100 69.00 9336 01110111
25.00 .4226 00110110 70.00 9397 01111000
26.00 .4384 00111000 71.00 9455 01111001
27.00 .4540 00111010 72.00 9511 01111001
28.00 .4695 00111100 73.00 9563 O1111010
29.00 .4848 00111110 74.00 9613 O1111011
30.00 .5000 01000000 75.00 9659 O1111011

31.00 .5150 01000001 76.00 9703 01111100
32.00 .5299 01000011 77.00 9744 QO1111100
33.00 .5446 01000101 78.00 9781 O1111101
34.00 .5592 01000111 79.00 9816 O1111101
35.00 .5736 01001001 80.00 9848 01111110
36.00 .5878 01001011 81.00 9877 O1111110
37.00 .6018 01001101 82.00 9903 01111110
38.00 .6157 01001110 83.00 9926 OLIILII11
39.00 .6293 01010000 84.00 9945 O1LI1111
40.00 .6428 01010010 85.00 9962 O1111111

41.00 .6561 01010011 86.00 9976 OLIIIIII
42.00 .6691 01010101 87.00 9986 O1111111

43.00 .6820 01010111 88.00 9994 O1111111.
44.00 .6947 01011000 89.00 9998 OLL11111

Tabelle 5.1 45.00 .7071 01011010 90.00 .1.0000 O1111111
Sinuswerte fur Winkel ganzer Grade

131

Listen und Konversionstabellen

| Vorzeichen |

=1

!
| Winkel =

| Vorzeichen

Winkel - 180

180 - Winkel

|
Hole den Sinus
dieses Winkels
aus der Tabelle

!
| Fuge das Vor-

| Winkel =

zeichen als MSB zu Bild 5.4
Flussdiagramm zu programmbei-

spiel 5.8, bei dem die Sinusfunktion

mit Hilfe einer Konversionstabelle

bestimmt wird.

5.5.3 Konversionstabellen führen
Codewandlungen durch

Konversionstabellen können auch codierte Daten enthalten,
wie zum Beispiel Anzeigecodes, Druckercodes oder Mitteilun-
gen. Als Beispiel 5.9 nehmen wir eine Subroutine, die ein Mehr-
faches an Konversionen zulässt. Sie wandelt eine hexadezimale

132

Listen und Konversionstabellen

Programmbeispiel 5.9:
Eine Code-Umwandlungssubroutine

* Diese Subroutine verwendet drei Nachschlagetabellen, um eine hexadezimale Ziffer
*im unteren Byte von DO in ASCII-, BCD- und Gray- Code umzuwandeln. Die um-
* sewandelten Werte werden in drei aufeinanderfolgenden Speicherbyte, beginnend bei
*der Adresse in AO, zurtickgegeben. DO und AO werden von der Subroutine nicht

* verändert.
*

ORG
LOOKUP MOVE

MOVE.L
EXT.W
LEA
MOVE.B
MOVE.B
MOVE.B
MOVE.L
MOVE

RTS
ATABLE DC.B

DC.B
DC.B
END

$1000
DO, -(SP) Rette Arbeitsregister.
Al, -(SP)
DO
ATABLE, Al Al zeigt auf die Tabelle.
0(A1DO),(AO0) Hole ASCII-Code.

$10(A1,D0), 1(A0) Hole BCD-Code.
$20(A1, DO), 2(A0) Hole Gray-Code.
(SP)+,Al Hole Arbeitsregister

(SP) +, DO zurück.

°0123456789ABCDEF’
0
0

9

“s
e

3
2
3

8
, 3,4, 5,6, 7,8, 9,$10,$11,$12,$13,$14,$15
, 2,6, 7,5,4,$C,$D, $F, SE, SA, SB, 9, 8 a °9

Ziffer im unteren Byte von DO um in ASCH-, BCD- und Gray-
Code. Die umgewandelten Werte werden in drei aufeinanderfol-
genden Speicherbyte zurückgegeben. Die Startadresse dafür
liegt im Adressregister AO.

5.6 Sprungtabellen

Eine Konversionstabelle kann mehr als nur Daten enthalten. In
vielen Fällen sind die Tabellenelemente Adressen. Eine Fehler-
routine kann zum Beispiel eine Konversionstabelle verwenden,
um die Startadresse einer Operationsfehlermeldung, basierend
auf einem Code in einem Datenregister, zu finden. Auch eine
Interruptroutine kann eine Konversionstabelle zum Aufrufen
von verschiedenen Serviceroutinen verwenden, abhängig vom
Gerät, das die Interruptanforderung generierte. Andere Rou-
tinen könnten eine Konversionstabelle zum Aufrufen von ver-

schiedenen Steuerprogrammen gebrauchen, die mit Hilfe von
Tasten ausgewählt wurden. In all diesen Anwendungen ist die
Konversionstabelle, bestehend aus Adressen, als Sprungtabelle
eingesetzt. Sprungtabellen werden vor allem verwendet, wenn
die Programmsteuerung vom Zustand einer bestimmten Bedin-

gung abhängig ist.

133

Listen und Konversionstabellen

Beispiel 5.10 zeigt, wie eine Sprungtabelle die Bedürfnisse von
fünf verschiedenen Anwendern in einem Multiterminal-Mikro-
computersystem befriedigen kann. Die Subroutine SELUSR
interpretiert den Inhalt von DO als Anwenderidentifikation und
braucht diesen Code, um eine der Anwenderserviceroutinen
aufzurufen. SELUSR prüft die Gültigkeit des Eingabecodes
und geht auf die CHK-Ausnahmeroutine, falls der Code grösser
als vier ist (mehr über Ausnahmen in Kapitel 7). Die Subroutine

wandelt die gültige Anwenderidentifikation in einen Index um,
mit dem die Adresse einer Anwenderroutine (USERO ...
USER4) ins Register AO geholt werden kann.

Programmbeispiel 5.10:
Eine Multianwender-Auswahlsubroutine

* Diese Subroutine ruft eine der fünf Anwendersubroutinen auf, die mit einer An-
* wenderidentifikation im unteren Byte von DO aktiviert wird. Die Subroutine ver-
* ändert AD und DO.
*

RORG $1000
SELUSR EXT.W DO Benützercode in Wort.

CHK #4,DO Falsche Identifikation ID?
LSL #2,D0 Nein, berechne Index (ID*4).
LEA UADDR, AO Lade Tabellenbeginn in AO.

MOVEA.L 0(A0,D0.W),AO Hole Benützeradresse und
JMP (AO) springe auf diese Subroutine.

UADDR DC.L USERO, USER], USER2, USER 3, USER4
END

Diese Aktion benützt den relativen Programmzähler mit Index-
adressierung. Dieser Modus wird durch die RORG-Zuweisung
zu Beginn der Subroutine aktiviert. Mit der richtigen Adresse in
AO kann ein einfacher, indirekter Sprung die Steuerung des Pro-
gramms auf die Anwendersubroutine übertragen.

134

6. Hardware des Mikroprozessors 68 000

Bild 6.1
Anschlussbelegung des

Mikroprozessors 68000

pal4i® 64[—)D5

b3 C2 631706

b2 C443 62 79D7

pi C44 61{7D8

poC45 60-09

As (46 59 [—D10
ups (7 5817011
Lbs C48 57 (D012

R/WE429 ycesooo 56 F7D13
DTACK (10 557014

BG C11 54 D015

BGACK [J12 53 IVss

BR CI13 52 [JA23

Vop (14 51 LIJA22
CLK 15 50 [(A21

Vss ie 49 [IVDD
HALT (17 48 [A20

RESET (418 47 [A139
VMA C19 46 [JA18

E CIJ20 45 1 JA17

vPpA [221 44 | JA16

BERR (122 43 [IJA15

iPL2 C423 42 [JA14
IPLI CJ24 41 FT JA13

IPLO C25 40 FIJA12
FC2 (126 39 A11

FC1 =e 38 [JA10

FCO (28 37 [A9

Ai (29 36 LI2A8

A2 (430 35 [A7

A3 (31 34 DIA6

A4 (432 33 DJA5
Der 68000-Baustein ist in einem 64poligen, zweireihigen
Gehäuse untergebracht. Die Anschlussbelegung ist aus Bild 6.1
herauszulesen. Um die Verwechslung von Signalen mit «logisch
0» und «logisch 1» sowie «hoch» und «tief» auszuschalten,
sprechen wir im weiteren von aktiven Signalen, wenn sie
«wahr» sind, und von inaktiven, wenn sie «unwahr» sind.
Die externen Signale des 68000 werden in Funktionsgruppen
beschrieben, damit sie etwas besser verstanden werden können.
Diese Gruppen sind in Bild 6.2 aufgeführt.

135

Hardware des Mikroprozessors 68 000

A1-A23

D0-D15

MC68000
Mikroprozessor

Asynchrone

Bus-

Steuerung
Prozessor

Status

Peripherie-

Steuerung

M6800

Steuerung

sn

System-
um, Steuerung sen

6.1 Takt-, Speisungs- und Masseleitungen

Der 68000 ist über je zwei Anschlüsse für +5V und Masse
gespeist (+5V = Vpp; Masse = V,,). Der Takt CLK ist ein
TTL-Eingang, der Frequenzen bis zu 10 MHz verarbeitet.

6.2 Der Daten- und Adressenbus

Der 68000 ist ein 16-Bit-Mikroprozessor, da seine Informa-
tionsgrundeinheit, das Wort, 16 Bit breit ist. Er kann nur eine
16 Bit lange Information von oder zum Speicher und I/O-Bau-

stein gleichzeitig transferieren. Um mehr als 16 Bit zu tibertra-
gen, müssen weitere Transfers ausgeführt werden. Sämtliche
Informationsaustausche zwischen dem 68000 und peripheren
Bausteinen werden über den bidirektionalen 16-Bit-Datenbus
(DO... D15) abgewickelt.

Wie wird ein Systembaustein vom 68000 adressiert, um Infor-
mationen gegenseitig auszutauschen? Der 68000 selektiert
einen externen Baustein, indem er eine einzige Adresse an den
23 Bit breiten Adressenbus (Al ... A23) legt. Über diesen
Adressenbus kann der 68000 8388608 Speicherworte (zu
16 Bit) anwählen. Mit den Signalen UDS und LDS können das
obere bzw. das untere Byte eines Wortes noch unterschieden
werden (siehe Kapitel 6.4 «Asynchrone Buskontrolle»). Der
68000 gibt mit dem (address strobe) Adressensignal AS der
Peripherie bekannt, dass eine gültige Adresse auf dem Bus ist.

6.3 Funktionsstatussignale

Jedesmal, wenn der 68000 mit externen Bausteinen kommuni-
ziert, gibt er zusätzlich zu den Adressen die drei Signale FCO,
FC1 und FC2 als weitere Information aus (function code). Die-

136

Bild 6.2
Nach Funktionsgruppen geordnete

Anschlüsse des 68000

Tabelle 6.1

Funktionsstatussignale

informieren externe Bausteine

uber den Status des 68 000.

Bild 6.3

Speicherunterteilung mit den
Funktionsstatussignalen

Hardware des Mikroprozessors 68 000

se Funktionsstatussignale teilen der Peripherie mit, ob der
68000 den Daten- oder Programmspeicher adressiert, im
Anwender- oder Überwachungsstatus ist oder gerade eine
Unterbrechung bearbeitet. Die Tabelle 6.1 enthält die verschie-
denen Kombinationen dieser drei Signale. Beachte das höchst-
wertige Bit FC2, das den Status des Überwachungsbit S im Sta-
tusregister wiedergibt.

Funktionsstatussignale

FC2 FC1 FCO Bedeutung Zuteilung

0 0 0 Reserviert Anwender
0 0 1 Datenbereich Anwender
0 1 0 Programmbereich Anwender
0 1 1 Reserviert Anwender

l 0 0 Reserviert Systemüberwachung
1 0 1 Datenbereich Systemuberwachung
1 1 0 Programmbereich Systemtiberwachung
1 1 1 Unterbrechungs- Systemüberwachung

quittung

Die Funktionsstatussignale zeigen an, dass ein Programmab-
schnitt adressiert worden ist, falls der Programmzähler PC die
Adressenquelle ist oder falls der Startvektor geholt worden ist.
Sie können auch angeben, dass ein Datenbereich adressiert
wird, falls die meisten Operanden gelesen (PC ist nicht Adres-

* offener

meses Kollek tor Anwender

y P 74.09 * Daten-
ly :

FCO A y cs speicher

FC1 Ay b

FC2 Ap b
68000 Ye p>—— Anwender
MPU Ys Po Programm-

p speicher

AS =
Systemüber.

Ik2 wachungs-
daten-

75V des speicher

Systemüber-
wachungs-
Programm-

| dcs speicher

137

Hardware des Mikroprozessors 68 000

senquelle), falls alle Operanden geschrieben oder falls andere
Vektoren als der Startvektor geholt wurden. Die Funktionssta-
tussignale können mit den Adressen zusammen für die Schreib-
sperre spezifischer Speicherabschnitte verwendet werden. Sie
können auch mit externen Einheiten wie zum Beispiel einer Spei-

cherverwaltungseinheit eingesetzt werden, um bestimmte Ope-
rationen im richtigen Prozessorstatus durchführen zu lassen.

Im weiteren können die Funktionsstatussignale für die externe
Speichererweiterung bis auf 64 MByte (4 Segmente zu 16 MBy-
te) verwendet werden! Das Bild 6.3 zeigt eine Möglichkeit, wie
diese Speichersegmentation realisiert werden kann.

6.4 Asynchrone Bussteuerung

Einige übliche 8-Bit-Mikroprozessoren, wie der 6800 und der
6502, können nur mit synchron betreibbaren Einheiten kom-
munizieren. Diese Mikroprozessoren sind so entwickelt wor-
den, dass die externen Bausteine innerhalb einer gegebenen Zeit
Ausgabedaten entgegennehmen oder Eingabedaten bereitstel-
len müssen. Die Kommunikation mit langsameren oder asyn-
chronen Bausteinen erfordert jedesmal spezielle Hard- und

Softwareschnittstellen. Der 68000 dagegen kann ohne weiteren
Aufwand direkt mit synchronen oder asynchronen Bausteinen
verbunden werden. Er ist mit je einem Satz Steuerleitungen für
jeden Typ ausgerüstet.

6.4.1 Die asynchronen Steuerleitungen

Wie wir wissen, kann der 68000 mit den einzelnen Byte inner-
halb eines Wortes arbeiten. So sprechen wir normalerweise
auch von der 16-MByte- und nicht von der 8-MWort-Adressie-
rung. Wie werden nun die einzelnen Byte adressiert? Zusätzlich
zu den Adressenbit gibt es noch zwei spezielle Steuersignale:
— fiir das hohere Byte UDS (Upper Data Strobe)
— fiir das untere Byte LDS (Lower Data Strobe).

Wenn UDS vom 68000 aktiv (logisch 0) gesetzt wird, wird

die Information auf den höheren 8 Bit des Datenbusses (D8 ...
D15) transferiert. Wenn die Information auf den unteren 8
Datenbit (DO ... D7) verkehren soll, setzt der 68000 das Signal
LDS aktiv (logisch 0). Während eines Worttransfers sind beide

Signale (UDS und LDS) aktiv, und die Information geht über
den ganzen Datenbus (DO... D15).
Wie kann ein adressierter, externer Baustein wissen, ob der
68000 Informationen haben (lesen) oder ausgeben (schreiben)
will? Durch das Steuersignal Lesen/Schreiben (R/W) kann der
externe Baustein erkennen, in welcher Richtung sich der Trans-
fer abspielen soll. Das Steuersignal R/W ist logisch 1 während
Lesezyklen und logisch 0 während Schreibzyklen.

138

Bild 6.4
Byteadressierung auf dem

asynchronen Bus

Hardware des Mikroprozessors 68 000

Jedesmal, wenn ein externer Baustein entweder Daten auf den
Datenbus gibt (Leseoperation) oder von ihm holt (Schreib-
operation), lässt der Baustein den 68000 mit dem Signal
DTACK (Data Transfer Acknowledge) wissen, wann der
Transfer fertig ist. Wenn der Prozessor das Signal DTACK
während eines Lesezyklus erkennt, speichert er die Daten ab
und beendet den Buszyklus. Da dieses Terminieren auf
DTACK. angewiesen ist, hängt die Geschwindigkeit, mit wel-
cher der 68000 Daten transferieren kann, von der Zugriffszeit
des adressierten Bausteins ab. Das bedeutet also, dass der
68000 mit langsamerer Peripherie auch langsamer arbeitet und
entsprechend mit schnellerer Peripherie rascher. Die maximale
Übertragungsrate, gegeben durch den Systemtakt, kann natür-
lich nicht überschritten werden.

#5V

703°

gerader
offener

Kollekfor-

ausgang (even)
Das Bild 6.4 zeigt alle Signale, die notig sind, um auf einen asyn-
chronen Speicher zugreifen zu können. Das Bild enthält neben
der CPU und den beiden Speichern noch eine Zeitüberwa-
chungsschaltung («Watchdog»). Sie lässt eine bestimmte Zeit
zwischen dem Anlegen von AS und dem Erhalten von DTACK
zu. Wenn die beiden Speicher die richtige Kombination von
DTACK ODD und DTACK EVEN innerhalb der gegebenen
Zeit abgeben, wird das DTACK-Signal zum Mikroprozessor

geschickt. Werden diese Bedingungen nicht eingehalten, erzeugt
die Überwachungsschaltung das BERR-Signal (Bus Error), das
im 68000 die Ausnahmebehandlung dafür initialisiert. Auf diese
Weise kann das System vor dem «Hängenbleiben» wegen eines
fehlerhaften Peripheriebausteines bewahrt werden.

139

Hardware des Mikroprozessors 68 000

6.4.2 Zeitbedingungen fur asynchrone
Datenubertragung

Nach den asynchronen Steuersignalen wollen wir die zeitli-
chen Bedingungen während einer Datentransferoperation
näher betrachten. Bild 6.5 zeigt uns das Zeitverhalten der
entsprechenden Signale während normaler, wortlanger Lese-
und Schreibzyklen und eines langsamen (mit verzögertem

DTACK) Lesezyklus. Diese Impulsdiagramme sind zeitlich auf
den Systemtakt CLK (Clock, Eingangstakt des 68000) bezogen
gezeichnet. Mit 8MHz hat CLK eine Periode von 125ns. Ein
normaler (unverzögerter) Lesezyklus dauert dann 4 Perioden

oder 500ns. Wegen der internen Verzogerungszeiten und der Not-
wendigkeit, das Signal R/W auf logisch 0 zu bringen, braucht
der Schreibzyklus eine weitere Periode, also 625 ns bei 8 MHz.

so S1 52 $3 Sh S5 56 S7 SO S14 S2 $3 S4 S5 S6 S7 SB S9 SOS1 S2 $3 S4 Sw Sw Sw Sw S5 S6 57 SO

le — _. lesen —. —_ ie — schreiben — — — — langsam lesen — — —+|

Der 68000 kann DTACK jederzeit nach Aktivwerden von AS -
entgegennehmen. Er erwartet aber, DTACK vor der 5. Periode
(Lesen) oder 7.Periode (Schreiben) des Systemtaktes nach
Zyklusbeginn zu empfangen. Wenn DTACK nicht vor diesen
Zeitpunkten erkannt wird, fügt der 68000 Warteperioden (Wait
States) in den Lese- oder Schreibzyklus ein. Auf der rechten Sei-
te von Bild 6.5 ist das Zufügen von Warteperioden zu einem
Lesezyklus dargestellt.
Die Zeitdiagramme für Byteübertragungen sind den für Wort-
übertragungen ähnlich, ausser dass nur eines der beiden Bytese-
lektionssignale (UDS oder LDS) aktiv ist und dass nur eine
Hälfte des Datenbusses gültige Information führt. Die andere
Hälfte des Datenbusses wird im hochohmigen Zustand bleiben.
Das aktive Byteselektionssignal wird vom internen Signal AO,
dem untersten Bit des Programmzählers, abgeleitet. In der
Benützeranleitung des 68000 (Kapitel 4.2.1) steht mehr über die
zeitlichen Abläufe der Byteübertragung.

6.5 Synchrone Steuersignale

Der 68000 hat drei Steuersignale, um synchrone, periphere
Bausteine wie jene aus den 6500- und 6800-Familien am Mikro-

140

Bild 6.5
Zeitdiagramm für asynchronen

Worttransfer

Hardware des Mikroprozessors 68 000

Bild 6.6
Anschluss von Peripherie-

bausteinen der 68 000er-Serie

Bild 6.7
Zeitdiagramm fur synchronen
Datentransfer (8 Bit)

prozessor anschliessen zu können. Es sind dies die Signale E
(Enable, Freigabe), VPA (Valid Peripheral Address, gültige
Peripherieadresse) und VMA (Valid Memory Address, gültige

Speicheradresse).
Das Freigabesignal E ist ein Takt, mit dem die 8-Bit-Peri-
pheriebausteine den Datentransfer synchronisieren. Dieser frei-
laufende Takt entspricht dem E- oder ® 2-Signal der bestehen-
den 6500- und 6800-Systeme. Der E-Takt läuft mit einer Fre-

quenz von einem Zehntel des 68000-Systemtaktes. In unserem
Fall von 8MHz heisst das 8S00kHz für den Takt E. Im weiteren
hat E ein Tastverhältnis von 60 zu 40, logisch 0 fiir 6 Takt-
perioden und logisch 1 für 4 Perioden.

Die gültige Peripherieadresse VPA ist ein Eingangssignal, das
dem 68000 mitteilt, dass ein 6800-Peripheriebaustein adressiert
wurde und dass die Datentransferoperation durch das Frei-
gabesignal E synchronisiert werden sollte. Normalerweise wird
VPA aus der decodierten Adresse und AS gewonnen. Zu
bemerken ist, dass VPA für die synchrone dasselbe ist wie
DTACK für die asynchrone Übertragung.

DO-DF

DEVICE
CTS

decoder

so S2 S4 S6 SO S2 S4 Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw S6 SOQ S2 S4 Sw Sw Sw Sw Sw Sw S6 SO

al-az3 X X IL X

BN SN IN IT
ON /N IN /_
ae VE ZN N 00.77

_ \ S
DTA ‘—\ f/f

08-015 —{_ {Ye _ >

0-01 — CI I ne
Fco-2 Hl X NL X
TI TO UL ...1°0 0 L_:

a IN Vz:
TWA \ m r

jx Normaler »fe-------- w6g00 Peripherer Lesezyklus — —---»}«----M6800 Peripherer Schreib--->]
Zyklus zyklus

141

Hardware des Mikroprozessors 68 000

Wenn AS noch anliegt, währenddem der 68000 VPA empfängt,
reagiert der Prozessor mit dem Senden von VMA (gültige Spei-
cheradresse), mit der der periphere Baustein die endgültige
Selektion vornehmen kann.

Bild 6.6 zeigt die Signale auf, die für das Anschliessen eines
6800-Peripheriebausteins am 68000 normalerweise verwendet
werden. In Bild 6.7 sind die Zeitdiagramme für einen synchro-
nen Lese- und Schreibzyklus dargestellt. Das Kapitel 8 enthält
weitere Anregungen, wie synchrone 8-Bit-Bausteine an den
68000 angeschlossen werden können.

6.6 Busaussperrungssignale

Die Busaussperrungssignale (englisch: bus arbitration signals,
d.h. «Bus-Schiedsrichter-Signale») werden für direkte Speicher-
zugriffe (DMA, Direct Memory Access) und Multiprozes-
soranwendungen verwendet, um die Steuerung des Systembus-
ses von einem 68000-Mikroprozessor an einen externen Bau-
stein zu übergeben. Bei all diesen Anwendungen wünscht der
externe Baustein die Bussteuerung zu übernehmen, indem er

dies dem 68000 mit dem Signal BR (Bus Request, Busanforde-
rung) mitteilt. Der 68000 hat immer die geringere Buspriorität
als ein externer Baustein und wird die Steuerung des Busses
nach Beenden des momentanen Zyklus abgeben. Nach Erken-
nen von BR synchronisiert der 68000 intern und zeigt die
Annahme der Anforderung mit dem Signal BG (Bus Grant, Bus
freigegeben) an. Wenn mehrere Bussteuerungsanforderungen

anliegen, muss eine externe Schaltung dafür sorgen, dass nur
einer der Bausteine das Signal BG empfangen kann.
Der anfragende Baustein wartet nach Erhalten von BG auf die
Beendung des vom Prozessor angefangenen Zyklus (zum Bei-
spiel auf das Zurücksetzen von AS und DTACK) und gibt dem
68000 danach BGACK (Bus Grant, Acknowledge, Busfreigabe-
erkennung) zurück. Zwischen dem 68000 und dem anfragenden
Baustein spielt sich also folgender Dialog ab: Mit dem Anlegen
von BR sagt der Anfrager: «Ich will den Bus haben.» Mit BG
antwortet der 68000: «Du kannst den Bus haben.» Am Ende
des momentanen Zyklus gibt der Anfrager das Signal BGACK
zum Prozessor und dem restlichen System mit der Bedeutung
«Ich habe nun die Bussteuerung übernommen» aus.
Am Ende dieses Dialogs nimmt der neue Busmaster seine
Anfrage mit dem Zurücksetzen von BR zurück. In gleicher Wei-
se setzt der Prozessor BG zurück und wartet auf das Beenden
der Busoperation des externen Bausteins. Zu diesem Zeitpunkt
setzt der externe Baustein das Signal BGACK zurück. Damit
kann der Prozessor seine normale Funktion und Arbeit wieder
aufnehmen. Die Zeitdiagramme dieser ganzen Sequenz sind in
Bild 6.8 dargestellt.

142

Hardware des Mikroprozessors 68 000

BR \ / \ /

6 L___
Bild 6.8 BG ACK N ST I

Zeitdiagramm für Bussteuerung Prozessor- ee -pMa’ Einheit -ele- —— — Prozessor -— -— — le — — —- Einheit

6.7 Systemsteuerungssignale

Der 68000 hat drei Systemsteuerungssignale. Eines ist als Ein-
gang und die andern beiden bidirektional definiert.
RESET (Reset, Zurücksetzen) ist ein bidirektionales Signal,

das dem Prozessor oder einem externen Baustein erlaubt, das
ganze System zurückzustellen. Ein Zurücksetzen durch den
Prozessor, mit Hilfe des Befehls RESET, wird das Signal
RESET für 124 Systemtaktperioden setzen und danach wieder
zurückstellen. Das gibt allen externen Bausteinen genügend
Zeit, sich zurückzusetzen. Der interne Zustand des 68000 wird
dabei allerdings nicht verändert.
Während eines katastrophalen Fehlers kann das ganze System
(Prozessor und alle externen Bausteine) zurückgesetzt werden,
wenn beide bidirektionalen Signale RESET und HALT wäh-
rend mindestens 100 ms am 68000 anliegen. Das veranlasst den
68000, einen «Speisungsreset» zu starten, währenddem der
Prozessor in den Überwachungszustand übergeht und über den

Vektor der tiefsten Speicherstufe eine Rückstellroutine startet.
(Diese Sequenz und weitere Ausnahmesituationen sind in Kapi-
tel 7 ausführlicher diskutiert.)
HALT muss aber nicht notwendigerweise von RESET begleitet

werden. HALT alleine, als Prozessoreingang, kann zu Test-
zwecken für die Einzelschrittbetriebsart verwendet werden. Die
Schaltung in Bild 6.9 zeigt uns eine mögliche Realisiserung die-
ser Funktion. Wenn der Ablauf/Einzelschritt-Schalter in der |
Position «Einzelschritt» ruht, wird der Prozessor den momen-
tanen Befehlszyklus beenden und wieder anhalten. Das wird
jedesmal, wenn der Einzelschritt/Warte-Schalter auf Einzel-
schritt umgeschaltet wird, so sein. Wenn der Prozessor gestoppt
wird, sind der Adress-, der Daten- und der Funktionsstatusbus
in hochohmigem Zustand und die Bussteuerungsleitungen inak-

143

Hardware des Mikroprozessors 68 000

+5V

>
>
>

Lauf-Modus
offene

Kollektorschaltun +5V

= Einzel- . hri \
schritt- Lauf /Einzelschritt Sk

Modus

M
L

A
+5V

(zum Prozessor)
>
>
>

Einzelschritt |

J Q

"Warten b> f

A
A
A

 » Schritt

R a Schritt

= | 3
(vom Prozessor)

 K 7

tiv gesetzt (die allgemeine Bussteuerung mit BR, BG und
BGACK ist immer zur Verfügung).
Das HALT-Signal kann auch vom 68000 als Ausgang verwen-
det werden. Der Prozessor kann wegen eines Doppelbusfehlers
(siehe Kapitel 7) gestoppt werden und setzt dann HALT als
Ausgang aktiv. |
Das HALT-Signal kann mit dem Systemsteuersignal BERR
(Bus Error) zusammen auch als Eingang verwendet werden.
Die Eigenschaft von BERR ist, den Prozessor uber systemin-
terne Probleme zu informieren. Das heisst, dass BERR das Auf-
treten von unerwünschten Vorfällen (zum Beispiel unerwartete
Interrupts oder illegale Speicherzugriffsanforderungen) oder
das Nichtauftreten von erwarteten Signalen (zum Beispiel gibt
ein externer Baustein kein DTACK oder VPA zurück) anzeigt.

Wenn der 68000 das Signal BERR erkennt, kann er entweder
ein Busfehlerprogramm aufrufen (siehe Kapitel 7) oder den Bus-
zyklus noch einmal wiederholen. Der Prozessor wird den Bus-
zyklus repetieren, wenn HALT von aussen mit dem Auftreten
von BERR gesetzt wird. Um einen Buszyklus wiederholen zu
können, wird der Prozessor den Zyklus zuerst beenden, danach
anhalten und den Adress- und Datenbus, die Funktionsstatus-
und die Steuerungsleitungen in den hochohmigen Zustand ver-
setzen. Wenn die externe Schaltung BERR und HALT zurück-
setzt, wird der 68000 darauf den vorhergehenden Buszyklus
wiederholen. Es gibt eine einzige Ausnahme: Die Instruktion

TAS kann in dieser Situation nicht wiederholt werden.

6.8 Interrupt-Steuersignale

Externe Bausteine können Interrupt-Anforderungen an den
68000 senden, indem die codierte Prioritätsanforderungsstufe

144

Bild 6.9
Einzelschrittsteuerung mit
HALT-Signal

Hardware des Mikroprozessors 68 000

an die drei Interrupt-Steuereingange IPLO, IPL1 und IPL2 ©
angelegt wird. Am Ende des momentanen Befehlszyklus ver-
gleicht der 68000 die codierte Prioritatsstufe (1 bis 7, wobei 7

die hochste Prioritat ist) mit der 3-Bit-Interrupt-Maske des Sta-
tusregisters. Diese Maske kann in Bild 1.3 und dem Text in
Kapitel 1 («Elektroniker» 16/82, Seite EL5) nachgesehen und
-gelesen werden.

Wenn der Wert der Prioritätsstufe gleich oder kleiner als der
Wert der Interrupt-Maske ist, wird der 68000 die Anforderung
einfach übersehen und am Begonnenen weiterfahren. Hat aber
die Interrupt-Anforderung einen höheren Wert als die Maske,
setzt der 68000 die Eingabeprioritätsstufe auf den Adressbus
(Al, A2 und A3), gibt mit Hilfe der Funktionsstatusbit FCO...
FC2 die Interrupt-Anerkennung aus und initialisiert den Inter-
rupt-Quittungsablauf. Einzelheiten dieses Ablaufs werden im
Kapitel 7 folgen.

145

7. Verarbeitungszustände, privilegierte Zustände und
Ausnahmebetrieb

Dieses Kapitel beschreibt die Verarbeitungszustände und die
privilegierten Zustände des MC 68000 und erläutert dann, wie
Unterbrüche, Traps und andere «Ausnahmen» durch den MC
68000 behandelt werden.

7.1 Verarbeitungszustände

Der Mikroprozessor MC 68000 befindet sich immer in einem
von drei Zuständen: Normal-, Ausnahme- oder Haltezustand.
Bis jetzt betrafen unsere Betrachtungen immer den Normalzu-
stand, in welchem der 68000 die Befehle vom Speicher holt, sie
ausführt und die Resultate im Speicher oder in einem Register

ablegt. Ein Spezialfall des Normalzustandes ist der gestoppte
Zustand, in den der 68000 als Antwort auf einen STOP-Befehl
eintritt. Wie in Kapitel 3 erklärt wurde, ist STOP ein privilegier-
ter Befehl, der den 68000 stoppt, bis er einen Unterbruch hoher
Priorität oder eine externe Rücksetzung erhält.
Der Ausnahmezustand ist die Art, mit welcher der 68000 auf

Abweichungen der normalen Programmausführung reagiert.
Solche Abweichungen oder Ausnahmen können durch Unter-
brüche, Trap-Befehle, nicht schwerwiegende Hardwarefehler
oder eine Vielzahl anderer Umstände verursacht werden, und
zwar sowohl von ausserhalb als auch innerhalb des Mikropro-
zessors. Wir werden diese Ausnahmen und ihre Behandlung in
diesem Kapitel später detailliert besprechen.

Bei schwerwiegenden Hardwarefehlern, wie zum Beispiel zwei
aufeinanderfolgenden Busfehlern, tritt der 68000 in den Halte-
zustand. Aus diesem Haltezustand kann der 68000 nur mit
einer externen Rücksetzung neu gestartet werden. Der Haltezu-
stand darf nicht mit dem vorher erwähnten softwareverursach-
ten Stoppzustand verwechselt werden. :

7.2 Privilegierte Zustände

7.2.1 Überwachungs- und Benützerzustand

Bisher haben wir schon öfter die zwei privilegierten Zustände, in
denen der MC 68000 operieren kann, erwähnt. Diese Zustände,
der sogenannte Uberwachungszustand und der Benützerzu-

147

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

stand, gewährleisten ein hohes Mass an Sicherheit durch gewis-
se zusätzliche «Privilegien» im Uberwachungszustand, die im
Benützerzustand nicht verfügbar sind (siehe Tabelle 7.1).

Beniitzerzustand Uberwachungszustand

Eintrittszustand Löschung des Trap. Rücksetzung,
durch: S-Bit im Unterbruch,

Statusregister privilegierter Befehl

Funktionscode
output FC2 = 0 1

Systemstapel- Beniitzerstapel- | Uberwachungsstapel-
zeiger: zeiger zeiger

Andere Stapel- Register AO...A6 Benützerstapelzeiger
zeiger: und Register AO... A6

Statusregister-
zugriff: |

(lesen) Gesamtes Status- Gesamtes Statusregister
register

(schreiben) Nur Bedingungs- Gesamtes Statusregister
codes

Verfügbare Alle, mit Aus- Alle, inklusive
Befehle: nahme von: derjenigen der links

RESET aufgelisteten
RTE

STOP #d
ANDI.W#d,SR
EORI.W #d,SR
ORI.W #d,SR
MOVE <ea>,SR

MOVE USP,An
MOVE An,USP

Programme, die im weniger privilegierten Benützerstatus arbei-
ten, können alle 68000-Befehle ausführen, mit Ausnahme derje-
nigen, welche die höheren acht Bit des Statusregisters ändern
(das «Systembyte»), den Prozessor stoppen oder eine System-
rücksetzung aussenden. Im weiteren können Benützerstatus-
Programme Stapeloperationen ausführen, aber sie können die

Systemstapelzeiger weder lesen noch schreiben.
Programme, die im höher privilegierten Überwachungszustand
arbeiten, haben Zugang zu den vollen Möglichkeiten des 68000.
Das heisst, dass Überwachungsstatusprogramme Zugang
haben auf die beiden Systemstapelzeiger und, sofern erforder-
lich, über die privilegierten Befehle auch das Statusregister
beeinflussen können. Die Kontrolle über das Statusregister

148

Tabelle 7.1
Privilegien des Benützer- und

Überwachungszustandes des

MC 68 000

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

erlaubt den Überwachungsprogrammen das Ändern von Unter-
bruchsmasken und den Übergang in den Trace-Modus.
In den meisten Systemen laufen Programme, die nicht für
Systemsteueraufgaben zuständig sind im Benützerstatus.
Grundaufgaben des Betriebssystems sollten ausgeführt werden,
wenn sich der 68000 im Überwachungsstatus befindet.

7.2.2 Wechsel im privilegierten Status

Der privilegierte Zustand wird ausgewählt mit dem Überwa-
chungsbit (S) im Statusregister. Der 68000 ist im Überwa-
chungsstatus mitS=1 und im Benützerstatus, wenn S= 0 ist.
Der Übergang von einem privilegierten Zustand in einen andern
kann auf verschiedene Weise erfolgen. Der Prozessor geht vom

Überwachungszustand in den Benützerstatus, wenn das S-Bit
auf 0 gesetzt wird. Diese Operation kann ausgeführt werden
mit den Befehlen MOVE, ANDI oder EORI, die das Status-
register (SR) als Ziel haben und eine 0 im Bit 13 des Quellen-
operanden aufweisen.

"Hier einige Beispiele:

Befehl Ausgeführte Aktion

MOVE #$0400,SR Trace ausschalten; Wechsel zum
Ä Benützerstatus; Laden der Unter-

bruchsmaske mit 100,; Löschen der
Bedingungsbit.

ANDI #$DFFD,SR Léschen Uberlauf(V); Wechsel zum
Bentitzerstatus; keine anderen
Wechsel.

EORI #$2000,SR Wechsel zum Beniitzerstatus; keine
anderen Wechsel.

Der Prozessor wechselt auch zum Benützerzustand zurück
nach der Rückkehr aus einem Ausnahmezustand (ausgeführt
mit einem RTE-Befehl), wenn die Ausnahme im Benützerzu-
stand auftrat. Die Behandlung der Ausnahmen folgt später in
diesem Kapitel. |
Der Prozessor geht vom Benützerstatus in den Überwachungs-
status, wenn das S-Bit auf 1 gesetzt wird. Normalerweise
geschieht dies unter Softwaresteuerung mit einem der Trap-
Befehle, aber es kann auch bei einem Busfehler, einem Unter-

bruch, erzwungener Ausführung eines privilegierten Befehls
oder jeder anderen Ausnahme geschehen. Bild 7.1 zeigt eine
vereinfachte Zusammenfassung der Bedingungen, die den
Wechsel zum privilegierten Zustand verursachen.

149

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Ub ergange können während
Ausnahmererarbeitung auftreten

Anwender-

Modus

(S =0)

Über-

wachungs-

modus

(S= 1)

fo
Übergänge können durch MOVE, ANDI oder EORI
zum Statusregister oder durch einen RTE-Befehl
veranlasst werden.

Bild 7.1
Übergänge von einem

privilegierten Zustand
in einen anderen

7.3 Ausnahmezustände

Wie am Anfang des Kapitels erwähnt wurde, ist eine Ausnahme
eine Abweichung von der normalen Ausführung, abhängig von
einer internen oder externen Bedingung, die den Prozessor in
den Überwachungszustand bringt. Diese Ausnahmen (in Tabel-
le 7.2 zusammengestellt) werden kurz beschrieben; es ist aber
sinnvoll, zunächst die Art und Weise zu erläutern, wie der
68000 Ausnahmen behandelt.

Quelle Ausnahmeart Veranlasst durch

Intern Befehl TRAP, TRAPV, CHK,
DIVS, DIVU

Privilegverletzung Privilegierter Befehl im

Benützerzustand
Trace Trace-Modus
Illegale Adresse Ungerade Adresse mit Wort

oder Doppelwort
Tllegaler Befehl Ungiltiges Bitmuster
Nichtimplementierter | Operationswort Bitmuster
Befehl 1010 oder 1111

Extern Rücksetzung RESET aktiviert
Unterbrüche Unterbruch genügend hoher
(Interrupts) Priorität
Busfehler BERR aktiviert

Falscher Unterbruch BERR aktiviert wahrend Tabelle 7.2 .
Unterbruchquittung Zusammenstellung interner und

externer Ausnahmen

7.3.1 Verarbeitung der Ausnahmen

Bis auf die Rücksetzung wird jeder Ausnahmezustand, sei er
durch ein internes Ereignis (ein Trap-Befehl zum Beispiel) oder

150

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

ein externes Ereignis (ein Unterbruch oder ein Hardwarefehler)
hervorgerufen, den 68000 veranlassen, fünf eindeutige Schritte
zu machen. Diese fünf Schritte sind:

1. Nach Eintritt in den Ausnahmezustand rettet der 68000 den
16-Bit-Inhalt des Statusregisters in ein nicht adressierbares,
internes Register.

2. Das Uberwachungsbit (S) im Statusregister wird auf 1
gesetzt und bringt den Mikroprozessor in den Uberwa-
chungsstatus; das Trace-Bit (T) wird auf 0 gesetzt und damit
der Trace-Modus ausgeschaltet. Wenn der Ausnahmezu-
stand auf einen Unterbruch zurückzuführen ist, wird die
Unterbruchsmaske mit der entsprechenden Prioritätsebene
nachgeführt, um Unterbrüche auf dieser oder tieferen Priori-
tätsebenen auszuschliessen, bis der behandelte Unterbruch
ausgeführt ist.

3. Der 68000 bestimmt die Vektornummer der Ausnahme und
multipliziert diese mit 4, um sie in eine Vektoradresse umzu-
wandeln. Der 68000 kann 255 verschiedene Vektornummern
unterscheiden, O und 2 bis $FF. Bild 7.2 enthält die Vektor-
nummer und die Vektoradresse für jede Ausnahmebedin-
gung. Bei Unterbrüchen wird die Vektornummer durch das
externe Gerät geliefert. Für alle andern Ausnahmen wird die
Vektornummer intern berechnet, unter Zuhilfenahme des
Mikrocodes des 68000.

4. Der aktuelle Wert des Programmzählers und die intern gesi-
cherte Kopie des Statusregisters werden in den Überwa-
chungsstapel geschrieben. In den meisten Fällen ist der
Inhalt des Programmzählers die Adresse des nächsten aus-
zuführenden Befehls.

5. Nach dem Retten dieser Informationen lädt der 68000 den
Programmzähler mit dem Inhalt der berechneten Vektor-
adresse und beginnt, die Serviceroutine des Ausnahmezu-
standes auszuführen.

Eine Spezialbedingung, der doppelte Busfehler, soll hier noch
erwähnt werden. Ein doppelter Busfehler stellt einen schwerwie-
genden Fehler im System dar und erscheint, wenn ein Busfehler
oder eine illegale Adressausnahme erzeugt wird, während eine
Ausnahme in der oben erwähnten Gruppe O (Rücksetzung,

Busfehler oder illegale Adresse) in Bearbeitung ist. Nach dem
Erhalt zweier solcher aufeinanderfolgender Fehler bringt sich
der 68000 selbst in den Haltezustand. Einmal im Haltezustand,
kann der Mikroprozessor MC 68000 nur durch eine externe
Rücksetzung wiedergestartet werden.

151

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

VEKTOR - VEKTOR -

ADRESSE (HEX) NUMMER _(HEX)

00 Pp (SSP) 7 00
—Rücksetzung —

08 --Busfehler —— — — - 02

oc — - Illegale Adresse ~— 03

10 -- [llegaler Befehl _— 0

14 > - Nulldivision -—- — - 05

06
18 = CHK-Befehl — — — — 1

’c = TRAPV-Befent -—- Hl °
20 _Verletzung m ____ 08

Privilegmodvs

24 -- Trace ——- 03

28 71010 Emulator —-—— oA

2E br Emulator —--- O78
300 Oc

I
< Reserve 1

5C Dr
60 = - Falscher Interrupt - 18

64 _ Autovektor ____N 19
Ebene 7

68 | _ Autovektor __ 1A
Ebene 2

6C _ Autovektor _. _ _] 18
Ebene 3

IC 70 | i

| i!

3
#C | _ Autovektor _— IF

Ebene 7

80 y 20
I

' Trap -Befehle tI
I

BC ! i 2F
co | 30

' Reserve N

FC | I 3
100 | Anwender - Interrupts u 40

1"
|

3FC } | FF

Bild 7.3 zeigt einen Ablaufplan der eben genannten Sequenz.
Die Details dieser Ausnahme-Serviceroutine sind selbstver-
ständlich abhängig davon, welche Ausnahme bearbeitet werden
muss. Jede Serviceroutine muss grundsätzlich beendet werden

mit dem Befehl Rückkehr aus dem Ausnahmezustand (RTE),

der den Statusregister- und Programmzählerwert aus dem
Überwachungsstapel zurückschreibt und die Rückkehr zur nor-

malen Ausführung der Befehle sicherstellt.

152

Bild 7.2
Adressenzuordnung für
Ausnahmebedingungen

Bild 7.3

Allgemeiner Ablauf fiir die
Verarbeitung von Ausnahmen

(ausgenommen Rucksetzung)

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Start
Ausnahme

Kopie von SR
in MC 68000
interne
Register

Unter- Ja Maske = ——~
bruch | Unterbruch-

e ebene

Nein Te

Erhalt

Vektor-

nummer

Vektoradresse =

Vektornr. x4

|
Bringe PC
und kopiere
SFR in

(Vektoradr.)
— PC

Weiter -
verarb.

7.3.2 Mehrfachausnahmen

Wie reagiert der 68000, wenn zwei oder mehrere Ausnahmebe-
dingungen gleichzeitig auftreten? Was passiert zum Beispiel,
wenn ein Unterbruch erscheint, wahrenddem eine Trace-Aus-
nahmebedingung in Ausführung begriffen ist? Die Antwort auf

diese Frage wird in Tabelle 7.3 gegeben, welche die Ausnahme-
arten mit abnehmender Priorität darstellt. Das bedeutet, dass
die Bedingungen in Gruppe 0 vor jenen in den Gruppen 1 und 2
ausgeführt werden. Dadurch wird, wenn ein Busfehler während
einer Trace-Operation erscheint, die Trace-Operation zurückge-
stellt (an das Ende des laufenden Taktzyklus), bis die Busfehler-
bearbeitung beendet ist.
Die Bedingungen innerhalb jeder Gruppe in Tabelle 7.3 sind

153

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

ebenfalls in absteigender Prioritätsordnung aufgelistet.
Dadurch wird zum Beispiel bei einem Unterbruch während
einer Trace-Ausnahme diese weiterverarbeitet, dann erst wird
der Unterbruch verarbeitet, und schliesslich wird der 68000 mit
der Ausführung der Befehle im Programm weiterfahren.

Gruppe Ausnahme Ausnahmeverarbeitung
| beginnt:

0 Rucksetzung

Busfehler Am Ende eines Taktzyklus
Illegale Adresse

l Trace,
Unterbruch, Am Ende eines Befehlszyklus

Illegaler Befehl.

Ben andener Am Ende eines Buszyklus

Privilegverletzung.

2 TRAP, TRAPV,

CHK, Am Ende eines Befehlszyklus Tabelle73
Division durch 0 Ausnahmegruppierung und

Prioritat

7.4 Intern erzeugte Ausnahmen

Wir beschreiben nun alle Ausnahmen, erzeugt durch interne
Bedingungen im 68000.

7.4.1 Befehle, die Ausnahmen herbeiführen
können

In der Diskussion des Befehlssatzes im Kapitel 3 begegneten
uns einige Befehle, die Ausnahmezustände veranlassen können.
Einer dieser Befehle (TRAP) verursacht immer einen Ausnah-
mezustand; die andern (TRAPV, CHK, DIVS und DIVU) ver-
ursachen je nach gewissen Bedingungen eine Ausnahme oder
nicht.
«Trap» (TRAP = Falle) erzwingt eine Ausnahme zu einer von
sechzehn benützerdefinierten Trap-Routinen, angewählt durch

den unmittelbaren Operanden im Befehl. Im speziellen veranlas-
sen die Befehle TRAP # 0 bis TRAP # 15 die Programmsteue-
rung zu einem unbedingten Sprung zu den Routinen, deren
Adressen in den Doppelwortspeicherplätzen $80 bis $BC ent-
halten sind. Tabelle 7.4 zeigt die Zuordnung für die 16 mögli-
chen Trapbefehle.

154

Tabelle 7.4

Vektoradresse fur TRAP

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Befehl Transferiert Programmsteuerung
über Vektoradresse:

TRAP #0 $80
TRAP #1 $84
TRAP #2 $88
TRAP #3 $8C
TRAP #4 $90
TRAP #5 $94
TRAP #6 $98
TRAP #7 $9C
TRAP #8 SAO
TRAP #9 $A4

TRAP #10 | HABS
TRAP #11 $AC
TRAP # 12 $BO
TRAP # 13 $B4
TRAP # 14 $B8
TRAP #15 $BC

Die Trapbefehle wirken als eine Anzahl von Softwareunterbrü-
chen und sind praktisch für den Aufruf des Betriebssystems, die
Simulation von Unterbrüchen bei einer Fehlersuche, die Anzei-
ge der Beendigung von Prozessen oder die Anzeige, dass eine
Fehlerbedingung in einem Programm entstanden ist.
«Trap bei Überlauf» (TRAPV) wird einen Trap veranlassen
durch Vektoradresse $1C, wenn der Überlauf (V) im Bedin-

gungscoderegister auf 1 gesetzt ist. Eine einfache Routine auf
der Betriebssystemebene kann dann jeden entstehenden Über-
lauf behandeln.
«Prüfe Register auf Grenzen» (CHK,) bestimmt, ob sich das tie-
fere Wort eines spezifizierten Datenregisters innerhalb der
Grenzen O und einer spezifizierten Zweierkomplementzahl als
obere Limite (im Speicher oder in einem anderen Datenregister)
befindet. Ist der Registerinhalt ausserhalb dieser Grenzen,
erzeugt der 68000 einen Trap über die Vektoradresse $18. Der
CHK-Befehl kann verwendet werden zur Überprüfung, dass ein
Stapel nicht zu gross wird, dass eine Folge von Zeichen den ihr
zugewiesenen Raum nicht überschreitet, dass ein Array sich in
den dimensionierten Grössen bewegt oder dass eine bestimmte
Operation nicht zu Daten ausserhalb eines zugewiesenen Spei-
cherbereichs zugreift.
Die Befehle «dividiere mit Vorzeichen» (DIVS) und «dividiere
ohne Vorzeichen» (DIVU) erzeugen nur auf eine Bedingung

eine Ausnahme, dann wenn der Divisor 0 ist. Ein Divisor = 0
veranlasst einen Trap über die Vektoradresse $14.
Wie in Kapitel 3 erwähnt wurde, ist der Versuch, durch 0 zu
dividieren, eine von zwei Bedingungen, die verhindern, dass die

155

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Divisionsoperation ausgeführt wird. Die Operation wird eben-
falls gestoppt, wenn ein Überlauf während der Division auftritt
(in beiden Fällen bleiben Divisor und Dividend unbeeinflusst).
Wenn das passiert, setzt der 68000 einfach das V-Bit im Status-
register und fährt mit der Ausführung des nächsten Befehls
weiter.
Weil Überlauf eine Fehlerbedingung darstellt, sind in einem
Divisionsprogramm Massnahmen für die Weiterbehandlung zu

treffen. Eine Möglichkeit besteht darin, die Divisionsroutine so
' zu entwerfen, dass ein gültiger Quotient entsteht, unabhängig
davon, ob Überlauf entsteht oder nicht. Diese Möglichkeit ist in
Kapitel 4 im Beispiel 4.4 dargestellt. Es ist auch möglich, die
Überwachung bei Überlauf zu wählen, indem dem DIVS- oder
DIVU-Befehl ein TRAPV-Befehl nachgestellt wird.

7.4.2 Verletzung privilegierter Befehle

Der 68000 initialisiert einen Ausnahmebetriebszustand tiber die
Vektoradresse $20, wenn ein Bentitzerprogramm versucht,
einen der privilegierten Befehle auszuführen. Die privilegierten
Befehle sind im Kapitel 3 beschrieben (Tabelle 3.17 und beglei-

tender Text) und sind aufgelistet in der «Benützerstatus»-
Kolonne der Tabelle 7.1.

7.4.3 Tracing

Wie die Haltefunktion ist auch die Trace-Funktion vorgesehen
zur Unterstützung der Programmentwicklung und Fehlerbehe-
bung. Wenn die Trace-Funktion eingeschaltet ist (T = 1 im Sta-
tusregister), erzeugt der 68000 nach jedem ausgeführten Befehl
einen Ausnahmezustand und veranlasst dadurch den Prozes-
sor, «einzelschrittweise» durch ein Programm zu gehen. Der
Trace-Ausnahmebetrieb veranlasst die Programmsteuerung,
über die Vektoradresse $24 zu einer benützerdefinierten Rou-
tine im Speicher zu wechseln. Wie alle Ausnahmezustände ver-
anlasst auch der Trace-Ausnahmezustand das Rücksetzen des
Trace-Bit (T = 0) und das Speichern der gegenwärtigen Inhalte
des Programmzählers und des Statusregisters in den Überwa-
chungsstapel. Nach der Rückkehr aus diesem Ausnahmezu-
stand besteht der Trace-Modus weiter, wenn nicht diese Trace-
Routine das im Stapel gesicherte T-Bit des Statusregisters
löscht. Das T-Bit kann gelöscht werden, indem dem RTE-
Befehl ein ANDI #$7FFF, (SP) vorangestellt wird.
Die Trace-Routine wird normalerweise verwendet, um einen
Ausdruck der Registerinhalte nach jedem Befehl .zu erhalten.
Abhängig von der Programmierart kann die Trace-Routine

auch andere wichtige Parameter, wie zum Beispiel die Ausfüh-
rungszeit jedes Befehls, ausdrucken.

156

Bild 7.4

Speicherung bei illegalen Adressen

und Busfehlern

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Der Trace-Modus stellt auch einen einfachen Weg dar, in einem
System «breakpoints» einzuführen. Dies kann gemacht werden,
indem die im Stapel geretteten Adressen (durch den Trace-Aus-
nahmezustand) mit einer Breakpoint-Adressentabelle vergli-
chen werden. Wenn die Adressen gleich sind, kann der Inhalt
der Register angezeigt oder ausgedruckt werden. Andernfalls
würde der 68000 einfach aus dem Trace-Modus zurückkehren
und den nächsten Befehl des Programms.ausführen.

7.4.4 Illegale Adressen

Eine illegale Adresse ist eine ungerade numerierte Adresse, die
sich auf einen Wort- oder Doppelwortoperanden bezieht. Sie

wird behandelt über die Vektoradresse $0C. Eine illegale Adres-
se kann bei jeder Art von speicherbezogenen Operationen
erscheinen, tritt aber vor allem bei der Verwendung der komple-
xeren Adressierungsarten auf, wie zum Beispiel Adressregister
indirekt mit Index, in dem verschiedene Komponenten addiert
werden, um die effektive Adresse zu erhalten.

Superstatuswort

Adressbus hoch

Adressbus tief

zunehmende
Befehlsregister Adressen

Statusregister

Programmzähler [K) y

Programmzähler (L)

15 #4 3,2 ,41 09
| | [2/3 | 7 | Funktionscode | Superstatuswort

4

T=0 Normal oder Gruppe 2
Ausnahmeverarbeitung

T=1 Gruppe O oder Gruppe 1
Ausnahmeverarbeitung
(siehe Tabelle 7.3)

 L/S=1 lesen

L/5=0 Schreiben

Bei Ausnahmezustand «illegale Adresse» (und auch einer
extern erzeugten Ausnahme, Busfehler) bringt der 68000 sieben
Worte Kontext-Information in den Überwachungsstapel. Diese
Worte sind in Bild 7.4 dargestellt. Wie zu sehen ist, sind die

157

Verarbeitungszustande, privilegierte Zustande und Ausnahmebetrieb

ersten drei Worte der Programmzahler und das Statusregister,
gefolgt vom Befehlsregister (dem Operationswort des Befehls,
der die illegale Adresse erzeugt hat), der illegalen Adresse selbst
und einem «Superstatuswort». Das Superstatuswort vermittelt
spezifische Information tiber den versuchten Speicherzugriff,
ob Schreib- oder Lesezugriff, ob der 68000 an einer Befehlsaus-
führung war (Normalzustand oder Ausführung eines Gruppe-
2-Befehls) oder in der Ausführung einer Gruppe-O-oder Grup-
pe-1-Ausnahme und dem Status des Funktionscodes beim Auf-
treten des illegalen Zugriffs.
Die Ausnahmegruppen sind in Tabelle 7.3 zusammengestellt.
Wie früher erwähnt, wird der 68000 in einen Doppelbusfehler-

fall eintreten, wenn einer der Befehle im Ausnahmezustand
«illegale Adresse» selbst eine illegale Adresse erzeugt; der Pro-
zessor geht damit in den Haltezustand. Ein extern erzeugter
Busfehler (später in diesem Kapitel beschrieben), während der
Bearbeitung des Ausnahmezustandes «illegale Adresse», wird
ebenfalls einen Doppelbusfehler veranlassen.

Was passiert, wenn eine ungerade Adresse unabsichtlich in den
Vektorspeicherbereichen der illegalen Adressen ($0C...$OF)
gespeichert wird? Wenn diese unwahrscheinliche und unglückli-
che Situation auftritt und der 68000 zufällig einen Wort- oder
Doppelwortspeicherzugriff an einer ungeraden Adresse ver-

sucht, werden die folgenden Ereignisse stattfinden:

1. Nach der Feststellung der illegalen Adresse wird der 68000
den Ausnahmeverarbeitungszustand «illegale Adresse» initi-
alisieren. Nach dem Übergang in den Überwachungszustand

(S = 1), Ausschalten des Trace-Modus (T = 0) und Berech-
nen der Vektoradresse werden sieben Worte in den Stapel
geschrieben (Bild 7.4) und der Inhalt der durch die Vektor-

adresse bestimmten Speicherzelle in den Programmzähler
geladen.

2. An diesem Punkt würde der 68000 normalerweise mit der
Ausführung der Befehle der Ausnahmeroutine «illegale
Adresse» beginnen. In diesem Fall hat aber der Programm-
zähler eine ungerade Adresse erhalten. Weil diese Befehls-
adresse ungerade ist, ist sie illegal, und der 68000 versucht
erneut, den Ausnahmebetriebszustand «illegale Adresse» zu
initialisieren. Das bedeutet, dass der 68000 zum Schritt 1
zurückkehrt.

3. Wird diese zweite aufeinanderfolgende illegale Adresse eine
Doppelbusfehlerbedingung verursachen? Nein, weil die ille-
gale Adresse während der Initialisierungssequenz erscheint
und nicht in der Ausführung der Serviceroutine. Der 68000
wird aber wiederholt Ausnahmebetriebszustände «illegale
Adresse» initialisieren und jedesmal sieben Worte in den Sta-
pel schreiben.

158

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

4. Weil die Stapel im Speicher rückwärts aufgebaut werden,
kann irgendeines der folgenden Ereignisse diese wiederholte
Sequenz schliesslich beenden:

- Der 68000 gerät ausserhalb des Lese/Schreib-Speichers
(RAM) und versucht, Information in nicht existierende Spei-
cher oder Nur-lese-Speicher (ROM) zu bringen. Dies sollte
externe Schaltungen veranlassen, einen Busfehler-Ausnah-
mezustand zu initialisieren.

— Der 68000 kann versuchen, Information in den Programm-
speicher zu schreiben anstatt in den Datenspeicher, was
ebenfalls einen Busfehler-Ausnahmezustand herbeiführen
sollte.

— Wenn der Stapel bei der Verarbeitung bis zu den tiefsten
1024 Byte im Speicher vordringt, werden neue Werte eventu-
ell in den Vektorzeiger «illegale Adresse» (Speicherzellen

$0C...$0F) gespeichert. Wenn diese neue Adresse unge-
rade ist, wird mit der vorhergehenden Sequenz fortgefahren.
Ist sie gerade, wird der Programmzähler versuchen, an dieser
neuen, zufälligen Adresse einen Befehl auszuführen, mit un-
definierten Resultaten.

— Wenn der Stapel versucht, in den Rücksetzvektor im unter-
sten Teil des Speichers zu schreiben, sollte ein Busfehler
erzeugt werden, weil diese Speicherzelle einzig ein Nur-lese-
Speicher (ROM) sein kann.

7.4.5 Illegaler Befehl

Ein illegaler Befehl ist ein 16-Bit-Binärmuster, das nicht eines
der legalen Operationsworte des Befehlsrepertoires des 68000
darstellt. Es ist unnötig zu sagen, dass ein guter Assembler kein
illegales Bitmuster erzeugen wird. Hingegen können durch Pro-
grammierer solche Muster durch Manipulationen im Objekt-
code erzeugt werden.

7.4.6 Nichtimplementierte Befehle

Die Entwurfsspezifikation für den MC 68000 enthält verschie-
dene Befehle, die in den gegenwärtigen Produktversionen nicht
implementiert sind. Das sind zum Beispiel Befehle für Stringma-
nipulation, Feldmanipulation, Codeumsetzung, Fliesskomma-

Arithmetik, Doppelwort-Multiplikation und spezielle Divisions-
algorithmen. Motorola reservierte ungefähr 20% des totalen
Platzes für Mikrocode, um in zukünftigen Versionen diese (oder
vielleicht auch andere) Erweiterungen einzuführen.
Der nicht benützte Platz im Microcode schliesst zwei von 16
möglichen «Operationscodes» (die vier höherwertigen Bit eines
Befehls) ein. Anstatt diese zwei nicht implementierten Opera-
tionscodes, binär 1010 und 1111, intern unbenützt zu lassen,
stellt Motorola eine spezielle Vektornummer im Ausnahmespei-

159

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

cherbereich für jeden dieser Operationscodes zur Verfügung.
Das gibt Benützern die Möglichkeit, in ihren Programmen
Emulationsbefehle einzufügen. Diese Befehle können entweder
für die zukünftigen Erweiterungen zum MC 68000 vorgesehen
werden (zum Beispiel String- oder Fliesskomma-Befehle) oder
auch nur verschiedene praktische Funktionen für Benützeran-
wendungen zur Verfügung stellen.
Wie muss bei der Benützung dieser zwei nicht implementierten
Operationscodes vorgegangen werden? Es ist ganz einfach: zur
Benützung einer dieser Operationscodes muss einfach nur ein
Wort im Programm eingefügt werden, dessen höchstwertige
4 Bit den Wert $A (1010 binär) oder $F (1111 binär) aufweisen.
Am einfachsten wird die Einfügung gemacht mit einer Konstan-
tenanweisung (define constant) wie zum Beispiel DC $A000
oder DC $F000. Wenn der 68000 einem Befehloperationswert
begegnet, das mit $A oder $F beginnt, wird er es als nicht imple-
mentierten Befehl einstufen und in eine Serviceroutine über
Adresse $28 (für 1010) oder $2C (für 1111) eintreten.
Als Beispiel für nicht implementierte Befehle wollen wir einen
Satz von Fliesskomma-Befehlen emulieren, unter Benützung
des Operationscodes 1010. Angenommen wir haben vier ver-
schiedene Fliesskomma-Befehle: addieren, subtrahieren, multi-
plizieren und dividieren. Im weitern nehmen wir an, dass jeder
dieser Befehle mit zwei Datenregistern operiert, einem Quellen-
register und einem Zielregister. Bild 7.5 zeigt das Bitformat für
die Fliesskomma-Operationsworte. Aus dieser Darstellung
lässt sich erkennen, dass der zu emulierende Befehl eine Fliess-

komma-Multiplikation von D4 mal D5 mit Speicherung des
Produktes in D5 ist. Der Weg zur Einfügung dieses Befehls in
einem Programm führt über die Anweisung DC $AA 14.

Quellenregister
000 = DO

114 = DF

 Operationsfteld
00 = Addiere
Of =. Subtrahiere

10 = Multipliziere
Mt = Dividiere Bild 7.5

nicht benützt Bitformat der Fliesskomma-

Zielregister Befehle
000 = DO

14 = DF

Wie sieht diese Fliesskomma-Serviceroutine aus? Ein Teil die-
ser Routine, die Befehlsdecodierungssequenz, wird im Pro-
grammbeispiel 7.1 gezeigt. Der Routine (FLTP) sind zwei

160

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Programmbeispiel 7.1:
Routine zur Initialisierung von Fliesskomma-Mathematik

* Diese Ausnahmeroutine wird ausgeführt, wenn der MC 68000 im Programm auf
*einen 1010-Befehl trifft. Sie decodiert das Operationsfeld des Befehls (Bit 3 und 4)

*und benützt diese Zahl als Index zum Sprung auf eine Fliesskomma-Additions-,
*_Subtraktions-, -Multiplikations- oder -Divisionsroutine irgendwo im Speicher. Die
* Register Al und DI werden benützt.
*

* Initialisiere 1010 Vektor
*

ORG $28
DC.L FLTP 1010-Vektor zeigt auf FLTP.

*

ORG $1000
FLTP MOVEA.L 2(SP),Al Programmzähleradresse nach

1010.
MOVE -2(A1),D1 Bringe 1010-Befehl in D1;
MOVE D1,-(SP) Kopie im Stapel.
ANDI# #0018,D1 Erhalte Operationsfeld

(Bit 3,4).
LSR #1,D1 Berechne Index (Operations-

feld x 4).
LEA OPADDR,AI1 Hole Adresse der Operations-

tabelle.
MOVEA.L 0(A1l,D1.W),Al Hole Adresse der gewünschten

Routine
JMP (Al) und springe zu

OPADDR DC.L FLTPADD, FLTPSUB, FLTPMUL, FLTPDIV
END

Anweisungen vorangestellt, welche die 1010-Vektoradresse mit
der Adresse von FLTP initialisieren. Zur Decodierung der kor-
rekten Operation (addieren, subtrahieren, mulitplizieren oder
dividieren), muss der Originalbefehl geholt und in ein Register
geschrieben werden, damit die Bitnummern 3 und 4 manipuliert
und abgefragt werden können. Der im Stapel gesicherte Pro-
srammzählerwert kann, um zwei vermindert, zum Wiederauf-
finden des 1010-Befehls durch Zugriff auf diesen Speicherplatz
verwendet werden.
Wenn das Operationswort in D1 gespeichert ist, wird eine
Kopie davon im Stapel gesichert für die spätere Registerdeco-
dierung durch die Additions-, Subtraktions-, Multiplikations-
oder Divisionsroutine. Wenn das getan ist, maskiert ein ANDI-
Befehl das Operationsfeld heraus (Bit 3 und 4) und eine Rechts-
schiebung um ein Bit wandelt es in einen OPADDR-Tabellenin-
dex um (entspricht einer Multiplikation mit 4). Was übrigbleibt,

161

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

ist das Holen der Adresse der Operationsroutine (FLTPADD,
FLTPSUB, FLTPMUL, oder FLTPDIV) in Al und der
Sprung zu dieser Routine. Die Adresse wird geholt mit einem
MOVEA-Befehl unter Benützung der Adressierungsart «Pro-
grammzähler relativ mit Index». Es ist zu bemerken, dass diese
FLTP-Routine ganz ähnlich ist zu der Subroutine «Auswahl
von Mehrfachbenützern», SELUSR, im Programmbeispiel

5.10, da beide einen Eingangscode benützen zur Ableitung ei-
nes Index in eine Konversionstabelle. Der Hauptunterschied
besteht darin, dass SELUSR herausfinden muss, ob der Identi-
fikationscode gültig ist, wahrend FLTP keine solche Prüfung
durchführen muss, weil sie ein 2-Bit-Feld zur Auswahl von einer
aus vier mathematischen Routinen decodiert. Wäre das Feld in
FLTP drei Bit lang und nur fünf der acht möglichen Kombina-
tionen wären gültig, müsste ebenfalls eine Gültigkeitsprüfung
durchgeführt werden.

7.5 Extern erzeugte Ausnahmen

Nach Abschluss der Diskussion über intern erzeugte Ausnah-
men werden nun Bedingungen ausserhalb des MC 68000 dar-
gestellt, die einen Ausnahmezustand initialisieren. Es gibt 3 sol-
che Bedingungen: Rücksetzung, Unterbrüche und Busfehler.

7.5.1 Rücksetzung (RESET)

Der RESET-Eingang hat die höchste Priorität aller Ausnah-
men (siehe Tabelle 7.3) und ist bestimmt für die Systeminitiali-
sierung und den Wiederanlauf nach schwerwiegenden Fehlern
wie zum Beispiel Spannungsausfall. Im wesentlichen besteht die
RESET-Funktion darin, dem 68000 mitzuteilen, dass alle in
Ausführung stehenden Prozesse bedeutungslos sind und zu
beenden sind. Nach Empfang des RESET-Signals fällt der
68000 in den Überwachungsmodus (S = 1), schaltet den Trace-
Modus aus (T = 0) und setzt die Unterbruchsmaske auf die

höchste Ebene (Level 7), so dass kein Unterbruch diese
RESET-Prozedur unterbrechen kann. Anders als andere Aus-
nahmebedingungen schützt eine Rücksetzung weder den Pro-
grammzähler noch das Statusregister. Der Vektor der Rück-
setzbedingung ist vier Worte lang und belegt die Adressen $00
... $07; diese Adressen müssen im Nur-lese-Speicher (ROM)
liegen. Während des Rücksetzprozesses holt der 68000 die bei-
den ersten Worte in den Systemstapelzeiger und die zweiten
zwei Worte in den Programmzähler und beginnt dann die Aus-
führung der Befehle, die durch den Programmzähler adressiert
werden. An dieser Stelle befindet sich die K.altstart-/Warmstart-
Routine (Stromversorgung ein/Wiederanlauf).

162

Bild 7.6
Ablauf für die Ausnahme-
verarbeitung beim Rücksetzen

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Bild 7.6 ist ein Flussdiagramm der Ausnahmeverarbeitung für
die Rücksetzbedingung. Zu sehen ist auch, dass eine Massnah-
me gegen einen doppelten Busfehler getroffen wird, falls ein
Bus- oder Adressfehler während der Rücksetzbedingung auf-
tritt.

Start .
Ricksetz-
ausnahme ,

Unter br. -

maske —- 7

|
Hole

Vektor 0

 illegale .
‘Adresse oder J@_ 1 Doppel - Halt
Bustehler Busfehler

2

nein

($00... $03)
——— SSP

Hole

Vektor 1

 illegale
Adresse oder
Sustehley

ja

nein

($04... $07)
— PC

Weiterver-

arbeitung

7.5.2 Unterbrüche (Interrupts)

Leser mit Erfahrung in der Programmierung von Unterbruchs-
Abfragesequenzen für frühere 8-Bit-Mikroprozessoren werden
gerne vernehmen, dass der MC 68000 über eine Minicomputer-
ähnliche Unterbruchsstruktur mit Prioritätsordnung verfügt,
die Unterbruchsanforderungen sieben verschiedener Ebenen
akzeptieren kann. Im weiteren können diese Unterbrüche mit

oder ohne Vektor behandelt werden.

- 163

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Unterbruchsprioritäten gehen von der Ebene 1 (tiefste Priorität)
bis Ebene 7 (höchste Priorität, nicht maskierbar). Wenn ein
externer Baustein den 68000 zu unterbrechen wünscht, deco-
diert er die Unterbruchsebene der Unterbruchsanforderung auf
den drei Unterbruchskontrolleitungen IPLO, IPL1 und IPL2.
Vorausgesetzt, dass nicht eine Trace-, eine illegale Adress-, Bus-
fehler- oder Rücksetz-Ausnahmebedingung in Ausführung
begriffen ist, wird der 68000 den in Ausführung begriffenen
Befehl fertig bearbeiten und dann die decodierte Prioritätsebene
mit einer 3-Bit-Unterbruchsmaske im Statusregister vergleichen
(siehe Bild 1.3 im Kapitel 1).
Wenn der decodierte Wert auf den Unterbruchs-K ontrolleitun-
gen gleich oder kleiner ist als der Wert der Unterbruchsmaske,
wird der 68000 die Anforderung einfach ignorieren und mit der
Abarbeitung der Befehle normal weiterfahren. (Die einzige Aus-
nahme hier ist die Ebene 7, die eine andere Unterbruchsanforde-
rung der Ebene 7 quittieren wird.) Wenn aber die Unterbruchs-
anforderung einen höheren Wert als die Unterbruchsmaske auf-
weist, wird der 68000 eine Ausnahmeverarbeitung einleiten.
In den meisten Fällen wird die Unterbruchsbearbeitung unserer
allgemeinen Ausnahme-Verarbeitungssequenz (Bild 7.3) folgen,
hat aber genug zusätzliche Schritte, um ihre eigene Schritt-für-
Schritt-Beschreibung zu rechtfertigen. Im folgenden sind die
Schritte in der Unterbruchs-Behandlungssequenz aufgeführt
und in Bild 7.7 dargestellt: |

1. Nach Erhalt einer Unterbruchsanforderung genügend hoher
Priorität rettet der 68000 den 16-Bit-Inhalt des Statusregi-
sters in einem nichtadressierbaren, internen Register.

2. Der 68000 geht in den Überwachungsmodus (S = 1) und ver-

lässt den Trace-Modus (T = 0).
3. Die Prioritatsebene des quittierten Unterbruchs (1... 7) wird

in die Unterbruchsmaske des Statusregisters geschrieben
und zu allen Bausteinen im System auf den Adressleitungen
Al, A2 und A3 ausgesendet. Zur Kennzeichnung der
Adressbusinformation als Unterbruchsquittung beansprucht
der 68000 alle drei Funktionscodeleitungen (FCO, FC1 und
FC2).

4. Andiesem Punkt erwartet der 68000 die Systemantwort, ent-
weder ein Fehlersignal (BERR) oder eines von zwei Nicht-
fehlersignalen (VPA oder DTACK). Wenn weder VPA
(valid peripheral address) noch DTACK (data transfer
acknowledge) in einer vorbestimmten Zeit erscheint, sollte
ein externes Uberwachungszeitglied einen Busfehler (BERR)
senden, damit der 68000 weiss, dass die Unterbruchsanfor-
derung unecht war. Ein solcher falscher Unterbruch veran-
lasst den 68000 zur Erzeugung der Vektornummer $18. _

5. Wenn die Unterbruchsanforderung nicht falsch war, sind die
gültigen Unterbruchsquittungen VPA und DTACK. Die
Bedeutung dieser Antworten sind:

164

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Bild 7.7
Ablauf der Unterbruchs-
verarbeitung (Interrupt)

Unterbrechende Einheit
decodiert /PLO...IPL2

normale
Weitervrer-
arbeıtung

nein

Kopiere SR in internem
Register

!
Se 1

5S — oO

Prioritäfsebene — Unter-
bruchsmaske +Adresshus

Funktionscode

(FCO...FC2)— F

nem,
warten Unterbruch mit Unterbruch ohne

__ Avtovektor Ja Autovektor _
VPA 1 BERR DTACK

Vektornummer = Vektornummer = Vektornummer =
Prioritätsebene +$18 $/8 . (DBO... DB#)

J | >

Vektoradresse =

Vektornummer xX 4

Bringe PC und kopiere
SR in:'den Stapel

(Vektoradresse)
—> PC

Wer terver-
arbeitung

— Bausteine, die speziell zur Unterstützung des 68000 ent-
worfen wurden, antworten auf die Unterbruchsquittung
durch das Plazieren einer von 192 Benützerunterbruchs-
Vektornummern ($40 ... $FF) auf dem niedrigstwertigen
Byte des Datenbus (DBO ... DB7) und Erzeugung von
DTACK.

— Friihere Bausteine wie jene, welche die 6800- und 6500-
Familien untersttitzen, konnen keine Vektornummer aus-
senden. Diese Bausteine antworten auf die Unterbruchs-
quittung durch Aktivieren von VPA, was den 68000 ver-
anlasst, die Prioritätsebene zu prüfen und eine Basisadres-
se von $18 zu dieser Ebene zu addieren, um eine Autovek-
tornummer zu erzeugen. Weil die Prioritätsebenen von
1...7 gehen, liegen die Autovektornummern im Bereich von

$19 bis $1F.

165

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

6. Der 68000 multipliziert nun die Vektornummern mit 4 zur
Erzeugung einer Vektoradresse. Für einen falschen Unter-
bruch wird die Vektoradresse $60 sein. Für Benützerunter-
brüche liegen die Vektoradressen im Bereich von $100 bis
$3FC. Für die Autovektoren hegen die Vektoradressen im
Bereich von $64 (Ebene 1) bis $7C (Ebene 7).

7. Der laufende Programmzählerwert und die intern gesicherte
Kopie des Statusregisters werden in den Überwachungssta-
pel geschrieben.

8. Der 68000 lädt den Programmzähler mit dem Inhalt der
berechneten Vektoradresse und beginnt die Ausführung der
Unterbruchserviceroutine.

7.5.3 Busfehler

Aus früheren Erklärungen wissen wir, dass das Busfehlersignal

(BERR) ein extern erzeugtes Eingangssignal ist, das dem 68000
einen Fehler irgendwo im System anzeigt. Wir haben die folgen-
den Anwendungen von BERR diskutiert:

1. Allein auftretend dient BERR zur Anzeige, dass einer von
verschiedenen Fehlern im System aufgetreten ist. Zum Bei-
spiel kann ein Überwachungszeitglied («Watchdog») BERR
verwenden zur Anzeige, dass ein adressierter Speicherplatz
oder eine periphere Schaltung es unterlassen hat, ein VPA
oder DTACK als Antwort zum 68000 zu senden. Weiter
kann ein Speicherverwaltungsbaustein BERR verwenden
zur Anzeige, dass das ausführende Programm einen illegalen
Speicherzugriff versucht hat (zum Beispiel den Versuch, in
einen Nur-lese-Speicher zu schreiben).

2. Zusammen mit HÄLT verursacht BERR ein nochmaliges
Ablaufen des Bus-Zyklus, mit anschliessendem Halt.

3. Das Erscheinen von BERR während einer Gruppe-0-Aus-
nahmeverarbeitung (Rücksetzung, illegale Adresse oder
Busfehler) verursacht einen Doppelbusfehler, der den Pro-
zessor in den Haltezustand bringt.

4. BERR während einer Unterbruchsbehandlung initialisiert
den Ausnahmefall «falscher Unterbruch» über die Vektor-
adresse $60.

Die Bedingung 4 (Ausführung falscher Unterbrüche) veranlasst
den 68000 zur Speicherung des momentanen Inhalts des Pro-
grammzählers und des Statusregisters, total drei Worte. Bedin-
gungen 1, 2 und 3 veranlassen den 68000, sieben Worte zu
sichern: Programmzähler, Statusregister, Befehlsregister,
Adressbus (hoch und tief) und ein sogenanntes Superstatus-
wort. Diese Worte sind unter dem Thema illegale Adressverar-

beitung beschrieben (Bild 7.4 und begleitender Text im
Abschnitt 7.4.4).

166

Verarbeitungszustände, privilegierte Zustände und Ausnahmebetrieb

Wie man sehen kann, wird tatsächlich nur die Bedingung 1 dazu
führen, dass eine Befehlsverarbeitung stattfinden wird. Das
bedeutet, dass die Busfehler-Ausnahmebedingung mit BERR
eingeleitet wird, wenn der 68000 Befehle im Normalmodus ver-
arbeitet oder Ausnahmebedingungen der Gruppe 1 oder Gruppe
2 verarbeitet, ausgenommen Unterbrüche. Busfehler-Ausnah-
meverarbeitung veranlasst den 68000 zur internen Erzeugung
einer Vektornummer von $02, und er initialisiert die Ausfüh-
rung über die Vektoradresse $08.

167

8. Anschluss von Peripheriebausteinen

Tabelle 8.1

Peripheriebausteine für den 68000

Im Kapitel 6 sind alle Signale beschrieben, die man benötigt, um
periphere Bausteine richtig anzusteuern. Wir haben auch die
zeitlichen Beziehungen zwischen den einzelnen Signalen unter-
sucht und gezeigt, wie der 68000 mit einem asynchronen 16-
Bit- oder einem synchronen 8-Bit-Baustein kommuniziert. Hier
folgt eine kurze Übersicht über die Elemente, die an den 68 000
anschliessbar sind. Dazu ein einfaches Anwendungsbeispiel.

8.1 Peripheriebausteine der 68000er-Familie

Die Tabelle 8.1 zeigt die 11 ersten Peripheriebausteine für den

68000. Sie werden alle an die asynchronen Steuerleitungen des
Mikroprozessors angeschlossen.

Typen- Beschreibung Hersteller Zweit-
nummer lieferant

68120/ _ Intelligenter Peripherie-
68121 Controller (IPC) Motorola Rockwell
68122 Terminal-Controller

(CTC) | Motorola -
68230 Parallel-Schnittstelle/Timer

(PIT) Motorola -

68340 Doppelschnittstellen mit
RAM (DPR) Motorola -

68341 Gleitkomma-ROM Motorola -
68450 DMA-Controller Hitachi Motorola,

(DMAC) Rockwell

68451 Speicherverwaltungs-
einheit (MMU) Motorola Rockwell

68540 Fehlererkennungs-
und Korrekturbaustein
(EDCC) Motorola -

68560 Serieller DMA-Prozessor
(SDMA) Motorola -

68561 Multiprotokoll-Kommuni-
kationskontroller(MPCC) Rockwell Motorola

169

Anschluss von Peripheriebausteinen

In Kürze können bis zu 30 solche Bausteine erwartet werden.
Dabei sind auch einige schon bestehende Schaltungen von Sig-
netics, wie zum Beispiel
-— 2661 programmierbare Kommunikationsschnittstelle(EPCD

- 2652 Multi-Protokoll-Kommunikations-Controller (MPCC)
— 2653 Polynom-Generator Checker (PGC).

Von Motorola sind ein Hard-Disk-Controller, ein leistungsfahi-
ger CRT-Controller, eine Multiprozessor-Schnittstelle und ein
I/O-Prozessor geplant. Konzentrieren wir uns nun auf die in
Tabelle 8.1 aufgeführten Bausteine:

Der intelligente Peripherie-Controller (IPC) 68 120 ist ein viel-
seitig einsetzbarer, anwenderprogrammierbarer I/O-Controller.
Da er mit einem 8-Bit-Mikroprozessor 6801 aufgebaut ist, kann
er als I/O-Prozessor oder als Hilfsprozessoreinheit in einem ver-

teilten Prozesssystem eingesetzt werden. Dieser IPC enthält ne-
ben der 6801-CPU auch noch

— eine Systemschnittstelle,
— eine serielle Kommunikationsschnittstelle,
— 21 parallele I/O-Leitungen,
— einen 16-Bit-Timer,
— einen 128-K Byte-Lese/Schreib-Speicher (RAM),
— ein ROM von 2 KByte,
— 6 Hilfsregister.

Der Terminal-Controller (CTC) 68122 ist ein IPC, der als
serielles I/O-Subsystem programmiert werden kann. Mit die-
sem können bis zu 32 Terminale an einem 68 000 angeschlossen
werden.
Mit dem Parallel-Schnittstellen-Timer (PIT) 68230 können
praktisch alle Anwendungen mit parallelen Schnittstellen und
zeitabhängigen Anforderungen realisiert werden. Er enthält

- zwei doppelt gepufferte I/O-Schnittstellen für mehrere
Betriebsarten,

- eine dritte 8-Bit-Schnittstelle,
— einen 24-Bit-Timer,
— Logik fur priorisierte Interruptvektoren.

Das Gleitkomma-ROM 68 341 besteht aus zwei Bausteinen, die
dem Anwender erlauben, positionsunabhängige, «reentrante»

Gleitkommaprogramme ablaufen zu lassen. Die Firmware des
ROM unterstützt folgende Funktionen:

- Addition, Subtraktion, Multiplikation, Division;

- Quadratwurzel, Vergleiche, Absolutwert usw.

Der DMA-Controller (DMAC) 68450 kann vier unabhängige
DMA-Kanäle bedienen, mit welchen bis zu 4 MByte pro s wort-
oder byteweise übertragen werden kann.

170

Anschluss von Peripheriebausteinen

Tabelle 8.2

Verfugbare 6800er-Peripherie-

bausteine

Die Speicherverwaltungseinheit (MMU) 68 451 berechnet alle
Adressentranslationen und Speicherschutzfunktionen fiir den
ganzen Speicherbereich von 16 MByte. Mit einer MMU kann
man innerhalb des gesamten Speicherbereiches Segmente bis zu
256 Byte hinunter definieren. Mit Hilfe der Funktionscodezeile
des Prozessors definiert die MMU fiir jedes Segment einen logi-
schen Adressbereich (zum Beispiel Programm- und Daten-
bereich fiir den Uberwachungs- oder Beniitzerstatus). Sie kann
auch einen Offset zu einer physikalischen Adresse und Spei-
cherschutz für Segmente verarbeiten. Die MMU generiert einen

speziellen Busfehler, falls ein nicht erlaubter Zugriff auf ein Seg-
ment gemacht wird.

Der Fehlererkennungs- und Korrekturbaustein (EDCC) 68 540
korrigiert Einzelbitfehler und erkennt Doppelbitfehler sowohl in

8-Bit- und 16-Bit-Datenbussystemen. Der EDCC kann für
künftige Systeme direkt auf 32 Bit erweitert werden.

Der Multi-Protokoll-Kommunikations-Controller (MPCC)
68561 ist ein leistungsfähiger Datenkommunikationsbaustein,
der asynchrone, bitorientierte synchrone (X.25, SDLC,
HDLC) und byteorientierte synchrone (BISYNC und
DDCMP) Übertragungsprotokolle verarbeiten kann.

8.2 Peripheriebausteine der 6800er-Familie

Viele Anwendungen brauchen die hohe Leistungsfähigkeit der
68 000er-Peripheriebausteine nicht. Hier können zum Teil die
günstigeren Bausteine der 6800er-und 6500er-Serie verwendet
werden. Die Tabelle 8.2 zeigt einige gebräuchliche 6800er-Bau-
steine. Ein jeder kann über die synchronen Steuerleitungen des
68 000 betrieben werden (siehe Kapitel 6 der Benützeranleitung
des MC 68 000).

Typen-
nummer Beschreibung

MC 6821 Peripherer Schnittstellenadapter (PIA)
MC 6840 = Programmierbarer Zeitgeber

MC 6843 Floppy-Disk-Controller (FDC)
MC 6845 _ Bildschirm-Controller (CRTC)

MC 6847 Videoanzeige-Generator (VDG)
MC 6850 Asynchrone Kommunikationsschnittstelle(ACIA)
MC 6852 Synchrone Kommunikationsschnittstelle (SSDA)

MC 6854 Erweiterter Datenlink-Controller (ADLC)
MC 6859 Datensicherheitsbaustein

MC6860 Digital-Modem (0 bis 600 Bit/s)
MC 6862 Modulator (2400 Bit/s)
MC 68488 Schnittstelle für den IEEE-488-Bus (GPIA)

171

Anschluss von Peripheriebausteinen

Wir wollen nun untersuchen, wie der populäre Baustein
MC 6821 (PIA) an den 68000 angeschlossen werden kann.

8.3 Anschluss eines PIA an den 68000

8.3.1 DerPIA 6821

Der PIA 6821 (Peripheral Interface Adapter) hat alles Nötige,
um einen Printer, Bildschirm, eine Tastatur, Schalttafel oder
ähnliches an einen 6800 oder 68000 anzuschliessen. Der PIA

kommuniziert mit dem Mikroprozessor über die Systembusse
(Daten, Adressen, Steuerung). Er kann mit den angeschlosse-
nen Peripheriegeräten über zwei 8-Bit-Schnittstellen, Port A

und Port B, verkehren. Jede der 8 Leitungen der beiden Ports
kann unabhängig von etwas anderem als Ein- oder Ausgang
programmiert werden.
Im PIA wird jede bidirektionale Schnittstelle (Port A und Port
B) unterstützt durch:

- ein Datenrichtungsregister. Jedes Bit des Datenrichtungsre-
gisters bestimmt, ob die entsprechende Portleitung als Ein-

gang (0) oder als Ausgang (1) programmiert wurde.
- ein Kontrollregister, das die Interruptstatusbit eines Ports

speichert und die internen logischen Verbindungen innerhalb
des PIA auswählt.

- ein Peripheriedatenregister, das Daten zwischen dem Mikro-
prozessor und der angeschlossenen Peripherie zwischenspei-
chert.

— zwei Interruptsteuerleitungen, die ihre Wirkung je nach
Inhalt des Kontrollregisters erhalten.

Es sind sechs Register im PIA adressierbar:

— zwei Peripheriedatenregister;
- zwei Datenrichtungsregister;
— zwei Kontrollregister.

Jedes periphere Register teilt ein Speicherbyte mit einem Daten-
richtungsregister. Somit brauchen wir nur vier (anstatt sechs)
Adressen für den PIA. Leser, die die Eigenschaften des 6821-

PIA nicht kennen, können diese im Datenblatt des Bausteins
nachschlagen.

Wie alle 8-Bit-Bausteine, kann auch der 6821-PIA Informatio-
nen von 8 Bit parallel transferieren. Um mehr als 8 Bit zu über-

tragen, braucht es zusätzliche Transfers, falls nur ein PIA dafür
vorhanden ist. Da der 68000 über einen 16-Bit-Datenbus ver-
fügt, kann er 16 Bit gleichzeitig übertragen, was mit zwei der
oben beschriebenen PIAs möglich ist (einen für die höheren 8
Bit und einen für die tieferen 8 Bit).

172

Anschluss von Peripheriebausteinen

Bild 8.1
Schnittstelle zwischen einem

68 000 und zwei PIAs (6821)

8.3.2 Schnittstelle für 16-Bit-Datentransfer

Bild 8.1 zeigt ein Beispiel, wie zwei PIAs am Synchronbus des
68000 angeschlossen werden können, um 16-Bit-Informatio-
nen gleichzeitig zu übertragen. In diesem Beispiel wird ange-
nommen, dass die 6800-Peripheriebausteine alle im Adressen-
bereich von $FEF800 bis $FEFFOO verdrahtet sind, weil die
gültige periphere Adresse (VPA) nur mit dem Adressenstrobe
(AS) aktiv und dem Ausgang des 13-Eingangs-NAND

(74LS133) logisch 0 aktiv werden kann. Im weiteren ist aus Bild

8.1 zu lesen, dass die beiden PILAs nur selektiert werden, falls die
Adressen A3 A5 logisch 1 sind. Damit sind die beiden Bau-

steine nur im Adressenbereich $FEF838 bis $FEFFFF
ansprechbar. Die anderen beiden Adressenbit Al und A2 der
PIA werden für das Selektieren der internen Register wie folgt
verwendet:

A2 Al Selektiertes Register

0 0 Peripherieregister A / Datenrichtungsregister A
(PRA/DDRA)

0 1 Kontrollregister A (CRA)
1 0 Peripherieregister B /Datenrichtungsregister B

(PRB/DDRB)
1 1 Kontrollregister B (CRB)

Weil jeder PIA vier Speicherbyte besetzt, brauchen die zwei

PIAs in Bild 8.1 acht Byte (4 Worte), die vier geraden Byte fiir
den PIA mit D8 ... D15 und die ungeraden Byte für den PLA
mit DO ... D7. Wir wollen annehmen, dass unsere PIAs die
Adressen $FEFF00 bis $FEFFO7 (siehe Bild 8.2) besetzen.

3,3Kn
! Adresse für 6800

3
AS _

VHA | N YMA
” | | N

[I I) EATS

A3 5
Ds .

68000 a 7$L5 138 P Sale| io NEN ES
Mikro- AS un “ys 8 SISIN
prozessor y?

Ihn. U ¢ Wer + [BSges [IB sees
75V t x Heherer PAL | Tieferer PIA

3,3k0 Aus e927 || 8B cee

| RESET I |
Pe l 4 — Rie L >

173

Anschluss von Peripheriebausteinen

Gerade ObererPIA Unterer PIA Ungerade

Adresse Adresse

$EEFF00 PRA/DDRA PRA/DDRA _S$FEFFOI
¢ FEFFO2 CRA CRA $ FEFF03
$FEFF0O4 PRB/DDRB PRB/DDRB $¢ FEFF05
$ FEFF06 CRB CRB $ FEFFO7

8.3.3 Einfache 16-Bit-Transfers mit PIA

Aus Illustrationsgründen nehmen wir an, dass die PIAs in Bild

8.1 an zwei 16-Bit-Peripheriegeräte angeschlossen sind. Das
Gerät, das an Port A der beiden PIAs hängt, sei nur ein Ein-

gangsgerät (z.B. Schalterreihe). Wenn dieses Gerät ein Daten-
wort an Port A beider PIAs angelegt hat, teilt es dies dem 68 000
mittels eines Daten-bereit-Signales über Anschluss CAl des
oberen PIA mit. Nachdem der 68000 das Wort in den Speicher
gelesen hat, gibt er mit dem Signal Daten angenommen über den
Anschluss CA2 dem Peripheriegerät bekannt, dass die Daten
gelesen wurden.
Das an Port B beider PIAs angeschlossene Peripheriegerät sei
nur ein Ausgabegerät (z.B. Gruppe von LED-Anzeigen). Wenn
das Gerät bereit ist, ein Datenwort zu empfangen, sendet es dem
68.000 ein Signal Peripherie bereit auf Anschluss CB2 des obe-
ren PIA. Der 68000 gibt daraufein Ausgabedatenwort auf Port
B beider PIAs und teilt das mit dem Signal Ausgabe bereit auf
dem Anschluss CB2 des oberen PIA dem Peripheriegerät mit.
Bild 8.3 zeigt die eben beschriebenen Datenpfade.

Eingabe-

 Höherer Gerät
PIA CBI

6821
CB2

68000

Mikro-
prozessor

 Ausgabe-
- | Peripherie-

Gerat

PAO...PAF

Tieferer
PIA

6821

Wenn ein PIA mit dem angeschlossenen Peripheriegerät kom-
munizieren will, muss er zuerst dafür programmiert werden.
PIAs werden während der Systeminitialisierung als Teil einer

174

Bild 8.2

Anordnung der PIA-Register im

Speicher.

Es bedeuten: PRA/DDRA = Peripherie-
register/Datenrichtungsregister A-Seite
CRA = Kontrollregister A-Seite (analog
für B-Seite).

Bild 8.3

Anschluss zweier Peripheriegeräte
an den Mikroprozessor 68 000 mit

zwei PIAs 6821.

Anschluss von Peripheriebausteinen

Kaltstartroutine programmiert. Das Programmbeispiel 8.1 ist
eine Initialisierungsroutine für zwei PIAs, wie eben beschrieben.

Der obere PIA ist so programmiert:
- DDRAÄ alles 0 > Port A wirkt als Eingang,
- CRA > %00100110 ($26), Aktivierung des Handshakings
- DDRB alles 1($FF) > PortB wirkt als Ausgang,
- CRB> %00100110 ($ 26), Aktivierung des Handshakings.

Danach wird der untere PIA initialisiert:
- DDRA alles 0 > Port A wirkt als Eingang,

- CRA > %00000100 ($04), PRA angewählt,
— DDRB alles 1 > Port B wirkt als Ausgang,
— CRB ~- %00000100 ($ 04), PRB angewahlt.

Programmbeispiel 8.1

PIAD EQU
PIAC EQU
PIBD EQU
PIBC EQU
*

MOVEA. L
* Programmiert

MOVE. L
MOVEP. L

* Programmiert
MOVE. L
MOVEP.L

$FEFFOO
PIAD +2
PIAD +4
PIAD +6

PIAD. AO
den oberen PIA

#$ 26FF26, DO
D0,0(A0)
den unteren PLA

$04FF04, DO
D0,0(A0)

Initialisierung von zwei PIAs

Adresse von PRA/DDRA
AdresevonCRA

Adresse von PRB/DDRB
Adresse von CRB

_ Zeigt auf den oberen PIA

Setzt die Parameter auf und

sendet sie zum PIA (H)

Setzt die Parameter auf und

sendet sie zum PIA (L)

Wenn der PIA einmal initialisiert ist, läuft der Informations-
transfer zu und von der angeschlossenen Peripherie relativ ein-
fach ab. Um ein einfaches 16-Bit-Wort an die Peripherie zu

schicken, muss zuerst auf das Bereitschaftssignal der Einheit
gewartet werden. Darauf kann das Datenwort zum peripheren
Register B des PIA geschickt werden. Diese Sequenz ist im Pro-

Programmbeispiel 8.2
Senden eines 16-Bit-Wortes an eine periphere Einheit

* Gibt das in DO enthaltene Wort aus.
OUTW TST.B

BPL.S
MOVE
MOVE

PIBC
OUTW
DO, PIBD
PIBD, PIBD

Periphere Einheit bereit?

Warte bis es soweit ist,
dann gebe das Wort aus.
Losche das Bereitschaftsflag.

175

Anschluss von Peripheriebausteinen

grammbeispiel 8.2 dargestellt. Darin werden als Ausgabewort
die unteren 16 Bit des Datenregisters DO verwendet. Die schein-
bar unwirksame Instruktion MOVE PIBD,PIBD am Ende des
Programms bewirkt mit der Lese-Operation nur das Loschen
des peripheren Bereitschaftsflags in Bit 7 des Kontrollregisters.
Im Beispiel 8.3 ist gezeigt, dass das Ubertragen von mehreren
Datenwortern beinahe so einfach ist wie für eines. Dieses Pro-
gramm schreibt den Inhalt des Registers DO regelmässig in den
Ausgang, indem das Wort in DO nach jedem Transfer inkre-
mentiert wird.

Programmbeispiel 8.3
Wiederholtes Inkrementieren und Ausgabe eines 16-Bit-Wortes
* Das Ausgabewort ist ständig im DO. Es wird nach jedem Transfer inkrementiert.

OUTDO TST.B PIBC Periphere Einheit bereit?
BPL.S OUTDO Warte bis sie soweit ist,
MOVE DO, PIBD dann gib das Wort aus.
ADDQ #1,D0 Erhohe DO um 1.
MOVE PIBD, PIBD Losche das Bereitschaftsflag
BRA.S OUTDO und wiederhole.

Das Programm im Beispiel 8.4 zeigt eine typische Eingaberou-
tine, in der 35 Worte eingelesen und in sich folgenden Speicher-
platzen abgespeichert werden sollen. Der Transfer ist mit indi-
rekter Adressierung und nachträglichem Inkrementieren reali-
siert, damit die Adresse automatisch auf den nächsten Speicher-
platz zeigt. Das Register DO ist absichtlich mit 34 anstatt 35
initialisiert worden, weil die Abschlussinstruktion (DBF DO,
IN35) das Programm erst terminiert, wenn DO den Inhalt -1
und nicht O hat.

Programmbeispiel 8.4

Daten von einer peripheren Einheit lesen und abspeichern
* Dieses Programm liest 35 Datenworte in den Speicher, wobei die jeweilige Speicher-

* adresse in AO steht.

MOVE.L # 34,DO Zähler in DO setzen.
IN35 TST.B PIAC Daten bereit?

BPL.S IN35 Warte bis es soweit ist,
MOVE PIAD,(A0) + dann lese ein Wort.
DBF D0,IN35 Wiederhole für 35 Wörter.

176

9. Unterstutzung fur den MC 68000

Die Leistungsmerkmale eines Mikroprozessors, sein Preis und
seine Verfiigbarkeit sind wichtige Faktoren ftir den Erfolg eines
derartigen Produktes. Nicht weniger wichtig ist jedoch die gan-
ze Unterstiitzung, die ein Anwender vom Hersteller und Liefe-
ranten in Form von Bauelementen, fertigen Karten, leistungsfa-
higen Entwicklungssystemen und geeigneten Softwarepaketen
erwarten kann. Sie allein macht einen Mikroprozessor in der
Anwendung erst «lebensfahig». Es ist Ziel dieses Kapitels, eine
Übersicht der von Motorola erhältlichen Bausteine für den
MC 68000 zu geben. Darüber hinaus gibt es eine ganze Reihe
von Firmen, die den MC 68000 unterstützen, sei es durch

«second source» der Bauteile (z.B. Thomson-Efcis, Mostek,

Signetics/Philips), eigene Peripheriebausteine, Entwicklungssy-
steme (GenRad), Hewlett-Packard, Philips, Tektronix usw.)
oder durch Softwarepakete.

9.1 M 68000 - eine Prozessorfamilie

Mit der Einführung ihres Mikroprozessors MC 68000 im Jahr
1979 folgte Motorola ihrem Konzept der Mikroprozessor-
Familie, wie sie es bereits beim MC 6800 im Jahr 1974 für 8-Bit-
Maschinen getan hatte. Im Bild 9.1 ist die Familie der
M68000er-Mikroprozessoren dargestellt (siehe dazu auch die

Tabelle 9.1).

9.1.1 MC68000

Die Mikroprozessoren MC 68000L4 bis MC 68000L12 un-

terscheiden sich lediglich durch die Frequenz des Taktes. Das
Modell LA arbeitet mit 4MHz, das Modell L12 mit 12 MHz.
Im übrigen entspricht diese Gruppe von 16-Bit-Maschinen
genau der Beschreibung in dieser Artikelfolge.

9.1.2 MC68008

Das Modell MC 68008 stellt eine Version des MC 68000 mit

einem auf 8 Bit reduzierten Datenbus dar. Der MC 68008 ist

vollständig softwarekompatibel mit dem MC 68000, sowohl im

177

Unterstützung für den MC 68000

Baustein- Kurzbe- Beschreibung Eigenschaften, Verwendung

nummer zeichnung

MC.....

68120/ IPC Intelligent Peripheral Controller 21 parallele /O-Leitungen; Seriekanal;

68121 Universeller, intelligenter 128 Byte RAM; 2 KByte ROM (nur 68120);
Peripherie-Steuerbaustein 16-Bit-Zeitgeber; Semaphore-Register; externe

| und interne Interrupts.

68230 PIT Parallel Interface and Timer 24 I/O-Leitungen; 24-Bit-Zeitgeber; Logik fiir
Parallel-Interface und Zeitgeber Interruptvektor-Erzeugung.

68440 DDMA Dual Direct Memory Access Adressierbereich 16 MByte; Datenübertragung
Controller von Speicher zu Speicher, von Speicher zu
Steuerbaustein für direkten Peripherie, von Peripherie zu Speicher; zwei
Speicherzugriff unabhängige Kanäle; Subset des MC68450.

68450 DMAC Direct Memory Access Controller 4 unabhängige Kanäle; Array-Operationen;
Steuerbaustein für direkten zwei vektorisierte Interrupts pro Kanal.

Speicherzugriff
68451 MMU Memory Management Unit 32 Speichersegmente mit variabler Grösse;

Speicherverwaltungseinheit berechnet physikalische Adressen aus logischen
Adressen mittels Funktionscode (FCO...FC2);

schützt Speicherbereiche vor unerlaubten
Zugriffen; unterstützt Multitasking-Betriebs-

systeme.

68452 BAM Bus Arbitration Module Teilt den Bus nach einem Prioritätsschema

| Baustein für die Bussteuerung einem von bis zu 8 Bus-Mastern zu.

68652 MPCC Multi Protocol Communications Unterstützt bitorientierte Protokolle wie
Controller SDLC, ADCCP, HDLC, X.25; Byte-

Steuerbaustein fiir synchronen Steuerungsprotokolle wie DDCMP, BISYNC;
Datenverkehr Datentibertragungsgeschwindigkeit bis

2 MBaud.

68653 PGC Polynominal Generator Checker Erzeugt und prüft Paritätsbit; erzeugt und prüft
Polynomerzeuger und -prüfer Prüfzeichen; für Datenübertragung zwischen

Prozessor und synchronen und asynchronen

Sendern und Empfängern; kompatibel mit

MC68652 und MC68661.
68661 EPCI Enhanced Programmable Sendet parallele Daten in serieller Form und

Communications Interface empfängt unabhängig davon serielle Daten für

Universeller Interfacebaustein parallele Weiterverarbeitung; Baudrate bis

für synchrone und asynchrone 1 MBit/s; 3 verschiedene Baudratensets

Datenübertragung (Modell A, B, C).
68881 FPCP Floating-Point Co-Processor Leistungsfahiger Fliesskomma-Coprozessor

Coprozessor fiir Fliesskomma- mit der Komplexität des 32-Bit-Mikro-
arithmetik prozessors MC68020; acht 80-Bit-Register für

Daten in Fliesskommadarstellung; umfasst

den vorgeschlagenen IEEE-Standard und geht

weit über diesen hinaus.

Tabelle 9.1
Einige neue Peripheriebausteine, speziell entwickelt für die Familie der Mikroprozessoren MC 68000

178

Unterstiitzung fiir den MC 68 000

68 881 FPCP

68020

32-BIT-68000

IMDC

68450) DMAC

68200) 16-BIT MCU
68 008)

@

Reduzierter Bus 68000

MMU 68 901 MFP

| '

16-BIT-yuP

68120) IPC

NO ROM

1979 1980 ~ 1981 1982 1983

Bild 9.1
Die 68000-Familie (siehe dazu auch Tabelle 9.1)

68 230) PI/T 68 430) DMAI 68440) DDMA

BAM

Quellencode wie auch im Objektcode. Er wird dadurch zur
kostengünstigen Alternative zu grösseren Systemen, ohne auf
die Vorteile eines ausgereiften 16/32-Bit-Konzepts zu verzich-

ten.

9.1.3 MC68010

Mit der Bezeichnung «Virtual Memory Processor» stellt der
MC 68010 eine leistungsfähige Erweiterung des Grundmodells

MC 68000 dar. Die Erweiterung umfasst im wesentlichen drei
Punkte: |
- Der Prozessor speichert bei einem auftretenden Busfehlersi-

gnal (BERR) automatisch den vollständigen Zustand ab.
Nach Beheben des Fehlers kann der Zustand wieder automa-

tisch hergestellt werden.
- Der MC 68010 enthält Mechanismen zum Einsatz als virtu-

eller Prozessor in virtuellem Speicher und übernimmt alle
Massnahmen, die diese Technik erfordert.

179

Unterstützung für den MC 68000

— Verzögerte Busfehlersignale können verarbeitet werden.
Als Anwendung dieser Eigenschaft steht die Fehlersuch- und
-korrekturtechnik (EDAC, error detection and correction)
im Vordergrund, die mit dem MC 68010 so gehandhabt
wird, dass die Ausführungsgeschwindigkeit nicht beein-
trächtigt ist, falls kein Fehler auftritt.

9.1.4 MC68020

Der MC 68020 steht kurz vor seiner Einführung und ist als logi-
sche Folge des 16/32-Bit-Konzeptes der Familie ein wahrer 32-
Bit-Prozessor. Die Möglichkeiten des MC 68000 sind hier noch
erweitert worden, so durch einige leistungsfähige Befehle, durch
höhere Ausführungsgeschwindigkeiten, mehr Adressierungsar-
ten, zusätzliche Betriebssystem-Unterstützungsmechanismen,
Cache-Speicher und neue Bustechniken. Ein Fliesskomma-
Coprozessor MC 68881 mit acht 80-Bit-Fliesskomma-Daten-
registern macht mit dem MC 68020 eine aussergewöhnlich lei-

stungsfähige Prozessorgruppe. Der Coprozessor MC 68881
erfüllt die Bedingungen der von der IEEE vorgeschlagenen
Norm und geht weit darüber hinaus.

9.2 Peripheriebausteine |
9.2.1 Spezielle Bausteine der 68000er-Familie

Peripheriebausteine, die speziell für die Mikroprozessoren aus
der Familie 68000 entwickelt wurden, sind in der Tabelle 9.1
aufgeführt.

9.2.2 Weitere geeignete Bausteine

Neben den in Tabelle 9.1 aufgeführten speziellen Peripheriebau-
steinen sind weitere Interface-ICs erhältlich, die im Zusammen-
hang mit dem 8-Bit-Mikrocomputer MC 6800 eingeführt wur-
den. Ihr Anschluss an den MC 68000 erfolgt so, wie dies grund-
sätzlich im Kapitel 8.2 für den Peripheriebaustein PIA (MC
6821) beschrieben wurde. Die Tabelle 9.2 führt eine Reihe sol-
cher Komponenten auf.

9.3 Lehrsystem

Für den Einsatz in Schulen, Instituten und Entwicklungslabora-
torien wird ein Lehrsystem auf einer Karte mit der Bezeichnung
.MEX 68KECB angeboten. Es stützt sich auf den MC 68000,
beinhaltet 32 KByte RAM, ein Monitorprogramm in zwei
ROMs zu je 8 KByte, zwei serielle Schnittstellen RS 232 mit

Baudratensteuerung (110 bis 9600 Baud), eine Centronics-
Druckerschnittstelle (Bild 9.2).

180

Unterstützung für den MC 68 000

Baustein- Beschreibung Bemerkungen

nummer |

MC 6821 Peripheral Interface Adapter (PIA) 16 1/O-Leitungen; alle einzeln in der Richtung
Universeller Parallel-Interface- programmierbar; 4 Handshake-Leitungen.

baustein
MC 6822 Industrial Interface Adapter (ITA) Wie 6821, jedoch dank «Open drain»-

Interfacebaustein fiir die industrielle Ausgängen bis 18V belastbar und damit auch
Umgebung CMOS-kompatibel bei 15V.

MC 6828 Priority Interrupt Controller (PIC) 8 Interrupts; erzeugt Vektoradressen;

Steuerbaustein für Interrupt- berücksichtigt Prioritäten.
prioritäten |

MC 6835 CRT-Controller (CRTC) Alphanumerische, halbgrafische und grafische

Steuerbaustein für Bildschirme Betriebsarten; unterstützt zwei verschiedene
Bildschirmformate.

MC 6840 Programmable Timer (PTM) 3 unabhängige Zeitgeber mit je 16 Bit;
Zeitgeberbaustein für Rechteckgeneratoren, Zeitverzögerungen,

Einzelimpulse, Pulsbreitenmodulation,
Frequenzvergleich.

MC 6847 Video Display Generator (VDG)
MC 6850 Asynchronous Communications Überträgt bis 1 MBit/s; für 8- und 9-Bit-

Interface Adapter (ACIA) Übertragung; zweifach gepufferte Daten;
Asynchroner Datenübertragungs- mit Steuerfunktionen für Modems.
baustein(UART)

MC 6852 Synchronous Serial Data Adapter Für bidirektionalen, synchronen Datenverkehr;
(SSDA) bis 1,5 MHz Taktfrequenz; 3 Byte FIFO-
Synchroner Datenübertragungs- Speicher beim Sender und Empfänger;
baustein Modemfunktionen.

MC 6854 Advanced Data Link Controller Interface zwischen Prozessor und Daten-
(ADLC) kandlen der Standards ADCCP, HDLC,

SDLC.
MC 6859 Data Security Device Mit kryptografischem Algorithmus nach

Baustein für Datenschutz USA -Standard DES.
MC 6860 Digital Modem Erzeugt Modulation, Demodulation von

seriellen Signalen für FSK (frequency shift
keying) bis 600 Bit/s; kompatibel mit ACIA

| (MC 6850).
MC 6862 Digital Modulator Für 1200/2400 Bit/s.
MC 68488 General Purpose Interface Adapter Ermöglicht Listener- und Talker-Betrieb mit

Schnittstelle zu IEC-Bus allen Protokollvorschriften des IEC-Bus
(IEEE 488, GPIB).

Tabelle 9.2
Peripheriebausteine aus der Familie des 8-Bit-Mikroprozessors MC 6800, auch geeignet für den MC 68000

181

Fo Er re

Pe eS TS ATES

Bild 9.2
Das Lehrsystem
MEX68KECB ist ein

ideales Hilfsmittel fur den
Einstieg in das Arbeiten

mit dem MC 68000

Unterstützung für den MC 68 000

Mit Hilfe des Monitorprogramms können Programme mit

einem einfachen Zeilenassembler entwickelt und ausgetestet
werden. Programme, die auf einem grösseren System mittels
«Crosssoftware» entwickelt wurden, lassen sich dank eingebau-
tem Ladeprogramm bequem in das Lehrsystem umladen.
Das Monitorprogramm verwendet die gleiche Syntax wie
«MACSbug», «VERSAbug» und «VMEbug», den Untersttit-

zungsprogrammen, wie sie für die grösseren Varianten von Ent-
wicklungssystemen erhältlich sind.

9.4 VME-Bus

Auf der Basis des VERSA-Bussystems, das eigens für grössere
Anwendungen mit dem MC 68000 geschaffen wurde und für
das eine ganze Familie von Karten mit der Bezeichnung

Nummer Beschreibung

MVME 101 Einplatinencomputer (MC 68000) mit seriellen
und parallelen I/O-Leitungen

MVME 110-1 Einplatinencomputer (MC 68000) mit
I/O-Kanalschnittstelle

MVME200 Speicherkarte, 64 KByte RAM mit Paritat
MVME 201 Speicherkarte, 256 KByte RAM mit Parität
MVME210 Speicherkarte, 128 KByte RAM/ROM
MVME300 Controllerkarte für den GPIB (IEEE 488)
MVME310 Universeller Peripheriecontroller
MVME315 Diskcontroller zu SASI-Adapter (Shugart)
MVME400 Zweifache Serieschnittstelle RS 232
MVME410 Zweifache Parallelschnittstelle (je 16 Bit)
MVME420 Peripherieadapter (SASI von Shugart)
MVME435 Magnetbandadapter ftir 9 Spuren
MVME 600 8/16 Kanäle mit analogem Eingang

(12-Bit-Umsetzer)
MVME 605 4K.anäle mit analogen Ausgängen

(12-Bit-Umsetzer)
MVME 610 Optokoppler-Eingänge für 120/240 V~
MVME615 Optokoppler-Ausgänge fiir 120/240 V~ mit

Nulldurchgangsdetektor Ä
MVME616 = Optokoppler-Ausgiange fiir 120/240 V~
MVME620 Optokoppler-Eingänge für 30 V-
MVME 625 Optokoppler-Ausgänge für 30 V-
MVME920 VME-Busplatine für 20 Einschübe
MVME921 VME-Busplatine ftir 9 Einschübe
MVME 922 N/O-Kanal-Busplatine für 5 Einschübe
MVME 941 Gehäuse für 9 VME-Bus- und I/O-Kanalkarten

Tabelle 9.3 _ Lieferbare VME-Bus-Karten

183

Unterstiitzung fiir den MC 68000

«VERSAmodule» existiert, entstand in Zusammenarbeit mit

den Firmen Mostek, Signetics/Philips und Thomson/Efcis das
Konzept des VME-Bus. Es handelt sich dabei um ein flexibles
Bussystem ftir Europakarten, das speziell den Bediirfnissen des
industriellen Bereichs (Modularität) genügt. Der VME-Bus
zeichnet sich unter anderem durch folgende Eigenschaften aus:

- Geeignet für Multiprozessorsysteme;
— unterstützt Mikroprozessoren bis 32 Bit;
— Datendurchsatz bis 20 MByte/s;
— asynchrones, multiplexfreies Busprotokoll;
— Busbelegung prioritätsgesteuert (4 Ebenen);
— Interrupt-Verarbeitung zentral oder verteilt (7 Ebenen);
— Einfach-Europakarten (100mm x 160mm) für Peripherie-

Schnittstellen;
— Doppel-Europakarten (233mm x 160mm) fir Prozessor-,

Speicher- und komplexe Funktionen.
Die oben genannten Firmen haben sich zu diesem Standardsy-
stem verpflichtet und sind daran, eine ganze Reihe von Karten
fiir dieses Buskonzept zu entwickeln und anzubieten. Eine
Übersicht der bereits von Motorola erhältlichen Karten gibt die
Tabelle 9.3. |

9.5 Entwicklungssysteme

Neben dem in Kapitel 9.3 erwähnten Lehrsystem bietet Moto-
rola ein leistungsfähiges Entwicklungssystem mit modularem
Aufbau, «EXORmacs», an, das durch einen Hardware-Ent-
wicklungszusatz HDS 400 verbunden werden kann. Der
Zusatz wirkt dann in einem System als Echtzeitemulator.
Für die Beschreibung dieser Systeme wende man sich an die
Lieferanten, ebenso für das umfangreiche Angebot an Entwick-
lungssoftware.

184

Anhang

Anhang

Im folgenden werden einige nützliche Angaben in Tabellenform

aufgeführt.

Anhang A

MSD 0 1 2 3 4 5 6 7
LSD 000 001 010 011 100 101 110 ll

0 0000 NUL DLE SP 0 @ P N p
1 0001 SOH DEI { l A Q a q
2 0010 STX DC2 ” 2 B R b r
3 0011 ETX DC3 # 3 C S Cc 5
4 0100 EOT DC4 5 4 D T d t
5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V f v
7 0111 BEL ETB / 7 G W g w
8 1000 BS CAN (8 H X h X
9 1001 HT EM) 9 I Y i y
A 1010 LF SUB * : J Z j z

B 1011 vr ESC + ; K [k {
C 1100 FF FS ; < L N | |
D 1101 CR GS - = M] m }
E 1110 SO RS . > N A n ~
F hil Si US / ? 0 — 0 DEL

Tabelle A.1

Der ASCII-Zeichensatz ist ein 7-Bit-Code; ASCII steht fur

«American Standard Code for Information Interchange».

MSD =most significant digit, hoOherwertige Stelle;
LSD =least significant digit, tieferwertige Stelle.

Hexadezimal-Kolonne

6 5 4 3 2 1

HEX | DEC |HEX I DEC IHEX | DEC |HEX | DEC | HEX | DEC | HEX | DEC

0 0 0 0 0 0 0 0 0 0 0 0
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 4
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 | 4 262,144 | 4 16,384 | 4 1.024 | 4 64 | 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 | 7 458,752 | 7 28,672 | 7 1,792 | 7 112 | 7 7
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 | A 655,360 | A 40,960 | A 2560 | A 160 | A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 Cc 786,432 C 49,152 C 3,072 Cc 192 C 12
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

7654 3210 7654 3210 7654 3210

Byte Byte Byte

Tabelle A.2

Umrechnungstabelle hexadezimal/dezimal

185

Anhang

2n n 2° = 16°
256 8 2* = 16'
512 9 ° = 162

1024 10 212 = 16?
2 048 11 18 = 16!
4096 12 1 4@8
8 192 13 Su = er

16 384 14 28 = 46)
32 768 15 =
65 536 16 ” = 16°

131 072 17 23° = 16°
262 144 18 940 = 1619

524 288 19 a= 16"
1 048 576 20 pat = 1617
2 097 152 21 a= 16"
4 194 304 22 nn .
8 388 608 23 = 16

16 777 216 24 2° = 16'5

16" n

1 0
16 1

256 2
4.096 3

65 536 4
1 048 576 5

16 777 216 6
268 435 456 7

4 294 967 296 8
68 719 476 736 9

1 099 511 627 776 10
17 592 186 044 416 11

281 474 976 710 656 12
4 503 599 627 370 496 13

72 057 594 037 927 936 14
1 152 921 504 606 846 976 15

AnhangB

Ausführungszeiten der Befehle des MC 68000

Dieser Anhang enthält Tabellen, die die Befehlsausführungszeit
als Anzahl externer Taktintervalle aufführen. Um die eigent-
liche Ausführungszeit für einen speziellen Befehl zu finden,
muss der Wert aus der Tabelle mit dem Taktintervall des Mikro-
prozessors multipliziert werden.

Wenn Sie zum Beispiel einen 8-MHz-68000 benutzen, dann
multiplizieren Sie den Wert mit 125 ns.
Die Zeitangaben in diesen Tabellen enthalten auch die Anzahl
der «Bus-Lese-und-Schreib-Zyklen» fiir jeden Befehl. Diese
Information ist in Klammern gesetzt und folgt der Anzahl Takt-

186

Tabelle A.3
Potenzen von 2

Tabelle A.4

Potenzen von 16

Anhang

Tabelle B.1
Zeit fur die Berechnung
der effektiven Adresse

intervalle. Sie wird in der Form (L/S) dargestellt, wobei «L» die
Anzahl von Lesezyklen und «S» die Anzahl von Schreibzyklen

bedeutet.

Adressierart

Register
Dn Datenregister direkt
An Adressregister direkt

Speicher
An Adressregister indirekt
An + Adressregister indirekt mit Nachinkrementierung

An - Adressregister indirekt mit Vordekrementierung
An (d) Adressregister indirekt mit Verschiebung

An (d,ix)* Adressregister indirekt mit Index

Xxx. W Absolut kurz

xxx. L Absolut lang
PC (d) Programmzahler mit Verschiebung

PC (d,ix)* Programmzähler mit Index
= XXX unmittelbar

* Die Lange des Indexregisters (ix) beeinflusst die Ausfuhrungszeit nicht.

Ziel

Quelle Dn An An@ An@+ | An@- | An@(d) | Aneid, if xxxW | xxx.L

Dn 4(1/0) 4(1/0) 9(1/1) 9(1/1) am) | 13(2/1) | 45(21) | 13(2/1) | 17(3/1)
An 4(1/0) 4(1/0) 9(1/1) 9(1/1) 1) | 1a) | 1521) | 49¢2/1) | 1781)
An@ 8(2/0) ezıo) | 13(2/1) | 13(2/1) | 1a) | az) | aaa) | 1713/1) | 21(4/1)

An@+ 8(2/0) (2/0) | 13(2/1) | 13(2/1) | ar) | 17(8/1) | 19°3/1) | 47°31) | 2174/1)
An@- 10270) | 1210) | 45(2/1)] 15(2/1) | 15/1) | 19°31) | 2103/1) | 19(3/1) | 23(4/1)
An@(d) 12(3/0) | 12(3/0) | 1781) | 15(3/1) | az) | 21a) | 2%Xar1) | 2904/1) | 15(5/1)

AN@(d, ix)* 14(3/0) | 14(3/0) | 19(3/1) | 419(3/1) | 19(3/1) | 23(4/1) | 25(4/1) | 23471) | 27(5/1)
xxx.W 42(3/0) | 12(3/0) | 17(3/1) | 17(3/1) | 47(3/1) | 29¢4/1) | 2304/1) | 24(4/1) | 25(5/1)
xxx.L 16(4/0) | 164410) | 24(4/1) | 21a) | 21a) | 25511) | 27(5/1) | 25(5/1) | 29(6/1)

PC@(d) 12(3/0) | 12(3/0) | 17/1) | 17(3/1) | az) | 2974/1) | 28(471) | 24(471) | 25(5/1)
PC@(d, ix)* 14(3/0) } 14(3/0) | 19(3/1) | 1973/1) | 19(3/1) | 23(4/1) | 25(4/1) | 23(4/1) | 27(5/1)
XXX 8(2/0) 8210) | 4132/1) | 1321) | 13(2/1) | 17(3/1) | ar) | 17°31) | 2174/1)

Tabelle B.2 —

Taktintervalle für MOVE (Byte und Wort)
* Die Länge des Indexregisters (ix) beeinflusst die Ausführungszeit nicht.

187

Anhang

ziel
Quelle Dn An An@ An@+ An@- An@(d) }| An@(d, ix) | xxx.W xxx.L

Dn 4(1/0) 41/0) | 14172) | 14(1/2) | 160112) | 18272) | 200212) | 18212) | 22(312)
An 4(1/0) 41/0) | 1412) | 14112) | 160112) | 18(2/2) | 20(2/2) | 18(2/2) | 22(3/2)
An® 12(3/0) | 12(3/0) | 22(3/2) | 22312) | 221312) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2)

An@+ 12(3/0) | 12(3/0) | 22(3/2) | 22(3/2) | 22(3/2) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2)
An@- 14(3/0) | 14(3/0) | 24(3/2) | 24(3/2) | 24(3/2) | 28(4/2) | 30(4/2) | 28(4/2) | 32(5/2)
An@(d) 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 35(5/2) | 30(5/2) | 34(6/2)

AN@(d, Ix)* 18(4/0) | 18(4/0) | 28(4/2) | 28(4/2) | 28(4/2) | 32(5/2) | 34(5/2) | 32(6/2) | 36(6/2)
xxx.W 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) | 34(6/2)
xxx.L 20(5/0) | 20(5/0) | 30(5/2) | 304512) | 30(5/2) | 34(6/2) | 36(6/2) | 34(6/2) | 38(7/2)

PC@(d) 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) | 34(6/2)
PC@(d, Ix)* 18(4/0) | 18(4/0) | 28(4/2) | 28(4/2) | 28(4/2) | 32(5/2) | 34(5/2) | 32(5/2) | 36(6/2)
#XXX 12(3/0) | 12(3/0) | 22(3/2) | 22(3/2) | 22(3/2) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2)

Tabelle B.3
Taktintervalle MOVE (Doppelwort)
* Die Lange des Indexregisters (ix) beeinflusst die Ausführungszeit nicht.

Befehl Grösse op <ea>, An op <ea>, Dn op Dn,<M>

ADD Byte, Wort 8(1/0)+ 4(1/0)+ 9(1/1)+
Doppelwort 6(1/0)+** 6(1/0)+** 14(1/2)+

AND Byte, Wort _ 4(1/0)+ 9(1/1)+

Doppelwort — 6(1/0)+** 14(1/2)+
CMP Byte, Wort 6(1/0)+ 4(1/0)+ —

Doppelwort 6(1/0)+ 6(1/0)+ -

DIVS — - 158(1/0)+* _

DIVU — _ 140(1/0)+* _

EOR Byte, Wort ~ 4110) *** 9(1/1)+

Doppelwort _ 8(1/0)*** 14(1/2)+

MULS - - 70(1/0)+* _

MULU — - 70(1/0)+* _

OR Byte, Wort _ 4(1/0)+ 9(1/1)+

Doppelwort _ 6(1/0)+** 14(1/2)+

SUB Byte, Wort 8(1/0)+ 4(1/0)+ 9(1/1)+

Doppelwort 6(1/0)+** 6(1/0)+** 14(1/2)+

Tabelle B.4
Taktintervalle fur arithmetische, logische und Vergleichsbefehle

+ Addiere Zeit fiir die Berechnung der effektiven Adresse * Zeigt Maximalwert. ** Total 8 Taktintervalle fiir Befehle, wenn die

effektive Adresse «Registerdirekt» ist. *** Die einzige verfiigbare Adressierart ist «Datenregister direkt».

188

Anhang

Befehl Grösse op #, Dn op #,M op #, SR

ADDI Byte, Wort 8(2/0) 13(2/1)+ _

Donpelwort 16(3/0) 22(3/2)+ _

ADDQ Byte, Wort 4(1/0) 9(1/1)+ _

Doppelwort 8(1/0) 14(1/2)+ _

ANDI Byte, Wort 8(2/0) 13(2/1)+ 20(3/0)

Doppelwort 16(3/0) 22(3/2)+ _

CMPI Byte, Wort 8(2/0) 8(2/0)+ _

Doppelwort 14(3/0) 12(3/0)+ _

EORI Byte, Wort 8(2/0) 43(2/1)+ 20(3/0)
Doppelwort 16(3/0) 22(3/2)+ _

MOVEQ Doppelwort 4(1/0) _ _

ORI Byte, Wort 8(2/0) 13(2/1)+ 20(3/0)

Doppelwort 16(3/0) 22(3/2)+ _
SUBI Byte, Wort 8(2/0) 13(2/1)+ _

Doppelwort 16(3/0) 22(3/2)+ _ j

SUBQ Byte, Wor 4(1/0) 9(1/1)+ _

Doppelwort 8(1/0) 14(1/2)+ =

Tabelle B.5

Taktintervalle für «unmittelbar»-Befehle
+ Addiere Zeit für die Berechnung der eff. Adresse.

Befehl Grösse Register Speicher

CLR Byte, Wort 4(1/0) 9(1/1)+

Doppelwort 6(1/0) 14(1/2)+

NBCD Byte 6(1/0) 9(1/1)+

NEG Byte, Wort 4(1/0) 9(1/1)+

Doppelwort 6(1/0) 14(1/2)+

NEGX Byte, Wort 4(1/0) 9(1/1)+

Dopvelwort 6(1/0) 14(1/2)+

NOT Byte, Wort 4(1/0) 9(1/1)+

Doppelwort 6(1/0) 14(1/2)+

Scc Byte, n. erf. 4(1/0) 9(1/1)+

Byte, erftillt 6(1/0) 9(1/1)+

TAS Byte 4(1/0) 44(4/1)+

TST Byte, Wort 4(1/0) 4(1/0)+

Doppelwort 4(1/0) 4(1/0)+

Tabelle B.6
Taktintervalle fur «Einfachoperanden-Befehle»
+ Addiere Zeit fiir Berechnung der effektiven Adresse.

189

Anhang

Befehl Grösse Register Speicher
ASR, ASL Byte, Wort 6 + 2n(1/0) 9(1/1)+

‘Doppelwort 8 + 2n(1/0) =

LSR, LSL Byte, Wort 6 + 2n(1/0) 9(1/1)+

Doppelwort 8 + 2n(1/0) -

ROR, ROL Byte, Wort 6 + 2n(1/0) 9(1/1)+

Doppelwort 8 + 2n(1/0) _

ROXR, ROXL Byte, Wort 6 + 2n(1/0) 9(1/1)+

Doppelwort 8 + 2n(1/0) -

Tabelle B.7
Taktintervalle fur Schiebe- und Rotierbefehle
+ Addiere Zeit fiir Berechnung der effektiven Adresse.

2. Dynamisch Statisch
Befehl Grosse Register| Speicher| Register] Speicher

BCHG | Byte — 9(1/1)+ — 43(2/1)+

Doppelwort 8(1/0)" - 12(2/0)" -

BCLR Byte = 9(1/1)+ - 43(2/1)+

Dopnelwort 10(1/0)* - 14(2/0)° -

BSET Byte - 9(1/1)+ - 13(2/1)+

Doppelwort 8(1/0)* _ 12(2/0)* —

BTST Byte _ 4(1/0)+ _ 8(2/0)+

Doppelwort 6(1/0) — 10(2/0) —

Tabelle B.8
Taktintervalle für Bitmanipulationsbefehle
+ Addiere Zeit für die Berechnung der effektiven Adresse * Zeigt Maximalwert.

Taktintervalle für Ausnahmeverarbeitung

* Für die Unterbruchquittung werden vier Taktintervalle angenommen.

Ausnahme Intervalle |

Adressfehler 57(417)

Busfehler 57(417)

Unterbruch 47(5/3)*

Illegaler Befehl 37(413)
Privilegierter Bef. 37(4/3)

Trace 37(4/3)

Tabelle B.9

Anhang

Trap odey Trap oder
Verschie-| Verzweig.| Verzweig.

Befehl | bung ausgef. n. ausgef.

Bec Byte. I 10(1/0) 8(1/0)

Wort 10(1/0) 12(2/0)

BRA Byte 10(1/0) —

Wort 10(1/0) _

BSR Byte 20(2/2) _

Wort 20(2/2) _

DBce richtig in 12(210)

. falsch 10(2/0) 14(3/0
Tabelle B.10 CHK er

Taktintervalle für Verzweigung _ 43(9/3)+ 8(1/0)+
und Trap-Befehl TRAP _ 37(4/3) ~
+ Addiere Zeit fiir die Berechnung der TRAPV _ 37(513) 4(1/0)
effektiven Adresse * Zeigt Maximalwert.

Befehl |Grösse An@ An@+ An@- An@(d) | An@{d, Ix)*} xxx.W ULL PC@(d) | PC@(d, Ix)*

JMP - 8(2/0) _ - 10(2/0) 14(3/0) 10(2/0) 12(3/0) 10(2/0) 14(3/0)

JSR _ 18(2/2) - _ 201212) 24(2/2) 20(2/2) 22(3/2) 20(2/2) 24(2/2)

LEA - 4(1/0) - _ 8(2/0) 12(2/0) 8(2/0) 12(3/0) 8(2/0) 12(2/0)

PEA - 14(1/2) - _ 18(2/2) 22(2/2) 18(2/2) 22(3/2) 18(2/2) 22(2/2)

12+4n | 12+4n ~ 16+4n | 18+4n | 16+4n | 20+4n | 16+4n | 18+4n
MOvVEM |Wort | gino] @+no - (4+n0) | (4+ni0)| (4+n/0)} (6+no)| (+) | (4+nio)

m-R |D'w. 12+8n | 12+8n _ 16+8n | 18+8n | 16+8n | 20+8n | 16+8n | 18+8n
(3+2n/0) | (3 + 2n/0) _ (4 + 2n/0) | (4+2n/0) | (4+2n/0) | (5+2n/0) | (4+2ni0) | (4+ 2n/0)

8+5n - 8+5n 12+ 5n 14+5n 12+ 5n 16+ 5n - ~
movem |WOrt (2in) _ (2in) (3/n) (3/n) (3in) (An) - -

)! 8 + 10n - 8+10n | 12+10n | 14+10n | 12+10n | 16+10n - -
a-M |D W. (2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - _

Tabelle B.11

Taktintervalle fur JMP, JSR, LEA, PEA und MOVEM-Befehle
n ist die Anzahl der verschobenen Register * Die Länge des Indexregisters (ix) beeinflusst die Befehlsausführungszeit nicht.

Befenl Grösse op Dn, Dn opM,M

ADDX Byte Wort 4(1/0) 19(3/1)

Doppelw. 8(1/0) 32(5/2)

CMPM Byte Wort — 12(3/0)

Doppelw. ~ 20(5/0)

B ort SUBX yte W 4(1/0) 19(3/1)

Doppelw. 8(1/0) 32(5/2)

ABCD Byte 6(1/0) 19(3/1)

Taktintervalle fur Befehle SBCD Byte 6(1/0) 19(3/1) .

mit mehrfacher Genauigkeit

191

Anhang

Befehle Grösse |Register Speicher Reg. Speich.| Syeicher Reg.

MOVE von SR - 6(1/0) 9(1/1)+ _ _

MOVE zu CCR _ 12(2/0) 12(2/0)+ _ _

MOVE zu SR _ 12(2/0) 12(2/0)+ _ _

MOVEP Wort = - 18(2/2) 16(4/0)
N'wort _ _ 28(2/4) 24(6/0)

EXG _ 6(1/0) _ _ _

Wort 4(1/0) _ _ _

EXT D' wort 4(1/0) _ _ _

LINX - 18(2/2) _ ~ _

MOVE von USP _ 4(1/0) _ _ _

MOVE zu USP _ 4(1/0) _ - _

NOP - 4(1/0) _ _ _

RESET - 132(1/0) _ _ _

RTE _ 20(5/0) _ _ _

RTR _ 20(5/0) _ _ _

RTS - 16(4/0) _ _ _

STOP - 4(0/0) _ _ _

SWAP - 4(1/0) _ _ _

UNLK _ 12(3/0) _ _ _

Tabelle B.13
Taktintervalle weiterer Befehle
+ addiere Zeit für die Berechnung der effektiven Adresse

Anhang C

Der Befehlssatz des MC 68000

Dieser Anhang enthält drei zusammenfassende Tabellen.
Tabelle C.1 enthält die Adressierarten des MC 68000 und
gruppiert sie als Daten, Speicher, Steuerung oder änderbare
Adressierarten. Sie zeigt auch die Assemblersyntax für jede Art.
Die gleiche Tabelle ist im Kapitel 3 als Tabelle 3.4 vorhanden
und ist hier zum schnellen Nachschlagen noch einmal wieder-

gegeben.

Tabelle C.2 enthält eine Zusammenstellung der Bedingungen,
die durch die Bcc-, DBcc- und Scc-Befehle geprüft werden kön-
nen. Diese Bedingungen erschienen bereits als Tabelle 3.15 in

Kapitel 3.

192

Anhang

Adressierungsarten Adressierungskategorien Assembler-
Daten Speicher Steue- veränder- syntax

rung bar

Datenregister direkt X X Dn
Adressregister direkt X An
Register indirekt X X X X (An)
Register indirekt X X x (An)+
nachinkrementiert
Register indirekt X xX X -(An)

vordekrementiert
Register indirekt mit Verschiebung X X X X d(An)
Register indirekt mit Index X X x X d(An.Ri)
Absolut kurz X X X X XXXX
Absolut lang X X X X XXXXXXXX
Relativ mit Verschiebung X X xX d
Relativ mit Index X X X d(Ri)
Unmittelbar X X —XXXX

Tabelle C.1 |
Effektive Adressierungsarten

Anhang «cc» Bedingung Trifft zu wenn

EQ Gleich Z=1
NE Nicht gleich Z=0
MI Minus N=1
PL Plus N=0
* GT Grosser als Z@(N®V)=0
*LT Kleiner als NOV=1
*GE Grosser oder gleich N®V=0
*LE Kleiner oder gleich Z+(N@®V)=1
HI Hoher als C@Z=0
LS tiefer oder gleich C+Z=1
CS Ubertrag gesetzt C=1

CC Übertrag gelöscht C=0
*VS Uberlauf V=1
*VC Kein Uberlauf V=0

Tabelle C.2 T Immer wahr
Bedingte Befehle E Immer falsch

Symbole: &= UND

+ = ODER * Zweierkomplement-Arithmetik
® = EXKLUSIVODER |

Die Tabelle C.3 enthalt den Befehlssatz des MC 68000 in alpha-
betischer Ordnung. Sie ist eine Zusammenstellung der im Kapi-
tel 3 vermittelten Information über die Befehle. Zum besseren
Aufsuchen ist hier das Befehlsrepertoire in alphabetischer Ord-

nung nochmals gedruckt.

193

Anhang

Mnemonik Assembler Syntax Operandengrösse Erlaubte Adressierungsarten Bedingungscode

Quelle Ziel XNZVC

ABCD ABCD Dy,Dx 8 Dn Dn * U* U*
ABCD -(Ay),-(Ax) 8 -(An) -(An) * U* U*

ADD ADD <ea>,Dn 8, 16, 32 Alle (1) Dn * * ee *
ADD Dn, <ea> 8, 16,32 Dn änderbar ee nr

ADDA ADD <ea>,An 16, 32 Alle An -~- - - - -

ADDI ADDI #d,<ea> 8, 16,32 #d Daten änderbar ko *

ADDQ ADDQ #d,<ea> 8, 16, 32 #d(2) änderbar (1) ee

ADDX ADDX Dy,Dx 8, 16, 32 Dn Dn + ee KF
ADDX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) kr

AND AND <ea>,Dn 8, 16, 32 Daten Dn - * * 90 0
AND Dn,<ea> 8, 16, 32 Dn anderbar - * * 0 0

ANDI ANDI #d,<ea> 8, 16, 32 #d Daten änderbar ~ * * Q 0
ANDI #d,SR (3) 8,16 #d SR Er

ASL ASL Dx,Dy 8,16, 32 Dn (4) Dn +k kk
ASL #d,Dn 8, 16, 32 #-d (5) Dn KR
ASL <ea> 16 Speicher änderbar se 8

ASR ASR Dx,Dy 8, 16, 32 Dn(4) Dn + ek OF
ASR #d,Dn 8, 16, 32 #d (5) Dn ao
ASR <ea> 16 Speicher änderbar +e ee

Bcc Bcc <label> 8, 16 Wenn cc, dann PC+d>PC ~ - - = -

BCHG BCHG Dn,<ea> 8, 32 Dn Daten änderbar -~ —- * ~ KH
BCHG #d,<ea> 8, 32 Ad Daten änderbar - - 8. -

BCLR BCLR Dn,<ea> 8,32 Dn Daten änderbar ~ - * = -
BCLR #d,<ea> 8, 32 #d Daten änderbar ~- * = -

BRA BRA <label> 8, 16 PC+d>PC ~ = -

BSET BSET Dn,<ea> 8, 32 Dn Daten änderbar - - * = -
BSET #d,<ea> 8, 32 #d Daten änderbar -~ =- * 0. -

BSR BSR <label> 8, 16 PC>-(SP);PC+d>PC Dn ~ - + = -

BTST BTST Dn,<ea> 8,32 Dn Ausgenommen unmittelbare Daten - -* - -
BTST #d,<ea> 8,32 #d Ausgenommen unmittelbare Daten un —-

CHK CHK <ea>,Dn 16 Wenn Dn <0 oder Dn> Daten ~ * UUU
(ea), dann TRAP

CLR CLR <ea> 8, 16,32 Daten anderbar - 0100

CMP CMP <ea>,Dn 8,16, 32 Alle (1) Dn - rn x

CMPA CMPA <ea>,An 16, 32 Alle An ~ * * * *

CMPI CMPI #d,<ea> 8, 16, 32 #d Daten änderbar -~ * * * *

CMPM CMPM (Ay)+,(Ax)+ 8, 16, 32 (An)+ (An)+ _ * * KX

DBcc DBcc Dn, <label> 16 Wenn cc, dann Dn-1>Dn; - = = =
wenn Dn=-1, dann PC+d-PC

DIVS DIVS <ea>,Dn 16 Daten Dn - * * * Q

DIVU DIVU <ea>,Dn 16 Daten Dn - * * * 9

EOR EOR Dn,<ea> 8, 16,32 Dn Daten änderbar - * * Q 0

EORI EORI #d,<ea> 8, 16, 32 #d Daten änderbar - * * 0 0
EORI #d,SR (3) 8,16 #d SR + * * * *

EXG EXG Rx,Ry 32 Dn oder An Dn oder An - - - - =

EXT EXT Dn 16, 32 Dn - * * 0 0

JMP JMP <ea> <ea>>PC Kontrolle - - - - -

JSR JSR <ea> PC>-(SP); <ea>>PC Kontrolle - - = =

LEA LEA <ea>,An 32 Kontrolle An =... -

LINK LINK An, #d An - 2.020 -

LSL LSL Dx,Dy 8, 16, 32 _Dn(4) Dn erg %*
LSL #d,Dn 8, 16, 32 #-d(5) Dn * * * QO *
LSL <ea> 16 Speicher änderbar + * * 0 *

LSR LSR Dx,Dy 8, 16, 32 Dn (4) Dn * Oo * 0 *
LSR #d,Dn 8, 16, 32 #-d (5) Dn * 0 * O *
LSR <ea> 16 Speicher änderbar * 0 * 0 *

MOVE MOVE ea,ea 8, 16, 32 Alle (1) Daten änderbar \ - * * 0 0
MOVE ea, CCR 16 Daten CCR + F Fe *
MOVE ea, SR (6) 16 Daten SR * oe eK *
MOVE SR, ea 16 SR Daten änderbar - .-.-.- -
MOVE USP, An (6) 32 USP An - = - -
MOVE An, USP (6) 32 An USP - - - =

Tabelle C.3

Befehlssatz des MC 68 000 in alphabetischer Ordnung

194

Anhang

Mnemonik Assembler Syntax Operandengrösse Erlaubte Adressierungsarten Bedingungscode

Quelle Ziel XNZVC

MOVEA MOVEA <ea>,An 16, 32 Alle An - = - = -

MOVEM MOVEM <list>,<ea> 16,32 Kontrolle änderbar oder -(An) - = = = -
MOVEM <ea>, <list> 16,32 Kontrolle oder (An)+ - - - -- -

MOVEP MOVEP Dx,d(Ay) 16, 32 Dn d(An) - - = = -
MOVEP d(Ay),Dx 16, 32 d(An) Dn - - = - +

MOVEQ MOVEQ #d,Dn 32 #d(7) Dn - * * 0 0

MULS MULS <ea>,Dn 16 Daten Dn - * * Q 0

MULU MULU <ea>,Dn 16 Daten Dn - * * 90 0

NBCD NBCD <ea> 8 Daten änderbar * U* U *

NEG NEG <ea> 8, 16, 32 Daten änderbar ak k°

NEGX NEGX <ea> 8, 16, 32 Daten änderbar * oe * *

NOP NOP PC+2-PC ~ - = = -

NOT NOT <ea> 8, 16, 32 Daten änderbar - * * 90 0

OR OR <ea>,Dn 8, 16, 32 Daten Dn - * * 0 0
OR Dn,<ea> 8, 16, 32 Dn anderbar - * * 0 0

ORI ORI #d, <ea> 8, 16, 32 #d Daten änderbar - * * 00
ORI #4d,SR (3) 8, 16 #d SR ke

PEA PEA <ea> 32 Kontrolle - > = -

RESET (6) RESET - - +

ROL ROL Dx,Dy 8, 16, 32 Dn (4) Dn - * * QO *
ROL 4d,Dn 8, 16, 32 #d (5) Dn - * * QO *
ROL <ea> 16 Speicher änderbar - * * QO *

ROR ROR Dx,Dy 8, 16, 32 Dn (4) Dn - * * QO *
ROR #4d,Dn 8, 16, 32 #d (5) Dn - * * Q *
ROR <ea> 16 Speicher änderbar - * * QO *

ROXL ROXL Dx,Dy 8, 16, 32 Dn (4) Dn + * * QO *
ROXL #d,Dn 8, 16, 32 #6) Dn kg *
ROXL <ea> 6 Speicher änderbar + * * 0 *

ROXR ROXR Dx,Dy 8, 16, 32 Dn (4) Dn * * * QO *
ROXR #d,Dn 8, 16, 32 #(5) Dn * * * 0 *
ROXR <ea> Speicher änderbar ** * 0 *

RTE (6) RTE (SP)+>SP;(SP)+>PC + * Fe *

RTR RTR (SP)+>CCR; (SP)+>PC x

RTS RTS (SP)+>PC - - - = =

SBCD SBCD Dy,Dx 8 Dn Dn * U* U *
SBCD -(Ay),-(Ax) 8 -(An) -(An) * U* U *

Scc Scc <ea> 8 Wenn cc, dann Is-(ea); Daten änderbar - = = = -
sonst Os>(ea)

STOP (6) STOP #d 16 #d>SR, dann STOP x

SUB SUB <ea>,Dn 8, 16, 32 Alle (1) Dn + * * * *
SUB Dn,<ea> 8,16, 32 Dn änderbar kn * #

SUBA SUBA <ea>,An 16, 32 Alle An - - = = -

SUBI SUBI #d,<ea> 8, 16, 32 #d Daten änderbar * * ee *

SUBQ SUBQ #d,<ea> 8, 16, 32 #d(2) änderbar (1) * * eK

SUBX SUBX Dy,Dx 8, 16, 32 Dn Dn * * eK
SUBX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) * * KF

SWAP SWAP Dn 16 Dn - - - - =

TAS TAS <ea> 8 Daten änderbar - * * 0 0

TRAP TRAP # <vector> PC>-(SP);SR>-(SP); - - - = =
<vector> >PC

TRAPV TRAPV Wenn V = 1, dann TRAP - - = = =

TST TST <ea> 8, 16, 32 Daten änderbar - * * 0 0

UNLK UNLK An An - - - = =

* Bedingungsbit wird beeinflusst

Bemerkungen:

(1) Wenn die Operationslänge Byte ist, ist die Adressierungsart «A dressregister direkt» nicht erlaubt
(2) unmittelbarer Operand, mit einem Wert von 1b
(3) Bei Wortoperationen ist der Befehl privilegiert
(4) Quellendatenregister enthält den Schiebewert: 0...63, wobei der Wert 0 einen Schiebewert 64 ergibt
(5) Daten sind der Schiebewert, 1 bis 8
(6) Diese Operation ist privilegiert
(8) Acht Bit unmittelbare Daten, welche vorzeichenerweitert werden zu einem 32Bit-Operanden

195

Im AT Verlag Aarau - Stuttgart
erschienen u.a. folgende
Fachbücher

Roland Best
Die Verarbeitung von -
Kleinsignalen in elektronischen
Systemen Ä
Hier wird erklärt, wie Störsignalei in
Elektroniksystemen entstehen und
was der Elektroniker dagegen tun
kann.

Albert Kloss
Stromrichter-
Netzrückwirkungen
in Theorie und Praxis
EMC der Leistungselektronik
Das Buch befasst sich mit der
Beeinflussung der Netze durch
leistungselektronische Einrichtun-
gen. Es ist eine systematische Be-
arbeitung der theoretischen Grund-
lagen der Stromrichter-Netz-
rückwirkungen, besonders was
die Blindleistung und die Ober-
schwingungen betrifft.

Andrew Stamberger
RC-Beschaltungen
Die Projektierung einer
RC-Beschaltung in der
Leistungselektronik
Der Band beschreibt Beschaltungs-
systeme von Stromrichtern und
gibt Berechnungsbeispiele für die
Beschaltung von Gleich- und
Wechselstromstellern, \Wechsel-
richtern und gesteuerten und unge-
steuerten Gleichrichtern sowie
Richtwerte für die Beschaltungs-
elemente.

R. Dändliker
Laser-Kurzlehrgang
Eine konzentrierte Einführung in die
Physik und Terminologie der Laser,
Erläuterungen der wichtigsten Be-
griffe aus dem Bereich der Gas-,
Festkörper-, Farbstoff- und Halblei-
ter-Laser sowie der nichtlinearen
Optik und der Holographie.

|
ii ii) A

I
fl

In = ij

„ll

|

N

all
|

|

uf jj

|

|

wlll

|
|

|

fl

|

|

4

N

]

HHH
i

:

}

N

Trotz der Vielseitigkeit der 4- und 8-Bit-Mikroprozessoren, die
Anfang der 70er Jahre eingeführt wurden, können mit ihnen
doch gewisse komplexe und schnelle Operationen nicht aus-
geführt werden. Für diese anspruchsvollen Anwendungen bie-
ten neuere 16-Bit-Mikroprozessoren, wie der Typ 68000 von
Motorola, eine gültige Alternative sogar zu teureren Minicom-
putern. Dieses Buch beginnt mit grundlegenden Kapiteln und
führt schrittweise zu komplexeren Themen, so dass der Leser
den Mikroprozessor 68000 gründlich kennenlernt. Als Voraus-
setzung sind einige Kenntnisse binärer und hexadezimalerZah-
lensysteme, boolescher Logik und der Grundlage von Assem-
blersprache von Vorteil.

ISBN-3-8550
2-152 X

