Leo J. Scanlon

Die 68’000er

Grundlagen und Programmierung

AT Verlag




Leo J. Scanion

ist Documentation Manager fir den
Bereich Mikroelektronik der Rock-
well International in Anaheim, CA. Er
ist Autor verschiedener Artikel Gber
Mikrocomputer und Programm-
Engineering in der Weltraum-
industrie sowie zweier weiterer in
den USA erschienener Biicher.



Leo J. Scanlon

Die 68 000er

Grundlagen und Programmierung

AT Verlag Aarau - Stuttgart




Sonderdruck aus der internationalen Fachzeitschrift
fiir praktische Elektronik «Elektroniker»

Die Originalausgabe erschien unter dem Titel

«The 68 000: Principals and Programming»

bei Howard W. Sams & Co., Inc. Indianapolis, Indiana 46268, USA
ISBN 0-672-21853-4

Fiir die deutschsprachige Ausgabe:

© 1983 AT Verlag Aarau (Schweiz)

Ubersetzer: Hans Iseli

Umschlag: AT-Grafik, Aarau

Herstellung: Grafische Betriebe Aargauer Tagblatt AG,
Aarau (Schweiz)

Printed in Switzerland

ISBN 3-85502-152-X



Inhaltsverzeichnis

2.2.1
222
223
2.2.4
2.2.5
2.2.6
2.3

2.3.1
2.3.2
2.3.3
2.3.4
2.4

2.4.1
24.2
2.4.3
2.4.4
2.5

2.6

2.7

_ Einflihrung in den Mikroprozessor MIC 68 000

Uberblick

Softwaremdglichkeiten

Privilegierte Zusténde

Eingebaute Fehlersuchhilfsmittel
Speicherzuweisung

Unterbruchstruktur (Interrupts)
Bausteinanschliisse

Interne Register

Allgemein verwendbare Register
Programmzéhler

Statusregister

Entwurfsphilosophie

Der Stand der Mikroprozessortechnologie
Begriindung fiir die Entwicklung des MC 68 000
Realisierung der Entwurfsideen

Cross-Makro-Assembler

Umfang

Assemblerbefehle

Aufbau

Das Labelfeld

Das Mnemonikfeld

Das Operandenfeld

Das Kommentarfeld

Reine Kommentarzeilen
Assembleranweisungen
Zweck
Assemblierungssteueranweisungen
Symboldefinitionsanweisung
Speicherdefinitionsanweisung
Ausdriicke im Operandenfeld
Symbole

Konstanten

Algebraische Operatoren
Auswahl von Ausdriicken
Bedingte Assemblierung
Makros

Zeilendruckerformat

9

10
10
11
11
11
12
12
15
15
17
17
18
19

21

21
22
22
22
22
23
24
24
24
24
26
26
21
29
29
29
29
30

31
33



3.

3.1
3.2
3.2.1
3.2.2
3.23

3.24
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9

Der Befehlssatz des MC 68 000

Das Befehlsformat im Speicher
Adressierarten

Adressierart Register direkt
Adressierart Adressregister indirekt
Adressregister indirekt mit Nachinkrementierung
oder Vordekrementierung
Adressregister indiret mit Verschiebung
Adressregister indirekt mit Index
Absolute Datenadressierung
Programmzéhler-relative Adressierung
Unmittelbare Datenadressierung
Implizite Adressierung

3.2.10 Adressierarten, die Adressen oder Daten

33

34

3.4.1
3.4.2
3.4.3
344
3.4.5
3.4.6
3.4.7
3.4.8

5.2.1
5.2.2
5.2.3

5.3
5.3.1
5.3.2
5.4
5.4.1

vorzeichenerweitern

Einteilung der Adressierarten nach Verwendungszweck
Befehlsarten
Datentransportbefehle

Befehle fiir ganzzahlige Arithmetik
Logische Befehle

Schiebe- und Rotierbefehle
Bitmanipulationsbefehle
BCD-Befehle
Programmsteuerbefehle

LINK- und UNLK-Befehle
Systemsteuerungsbefehle
Zusammenfassung

Mathematische Routinen

Multiplikation

32 Bit x 32-Bit-Multiplikation ohne Vorzeichen
32 Bit x 32-Bit-Mulitplikation mit Vorzeichen
Division

Division ohne Uberlauf

Division mit Uberlauf

Quadratwurzel

Listen und Konversionstabellen

Organisation von Daten

Ungeordnete Listen

Zufiigen von Daten zu einer ungeordneten Liste
Loschen eines Elementes aus einer ungeordneten Liste
Finden der Minimal- und Maximalwerte in einer
ungeordneten Liste

Eine einfache Sortierungstechnik

Die Technik des «Bubble Sort»

Sortieren mit 16-Bit-Elementen

Geordnete Listen

Absuchen einer geordneten Liste

35

35
36
37
37

38
40
41
42
43
45
47

48
49
51
54
61
70
71
74
75
77
90
91
93

95

95
95
99
104
104
105
107

111

111
111
112
113

114
116
116
118
120
121



5.4.2
543
5.5

5.5.1
5.5.2
5.5.3
5.6

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.8

7.1

7.2

7.2.1
7.2.2
7.3

7.3.1
7.3.2
7.4

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
1.5

7.5.1
7.5.2
7.5.3

8.1
8.2
8.3
8.3.1
8.3.2
8.3.3

Zufiigen eines Wertes in eine geordnete Liste
Loschen eines Elementes aus einer geordneten Liste
Konversionstabellen («Look-up tables»)

Beispiel Telefonbuch

Konversionstabellen ersetzen Gleichungen
Konversionstabellen fiihren Codewandlungen durch
Sprungtabellen

Hardware des Mikroprozessors 68 000

Takt-, Speisung- und Masseleitungen

Der Daten- und Adressenbus
Funktionsstatussignale

Asynchrone Bussteuerung

Die asynchronen Steuerleitungen

Zeitbedingungen fiir asynchrone Dateniibertragung
Synchrone Steuersignale

Busaussperrungssignale

Systemsteuerungssignale

Interrupt-Steuersignale

Verarbeitungszusténde, privilegierte Zustiande

und Ausnahmebetrieb

Verarbeitungszusténde

Privilegierte Zustédnde
Uberwachungs- und Beniitzerzustand
Wechsel im privilegierten Status
Ausnahmezusténde

Verarbeitung der Ausnahmen
Mehrfachausnahmen

Intern erzeugte Ausnahmen

Befehle, die Ausnahmen herbeifiihren k6nnen
Verletzung privilegierter Befehle
Tracing :

Illegale Adressen

Illegaler Befehl

Nichtimplementierte Befehle

Extern erzeugte Ausnahmen
Riicksetzung (RESET)

Unterbriiche (Interrupts)

Busfehler

Anschluss von Peripheriebausteinen

Peripheriebausteine der 68 000er-Familie
Peripheriebausteine der 6800er-Familie
Anschluss eines PIA an den 68000

Der PIA 6821

Schnittstelle fiir 16-Bit-Datentransfer
Einfache 16-Bit-Transfers mit PIA

124
126
127
127
127
132
133

135

136
136
136
138
138
140
140
142
143
144

147

147
147
147
149
150
150
153
154
154
156
156
157
159
159
162
162
163
166

169

169
171
172
172
173
174



9.1
9.1.1
9.1.2
9.1.3
9.14
9.2
9.2.1
9.2.2
9.3
9.4
9.5

Unterstiitzung fiir den MC 68 000

M 68000 - eine Prozessorfamilie
MC 68000

MC 68008

MC 68010

MC 68020

Peripheriebausteine

Spezielle Bausteine der 68 000er-Familie
Weitere geeignete Bausteine
Lehrsystem

VME-Bus

Entwicklungssysteme

Anhang

177

177
177
177
179
180
180
180
180
180
183
184

185



1. Einfiihrung in den Mikroprozessor MC 68 000

1.1 Uberblick

Der MC 68000 verfiigt iiber 17 allgemein verwendbare Regi-
ster, jedes 32 Bit lang, iiber einen 32-Bit-Programmzéhler und
ein 16-Bit-Statusregister. Acht der allgemeinen Register werden
verwendet als Datenregister fiir Byte-(8 Bit), Wort-(16-Bit-) und
Doppelwort-(32-Bit-)Operationen. Die andern 9 allgemeinen
Register sind Adressregister, die als Stapelzeiger und Basis-
adressregister verwendet werden. Alle 17 allgemeinen Register
konnen auch als Indexregister verwendet werden.

Obwohl der Programmzéhler 32 Bit lang ist, werden nur die tie-
ferwertigen 24 Bit verwendet. Diese 24 Bit geben dem MC
68000 einen Adressbereich von 16 MByte — der gleiche Adress-
bereich wie ein IBM System/370! Dieser Adressbereich
erlaubt es, zusammen mit einem zusétzlichen Speicherverwal-
tungsbaustein, grosse modulare Programme zu entwickeln und
auszufiihren, ohne komplizierte und schwierige softwaremassi-
ge Speicherverwaltungsmassnahmen.

1.1.1 Softwaremaoglichkeiten

Die Softwaremdoglichkeiten des MC 68000 sind recht eindriick-
lich und zeigen, dass dieser Mikroprozessor von Programmie-
rern fiir Programmierer entwickelt wurde. Wie spéter in Kapitel
3 gezeigt wird, bieten viele der Befehle in Kombination mit den
vielseitigen Adressierungsmodi fast den Komfort und die Mog-
lichkeit hoherer Sprachen.

Der MC 68000 kann mit 5 verschiedenen Datenarten Verarbei-
tungen durchfiihren:

- 1Bit

4 Bit (BCD-Werte)

8 Bit (Byte)

16 Bit (Worte)

32 Bit (Doppelworte)

Eine Byteadressierung ist moglich, indem das hoherwertige
Byte dieselbe gerade Adresse wie das entsprechende Wort hat,
wihrend das niederwertige Byte die um 1 erhGhte ungerade
Adresse triagt. Das Befehlsrepertoire umfasst 56 Grundbefehle.
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Dazu stehen 14 verschiedene Adressierungsmodi zur Verfi-
gung. Die Kombination der 56 Grundbefehle mit den 14 Adres-
sierungsmodi und den 5 Datenarten ergibt mehr als 1000 ver-
schiedene Kombinationen, die der MC 68000 ausfiihren kann.
Zusitzlich gibt es zwei nicht beniitzte Operationscodes, die
nach den Wiinschen des Beniitzers spezifiziert werden knnen.
Der MC 68000 wird angeboten in 4-, 6-, 8- und 10-MHz-Versio-
nen, denen Taktperioden von 250, 167, 125 und 100 ns entspre-
chen.

Der schnellste Befehl, zum Beispiel fiir das Kopieren des Inhalts
eines Registers in ein anderes Register, benotigt als Ausfiih-
rungszeit 4 Taktzyklen oder 500 ns bei 8 MHz.

Der langsamste Befehl, eine Division eines 32-Bit-Doppelwor-
tes durch ein 16-Bit-Wort mit Vorzeichen, kann bis zu 170 Takt-
zyklen beanspruchen oder 21,25 s bei 8 MHz.

1.1.2 Privilegierte Zustéande

Zur Unterstiitzung von Systemen mit mehreren Beniitzern ver-
fligt der MC 68000 iiber zwei verschiedene Zustinde: einen
Beniitzerzustand fiir normale Funktionen und einen Uberwa-
chungszustand fiir die Systemkontrolle. Im Uberwachungszu-
stand konnen alle Befehle ausgefiihrt werden, im Beniitzerzu-
stand kdnnen einige privilegierte Befehle, zum Beispiel Reset
und Stop nicht beniitzt werden. Diese M6glichkeiten geben dem
System eine gewisse Sicherheit, da der Datenzugriff kontrolliert
ist und dadurch die gegenseitige Beeinflussung von Daten ver-
schiedener Beniitzer verhindert wird.

1.1.3 Eingebaute Fehlersuchhilfsmittel

In Anbetracht der Tatsache, dass das Beheben von Fehlern in
der SW im allgemeinen mehr Zeit in Anspruch nimmt als das
Schreiben der SW selbst, haben die Entwickler des MC 68000
eine ganze Anzahl von Fehlersuchhilfsmitteln eingebaut. Als
Beispiel fiihren

illegale Befehle,

die Verletzung von privilegierten Zusténden,
fehlerhafte Adressierung, :
Division durch Null,

illegale Speicherzugriffe usw.

den Mikroprozessor in den Uberwachungszustand.

Der MC 68000 verfiigt auch liber einen sogenannten Tracemo-
dus fiir die Fehlerbehebung in der SW. In diesem Modus verar-
beitet der MC 68000 Befehle Schritt fiir Schritt, indem nach der
Ausfiihrung jedes einzelnen Befehls in eine Serviceroutine ver-
zweigt wird.

10
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1.1.4 Speicherzuweisung

Sehr wenige Speicherzellen sind fiir spezielle Aufgaben fest
zugewiesen. Die tiefsten 8 Byte des Speichers enthalten den
Riicksetzvektor und sind demzufolge als ROM ausgefiihrt.
Zusitzliche Speicherzellen in den ersten 1024 Bit sind Unter-
bruchsvektoren, Fehlervektoren sowie Vektoren fiir verschiede-
ne andere Arten von Ausnahmezustidnden zugewiesen. Diese
Speicherbereiche konnen entweder als ROM oder als Lese- und
Schreibspeicher ausgefiihrt sein. Der verbleibende Rest des 16-
MByte-Speichers des MC 68000 kann fiir jede beliebige Auf-
gabe verwendet werden.

Selbstverstandlich werden einige Speicheradressen fiir zugeord-
nete Ein- und Ausgabebausteine im System verwendet, weil der
MC 68000, wie iibrigens alle Motorola-Mikroprozessoren, die
Ein- und Ausgabeoperationen iiber den Speicher ausfiihrt. Der
MC 68000 verfiigt liber keine separaten Ein- und Ausgabebe-
fehle, «sieht» aber periphere Bausteine als Speicherzellen im 16-
MByte-Speicher. Bei der Programmierung von Ein- und Aus-
gabeoperationen fiir den Datentransfer von und zu peripheren
Geridten werden die gleichen Befehle verwendet wie fiir den
Datenaustausch mit dem Speicher.

1.1.5 Unterbruchstruktur (Interrupts)

Die Unterbruchstruktur des MC 68000 ist &dhnlich wie die der
meisten Minicomputer. Es stehen 7 verschiedene Unterbruchs-
ebenen zu Verfiigung. Mit einer Maske im Statusregister kon-
nen Unterbriiche auf derselben oder auf tieferen Ebenen als der
in Betrieb stehenden blockiert werden.

Wenn der MC 68000 eine Unterbruchsanforderung erhilt,
sendet er ein Quittierungsanforderungssignal zu allen im
System vorhandenen Bausteinen. Nach dem Empfang der Quit-
tung muss der unterbrechende Baustein eine Vektornummer auf
den Datenbus einspeisen. Dieser Vektor wihlt eine der 192
Unterbruchroutinen im Speicher aus. Auch Bausteine, die keine
Vektornummer erzeugen konnen, haben die Mdglichkeit, den
MC 68000 zu unterbrechen. Sie veranlassen den Mikroprozes-
sor mittels «Autovektor», zu einer Subroutine zu verzweigen,
die der Unterbruchsebene des unterbrochenen Bausteins zuge-
ordnet ist. Der MC 68000 verfiigt liber 7 Autovektoren.

1.1.6 Bausteinanschliisse

Der MC 68000 wird in einem Dual-in-line-Gehduse mit 64
Anschliissen geliefert (entspricht ungefidhr der Grésse eines nor-
malen Feuerzeuges).

Die Adressen fiir Befehle und Daten werden iiber ein System
von 25 Adressleitungen zugefiihrt: ein 23 Leitungen umfassen-
der Adressbus (mit dem ein Wort im Speicher angewahlt wird)

11
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und 2 Byte-Select-Leitungen (eine zum Anwéhlen des tieferwer-
tigen Byte des Wortes, das andere zum Anwéhlen des hoher-
wertigen Byte des Wortes). Daten werden iiber einen 16-Bit-
Datenbus transferiert. Wie die meisten 8-Bit-Mikroprozessoren
(aber nicht wie die 16-Bit-Systeme Intel 8086 und Zilog Z8000)
wird der Datenbus und der Adressbus liber separate Leitungen
gefiihrt.

Die Entwickler bei Motorola stellten fest, dass eine Multiplexie-
rung dieser Bussysteme zwar zu einem kleineren Gehéuse
gefiihrt hitte, jedoch auch eine Verkleinerung der Leistung um
mehr als dreissig Prozent zur Folge gehabt hitte. Der MC
68000 kann sowohl mit asynchronen peripheren Geriten wie
auch mit langsameren synchronen peripheren Geréten (wie sie
auch fiir den MC 6800 und andere 8-Bit-Mikroprozessoren ver-
wendet werden) verbunden werden. Er verfiigt liber separate
Kontrolleitungen fiir jeden Typ von peripheren Schaltungen.
Der MC 68000 beniitzt eine einzige Speisespannung von +5V
und verfiigt liber je zwei Plus-/Minusanschliisse. Ein Anschluss
ist fiir den TTL-kompatiblen Takteingang vorgesehen.
Eingefiihrt wurde der MC 68000 im Jahre 1979. Er ist erhéltlich
von Motorola (als MC 68000) und als Lizenzfabrikate von
Rockwell International (R 68000), Hitachi (HD 68000),
Mostek (MK 68000) und Signetics (SP 68000). In Europa wird
der 68000 auch von Efcis hergestellt, einer Firma im Besitz von
Thomson-CSF und der franzdsischen Atomenergiekommis-
sion.

1.2 Interne Register

Da wir uns vor allem mit der Programmierung des MC 68000
befassen, sind fiir den Einstieg zuerst die internen Register,
die zur Verfiigung der Programmierer stehen, interessant.
Bild 1.1 zeigt die 17 allgemein verwendbaren Register, den
32-Bit-Programmzéhler und das 16-Bit-Statusregister des MC
68000.

1.2.1 Aligemein verwendbare Register

Acht der allgemein verwendbaren Register sind Datenregister,
7 sind Adressregister und 2 sind Stapelzeigerregister (eines fiir
Beniitzerprogramme, das andere fiir Uberwachungsprogram-
me). Die acht Datenregister (DO ... D7) konnen verwendet wer-
den fiir Operationen mit Byte, Wort und Doppelwort. Die ver-
wendete Datenldnge wird spezifiziert durch einen Datenldngen-
code im Befehl. Byteoperationen werden immer mit den tiefer-
wertigen 8Bit eines Datenregisters (Bit O ... 7) durchgefiihrt;
Wortoperationen werden immer mit den tieferwertigen 16 Bit
eines Datenregisters (Bit 0 ... 15) durchgefiihrt, wie in Bild 1.1
durch die gestrichelte Linie angedeutet ist. Wenn ein Byte- oder

12
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Bild 1.1

Registeranordnung im Mikropro-
zessor MC 68000 (Programmie-
rungsmodell)

37 1% 15 87 0

a0
o1
0z
03

— Acht Datenregister
D4

Jos
06

o7

—

37 243 J

A0
A1
A2
A3 Sieben Adressregister
A4
AS
A6

[ Benistzer-Stapelzeiger | o
UYeberwachungs - Stapelzeiger _;

Zwei Stapelzeiger

Z ] Programm - Zéihler

IF:__[i] Status- Register
S -Beniitzer-

ystem-
Byte Byte

Wortoperand in einem Befehl vorkommt, wird immer das tiefer-
wertige Byte oder Wort des Datenregisters verwendet. Die ver-
bleibende Information im Register wird nicht beriihrt.

Die sieben Adressregister (A0 ... A6) dienen als Basisadressre-
gister und als Softwarezeiger zu beniitzerdefinierten Speicher-
bereichen. Sie koénnen auch zur tempordren Aufnahme von
Adresswerten verwendet werden, so dass diese Adressen
irgendwo im Programm nicht wieder neu berechnet werden
miissen. Die Adressregister konnen verwendet werden fiir den
Zugriff zu Bytes, Worten und Doppelworten im Speicher. Wie
in Bild 1.2 gezeigt, werden diese Daten in der Ordnung hoher zu
tiefer gespeichert, das heisst, dass Byte 0, Wort 0 und Doppel-
wort 0 die hGchste Wertigkeit aufweisen.

Byte konnen gerade Adressen (Byte 0, 2 und 4 in Bild 1.2) oder
ungerade Adressen (Byte 1, 3 und 5) haben, Worte und Doppel-
worte konnen nur gerade Adressen haben. Das bedeutet also,
dass Worte und Doppelworte immer mit einer geraden Adresse
beginnen miissen. Wenn also ein Wort sich an der Adresse N,
wobei N gerade ist, befindet, ist das nichste Wort an der Adres-

13
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s 87 0 %5 0
n BYTEQ |\BYTES | n+f n Wort 0
n+2 |BYTE2 |BYIE3 | n+3 n+2 Wort 1
n+4 |BYTE4 |BYTEFS | n+s nt4 Wort 2
a) Byteformat b) Wortformat
15 0
ﬂ b e — — — — —
Doppelwort 0
n+4 L
Doppelwort 1 | Bild 1.2
nté Datenformate im Speicher:
0ol ward a) Byteformat (8 Bit)
DOP P el»'arf 2 b) Wortformat (16 Bit)
¢) Doppelwortformat c) Doppelwortformat (32 Bit)

se N + 2. Ahnlich ist es bei Doppelworten. Wenn ein Doppel-
wort sich an der Adresse N, wiederum gerade, befindet, ist das
néchste Doppelwort an der Adresse N + 4. Die gestrichelte
Linie zwischen Bit 15 und Bit 16 im Bild 1.1 zeigt an, dasssich die
Information in einem Adressregister auf ein 16-Bit-Wort (in Bit
0 ... 15) oder auf ein 32-Bit-Doppelwort beziehen kann. Viele
Befehle des MC 68000 beziehen sich auf zwei Operanden, einen
Quellenoperanden und einen Bestimmungsoperanden. Wenn
ein Adressregister verwendet wird als Quellenoperand, wird
entweder das tieferwertige Wort oder das ganze Doppelwort
verwendet, je nach Abhéngigkeit der Operationslédnge. Wird ein
Adressregister als Bestimmungsoperand verwendet, so wird das’
ganze Register beeinflusst, unabhingig der Operationsldnge.
Operationen mit Adressregistern beeinflussen das Statusregi-
ster des MC 68000 nicht. Diese Tatsache erlaubt es, innerhalb
von Datenoperationen Adressen zu dndern, ohne sich Gedan-
ken machen zu miissen, ob der Programmstatus geéndert haben
konnte.

Der MC 68000 verfiigt iiber zwei Stapelzeiger, wobei zu einer
bestimmten Zeit nur einer aktiv sein kann. Der Bentitzer-Stapel-
zeiger, der zur Sicherung der Riickkehradresse wiahrend Sub-
routinenaufrufen beniitzt wird, ist aktiv, wenn der Prozessor im
Beniitzerstatus arbeitet. Der Uberwachungsstatus-Stapelzeiger,

der die Riickkehradresse und den Statusregisterinhalt wiahrend
Trap- und Unterbruchroutinen aufnimmt, ist aktiv, wenn der
MC 68000 sich im Uberwachungsstatus befindet. Weil die bei-
den Stapelzeiger nicht gleichzeitig aktiv sein kdnnen, sind sie in
Bild 1.1 als ein einziger Bestimmungsort A7 dargestellt. Jedes der
17 allgemein verwendbaren Register kann auch als Indexregi-

14
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Bild 1.3
Das Statusregister (Flags) des MC
68000

ster verwendet werden. Die Indexierung wird behandelt im
Zusammenhang mit der Diskussion der Adressierungsmodi in
Kapitel 3.

1.2.2 Programmzahler

Wie alle Mikroprozessoren, fiihrt auch der MC 68000 Pro-
gramme aus, indem er einen Befehl vom Speicher holt, ihn aus-
fiilhrt und dann den néchsten Befehl holt. Beim MC 68000
belegt ein Befehl 1 bis 5 Worter im Speicher, wobei der Pro-
grammzéhler bestimmt, welches Befehlswort als néchstes
geholt wird. Der Programmzéhler ist 32 Bit lang. In den bisher
produzierten Bausteinen wurden jedoch nur die 24 tieferwerti-
gen Bit verwendet. Weil die Befehle aus Worten bestehen, ent-
hélt der Programmzéahler immer eine gerade Adresse. Mit den
24 Bit des Programmzéhlers kénnen 8 M-Worte adressiert wer-
den (8388608 Worte, Adressenbereich O ... hexadezimal
FFFFFE).

1.2.3 Statusregister

Das Statusregister des MC 68000 ist aufgeteilt in ein Beniitzer-
byte und ein Systembyte wie in Bild 1.3 dargestellt. Gelesen wer-
den kann der gesamte Inhalt des Statusregisters jederzeit, hinge-
gen kann das Systembyte nur im Uberwachungsmodus geén-
dert werden. Das Beniitzerbyte, oft auch Bedingungscoderegi-
ster genannt, enthilt fiinf Flagbit, die Information {iber ausge-
fiihrte Befehle enthalten.

Systembyte Benitzerbyte
A A

-

51 0 s 4 0
ENEN\NAAANNNrRGE

Tracemodus —’
Ueberwachungsstatus
Unterbruchsmaske
Erweiterung
Negativ E—
Bedienungscode Noll
Yeberlauf
Uebertrag

Die fiinf Flagbit im Beniitzerbyte bedeuten im einzelnen:

- Bit0, Ubertrag (Carry C):

Dieses Bit wird auf 1 gesetzt, wenn bei einer Addition ein Uber-
trag entsteht oder bei einer Subtraktion ein Entlehnwert beno-
tigt wird, andernfalls ist es 0.

15
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Das Ubertragsbit wird ebenfalls fiir die Aufnahme des Werts
eines Bit verwendet, das aus einem Datenregister oder Speicher-
platz geschoben oder rotiert wurde, und es enthélt auch das
Resultat einer Vergleichsoperation.

— Bit 1, Uberlauf (Overflow V):

Dieses Bit hat nur eine Bedeutung wihrend Operationen mit
vorzeichenbehafteten Zahlen. Es wird auf 1 gesetzt, wenn die
Addition von zwei Werten mit gleichen Vorzeichen oder die
Subtraktion von zwei Werten mit ungleichen Vorzeichen ein
Resultat ergeben, das den Bereich des Zweierkomplements des
Operanden iiberschreitet, andernfalls ist es 0.

Es wird ebenfalls gesetzt, wenn das hochstwertige Bit des
Operanden zu irgendeinem Zeitpunkt wihrend einer arithmeti-
schen Schiebeoperation édndert.

~ Bit2, Null (Zero Z):

Dieses Bit wird auf 1 gesetzt, wenn das Resultat einer Operation
Oist.

— Bit 3, Negativ (Negative N):

Dieses Bit hat nur eine Bedeutung bei Operationen mit vorzei-
chenbehafteten Werten. Es wird dann auf 1 gesetzt, wenn eine
arithmetische, logische, Schiebe- oder Rotieroperation zu einem
negativen Resultat fiihrt. Mit andern Worten gesagt, folgt das
N-Bit dem hochstwertigen Bit des Operanden, unabhéngig
davon, ober 8, 16 oder 32 Bit lang ist.

- Bit4, Erweiterung (X):

Dieses Bit funktioniert als Uberlaufbit fiir Operationen mit
erhohter Genauigkeit. Es wird durch Additions-, Subtraktions-,
Negier-, Schiebe- und Rotierbefehle beeinflusst, indem es wih-
rend deren Ausfilhrung den Status des Ubertragsbit (C)
annimmt.

Der MC 68000 verfiigt iiber bedingte Verzweigbefehle, die den
Zustand der Bit C, V, Z, N priifen und je nach Resultat das Pro-
gramm weiterlaufen oder eine bestimmte Adresse anspringen
lassen. Die Bedingungscodebit werden immer dann beeinflusst,
wenn Operationen den Inhalt von Datenregistern dndern, aber
nie bei Operationen mit Adressregistern.

Das Systembyte des Statusregisters besteht aus drei Feldern:

- Bit8 bis 10:

Diese Bit enthalten eine Unterbruchsmaske (10, I1 und 12), mit
der die Prioritdtsebene der Unterbruchsanforderungen
bestimmt werden kann. Diese 3-Bit-Maske kann zur Festset-
zung von einer aus sieben Prioritdtsebenen verwendet werden
(die achte Ebene, alles 0, bedeutet, dass jede Prioritit akzeptiert
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wird) und veranlasst den MC 68000, alle Unterbrechungsanfor-
derungen auf oder unter dieser Prioritétsebene nicht zu beach-
ten.

— Bit 13, Uberwachung (S):

Dieses Bit zeigt an, ob der MC 68000 sich im Uberwachungszu-
stand (S = 1), oder im Beniitzerzustand (S = 0) befindet.

- Bit15, Tracemodus (T):

Dieses Bit steuert die eingebaute Fehlersuchschaltung. Wenn
das T-Bit auf 1 gesetzt ist, arbeitet der MC 68000 ein Programm
Schritt fiir Schritt ab. Das bedeutet, dass der Prozessor nach
jedem ausgefiihrten Befehl in den Uberwachungszustand
(S=1) iibergefiihrt wird und zu einem durch den Anwender
geschriebenen Trace-Unterprogramm verzweigt. Dieses Trace-
Unterprogramm kann zum Beispiel verwendet werden zur Prii-
fung des Inhalts von ausgewéhlten Registern oder Speicherplit-
zen, zur Statuspriifung oder zur Durchfiihrung irgendwelcher
anderer Fehlersuchaufgaben.

Die nichtbeniitzten Bit des Statusregisters werden immer als 0
gelesen.

1.3 Entwurfsphilosophie

Mit den bisherigen Ausfiihrungen haben wir einen allgemeinen
Uberblick iiber die Moglichkeiten des Mikroprozessors MC
68000 gewonnen. Die weiteren Kapitel werden diese Informa-
tion bis ins Detail vertiefen und einen Uberblick geben iiber die
Anwendungsmoglichkeiten des MC 68000. Bevor wir jedoch
auf die Details eintreten, soll noch einige Information zur Ent-
wurfsphilosophie des MC 68000 vermittelt werden.

1.3.1 Der Stand der Mikroprozessortechnologie

Die leistungsfdhigen Mikroprozessoren und die zugehorigen
Bausteine, die heute zur Verfiigung stehen, sind der Ausdruck
einer enormen Entwicklung der Technologie der integrierten
Schaltungen in der vergangenen Zeit. Seit der Entwicklung der
MOS-Halbleiter in den spéten flinfziger Jahren verdoppelte sich
die Komplexitit der Schaltungen in den siebziger Jahren jedes
Jahr. Wihrend friihere Mikroprozessoren 5000 bis 10000
Transistorfunktionen pro Baustein aufwiesen, verfiigen heutige
Prozessoren iiber 100000 Transistorfunktionen. Priméire Fak-
toren fiir diese Entwicklung sind eine hohere Dichte der Schal-
tungen und die Fortschritte im Schaltungsentwurf, die generell
zu hoheren Geschwindigkeiten und zu geringerem Leistungs-
verbrauch fithren. Die Entwicklungsrate hat sich etwas ver-
langsamt durch gewisse technologische Grenzen, die Fort-
schritte sind jedoch immer noch enorm. Gegenwirtig wird die
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Schaltungsdichte und die Schaltungsgeschwindigkeit alle zwei
Jahre verdoppelt, wihrend in der gleichen Zeit das Leistungs-
Geschwindigkeits-Produkt um den Faktor 4 gesunken ist.
Gleichzeitig sanken die Produktionskosten, was sich in einem
reduzierten Produktpreis auswirkte, was wiederum zu erhGhtem
Bedarf, neuen Anwendungen und neuen Mérkten fiihrt.

1.3.2 Begriindung fiir die Entwicklung
des MIC 68000

Die eben beschricbenen Fortschritte machten einen komple-
xen Mikroprozessor technisch moglich, dazu kamen zusétzli-
che Faktoren als Motivation fiir Motorola, die zur Entwicklung
des MC 68000 fiihrten. Nach Edward Stritter und Tom Gunter,
zwei der Hauptverantwortlichen fiir die Entwicklung des MC
68000, leitet sich eine der Motivationen her aus dem Bedarf fiir
Produkte, die iiber die vielféltigen Moglichkeiten eingebauter
Mikroprozessoren verfiigen. Dieser Bedarf zeigt sich im allge-
meinen Markt fiir Mikroprozessoren, der jahrliche Zuwachsra-
ten von 25% aufweist und zu einem jéhrlichen Volumen von
200 Millionen Einheiten im Jahre 1983 fiihren diirfte, mit einem
Marktwert von ungefihr 1Milliarde Franken. (Schétzungen
lauten dahin, dass bis ins Jahr 2000 5 bis 10 Milliarden Mikro-
prozessoren und Mikrocomputer in Betrieb stehen werden, das
heisst ungefdhr 1 System pro dannzumal auf der Erde lebende
Person!) Beim Entwurf des MC 68000 waren sich die Entwick-
ler im klaren, dass ihr Produkt auf Anwendungen zugeschnitten
sein musste, fiir die 16-Bit-Mikroprozessoren im Vordergrund
stehen, wie zum Beispiel Anwendungen mit Multiprocessing
und Multitasking. — Eine zweite Motivation fiir die Entwicklung
des MC 68000 kam von der Seite der hohen Kosten fiir die Soft-
ware-Entwicklung. Mit gegenwiértigen Kosten von 20 bis 40
Franken fiir jede Zeile getesteten Codes ist es nicht uniiblich, fiir
ein einfaches Programm auf Software-Entwicklungskosten von
200000 Franken oder mehr zu kommen, was in keinem ver-
gleichbaren Massstab mit den Hardwarekosten von einigen
hundert bis allenfalls einigen tausend Franken steht. Als Gegen-
massnahme zu dieser Entwicklung férdert Motorola konse-
quent die Unterstiitzung von hSéheren Programmiersprachen
und ein klar strukturiertes Vorgehen bei der Programmierung.
Zudem wird versucht, mit der 68000-Software Fehlersuche und
Selbstpriifung so einfach wie mdglich zu machen. — Ein dritter
die Entwicklung des MC 68000 beeinflussender Faktor waren
die hohen Kosten des Entwurfs und der Fabrikation von neuen
Mikroprozessoren. Sowohl die Personalkosten wie auch die
Kosten fiir Entwurf und Fabrikation von Ausriistungen sind
enorm und erreichen fiir die wichtigsten Hersteller Millionen
von Franken pro Jahr. Die Entwickler begegnen diesem Pro-
blem auf verschiedene Weise. Erstens ist ein geradliniger Ent-
wurf unter Verwendung von optimalen Strukturen leichter zu
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realisieren, zu testen und herzustellen. Selbstverstidndlich fiihrt
ein geradliniger Entwurf auch zu einem verbesserten Produk-
tionszyklus und damit zu einer Verbesserung der Wettbewerbs-
fahigkeit des Herstellers. Zweitens muss eine neue Architektur
auf so lange Zeit hinaus wie moglich geplant werden und fiir die
Zukunft einfach zu erweitern sein. Die Hersteller sind nicht
mehr in der Lage, jedes Jahr neue Architekturen zu produzie-
ren. Erfahrungen mit dem Versuch zur Erweiterung und Verbes-
serung friiherer 8-Bit-Mikroprozessoren zeigten die Notwendig-
keit fiir verbesserte Planung. Die Entwerfer miissen auf mog-
lichst wenig Beschrinkungen in ihren Entwiirfen achten, so
dass zukiinftige Verbesserungen des Bausteins unter den best-
moglichen Voraussetzungen gemacht werden koénnen. Zu den
grundsétzlichen Méngeln in der Vergangenheit gehOrten ein
begrenzter Adressbereich sowie das Fehlen von zum Zeitpunkt
des Entwurfs freien Operationscodes fiir zukiinftige Befehle.

1.3.3 Realisierung der Entwurfsideen

Die Entwickler des MC 68000 hatten die nicht leichte Aufgabe,
die im vorhergehenden Abschnitt beschriebenen Motive und
Begriindungen bei der Realisierung des Mikroprozessors zu
beriicksichtigen. IThre Wahl fiel auf die schnelle n-Kanal-Silizi-
um-Technologie HMOS (high density, short-channel MOS),
die urspriinglich von der Intel Corp. entwickelt wurde. Diese
Technologie bietet rund die doppelte Schaltungsdichte sowie
das vierfach bessere Geschwindigkeits-Leistungsprodukt ge-
geniiber der Standard-NMOS-Technologie. Als Resultat ver-
fiigt die gegenwiirtige Version des MC 68000 iiber etwa 68 000
Transistorfunktionen auf dem Baustein (Bild 1.4).

Im Hinblick auf den potentionellen Anwenderkreis wéhlten die
Entwickler fiir den MC 68000 eine Architektur in Richtung all-
gemeine Verwendung und statteten ihn mit einem 16-MByte-
Adressbereich aus. Zusétzlich wurden Funktionen wie separate
Uberwachungs- und Anwenderstati zur Unterstiitzung von
Multiprocessing und Multitasking vorgesehen.

Zur Einddmmung der hohen Kosten von Software-Entwicklun-
gen unternahmen die Entwickler des MC 68000 alle Anstren-
gungen, die Programmierung so einfach wie moglich zu
machen. Ein Weg zur Erreichung dieses Zieles ist eine soge-
nannte orthogonale Auslegung, das heisst, dass alle Datenregi-
ster und alle Adressregister in derselben Weise funktionieren
und ebenfalls als Indexregister verwendet werden kénnen. Im
weiteren konnen die meisten Befehle mit Byte, Worten und Dop-
pelworten operieren. Die Anzahl der Mnemocodes im Befehls-
repertoire wurde auf ein Minimum beschrénkt, indem Gruppen
von dhnlichen Funktionen gebildet wurden.

Diese Auslegung steht im Gegensatz zu einer grossen Anzahl
von spezialisierten Lade-, Speicher- und Transferbefehlen, wie
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sie oft bei 8-Bit-Mikroprozessoren vorkommen. Im weiteren
betrachteten die Entwickler nicht nur die statisch héufigen
Befehle (das sind diejenigen, die in einem Listing h#ufig
erscheinen), sondern gingen einen Schritt weiter und hielten
Ausschau nach dynamisch hdufigen Befehlen, das heisst jenen,
die tatséchlich hédufig ausgefiihrt werden. Unter diesem Aspekt
wurde versucht, so kurze Befehle wie moglich zu entwickeln.
Zur Unterstiitzung von hoheren Sprachen bestehen komplexe
Befehle, welche Operationen ausfiihren, fiir die normalerweise
eine ganze Anzahl Zeilencodes bendtigt werden. Ein gutes Bei-
spiel fiir diesen Fall sind die LINK- und UNLK-Befehle, die im
Stapel Platz zuweisen und freigeben fiir den Aufruf von ver-
schachtelten Unterprogrammen sowie der CHK-Befehl, der
erlaubt, die Grenzen einer speziellen Speicheranordnung auf
Uberlaufbedingungen zu priifen. Beim Festlegen des Befehlsre-
pertoires wurde ebenfalls darauf geachtet, dass die meisten
Befehle mit allen mdglichen Adressierungsmodi verwendet wer-
den konnen und dadurch Compilern das effiziente Generieren
von Code erlauben. Schliesslich wurde im Hinblick auf die
Reduktion von Entwicklungskosten fiir zukiinftige Entwick-
lungsénderungen und Verbesserungen des Mikroprozessors
eine Architektur gewéhlt, die es erlaubt, verschiedene Versionen
oder sogenannte Implementierungen zu produzieren. Die
gegenwdrtige Version unter dem Namen MC 68000 stellt im
Prinzip nur ein Subset der kompletten 68000-Architektur dar.
Das zeigt sich zum Beispiel darin, dass der MC 68000, obschon
er ein 16-Bit-Mikroprozessor ist, liber eine interne 32-Bit-Archi-
tektur verfiigt. Das heisst, dass alle adressierbaren Register, mit
Ausnahme des Statusregisters, 32 Bit lang sind. Auch der Pro-
grammzéhler ist 32 Bit lang, wobei bei den bisher produzierten
Bausteinen nur die tieferwertigen 24 Bit herausgefiihrt wurden.
Bei einer allfélligen zukiinftigen Version des 68000, die alle 32
Bit zur Verfiigung stellt, wiirde das einen Adressbereich von
mehr als 4 Milliarden Byte bedeuten. Selbstverstdndlich sind
auf dem Chip auch der Datenbus und der Adressbus je 32 Bit
lang.

20



2. Cross-Makro-Assembler

2.1 Umfang

Es gibt mittlerweile eine Vielzahl von Systemen, mit denen Soft-
ware flir 68000-Anwendungen entwickelt werden kann. Die
einen werden ihre Programme auf Motorolacomputern wie
EXORciser®- oder EXORmacs®-Entwicklungssystemen ent-
wickeln, die andern verwenden dafiir Mini-, Grosscomputer
oder Universalentwicklungssysteme. Ungeachtet dessen, was
fiir ein System beniitzt wird, nehmen wir an, dass alle Bentitzer
in einer Assemblersprache und nicht in Maschinencode pro-
grammieren werden. Somit wird ein Ubersetzungsprogramm,
der sogenannte Assembler gebraucht, um den Assemblerquel-
lencode in Maschinensprache oder Objektcode zu iibersetzen,
damit der Mikroprozessor ihn ausfiihren kann. Wir kennen
zwei Assemblergrundtypen.

Ein Cross-Assembler l1duft auf einem anderen Rechner als dem-
jenigen, der den assemblierten Code ausfiihren wird. Der Rech-
ner, mit dem assembliert wird, hat normalerweise eine umfang-
reiche Softwareunterstiitzung und schnelle Peripheriegerite,
wie zum Beispiel die Systeme IBM 360, 370 oder ein PDP 11.
Als resident wird ein Assembler bezeichnet, wenn er auf dem
gleichen Rechner liuft wie die Anwendung. Das EXORmacs®-
Entwicklungssystem hat zum Beispiel einen residenten Assem-
bler fiir den MC 68000.

Dieses Kapitel bezieht sich auf den Motorola «Cross Macro
Assembler». Der Cross-Makro-Assembler kann auf einem
EXORciser®-Entwicklungssystem, auf einem IBM 370 oder
auf einem DEC PDP11 laufen. Er ist zudem ein Makro-Assem-
bler, weil er dem Programmierer die Definition von Instruk-
tionssequenzen als Makros erlaubt. Der Begriff Makro wird in
diesem Kapitel etwas spéter exakter behandelt.

Dieses Kapitel soll nicht eine genaue, umfassende Beschreibung
des Cross-Makro-Assemblers (im weiteren nur noch Assembler
genannt) geben, sondern nur eine Zusammenfassung der grund-
sétzlichen Eigenschaften sein. Fiir die speziellen Details wird
auf die entsprechende Bedienungsanleitung hingewiesen.

Quellenbefehle
Ein Quellenprogramm ist eine logische Sequenz von Quellenbe-
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fehlen, die dazu bestimmt ist, eine spezifische Aufgabe auszu-
fiihren. Ein Quellenbefehl kann entweder ein Assemblerbefehl,
ein Kommentar oder eine Assembleranweisung sein.

2.2 Assemblerbefehle
2.2.1 Aufbau

Ein Assemblerbefehl besteht aus bis zu fiinf Feldern:
Zeilennummer [Label] Mnemonik [Operand] [Kommentar].
Die Zeilennummer wird entweder vom Editor oder vom Assem-
bler generiert, um die Quellencodezeile zu bezeichnen. Die Zei-
lennummern kdnnen bis zu vier Dezimalstellen aufweisen. Die
andern vier Felder sind vom Anwender zu programmieren,
wobei nur das mnemonische Feld fiir einen Befehl obligatorisch
ist. Label- und Kommentarfeld sind fakultativ (dargestellt
durch die eckigen Klammern). Das Operandenfeld wird nur
verwendet, falls der Befehl das verlangt, andernfalls wird es
weggelassen.

Der MC 68000-Assembler verwendet ein freies Format, in dem
die verschiedenen Felder irgendwo auf einer Zeile stehen kon-
nen. Jedes Feld muss jedoch vom vorhergehenden mindestens
durch eine Leerstelle getrennt sein.

2.2.2 Das Labelfeld

Das Labelfeld ist das erste, vom Anwender geschriebene Feld
einer Zeile. Jeder Befehl kann ein Label tragen. Es wird meistens
nur in Verbindung mit einem Sprung- oder einem Sprung-zur-
Subroutine-Befehl gebraucht. Diese Befehle laden den Pro-
grammzéhler mit einem neuen Wert. Dabei wechselt die sequen-
tielle Ausfiihrung eines Programmes.

Das Label weist auf jenen Befehl, bei dem das Programm
weiterfahren soll.

Das Label ist ein Ausdruck von 1 bis 30 alphanumerischen Zei-
chen, wobei das erste Zeichen ein Buchstabe (A ...Z) sein muss.
Alle 30 Zeichen sind signifikant, obwohl nur die ersten 8 ausge-
druckt werden. Die Zeichen AO bis A7, DO bis D7, CCR, SR,
SP und USP werden vom Assembler als Register erkannt und
diirfen somit nicht als Label gebraucht werden.

Wenn in der ersten Kolonne ein Label gesetzt wird, so muss
danach mindestens eine Leerstelle folgen. Steht das Label in
einer anderen Kolonne, so muss direkt danach ein Doppelpunkt
() stehen.

2.2.3 Das Mnemonikfeld

Das Mnemonikfeld kann Assembler-Befehlsausdriicke von drei
bis fiinf Buchstaben enthalten. Der Assembler verwendet eine
interne Tabelle, um die Befehlsausdriicke (Mnemonik) in Binér-
code umzuwandeln.
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Einige der Befehle des MC 68000 brauchen einen, beziehungs-
weise zwei Operanden, andere keinen. Die Mnemoniks geben
dem Assembler Anzahl und Typ der Operanden an. Die Mne-
monikliste wird in Kapitel 3 ausfiihrlich beschrieben.

Wie schon im Kapitel 1 erwdhnt wurde, kann der MC 68000
Daten als Byte, Wort und Doppelwort verarbeiten. Einige
Befehle konnen nur mit einer Datenlénge arbeiten; andere dage-
gen mit zwei oder sogar mit allen drei Datenlédngen. Fiir Befehle,
die mehrere Datenldngen haben kdnnen, muss dem MC 68000
«gesagt» werden, welche Datenldnge nun verarbeitet werden
soll. Das wird erreicht, indem der Mnemonik eine Nachsilbe
(Datenlédngen-Code) angehédngt wird. Ein Befehl, der den Wert
vom Datenregister DO zum Inhalt von D1 addiert, sieht wie
folgt aus:

ADD.X DO,D1

wobei . X die zu addierende Datenlénge der beiden Register DO,
D1 bedeutet. Es gibt fiir .X folgende Moglichkeiten:

.B Byte (8 Bit)
W Wort (16 Bit)
.L Doppelwort (Long) (32 Bit)

Falls der Datenldngencode weggelassen wird, nimmt der
Assembler die Datenlédnge eines Wortes. Damit gibt es fiir den
ADD-Befehl folgende Moglichkeiten:

ADD.B DO, D1 (Byte)
ADD.W DO,D1 (Wort)
ADD DO, D1 (Wort)
ADD.L (Doppelwort)

2.2.4 Das Operandenfeld

Je nach Befehl wird das Operandenfeld benutzt oder nicht. Die-
ses Feld enthélt entweder einen oder zwei Operanden und ist
mindestens durch eine Leerstelle vom Mnemonikfeld getrennt.
Falls zwei Operanden verlangt sind, miissen diese durch ein
Komma (,) getrennt werden. Fiir diesen Befehlstyp bedeutet der
erste Operand die Quelle (source) und der zweite die Senke (sink
oder Bestimmungsort). Der Quellenoperand bestimmt den
Wert, der zu etwas addiert, von etwas subtrahiert, mit etwas ver-
glichen oder im Bestimmungsoperanden abgespeichert wird.
Aus diesem Grunde kann der Quellenoperand nie durch eine
Operation verdndert werden. Der Bestimmungsoperand (Sen-
ke) dagegen wird praktisch immer durch die Operation verén-
dert. In Kapitel 3 werden wir fiir jeden Befehl des MC 68000 die
Adressiermoglichkeiten der Operanden behandeln.
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2.2.5 Das Kommentarfeld

Das nicht obligatorische Kommentarfeld wird vom Program-
mierer verwendet, um das Programm lesbarer und verstéindli-
cher zu machen. Dieses Feld wird vom Assembler nicht beach-
tet, aber gleichwohl ausgedruckt. Wenn ein Kommentar
geschrieben wird, muss dieser mit mindestens einer Leerstelle
vom vorhergehenden Element getrennt sein.

2.2.6 Reine Kommentarzeilen

Es konnen auch reine Kommentarzeilen geschrieben werden,
um ein Programm oder einen Codeteil, die Registerkonfigura-
tion, die Speicherzuteilung oder sonst etwas zu dokumentieren.
Diese Kommentare werden mit einem * in der ersten Kolonne
markiert. Wihrend der Assemblierung wird der Assembler den
Beginn der Kommentarzeile erkennen und den Kommentar
nicht beachten.

2.3 Assembleranweisungen
2.3.1 Zweck

Assembleranweisungen oder «Pseudooperationen» stellen eine
spezielle Gruppe von Anweisungen an den Assembler dar. Sie
ordnen dem Objektprogramm einen gewissen Speicherbereich
zu, definieren Symbole, weisen bestimmte Speicheradressen fiir
temporére Speicherung zu, steuern das Ausdruckformat und
filhren eine Anzahl kleiner Verwaltungsfunktionen aus. Mit
Ausnahme der Konstantendefinition werden diese Befehle nicht
in Objektcode iibersetzt.

Die Assembleranweisungen haben, wie die Assemblerbefehle,
bis zu fiinf Felder: ~
Zeilennummer [Label] Anweisung [Operand] [Kommentar].
Hier gilt das gleiche wie fiir die Assemblerbefehle. Die Zeilen-
nummer ist eine editor- oder assemblergenerierte Quellenzei-
lenidentifikation, die bis zu vier Dezimalziffern lang sein kann.
Die andern vier Felder werden vom Anwender definiert. Von
diesen ist nur das Anweisungsfeld immer notwendig. Die Felder
in eckigen Klammern sind fakultativ.

Dazu miissen noch einige Erkldrungen gegeben werden. Das
Kommentarfeld ist das einzige, das immer beliebig gesetzt oder
weggelassen werden kann. Labels kénnen nur in fiinf Féllen ver-
wendet werden, und Operanden kénnen nur mit Anweisungen
gebraucht werden, die diese verlangen. Tabelle 2.1 fasst die
Assembleranweisungen und ihr entsprechendes Format zusam-
men.

Die Assembleranweisungen konnen wie die Befehle in einem
freien Format eingegeben werden. Die Felder konnen also
irgendwo auf einer Zeile erscheinen. Sie miissen allerdings
durch mindestens eine Leerstelle getrennt sein.
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Anweisung Bedeutung Format
Assemblierungssteuerung
ORG Absolute Adresszuweisung ORG Ausdruck
ORG.L Ausdruck
RORG Relative Adresszuweisung RORG Ausdruck
End Ende des Quellenprogramms END
Symboldefinition
EQU Symbol gleich dem Wert
(permanent) Label EQU Ausdruck
SET Setze Symbolwert (temporar) Label SET Ausdruck
Speicherzuteilung
DC Definiert eine Konstante [Labell DC.B Operand(en)
[Labell DC[.W]  Operand(en)
[Labell DC.L Operand(en)
DS Definiert einen Speicherplatz [Labell DS.B Operand
[Label] DS[.W] Operand
[Label] DS.L Operand
Ausdrucksteuerung
PAGE Neue Seite PAGE
LIST Druckt das Assemblierte LIST
NO LIST Druckt das Assemblierte nicht NOLIST
NOL
SPCn Spring n Zeilen der Assemblierliste SPC n
NOPAGE - Keine Seiten numerieren NO PAGE
LLEN m Setze Zeilenldnge m LLEN m
TTL Drucke Titel auf jede Seite TTL Titelname
NOOBJ Kein Objektcode NOOBJ
FAIL Drucke Fehlermitteilung FAIL Ausdruck
G Konstantencode G
Bedingte Assemblierung
IFEQ Assembliere falls=0 IFEQ Ausdruck
IFNE Assembliere falls# 0 IFNE Ausdruck
ENDC Ende des bedingten Assemblierens ENDC
Makrodefinition
MACRO Definiert ein Makro Label MACRO
ENDM Ende des Makros ENDM
MEXIT Spring auf das Ende des Makros MEXIT

Tabelle 2.1  Ubersicht der Assemblierungsanweisungen
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2.3.2 Assemblierungssteueranweisungen

Der Assembler hat zwei «Origin»-Anweisungen, die absolute

(ORG) und die relative (RORG). Diese erlauben dem Anwen-

der, seine Programme, ‘Subroutinen und Daten irgendwo im

Speicher zu laden. Programme und Daten konnen, in Abhén-

gigkeit der Speicherkonfiguration, in verschiedene Speicher-

bereiche geladen werden. Der Assembler hat einen Speicher-
platzzeiger (vergleichbar mit dem internen Programmzéhler des

MC 68000), der auf die Speicheradresse weist, wo der Objekt-

code des néchsten Befehls oder Daten zu holen sind. ORG wie

RORG veranlassen den Assembler, eine neue, spezifizierte

Adresse in den Speicherplatzzeiger zu laden, um danach die

Speicherzuweisung der folgenden Ausdriicke auszufiihren.

ORG weist einen absoluten Speicherplatz zu, RORG dagegen

nur den relativen.

Die ORG-Anweisung wird verwendet, wenn man eine Start-

adresse auswahlt, bei der ein Programm oder Daten abgespei-

chert werden sollen. Die zwei giiltigen Formate ORG und

ORG.L bewirken das gleiche wie die Befehle, die sich auf einen

Label beziehen und im Programm assembliert werden.

Wenn ORG eingesetzt ist, werden Befehle, die sich auf einen fol-

genden Label beziehen, in einer kurzen, schnell durchgefiihrten

Art assembliert. Die Labels miissen aber innerhalb der hexade-

zimalen Adressen O ... 7FFF liegen. Wird ORG.L gebraucht,

so werden die gleichen Befehle in einer langen, viel Zeit kosten-

den Art assembliert. Dafiir kdnnen sich die Labels irgendwo im

Speicher befinden.

Die RORG-Zuweisung ist fiir verschiedene Anwendungen

niitzlich:

— Mischen von Assemblerprogrammen mit Programmen, die
in einer hGheren Sprache geschrieben werden, ohne dass man
sich darum kiimmern muss, wo der Objektcode hinkommt.

— Entwicklung von verschiebbaren Subroutinen, die von
irgendwo im Speicher geholt und ausgefiihrt werden kénnen.

— Konstruktion von Programmkomponenten, die spiter zu
einem grossen Programm zusammengesetzt werden.

Die letzte Assemblierungskontrollanweisung, «Ende des Quel-

lenprogrammes» (END), teilt dem Assembler mit, dass er das

Ende des Quellenprogramms erreicht hat.

2.3.3 Symboldefinitionsanweisung

Die beiden Anweisungen, EQU, «Gleich dem Wert» und SET,
«Setze den Wert», werden gebraucht, um Symbolen im Pro-
gramm numerische Werte zuzuweisen. In beiden Féllen nimmt
der Assembler den Ausdruck im Operandenfeld und weist das
Resultat dem Symbol im Labelfeld zu. Symbole, die mit SET
zugewiesen werden, konnen spéter im Programm neu definiert
werden. Dagegen konnen die durch EQU definierten Symbole
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nicht verdndert werden. Ausdriicke und Symbole werden spéter
in diesem Kapitel vollstidndig beschrieben. Kurz erklért ist ein
Ausdruck eine Kombination von Symbolen, Konstanten, alge-
braischen Operatoren und Klammern (vergleichbar mit der
rechten Seite einer algebraischen Gleichung), wihrend ein Sym-
bol eine Serie von alphanumerischen Zeichen wie zum Beispiel
ein Label ist. Fiir die EQU- und SET-Anweisung muss der Aus-
druck eine ganze Zahl sein, damit er eine Adresse oder ein
Datenwert sein kann.

Da die EQU-Anweisung permanent ist, wird sie angewendet,
um Subroutinen- und Geréteadressen, oft gebrauchte Konstan-
ten usw. zu definieren. Dazu einige Beispiele:

SUBR EQU $2000

CONST EQU 5634

PIA2 EQU $SFEFFO00

Man kann auch Symbole mit andern Symbolen definieren:
LAST EQU FINAL

STRT3 EQU START+3

Das Symbol im Operandenfeld muss natiirlich vorher definiert
sein.

Da die SET-Anweisung temporir sein kann, wird sie fiir die
Definition von variablen Daten wie Maskenmuster oder Kon-
versionsfaktoren verwendet. Die folgenden SET-Anweisungen
kénnen zum Beispiel im gleichen Programm auftreten:

MASK1 SET $SFFFE
MASK1 SET $FFFD

Wenn das Programm assembliert ist, werden alle MASK1
durch den Wert SFFFE ersetzt bis zum zweiten SET. Danach
wird dem Symbol MASK 1 der Wert SFFFD zugeordnet.

2.3.4 Speicherdefinitionsanweisung

Die Definitionsanweisungen fiir Speicherkonstanten (DC) und
Speicherplatz (DS) konnen eine oder mehrere Adressen in
einem Lese- und Schreibspeicher definieren. Zugewiesene Spei-
cherplitze kénnen entweder mit Werten initialisiert (DC) oder
einfach fiir spitere Verwendung durch das Programm reserviert
werden (DS). Zu beachten ist, dass die in Tabelle 1 aufgefiihrten
Assembleranweisungen DC und DS mit Datenldngencodes zu
erginzen sind, um Byte, Worter oder Doppelworter zu bestim-
men.

Die DC-Anweisung kann zum Aufstellen von Datentabellen
wie ASCII-Mitteilungstabellen, indirekte Adressen usw. einge-
setzt werden. Der Assembler wird jeden Ausdruck im Operan-
denfeld als Zahlenwert verstehen und diesen Wert in den ent-
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sprechenden Speicherplatz schreiben. Mehrere Operanden
miissen durch Kommas getrennt werden. Dazu einige Beispiele:

TABLE DC.W 10,5,7,2

Beginnend bei der Adresse TABLE werden die Dezimalzahlen
10, 5, 7 und 2 wortweise (W) hintereinander in binédrer Form in
den Speicher geschrieben.

ALBL DC LABEL +1

Bei der Adresse ALBL wird die Adresse LABEL plus 1 als
Wort eingetragen.

TABL1 DC.L 10,5,7,2

Beginnend bei der Adresse TABL1 werden die Dezimalzahlen
10, 5, 7 und 2 doppelwortweise (long .L) in bindrer Form rechts-
biindig in den Speicher geschrieben.

ASCII-Zeichenausdriicke miissen nicht durch Kommas
getrennt werden, sondern nur am Anfang und am Ende des
Ausdrucks durch ein Apostroph (°) gekennzeichnet sein, ausser
eine weitere DC.B-Anweisung folge.

CONST DC.B 43

Der Speicherplatz erhélt den Wert 43. Das librigbleibende Byte
wird Null sein, ausser der nédchste Befehl sei wieder eine DC.B-
Anweisung.

Wenn man eine ungerade Anzahl von ASCII-Operanden mit
DC.W- oder DC.L-Anweisungen eingibt, so wird der Assem-
bler die restlichen Byte der rechten Seite mit Nullen auffiillen.
Zum Beispiel:

NUMBR DC.L ’12345

Der Speicher wird in den acht folgenden Byte die Werte «1234»
und «5000» enthalten.

N1 DC’X’

Der Speicher wird in den zwei folgenden Byte «X0» haben.

Die DS-Anweisung erlaubt, einem Speicherbereich einen
Namen und die folgende Anzahl Byte zuzuordnen, ohne dabei
diesen Speicherbereich in irgendeiner Weise zu initialisieren.
Zum Beispiel:

TEMPO DS.B 10

Die 10 néchsten Byte sind von der Adresse TEMPO an reser-
viert.

TEMP1 DS.W 10

Die 10 ndchsten Worter sind von TEMP1 an reserviert.

Die DS-Anweisung hat keinen eingebauten Schutz gegen
Adressierungsungenauigkeit. Wenn man wortbreite Daten
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erzwingen will, muss nach dem Befehl DS.B noch DS 0 beige-
fiigt werden. '

Die Steueranweisungen zum Drucken werden hier nicht
beschrieben, da die meisten selbsterklidrend sind und alle im
MC68000-Cross-Macro-Assembler-Handbuch von Motorola
vollstdndig erklért sind.

2.4 Ausdriicke im Operandenfeld

Ein Ausdruck ist eine Kombination von Symbolen, Konstan-
ten, algebraischen Operatoren und Klammern, die vom Assem-
bler als ganzzahlige Daten- oder Adressoperanden erkannt wer-
den.

2.4.1 Symbole

Wie die Labels bestehen auch Symbole aus 1 bis 30 alphanume-
rischen Zeichen, die mit einem Buchstaben (A bis Z) beginnen.
Alle 30 Zeichen sind signifikant. Beim Ausdrucken werden
immer nur die ersten 8 Zeichen ausgegeben. Die Symbole AO...
A7, DO ... D7, CCR, SR, SP und USP sind spezielle, vom
Assembler erkannte Registernamen, die wohl im Operanden-
feld, aber nicht im Labelfeld erscheinen diirfen.

Ein Symbol kann einen absoluten oder einen relativen Wert
haben. Ein Symbol hat einen absoluten Wert, falls es durch
EQU oder SET mit einem absoluten Wert definiert wurde oder
falls ein ORG-Befehl der Symboldefinition vorangegangen ist.
Ein Symbol hat einen relativen Wert, falls es durch EQU oder
SET mit einem relativen Wert definiert wurde oder falls ein
RORG-Befehl der Symboldefinition vorausgegangen ist oder
falls weder ORG noch RORG der Symboldefinition vorausge-
gangen ist (das heisst der «Defaultwert» ist RORG 0).

2.4.2 Konstanten

Der Assembler akzeptiert sowohl numerische Konstanten als
auch ASCII-Zeichen. Eine Folge von dezimalen Ziffern (zum
Beispiel 12345) wird als Dezimalzahl interpretiert, eine Folge
von hexadezimalen Ziffern, die mit einem Dollarzeichen beginnt
(zum Beispiel $A5C7), wird als hexadezimale Zahl betrachtet.
Ein ASCII-Ausdruck ist eine Folge von bis zu vier ASCII-Zei-
chen, die mit je einem Apostroph eingeklammert sind (zum Bei-
spiel ’ABCD’).

2.4.3 Algebraische Operatoren

Der Assembler erlaubt, Elemente eines Ausdrucks mit vier
arithmetischen, vier logischen und einem speziellen Operator zu
kombinieren. Die arithmetischen Operatoren sind: + (addie-
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ren), — (subtrahieren), * (multiplizieren) und / (dividieren). Die
EQU-Sequenz, zum Beispiel

START EQU $2000
STARTP6 EQU START +6
STARTMI EQU START-1

weist den Symbolen STARTP6 und STARTMI1 die Adressen
$2006 bezichungsweise $1FFF zu.

Die logischen Operatoren haben folgende Definitionen:

~ Logisches UND (AND) bewirkt, dass jedes Bit des linken
Ausdruckes mit dem entsprechenden Bit des rechten logisch
UND-verkniipft wird.

- Logisches ODER (OR) bewirkt, dass jedes Bit des linken

Ausdruckes mit dem entsprechenden Bit des linken logisch

ODER-verkniipft wird.

— Links schieben (<) bewirkt, dass der linke Ausdruck um die
Anzahl (rechter Ausdruck) Bitpositionen nach links gescho-
ben wird.

— Rechts schieben (>) bewirkt, dass der linke Ausdruck um die

“Anzahl (rechter Ausdruck) Bitpositionen nach rechts
geschoben wird.

Der Spezialoperator, das Komplement-Minus, bewirkt, dass ein
Teil eines Ausdruckes negiert oder von null subtrahiert wird.
Dieser Operator kann nur zu Beginn eines Ausdruckes oder
direkt vor einer linken Klammer auftreten.

2.4.4 Auswahl von Ausdriicken

Wie schon erwihnt, sind Ausdriicke eine Kombination von
Symbolen, Konstanten, algebraischen Operatoren und Klam-
mern. Wahrend der Assemblierung sucht der Assembler zuerst
die Ausdriicke und arbeitet Klammern von innen nach aussen
ab. Danach werden die Operatoren in folgender Reihenfolge
behandelt:

Komplement-Minus, Schieben, UND oder ODER, Multiplika-
tion und Division, Addition und Subtraktion.

Operatoren der gleichen Prioritit (zum Beispiel «*» und «/»)
werden von links nach rechts der Reihe nach verarbeitet. Alle
dazwischenliegenden Werte werden zu einem ganzzahligen 32-
Bit-Wert verarbeitet. Das Resultat eines Ausdruckes ist somit
ein ganzzahliger, 32 Bit langer Wert.

2.5 Bedingte Assemblierung

Die Moglichkeit, bedingt zu assemblieren, erlaubt dem Anwen-
der, je nach denzur Zeitder Assemblierung bestehenden Bedin-
gungen, Quellenprogrammteile ein- oder auszuschliessen. Eini-
ge Anwendungen fiir bedingte Assemblierung:
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- Ein- oder Ausschliessen bestimmter Variablen,
- Setzen von Diagnostik- oder speziellen Bedingungen fiir die
folgenden Testlédufe,
— Generieren spezieller Versionen von mehrfach verwendeten
Programmen.
Fiir den MC68000-Assembler miissen den Quellenprogramm-
teilen, die entweder ein- oder ausgeschlossen werden sollen, eine
der beiden Anweisungen vorangehen: IFEQ und IFNE, gefolgt
von ENDC am Programmteilende. Wenn eine IFEQ-Anwei-
sung verwendet wird, kann der Programmteil nur assembliert
werden, falls der Ausdruck im Operandenfeld gleich Null ist.
Wenn IFNE gebraucht wird, kann der Programmteil nur
assembliert werden, falls der Ausdruck verschieden von Null
ist.
Die bedingte Assemblierung wird zum Beispiel dort eingesetzt,
wo es moglich sein soll, ein Programm zu schreiben, dessen Ein-
und Ausgaberoutine davon abhéngig gemacht wird, ob ein
Disk- oder ein Lochstreifensystem verwendet wird. Dazu ist zu
bemerken, dass es ein Flag DORT gibt, das anzeigt, ob Disk-
oder Lochstreifen-Ein- und -Ausgabe verwendet wird. Wenn
DORT Null ist, so wird das Programm fiir ein Disksystem,
andernfalls fiir ein Lochstreifensystem assembliert.

2.6 Makros

Der Anwender wird oft in die Situation kommen, eine bestimm-
te Sequenz mehrmals in einem Programm ausfiihren zu miissen.
Anstatt jedesmal die Befehlssequenz zu schreiben, kann diese
auf zwei verschiedene Arten nur einmal geschrieben werden:
entweder als Subroutine oder als Makro.

Wie die meisten Leser schon wissen, ist die Subroutine eine
Befehlssequenz, die nur einmal in einem Programm erscheint.
Jedesmal, wenn die Subroutine fertig durchlaufen ist, geht die
Steuerung durch einen «Return»-Befehl wieder an das aufrufen-
de Programm zuriick. Subroutinen sind im Kapitel 3 im Detail
beschrieben.

Wie die Subroutinen, erlauben auch die Makros dem Anwen-
der, einer Befehlssequenz einen Namen zu geben. Jedesmal,
wenn der Name in einem Operandenfeld eines Quellenpro-
gramms auftaucht, wird der Assembler diesen Makronamen
durch die entsprechenden Instruktionen ersetzen. Darin liegt
der Unterschied zwischen Subroutine und Makro: Die Subrou-
tinenbefehle werden wéhrend der Programmausfiihrung einge-
setzt, wihrend die Makrobefehle beim Assemblieren eingesetzt
werden.

Makros haben folgende Vorteile:

- Kiirzere Quellenprogramme,

- Bessere Programmdokumentation,

~ Verwendung von ausgetesteten Befehlssequenzen. Ist einmal
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ein Makro fehlerfrei, so kann man sicher sein, dass bei Ver-
wendung dieses Makros darin keine Fehler mehr auftreten.

- Einfach abzuindern. Wird ein Makro abgeéndert, so dndert
der Assembler jedesmal automatisch bei einem Einsatz den
Makrobefehl.

— Makros kénnen gebraucht werden, um eine Makrobibliothek
aufzubauen, die ein oder mehrere Programmierer fiir die Pro-
grammerstellung brauchen koénnen.

— Schnelle Ausfiihrung. Der Mikroprozessor wird nicht wie bei
Subroutinen durch Aufruf- und Riickkehrbefehle verzogert.

Nachteile der Makros:

— Wiederholung der gleichen Befehlssequenz, da das Makro
jedesmal, wenn es aufgerufen wird, das Programm vergros-
sert.

- Ein einziges Makro kann eine Menge Befehle erzeugen.

— Fehlen von Standards.

— Mogliche unerwiinschte Effekte in Registern und Statusbit,
falls diese Probleme zuwenig beachtet werden.

Makrodefinition

Jede Makrodefinition besteht aus drei Teilen:

1. Makrokopf, bestehend aus MACRO-Anweisung mit dem
Makronamen und dem Labelfeld.

2. Makrokorper, bestehend aus den Befehlen, die den Makro-
code ausmachen.

3. Makroende, bestehend aus ENDM-Anweisung, die das Ende
der Makrodefinition anzeigt.

400 002000 D840 LABEL ADD.W DO,D4  Addiere zwei Register
—— [ — [ — [S—— [ ——r
I— Kommentarfeld

Operandenfeld

Mnemonikfeld

.Labelfeld

zweites Operandenwort
falls gebraucht (Hex.)

- . . — = erstes Operandenwort
falls gebraucht (Hex.)

Operationscode
(Hex.)

momentaner Adresswert
(Hex.)

Quellenzeilennummer
(Dezimal)

Bild 2.1 Standardformat des Objektlistings, wie es der Makroassembler liefert
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Der Assembler erlaubt dem Anwender, bis zu neun Parameter
in ein Makro zu tiberfiihren. Diese Parameter miissen dann im
Operandenfeld des Makroaufrufes stehen. Der Assembler l&sst
auch variable Datenldngencode in einem Makro zu.

Es gibt noch eine Makroanweisung, die bis jetzt noch nicht
erwdhnt worden ist: MEXIT. Diese Anweisung wird mit der
bedingten Assemblierung gebraucht, um die iibrigbleibenden
Befehle des Makros zu tiberspringen.

2.7 Zeilendruckerformat

Bild 2.1 zeigt das Zeilenformat eines Objektlistings, das vom
Assembler ausgedruckt wird. Jede Seite des Listings kann einen
Seitenkopf, Kommentarzeilen, Erweiterungszeilen und Fehler-
zeilen haben. Die letzte Seite enthélt die Zusammenstellung aller
Fehlerzeilen und die Symboltabelle.
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3. Der Befehlssatz des MIC 68 000

Bild 3.1
Befehlsformat im Speicher

Das Kapitel 3 gibt eine detaillierte Beschreibung des Befehlssat-
zes des MC 68000 und seiner 14 Adressierungsarten. Die
Befehle werden fiir die Behandlung durch Zusammenfassen
dhnlicher Befehle nach funktionellen Kriterien geordnet. So
werden Additionsbefehle zusammen mit Subtraktionsbefehlen,
Schiebebefehle mit Rotierbefehlen usw. behandelt. Durch dieses
Vorgehen kann die Verwandtschaft einzelner Befehle sehr ein-
fach aufgezeigt werden.

3.1 Das Befehlsformatim Speicher

Befehle belegen, wie in Bild 3.1 gezeigt, eine bis fiinf Speicher-
zeilen. In der ersten Zeile steht das sogenannte Operationswort,
das den Befehl, die Adressierart(en) sowie die Linge des Befehls
bestimmt. Die zusétzlichen Zeilen sind belegt, falls der Befehl
mit unmittelbarer Adressierung, Absolutadressierung oder mit
Verschiebungsangabe arbeitet. Der lingste Befehl besteht aus 5
Wartern, dem Befehlswort, gefolgt von je 2 Wortern fiir das Ziel
der effektiven Adresserweiterung.

Zweiwort — (oder «lange») Operanden im Falle der unmittelba-
ren oder absoluten Adressierung werden im Speicher in der
Rangfolge hoheres Wort/tieferes Wort abgelegt. Falls das héhe-
re Wort an Adresse ADDR abgespeichert ist, befindet sich das
tiefere Wort an der Adresse ADDR+2. Dieser Grundsatz ist
giltig fiir den MC 68000 und muss bei der Programmierung
eingehalten werden.

15 10 5 0
Befehlswort

Bestimmt Befehlstyp, Adressierart(en) sowie Linge
des Befehls

direkter Operand

(Falls benttigt: Ein oder zwei Worter)

Quelle der effektiven Adresserweiterung

Falls benStigt: Ein oder zwei Worter)

Ziel der effektiven Adresserweiterung

(Falls bendtigt: Ein oder zwei Worter)
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3.2 Adressierarten

Der MC 68000 besitzt 14 Adressierarten. Sie sind in Tabelle 3.1
dargestellt und konnen 6 Gruppen zugeordnet werden: Register
direkt, Register indirekt, absolute Adressierung, relative Adres-
sierung, unmittelbare Adressierung, implizite Adressierung. In
der genannten Tabelle ist pro Adressierungsart die Formel
angegeben, mit der die effektive Adresse berechnet wird, sowie
die Assemblersyntax und die Zahl allfilliger Erweiterungs-

worte.
Art Adresserzeugung Assembler-  Erweite-
syntax rungs-
worte
Register direkt
Datenregister direkt EA=Dn Dn -
Adressregister direkt EA=An An -
Adressregister indirekt
Adressregister indirekt EA =(An) (An) -
Adressregister indirekt EA =(An) An<An+N (An)+ -
mit Postdekrement
Adressregister indirekt An<An-N,EA = (An) —(An) -
mit Predekrement
Adressregister indirekt EA =(An)+d,, d(An) 1
mit Erweiterung
Adressregister indirekt EA =(An)+(Ri)+d, d(An,Ri) 1
mit Index und Erweiterung
Absolute Adressierung v
Absolut kurz EA = (Néchstes Wort) XXXX 1
Absolut lang EA = (Néchstes und XXXXXXXX 2
iibernéchstes Wort)
Relative Adressierung
Relativ mit Verschiebung EA =(PC)+d, d 1
Relativ mit Index und Verschiebung EA = (PC)+(Ri)+d, d(Ri) 1
Unmittelbare Adressierung
Unmittelbar Daten = néchstes Wort oder # XXXX 1 oder 2
ndchste Worter
Unmittelbar schnell Daten im Befehlswort enthalten  #xx -

Implizierte Adressierung

Implizierte Register

EA =SR, USP,SP,PC

Tabelle 3.1 Die Adressierarten des MC 68 000

EA = Effektive Adresse

An = Adressregister
Dn = Datenregister
Ri = Adress- oder Datenregister,

verwendet als Indexregister

SR = Statusregister
PC = Programmzéhler
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SP = Aktiver Systemstapelzeiger

USP = Benutzerstapelzeiger

d; = 8-Bit-Verschiebungsangabe

d,, = 16-Bit-Verschiebungsangabe

N = 1fiir Byte; 2 fiir Wort; 4 fiir Doppelwort
[¢) = Inhalt von

- = Ersetzt
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Falls ein Operand adressiert wird, der im Speicher abgelegt ist

(was der Fall ist bei unmittelbarer, absoluter oder Adressierung

mit Verschiebung), so miissen die Adressierregeln des MC

68000 angewendet werden:

1. Auf Byteoperanden kann entweder durch gerade oder
ungerade Adressen zugegriffen werden.

2. Auf Wort- und Doppeloperanden muss durch eine gerade
Adresse zugegriffen werden.

Falls obige Regel nicht eingehalten wird, gibt der MC 68000

eine Fehlermeldung (siehe Kapitel 7).

Die meisten der nachfolgenden Beschreibungen der Adressier-

arten enthalten zur Verdeutlichung Beispiele, die den MOVE-

Befehl enthalten. Der MOVE-Befehl hat das folgende allge-

meine Format:

MOVE.X (EA gyene)>(EAzie) (EA: effektive Adresse)

X steht als Datenldngecode der zu verschiebenden Daten (B, W
oder L; siehe Kapitel 2). Der MOVE-Befehl hat immer 2
Operanden; der erste adressiert den Speicherplatz oder das
Register, das die zu transferierenden Daten enthélt (Quelle), der
zweite adressiert den Speicherplatz oder das Register, wo die
verschobenen Daten abzulegen sind (Ziel/Bestimmungsort).
Der MOVE-Befehl gehdrt zu den wirksamsten Befehlen des
MC 68000. Abhéngig von der Adressierart fiir Quelle und Ziel
konnen durch ihn Daten transportiert werden von Register zu
Register, von Register an einen Speicherplatz, vom Speicher-
platz zu einem Register oder von einem Speicherplatz zu einem
anderen ohne Beeinflussung eines Registers. Es ist sogar mog-
lich, mit ihm unmittelbar folgende Daten in ein Register oder zu
einem Speicherplatz zu transportieren.

3.2.1 Adressierart Register direkt

Die Adressierungsart «Register direkt» holt Datenoperanden
von irgendeinem (oder 14dt ihn in irgendein) Daten- oder
Adressregister. Der Befehl

MOVE.L A0,D1

ladt zum Beispiel den 32-Bit-Inhalt des Adressregisters AO in
das Datenregister D1, ohne den Inhalt von AQ zu verdndern.

3.2.2 Adressierart Adressregister indirekt

In dieser Gruppe «zeigt» der Inhalt eines Adressregisters auf
einen Operanden. Das bedeutet, dass das spezifizierte Adressre-
gister eine Basisadresse enthilt, die der MC 68000 zur Berech-
nung der effektiven Operandenadresse beniitzt (falls der Befehl
ein Sprungbefehl ist, ist der Operand eine Adresse; sonst ist er
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ein Datenwort). Der Zusammenhang zwischen Basisadresse
und der effektiven Adresse hingt davon ab, welche der 5 mégli-
chen indirekten Adressierarten verwendet wird.

Bei der einfachsten Art der Gruppe, Adressregister indirekt,
enthélt das Adressregister die effektive Adresse selbst. Der
Befehl

MOVE.W (A0,)D1

ladt das Wort, das an Adresse AQ abgespeichert ist, in die 16 tie-
feren Bit des Datenregisters D1. Bild 3.2 illustriert den MOVE-
Befehl, wo AO auf den Speicherplatz $53F00 zeigt, der den
Wert $1C9A enthilt.

MOVE.W (AO),D1
e —

AO0 l $00053F00 ] Speicher
$53EFE
'$53F00 $1COA
$53F02 \
$53F04 "
Bild 3.2
7777 Adressierungsart «Adressregister
o1 [/ J__sicon L‘ indirekt»

3.2.3 Adressregister indirekt mit Nach-
inkrementierung oder Vordekrementierung

Die beiden indirekten Adressierarten mit Nachinkrementierung
bzw. Vordekrementierung ermdglichen, mit einem Befehl auf
Daten in einem Speicherplatz zuzugreifen und sie zu verschie-
ben sowie die Adresszeiger entweder vor der Operation zu
dekrementieren oder nach der Operation zu inkrementieren.
Damit ist es sehr leicht, benachbarte Daten im Speicher, zum
Beispiel bei Tabellen oder Datenfolgen, zu bearbeiten.

Die erste dieser beiden Arten, Adressregister indirekt mit
Nachinkrementierung, addiert nach der Bearbeitung des
Operanden 1, 2 oder 4 zum Wert des Adressregisters. Bei einer
Byteoperation wird 1, bei einer Wortoperation 2 und bei einer
Doppelwortoperation 4 addiert. Der Befehl

MOVEW (A0)+,(Al)+

ladt zum Beispiel das Wort, das an Adresse AO abgespeichert
ist, in den Speicherplatz an Adresse A1 und erhoht anschlies-
send beide Adresszeiger um 2. Dieser MOVE-Befehl kann
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Bild 3.3

Nachinkrementieren eines Adress-
registers mittels MOVE.W (A0)+,
(AD+

a) vor Ausfiihren, b) nach Ausfiihren des
Befehls

natiirlich in einer Schleifenanweisung verwendet werden, um
eine Anzahl von Datenworten von einem Teil des Speichers in
einen andern zu verschieben. Bild 3.3 illustriert, wie der MOVE-
Befehl ausgefiihrt wird, falls die beiden Adresszeiger zuerst auf
die Adressen $53F00 bzw. $60000 zeigen und die Quellen-
adresse den Wert $1C9A enthilt. ’

Speicher
Adress-Register
$53EFE
AO | $00053F02 ] $53F00 $1CoA
$53F02
< <
$5FFFE
a1 | $00060002 | $60000 $1con
$60002
Speicher
Adress-Register
$53EFE
A0 lsooossFoo ] P $53F00 $1CoA
$53F02
N
$5FFFE
Al Isoooeoooo ] P 560000
$60002

In dhnlicher Weise wie bei der vorbeschriebenen Art subtrahiert
die Art «Adressregister indirekt mit Vordekrementierung» 1, 2
oder 4 vom Wert des Adressregisters, bevor der Operand bear-
beitet wird. Auch diese Art kann verwendet werden, um Daten-
blocke von einem Speicherbereich in einen andern zu transferie-
ren, nur werden hier die Adressregister vor der Befehlsausfiih-
rung dekrementiert. Der Befehl

MOVE.W —(A0),~(Al)

kopiert zum Beispiel ein Datenwort vom Quellenplatz zum Ziel-
platz, nachdem die beiden Adressregister um je 2 dekrementiert
worden sind.

Wie in Kapitel 1 erwihnt, kbnnen alle 8 Adressregister des MC
68000 als Stapelzeiger verwendet werden. Dabei wird A7 als
Systemstapelzeiger gebraucht, wihrend AQ bis A6 als Anwen-
derstapelzeiger zur Verfiigung stehen. Daraus folgt, dass der
MC 68000 bis zu 8 Anwenderstapel im Speicher behandeln
kann.
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Aus den vorhergehenden Abschnitten ist ersichtlich, dass die
Adressierarten mit Nachinkrementierung und Vordekrementie-
rung sehr gut verwendet werden kdnnen, um Stapel zu bearbei-
ten. Falls AQ als Anwenderstapelzeiger verwendet wird,
schreibt der Befehl

MOVE.L DO0,-(A0)

den 32-Bit-Inhalt von DO in den Stapel und der Befehl

MOVE.L (A0)+,DO

speichert den urspriinglichen Inhalt von DO wieder zuriick.

Zusitzlich gibt es noch eine Variante des MOVE-Befehls, -

genannt «Transportiere mehrere Register» (MOVEM), um
Gruppen von Registern in den Stapel zu schieben bzw. wieder
herauszuholen.

Die noch zu beschreibenden zwei Adressierarten unterstiitzen
den Tabellenzugriff, indem sie die Addition von Verschiebungen
und Indizes zum Adressregister ermdglichen.

3.2.4 Adressregister indirekt mit Verschiebung

In dieser Adressierart wird vor der Befehlsausfiihrung eine im
Befehl spezifizierte, maximal 16 Bit lange ganze Zahl zum
Inhalt des Adressregisters addiert und mit der resultierenden
Adresse zu einem Datenwort im Speicher zugegriffen. Die
Adressierart eignet sich besonders gut fiir die Bearbeitung von
Listen oder Tabellen, wo das Adressregister die Anfangsadresse
enthilt und die zu addierende Zahl die relative Verschiebung zur
Anfangsadresse spezifiziert.

Die Verschiebung wird in Byte angegeben. Das bedeutet, dass in
Datentabellen, die als Datenelemente Byte enthalten, die Ver-
schiebung gleich der Elementnummer ist; in Tabellen, die als
Datenelemente Worter enthalten, ist die Verschiebung gleich
der Elementnummer multipliziert mit 2, in Tabellen mit Doppel-

Speicher

$53F00 ELEMENT 0

MOVEW 14 (40),01

o (Fmsrm =@

MO oo o

| ‘ $53F06| $1c9A
vt 7 31coA ] )
L
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wortern gleich der Elementnummer multipliziert mit 4. Da-
durch, dass die Verschiebung eine maximal 16 Bit lange ganze
Zahl ist, ergeben sich folgende Verschiebungswerte.

Datenelement Verschiebung

positiv negativ
Byte 32767 Byte 32768 Byte
Wort 16 383 Worter 16 384 Worter
Doppelwort 8191 Doppelwdrter 8192 Doppelworter

Als Beispiel fiir diese Adressierart wird der Befehl

MOVE.W 14(A0),D1

diskutiert. AO enthdlt die Startadresse einer wortorientierten
Tabelle. Der obige Befehl 14dt den Inhalt des 8. Elements (Ele-
ment 7) in das tieferwertige Wort von Datenregister D1. Bild 3.4
illustriert diese Operation.

3.2.5 Adressregister indirekt mit Index

Dies ist die letzte zu beschreibende Adressierart aus der Gruppe
der indirekten Adressierarten. Die effektive Operandenadresse
wird berechnet, indem zum Adressregister der Inhalt eines
Indexregisters (Daten- oder Adressregister) sowie eine maximal
8 Bit lange ganze Zahl addiert werden. Dies ergibt fiir die
Berechnung der Effektivadresse folgende Formel:

EA =(An) +(Ri) + d,

Es besteht die Moglichkeit, entweder das ganze Indexregister
oder nur das tieferwertige Wort davon zu verwenden. Im ersten
Fall muss zum Indexregister .L, im zweiten Fall .\W gesetzt wer-
den. Die Befehlsausfiihrungszeit ist in beiden Féllen gleich.

Weil diese Adressierart zwei verschiedene Offsets anbietet, ist
sie niitzlich fiir die Anwendung in zweidimensionalen Arrays.
In solchen Fillen enthdlt das Adressregister gewohnlich die
Startadresse des Arrays, wihrend die Verschiebung und das
Indexregister den Reihen- und Kolonnenoffset angeben (oder
umgekehrt). Der Index ist normalerweise als Byteanzahl ange-
geben und in einem Datenregister enthalten; fiir die Verschie-
bung (in Byte) wird ein Symbol verwendet.

Zur Hlustration dieser Adressierart wird angenommen, dass ein
auf dem MC 68000 basierendes System eine chemische Pro-
duktionsanlage mit 6 Druckventilen liberwacht. Das System lie-
fert jede halbe Stunde die Werte der 6 Ventile und speichert diese
ab. In der Zeit einer Woche ergibt dies einen Array mit 366
Bl6cken zu je 6 Werten.
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In Bild 3.5 wird das Lesen des Wertes von Ventil 4 in der zweiten
Leseoperation (Ablesung 1) gezeigt. Der entsprechende Befehl
lautet:

MOVE.W VALVE (A0,D0.W),D1

Die Startadresse des Arrays ist $53F00.

$53F00

MovEw mrs@g, 20.w), 21 ? Ab/aesung

A0 $00053F00

L Abflesung
Ty 7
/] $99°¢ ] ®.
—-$s3F0c(vaLve o)
l (VALVES)
VALVE=8 (vALve2) | | Ablesung
maef)| I 2
$53F14|_ $1C9A
(VALVES,

21 % 8 1c94 ] T

Ablesung
> 335

Bild 3.5
Ermittlung eines Datenwertes aus
einem zweidimensionalen Array

3.2.6 Absolute Datenadressierung

Bei der absoluten Datenadressierung ist die effektive Adresse
selbst als Operand spezifiziert. Es gibt zwei absolute Adressier-
arten: «Absolut kurz» und «absolut lang». Im ersten Fall ist der
Operand eine 16-Bit-Adresse, im zweiten Fall eine 32-Bit-
Adresse.

«Absolut kurz» erlaubt, entweder zu den ersten 32 KByte im
Speicher (0 ... $7FFF) oder zu den h6chsten 32 KByte im Spei-
cher (§FF8000 ... SFFFFFF) zuzugreifen.

«Absolut lang» gibt die Moglichkeit, zu irgendeinem Speicher-
platz des 16-MByte-Speichers des MC 68000 zuzugreifen.
Befehle mit «absolut kurz» belegen im Speicher 2 Worter und
bendtigen zur Ausfilhrung 12 Prozessorzyklen, solche mit
«absolut lang» 3 Worter respektive 16 Zyklen. Mit diesen zwei
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absoluten Adressierarten unterstiitzt der MC 68000 Anwen-
dungen mit einem sehr grossen Adressierraum, ohne die Effekti-
vitdit von Anwendungen zu beeintrichtigen, die nur einen
kleinen Adressierraum bendtigen. «Absolut kurz» wird aber
auch in Anwendungen mit grossem Adressierraum eingesetzt,
um zu hdufig gebrauchten oder zwischengespeicherten Daten,
die in den héchsten 32 KByte des Speichers abgespeichert sind,
zuzugreifen.

Beispiele:

Absolut kurz (2 Worter, 12 Zyklen)
MOVE.W $3F00,D1

Absolut lang (3 Worter, 16 Zyklen)
MOVE.W $03F00,D1

Beide Befehle laden das Wort an Adresse $3F00 in das tieferlie-
gende Wort des Datenregisters D1. Der Datenlidngecode .W
bezieht sich auf die Grosse der verschobenen Daten.

Der Operand eines Befehls mit absoluter Adressierung ist
anstelle einer hexadezimalen Zahl oft mit einem Label spezifi-
ziert. Dies wird illustriert am Befehl

MOVE.L TABLE(DO.L),D1

Mit diesem Befehl wird das Doppelwort, das sich an Adresse

Table befindet, in das Adressregister AO geladen. Bei dieser Art

von Befehlsdeklarierung ist von Interesse, ob fiir die Ausfiih-

rung «absolut kurz» oder «absolut lang» verwendet wird. Die

Antwort ist abhéngig davon, ob Table in einer hoheren oder

einer tieferen Adresse als der MOVE-Befehl abgelegt ist:

— Falls Table in einer tieferen Adresse als der MOVE-Befehl
abgelegt ist (es wird riickwérts referenziert), wird der Assem-
bler die geeignete kurze oder lange Adresse generieren.

— Falls Table in einer hoheren Adresse als der MOVE-Befehl
abgelegt ist (es wird vorwirts referenziert) und der MOVE-
Befehl unter eine ORG-Anweisung fillt, wird der Assembler
versuchen, eine kurze Adresse zu generieren. Bei Vorwirts-
Referenz kann der Assembler durch eine ORG.L-Anweisung
gezwungen werden, eine lange Adresse zu nehmen.

Hinweis: Der Assembler generiert absolute Adressen fiir Befeh-

le, die unter einer ORG-Anweisung, relative Adressen fiir

Befehle, die unter einer RORG-Anweisung stehen.

3.2.7 Programmazahler-relative Adressierung

Die zum Programmzéhler relativen Adressierarten geben die
Maoglichkeit, positionsunabhéngige, das heisst «umplazierbare»
(relocatable) Programme zu entwickeln, die, wenn einmal
geschrieben und assembliert, irgendwo im Speicher ausgefiihrt
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werden konnen. Bei den zum Programmzéhler relativen Adres-
sierarten berechnet der MC 68000 die effektiven Adressen,
indem er zu der im Programmzéhler enthaltenen Adresse eine
Verschiebung addiert. Der Programmzéhler zeigt im Berech-
nungszeitpunkt der effektiven Adresse auf das Erweiterungs-
wort des in Ausfiihrung begriffenen Befehls. Der Wert der Ver-
schiebung ist in diesem Erweiterungswort enthalten.

Die zwei zum Programmzéhler relativen Adressierarten, die der
MC 68000 anbietet — «Relativ mit Verschiebung» und «Relativ
mit Index» —, werden verwendet, um zu Operanden zuzugreifen,
die im Speicher einige Byte hoher oder tiefer liegen als der in
Ausfiihrung begriffene Befehl. Beiden Adressierarten ist
gemeinsam, dass die Verschiebung in Symbolen angegeben wer-
den darf, da der Assembler die Verschiebung zur Zeit der
Assemblierung berechnen kann (vergleiche die nachfolgend dis-
kutierten Beispiele).

Die Umplazierbarkeit der Programme bleibt dann aber nur
gewdhrleistet, wenn den betreffenden Befehlen eine RORG-
Anweisung vorausgeht. Die RORG-Anweisung bewirkt, dass
der Assembler die zum Programmzéhler relative Adressierung
verwendet, wihrend die ORG-Anweisung bewirkt, dass der
Assembler absolute Adressierung verwendet. (
3.2.7.1 Relativ mit Verschiebung

«Relativ mit Verschiebung» ist die einfachere der beiden Adres-
sierarten. Die effektive Adresse EA berechnet sich als Summe
aus der Adresse im Programmzéhler und der vorzeichenbehaf-
teten 16-Bit-Verschiebung im Erweiterungswort des Befehls:

EA = (PC) + d,,

3.2.7.2 Relativ mit Index

Die effektive Adresse ist in diesem Fall die Summe der Adresse
des Erweiterungswortes, das im Programmzéhler enthalten ist,
des Inhalts eines Indexregisters (entweder ein Daten- oder ein
Adressregister) und einer maximal 8 Bit langen, vorzeichenbe-
hafteten ganzen Zahl, die im Erweiterungswort des in Ausfiih-
rung begriffenen Befehls enthalten ist. Formelmaéssig kann dies
wie folgt geschrieben werden:

EA =(PC) + (Ri) + dq

Diese Art ist besonders niitzlich, um Werte aus einer Liste oder
einer Datentabelle zu lesen. Im Falle solcher Anwendungen
adressiert die Summe des Programmzéhlers und der 8-Bit-Ver-
schiebung den Anfang der Tabelle, und das Indexregister gibt
den Abstand des gewiinschten Datenelements vom Tabellen-
anfang an. Dies wird illustriert in Bild 3.6.
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Bild 3.6
Adressierungsart «Programm-
zahler-relativ mit Index»

Speicher
OP - WORT
Programmzahler ——— | ERW. WORT
zeigt hierhin -
Startadresse der
Datentabelle (PC+dy)

| Daten
Tabelle

Gewonschte Daten
(Pc+Ri+dy)

Es ist moglich, entweder nur das tieferwertige Wort des Indexre-
gisters oder seinen ganzen, 32 Bit langen Inhalt zu verwenden,
indem im Befehl zum Symbol des Registers entweder ein .W
oder in .L gesetzt wird (im Falle, dass der Datenldngecode aus-
gelassen wird, setzt der Assembler als Defaultwert ein .W).

Als Beispiel fiir die Anwendung dieser Adressierart dient der
folgende Befehl:

MOVE.W TABLE(D0.L),D1

Bei der Assemblierung wird der Assembler aufgrund dieses
Befehls die Verschiebung in Byte zwischen dessen Erwei-
terungswort und der Position Table, der Startadresse der
Datentabelle, berechnen und mit dem Ergebnis das Erwei-
terungswort bilden. Der Mikroprozessor wird bei der Befehls-
ausfiihrung den 32-Bit-Inhalt des Datenregisters DO zur
berechneten Startadresse der Datentabelle addieren und dann
den 16-Bit-Inhalt des durch die erhaltene Effektivadresse adres-
sierten Speicherplatzes in die 16 tieferwertigen Bit des Datenre-
gisters D1 laden. Weil die Verschiebung eine 8 Bit lange, vorzei-
chenbehaftete ganze Zahl ist, darf Table sich nicht mehr als 63
Worte héher und nicht mehr als 64 Worte tiefer im Speicher
befinden als das Erweiterungswort.

3.2.8 Unmittelbare Datenadressierung

Unmittelbare Datenadressierung wird verwendet, um eine Kon-
stante als Quellenoperanden zu spezifizieren. Diese Konstante
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ist Bestandteil des Befehls. Es gibt zwei Adressierarten, die zur
unmittelbaren Datenadressierung gezdhlt werden: «unmittel-
bar» und «unmittelbar schnell».

3.2.8.1 Unmittelbar

In der Art «unmittelbar» kann ein Byte, ein Wort oder ein Dop-
pelwort als Konstante spezifiziert werden. Die Grosse der Kon-
stante bestimmt das Befehlsformat. Im Falle eines Byte oder
- eines Wortes umfasst der Befehl ein Erweiterungswort, im Falle
eines Doppelwortes zwei Erweiterungsworte. Dies wird gezeigt
in Bild 3.7.

L 0o o 0o o0 0 0o o 0 Byte 1
oder
I Wort l
oder
Hoherwertig
- Doppelwort — —— — —— —— — ]
Tieferwertig

Bei der Befehlsausfiihrung werden zwei Fille unterschieden:
Falls das Ziel ein Adressregister ist, werden Konstante von der
Linge eines Byte oder eines Wortes auf ein Doppelwort vorzei-
chenerweitert; im Falle, dass das Ziel ein Datenregister ist, gibt
es keine Vorzeichenerweiterung. Dazu zwei Beispiele:

1. Beispiel:

MOVE.W #$834E,DO

Der Befehl ladt den Wert $834E in das tieferwertige Wort des
Datenregisters DO.
2. Beispiel:

MOVE.W #$834E,A0

Der Befehl 14dt den Wert SFFFF834E in das Adressregister A0
und beeinflusst damit alle 32 Bit.

3.2.8.2 Unmittelbar schnell

Es gibt nur 3 Befehlstypen, mit denen die Art «unmittelbar
schnell» verwendet werden kann:

- ADDAQ (addiere schnell, Q = quick)

- SUBQ (subtrahiere schnell)

- MOVEQ (transportiere schnell)

Die Befehle ADDQ und SUBQ geben die Moglichkeit, zu einem
Register oder einer Speicherzelle eine ganze Zahl zwischen 1
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und 8§ zu addieren oder davon zu subtrahieren. Sie sind damit
die Inkrementier- beziehungsweise Dekrementierbefehle des
MC 68000.

Der Befehl MOVEQ ermdglicht, eine vorzeichenbehaftete Kon-
stante in der Grosse von maximal einem Byte (-128 bis +127)
in ein Datenregister zu laden. Die Konstante wird zeichener-
weitert auf ein Doppelwort, so dass alle 32 Bit des Datenregi-
sters betroffen sind. Fin Beispiel soll dies verdeutlichen:

MOVEQ =#-2,D0

Der Befehl 1ddt den Wert $SFFFFFFFE (das Zweierkomple-
ment von -2, zeichenerweitert auf ein Doppelwort) in das
Datenregister DO.

Die drei zuvor beschriebenen Adressierarten sind mit «schnell»
bezeichnet, weil sie im Speicher nur ein Wort belegen (die Kon-
stante ist in das Operationswort eingebettet). Aus diesem Grun-
de ist die Ausfiihrungszeit viel kiirzer als fiir die gewohnlichen
«unmittelbar»-Arten.

3.2.9 Implizite Adressierung

\

Einige Befehle verwenden bei der Befehlsausfiihrung ein
bestimmtes internes Register, ohne dass dieses im Operanden
identifiziert sein muss. Die Adressierung eines solchen Registers
wird implizit genannt. Der Sprungbefehl (JMP) lidt beispiels-
weise immer eine Adresse in den Programmzéhler (PC), obwohl
der Programmzihler im Befehl nicht explizit als Zielregister
identifiziert wird. Als implizite Register werden neben dem Pro-
grammzéhler (PC) noch folgende Register verwendet: System-
stapelzeiger (SP), Anwenderstapelzeiger (USP), Uberwa-
chungsstapelzeiger (SSP), Statusregister (SR). In Tabelle 3.2
sind die Befehle, die die implizite Adressierung verwenden,
sowie die betreffenden impliziten Register aufgefiihrt.

Befehl Implizite Register
Bedingter Sprung (Bcc), PC
Unbedingter Sprung (BRA)

Sprung zu Subroutine (BSR) PC,SP
Priife Register auf Grenzen (CHK) SSP,SR
Priife Bedingung, vermindere und springe PC
(DBcc)

Division mit Vorzeichen (DIVS) SSP,SR
Division ohne Vorzeichen (DIVU) SSP,SR
Sprung (JMP) PC
Sprung zur Subroutine (JSR) PC.,SP
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Implizite Register
Zuweisung (LINK) SP
Transportiere Bedingungscode SR
(MOVE CCR)

Transportiere Statusregister (MOVE SR) SR

Transportiere Beniitzerstapelzeiger USP
(MOVE USP)

Eintragen der effektiven Adresse (PEA) SP
Riickkehr von Ausnahme (RTE) PC,SP,SR
Riickkehr und Riickladung Bedingungs- PC,SP,SR
code (RTR)

Riickkehr aus Subroutine (RTS) PC,SP
Falle (TRAP) SSP,SR
Falle bei Uberlauf (TRAPV) SSP,SR
Freigabe (UNLK) SP

3.2.10 Adressierarten, die Adressen oder Daten

vorzeichenerweitern

Obwohl die Daten- und Adressregister des MC 68000 grund-
sétzlich universell verwendbar sind, werden die Datenregister in
erster Linie verwendet, um Daten abzuspeichern, und die
Adressregister, um die 32-Bit-Speicheradressen abzuspeichern.

Adressierungsart Art der Vorzeichenerweiterung
Adressregister direkt Wortadresse verldngert zu
(als Bestimmung) Doppelwort

Adressregister indirekt
mit Verschiebung

Wortverschiebung verldngert zu
Doppelwort

Adressregister indirekt
mit Index

1. Byteverschiebung verldngert
zu Doppelwort

2. Wortindex verlédngert zu
Doppelwort

Absolute Adresse kurz Wortadresse verldngert zu
Doppelwort

Programmzéhler relativ.~ Wortverschiebung verlédngert zu

mit Verschiebung Doppelwort

Programmzéhler relativ
mit Index

1. Byteverschiebung verldngert zu
Doppelwort

2. Wortindex verldngert zu
Doppelwort
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Dies ist die Begriindung dafiir, dass durch die zur Verfiigung
stehenden Adressierarten Information, die in Datenregister ge-
laden wird, nicht vorzeichenerweitert wird, dagegen Informa-
tion, die in Adressregister geladen wird, immer vorzeichenerwei-
tert wird. In Tabelle 3.3 sind die Adressierarten aufgefiihrt, die
Ursache fiir Vorzeichenerweiterungen sind. In einem spiteren
Abschnitt des Kapitels 3 werden die Befehle diskutiert, die
Ursache fiir Vorzeichenerweiterungen sind.

3.3 Einteilung der Adressierarten nach
Verwendungszweck

Wie in den vorhergehenden Abschnitten dieses Kapitels aufge-
zeigt wurde, erfiillt jede der 14 Adressierarten des MC 68000
eine bestimmte Adressierfunktion. Einige davon kOnnen ver-
wendet werden, um zu einem Operanden in einem Register,
andere um zu einem Operanden an einer bestimmten Speicher-
adresse oder zu einem Operanden mit einer Verschiebung zu
einer bestimmten Speicheradresse zuzugreifen, usw. Einige
andere Arten konnen verwendet werden, um zu irgendeiner von:
verschiedenen Informationsarten zuzugreifen (beispielsweise
kann mit Adressregistern indirekt zu Daten oder Adressen im
Speicher zugegriffen werden), wiahrend andere in ihrer Verwen-
dung eingeschrinkt sind (Adressregister direkt kann sich bei-
spielsweise nur auf einen Adressoperanden, jedoch nicht auf
einen Datenoperanden beziehen). Aus den hier geschilderten
Griinden k6énnen die einzelnen Adressierarten durch die vier fol-
genden Adresskategorien charakterisiert werden:

1. Daten

Falls eine Adressierart verwendet werden kann, um zu Daten
zuzugreifen, wird sie als Adressierart fiir Daten bezeichnet.

2. Speicher

Falls mit einer Adressierart zu Speicheroperanden zugegriffen
werden kann, wird sie als Speicheradressierart bezeichnet.

3. Steuerung

Falls eine Adressierart verwendet werden kann, um zu Spei-
cheroperanden ohne Grossenangabe zuzugreifen, wird sie als
Steuerungs-Adressierart bezeichnet.

4. Anderbar

Falls mit einer Adressierart zu &dnderbaren (schreibbaren)
Adressierarten zugegriffen werden kann, wird sie als dnderbar
bezeichnet.

Tabelle 3.4 zeigt, welchen Adresskategorien jede der Adressier-
arten des MC 68000 angehort. Diese Tabelle ist fiir den Pro-
grammierer wichtig, weil viele der Befehle die Operanden auf
bestimmte Kategorien oder Kombinationen von Kategorien
beschrénken.
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Adressierungsarten Adressierungskategorien Assembler-
Daten Speicher Steue- &dnder- syntax
rung bar
Datenregister direkt X X Dn
Adressregister direkt X An
Register indirekt X X X X (An)
Register indirekt X X X (An)+
nachinkrementiert
Register indirekt X X X —(An)
vordekrementiert :
Register indirekt m. Verschiebung X X X X d(An)
Register indirekt mit Index X X X X d(An,Ri)
Absolut kurz X X X X XXXX
Absolut lang X X X X XXXXXXXX
Relativ mit Verschiebung X X X d
Relativ mit Index X X X d(Ri)
Unmittelbar X X HXXXX

Tabelle 3.4  Effektive Adressierungsarten

So hat z.B. der «addiere schnell»-Befehl die allgemeine Form

ADDQ =<data>,<ea>

Als effektive Adresse sind fiir diesen Befehl nur «dnderbare»
Adressierarten erlaubt. Dies bedeutet, dass irgendeine Adres-

sierart mit Ausnahme von relativer und unmittelbarer Adressie-

rung verwendet werden kann. Aus diesem Grunde ist ADDQ

42,A0 erlaubt, ADDQ #2,42 jedoch nicht.

Ein Befehl, der eine Kombination von Kategorien im Operan-
denfeld beniitzen kann, ist der MOVE-Befehl mit der allge- -
meinen Form

MOVE <ea>, <ea>

Bei diesem Befehl sind fiir das Quellenfeld alle Adressierarten
zugelassen mit Ausnahme der Adressierungsart «Register
direkt» bei Byteverarbeitung. Beim Bestimmungsfeld sind nur
die Adressierungsarten «Daten dnderbar» erlaubt. Das bedeu-
tet fiir das Bestimmungsfeld, dass sowohl die Kategorien der
Datenadressierarten wie auch die der dnderbaren Adressie-
rungsarten zugelassen sind. So beinhaltet die Adressierungsart
«Daten énderbar» die Datenregister direkt, Adressregister indi-
rekt und die absoluten Adressierungsarten. Umgekehrt sind
die Arten «Adressregister direkt», « Programmzéhler relativ»
und die «unmittelbaren» Arten ausgeschlossen.

Muss man nun annehmen, in ein Adressregister konne kein
Transfer gemacht werden, weil Adressregister direkt keine
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«Daten dnderbar»-Adressierungsart ist? Selbstverstédndlich
nicht, denn es muss natiirlich einen Weg geben, um diese Regi-
ster initialisieren zu koOnnen. Dieser Weg fiihrt nicht iiber
MOVE, sondern der MC 68000 verfiigt fiir diese Aufgabe iiber
einen anderen Befehl, MOVEA, transportiere Adresse.
Obschon im MC-68000-Benutzerhandbuch MOVE und
MOVEA als zwei verschiedene Befehle definiert sind, erlauben
die meisten MC-68000-Assembler, eingeschlossen der von
Motorola, die Spezifikation eines Adressregisters im Bestim-
mungsfeld eines MOVE-Befehls. Diese Assembler interpretie-
ren den MOVE-Befehl einfach als MOVEA und erzeugen den
entsprechenden Objektcode.

3.4 Befehlsarten

Wie bereits erwéhnt, verfiigt der MC 68000 iiber 56 Grundbe-
fehle. Die mnemonische Schreibweise und die Beschreibung die-
ser Befehle sind in Tabelle 3.5 zusammengestellt. Im weiteren
verfiigen 8 dieser Befehle iiber Variationen zur Ausfiihrung von
speziellen Operationen; diese Variationen sind in Tabelle 3.6

zusammengestellt.
Beschreibung
Mnemonic englisch deutsch
ABCD Add Decimal with Extend Addiere dezimal mit Erweiterungsbit
ADD Add Addiere binir
AND Logical And Logisches UND
ASL Arithmetic Shift Left Arithmetische Verschiebung links
ASR Arithmetic Shift Right Arithmetische Verschiebung rechts
Bcee Branch Conditionally Bedingter Sprung
BCHG Bit Test and Chance Priife ein Bit und dndere es
BCLR Bit Test and Clear Priife ein Bit und setze es auf 0
BRA Branch Always Unbedingter Sprung
BSET Bit Test and Set Priife ein Bit und setze es
BSR Branch to Subroutine Sprung zum Unterprogramm
BTST Bit Test Priife ein Bit
CHK Check Register Against Bounds  Priife Register auf Grenzen
CLR Clear Operand Setze Operand auf 0
CMP Compare Vergleiche
DBcc Test Cond., Decrement and Priife Bedingung, vermindere und
Branch springe
DIVS Signed Divide Divison mit Vorzeichen
DIVU Unsigned Divide Division ohne Vorzeichen
EOR Exclusive OR Logical Logisches exklusiv ODER
EXG Exchange Registers Vertausche Daten zwischen Registern
EXT Sign Extend Vorzeichenerweiterung
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Beschreibung

Mnemonic englisch deutsch

JMP Jump Springe

JSR Jump to Subroutine Springe zum Unterprogramm

LEA Load Effective Address Lade die effektive Adresse

LINK Link and Allocate Zuweisung

LSL Logical Shift Left Logische Verschiebung nach links

LSR Logical Shift Right Logische Verschiebung nach rechts

MOVE Move Date from Source to Transportiere Daten von der Quelle
Destination zum Ziel

MOVEM Move Multiple Registers Transportiere mehrere Register

MOVEP  Move Peripheral Data Transportiere periphere Daten

MULS Signed Multiply Multiplikation mit Vorzeichen

MULU Unsigned Multiply Multiplikation ohne Vorzeichen

NBCD Negate Decimal with Extend Negiere dezimal mit Erweiterungsbit

NEG Negate Negiere

NOP No Operation Keine Operation

NOT One’s Complement Einerkomplement

OR Logical Or Logisches ODER

PEA Push Effective Address Eintragen der effektiven Adresse

RESET Reset External Devices Normieren externer Einheiten

ROL Rotate Left without Extend Ringverschiebung links 0. Erw.-Bit

ROR Rotate Right without Extend Ringverschiebung rechts o. Erw.-Bit

ROXL Rotate Left with Extend Ringverschiebung links m. Erw.-Bit

ROXR Rotate Right with Extend Ringverschiebung rechts m. Erw.-Bit

RTE Return from Exception Riickkehr von Ausnahme

RTR Return and Restore Riickkehr, Riickladen Bedingungscodes

RTS Return from Subroutine Zuriick vom Unterprogramm

SBCD Subtract Decimal with Extend Subtrahiere dezimal m. Erw.-Bit

Scc Set on Condition Setze in Abhéngigkeit der Bedingung

STOP Stop Lade das Statusregister und halte an

SUB Subtract Subtrahiere binér.

SWAP Swap Data Register Halves Vertausche Registerhilften

TAS Test an Set Operand Priife und setze Operand

TRAP Trap Falle

TRAPV  Trap on Overflow Falle bei Uberlauf

TST Test Priife einen Operanden

UNLK Unlink Freigabe

Tabelle 3.5

Die 56 Grundbefehle des MC 68 000

52



Der Befehlssatz des MC 68 000

Der ganze Befehlssatz kann in 8 funktionelle Gruppen eingeteilt
werden:

1.

Datentransportbefehle verschieben Information zwischen
Speicherzellen, Fin- und Ausgabegeriten und allgemein ver-
wendbaren Registern in jeder Kombination.

. Befehle fiir ganzzahlige Arithmetik fiilhren arithmetische

Operationen mit bindren Zahlen in einfacher und mehrfacher
Genauigkeit durch.

. Logische Befehle fiihren logische Operationen UND, ODER

und EXKLUSIV-ODER mit Speicherzellen und Registern
aus.

. Schiebe- und Rotierbefehle schieben und rotieren den Inhalt

von Speicherzellen und Registern.

. Bitmanipulationsbefehle priifen den Zustand individueller

Bit und fiihren je nach Resultat dieser Priifungen Operatio-
nen aus.

. Bindrcodierte Dezimalbefehle (BCD) addieren und subtra-

hieren BCD-Werte.

. Programmsteuerbefehle fiilhren Verzweigungen, Spriinge

Subroutinenaufrufe aus und steuern so den Ablauf der Pro-
grammausfiihrung.

. Systemsteuerbefehle, eingeschlossen privilegierte Befehle,

Trap-Erzeugungsbefehle und Befehle, die das Statusregister
beniitzen oder dndern.

In diesem Kapitel wird der Befehlssatz in der gerade présentier-
ten Ordnung beschrieben. Wir beginnen mit den Datentrans-
portbefehlen, mit den jetzt bekannten MOVE-Befehlen.

Befehlsart Variation Beschreibung englisch Beschreibung deutsch
ADD ADD Add Addiere
ADDA Add Address Addiere Adresse
ADDQ Add Quick Addiere schnell
ADDI Add Immediate Addiere unmittelbar
ADDX Add With Extend Addiere mit Erweiterung
AND AND Logical AND Logisch UND
ANDI AND Immediate UND unmittelbar
CMP CMP Compare Vergleiche
CMPA Compare Address Vergleiche Adresse
CMPM Compare Memory Vergleiche Speicher
CMPI Compare Immediate Vergleiche unmittelbar
EOR EOR Exclusiv-OR Exklusiv ODER
EORI Exclusiv-OR Immediate =~ Exklusiv ODER unmittelbar
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Befehlsart Variation Beschreibung englisch Beschreibung deutsch

MOVE MOVE Move Transportiere
MOVEA Move Address Transportiere Adresse
MOVEQ Move Quick Transportiere schnell

MOVE(f.SR Move from Status Register Transportiere vom Statusreg.
MOVEto SR Move to Status Register Transportiere zum Statusreg.
MOVEto Moveto Condition Codes Transportiere zu den

CCR Bedingungscodes

MOVEUSP Move User Stack Pointer  Transp. Benutzerstapelzeiger
NEG NEG Negate Negiere

NEGX Negate With Extend Negiere mit Erweiterung
OR OR Logical OR Logisch ODER

ORI OR Immediate ODER unmittelbar
SUB SUB Subtract Subtrahiere

SUBA Subtract Address Subtrahiere Adresse

SUBI Subtract Immediate Subtrahiere unmittelbar

SUBQ Subtract Quick Subtrahiere schnell

SUBX Subtract With Extend Subtrahiere mit Erweiterung

Tabelle 3.6
Variationen von Befehlen

3.4.1 Datentransportbefehle

Die Datentransportbefehle geméss Tabelle 3.7 werden verwen-
det, um Informationen zwischen Speicher und Daten- oder
Adressregistern zu transferieren. Diese Gruppe enthélt zwei
zusétzliche Befehle, LINK und UNLINK ; sie werden vorwie-
gend mit Subroutinen verwendet, so dass wir sie separat,
anschliessend an die Diskussion der Programmsteuerbefehle,
beschreiben.

3.4.1.1 MOVE-Befehl

Der grundsétzliche Befehl in dieser Gruppe ist der MOVE-
Befehl, der verwendet werden kann, zum Transfer von Byte-,
Wort- oder Doppelwortdaten zwischen zwei Speicherzellen,
zwischen einer Speicherzelle und einem Datenregister oder zwi-
schen zwei Datenregistern.

Wenn der MC 68000 im Beniitzerstatus ist, erlaubt der MOVE-
Befehl das Nachfiihren des Bedingungscoderegisters (MOVE
<ea> , CCR) oder das Lesen des gesamten Statusregisters
(MOVE SR, <ea>). Im Uberwachungsstatus erlaubt der
MOVE-Befehl das Nachfiihren des Statusregisters (MOVE
<ea>, SR), das Lesen des Beniitzerstapelzeigers (MOVE,
USP, An), oder das Schreiben des Beniitzerstapelzeigers
(MOVE An, USP). In den vorangegangenen Feldern darf fiir
die effektive Adresse (mit <ea> bezeichnet) kein Adressregister
als Quelle oder Bestimmungsort verwendet werden.
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Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes
Quelle Ziel XNZVC
" EXG EXG Rx,Ry 32 Dn oder An DnoderAn @ ———-—-
LEA LEA <ea>,An 32 Kontrolle An -
MOVE MOVE <ea>,<ea> 8,16,32 Alle(1) Daten dnderbar -**00
MOVE <ea>,CCR 16 Daten CCR * ok ok ok ok
MOVE <ea>,SR (2) 16 Daten SR * Rk ok &
MOVE SR,<ea> 16 SR Daten dnderbar  — = - - -
MOVEUSP,An (2) 32 USP An -
MOVE An,USP (2) 32 An usp 0 -
MOVEA MOVEA <ea>,An 16,32 Alle An -
MOVEM MOVEM <list>,<ea> 16,32 Kontrolle @  —-—-—---
dnderbar —(An)
MOVEM <ea>,<list> 16,32 Kontrolleoder -
(An)+

MOVEP MOVEP Dx,d(Ay) 16,32 Dn d(An) -
MOVEP d(Ay),Dx 16,32 d(An) Dn @ ————-
MOVEQ MOVEQ #d,Dn 32 #d (3) Dn -*¥*00
NOP NOP PV->2PC -
PEA PEA <ea> 32 Kontrolle  —————
SWAP SWAPDn 16 Do e

Tabelle 3.7 Datentransportbefehle

Bemerkungen:

(1) BeiByteverarbeitung ist die Adressierungsart

«Adressregister direkt» nicht erlaubt

(2) Privilegierte Operation

(3) Acht Bit der unmittelbaren Daten, die zu
einem Langwortoperand vorzeichenerweitert

werden

3.4.1.2 Beniitzung von MOVE mit den Stapeln

Der MOVE-Befehl kann auch beniitzt werden, um Daten von
den Stapeln in den Speicher zu transportieren und umgekehrt.
Das schliesst sowohl die Systemstapel (Uberwachungsstapel
und Beniitzerstapel) als auch beniitzerdefinierte Stapel ein.
Durch die Anordnung der Stapel im Speicher mit Adresse 0
kann die Adressierungsart «Adressregister indirekt mit Vor-
dekrement» verwendet werden, um Daten in den Stapel zu
bringen.
Zum Beispiel bringt der Befehl

MOVE DO, ~(SP)

das tiefere Wort von DO in den aktiven Systemstapel. Umge-
kehrt holt die Adressierart « Adressregister indirekt mit Nachin-
krementierung» Daten vom Stapel; zum Beispiel holt der Befehl

MOVE (SP)+,D0

das ndchste Wort des aktiven Systemstapels und 14dt es in das
tiefere Wort von DO.
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3.4.1.3 MOVEM, transportiere mehrere Register

Ofters wird die Aufgabe gestellt sein, den Inhalt mehrerer Regi-
ster zu transferieren. Ein grundsitzliches Beispiel dazu ist die
Sicherung einer Anzahl allgemein verwendbarer Register in den
Stapeln wihrend der Ausfiihrung einer Subroutine, um die Sub-
routine damit reentrant zu machen. Eine Subroutine ist reeni-
rant, wenn sie unterbrochen und durch das unterbrechende Pro-
gramm wieder aufgerufen werden kann. Der Befehl MOVEM,
transportiere mehrere Register, kann verwendet werden zum
Transfer von bis zu 16 Registern (Datenregister DO ... D7 und
Adressregister AQ... A7) zum oder vom Speicher.

Formate:

MOVEM <list>, <ea> Transfer Register-zu-Speicher

MOVEM <ea>, <list> Transfer Speicher-zu-Register

In beiden Fiillen bedeutet <list> die Register, die transportiert
werden sollen. Der Assembler erlaubt zwei Arten, Register zu
«listen». Ein Weg ist die Auflistung individueller Registerna-
men, getrennt durch einen Schragstrich (/).

Zum Beispiel transferiert der Befehl

MOVEM D3/D4/D5/A1,$53F00

das tiefere Wort von D3, D4, D5 und A1 in die vier aufeinander-
folgenden Worte, die mit derAdresse $53F00 beginnen. (In die-
sem Fall werden die Register in der Ordnung gespeichert, wie sie
im Befehl aufgefiihrt sind; das ist jedoch nicht immer der Fall,
wie wir noch sehen werden.)

Wenn die Registerliste aufeinanderfolgende Daten oder Adress-
register enthiilt, erlaubt es der Assembler, nur das erste und letz-

MOVEM D3-D5[A1.-(5P) Niyme b3
fithrung 24
< EFEEEEEPERERLERD =
-— Al
5p —=
nach Avs
fihrvng
MOVEM (sP)+ A1/D3-D5 P 23
fohrung | 24
s EEEEREEBETEEEELE ;
p—— At
$p —o
nach Aus-
fihrung
MOVEM D3-D5/A1. $53F00 $s3r00 | 23
$s3Fo2| 04
o [ETEEEEEEMEEREER o 23
p— $353F06 | A1
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Beispiele zum Befehl MOVEM

a) Datenordnung mit Vordekrementierung
b) Datenordnung mit Nachinkrementie-
rung

¢) Datenordnung mit absoluter Adressie-
rung
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Bild 3.9
Beispiele zum Befehl LEA

te Register aufzufiihren, getrennt durch einen Bindestich (). So
konnte das vorhergehende Beispiel geschrieben werden als

MOVEM D3-D5/A1,$53F00

Der MOVEM-Befehl transferiert immer Registerinhalte zu und
vom Speicher in einer vorbestimmten Sequenz, unabhéngig
davon, wie sie in der Registerliste geordnet sind. Bei der Adres-
sierungsart « Adressregister indirekt mit Vordekrementierung»
werden die Register in der Ordnung A7 bis A0, dann D7 bis DO
transferiert. Demgegeniiber werden fiir alle Steuerarten und fiir
die Adressierungsart «Adressregister indirekt mit Nachinkre-
mentierung» Register in der umgekehrten Ordnung, DO bis D7,
dann AOQ bis A7 transferiert. Diese Unterschiede erlauben das
Bilden von Stapeln und Listen in der einen Richtung und den
Zugriff zu ihnen in der entgegengesetzten Richtung. Bild 3.8
zeigt einige Beispiele dazu.

3.4.1.4 Adresstransferbefehle (MOVEA,LEA, PEA)

Der MC 68000 verfiigt iiber drei Befehle, die speziell fiir den
Transfer von Adressen entworfen wurden. Zwei dieser Befehle,
transportiere Adresse (MOVEA) und lade effektive Adresse
(LEA) sind dhnlich und k6nnen leicht durch die Programmierer
verwechselt werden. Beide veranlassen das Laden einer Adresse
in ein Adressregister; wihrend aber LEA die effektive Adresse
des referenzierten Operanden lddt (ein Speicherplatz), ladt
MOVEA den Inhalt des referenzierten Operanden (ein Spei-
cherplatz, ein Register oder ein unmittelbarer Wert) und nimmt
an, dass er eine Adresse darstellt.

LEA behandelt immer eine 32-Bit-Adresse, wihrend MOVEA
sowohl 16-Bit-Wort-Adressen als auch 32-Bit-Doppelwort-
Adressen behandeln kann. Bild 3.9 zeigt zwei Beispiele des
LEA-Befehls.

Registerinhalte Ao Aﬂ
R R

1 [Boreza]
BEFENL LEA  (A0).A1 LEA  4(A0.D0).A1
AUSFUHRUNG 00053F00 00053F00
FFFF8000
+ 0000000 4
1000#8F04%
Registerinhalte  A0|00053r00 A0 | 00053 F00
nach LEA A1 | 00053F00 D0 | 00008000
A1 {00048F04
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Wie man sehen kann, sind LEA und MOVEA &usserst prakti-
sche Befehle. Wenn ein Programm die Berechnung verschiede-
ner Adressen in verschiedenen Befehlen erfordert, muss die
Adresse mit LEA nur einmal berechnet werden und in einem
Adressregister abgelegt werden. Spéter kann jeder Bezug zu
den adressierten Operanden mit der «Adressregister indirekt»-
Adressierungsart gemacht werden. Das spart nicht nur Pro-
grammierungsaufwand, sondern benétigt auch weniger Spei-
cherplatz und erlaubt eine schnellere Ausfiihrung des Pro-
gramms. Warum ist das so? Weil die Adressierungsart « Adress-
register indirekt» keine speicherplatzbenstigenden Erwei-
terungsworte zu einem Befehl erfordert. Die Ausfiihrungszeit
zur Berechnung der Adresse ist mit dieser Art vier bis acht
Zyklen schneller als mit den Adressierungsarten «Adressregi-
ster indirekt mit Verschiebung» und « Absolut- oder Programm-
zéhler relativ».

Der Befehl MOVEA ist niitzlich beim Zugriff zu Adressen, die
im Speicher gespeichert sind. Zum Beispiel erhalten wir bei einer
verbundenen Liste im Speicher, in der jeder Knoten mit einem
Zeiger auf den néchsten Knoten beginnt, die Adresse des zwei-
ten Knotens mit

MOVEA.L LIST, A0

und die Adresse des dritten und der folgenden Knoten erhalten
wir mit

MOVEA.L (A0), A0

Zu erwihnen ist noch, dass ein MOVEA-Befehl, dessen Quel-
lenoperand ein unmittelbares Label ist, einem LEA-Befehl ent-
spricht. Das bedeutet, dass MOVEA.L # LABEL, A0 und
LEA LABEL, A0 dquivalente Befehle sind. Dazu ist zu sagen,
dass der MOVEA-Befehl 20 Zyklen fiir die Ausfiihrung bend-
tigt, wihrenddem der LEA-Befehl nur 12 Zyklen benétigt, so
dass in diesem Fall dem LEA-Befehl der Vorzug zu geben ist.
Der letzte der drei Adresstransferbefehle, PEA (Push Effective
Address) Eintragen der effektiven Adresse, ist dhnlich wie LEA,
doch transferiert er berechnete effektive Adressen statt den
Inhalt adressierter Speicherzeilen. Mit PEA wird die Adresse in
den aktiven Systemstapel eingetragen (Beniitzerstapel oder
Uberwachungstapel). Der PEA-Befehl kann verwendet werden
fiir die Ubergabe von Parametern an eine Subroutine, indem die
Adresse eines Parameters oder die Startadresse mehrerer hin-
tereinander folgender Parameter in den Stapel eingetragen wird.
Zum Beispiel kann die Eintrage- und Aufrufoperation mit der
folgenden Befehlssequenz ausgefiihrt werden:

PEA PARAM
JSR  SUBER
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Weil der JSR-Befehl eine 4-Byte-Riickkehradresse in den Stapel
schreibt, nachdem der PEA-Befehl seine 4-Byte-Adresse in den
Stapel eingetragen hat, muss zur Parameteradresse mittels

Uberspringen der Riickkehradresse zugegriffen werden, wie mit
dem Befehl

MOVEA.L 4(SP), A0

Mit dem Zuriickholen der Parameteradresse aus dem Stapel
bereinigt die Subroutine den Stapel mittels Verschiebung der
Riickkehradresse um ein Doppelwort hoher in den Speicher und
Nachfiihrung des Stapelzeigers. Beide Aufgaben konnen mit
einem Befehl ausgefiihrt werden:

MOVE.L

3.4.1.5 Der MOVE-Befehl

Wie im Kapitel 1 erwdhnt wurde, konnen am MC 68000 sowohl
dltere synchrone 8-Bit-Peripheriebausteine als auch neuere
asynchrone 16-Bit-Bausteine angeschlossen werden. Der MC
68000 verfiigt liber separate Steuerleitungen fiir jeden Typ von
Peripheriebausteinen.

Leser, die 8-Bit-Systeme programmiert haben, wissen, dass die
angeschlossenen Peripheriebausteine normalerweise iiber Regi-
ster verfiigen, die eine Anzahl aufeinanderfolgender Byte im
Speicher belegen.

Der Befehl MOVEP, transportiere periphere Daten, ist
bestimmt zum Transfer von Information zwischen einem MC-
68000-Datenregister und einem angeschlossenen 8-Bit-Periphe-
riebaustein in Paketen von zwei oder vier Byte. Im MC-68000-
System miissen 8-Bit-Peripheriebausteine entweder an die hGhe-
ren 8 Bit des Datenbus angeschlossen werden (Linien D8 ...
D15) oder an die tieferen 8 Bit des Datenbus (Linien DO...D7).
Der MOVEP-Befehl verkehrt mit der Peripherie mit der hGhe-
ren Hilfte des Bus durch die Verwendung von gerade numerier-
ten Adressen und mit der Peripherie auf der tieferen Hilfte des
Bus unter Verwendung von ungerade numerierten Adressen. In
einer Speicherabbildung wiirden diese Peripheriebausteine
abwechselnd aufeinanderfolgende gerade Byte oder aufeinan-
derfolgende ungerade Byte belegen.

Zwei-Byte-Transfers werden mittels Spezifikation eines Wort-
operanden (MOVEP oder MOVEP.W) und 4-Byte-Transfers
mittels eines Doppelwortoperanden (MOVEP.L) gemacht.
Peripheriebausteine werden unter Verwendung der Adressierart
«Register indirekt mit Verschiebung» adressiert. Bild 3.10 zeigt
zwei Beispiele des MOVEP-Befehls - einen Doppelworttransfer
mit einer geraden Adresse und einen Worttransfer mit einer
ungeraden Adresse. Zu bemerken ist, dass der MO VEP-Befehl
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gerade ungerade

A0 —>
hoher
Mitte hoher|
MOVEP.L D0.2(A0) Mitte ticter
31 2423 16,15 87 9 tiefer
a 0| hiker |mitte honer | itte ticker| tieter |

gerade  ungerade

- A0

héher

tiefer

MOVEP. W D0.2 (A0)

3 %23 w5 a7 0
Y | hiner | tierer |

der einzige MC-68000-Befehl ist, der die Beniitzung einer
ungeraden Adresse mit einem Wort- oder einem Doppelwort-
operanden erlaubt!

Die Ausfiihrungszeit des MOVEP-Befehls hidngt davon ab, ob
Daten zu oder von asynchronen oder synchronen Peripherie-
bausteinen transferiert werden. Ein Register-zu-Speicher-
Transfer bendGtigt bei asynchronen Peripheriebausteinen 18

Zyklen (Worttransfer) oder 28 Zyklen (Doppelworttransfer), -

wihrend ein Speicher-zu-Register-Transfer 16 Zyklen bei Wort-
transfer oder 24 Zyklen bei Doppelworttransfer bendétigt.
Transfers zu oder von synchronen Peripherieschaltungen wer-
den etwas mehr Zeit benétigen, weil der MC 68000 mit einem
Takt synchronisieren muss, der nur ;, des Systemtakts ist. Die
Kapitel 6 und 8 werden dazu ndhere Erlduterungen enthalten.

3.4.1.6 MOVEQ, transportiere schnell

Weil Programmierer ofters mit kleinen Konstanten operieren
miissen, versahen die Entwickler des MC 68000 diesen mit drei
sogenannt «schnellen» Befehlen: transportiere schnell, addiere
schnell und subtrahiere schnell. Diese Befehle erlauben die Spe-
zifikation einer kleinen Konstante im Operationswort. Der erste
dieser Befehle, transportiere schnell (MOVEQ, move quick),
kann einen spezifizierten, ein Byte langen Wert um das Vorzei-
chen erweitern auf 32 Bit und in ein Datenregister laden. Weil
die Konstante 8 Bit lang ist, kann jeder ganzzahlige Wert zwi-
schen —128 und + 127 in ein Datenregister transferiert werden.

- Der MOVEQ-Befehl belegt nur ein Wort im Speicher und bens-
tigt vier Zyklen zur Ausfiihrung. Im Gegensatz dazu benétigt
der Befehl «transportiere unmittelbar» (MOVE.L  #d,, Dn)
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Bild 3.10
Byte-Transfers mittels MOVEP

a) Doppelworttransfer mit gerader Adresse
b) Worttransfer mit ungerader Adresse
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zwei Worte im Speicher und 20 Zyklen zur Ausfiihrung. Die
meisten Assembler, eingeschlossen derjenige von Motorola,
niitzen diese Sparmdoglichkeiten aus, indem sie einen geeigneten
«transportiere unmittelbar»-Befehl als MOVEQ interpretieren
und den entsprechenden Objektcode erzeugen.

3.4.1.7 SWAPund EXG, Registervertausch und
Registeraustausch

Diese zwei dhnlichen Befehle haben einen ganz verschiedenen
Verwendungszweck. Der Befehl SWAP, vertausche Register-
hdilften, vertauscht die héheren 16 Bit eines 32-Bit-Datenregi-
sters mit den tieferen 16 Bit. Dieser Befehl gestattet den Zugriff
zum Inhalt des oberen Wortes eines Registers und ist notwen-
dig, weil Wortoperationen immer mit dem tieferen Wort ausge-
fiihrt werden. Ahnlich kann SWAP verwendet werden fiir den
Zugriff zu den hoheren zwei Byte eines Datenregisters. SWAP
allein wird zum mittleren hoheren Byte zugreifen; ein SWAP
plus ein Rotierbefehl wird zum hochstwertigen Byte des Daten-
registers zugreifen.

Der Registeraustauschbefehl (EXG) tauscht den gesamten
Inhalt von zwei Registern aus. Er kann drei Formate haben:

EXG Dx,Dy- Austausch zweier Datenregister;

EXG Ax,Ay - Austausch zweier Adressregister;

EXG Dx,Ay- Austausch eines Datenregisters und eines
Adressregisters.

3.4.1.8 NOP, keine Operation

Der Befehl «keine Operation» (NOP)wird normalerweise nur
wihrend der Programmentwicklung verwendet. Er fiihrt keine
Operationen durch. Er dndert weder Statusbit noch Register
(mit Ausnahme des Programmzéhlers), noch Speicherzellen,
aber er erfiillt die niitzliche Funktion der Platzreservierung im
Speicher.

Programmierer verwenden den NOP-Befehl héufig in einem
Quellenprogramm, um Platz zu reservieren fiir spéter einzufii-
gende Befehle. Weil jeder NOP-Befehl nur ein Wort im Speicher
belegt, sind mindestens zwei NOP (besser sind drei) am Ort, wo
der Platz reserviert werden soll, einzufiigen.

NOP-Befehle konnen auch in Objektprogrammen eingefiigt
werden, um Befehle zu ersetzen, die entfernt wurden, so dass
das Programm nicht neu assembliert werden muss. In diesem
Fall sollte man fiir jedes Wort des entfernten Befehls $4E71 ein-
fligen, das ist der hexadezimale Wert des NOP-Befehls.

3.4.2 Befehle fiir ganzzahlige Arithmetik

Der MC 68000 kann zwei bindre Operanden addieren, subtra-
hieren, multiplizieren, dividieren und vergleichen. Er kann auch
einen einzelnen, spezifischen Operanden 16schen, priifen, das
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Bedingﬁngs—

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten
grosse codes
Quelle Ziel XNZVC
ADD ADD <ea>,Dn 8,16,32 Alle (1) Dn * Rk k&
ADD Dn,<ea> 8,16,32 Dn dnderbar *ok ok ok &
ADDA ADDA <ea>,An 16,32 All An 0 -
ADDI ADDI 4#d,<ea> 8,16,32 H#d Daten dnderbar * ok ok ok %
ADDQ ADDQ #d,<ea> 8,16,32 #d (2) dnderbar (1) ¥Rk kK
ADDX ADDX Dy,Dx 8,16,32 Dn Dn *okox ok
ADDX —(Ay),~(Ax) 8,16,32 —(An) —(An) *okE ok %
CLR CLR <ea> 8,16,32 Daten dnderbar -0100
CMP CMP <ea>,Dn 8,16,32 All (1) Dn — kR kK
CMPA CMPA <ea>,An 16,32 All An kK
CMPI CMPI #d,<ea> 8,16,32 H#d Daten dnderbar —kEEE
CMPM CMPM (Ay)+,(Ax)+ 8,16,32 (An)+ (An)+ =k Rk ok
DIVS DIVS <ea>,Dn 16 Daten Dn —*xx(Q
DIVU DIVU <ea>,Dn 16 Daten Dn —*¥*xx(Q
EXT EXT Dn 16,32 Dn -**00
MULS MULS <ea>,Dn 16 Daten Dn -**00
MULU MULU <ea>,Dn 16 Daten Dn -**00
NEG NEG <ea> 8,16,32 Daten dnderbar * ok ok ok ok
NEGX NEGX <ea> 8,16,32 Daten dnderbar * kK kK
SUB SUB <ea>,Dn 8,16,32 Alle (1) Dn Rk k&
SUB Dn,<ea> 816,32 Dn Anderbar * oKk ok ok
SUBA SUBA <ea>,An 16,32 Alle An -
SUBI SUBI #d,<ea> 8,16,32 H#d Daten dnderbar KKK
SUBQ SUBQ #d,<ea> 8,16,32 #d (2) dnderbar (1) F Kk E
SUBX SUBX Dy,Dx 8,16,32 Dn Dn *oA kK
SUBX —(Ay),-(Ax) 8,16,32 ~(An) —(An) Rk k
TAS TAS <ea> 8 Daten dnderbar -**00
TST TST <ea> 8,16,32 Daten dnderbar -*¥*¥00
Bemerkungen: (1) Bei Byteoperationen ist die Adressierungsart « Adressregister direkt» nicht gestattet

(2) Unmittelbarer Operand im Wertebereich 1 bis 8

Tabelle 3.8 Befehle fiir ganzzahlige Arithmetik

Vorzeichen erweitern und negieren (2er-Komplement). Die
Befehle fiir diese Operationen sind in der Tabelle 3.8 zusammen-

gestellt.

3.4.2.1 Addierbefehle

Es bestehen fiinf Befehle zur Addition von binéren Zahlen. Der
erste, «addiere bindr» (ADD) addiert zwei Byte-, Wort- oder
Doppelwortoperanden. Weil diese Operanden als Datenwerte
betrachtet werden, muss einer in einem Datenregister sein, der
andere kann im Speicher sein, in einem Adressregister (sofern
nicht Byteoperanden addiert werden sollen) oder einem andern
Datenregister. Der ADD-Befehl kann alle fiinf Bedingungsco-
des beeinflussen, wie folgt:
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1. Ubertrag (C) wird gesetzt, wenn das Resultat nicht im
Bestimmungsoperand Platz hat; sonst ist C geldscht.

2. Uberlauf (V) wird gesetzt, wenn zwei Zahlen mit gleichen
Vorzeichen (beide positiv oder beide negativ) addiert werden
und das Resultat den Bereich des 2er-Komplements der
Operanden iiberschreitet, was zum Wechsel des Vorzeichen-
bit fiihrt; sonst ist V gelGscht.

3. Null (Z) wird gesetzt, wenn das Resultat null ist; sonst ist Z
geloscht.

4. Negativ (N) wird gesetzt, wenn das Vorzeichenbit des Resul-
tats logisch 1 ist; sonst ist N geloscht.

5. Erweiterung (X) wird in den gleichen Zustand gesetzt wie der
Ubertrag (C).

Bei den ADD-Befehlen ist der Status der V- und N-Flags nur
von Bedeutung, wenn Werte mit Vorzeichen addiert werden.
Wenn der Bestimmungsoperand ein Adressregister ist, werden
die Bedingungscodes nicht beeinflusst. Der Assembler erkennt
diese Form des Additionsbefehls als Variante, «addiere Adres-
se» (ADDA) genannt.

Der ADD-Befehl wird eingesetzt zur Addition zweier Byte-,
Wort- oder Doppelwortoperanden, sofern sich mindestens einer
der Operanden in einem Datenregister befindet. Viele Anwen-
dungen verlangen jedoch bei der Addition mehrfache Genauig-
keit, oder es befinden sich beide Operanden im Speicher. Fiir
diese Anwendungen verfiigt der MC 68000 iiber den Befehl
ADDX (erweiterte Addition). Damit kann der Inhalt zweier
Datenregister oder zweier Speicherpldtze addiert werden. Der
ADDX-Befehl beeinflusst die C-, V-, N- und X-Flags gleich wie
der ADD-Befehl. Das Z-Flag jedoch wird bei ADDX gel6scht,
wenn das Resultat ungleich 0 ist, andernfalls wird Z nicht beein-
flusst. Diese Charakteristik ist sehr praktisch bei Operationen
mit erhShter Genauigkeit, weil Z den Null/Nicht-null-Status
einer ganzen Additionsoperation zeigt und nicht nur gerade den
der letzten Teiloperation.

Wenn sich die Operanden im Datenregister befinden, geht dem
ADDX-Befehl normalerweise ein ADD-Befehl voraus. Zum
Beispiel addiert die folgende Sequenz einen ganzzahligen 64-
Bit-Wert in DO und D1 zu einem andern ganzzahligen 64-Bit-
Wertin D2 und D3:

ADD.L DO, D2 Addiere die 32 tieferen Bit
ADDX.L DI1,D3 Addiere die 32 hoheren Bit

Wenn sich die Operanden im Speicher befinden, miissen vor der
Additionsoperation X geloscht und Z gesetzt werden (es sei dar-
an erinnert, dass Z gesetzt bleibt, wenn jede nachfolgende Addi-
tion als Resultat null ergibt). Speicherplatz-zu-Speicherplatzad-
ditionen verlangen immer vordekrementierte Adressierung, das
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heisst, dass die Adressregister zuerst auf die héheren Bit, Worte
oder Doppelworte im Speicher hinweisen und nachher auf die
tieferen. Wenn zum Beispiel A0 und Al auf zwei 64-Bit-
Operanden im Speicher zeigen, konnen diese Operanden mit der
folgenden Sequenz addiert werden:

MOVE # 4,CCR Setze Z = 1, alle andern Bit=0
ADDX.L - (A0),~(A1)| Addiere die 32 tieferen Bit
| ADDX.L - (A0),~(A1l)| Addiere die 32 hoheren Bit

Speicher
Hoher
Al .
nach —|Mitte Hoher ges{/mmungs-
it erand
Addition Witte Tieter peran
Tiefer
Al
vor —=
Addition $
Hoher
A0 -
nach  —=|Mitte Hoher Quellen -
Addition Witte Tiefer Operand
Tiefer
A0
vor B —*
Addition

Bild 3.11 zeigt die Anordnung der Operanden im Speicher und
wie die Zeiger bei der Additionsoperation beeinflusst werden.
Die letzten zwei Additionsbefehle, «addiere unmittelbar»
(ADDI) und «addiere schnell» (ADDQ) werden verwendet, um
einen konstanten Wert zu einem adressierten Operanden zu
addieren. Bei ADDI kann die Konstante ein Bit, Wort oder
Doppelwort sein und der Befehl belegt zwei bis fiinf Worte im
Speicher. Bei ADDQ kann die Konstante nur einen Wert zwi-
schen 1 und 8 haben, der Befehl belegt aber auch nur ein bis drei
Worte im Speicher. Im weiteren kann ADDQ verwendet wer-
den zur Addition eines Werts zu einem Adressregister, wihrend
ADDI das nicht kann. ADDQ ersetzt den Inkrementbefehl in
bisherigen 8-Bit-Mikroprozessoren.
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3.4.2.2 Subtraktionsbefehle

Der MC 68000 verfiigt iiber die d4quivalenten Subtraktionsbe-

fehle wie die Additionsbefehle. Drei dieser Befehle, «subtrahiere

bindr» (SUB), «subtrahiere unmittelbar» (SUBI) und «subtra-
hiere schnell» (SUBQ) beeinflussen die Bedingungscode wie
folgt:

1. Der Ubertrag (C) wird gesetzt, wenn die Subtraktion einen
Entlehnwert (borrow) benétigt, was anzeigt, dass das Resul-
tat nicht im Bestimmungsoperanden Platz hat; sonst ist C
geloscht.

2. Uberlauf (V) ist gesetzt, wenn zwei Zahlen mit ungleichem
Vorzeichen (eines positiv, das andere negativ) subtrahiert
werden und das Resultat den Bereich des 2er-Komplements
der Werte liberschreitet; sonst ist V gelOscht.

3. Null (Z) wird gesetzt, wenn das Resultat null ist; sonst ist Z
geloscht.

4. Negativ (N) ist gesetzt, wenn das Vorzeichenbit des Resultats
logisch 1 ist; sonst ist N gelGscht.

5. Erweiterung (X) wird gleich gesetzt wie der Ubertrag (C).

Der Subtraktionsbefehl fiir mehrfache Genauigkeit «subtrahie-

re mit Erweiterung» (SUBX) beeinflusst C, V, N und X in der

gleichen Art, 16scht aber Z, wenn das Resultat nicht null ist;
sonst wird Z nicht beeinflusst. Der fiinfte Subtraktionsbefehl

«subtrahiere Adresse» (SUBA) beeinflusst keine Flags.

3.4.2.3 Negierbefehle

Mit zwei subtraktionsdhnlichen Befehlen kann das 2er-Komple-

ment eines Byte-, Wort- oder Doppelwortoperanden im Spei-

cher oder in einem Datenregister erzeugt werden. Diese Befehle

«negiere» (NEG) und «negiere erweitert» (NEGX) erzeugen

das 2er-Komplement durch Subtraktion des Operanden von

null. Der NEG-Befehl beeinflusst die Bedingungscode in der
gleichen Weise wie der SUB-Befehl; wihrend aber hier ein

Operand null ist, konnen iiber die Bedingungen, die die Flags

setzen, eindeutigere Aussagen gemacht werden. Fiir NEG gilt:

1. Ubertrag (C) und Negativ (N) werden gesetzt, wenn der
adressierte Operand eine positive, von null verschiedene Zahl
ist; sonst wird C und N geldscht.

2. Uberlauf (V) wird gesetzt, wenn der adressierte Operand
einen Wert hat von $80 (Byte), $8000 (Wort) oder
$80000000 (Doppelwort); sonst ist V geloscht.

3. Null (Z) wird gesetzt, wenn der adressierte Operand null ist;
sonst ist Z geloscht.

4. Erweiterung (X) wird in der gleichen Weise gesetzt wie der
Uberlauf (C).

Der NEGX-Befehl beeinflusst in der gleichen Art C, V, N und
X, 16scht aber Z nur, wenn das Resultat nicht null ist. X wird
nicht beeinflusst, wenn das Resultat null ist. Wie bereits beim
ADDX-Befehl erklirt, zeigt damit Z den Status null/nicht-null
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einer ganzen Operation mit mehrfacher Genauigkeit, und nicht
nur gerade denjenigen der letzten Teiloperation.

3.4.2.4 Multiplizier- und Dividierbefehle

Der MC 68000 verfiigt iiber zwei Multiplizierbefehle: «multipli-
ziere mit Vorzeichen» (MULS) und «multipliziere ohne Vorzei-
chen» (MULU). Diese Befehle multiplizieren zwei Wortoperan-
den und speichern das 32-Bit-Produkt in einem Datenregister.
Zahlen, die lidnger sind als 16 Bit konnen ebenfalls mit MULS
und MULU multipliziert werden. Wir werden davon Beispiele
im Kapitel 4 sehen, wo zwei 32-Bit-Zahlen multipliziert werden,
und zwar sowohl fiir Werte mit wie auch ohne Vorzeichen.

Der MC 68000 verfiigt auch iiber zwei Divisionsbefehle: «divi-
diere mit Vorzeichen» (DIVS) und «dividiere ohne Vorzeichen»
(DIVU). Diese Befehle dividieren einen 32-Bit-Dividenden (in
einem Datenregister) durch einen 16-Bit-Divisor (im Speicher
oder in einem Datenregister) und legen den 16-Bit-Quotienten
und den 16-Bit-Rest je in die untere und obere Hilfte eines
Datenregisters. Beim Versuch, durch null zu dividieren, wird der
MC 68000 einen Trap erzeugen (im Kapitel 7 beschrieben).

Eine Division, mit oder ohne Vorzeichen, wird die Bedingungs-

codes wie folgt beeinflussen:

1. Ubertrag (C) wird immer geldscht.

2. Uberlauf (V) wird gesetzt, wenn Divisionsiiberlauf angezeigt
wird; sonst ist V geloscht.

3. Null (Z) wird gesetzt, wenn der Quotient null ist; sonst ist Z
geloscht. Der Zustand von Z ist in Uberlauffillen nicht
definiert.

4. Negativ (N) wird gesetzt, wenn der Quotient negativ ist (fiir
DIVS), oder wenn das héchstwertige Bit des Quotienten
gesetzt wird (fiir DIVU); sonst ist N geldscht. Der Zustand
von N ist in Uberlaufféllen nicht definiert.

5. Erweiterung (X) wird nicht beeinflusst.

In Uberlauffillen setzt der MC 68000 das V-Flag und beendet
die Operation, ohne den Divisor oder Dividenden zu beeinflus-
sen. Uberlauf wird dann erzeugt, wenn der Dividend so viel
grosser ist als der Divisor, dass der Quotient nicht in 16 Bit
Platz hat. Fiir eine Division ohne Vorzeichen muss der Divi-
dend mindestens 65536mal grosser sein als der Divisor, damit
Uberlauf erreicht wird. Fiir eine Division mit Vorzeichen muss
der Quotient +32767 oder —32768 iibersteigen, damit Uberlauf
erreicht wird. Es ist moglich, ein Programm zu schreiben, das
immer einen giiltigen Quotienten und Rest ergibt, unabhéingig
davon, ob ein Uberlauf entsteht. Ein solches Programm wird im
Kapitel 4 vorgestellt.
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Bild 3.12

Funktion des Befehls EXT
a) Vorzeichenerweiterung

von Byte zu Wort

b) Vorzeichenerweiterung
von Wort zu Doppelwort

3.4.2.5 Vorzeichenerweiterung (EXT)

Der MC 68000 erméglicht Operationen mit verschiedenen
Datenléngen, und zwar mit einem Befehl genannt «Vorzeichen-
erweiterung» (EXT). Dieser Befehl erweitert das Vorzeichen-
bit (das hochstwertige Bit) eines Wertes in einem Datenregister
von einem Byte zu einem Wort oder von einem Wort zu einem
Doppelwort, wie Bild 3.12 zeigt. Damit ermoglicht der EXT-
Befehl die Ausfithrung von Operationen wie zum Beispiel der
Addition eines Byte zu einem Wort oder der Multiplikation
eines Wortes mit einem Byte.

55 a7

a) Dn W-——i— 0|fllih’ n

31 16 15 0

b) Dn( { l ][Xf.[ Dn

3.4.2.6 Loschbefehl (CLR)

Ein weiterer Befehl dieser Gruppe, «l6sche» (CLR), setzt das
adressierte Byte, Wort oder Doppelwort auf null. Er kann ver-
wendet werden zum Loschen eines Datenregisters oder eines
Speicherplatzes, aber nicht fiir ein Adressregister. (Der Fall,
dass ein Adressregister geloscht werden soll, ist nicht héufig,
aber fiir diesen Fall kann mit dem Befehl SUBA.L An, An
diese Operation ausgefiihrt werden.)

Bei zeitkritischen Anwendungen ist es niitzlich zu wissen, dass
CLR gegeniiber dem entsprechenden MOVE 40, <ea> dann
schneller ist, wenn das tiefere Byte oder tiefere Wort eines
Datenregisters geloscht werden soll. Wenn alle 32 Bit eines
Datenregisters geloscht werden sollen, ist der MOVEO #0, Dn
zwei Zyklen schneller als CLR.L. DN. In den meisten Féllen
benotigt das Loschen eines Speicherplatzes mit MOVE.x #0,
<ea> (wobei x = B, W oder DW) die gleiche Zeit wie CLR.x
<ea>. Tatsdchlich wird bei Beniitzung der indirekten Adressie-
rungsart mit Vordekrementierung der Befehl MOVE.x #0,-
(An) den Speicherplatz zwei Zyklen schneller 16schen als
CLR.x —(An).

3.4.2.7 Vergleichbefehle

Die meisten Programme arbeiten Befehle nicht hintereinander
ab, wie sie im Speicher gespeichert sind, sondern beinhalten
Spriinge, Verzweigungen, Schlaufen, Subroutinenaufrufe und
andere Bedingungen, die die Programmausfiihrung von einem
Platz im Speicher zu einem andern transferieren kénnen. Die
Befehle, die diese Transfers veranlassen, werden spéter in die-
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-sem Kapitel beschrieben, wenn wir die Programmsteuerbefehle

des MC 68000 behandeln. Hier werden nur die Vergleichsbefeh-
le diskutiert, die normalerweise verwendet werden, um die
Bedingungscode zu steuern, nach welchen die Programmsteuer-
befehle ihre Entscheide beziiglich Transfer/kein-Transfer
machen.
Die vier Vergleichsbefehle des MC 68000 arbeiten sehr dhnlich
wie Subtraktionsbefehle. Das bedeutet, dass jeder dieser Befehle
einen Quellenoperanden von einem Bestimmungsoperanden
subtrahiert und dabei die Bedingungs-Flags je nach Resultat
setzt (siehe Tabelle 3.9). Im Gegensatz zu den Subtraktionsbe-
fehlen wird bei den Vergleichbefehlen das Resultat der Sub-
traktion nicht gespeichert. Ihr einziger Grund ist die Steuerung
der Bedingungscode fiir Entscheide der nachfolgenden Pro-
grammsteuerbefehle.

Bedingung X N* Z V¢ C
Quelle < Bestimmung - 0 0 0/1 0
Quelle = Bestimmung - 0 1 0 0
Quelle > Bestimmung - 1 0 0/1 1

* Zutreffend, wenn Zahlen im Zweierkomplement verglichen
werden.

Der Vergleichsbefehl (CMP) vergleicht einen Quellenoperanden
mit einem Byte-, Wort- oder Doppelwortoperanden in einem
Datenregister. Wort- oder Doppelwortadressen kénnen unter
Verwendung einer Variante von CMP, genannt «vergleiche
Adresse» (CMPA), mit Adressregistern verglichen werden. Der
Befehl «vergleiche unmittelbar» (CMPI) vergleicht ein Byte,
Wort oder Doppelwort mit einem Bestimmungsoperanden. Der
Befehl «vergleiche Speicher» (CMPM), vergleicht zwei Operan-
den im Speicher unter Verwendung indirekter Adressierung mit
Nachinkrementierung. Dieser CMPM-Befehl wird vor allem
dann eingesetzt, wenn Zeichenfolgen verglichen werden miis-
sen, wie in einem Beispiel spéter in diesem Kapitel gezeigt wird
(Beispiel 3.3).

3.4.2.8 Vergleich mit Null

Wie in Kap. 3.4.2.3 beschrieben, sind Negierbefehle NEG und
NEGX eigentlich Subtraktionsbefehle, die spezialisierte Auf-
gaben ilibernehmen. Sie subtrahieren einen Operanden von null.
Vergleichbar dazu verfiigt der MC 68000 iiber einen speziali-
sierten Vergleichsbefehl, «priife einen Operanden (TST), der
einen Operanden mit null vergleicht. Wie die Vergleichsbefehle
subtrahiert auch TST den Operanden von null und setzt oder
16scht die Bedingungs-Flags anhand des Resultates, speichert
aber das Resultat nicht ab. Die Bedingungscodes werden durch
TST wie folgt beeinflusst:
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Bild 3.13
Speicherzuweisung mit dem Befehl
TAS

. Ubertrag (C) und Uberlauf (V) werden immer gelscht.
. Null (Z) wird gesetzt, wenn der adressierte Operand null ist;
sonst wird Z gelGscht.
3. Negativ (N) wird geldscht, wenn der adressierte Operand
eine positive Zahl ist; sonst ist N gelGscht.
4. Erweiterung (X) wird nicht beeinflusst.

[N

3.4.2.9 Prijfeund setze einen Operanden (TAS)

Der Befehl «priife und setze einen Operanden» (TAS) arbeitet
grundsétzlich gleich wie der TST-Befehl (er vergleicht den
Operanden mit null und setzt oder 16scht die Bedingungscode je
nach Resultat), wobei TAS das hdchstwertige Bit des Operan-
den bedingungslos immer setzt. Im weiteren arbeitet TAS nur
mit Byteoperanden, so dass er also Bit 7 eines Byte setzen wird.
Trotz der dhnlichen Arbeitsweisen haben TST und TAS sehr
verschiedene Funktionen. Wie wir im vorderen Abschnitt gese-
hen haben, wird TST verwendet, um herauszufinden, ob ein
Operand den Wert null hat. TAS hingegen wird vor allem
gebraucht zur Statuspriifung eines Flags im Speicher und zum
Setzen dieses Flags. Das ist vor allem bei Multi-tasking-Anwen-
dungen &dusserst praktisch, um den verschiedenen Aufgaben
(Tasks) Speicherplatz zuzuweisen. In Multiprocessing-Anwen-
dungen kann er verwendet werden als Zugriffschutz zu Spei-
cherbereichen, die bestimmten Prozessoren zugeordnet sind.

I SEKTION 0
FLAG BYTE
SEKTION $
0o 3 g
selze Zeiger
auf oberste
L Adresse
[ l SEKTION1 y
FLAG BYTE TAS
SEKTION aus-
1 9 fithren
? 7 Ja | gewinschite
. Speichersektion
1 beniitzen
r SeTig Nein
| FLAG BYTE subtrahiere eine
Jektionslinge
SEKTION vom Zeiger
N-2 9 S g
L Nein Zeiger < kein
‘ SEKTION Letzte Platz
I N- Sektion,
FLAG BYTE
SEKTION
WS $
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Bild 3.13 zeigt die Verwendung von TAS in Multi-tasking-
Anwendungen. Das Beispiel zeigt einen Speicherbereich, der in
N Sektionen unterteilt wurde und gibt ein einfaches Flussdia-
gramm eines Algorithmus, der zur Lokalisierung der nichsten
verfiigbaren Sektion verwendet werden kann. Dieser Algorith-
mus bendtigt zwei Adressregister, eines zur Aufnahme eines
Zeigers, der auf die zu priifende Sektion zeigt, und ein anderes
zur Aufnahme eines Zeigers, der auf die letzte Sektion (Sektion
0) zeigt. Das Programm fiir diesen Algerithmus schliesst einige
schon beschriebene Befehle ein wie MOVEA oder LEA
(zur Initialisierung der Testzeiger), SUBA_(zur Dekremen-
tierung des Testzeigers) und CMPA (zum Vergleichen der zwei
Zeiger). Es sind auch bedingte Verzweigungsbefehle verwendet,
die unter den Programmsteuerbefehlen behandelt werden.

In einer Multiprocessing-Anwendung erlaubt TAS einem Pro-
zessor die Interpretation eines Priifbyte (mittels der Bedin-
gungscodes) und das Setzen einer 1 in das h6chstwertige Bit des
Byte. Falls der Speicher besetzt ist, kann das Programm die
Abfrage aufrechterhalten, bis er frei wird. Die folgende Routine
iibernimmt diese Aufgabe:

MFREE TAS TEST Priife und setze das Byte TEST.
BNE MFREE Wenn TEST nicht =0, priife
weiter.

(Prozessor Programmbefehle)

CLR.B TEST Losche TAS Byte.

Es ist wichtig, zu wissen, dass TAS der einzige MC-68000-
Befehl ist, der einen nicht unterteilbaren «lese-dndere-schrei-
be»-Zyklus ausfithren kann. Das verunmdglicht jegliche Beein-
flussung durch einen anderen Prozessor, sobald die TAS-
Operation eingeleitet wurde.

3.4.3 Logische Befehle

Es bestehen sieben logische Befehle, dargestellt in Tabelle 3.10.
Die Basisbefehle in dieser Gruppe sind «logisch und» (AND),
«exklusiv oder» (EOR), «oder» (OR). Diese drei Befehle kon-
nen mit Byte-, Wort- oder Doppelwortoperanden arbeiten.
Einer dieser Operanden muss sich in einem Datenregister befin-
den. Der zweite Operand kann fiir den AND- und OR-Befehl im
Speicher, einem Datenregister oder einem Adressregister sein,
fiir den EOR-Befehl nur im Speicher oder in einem Datenregi-
ster. EOR kann nicht mit Adressregistern operieren.

Ein weiterer Befehl, «logisches Komplement» (NOT), kann das
Einerkomplement eines Datenregisters oder eines Speicherplat-
zes erzeugen. Mit NOT konnen Operanden ohne Vorzeichen,
mit NEG oder NEGX vorzeichenbehaftete Operanden komple-
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Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes
Quelle Ziel XNZVC
AND AND <ea>,Dn 8,16,32 Daten Dn -*%00
AND Dn,<ea> 8,16,32 Dn dnderbar -**00
ANDI ANDI #d,<ea> 8,16,32 4d Daten dnderbar -**00
ANDI #d,SR (1) 8,16 #d SR ok ok ok k
EOR EOR Dn,<ea> 8,16,32 Dn Daten dnderbar -**00
EORI EORI #d,<ea> 8,16,32 H#d -**00
EORI #d,SR (1) 8,16 #d SR *ok Kk &
NOT NOT <ea> 8,16,32 Daten anderbar -**00
OR OR <ea>,Dn 8,16,32 Daten Dn -**00
OR Dn,<ea> 8,16,32 Dn dnderbar -**00
ORI ORI #d,<ea> 8,16,32 H#d Daten dnderbar -**00
ORI #d,SR (1) 8,16 Hd SR * Ok ok ok ok
Bemerkung: (1) Wenn die Operandengrdsse Byte ist, werden nur die tieferen 8 Bit des Statusregisters

beeinflusst. Wenn die Operandengrosse Wort ist, werden alle 16 Bit des Statusregi-
sters beeinflusst und der Befehl ist privilegiert.

Tabelle 3.10 Logische Befehle

mentiert werden. Variationen der AND-, OR- und EOR-Befeh-
le erlauben die Verwendung von Konstanten als Quellendaten.
Diese Variationen, «und unmittelbar» (ANDI), «exklusiv- oder
unmittelbar» (EORI) und «oder unmittelbar» (ORI) arbeiten
mit Speicher- oder Datenregisteroperanden jeder Lénge. Sie
sind auch anwendbar fiir Operationen mit dem Statusregister
oder mit den Bedingungscode. Operationen mit dem Statusregi-
ster (SR) sind privilegiert.

3.4.4 Schiebe- und Rotierbefehle

Der MC 68000 verfiigt tiber vier Schiebebefehle und vier
Rotierbefehle. Tabelle 3.11 zeigt diese Befehle, und Bild 3.14
zeigt ihre Funktionsweise. Wie in Tabelle 3.11 dargestellt, ver-
fiigt jeder Befehl iiber drei Varianten: zwei, die mit einem Daten-
register operieren (Byte, Wort oder Doppelwort), und eine, die
mit dem Speicher arbeitet (nur Worte).

Wenn die Operation mit einem Datenregister ausgefiihrt wird,
kann der Schiebe- oder Rotierwert spezifiziert werden mit dem
Inhalt eines andern Datenregisters (Wert = O bis 63, wobei 0
einen Wert von 64 erzeugt), oder als unmittelbarer Wert zwi-
schen 1 und 8. Ein Wortoperand im Speicher kann nur um eine
Bitposition geschoben oder rotiert werden.

3.4.4.1 Schiebebefehle

Zahlen mit Vorzeichen kénnen geschoben werden unter Ver-
wendung der Befehle «arithmetisch schieben links» (ASL) und
«arithmetisch schieben rechts» (ASR). ASR schiitzt das Vor-
zeichen des Operanden durch Reproduktion des Vorzeichens
wihrend der ganzen Schiebeoperation. Bei ASL wird das Vor-
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ASL N

ASR S
]

[~]

RoL
ROR ]

RN [l 3
ROXR —t (]

zeichenbit nicht geschiitzt, aber das Uberlaufbit (V) wird
gesetzt, wenn das Vorzeichenbit gedndert wird.

Zahlen ohne Vorzeichen lassen sich unter Verwendung der
Befehle «logisch schieben links» (LSL) und «logisch schieben
rechts» (LSR) bearbeiten. Bei allen vier Befehlen werden Bit, die
aus dem Operanden geschoben werden, in den Ubertrag (C)
und die Erweiterung (X) der Bedingungscode iibernommen.
Zusitzlich zur Anwendung dieser Befehle in allgemeinen
Datenmanipulationen fiihren diese Schiebebefehle auch schnel-
le Multiplizier- und Dividieroperationen durch: Jedes Links-
schieben bedeutet eine Multiplikation des Operanden mit zwei
und jedes Rechtsschieben eine Division des Operanden durch
Zwel.

3.4.4.2 Rotierbefehle

Bei allen vier Rotierbefehlen werden Bit ausserhalb des Operan-
den in den Ubertrag geschrieben. Fiir den Befehl «rotiere links»
(ROL) und «rotiere rechts» (ROR) werden die Bit, die an einem
Ende des Operanden herausrotiert werden, auf der entgegenge-
setzten Seite des Operanden wieder eingeschrieben. Bei «rotiere
links mit Erweiterung» (ROXL) und «rotiere rechts mit Erwei-
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terung» (ROXR) werden die an einem Ende des Operanden her-
ausrotierten Bit in das Erweiterungs-Flag (X) und in den Uber-
trag (C) geschrieben, und der vorherige Wert von X wird in das
entgegengesetzte Ende des Operanden eingeschrieben.

Die «rotiere mit Erweiterung»-Befehle verfiigen iiber Moglich-
keiten, die bis jetzt nicht zur Verfiigung standen: die Fihigkeit
des Zugriffes zu den drei hGherwertigen Byte in einem Datenre-
gister. Wir erinnern uns, dass alle Byteoperationen mit dem
tiefstwertigen Byte eines Datenregisters ausgefiihrt werden.

Wie kann man nun mit dem zweiten Byte (das «tiefere mittlere»)
eines Registers operieren? Das ist moglich, indem man dieses
Byte in die tiefstwertige Position bringt, unter Verwendung der
Befehle ROL 48, Dn oder ROR #8, Dn. So kann auch auf das
«hohere mittlere» und das hochstwertige Byte eines Datenregi-
sters zugegriffen werden. Das hohere mittlere mit einem
SWAP-Befehl, das hochstwertige mit einem ROL.L #8, DN,
Aufeinanderfolgend kann zu den hoheren drei Byte zugegriffen
werden (wie zum Beispiel in Zeichenfolgen) unter Ausfiihrung
von drei Befehlen ROR.L 48, Dn.

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes
Quelle Ziel XNZVC
ASL ASL Dx,Dy 8,16,32 Dn (1) Dn ok k&
ASL #d,Dn 8,16,32 #d (2) Dn Ok K
ASL <ea> 16 Speicher dnderbar  * * * * *
ASR ASR Dx,Dy 8,16,32 Dn (1) Dn E Ak
ASR 4#d,Dn 8,16,32 #d (2) Dn *ok ok ok &
ASR <ea> 16 Speicher dnderbar ¥ * * * *
LSL LSL Dx,Dy 8,16,32 Dn (1) Dn R
LSL #d,Dn 8,16,32 #d (2) Dn *EREQ*
LSL <ea> 16 Speicher dnderbar  * * * 0 *
LSR LSR Dx,Dy 8,16,32 Dn (1) Dn *0*0*
LSR #d,Dn 8,16,32 #d (2) Dn *0*0*
LSR <ea> 16 Speicher dnderbar *0* 0 *
ROL ROL Dx,Dy 8,16,32 Dn (1) Dn —k*Q*
ROL #d,Dn 8,16,32 #d (2) Dn —EEQ*
ROL <ea> 16 Speicher dnderbar - * * Q0 *
ROR ROR Dx,Dy 8,16,32 Dn (1) Dn —kEQ*
ROR #d,Dn 8,16,32 #d (2) Dn —*¥*Q*
ROR <ea> 16 Speicher dnderbar - * * 0 *
ROXL  ROXL Dx,Dy 8,16,32 Dn (1) Dn R
ROXL #d,Dn 8,16,32 4#d (2) Dn ¥EEQ*
ROXL <ea> 16 Speicher dnderbar  * * * 0 *
ROXR ROXR Dx,Dy 8,16,32 Dn (1) Dn KA KQH
ROXR #d,Dn 8,16,32 #d (2) Dn *EREQH
ROXR <ea> 16 Speicher dnderbar  * * * 0 *
Bemerkungen: (1) Das Quellendatenregister enthilt den Schiebewert.

Tabelle 3.11

Wert =0 bis 63, wobei 0 eine Verschiebung von 64 erzeugt.
(2) Die Daten sind der Schiebewert 1 bis 8.

Schiebe- und Rotierbefehle
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3.4.4.3 Schnellere Schiebe- und Rotieroperationen

Weil Worte im Speicher pro Operation nur um eine Bitposition
geschoben oder rotiert werden konnen, dauert eine Schiebe-
oder Rotieroperation um nBit mindestens n-mal lidnger als eine
1-Bit-Schiebe- oder -Rotieroperation. Das Schieben oder Rotie-
ren eines Worts im Speicher benGtigt 9+ Zyklen, wobei «+» die
Zeit fiir die Berechnung der effektiven Adresse angibt. Dadurch
wird eine 2-Bit-Schiebeoperation 2 x 9+ Zyklen benétigen,
usw.

Das Schieben oder Rotieren eines Datenregisters um nBit
bendtigt 6 +2n Zyklen, eine 1-Bit-Schiebeoperation also 8
Zyklen, eine 2-Bit-Schiebeoperation 10 Zyklen usw. Es ist klar,
dass fiir einige Werte von n die Ausfiihrungszeit betrdchtlich
gesenkt werden kann, indem man einen Speicheroperanden in
ein Datenregister liest, das Register schiebt (oder rotiert) und
dann das Resultat in den Speicher zuriickschreibt. Das benétigt
drei Befehle. Unter Verwendung von Tabellen iiber die Ausfiih-
rungszeiten, die wir spéter kennenlernen, konnen wir die totale
Ausfiihrungszeit wie folgt berechnen:

Befehl Ausfiihrungszeit
MOVE <ea>,Dn 4+

ASL 4n,Dn 6 +2n

MOVE Dn, <ea> 5+

Totalzeit (15+)+2n

Zusammengefasst ben6tigt also eine n-Bit-Schiebe- oder -Ro-
tieroperation nx 9+ Zyklen im Speicher und [(15+) + 2n]
Zyklen in einem Datenregister. Von welchem Punkt an bringt es
nun Vorteile, die Operation in einem Datenregister durchzufiih-
ren? Es ist klar, dass eine 1-Bit-Schiebeoperation sicher im
Speicher durchgefiihrt werden muss (9+ Zyklen im Speicher
gegeniiber 17+ Zyklen in, einem Register). Auch eine 2-Bit-
Schiebeoperation sollte noch so durchgefiihrt werden (18+
Zyklen im Speicher gegeniiber 19+ Zyklen in einem Register).
Hingegen bendtigt eine 3-Bit-Schiebeoperation 27+ Zyklen im
Speicher, aber nur 21+ Zyklen in einem Datenregister! Schluss-
folgerung: Wenn das Verschieben oder Rotieren im Speicher um
mehr als 3 Bit-Positionen nétig ist, sollte die Operation in einem
Datenregister vorgenommen werden.

3.4.5 Bitmanipulationsbefehle

Diese vier Befehle konnen den Zustand eines spezifizierten Bit
in einem Datenregister oder einem Byte im Speicher priifen.
Diese in der Tabelle 3.12 zusammengefassten Befehle speichern
den Zustand des spezifizierten Bit im Bedingungscode, Flag
Null (Z): wenn das Bit 0 ist, wird Z = 1; wenn das Bit 1 ist, wird
Z=0.
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Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes
Quelle Ziel XNZVC
BTST BTST Dn,<ea> 8,32 Dn Daten, ausgenom- - —* — —
BTST #d,<ea> 8,32 #d men unmittelbar -
BSET BSET Dn,<ea> 8,32 Dn -
BSET #d,<ea> 8,32 #d ok
BCLR BCLR Dn,<ea> 8,32 Dn Daten ——*
BCLR #d,<ea> 8,32 4td dnderbar ——F
BCHG BCHG Dn,<ea> 8,32 Dn -
BCHG #d,<ea> 8,32 #d =¥

Tabelle 3.12  Befehle fiir Bitmanipulationen

Drei der Bitmanipulationsbefehle dndern das Bit unbedingt, wie
folgt:

Befehl Durchgefiihrte Operation
mit dem Bit

BTST (Bit priifen) Bit wird nicht beeinflusst

BSET (Bit priifen und setzen) Bit wird auflogisch 1 gesetzt

BCLR (Bit priifen und 16schen)  Bit wird auflogisch 0 gesetzt

BCHG (Bit priifen und wechseln) Zustand des Bit wird
umgekehrt

3.4.6 BCD-Befehle

Im Zusammenhang mit den arithmetischen Befehlen wurde
erwihnt, dass der MC 68000 {iiber drei Befehle verfiigt, mit
denen Operationen mit BCD-Werten ausgefiihrt werden kon-
nen. Alle diese Befehle (Tabelle 3.13) arbeiten mit bytelangen
Daten, wobei ein Byte immer zwei BCD-Werte mit 4 Bit enthilt.
Im weiteren schliessen die BCD-Befehle wie auch die erweiter-
ten Bindrarithmetikbefehle das X-Bit in die Operationen ein und
wechseln das Z-Bit dann, wenn ein Resultat generiert wird, das
verschieden von null ist. In diesem Fall muss vor Ausfiihrung
der BCD-Befehle das X-Bit mit 0 und das Z-Bit mit 1 initiali-
siert werden. Am einfachsten kann dies mit dem Befehl MOVE
#4,CCR erreicht werden.

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes
Quelle Ziel XNZVC
ABCD ABCD Dy,Dx 8 Dn Dn *U* U*
ABCD —(Ay),-Ax) 8 ~(An) —(An) * U* U*
SBCD SBCD Dy,Dx 8 Dn Dn *U* U*
SBCD —(Ay),~(Ax) 8 —(An) —(An) * U* U*
NBCD NBCD <ea> 8 Daten dnderbar *U* U*

Tabelle 3.13 BCD-Befehle
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3.4.6.1 BCD-Addition (ABCD) und -Subtraktion (SBCD)

Mit den Befehlen «addiere dezimal mit Erweiterung» (ABCD)

und «subtrahiere dezimal mit Erweiterung» (SBCD) kdnnen

dezimale Additionen und Subtraktionen mit den tieferwertigen

Byte von zwei Datenregistern oder mit zwei Byte im Speicher

ausgefiihrt werden. Die Befehle ABCD und SBCD beeinflussen

die fiinf Bedingungscodebit wie folgt: )

1. Der Ubertrag (C) wird gesetzt, wenn ABCD einen Ubertrag
erzeugt oder SBCD einen Entlehnwert bendtigt, sonst ist C
geldscht.

2. Uberlauf (V) und Negativ (N) sind fiir beide Befehle nicht
definiert.

3. Null (Z) wird gel6scht, wenn das Resultat nicht gleich null ist,
sonst bleibt Z unverédndert. Bei Mehrbyteoperationen zeigt
dadurch Z den Status der gesamten Operation und nicht nur
gerade den der letzten Byte.

4. Die Erweiterung (X) wird wie der Ubertrag C gesetzt.

Obschon die BCD-Befehle eine gewisse Ahnlichkeit mit den
erweiterten Bindrarithmetikbefehlen aufweisen, bedeutet die
Tatsache, dass die BCD-Befehle auf Byteoperationen
beschrénkt sind doch, dass bei der Programmierung Unter-
schiede beachtet werden miissen. Zum Beispiel wird es offen-
sichtlich mehr Befehle erfordern, um BCD-Mehrbyteadditionen
oder -subtraktionen auszufiihren, als fiir die gleichen Bindrope-
rationen notig wéren, da bei bindren Mehrbytezahlen die
Wort- und Doppelwortkombinationen verwendet werden kon-
nen.

Weniger augenscheinlich ist die Tatsache, dass in den meisten
Fillen die Datenregister auf die Awusfiilhrung von Additionen
und Subtraktionen mit Zweidigit-BCD-Werten beschrénkt
sind, und zwar wegen des Zugriffs auf das mittlere Byte von
Datenregistern. Dieses Byte miisste zuerst in die tiefstwertige
Byteposition rotiert werden, wobei wiederum zu beachten ist,
dass die dafiir benGtigten Befehle ROR, ROL, ROXR und
ROXL immer das Z-Bit beeinflussen und damit den Zwischen-
status null der Mehrbyte-BCD-Operationen zerstoren! Wenn
man also nicht einen speziellen Schutz der CCR-Werte vor und
nach der Rotieroperation vorsieht, sollten Mehrbyte-BCD-
Operationen eher mit Werten im Speicher als in Datenregistern
vorgenommen werden.

Wenn Additionen und Subtraktionen von Mehrbyte-BCD-
Operanden im Speicher ausgefiihrt werden, miissen diese
Operanden, wie bei Mehrbyte-Bindroperanden, in der Ordnung
hoher nach tiefer gespeichert sein (siehe wieder Bild 1.1). Diese
Anordnung ist verstdndlich, wenn die Adressierungsart im Spei-
cher fiir ABCD- und SBCD-Befehle betrachtet wird.
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Bild 3.15

Addition von zwei BCD-Zahlen

mit je 4Byte

Im folgenden Beispiel werden mit der Befehlsequenz

MOVE #4,CCR

ABCD —(A0), (A1)
ABCD -(A0), (A1)
ABCD -(A0), -(A1)
ABCD —(A0), -(A1)

zwei 8-Digit-BCD-Zahlen (4 Byte) im Speicher addiert. Bild
3.15 zeigt, wie diese Zahlen gespeichert sind und die Zeiger A0
(Quelle) und A1 (Ziel) durch die Additionssequenz verdndert
werden.

Speicher

At [nach
Addition)

A1 (vor
Addition)

A0 (nach
Addition)

A0 (vor

2

—=| hoher

mitte hoher

mitte tiefer

tiefer

=

S

=

hoher

mitte héher

mitte tiefer

tiefer

}> 4-Byte-Ziel

} 4-Byte-Quelle

Addition)

3.4.6.2 BCD-Negierbefehl (NBCD)

Der NBCD-Befehl subtrahiert den adressierten Byteoperanden
(in einem Datenregister oder im -Speicher) und das Erwei-
terungsbit (X) von null. Wenn X = 0 ist, wird das Zehnerkom-
plement erzeugt; wenn X = 1 ist, das Neunerkomplement.

3.4.7 Programmsteuerbefehle

Wie bei der Behandlung der Vergleichbefehle erwéhnt, werden
Programmbefehle im Speicher fortlaufend abgelegt, jedoch in
den seltensten Fillen in dieser Reihenfolge ausgefiihrt. Auch
das einfachste Programm verfiigt iiber Verzweigungen, Spriinge
und Subroutinenaufrufe, die die Ablaufsequenz dndern. Die
Programmsteuerbefehle (Tabelle 3.14) ermoglichen dem MC
68000 den Wechsel der Programmausfiihrung von einem Teil
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des Speichers in einen anderen. Diese Befehlsgruppe kann in
drei Kategorien unterteilt werden: bedingte, unbedingte und
Riickkehrbefehle.

3.4.7.1 Bedingte Befehle

Die drei ersten Eintragungen in Tabelle 3.14 sind bedingte
Befehle fiir den MC 68000. Ihr Operationsmodus hingt ab vom
Zustand eines oder mehrerer Flags im Bedingungscoderegister.
Anders als in den vorhergehenden Befehlstabellen dieses Kapi-
tels zeigt die Tabelle 3.14 nicht die Mnemonik fiir diesen Be-
fehlstyp, sondern die symbolische Form Bcc, DBcc und Scc,
wobei cc die gepriifte Bedingung darstellt. Die cc-Anhénge sind
in Tabelle 3.15 dargestellt. Der Bcc-Befehl akzeptiert die Bedin-
gung «immer wahr» (T) und «immer falsch» (F) nicht, mit den
DBcc-und Scc-Befehlen hingegen kénnen alle 16 Bedingungen
gepriift werden. Die 14 bedingten Verzweigungsbefehle (Bcc)
des MC 68000 sind die gleichen wie beim MC 6800. Mit diesen
Befehlen verzweigt die Programmsteuerung bei erfiillter Bedin-
gung zum Befehl im Speicherplatz mit der Adresse (PC)+ Ver-
schiebung. (PC = Programmzéhler)

Wenn die Bedingung nicht erfiillt ist, wird der Programmablauf
mit dem néchsten Befehl weitergefiihrt. Der Wert im PC ent-
spricht dem Speicherplatz des Bcc-Befehls + 2. Die Verschie-
bung ist ein ganzzahliger Zweierkomplementwert, der der
Anzahl Byte zwischen dem PC-Wert und dem Speicherplatz
des Labels entspricht. Wenn der Operand ein Label ist (was nor-
malerweise der Fall ist), wird der Assembler die Verschiebung

berechnen.
Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes

Quelle Ziel XNZVC

Bedingte Befehle

Bee Bec  <label> 8,16 Ifcc,thenPC+d-PC  —————

DBcc DBcc - Dn,<label> 16 Ifce,thenDn-1-Dn; = ———---
ifDn# -1,
then PC + d-» PC

Scc Scc  <ea> 8 If cc, then 1s — (ea); Daten @ -----
Os - (ea) verdnderbar

Unbedingte Befehle

BRA BRA <label> 8,16 PC+d-PC -

BSR BSR <label> 8,16 PC--SP);, e
PC+d-PC

JMP JMP <ea> <ea>-PC Steuerung -----

JSR JSR <ea> PC--(SP); <ea>-PC Steuerung ---——

Riickkehrbefehle

RTR RTR (SP) + - CCR; *ok ok ok %
(SP) + - PC

RTS RTS (SP)+-PC

Tabelle 3.14  Befehle fiir die Programmsteuerung
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* Zweierkomplement-Arithmetik Anhang «cc» = Bedingung Trifft zu wenn
Symbole: A = UND EQ Gleich Z=1
O = ODER NE Nicht gleich Z=0
O = EXKLUSIV MI Minus N=1
ODER PL Plus N=0
*GT Grosser als ZANOV)=0
*LT Kleiner als NOvV=1l
*GE Grosser oder gleich NOV=0
*LE Kleiner oder gleich ZONOV)=1
HI Hoher als CAZ=0
LS tiefer oder gleich coz=1
CS Ubertrag gesetzt C=1
CC Ubertrag geldscht C=0
*VS I'Jberl?:uf V=1
*VC Kein Uberlauf V=0
Tabelle 3.15 T Immer wahr
Bedingungspriifungen F Immer falsch
Wenn der Befehl die Form
BNE *+10

hat, spezifiziert der Operand den Wert der Verschiebung (in die-
sem Fall dezimal 10) in Byte. Die Bcc-Befehle konnen ein Wort
oder zwei Worte lang sein. Mit der Form

Bce.S

wird der Assembler einen Einwortbefehl mit einer relativen, vor-
zeichenbehafteten 8-Bit-Verschiebung, die im Operationswort
eingebettet ist, generieren. In dieser Form kann sich der ange-
zielte Verzweigungsbefehl bis zu 128 Byte hoher oder tiefer im
Speicher befinden, als das Bcc-Operationswort plus zwei. Wird
der Anhang «.S» weggelassen, erzeugt der Assembler einen
Zweiwortbefehl mit einer relativen, vorzeichenbehafteten 16-
Bit-Verschiebung im zweiten Wort. In dieser Form kann sich
der angezielte Verzweigungsbefehl bis zu 32 KByte héher oder
tiefer im Speicher befinden als das Bcc-Operationswort plus
zwei (das Verschiebiungswort). Wenn also der Bee-Befehl am
Speicherplatz N beginnt, gestattet die Form Bcc.S einen Ver-
zweigungsbereich zwischen N+$80 und N-$7E, die Form Bcc
einen solchen zwischen N+$8000 und N-$7FFE.

Hier einige Beispiele bedingter Verzweigbefehle:

1.) Die Sequenz

ADD DO, DI
BCS TOOBIG
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verzweigt zum Label TOOBIG, wenn die Addition einen Uber-
trag ausserhalb des tiefern Wortes in D1 ergibt.
2.) Die Sequenz

SUB DO,D1
BEQ ZERO

verzweigt zum Label ZERO, wenn die Subtraktion im tiefern
Wort von D1 Null ergibt.

3.) Zum blossen Test, ob die tiefern Worter von DO und D1
gleich sind, wird, ohne Register zu beeinflussen, anstelle eines
Subtraktionsbefehls besser ein Vergleichbefehl verwendet.

Die Sequenz

CMP DO,D1
BEQ ZERO

verzweigt zum Label ZERO, wenn die tiefern Worte in DO und
D1 gleich sind.

4.) Einige Tests erfordern die Wahl zwischen zwei verschiede-
nen Bcc-Befehlen, je nachdem ob das Resultat einer Operation
von Werten mit oder ohne Vorzeichen gepriift werden soll. Zur
Erlduterung nehmen wir an, dass zum Label DIMORE ver-
zweigt werden soll, wenn das tiefere Wort in D1 grosser ist als
das tiefere Wort in DO.

Folgende Sequenzen sind zu verwenden:

CMP DO, D1 fiir Werte von DOund D1
BHI DIMORE ohne Vorzeichen

CMP DO,D1 fiir vorzeichenbehaftete Werte
BGT DIMORE vonDOundDl1

Die bedingten Verzweigbefehle werden héufig als letzter Befehl
in einer Schlaufe eingesetzt, um diese verlassen zu kénnen,
wenn eine bestimmte «cc»-Bedingung eingetreten ist. Das Bei-
spiel 3 zeigt diese Methode mit einem Programm, das einen aus-
gewdhlten Speicherbereich nach einem spezifizierten Wortwert
absucht. Die Start- und Endadressen im Speicher befinden sich
in A0 beziehungsweise A1, und der gesuchte Wert befindet sich
im tiefern Wort von DO.

Dieses Programm verwendet eine Schlaufe, in der der Wert, auf
den AO zeigt, mit dem Wert in DO verglichen wird. Wenn der
gesuchte Wert gefunden ist, verzweigt BEQ.S DONE den
Mikroprozessor zu DONE, wo A0 dekrementiert wird. (Das ist
notig, weil AO immer nachher inkrementiert wurde, und dann
am Schluss auf ein Wort nach dem Speicherplatz des vergliche-
nen Werts zeigt.) Wenn kein gleicher Wert gefunden wird, priift
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CMPA.L AO, A1 auf die Bereichsgrenze und springt auf LOOP
zuriick, wenn AO kleiner oder gleich A1 ist (wahr wenn C = 0,
da BCC.S als Abschlussbefehl verwendet wird).

Programmbeispiel 3.1

*DIESES PROGRAMM PRUEFT, OB EIN AUS-
*GEWAHLTER SPEICHERBEREICH EINEN
*SPEZIFIZIERTEN WORTWERT ENTHAELT. VOR
*DER AUSFUEHRUNG MUESSEN A0 UND A1 DIE
* ANFANGS- UND ENDADRESSEN DES BEREICHS
*ENTHALTEN. DAS TIEFERE WORT VON DO MUSS
*DEN WERT, DER GESUCHT WIRD, ENTHALTEN.
* AM SCHLUSS, WENN DER WERT GEFUNDEN
*WURDE,ISTZ =1 UND A0 ENTHAELT DIE

* ADRESSE, WO DER WERT GEFUNDEN WURDE.
*FALLS DER WERT NICHT GEFUNDEN WURDE,
*ISTZ=0UND A0=Al

ORG  $2000
LOOP CMP (A0)+,D0 WERT GEFUNDEN?
BEQ.S DONE JA, AUFHOEREN
CMPA.LAO,A1 GRENZE DES
BEREICHS?
BCC.S LOOP NEIN, WEITERFAHREN
DONE SUBA.L #2,A0 FERTIG. AO ANPASSEN

Leser, die 8-Bit-Mikroprozessoren programmiert haben, wissen
gut, dass Schlaufen gewGhnlich mit einer Art Zihler, normaler-
weise einem Register, realisiert werden. Nach jedem Schlaufen-
durchgang wird der Zéhler um 1 dekrementiert, und die Schlau-
fe wird dann verlassen, wenn der Zihler null wird. Diese Proze-
dur bendtigt immer mindestens zwei Befehle: einen Dekrement-
befehl und einen bedingten Verzweigbefehl. Mit dem MC 68000
kann diese Aufgabe kombiniert werden mit einer Anzahl von
Priif-, Dekrement- und Verzweigbefehlen (DBcc: test, decre-
ment and branch).

Bei der Ausfiihrung eines DBcc-Befehls fragt der MC 68000 die
Bedingungscode ab, um herauszufinden, ob die spezifizierte
Bedingung (irgendeine der 16 Bedingungen aus Tabelle 3.15)
gesetzt ist. Falls dies der Fall ist, geht das Programm zum néch-
sten Befehl. Wenn die Bedingung nicht erfiillt ist, dekrementiert
der MC 68000 das tiefere Wort eines spezifierten Datenregisters
um eins. Wenn der Wert im Datenregister —1 erreicht hat, wird
der nédchste Befehl ausgefiihrt, andernfalls verzweigt der
MC 68000 zum spezifizierten Label im Speicher. Zum besseren
Versténdnis dieses Ablaufs sei auf Bild 3.16 hingewiesen.

Es wird ausdriicklich darauf aufmerksam gemacht, dass mit
dem einfachen Befehl DBcc wie zum Beispiel
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BNE DO,LOOP

die gleichen Operationen wie mit der Befehlssequenz

BNE.S NEXT
SUBQ #1,D0
BPL LOOP

NEXT

ausgefiihrt werden. Zum Wegfall von zwei Zeilen Quellencode
kommt dazu, dass ein DBcc-Befehl im Speicher zwei Worte
weniger bendtigt als die dquivalente Befehlssequenz (zwei Wor-
te fiir DBcc gegen vier Worte fiir die Sequenz). Ein DBcc-Befehl
wird also normalerweise doppelt so schnell ausgefiihrt werden
wie die entsprechende 3-Befehls-Sequenz. Ein DBcc-Befehl
bendtigt 10 Zyklen, wenn die Verzweigung ausgefiihrt wird, und
12 Zyklen, wenn nicht verzweigt wird. Demgegeniiber bendtigt
die Sequenz bei ausgefiihrter Verzweigung 22 Zyklen, und 10

DBcc Dn.<label>
Befehl
avsfihren

Yerzweigung weiter bei
zu nachstem
<label> Befehl
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oder 22 Zyklen, wenn nicht verzweigt wird (je nachdem ob die
«cc»-Bedingung erfiillt ist oder der Zdhler auf —1 dekrementiert
wurde).

Die Annahme, dass die DBcc-Befehle nur gerade als Bee-mit-
Zéhler-Befehle eingesetzt werden konnen, wire aber falsch. Es
gibt vielmehr einige wichtige Unterschiede zwischen den DBcc-
und den Bcc-Befehlen, die beachtet werden miissen:

1. Die DBcc-Befehle arbeiten in umgekehrter Art als die Bec-
Befehle, das heisst, dass die Bcc-Befehle verzweigen, wenn
die Bedingung erfiillt ist, wihrend die DBcc-Befehle nicht
verzweigen, wenn die Bedingung erfiillt ist, und das Pro-
gramm den néchsten Befehl ausfiihrt.

2. Bei den DBcc-Befehlen fiihren zwei Wege aus der Schlaufe,
da sie sowohl bei erfiillter Bedingung als auch beim Erreichen
des Werts —1 im Z&hler zum néchsten Befehl gehen. Daher
besitzen die DBcc-Befehle auch die Charakteristik eines
Befehls «mache bis gleich» (auf -1).

3. Ein Bcc-Befehl kann in einem Programm vorwérts und riick-
wirts verzweigen, ein DBcc-Befehl hingegen nur riickwdrts,
das heisst zu einer tieferen Speicheradresse. Die Verzwei-
gungsmarke darf nicht mehr als 32 766 Byte (37FFE) tiefer
als der DBcc-Befehl liegen.

4. Bcc-Befehle konnen Ein- oder Zweiwortbefehle sein, DBcc-
Befehle sind immer Zweiwortbefehle. Daher ist die Form
DBcc.Sillegal.

Wie bereits erwidhnt, k6nnen die DBcc-Befehle mit allen 16
«cc»-Anhédngen verwendet werden, also inklusive T und F. Der
T-Anhang verlangt die Befehlsform

DBT Dn, <Labely

die immer zum néchsten Befehl fiihrt und daher nichts anderes
ist als eine Zweiwort-Nulloperation! Der niitzlichere F-Anhang
gestattet es, die Bedingungsabfrage zu unterlassen und die Ent-
scheidung verzweigen/nicht verzweigen allein auf den Zustand
des Zéhlers abzustiitzen. Das Beispiel 3.2 zeigt, wie unter Ver-
wendung des DBF-Befehls ein Datenblock im Speicher ver-
schoben werden kann. Es ist zu beachten, dass der Zdhler DO
mit dem Wert der Anzahl Doppelworte minus eins initialisiert
wird, weil ja bis auf —1 dekrementiert wird. Wenn acht Doppel-
worte verschoben werden sollen, muss DO mit dem Wort $0007
initialisiert werden. Dieses Programm diirfte vor allem Pro-
grammierer beeindrucken, die bereits Datenverschiebungen in
einem 8-Bit-Mikroprozessor programmiert haben, denn das
Programm besteht nur aus zwei Befehlen, besetzt lediglich drei
Worte im Speicher und ist auch schnell. Der MOVE.L-Befehl
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benotigt 22 Zyklen und der DBF-Befehl entweder 10 (falls ver-
zweigt wird) oder 14 Zyklen (wenn nicht verzweigt wird).

Daher werden bei der Verschiebung von N Doppelworten
32N+4 Zyklen bendtigt, fiir 100 Doppelworte also z.B. 3204
Zyklen oder 400,5 us bei $MHz.

Programmbeispiel 3.2

*DIESES PROGRAMM KOPIERT EINEN DATEN-
*BLOCK VON EINEM TEIL DES SPEICHERS IN FINEN
* ANDERN. DO ENTHAELT DIE ANZAHL DOPPEL-
*WORTE, DIE VERSCHOBEN WERDEN SOLLEN, -1.

* AOENTHAELT DIE URSPRUNGSADRESSE, A1 DIE
*ZIELADRESSE

ORG $2000
BLKMOV MOVE.L (A0)+,(Al)+ VERSCHIEBEEIN

DOPPELWORT

DBF DO0,BLKMOVE DURCHLAUFE
SCHLAUFE BIS
DO + 1 BLOECKE
VERSCHOBEN

END SIND.

Als einzige bedingte Befehle, die bis jetzt nicht diskutiert wur-
den, bleiben noch die «Setze geméss Bedingung»-(Scc-)Befehle.
Diese Befehle priifen die spezifizierte «cc»-Bedingung (irgend-
eine aus Tabelle 3.15) und setzen im adressierten Byte alle Bit
auf 1, falls die Bedingung erfiillt ist, beziehungsweise alle Bit auf
0, wenn die Bedingung nicht erfiillt ist. Da diese Befehle den
Bedingungscode nicht beeinflussen, werden sie zur Bildung von
Indikatoren eingesetzt, die nicht unmittelbar gepriift werden
miissen, sondern spéter abgefragt werden konnen.

3.4.7.2 Such-Subroutine fiir ASCII-Zeichenfolgen

Zur Vertiefung des bisher vermittelten Stoffes betrachten wir ein
Programmbeispiel, das eine gute Auswahl der bis jetzt diskutier-
ten Befehle aufweist. Das Beispiel 3.3 ist eine Subroutine, die
das erste Erscheinen einer ASCII-Zeichenfolge (die sogenannte
Testzeichenfolge oder «test string») in einer anderen ASCII-
Zeichenfolge (die sogenannte Hauptzeichenfolge oder «main
string») im Speicher priift. Das Beispiel hat nicht nur theoreti-
schen Wert, sondern wird im Zusammenhang mit Textverarbei-
tung héufig verwendet.

Im Programm zeigt das Adressregister AO auf die Hauptzei-
chenfolge (die Zeichenfolge, in der gesucht wird). In einer Text-
verarbeitungsanwendung ist die Testzeichenfolge wahrschein-
lich ein Wort, ein Satz, ein Name, eine Telefonnummer oder
etwas Ahnliches, zu dem fiir eine Verwendung mit einer
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*DIESE SUBROUTINE SUCHT EINE ASCII-FOLGE IM
*SPEICHER (<cHAUPTFOLGE» GENANNT) NACH
*DEM VORHANDENSEIN EINER ANDERN ASCII-
*FOLGE («TESTFOLGE» GENANNT). DIE HAUPT-
*FOLGE WIRD MIT EINEM *-ZEICHEN BEENDET.
*VOR AUFRUF DER SUBROUTINE MUESSEN DIE
*STARTADRESSEN VON HAUPTFOLGE UND TEST-
*FOLGE IN DEN REGISTERN A0 UND A1 SEIN, UND
*DIE LAENGE DER TESTFOLGE IN BYTE MUSS IM
*DATENREGISTER DO ENTHALTEN SEIN.

*DAS ERGEBNIS DER SUCHE WIRD IN A2
*GESCHRIEBEN. WENN DIE TESTFOLGE
*GEFUNDEN WIRD, ENTHAELT A2 IHRE ADRESSE
*IN DER HAUPTFOLGE. WENN DIE TESTFOLGE
*NICHT GEFUNDEN WIRD, ENTHAELT A2 NULL.

* A2IST DAS EINZIGE BEEINFLUSSTE REGISTER.

ORG $1000
ASEARCHMOVEM D1/D3,~(SP) SICHERE DATEN-
MOVEM.L A0/A3,~(SP) REGISTER UND

ADRESSREGISTER
IM STAPEL
*
* SUCHE ERSTES ZEICHEN DER TEST-
FOLGE
*
MOVE.B (Al),D3 LIES ERSTES
TESTZEICHEN IN
D3
FIRST SUBAL A2A2 A2=0FUER
BEGINN
CHKEND CMPLB  #'*/(A0) ENDE HAUPT-
FOLGE

BEQ.S  RETIRN JA.ZURUECK.
CMPB  (A0)+,D3  HAUPTZEICHEN=

TESTZEICHEN?
BNE.S CHKEND NEIN. WEITER-
SUCHEN
*
* ERSTES TESTZEICHEN GEFUNDEN,
VERGLEICHE REST DER TESTFOLGE
*
MOVE DO,D1 BRINGE LAENGE
DER TESTFOLGE
INDI.
SUBQ #2,D1 D1=LAENGE-2.
MOVEA.L A1,A3 BRINGE ADR.

'"TESTFOLGE' IN
A3.
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ADDQ.L #1,A3 A3 ZEIGT AUF
ZWEITES TEST-
ZEICHEN.
MOVEA.L A0,A2 A2=LAUFENDE
ADR.’HAUPT-
FOLGE’
SUBQL #1,A2
LOOP CMPLB #*,(A0)  ENDEHAUPT-

FOLGE?

BEQ.S RETRN WENNJA,
ZURUECK.

CMPM.B (A3)+,(A0+) HAUPTZEICHEN =
TESTZEICHEN?

BNE.S FIRST NEIN. WEITER-
FAHREN

DBF D1,LOOP JA. VERGLEICH
WEITERFAHREN.

RETRN MOVEM.L (SP)+,A0/A3 REGISTER

ZURUECK-
SPEICHERN

MOVEM (SP)+,D1/D3

END

anschliessenden Operation zugegriffen werden soll. Der einzige
weitere Parameter, der spezifiziert werden muss, ist die Lédnge
der Testzeichenfolge. Dieser Wert in Byte wird im tiefern Wort
des Datenregisters DO eingeschrieben.

Das Resultat der Suche wird in das Adressregister A2 geschrie-
ben. Wenn die Testzeichenfolge in der Hauptzeichenfolge liegt,
wird A2 die Adresse dieser Hauptzeichenfolge enthalten. Falls
die Testzeichenfolge nicht in der Hauptzeichenfolge ist, wird A2
null enthalten. “

Die ASEARCH-Subroutine im Beispiel 3.3 beginnt mit der Ver-
schiebung von zwei Datenregistern und zwei Adressregistern
zum Systemstapel, so dass sie nach der Riickkehr aus der Sub-
routine unverdndert sind. Der Rest der Subroutine besteht aus
zwei Teilen. Im ersten Teil liest der MC 68000 das erste Zeichen
der Testzeichenfolge in das Datenregister D3 und durchléuft
dann eine Schlaufe (CHKEND), in der dieses Zeichen mit
jedem Byte in der Hauptzeichenfolge verglichen wird. Das Zei-
chen in D3 wird auch mit dem Endezeichen (hier *) verglichen,
um festzustellen, dass beim Durchsuchen der gesamten Haupt-
zeichenfolge kein gleicher Wert gefunden wurde.

Wenn das erste Zeichen der Testzeichenfolge irgendwo in der
Hauptzeichenfolge gefunden wird, springt der MC 68000 in den
untern Teil der Subroutine, in der die restliche Testzeichenfolge
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mit der Hauptfolge verglichen wird. Fiir diesen Vergleich wird
der Bytezdhlerwert der Testzeichenfolge in D1 geschrieben,
dann 2 davon subtrahiert, weil der DBF-Befehl auf -1 priift und
weil das zweite Byte der Testfolge bearbeitet wird. An diesem
Punkt wird die moglicherweise zutreffende Hauptzeichenfolge-
adresse in A2 festgehalten. Die LOOP-Sequenz dieses Teils der
Subroutine vergleicht den Rest der Testfolge und verzweigt
zuriick zu FIRST, wenn noch nicht die ganze Testfolge lokali-
siert ist. Die Subroutine endet mit zwei MOVEM-Befehlen, um
die gesicherten Register aus dem Stapel zuriickzuholen, und
einem RTS-Befehl, mit dem die Riickkehradresse geholt wird
und damit die Kontrolle an das aufrufende Programm zuriick-
gegeben wird.

3.4.7.3 Unbedingte Spriinge und Verzweigungen, Riickkehr-
befehle

Wie beim fritheren 8-Bit-Mikroprozessor MC 6800 hat Moto-
rola auch den MC 68000 mit Sprung- und Subroutinenaufruf-
befehlen je in Kurz- und Langformat ausgeriistet. Die Sprung-
befehle werden «springe immer» (JMP) und «verzweige immer»
(BRA) genannt. Die Subroutinenaufrufbefehle werden «springe
zur Subroutine» (JSR) und «verzweige zur Subroutine» (BSR)
genannt.

Das Langformat dieser Befehle, JMP und JSR, kann verwendet
werden, um die Programmsteuerung irgendwohin in den 16-
MByte-Speicherbereich zu transferieren, wihrend das Kurzfor-
mat, BRA und BRS, beschrénkt ist auf Verschiebungen relativ
zu den Verzweigbefehlen. Wie die bedingten Verzweigbefehle
(Bcc), konnen BRA und BSR sowohl fiir 8-Bit- als auch fiir 16-
Bit-Verschiebungen verwendet werden, wobei die 8-Bit-Ver-
schiebung mit dem Anhang .S angewihlt wird (BRA.S oder
BSR.S).

Alle vier Befehle veranlassen einen Transfer der Programm-
steuerung durch das Laden einer neuen Adresse in den Pro-
grammzédhler. Die Subroutinenaufrufbefehle JSR und BSR si-
chern selbstversténdlich die Riickkehr des MC 68000 zu dem
JSR und BSR folgenden Befehl, indem die Adresse dieses
Befehls in den Stapel gerettet wird.

Im Gegensatz zu allen andern Stapeloperationen bringen die
JSR- und BSR-Befehle zuerst das hhere Wort der Adresse in
den Stapel und veranlassen damit die Speicherung der Riick-
kehradresse in der Ordnung tieferes Wort hoheres Wort.

Der Befehl «Riickkehr von Subroutine» (RTS) holt die Riick-
kehradresse vom Stapel und 14dt sie in den Programmzéhler.
Daher muss RTS der letzte ausgefiihrte Befehl jeder Subroutine
sein. Zur Erlduterung von Subroutinenaufruf und -riickkehr be-
trachten wir ein Programm mit den zwei Befehlen:
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Programm- Befehl Kommentar
zéhler

$A2000 JSR $4EFE Subroutinenaufruf
$A2004 MOVE DO,D1 nichster Befehl

Bild 3.17 zeigt den Programmzéhler und den Stapel zu drei Zeit-
punkten: vor dem JSR-Befehl (3.17a), nach dem JSR-Befehl
(3.17b) und nach der Ausfiihrung des RTS-Befehls (3.17¢).

Speicher

a PC [ $000A2000 |

SP —

b PCy  $00004EFE SP —o| $2004

3 000A
c PC [ $000A2004 | $ 2004
$ 0004

SP—»

In friiheren Diskussionen der Datentransferbefehle sahen wir,
dass die Befehlsform

MOVEM «ist», —(SP)

zur Rettung ausgewdihlter Register im Stapel wihrend der Sub-
routinenausfiihrung verwendet werden kann, und zwar um die-
se unterbrechbar (reentrant) zu machen. In vielen Anwendun-
gen miissen auch die Bedingungscode gesichert werden, so dass
die Zusammenhénge des Programms wéhrend der Ausfiihrung
der Subroutine erhalten bleiben. Dies ist ebenfalls mit einem
bereits besprochenen Befehl moglich.

MOVE SR,-(SP)
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Subroutinenaufruf und -riickkehr

a) vor Ausfiihrung von JSR$4EFE
b) nach Ausfiihrung von JSR$4EFE
c) nach Ausfiihrung von RTS
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Selbstversténdlich miissen vor der Riickkehr aus der Subrou-
tine die gesicherten Werte wieder aus dem Stapel geholt werden.
Dies kann mit der Sequenz

MOVEM (SP)+,list>
MOVE  (SP)+,CCR

gemacht werden. Dennoch verfiigt der MC 68000 iiber eine spe-
zielle Version des RTS-Befehls, «Riickkehr und Riickspeiche-
rung der Bedingungscode» (RTR) genannt, der das Bedin-
gungscoderegister wie die Riickkehradresse aus dem Stapel
holt. Beispiel 3.4 zeigt, wie die Bedingungscode und gewisse
Arbeitsregister wiahrend der Subroutine erhalten werden und
wie mit RTR die Riickkehr veranlasst wird.

Programmbeispiel 3.4

JSR SUBR SUBROUTINE-
AUFRUF

MOVE DO,D1 NAECHSTER,
DIREKTER
BEFEHL

SUBR MOVE SR,~(SP) SICHERE STATUS-
REGISTER IM
STAPEL.
MOVEM.L D3-D5/A1,~(SP) SICHERE
REGISTER IM
STAPEL.

WEITERE SUB-
ROUTINEN-
BEFEHLE

* ¥ ¥ X *

MOVEM.L (SP)+,A1/D3-D5REGISTER
‘ ZURUECK-
SPEICHERN.
RTR , RUECKKEHR
UND RUECK-
SPEICHERN
BEDINGUNGS-
CODE.
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3.4.8 LINK-und UNLK-Befehle

Die LINK- und UNLK-Befehle (Tabelle 3.16) werden zur
Zuweisung und Freigabe von Datenbereichen im Systemstapel
fiir verschachtelte Subroutinen, verbundene Listen und andere
Prozeduren verwendet. Nach dem Aufruf (zum Beispiel einer
verschachtelten Subroutine) setzt LINK einen Adressregister-
zeiger zum Datenbereich und verschiebt den Stapelzeiger im
Speicher nach unten, genau nach dem Datenbereich. Nach
Ausfiihren der Subroutine kehrt UNLK diese Sequenz um und
setzt dabei den Stapelzeiger und die Adressregister auf ihre Ori-
ginalwerte, das heisst auf die Werte von LINK.

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes
Quelle Ziel XNZVC
LINK LINK An,#d unbestimmt An e
UNLK UNLK An unbestimmt An ===

Tabelle 3.16 LINK-und UNLK- Befehle

Der LINK-Befehl hat zwei Operanden, ein Adressregister und
einen 16 Bit langen, vorzeichenbehafteten Verschiebungswert.
Wihrend die verschachtelte Subroutine ausgefiihrt wird, ent-
hélt das Adressregister die Startadresse des Datenbereichs fiir
diese Subroutine im Stapel.
Dieses Adressregister wird Rahmenzeiger (RZ oder FP, fra-
me pointer) genannt. Der Verschiebungswert spezifiziert in Byte
den Speicherbedarf im Stapel, der dem Datenbereich zugewie-
sen wird. Wenn LINK ausgefiihrt wird, bringt der MC 68000
den 32-Bit-Inhalt des FP in den Stapel, dekrementiert den Sta-
pelzeiger (SZ oder SP) um vier, 14dt diesen SP-Wert in den FP
und addiert dann den Verschiebungswert zum SP. Erw#hnens-
wert ist, dass der Verschiebungswert zwei Charakteristiken
aufweist:
1.) Weil der Stapelzeigerwert immer gerade sein muss, muss der
Verschiebungswert eine gerade Zahl sein, und
2.) weil der Verschiebungswert zum Stapelzeiger addiert wird,
sollte er fiir die meisten Anwendungen negativ sein.
Nach der Ausfiihrung von LINK enthélt das Adressregister die
Startadresse des Datenbereichs und der Stapelzeiger weist auf
die dem Datenbereich folgende Speicherzeile. Ab diesem Punkt
kann die Subroutine den Datenbereich sehr einfach beniitzen,
durch indirekten Zugriff mit Adressregister und Verschiebungs-
oder Indexmodus..Bild 3.18a und 3.18b zeigt den Systemstapel
nach dem Subroutinenaufruf und nach LINK.

90



Der Befehlssatz des MC 68 000

S —

RZ —=

Rickkehr-

adresse

Parameter

Platz
fir A

Lokale
Variable
for A

vorheriger
RZ 4

b ¢ *?' a4

SZ—=

Platz
fir 8

gesicherte
Register

SZ = | Lokale
Variable
for B

Lokale
Variable
for A

s —e

RZ —| RZ firA RZ — | RZfirA

Rijckkehr-
sz adresse

zunehmende Adressen

vorheriger
RZ —= R;"?

Bild 3.18 Zuweisung und Freigabe von Speicherplatz mit den Befehlen

LINK und UNLK

a) nach Subroutinenaufruf, b) nach LINK, ¢) vor UNLK, d) nach UNLK
(SZ: Stapelzeiger, RZ: Rahmenzeiger)

Bild 3.18c zeigt die Stapelzeigeradressierung einer geraden, tie-
feren Speicherzeile. Diese Darstellung soll zeigen, dass der
UNLK-Befehl eine normale Riickkehr einleitet (in Bild 3.18d
gezeigt), ohne Riicksicht darauf, ob der Stapelzeiger inzwischen
gedndert haben konnte. Der UNLK-Befehl, der normalerweise
unmittelbar vor der Riickkehr aus der Subroutine ausgefiihrt
wird, 14dt einfach den Stapelzeiger aus dem Rahmenzeigerregi-
ster und reinitialisiert dann den Rahmenzeiger, indem der Ori-
ginalwert zuoberst aus dem Stapel geladen wird. Nach UNLK
enthalten sowohl der Rahmenzeiger wie der Stapelzeiger die
Werte, die sie vor LINK enthielten.

3.4.9 Systemsteuerungsbefehle

Tabelle 3.17 enthiélt diejenigen Befehle, die in den Herstellerun-
terlagen als Systemsteuerungsbefehle (system control instruc-
tions) bezeichnet werden. Es sind drei Typen zu unterscheiden:
privilegierte Befehle, Trap-Erzeugungsbefehl und Statusregi-
sterbefehle. Die Statusregisterbefehle wurden in diesem K apitel
bereits behandelt, und ihre Beschreibung soll nicht wiederholt
werden.

3.4.9.1 Privilegierte Befehle

Wie bekannt ist, konnen privilegierte Befehle nur ausgefiihrt
werden, wenn sich der MC 68000 im Uberwachungsmodus
befindet. Jeder Versuch, im Anwendermodus einen privilegier-
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Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs-
grosse codes
Quelle Ziel XNZVC
Privilegierte Befehle
RESET RESET e
RTE RTE (SP)+ - SP;(SP)+—~PC *k ok k%
STOP STOP #d 16 4#d > SR, then STOP Rk k
ANDI ANDI #d,SR (1) 16 #d SR -*%00
EORI EORI #d,SR (1) 16 #d SR -**00
ORI ORI #d,SR (1) 16 #d SR -**00
MOVE MOVE <ea>,SR (2) 16 Data SR *ok Kk &
MOVE USP,An (2) 32 USP An 000 ————-
MOVE An,USP (2) 32 An usp 0 -
Trap-Erzeugungsbefehle
TRAP TRAP #<vector> PC->—(SP; ===
SR - —(SP);
#<vector> -» PC
TRAPV TRAPV Ifv=1,then TRAP = -———---
CHK CHK <ea>,Dn 16 IfDn<0orDn > (ea), Daten -*Uuu
then TRAP
Status-Registerbefehle
ANDI ANDILB #d,SR (1) 8 #d CCR -*¥*00
EORI EORLB #d,SR (1) 8 H#d CCR -**00
ORI ORILB +#d,SR (1) 8 #d CCR -**00
MOVE MOVE <ea>,CCR (2) 16 Data CCR *H Kk &
MOVE SR,<ea> (2) 16 SR Daten @ -----
anderbar

Bem.: (1) Beschrieben bei der Gruppe der logischen Befehle (Tabelle 3.10 und Text).
(2) Beschrieben bei der Gruppe der Datentransferbefehle (Tabelle 3.7 und Text).

Tabelle 3.17 Systemsteuerungsbefehle

ten Befehl auszufiihren, wird einen Ausnahmezustand herbei-
fiihren (in K apitel 7 behandelt).

Der RESET-Befehl (Riicksetzen externer Bausteine) aktiviert
den RESET-Anschluss des MC 68000 wiahrend 124 Taktzy-
klen. Dieser Anschluss ist normalerweise mit allen externen
Bausteinen im System verbunden und veranlasst das Riickset-
zen dieser Bausteine, ohne den Prozessor zu beeinflussen. Der
RESET-Befehl kann zum Wiederanlauf nach schwerwiegenden
Systemfehlern verwendet werden. _

Wie im Kapitel 7 gezeigt werden wird, veranlassen Unterbriiche
und andere Ausnahmezustéinde, dass das 16-Bit-Statusregister
und der 32-Bit-Programmzéhler in den Uberwachungsstapel
geschrieben werden, damit der Programmstatus bei Erscheinen
des Ausnahmefalles gesichert wird.

Der RTE-Befehl (Riickkehr aus dem Ausnahmezustand, return
from exception) bringt diese Werte aus dem Stapel zuriick,
nachdem die Ausnahmeroutine ausgefiihrt wurde. RTE ent-
spricht also fiir Ausnahmezustdnde den Befehlen RTS und
RTR fiir Subroutinen.
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Der «Stopp Programmausfiihrung»-Befehl (STOP) 14dt einen
Wert in das Statusregister und veranlasst den MC 68000, das
Holen und Ausfiihren von Befehlen zu stoppen. Die Ausfiih-
rung wird nicht wiederaufgenommen, bis der MC 68000 einen
Unterbruch hinreichend hoher Prioritdt empféngt oder extern
zuriickgesetzt wird. STOP wird im praktischen Gebrauch oft
beniitzt, um die Unterbruchsmaske zu dndern, und kann als
erweiterter «warte auf Unterbruch»-(WAI-)Befehl des 8-Bit-
Mikroprozessors MC 6800 betrachtet werden.

3.4.9.2 Trap-Erzeugungsbefehle

Traps («Fallen») veranlassen wie Unterbriiche, dass der Pro-
grammzéhler mit einer bestimmten Adresse im Speicher gela-
den wird, je nach «Vektornummer», die dem Prozessor geliefert
wird. Bei Unterbriichen werden alle Vektornummern durch
externe Bausteine geliefert, bei Traps werden sie infern erzeugt.
Wie spiter dargestellt wird (Kapitel 7), werden Traps automa-
tisch durch gewisse Fehlerbedingungen erzeugt; sie lassen sich
aber auch durch Software mit irgendeinem der drei hier
beschriebenen Befehle erzeugen.

Der TRAP-Befehl initialisiert eine unbedingte Trap-Operation
und liefert eine Vektornummer (0 bis 15) im Operanden. TRAP
kann also zur Erzeugung von irgendeinem von 16 Softwareun-
terbriichen verwendet werden.

Der Befehl «Trap bei Uberlauf» (TRAPYV) priift das Uberlaufbit
(V) im Bedingungscoderegister und fiihrt bei gesetztem V zu
einer spezifizierten Speicheradresse. Wenn V nicht gesetzt ist,
wird der néichstfolgende Befehl ausgefiihrt. Auch der dritte
Trap-Befehl, «Priife Register auf Grenzen» (CHK) operiert
unbedingt. Dieser Befehl priift den Inhalt eines Datenregisters
und verzweigt zu einer spezifizierten Speicherzeile, wenn der
Registerinhalt einen Wert aufweist, der kleiner als null oder
grosser als ein adressierter «obere Grenze»-Operand ist. Diese
Art der Priifung hilft, Datenbereiche in den definierten Grenzen
zu halten.

3.5 Zusammenfassung

In diesem Kapitel wurden die 14 Adressierungsarten und ihre
Anwendung behandelt. Sie bieten alle Moglichkeiten friiherer 8-
Bit-Mikroprozessoren sowie eine ganze Anzahl wertvoller
Ergdnzungen. Die Fahigkeit, eine Adresse vor der eigentlichen
Operation zu dekrementieren oder nachher zu inkrementieren,
eroffnet dem Programmierer einen schnellen, wirkungsvollen
Weg zur Behandlung von Zeichenfolgen und Tabellen. Weiter
ermoglicht der Einbezug der Adressierungsarten mit Verschie-
bungswerten und Indizes einfachen Zugriff zu Datenbereichen.

Ebenfalls in diesem Kapitel wurden alle 56 mikrocodierten
Befehle des MC 68000 behandelt. Wie bei den Adressierungsar-
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ten diirften auch viele Befehle den Lesern mit Programmierer-
fahrung auf dem MC 6800 oder andern 8-Bit-Mikroprozesso-
ren bekannt vorkommen, wobei aber auch hier verbesserte Ver-
sionen und eine einfachere Anwendung angeboten werden.
Zum Beispiel wurden die Lade-, Speicher- und Registertransfer-
befehle in einem einzigen, MOVE genannten Befehl kombiniert.
Andere héufig verwendete Operationen, die normalerweise
mehrere Zeilen Code benétigen, sind zu Einzelbefehlen kom-
biniert worden. So finden wir im MC 68000 Befehle wie «priife,
dekrementiere und verzweige» (DBcc), «inkrementiere mehr-
fach» (ADDQ) und «dekrementiere mehrfach» (SUBQ).

Im Hinblick auf die spezielle Unterstiitzung héherer Program-
miersprachen stehen zum erstenmal Befehle wie «priife Register
auf Grenzen» (CHK) und fiir die Zuweisung und Freigabe von
Platz im Stapel fiir lokale Variable wiahrend Prozeduraufrufen
(LINK und UNLK) zur Verfiigung. Im weiteren erlaubt der
enorme Adressbereich des MC 68000 (16 MByte) Multitasking
und Multiprocessing, wobei ein «Speicherzuweisungsbefehl»
(TAS) eingesetzt werden kann.

Mit dieser Ubersicht iiber die Programmiermdglichkeiten des
MC 68000 soll nun in den néchsten zwei K apiteln deren Einsatz
an praktischen Anwendungen im Zusammenhang mit mathe-
matischen Operationen und Verarbeitung von Listen und Kon-
versionstabellen dargestellt werden.
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Leser, die ihre ersten Erfahrungen in der Mikrocomputerpro-
grammierung mit 4-Bit- oder 8-Bit-Mikroprozessoren gemacht
haben, werden von den arithmetischen Moglichkeiten des
MC 68000 beeindruckt sein. Zum Beispiel bringt die Tatsache,
dass der MC 68 000 iiber Multiplizier- und Dividierbefehle so-
wohl mit wie ohne Vorzeichen verfiigt, einen Gewinn von Stun-
den (wenn nicht Tagen oder Wochen) bei der Entwicklung von
Multiplikations- oder Divisionssubroutinen.

In diesem Kapitel werden wir auf der Basis der angebotenen
Multiplikations- und Divisionsméglichkeiten einige mathemati-
sche Aufgaben behandeln. Wir beginnen mit Multiplikations-
operationen (32 Bit x 32 Bit) mit und ohne Vorzeichen. Dann
werden Uberlaufsituationen bei Divisionen behandelt, und zum
Schluss wird ein Programm entwickelt, mit dem die Quadrat-
wurzel einer 32-Bit-Zahl ermittelt werden kann.

4.1 Multiplikation

Im Kapitel 3 lernten wir die Multiplikationsbefehle MULS
«Multiplikation mit Vorzeichen» und MULU «Multiplikation
ohne Vorzeichen» kennen und nahmen zur Kenntnis, dass sie
nur mit 16-Bit-Werten (Wortlédnge) operieren konnen. Wie wer-
den nun Werte von 32 Bit oder ldnger multipliziert? Wie jeder-
mann weiss, der ein Multiplikationsprogramm fiir einen 8-Bit-
Mikroprozessor geschrieben hat, geniigt die Existenz eines
Multiplikationsbefehls irgendeiner Linge, um ihn dann fiir
bestimmte Anforderungen zu erweitern.

4.1.1 32 Bit x 32-Bit-Multiplikation
ohne Vorzeichen

Zahlen mit Mehrfachgenauigkeit ohne Vorzeichen konnen
multipliziert werden unter Verwendung des MULU-Befehls
mittels Erzeugen einer Serie von 32-Bit-Zwischenprodukten, die
dann zum endgiiltigen Produkt summiert werden. Die gleiche
Methode wird verwendet zum Multiplizieren von Dezimalzah-
len von Hand, mit Papier und Bleistift. Wie der Leser sich viel-
leicht erinnern wird (im Zeitalter der Taschenrechner vielleicht
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nicht selbstversténdlich!), werden die Faktoren untereinander-
oder nebeneinander geschrieben und die Multiplikation in einer
Serie von einzelnen Multiplikationen fiir jede Stelle im Multipli-
kator durchgefiihrt. Jedes Zwischenprodukt wird direkt unter
die entsprechende Stelle im Multiplikator geschrieben. Wenn
alle Zwischenprodukte berechnet sind, werden sie addiert zum
Resultat. Zum Beispiel wird die Multiplikation von 124 x 103 in
der folgenden Art geschrieben:

Die Zwischenprodukte werden versetzt, um das dezimale Ge-
wicht der einzelnen Multiplikatorstellen berechnen zu kdnnen.
In diesem Beispiel ist die 3 die Einerstelle, die 0 die Zehnerstelle
und die 1 die Hunderterstelle. Dadurch kann das Beispiel in der
folgenden Art geschrieben werden:

103 x 124 =(3 x 124) + (0 x 124) + (100 x 124)
oder
103 x 124 =(3 x 10°x 124) + (0 x 10" x 124) + (1 x 10?> x 124)

In diesem Abschnitt werden wir eine Subroutine entwickeln,um
zwei 32-Bit-Zahlen ohne Vorzeichen zu multiplizieren, was ein
64-Bit-Produkt ohne Vorzeichen ergibt. Ohne einen Multipli-
zierbefehl wiirde das bedeuten, dass 32 Multiplikationsoperatio-
nen, eine fiir jedes Bit im Multiplikator, durchgefiihrt werden
miissten. Gliicklicherweise verfiigt der MC 68000 iiber einen
Befehl, der 16-Bit-Zahlen ohne Vorzeichen direkt multipliziert.
Dieser Befehl MULU erlaubt uns, die 32-Bit-Faktoren als zwei-
stellige Zahlen zu betrachten, jede Stelle mit 16 Bit. Dadurch
sind nur vier Multiplikationen erforderlich, um das 64-Bit-Pro-
dukt zu erzeugen. Bild 4.1 zeigt die symbolische Darstellung der
Faktoren und erldutert, wie die Zwischenprodukte angeordnet
werden miissen, um das 64-Bit-Endprodukt zu berechnen. Die
eingekreisten Zahlen in Bild 4.1 zeigen die vier 16-Bit-Additio-
nen, die zur Berechnung des Produkts durchzufiihren sind.
Unter Verwendung von Bild 4.1 ist es mdglich, eine Subroutine
zu entwickeln, die zwei 32-Bit-Zahlen ohne Vorzeichen multipli-
zieren kann. Programmbeispiel 4.1 zeigt eine solche Subroutine,
MULU32 genannt, in der die Faktoren in den Datenregistern
D2 und D1 eingeschrieben sind. Das 64-Bit-Produkt wird in die
gleichen Register zuriickgeschrieben, D1 (die 32 tieferen Bit)
und D2 (die 32 hdheren Bit).

Die durch die MULU32-Subroutine durchgefiihrten Operatio-
nen werden genau in der Reihenfolge von Bild 4.1 ausgefiihrt,
wie aus den Befehlen und den entsprechenden Kommentaren
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Bild 4.1

Erzeugung eines 64-Bit-Produktes
mittels vier 16 Bit X 16-Bit-Multi-
plikationen.

I ¢ | D | Mmultiplikand
x[ A 1T B | Multiplikator
BxD | Produkt #1
! i
@
| Bx( | Produkt #2
] ] 1
OO
AxD Produkt #3
|
o |
[ AxC | Produkt #4

Jotal= 64-Bit- Fndproduvkt

ersichtlich ist. Die MULU32-Subroutine beginnt mit dem
Retten des Inhalts der drei allgemein verwendbaren Register
D3, D4 und D5 im Stapel und der Erstellung einer Kopie des
Multiplikators in D3 und D4. Der néchste Befehl vertauscht die
16-Bit-Hélften von D4. Dieses Vertauschen ist eine notwendige
Vorbereitung zur Erzeugung des zweiten und vierten Zwischen-
produkts (siehe Bild 4.1), die das hohere Wort des ersten Multi-
plikanden beinhalten. Dieses Vertauschen ist notwendig, weil
der MULU-Befehl nur die tiefern Worte von zwei Datenregi-
stern miteinander multiplizieren kann. Dieser Swap-Befehl ist
der erste einer ganzen Anzahl in der Subroutine. Ein Swap-D5-
Befehl wird zwei Instruktionen spéter verwendet, um das dritte
und vierte Teilprodukt zu erzeugen.

Jetzt kann, mit all den Multiplikationsoperanden am richtigen
Ort, die eigentliche Multiplikation ausgefiihrt werden. Die Sub-
routine hat vier aufeinanderfolgende MULU-Befehle, welche die
Zwischenprodukte eins, zwei, drei und vier in die Datenregister
D1, D2, D3 und D4 bringen. Die verbleibende Aufgabe ist, die
Summe dieser Zwischenprodukte zu bilden, unter Beriicksichti-
gung ihrer Stellenwerte, um das 64-Bit-Produkt zu erhalten.

Die eingekreisten Zahlen in Bild 4.1 bestimmen die vier Paare
von 16-Bit-Wortern, die in der entsprechenden Reihenfolge
addiert werden miissen. Im Programmbeispiel 4.1 folgt den vier
aufeinanderfolgenden MULU-Befehlen ein SWAP-Befehl, der
die Wortinhalte von D1 umtauscht (Zwischenprodukt #1). Die-
ser Tausch ist eine notwendige Vorbereitung fiir die erste Addi-
tionsoperation, weil der Additionsbefehl wie der MULU-Befehl
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Programmbeispiel 4.1: Subroutine fiir die Multiplikation von zwei 32-Bit-Werten ohne Vorzeichen.

nur die tieferen Werte von zwei Datenregistern beriicksichtigt.

Nach Durchfiihren der ersten Addition wird der Ubertrag dieser
Operation (in X) nach D4 gebracht (Zwischenprodukt #4)
unter Beniitzung des Registers D5 (enthélt Null) als Hilfs-
operand fiir die «addiere-erweitert»-Operation. In der zweiten
Additionsoperation wird das tiefere Wort von D3 (Zwischen-
produkt #3) zum tieferen Wort von D1 addiert, welches das
Resultat der ersten Additionsoperation enthélt, und ein allfil-
liger Ubertrag wird wiederum in D4 eingeschrieben. Zu diesem
Zeitpunkt sind die tieferen 32 Bit des Endprodukts im Daten-
register 1 jedoch nicht in der richtigen Ordnung. Ein SWAP-
D 1-Befehl bereinigt dieses Problem, und der 68 000 ist bereit zur
Akkumulierung der 32 hoheren Bit des Produkts. Das bedingt
die Addition des hheren Wortinhaltes von Datenregister 2 und
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3 (Teilprodukte #2 und #3) zum tieferen Wortinhalt des Daten-
registers D4 (Teilprodukt #4). Die tieferen Worter sowohl von
D2 wie auch D3 enthalten unnétige Daten von den zwei ersten
Additionen, so dass beide Worter geloscht werden und in die
hohere Wortposition dieser Register getauscht werden. Zwei
«addiere-lang»-Befehle setzen die tieferwertigen 32 Bit des End-
produkts in Datenregister D2. Nach der Riickspeicherung des
Inhalts der Datenregister D3, D4 und D5 vom Stapel endet die
-Subroutine. Die MULU32-Subroutine bendtigt zur Ausfiihrung
ein Maximum von 460 Zyklen oder 57,5us. Weil ein 32-Bit-
Operand Zahlen ohne Vorzeichen bis 4,294 x 10° darstellen
kann, verlangen viele Anwendungen keine Multiplikations-
subroutinen mit grésseren Zahlen (diese wiirde wahrscheinlich
Fliesskommaarithmetik verlangen). Es ist aber moglich, Mul-
tiplikationssubroutinen zu schreiben fiir 64-Bit- oder lédngere
Zahlen mit dem in Beispiel 4.1 verwendeten Prinzip. Aller-
dings wird man bald iiber zuwenig Arbeitsregister verfligen
und bendtigt dann Speicherplatz fiir Zwischenspeicherung.

4.1.2 32 Bit x 32-Bit-Multiplikation
mit Vorzeichen

Obschon das Multiplikationsbeispiel 4.1 als Subroutine zur
Multiplikation von zwei nicht vorzeichenbehafteten Zahlen
geschrieben wurde, wird es auch zwei Zahlen mit Vorzeichen
korrekt multiplizieren, solange beide positiv sind. Das heisst,
das Beispiel 4.1 ist eine 32 Bit x 32-Bit-Multipliziersubroutine
fiir nicht negative Zahlen. Diese Subroutine kann indessen nicht
zwei negative Zahlen multiplizieren, weil solche Zahlen nor-
malerweise in Zweierkomplementform vorhanden sind. Wie
aber konnen zwei Zahlen mit Vorzeichen multipliziert werden,
wenn eine oder beide negativ sind? Eine Losung wére, den oder
die negativen Operanden zu negieren, die Multiplikation durch-
zufiihren, dann das Produkt zu berichtigen, sofern erforderlich.
Wenn nur einer der beiden Operanden negativ ist, muss das
Resultat in Zweierkomplement gesetzt werden. Wenn beide
Operanden negativ sind, ist das (positive) Produkt korrekt. Die-
ses einfache Vorgehen ist im Programmbeispiel 4.2 angewendet,
in dem die tieferen Bit des Datenregisters D6 zur Aufnahme
eines Negativindikators dienen.

Dieser Indikator, mit Null initialisiert, wird auf alles Eins
gesetzt, wenn nur einer der beiden Operanden negativ ist. Er
bleibt aber Null, wenn beide Operanden entweder positiv oder
negativ sind. Dann, nach Aufruf der MULU32-Subroutine zur
Durchfiihrung der 32 Bit x 32-Bit-Multiplikation, wird der
Negativindikator verwendet, um festzustellen, ob das Produkt
korrekt ist (Indikator Null) oder negiert werden muss (Indika-
tor nicht Null). Die Subroutine MULS32 im Programmbeispiel
4.2 wird eine Ausfiihrungszeit benétigen, die abhéngig davon
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Programmbeispiel 4.2: Eine 32 Bit X 32-Bit-Multiplikationssubroutine fiir vorzeichenbehaftete Zahlen.

ist, ob die Operanden beide positiv oder beide negativ sind oder
beide entgegengesetzte Vorzeichen haben. Die Ausfiihrungszeit
-von MULS32 (eingeschlossen die aufgerufene Subroutine

MULU32) ist wie folgt:

Operanden Maximale Zeit =~ Maximale Zeit
(in Zyklen) (Mikrosekunden)

Beide positiv 561 70,125

Vorzeichen verschieden 579 72,375

Beide negativ 577 72,125

Eine schnellere Lésung, die nicht die Anderung eines Operan-
den verlangt, kann unter Beachtung des nachfolgenden Algo-
rithmus ausgefiihrt werden:

Wenn einer oder beide Operanden negativ sind, fiihre die
Multiplikation durch und modifiziere das Produkt in einer
von zwei Arten:

1. Wenn nur ein Operand negativ ist, subtrahiere den
anderen Operanden (das heisst den positiven Operan-
den) vom héherwertigen Teil des Produkts.

2. Wenn beide Operanden negativ sind, subtrahiere beide
Operanden vom héherwertigen Teil des Produkts.

100



Mathematische Routinen

Sind Sie skeptisch? Zur Priifung dieses Algorithmus wollen wir
das Beispiel 103 x 124 noch einmal durchfiihren, aber mit
einem negativen Multiplikator (-103). Die Papier- und Bleistift-
methode sieht wie folgt aus:

01111100  Multiplikand = +124
x 10011001  Multiplikator = -103

01111100
00000000
00000000
01111100
01111100
00000000
00000000
01111100

010010100001 1100 Produkt= +18972

Wenn wir das Resultat mit dem korrekten Wert (~12 772) ver-
gleichen, sehen wir, dass unser Resultat Unsinn ist. Es ist
nicht nur zu gross, es hat auch das falsche Vorzeichen. Nun
wollen wir das Verfahren mit dem erwéhnten Algorithmus
betrachten. Der Algorithmus verlangt die Subtraktion des
positiven Operanden (+124, ein einfaches Byte) vom hoher-
wertigen Byte des Produkts. In Bindrform ist es einfacher fiir
uns, zu addieren statt zu subtrahieren, so wird das Zweierkom-
plement des positiven Operanden zum hoherwertigen Byte des
Produkts addiert:

0100 1010 0001 1100 Originalprodukt = + 18972
+10000100 Zweierkomplement
Multiplikand = -124
1100 1110 0001 1100 Neues Produkt =-12772

Jetzt ist das Produkt korrekt. Schritt zwei des Algorithmus
kann durch Anwendung der Papier- und Bleistiftmethode
auf das Produkt (-103) x (-124) verifiziert werden.

Bild 4.2 zeigt die zusétzlichen Schritte, die nétig sind fiir die
Multiplikation von Zahlen beliebiger Linge mit Vorzeichen.
Wie man in Bild 4.2 sehen kann, erlaubt dieser Algorithmus das
Verwenden unserer frither beschriebenen Multiplikationssub-
routine fiir Zahlen ohne Vorzeichen (Programmbeispiel 4.1) zur
Durchfiihrung der Initialisierungsmultiplikation. Es besteht
jedoch die zusitzliche Anforderung, dass der Originalmultipli-
kator und der Originalmultiplikand geschiitzt werden fiir die
Produktkorrekturbefehle. Programmbeispiel 4.3 zeigt die neue
effizientere 32 Bit x 32-Bit-Multiplikationssubroutine fiir vor-
zeichenbehaftete Zahlen.
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Programmbeispiel 4.3:
Eine verbesserte 32 Bit x 32-Bit-Multiplikationssubroutine fiir Zahlen mit Vorzeichen.
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( Start >

Ausfohrung

Multiplikation
ohne Vorzeichen

Nein

Multiplikator
negativ 2

subtrahrere
Multiplikand vom
héheren Produkt

|

Mul f/'pm Nein

negativ ?

subtrahrere
Multiplikator vom
héheren Produkt

Bild 4.2
Ein Multiplikationsalgorithmus fiir £Ende
vorzeichenbehaftete Zahlen.

Diese Subroutine MLTS32 ist nichts anderes als die MULU32-
Subroutine von Beispiel 4.1 mit einigen zusétzlichen Befehlen
am Anfang zum Schiitzen des Multiplikators und des Multipli-
kanden (in D7 und D6) sowie einigen zusétzlichen Befehlen am
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Schluss zur Priifung der Operandenvorzeichen und Korrektur
des Produkts, sofern nétig.

Die Ausfiihrungszeiten der MLTS32-Subroutine sind wie folgt:

Operanden Maximale Zeit Maximale Zeit
(in Zyklen) (in Mikrosekunden)
Beide positiv 532 66,5
Vorzeichen verschieden 536 67,0
Beide negativ 540 67,5
4.2 Division

4.2.1 Division ohne Uberlauf

Es gibt viele Anwendungen fiir die Divisionen, wobei eine der
héiufigsten die der Mittelwertbildung einer Anzahl Zahlen ist,
zum Beispiel die Resultate einer Serie von Laborversuchen. Pro-
grammbeispiel 4.4 zeigt eine typische Routine fiir eine solche
Aufgabe. Dieses Programm, genannt AVERAGE, mittelt eine
spezifizierte Anzahl von Werten ohne Vorzeichen, auf die AQ
zeigt, wobei die Anzahl der Werte im tieferen Wort von DO ent-
halten ist. Der Mittelwert wird zuriickgeschrieben als ganze
Zahl in das tiefere Wort von D1 und ein Rest in das hohere
Wort D1. Das AVERAGE-Programm verwendet zwei

Programmbelsplel 4 4: Routme ﬁu‘ Mlttelwertblldung.
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Scratch-Register D2 (zur Aufnahme der Anzahl Werte) und D3
(zur Aufnahme der Werte, die aus dem Speicher gelesen wer-
den), beeinflusst aber keine anderen Register als D1.

Es ist klar, dass die Dividieroperation in Beispiel 4.4 abbricht,
wenn DO beim Eintritt O enthélt. Aber kann sie auch abge-
brochen werden durch eine Uberlaufbedingung? Nein, Uberlauf
kann es hier nicht geben, weil das Verhéltnis des Dividenden
(Wertetotal) zum Divisor (Werteanzahl) nie den Wert von
65 536 liberschreiten kann. Hingegen konnte es Uberlauf geben,
wenn Langwortwerte verwendet werden zur Mittelwertbildung.
Fiir diesen Fall ist es giinstig, eine Prozedur zu kennen, mit der
ein giiltiger Quotient erhalten wird, unabhéngig davon, ob ein
Uberlauf entsteht oder nicht.

4.2.2 Division mit Uberlauf

Wie wir von Kapitel 3 wissen, setzt der MC 68000 das Uber-
laufbit (V) und beendet die Operation, wenn ein Uberlauf wih-
rend der Ausfiihrung der Division mit Vorzeichen (DIVS) oder
ohne Vorzeichen (DIVU) entsteht, ohne Beeinflussung von
Divisor oder Dividend. Uberlauf entsteht dann, wenn der Divi-
dend so viel grosser ist als der Divisor, dass der Quotient nicht
in einem 16-Bit-Wort untergebracht werden kann.

In einigen Anwendungen soll Uberlauf zu Fehlerbedingungen
fiihren. In anderen Anwendungen kann ein Uberlauf akzeptiert
werden, bedeutet aber, dass ein Quotient mit mehr als 16 Bit
resultiert. Weil die Division abgebrochen wird, wenn der
MC 68000 eine Uberlaufbedingung feststellt, muss eine neue
Losung gesucht werden, falls ein solcher Quotient entsteht. Der
vielleicht einfachste Weg zur Behandlung dieses Quotienten ist
das Teilen des 32-Bit-Dividenden- in zwei 16-Bit-Zahlen, um
dann zwei 16 Bit: 16-Bit-Divisionsoperationen durchzufiihren
(die keinen Uberlauf produzieren). Wenn der Divisor eine
16-Bit-Zahl ist (X) und der Dividend eine 32-Bit-Zahl (Y,, Y,),
kann die Divisionsoperation betrachtet werden als

x1Y,.Y,

oder, sauberer dargestellt, als

XY, -2"%+Y,
Die Division erzeugt zwei 16-Bit-Quotientenstellen (Q, und Q,)
und zwei 16-Bit-Reststellen (R, und R,)) wie folgt:

Q- 21¢

X [7,-2° undR,-2%
Q
X | (R;-2")+Y, undR,
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Wie man sehen kann, ist das Resultat dieser zwei Operationen
ein 32-Bit-Quotient Q;, Q, und ein 32-Bit-Rest R, (der
Zwischenrest R,, wenn iiberhaupt erzeugt, wird immer null
wihrend der zweiten Divisionsoperation). Wenn kein Uberlauf
entsteht, wird Q, Null sein und das Resultat wird zuriickge-
schrieben als Q,=0und R, =0.

Ausgehend von den obigen Betrachtungen ist es moglich, eine
Divisionssubroutine zu entwickeln, die immer einen giiltigen
Quotienten und einen giiltigen Rest ergibt, unabhingig davon,
ob Uberlauf entsteht oder nicht. Das Programmbeispiel 4.5
zeigt die Subroutine DIVUO, welche diese Funktion ausfiihrt.

Programmbeispiel 4.5: Eine Divisionssubroutine mit Behandlung von Uberlauf.
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Bild 4.3
Divisionsresultate

a) mit Ijl?.erlauf
b) ohne Uberlauf

Sie dividiert einen 32-Bit-Dividenden in D1 durch einen 16-Bit-
Divisor in DO und priift dann auf Uberlauf. Falls ein Uberlauf
entsteht, verwendet die Subroutine die Datenregister D2 und
D3, um die Korrektur durchzufiihren. Nach diesen Divisionen
(sofern sie notwendig sind) fiihrt der MC 68 000 die Befehle bei
FORMAT aus, wo der 32-Bit-Quotient in D1 und der 16-Bit-
Rest in das tiefere Wort von DO geladen wird. Wenn ein Uber-
lauf entsteht, wird D1 Q,, Q, enthalten und DO R, wie in Bild
4.3 a dargestellt. Wenn kein Uberlauf entsteht, enthélt das tiefe-
re Wort von D1 Q und von DO R und das h6here Wort beider
Register enthélt Null wie in Bild 4.3 b dargestellt.

a) b)
| & | @ | »7 | 0«0 ] a |

==l R | 20 [0==0] 7 ]

4.3 Quadratwurzel

Im letzten Teil dieses Kapitels wird ein Programm entwickelt,
mit dem die Quadratwurzel einer 32 Bit langen, ganzen Zahl
berechnet werden kann.

Die Berechnung wird mit Hilfe der klassischen Methode der
sukzessiven Approximation durchgefiihrt. Zur Erlduterung
dieser Methode nehmen wir an, dass die Zahl, deren Wurzel zu
bestimmen ist, den Wert N haben soll. Die erste Approximation
fiir die Quadratwurzel ist aus dem Wert (N/200) + 2 abgeleitet.
N wird durch diesen Wert dividiert. Das Resultat wird zur
ersten Approximation addiert und die Summe durch zwei divi-
diert. Dieses Resultat ist unsere néchste Approximation.

Zum Beispiel fiir die Quadratwurzel von 10000:

N = 10000; erste Approximation ist (10000/200) + 2 oder 52
10000/ 52=192, (192 +52)/2=122
10000/122= 81, (122+81)/2=101
10000/101= 99, (101 +99)/2=100
10000/100 = 100

Wir sehen, dass die Quadratwurzel von 10000 gleich 100 ist.
Wir wissen natiirlich, dass 100 die Quadratwurzel von 10000
ist, weil ja 100 mit sich selbst multipliziert den Originalwert er-
gibt. Dieser spezielle Wert 10000 hat eine ganzzahlige Quadrat-
wurzel. Aber wir konnen nicht annehmen, dass die Losung im
allgemeinen eine ganzzahlige Quadratwurzel ist. Die Quadrat-
wurzel fiir 9999 zum Beispiel ist keine ganze Zahl. Das bedeu-
tet, dass bei der Berechnung der Quadratwurzel von 9999 der
MC 68000 die Berechnung laufend fortsetzt. Der Prozessor
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Programmbeispiel 4.6: Subroutine fiir die Berechnung der Quadratwurzel aus einer 32-Bit-Zahl mittels suk-
zessiver Approximation.

wird fortfahren, die Approximationsbefehle zu durchlaufen,
weil das Quadrat der ganzzahligen Approximation nie gleich
9999 sein wird. Daher muss ein Weg gefunden werden, um den
Prozessor zu stoppen, wenn er den bestmoglichen Wert fiir die
Quadratwurzel gefunden hat. Es gibt verschiedene Methoden
zur Beendigung der Approximationsprozeduren. Die gewéhite
Methode ist abhéngig von der gewiinschten Genauigkeit und
der zur Verfiigung stehenden Ausfiihrungszeit. Eine Losung
besteht darin, die Schlaufe zehnmal zu durchlaufen und anzu-
nehmen, dass die Antwort genau genug ist. Diese Methode
geniigt fiir viele Anwendungen, ist ihrer Natur nach jedoch sehr
willkiirlich. Eine andere, genauere LOsung ist diejenige, den
MC 68 000 die Schlaufe solange durchlaufen zu lassen, bis zwei
aufeinanderfolgende Approximationen identisch sind oder sich
nur durch den Wert Eins unterscheiden. Diese Methode wird in
unserem Beispiel verwendet. Programmbeispiel 4.6 zeigt eine
Subroutine (SQRT32), welche die ganzzahlige Quadratwurzel
einer 32-Bit-Zahl durch sukzessive Approximation berechnet.
Bei dieser Subroutine enthilt das Datenregister DO die 32-Bit-
Zahl; die 16-Bit-Quadratwurzel wird in Datenregister D1
geschrieben. Die Subroutine beginnt mit der Approximation
unter Verwendung der Bezichung (N/200) + 2. Der Rest der
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Subroutine ist eine Schlaufe, beginnend mit NXTAPP, in der
der MC 68 000 eine neue Approximation berechnet durch Divi-
sion der ganzzahligen 32-Bit-Zahl durch die vorhergehende
Approximation und der Bildung des Mittelwertes beider Appro-
ximationen. Vor der Mittelwertbildung priift der MC 68 000 die
Endbedingung dadurch, ob die neue Approximation gleich, um
Eins grésser oder um Eins kleiner als die vorhergehende Appro-
ximation ist. Wenn eine dieser drei Bedingungen erfiillt ist, ver-
ldsst der MC 68 000 die Subroutine, wobei die 16-Bit-Quadrat-
wurzel sich im Datenregister D1 befindet.
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5. Listen und Konversionstabellen

5.1 Organisation von Daten

Es gibt verschiedene Methoden, wie Speicherinformationen fiir
die Bearbeitung organisiert werden konnen. Diese Organisa-
tionstechniken sind fiir jede Anwendung verschieden. Sie wer-
den unter die Begriffe Listen, Arrays, Strings, Konversionsta-
bellen und Vektoren eingeordnet. Wir konzentrieren uns auf
zwei Organisationstypen, die Listen und Konversionstabellen.
Listen sind wahrscheinlich das meistverwendete Datenspeicher-
format. Sie bestehen aus Dateneinheiten (ein oder mehrere
Byte), sprich Elemente, die hintereinander abgespeichert sind.
Die Sequenzen der Elemente konnen direkt aufeinanderfolgen,
indem jedes Element ein oder mehrere benachbarte Speicher-
pldtze besetzt. Sie konnen auch verkettet sein, indem jedem
Datenelement ein Zeiger folgt, der auf das ndchste Element
zeigt.

Im weiteren konnen die Datenelemente zufallsweise, in aufstei-
gender oder in absteigender Ordnung, gespeichert sein.

Die Konversionstabellen sind Datenstrukturen, die eine spezifi-
sche Eigenschaft haben. Damit will der Anwender Information
(weniger Daten oder Adressen) erhalten, die eine wohldefinierte
Beziehung zu einem bekannten Wort hat. Das Telefonbuch ist
dafiir ein gutes Beispiel. Ist der Name bekannt, so kann die ent-
sprechende Telefonnummer herausgelesen werden.

5.2 Ungeordnete Listen

In unserer geordneten Gesellschaft, wo die Telefonbiicher al-
phabetisch geordnet, die Hausnummern systematisch zu- oder
abnehmen, kommt es uns merkwiirdig an, von etwas Ungeord-
netem zu sprechen.

Ungeordnete Listen sind auch das «Gift» fiir den Programmie-
rer, weil sie sehr schwierig anzuwenden sind. Um einen
bestimmten Wert in einer solchen Liste zu finden, muss jedes-
mal vom Anfang an mit der Suche danach begonnen werden. Es
muss jedes Element gelesen werden, bis das richtige gefunden
oder das Listenende erreicht worden ist. Ob man will oder nicht,
kommen ungeordnete Listen in vielen Anwendungen des
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Lebens vor. Sie bieten eine grundsétzliche Mdglichkeit, zufalli-
ge, chronologisch abhéingige oder dynamisch sich verdndernde
Daten abzuspeichern.

5.2.1 Zufiigen von Daten zu einer ungeordneten
Liste

Die Subroutine ADD2UL (Programmbeispiel 5.1) zeigt, wie
der Anwender eine ungeordnete Liste kreieren oder ein neues
Element dazugeben konnte. In diesem Beispiel beinhaltet diese
Liste wortlange Werte (mit oder ohne Vorzeichen).

Programmbeispiel 5.1:
Zufiigen eines Elementes zu einer ungeordneten Liste

* Diese Subroutine fligt das untere Wort des Datenregisters DO einer ungeordneten
* Liste bei, wenn es nicht schon in der Liste ist.

* Die Startadresse der Liste steht im Adressregister AQ.

* Die Lédnge der Liste, in Worten, ist im ersten Wort der Liste untergebracht.

ORG $2000
ADD2UL MOVEM.L D1/A1,-(SP) Rette Arbeitsregister.
MOVEA.L AO0,A1 Kopiere Startadressein A1
MOVE (AD+,D1 und den Wortzdhler
SUBQ #1,D1 minus 1in D1.
NXTEL CMP (A1) +,DO Element schon vorhanden?
BEQ.S ITSIN Ja, esistin der Liste.
DBI D1,NXTEL Nein! Schaue weiter.
MOVE DO,(A1) Fiige Element am Ende an,
ADDQ #1,(A0) inkrementiere d. Wortzéhler.
ITSIN MOVEM.L (SP)+,D1/A1  Hole Arbeitsregister zuriick.
RTS
END

Diese Subroutine sucht einfach die Liste Element um Element
ab, um das Vorkommen des Wertes, der beigefiigt werden soll,
zu liberpriifen. Wenn der Wert schon in der Liste ist, kehrt der
68000 von der Subroutine zuriick, weil der Anwender keinen
Wert duplizieren will. Ist der Wert noch nicht vorhanden, so
wird er am Ende der Liste angehéngt. Die Listenstartadresse ist
im Adressregister AQ. Das erste Listenelement (ein Wort) zeigt
die Listenldnge in Worten an. So kann diese Liste maximal
64 KWorte lang sein.

Es gibt nichts Besonderes in dieser Subroutine. Sie kopiert die
Listenstartadresse von AQ in A 1. Danach liest sie den Wortzéh-
ler aus dem ersten Wort der Liste und deponiert diesen in D1.
Dieser Zéhler wird sogleich dekrementiert, weil die Suche abge-
brochen wird, falls der Zihler den Wert —1 hat. Die Suche
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beginnt bei NXTEL und vergleicht die Listenelemente mit DO.
Wenn der Wert schon in der Liste ist, springt der 68000 auf
ITSIN und kehrt zum Hauptprogramm zuriick. Ist der Wert
nicht vorhanden, so wird er am Listenende angehédngt und der
Elementzéhler wird mit einer ADDQ-Instruktion um 1 grdsser.

Wie lange wird dieser Subroutinen-Durchlauf dauern? Offen-
sichtlich héngt das von der Zahl der Listenelemente ab und ob
das Element schon vorhanden ist oder nicht.

Fiir alle, auch fiir die kleinste Liste, hdngt die Ausfiihrungszeit
dieser Subroutine von der Anzahl Durchldufe der 3-Befehls-
Schleife von NXTEL ab. Untersuchen wir einmal die Zeit fiir
die Fille, wenn das Element in der Liste ist und wenn es nicht
dort ist. Die Liste hat N Elemente.

Wenn der gesuchte Wert nicht in der Liste ist, wird die NXTEL-
Schleife N-mal durchlaufen. Fiir die N-1 ersten Ausfiihrungen
wird die Schleife 26 Zyklen brauchen; fiir die letzte 30 Zyklen.
Die iibrigbleibenden Instruktionen der Subroutine werden nur
einmal ausgefiihrt und brauchen 110 Zyklen.

110 + 26 (N-1)+30

Totale Ausfiihrungszeit =
= 26N + 114 Zyklen

So werden also, um ein Element einer Liste mit 100 Elementen
beizufiigen, 2714 Zyklen oder 339,25 us gebraucht.

Wenn der gesuchte Wert bereits in der Liste ist, wird der 68000
im Mittel N/2 Vergleiche machen miissen, um den betreffenden
Wert zu finden. Er braucht so viel, da der gesuchte Wert zu je
50% in der ersten oder zweiten Listenhilfte sein wird. Fiir alle
N/2 ohne den letzten Vergleich werden 26 Zyklen Ausfiihrungs-
zeit gebraucht. Fiir den letzten, bei welchem der gesuchte Wert
in der Liste gefunden wird, werden 18 Zyklen gebraucht. Die
restlichen Instruktionen werden noch 88 Zyklen ausmachen.

88 + 26(N/2-1)+18

Totale Ausfiihrungszeit =
= 13N + 80 Zyklen

Im Fall der ungeordneten Liste mit 100 Elementen gibt das
1380 Zyklen oder 172,5 us.

5.2.2 Ldschen eines Elementes aus einer
ungeordneten Liste

Um ein Element aus einer ungeordneten Liste zu entfernen,
muss es zuerst gefunden werden. Danach werden alle folgenden
Listenelemente um einen Platz nachrutschen. Sie {iberschreiben
das geloschte Element. Mit diesem Elementléschen ist eines
weniger in der Liste. Somit muss auch der Elementzéhler um 1
dekrementiert werden.

Die DELEUL-Subroutine gibt ein Beispiel (5.2), wie eine solche
Operation durchgefiihrt werden kann. Dabei wird das untere
Wort vom Datenregister DO den zu 16schenden Wert enthalten,
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Programmbeispiel 5.2:
Loschen eines Elementes aus einer ungeordneten Liste

*Diese Subroutine 10scht den Wert im unteren Datenwort des Registers DO einer
*ungeordneten Liste, falls dieser Wert in der Liste vorkommt.

* Die Listenstartadresse steht im Adressregister AO.

* Die Listenldnge, in Worten, ist im ersten Wort der Liste untergebracht.

*

ORG $1000

DELEUL MOVEM.L D1/A1,—(SP) Retten des Arbeitsregisters.
MOVEA.L  A0,Al Kopiere die Startadresse in A 1
MOVE (A1) +,D1 und den Wortzéahlet
SUBQ #1,D1 minus 1in D1.

NEXTEL CMP (A1)+,DO Kann gel6scht werden?
NEQ.S DELETE Ja, 16sche dieses Element.
DBF D1,NEXTEL Nein, suche bis Listenende.
BRA.S ALLDUN Element nicht vorhanden.

%

*Ldsche ein Element, indem alle folgenden Elemente um ein Wort nachgeschoben

*werden

*

DELETE MOVE (A1)+,-4(A1) Schiebe ein Wort nach.
DBF D1,DELETE Alle Elemente nachgesch.?
SUBQ #1,(A0) Ja, dekrementiere Elementz.

ALLDUN MOVEM.L (SP)+,D1/A1  Hole Arbeitsregister zuriick.
RTS
END

und wie im Programmbeispiel 5.1 wird die Listenstartadresse im
Adressregister AQ gespeichert sein.

Der erste Subroutineteil (DELEUL bis NEXTEL) 16scht die
Listenstartadresse in A1, wo der Elementzihler gespeichert ist.
Danach wird der Elementzéhler minus eins im D1-Register
abgespeichert. Diese Instruktionen sind bis hierher die gleichen
wie in 5.1. Die NEXTEL-Schleife vergleicht jedes Listenele-
ment mit dem Wert im Register DO. Wenn das entsprechende
Element gefunden wird, springt der 68000 auf die DELETE-
Schleife, die jedes folgende Element um ein Wort aufschliessen
ldsst. Der Elementzdhler wird dann um 1 dekrementiert.

5.2.3 Finden der Minimal- und Maximalwerte in
einer ungeordneten Liste

Die Aufgabe, einen Minimal- oder Maximalwert in einer Liste
zu finden, wird in mancher Anwendung gefordert, speziell dann,
wenn Textdaten oder Statistikinformation verarbeitet werden
sollen. Eine Methode geht davon aus, dass bei jedem neuen
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Suchen das erste Datenelement als der entsprechende Wert
betrachtet wird. Danach wird jedes weitere Element mit diesem
Minimal- bzw. Maximalwert verglichen. Findet nun das Pro-
gramm einen Wert, der kleiner bzw. grosser als das momentan
giiltige Minimum bzw. Maximum ist, dann wird dieser Wert das
neue Minimum bzw. Maximum sein.

Die Subroutine MINMAX im Beispiel 5.3 wendet diese Metho-
de auf eine ungeordnete Liste von Elementen ohne Vorzeichen
an. Mit dem Aufrufen der Subroutine muss die Listenstart-
adresse in AO sein. Nach der Riickkehr von der Subroutine zum
Hauptprogramm sind die beiden Werte (Minimum, Maximum)
in den zwei symbolischen Speicherplitzen MINVAL und
MAXVAL verfiigbar.

Programmbeispiel 5.3:
Finden des Minimal- und Maximalwertes
in einer ungeordneten Liste

* Diese Subroutine findet den Minimal- und Maximalwert in einer ungeordneten Liste.
* Der Minimalwert wird im Speicherplatz MINVAL, der Maximalwert in MAXVAL
* zurlickgegeben.

* Die Listenadresse steht im Adressregister AQ.

* Die Listenldnge, in Worten, ist im ersten Listenelement abgespeichert.
* ,

ORG $3000
MINVAL DS.W 1 Minimalwertspeicherplatz,
MAXVAL DS.W 1 Maximalwertspeicherplatz.
MINMAX  MOVEM.L A0/D0/D1,-(SP)  Rette Arbeitsregister.
MOVE (A0)+,D1 Schiebe Elementzdhler in D1
SUBQ #1,D1 und dekrementiere ihn.

MOVE (A0), MINVAL 1. Element in MIN.
MOVE (AO) +,MAXVAL 1.Elementin MAX.

CHKMIN MOVE (A0)+,D0 Lade néchstes Elem. in DO.
CMP MINVAL,DO Ist das Element ein neues
Minimum?

BEQ.S CONT
BCC.S CHKMAX

MOVE DO,MINVAL Ja, fiihre MINVAL nach.
BRA.S CONT
CHKMAX CMP MAXVAL,DO Ist das Element ein
BLS.S CONT neues Maximum?
MOVE DO,MAXVAL Ja, fiihre MAXVAL nach.
CONT DBF D1,CHKMIN Listenende?
MOVEM.L (SP)+,A0/D0/D1 Hole Arbeitsregister zuriick.
RTS
END

115



Listen und Konversionstabellen

Im Beispiel 5.3 laden die Instruktionen zwischen MINMAX
und CHKMIN den Elementzéhler minus eins in das Datenregi-
ster D1 und speichern den ersten Datenelementswert in MIN-
VAL und MAXVAL.

Bei CHKMIN wird das nédchste Element in DO geladen und
danach mit MINVAL verglichen. Von diesem Punkt aus koén-
nen drei Wege beschritten werden:

1. Wenn der Wert in DO gleich wie MINVAL ist (Null-Flag
gesetzt), springt der 68000 nach CONT, um zu priifen, ob
alle Elemente bearbeitet worden sind. .

2. Wenn der Wert in DO grésser als MINVAL ist (Ubertrag-
Flag ist geloscht), springt der 68000 nach CHKMAX, wo
DO mit MAXVAL verglichen wird. .

3. Wenn der Wert in DO kleiner als MINVAL ist (Ubertrag-
Flag gesetzt), geht der 68000 iiber die Instruktion BCC.S
CHMAX weg und speichert das Wort DO als neues MIN-
VAL ab.

Im Fall 2 oder 3 priift die Schieifenbedingungsinstruktion bei
CONT (DBF D1, CHKMIN), ob alle Elemente der Liste
behandelt worden sind, und springt nach CHKMIN, falls das
nicht der Fall ist.

Wie friiher schon erwéhnt, bearbeitet diese spezielle Subroutine
Listen, die mit wortlangen Worten ohne Vorzeichen arbeiten.
Wenn der Anwender das Minimum und Maximum in einer Li-
ste, bestehend aus wortlangen Werten mit Vorzeichen, finden
mochte, kann er einfach BCC.S CHKMAX mit BPL.S
CHKMAX und BLS.S CONT mit BLE.S CONT ersetzen. Die
anderen Instruktionen bleiben sich gleich.

5.3 Eine einfache Sortierungstechnik

5.3.1 Die Technik des «Bubble Sort»

Ungeordnete Daten sind fiir viele Anwendungen gerade richtig.
Demgegeniiber sind geordnete Daten einfacher zu analysieren
und machen das Finden eines Elementes leichter. Wie kann nun
eine ungeordnete Liste geordnet werden? Es existiert dariiber
eine beachtliche Menge an Literatur.

Eine der einfachsten Techniken wird «Seifenblasen sortieren»
genannt («Bubble Sort»).

Gerade wie Seifenblasen gegen den Himmel hinaufsteigen, stei-
gen die Listenelemente wihrend des Sortierens im Speicher
hoch. (Die Daten konnen in auf- oder absteigender Ordnung
sortiert werden. Hier ist nur das aufsteigende Ordnen beschrie-
ben).

Waihrend des Sortierens werden die Listenelemente, beginnend
mit dem ersten Element, sequentiell gelesen. Sie werden dann
mit dem néchsten verglichen. Wenn ein Element grésser als
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das folgende Listenelement ist, werden diese beiden ausge-
tauscht. Danach wird das néchste Paar verglichen und je nach-
dem ausgetauscht usw. Wenn der 68000 beim letzten Listenele-
ment angekommen ist, wird das grésste Element in die letzte
Listenposition hochgekommen sein.

Wenn dieser Seifenblasen-Sortierungsalgorithmus verwendet
wird, muss der Mikroprozessor gewdhnlich mehrere Male
durch die Liste sortieren. Im folgenden Beispiel kann das gut
erkannt werden. Nehmen wir eine Liste von 5 Elementen an:

5 3 4 1 2
Nach einem Durchgang sieht diese Liste so aus:
3 4 1 2 5

Element 5 ist als grosstes der Liste ans Listenende gelangt. Der
nédchste Durchlauf ergibt diese Folge:

3 1 2 4 5

Element 4 ist auf den zweitletzten Listenplatz geschoben wor-
den. Das Resultat nach dem néchsten Sortieren:

1 2 3 4 5

Dieses Beispiel zeigt nicht nur, wie der Seifenblasen-Sortieralgo-
rithmus funktioniert, sondern gibt uns auch einen Hinweis, was
fiir eine Leistung von diesem Algorithmus wir erwarten kénnen.
Man bemerke, dass drei Durchldufe von 5 Elementen gebraucht
werden, um eine teilweise geordnete Liste zu sortieren. Ist die
Liste schon zu Beginn geordnet, geniigt ein Durchlauf. Umge-
kehrt braucht der Seifenblasen-Sortieralgorithmus 5 Durchldu-
fe fiir eine Liste, die zu Beginn gerade in absteigender Ordnung
vorliegt (schlimmster Fall), 4 zum Ordnen und einen zum Fest-
stellen, dass keine weiteren Elemente auszutauschen sind. Aus
dieser Beobachtung konnen wir festhalten, dass der 68000 von
1 bis N Durchlédufe durch eine Liste von N Elementen machen
muss, um diese Liste zu sortieren. Im Mittel ergibt das N/2
Durchléufe.

Wieviel Befehle und Ausfiihrungszeit werden fiir einen Durch-
lauf benotigt? Das hingt vor allem vom verwendeten Algorith-
mus ab. Es gibt die beschriebene Art, die ganze Liste nach und
nach zu iiberarbeiten, bis das Programm einen Durchlauf
macht, in dem keine Elemente mehr ausgewechselt werden miis-
sen. Mit dieser Methode wird das gesteckte Ziel erreicht, aber
mit zu viel Zeitaufwand. Warum das? Der Grund liegt in der
Tatsache, dass Elemente mit bereits «hochgesprudelten» Ele-
menten noch verglichen werden. Diese Vergleiche sind nicht
mehr notwendig. Eine schnellere und effizientere Methode ist,
nur mit den noch nicht zu Ende bearbeiteten Elementen zu ver-
gleichen. '

Bemerke, dass fiir jede gegebene Liste beide Methoden gleich
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viele Durchlidufe brauchen. Die Differenz der Ausfiihrungszei-
ten ist dagegen sehr beachtlich. Wenn wir das oben genannte
Mittel von N/2 Durchldufen fiir eine Liste von N Elementen
nehmen, konnen wir folgende Rechnung erstellen: Mit der
ersten Methode vergleicht man in jedem der N/2 Durchldufe N
Elemente. Mit der zweiten Methode vergleicht man in ebenfalls
N/2 Durchldufen immer ein Element weniger als im ersten
Durchgang. Das heisst, im ersten Durchlauf werden N Verglei-
che, im zweiten N-1 usw. gemacht.

Wihrend des letzten Durchlaufs werden nur noch zwei Elemen-
te verglichen. Um ein Gefiihl zu bekommen, wieviel mit der
Methode an Zeit eingespart werden kann, nehmen wir folgendes
an: Um eine Liste von 100 Elementen zu sortieren, braucht man
mit der ersten Methode 4950 Vergleiche und mit der zweiten nur
deren 3675, das bedeutet einen Viertel weniger.

5.3.2 Sortieren mit 16-Bit-Elementen

Mit dem vorangegangenen Wissen der Seifenblasenmethode
wollen wir nun ein aktuelles Problem angehen. Es geht um eine
Liste mit 16-Bit-Elementen ohne Vorzeichen. Bild 5.1 zeigt ein
Flussdiagramm, das die benétigten Schritte dieser Aufgabe dar-
stellt.

Wenn der Leser die Beschreibung des Seifenblasen-Sortieralgo-
rithmus verstanden hat, sollte dieses Flussdiagramm ihm keine
Miihe bereiten. Zu bemerken ist, dass ein Indikator dem 68000
signalisiert, wann die Liste komplett sortiert ist.

Dieser Indikator, genannt Auswechsel-Flag, wird nach jedem
Durchgang gepriift. Es wird gesetzt (logisch 1), wenn minde-
stens noch eine Auswechslung wihrend des vorangegangenen
Durchlaufs gemacht wurde. Sonst ist dieses Flag geloscht
(logisch 0).

Die entsprechende Subroutine dieses Flussdiagramms ist im
Programmbeispiel 5.4 aufgeschrieben. Wie der Leser daraus
entnehmen kann, muss die Listenstartadresse im Adressregister
AQO sein. Wihrend der Ausfiihrung der Subroutine behélt AQ die
Adresse des ersten Datenelements. Diese Adresse wird zu
Beginn jedes Durchganges in A1 geschoben.

Neben AO und A1 verwendet die Subroutine SORT noch wei-
tere vier Datenregister. Bit 7 von D1 ist das Auswechsel-Flag.
Register D3 ist der Zéhler der nicht sortierten Elemente. D3
unterstiitzt DO mit diesem Zéhler zu Beginn jedes Durchgangs
und wird nach jedem Durchlauf durch die DBF-Instruktion
dekrementiert. D2 enthdlt wéhrend der Vergleichprozedur
immer ein Element.

Die zwei Instruktionen nach DBF sollten iibrigens noch niher
betrachtet werden. Die Instruktion NOT.B D1 bildet das Einer-
komplement des Auswechsel-Flags in D1, und BPL.S LOOP
initialisiert einen neuen Sortierungsdurchgang, falls die NOT-
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Bild 5.1

Flussdiagramm fiir den Sortieral-
gorithmus nach dem «Seifenbla-
senprinzip» («Bubble-sort»).
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Programmbeispiel 5.4:

Eine 16-Bit-Seifenblasen-Sortierungsroutine

* Diese Subroutine ordnet im Speicher 16-Bit-Listenelemente in aufsteigender Reihen-
*folge. Sie verwendet den Seifenblasen-Sortieralgorithmus.
* Die Listenadresse ist in A0, die Listenlénge, in Anzahl Worten, im ersten Listenwort.

*

ORG $4000
SORT MOVEM.L DO0-D3/A0/ Rette Arbeitsregister.
Al,—(SP)
CLR.B D1 Auswechsel-Flag =0.
MOVE (A0)+,D3 Lade Wertzéhler in D3.
LOOP MOVEA.L A0,A1 Lade Elementadressein A1l.
SUBQ #1,D3 Dekrementiere Wortzéhler
MOVE D3,D0 und lade ihn in DO.
COMP MOVE (Al)+,D2 Bringe Element nach D2.
CMP (A1),D2 Néchstes Element grosser?
BLS,S DECCTR Ja, fahre weiter.
MOVE (A1),-2(A1) Nein, wechsle
MOVE D2,(Al) diese beiden aus.
TAS D1 Setze Auswechsel-Flag.
DECCTR DBF D0,COMP Listenende?
NOT,B D1 Ja,ist Auswechsel-Flag gesetzt?
BPL.S LOOP Ja, starte neuen Durchlauf.
MOVEM.L (SP)+,D0-D3/ Hole Arbeitsregister zuriick.
RTS AO/A1
END

Operation das Flag auf 0 gesetzt hat. Das bedeutet, dass der
Sprung auf LOOP nur ausgefiihrt wird, falls das Auswechsel-
Flag auf 1 war, bevor die NOT-Instruktion ausgefiihrt wurde.
In vielen Anwendungen reicht das Format 8, 16 oder 32 Bit fiir
ein Listenelement nicht aus. Der Programmierer muss dann
dafiir eine spezielle Sortierungsroutine fiir noch ldngere Elemen-
te selbst entwickeln.

Die vorangegangenen Kommentare sollten geniligend Wissen
gegeben haben, um ein Sortierprogramm fiir irgendeine Ele-
mentlédnge zu entwickeln.

5.4 Geordnete Listen

Wir haben nun gelernt, eine Liste zu ordnen, und wollen jetzt
betrachten, wie eine Liste nach einem bekannten Wert abzusu-
chen ist. Danach wollen wir zeigen, wie zwei gemeinsame
Operationen, Elemente zufiigen und herausnehmen, program-
miert werden konnen.
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5.4.1 Absuchen einer geordneten Liste

Wir haben gesehen, dass zum Finden eines Elementes in einer
ungeordneten Liste diese sequentiell, Element fiir Element,
abgesucht werden muss. Fiir eine Liste von N Elementen
braucht das im Durchschnitt N/2 Vergleiche. Wenn nun eine
Liste geordnet ist, kann jede Art von Suchtechnik angewen-
det werden. Fiir jede, auch fiir die kiirzeste Liste, werden die
meisten dieser Techniken schneller und effizienter sein als das
sequentielle Absuchen.

Eine der bekanntesten Absuchtechniken fiir geordnete Listen
wird «Bindres Suchen» genannt. Der Name kommt von der
Tatsache, dass diese Technik die Liste in eine Serie von stetig
kleineren Haélften teilt, bis das Element schliesslich gefunden
wird. Das bindre Suchen beginnt in der Listenmitte und
bestimmt, in welcher Listenhdlfte der gesuchte Wert ist. Danach
wird diese Listenhélfte genommen und halbiert usw.

Das Flussdiagramm in Bild 5.2 zeigt, wie das bindre Suchen
einer geordneten Liste ausgefiihrt wird. Nach dem Absuchen
wird als Resultat eine Adresse zurlickgegeben. Wenn der
gesuchte Wert in der Liste gefunden wurde, wird es die Adresse
des entsprechenden Elementes sein. Falls der Wert nicht in der
Liste enthalten ist, wird es die Adresse des zuletzt verglichenen
Elementes sein. Man kann dann feststellen, welche der beiden
Adressen herausgegeben wird, indem das Element gelesen und
mit dem gesuchten verglichen wird.

Programmbeispiel 5.5 stellt eine Subroutine dar, die zum Absu-
chen einer geordneten Liste gebraucht werden kann. Diese Liste
besteht nur aus positiven Elementwerten. Die Instruktionen von
BSRCH bis CALCI fiihren die ersten Tests zwischen der unte-
ren und der oberen Listengrenze durch. Diese Sequenz priift, ob
der gesuchte Wert in diesem Bereich ist oder nicht. Die restli-
chen Befehle (von CALCI weg) suchen die Liste mit dem nach
Bild 5.2 laufenden Algorithmus ab.

Programmbeispiel 5.5:
Subroutine zum bindren Suchen eines 16-Bit-Wortes

*Diese Subroutine sucht eine geordnete Liste nach dem wortlangen Wert in Daten-
*register DO ab. Die Startadresse der Liste ist im Adressregister AO und der Wort-
*zdhler im ersten Listenplatz abgespeichert. Die Resultate sind in den Registern Al
* (alle 32 Bit) und D1 (untere 16 Bit) wie folgt abgespeichert:

*1. Falls der Wert in der Liste ist, so ist D1 = 0, und A1 enthilt die Adresse des
*  gesuchten Wertes in der Liste.

*2. Falls der Wert nicht in der Liste enthalten ist, ist D1 = 0, und A1 enthilt die

*  Adresse des zuletzt verglichenen Wortes.
*
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ORG $1000

BSRCH MOVEA.L AOQ,A1 Listenadressein A 1.
CLR.L D1 Losche Indexregister.

* Priife, ob der gesuchte Wert innerhalb des Listenbereichs liegt.
CMP 2(A1),D0 Gesuchter Wert < untere

Grenze?

BHI.S TRYHI Nein, priife obere Grenze.
BNE.S CALCA Ja, priife ob Wert > untere
MOVEQ #2,D1 Grenze.

CALCA ADDQ.L #2,A1
RTS

TRYHI MOVE (A1),D1 Hole Wortzéhler und
LSL #1,D1 mache ihn zum Byte-Index.
CMP 0(A1,D1),D0 Gesuchter Wert > obere
BLS.S EQHI Grenze?
ADDA.L DI1,Al Ja, berechne Adresse und
CLR D1 16sche D1.
RTS

EQHI BNE.S CALCI Nein, priife ob Wert = obere
ADDA.L D1,Al Grenze.
RTS

£ 3

* Gesuchter Wert liegt innerhalb der Listengrenzen. Fahre mit suchen weiter.
3

CALCI LSR #1,D1 Teile Index durch 2.
ANDI B #S$FE,D1 Zwinge Index zu Wortgrenze.
BEQ.S RETRN Index =0?
ADDA.L D1,Al Nein, berechne Suchadresse.
COMP CMP (A1),DO Gesuchter Wert gefunden?
BNE.S CHKLOW
RETRN RTS Ja, Ausgang m. Adressein A 1.
CHKLOW BCC.S CALCI Nein, gesuchter Wert ist hoher.
LSR #1,D1 Nein, gesuchter Wert ist tiefer.
ANDI. B #$FE,D1 Berechne neuen Index.
BEQ.S - RETRN
SUBA.L D1,Al1 Berechne neue Suchadresse
BRA.S COMP und vergleiche wieder.
END

Wie in friiheren Beispielen in diesem Kapitel wird die Listen-
startadresse iiber AO der Subroutine iibergeben. Die Subroutine
wird diese Adresse nicht verdndern. Die Resultatsadresse ist in
Al enthalten und der gefundene bzw. nicht gefundene Indikator
in D1. Obwohl die BSRCH-Subroutine mit wortlangen Werten
operiert, muss jedesmal der neu berechnete Index einen geraden
Wert haben. Das erreicht man, indem die unteren 8 Bit des (16-
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Bild 5.2
Der binire Suchalgorithmus
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[
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Bit-)Index mit dem hexadezimalen Wert $FE UND-verkniipft
wird.

Wie viel effizienter ist nun das bindre Suchen als das einfache
sequentielle Vergleichen (vergleiche Beispiel 5.1)? Die mathe-
matische Untersuchung zeigt, dass beim sequentiellen Suchen
in einer Liste von N Elementen im Mittel N/2 Vergleiche
gemacht werden miissen. Mit dem bindren Suchen dagegen
braucht es fiir die gleiche Liste log,(N) Vergleiche. Fiir eine
Liste mit 100 Elementen braucht also die sequentielle Lésung
50 und die bindre ungefihr 7 Vergleiche!

5.4.2 Zufiigen eines Wertes in eine geordnete Liste

Das Zufiigen eines Wertes in eine geordnete Liste kann in vier
Schritte unterteilt werden:

1. Herausfinden, wo der Wert eingefiigt werden muss.

2. Bereitstellen eines Platzes fiir den neuen Wert, indem alle
héherwertigen Elemente um einen Platz nach oben verscho-
ben werden. '

3. Einfiigen des neuen Wertes an die freigemachte Stelle.

4. Nachfiihren der Listenldnge um 1.

Die eben beschriebene Subroutine, BSRCH (Beispiel 5.5), gibt
uns gerade den Ort, wo das FElement eingefiigt werden muss, da
sie die Adresse des zuletzt verglichenen Elementes ausgibt. Wir
miissen nur noch bestimmen, um Schritt 1 zu erfiillen, ob der
neue Wert vor oder nach dieser Adresse eingefiigt werden soll.
Das kann erreicht werden, indem das letzte Element mit dem
neuen verglichen wird.

Da wir nun die vier Schritte kennen, kénnen wir eine entspre-
chende Subroutine entwickeln. Eine mogliche Losung ist mit
der Subroutine ADD20OL im Programmbeispiel 5.6 gegeben.
Diese Subroutine beginnt mit BSRCH, um festzustellen, ob der
Wert schon in der Liste ist oder nicht. BSRCH gibt eine Adresse
in A1 und den gefundenen/nicht gefundenen Indikator in D1
zuriick.

Nach der Riickkehr von BSRCH fragt ADD2OL das Register
D1 ab und beendet die Verarbeitung, falls D1 = 0 (das neue Ele-
ment ist schon in der Liste) ist. Falls D1 = 0 ist, berechnet die
Subroutine die Adresse des Listenendes. Danach wird der
Inhalt von A1 von dieser Adresse abgezogen und das Resultat
einmal nach rechts geschoben. Der 68000 berechnet die Anzahl
Worte, die im Speicher verschoben werden miissen (Element-
Umladezihler), um Platz fiir das neue Element zu machen.
Wenn das neue Element kleiner als das zuletzt verglichene ist,
muss auch dieses noch verschoben werden. Damit wird der
Umladezéhler um 1 erh6ht.

Falls das Eingabeelement grosser als das letzte Listenelement
ist, dann wird die Eingabe zuhinterst angehingt. Andernfalls
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Programmbeispiel 5.6:

Zufiigen eines Elementes in eine geordnete Liste

* Diese Subroutine fiigt das untere Wort von DO zu einer geordneten Liste zu, falls der
*Wert nicht schon in der Liste vorhanden ist.
*Die Listenadresse ist in AQ und der Wortzédhler im ersten Wort der Liste abgespei-
* chert. Die BSRCH-Subroutine (Beispiel 5.5) wird aufgerufen, um die Elementsuche
* auszufiihren.

*

ADD20L

INCCNT
MOVEL

ADDIT

ITISIN

ORG
MOVEM.L

JSR

TST
BNE.S
MOVE.L
ADD.L
MOVEA.L
ADDQ.L
SUB.L
LSR.L
SUBQ.L
CMP

BCS.L
TST.L
BEQ.S
BRA.S
ADDQ.L
MOVE
DBF
MOVE
ADDQ

MOVEM.L
RTS
END

$2000
D1/D2/A1/
A2,~(SP)
BSRCH
D1
ITSIN
A0,D2
(A0),D2
D2,A2
#2,A2
A1,D2
#1,D2
#1,D2
(A1),DO

INCCNT
D2

ADDIT
MOVEL
#1,D2
~(A2),2(A2)
D2,MOVEL
DO,(A2)
#1,(A0)

(SP)+,D1/
D2/A1/A2

Rette Arbeitsregister

Suche Liste nach Eingabe ab.

Ist Eingabe schon in Liste?

Ja, fertig.

Nein, berechne Listenendadresse.

Lade Ende + 2ins A2.

Berechne Anzahl zu verschie-
bende Worte und

subtrahiere 1 von diesem Zihler.
Verglichenes Element auch
verschieben?

Ja, erhGhe diesen Zihler.

Nein, fiige Eingabe an Listenende.

Inkrementiere Umladezédhler.
Verschiebe ndchstes Wort.
Alle Worte verschoben?

Ja, flige neues Flement in die
Liste ein und erhohe Element-
zéhler.

Restauriere Arbeitsregister

wird dieser Wert in die Liste eingefiigt, was ein Verschieben aller
folgenden Elemente um eine Wortposition notwendig macht.
Die zwei Instruktionen lange Schlaufe bei MOVEL verschiebt,
beginnend am Listenende, Element um Element. Nach der Ver-
schiebung wird von ADDIT weg das Eingabeelement in die
Liste eingefiigt und der Wortzdhler um 1 erhoht.
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5.4.3 Loschen eines Elementes aus einer
geordneten Liste

Es ist viel einfacher, ein Element aus einer geordneten Liste zu
16schen, als eines neu einzufiigen, weil der 68000 nur das Ele-
ment finden, die andern Elemente nachschieben und den Wort-
zéhler dekrementieren muss.

Das Beispiel 5.7 zeigt eine typische Losch-Subroutine DELOL,
die die BSRCH-Subroutine verwendet (Beispiel 5.5), um das zu
16schende Element zu finden. Wie {iblich ist die Listenstart-
adresse in AO zu tibergeben, der zu 16schende Wert im untern
Wort von DO.

Falls BSRCH den gesuchten Wert in der Liste angibt, kann
die Subroutine DELOL diese Adresse und die Listenandresse
verwenden, um die Anzahl Elemente zu berechnen, die verscho-
ben werden miissen. Die zwei Instruktionen lange Schlaufe bei
DELETE fiihrt diese Operation aus. Wenn alle Elemente nach-
geschoben worden sind, wird der Elementzdhler im ersten
Listenwort um 1 dekrementiert.

Programmbeispiel 5.7:

Loschen eines Elementes aus einer geordneten Liste

*Diese Subroutine 16scht den Wert im unteren Wort von DO aus einer geordneten
*Liste, falls dieser Wert in der Liste steht. Die Startadresse der Liste ist in AO und die
*Listenldnge im ersten Wort der Liste abgespeichert. Die BSRCH-Subroutine (Bei-

* spiel 5.5) wird fiir die Elementsuche verwendet.
R

ORG $3000
DELOL MOVEM.L  D1/D2/
Al,-(SP) Rette Arbeitsregister.
JSR BSRCH Suche Liste nach Element ab.
TST D1 Element vorhanden?
BEQ.S EXIT Nein, kehre zuriick.
MOVE.L A0,D2 Ja, berechne Listenadresse.
ADD.L (A0),D2
SUB.L Al1,D2 Berechne Anzahl zu verschiebende
LSR.L #1,D2 Worte und
SUBQ.L #1,D2 subtrahiere 1 von diesem Zéhler.
BEQ.S DECCNT
DELETE MOVE 2(A1),(AD+ Verschieben eines Wortes.
DBF D2,DELETE Alle Worte verschoben?
DECCNT SUBQ #1,(A0) Ja, dekrementiere Elementzédhler.
EXIT MOVEM.L (SP)+,D1/ Hole Arbeitsregister zuriick.
RTS D2/A1
END

126



Listen und Konversionstabellen

5.5 Konversionstabellen («Look-up tables»)

5.5.1 Beispiel Telefonbuch

Viele Mikroprozessorprogramme verwenden spezifische Werte,
die zuerst geholt werden miissen, bevor sie verarbeitet werden
konnen. Diese Werte kénnen aus einem Test oder aus einer
Berechnung stammen. Das konnte zum Beispiel der Sinus eines
Winkels oder eine Temperatur in Grad Celsius sein. Der ver-
langte Wert kdnnte auch ein Parameter sein, der eine bestimmte
Beziehung zu einem Programmeinsprung hat, die nicht berech-
net werden kann. Als Beispiel kann die Telefonnummer erwdhnt
werden, die zu einem Namen gehort. Anwendungen wie diese
lassen sich mit einer Konversionstabelle 16sen. Wie der engli-
sche Name «Look-up table» schon sagt, kann fiir einen bekann-
ten Wert (Argument) die entsprechende Information (Funk-
tionswert) aus einer solchen Tabelle nachgeschaut werden.

Konversionstabellen ersetzen oft komplizierte oder zeitaufwen-
dige Umwandlungsoperationen, wie das Berechnen der Qua-
drat- oder kubischen Wurzel einer Zahl oder einer trigonometri-
schen Funktion (Sinus, Cosinus usw.) eines Winkels. Diese
Tabellen sind speziell fiir Funktionen anzuwenden, die nur auf
einen kleinen Bereich des Argumentes beschrankt sind. Mit der
Verwendung von Konversionstabellen muss der Mikroprozes-
sor keine komplexen Berechnungen durchfiihren. Der Anwen-
der wird bald merken, dass in den allermeisten Féllen von Bezie-
hungen die Konversionstabellen die Ausfiihrungszeit stark
reduzieren. Es ist typisch fiir die Tabellen, dass sie viel Spei-
cherplatz brauchen. Sie sind am effizientesten, falls mehr Spei-
cherplatz zugunsten der Ausfiihrungszeit geopfert werden kann.

5.5.2 Konversionstabellen ersetzen Gleichungen

Man kann Prozessorzeit und Programmentwicklungszeit
gewinnen, indem die Resultate von komplexeren Gleichungen in
Konversionstabellen abgespeichert werden. In diesem Ab-
schnitt werden wir eine hiufige Anwendung, das Berechnen des
Sinus eines Winkels in Grad betrachten.

Der Sinus aller Winkel zwischen 0° und 360° kann wie in Bild
5.3b aufgezeichnet werden. Diese Kurve ldsst sich mathema-
tisch durch die in Bild 5.3a gegebene Reihe annédhern.
Selbstverstindlich kann ein Programm fiir diese Approxima-
tion entwickelt werden. Falls die Anwendung eine hohe Genau-
igkeit der Funktion verlangt, ist man gezwungen, dafiir ein
solches Programm zu schreiben, wobei dessen Ausfiihrungszeit
beachtlich lang sein wird. Fiir Anwendungen mit weniger ho-
hen Anforderungen an die Genauigkeit kann jedoch eine Win-
kel-zu-Sinus-Konversionstabelle eingesetzt werden.
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Man beachte in Bild 5.3, dass der Sinus eines jeden Winkels zwi-
schen 0° und 180° positiv und zwischen grésser als 180° und
kleiner als 360° negativ ist.

a)

b)

Wie man aus Bild 5.3 weiter entnehmen kann, ist der Sinus von
91° derselbe wie der von 89°. Das Gleiche gilt auch fiir den
Sinus von 179° und 1°. Daraus kann geschlossen werden: -

fiir 0°< X< 90° - mannehme sin(X)
fiir 90° < X < 180° - man nehme sin (180°-X)
oder sin (90°-[X -90°])

Zum Beispiel:

sin(170°) =sin(90°-[170°-90°])
=sin(90°-80°)
=sin(10°)

Weiter gilt, dass die Winkel des 3. und 4. Quadranten einen
Sinus gleicher Grosse haben, doch verschiedenes Vorzeichen
gegeniiber den Quadranten 1 und 2 aufweisen. Diese Beobach-
tung erlaubt uns, folgendes festzuhalten:

fiir 180° < X < 270° — man nehme -sin (X-180°)
fiir 270° < X < 360° — man nehme —sin (360°-X)
oder —sin (90°-[X-270°])

128

Bild 5.3
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schen 0° und 360°
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Zum Beispiel:

sin(190°) =—sin(190°-180°)
-sin(10°)
—sin(90°-[290°-270°])
-sin(90°-20°)
-sin(70°)

sin(290°)

[

Die vorhergehenden Beziehungen zeigen uns, dass der Sinus
jedes Winkels zwischen 0° und 360° mit dem Sinus zwischen 0°
und 90° ausgedriickt werden kann. Fiir eine Konversionstabel-
lenanwendung ist das bedeutend, weil die Tabelle nur die Sinus-
werte von Winkeln zwischen 0° und 90° haben muss.

Diese Beziehungen erlauben uns also, ein Flussdiagramm fiir
eine Winkel-zu-Sinus-Umwandlung zu konstruieren. Dieses
Flussdiagramm, dargestellt in- Bild 5.4, leitet den Sinus aus
einem Wert, bestehend aus Grosse und Vorzeichen, ab.

Beispiel 5.8 zeigt die Winkel-zu-Sinus-Umwandlungsroutine fiir
den 68000. Diese Subroutine nimmt Winkel zwischen 0° und
360° im Datenregister DO an und gibt den kompletten 8-Bit-
Sinuswert liber D1 zuriick. In dieser Subroutine SINANG wird
mit der Priifung begonnen, ob der Winkel kleiner als 181° ist.
Wenn dem so ist, springt das Programm auf SINPOS. Andern-
falls wird das Vorzeichenbit gesetzt. Von diesem Winkel
(>180°) werden dann 180° subtrahiert.

Mit dem Vorzeichenbit in Bit 7 von D1 vergleicht die CMPI-
Instruktion bei SINPOS den aktuellen Winkelwert mit 91°.
Wenn der Winkel grosser oder gleich 91° ist, wird der Winkel-
wert von 180° subtrahiert. Die einfachste Art, diese Subtraktion
auszufiihren, wire mit dem Befehl SUBI DO, #180, doch lédsst
der 68000 diese Subtraktion nicht zu (nur SUBI #data, Dn).
Darum muss man die Subtraktion iiber das Zweierkomplement
von DO auf eine Addition zuriickfiihren. Die folgenden zwei
Instruktionen laden die Startadresse der Konversionstabelle
(SINTAB) in AO. Danach wird der Sinus aus der Tabelle her-
ausgelesen, indem das Adressregister indirekt mit der Index-
adressierung eingesetzt wird. Das Ganze wird noch mit dem
Vorzeichenbit in D1 ergénzt. Die SINTAB-Tabelle enthélt 91
Byte Sinuswerte, um alle Grade zwischen 0° und 90° darstellen
zu konnen. Tabelle 5.1 enthélt die SINTAB-Werte.

Die SINANG-Subroutine braucht 19 Speicherworte. Ihre Aus-
fiilhrungszeit hingt davon ab, in welchem Quadaranten der
Winkel liegt. In den folgenden Ausfiihrungszeiten sind die JSR-
und RTS-Instruktionen nicht inbegriffen.

Winkel zwischen Anzahl Zyklen Ausfiihrungszeit (us)

0°und 90° 62 7,75
91°und 270° 72 9,0
271°und 360° 82 10,25
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Programmbeispiel 5.8:
Finden des Sinus eines Winkels

* Dieses Programm berechnet den bindren Sinuswert eines Winkels (0...360°), der im
*unteren Wort von DO abgespeichert ist. Es wird eine Konversionstabelle verwendet.
* Der mit Vorzeichen versehene Sinus wird im unteren Byte von D1 zuriickgegeben.

*PDO bleibt unverdndert.
* .

ORG $1000

SINANG MOVE DO, —(SP) Rette Arbeitsregister.
MOVE.L A0, —(SP)
CLR.B D1 Lo6sche das Sinus-Byte.
CMPI #180,D0 Ist der Winkel < 181°?
BLS.S SINPOS Ja, Vorzeichen =0.
TAS D1 Nein, setze Vorzeichen = 1.
SUBI #180,D0 Subtrahiere vom Winkel 180°.

SINPOS CMPI #91,D0 Ist der Winkel < 91°?
BMI. S GETSIN Ja, hole den Sinus.
NEG DO Nein, subtrahiere
ADDI #180,D0 vom Winkel 180°.

GETSIN LEA SINTAB,AQ0 Lade Tabellenadresse,
OR.B 0(A0,D0),D1  gebe Vorzeichen dazu.

. MOVE.L (SP)+,A0 Hole Arbeitsregister zuriick.

MOVE (SP)+,D0

* Sinustabelle (wie Tabelle 5.1)

‘SINTAB DC.B 0,2,4,8,$B,$D, $F, $11,$14, $16...
usw. (Rest der Tabelle, total 91 Byte)

Winkel Sinus Winkel Sinus

Grad  dezimal dual Grad  dezimal dual

0.00 .0000 00000000 45.00 7071 01011010
1.00 .0175 00000010  46.00 7193 01011100
2.00 .0349 00000100 47.00 7313 01011101
3.00 .0523 00000110 48.00 7431 01011111
4.00 .0698 00001000 49.00 7547 01100000
5.00 .0872 00001011  50.00 .7660 01100010
6.00 .1045 00001101 51.00 7771 01100011
7.00 .1219 00001111  52.00 7880 01100100
8.00 .1392 00010001  53.00 .7986 01100110
9.00 .1564 00010100 54.00 .8090 01100111
10.00 .1736 00010110  55.00 .8191 01101000
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Winkel Sinus Winkel Sinus

Grad  dezimal dual Grad  dezimal dual

11.00 .1908 00011000 56.00 .8290 01101010
12.00 .2079 00011010 57.00 .8387 01101011
13.00 .2250 00011100 58.00 .8480 01101100
14.00 .2419 00011110  59.00 .8572 01101101
15.00 .2588 00100001  60.00 .8660 01101110
16.00 .2756 00100011 61.00 8746 01101111
17.00 .2924 00100101  62.00 .8829 01110001
18.00 .3090 00100111  63.00 .8910 01110010
19.00 .3256 00101001  64.00 .8988 01110011
20.00 .3420 00101011  65.00 .9063 01110100

21.00 .3584 00101101  66.00 9135 01110100
22.00 .3746 00101111 67.00 9205 01110101
23.00 .3907 00110010 68.00 9272 01110110
24.00 .4067 00110100  69.00 9336 01110111
25.00 .4226 00110110  70.00 9397 01111000
26.00 .4384 00111000 71.00 9455 01111001
27.00 .4540 00111010  72.00 9511 01111001
28.00 .4695 00111100  73.00 9563 01111010
29.00 .4848 00111110  74.00 9613 01111011
30.00 .5000 01000000  75.00 9659 01111011

31.00 .5150 01000001  76.00 9703 01111100
32.00 .5299 01000011  77.00 9744 01111100
33.00 .5446 01000101  78.00 .9781 01111101
3400 .5592 01000111  79.00 9816 01111101
35.00 .5736 01001001  80.00 9848 01111110
36.00 .5878 01001011  81.00 9877 01111110
37.00 .6018 01001101  82.00 9903 01111110
38.00 .6157 01001110  83.00 9926 01111111
39.00 .6293 01010000  84.00 9945 01111111
40.00 .6428 01010010 85.00 9962 01111111

41.00 .6561 01010011  86.00 9976 01111111
42.00 .6691 01010101  87.00 9986 01111111
43.00 .6820 01010111  88.00 9994 01111111
44.00 .6947 01011000  89.00 9998 01111111
Tabelle 5.1 45.00 .7071 01011010 90.00 .1.0000 01111111

Sinuswerte fiir Winkel ganzer Grade
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Vorzeichen

Vorzeichen
=1

1

Winkel =
Winkel - 180

.l |
Jja
nein

Winkel =
180 - Winkel

-

-

Hole den Sinus
dieses Winkels
qus der Tabelle

!

Fige das Vor-
zeichen als MSB zu

5.5.3 Konversionstabellen fithren
Codewandlungen durch

Konversionstabellen kénnen auch codierte Daten enthalten,
wie zum Beispiel Anzeigecodes, Druckercodes oder Mitteilun-
‘gen. Als Beispiel 5.9 nehmen wir eine Subroutine, die ein Mehr-
faches an Konversionen zuldsst. Sie wandelt eine hexadezimale
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Flussdiagramm zu programmbei-
spiel 5.8, bei dem die Sinusfunktion
mit Hilfe einer Konversionstabelle
bestimmt wird.
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Programmbeispiel 5.9:

Eine Code-Umwandlungssubroutine

* Diese Subroutine verwendet drei Nachschlagetabellen, um eine hexadezimale Ziffer
*im unteren Byte von DO in ASCII-, BCD- und Gray- Code umzuwandeln. Die um-
* gewandelten Werte werden in drei aufeinanderfolgenden Speicherbyte, beginnend bei
*der Adresse in AO, zurilickgegeben. DO und AO werden von der Subroutine nicht

*verandert.

E3
ORG

LOOKUP MOVE
MOVE.L
EXT.W
LEA
MOVE.B
MOVE.B
MOVE.B
MOVE.L
MOVE
RTS

ATABLE DC.B
DC.B
DC.B
END

$1000

DO, ~(SP) Rette Arbeitsregister.
Al,-(SP)

DO

ATABLE, A1l A1 zeigt auf die Tabelle.
0(A1DO0),(A0) Hole ASCII-Code.

$10(A1,D0),1(A0) Hole BCD-Code.
$20(A1,D0),2(A0) Hole Gray-Code.
(SP) +,A1 Hole Arbeitsregister
(SP)+,D0 zuriick.

‘0123456789ABCDEF’

0,
0,

1,
1

b

3
2
3

8
,3,4,5,6,7,8,9,$10,$11,$12,$13,$14,$15
,2,6,7,5,4,8$C,$D,$F,$E,$A,$B,9,8

s i

Ziffer im unteren Byte von DO um in ASCII-, BCD- und Gray-
Code. Die umgewandelten Werte werden in drei aufeinanderfol-
genden Speicherbyte zuriickgegeben. Die Startadresse dafiir
liegt im Adressregister AO.

5.6 Sprungtabellen

Eine Konversionstabelle kann mehr als nur Daten enthalten. In
vielen Féllen sind die Tabellenelemente Adressen. Eine Fehler-
routine kann zum Beispiel eine Konversionstabelle verwenden,
um die Startadresse einer Operationsfehlermeldung, basierend
auf einem Code in einem Datenregister, zu finden. Auch eine
Interruptroutine kann eine Konversionstabelle zum Aufrufen
von verschiedenen Serviceroutinen verwenden, abhédngig vom
Gerit, das die Interruptanforderung generierte. Andere Rou-
tinen konnten eine Konversionstabelle zum Aufrufen von ver-
schiedenen Steuerprogrammen gebrauchen, die mit Hilfe von
Tasten ausgewédhlt wurden. In all diesen Anwendungen ist die
Konversionstabelle, bestehend aus Adressen, als Sprungtabelle
eingesetzt. Sprungtabellen werden vor allem verwendet, wenn
die Programmsteuerung vom Zustand einer bestimmten Bedin-
gung abhéngig ist.
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Beispiel 5.10 zeigt, wie eine Sprungtabelle die Bediirfnisse von
fiinf verschiedenen Anwendern in einem Multiterminal-Mikro-
computersystem befriedigen kann. Die Subroutine SELUSR
interpretiert den Inhalt von DO als Anwenderidentifikation und
braucht diesen Code, um eine der Anwenderserviceroutinen
aufzurufen. SELUSR priift die Giiltigkeit des Eingabecodes
wund geht auf die CHK-Ausnahmeroutine, falls der Code grosser
als vier ist (mehr iiber Ausnahmen in Kapitel 7). Die Subroutine
wandelt die giiltige Anwenderidentifikation in einen Index um,
mit dem die Adresse einer Anwenderroutine (USERO ...
USER4) ins Register AO geholt werden kann.

Programmbeispiel 5.10:
Eine Multianwender-Auswihlsubroutine

*Diese Subroutine ruft eine der fiinf Anwendersubroutinen auf, die mit einer An-
* wenderidentifikation im unteren Byte von DO aktiviert wird. Die Subroutine ver-
* dndert AO und DO.

*

RORG $1000
SELUSR EXT.W DO Beniitzercode in Wort.
CHK #4,D0 Falsche Identifikation ID?
LSL #2,D0 Nein, berechne Index (ID*4).
LEA UADDR,A0 Lade Tabellenbeginn in AO.
MOVEA.L 0(A0,D0.W),A0  Hole Beniitzeradresse und
IMP (A0) springe auf diese Subroutine.
UADDR DC.L USERO, USER 1, USER2, USER 3, USER4
END

Diese Aktion beniitzt den relativen Programmz&hler mit Index-
adressierung. Dieser Modus wird durch die RORG-Zuweisung
zu Beginn der Subroutine aktiviert. Mit der richtigen Adresse in
AQ kann ein einfacher, indirekter Sprung die Steuerung des Pro-
gramms auf die Anwendersubroutine {ibertragen.
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6. Hardware des Mikroprozessors 68000

Bild 6.1
Anschlussbelegung des
Mikroprozessors 68000

D4CJ1 @ 64 D5
D32 63106
D243 62[—D7
p1 4 61108
poC5 60 D9
AS[]6 59 D10
ups 7 58 D11
[bs 38 57 D12
R/W L9 mcesooo 56F3D13
DTACK 10 55 [ID14
BG CH11 54 D15
BGACK [J12 53[Vss
BR 13 52 [[JA23
vpp 14 51 [[A22
CLK 15 50 [DA21
Vss éw 49 [MVpbD
HALT .17 48 [TIA20
RESET CJ18 47 [DA19
VMA 19 46 [1A18
E 320 45 [A17
VPA 21 44[]A16
BERR 22 43[JA15
IPL2 23 42[1A14
iPL1 (24 41 [JA13
1PLO 25 40 [A12
Fc2 26 39 A1
FC1 527 38[A10
FCO C]28 37 A9
A1 29 36 [1A8
A2 30 35[A7
A3 31 34[1A6
A4 32 33[A5

Der 68000-Baustein ist in einem 64poligen, zweireihigen
Gehiuse untergebracht. Die Anschlussbelegung ist aus Bild 6.1
herauszulesen. Um die Verwechslung von Signalen mit «logisch
0» und «logisch 1» sowie «hoch» und «tief» auszuschalten,
sprechen wir im weiteren von aktiven Signalen, wenn sie
«wabhr» sind, und von inaktiven, wenn sie «unwahr» sind.

Die externen Signale des 68000 werden in Funktionsgruppen
beschrieben, damit sie etwas besser verstanden werden konnen.
Diese Gruppen sind in Bild 6.2 aufgefiihrt.
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Ve )

—
_GNo@ ALAZ3
CLK
D0-D15
MC68000
Mikroprozessor
——
mme—
Asynchrone
-t | s, Bus~—
Prozessor FC1 | 0S| Steverung
B Eme—
Status o2 BYRCK
. |e————
E BR
-~ -
» "6?0 VA BG Bus-Zuweisungs-
eripherie- | ~————] >
Xte:erung VPR BGACK Steverung
BERR l_LQ
Systen- RESET PLL Unterbrechungs-
————————— ft——————
Steverung AT R Steverung
"

6.1 Takt-, Speisungs- und Masseleitungen

Der 68000 ist iiber je zwei Anschliisse fiir +5V und Masse
gespeist (+5V = Vpp; Masse = V). Der Takt CLK ist ein
TTL-Eingang, der Frequenzen bis zu 10 MHz verarbeitet.

6.2 DerDaten-und Adressenbus

Der 68000 ist ein 16-Bit-Mikroprozessor, da seine Informa-
tionsgrundeinheit, das Wort, 16 Bit breit ist. Er kann nur eine
16 Bit lange Information von oder zum Speicher und I/O-Bau-
stein gleichzeitig transferieren. Um mehr als 16 Bit zu iibertra-
gen, miissen weitere Transfers ausgefiihrt werden. Sidmtliche
Informationsaustausche zwischen dem 68000 und peripheren
Bausteinen werden tiber den bidirektionalen 16-Bit-Datenbus
(DO...D15) abgewickelt.

Wie wird ein Systembaustein vom 68000 adressiert, um Infor-
mationen gegenseitig auszutauschen? Der 68000 selektiert
einen externen Baustein, indem er eine einzige Adresse an den
23 Bit breiten Adressenbus (Al ... A23) legt. Uber diesen
Adressenbus kann der 68000 8388608 Speicherworte (zu
16 Bit) anwéhlen. Mit den Signalen UDS und LDS koénnen das
obere bzw. das untere Byte eines Wortes noch unterschieden
werden (siehe Kapitel 6.4 «Asynchrone Buskontrolle»). Der
68000 gibt mit dem (address strobe) Adressensignal AS der
Peripherie bekannt, dass eine giiltige Adresse auf dem Bus ist.

6.3 Funktionsstatussignale

Jedesmal, wenn der 68000 mit externen Bausteinen kommuni-
ziert, gibt er zusétzlich zu den Adressen die drei Signale FCO,
FC1 und FC2 als weitere Information aus (function code). Die-
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se¢ Funktionsstatussignale teilen der Peripherie mit, ob der
68000 den Daten- oder Programmspeicher adressiert, im
Anwender- oder Uberwachungsstatus ist oder gerade eine
Unterbrechung bearbeitet. Die Tabelle 6.1 enthilt die verschie-
denen Kombinationen dieser drei Signale. Beachte das hochst-
wertige Bit FC2, das den Status des Uberwachungsbit S im Sta-
tusregister wiedergibt.

Funktionsstatussignale

FC2 FC1 FCO Bedeutung Zuteilung

0 0 0 Reserviert Anwender

0 0 1 Datenbereich Anwender

0 1 0 Programmbereich ~ Anwender

0 1 1 Reserviert Anwender

1 0 0 Reserviert Systemiiberwachung

1 0 1 Datenbereich Systemiiberwachung
Tabelle 6.1 . 1 1 0 Programmbereich ~ Systemiiberwachung
Funktionsstatussignale 1 1 1 Unterbrechungs- Systemiiberwachung
informieren externe Bausteine .
iiber den Status des 68 000. quittung

Die Funktionsstatussignale zeigen an, dass ein Programmab-
schnitt adressiert worden ist, falls der Programmzéhler PC die
Adressenquelle ist oder falls der Startvektor geholt worden ist.
Sie konnen auch angeben, dass ein Datenbereich adressiert
wird, falls die meisten Operanden gelesen (PC ist nicht Adres-

* offener
415138
zecoder Kollektor Anwender
P 7409 %* Daten-
Y speicher
FCo 4 ¥ s
Fct Y !
FC2 AZ b
68000 % :nwena/er
MeUy Yo b rog'r;:mm-
E 6 6T speicher
4 i 2 cs
ASp—1 =
Systemaiber
/2 wachungs-
daten-
+5V dcs sweicher
Systemiber-
. wachungs-
Bild 6.3 programm-
Speicherunterteilung mit den ¢s speicher
Funktionsstatussignalen
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senquelle), falls alle Operanden geschrieben oder falls andere
Vektoren als der Startvektor geholt wurden. Die Funktionssta-
tussignale konnen mit den Adressen zusammen fiir die Schreib-
sperre spezifischer Speicherabschnitte verwendet werden. Sie
kénnen auch mit externen Einheiten wie zum Beispiel einer Spei-
cherverwaltungseinheit eingesetzt werden, um bestimmte Ope-
rationen im richtigen Prozessorstatus durchfiihren zu lassen.
Im weiteren k6nnen die Funktionsstatussignale fiir die externe
Speichererweiterung bis auf 64 MByte (4 Segmente zu 16 MBy-
te) verwendet werden! Das Bild 6.3 zeigt eine MGglichkeit, wie
diese Speichersegmentation realisiert werden kann.

6.4 Asynchrone Bussteuerung

Einige iibliche 8-Bit-Mikroprozessoren, wie der 6800 und der
6502, konnen nur mit synchron betreibbaren Einheiten kom-
munizieren. Diese Mikroprozessoren sind so entwickelt wor-
den, dass die externen Bausteine innerhalb einer gegebenen Zeit
Ausgabedaten entgegennehmen oder Eingabedaten bereitstel-
len miissen. Die Kommunikation mit langsameren oder asyn-
chronen Bausteinen erfordert jedesmal spezielle Hard- und
Softwareschnittstellen. Der 68000 dagegen kann ohne weiteren
Aufwand direkt mit synchronen oder asynchronen Bausteinen
verbunden werden. Er ist mit je einem Satz Steuerleitungen fiir
jeden Typ ausgeriistet.

6.4.1 Die asynchronen Steuerleitungen

Wie wir wissen, kann der 68000 mit den einzelnen Byte inner-
halb eines Wortes arbeiten. So sprechen wir normalerweise
auch von der 16-MByte- und nicht von der 8-MWort-Adressie-
rung. Wie werden nun die einzelnen Byte adressiert? Zusétzlich
zu den Adressenbit gibt es noch zwei spezielle Steuersignale:

— fiir das hohere Byte UDS (Upper Data Strobe)

— fiir das untere Byte LDS (Lower Data Strobe).

Wenn UDS vom 68000 aktiv (logisch 0) gesetzt wird, wird
die Information auf den héheren 8 Bit des Datenbusses (DS ...
D15) transferiert. Wenn die Information auf den unteren 8
Datenbit (DO ... D7) verkehren soll, setzt der 68000 das Signal
LDS aktiv (logisch 0). Wihrend eines Worttransfers sind beide
Signale (UDS und LDS) aktiv, und die Information geht iiber
den ganzen Datenbus (DO...D15).

Wie kann ein adressierter, externer Baustein wissen, ob der
68000 Informationen haben (lesen) oder ausgeben (schreiben)
will? Durch das Steuersignal Lesen/Schreiben (R/W) kann der
externe Baustein erkennen, in welcher Richtung sich der Trans-
fer abspielen soll. Das Steuersignal R/W ist logisch 1 wihrend
Lesezyklen und logisch 0 wihrend Schreibzyklen.
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Bild 6.4
Byteadressierung auf dem
asynchronen Bus

Jedesmal, wenn ein externer Baustein entweder Daten auf den
Datenbus gibt (Leseoperation) oder von ihm holt (Schreib-
operation), ldsst der Baustein den 68000 mit dem Signal
DTACK (Data Transfer Acknowledge) wissen, wann der
Transfer fertig ist. Wenn der Prozessor das Signal DTACK
wihrend eines Lesezyklus erkennt, speichert er die Daten ab
und beendet den Buszyklus. Da dieses Terminieren auf
DTACK angewiesen ist, hidngt die Geschwindigkeit, mit wel-
cher der 68000 Daten transferieren kann, von der Zugriffszeit
des adressierten Bausteins ab. Das bedeutet also, dass der
68000 mit langsamerer Peripherie auch langsamer arbeitet und
entsprechend mit schnellerer Peripherie rascher. Die maximale
Ubertragungsrate, gegeben durch den Systemtakt, kann natiir-
lich nicht iiberschritten werden.

< D0-Df5 Dﬂ-_VZ’?
Bavsteinavswah! - [—A
Unge-
 ———
7. 4273 YAdressen "2 Jsyne Adresse — H ——>1 rader
= |2ecoder r u Riw | Speicher
a 25} ¢ odd)
RIW |" A
6000 |25 '
e o | | | 274ck o)
—=— +5V
. 7486
Fere|Zerrivad | T2 = o)
wachung ——N
(o — V] gerader
* /"(/i;""(_‘,’; Spescher
_ q:s;anyr_ RIF (even)
yos
DTACK Even)|

Das Bild 6.4 zeigt alle Signale, die nétig sind, um auf einen asyn-
chronen Speicher zugreifen zu konnen. Das Bild enthélt neben
der CPU und den beiden Speichern noch eine Zeitiiberwa-
chungsschaltung («Watchdog»). Sie ldsst eine bestimmte Zeit
zwischen dem Anlegen von AS und dem Erhalten von DTACK
zu. Wenn die beiden Speicher die richtige Kombination von
DTACK ODD und DTACK EVEN innerhalb der gegebenen
Zeit abgeben, wird das DTACK-Signal zum Mikroprozessor
geschickt. Werden diese Bedingungen nicht eingehalten, erzeugt
die Uberwachungsschaltung das BERR-Signal (Bus Error), das
im 68000 die Ausnahmebehandlung dafiir initialisiert. Auf diese
Weise kann das System vor dem «Héngenbleiben» wegen eines
fehlerhaften Peripheriebausteines bewahrt werden.
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6.4.2 Zeitbedingungen fir asynchrone
Dateniibertragung

Nach den asynchronen Steuersignalen wollen wir die zeitli-
chen Bedingungen wéhrend einer Datentransferoperation
naher betrachten. Bild 6.5 zeigt uns das Zeitverhalten der
entsprechenden Signale wihrend normaler, wortlanger Lese-
und Schreibzyklen und eines langsamen (mit verzogertem
DTACK) Lesezyklus. Diese Impulsdiagramme sind zeitlich auf
den Systemtakt CLK (Clock, Eingangstakt des 68000) bezogen
gezeichnet. Mit 8 MHz hat CLK eine Periode von 125ns. Ein
normaler (unverzogerter) Lesezyklus dauert dann 4 Perioden
oder 500ns. Wegen der internen Verzogerungszeiten und der Not-
wendigkeit, das Signal R/W auf logisch 0 zu bringen, braucht
der Schreibzyklus eine weitere Periode, also 625ns bei 8 MHz.

S0 $1 S2 S3 Sh S5 $6 S7 SO $1 S2 S3 Sh S5 S6 S7 SB S9 S051 $2 $3 Sh Sw Sw Sw Sw S5 S6 §7 SO
CLK

M-h23 — pammt D >
M-13 — —C >
BT\ T\ S\ I
w3 T\ I \ / \ /T
s \ [ L T\ [
L W

DTACK \ I \ / \ r

08-015 __—<
00-07 — -
fe0-2 — ~ >

Jo-— ——lesen— — — _ole— — schreiben— — —ole— — langsan lesen — — _.|

Der 68000 kann DTACK jederzeit nach Aktivwerden von AS
entgegennehmen. Er erwartet aber, DTACK vor der 5. Periode
(Lesen) oder 7.Periode (Schreiben) des Systemtaktes nach
Zyklusbeginn zu empfangen. Wenn DTACK nicht vor diesen
Zeitpunkten erkannt wird, fiigt der 68000 Warteperioden (Wait
States) in den Lese- oder Schreibzyklus ein. Auf der rechten Sei-
te von Bild 6.5 ist das Zufligen von Warteperioden zu einem
Lesezyklus dargestellt.

Die Zeitdiagramme fiir Byteiibertragungen sind den fiir Wort-
libertragungen dhnlich, ausser dass nur eines der beiden Bytese-
lektionssignale (UDS oder LDS) aktiv ist und dass nur eine
Hilfte des Datenbusses giiltige Information fiihrt. Die andere
Halfte des Datenbusses wird im hochohmigen Zustand bleiben.
Das aktive Byteselektionssignal wird vom internen Signal AO,
dem untersten Bit des Programmzéhlers, abgeleitet. In der
Beniitzeranleitung des 68000 (Kapitel 4.2.1) steht mehr iiber die
zeitlichen Abldufe der Byteiibertragung.

6.5 Synchrone Steuersignale

Der 68000 hat drei Steuersignale, um synchrone, periphere
Bausteine wie jene aus den 6500- und 6800-Familien am Mikro-
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Bild 6.6
Anschluss von Peripherie-
bausteinen der 68 000er-Serie

Bild 6.7
Zeitdiagramm fiir synchronen
Datentransfer (8 Bit)

prozessor anschliessen zu kénnen. Es sind dies die Signale E
(Enable, Freigabe), VPA (Valid Peripheral Address, giiltige
Peripherieadresse) und VMA (Valid Memory Address, giiltige
Speicheradresse).

Das Freigabesignal E ist ein Takt, mit dem die 8-Bit-Peri-
pheriebausteine den Datentransfer synchronisieren. Dieser frei-
laufende Takt entspricht dem E- oder @ 2-Signal der bestehen-
den 6500- und 6800-Systeme. Der E-Takt lduft mit einer Fre-
quenz von einem Zehntel des 68000-Systemtaktes. In unserem
Fall von 8 MHz heisst das 800kHz fiir den Takt E. Im weiteren
hat E ein Tastverhdltnis von 60 zu 40, logisch O fiir 6 Takt-
perioden und logisch 1 fiir 4 Perioden.

Die giiltige Peripherieadresse VPA ist ein Eingangssignal, das
dem 68000 mitteilt, dass ein 6800-Peripheriebaustein adressiert
wurde und dass die Datentransferoperation durch das Frei-
gabesignal E synchronisiert werden sollte. Normalerweise wird
VPA aus der decodierten Adresse und AS gewonnen. Zu
bemerken ist, dass VPA fiir die synchrone dasselbe ist wie
DTACK fiir die asynchrone Ubertragung.
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Wenn AS noch anliegt, wihrenddem der 68000 VP A empfingt,
reagiert der Prozessor mit dem Senden von VMA (giiltige Spei-
cheradresse), mit der der periphere Baustein die endgiiltige
Selektion vornehmen kann.

Bild 6.6 zeigt die Signale auf, die fiir das Anschliessen eines
6800-Peripheriebausteins am 68000 normalerweise verwendet
werden. In Bild 6.7 sind die Zeitdiagramme fiir einen synchro-
nen Lese- und Schreibzyklus dargestellt. Das Kapitel 8 enthélt
weitere Anregungen, wie synchrone 8-Bit-Bausteine an den
68000 angeschlossen werden konnen.

6.6 Busaussperrungssignale

Die Busaussperrungssignale (englisch: bus arbitration signals,
d.h. «Bus-Schiedsrichter-Signale») werden fiir direkte Speicher-
zugriffe (DMA, Direct Memory Access) und Multiprozes-
soranwendungen verwendet, um die Steuerung des Systembus-
ses von einem 68000-Mikroprozessor an einen externen Bau-
stein zu iibergeben. Bei all diesen Anwendungen wiinscht der
externe Baustein die Bussteuerung zu iibernehmen, indem er
dies dem 68000 mit dem Signal BR (Bus Request, Busanforde-
rung) mitteilt. Der 68000 hat immer die geringere Busprioritit
als ein externer Baustein und wird die Steuerung des Busses
nach Beenden des momentanen Zyklus abgeben. Nach Erken-
nen von BR ‘synchronisiert der 68000 intern und zeigt die
Annahme der Anforderung mit dem Signal BG (Bus Grant, Bus
freigegeben) an. Wenn mehrere Bussteuerungsanforderungen
anliegen, muss eine externe Schaltung dafiir sorgen, dass nur
einer der Bausteine das Signal BG empfangen kann.

Der anfragende Baustein wartet nach Erhalten von BG auf die
Beendung des vom Prozessor angefangenen Zyklus (zum Bei-
spiel auf das Zuriicksetzen von AS und DTACK) und gibt dem
68000 danach BGACK (Bus Grant, Acknowledge, Busfreigabe-
erkennung) zuriick. Zwischen dem 68000 und dem anfragenden
Baustein spielt sich also folgender Dialog ab: Mit dem Anlegen
von BR sagt der Anfrager: «Ich will den Bus haben.» Mit BG
antwortet der 68000: «Du kannst den Bus haben.» Am Ende
des momentanen Zyklus gibt der Anfrager das Signal BGACK
zum Prozessor und dem restlichen System mit der Bedeutung
«Ich habe nun die Bussteuerung ibernommen» aus.

Am Ende dieses Dialogs nimmt der neue Busmaster seine
Anfrage mit dem Zuriicksetzen von BR zuriick. In gleicher Wei-
se setzt der Prozessor BG zuriick und wartet auf das Beenden
der Busoperation des externen Bausteins. Zu diesem Zeitpunkt
setzt der externe Baustein das Signal BGACK zuriick. Damit
kann der Prozessor seine normale Funktion und Arbeit wieder
aufnehmen. Die Zeitdiagramme dieser ganzen Sequenz sind in
Bild 6.8 dargestelit.
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6.7 Systemsteuerungssignale

Der 68000 hat drei Systemsteuerungssignale. Eines ist als Ein-
gang und die andern beiden bidirektional definiert.

RESET (Reset, Zuriicksetzen) ist ein bidirektionales Signal,
das dem Prozessor oder einem externen Baustein erlaubt, das
ganze System zuriickzustellen. Ein Zuriicksetzen durch den
Prozessor, mit Hilfe des Befehls RESET, wird das Signal
RESET fiir 124 Systemtaktperioden setzen und danach wieder
zuriickstellen. Das gibt allen externen Bausteinen geniigend
Zeil, sich zuriickzusetzen. Der interne Zustand des 68000 wird
dabei allerdings nicht veréndert.

Wihrend eines katastrophalen Fehlers kann das ganze System
(Prozessor und alle externen Bausteine) zurilickgesetzt werden,
wenn beide bidirektionalen Signale RESET und HALT wih-
rend mindestens 100 ms am 68000 anliegen. Das veranlasst den
68000, einen «Speisungsreset» zu starten, wihrenddem der
Prozessor in den Uberwachungszustand iibergeht und iiber den
Vektor der tiefsten Speicherstufe eine Riickstellroutine startet.
(Diese Sequenz und weitere Ausnahmesituationen sind in Kapi-
tel 7 ausfiihrlicher diskutiert.)

HALT muss aber nicht notwendigerweise von RESET begleitet
werden. HALT alleine, als Prozessoreingang, kann zu Test-
zwecken fiir die Einzelschrittbetriebsart verwendet werden. Die
Schaltung in Bild 6.9 zeigt uns eine mogliche Realisiserung die-
ser Funktion. Wenn der Ablauf/Einzelschritt-Schalter in der
Position «Einzelschritt» ruht, wird der Prozessor den momen-
tanen Befehlszyklus beenden und wieder anhalten. Das wird
jedesmal, wenn der Einzelschritt/Warte-Schalter auf Einzel-
schritt umgeschaltet wird, so sein. Wenn der Prozessor gestoppt
wird, sind der Adress-, der Daten- und der Funktionsstatusbus
in hochohmigem Zustand und die Bussteuerungsleitungen inak-
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tiv gesetzt (die allgemeine Bussteuerung mit BR, BG und
BGACK ist immer zur Verfiigung).

Das HALT-Signal kann auch vom 68000 als Ausgang verwen-
det werden. Der Prozessor kann wegen eines Doppelbusfehlers
(siche Kapitel 7) gestoppt werden und setzt dann HALT als
Ausgang aktiv.

Das HALT-Signal kann mit dem Systemsteuersignal BERR
(Bus Error) zusammen auch als Eingang verwendet werden.
Die Eigenschaft von BERR ist, den Prozessor iiber systemin-
terne Probleme zu informieren. Das heisst, dass BERR das Auf-
treten von unerwiinschten Vorféllen (zum Beispiel unerwartete
Interrupts oder illegale Speicherzugriffsanforderungen) oder
das Nichtauftreten von erwarteten Signalen (zum Beispiel gibt
ein externer Baustein kein DTACK oder VPA zuriick) anzeigt.
Wenn der 68000 das Signal BERR erkennt, kann er entweder
ein Busfehlerprogramm aufrufen (siehe Kapitel 7) oder den Bus-
zyklus noch einmal wiederholen. Der Prozessor wird den Bus-
zyklus repetieren, wenn HALT von aussen mit dem Auftreten
von BERR gesetzt wird. Um einen Buszyklus wiederholen zu
konnen, wird der Prozessor den Zyklus zuerst beenden, danach
anhalten und den Adress- und Datenbus, die Funktionsstatus-
und die Steuerungsleitungen in den hochohmigen Zustand ver-
setzen. Wenn die externe Schaltung BERR und HALT zuriick-
setzt, wird der 68000 darauf den vorhergehenden Buszyklus
wiederholen. Es gibt eine einzige Ausnahme: Die Instruktion
TAS kann in dieser Situation nicht wiederholt werden.

6.8 Interrupt-Steuersignale

Externe Bausteine konnen Interrupt-Anforderungen an den
68000 senden, indem die codierte Prioritdtsanforderungsstufe
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an die drei Interrupt-Steuereinginge IPLO, IPL1 und IPL2
angelegt wird. Am Ende des momentanen Befehlszyklus ver-
gleicht der 68000 die codierte Prioritédtsstufe (1 bis 7, wobei 7
die hochste Prioritét ist) mit der 3-Bit-Interrupt-Maske des Sta-
tusregisters. Diese Maske kann in Bild 1.3 und dem Text in
Kapitel 1 («Elektroniker» 16/82, Seite EL 5) nachgesehen und
-gelesen werden.

Wenn der Wert der Priorititsstufe gleich oder kleiner als der
Wert der Interrupt-Maske ist, wird der 68000 die Anforderung
einfach iibersehen und am Begonnenen weiterfahren. Hat aber
die Interrupt-Anforderung einen hoheren Wert als die Maske,
setzt der 68000 die Eingabepriorititsstufe auf den Adressbus
(A1, A2 und A3), gibt mit Hilfe der Funktionsstatusbit FCO ...
FC2 die Interrupt-Anerkennung aus und initialisiert den Inter-
rupt-Quittungsablauf. Einzelheiten dieses Ablaufs werden im
Kapitel 7 folgen.
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7. Verarbeitungszusténde, privilegierte Zustidnde und
Ausnahmebetrieb

Dieses Kapitel beschreibt die Verarbeitungszustinde und die
privilegierten Zusténde des MC 68000 und erldutert dann, wie
Unterbriiche, Traps und andere «Ausnahmen» durch den MC
68000 behandelt werden.

7.1 Verarbeitungszustande

Der Mikroprozessor MC 68000 befindet sich immer in einem
von drei Zustdnden: Normal-, Ausnahme- oder Haltezustand.
Bis jetzt betrafen unsere Betrachtungen immer den Normalzu-
stand, in welchem der 68000 die Befehle vom Speicher holt, sie
ausfiihrt und die Resultate im Speicher oder in einem Register
ablegt. Ein Spezialfall des Normalzustandes ist der gestoppte
Zustand, in den der 68000 als Antwort auf einen STOP-Befehl
eintritt. Wie in Kapitel 3 erkldrt wurde, ist STOP ein privilegier-
ter Befehl, der den 68000 stoppt, bis er einen Unterbruch hoher
Prioritét oder eine externe Riicksetzung erhilt.

Der Ausnahmezustand ist die Art, mit welcher der 68000 auf
Abweichungen der normalen Programmausfiilhrung reagiert.
Solche Abweichungen oder Ausnahmen k6énnen durch Unter-
briiche, Trap-Befehle, nicht schwerwiegende Hardwarefehler
oder eine Vielzahl anderer Umsténde verursacht werden, und
zwar sowohl von ausserhalb als auch innerhalb des Mikropro-
zessors. Wir werden diese Ausnahmen und ihre Behandlung in
diesem Kapitel spéter detailliert besprechen.

Bei schwerwiegenden Hardwarefehlern, wie zum Beispiel zwei
aufeinanderfolgenden Busfehlern, tritt der 68000 in den Halte-
zustand. Aus diesem Haltezustand kann der 68000 nur mit
einer externen Riicksetzung neu gestartet werden. Der Haltezu-
stand darf nicht mit dem vorher erwéhnten softwareverursach-
ten Stoppzustand verwechselt werden. '

7.2 Privilegierte Zustidnde
7.2.1 Uberwachungs- und Beniitzerzustand

Bisher haben wir schon 6fter die zwei privilegierten Zusténde, in
denen der MC 68(}90 operieren kann, erwahnt. Diese Zustidnde,
der sogenannte Uberwachungszustand und der Beniitzerzu-
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stand, gewéhrleisten ein hohes Mass an Sicherheit durch gewis-
se zusétzliche «Privilegien» im Uberwachungszustand, die im

Beniitzerzustand nicht verfiigbar sind (siehe Tabelle 7.1).

Beniitzerzustand Uberwachungszustand
Eintrittszustand L&schung des Trap. Riicksetzung,
durch: S-Bitim Unterbruch,
Statusregister privilegierter Befehl
Funktionscode
output FC2= 0 1
Systemstapel- Beniitzerstapel-  Uberwachungsstapel-
zeiger: zeiger zeiger
Andere Stapel-  Register AO...A6 Beniitzerstapelzeiger
zeiger: und Register AO...A6
Statusregister-
zugriff:
(lesen) Gesamtes Status- Gesamtes Statusregister
register
(schreiben) Nur Bedingungs- Gesamtes Statusregister
codes
Verfiigbare Alle, mit Aus- Alle, inklusive
Befehle: nahme von: derjenigen der links
RESET aufgelisteten
RTE
STOP #d
ANDI.W#d,SR
EORILW #d,SR
ORLW #d,SR

MOVE <ea>,SR
MOVE USP,An
MOVE An,USP

Programme, die im weniger privilegierten Beniitzerstatus arbei-
ten, kdnnen alle 68000-Befehle ausfiihren, mit Ausnahme derje-
nigen, welche die hoheren acht Bit des Statusregisters dndern
(das «Systembyte»), den Prozessor stoppen oder eine System-
riicksetzung aussenden. Im weiteren k6nnen Beniitzerstatus-
Programme Stapeloperationen ausfiihren, aber sie konnen die
Systemstapelzeiger weder lesen noch schreiben.

Programme, die im hoher privilegierten Uberwachungszustand
arbeiten, haben Zugang zu den vollen Mdglichkeiten des 68000.
Das heisst, dass Uberwachungsstatusprogramme Zugang
haben auf die beiden Systemstapelzeiger und, sofern erforder-
lich, iiber die privilegierten Befehle auch das Statusregister
beeinflussen konnen. Die Kontrolle {iber das Statusregister
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erlaubt den I'Jberwachur}_gsprogrammen das Andern von Unter-
bruchsmasken und den Ubergang in den Trace-Modus.
In den meisten Systemen laufen Programme, die nicht fiir
Systemsteueraufgaben zustidndig sind im Beniitzerstatus.
Grundaufgaben des Betriebssystems sollten ausgefiihrt werden,
wenn sich der 68000 im Uberwachungsstatus befindet.

7.2.2 Wechsel im privilegierten Status

Der privilegierte Zustand wird ausgewéhlt mit dem Uberwa-
chungsbit (S) im Statusregister. Der 68000 ist im Uberwa-
chungsstatus mit S = 1 und im Beniitzerstatus, wenn S = O ist.
Der Ubergang von einem privilegierten Zustand in einen andern
kann auf verschiedene Weise erfolgen. Der Prozessor geht vom
Uberwachungszustand in den Beniitzerstatus, wenn das S-Bit
auf 0 gesetzt wird. Diese Operation kann ausgefiihrt werden
mit den Befehlen MOVE, ANDI oder EORI, die das Status-
register (SR) als Ziel haben und eine 0 im Bit 13 des Quellen-
operanden aufweisen.

Hier einige Beispiele:
Befehl Ausgefiihrte Aktion

MOVE #$0400,SR  Trace ausschalten; Wechsel zum
Beniitzerstatus; Laden der Unter-
bruchsmaske mit 100,; Loschen der
Bedingungsbit.

ANDI #S$DFFD,SR Loschen Uberlauf (V); Wechsel zum
Beniitzerstatus; keine anderen
Wechsel.

EORI #9$2000,SR  Wechsel zum Beniitzerstatus; keine
anderen Wechsel.

Der Prozessor wechselt auch zum Beniitzerzustand zuriick
nach der Riickkehr aus einem Ausnahmezustand (ausgefiihrt
mit einem RTE-Befehl), wenn die Ausnahme im Beniitzerzu-
stand auftrat. Die Behandlung der Ausnahmen folgt spéter in
diesem Kapitel. .

Der Prozessor geht vom Beniitzerstatus in den Uberwachungs-
status, wenn das S-Bit auf 1 gesetzt wird. Normalerweise
geschieht dies unter Softwaresteuerung mit einem der Trap-
Befehle, aber es kann auch bei einem Busfehler, einem Unter-
bruch, erzwungener Ausfiihrung eines privilegierten Befehls
oder jeder anderen Ausnahme geschehen. Bild 7.1 zeigt eine
vereinfachte Zusammenfassung der Bedingungen, die den
Wechsel zum privilegierten Zustand verursachen.
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Bild 7.1

Ubergiinge von einem
privilegierten Zustand
in einen anderen

Wie am Anfang des Kapitels erwdhnt wurde, ist eine Ausnahme
eine Abweichung von der normalen Ausfiihrung, abhingig von
einer internen oder externen Bedingung, die den Prozessor in
den Uberwachungszustand bringt. Diese Ausnahmen (in Tabel-
le 7.2 zusammengestellt) werden kurz beschrieben; es ist aber
sinnvoll, zundchst die Art und Weise zu erldutern, wie der

68000 Ausnahmen behandelt.

Quelle  Ausnahmeart Veranlasst durch
Intern  Befehl TRAP, TRAPV,CHK,
DIVS,DIVU
Privilegverletzung Privilegierter Befehl im
Beniitzerzustand
Trace Trace-Modus
Illegale Adresse Ungerade Adresse mit Wort
oder Doppelwort
Illegaler Befehl Ungitiltiges Bitmuster
Nichtimplementierter =~ Operationswort Bitmuster
Befehl 1010 0oder 1111
Extern Riicksetzung RESET aktiviert
Unterbriiche Unterbruch geniigend hoher
(Interrupts) Prioritét
Busfehler BERR aktiviert
Falscher Unterbruch ~ BERR aktiviert wihrend Tabelle 7.2 .
Unterbruchquittung Zusammenstellung interner und

externer Ausnahmen

7.3.1 Verarbeitung der Ausnahmen

Bis auf die Rﬁcksetzung wird jeder Ausnahmezustand, sei er
durch ein internes Ereignis (ein Trap-Befehl zum Beispiel) oder
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ein externes Ereignis (ein Unterbruch oder ein Hardwarefehler)
hervorgerufen, den 68000 veranlassen, fiinf eindeutige Schritte
zu machen. Diese fiinf Schritte sind:

1. Nach Eintritt in den Ausnahmezustand rettet der 68000 den
16-Bit-Inhalt des Statusregisters in ein nicht adressierbares,
internes Register.

2. Das Uberwachungsbit (S) im Statusregister wird auf 1
gesetzt und bringt den Mikroprozessor in den Uberwa-
chungsstatus; das Trace-Bit (T) wird auf 0 gesetzt und damit
der Trace-Modus ausgeschaltet. Wenn der Ausnahmezu-
stand auf einen Unterbruch zuriickzufiihren ist, wird die
Unterbruchsmaske mit der entsprechenden Prioritétsebene
nachgefiihrt, um Unterbriiche auf dieser oder tieferen Priori-
tidtsebenen auszuschliessen, bis der behandelte Unterbruch
ausgefiihrt ist.

3. Der 68000 bestimmt die Vektornummer der Ausnahme und
multipliziert diese mit 4, um sie in eine Vektoradresse umzu-
wandeln. Der 68000 kann 255 verschiedene Vektornummern
unterscheiden, O und 2 bis $FF. Bild 7.2 enthilt die Vektor-
nummer und die Vektoradresse fiir jede Ausnahmebedin-
gung. Bei Unterbriichen wird die Vektornummer durch das
externe Gerit geliefert. Fiir alle andern Ausnahmen wird die
Vektornummer intern berechnet, unter Zuhilfenahme des
Mikrocodes des 68000.

4. Der aktuelle Wert des Programmzdhlers und die intern gesi-
cherte Kopie des Statusregisters werden in den Uberwa-
chungsstapel geschrieben. In den meisten Féllen ist der
Inhalt des Programmzéhlers die Adresse des ndchsten aus-
zufiihrenden Befehls.

5. Nach dem Retten dieser Informationen ldadt der 68000 den
Programmzihler mit dem Inhalt der berechneten Vektor-
adresse und beginnt, die Serviceroutine des Ausnahmezu-
standes auszufiihren.

Eine Spezialbedingung, der doppelte Busfehler, soll hier noch
erwahnt werden. Ein doppelter Busfehler stellt einen schwerwie-
genden Fehler im System dar und erscheint, wenn ein Busfehler
oder eine illegale Adressausnahme erzeugt wird, wihrend eine
Ausnahme in der oben erwdhnten Gruppe 0 (Riicksetzung,
Busfehler oder illegale Adresse) in Bearbeitung ist. Nach dem
Erhalt zweier solcher aufeinanderfolgender Fehler bringt sich
der 68000 selbst in den Haltezustand. Einmal im Haltezustand,
kann der Mikroprozessor MC 68000 nur durch eine externe
Riicksetzung wiedergestartet werden.
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Bild 7.3 zeigt einen Ablaufplan der eben genannten Sequenz.
Die Details dieser Ausnahme-Serviceroutine sind selbstver-
stindlich abhingig davon, welche Ausnahme bearbeitet werden
muss. Jede Serviceroutine muss grundsétzlich beendet werden
mit dem Befehl Riickkehr aus dem Ausnahmezustand (RTE),
der den Statusregister- und Programmzdhlerwert aus dem
Uberwachungsstapel zuriickschreibt und die Riickkehr zur nor-
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malen Ausfiihrung der Befehle sicherstellt.
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Bild 7.3

Allgemeiner Ablauf fiir die
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7.3.2 Mehrfachausnahmen

Wie reagiert der 68000, wenn zwei oder mehrere Ausnahmebe-
dingungen gleichzeitig auftreten? Was passiert zum Beispiel,
wenn ein Unterbruch erscheint, wiahrenddem eine Trace-Aus-
nahmebedingung in Ausfiihrung begriffen ist? Die Antwort auf
diese Frage wird in Tabelle 7.3 gegeben, welche die Ausnahme-
arten mit abnehmender Prioritdt darstellt. Das bedeutet, dass
die Bedingungen in Gruppe O vor jenen in den Gruppen 1 und 2
ausgefiihrt werden. Dadurch wird, wenn ein Busfehler wihrend
einer Trace-Operation erscheint, die Trace-Operation zuriickge-
stellt (an das Ende des laufenden Taktzyklus), bis die Busfehler-
bearbeitung beendet ist.

Die Bedingungen innerhalb jeder Gruppe in Tabelle 7.3 sind
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ebenfalls in absteigender Prioritdtsordnung aufgelistet.
Dadurch wird zum Beispiel bei einem Unterbruch wihrend
einer Trace-Ausnahme diese weiterverarbeitet, dann erst wird
der Unterbruch verarbeitet, und schliesslich wird der 68000 mit
der Ausfiihrung der Befehle im Programm weiterfahren.

Gruppe Ausnahme Ausnahmeverarbeitung
_ beginnt:
0 Riicksetzung
Busfehler Am Ende eines Taktzyklus
Illegale Adresse
1 Trace, .
Unterbruch, Am Ende eines Befehlszyklus
Illegaler Befehl.
11;2211:1‘1 orhandener Am Ende eines Buszyklus
Privilegverletzung.
2 TRAP, TRAPV,
CHK, Am Ende eines Befehlszyklus Tabelle 7.3 .
Division durch 0 Ausnahmegruppierung und

Prioritat

7.4 Intern erzeugte Ausnahmen

Wir beschreiben nun alle Ausnahmen, erzeugt durch interne
Bedingungen im 68000.

7.4.1 Befehle, die Ausnahmen herbeifiihren
konnen

In der Diskussion des Befehlssatzes im Kapitel 3 begegneten
uns einige Befehle, die Ausnahmezustinde veranlassen konnen.
Einer dieser Befehle (TRAP) verursacht immer einen Ausnah-
mezustand; die andern (TRAPV, CHK, DIVS und DIVU) ver-
ursachen je nach gewissen Bedingungen eine Ausnahime oder
nicht.

«Trap» (TRAP = Falle) erzwingt eine Ausnahme zu einer von
sechzehn beniitzerdefinierten Trap-Routinen, angew&hlt durch
den unmittelbaren Operanden im Befehl. Im speziellen veranlas-
sen die Befehle TRAP # 0 bis TRAP # 15 die Programmsteue-
rung zu einem unbedingten Sprung zu den Routinen, deren
Adressen in den Doppelwortspeicherplitzen $80 bis $BC ent-
halten sind. Tabelle 7.4 zeigt die Zuordnung fiir die 16 mogli-
chen Trapbefehle.

154



Verarbeitungszusténde, privilegierte Zustéinde und Ausnahmebetrieb

Tabelle 7.4
Vektoradresse fiir TRAP

Befehl Transferiert Programmsteuerung
iiber Vektoradresse:

TRAP #0 $80

TRAP #1 $84

TRAP #2 $88

TRAP #3 $8C

TRAP #4 $90

TRAP #5 $94

TRAP #6 $98

TRAP #7 $9C

TRAP #38 $A0

TRAP #9 $A4

TRAP # 10 $A8

TRAP #11 $AC

TRAP # 12 $BO

TRAP # 13 $B4

TRAP # 14 $B8

TRAP # 15 $BC

Die Trapbefehle wirken als eine Anzahl von Softwareunterbrii-
chen und sind praktisch fiir den Aufruf des Betriebssystems, die
Simulation von Unterbriichen bei einer Fehlersuche, die Anzei-
ge der Beendigung von Prozessen oder die Anzeige, dass eine
Fehlerbedingung in einem Programm entstanden ist.

«Trap bei Uberlaufy (TRAPV) wird einen Trap veranlassen
durch Vektoradresse $1C, wenn der Uberlauf (V) im Bedin-
gungscoderegister auf 1 gesetzt ist. Eine einfache Routine auf
der Betriebssystemebene kann dann jeden entstehenden Uber-
lauf behandeln.

«Priife Register auf Grenzen» (CHK) bestimmt, ob sich das tie-
fere Wort eines spezifizierten Datenregisters innerhalb der
Grenzen 0 und einer spezifizierten Zweierkomplementzahl als
obere Limite (im Speicher oder in einem anderen Datenregister)
befindet. Ist der Registerinhalt ausserhalb dieser Grenzen,
erzeugt der 68000 einen Trap iiber die Vektoradresse $18. Der
CHK-Befehl kann verwendet werden zur Uberpriifung, dass ein
Stapel nicht zu gross wird, dass eine Folge von Zeichen den ihr
zugewiesenen Raum nicht iiberschreitet, dass ein Array sich in
den dimensionierten Gréssen bewegt oder dass eine bestimmte
Operation nicht zu Daten ausserhalb eines zugewiesenen Spei-
cherbereichs zugreift.

Die Befehle «dividiere mit Vorzeicheny (DIVS) und «dividiere
ohne Vorzeichen» (DIVU) erzeugen nur auf eine Bedingung
eine Ausnahme, dann wenn der Divisor 0 ist. Ein Divisor = 0
veranlasst einen Trap iiber die Vektoradresse $14.

Wie in Kapitel 3 erwédhnt wurde, ist der Versuch, durch 0 zu
dividieren, eine von zwei Bedingungen, die verhindern, dass die
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Divisionsoperation ausgefiihrt wird. Die Operation wird eben-
falls gestoppt, wenn ein Uberlauf wihrend der Division auftritt
(in beiden Fillen bleiben Divisor und Dividend unbeeinflusst).
Wenn das passiert, setzt der 68000 einfach das V-Bit im Status-
register und fahrt mit der Ausfiihrung des nichsten Befehls
weiter.

Weil Uberlauf eine Fehlerbedingung darstellt, sind in einem
Divisionsprogramm Massnahmen fiir die Weiterbehandlung zu
treffen. Eine Méglichkeit besteht darin, die Divisionsroutine so
- zu entwerfen, dass ein giiltiger Quotient entsteht, unabhingig
davon, ob Uberlauf entsteht oder nicht. Diese Mglichkeit ist in
Kapitel 4 im Beispiel 4.4 dargestellt. Es ist auch mdglich, die
Uberwachung bei Uberlauf zu wihlen, indem dem DIVS- oder
DIVU-Befehl ein TR APV-Befehl nachgestellt wird.

7.4.2 Verletzung privilegierter Befehle

Der 68000 initialisiert einen Ausnahmebetriebszustand iiber die
Vektoradresse $20, wenn ein Beniitzerprogramm versucht,
einen der privilegierten Befehle auszufiihren. Die privilegierten
Befehle sind im Kapitel 3 beschrieben (Tabelle 3.17 und beglei-
tender Text) und sind aufgelistet in der «Beniitzerstatus»-
Kolonne der Tabelle 7.1.

7.4.3 Tracing

Wie die Haltefunktion ist auch die Trace-Funktion vorgesehen
zur Unterstlitzung der Programmentwicklung und Fehlerbehe-
bung. Wenn die Trace-Funktion eingeschaltet ist (T = 1 im Sta-
tusregister), erzeugt der 68000 nach jedem ausgefiihrten Befehl
einen Ausnahmezustand und veranlasst dadurch den Prozes-
sor, «einzelschrittweise» durch ein Programm zu gehen. Der
Trace-Ausnahmebetrieb veranlasst die Programmsteuerung,
iiber die Vektoradresse $24 zu einer beniitzerdefinierten Rou-
tine im Speicher zu wechseln. Wie alle Ausnahmezusténde ver-
anlasst auch der Trace-Ausnahmezustand das Riicksetzen des
Trace-Bit (T = 0) und das Speichern der gegenwaértigen Inhalte
des Programmzihlers und des Statusregisters in den Uberwa-
chungsstapel. Nach der Riickkehr aus diesem Ausnahmezu-
stand besteht der Trace-Modus weiter, wenn nicht diese Trace-
Routine das im Stapel gesicherte T-Bit des Statusregisters
16scht. Das T-Bit kann geloscht werden, indem dem RTE-
Befehl ein ANDI #$7FFF, (SP) vorangestellt wird.

Die Trace-Routine wird normalerweise verwendet, um einen
Ausdruck der Registerinhalte nach jedem Befehl zu erhalten.
Abhingig von der Programmierart kann die Trace-Routine
auch andere wichtige Parameter, wie zum Beispiel die Ausfiih-
rungszeit jedes Befehls, ausdrucken.
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Bild 7.4
Speicherung bei illegalen Adressen
und Busfehlern

Der Trace-Modus stellt auch einen einfachen Weg dar, in einem
System «breakpoints» einzufiihren. Dies kann gemacht werden,
indem die im Stapel geretteten Adressen (durch den Trace-Aus-
nahmezustand) mit einer Breakpoint-Adressentabelle vergli-
chen werden. Wenn die Adressen gleich sind, kann der Inhalt
der Register angezeigt oder ausgedruckt werden. Andernfalls
wiirde der 68000 einfach aus dem Trace-Modus zuriickkehren
und den ndchsten Befehl des Programmes.ausfiihren.

7.4.4 lllegale Adressen

Eine illegale Adresse ist eine ungerade numerierte Adresse, die
sich auf einen Wort- oder Doppelwortoperanden bezieht. Sie
wird behandelt iiber die Vektoradresse $0C. Eine illegale Adres-
se kann bei jeder Art von speicherbezogenen Operationen
erscheinen, tritt aber vor allem bei der Verwendung der komple-
xeren Adressierungsarten auf, wie zum Beispiel Adressregister
indirekt mit Index, in dem verschiedene Komponenten addiert
werden, um die effektive Adresse zu erhalten.

Superstatuswort
Adressbus  hoch
Adressbus tief
- zunehmende

Befehlsregister Adressen
Statusregister
Programmzahler (H)
Programmzahler (L)

% 4 3 2 . 4 .0

I l IL/§ | s IFun/rfionscoa’e Superstatuswort

=0 Normal oder Gruppe 2
Ausnahmeverarbeitung

T=1 Gruppe 0 oder Gruppe 1
Avsnahmeverarbertung
(siehe Tabelle #3)

L)5=1 Llesen
L/5=0 Schreiben

Bei Ausnahmezustand «illegale Adresse» (und auch einer
extern erzeugten Ausnahme, Busfehler) bringt der 68000 sieben
Worte Kontext-Information in den Uberwachungsstapel. Diese
Worte sind in Bild 7.4 dargestellt. Wie zu sehen ist, sind die
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ersten drei Worte der Programmzéhler und das Statusregister,
gefolgt vom Befehlsregister (dem Operationswort des Befehls,
der die illegale Adresse erzeugt hat), der illegalen Adresse selbst
und einem «Superstatuswort». Das Superstatuswort vermittelt
spezifische Information iiber den versuchten Speicherzugriff,
ob Schreib- oder Lesezugriff, ob der 68000 an einer Befehlsaus-
filhrung war (Normalzustand oder Ausfiihrung eines Gruppe-
2-Befehls) oder in der Ausfiihrung einer Gruppe-0-oder Grup-
pe-1-Ausnahme und dem Status des Funktionscodes beim Auf-
treten des illegalen Zugriffs.

Die Ausnahmegruppen sind in Tabelle 7.3 zusammengestellt.
Wie friiher erwéhnt, wird der 68000 in einen Doppelbusfehler-
fall eintreten, wenn einer der Befehle im Ausnahmezustand
«illegale Adresse» selbst eine illegale Adresse erzeugt; der Pro-
zessor geht damit in den Haltezustand. Ein extern erzeugter
Busfehler (spéter in diesem Kapitel beschrieben), wéhrend der
Bearbeitung des Ausnahmezustandes «illegale Adresse», wird
ebenfalls einen Doppelbusfehler veranlassen.

Was passiert, wenn eine ungerade Adresse unabsichtlich in den
Vektorspeicherbereichen der illegalen Adressen ($0C...$0F)
gespeichert wird? Wenn diese unwahrscheinliche und ungliickli-
che Situation auftritt und der 68000 zuféllig einen Wort- oder
Doppelwortspeicherzugriff an einer ungeraden Adresse ver-
sucht, werden die folgenden Ereignisse stattfinden:

1. Nach der Feststellung der illegalen Adresse wird der 68000
den Ausnahmeverarbeitungszustand «illegale Adresse» initi-
alisieren. Nach dem Ubergang in den Uberwachungszustand
(S = 1), Ausschalten des Trace-Modus (T = 0) und Berech-
nen der Vektoradresse werden sieben Worte in den Stapel
geschrieben (Bild 7.4) und der Inhalt der durch die Vektor-
adresse bestimmten Speicherzelle in den Programmzihler
geladen.

2. An diesem Punkt wiirde der 68000 normalerweise mit der
Ausfiihrung der Befehle der Ausnahmeroutine «illegale
Adresse» beginnen. In diesem Fall hat aber der Programm-
zéhler eine ungerade Adresse erhalten. Weil diese Befehls-
adresse ungerade ist, ist sie illegal, und der 68000 versucht
erneut, den Ausnahmebetriebszustand «illegale Adresse» zu
initialisieren. Das bedeutet, dass der 68000 zum Schritt 1
zurlickkehrt.

3. Wird diese zweite aufeinanderfolgende illegale Adresse eine
Doppelbusfehlerbedingung verursachen? Nein, weil die ille-
gale Adresse wihrend der Initialisierungssequenz erscheint
und nicht in der Ausfiihrung der Serviceroutine. Der 68000
wird aber wiederholt Ausnahmebetriebszustinde «illegale
Adresse» initialisieren und jedesmal sieben Worte in den Sta-
pel schreiben.

158



Verarbeitungszusténde, privilegierte Zustdnde und Ausnahmebetrieb

4. Weil die Stapel im Speicher riickwirts aufgebaut werden,
kann irgendeines der folgenden Ereignisse diese wiederholte
Sequenz schliesslich beenden:

- Der 68000 gerdt ausserhalb des Lese/Schreib-Speichers
(RAM) und versucht, Information in nicht existierende Spei-
cher oder Nur-lese-Speicher (ROM) zu bringen. Dies sollte
externe Schaltungen veranlassen, einen Busfehler-Ausnah-
mezustand zu initialisieren.

— Der 68000 kann versuchen, Information in den Programm-
speicher zu schreiben anstatt in den Datenspeicher, was
ebenfalls einen Busfehler-Ausnahmezustand herbeifiihren
sollte.

— Wenn der Stapel bei der Verarbeitung bis zu den tiefsten
1024 Byte im Speicher vordringt, werden neue Werte eventu-
ell in den Vektorzeiger «illegale Adresse» (Speicherzellen
$0C...$0F) gespeichert. Wenn diese neue Adresse unge-
rade ist, wird mit der vorhergehenden Sequenz fortgefahren.
Ist sie gerade, wird der Programmzéhler versuchen, an dieser
neuen, zufilligen Adresse einen Befehl auszufiihren, mit un-
definierten Resultaten.

— Wenn der Stapel versucht, in den Riicksetzvektor im unter-
sten Teil des Speichers zu schreiben, sollte ein Busfehler
erzeugt werden, weil diese Speicherzelle einzig ein Nur-lese-
Speicher (ROM) sein kann.

7.4.5 lllegaler Befehl

Ein illegaler Befehl ist ein 16-Bit-Bindrmuster, das nicht eines
der legalen Operationsworte des Befehlsrepertoires des 68000
darstellt. Es ist unnétig zu sagen, dass ein guter Assembler kein
illegales Bitmuster erzeugen wird. Hingegen kdnnen durch Pro-
grammierer solche Muster durch Manipulationen im Objekt-
code erzeugt werden.

7.4.6 Nichtimplementierte Befehle

Die Entwurfsspezifikation fiir den MC 68000 enthilt verschie-
dene Befehle, die in den gegenwirtigen Produktversionen nicht
implementiert sind. Das sind zum Beispiel Befehle fiir Stringma-
nipulation, Feldmanipulation, Codeumsetzung, Fliesskomma-
Arithmetik, Doppelwort-Multiplikation und spezielle Divisions-
algorithmen. Motorola reservierte ungefihr 20% des totalen
Platzes fiir Mikrocode, um in zukiinftigen Versionen diese (oder
vielleicht auch andere) Erweiterungen einzufiihren.

Der nicht beniitzte Platz im Microcode schliesst zwei von 16
moglichen «Operationscodes» (die vier hoherwertigen Bit eines
Befehls) ein. Anstatt diese zwei nicht implementierten Opera-
tionscodes, bindr 1010 und 1111, intern unbeniitzt zu lassen,
stellt Motorola eine spezielle Vektornummer im Ausnahmespei-
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cherbereich fiir jeden dieser Operationscodes zur Verfiigung.
Das gibt Beniitzern die Mdglichkeit, in ihren Programmen
Emulationsbefehle einzufiigen. Diese Befehle konnen entweder
fiir die zukiinftigen Erweiterungen zum MC 68000 vorgesehen
werden (zum Beispiel String- oder Fliesskomma-Befehle) oder
auch nur verschiedene praktische Funktionen fiir Beniitzeran-
wendungen zur Verfiigung stellen.

Wie muss bei der Beniitzung dieser zwei nicht implementierten
Operationscodes vorgegangen werden? Es ist ganz einfach: zur
Beniitzung einer dieser Operationscodes muss einfach nur ein
Wort im Programm eingefiigt werden, dessen hochstwertige
4 Bit den Wert $A (1010 binér) oder $F (1111 binér) aufweisen.
Am einfachsten wird die Einfiigung gemacht mit einer Konstan-
tenanweisung (define constant) wie zum Beispiel DC $A000
oder DC $F000. Wenn der 68000 einem Befehloperationswert
begegnet, das mit $A oder $F beginnt, wird er es als nicht imple-
mentierten Befehl einstufen und in eine Serviceroutine iiber
Adresse $28 (fiir 1010) oder $2C (fiir 1111) eintreten.

Als Beispiel fiir nicht implementierte Befehle wollen wir einen
Satz von Fliesskomma-Befehlen emulieren, unter Beniitzung
des Operationscodes 1010. Angenommen wir haben vier ver-
schiedene Fliesskomma-Befehle: addieren, subtrahieren, multi-
plizieren und dividieren. Im weitern nehmen wir an, dass jeder
dieser Befehle mit zwei Datenregistern operiert, einem Quellen-
register und einem Zielregister. Bild 7.5 zeigt das Bitformat fiir
die Fliesskomma-Operationsworte. Aus dieser Darstellung
ldsst sich erkennen, dass der zu emulierende Befehl eine Fliess-
komma-Multiplikation von D4 mal D5 mit Speicherung des
Produktes in D5 ist. Der Weg zur Einfiigung dieses Befehls in
einem Programm fiihrt liber die Anweisung DC $AA14.

4% B 22 # 0 9 8 F 6 5 43 2 1 0

5
el ] BRI EIE |
l 1 1 1 1 1

— N N

Quellenregrster
000 = D0

1 =27

Operationsfeld
00 = Addiere

0f = Subtrahiere
10 = Multipliziere
11 = Dividiere

Bild 7.5
nicht beniitzt Bitformat der Fliesskomma-
Zielregister Befehle

000 = Do

11 = D7

Wie sieht diese Fliesskomma-Serviceroutine aus? Ein Teil die-
ser Routine, die Befehlsdecodierungssequenz, wird im Pro-
grammbeispiel 7.1 gezeigt. Der Routine (FLTP) sind zwei
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Programmbeispiel 7.1:
Routine zur Initialisierung von Fliesskomma-Mathematik

*Diese Ausnahmeroutine wird ausgefiihrt, wenn der MC 68000 im Programm auf
*einen 1010-Befehl trifft. Sie decodiert das Operationsfeld des Befehls (Bit 3 und 4)
*und beniitzt diese Zahl als Index zum Sprung auf eine Fliesskomma-Additions-,
* -Subtraktions-, -Multiplikations- oder -Divisionsroutine irgendwo im Speicher. Die
*Register A1 und D1 werden beniitzt.

*

*Initialisiere 1010 Vektor

*

FLTP

OPADDR

ORG
DC.L

ORG
MOVEA.L

MOVE
MOVE
ANDI#
LSR

LEA
MOVEA.L
JMP

DC.L
END

$28

FLTP 1010-Vektor zeigt auf FLTP.

$1000

2(SP),Al Programmzéhleradresse nach
1010.

-2(A1),D1 Bringe 1010-Befehlin D1;

D1,-(SP) Kopie im Stapel.

#0018,D1 Erhalte Operationsfeld
(Bit 3, 4).

#1,D1 Berechne Index (Operations-
feld x 4).

OPADDR,A1 Hole Adresse der Operations-
tabelle.

0(A1,D1.W),A1l Hole Adresse der gewiinschten
Routine

(A1) und springe zu

FLTPADD, FLTPSUB, FLTPMUL, FLTPDIV

Anweisungen vorangestellt, welche die 1010-Vektoradresse mit
der Adresse von FLTP initialisieren. Zur Decodierung der kor-
rekten Operation (addieren, subtrahieren, mulitplizieren oder
dividieren), muss der Originalbefehl geholt und in ein Register
geschrieben werden, damit die Bitnummern 3 und 4 manipuliert
und abgefragt werden konnen. Der im Stapel gesicherte Pro-
grammzéhlerwert kann, um zwei vermindert, zum Wiederauf-
finden des 1010-Befehls durch Zugriff auf diesen Speicherplatz
verwendet werden.

Wenn das Operationswort in D1 gespeichert ist, wird eine
Kopie davon im Stapel gesichert fiir die spétere Registerdeco-
dierung durch die Additions-, Subtraktions-, Multiplikations-
oder Divisionsroutine. Wenn das getan ist, maskiert ein ANDI-
Befehl das Operationsfeld heraus (Bit 3 und 4) und eine Rechts-
schiebung um ein Bit wandelt es in einen OPADDR-Tabellenin-
dex um (entspricht einer Multiplikation mit 4). Was {ibrigbleibt,
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ist das Holen der Adresse der Operationsroutine (FLTPADD,
FLTPSUB, FLTPMUL, oder FLTPDIV) in Al und der
Sprung zu dieser Routine. Die Adresse wird geholt mit einem
MOVEA-Befehl unter Beniitzung der Adressierungsart «Pro-
grammzihler relativ mit Index». Es ist zu bemerken, dass diese
FLTP-Routine ganz &dhnlich ist zu der Subroutine «Auswahl
von Mehrfachbeniitzern», SELUSR, im Programmbeispiel
5.10, da beide einen Eingangscode beniitzen zur Ableitung ei-
nes Index in eine Konversionstabelle. Der Hauptunterschied
besteht darin, dass SELUSR herausfinden muss, ob der Identi-
fikationscode giiltig ist, wihrend FLTP keine solche Priifung
durchfiihren muss, weil sie ein 2-Bit-Feld zur Auswahl von einer
aus vier mathematischen Routinen decodiert. Wire das Feld in
FLTP drei Bit lang und nur fiinf der acht m&glichen Kombina-
tionen wéren giiltig, miisste ebenfalls eine Giiltigkeitspriifung
durchgefiihrt werden.

7.5 Extern erzeugte Ausnahmen

Nach Abschluss der Diskussion iiber intern erzeugte Ausnah-
men werden nun Bedingungen ausserhalb des MC 68000 dar-
gestellt, die einen Ausnahmezustand initialisieren. Es gibt 3 sol-
che Bedingungen: Riicksetzung, Unterbriiche und Busfehler.

7.5.1 Ricksetzung (RESET)

Der RESET-Eingang hat die hochste Prioritét aller Ausnah-
men (siche Tabelle 7.3) und ist bestimmt fiir die Systeminitiali-
sierung und den Wiederanlauf nach schwerwiegenden Fehlern
wie zum Beispiel Spannungsausfall. Im wesentlichen besteht die
RESET-Funktion darin, dem 68000 mitzuteilen, dass alle in
Ausfiihrung stehenden Prozesse bedeutungslos sind und zu
beenden sind. Nach Empfang des RESET-Signals fillt der
68000 in den Uberwachungsmodus (S = 1), schaltet den Trace-
Modus aus (T = 0) und setzt die Unterbruchsmaske auf die
hochste Ebene (Level 7), so dass kein Unterbruch diese
RESET-Prozedur unterbrechen kann. Anders als andere Aus-
nahmebedingungen schiitzt eine Riicksetzung weder den Pro-
grammzéhler noch das Statusregister. Der Vektor der Riick-
setzbedingung ist vier Worte lang und belegt die Adressen $00
... $07; diese Adressen miissen im Nur-lese-Speicher (ROM)
liegen. Wihrend des Riicksetzprozesses holt der 68000 die bei-
den ersten Worte in den Systemstapelzeiger und die zweiten
zwei Worte in den Programmzéhler und beginnt dann die Aus-
fiihrung der Befehle, die durch den Programmzéhler adressiert
werden. An dieser Stelle befindet sich die K altstart-/Warmstart-
Routine (Stromversorgung ein/Wiederanlauf).
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Bild 7.6
Ablauf fiir die Ausnahme-
verarbeitung beim Riicksetzen

Bild 7.6 ist ein Flussdiagramm der Ausnahmeverarbeitung fiir
die Riicksetzbedingung. Zu sehen ist auch, dass eine Massnah-
me gegen einen doppelten Busfehler getroffen wird, falls ein
Bus- oder Adressfehler wihrend der Riicksetzbedingung auf-
tritt.

Start
Ricksetz -
ausnahme

Unterbr.-
maske —= 7

1

Hole
Vektor 0

Tegale

"Adresse oder

Busfehler
2

Ja | Doppel - ( )
Busfehler Halt

nein

($00...803)

— SSP

|

Hole
Vektor 1

illegale
Adresse oder
Bus:;e/ykr

Ja
nein

($04...$07)
— P

Weiterver-
arbeitung

7.5.2 Unterbriiche (Interrupts)

Leser mit Erfahrung in der Programmierung von Unterbruchs-
Abfragesequenzen fiir friihere 8-Bit-Mikroprozessoren werden
gerne vernehmen, dass der MC 68000 {iber eine Minicomputer-
dhnliche Unterbruchsstruktur mit Prioritdtsordnung verfligt,
die Unterbruchsanforderungen sieben verschiedener Ebenen
akzeptieren kann. Im weiteren konnen diese Unterbriiche mit
oder ohne Vektor behandelt werden.
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Unterbruchsprioritidten gehen von der Ebene 1 (tiefste Prioritét)
bis Ebene 7 (hochste Prioritdt, nicht maskierbar). Wenn ein
externer Baustein den 68000 zu unterbrechen wiinscht, deco-
diert er die Unterbruchsebene der Unterbruchsanforderung auf
den drei Unterbruchskontrolleitungen IPLO, IPL1 und IPL2.
Vorausgesetzt, dass nicht eine Trace-, eine illegale Adress-, Bus-
fehler- oder Riicksetz-Ausnahmebedingung in Ausfiihrung
begriffen ist, wird der 68000 den in Ausfiihrung begriffenen
Befehl fertig bearbeiten und dann die decodierte Prioritétsebene
mit einer 3-Bit-Unterbruchsmaske im Statusregister vergleichen
(siehe Bild 1.3 im Kapitel 1).

Wenn der decodierte Wert auf den Unterbruchs-Kontrolleitun-
gen gleich oder kleiner ist als der Wert der Unterbruchsmaske,
wird der 68000 die Anforderung einfach ignorieren und mit der
Abarbeitung der Befehle normal weiterfahren. (Die einzige Aus-
nahme hier ist die Ebene 7, die eine andere Unterbruchsanforde-
rung der Ebene 7 quittieren wird.) Wenn aber die Unterbruchs-
anforderung einen héheren Wert als die Unterbruchsmaske auf-
weist, wird der 68000 eine Ausnahmeverarbeitung einleiten.

In den meisten Féllen wird die Unterbruchsbearbeitung unserer
allgemeinen Ausnahme-Verarbeitungssequenz (Bild 7.3) folgen,
hat aber genug zusétzliche Schritte, um ihre eigene Schritt-fiir-
Schritt-Beschreibung zu rechtfertigen. Im folgenden sind die
Schritte in der Unterbruchs-Behandlungssequenz aufgefiihrt
und in Bild 7.7 dargestellt:

1. Nach Erhalt einer Unterbruchsanforderung geniigend hoher
Prioritédt rettet der 68000 den 16-Bit-Inhalt des Statusregi-
sters in einem nichtadressierbaren, internen Register.

2. Der 68000 geht in den Uberwachungsmodus (S = 1) und ver-
ldsst den Trace-Modus (T =0).

3. Die Prioritétsebene des quittierten Unterbruchs (1 ... 7) wird
in die Unterbruchsmaske des Statusregisters geschrieben
und zu allen Bausteinen im System auf den Adressleitungen
Al, A2 und A3 ausgesendet. Zur Kennzeichnung der
Adressbusinformation als Unterbruchsquittung beansprucht
der 68000 alle drei Funktionscodeleitungen (FCO, FC1 und
FC2).

4. An diesem Punkt erwartet der 68000 die Systemantwort, ent-
weder ein Fehlersignal (BERR) oder eines von zwei Nicht-
fehlersignalen (VPA oder DTACK). Wenn weder VPA
(valid peripheral address) noch DTACK (data transfer
acknowledge) in einer vorbestimmten Zeit erscheint, sollte
ein externes Uberwachungszeitglied einen Busfehler (BERR)
senden, damit der 68000 weiss, dass die Unterbruchsanfor-
derung unecht war. Ein solcher falscher Unterbruch veran-
lasst den 68000 zur Erzeugung der Vektornummer $18.

5. Wenn die Unterbruchsanforderung nicht falsch war, sind die
giiltigen Unterbruchsquittungen VPA und DTACK. Die
Bedeutung dieser Antworten sind:
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Bild 7.7
Ablauf der Unterbruchs-
verarbeitung (Interrupt)

Unterbrechende Einkeit
decodiert /PID...IPL2

Unterbruch
2 Maske?

nein

normale
Weiterver-
arbertung

Kopiere SR in infernem
Register

1
S—1
S —=0

Priorititsebene — Unter-
bruchsmaske +Adressbus

Funktionscode
(FCO...F(2)—~ 7

nein,
warten

Unterbruech mit Unterbruch ohne

__ Avtovektor Ja Avtovektor
BITR —l DTACK
Vektornummer = Yektornummer = Vektornummer =
Priorititsebene +318 £ . (239...087)
T < T

Vektoradresse =
Vektornummer x 4

Bringe FC und kopiere
SR in-den Stapel

(Vektoradresse)

—r

Weiterver-
arbejtung

- Bausteine, die speziell zur Unterstiitzung des 68000 ent-

worfen wurden, antworten auf die Unterbruchsquittung
durch das Plazieren einer von 192 Bentitzerunterbruchs-
Vektornummern ($40 ... $FF) auf dem niedrigstwertigen
Byte des Datenbus (DBO ... DB7) und Erzeugung von
DTACK.

Friihere Bausteine wie jene, welche die 6800- und 6500~
Familien unterstiitzen, konnen keine Vektornummer aus-
senden. Diese Bausteine antworten auf die Unterbruchs-
quittung durch Aktivieren von VPA, was den 68000 ver-
anlasst, die Prioritdtsebene zu priifen und eine Basisadres-
se von $18 zu dieser Ebene zu addieren, um eine Autovek-
tornummer zu erzeugen. Weil die Prioritdtsebenen von
1...7 gehen, liegen die Autovektornummern im Bereich von
$19bis $1F.
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6. Der 68000 multipliziert nun die Vektornummern mit 4 zur
Erzeugung einer Vektoradresse. Fiir einen falschen Unter-
bruch wird die Vektoradresse $60 sein. Fiir Beniitzerunter-
briiche liegen die Vektoradressen im Bereich von $100 bis
$3FC. Fiir die Autovektoren liegen die Vektoradressen im
Bereich von $64 (Ebene 1) bis $7C (Ebene 7).

7. Der laufende Programmzahlerwert und die intern gesicherte
Kopie des Statusregisters werden in den Uberwachungssta-
pel geschrieben.

8. Der 68000 14dt den Programmzédhler mit dem Inhalt der
berechneten Vektoradresse und beginnt die Ausfiihrung der
Unterbruchserviceroutine.

7.5.3 Busfehler

Aus fritheren Erkldrungen wissen wir, dass das Busfehlersignal
(BERR) ein extern erzeugtes Eingangssignal ist, das dem 68000
einen Fehler irgendwo im System anzeigt. Wir haben die folgen-
den Anwendungen von BERR diskutiert:

1. Allein auftretend dient BERR zur Anzeige, dass einer von
verschiedenen Fehlern im System aufgetreten ist. Zum Bei-
spiel kann ein Uberwachungszeitglied («Watchdog») BERR
verwenden zur Anzeige, dass ein adressierter Speicherplatz
oder eine periphere Schaltung es unterlassen hat, ein VPA
oder DTACK als Antwort zum 68000 zu senden. Weiter
kann ein Speicherverwaltungsbaustein BERR verwenden
zur Anzeige, dass das ausfiilhrende Programm einen illegalen
Speicherzugriff versucht hat (zum Beispiel den Versuch, in
einen Nur-lese-Speicher zu schreiben).

2. Zusammen mit HALT verursacht BERR ein nochmaliges
Ablaufen des Bus-Zyklus, mit anschliessendem Halt.

3. Das Erscheinen von BERR wihrend einer Gruppe-0-Aus-
nahmeverarbeitung (Riicksetzung, illegale Adresse oder
Busfehler) verursacht einen Doppelbusfehler, der den Pro-
zessor in den Haltezustand bringt.

4. BERR wihrend einer Unterbruchsbehandlung initialisiert
den Ausnahmefall «falscher Unterbruch» iiber die Vektor-
adresse $60.

Die Bedingung 4 (Ausfiihrung falscher Unterbriiche) veranlasst
den 68000 zur Speicherung des momentanen Inhalts des Pro-
grammzéhlers und des Statusregisters, total drei Worte. Bedin-
gungen 1, 2 und 3 veranlassen den 68000, siecben Worte zu
sichern: Programmzéhler, Statusregister, Befehlsregister,
Adressbus (hoch und tief) und ein sogenanntes Superstatus-
wort. Diese Worte sind unter dem Thema illegale Adressverar-
beitung beschrieben (Bild 7.4 und begleitender Text im
Abschnitt 7.4.4).
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Wie man sehen kann, wird tatséchlich nur die Bedingung 1 dazu
filhren, dass eine Befehlsverarbeitung stattfinden wird. Das
bedeutet, dass die Busfehler-Ausnahmebedingung mit BERR
eingeleitet wird, wenn der 68000 Befehle im Normalmodus ver-
arbeitet oder Ausnahmebedingungen der Gruppe 1 oder Gruppe
2 verarbeitet, ausgenommen Unterbriiche. Busfehler-Ausnah-
meverarbeitung veranlasst den 68000 zur internen Erzeugung
einer Vektornummer von $02, und er initialisiert die Ausfiih-
rung iiber die Vektoradresse $08.
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8. Anschluss von Peripheriebausteinen

Tabelle 8.1
Peripheriebausteine fiir den 68 000

Im Kapitel 6 sind alle Signale beschrieben, die man bendtigt, um
periphere Bausteine richtig anzusteuern. Wir haben auch die
zeitlichen Beziehungen zwischen den einzelnen Signalen unter-
sucht und gezeigt, wie der 68 000 mit einem asynchronen 16-
Bit- oder einem synchronen 8-Bit-Baustein kommuniziert. Hier
folgt eine kurze Ubersicht iiber die Elemente, die an den 68 000
anschliessbar sind. Dazu ein einfaches Anwendungsbeispiel.

8.1 Peripheriebausteine der 68 000er-Familie

Die Tabelle 8.1 zeigt die 11 ersten Peripheriebausteine fiir den
68000. Sie werden alle an die asynchronen Steuerleitungen des
Mikroprozessors angeschlossen.

Typen-  Beschreibung Hersteller Zweit-
nummer lieferant
68120/ Intelligenter Peripherie-
68121 Controller (IPC) Motorola Rockwell
68122 Terminal-Controller
(CTC) Motorola -
68230 Parallel-Schnittstelle/Timer
(PIT) Motorola -
68340  Doppelschnittstellen mit
RAM (DPR) Motorola -
68341 Gleitkomma-ROM Motorola -
68450 DMA-Controller Hitachi Motorola,
(DMAC) Rockwell
68451 Speicherverwaltungs-
einheit (MMU) Motorola Rockwell
68540 Fehlererkennungs-
und Korrekturbaustein
(EDCC) Motorola -
68560 Serieller DM A-Prozessor
(SDMA) Motorola -

68561 Multiprotokoll-K ommuni-
kationskontroller MPCC) Rockwell Motorola
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In Kiirze konnen bis zu 30 solche Bausteine erwartet werden.
Dabei sind auch einige schon bestehende Schaltungen von Sig-
netics, wie zum Beispiel ‘

- 2661 programmierbare Kommunikationsschnittstelle (EPCI)
- 2652 Multi-Protokoll-Kommunikations-Controller (MPCC)
— 2653 Polynom-Generator Checker (PGC).

Von Motorola sind ein Hard-Disk-Controller, ein leistungsféhi-
ger CRT-Controller, eine Multiprozessor-Schnittstelle und ein
I/O-Prozessor geplant. Konzentrieren wir uns nun auf die in
Tabelle 8.1 aufgefiihrten Bausteine:

Der intelligente Peripherie-Controller (IPC) 68 120 ist ein viel-
seitig einsetzbarer, anwenderprogrammierbarer I/O-Controller.
Da er mit einem 8-Bit-Mikroprozessor 6801 aufgebaut ist, kann
er als I/O-Prozessor oder als Hilfsprozessoreinheit in einem ver-
teilten Prozesssystem eingesetzt werden. Dieser IPC enthélt ne-
ben der 6801-CPU auch noch

- eine Systemschnittstelle,

— eine serielle Kommunikationsschnittstelle,

— 21 parallele I/O-Leitungen,

— einen 16-Bit-Timer,

— einen 128-KByte-Lese/Schreib-Speicher (RAM),
- ein ROM von 2 KByte,

— 6 Hilfsregister.

Der Terminal-Controller (CTC) 68122 ist ein IPC, der als
serielles 1/O-Subsystem programmiert werden kann. Mit die-
sem konnen bis zu 32 Terminale an einem 68 000 angeschlossen
werden.

Mit dem Parallel-Schnittstellen-Timer (PIT) 68 230 konnen
praktisch alle Anwendungen mit parallelen Schnittstellen und
zeitabhingigen Anforderungen realisiert werden. Er enthilt

zwei doppelt gepufferte I/O-Schnittstellen fiir mehrere
Betriebsarten,

eine dritte 8-Bit-Schnittstelle,

einen 24-Bit-Timer,

Logik fiir priorisierte Interruptvektoren.

Das Gleitkomma-ROM 68 341 besteht aus zwei Bausteinen, die
dem Anwender erlauben, positionsunabhéngige, «reentrante»
Gleitkommaprogramme ablaufen zu lassen. Die Firmware des
ROM unterstiitzt folgende Funktionen:

- Addition, Subtraktion, Multiplikation, Division;

— Quadratwurzel, Vergleiche, Absolutwert usw.

Der DMA-Controller (DMAC) 68450 kann vier unabhéngige

DMA-Kanile bedienen, mit welchen bis zu 4 MByte pro s wort-
oder byteweise iibertragen werden kann.
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Tabelle 8.2
Verfiigbare 6800er-Peripherie-
bausteine

Die Speicherverwaltungseinheit (MMU) 68451 berechnet alle
Adressentranslationen und Speicherschutzfunktionen fiir den
ganzen Speicherbereich von 16 MByte. Mit einer MMU kann
man innerhalb des gesamten Speicherbereiches Segmente bis zu
256 Byte hinunter definieren. Mit Hilfe der Funktionscodezeile
des Prozessors definiert die MMU fiir jedes Segment einen logi-
schen Adressbereich (zum Beispiel Programm- und Daten-
bereich fiir den Uberwachungs- oder Beniitzerstatus). Sie kann
auch einen Offset zu einer physikalischen Adresse und Spei-
cherschutz fiir Segmente verarbeiten. Die MMU generiert einen
speziellen Busfehler, falls ein nicht erlaubter Zugriff auf ein Seg-
ment gemacht wird.

Der Fehlererkennungs- und Korrekturbaustein (EDCC) 68 540
korrigiert Einzelbitfehler und erkennt Doppelbitfehler sowohl in
8-Bit- und 16-Bit-Datenbussystemen. Der EDCC kann fiir
kiinftige Systeme direkt auf 32 Bit erweitert werden.

Der  Multi-Protokoll-Kommunikations-Controller (MPCC)
68561 ist ein leistungsfihiger Datenkommunikationsbaustein,
der asynchrone, bitorientierte synchrone (X.25, SDLC,
HDLC) und byteorientierte synchrone (BISYNC und
DDCMP) Ubertragungsprotokolle verarbeiten kann.

8.2 Peripheriebausteine der 6800er-Familie

Viele Anwendungen brauchen die hohe Leistungsfihigkeit der
68 000er-Peripheriebausteine nicht. Hier kénnen zum Teil die
glinstigeren Bausteine der 6800er-und 6500er-Serie verwendet
werden. Die Tabelle 8.2 zeigt einige gebrduchliche 6800er-Bau-
steine. Ein jeder kann {iber die synchronen Steuerleitungen des
68000 betrieben werden (siehe Kapitel 6 der Beniitzeranleitung
des MC 68 000).

Typen-
nummer  Beschreibung

MC 6821  Peripherer Schnittstellenadapter (PIA)

MC 6840 Programmierbarer Zeitgeber

MC 6843 Floppy-Disk-Controller (FDC)

MC 6845 Bildschirm-Controller (CRTC)

MC 6847 Videoanzeige-Generator (VDG)

MC 6850 Asynchrone Kommunikationsschnittstelle (ACIA)
MC 6852 Synchrone Kommunikationsschnittstelle (SSDA)
MC 6854 Erweiterter Datenlink-Controller (ADLC)

MC 6859 Datensicherheitsbaustein

MC 6860 Digital-Modem (0 bis 600 Bit/s)

MC 6862 Modulator (2400 Bit/s)

MC 68488 Schnittstelle fiir den IEEE-488-Bus (GPIA)
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Wir wollen nun untersuchen, wie der populdre Baustein
MC 6821 (PIA) an den 68 000 angeschlossen werden kann.

8.3 Anschluss eines PIA an den 68000

8.3.1 DerPlA 6821

Der PIA 6821 (Peripheral Interface Adapter) hat alles Notige,
um einen Printer, Bildschirm, eine Tastatur, Schalttafel oder
dhnliches an einen 6800 oder 68000 anzuschliessen. Der PIA
kommuniziert mit dem Mikroprozessor iiber die Systembusse
(Daten, Adressen, Steuerung). Er kann mit den angeschlosse-
nen Peripheriegeriten iiber zwei 8-Bit-Schnittstellen, Port A
und Port B, verkehren. Jede der 8 Leitungen der beiden Ports
kann unabhéngig von etwas anderem als Ein- oder Ausgang
programmiert werden.

Im PIA wird jede bidirektionale Schnittstelle (Port A und Port
B) unterstiitzt durch:

- ein Datenrichtungsregister. Jedes Bit des Datenrichtungsre-
gisters bestimmt, ob die entsprechende Portleitung als Ein-
gang (0) oder als Ausgang (1) programmiert wurde.

— ein Kontrollregister, das die Interruptstatusbit eines Ports
speichert und die internen logischen Verbindungen innerhalb

des PIA auswihlt. )
- ein Peripheriedatenregister, das Daten zwischen dem Mikro-

prozessor und der angeschlossenen Peripherie zwischenspei-
chert.

- zwei Interruptsteuerleitungen, die ihre Wirkung je nach
Inhalt des Kontrollregisters erhalten.

Es sind sechs Register im PIA adressierbar:
- zwei Peripheriedatenregister;

- zwei Datenrichtungsregister;

- zwei Kontrollregister.

Jedes periphere Register teilt ein Speicherbyte mit einem Daten-
richtungsregister. Somit brauchen wir nur vier (anstatt sechs)
Adressen fiir den PIA. Leser, die die Eigenschaften des 6821-
PIA nicht kennen, konnen diese im Datenblatt des Bausteins
nachschlagen.

Wie alle 8-Bit-Bausteine, kann auch der 6821-PIA Informatio-
nen von 8 Bit parallel transferieren. Um mehr als 8 Bit zu iiber-
tragen, braucht es zusétzliche Transfers, falls nur ein PIA dafiir
vorhanden ist. Da der 68 000 iiber einen 16-Bit-Datenbus ver-
fiigt, kann er 16 Bit gleichzeitig iibertragen, was mit zwei der
oben beschriebenen PIAs moglich ist (einen fiir die héheren 8
Bit und einen fiir die tieferen 8 Bit).
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Bild 8.1
Schnittstelle zwischen einem
68000 und zwei PIAs (6821)

8.3.2 Schnittstelle fiir 16-Bit-Datentransfer

Bild 8.1 zeigt ein Beispiel, wie zwei PIAs am Synchronbus des
68000 angeschlossen werden konnen, um 16-Bit-Informatio-
nen gleichzeitig zu dbertragen. In diesem Beispiel wird ange-
nommen, dass die 6800-Peripheriebausteine alle im Adressen-
bereich von $SFEF800 bis $SFEFF00 verdrahtet sind, weil die
giiltige periphere Adresse (VPA) nur mit dem Adressenstrobe
(AS) aktiv und dem Ausgang des 13-Eingangs-NAND
(74LS133) logisch 0 aktiv werden kann. Im weiteren ist aus Bild
8.1 zu lesen, dass die beiden PIAs nur selektiert werden, falls die
Adressen A3 ... A5 logisch 1 sind. Damit sind die beiden Bau-
steine nur im Adressenbereich $FEF838 bis $FEFFFF
ansprechbar. Die anderen beiden Adressenbit A1 und A2 der
PIA werden fiir das Selektieren der internen Register wie folgt
verwendet:

A2 Al Selektiertes Register

0 0 Peripherieregister A / Datenrichtungsregister A
(PRA/DDRA)

0 1 Kontrollregister A (CRA)

1 0 Peripherieregister B/ Datenrichtungsregister B
(PRB/DDRB)

1 1 Kontrollregister B(CRB)

Weil jeder PIA vier Speicherbyte besetzt, brauchen die zwei
PIAs in Bild 8.1 acht Byte (4 Worte), die vier geraden Byte fiir
den PIA mit D8 ... D15 und die ungeraden Byte fiir den PIA
mit DO ... D7. Wir wollen annehmen, dass unsere PIAs die
Adressen SFEFF00 bis SFEFFO07 (siehe Bild 8.2) besetzen.

3,
sk Adresse fir 6800

v
p—a-
- o
- :
68000 — 3| g o
Mikro- - NN N
prozessor P l
OO )
BE3E8 B3ged
In Hoherer PU| | % n Tieferer PIA
§ ..,%- 6821 § s 6821
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Gerade Oberer PIA Unterer PIA Ungerade

Adresse Adresse

$SFEFFO0 PRA/ DDRA PRA/DDRA $FEFFO01
$FEFF02 CRA CRA $FEFF03
$FEFF04 PRB/DDRB PRB/DDRB $ FEFFO05
$FEFFO06 CRB CRB $FEFF07

8.3.3 Einfache 16-Bit-Transfers mit PIA

Aus Illustrationsgriinden nehmen wir an, dass die PIAs in Bild
8.1 an zwei 16-Bit-Peripheriegerite angeschlossen sind. Das
Gerit, das an Port A der beiden PIAs héngt, sei nur ein Ein-
gangsgerét (z. B. Schalterreihe). Wenn dieses Gerit ein Daten-
wort an Port A beider PIAs angelegt hat, teilt es dies dem 68 000
mittels eines Daten-bereit-Signales iiber Anschluss CA1 des
oberen PIA mit. Nachdem der 68 000 das Wort in den Speicher
gelesen hat, gibt er mit dem Signal Daten angenommen iiber den
Anschluss CA2 dem Peripheriegerét bekannt, dass die Daten
gelesen wurden.

Das an Port B beider PIAs angeschlossene Peripheriegeriit sei
nur ein Ausgabegerét (z. B. Gruppe von LED-Anzeigen). Wenn
das Geriit bereit ist, ein Datenwort zu empfangen, sendet es dem
68 000 ein Signal Peripherie bereit auf Anschluss CB2 des obe-
ren PIA. Der 68 000 gibt darauf ein Ausgabedatenwort auf Port
B beider PIAs und teilt das mit dem Signal Ausgabe bereit auf
dem Anschluss CB2 des oberen PIA dem Peripheriegerit mit.
Bild 8.3 zeigt die eben beschriebenen Datenpfade.

Y] Doten bereit
[2afenbus D8 D5 ca2 | 2aten _angenommen
Eingabe-
Pao. 7 Perioterd
Fréssenbus ) Hoherer o i Gerdt
V| a4 c31 Peripherie bereit
6821 .
32 Avusgang bereit
68000 p— Steverbus
Mikro- N Pao.pe7 ﬂz-ﬂ_ww{
prozessor

Avsgabe-

N Ferjpherre-

atenbus DO... DF A Gerit
PAO...PAT ingabe-Daten
Adressenbus Tieferer
] PIA
6821
- N
Steverbus
[\ £ Avsg.-Daten

Wenn ein PIA mit dem angeschlossenen Peripheriegeridt kom-
munizieren will, muss er zuerst dafiir programmiert werden.
PIAs werden wihrend der Systeminitialisierung als Teil einer
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Bild 8.2
Anordnung der PIA-Register im
Speicher.

Es bedeuten: PRA/DDRA = Peripherie-
register/Datenrichtungsregister A-Seite
CRA = Kontrollregister A-Seite (analog
fiir B-Seite).

Bild 8.3

Anschluss zweier Peripheriegeriite
an den Mikroprozessor 68 000 mit
zwei PIAs 6821.
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Kaltstartroutine programmiert. Das Programmbeispiel 8.1 ist
eine Initialisierungsroutine fiir zwei PI1As, wie eben beschrieben.

Der obere PIA ist so programmiert:

— DDRA alles 0 » Port A wirkt als Eingang,

- CRA - %00100110($26), Aktivierung des Handshakings
- DDRB alles 1 ($ FF) —» Port B wirkt als Ausgang,

- CRB - %00100110 ($26), Aktivierung des Handshakings.

Danach wird der untere PIA initialisiert:
— DDRA alles 0 - Port A wirkt als Eingang,
- CRA - %00000100 ($04), PRA angewihlt,
- DDRB alles 1 - Port B wirkt als Ausgang,
- CRB - %00000100 ($04), PRB angewihlit.

Programmbeispiel 8.1

PIAD EQU $SFEFF00

PIAC EQU PIAD +2

PIBD EQU PIAD +4

PIBC EQU PIAD +6

E3
MOVEA.L  PIAD.A0

* Programmiert den oberen PIA
MOVE.L #$26FF26,D0
MOVEP.L  D0,0(A0)

* Programmiert den unteren PIA
MOVE.L #$04FF04,D0
MOVEP.L  DO0,0(A0)

Initialisierung von zwei PIAs

Adresse von PRA/DDRA
Adresse von CRA
Adresse von PRB/DDRB
Adresse von CRB

~ Zeigt auf den oberen PIA

Setzt die Parameter auf und
sendet sie zum PIA (H)

Setzt die Parameter auf und
sendet sie zum PIA (L)

Wenn der PIA einmal initialisiert ist, l1duft der Informations-
transfer zu und von der angeschlossenen Peripherie relativ ein-
fach ab. Um ein einfaches 16-Bit-Wort an die Peripherie zu
schicken, muss zuerst auf das Bereitschaftssignal der Einheit
gewartet werden. Darauf kann das Datenwort zum peripheren
Register B des PIA geschickt werden. Diese Sequenz ist im Pro-

Programmbeispiel 8.2

Senden eines 16-Bit-Wortes an eine periphere Einheit

* Gibt das in DO enthaltene Wort aus.

OUTW TST.B PIBC
BPL.S OUTW
MOVE DO, PIBD
MOVE PIBD, PIBD

Periphere Einheit bereit?
Warte bis es soweit ist,

dann gebe das Wort aus.
Losche das Bereitschaftsflag.
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grammbeispiel 8.2 dargestellt. Darin werden als Ausgabewort
die unteren 16 Bit des Datenregisters DO verwendet. Die schein-
bar unwirksame Instruktion MOVE PIBD,PIBD am Ende des
Programms bewirkt mit der Lese-Operation nur das Loschen
des peripheren Bereitschaftsflags in Bit 7 des Kontrollregisters.
Im Beispiel 8.3 ist gezeigt, dass das Ubertragen von mehreren
Datenwortern beinahe so einfach ist wie fiir eines. Dieses Pro-
gramm schreibt den Inhalt des Registers DO regelméssig in den
Ausgang, indem das Wort in DO nach jedem Transfer inkre-
mentiert wird.

Programmbeispiel 8.3
Wiederholtes Inkrementieren und Ausgabe eines 16-Bit-Wortes
* Das Ausgabewort ist stindig im DO. Es wird nach jedem Transfer inkrementiert.

OUTDO TST.B PIBC Periphere Einheit bereit?
BPL.S OUTDO Warte bis sie soweit ist,
MOVE DO,PIBD dann gib das Wort aus.
ADDQ #1,D0 Erh6he DO um 1.
MOVE PIBD, PIBD Losche das Bereitschaftsflag
BRA.S OuUTDO und wiederhole.

Das Programm im Beispiel 8.4 zeigt eine typische Eingaberou-
tine, in der 35 Worte eingelesen und in sich folgenden Speicher-
pldtzen abgespeichert werden sollen. Der Transfer ist mit indi-
rekter Adressierung und nachtréglichem Inkrementieren reali-
siert, damit die Adresse automatisch auf den néchsten Speicher-
platz zeigt. Das Register DO ist absichtlich mit 34 anstatt 35
initialisiert worden, weil die Abschlussinstruktion (DBF DO,
IN35) das Programm erst terminiert, wenn DO den Inhalt -1
und nicht 0 hat.

Programmbeispiel 8.4

Daten von einer peripheren Einheit lesen und abspeichern

*Dieses Programm liest 35 Datenworte in den Speicher, wobei die jeweilige Speicher-
* adresse in AQ steht.

MOVE.L  #34,D0 Zihler in DO setzen.
IN35 TST.B PIAC Daten bereit?
BPL.S IN35 Warte bis es soweit ist,
MOVE PIAD,(A0) + dann lese ein Wort.
DBF DO0,IN35 Wiederhole fiir 35 Worter.
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9. Unterstiitzung fiir den MC 68000

Die Leistungsmerkmale eines Mikroprozessors, sein Preis und
seine Verfiigbarkeit sind wichtige Faktoren fiir den Erfolg eines
derartigen Produktes. Nicht weniger wichtig ist jedoch die gan-
ze Unterstiitzung, die ein Anwender vom Hersteller und Liefe-
ranten in Form von Bauelementen, fertigen Karten, leistungsfé-
higen Entwicklungssystemen und geeigneten Softwarepaketen
erwarten kann. Sie allein macht einen Mikroprozessor in der
Anwendung erst «lebensfihig». Es ist Ziel dieses Kapitels, eine
Ubersicht der von Motorola erhiltlichen Bausteine fiir den
MC 68000 zu geben. Dariiber hinaus gibt es eine ganze Reihe
von Firmen, die den MC 68000 unterstiitzen, sei es durch
«second source» der Bauteile (z.B. Thomson-Efcis, Mostek,
Signetics/Philips), eigene Peripheriebausteine, Entwicklungssy-
steme (GenRad), Hewlett-Packard, Philips, Tektronix usw.)
oder durch Softwarepakete.

9.1 M68000 — eine Prozessorfamilie

Mit der Einfiihrung ihres Mikroprozessors MC 68000 im Jahr
1979 folgte Motorola ihrem Konzept der Mikroprozessor-
Familie, wie sie es bereits beim MC 6800 im Jahr 1974 fiir 8-Bit-
Maschinen getan hatte. Im Bild 9.1 ist die Familie der
M68000er-Mikroprozessoren dargestellt (siehe dazu auch die
Tabelle 9.1).

9.1.1 MC68000

Die Mikroprozessoren MC 68000L4 bis MC 68000L12 un-
terscheiden sich lediglich durch die Frequenz des Taktes. Das
Modell L4 arbeitet mit 4 MHz, das Modell L12 mit 12MHz.
Im iibrigen entspricht diese Gruppe von 16-Bit-Maschinen
genau der Beschreibung in dieser Artikelfolge.

9.1.2 MC68008

Das Modell MC 68008 stellt eine Version des MC 68000 mit
einem auf 8 Bit reduzierten Datenbus dar. Der MC 68008 ist
vollstindig softwarekompatibel mit dem MC 68000, sowohl im
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Unterstiitzung fiir den MC 68 000

Baustein- Kurzbe-  Beschreibung Eigenschaften, Verwendung

nummer  zeichnung

MC.....

68120/ IPC Intelligent Peripheral Controller 21 parallele I/O-Leitungen; Seriekanal;

68121 Universeller, intelligenter 128 Byte RAM; 2 KByte ROM (nur 68120);
Peripherie-Steuerbaustein 16-Bit-Zeitgeber; Semaphore-Register; externe

und interne Interrupts.

68230 PIT Parallel Interface and Timer 24 1/O-Leitungen; 24-Bit-Zeitgeber; Logik fiir
Parallel-Interface und Zeitgeber Interruptvektor-Erzeugung.

68440 DDMA  Dual Direct Memory Access Adressierbereich 16 MByte; Dateniibertragung
Controller von Speicher zu Speicher, von Speicher zu
Steuerbaustein fiir direkten Peripherie, von Peripherie zu Speicher; zwei
Speicherzugriff unabhéngige Kanile; Subset des MC68450.

68450 DMAC  Direct Memory Access Controller 4 unabhingige Kanile; Array-Operationen;
Steuerbaustein fiir direkten zwei vektorisierte Interrupts pro Kanal.
Speicherzugriff

68451 MMU Memory Management Unit 32 Speichersegmente mit variabler Grosse;
Speicherverwaltungseinheit berechnet physikalische Adressen aus logischen

Adressen mittels Funktionscode (FCO...FC2);
schiitzt Speicherbereiche vor unerlaubten
Zugriffen; unterstiitzt Multitasking-Betriebs-
systeme.

68452 BAM Bus Arbitration Module Teilt den Bus nach einem Prioritétsschema
Baustein fiir die Bussteuerung einem von bis zu 8 Bus-Mastern zu.

68652 MPCC Multi Protocol Communications ~ Unterstiitzt bitorientierte Protokolle wie
Controller SDLC,ADCCP,HDLC, X.25; Byte-
Steuerbaustein fiir synchronen Steuerungsprotokolle wie DDCMP, BISYNC;
Datenverkehr Dateniibertragungsgeschwindigkeit bis

2 MBaud.

68653 PGC Polynominal Generator Checker  Erzeugt und priift Paritétsbit; erzeugt und priift

Polynomerzeuger und -priifer Priifzeichen; fiir Dateniibertragung zwischen
Prozessor und synchronen und asynchronen
Sendern und Empfangern; kompatibel mit
MC68652 und MC68661.

68661 EPCI Enhanced Programmable Sendet parallele Daten in serieller Form und
Communications Interface empféangt unabhéngig davon serielle Daten fiir
Universeller Interfacebaustein parallele Weiterverarbeitung; Baudrate bis
fiir synchrone und asynchrone 1MBit/s; 3 verschiedene Baudratensets
Dateniibertragung (Modell A, B, C).

68881 FPCP Floating-Point Co-Processor Leistungsfihiger Fliesskomma-Coprozessor
Coprozessor fiir Fliesskomma- mit der Komplexitét des 32-Bit-Mikro-
arithmetik prozessors MC68020; acht 80-Bit-Register fiir

Daten in Fliesskommadarstellung; umfasst
den vorgeschlagenen IEEE-Standard und geht
weit {iber diesen hinaus.

Tabelle 9.1

Einige neue Peripheriebausteine, speziell entwickelt fiir die Familie der Mikroprozessoren MC 68000
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68881 ) FPCP

68020

32-BIT-68000
IMDC

68 450 ) DMAC

68200 ) 16-BIT MCU
68 008

Reduzierter Bus 68000
MMU 68 301 ) MFP

00
0

16-BIT-pP
IPC

68120
NO ROM

68230 ) PI/T 68 430 ) DMAI 68 440 ) DDMA

BAM

0

\9'79 19I80 ©1981 1982 1983

Bild 9.1
Die 68000-Familie (siche dazu auch Tabelle 9.1)

Quellencode wie auch im Objektcode. Er wird dadurch zur
kostenglinstigen Alternative zu grésseren Systemen, ohne auf
die Vorteile eines ausgereiften 16/32-Bit-Konzepts zu verzich-
ten.

9.1.3 MC68010

Mit der Bezeichnung «Virtual Memory Processor» stellt der

MC 68010 eine leistungsfihige Erweiterung des Grundmodells

MC 68000 dar. Die Erweiterung umfasst im wesentlichen drei

Punkte:

- Der Prozessor speichert bei einem auftretenden Busfehlersi-
gnal (BERR) automatisch den vollstindigen Zustand ab.
Nach Beheben des Fehlers kann der Zustand wieder automa-
tisch hergestellt werden.

— Der MC 68010 enthélt Mechanismen zum Einsatz als virtu-
eller Prozessor in virtuellem Speicher und iibernimmt alle
Massnahmen, die diese Technik erfordert.
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Unterstiitzung fiir den MC 68 000

— Verzogerte Busfehlersignale konnen verarbeitet werden.
Als Anwendung dieser Eigenschaft steht die Fehlersuch- und
-korrekturtechnik (EDAC, error detection and correction)
im Vordergrund, die mit dem MC 68010 so gehandhabt
wird, dass die Ausfiihrungsgeschwindigkeit nicht beein-
trichtigt ist, falls kein Fehler auftritt.

9.1.4 MC68020

Der MC 68020 steht kurz vor seiner Einfiihrung und ist als logi-
sche Folge des 16/32-Bit-Konzeptes der Familie ein wahrer 32-
Bit-Prozessor. Die Méglichkeiten des MC 68000 sind hier noch
erweitert worden, so durch einige leistungsfihige Befehle, durch
hohere Ausfiihrungsgeschwindigkeiten, mehr Adressierungsar-
ten, zusétzliche Betriebssystem-Unterstiitzungsmechanismen,
Cache-Speicher und neue Bustechniken. Ein Fliesskomma-
Coprozessor MC 68881 mit acht 80-Bit-Fliesskomma-Daten-
registern macht mit dem MC 68020 eine aussergewohnlich lei-
stungsfdhige Prozessorgruppe. Der Coprozessor MC 68881
erfiillt die Bedingungen der von der IEEE vorgeschlagenen
Norm und geht weit dariiber hinaus.

9.2 Peripheriebausteine
9.2.1 Spezielle Bausteine der 68000er-Familie

Peripheriebausteine, die speziell fiir die Mikroprozessoren aus
der Familie 68000 entwickelt wurden, sind in der Tabelle 9.1
aufgefiihrt.

9.2.2 Weitere geeignete Bausteine

Neben den in Tabelle 9.1 aufgefiihrten speziellen Peripheriebau-
steinen sind weitere Interface-ICs erhiltlich, die im Zusammen-
hang mit dem 8-Bit-Mikrocomputer MC 6800 eingefiihrt wur-
den. Ihr Anschluss an den MC 68000 erfolgt so, wie dies grund-
sétzlich im Kapitel 8.2 fiir den Peripheriebaustein PIA (MC
6821) beschrieben wurde. Die Tabelle 9.2 fiihrt eine Reihe sol-
cher Komponenten auf.

9.3 Lehrsystem

Fiir den Einsatz in Schulen, Instituten und Entwicklungslabora-
torien wird ein Lehrsystem auf einer Karte mit der Bezeichnung
MEX 68KECB angeboten. Es stiitzt sich auf den MC 68000,
beinhaltet 32 KByte RAM, ein Monitorprogramm in zwei
ROMs zu je 8 KByte, zwei serielle Schnittstellen RS 232 mit
Baudratensteuerung (110 bis 9600 Baud), eine Centronics-
Druckerschnittstelle (Bild 9.2).
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Baustein- Beschreibung Bemerkungen

nummer

MC 6821  Peripheral Interface Adapter (PIA) 16 1/O-Leitungen; alle einzeln in der Richtung
Universeller Parallel-Interface- programmierbar; 4 Handshake-Leitungen.
baustein

MC 6822 Industrial Interface Adapter (IIA)  Wie 6821, jedoch dank «Open drain»-
Interfacebaustein fiir die industrielle Ausgéngen bis 18 V belastbar und damit auch
Umgebung CMOS-kompatibel bei 15 V.

MC 6828  Priority Interrupt Controller (PIC) 8 Interrupts; erzeugt Vektoradressen;
Steuerbaustein fiir Interrupt- beriicksichtigt Prioritédten.
prioritédten

MC 6835 CRT-Controller (CRTC) Alphanumerische, halbgrafische und grafische
Steuerbaustein fiir Bildschirme Betriebsarten; unterstiitzt zwei verschiedene

Bildschirmformate.

MC 6840 Programmable Timer (PTM) 3 unabhéngige Zeitgeber mit je 16 Bit;

Zeitgeberbaustein fiir Rechteckgeneratoren, Zeitverzégerungen,
Einzelimpulse, Pulsbreitenmodulation,
Frequenzvergleich.

MC 6847 Video Display Generator (VDG)

MC 6850 Asynchronous Communications Ubertrigt bis 1 MBit/s; fiir 8- und 9-Bit-
Interface Adapter (ACIA) Ubertragung; zweifach gepufferte Daten;
Asynchroner Dateniibertragungs-  mit Steuerfunktionen fiir Modems.
baustein (UART)

MC 6852 Synchronous Serial Data Adapter  Fiir bidirektionalen, synchronen Datenverkehr;
(SSDA) bis 1,5 MHz Taktfrequenz; 3 Byte FIFO-
Synchroner Dateniibertragungs- Speicher beim Sender und Empfénger;
baustein Modemfunktionen.

MC 6854 Advanced Data Link Controller Interface zwischen Prozessor und Daten-

(ADLC) kandélen der Standards ADCCP,HDLC,
SDLC.

MC 6859 Data Security Device Mit kryptografischem Algorithmus nach
Baustein fiir Datenschutz USA-Standard DES.

MC 6860 Digital Modem Erzeugt Modulation, Demodulation von
seriellen Signalen fiir FSK (frequency shift
keying) bis 600 Bit/s; kompatibel mit ACIA
(MC 6850).

MC 6862 Digital Modulator Fiir 1200/2400 Bit/s.

MC 68488 General Purpose Interface Adapter  Ermoglicht Listener- und Talker-Betrieb mit

Schnittstelle zu IEC-Bus allen Protokollvorschriften des IEC-Bus
(IEEE 488, GPIB).
Tabelle 9.2

Peripheriebausteine aus der Familie des 8-Bit-Mikroprozessors MC 6800, auch geeignet fiir den MC 68000
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Unterstiitzung fiir den MC 68 000

Bild 9.2

Das Lehrsystem
MEX68KECB ist ein
ideales Hilfsmittel fir den
Einstieg in das Arbeiten
mit dem MC 68000

Mit Hilfe des Monitorprogramms konnen Programme mit
einem einfachen Zeilenassembler entwickelt und ausgetestet
werden. Programme, die auf einem grisseren System mittels
«Crosssoftware» entwickelt wurden, lassen sich dank eingebau-
tem Ladeprogramm bequem in das Lehrsystem umladen.

Das Monitorprogramm verwendet die gleiche Syntax wie
«MACSbug», « VERSAbug» und «VMEbug», den Unterstiit-
zungsprogrammen, wie sie fiir die grosseren Varianten von Ent-
wicklungssystemen erhéltlich sind.

9.4 VME-Bus

Auf der Basis des VERSA-Bussystems, das eigens fiir grossere
Anwendungen mit dem MC 68000 geschaffen wurde und fiir
das eine ganze Familie von Karten mit der Bezeichnung

Nummer Beschreibung

MVME 101  Einplatinencomputer (MC 68000) mit seriellen
und parallelen I/O-Leitungen

MVME 110-1 Einplatinencomputer (MC 68000) mit
I/O-Kanalschnittstelle

MVME 200 Speicherkarte, 64 KByte RAM mit Paritét

MVME 201  Speicherkarte, 256 KByte RAM mit Paritét

MVME210 Speicherkarte, 128 KByte RAM/ROM

MVME 300 Controllerkarte fiir den GPIB (IEEE 488)

MVME 310  Universeller Peripheriecontroller

MVME 315  Diskcontroller zu SASI-Adapter (Shugart)

MVME400 Zweifache Serieschnittstelle RS 232

MVME410  Zweifache Parallelschnittstelle (je 16 Bit)

MVME420  Peripherieadapter (SASI von Shugart)

MVME435 Magnetbandadapter fiir 9 Spuren

MVME600  8/16 Kanile mit analogem Eingang
(12-Bit-Umsetzer)

MVME 605 4 Kanile mit analogen Ausgéngen
(12-Bit-Umsetzer)

MVME 610  Optokoppler-Eingiéinge fiir 120/240 V~

MVMEG615  Optokoppler-Ausgénge fiir 120/240 V~ mit
Nulldurchgangsdetektor

MVME 616  Optokoppler-Ausgénge fiir 120/240 V~

MVME 620  Optokoppler-Eingénge fiir 30 V-

MVME 625  Optokoppler-Ausgénge fiir 30 V-

MVME920 VME-Busplatine fiir 20 Einschiibe

MVME921 VME-Busplatine fiir 9 Einschiibe

MVME922 1/O-Kanal-Busplatine fiir 5 Einschiibe

MVME941  Gehiuse fiir 9 VME-Bus- und I/O-K analkarten

Tabelle 9.3 Lieferbare VME-Bus-Karten
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«VERSAmodule» existiert, entstand in Zusammenarbeit mit
den Firmen Mostek, Signetics/Philips und Thomson/Efcis das
Konzept des VME-Bus. Es handelt sich dabei um ein flexibles
Bussystem fiir Europakarten, das speziell den Bediirfnissen des
industriellen Bereichs (Modularitéit) geniigt. Der VME-Bus
zeichnet sich unter anderem durch folgende Eigenschaften aus:

- Geeignet fiir Multiprozessorsysteme;

- unterstiitzt Mikroprozessoren bis 32 Bit;

- Datendurchsatz bis 20 MByte/s;

— asynchrones, multiplexfreies Busprotokoll;

- Busbelegung prioritédtsgesteuert (4 Ebenen);

— Interrupt-Verarbeitung zentral oder verteilt (7 Ebenen);

- Einfach-Europakarten (100mm x 160mm) fiir Peripherie-
Schnittstellen;

- Doppel-Europakarten (233 mm x 160mm) fiir Prozessor-,
Speicher- und komplexe Funktionen.

Die oben genannten Firmen haben sich zu diesem Standardsy-

stem verpflichtet und sind daran, eine ganze Reihe von Karten

fir dieses Buskonzept zu entwickeln und anzubieten. Eine

Ubersicht der bereits von Motorola erhltlichen Karten gibt die

Tabelle 9.3.

9.5 Entwicklungssysteme

Neben dem in Kapitel 9.3 erwéhnten Lehrsystem bietet Moto-
rola ein leistungsfahiges Entwicklungssystem mit modularem
Aufbau, «EXORmacs», an, das durch einen Hardware-Ent-
wicklungszusatz HDS 400 verbunden werden kann. Der
Zusatz wirkt dann in einem System als Echtzeitemulator.

Fiir die Beschreibung dieser Systeme wende man sich an die
Lieferanten, ebenso fiir das umfangreiche Angebot an Entwick-
lungssoftware.
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Anhang

Im folgenden werden einige niitzliche Angaben in Tabellenform

aufgefiihrt.
Anhang A
MSD 0 1 2 3 4 5 6 7
LSD 000 001 010 o011 100 101 10 111
0 0000 NUL DLE SP 0 @ P A p
1 0001 SOH  DC1 ! 1 A Q a q
2 0010 STX DC2 " 2 B R b r
3 0011 ETX  DC3 #* 3 [ S ¢ s
4 0100 EOT  DC4 S 4 D T d t
5 0101 ENQ  NAK % 5 E U e u
6 0110 ACK SYN & 6 F v f v
7 0111 BEL ETB . 1 G w g w
8 1000 BS CAN ( 8 H X h X
9 1001 HT EM ) 9 | Y i y
A 1010 LF SuB * : J b4 i 7
B 1011 VI ESC + ; K L k {
C 1100 FF FS s < L \ ] !
D 1101 CR [ - = M ] m }
E 1110 S0 RS . > N A n ~
F 1111 st us / ? 0 - o DEL
Tabelle A.1
Der ASCII-Zeichensatz ist ein 7-Bit-Code; ASCII steht fiir
«American Standard Code for Information Interchange».
MSD = most significant digit, hoherwertige Stelle;
LSD =]least significant digit, tieferwertige Stelle.
Hexadezimal-Kolonne
6 5 4 3 2 1
HEX | DEC |HEX DEC [HEX | DEC [HEX | DEC |HEX | DEC|HEX | DEC
0 olo ofo o]o ofo ofo 0
1 1,048,576 | 1 65,536 | 1 4,09 | 1 256 | 1 16 | 1 1
2 2,097,152 | 2 131,072 | 2 8,192 | 2 512 | 2 32 |2 2
3 3,145,728 | 3 196,608 | 3 12,288 | 3 768 | 3 48 | 3 3
4 4,194,304 | 4 262,144 | 4 16,384 | 4 1.024 | 4 64 | 4 4
5 5,242,880 | 5 327,680 | 5 20,480 | 5 1,280 | 5 80 | 5 5
6 6,291,456 | 6 393,216 | 6 24,576 | 6 1,536 | 6 96 | 6 6
7 7,340,032 | 7 458,752 | 7 28672 | 7 1,792 | 7 12 | 7 7
8 8,388,608 | 8 524,288 | 8 32,768 | 8 2,048 | 8 128 | 8 8
9 9,437,184 | 9 589,824 | 9 36,864 | 9 2,304 | 9 144 | 9 9
A 10,485,760 | A 655,360 | A 40,960 | A 2,560 | A 160 | A 10
B 11,534,336 | B 720,89 | B 45056 | B 2816 | B 176 | B "
(¢} 12,582,912 | C 786,432 | C 49,152 | C 3072 | C 192 | C 12
D 13,631,488 | D 851,968 | D 53,248 | D 3328 | D 208 | D 13
E 14,680,064 | E 917,504 | E 57,344 | E 3,584 | E 224 | E 14
F 15,728,640 | F 983,040 | F 61,440 | F 3840 | F 240 | F 15
7654 3210 7654 3210 7654 3210
Byte Byte Byte
Tabelle A.2

Umrechnungstabelle hexadezimal/dezimal
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2" n 20 =16°
256 8 2t =16
512 9 2 =167
1024 10 212 = 163
£ :
20 — 5
8192 13 .
16 384 14 e
32768 15 2 =16
65 536 16 22 = 16°
131072 17 2% = 16°
262 144 18 2 = 16"
524 288 19 "= 16
1 048 576 20 24. = 16'2
2097 152 21 2 — 160
4194 304 22 ST e
8 388 608 23 2 =16
16 777 216 24 200 = 16°3
16N n
1 0
16 1
256 2
4096 3
65 536 4
1048 576 5
16 777 216 6
268 435 456 7
4294 967 296 8
68 719 476 736 9
1099 511 627 776 10
17 592 186 044 416 1
281 474 976 710 656 12
4503 599 627 370 496 13
72 057 594 037 927 936 14
1152 921 504 606 846 976 15
AnhangB

Ausfiihrungszeiten der Befehle des MC 68 000

Dieser Anhang enthilt Tabellen, die die Befehlsausfiihrungszeit
als Anzahl externer Taktintervalle auffiihren. Um die eigent-
liche Ausfiihrungszeit fiir einen speziellen Befehl zu finden,
muss der Wert aus der Tabelle mit dem Taktintervall des Mikro-

prozessors multipliziert werden.

Wenn Sie zum Beispiel einen 8-MHz-68000 benutzen, dann

multiplizieren Sie den Wert mit 125 ns.

Die Zeitangaben in diesen Tabellen enthalten auch die Anzahl
der «Bus-Lese-und-Schreib-Zyklen» fiir jeden Befehl. Diese
Information ist in Klammern gesetzt und folgt der Anzahl Takt-
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Tabelle B.1

Zeit fiir die Berechnung

intervalle. Sie wird in der Form (L/S) dargestellt, wobei «L» die
Anzahl von Lesezyklen und «S» die Anzahl von Schreibzyklen

bedeutet.
Adressierart
Register
Dn Datenregister direkt
An Adressregister direkt
Speicher
An Adressregister indirekt
An + Adressregister indirekt mit Nachinkrementierung
An - Adressregister indirekt mit Vordekrementierung
An (d) Adressregister indirekt mit Verschiebung
An (d,ix)* Adressregister indirekt mit Index
xxx. W Absolut kurz
xxx. L Absolut lang
PC (d) Programmzéhler mit Verschiebung
PC (d,ix)* Programmzéahler mit Index
=XXX unmittelbar

der effektiven Adresse *Die Linge des Indexregisters (ix) beeinflusst die Ausfiihrungszeit nicht.
Ziel
Quelle Dn An An@ An@+ | An@- | An@(d) |Ane(d, ix)] xxxW | xxx.L
Dn 4(1/0) 4(1/0) 9(1/1) 9(1/1) 9(1/1) 13(2/1) 15(2/1) 13(2/1) 17(3/1)
An 4(1/0) 4(1/0) 9(1/1) 9(1/1) 9(1/1) 13(2/1) 15(2/1) 13(2/1) 17(3/1)
An@ 8(2/0) 8(2/0) 13(2/1) 13(2/1) 13(2/1) 17(3/11) 19(3/1) 17(3/1) 21(411)
An@+ 8(2/0) 8(2/0) 13(2/1) 13(2/1) 13(2/11) 17(3/1) 19(3/1) 17(3/1) 21(4/1)
An@- 10(2/0) 10(2/0) 15(2/1) 15(2/1) 15(3/1) 19(3/1) 21(31) 19(3/1) 23(4/1)
An@(d) 1230) | 12@30) | 1731) | 15@31) | 17@1) | 2141y | 23@41) | 2141) | 15(5)
AN@(d, ix)* 14(3/0) 14(3/0) 19(3/1) 19(3/1) 19(3/1) 23(4/1) 25(4/1) 23(411) 27(5/1)
Xxx. W 12(3/0) 12(3/0) 17(3/1) 17(311) 17(31) 21(4/1) 23(4/1) 21(4/1) 25(5/1)
xxx.L 16(4/0) 16(4/0) 21(4/1) 21(4/1) 21(411) 25(5/1) 27(5/1) 25(5/1) 29(6/1)
PC@(d) 12(3/0) 12(3/0) 17(3/1) 17(3/1) 17(3/1) 21(4/1) 23(4/1) 21(4/1) 25(5/1)
PC@(d, ix)* 14(3/0) 14(3/0) 19(3/1) 19(3/1) 19(3/1) 23(4/1) 25(4/1) 23(4/1) 27(511)
# XXX 8(2/0) 8(2/0) 13(2/1) 13(2/1) 13(2/1) 17(3/1) 19(3/1) 17(3/1) 21(4/1)
Tabelle B.2

Taktintervalle fiir MOVE (Byte und Wort)

* Die Linge des Indexregisters (ix) beeinflusst die Ausfiihrungszeit nicht.
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Ziel
Quelle Dn An An@ An@+ | An@- | An@(d) | Ane(d, ix)] xxxW | xxx.L
Dn 4(1/0) 4(1/0) | 14(1/2) | 14(1/2) | 16(1/2) | 18(2/2) | 20(2/2) | 18(212) | 22(3/2)
An 4(1/0) 41/0) | 14(1/2) | 14(1/2) | 16(1/2) | 18(2/2) | 20(2/2) | 18(212) | 22(3/2)
An@ 12(3/0) | 12(310) | 22(3/2) | 22(3/2) | 22(32) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2)
An@+ 12(3/0) | 12(3/0) | 22(312) | 22(3/2) | 22(3/2) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2)
An@- 14(3/0) | 14(3/0) | 24(32) | 24(312) | 24(312) | 28(4/2) | 30(4/2) | 28(4i2) | 32(5/2)
An@(d) 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 35(5/2) | 30(5/2) | 34(6/2)
AN@(d, Ix)* 18(4/0) | 18(4/0) | 28(4/2) | 28(4/2) | 28(412) | 32(5/2) | 34(5/2) | 32(5/2) | 36(6/2)
W 16(4/0) | 16(4/0) | 26(4/2) | 26(4i2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5;2) | 34(6/2)
xxx.L 20(5/0) | 20(5/0) | 30(5/2) | 30(5/2) | 30(5/2) | 34(6/2) | 36(6/2) | 34(6/2) | 38(7/2)
pce(d) 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) | 34(6/2)
pce(d, ix)* 18(4/0) | 18(4/0) | 28(4/2) | 28(4/2) | 28(4/2) | 32(5/2) | 34(5/2) | 32(5/2) | 36(6/2)
#XXX 12(310) | 12(310) | 22(312) | 22(312) | 22(312) | 26(4/2) | 28(412) | 26(4/2) | 30(5/2)
Tabelle B.3
Taktintervalle MOVE (Doppelwort)
* Die Lénge des Indexregisters (ix) beeinflusst die Ausfiihrungszeit nicht.
Befehl Grdsse op <ea>, An op <ea>, Dn op Dn, <M>
ADD Bvte, Wort 8(1/0)+ 4(1/0)+ 9(1/1)+
Doppelwort 6(1/0)+** 6(1/0)+** 14(1/2)+
AND Byte, Wort - 4(1/0)+ 9(1/1)+
Doppelwort - 6(1/0)+** 14(1/2)+
CMP Byte, Wort 6(1/0)+ 4(1/0)+ -
Doppelwort 6(1/0)+ 6(1/0)+ -
| DIVS - - 158(1/0)+* -
bivy - - 140(1/0)+* -
EOR Byte, Wort - 4(1/0)*** 911+
Doppelwort - 8(1/0)* 1801720+
MULS - - 70(1/0)+* _
MULU - - 70(1/0)+* -
OR Byte, Wort - 4(1/0)+ 9(1/1)+
Doppelwort - 6(1/0)+** 14(1/2)+
SUB Byte, Wort 8(1/0)+ 4(1/0)+ 9(1/1)+
Doppelwort 6(1/0)+** 6(1/0)+** 14(1/2)+
Tabelle B.4

Taktintervalle fiir arithmetische, logische und Vergleichsbefehle
+ Addiere Zeit fiir die Berechnung der effektiven Adresse * Zeigt Maximalwert. ** Total 8 Taktintervalle fiir Befehle, wenn die
effektive Adresse «Registerdirekt» ist. *** Die einzige verfiigbare Adressierart ist « Datenregister direkt».
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Befehl Grisse op #, Dn op #,M op #, SR
ADDI Byte, Wordy 8(2/0) 13(2/1)+ —
Doppelwort 16(3/0) 22(3/2)+ —
ADDQ Bvte, Wort 4(1/0) 91+ -
Doppelwort 8(1/0) 14(1/2)+ -
ANDI Byte, Wordt 8(2/0) 13(2/1)+ 20(3/0)
Doppelwort 16(3/0) 22(3/2)+ _
CMPI Byte, Wort 8(2/0) 8(2/0)+ -
Doppe lwort 14(3/0) 12(3/0)+ -
EORI Byte, Wort 8(2/0) 13@2/11)+ 20(3/0)
Doppelwor] 16(3/0) 22(3/2)+ -
MOVEQ Doppelwort] 4(1/0) - -
ORI Byte, Wort 8(2/0) 13(2/1)+ 20(3/0)
Doppelwort 16(3/0) 22(3/2)+ -
SuBl Byte, Wort 8(2/0) 13(2/1)+ -
Doppelwort 16(3/0) 22(3/2)+ -
SuBQ Byte, Vort 401/0) sq+ -
Doppelwort 8(1/0) 14(1/2)+ -
Tabelle B.5
Taktintervalle fiir «cunmittelbar»-Befehle
+ Addiere Zeit fiir die Berechnung der eff. Adresse.
Befehl Grdsse Register Speicher
CLR Byte, Vort 4(1/0) 9(1/1)+
Doppelwort 6(1/0) 14(1/2)y+
NBCD Byte 6(1/0) 9(1/1)+
NEG Byte, Wort 4(1/0) 9(1/1)+
Doppelwort 6(1/0) 14(1/2+
NEGX Byte, Wort 4(1/0) 9(1/1)+
Dopoelwort 6(1/0) 14(1/2)+
NOT Byte, Wort 4(1/0) 9(1/1)+
Doppelwort 6(1/0) 14(1/2)+
Sce Byte, n. erf. 4(1/0) 9(1/1)+
Byte, erfillt 6(1/0) 9(1/1)+
TAS Byte 4(1/0) 11(1/1)+
TST Byte, ¥Wort 4(1/0) 4(1/0)+
Doppelwort 410) 4100+
Tabelle B.6

Taktintervalle fiir «Einfachoperanden-Befehle»

+ Addiere Zeit fiir Berechnung der effektiven Adresse.
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Befehl GrOsse Register Speicher

ASR, ASL Byte, Wort 6 + 2n(1/0) 8(1/1)+
‘-Doppelwort 8 + 2n(1/0) -

LSR, LSL Byte, Wort 6 + 2n(1/0) 81+
Doppelwort 8 + 2n(1/0) -

ROR, ROL Byte, Wort 6 + 2n(1/0) 9(1/1)+
Doppelwort 8 +2n(1/0) -

ROXR, ROXL Byte, Wort 6 + 2n(1/0) 9(1/1)+
Doppelwort 8 + 2n(1/0) -

Tabelle B.7

Taktintervalle fiir Schiebe- und Rotierbefehle
+ Addiere Zeit fiir Berechnung der effektiven Adresse.

v Dynanisch Statisch
Befehl Grosse Register| Speicher| Register| Speicher

BCHG Byte - 9(11)+ - 13(2/1)+

Doppelwort 8(1/0)* - 12(2/0)* -
BCLR Byte - 911+ - 1321+

Doppelwort|  10(1/0)* - 14(2/0)° -
BSET Byte - s+ - 132+

Doppelwort 8(1/0)* - 12(2/0)* -
BTST Byte - 4(1/0)+ - 8(2/0)+

Doppelwort 6(1/0) - 10(2/0) -

Tabelle B.8

Taktintervalle fiir Bitmanipulationsbefehle
+ Addiere Zeit fiir die Berechnung der effektiven Adresse  * Zeigt Maximalwert.

Ausnahme Intervalle
Adressfehler 57(417)
Busfehler 57(417)
Unterbruch 47(5/3)*
Illegaler Befehl 31(413)
Privilegierter Bef. 37(413)
Trace 37(4/3)
Tabelle B.9

Taktintervalle fiir Ausnahmeverarbeitung
* Fiir die Unterbruchquittung werden vier Taktintervalle angenommen.
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Trap odey Trap oder
Verschie-| Verzwelgd verzweig.
Befehl | bung ausgef. n. ausgef.
Bee Byte. 10(1/0) 8(1/0)
Wort 10(1/0) 12(2/0)
BRA Byte 10(1/0) -
Woxt 10(1/0) -
BSR Byte 20(2/2) -
Wort 20(2/2) -
DBee richtig - 12(2/0)
falsch 10(2/0 14(3/0
Tabelle B.10 2/0) 310}
Taktintervalle fiir Verzweigung CHK - 43613+ 8aio+
und Trap-Befehl TRAP - 37(413) -
+ Ac!dicre Zeit fiir die Ber'echnun.g der TRAPV - 37(5/3) 4(1/0)
effektiven Adresse * Zeigt Maximalwert.
Befehl |Grosse| ane An@+ An@- An@(d) | An@{d, Ix)*] W xoxx.L PCe(d) |Pced, ix)*
Jmp - 8(2/0) - - 10(2/0) 14(3/0) 10(210) 12(3/0) 10(2/0) 14(310)
JSR - 18(212) - - 20212) 24(212) 20212) 22(312) 20(2/2) 24(212)
LEA - 41/0) - - 82/0) 12(2/0) 8(2/0) 12(3/0) 82/0) 12(210)
PEA - 14(112) - - 18(212) 22(212) 18(212) 22(312) 18(2/2) 22(212)
12+4n | 12+4n - 16+4n | 18+4n| 16+4n| 20+4n | 16+4n | 18+4n
MoveEM |Wort @+n0)| @3+ ni0) - @+n0)| @+n0)| @+n0O)| (G+n0)] @+n0)] @4+ni0)
mM-Rr |D'w. 12+ 8n 12+ 8n - 16 + 8n 18 + 8n 16 +8n 20+8n | 16+8n 18 +8n
@3+2n0) | (3+2ni0) - @+2n/0) | (4+2n/0) | (4+2n/0) | (5+2n/0) | (4+2n/0) | (4+2ni0)
8+5n - 8+ 5n 12+ 5n 14 +5n 12 +5n 16+ 5n - -
movem |Wort @ - 2in) @in) @) @in) (@in) - -
' 8+10n - 8+10n | 12+10n | 14+10n | 12+10n | 16+10n - -
R-m [D'w. (@2n) - @2n) (3i2n) (3/2n) (ar2n) (a/2n) - -
Tabelle B.11

Taktintervalle fiir JMP, JSR, LEA, PEA und MOVEM-Befehle

n ist die Anzahl der verschobenen Register * Die Léinge des Indexregisters (ix) beeinflusst die Befehlsausfiihrungszeit nicht.

Befenl Grdsse op Dn, Dn opM, M
ADDX Byte Wort 4(1/0) 19(3/1)
Doppelw. 8(1/0) 32(5/2)
CMPM Byvte Wort - 12(3/0)
Doppelw. - 20(5/0)
SUBX Byte Wort 4(1/0) 19(3/1)
Doppelw. 8(1/0) 32(5/2)
ABCD Byte 6(1/0) 19(3/1)
Taktintervalle fiir Befehle SBCD Byte 110! 19311
mit mehrfacher Genauigkeit Y 810 e
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Befehle Grésse |Register] Sveicher Reg. Speich.| Sheicher Reg,
MOVE von SR - 6(1/0) 9(1/1)+ - -
MOVE zu CCR - 12(2/0) 12(2/0)+ - -
MOVE zu SR - 12(200) 12(200)+ - _
MOVEP YVort - - 18(2/2) 16(4/0)
DN'wort - - 28(2/4) 24(6/0)
EXG - 6(1/0) - - -
Wort 4(1/0) - - -
EXT D'wort 4(110) - - -
LINK - 18(2/2) - - —
MOVE von USPE - 4(1/0) - - -
MOVE zu USP - 4(1/0) - - —
NOP - 4(1/0) - - —
RESET - 132(1/0) - - -
RTE - 20(5/0) - - -
RTR - 20(5/0) - - -
RTS - 16(4/0) - - -
STOP - 4(0/0) - - -
SWAP - 4(1/0) - - —
UNLK - 12(3/0) - - —
Tabelle B.13

I'aktintervalle weiterer Befehle
+ addiere Zeit fiir die Berechnung der effektiven Adresse

Anhang C
Der Befehlssatz des MC 68000

Dieser Anhang enthidlt drei zusammenfassende Tabellen.
Tabelle C.1 enthilt die Adressierarten des MC 68000 und
gruppiert sie als Daten, Speicher, Steuerung oder &nderbare
Adressierarten. Sie zeigt auch die Assemblersyntax fiir jede Art.
Die gleiche Tabelle ist im Kapitel 3 als Tabelle 3.4 vorhanden
und ist hier zum schnellen Nachschlagen noch einmal wieder-
gegeben.

Tabelle C.2 enthilt eine Zusammenstellung der Bedingungen,
die durch die Bce-, DBcc- und Scc-Befehle gepriift werden kon-
nen. Diese Bedingungen erschienen bereits als Tabelle 3.15 in
Kapitel 3.
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Adressierungsarten Adressierungskategorien Assembler-
Daten Speicher Steue- verdnder- syntax
rung bar
Datenregister direkt X X Dn
Adressregister direkt X An
Register indirekt X X X X (An)
Register indirekt X X X (An) +
nachinkrementiert
Register indirekt X X X -(An)
vordekrementiert
Register indirekt mit Verschiebung X X X X d(An)
Register indirekt mit Index X X X X d(An.Ri)
Absolut kurz X X X X XXXX
Absolut lang X X X X XXXXXXXX
Relativ mit Verschiebung X X X d
Relativ mit Index X X X d(Ri)
Unmittelbar X X =XXXX
Tabelle C.1
Effektive Adressierungsarten
Anhang «cc» Bedingung Trifft zu wenn
EQ Gleich Z=1
NE Nicht gleich Z=0
MI Minus N=1
PL Plus N=0
*GT Grosser als ZONOV)=0
*LT Kleiner als Nov=1
*GE Grosser oder gleich NevV=0
*LE Kleiner oder gleich Z+(NeV)=1
HI Hoher als COZ=0
LS tiefer oder gleich C+Z=1
CS Ubertrag gesetzt C=1
CC Ubertrag geloscht C=0
*VS Uberlauf V=1
*VC Kein Uberlauf V=0
Tabelle C.2 T Immer wahr
Bedingte Befehle F Immer falsch
Symbole: @ = UND

+ = ODER

® = EXKLUSIVODER

* Zweierkomplement-Arithmetik

Die Tabelle C.3 enthilt den Befehlssatz des MC 68000 in alpha-

betischer Ordnung. Sie ist eine Zusammenstellung der im Kapi-
tel 3 vermittelten Information tiber die Befehle. Zum besseren
Aufsuchen ist hier das Befehlsrepertoire in alphabetischer Ord-
nung nochmals gedruckt.
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Mnemonik  Assembler Syntax Operandengrosse Erlaubte Adressierungsarten Bedingungscode
Quelle Ziel XNZVC
ABCD ABCD Dy,Dx 8 Dn Dn *U*r U
ABCD —(Ay),~(Ax) 8 —~(An) —(An) *uUu*u~*
ADD ADD <ea>,Dn 8, 16,32 Alle (1) Dn I
ADD Dn, <ea> 8,16,32 Dn dnderbar *ookox ok
ADDA ADD <ea>,An 16,32 Alle An [
ADDI ADDI #d,<ea> 8,16,32 #d Daten énderbar A
ADDQ ADDQ #d,<ea> 8,16,32 #d(2) dnderbar (1) *okoxoxox
ADDX ADDX Dy,Dx 8,16,32 Dn Dn *okox *
ADDX —(Ay),~(Ax) 8, 16,32 ~(An) ~(An) e oxox
AND AND <ea>,Dn 8,16,32 Daten Dn - * * 00
AND Dn,<ea> 8,16,32 Dn dnderbar - * * 00
ANDI ANDI #d,<ea> 8,16,32 #d Daten dnderbar -~ * * 00
ANDI #d.SR (3) 8,16 #d SR *oxox ok
ASL ASL Dx,Dy 8, 16,32 Dn(4) Dn EEEEEEE
ASL #d,Dn 8, 16,32 #d(5) Dn Eor ok ok a
ASL <ea> 16 Speicher dnderbar *okox *
ASR ASR Dx,Dy 8, 16,32 Dn(4) Dn D
ASR #d,Dn 8,16,32 #d(5) Dn ok ok oh
ASR <ea> 16 Speicher dnderbar *oxox oxox
Bcce Bec <label> 8,16 ‘Wenn cc, dann PC+d-PC - - - - -
BCHG BCHG Dn,<ea> 8,32 Dn Daten dnderbar - - o -
BCHG #d,<ea> 8,32 #d Daten dnderbar - - % o
BCLR BCLR Dn,<ea> 8,32 Dn Daten énderbar -~ - * - -
BCLR #d,<ea> 8,32 #d Daten énderbar - - * - -
BRA BRA <label> 8,16 PC+d-PC - - - - -
BSET BSET Dn,<ea> 8,32 Dn Daten dnderbar - - * - -
BSET #d,<ea> 8,32 #d Daten dnderbar - - * - -
BSR BSR <label> 8,16 PC——(SP);PC+d ~PC Dn [
BTST BTST Dn,<ea> 8,32 Dn Ausgenommen unmittelbare Daten -~ - -
BTST #d,<ea> 8,32 #d Ausgenommen unmittelbare Daten - - - -
CHK CHK <ea>,Dn 16 ‘Wenn Dn <0 oder Dn> Daten - * Uuu
(ea), dann TRAP
CLR CLR <ea> 8,16,32 Daten dnderbar - 0100
CMP CMP <ea>,Dn 8,16,32 Alle(1) Dn — F X%
CMPA CMPA <ea>,An 16,32 Alle An L
CMPI CMPI #d,<ea> 8,16,32 #d Daten dnderbar - * * ok x
CMPM CMPM (Ay)+(Ax)+  8,16,32 (An)+ (An)+ _ox ok ox o
DBcc DBcc Dn,< label > 16 Wenn cc, dann Dn-1-Dn; - - - -
wenn Dn=-1, dann PC+d-PC
DIVS DIVS <ea>,Dn 16 Daten Dn - % x *x 9
DIVU DIVU <ea>,Dn 16 Daten Dn - * *x *x0
EOR EOR Dn,<ea> 8,16,32 Dn Daten dnderbar - * * 00
EORI EORI #d,<ea> 8,16,32 #d Daten dnderbar - * * 00
EORI #d,SR (3) 8,16 #d SR PRI
EXG EXGRx,Ry 32 Dnoder An Dn oder An - - - - =~
EXT EXTDn 16,32 Dn - ** 00
JMP JMP <ea> <ea>-PC Kontrolle - - - - -
JSR JSR <ea> PC--(SP); <ea>-PC Kontrolle - - - - -
LEA LEA <ea>,An 32 Kontrolle An - - - - =
LINK LINK An,#d An - - - - -
LSL LSL Dx,Dy 8,16,32 Dn(4) Dn L
LSL #d,Dn 8,16,32 #d(5) Dn S
LSL <ea> 16 Speicher dnderbar ¥k ox 0 ¥
LSR LSR Dx,Dy 8,16,32 Dn(4) Dn *0 * 0 *
LSR #d,Dn 8,16,32 . #d(5) Dn *0 * 0 *
LSR <ea> 16 Speicher dnderbar *0 * 0 *
MOVE MOVEea,ea 8,16,32 Alle(1) Daten dnderbar \ - * * 00
MOVEea, CCR 16 Daten CCR ¥k kX
MOVEea, SR (6) 16 Daten SR ok ox ok ox
MOVE SR, ea 16 SR Daten énderbar - - - =
MOVE USP, An (6) 32 USP An - - - -
MOVE An, USP (6) 32 An USP - - - -

Tabelle C.3
Befehlssatz des MC 68 000 in alphabetischer Ordnung
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Mnemonik  Assembler Syntax Operandengrosse Erlaubte Adressierungsarten Bedingungscode
Quelle Ziel XNZVC
MOVEA MOVEA <ea>,An 16,32 Alle An - - - - -
MOVEM MOVEM <list>, <ea> 16,32 Kontrolle dnderbar oder ~(An) - - - - -
MOVEM <ea>, <list> 16,32 Kontrolle oder (An)+ - - - - - =
MOVEP MOVEP Dx,d(Ay) 16,32 Dn d(An) - - -
MOVEP d(Ay),Dx 16,32 d(An) Dn - - - - -
MOVEQ MOVEQ #d,Dn 32 #d(7) Dn - ** 00
MULS MULS <ea>,Dn 16 Daten Dn - * * 00
MULU MULU <ea>,Dn 16 Daten Dn - ** 00
NBCD NBCD <ea> 8 Daten énderbar *U* U
NEG NEG <ea> 8,16,32 Daten dnderbar ok ok o
NEGX NEGX <ea> 8,16,32 Daten dnderbar *oxokox X
NOP NOP PC+2-PC - - - - -
NOT NOT <ea> 8,16,32 Daten énderbar - * * 00
OR OR <ea>,Dn 8,16,32 Daten Dn - ** 00
OR Dn,<ea> 8,16,32 Dn dnderbar - * * 00
ORI ORI #d, <ea> 8,16,32 #d Daten dnderbar - ** 00
ORI #d,SR (3) 8,16 #d SR *oxox ok o
PEA PEA <ea> 32 Kontrolle - - - - -
RESET(6) RESET - - -
ROL ROL Dx,Dy 8, 16,32 Dn (4) Dn ~x kg
ROL #d,Dn 8,16,32 #d(5) Dn - * * 0 *
ROL <ea> 16 Speicher dnderbar - * *x 0 *
ROR ROR Dx,Dy 8, 16,32 Dn(4) Dn R
ROR #d,Dn 8,16,32 #d(5) Dn - *x 0 *
ROR <ea> 16 Speicher dnderbar - * *x 0 *
ROXL ROXL Dx,Dy 8,16,32 Dn(4) Dn EEEEEE
ROXL #d,Dn 8, 16,32 #(5) Dn *ox oo ox
ROXL <ea> 16 Speicher dnderbar ¥ oxox o0 *
ROXR ROXR Dx,Dy 8,16,32 Dn(4) Dn RN
ROXR #d,Dn 8,16,32 #(5) Dn I
ROXR <ea> 16 Speicher dnderbar *oxoxo0
RTE(6) RTE (SP)+-SP;(SP)+~PC R
RTR RTR (SP)+—CCR; (SP)+-PC EEEE
RTS RTS (SP)+—PC [,
SBCD SBCD Dy,Dx 8 Dn Dn *U* U+
SBCD —(Ay),~(Ax) 8 ~(An) ~(An) * U *x U *
Scc Scc <ea> 8 Wenn cc, dann Is—(ea); Daten énderbar - - - - -
sonst Os—(ea)
STOP(6)  STOP #d 16 #d-SR, dann STOP R
SUB SUB <ea>,Dn 8, 16,32 Alle(1) Dn I
SUB Dn,<ea> 8,16,32 Dn dnderbar * ok R kX
SUBA SUBA <ea>,An 16,32 Alle An - - - - -
SUBI SUBI #d,<ea> 8,16,32 #d Daten édnderbar *oxooxox X
SUBQ SUBQ #d,<ea> 8,16,32 #d(2) dnderbar (1) *oEox ok
SUBX SUBX Dy,Dx 8,16,32 Dn Dn ok ok
SUBX —(Ay),~(Ax) 8, 16,32 ~(An) ~(An) okox ko k
SWAP SWAP Dn 16 Dn - - - - =
TAS TAS <ea> 8 Daten énderbar - ** 00
TRAP TRAP # < vector> PC——(SP);SR—>—(SP); [
# <vector> —»PC
TRAPV TRAPV Wenn V =1,dann TRAP - e e -
TST TST <ea> 8,16,32 Daten dnderbar - * * 00
UNLK UNLK An An - - - - -

* Bedingungsbit wird beeinflusst

Bemerkungen:

(1) Wenn die Operationsldnge Byte ist, ist die Adressierungsart « Adressregister direkt» nicht erlaubt
(2) unmittelbarer Operand, mit einem Wert von 1 bis 8

(3) Bei Wortoperationen ist der Befehl privilegiert

(4) Quellendatenregister enthélt den Schiebewert: 0...63, wobei der Wert O einen Schiebewert 64 ergibt
(5) Daten sind der Schiebewert, 1 bis 8

(6) Diese Operation ist privilegiert

(8) Acht Bit unmittelbare Daten, welche vorzeichenerweitert werden zu einem 32Bit-Operanden
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