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1. Einführung in den Mikroprozessor MC 68000 

1.1 Überblick 

Der MC 68000 verfügt über 17 allgemein verwendbare Regi- 

ster, jedes 32 Bit lang, über einen 32-Bit-Programmzähler und 
ein 16-Bit-Statusregister. Acht der allgemeinen Register werden 

verwendet als Datenregister für Byte-(8 Bit), Wort-(16-Bit-) und 
Doppelwort-(32-Bit-)Operationen. Die andern 9 allgemeinen 
Register sind Adressregister, die als Stapelzeiger und Basis- 
adressregister verwendet werden. Alle 17 allgemeinen Register 
können auch als Indexregister verwendet werden. 
Obwohl der Programmzähler 32 Bit lang ist, werden nur die tie- 
ferwertigen 24Bit verwendet. Diese 24Bit geben dem MC 

68000 einen Adressbereich von 16 MByte - der gleiche Adress- 
bereich wie ein IBM System/370! Dieser Adressbereich 
erlaubt es, zusammen mit einem zusätzlichen Speicherverwal- 
tungsbaustein, grosse modulare Programme zu entwickeln und 
auszuführen, ohne komplizierte und schwierige softwaremässi- 

ge Speicherverwaltungsmassnahmen. 

1.1.1 Softwaremöglichkeiten 

Die Softwaremöglichkeiten des MC 68000 sind recht eindrück- 
lich und zeigen, dass dieser Mikroprozessor von Programmie- 
rern für Programmierer entwickelt wurde. Wie später in Kapitel 
3 gezeigt wird, bieten viele der Befehle in Kombination mit den 

vielseitigen Adressierungsmodi fast den Komfort und die Mög- 
lichkeit höherer Sprachen. 

Der MC 68000 kann mit 5 verschiedenen Datenarten Verarbei- 
tungen durchführen: 
— 1Bit 

— 4Bit (BCD-Werte) 
— 8 Bit (Byte) 
- 16 Bit (Worte) 

— 32 Bit (Doppelworte) 

Eine Byteadressierung ist möglich, indem das höherwertige 

Byte dieselbe gerade Adresse wie das entsprechende Wort hat, 
während das niederwertige Byte die um 1 erhöhte ungerade 
Adresse tragt. Das Befehlsrepertoire umfasst 56 Grundbefehle.
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Dazu stehen 14 verschiedene Adressierungsmodi zur Verfü- 
gung. Die Kombination der 56 Grundbefehle mit den 14 Adres- 
sierungsmodi und den 5 Datenarten ergibt mehr als 1000 ver- 
schiedene Kombinationen, die der MC 68000 ausführen kann. 
Zusätzlich gibt es zwei nicht benützte Operationscodes, die 
nach den Wünschen des Benützers spezifiziert werden können. 
Der MC 68000 wird angeboten in 4-, 6-, 8- und 10-MHz-Versio- 
nen, denen Taktperioden von 250, 167, 125 und 100ns entspre- 
chen. 

Der schnellste Befehl, zum Beispiel fiir das Kopieren des Inhalts 
eines Registers in ein anderes Register, benötigt als Ausfüh- 
rungszeit 4 Taktzyklen oder 500 ns bei 8 MHz. 
Der langsamste Befehl, eine Division eines 32-Bit-Doppelwor- 
tes durch ein 16-Bit-Wort mit Vorzeichen, kann bis zu 170 Takt- 
zyklen beanspruchen oder 21,25 us bei 8 MHz. 

1.1.2 Privilegierte Zustände 

Zur Unterstützung von Systemen mit mehreren Benützern ver- 
fügt der MC 68000 über zwei verschiedene Zustände: einen 
Benützerzustand für normale Funktionen und einen Überwa- 
chungszustand für die Systemkontrolle. Im Überwachungszu- 
stand können alle Befehle ausgeführt werden, im Benützerzu- 
stand können einige privilegierte Befehle, zum Beispiel Reset 
und Stop nicht benützt werden. Diese Möglichkeiten geben dem 
System eine gewisse Sicherheit, da der Datenzugriff kontrolliert 
ist und dadurch die gegenseitige Beeinflussung von Daten ver- 
schiedener Benützer verhindert wird. 

1.1.3 Eingebaute Fehlersuchhilfsmittel 

In Anbetracht der Tatsache, dass das Beheben von Fehlern in 

der SW im allgemeinen mehr Zeit in Anspruch nimmt als das 
Schreiben der SW selbst, haben die Entwickler des MC 68000 
eine ganze Anzahl von Fehlersuchhilfsmitteln eingebaut. Als 
Beispiel führen 

illegale Befehle, 

die Verletzung von privilegierten Zuständen, 
fehlerhafte Adressierung, | 

— Division durch Null, 

illegale Speicherzugriffe usw. 

| 

den Mikroprozessor in den Überwachungszustand. 

Der MC 68000 verfügt auch über einen sogenannten Tracemo- 
dus für die Fehlerbehebung in der SW. In diesem Modus verar- 
beitet der MC 68000 Befehle Schritt für Schritt, indem nach der 
Ausführung jedes einzelnen Befehls in eine Serviceroutine ver- 
zweigt wird. 

10
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1.1.4 Speicherzuweisung 

Sehr wenige Speicherzellen sind für spezielle Aufgaben fest 
zugewiesen. Die tiefsten 8Byte des Speichers enthalten den 
Rücksetzvektor und sind demzufolge als ROM ausgeführt. 

Zusätzliche Speicherzellen in den ersten 1024 Bit sind Unter- 
bruchsvektoren, Fehlervektoren sowie Vektoren für verschiede- 
ne andere Arten von Ausnahmezuständen zugewiesen. Diese 
Speicherbereiche können entweder als ROM oder als Lese- und 
Schreibspeicher ausgeführt sein. Der verbleibende Rest des 16- 
MByte-Speichers des MC 68000 kann für jede beliebige Auf- 
gabe verwendet werden. 

Selbstverständlich werden einige Speicheradressen für zugeord- 
nete Ein- und Ausgabebausteine im System verwendet, weil der 
MC 68000, wie übrigens alle Motorola-Mikroprozessoren, die 
Ein- und Ausgabeoperationen über den Speicher ausführt. Der 

MC 68000 verfügt über keine separaten Ein- und Ausgabebe- 
fehle, «sieht» aber periphere Bausteine als Speicherzellen im 16- 
MByte-Speicher. Bei der Programmierung von Ein- und Aus- 
gabeoperationen für den Datentransfer von und zu peripheren 
Geräten werden die gleichen Befehle verwendet wie für den 
Datenaustausch mit dem Speicher. 

1.1.5 Unterbruchstruktur (Interrupts) 

Die Unterbruchstruktur des MC 68000 ist ähnlich wie die der 

meisten Minicomputer. Es stehen 7 verschiedene Unterbruchs- 
ebenen zu Verfügung. Mit einer Maske im Statusregister kön- 
nen Unterbrüche auf derselben oder auf tieferen Ebenen als der 
in Betrieb stehenden blockiert werden. 

Wenn der MC 68000 eine Unterbruchsanforderung erhält, 
sendet er ein Quittierungsanforderungssignal zu allen im 

System vorhandenen Bausteinen. Nach dem Empfang der Quit- 
tung muss der unterbrechende Baustein eine Vektornummer auf 

den Datenbus einspeisen. Dieser Vektor wählt eine der 192 

Unterbruchroutinen im-Speicher aus. Auch Bausteine, die keine 
Vektornummer erzeugen können, haben die Möglichkeit, den 
MC 68000 zu unterbrechen. Sie veranlassen den Mikroprozes- 
sor mittels «Autovektor», zu einer Subroutine zu verzweigen, 
die der Unterbruchsebene des unterbrochenen Bausteins zuge- 
ordnet ist. Der MC 68000 verfügt über 7 Autovektoren. 

1.1.6 Bausteinanschlüsse 

Der MC 68000 wird in einem Dual-in-line-Gehäuse mit 64 
Anschlüssen geliefert (entspricht ungefähr der Grösse eines nor- 
malen Feuerzeuges). 

Die Adressen für Befehle und Daten werden über ein System 
von 25 Adressleitungen zugeführt: ein 23 Leitungen umfassen- 
der Adressbus (mit dem ein Wort im Speicher angewählt wird) 

11
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und 2 Byte-Select-Leitungen (eine zum Anwählen des tieferwer- 
tigen Byte des Wortes, das andere zum Anwählen des höher- 
wertigen Byte des Wortes). Daten werden über einen 16-Bit- 

Datenbus transferiert. Wie die meisten 8-Bit-Mikroprozessoren 
(aber nicht wie die 16-Bit-Systeme Intel 8086 und Zilog Z8000) 
wird der Datenbus und der Adressbus über separate Leitungen 

geführt. 
Die Entwickler bei Motorola stellten fest, dass eine Multiplexie- 
rung dieser Bussysteme zwar zu einem kleineren Gehäuse 
geführt hätte, jedoch auch eine Verkleinerung der Leistung um 
mehr als dreissig Prozent zur Folge gehabt hätte. Der MC 
68000 kann sowohl mit asynchronen peripheren Geräten wie 
auch mit langsameren synchronen peripheren Geräten (wie sie 
auch für den MC 6800 und andere 8-Bit-Mikroprozessoren ver- 
wendet werden) verbunden werden. Er verfügt über separate 
Kontrolleitungen für jeden Typ von peripheren Schaltungen. 
Der MC 68000 benützt eine einzige Speisespannung von +5 V 

und verfügt über je zwei Plus-/Minusanschlüsse. Ein Anschluss 
ist für den TIL-kompatiblen Takteingang vorgesehen. 
Eingeführt wurde der MC 68000 im Jahre 1979. Er ist erhältlich 
von Motorola (als MC 68000) und als Lizenzfabrikate von 

Rockwell International (R 68000), Hitachi (HD 68000), 
Mostek (MK 68000) und Signetics (SP 68000). In Europa wird 

der 68000 auch von Efcis hergestellt, einer Firma im Besitz von 
Thomson-CSF und der franzOsischen Atomenergiekommis- 
sion. 

1.2 Interne Register 

Da wir uns vor allem mit der Programmierung des MC 68000 
befassen, sind für den Einstieg zuerst die internen Register, 
die zur Verfügung der Programmierer stehen, interessant. 

Bild 1.1 zeigt die 17 allgemein verwendbaren Register, den 

32-Bit-Programmzähler und das 16-Bit-Statusregister des MC 
68000. 

1.2.1 Allgemein verwendbare Register 

Acht der allgemein verwendbaren Register sind Datenregister, 
7 sind Adressregister und 2 sind Stapelzeigerregister (eines für 
Benützerprogramme, das andere für Überwachungsprogram- 
me). Die acht Datenregister (DO ... D7) können verwendet wer- 

den für Operationen mit Byte, Wort und Doppelwort. Die ver- 
wendete Datenlänge wird spezifiziert durch einen Datenlängen- 
code im Befehl. Byteoperationen werden immer mit den tiefer- 
wertigen 8Bit eines Datenregisters (Bit 0 ... 7) durchgeführt; 
Wortoperationen werden immer mit den tieferwertigen 16Bit 

eines Datenregisters (Bit O.... 15) durchgeführt, wie in Bild 1.1 
durch die gestrichelte Linie angedeutet ist. Wenn ein Byte- oder 

12



Bild 1.1 
Registeranordnung im Mikropro- 
zessor MC 68000 (Programmie- 
rungsmodell) 
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| ] | sf | Status- Register 

ls tenn. Benützer- 
Byte Byte 

Wortoperand in einem Befehl vorkommt, wird immer das tiefer- 
wertige Byte oder Wort des Datenregisters verwendet. Die ver- 

bleibende Information im Register wird nicht berührt. 
Die sieben Adressregister (AO... A6) dienen als Basisadressre- 
gister und als Softwarezeiger zu benützerdefinierten Speicher- 

bereichen. Sie können auch zur temporären Aufnahme von 
Adresswerten verwendet werden, so dass diese Adressen 
irgendwo im Programm nicht wieder neu berechnet werden 
müssen. Die Adressregister können verwendet werden für den 
Zugriff zu Bytes, Worten und Doppelworten im Speicher. Wie 
in Bild 1.2 gezeigt, werden diese Daten in der Ordnung höher zu 
tiefer gespeichert, das heisst, dass Byte 0, Wort O und Doppel- 
wort 0 die höchste Wertigkeit aufweisen. 

Byte können gerade Adressen (Byte 0, 2 und 4 in Bild 1.2) oder 
ungerade Adressen (Byte 1, 3 und 5) haben, Worte und Doppel- 
worte können nur gerade Adressen haben. Das bedeutet also, 
dass Worte und Doppelworte immer mit einer geraden Adresse 
beginnen müssen. Wenn also ein Wort sich an der Adresse N, 
wobei N gerade ist, befindet, ist das nächste Wort an der Adres- 
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n BYTEO \BYTET | nef n Wort 0 
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nt | ___ LI 

Doppelwort 1 Bild 1.2 
ntéE Datenformate im Speicher: 

N.nolen$D | a) Byteformat (8 Bit) 
Dop P elwort 2 b) Wortformat (16 Bit) 
c) Doppelwortformat c) Doppelwortformat (32 Bit) 

se N + 2. Ahnlich ist es bei Doppelworten. Wenn ein Doppel- 
wort sich an der Adresse N, wiederum gerade, befindet, ist das 
nachste Doppelwort an der Adresse N + 4. Die gestrichelte 

Linie zwischen Bit 15 und Bit 16 im Bild 1.1 zeigt an, dass sich die 
Information in einem Adressregister auf ein 16-Bit-Wort (in Bit 
0... 15) oder auf ein 32-Bit-Doppelwort beziehen kann. Viele 
Befehle des MC 68000 beziehen sich auf zwei Operanden, einen 
Quellenoperanden und einen Bestimmungsoperanden. Wenn 
ein Adressregister verwendet wird als Quellenoperand, wird 
entweder das tieferwertige Wort oder das ganze Doppelwort 
verwendet, je nach Abhängigkeit der Operationslänge. Wird ein 
Adressregister als Bestimmungsoperand verwendet, so wird das 
ganze Register beeinflusst, unabhängig der Operationslänge. 
Operationen mit Adressregistern beeinflussen das Statusregi- 
ster des MC 68000 nicht. Diese Tatsache erlaubt es, innerhalb 
von Datenoperationen Adressen zu ändern, ohne sich Gedan- 
ken machen zu müssen, ob der Programmstatus geändert haben 
könnte. 

Der MC 68000 verfügt über zwei Stapelzeiger, wobei zu einer 
bestimmten Zeit nur einer aktiv sein kann. Der Benützer-Stapel- 
zeiger, der zur Sicherung der Rückkehradresse während Sub- 
routinenaufrufen benützt wird, ist aktiv, wenn der Prozessor im 
Benützerstatus arbeitet. Der Überwachungsstatus-Stapelzeiger, 
der die Rückkehradresse und den Statusregisterinhalt während 
Trap- und Unterbruchroutinen aufnimmt, ist aktiv, wenn der 
MC 68000 sich im Überwachungsstatus befindet. Weil die bei- 
den Stapelzeiger nicht gleichzeitig aktiv sein können, sind sie in 

Bild 1.1 als ein einziger Bestimmungsort A7 dargestellt. Jedes der 
17 allgemein verwendbaren Register kann auch als Indexregi- 
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Bild 1.3 
Das Statusregister (Flags) des MC 

68 000 

ster verwendet werden. Die Indexierung wird behandelt im 
Zusammenhang mit der Diskussion der Adressierungsmodi in 
Kapitel 3. 

1.2.2 Programmzähler 

Wie alle Mikroprozessoren, führt auch der MC 68000 Pro- 
gramme aus, indem er einen Befehl vom Speicher holt, ihn aus- 
führt und dann den nächsten Befehl holt. Beim MC 68000 
belegt ein Befehl 1 bis 5 Wörter im Speicher, wobei der Pro- 
grammzähler bestimmt, welches Befehlswort als nächstes 
geholt wird. Der Programmzähler ist 32 Bit lang. In den bisher 
produzierten Bausteinen wurden jedoch nur die 24 tieferwerti- 
gen Bit verwendet. Weil die Befehle aus Worten bestehen, ent- 
hält der Programmzähler immer eine gerade Adresse. Mit den 
24 Bit des Programmzählers können 8M-Worte adressiert wer- 
den (8388608 Worte, Adressenbereich 0 ... hexadezimal 
FFFFFE). 

1.2.3 Statusregister 

Das Statusregister des MC 68000 ist aufgeteilt in ein Bentitzer- 

byte und ein Systembyte wie in Bild 1.3 dargestellt. Gelesen wer- 
den kann der gesamte Inhalt des Statusregisters jederzeit, hinge- 
gen kann das Systembyte nur im Überwachungsmodus geän- 
dert werden. Das Benützerbyte, oft auch Bedingungscoderegi- 

ster genannt, enthält fünf Flagbit, die Information über ausge- 
führte Befehle enthalten. 

  

Systembyte Benützerbyte 
AL AL 

\ Ff 

15 4 | 0 

Ts MW cIele NEIDRKIZT 
m / 

  

Tracemodus 

Veberwachungsstatus 
Unterbruchsmaske 

    
    

  Erweiterung 

Negativ _— 
Bedienungscode Noll 

Veberlauf 
Vebertrag 

            
Die fünf Flagbit im Benützerbyte bedeuten im einzelnen: 

- Bit 0, Übertrag (Carry C): 

Dieses Bit wird auf 1 gesetzt, wenn bei einer Addition ein Über- 

trag entsteht oder bei einer Subtraktion ein Entlehnwert benö- 
tigt wird, andernfalls ist es 0. 
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Das Übertragsbit wird ebenfalls für die Aufnahme des Werts 
eines Bit verwendet, das aus einem Datenregister oder Speicher- 
platz geschoben oder rotiert wurde, und es enthält auch das 

Resultat einer Vergleichsoperation. 

- Bit 1, Uberlauf (Overflow V): 

Dieses Bit hat nur eine Bedeutung wahrend Operationen mit 
vorzeichenbehafteten Zahlen. Es wird auf 1 gesetzt, wenn die 
Addition von zwei Werten mit gleichen Vorzeichen oder die 

Subtraktion von zwei Werten mit ungleichen Vorzeichen ein 
Resultat ergeben, das den Bereich des Zweierkomplements des 
Operanden tiberschreitet, andernfalls ist es 0. 

Es wird ebenfalls gesetzt, wenn das hochstwertige Bit des 
Operanden zu irgendeinem Zeitpunkt wahrend einer arithmeti- 
schen Schiebeoperation andert. 

— Bit 2, Null (Zero Z): | 

Dieses Bit wird auf 1 gesetzt, wenn das Resultat einer Operation 

0 ist. 

— Bit 3, Negativ (Negative N): 

Dieses Bit hat nur eine Bedeutung bei Operationen mit vorzei- 

chenbehafteten Werten. Es wird dann auf 1 gesetzt, wenn eine 
arithmetische, logische, Schiebe- oder Rotieroperation zu einem 

negativen Resultat führt. Mit andern Worten gesagt, folgt das 
N-Bit dem höchstwertigen Bit des Operanden, unabhängig 

davon, ober 8, 16 oder 32 Bit lang ist. 

— Bit 4, Erweiterung (X): 

Dieses Bit funktioniert als Uberlaufbit fiir Operationen mit 
erhohter Genauigkeit. Es wird durch Additions-, Subtraktions-, 
Negier-, Schiebe- und Rotierbefehle beeinflusst, indem es wäh- 
rend deren Ausfiihrung den Status des Ubertragsbit (C) 
annimmt. 

Der MC 68000 verfügt über bedingte Verzweigbefehle, die den 

Zustand der Bit C, V, Z, N prüfen und je nach Resultat das Pro- 
gramm weiterlaufen oder eine bestimmte Adresse anspringen 
lassen. Die Bedingungscodebit werden immer dann beeinflusst, 
wenn Operationen den Inhalt von Datenregistern ändern, aber 
nie bei Operationen mit Adressregistern. 

Das Systembyte des Statusregisters besteht aus drei Feldern: 

— Bit 8 bis 10: 

Diese Bit enthalten eine Unterbruchsmaske (IO, Il und 12), mit 
der die Prioritätsebene der Unterbruchsanforderungen 

bestimmt werden kann. Diese 3-Bit-Maske kann zur Festset- 
zung von einer aus sieben Prioritätsebenen verwendet werden 
(die achte Ebene, alles 0, bedeutet, dass jede Priorität akzeptiert 
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wird) und veranlasst den MC 68000, alle Unterbrechungsanfor- 
derungen auf oder unter dieser Prioritätsebene nicht zu beach- 
ten. 

— Bit 13, Überwachung (S): 

Dieses Bit zeigt an, ob der MC 68000 sich im Überwachungszu- 
stand (S = 1), oder im Benützerzustand (S = 0) befindet. 

— Bit 15, Tracemodus (T): 

Dieses Bit steuert die eingebaute Fehlersuchschaltung. Wenn 
das T-Bit auf 1 gesetzt ist, arbeitet der MC 68000 ein Programm 
Schritt fur Schritt ab. Das bedeutet, dass der Prozessor nach 

jedem ausgeführten Befehl in den Uberwachungszustand 
(S=1) übergeführt wird und zu einem durch den Anwender 

geschriebenen Trace-Unterprogramm verzweigt. Dieses Trace- 
Unterprogramm kann zum Beispiel verwendet werden zur Prü- 
fung des Inhalts von ausgewählten Registern oder Speicherplät- 
zen, zur Statusprüfung oder zur Durchführung irgendwelcher 
anderer Fehlersuchaufgaben. 

Die nichtbenützten Bit des Statusregisters werden immer als 0 
gelesen. : 

1.3 Entwurfsphilosophie 

Mit den bisherigen Ausführungen haben wir einen allgemeinen 
Überblick über die Möglichkeiten des Mikroprozessors MC 
68000 gewonnen. Die weiteren Kapitel werden diese Informa- 
tion bis ins Detail vertiefen und einen Überblick geben über die 
Anwendungsmöglichkeiten des MC 68000. Bevor wir jedoch 

auf die Details eintreten, soll noch einige Information zur Ent- 
wurfsphilosophie des MC 68000 vermittelt werden. 

1.3.1 Der Stand der Mikroprozessortechnologie 

Die leistungsfähigen Mikroprozessoren und die zugehörigen 
Bausteine, die heute zur Verfügung stehen, sind der Ausdruck 
einer enormen Entwicklung der Technologie der integrierten 
Schaltungen in der vergangenen Zeit. Seit der Entwicklung der 
MOS-Halbleiter in den späten fünfziger Jahren verdoppelte sich 

die Komplexität der Schaltungen in den siebziger Jahren jedes 

Jahr. Während frühere Mikroprozessoren 5000 bis 10000 
Transistorfunktionen pro Baustein aufwiesen, verfügen heutige 
Prozessoren über 100000 Transistorfunktionen. Primäre Fak- 
toren für diese Entwicklung sind eine höhere Dichte der Schal- 

tungen und die Fortschritte im Schaltungsentwurf, die generell 
zu höheren Geschwindigkeiten und zu geringerem Leistungs- 
verbrauch führen. Die Entwicklungsrate hat sich etwas ver- 
langsamt durch gewisse technologische Grenzen, die Fort- 
schritte sind jedoch immer noch enorm. Gegenwärtig wird die 
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Schaltungsdichte und die Schaltungsgeschwindigkeit alle zwei 
Jahre verdoppelt, während in der gleichen Zeit das Leistungs- 
Geschwindigkeits-Produkt um den Faktor 4 gesunken ist. 
Gleichzeitig sanken die Produktionskosten, was sich in einem 
reduzierten Produktpreis auswirkte, was wiederum zu erhöhtem 
Bedarf, neuen Anwendungen und neuen Märkten führt. 

1.3.2 Begründung für die Entwicklung 
des MC 68000 

Die eben beschriebenen Fortschritte machten einen komple- 
xen Mikroprozessor technisch möglich, dazu kamen zusätzli- 

che Faktoren als Motivation für Motorola, die zur Entwicklung 
des MC 68000 führten. Nach Edward Stritter und Tom Gunter, 
zwei der Hauptverantwortlichen für die Entwicklung des MC 
68000, leitet sich eine der Motivationen her aus dem Bedarf für 
Produkte, die über die vielfältigen Möglichkeiten eingebauter 
Mikroprozessoren verfügen. Dieser Bedarf zeigt sich im allge- 

meinen Markt für Mikroprozessoren, der jährliche Zuwachsra- 
ten von 25% aufweist und zu einem jährlichen Volumen von 
200 Millionen Einheiten im Jahre 1983 führen dürfte, mit einem 
Marktwert von ungefähr 1Milliarde Franken. (Schätzungen 

lauten dahin, dass bis ins Jahr 2000 5 bis 10 Milliarden Mikro- 

prozessoren und Mikrocomputer in Betrieb stehen werden, das 
heisst ungefähr 1 System pro dannzumal auf der Erde lebende 
Person!) Beim Entwurf des MC 68000 waren sich die Entwick- 
ler im klaren, dass ihr Produkt auf Anwendungen zugeschnitten 

sein musste, für die 16-Bit-Mikroprozessoren im Vordergrund 

stehen, wie zum Beispiel Anwendungen mit Multiprocessing 
und Multitasking. — Eine zweite Motivation für die Entwicklung 
des MC 68000 kam von der Seite der hohen Kosten für die Soft- 

ware-Entwicklung. Mit gegenwärtigen Kosten von 20 bis 40 
Franken für jede Zeile getesteten Codes ist es nicht unüblich, für 

ein einfaches Programm auf Software-Entwicklungskosten von 
200000 Franken oder mehr zu kommen, was in keinem ver- 

gleichbaren Massstab mit den Hardwarekosten von einigen 

hundert bis allenfalls einigen tausend Franken steht. Als Gegen- 
massnahme zu dieser Entwicklung fördert Motorola konse- 
quent die Unterstützung von höheren Programmiersprachen 

und ein klar strukturiertes Vorgehen bei der Programmierung. 
Zudem wird versucht, mit der 68000-Software Fehlersuche und 
Selbstprüfung so einfach wie möglich zu machen. - Ein dritter 
die Entwicklung des MC 68000 beeinflussender Faktor waren 
die hohen Kosten des Entwurfs und der Fabrikation von neuen 
Mikroprozessoren. Sowohl die Personalkosten wie auch die 
Kosten für Entwurf und Fabrikation von Ausrüstungen sind 
enorm und erreichen für die wichtigsten Hersteller Millionen 

von Franken pro Jahr. Die Entwickler begegnen diesem Pro- 
blem auf verschiedene Weise. Erstens ist ein geradliniger Ent- 
wurf unter Verwendung von optimalen Strukturen leichter zu 
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realisieren, zu testen und herzustellen. Selbstverständlich führt 
ein geradliniger Entwurf auch zu einem verbesserten Produk- 
tionszyklus und damit zu einer Verbesserung der Wettbewerbs- 
fähigkeit des Herstellers. Zweitens muss eine neue Architektur 

auf so lange Zeit hinaus wie möglich geplant werden und für die 
Zukunft einfach zu erweitern sein. Die Hersteller sind nicht 
mehr in der Lage, jedes Jahr neue Architekturen zu produzie- 

ren. Erfahrungen mit dem Versuch zur Erweiterung und Verbes- 
serung früherer 8-Bit-Mikroprozessoren zeigten die Notwendig- 
keit für verbesserte Planung. Die Entwerfer müssen auf mög- 
lichst wenig Beschränkungen in ihren Entwürfen achten, so 
dass zukünftige Verbesserungen des Bausteins unter den best- 
möglichen Voraussetzungen gemacht werden können. Zu den 
grundsätzlichen Mängeln in der Vergangenheit gehörten ein 
begrenzter Adressbereich sowie das Fehlen von zum Zeitpunkt 
des Entwurfs freien Operationscodes für zukünftige Befehle. 

1.3.3 Realisierung der Entwurfsideen 

Die Entwickler des MC 68000 hatten die nicht leichte Aufgabe, 

die im vorhergehenden Abschnitt beschriebenen Motive und 
Begründungen bei der Realisierung des Mikroprozessors zu 
berücksichtigen. Ihre Wahl fiel auf die schnelle n-Kanal-Silizi- 

um-Technologie HMOS (high density, short-channel MOS), 
die ursprünglich von der Intel Corp. entwickelt wurde. Diese 
Technologie bietet rund die doppelte Schaltungsdichte sowie 
das vierfach bessere Geschwindigkeits-Leistungsprodukt ge- 
genüber der Standard-NMOS-Technologie. Als Resultat ver- 

fügt die gegenwärtige Version des MC 68000 über etwa 68 000 
Transistorfunktionen auf dem Baustein (Bild 1.4). 

Im Hinblick auf den potentionellen Anwenderkreis wählten die 
Entwickler für den MC 68000 eine Architektur in Richtung all- 
gemeine Verwendung und statteten ihn mit einem 16-MByte- 
Adressbereich aus. Zusätzlich wurden Funktionen wie separate 
Überwachungs- und Anwenderstati zur Unterstützung von 
Multiprocessing und Multitasking vorgesehen. 
Zur Eindämmung der hohen Kosten von Software-Entwicklun- 

gen unternahmen die Entwickler des MC 68000 alle Anstren- 
gungen, die Programmierung so einfach wie möglich zu 
machen. Ein Weg zur Erreichung dieses Zieles ist eine soge- 
nannte orthogonale Auslegung, das heisst, dass alle Datenregi- 
ster und alle Adressregister in derselben Weise funktionieren 
und ebenfalls als Indexregister verwendet werden können. Im 

weiteren können die meisten Befehle mit Byte, Worten und Dop- 
pelworten operieren. Die Anzahl der Mnemocodes im Befehls- 
repertoire wurde auf ein Minimum beschränkt, indem Gruppen 

von ähnlichen Funktionen gebildet wurden. 

Diese Auslegung steht im Gegensatz zu einer grossen Anzahl 

von spezialisierten Lade-, Speicher- und Transferbefehlen, wie 
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sie oft bei 8-Bit-Mikroprozessoren vorkommen. Im weiteren 
betrachteten die Entwickler nicht nur die statisch häufigen 
Befehle (das sind diejenigen, die in einem Listing häufig 
erscheinen), sondern gingen einen Schritt weiter und hielten 
Ausschau nach dynamisch häufigen Befehlen, das heisst jenen, 
die tatsächlich häufig ausgeführt werden. Unter diesem Aspekt 
wurde versucht, so kurze Befehle wie möglich zu entwickeln. 
Zur Unterstützung von höheren Sprachen bestehen komplexe 

Befehle, welche Operationen ausführen, für die normalerweise 
eine ganze Anzahl Zeilencodes benötigt werden. Ein gutes Bei- 
spiel für diesen Fall sind die LINK- und UNLK-Befehle, die im 
Stapel Platz zuweisen und freigeben für den Aufruf von ver- 
schachtelten Unterprogrammen sowie der CHK-Befehl, der 
erlaubt, die Grenzen einer speziellen Speicheranordnung auf 
Überlaufbedingungen zu prüfen. Beim Festlegen des Befehlsre- 
pertoires wurde ebenfalls darauf geachtet, dass die meisten 
Befehle mit allen möglichen Adressierungsmodi verwendet wer- 
den können und dadurch Compilern das effiziente Generieren 
von Code erlauben. Schliesslich wurde im Hinblick auf die 
Reduktion von Entwicklungskosten für zukünftige Entwick- 
lungsänderungen und Verbesserungen des Mikroprozessors 
eine Architektur gewählt, die es erlaubt, verschiedene Versionen 
oder sogenannte Implementierungen zu produzieren. Die 
gegenwärtige Version unter dem Namen MC 68000 stellt im 
Prinzip nur ein Subset der kompletten 68000-Architektur dar. 

Das zeigt sich zum Beispiel darin, dass der MC 68000, obschon 
er ein 16-Bit-Mikroprozessor ist, über eine interne 32-Bit-Archi- 
tektur verfügt. Das heisst, dass alle adressierbaren Register, mit 
Ausnahme des Statusregisters, 32 Bit lang sind. Auch der Pro- 
grammzähler ist 32 Bit lang, wobei bei den bisher produzierten 
Bausteinen nur die tieferwertigen 24 Bit herausgeführt wurden. 
Bei einer allfälligen zukünftigen Version des 68000, die alle 32 
Bit zur Verfügung stellt, würde das einen Adressbereich von 
mehr als 4 Milliarden Byte bedeuten. Selbstverständlich sind 
auf dem Chip auch der Datenbus und der Adressbus je 32 Bit 

lang. 
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2. Cross-Makro-Assembler 

2.1 Umfang 

Es gibt mittlerweile eine Vielzahl von Systemen, mit denen Soft- 
ware für 68000-Anwendungen entwickelt werden kann. Die 
einen werden ihre Programme auf Motorolacomputern wie 
EXORciser®- oder EXORmacs*-Entwicklungssystemen ent- 
wickeln, die andern verwenden dafür Mini-, Grosscomputer 

oder Universalentwicklungssysteme. Ungeachtet dessen, was 
für ein System benützt wird, nehmen wir an, dass alle Benützer 
in einer Assemblersprache und nicht in Maschinencode pro- 

grammieren werden. Somit wird ein Übersetzungsprogramm, 
der sogenannte Assembler gebraucht, um den Assemblerquel- 
lencode in Maschinensprache oder Objektcode zu übersetzen, 

damit der Mikroprozessor ihn ausführen kann. Wir kennen 
zwei Assemblergrundtypen. 
Ein Cross-Assembler läuft auf einem anderen Rechner als dem- 
jenigen, der den assemblierten Code ausführen wird. Der Rech- 
ner, mit dem assembliert wird, hat normalerweise eine umfang- 

reiche Softwareunterstützung und schnelle Peripheriegeräte, 
wie zum Beispiel die Systeme IBM 360, 370 oder ein PDP 11. 
Als resident wird ein Assembler bezeichnet, wenn er auf dem 
gleichen Rechner läuft wie die Anwendung. Das EXORmacs"- 
Entwicklungssystem hat zum Beispiel einen residenten Assem- 

bler für den MC 68000. 

Dieses Kapitel bezieht sich auf den Motorola «Cross Macro 
Assembler». Der Cross-Makro-Assembler kann auf einem 

EXORciser®-Entwicklungssystem, auf einem IBM 370 oder 

auf einem DEC PDP11 laufen. Er ist zudem ein Makro-Assem- 

bler, weil er dem Programmierer die Definition von Instruk- 
tionssequenzen als Makros erlaubt. Der Begriff Makro wird in 
diesem Kapitel etwas später exakter behandelt. 
Dieses Kapitel soll nicht eine genaue, umfassende Beschreibung 
des Cross-Makro-Assemblers (im weiteren nur noch Assembler 
genannt) geben, sondern nur eine Zusammenfassung der grund- 
sätzlichen Eigenschaften sein. Für die speziellen Details wird 
auf die entsprechende Bedienungsanleitung hingewiesen. 

Quellenbefehle 

Ein Quellenprogramm ist eine logische Sequenz von Quellenbe- 
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fehlen, die dazu bestimmt ist, eine spezifische Aufgabe auszu- 
führen. Ein Quellenbefehl kann entweder ein Assemblerbefehl, 
ein Kommentar oder eine Assembleranweisung sein. 

2.2 Assemblerbefehle 
2.2.1 Aufbau 

Ein Assemblerbefehl besteht aus bis zu fünf Feldern: 
Zeilennummer |Label] Mnemonik [Operand] [Kommentar]. 
Die Zeilennummer wird entweder vom Editor oder vom Assem- 
bler generiert, um die Quellencodezeile zu bezeichnen. Die Zei- 
lennummern können bis zu vier Dezimalstellen aufweisen. Die 
andern vier Felder sind vom Anwender zu programmieren, 
wobei nur das mnemonische Feld für einen Befehl obligatorisch 
ist. Label- und Kommentarfeld sind fakultativ (dargestellt 
durch die eckigen Klammern). Das Operandenfeld wird nur 
verwendet, falls der Befehl das verlangt, andernfalls wird es 

weggelassen. | | 
Der MC 68000-Assembler verwendet ein freies Format, in dem 
die verschiedenen Felder irgendwo auf einer Zeile stehen kön- 
nen. Jedes Feld muss jedoch vom vorhergehenden mindestens 

durch eine Leerstelle getrennt sein. 

2.2.2 DasLabelfeld 

Das Labelfeld ist das erste, vom Anwender geschriebene Feld 
einer Zeile. Jeder Befehl kann ein Label tragen. Es wird meistens 

nur in Verbindung mit einem Sprung- oder einem Sprung-zur- 
Subroutine-Befehl gebraucht. Diese Befehle laden den Pro- 
grammzähler mit einem neuen Wert. Dabei wechselt die sequen- 

tielle Ausführung eines Programmes. 
Das Label weist auf jenen Befehl, bei dem das Programm 
weiterfahren soll. 
Das Label ist ein Ausdruck von 1 bis 30 alphanumerischen Zei- 
chen, wobei das erste Zeichen ein Buchstabe (A ....Z) sein muss. 
Alle 30 Zeichen sind signifikant, obwohl nur die ersten 8 ausge- 
druckt werden. Die Zeichen AO bis A7, DO bis D7, CCR, SR, 
SP und USP werden vom Assembler als Register erkannt und 
dürfen somit nicht als Label gebraucht werden. 
Wenn in der ersten Kolonne ein Label gesetzt wird, so muss 
danach mindestens eine Leerstelle folgen. Steht das Label in 
einer anderen Kolonne, so muss direkt danach ein Doppelpunkt 

(:) stehen. 

2.2.3 Das Mnemonikfeld 

Das Mnemonikfeld kann Assembler-Befehlsausdrücke von drei 
bis fünf Buchstaben enthalten. Der Assembler verwendet eine 
interne Tabelle, um die Befehlsausdrücke (Mnemonik) in Binär- 
code umzuwandeln. 
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Einige der Befehle des MC 68000 brauchen einen, beziehungs- 
weise zwei Operanden, andere keinen. Die Mnemoniks geben 
dem Assembler Anzahl und Typ der Operanden an. Die Mne- 
monikliste wird in Kapitel 3 ausführlich beschrieben. 

Wie schon im Kapitel 1 erwähnt wurde, kann der MC 68000 
Daten als Byte, Wort und Doppelwort verarbeiten. Einige 
Befehle können nur mit einer Datenlänge arbeiten; andere dage- 

gen mit zwei oder sogar mit allen drei Datenlängen. Für Befehle, 
die mehrere Datenlängen haben können, muss dem MC 68000 
«gesagt» werden, welche Datenlänge nun verarbeitet werden 

soll. Das wird erreicht, indem der Mnemonik eine Nachsilbe 
(Datenlängen-Code) angehängt wird. Ein Befehl, der den Wert 
vom Datenregister DO zum Inhalt von D1 addiert, sieht wie 
folgt aus: 

ADD.X DO, D1 

wobei .X die zu addierende Datenlange der beiden Register DO, 
D1 bedeutet. Es gibt für .X folgende Möglichkeiten: 

.B Byte (8 Bit) 

.W Wort (16 Bit) 

.L Doppelwort (Long) (32 Bit) 

Falls der Datenlangencode weggelassen wird, nimmt der 

Assembler die Datenlange eines Wortes. Damit gibt es fiir den 
ADD-Befehl folgende Moglichkeiten: 

ADD.B DO, D1 (Byte) 
ADD.W DO, D1 (Wort) 
ADD DO, D1 (Wort) 
ADD.L (Doppelwort) 

2.2.4 Das Operandenfeld 

Je nach Befehl wird das Operandenfeld benutzt oder nicht. Die- 
ses Feld enthalt entweder einen oder zwei Operanden und ist 

mindestens durch eine Leerstelle vom Mnemonikfeld getrennt. 
Falls zwei Operanden verlangt sind, mtissen diese durch ein 
Komma (,) getrennt werden. Für diesen Befehlstyp bedeutet der 
erste Operand die Quelle (source) und der zweite die Senke (sink 
oder Bestimmungsort). Der Quellenoperand bestimmt den 
Wert, der zu etwas addiert, von etwas subtrahiert, mit etwas ver- 
glichen oder im Bestimmungsoperanden abgespeichert wird. 

Aus diesem Grunde kann der Quellenoperand nie durch eine 
Operation verändert werden. Der Bestimmungsoperand (Sen- 
ke) dagegen wird praktisch immer durch die Operation verän- 
dert. In Kapitel 3 werden wir für jeden Befehl des MC 68000 die 
Adressiermöglichkeiten der Operanden behandeln. 
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2.2.5 Das Kommentarfeld 

Das nicht obligatorische Kommentarfeld wird vom Program- 
mierer verwendet, um das Programm lesbarer und verständli- 
cher zu machen. Dieses Feld wird vom Assembler nicht beach- 
tet, aber gleichwohl ausgedruckt. Wenn ein Kommentar 

geschrieben wird, muss dieser mit mindestens einer Leerstelle 
vom vorhergehenden Element getrennt sein. 

2.2.6 Reine Kommentarzeilen 

Es können auch reine Kommentarzeilen geschrieben werden, 
um ein Programm oder einen Codeteil, die Registerkonfigura- 
tion, die Speicherzuteilung oder sonst etwas zu dokumentieren. 
Diese Kommentare werden mit einem * in der ersten Kolonne 
markiert. Während der Assemblierung wird der Assembler den 
Beginn der Kommentarzeile erkennen und den Kommentar 
nicht beachten. 

2.3 Assembleranweisungen 
2.3.1 Zweck 

Assembleranweisungen oder «Pseudooperationen» stellen eine 
spezielle Gruppe von Anweisungen an den Assembler dar. Sie 
ordnen dem Objektprogramm einen gewissen Speicherbereich 

zu, definieren Symbole, weisen bestimmte Speicheradressen für 
temporäre Speicherung zu, steuern das Ausdruckformat und 
führen eine Anzahl kleiner Verwaltungsfunktionen aus. Mit 
Ausnahme der Konstantendefinition werden diese Befehle nicht 
in Objektcode übersetzt. 

Die Assembleranweisungen haben, wie die Assemblerbefehle, 
bis zu fünf Felder: 

Zeilennummer [Label] Anweisung [Operand] [Kommentar]. 
Hier gilt das gleiche wie fiir die Assemblerbefehle. Die Zeilen- 
nummer ist eine editor- oder assemblergenerierte Quellenzei- 
lenidentifikation, die bis zu vier Dezimalziffern lang sein kann. 
Die andern vier Felder werden vom Anwender definiert. Von 
diesen ist nur das Anweisungsfeld immer notwendig. Die Felder 
in eckigen Klammern sind fakultativ. 

Dazu mussen noch einige Erklarungen gegeben werden. Das 
Kommentarfeld ist das einzige, das immer beliebig gesetzt oder 

weggelassen werden kann. Labels können nur in fünf Fällen ver- 
wendet werden, und Operanden können nur mit Anweisungen 
gebraucht werden, die diese verlangen. Tabelle 2.1 fasst die 
Assembleranweisungen und ihr entsprechendes Format zusam- 
men. 

Die Assembleranweisungen können wie die Befehle in einem 
freien Format eingegeben werden. Die Felder können also 
irgendwo auf einer Zeile erscheinen. Sie müssen allerdings 
durch mindestens eine Leerstelle getrennt sein. 
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Anweisung Bedeutung Format 

Assemblierungssteuerung 

ORG Absolute Adresszuweisung ORG Ausdruck 
ORG.L Ausdruck 

RORG Relative Adresszuweisung RORG Ausdruck 
End Ende des Quellenprogramms END 

Symboldefinition 

EQU Symbol gleich dem Wert 
(permanent) Label EQU Ausdruck 

SET Setze Symbolwert (temporär) Label SET Ausdruck 

Speicherzuteilung 

DC Definiert eine Konstante [Label] DC.B Operand(en) 
[Label] DC[.W] Operand(en) 
[Label] DC.L Operand(en) 

DS Definiert einen Speicherplatz [Label] DS.B Operand 
[Label] DS[.W] Operand 
[Label] DS.L Operand 

Ausdrucksteuerung 

PAGE Neue Seite PAGE 
LIST Druckt das Assemblierte LIST 
NO LIST Druckt das Assemblierte nicht NO LIST 

NOL 

SPC n Spring n Zeilen der Assemblierliste SPC n 
NO PAGE Keine Seiten numerieren NO PAGE 
LLEN m Setze Zeilenlange m LLEN m 
TTL Drucke Titel auf jede Seite TTL Titelname 

NOOBJ Kein Objektcode NOOBJ 
FAIL Drucke Fehlermitteilung FAIL Ausdruck 

G Konstantencode G 

Bedingte Assemblierung 

IFEQ Assembliere falls = 0 IFEQ Ausdruck 
IFNE Assembliere falls# 0 IFNE Ausdruck 
ENDC Ende des bedingten Assemblierens ENDC 

Makrodefinition 

MACRO Definiert ein Makro Label MACRO 
ENDM Ende des Makros ENDM 
MEXIT Spring auf das Ende des Makros MEXIT 

Tabelle 2.1. Ubersicht der Assemblierungsanweisungen 
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2.3.2 Assemblierungssteueranweisungen 

Der Assembler hat zwei «Origin»-Anweisungen, die absolute 
(ORG) und die relative (RORG). Diese erlauben dem Anwen- 
der, seine Programme, ‘Subroutinen und Daten irgendwo im 
Speicher zu laden. Programme und Daten können, in Abhän- 
gigkeit der Speicherkonfiguration, in verschiedene Speicher- 
bereiche geladen werden. Der Assembler hat einen Speicher- 
platzzeiger (vergleichbar mit dem internen Programmzähler des 
MC 68000), der auf die Speicheradresse weist, wo der Objekt- 
code des nächsten Befehls oder Daten zu holen sind. ORG wie 
RORG veranlassen den Assembler, eine neue, spezifizierte 
Adresse in den Speicherplatzzeiger zu laden, um danach die 
Speicherzuweisung der folgenden Ausdrücke auszuführen. 
ORG weist einen absoluten Speicherplatz zu, RORG dagegen 
nur den relativen. 
Die ORG-Anweisung wird verwendet, wenn man eine Start- 
adresse auswählt, bei der ein Programm oder Daten abgespei- 

chert werden sollen. Die zwei gültigen Formate ORG und 
ORG.L bewirken das gleiche wie die Befehle, die sich auf einen 
Label beziehen und im Programm assembliert werden. 

Wenn ORG eingesetzt ist, werden Befehle, die sich auf einen fol- 
genden Label beziehen, in einer kurzen, schnell durchgeführten 
Art assembliert. Die Labels müssen aber innerhalb der hexade- 
zimalen Adressen O ... 7FFF liegen. Wird ORG.L gebraucht, 
so werden die gleichen Befehle in einer langen, viel Zeit kosten- 
den Art assembliert. Dafür können sich die Labels irgendwo im 
Speicher befinden. 
Die RORG-Zuweisung ist für verschiedene Anwendungen 
nützlich: 
— Mischen von Assemblerprogrammen mit Programmen, die 

in einer höheren Sprache geschrieben werden, ohne dass man 
sich darum kümmern muss, wo der Objektcode hinkommt. 

— Entwicklung von verschiebbaren Subroutinen, die von 
irgendwo im Speicher geholt und ausgeführt werden können. 

- Konstruktion von Programmkomponenten, die später zu 
einem grossen Programm zusammengesetzt werden. 

Die letzte Assemblierungskontrollanweisung, «Ende des Quel- 
lenprogrammes» (END), teilt dem Assembler mit, dass er das 
Ende des Quellenprogramms erreicht hat. 

2.3.3 Symboldefinitionsanweisung 

Die beiden Anweisungen, EQU, «Gleich dem Wert» und SET, 
«Setze den Wert», werden gebraucht, um Symbolen im Pro- 
gramm numerische Werte zuzuweisen. In beiden Fällen nimmt 
der Assembler den Ausdruck im Operandenfeld und weist das 
Resultat dem Symbol im Labelfeld zu. Symbole, die mit SET 
zugewiesen werden, können später im Programm neu definiert 
werden. Dagegen können die durch EQU definierten Symbole 
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nicht verändert werden. Ausdrücke und Symbole werden später 
in diesem Kapitel vollständig beschrieben. Kurz erklärt ist ein 
Ausdruck eine Kombination von Symbolen, Konstanten, alge- 
braischen Operatoren und Klammern (vergleichbar mit der 
rechten Seite einer algebraischen Gleichung), während ein Sym- 
bol eine Serie von alphanumerischen Zeichen wie zum Beispiel 
ein Label ist. Für die EQU- und SET-Anweisung muss der Aus- 
druck eine ganze Zahl sein, damit er eine Adresse oder ein 
Datenwert sein kann. 

Da die EQU-Anweisung permanent ist, wird sie angewendet, 
um Subroutinen- und Geräteadressen, oft gebrauchte Konstan- 
ten usw. zu definieren. Dazu einige Beispiele: 

SUBR EQU $2000 
CONST EQU 5634 
PIA2 EQU $FEFFOO 

Man kann auch Symbole mit andern Symbolen definieren: 

LAST EQU FINAL 
STRT3 EQU START+3 

Das Symbol im Operandenfeld muss natürlich vorher definiert 
sein. 
Da die SET-Anweisung temporär sein kann, wird sie für die 
Definition von variablen Daten wie Maskenmuster oder Kon- 
versionsfaktoren verwendet. Die folgenden SET-Anweisungen 
können zum Beispiel im gleichen Programm auftreten: 

MASKI SET $FFFE 
MASKI SET $FFFD 

Wenn das Programm assembliert ist, werden alle MASK] 
durch den Wert $FFFE ersetzt bis zum zweiten SET. Danach 
wird dem Symbol MASK 1 der Wert $FFFD zugeordnet. 

2.3.4 Speicherdefinitionsanweisung 

Die Definitionsanweisungen fiir Speicherkonstanten (DC) und 
Speicherplatz (DS) konnen eine oder mehrere Adressen in 
einem Lese- und Schreibspeicher definieren. Zugewiesene Spei- 
cherplätze können entweder mit Werten initialisiert (DC) oder 

einfach für spätere Verwendung durch das Programm reserviert 
werden (DS). Zu beachten ist, dass die in Tabelle 1 aufgeführten 
Assembleranweisungen DC und DS mit Datenlängencodes zu 
ergänzen sind, um Byte, Wörter oder Doppelwörter zu bestim- 

men. 

Die DC-Anweisung kann zum Aufstellen von Datentabellen 
wie ASCII-Mitteilungstabellen, indirekte Adressen usw. einge- 

setzt werden. Der Assembler wird jeden Ausdruck im Operan- 
denfeld als Zahlenwert verstehen und diesen Wert in den ent- 
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sprechenden Speicherplatz schreiben. Mehrere Operanden 
müssen durch Kommas getrennt werden. Dazu einige Beispiele: 

TABLE DC.W 10, 5, 7, 2 

Beginnend bei der Adresse TABLE werden die Dezimalzahlen 

10, 5, 7 und 2 wortweise (.W) hintereinander in binärer Form in 
den Speicher geschrieben. 

ALBL DC LABEL +1 

Bei der Adresse ALBL wird die Adresse LABEL plus 1 als 

Wort eingetragen. 

TABLI DC.L 10, 5, 7, 2 

Beginnend bei der Adresse TABL1 werden die Dezimalzahlen 
10, 5, 7 und 2 doppelwortweise (long .L) in binärer Form rechts- 
bündig in den Speicher geschrieben. 
ASCII-Zeichenausdrücke müssen nicht durch Kommas 
getrennt werden, sondern nur am Anfang und am Ende des 
Ausdrucks durch ein Apostroph (‘) gekennzeichnet sein, ausser 

eine weitere DC.B-Anweisung folge. 

CONST DC.B 43 

Der Speicherplatz erhält den Wert 43. Das übrigbleibende Byte 
wird Null sein, ausser der nächste Befehl sei wieder eine DC.B- 
Anweisung. 
Wenn man eine ungerade Anzahl von ASCII-Operanden mit 
DC.W- oder DC.L-Anweisungen eingibt, so wird der Assem- 

bler die restlichen Byte der rechten Seite mit Nullen auffüllen. 
Zum Beispiel: 

NUMBR DC.L 12345’ 

Der Speicher wird in den acht folgenden Byte die Werte «1234» 
und «5000» enthalten. 

Ni DC ’X’ 

Der Speicher wird in den zwei folgenden Byte «X0» haben. 
Die DS-Anweisung erlaubt, einem Speicherbereich einen 
Namen und die folgende Anzahl Byte zuzuordnen, ohne dabei 
diesen Speicherbereich in irgendeiner Weise zu initialisieren. 
Zum Beispiel: 

TEMPO DS.B 10 

Die 10 nächsten Byte sind von der Adresse TEMPO an reser- 
viert. 

TEMPI DS.W 10 

Die 10 nächsten Wörter sind von TEMP1 an reserviert. 

Die DS-Anweisung hat keinen eingebauten Schutz gegen 
Adressierungsungenauigkeit. Wenn man wortbreite Daten 

28



Cross-Makro-Assembler   

erzwingen will, muss nach dem Befehl DS.B noch DS 0 beige- 
fügt werden. | 
Die Steueranweisungen zum Drucken werden hier nicht 
beschrieben, da die meisten selbsterklärend sind und alle im 
MC68000-Cross-Macro-Assembler-Handbuch von Motorola 

vollständig erklärt sind. 

2.4 Ausdrücke im Operandenfeld 

Ein Ausdruck ist eine Kombination von Symbolen, Konstan- 
ten, algebraischen Operatoren und Klammern, die vom Assem- 
'bler als ganzzahlige Daten- oder Adressoperanden erkannt wer- 
den. 

2.4.1 Symbole 

Wie die Labels bestehen auch Symbole aus 1 bis 30 alphanume- 
rischen Zeichen, die mit einem Buchstaben (A bis Z) beginnen. 
Alle 30 Zeichen sind signifikant. Beim Ausdrucken werden 
immer nur die ersten 8 Zeichen ausgegeben. Die Symbole AO... 
A7, DO ... D7, CCR, SR, SP und USP sind spezielle, vom 
Assembler erkannte Registernamen, die wohl im Operanden- 
feld, aber nicht im Labelfeld erscheinen diirfen. | 

Ein Symbol kann einen absoluten oder einen relativen Wert 
haben. Ein Symbol hat einen absoluten Wert, falls es durch 

EQU oder SET mit einem absoluten Wert definiert wurde oder 
falls ein ORG-Befehl der Symboldefinition vorangegangen ist. 
Ein Symbol hat einen relativen Wert, falls es durch EQU oder 
SET mit einem relativen Wert definiert wurde oder falls ein 

RORG-Befehl der Symboldefinition vorausgegangen ist oder 
falls weder ORG noch RORG der Symboldefinition vorausge- 
gangen ist (das heisst der «Defaultwert» ist RORG 0). 

2.4.2 Konstanten 

Der Assembler akzeptiert sowohl numerische Konstanten als 
auch ASCII-Zeichen. Eine Folge von dezimalen Ziffern (zum 
Beispiel 12345) wird als Dezimalzahl interpretiert, eine Folge 
von hexadezimalen Ziffern, die mit einem Dollarzeichen beginnt 
(zum Beispiel $A5C7), wird als hexadezimale Zahl betrachtet. 
Ein ASCII-Ausdruck ist eine Folge von bis zu vier ASCII-Zei- 
chen, die mit je einem Apostroph eingeklammert sind (zum Bei- 

spiel’ABCD’). 

2.4.3 Algebraische Operatoren 

Der Assembler erlaubt, Elemente eines Ausdrucks mit vier 
arithmetischen, vier logischen und einem speziellen Operator zu 
‘kombinieren. Die arithmetischen Operatoren sind: + (addie- 
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ren), — (subtrahieren), * (multiplizieren) und / (dividieren). Die 
EQU-Sequenz, zum Beispiel 

START EQU $2000 
STARTP6 EQU START +6 
STARTMI EQU START -1 

weist den Symbolen STARTP6 und STARTMI die Adressen 

$2006 beziehungsweise $1FFF zu. 

Die logischen Operatoren haben folgende Definitionen: 
- Logisches UND (AND) bewirkt, dass jedes Bit des linken 

Ausdruckes mit dem entsprechenden Bit des rechten logisch 
UND-verknüpft wird. 

- Logisches ODER (OR) bewirkt, dass jedes Bit des linken 

Ausdruckes mit dem entsprechenden Bit des linken logisch 
ODER-verknüpft wird. 

— Links schieben (<) bewirkt, dass der linke Ausdruck um die 
Anzahl (rechter Ausdruck) Bitpositionen nach links gescho- 

ben wird. 
— Rechts schieben (>) bewirkt, dass der linke Ausdruck um die 

Anzahl (rechter Ausdruck) Bitpositionen nach rechts 
geschoben wird. 

Der Spezialoperator, das Komplement-Minus, bewirkt, dass ein 
Teil eines Ausdruckes negiert oder von null subtrahiert wird. 
Dieser Operator kann nur zu Beginn eines Ausdruckes oder 

direkt vor einer linken Klammer auftreten. 

2.4.4 Auswahl von Ausdrücken 

Wie schon erwähnt, sind Ausdrücke eine Kombination von 
Symbolen, Konstanten, algebraischen Operatoren und Klam- 
mern. Während der Assemblierung sucht der Assembler zuerst 

die Ausdrücke und arbeitet Klammern von innen nach aussen 
ab. Danach werden die Operatoren in folgender Reihenfolge 
behandelt: 

Komplement-Minus, Schieben, UND oder ODER, Multiplika- 
tion und Division, Addition und Subtraktion. 
Operatoren der gleichen Priorität (zum Beispiel «*» und «/») 
werden von links nach rechts der Reihe nach verarbeitet. Alle 
dazwischenliegenden Werte werden zu einem ganzzahligen 32- 
Bit-Wert verarbeitet. Das Resultat eines Ausdruckes ist somit 
ein ganzzahliger, 32 Bit langer Wert. 

2.5 Bedingte Assemblierung 

Die Möglichkeit, bedingt zu assemblieren, erlaubt dem Anwen- 
der, je nach denzur Zeitder Assemblierung bestehenden Bedin- 
gungen, Quellenprogrammteile ein- oder auszuschliessen. Eini- 
ge Anwendungen für bedingte Assemblierung: 
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— Ein- oder Ausschliessen bestimmter Variablen, 

- Setzen von Diagnostik- oder speziellen Bedingungen für die 
folgenden Testläufe, 

- Generieren spezieller Versionen von mehrfach verwendeten 
Programmen. 

Für den MC68000-Assembler müssen den Quellenprogramm- 

teilen, die entweder ein- oder ausgeschlossen werden sollen, eine 
der beiden Anweisungen vorangehen: IFEQ und IFNE, gefolgt 
von ENDC am Programmteilende. Wenn eine IFEQ-Anwei- 
sung verwendet wird, kann der Programmteil nur assembliert 
werden, falls der Ausdruck im Operandenfeld gleich Null ist. 
Wenn IFNE gebraucht wird, kann der Programmteil nur 

assembliert werden, falls der Ausdruck verschieden von Null 
ist. 

Die bedingte Assemblierung wird zum Beispiel dort eingesetzt, 
wo es möglich sein soll, ein Programm zu schreiben, dessen Ein- 
und Ausgaberoutine davon abhängig gemacht wird, ob ein 
Disk- oder ein Lochstreifensystem verwendet wird. Dazu ist zu 
bemerken, dass es ein Flag DORT gibt, das anzeigt, ob Disk- 
oder Lochstreifen-Ein- und -Ausgabe verwendet wird. Wenn 
DORT Null ist, so wird das Programm für ein Disksystem, 
andernfalls für ein Lochstreifensystem assembliert. 

2.6 Makros 

Der Anwender wird oft in die Situation kommen, eine bestimm- 
te Sequenz mehrmals in einem Programm ausführen zu müssen. 
Anstatt jedesmal die Befehlssequenz zu schreiben, kann diese 
auf zwei verschiedene Arten nur einmal geschrieben werden: 
entweder als Subroutine oder als Makro. 

Wie die meisten Leser schon wissen, ist die Subroutine eine 
Befehlssequenz, die nur einmal in einem Programm erscheint. 

Jedesmal, wenn die Subroutine fertig durchlaufen ist, geht die 
Steuerung durch einen «Return»-Befehl wieder an das aufrufen- 
de Programm zurück. Subroutinen sind im Kapitel 3 im Detail 
beschrieben. 
Wie die Subroutinen, erlauben auch die Makros dem Anwen- 
der, einer Befehlssequenz einen Namen zu geben. Jedesmal, 
wenn der Name in einem Operandenfeld eines Quellenpro- 
gramms auftaucht, wird der Assembler diesen Makronamen 

durch die entsprechenden Instruktionen ersetzen. Darin liegt 
der Unterschied zwischen Subroutine und Makro: Die Subrou- 
tinenbefehle werden während der Programmausführung einge- 

setzt, während die Makrobefehle beim Assemblieren eingesetzt 
werden. 

Makros haben folgende Vorteile: 
— Kiurzere Quellenprogramme, 
— Bessere Programmdokumentation, 
— Verwendung von ausgetesteten Befehlssequenzen. Ist einmal _ 
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ein Makro fehlerfrei, so kann man sicher sein, dass bei Ver- 
wendung dieses Makros darin keine Fehler mehr auftreten. 

— Einfach abzuändern. Wird ein Makro abgeändert, so ändert 
der Assembler jedesmal automatisch bei einem Einsatz den 
Makrobefehl. 

— Makros können gebraucht werden, um eine Makrobibliothek 
aufzubauen, die ein oder mehrere Programmierer fir die Pro- 
grammerstellung brauchen können. 

— Schnelle Ausführung. Der Mikroprozessor wird nicht wie bei 
Subroutinen durch Aufruf- und Rückkehrbefehle verzögert. 

Nachteile der Makros: 

— Wiederholung der gleichen Befehlssequenz, da das Makro 
jedesmal, wenn es aufgerufen wird, das Programm vergrös- 
sert. 

— Ein einziges Makro kann eine Menge Befehle erzeugen. 
— Fehlen von Standards. 

— Mögliche unerwünschte Effekte in Registern und Statusbit, 
falls diese Probleme zuwenig beachtet werden. 

Makrodefinition 

Jede Makrodefinition besteht aus drei Teilen: 
1. Makrokopf, bestehend aus MACRO-Anweisung mit dem 

Makronamen und dem Labelfeld. 
2. Makrokorper, bestehend aus den Befehlen, die den Makro- 

code ausmachen. 

3. Makroende, bestehend aus ENDM-Anweisung, die das Ende 
der Makrodefinition anzeigt. 

400 002000 D840 LABEL ADD.W  DO,D4 Addiere zwei Register 
mn Nm my! - 7 nd N? N ng od Nr meme   

  

      
    
          
  

Bild 2.1 Standardformat des Objektlistings, wie es der Makroassembler liefert 
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Der Assembler erlaubt dem Anwender, bis zu neun Parameter 
in ein Makro zu überführen. Diese Parameter müssen dann im 

Operandenfeld des Makroaufrufes stehen. Der Assembler lässt 
auch variable Datenlängencode in einem Makro zu. 
Es gibt noch eine Makroanweisung, die bis jetzt noch nicht 
erwähnt worden ist: MEXIT. Diese Anweisung wird mit der 

bedingten Assemblierung gebraucht, um die übrigbleibenden 
Befehle des Makros zu überspringen. 

2.7 Zeilendruckerformat 

Bild 2.1 zeigt das Zeilenformat eines Objektlistings, das vom 
Assembler ausgedruckt wird. Jede Seite des Listings kann einen 

Seitenkopf, Kommentarzeilen, Erweiterungszeilen und Fehler- 
zeilen haben. Die letzte Seite enthält die Zusammenstellung aller 
Fehlerzeilen und die Symboltabelle. 
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3. Der Befehlssatz des MC 68 000 

Bild 3.1 
Befehlsformat im Speicher 

Das Kapitel 3 gibt eine detaillierte Beschreibung des Befehlssat- 
zes des MC 68000 und seiner 14 Adressierungsarten. Die 
Befehle werden für die Behandlung durch Zusammenfassen 
ähnlicher Befehle nach funktionellen Kriterien geordnet. So 
werden Additionsbefehle zusammen mit Subtraktionsbefehlen, 

Schiebebefehle mit Rotierbefehlen usw. behandelt. Durch dieses 
Vorgehen kann die Verwandtschaft einzelner Befehle sehr ein- 
fach aufgezeigt werden. 

3.1 Das Befehlsformat im Speicher 

Befehle belegen, wie in Bild 3.1 gezeigt, eine bis fünf Speicher- 
zeilen. In der ersten Zeile steht das sogenannte Operationswort, 
das den Befehl, die Adressierart(en) sowie die Länge des Befehls 
bestimmt. Die zusätzlichen Zeilen sind belegt, falls der Befehl 
mit unmittelbarer Adressierung, Absolutadressierung oder mit 
Verschiebungsangabe arbeitet. Der längste Befehl besteht aus 5 

Wörtern, dem Befehlswort, gefolgt von je 2 Wörtern für das Ziel 
der effektiven Adresserweiterung. 
Zweiwort - (oder «lange») Operanden im Falle der unmittelba- 
ren oder absoluten Adressierung werden im Speicher in der 
Rangfolge höheres Wort/tieferes Wort abgelegt. Falls das höhe- 
re Wort an Adresse ADDR abgespeichert ist, befindet sich das 
tiefere Wort an der Adresse ADDR+2. Dieser Grundsatz ist 
gültig für den MC 68000 und muss bei der Programmierung 
eingehalten werden. 

15 10 5 0 

Befehlswort 

  

Bestimmt Befehlstyp, Adressierart(en) sowie Länge 

des Befehls 
  

direkter Operand 

(Falls benötigt: Ein oder zwei Wörter) 
  

Quelle der effektiven Adresserweiterung 

(Falls benötigt: Ein oder zwei Wörter) 
  

Ziel der effektiven Adresserweiterung     (Falls benötigt: Ein oder zwei Wörter) 
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3.2 Adressierarten 

Der MC 68000 besitzt 14 Adressierarten. Sie sind in Tabelle 3.1 
dargestellt und können 6 Gruppen zugeordnet werden: Register 
direkt, Register indirekt, absolute Adressierung, relative Adres- 
sierung, unmittelbare Adressierung, implizite Adressierung. In 
der genannten Tabelle ist pro Adressierungsart die Formel 
angegeben, mit der die effektive Adresse berechnet wird, sowie 

die Assemblersyntax und die Zahl allfälliger Erweiterungs- 

  

  

  

  

  

  

  

  

worte. 

Art Adresserzeugung Assembler- Erweite- 
syntax rungs- 

worte 

Register direkt 
Datenregister direkt EA = Dn Dn — 
Adressregister direkt EA=An An _ 

Adressregister indirekt 
Adressregister indirekt EA=(An) (An) - 
Adressregister indirekt EA =(An) Ane An+N (An)+ _ 
mit Postdekrement 
Adressregister indirekt An«-An-N,EA=(An) -(An) - 

mit Predekrement 
Adressregister indirekt EA=(An)+d,, d(An) 1 
mit Erweiterung 
Adressregister indirekt EA =(An)+(Ri)+d, d(An,Ri) 1 
mit Index und Erweiterung 

Absolute Adressierung 
Absolut kurz EA = (Nächstes Wort) XXXX 1 
Absolut lang EA = (Nächstes und XXXXXXXX 2 

übernächstes Wort) 

Relative Adressierung 
Relativ mit Verschiebung EA =(PC)+d,, d 1 
Relativ mit Index und Verschiebung EA=(PC)+{Ri)+d, d(Ri) 1 

Unmittelbare Adressierung 
Unmittelbar Daten = nachstes Wort oder tt XXXX 1 oder 2 

nachste Worter 
Unmittelbar schnell Daten im Befehlswort enthalten +xx _ 

Implizierte Adressierung 
Implizierte Register EA = SR, USP, SP, PC _ 

Tabelle 3.1 Die Adressierarten des MC 68 000 

EA = Effektive Adresse SP = Aktiver Systemstapelzeiger 
An = Adressregister USP = Benutzerstapelzeiger 
Dn = Datenregister ds = 8-Bit-Verschiebungsangabe 
Ri = Adress- oder Datenregister, dj; = 16-Bit-Verschiebungsangabe 

verwendet als Indexregister N = | fiir Byte; 2 fiir Wort; 4 fiir Doppelwort 
SR = Statusregister Q = Inhalt von 
PC = Programmzähler > = Ersetzt 
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Falls ein Operand adressiert wird, der im Speicher abgelegt ist 

(was der Fall ist bei unmittelbarer, absoluter oder Adressierung 
mit Verschiebung), so müssen die Adressierregeln des MC 
68000 angewendet werden: 
1. Auf Byteoperanden kann entweder durch gerade oder 

ungerade Adressen zugegriffen werden. | 
2. Auf Wort- und Doppeloperanden muss durch eine gerade 

Adresse zugegriffen werden. 
Falls obige Regel nicht eingehalten wird, gibt der MC 68000 
eine Fehlermeldung (siehe Kapitel 7). 
Die meisten der nachfolgenden Beschreibungen der Adressier- 
arten enthalten zur Verdeutlichung Beispiele, die den MOVE- 
Befehl enthalten. Der MOVE-Befehl hat das folgende allge- 
meine Format: 
  

MOVE.X (EA queie) (EAzieı) (EA: effektive Adresse) 
      

X steht als Datenlängecode der zu verschiebenden Daten (B, W 
oder L; siehe Kapitel 2). Der MOVE-Befehl hat immer 2 
Operanden; der erste adressiert den Speicherplatz oder das 
Register, das die zu transferierenden Daten enthält (Quelle), der 
zweite adressiert den Speicherplatz oder das Register, wo die 
verschobenen Daten abzulegen sind (Ziel/Bestimmungsort). 

Der MOVE-Befehl gehört zu den wirksamsten Befehlen des 

MC 68000. Abhängig von der Adressierart für Quelle und Ziel 
können durch ihn Daten transportiert werden von Register zu 
Register, von Register an einen Speicherplatz, vom Speicher- 
platz zu einem Register oder von einem Speicherplatz zu einem 
anderen ohne Beeinflussung eines Registers. Es ist sogar mög- 
lich, mit ihm unmittelbar folgende Daten in ein Register oder zu 
einem Speicherplatz zu transportieren. 

3.2.1 Adressierart Register direkt 

Die Adressierungsart «Register direkt» holt Datenoperanden 
von irgendeinem (oder lädt ihn in irgendein) Daten- oder 

Adressregister. Der Befehl 
  

MOVE.L AO,D1 
        

ladt zum Beispiel den 32-Bit-Inhalt des Adressregisters AO in 

das Datenregister D1, ohne den Inhalt von AO zu verandern. 

3.2.2 Adressierart Adressregister indirekt 

In dieser Gruppe «zeigt» der Inhalt eines Adressregisters auf 
einen Operanden. Das bedeutet, dass das spezifizierte Adressre- 
gister eine Basisadresse enthalt, die der MC 68000 zur Berech- 

nung der effektiven Operandenadresse benützt (falls der Befehl 
ein Sprungbefehl ist, ist der Operand eine Adresse; sonst ist er 
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ein Datenwort). Der Zusammenhang zwischen Basisadresse 

und der effektiven Adresse hängt davon ab, welche der 5 mögli- 
chen indirekten Adressierarten verwendet wird. 
Bei der einfachsten Art der Gruppe, Adressregister indirekt, 
enthält das Adressregister die effektive Adresse selbst. Der 
Befehl 
  

MOVE.W (A0Q,)D1 
      

lädt das Wort, das an Adresse AO abgespeichert ist, in die 16 tie- 
feren Bit des Datenregisters D1. Bild 3.2 illustriert den MOVE- 
Befehl, wo AO auf den Speicherplatz $53F00 zeigt, der den 
Wert $1C9A enthält. 

MOVE.W (AO),Dl 
on 

  
AO | $00053F00 | Speicher 

\ ser 

$53F00 

$53F02 

$53F04 

Ue 

  

  

  

3.2.3 Adressregister indirekt mit Nach- 
inkrementierung oder Vordekrementierung 

Die beiden indirekten Adressierarten mit Nachinkrementierung 
bzw. Vordekrementierung ermöglichen, mit einem Befehl auf 
Daten in einem Speicherplatz zuzugreifen und sie zu verschie- 
ben sowie die Adresszeiger entweder vor der Operation zu 
dekrementieren oder nach der Operation zu inkrementieren. 
Damit ist es sehr leicht, benachbarte Daten im Speicher, zum 
Beispiel bei Tabellen oder Datenfolgen, zu bearbeiten. 
Die erste dieser beiden Arten, Adressregister indirekt mit 

Nachinkrementierung, addiert nach der Bearbeitung des 
Operanden 1, 2 oder 4 zum Wert des Adressregisters. Bei einer 

Byteoperation wird 1, bei einer Wortoperation 2 und bei einer 
Doppelwortoperation 4 addiert. Der Befehl 
  

MOVE.W (A0)+,(A1)+ 
      

ladt zum Beispiel das Wort, das an Adresse AO abgespeichert 
ist, in den Speicherplatz an Adresse Al und erhöht anschlies- 
send beide Adresszeiger um 2. Dieser MOVE-Befehl kann 
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Bild 3.3 
Nachinkrementieren eines Adress- 

registers mittels MOVE.W (A0)+, 

(A1)+ 

a) vor Ausführen, b) nach Ausführen des 

Befehls 

natürlich in einer Schleifenanweisung verwendet werden, um 
eine Anzahl von Datenworten von einem Teil des Speichers in 
einen andern zu verschieben. Bild 3.3 illustriert, wie der. MOVE- 
Befehl ausgeführt wird, falls die beiden Adresszeiger zuerst auf 
die Adressen $53F00 bzw. $60000 zeigen und die Quellen- 
adresse den Wert $1C9A enthält. 

  

    

    

  

  

    

    

      
  

    
  

    

Speicher 

Adress-Register 

S53EFE 

AO | $00053F02 | $53F00 $1C9A 

$53F02 

Ss Ss 
S5FFFE 

Al | $00060002 | $60000 $1C9OA 

$60002 

Speicher 

Adress-Register 

5 S53EFE 

AO | $00053F00 P S53F00 $1C9A 

$53F02   

TT > 
  

S5FFFE 

Al | $00060000 | > S60000 

$60002 

    
  

    

      
In ähnlicher Weise wie bei der vorbeschriebenen Art subtrahiert 

die Art «Adressregister indirekt mit Vordekrementierung» 1, 2 
oder 4 vom Wert des Adressregisters, bevor der Operand bear- 
beitet wird. Auch diese Art kann verwendet werden, um Daten- 
blöcke von einem Speicherbereich in einen andern zu transferie- 
ren, nur werden hier die Adressregister vor der Befehlsausfüh- 

rung dekrementiert. Der Befehl 
  

MOVE.W -(A0),-(A1l) 
      

kopiert zum Beispiel ein Datenwort vom Quellenplatz zum Ziel- 
platz, nachdem die beiden Adressregister um je 2 dekrementiert 

worden sind. 
Wie in Kapitel 1 erwähnt, können alle 8 Adressregister des MC 
68000 als Stapelzeiger verwendet werden. Dabei wird A7 als 
Systemstapelzeiger gebraucht, während AO bis A6 als Anwen- 
derstapelzeiger zur Verfügung stehen. Daraus folgt, dass der 
MC 68000 bis zu 8 Anwenderstapel im Speicher behandeln 

kann. 
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Aus den vorhergehenden Abschnitten ist ersichtlich, dass die 
Adressierarten mit Nachinkrementierung und Vordekrementie- 
rung sehr gut verwendet werden können, um Stapel zu bearbei- 
ten. Falls AO als Anwenderstapelzeiger verwendet wird, 

schreibt der Befehl 
  

MOVE.L DO,-(A0) 
      

den 32-Bit-Inhalt von DO in den Stapel und der Befehl 
  

MOVE.L (A0)+,D0 
      

speichert den ursprünglichen Inhalt von DO wieder zurück. 
Zusätzlich gibt es noch eine Variante des MOVE-Befehls, - 
genannt «Transportiere mehrere Register» (MOVEM), um 
Gruppen von Registern in den Stapel zu schieben bzw. wieder 

herauszuholen. 
Die noch zu beschreibenden zwei Adressierarten unterstützen 
den Tabellenzugriff, indem sie die Addition von Verschiebungen 

und Indizes zum Adressregister ermöglichen. 

3.2.4 Adressregister indirekt mit Verschiebung | 

In dieser Adressierart wird vor der Befehlsausführung eine im 
Befehl spezifizierte, maximal 16 Bit lange ganze Zahl zum 
Inhalt des Adressregisters addiert und mit der resultierenden 
Adresse zu einem Datenwort im Speicher zugegriffen. Die 

Adressierart eignet sich besonders gut für die Bearbeitung von 

Listen oder Tabellen, wo das Adressregister die Anfangsadresse 
enthält und die zu addierende Zahl die relative Verschiebung zur 

Anfangsadresse spezifiziert. 
Die Verschiebung wird in Byte angegeben. Das bedeutet, dass in 
Datentabellen, die als Datenelemente Byte enthalten, die Ver- 
schiebung gleich der Elementnummer ist; in Tabellen, die als 
Datenelemente Wörter enthalten, ist die Verschiebung gleich 
der Elementnummer multipliziert mit 2, in Tabellen mit Doppel- 

Speicher 

$53F00 ELEMENT 0 

MOVE.W 14, (A0),D1 

  

  

ao| $00053F00 ~~ |—-@) 

H
W
A
 

D
e
 

W
H
 

OX
 

1 GG@7> sic | $53F0E| $1C9A ) 

_ 
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wörtern gleich der Elementnummer multipliziert mit 4. Da- 
durch, dass die Verschiebung eine maximal 16 Bit lange ganze 
Z,ahl ist, ergeben sich folgende Verschiebungswerte. 

  

  

  

  

  

Datenelement Verschiebung 

positiv negativ 

Byte 32 767 Byte 32 768 Byte 

Wort 16 383 Wörter 16 384 Wörter 

Doppelwort 8191 Doppelwörter 8192 Doppelwörter 
  

Als Beispiel für diese Adressierart wird der Befehl 
  

  
MOVE.W 14(A0),D1 

    

diskutiert. AO enthält die Startadresse einer wortorientierten 
Tabelle. Der obige Befehl lädt den Inhalt des 8. Elements (Ele- 
ment 7) in das tieferwertige Wort von Datenregister D1. Bild 3.4 
illustriert diese Operation. 

3.2.5 Adressregister indirekt mit Index 

Dies ist die letzte zu beschreibende Adressierart aus der Gruppe 
der indirekten Adressierarten. Die effektive Operandenadresse 

wird berechnet, indem zum Adressregister der Inhalt eines 
Indexregisters (Daten- oder Adressregister) sowie eine maximal 
8 Bit lange ganze Zahl addiert werden. Dies ergibt für die 
Berechnung der Effektivadresse folgende Formel: 
  

  
EA = (An) +(Ri) + d, 

    

Es besteht die Moglichkeit, entweder das ganze Indexregister 
oder nur das tieferwertige Wort davon zu verwenden. Im ersten 
Fall muss zum Indexregister .L, im zweiten Fall .W gesetzt wer- 
den. Die Befehlsausftihrungszeit ist in beiden Fallen gleich. 
Weil diese Adressierart zwei verschiedene Offsets anbietet, ist 
sie nutzlich fur die Anwendung in zweidimensionalen Arrays. 
In solchen Fallen enthalt das Adressregister gewohnlich die 

Startadresse des Arrays, wahrend die Verschiebung und das 
Indexregister den Reihen- und Kolonnenoffset angeben (oder 

umgekehrt). Der Index ist normalerweise als Byteanzahl ange- 
geben und in einem Datenregister enthalten; für die Verschie- 
bung (in Byte) wird ein Symbol verwendet. 
Zur Illustration dieser Adressierart wird angenommen, dass ein 

auf dem MC 68000 basierendes System eine chemische Pro- 
duktionsanlage mit 6 Druck ventilen überwacht. Das System lie- 
fert jede halbe Stunde die Werte der 6 Ventile und speichert diese 

ab. In der Zeit einer Woche ergibt dies einen Array mit 366 
Blöcken zu je 6 Werten. 
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In Bild 3.5. wird das Lesen des Wertes von Ventil 4 in der zweiten 

Leseoperation (Ablesung 1) gezeigt. Der entsprechende Befehl 
lautet: 
  

  
MOVE.W VALVE (A0,D0.W),D1 

    

Die Startadresse des Arrays ist $53F00. 

  
$53F00 

MOVE.W VALVE (AQ, DO.Ww), D1 , Ablesung 

  

  

  
  
  
  
  
    

Ablesung 
LE 1 / 

wf § o00¢ | © 

J 
——$:53F0C|(yaıve 0) |) 

| (VALVE 1) 
VALVE=8 (VALVE 2) een 

(are) 7 
$53F 141 $ICIA 

[VALVE 5   

D1 ZZ SH 7   

Ablesung 
335 

      
3.2.6 Absolute Datenadressierung 

Bei der absoluten Datenadressierung ist die effektive Adresse 
selbst als Operand spezifiziert. Es gibt zwei absolute Adressier- 
arten: «Absolut kurz» und «absolut lang». Im ersten Fall ist der 
Operand eine 16-Bit-Adresse, im zweiten Fall eine 32-Bit- 
Adresse. 

«Absolut kurz» erlaubt, entweder zu den ersten 32 KByte im 

Speicher (0... $7 FFF) oder zu den höchsten 32 KByte im Spei- 
cher ($FF8000...$FFFFFF) zuzugreifen. 
«Absolut lang» gibt die Möglichkeit, zu irgendeinem Speicher- 
platz des 16-MByte-Speichers des MC 68000 zuzugreifen. 
Befehle mit «absolut kurz» belegen im Speicher 2 Wörter und 
benötigen zur Ausführung 12 Prozessorzyklen, solche mit 
«absolut lang» 3 Wörter respektive 16 Zyklen. Mit diesen zwei 
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absoluten Adressierarten unterstützt der MC 68000 Anwen- 
dungen mit einem sehr grossen Adressierraum, ohne die Effekti- 
vität von Anwendungen zu beeinträchtigen, die nur einen 
kleinen Adressierraum benötigen. «Absolut kurz» wird aber 
auch in Anwendungen mit grossem Adressierraum eingesetzt, 
um zu häufig gebrauchten oder zwischengespeicherten Daten, 

die in den höchsten 32 KByte des Speichers abgespeichert sind, 
zuzugreifen. 
Beispiele: 
  

Absolut kurz (2 Wörter, 12 Zyklen) 
MOVE.W $3F00,D1 

Absolut lang (3 Wörter, 16 Zyklen) 
MOVE.W $03F00,D1       

Beide Befehle laden das Wort an Adresse $3F00 in das tieferlie- 
gende Wort des Datenregisters D1. Der Datenlangecode .W 

bezieht sich auf die Grösse der verschobenen Daten. 
Der Operand eines Befehls mit absoluter Adressierung ist 
anstelle einer hexadezimalen Zahl oft mit einem Label spezifi- 
ziert. Dies wird illustriert am Befehl 
  

MOVE.L TABLE(DO.L),D1 
      

Mit diesem Befehl wird das Doppelwort, das sich an Adresse 
Table befindet, in das Adressregister AO geladen. Bei dieser Art 
von Befehlsdeklarierung ist von Interesse, ob fiir die Ausfiih- 
rung «absolut kurz» oder «absolut lang» verwendet wird. Die 
Antwort ist abhängig davon, ob Table in einer höheren oder 
einer tieferen Adresse als der MOVE-Befehl abgelegt ist: | 

— Falls Table in einer tieferen Adresse als der MOVE-Befehl 
abgelegt ist (es wird rückwärts referenziert), wird der Assem- 
bler die geeignete kurze oder lange Adresse generieren. 

- Falls Table in einer höheren Adresse als der MOVE-Befehl 
abgelegt ist (es wird vorwärts referenziert) und der MOVE- 
Befehl unter eine ORG-Anweisung fällt, wird der Assembler 

versuchen, eine kurze Adresse zu generieren. Bei Vorwärts- 
Referenz kann der Assembler durch eine ORG.L-Anweisung 

gezwungen werden, eine lange Adresse zu nehmen. 

Hinweis: Der Assembler generiert absolute Adressen für Befeh- 
le, die unter einer ORG-Anweisung, relative Adressen für 

Befehle, die unter einer RORG-Anweisung stehen. 

3.2.7 Programmzahler-relative Adressierung 

Die zum Programmzahler relativen Adressierarten geben die 
Möglichkeit, positionsunabhängige, das heisst «umplazierbare» 

(relocatable) Programme zu entwickeln, die, wenn einmal 
geschrieben und assembliert, irgendwo im Speicher ausgeführt 
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werden können. Bei den zum Programmzahler relativen Adres- 
sierarten berechnet der MC 68000 die effektiven Adressen, 
indem er zu der im Programmzähler enthaltenen Adresse eine 
Verschiebung addiert. Der Programmzähler zeigt im Berech- 
nungszeitpunkt der effektiven Adresse auf das Erweiterungs- 
wort des in Ausführung begriffenen Befehls. Der Wert der Ver- 
schiebung ist in diesem Erweiterungswort enthalten. 
Die zwei zum Programmzähler relativen Adressierarten, die der 

MC 68000 anbietet - «Relativ mit Verschiebung» und «Relativ 
mit Index» —, werden verwendet, um zu Operanden zuzugreifen, 
die im Speicher einige Byte hoher oder tiefer liegen als der in 

Ausführung begriffene Befehl. Beiden Adressierarten ist 
gemeinsam, dass die Verschiebung in Symbolen angegeben wer- 
den darf, da der Assembler die Verschiebung zur Zeit der 
Assemblierung berechnen kann (vergleiche die nachfolgend dis- 
kutierten Beispiele). 
Die Umplazierbarkeit der Programme bleibt dann aber nur 
gewahrleistet, wenn den betreffenden Befehlen eine RORG- 
Anweisung vorausgeht. Die RORG-Anweisung bewirkt, dass 
der Assembler die zum Programmzahler relative Adressierung 
verwendet, wahrend die ORG-Anweisung bewirkt, dass der 
Assembler absolute Adressierung verwendet. | 

3.2.7.1 Relativ mit Verschiebung 

«Relativ mit Verschiebung» ist die einfachere der beiden Adres- 

sierarten. Die effektive Adresse EA berechnet sich als Summe 
aus der Adresse im Programmzähler und der vorzeichenbehaf- 
teten 16-Bit-Verschiebung im Erweiterungswort des Befehls: 
  

FA=(PC) +d,, 
      

3.2.7.2 Relativ mit Index 

Die effektive Adresse ist in diesem Fall die Summe der Adresse 
des Erweiterungswortes, das im Programmzähler enthalten ist, 
des Inhalts eines Indexregisters (entweder ein Daten- oder ein 
Adressregister) und einer maximal 8 Bit langen, vorzeichenbe- 
hafteten ganzen Zahl, die im Erweiterungswort des in Ausfüh- 
rung begriffenen Befehls enthalten ist. Formelmässig kann dies 
wie folgt geschrieben werden: 
  

EA = (PC) + (Ri) + d, 
      

Diese Art ist besonders ntitzlich, um Werte aus einer Liste oder 
einer Datentabelle zu lesen. Im Falle solcher Anwendungen 

adressiert die Summe des Programmzählers und der 8-Bit-Ver- 
schiebung den Anfang der Tabelle, und das Indexregister gibt 

den Abstand des gewünschten Datenelements vom Tabellen- 

anfang an. Dies wird illustriert in Bild 3.6. 
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Adressierungsart «Programm- 
zähler-relativ mit Index» 
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Speicher 

  
OP - WORT 
  

Programmzahler 
zeigt hrerhin ——> | ERW. WORT 

Startadresse der 5 

Datentabelle (PC+ dg) ” 

  

  

  

  

  
Daten 
Tabelle   

  
Gewünschte Daten 

(Pe +Ri +45)           
Es ist möglich, entweder nur das tieferwertige Wort des Indexre- 
gisters oder seinen ganzen, 32 Bit langen Inhalt zu verwenden, 
indem im Befehl zum Symbol des Registers entweder ein .W 

oder in .L gesetzt wird (im Falle, dass der Datenlängecode aus- 
gelassen wird, setzt der Assembler als Defaultwert ein .W). 

Als Beispiel für die Anwendung dieser Adressierart dient der 

folgende Befehl: 
  

MOVE.W TABLE(DO.L),D1 
      

Bei der Assemblierung wird der Assembler aufgrund dieses 
Befehls die Verschiebung in Byte zwischen dessen Erwei- 
terungswort und der Position Table, der Startadresse der 
Datentabelle, berechnen und mit dem Ergebnis das Erwei- 
terungswort bilden. Der Mikroprozessor wird bei der Befehls- 

ausführung den 32-Bit-Inhalt des Datenregisters DO zur 
berechneten Startadresse der Datentabelle addieren und dann 
den 16-Bit-Inhalt des durch die erhaltene Effektivadresse adres- 
sierten Speicherplatzes in die 16 tieferwertigen Bit des Datenre- 
gisters D1 laden. Weil die Verschiebung eine 8 Bit lange, vorzei- 
chenbehaftete ganze Zahl ist, darf Table sich nicht mehr als 63 
Worte höher und nicht mehr als 64 Worte tiefer im Speicher 

befinden als das Erweiterungswort. 

3.2.8 Unmittelbare Datenadressierung 

Unmittelbare Datenadressierung wird verwendet, um eine Kon- 
stante als Quellenoperanden zu spezifizieren. Diese Konstante 
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ist Bestandteil des Befehls. Es gibt zwei Adressierarten, die zur 
unmittelbaren Datenadressierung gezählt werden: «unmittel- 
bar» und «unmittelbar schnell». 

3.2.8.1 Unmittelbar 

In der Art «unmittelbar» kann ein Byte, ein Wort oder ein Dop- 

pelwort als Konstante spezifiziert werden. Die Grösse der Kon- 
stante bestimmt das Befehlsformat. Im Falle eines Byte oder 
eines Wortes umfasst der Befehl ein Erweiterungswort, im Falle 
eines Doppelwortes zwei Erweiterungsworte. Dies wird gezeigt 
in Bild 3.7. 

  

| Wort | 
oder 
  

Höherwerlig 

Tieferwertig       

Bei der Befehlsausführung werden zwei Fälle unterschieden: 
Falls das Ziel ein Adressregister ist, werden Konstante von der 
Länge eines Byte oder eines Wortes auf ein Doppelwort vorzei- 
chenerweitert; im Falle, dass das Ziel ein Datenregister ist, gibt 
es keine Vorzeichenerweiterung. Dazu zwei Beispiele: 
1. Beispiel: | 
  

MOVE.W +$834E,D0 
      

Der Befehl lädt den Wert $834E in das tieferwertige Wort des 
Datenregisters DO. ’ 
2. Beispiel: 
  

MOVE.W +$834E,A0 
      

Der Befehl ladt den Wert SFFFF834E in das Adressregister AO 
und beeinflusst damit alle 32 Bit. 

3.2.8.2 Unmittelbar schnell 

Es gibt nur 3 Befehlstypen, mit denen die Art «unmittelbar 
schnell» verwendet werden kann: 

~ ADDQ(addiere schnell, Q = quick) 

— SUBQ (subtrahiere schnell) 
— MOVERQ (transportiere schnell) 

Die Befehle ADDQ und SUBQ geben die Möglichkeit, zu einem 
Register oder einer Speicherzelle eine ganze Zahl zwischen 1 
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und 8 zu addieren oder davon zu subtrahieren. Sie sind damit 
die Inkrementier- beziehungsweise Dekrementierbefehle des 
MC 68000. 

Der Befehl MOVEQ ermöglicht, eine vorzeichenbehaftete Kon- 
stante in der Grösse von maximal einem Byte (-128 bis +127) 
in ein Datenregister zu laden. Die Konstante wird zeichener- 

weitert auf ein Doppelwort, so dass alle 32 Bit des Datenregi- 
sters betroffen sind. Ein Beispiel soll dies verdeutlichen: 
  

MOVEQ +#-2,D0 
      

Der Befehl lädt den Wert $FFFFFFFE (das Zweierkomple- 
ment von -2, zeichenerweitert auf ein Doppelwort) in das 
Datenregister DO. 
Die drei zuvor beschriebenen Adressierarten sind mit «schnell» 

bezeichnet, weil sie im Speicher nur ein Wort belegen (die Kon- 
stante ist in das Operationswort eingebettet). Aus diesem Grun- 
de ist die Ausführungszeit viel kürzer als für die gewöhnlichen 
«unmittelbar»-Arten. 

3.2.9 Implizite Adressierung 
\ 

Einige Befehle verwenden bei der Befehlsausführung ein 
bestimmtes internes Register, ohne dass dieses im Operanden 
identifiziert sein muss. Die Adressierung eines solchen Registers 
wird implizit genannt. Der Sprungbefehl (JMP) lädt beispiels- 
weise immer eine Adresse in den Programmzähler (PC), obwohl 

der Programmzähler im Befehl nicht explizit als Zielregister 
identifiziert wird. Als implizite Register werden neben dem Pro- 
grammzähler (PC) noch folgende Register verwendet: System- 
stapelzeiger (SP), Anwenderstapelzeiger (USP), Überwa- 
chungsstapelzeiger (SSP), Statusregister (SR). In Tabelle 3.2 
sind die Befehle, die die implizite Adressierung verwenden, 
sowie die betreffenden impliziten Register aufgeführt. 
  

  

  

  

  

  

  

  

  

Befehl Implizite Register 

Bedingter Sprung (Bcc), PC 
Unbedingter Sprung (BRA) 

Sprung zu Subroutine (BSR) PC,SP 

Prüfe Register auf Grenzen (CHK) SSP,SR 

Prüfe Bedingung, vermindere und springe PC 
(DBcc) 

Division mit Vorzeichen (DIVS) SSP,SR 

Division ohne Vorzeichen (DIVU) SSP,SR 

Sprung (JMP) PC 

Sprung zur Subroutine (JSR) PC,SP 
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Implizite Register 

Zuweisung (LINK) SP 

Transportiere Bedingungscode SR 
(MOVECCR) 

Transportiere Statusregister(MOVESR) SR 

Transportiere Benutzerstapelzeiger USP 
(MOVE USP) 

Eintragen der effektiven Adresse(PEA) SP 

Rückkehr von Ausnahme (RTE) PC,SP,SR 

Rückkehr und Rückladung Bedingungs- PC,SP,SR 
code (RTR) 

Rtickkehr aus Subroutine (RTS) PC,SP 

Falle (TRAP) SSP,SR 

Falle bei Uberlauf (TRAPV) SSP,SR 
: Ä Tabelle 3.2 

Freigabe (UNLK) SP Implizite Befehle 

3.2.10 Adressierarten, die Adressen oder Daten 
vorzeichenerweitern 

Obwohl die Daten- und Adressregister des MC 68000 grund- 
sätzlich universell verwendbar sind, werden die Datenregister in 
erster Linie verwendet, um Daten abzuspeichern, und die 
Adressregister, um die 32-Bit-Speicheradressen abzuspeichern. 

Adressierungsart Art der Vorzeichenerweiterung 

Adressregister direkt Wortadresse verlängert zu 
(als Bestimmung) Doppelwort 

Adressregister indirekt Wortverschiebung verlangert zu 
mit Verschiebung Doppelwort 

Adressregister indirekt 1. Byteverschiebung verlangert 
mit Index zu Doppelwort 

2. Wortindex verlangert zu 
Doppelwort 

Absolute Adresse kurz Wortadresse verlangert zu 

Doppelwort 

Programmzahler relativ Wortverschiebung verlangert zu 
mit Verschiebung Doppelwort 

Programmzahler relativ 1. Byteverschiebung verlängert zu 
mit Index Doppelwort 

2. Wortindex verlängert zu Tabelle 3.3 
Doppelwort Adressierungsarten mit 
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Dies ist die Begründung dafür, dass durch die zur Verfügung 
stehenden Adressierarten Information, die in Datenregister ge- 
laden wird, nicht vorzeichenerweitert wird, dagegen Informa- 
tion, die in Adressregister geladen wird, immer vorzeichenerwei- 
tert wird. In Tabelle 3.3 sind die Adressierarten aufgeführt, die 
Ursache für Vorzeichenerweiterungen sind. In einem späteren 
Abschnitt des Kapitels 3 werden die Befehle diskutiert, die 
Ursache für Vorzeichenerweiterungen sind. 

3.3 Einteilung der Adressierarten nach 
Verwendungszweck 

Wie in den vorhergehenden Abschnitten dieses Kapitels aufge- 
zeigt wurde, erfüllt jede der 14 Adressierarten des MC 68000 
eine bestimmte Adressierfunktion. Einige davon können ver- 
wendet werden, um zu einem Operanden in einem Register, 

andere um zu einem Operanden an einer bestimmten Speicher- 
adresse oder zu einem Operanden mit einer Verschiebung zu 
einer bestimmten Speicheradresse zuzugreifen, usw. Einige 

andere Arten können verwendet werden, um zu irgendeiner von: 
verschiedenen Informationsarten zuzugreifen (beispielsweise 
kann mit Adressregistern indirekt zu Daten oder Adressen im 

Speicher zugegriffen werden), während andere in ihrer Verwen- 
dung eingeschränkt sind (Adressregister direkt kann sich bei- 
spielsweise nur auf einen Adressoperanden, jedoch nicht auf 
einen Datenoperanden beziehen). Aus den hier geschilderten 
Gründen können die einzelnen Adressierarten durch die vier fol- 
genden Adresskategorien charakterisiert werden: 

I. Daten 

Falls eine Adressierart verwendet werden kann, um zu Daten 
zuzugreifen, wird sie als Adressierart für Daten bezeichnet. 

2. Speicher 

Falls mit einer Adressierart zu Speicheroperanden zugegriffen 
werden kann, wird sie als Speicheradressierart bezeichnet. 

3. Steuerung 

Falls eine Adressierart verwendet werden kann, um zu Spei- 
cheroperanden ohne Grössenangabe zuzugreifen, wird sie als 

Steuerungs-Adressierart bezeichnet. 

4. Änderbar 

Falls mit einer Adressierart zu änderbaren (schreibbaren) 
Adressierarten zugegriffen werden kann, wird sie als änderbar 

bezeichnet. 

Tabelle 3.4 zeigt, welchen Adresskategorien jede der Adressier- 
arten des MC 68000 angehört. Diese Tabelle ist für den Pro- 
grammierer wichtig, weil viele der Befehle die Operanden auf 
bestimmte Kategorien oder Kombinationen von Kategorien 
beschränken. 
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Adressierungsarten Adressierungskategorien Assembler- 
Daten Speicher Steue- ander- syntax 

rung bar 

  

  

Datenregister direkt X X Dn 
Adressregister direkt X An 
Register indirekt X X xX X (An) 
Register indirekt X X x (An)+ 

nachinkrementiert 
Register indirekt X X X -(An) 
vordekrementiert | 
Register indirekt m. Verschiebung X X X X d(An) 
Register indirekt mit Index X X xX xX d(An,Ri) 
Absolut kurz X X xX x XXXX 

Absolut lang xX xX X X XXXXXXXX 
Relativ mit Verschiebung X X X d 

Relativ mit Index X X X d(Ri) 
Unmittelbar X X 4EXXKX 
  

Tabelle 3.4 Effektive Adressierungsarten 

So hat z.B. der «addiere schnell»-Befehl die allgemeine Form 
  

ADDQ +#<data>,<ea> 
      

Als effektive Adresse sind für diesen Befehl nur «änderbare» 

Adressierarten erlaubt. Dies bedeutet, dass irgendeine Adres- 
sierart mit Ausnahme von relativer und unmittelbarer Adressie- 

rung verwendet werden kann. Aus diesem Grunde ist ADDQ 
+2,A0 erlaubt, ADDQ +2,42 jedoch nicht. 

Ein Befehl, der eine Kombination von Kategorien im Operan- 

denfeld benützen kann, ist der MOVE-Befehl mit der allge- 
meinen Form 
  

MOVE <ea>, <ea> 
      

Bei diesem Befehl sind für das Quellenfeld alle Adressierarten 
zugelassen mit Ausnahme der Adressierungsart «Register 
direkt» bei Byteverarbeitung. Beim Bestimmungsfeld sind nur 
die Adressierungsarten «Daten änderbar» erlaubt. Das bedeu- 
tet für das Bestimmungsfeld, dass sowohl die Kategorien der 
Datenadressierarten wie auch die der anderbaren Adressie- 
rungsarten zugelassen sind. So beinhaltet die Adressierungsart 
«Daten änderbar» die Datenregister direkt, Adressregister indi- 

rekt und die absoluten Adressierungsarten. Umgekehrt sind 
die Arten «Adressregister direkt», «Programmzähler relativ» 
und die «unmittelbaren» Arten ausgeschlossen. 

Muss man nun annehmen, in ein Adressregister könne kein 
Transfer gemacht werden, weil Adressregister direkt keine 
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«Daten änderbar»-Adressierungsart ist? Selbstverständlich 

nicht, denn es muss natürlich einen Weg geben, um diese Regi- 
ster initialisieren zu können. Dieser Weg führt nicht über 
MOVE, sondern der MC 68000 verfügt für diese Aufgabe über 
einen anderen Befehl, MOVEA, transportiere Adresse. 
Obschon im MC-68000-Benutzerhandbuch MOVE und 
MOVEA als zwei verschiedene Befehle definiert sind, erlauben 
die meisten MC-68000-Assembler, eingeschlossen der von 
Motorola, die Spezifikation eines Adressregisters im Bestim- 
mungsfeld eines MOVE-Befehls. Diese Assembler interpretie- 
ren den MOVE-Befehl einfach als MOVEA und erzeugen den 
entsprechenden Objektcode. 

3.4 Befehlsarten 

Wie bereits erwähnt, verfügt der MC 68000 über 56 Grundbe- 
fehle. Die mnemonische Schreibweise und die Beschreibung die- 
ser Befehle sind in Tabelle 3.5 zusammengestellt. Im weiteren 
verfügen 8 dieser Befehle über Variationen zur Ausführung von 

speziellen Operationen; diese Variationen sind in Tabelle 3.6 
zusammengestellt. 

  

Beschreibung 
Mnemonic englisch deutsch 
  

  

  

  

  

ABCD Add Decimal with Extend Addiere dezimal mit Erweiterungsbit 
ADD Add Addiere binär 
AND Logical And Logisches UND 

ASL Arithmetic Shift Left Arithmetische Verschiebung links 
ASR Arithmetic Shift Right Arithmetische Verschiebung rechts 

Bcc Branch Conditionally Bedingter Sprung 
BCHG Bit Test and Chance Prüfe ein Bit und ändere es 
BCLR Bit Test and Clear Prüfe ein Bit und setze es auf O 
BRA Branch Always Unbedingter Sprung 
BSET Bit Test and Set Prüfe ein Bit und setze es 
BSR Branch to Subroutine Sprung zum Unterprogramm 
BTST Bit Test Prüfe ein Bit 

CHK Check Register Against Bounds Prüfe Register auf Grenzen 
CLR Clear Operand Setze Operand auf O0 
CMP Compare Vergleiche 

DBcc Test Cond., Decrement and Prüfe Bedingung, vermindere und 
Branch springe 

DIVS Signed Divide Divison mit Vorzeichen 
DIVU Unsigned Divide Division ohne Vorzeichen 

EOR Exclusive OR Logical Logisches exklusiv ODER 
EXG Exchange Registers Vertausche Daten zwischen Registern 
EXT Sign Extend Vorzeichenerweiterung 
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Beschreibung 
Mnemonic englisch deutsch 

JMP Jump Springe 
JSR Jump to Subroutine Springe zum Unterprogramm 

LEA Load Effective Address Lade die effektive Adresse 
LINK Link and Allocate Zuweisung 
LSL Logical Shift Left Logische Verschiebung nach links 
LSR Logical Shift Right Logische Verschiebung nach rechts 

MOVE _ Move Date from Source to Transportiere Daten von der Quelle 
Destination zum Ziel 

MOVEM Move Multiple Registers Transportiere mehrere Register 
MOVEP Move Peripheral Data Transportiere periphere Daten 
MULS Signed Multiply Multiplikation mit Vorzeichen 
MULU Unsigned Multiply Multiplikation ohne Vorzeichen 

NBCD Negate Decimal with Extend Negiere dezimal mit Erweiterungsbit 

NEG Negate Negiere 
NOP No Operation Keine Operation 
NOT One’s Complement Einerkomplement 

OR Logical Or Logisches ODER 

PEA Push Effective Address Eintragen der effektiven Adresse 

RESET Reset External Devices Normieren externer Einheiten 
ROL Rotate Left without Extend Ringverschiebung links o. Erw.-Bit 

ROR Rotate Right without Extend Ringverschiebung rechts o. Erw.-Bit 
ROXL Rotate Left with Extend Ringverschiebung links m. Erw.-Bit 
ROXR Rotate Right with Extend Ringverschiebung rechts m. Erw.-Bit 
RTE Return from Exception Ruckkehr von Ausnahme 
RTR Return and Restore Rtickkehr, Rtickladen Bedingungscodes 
RTS Return from Subroutine Zurück vom Unterprogramm 

SBCD Subtract Decimal with Extend Subtrahiere dezimal m. Erw.-Bit 
Scc Set on Condition Setze in Abhängigkeit der Bedingung 
STOP Stop Lade das Statusregister und halte an 

SUB Subtract Subtrahiere binär. 
SWAP Swap Data Register Halves Vertausche Registerhälften 

TAS Test an Set Operand Prüfe und setze Operand 

TRAP Trap Fale _ 
TRAPV Trap on Overflow Falle bei Uberlauf 
TST Test Prufe einen Operanden 

UNLK Unlink Freigabe 

Tabelle 3.5 

Die 56 Grundbefehle des MC 68 000 
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Der ganze Befehlssatz kann in 8 funktionelle Gruppen eingeteilt 
werden: 

1. Datentransportbefehle verschieben Information zwischen 
Speicherzellen, Ein- und Ausgabegeräten und allgemein ver- 

wendbaren Registern in jeder Kombination. 
. Befehle für ganzzahlige Arithmetik führen arithmetische 
Operationen mit binären Zahlen in einfacher und mehrfacher 

Genauigkeit durch. 
. Logische Befehle führen logische Operationen UND, ODER 
und EXKLUSIV-ODER mit Speicherzellen und Registern 
aus. 

. Schiebe- und Rotierbefehle schieben und rotieren den Inhalt 
von Speicherzellen und Registern. 

. Bitmanipulationsbefehle prüfen den Zustand individueller 

Bit und führen je nach Resultat dieser Prüfungen Operatio- 
nen aus. 

. Binärcodierte Dezimalbefehle (BCD) addieren und subtra- 
hieren BCD-Werte. 

. Programmsteuerbefehle führen Verzweigungen, Sprünge 

Subroutinenaufrufe aus und steuern so den Ablauf der Pro- 

grammausführung. 
. Systemsteuerbefehle, eingeschlossen privilegierte Befehle, 
Trap-Erzeugungsbefehle und Befehle, die das Statusregister 

benützen oder ändern. 

In diesem Kapitel wird der Befehlssatz in der gerade präsentier- 
ten Ordnung beschrieben. Wir beginnen mit den Datentrans- 
portbefehlen, mit den jetzt bekannten MOVE-Befehlen. 

  

  

  

  

  

Befehlsart Variation Beschreibung englisch Beschreibung deutsch 

ADD ADD Add Addiere 
ADDA Add Address Addiere Adresse 
ADDQ Add Quick Addiere schnell 
ADDI Add Immediate Addiere unmittelbar 

ADDX Add With Extend Addiere mit Erweiterung 

AND AND Logical AND Logisch UND 
ANDI AND Immediate UND unmittelbar 

CMP .CMP Compare Vergleiche 
CMPA Compare Address Vergleiche Adresse 
CMPM Compare Memory Vergleiche Speicher 
CMPI Compare Immediate Vergleiche unmittelbar 

EOR EOR Exclusiv-OR Exklusiv ODER 
EORI Exclusiv-OR Immediate Exklusiv ODER unmittelbar 
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Befehlsart Variation Beschreibung englisch Beschreibung deutsch 

MOVE MOVE Move Transportiere 
MOVEA Move Address Transportiere Adresse 
MOVEQ Move Quick 
MOVEf.SR Move from Status Register 
MOVEtoSR Moveto Status Register 

Transportiere schnell 
Transportiere vom Statusreg. 
Transportiere zum Statusreg. 

  

  

  

  

MOVE to Move to Condition Codes Transportiere zu den 

CCR Bedingungscodes 
MOVEUSP Move User Stack Pointer Transp. Benutzerstapelzeiger 

NEG NEG Negate Negiere 
NEGX Negate With Extend Negiere mit Erweiterung 

OR OR Logical OR Logisch ODER 
ORI OR Immediate ODER unmittelbar 

SUB SUB Subtract Subtrahiere 
SUBA Subtract Address Subtrahiere Adresse 
SUBI Subtract Immediate Subtrahiere unmittelbar 

SUBQ Subtract Quick Subtrahiere schnell 
SUBX Subtract With Extend Subtrahiere mit Erweiterung 

Tabelle 3.6 

Variationen von Befehlen 

3.4.1 Datentransportbefehle 

Die Datentransportbefehle gemäss Tabelle 3.7 werden verwen- 
det, um Informationen zwischen Speicher und Daten- oder 
Adressregistern zu transferieren. Diese Gruppe enthält zwei 
zusätzliche Befehle, LINK und UNLINK; sie werden vorwie- 
gend mit Subroutinen verwendet, so dass wir sie separat, 
anschliessend an die Diskussion der Programmsteuerbefehle, 
beschreiben. | 

3.4.1.1 MOVE-Befehl 
Der grundsätzliche Befehl in dieser Gruppe ist der MOVE- 

Befehl, der verwendet werden kann, zum Transfer von Byte-, 

Wort- oder Doppelwortdaten zwischen zwei Speicherzellen, 
zwischen einer Speicherzelle und einem Datenregister oder zwi- 
schen zwei Datenregistern. 
Wenn der MC 68000 im Benützerstatus ist, erlaubt der MOVE- 
Befehl das Nachführen des Bedingungscoderegisters (MOVE 

<ea> , CCR) oder das Lesen des gesamten Statusregisters 
(MOVE SR, <ea>). Im Überwachungsstatus erlaubt der 

MOVE-Befehl das Nachführen des Statusregisters (MOVE 
<ea>, SR), das Lesen des Benützerstapelzeigers (MOVE, 

USP, An), oder das Schreiben des Benützerstapelzeigers 
(MOVE An, USP). In den vorangegangenen Feldern darf für 
die effektive Adresse (mit <ea> bezeichnet) kein Adressregister 

als Quelle oder Bestimmungsort verwendet werden. 
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Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs- 

grosse codes 

| Quelle Ziel XNZVC 

| EXG EXG Rx,Ry 32 Dn oder An DnoderAn £----- 

LEA LEA <ea>,An 32 Kontrolle An -<--=-=-= 

MOVE MOVE <ea>,<ea> 8, 16, 32 Alle (1) Daten änderbar -**00 

MOVE <ea>,CCR 16 Daten CCR ek ok ok oR 

MOVE <ea>,SR (2) 16 Daten SR ei 

MOVESR,<ea> 16 SR Datenänderbar  ----- 
MOVEUSP,An (2) 32 USP An 2020202. 

MOVE An,USP (2) 32 An UP 00-0022 - 

MOVEA MOVEA <ea>,An 16, 32 Alle An} 202.0. -.- 

MOVEM MOVEM <list>,<ea> 16,32 Kontrolle #8 ----- 

änderbar -(An) 
MOVEM <ea>,<list> 16,32 Kontrolleoder = -----= 

(An)+ 

MOVEP MOVEP Dx,d(Ay) 16, 32 Dn d(An)  ----- 
MOVEP d(Ay),Dx 16, 32 d(An) Don 0.0 =---- 

MOVEQ MOVEQ #d,Dn 32 #d (3) Dn -**00 

NOP NOP PV>-2- PC 702 een 

PEA PEA <ea> 32 Kontrolle een 

SWAP SWAPDn 16 Duo een 
  

Tabelle 3.7 _ Datentransportbefehle 

Bemerkungen: 

(1) Bei Byteverarbeitung ist die Adressierungsart 

«Adressregister direkt» nicht erlaubt 
(2) Privilegierte Operation 

(3) Acht Bit der unmittelbaren Daten, die zu 

einem Langwortoperand vorzeichenerweitert 

werden 

3.4.1.2 Benützung von MOVE mit den Stapeln 

Der MOVE-Befehl kann auch benützt werden, um Daten von 
den Stapeln in den Speicher zu transportieren und umgekehrt. 
Das schliesst sowohl die Systemstapel (Überwachungsstapel 

und Benützerstapel) als auch benützerdefinierte Stapel ein. 
Durch die Anordnung der Stapel im Speicher mit Adresse 0 
kann die Adressierungsart «Adressregister indirekt mit Vor- 
dekrement» verwendet werden, um Daten in den Stapel zu 

bringen. 
Zum Beispiel bringt der Befehl 
  

  
MOVE DO,-(SP) 

    

das tiefere Wort von DO in den aktiven Systemstapel. Umge- 
kehrt holt die Adressierart «Adressregister indirekt mit Nachin- 
krementierung» Daten vom Stapel; zum Beispiel holt der Befehl 
  

  
MOVE (SP)+, DO 

  
  

das nächste Wort des aktiven Systemstapels und lädt es in das 
tiefere Wort von DO. 
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3.4.1.3 MOVEM, transportiere mehrere Register 

Ofters wird die Aufgabe gestellt sein, den Inhalt mehrerer Regi- 
ster zu transferieren. Ein grundsätzliches Beispiel dazu ist die 
Sicherung einer Anzahl allgemein verwendbarer Register in den 
Stapeln während der Ausführung einer Subroutine, um die Sub- 
routine damit reentrant zu machen. Eine Subroutine ist reent- 
rant, wenn sie unterbrochen und durch das unterbrechende Pro- 
gramm wieder aufgerufen werden kann. Der Befehl MOVEM, 
transportiere mehrere Register, kann verwendet werden zum 
Transfer von bis zu 16 Registern (Datenregister DO... D7 und 
Adressregister AO... A7) zum oder vom Speicher. 

Formate: 
  

MOVEM <list>, <ea> Transfer Register-zu-Speicher 

MOVEM <ea>, <list> Transfer Speicher-zu-Register       
In beiden Fallen bedeutet <list> die Register, die transportiert 
werden sollen. Der Assembler erlaubt zwei Arten, Register zu 
«listen». Ein Weg ist die Auflistung individueller Registerna- 

men, getrennt durch einen Schrägstrich (/). 

Zum Beispiel transferiert der Befehl 
  

MOVEM D3/D4/D5/A1,$53F00 
      

das tiefere Wort von D3, D4, D5 und A1 in die vier aufeinander- 
folgenden Worte, die mit derAdresse $53F00 beginnen. (In die- 
sem Fall werden die Register in der Ordnung gespeichert, wie sie 
im Befehl aufgeführt sind; das ist jedoch nicht immer der Fall, 

wie wir noch sehen werden.) 
Wenn die Registerliste aufeinanderfolgende Daten oder Adress- 
register enthält, erlaubt es der Assembler, nur das erste und letz- 

  
MOVEM D3-DS/A1.- (SP) SP——e| 23 

vor Aus- 
führung Dé 

c  BREEEEEREREREERR z 
  

    
  

  

  

      
  
  

    
  

  

  
  

  
  

    
  

  

._—— Af 

SP —> 
nach Aus. 
führung 

MOVEM (SP)+ A1/D3-D5 Pa | 23 
5 z führung 24 

2|»|»|»|»|2|»Io[AlAlA[AlAlATA|A b (lzielalelslelalalalalalzlalelel 25 
__. 41 

SP — 
nach Aus- 

führung Bild 3.8 
bsp Beispiele zum Befehl MOVEM 

MOVEM D3-DS/A1.$53F00 $53 nd — a) Datenordnung mit Vordekrementierung 
b) Datenordnung mit Nachinkrementie- 

DID|D|D|DIDIDIDIAIAIAIA|A|AIAIA c BBB Ble lalelaiselsleis] #aror | >= rung 
__ $53F06 A1 c) Datenordnung mit absoluter Adressie-       rung 
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Bild 3.9 
Beispiele zum Befehl LEA 

te Register aufzuführen, getrennt durch einen Bindestich (-). So 
könnte das vorhergehende Beispiel geschrieben werden als 
  

MOVEM D3-D5/A1,$53F00 
      

Der MOVEM-Befehl transferiert immer Registerinhalte zu und 
vom Speicher in einer vorbestimmten Sequenz, unabhängig 
davon, wie sie in der Registerliste geordnet sind. Bei der Adres- 
sierungsart «Adressregister indirekt mit Vordekrementierung» 

werden die Register in der Ordnung A7 bis AO, dann D7 bis DO 
transferiert. Demgegenüber werden für alle Steuerarten und für 
die Adressierungsart «Adressregister indirekt mit Nachinkre- 
mentierung» Register in der umgekehrten Ordnung, DO bis D7, 
dann AO bis A7 transferiert. Diese Unterschiede erlauben das 
Bilden von Stapeln und Listen in der einen Richtung und den 
Zugriff zu ihnen in der entgegengesetzten Richtung. Bild 3.8 
zeigt einige Beispiele dazu. 

3.4.1.4 Adresstransferbefehle(MOVEA, LEA, PEA) 

Der MC 68000 verfügt über drei Befehle, die speziell für den 
Transfer von Adressen entworfen wurden. Zwei dieser Befehle, 
transportiere Adresse (MOVEA) und lade effektive Adresse 
(LEA) sind ähnlich und können leicht durch die Programmierer 
verwechselt werden. Beide veranlassen das Laden einer Adresse 
in ein Adressregister; während aber LEA die effektive Adresse 
des referenzierten Operanden lädt (ein Speicherplatz), lädt 
MOVEA den Inhalt des referenzierten Operanden (ein Spei- 
cherplatz, ein Register oder ein unmittelbarer Wert) und nimmt 
an, dass er eine Adresse darstellt. 
LEA behandelt immer eine 32-Bit-Adresse, während MOVEA 

sowohl 16-Bit-Wort-Adressen als auch 32-Bit-Doppelwort- 
Adressen behandeln kann. Bild 3.9 zeigt zwei Beispiele des 
LEA-Befehls. 

Registerinhalte A0 [000.53700 ] 40 [ 00053700 ] 

ror LEA mim) a 

BEFEHL LEA [A0).A1 LEA 4(A0.D0).A1 

AUSFUHRUNG 0005300 0005300 
FFFF8000 

+ 00000004 

10004+BF04 

Registerinhalte AO | % 
nach LEA M 20 

At 
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Wie man sehen kann, sind LEA und MOVEA äusserst prakti- 
sche Befehle. Wenn ein Programm die Berechnung verschiede- 
ner Adressen in verschiedenen Befehlen erfordert, muss die 

Adresse mit LEA nur einmal berechnet werden und in einem 
Adressregister abgelegt werden. Später kann jeder Bezug zu 
den adressierten Operanden mit der «Adressregister indirekt»- 

Adressierungsart gemacht werden. Das spart nicht nur Pro- 
grammierungsaufwand, sondern benötigt auch weniger Spei- 
cherplatz und erlaubt eine schnellere Ausführung des Pro- 
gramms. Warum ist das so? Weil die Adressierungsart « Adress- 
register indirekt» keine speicherplatzbenötigenden Erwei- 

terungsworte zu einem Befehl erfordert. Die Ausführungszeit 
zur Berechnung der Adresse ist mit dieser Art vier bis acht 
Zyklen schneller als mit den Adressierungsarten «A dressregi- 
ster indirekt mit Verschiebung» und «Absolut- oder Programm- 
zähler relativ». 
Der Befehl MOVEA ist nützlich beim Zugriff zu Adressen, die 
im Speicher gespeichert sind. Zum Beispiel erhalten wir bei einer 
verbundenen Liste im Speicher, in der jeder Knoten mit einem 
Zeiger auf den nächsten Knoten beginnt, die Adresse des zwei- 
ten Knotens mit | 
  

MOVEA.L LIST, AO 
      

und die Adresse des dritten und der folgenden Knoten erhalten 
wir mit | 
  

MOVEA.L (AO), AO 
      

Zu erwahnen ist noch, dass ein MOVEA-Befehl, dessen Quel- 
lenoperand ein unmittelbares Label ist, einem LEA-Befehl ent- 
spricht. Das bedeutet, dass MOVEA.L # LABEL, AO und 
LEA LABEL, AO äquivalente Befehle sind. Dazu ist zu sagen, 
dass der MOVEA-Befehl 20 Zyklen für die Ausführung benö- 

tigt, währenddem der LEA-Befehl nur 12 Zyklen benötigt, so 
dass in diesem Falldem LEA-Befehl der Vorzug zu geben ist. 
Der letzte der drei Adresstransferbefehle, PEA (Push Effective 
Address) Eintragen der effektiven Adresse, ist ähnlich wie LEA, 
doch transferiert er berechnete effektive Adressen statt den 
Inhalt adressierter Speicherzeilen. Mit PEA wird die Adresse in 
den aktiven Systemstapel eingetragen (Benützerstapel oder 
Überwachungstapel). Der PEA-Befehl kann verwendet werden 

für die Übergabe von Parametern an eine Subroutine, indem die 
Adresse eines Parameters oder die Startadresse mehrerer hin- 
tereinander folgender Parameter in den Stapel eingetragen wird. 
Zum Beispiel kann die Eintrage- und Aufrufoperation mit der 
folgenden Befehlssequenz ausgeführt werden: 

PEA PARAM 
JSR SUBER 
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Weil der JSR-Befehl eine 4-Byte-Rückkehradresse in den Stapel 
schreibt, nachdem der PEA-Befehl seine 4-Byte-Adresse in den 
Stapel eingetragen hat, muss zur Parameteradresse mittels 
Überspringen der Rückkehradresse zugegriffen werden, wie mit 
dem Befehl 
  

MOVEA.L 4(SP), AO 
      

Mit dem Zurtickholen der Parameteradresse aus dem Stapel 
bereinigt die Subroutine den Stapel mittels Verschiebung der 
Ruckkehradresse um ein Doppelwort hoher in den Speicher und 
Nachführung des Stapelzeigers. Beide Aufgaben können mit 
einem Befehl ausgeführt werden: 
  

MOVE.L 
      

3.4.1.5 Der MOVE-Befehl 

Wie im Kapitel 1 erwähnt wurde, können am MC 68000 sowohl 
ältere synchrone 8-Bit-Peripheriebausteine als auch neuere 
asynchrone 16-Bit-Bausteine angeschlossen werden. Der MC 
68000 verfügt über separate Steuerleitungen für jeden Typ von 

Peripheriebausteinen. | 
Leser, die 8-Bit-Systeme programmiert haben, wissen, dass die 
angeschlossenen Peripheriebausteine normalerweise über Regi- 

ster verfügen, die eine Anzahl aufeinanderfolgender Byte im 
Speicher belegen. 
Der Befehl MOVEP, transportiere periphere Daten, ist 
bestimmt zum Transfer von Information zwischen einem MC- 
68000-Datenregister und einem angeschlossenen 8-Bit-Periphe- 
riebaustein in Paketen von zwei oder vier Byte. Im MC-68000- 

System müssen 8-Bit-Peripheriebausteine entweder an die höhe- 
ren 8 Bit des Datenbus angeschlossen werden (Linien D8 ... 

D15) oder an die tieferen 8 Bit des Datenbus (Linien DO... D7). 
Der MOVEP-Befehl verkehrt mit der Peripherie mit der höhe- 
ren Hälfte des Bus durch die Verwendung von gerade numerier- 
ten Adressen und mit der Peripherie auf der tieferen Hälfte des 
Bus unter Verwendung von ungerade numerierten Adressen. In 
einer Speicherabbildung würden diese Peripheriebausteine 

abwechselnd aufeinanderfolgende gerade Byte oder aufeinan- 
derfolgende ungerade Byte belegen. 

Zwei-Byte-Transfers werden mittels Spezifikation eines Wort- 

operanden (MOVEP oder MOVEP.W) und 4-Byte-Transfers 

mittels eines Doppelwortoperanden (MOVEP.L) gemacht. 
Peripheriebausteine werden unter Verwendung der Adressierart 
«Register indirekt mit Verschiebung» adressiert. Bild 3.10 zeigt 
zwei Beispiele des MOVEP-Befehls — einen Doppelworttransfer 
mit einer geraden Adresse und einen Worttransfer mit einer 
ungeraden Adresse. Zu bemerken ist, dass der MOVEP-Befehl 
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gerade ungerade 

höher 

MOVEP.L DO.2(A0) tiefer 

31 24 | 23 1615 8,7 0 tiefer 

a  DO| Hörer |hitte hoher| Mitte tiefer| tiefer | 
  

  

  

gerade ungerade 

Ao 

MOVEP.W DO.2 (AO) 

3 2423 16 | (5 8,7 0 
b Dol | | höher | tiefer | 

  

  

der einzige MC-68000-Befehl ist, der die Benützung einer 
ungeraden Adresse mit einem Wort- oder einem Doppelwort- 
operanden erlaubt! 
Die Ausführungszeit des MOVEP-Befehls hängt davon ab, ob 
Daten zu oder von asynchronen oder synchronen Peripherie- 
bausteinen transferiert werden. Ein Register-zu-Speicher- 
Transfer benötigt bei asynchronen Peripheriebausteinen 18 
Zyklen (Worttransfer) oder 28 Zyklen (Doppelworttransfer), | 
während ein Speicher-zu-Register-Transfer 16 Zyklen bei Wort- 
transfer oder 24 Zyklen bei Doppelworttransfer benötigt. 
Transfers zu oder von synchronen Peripherieschaltungen wer- 
den etwas mehr Zeit benötigen, weil der MC 68000 mit einem 
Takt synchronisieren muss, der nur /,, des Systemtakts ist. Die 
Kapitel 6 und 8 werden dazu nähere Erläuterungen enthalten. 

3.4.1.6 MOVEGQ, transportiere schnell 

Weil Programmierer öfters mit kleinen Konstanten operieren 
müssen, versahen die Entwickler des MC 68000 diesen mit drei 
sogenannt «schnellen» Befehlen: transportiere schnell, addiere 
schnell und subtrahiere schnell. Diese Befehle erlauben die Spe- 
zifikation einer kleinen Konstante im Operationswort. Der erste 
dieser Befehle, transportiere schnell (MOVEQ, move quick), 
kann einen spezifizierten, ein Byte langen Wert um das Vorzei- 
chen erweitern auf 32 Bit und in ein Datenregister laden. Weil 
die Konstante 8 Bit lang ist, kann jeder ganzzahlige Wert zwi- 

schen -128 und + 127 in ein Datenregister transferiert werden. 
Der MOVERQ-Befehl belegt nur ein Wort im Speicher und benö- 
tigt vier Zyklen zur Ausführung. Im Gegensatz dazu benötigt 
der Befehl «transportiere unmittelbar» (MOVE.L +#d,, Dn) 
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zwei Worte im Speicher und 20 Zyklen zur Ausführung. Die 
meisten Assembler, eingeschlossen derjenige von Motorola, 
nützen diese Sparmöglichkeiten aus, indem sie einen geeigneten 
«transportiere unmittelbar»-Befehl als MOVERQ interpretieren 
und den entsprechenden Objektcode erzeugen. 

3.4.1.7 SWAP und EXG, Registervertausch und 
Registeraustausch 

Diese zwei ähnlichen Befehle haben einen ganz verschiedenen 
Verwendungszweck. Der Befehl SWAP, vertausche Register- 

hälften, vertauscht die höheren 16 Bit eines 32-Bit-Datenregi- 
sters mit den tieferen 16 Bit. Dieser Befehl gestattet den Zugriff 
zum Inhalt des oberen Wortes eines Registers und ist notwen- 

dig, weil Wortoperationen immer mit dem tieferen Wort ausge- 
führt werden. Ähnlich kann SWAP verwendet werden für den 
Zugriff zu den höheren zwei Byte eines Datenregisters. SWAP 
allein wird zum mittleren höheren Byte zugreifen; ein SWAP 

plus ein Rotierbefehl wird zum höchstwertigen Byte des Daten- 
registers zugreifen. 

Der Registeraustauschbefehl (EXG) tauscht den gesamten 
Inhalt von zwei Registern aus. Er kann drei Formate haben: 

EXG Dx,Dy- Austausch zweier Datenregister; 
EXG Ax,Ay - Austausch zweier Adressregister; 
EXG Dx,Ay- Austausch eines Datenregisters und eines 

Adressregisters. 

3.4.1.8 NOP, keine Operation 

Der Befehl «keine Operation» (NOP) wird normalerweise nur 
während der Programmentwicklung verwendet. Er führt keine 
Operationen durch. Er ändert weder Statusbit noch Register 
(mit Ausnahme des Programmzählers), noch Speicherzellen, 
aber er erfüllt die nützliche Funktion der Platzreservierung im 
Speicher. 
Programmierer verwenden den NOP-Befehl häufig in einem 

Quellenprogramm, um Platz zu reservieren für später einzufü- 
gende Befehle. Weil jeder NOP-Befehl nur ein Wort im Speicher 
belegt, sind mindestens zwei NOP (besser sind drei) am Ort, wo 
der Platz reserviert werden soll, einzufügen. 
NOP-Befehle können auch in Objektprogrammen eingefügt 
werden, um Befehle zu ersetzen, die entfernt wurden, so dass 
das Programm nicht neu assembliert werden muss. In diesem 
Fall sollte man für jedes Wort des entfernten Befehls $4E71 ein- 
fügen, das ist der hexadezimale Wert des NOP-Befehls. 

3.4.2 Befehle für ganzzahlige Arithmetik 

Der MC 68000 kann zwei binäre Operanden addieren, subtra- 
hieren, multiplizieren, dividieren und vergleichen. Er kann auch 
einen einzelnen, spezifischen Operanden löschen, prüfen, das 
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Bedingungs- 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten 

grösse codes 

Quelle Ziel XNZVC 

ADD ADD <ea>,Dn 8, 16, 32 Alle (1) Dn ve 
ADD Dn,<ea> 8, 16, 32 Dn anderbar eK Re 

ADDA ADDA <ea>,An 16, 32 All An HH == 

ADDI ADDI +d,<ea> 8, 16, 32 ted Daten änderbar BE 

ADDQ ADDRQ #d,<ea> 8, 16, 32 +d (2) änderbar (1) 

ADDX ADDX Dy,Dx 8, 16, 32 Dn Dn ee eR 
ADDX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) ee eR 

CLR CLR <ea> 8, 16, 32 Daten änderbar -0100 

CMP CMP <ea>,Dn 8, 16, 32 All (1) Dn rk 

CMPA CMPA <ea>,An 16, 32 All An re 

CMPI CMPI +d,<ea> 8, 16, 32 +d Daten änderbar a 

CMPM CMPM (Ay)+,(Ax)+ 8, 16,32 (An)+ (An)+ re 

DIVS DIVS <ea>,Dn 16 Daten Dn Fr) 

DIVU DIVU <ea>,Dn 16 Daten Dn —_* **Q 

EXT EXT Dn 16, 32 Dn -** 00 

MULS MULS <ea>,Dn 16 Daten Dn -**00 

MULU MULU <ea>,Dn 16 Daten Dn -**00 

NEG NEG <ea> 8, 16, 32 Daten änderbar * eK KF 

NEGX  NEGX <ea> 8, 16, 32 Daten anderbar rer 

SUB SUB <ea>,Dn 8, 16, 32 Alle (1) Dn ee eK 

SUB Dn,<ea> 8 16, 32 Dn anderbar * eK RF 

SUBA SUBA <ea>,An 16, 32 Alle An )) ====- 

SUBI SUBI #d,<ea> 8, 16, 32 +d Daten anderbar ee KR 

SUBQ SUBQ +#d,<ea> 8, 16, 32 +#d (2) änderbar (1) ve 

SUBX SUBX Dy,Dx 8, 16, 32 Dn Dn eee 
SUBX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) ee ee 

TAS TAS <ea> 8 Daten änderbar -**00 

TST TST <ea> 8, 16, 32 Daten änderbar -** QO 

Bemerkungen: (1) Bei Byteoperationen ist die Adressierungsart «Adressregister direkt» nicht gestattet 
(2) Unmittelbarer Operand im Wertebereich 1 bis 8 

Tabelle 3.8 Befehle für ganzzahlige Arithmetik 

Vorzeichen erweitern und negieren (2er-Komplement). Die 
Befehle für diese Operationen sind in der Tabelle 3.8 zusammen- 
gestellt. 

3.4.2.1 Addierbefehle 

Es bestehen fünf Befehle zur Addition von binären Zahlen. Der 
erste, «addiere binär» (ADD) addiert zwei Byte-, Wort- oder 
Doppelwortoperanden. Weil diese Operanden als Datenwerte 
betrachtet werden, muss einer in einem Datenregister sein, der 

andere kann im Speicher sein, in einem Adressregister (sofern 
nicht Byteoperanden addiert werden sollen) oder einem andern 
Datenregister. Der ADD-Befehl kann alle fünf Bedingungsco- 
des beeinflussen, wie folgt: 
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1. Übertrag (C) wird gesetzt, wenn das Resultat nicht im 
Bestimmungsoperand Platz hat; sonst ist C gelöscht. 

2. Überlauf (V) wird gesetzt, wenn zwei Zahlen mit gleichen 
Vorzeichen (beide positiv oder beide negativ) addiert werden 
und das Resultat den Bereich des 2er-Komplements der 

Operanden überschreitet, was zum Wechsel des Vorzeichen- 
bit führt; sonst ist V gelöscht. 

3. Null (Z) wird gesetzt, wenn das Resultat null ist; sonst ist Z 
gelöscht. 

4. Negativ (N) wird gesetzt, wenn das Vorzeichenbit des Resul- 
tats logisch 1 ist; sonst ist N gelöscht. 

5. Erweiterung (X) wird in den gleichen Zustand gesetzt wie der 
Übertrag (C). 

Bei den ADD-Befehlen ist der Status der V- und N-Flags nur 
von Bedeutung, wenn Werte mit Vorzeichen addiert werden. 
Wenn der Bestimmungsoperand ein Adressregister ist, werden 
die Bedingungscodes nicht beeinflusst. Der Assembler erkennt 

diese Form des Additionsbefehls als Variante, «addiere Adres- 
se» (ADDA) genannt. 

Der ADD-Befehl wird eingesetzt zur Addition zweier Byte-, 
Wort- oder Doppelwortoperanden, sofern sich mindestens einer 
der Operanden in einem Datenregister befindet. Viele Anwen- 

dungen verlangen jedoch bei der Addition mehrfache Genauig- 
keit, oder es befinden sich beide Operanden im Speicher. Für 
diese Anwendungen verfügt der MC 68000 über den Befehl 
ADDX (erweiterte Addition). Damit kann der Inhalt zweier 
Datenregister oder zweier Speicherplätze addiert werden. Der 

ADDX-Befehl beeinflusst die C-, V-, N- und X-Flags gleich wie 

der ADD-Befehl. Das Z-Flag jedoch wird bei ADDX gelöscht, 
wenn das Resultat ungleich 0 ist, andernfalls wird Z nicht beein- 
flusst. Diese Charakteristik ist sehr praktisch bei Operationen 
mit erhöhter Genauigkeit, weil Z den Null/Nicht-null-Status 

einer ganzen Additionsoperation zeigt und nicht nur gerade den 
der letzten Teiloperation. 
Wenn sich die Operanden im Datenregister befinden, geht dem 
ADDX-Befehl normalerweise ein ADD-Befehl voraus. Zum 
Beispiel addiert die folgende Sequenz einen ganzzahligen 64- 
Bit-Wert in DO und D1 zu einem andern ganzzahligen 64-Bit- 
WertinD2 und D3: 
  

ADD.L DO, D2 Addiere die 32 tieferen Bit 
ADDX.L D1, D3 Addiere die 32 hoheren Bit       

Wenn sich die Operanden im Speicher befinden, müssen vor der 
Additionsoperation X gelöscht und Z gesetzt werden (es sei dar- 
an erinnert, dass Z gesetzt bleibt, wenn jede nachfolgende Addi- 
tion als Resultat null ergibt). Speicherplatz-zu-Speicherplatzad- 
ditionen verlangen immer vordekrementierte Adressierung, das 
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heisst, dass die Adressregister zuerst auf die höheren Bit, Worte 
oder Doppelworte im Speicher hinweisen und nachher auf die 
tieferen. Wenn zum Beispiel AO und Al auf zwei 64-Bit- 
Operanden im Speicher zeigen, können diese Operanden mit der 
folgenden Sequenz addiert werden: 
  

MOVE + 4,CCR Setze Z = 1, alle andern Bit = 0 
ADDX.L - (A0O),-(A1)| Addiere die 32 tieferen Bit 

| ADDX.L - (A0),-(Al) | Addiere die 32 höheren Bit       

  

  

  

  

  

  

  

  

  

  

      

  

  

      

Speicher 

Höher 
A1 . 

nach ——= |Hitte Höher aes timmungs- 
ty, erand Addition Witte Tiefer Pp 

Tiefer 

Af 
vor oo 
Addition 

> > 

Hoher 
Ao - 

nach ——=|Mifte Höher Quellen - 
Addition Mitte Tiefer Operand 

Tiefer | 

Ao 
vor er . 
Addition Bild 3.11 

Addition zweier 64-Bit-Operanden 

im Speicher 

Bild 3.11 zeigt die Anordnung der Operanden im Speicher und 
wie die Zeiger bei der Additionsoperation beeinflusst werden. 
Die letzten zwei Additionsbefehle, «addiere unmittelbar» 

(ADDI) und «addiere schnell» (ADDQ) werden verwendet, um 
einen konstanten Wert zu einem adressierten Operanden zu 
addieren. Bei ADDI kann die Konstante ein Bit, Wort oder 

Doppelwort sein und der Befehl belegt zwei bis fünf Worte im 
Speicher. Bei ADDQ kann die Konstante nur einen Wert zwi- 
schen 1 und 8 haben, der Befehl belegt aber auch nur ein bis drei 
Worte im Speicher. Im weiteren kann ADDQ verwendet wer- 
den zur Addition eines Werts zu einem Adressregister, während 
ADDI das nicht kann. ADDQ ersetzt den Inkrementbefehl in 

bisherigen 8-Bit-Mikroprozessoren. 
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3.4.2.2 Subtraktionsbefehle 

Der MC 68000 verfügt über die äquivalenten Subtraktionsbe- 
fehle wie die Additionsbefehle. Drei dieser Befehle, «subtrahiere 
binär» (SUB), «subtrahiere unmittelbar» (SUBI) und «subtra- 
hiere schnell» (SUBQ) beeinflussen die Bedingungscode wie 

folgt: 

1. Der Übertrag (C) wird gesetzt, wenn die Subtraktion einen 
Entlehnwert (borrow) benötigt, was anzeigt, dass das Resul- 
tat nicht im Bestimmungsoperanden Platz hat; sonst ist C 
gelöscht. 

2. Überlauf (V) ist gesetzt, wenn zwei Zahlen mit ungleichem 
Vorzeichen (eines positiv, das andere negativ) subtrahiert 

werden und das Resultat den Bereich des 2er-Komplements 
der Werte überschreitet; sonst ist V gelöscht. 

3. Null (Z) wird gesetzt, wenn das Resultat null ist; sonst ist Z 
gelöscht. 

4. Negativ (N) ist gesetzt, wenn das Vorzeichenbit des Resultats 
logisch 1 ist; sonst ist N gelöscht. 

5. Erweiterung (X) wird gleich gesetzt wie der Übertrag (C). 
Der Subtraktionsbefehl für mehrfache Genauigkeit «subtrahie- 
re mit Erweiterung» (SUBX) beeinflusst C, V,N und X in der 
gleichen Art, löscht aber Z, wenn das Resultat nicht null ist; 
sonst wird Z nicht beeinflusst. Der fünfte Subtraktionsbefehl 
«subtrahiere Adresse» (SUBA) beeinflusst keine Flags. 

3.4.2.3 Negierbefehle 

Mit zwei subtraktionsähnlichen Befehlen kann das 2er-Komple- 
ment eines Byte-, Wort- oder Doppelwortoperanden im Spei- 
cher oder in einem Datenregister erzeugt werden. Diese Befehle 

«negiere» (NEG) und «negiere erweitert» (NEGX) erzeugen 
das 2er-Komplement durch Subtraktion des Operanden von 
null. Der NEG-Befehl beeinflusst die Bedingungscode in der 
gleichen Weise wie der SUB-Befehl; während aber hier ein 
Operand null ist, können über die Bedingungen, die die Flags 
setzen, eindeutigere Aussagen gemacht werden. Für NEG gilt: 
1. Übertrag (C) und Negativ (N) werden gesetzt, wenn der 

adressierte Operand eine positive, von null verschiedene Zahl 
ist; sonst wird C und N gelöscht. 

2. Überlauf (V) wird gesetzt, wenn der adressierte Operand 
einen Wert hat von $80 (Byte), $8000 (Wort) oder 
$80.000 000 (Doppelwort); sonst ist V geloscht. 

3. Null (Z) wird gesetzt, wenn der adressierte Operand null ist; 
sonst ist Z geloscht. 

4. Erweiterung (X) wird in der gleichen Weise gesetzt wie der 
Uberlauf (C). 

Der NEGX-Befehl beeinflusst in der gleichen Art C, V, N und 
X, löscht aber Z nur, wenn das Resultat nicht null ist. X wird 
nicht beeinflusst, wenn das Resultat null ist. Wie bereits beim 
ADDX-Befehl erklärt, zeigt damit Z den Status null/nicht-null 
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einer ganzen Operation mit mehrfacher Genauigkeit, und nicht 
nur gerade denjenigen der letzten Teiloperation. 

3.4.2.4 Multiplizier- und Dividierbefehle 

Der MC 68000 verfügt über zwei Multiplizierbefehle: «multipli- 
ziere mit Vorzeichen» (MULS) und «multipliziere ohne Vorzei- 
chen» (MULU). Diese Befehle multiplizieren zwei Wortoperan- 
den und speichern das 32-Bit-Produkt in einem Datenregister. 
Zahlen, die länger sind als 16 Bit können ebenfalls mit MULS 
und MULU multipliziert werden. Wir werden davon Beispiele 
im Kapitel 4 sehen, wo zwei 32-Bit-Zahlen multipliziert werden, 

und zwar sowohl für Werte mit wie auch ohne Vorzeichen. 

Der MC 68000 verfügt auch über zwei Divisionsbefehle: «divi- 
diere mit Vorzeichen» (DIVS) und «dividiere ohne Vorzeichen» 

(DIVU). Diese Befehle dividieren einen 32-Bit-Dividenden (in 
einem Datenregister) durch einen 16-Bit-Divisor (im Speicher 

oder in einem Datenregister) und legen den 16-Bit-Quotienten 
und den 16-Bit-Rest je in die untere und obere Hälfte eines 
Datenregisters. Beim Versuch, durch null zu dividieren, wird der 
MC 68000 einen Trap erzeugen (im Kapitel 7 beschrieben). 

Eine Division, mit oder ohne Vorzeichen, wird die Bedingungs- 
codes wie folgt beeinflussen: 
1. Übertrag (C) wird immer gelöscht. 
2. Überlauf (V) wird gesetzt, wenn Divisionsüberlauf angezeigt 

wird; sonst ist V gelöscht. 

3. Null (Z) wird gesetzt, wenn der Quotient null ist; sonst ist Z 
gelöscht. Der Zustand von Z ist in Überlauffällen nicht 
definiert. 

4. Negativ (N) wird gesetzt, wenn der Quotient negativ ist (für 
DIVS), oder wenn das höchstwertige Bit des Quotienten 

gesetzt wird (für DIVU); sonst ist N gelöscht. Der Zustand 
von N istin Überlauffällen nicht definiert. 

5. Erweiterung (X) wird nicht beeinflusst. 

In Überlauffällen setzt der MC 68000 das V-Flag und beendet 
die Operation, ohne den Divisor oder Dividenden zu beeinflus- 
sen. Überlauf wird dann erzeugt, wenn der Dividend so viel 
grösser ist als der Divisor, dass der Quotient nicht in 16 Bit 
Platz hat. Für eine Division ohne Vorzeichen muss der Divi- 
dend mindestens 65536mal grösser sein als der Divisor, damit 

Überlauf erreicht wird. Für eine Division mit Vorzeichen muss 
der Quotient +32767 oder -32768 übersteigen, damit Überlauf 

erreicht wird. Es ist möglich, ein Programm zu schreiben, das 
immer einen gültigen Quotienten und Rest ergibt, unabhängig 

davon, ob ein Überlauf entsteht. Ein solches Programm wird im 
Kapitel 4 vorgestellt. | 
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Bild 3.12 
Funktion des Befehls EXT 

a) Vorzeichenerweiterung 
von Byte zu Wort 

b) Vorzeichenerweiterung 
von Wort zu Doppelwort 

3.4.2.5 Vorzeichenerweiterung (EXT) 

Der MC 68000 ermöglicht Operationen mit verschiedenen 
Datenlängen, und zwar mit einem Befehl genannt «Vorzeichen- 

erweiterung» (EXT). Dieser Befehl erweitert das Vorzeichen- 
bit (das höchstwertige Bit) eines Wertes in einem Datenregister 
von einem Byte zu einem Wort oder von einem Wort zu einem 
Doppelwort, wie Bild 3.12 zeigt. Damit ermöglicht der EXT- 

Befehl die Ausführung von Operationen wie zum Beispiel der 
Addition eines Byte zu einem Wort oder der Multiplikation 
eines Wortes mit einem Byte. 

6 IS 87 

> 2 VOR ZA er » 
  

31 16 5 0 

b) Dn [- | ]ear.ı Dn 
  

  

3.4.2.6 Löschbefehl(CLR) 

Ein weiterer Befehl dieser Gruppe, «lösche» (CLR), setzt das 
adressierte Byte, Wort oder Doppelwort auf null. Er kann ver- 
wendet werden zum Löschen eines Datenregisters oder eines 
Speicherplatzes, aber nicht für ein Adressregister. (Der Fall, 

dass ein Adressregister gelöscht werden soll, ist nicht häufig, 

aber für diesen Fall kann mit dem Befehl SUBA.L An, An 
diese Operation ausgeführt werden.) 
Bei zeitkritischen Anwendungen ist es nützlich zu wissen, dass 
CLR gegenüber dem entsprechenden MOVE +0, <ea> dann 
schneller ist, wenn das tiefere Byte oder tiefere Wort eines 
Datenregisters gelöscht werden soll. Wenn alle 32 Bit eines 

Datenregisters gelöscht werden sollen, ist der MOVEO +0, Dn 
zwei Zyklen schneller als CLR.L DN. In den meisten Fällen 

benötigt das Löschen eines Speicherplatzes mit MOVE.x #0, 
<ea> (wobei x = B, W oder DW) die gleiche Zeit wie CLR.x 
<ea>. Tatsächlich wird bei Benützung der indirekten Adressie- 
rungsart mit Vordekrementierung der Befehl MOVE.x #0,- 
(An) den Speicherplatz zwei Zyklen schneller löschen als 

CLR.x -(An). 

3.4.2.7 Vergleichbefehle 

Die meisten Programme arbeiten Befehle nicht hintereinander 
ab, wie sie im Speicher gespeichert sind, sondern beinhalten 
Sprünge, Verzweigungen, Schlaufen, Subroutinenaufrufe und 
andere Bedingungen, die die Programmausführung von einem 
Platz im Speicher zu einem andern transferieren können. Die 
Befehle, die diese Transfers veranlassen, werden später in die- 
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-sem Kapitel beschrieben, wenn wir die Programmsteuerbefehle 
des MC 68000 behandeln. Hier werden nur die Vergleichsbefeh- 
le diskutiert, die normalerweise verwendet werden, um die 
Bedingungscode zu steuern, nach welchen die Programmsteuer- 

befehle ihre Entscheide bezüglich Transfer/kein-Transfer 
machen. 

Die vier Vergleichsbefehle des MC 68000 arbeiten sehr ähnlich 
wie Subtraktionsbefehle. Das bedeutet, dass jeder dieser Befehle 
einen Quellenoperanden von einem Bestimmungsoperanden 

subtrahiert und dabei die Bedingungs-Flags je nach Resultat 
setzt (siehe Tabelle 3.9). Im Gegensatz zu den Subtraktionsbe- 
fehlen wird bei den Vergleichbefehlen das Resultat der Sub- 
traktion nicht gespeichert. Ihr einziger Grund ist die Steuerung 
der Bedingungscode für Entscheide der nachfolgenden Pro- 
grammsteuerbefehle. 

  

  

Bedingung xX N* Z v* C 

Quelle < Bestimmung - 0 0 0/1 0 
Quelle = Bestimmung — 0 1 0 0 
Quelle > Bestimmung - 1 0 0/1 1 
  

* Zutreffend, wenn Zahlen im Zweierkomplement verglichen 

werden. 

Der Vergleichsbefehl (CMP) vergleicht einen Quellenoperanden 
mit einem Byte-, Wort- oder Doppelwortoperanden in einem 
Datenregister. Wort- oder Doppelwortadressen können unter 
Verwendung einer Variante von CMP, genannt «vergleiche 
Adresse» (CMPA), mit Adressregistern verglichen werden. Der 
Befehl «vergleiche unmittelbar» (CMPI) vergleicht ein Byte, 
Wort oder Doppelwort mit einem Bestimmungsoperanden. Der 
Befehl «vergleiche Speicher» (CMPM), vergleicht zwei Operan- 
den im Speicher unter Verwendung indirekter Adressierung mit 
Nachinkrementierung. Dieser CMPM-Befehl wird vor allem 
dann eingesetzt, wenn Zeichenfolgen verglichen werden müs- 
sen, wie in einem Beispiel später in diesem Kapitel gezeigt wird 
(Beispiel 3.3). 

3.4.2.8 Vergleich mit Null 

Wie in Kap. 3.4.2.3 beschrieben, sind Negierbefehle NEG und 
NEGX eigentlich Subtraktionsbefehle, die spezialisierte Auf- 
gaben übernehmen. Sie subtrahieren einen Operanden von null. 
Vergleichbar dazu verfügt der MC 68000 über einen speziali- 

sierten Vergleichsbefehl, «prüfe einen Operanden (TST), der 
einen Operanden mit null vergleicht. Wie die Vergleichsbefehle 
subtrahiert auch TST den Operanden von null und setzt oder 
löscht die Bedingungs-Flags anhand des Resultates, speichert 
aber das Resultat nicht ab. Die Bedingungscodes werden durch 
TST wie folgt beeinflusst: 

68 
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Bild 3.13 

Speicherzuweisung mit dem Befehl 

TAS 

an
y . Übertrag (C) und Überlauf (V) werden immer gelöscht. 

2. Null (Z) wird gesetzt, wenn der adressierte Operand null ist; 
sonst wird Z gelöscht. 

3. Negativ (N) wird gelöscht, wenn der adressierte Operand 
eine positive Zahl ist; sonst ist N gelöscht. 

4. Erweiterung (X) wird nicht beeinflusst. 

3.4.2.9 Prüfe und setze einen Operanden (TAS) 

Der Befehl «priife und setze einen Operanden» (TAS) arbeitet 
grundsatzlich gleich wie der TST-Befehl (er vergleicht den 
Operanden mit null und setzt oder löscht die Bedingungscode je 

nach Resultat), wobei TAS das höchstwertige Bit des Operan- 
den bedingungslos immer setzt. Im weiteren arbeitet TAS nur 
mit Byteoperanden, so dass er also Bit 7 eines Byte setzen wird. 
Trotz der ähnlichen Arbeitsweisen haben TST und TAS sehr 
verschiedene Funktionen. Wie wir im vorderen Abschnitt gese- 
hen haben, wird TST verwendet, um herauszufinden, ob ein 

Operand den Wert null hat. TAS hingegen wird vor allem 
gebraucht zur Statusprüfung eines Flags im Speicher und zum 
Setzen dieses Flags. Das ist vor allem bei Multi-tasking-Anwen- 
dungen äusserst praktisch, um den verschiedenen Aufgaben 
(Tasks) Speicherplatz zuzuweisen. In Multiprocessing-Anwen- 
dungen kann er verwendet werden als Zugriffschutz zu Spei- 
cherbereichen, die bestimmten Prozessoren zugeordnet sind. 

  

  

  

        
  

  
            

    
      
  

  
  

      

  

          
    

  

f SEKTION 0 

FLAG BYTE 

SEKTION 

19 setze Zeiger 
auf oberste 
Adresse 

\ 
| SEKTION 1 | 

FLAG BYTE TAS 

SEKTION | aus- 
1 < führen 

> > ja gewünschte 

yy N=02 Speichersektion 
1 benützen 

c | SEK T. ION Nein 

FLAG BYTE subtrahiere eine! 

Sektionslange 
SEKTION vom Zeiger 

N-2 < Ss < 

| Nein Zeiger < kein 
f SEKTION letzte Platz 

| N-1 Sektion 
FLAG BYTE             SEKTION 

N-1 < Ss S         
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Bild 3.13 zeigt die Verwendung von TAS in Multi-tasking- 
Anwendungen. Das Beispiel zeigt einen Speicherbereich, der in 
N Sektionen unterteilt wurde und gibt ein einfaches Flussdia- 
gramm eines Algorithmus, der zur Lokalisierung der nächsten 
verfügbaren Sektion verwendet werden kann. Dieser Algorith- 
mus benötigt zwei Adressregister, eines zur Aufnahme eines 
Zeigers, der auf die zu prüfende Sektion zeigt, und ein anderes 
zur Aufnahme eines Zeigers, der auf die letzte Sektion (Sektion 
0) zeigt. Das Programm für diesen Algerithmus schliesst einige 

schon beschriebene Befehle ein wie MOVEA oder LEA 
(zur Initialisierung der Testzeiger), SUBA_(zur Dekremen- 
tierung des Testzeigers) und CMPA (zum Vergleichen der zwei 
Zeiger). Es sind auch bedingte Verzweigungsbefehle verwendet, 
die unter den Programmsteuerbefehlen behandelt werden. 
In einer Multiprocessing-Anwendung erlaubt TAS einem Pro- 
zessor die Interpretation eines Prüfbyte (mittels der Bedin- 
gungscodes) und das Setzen einer 1 in das höchstwertige Bit des 
Byte. Falls der Speicher besetzt ist, kann das Programm die 
Abfrage aufrechterhalten, bis er frei wird. Die folgende Routine 
übernimmt diese Aufgabe: 
  

MFREE TAS TEST Prüfe und setze das Byte TEST. 
BNE MFREE Wenn TEST nicht = 0, prüfe 

weiter. 

(Prozessor Programmbefehle) 

CLR.B TEST Losche TAS Byte.       
Es ist wichtig, zu wissen, dass TAS der einzige MC-68000- 
Befehl ist, der einen nicht unterteilbaren «lese-ändere-schrei- 

be»-Zyklus ausführen kann. Das verunmöglicht jegliche Beein- 
flussung durch einen anderen Prozessor, sobald die TAS- 

Operation eingeleitet wurde. 

3.4.3 Logische Befehle 

Es bestehen sieben logische Befehle, dargestellt in Tabelle 3.10. 
Die Basisbefehle in dieser Gruppe sind «logisch und» (AND), 
«exklusiv oder» (EOR), «oder» (OR). Diese drei Befehle kön- 
nen mit Byte-, Wort- oder Doppelwortoperanden arbeiten. 

Einer dieser Operanden muss sich in einem Datenregister befin- 
den. Der zweite Operand kann für den AND- und OR-Befehl im 
Speicher, einem Datenregister oder einem Adressregister sein, 
fur den EOR-Befehl nur im Speicher oder in einem Datenregi- 
ster. EOR kann nicht mit Adressregistern operieren. 
Ein weiterer Befehl, «logisches Komplement» (NOT), kann das 
Einerkomplement eines Datenregisters oder eines Speicherplat- 
zes erzeugen. Mit NOT können Operanden ohne Vorzeichen, 

mit NEG oder NEGX vorzeichenbehaftete Operanden komple- 

70



Der Befehlssatz des MC 68 000 

  

  

  

  

  

  

  

  

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs- 

grösse codes 

Quelle Ziel XNZVC 

AND AND <ea>,Dn 8, 16, 32 Daten Dn -**00 

AND Dn,<ea> 8, 16, 32 Dn anderbar -**00 

ANDI ANDI +d,<ea> 8, 16, 32 +#+d Daten änderbar -**00 

ANDI #d,SR (1) 8, 16 ted SR el 

EOR EOR Dn,<ea> 8, 16, 32 Dn Daten anderbar ~** QO 

EORI EORI #d,<ea> 8, 16, 32 +d -**00 
EORI +#d,SR (1) 8, 16 ted SR * ee 

NOT NOT <ea> 8, 16, 32 Daten anderbar -**00 

OR OR <ea>,Dn 8, 16,32 Daten Dn -**:00 
OR Dn,<ea> 8, 16, 32 Dn änderbar -**00 

ORI ORI +d,<ea> 8, 16, 32 +#d Daten änderbar —** QO 

ORI #d,SR (1) 8, 16 ted SR ee eK 
  

Bemerkung: (1) Wenn die Operandengrösse Byte ist, werden nur die tieferen 8 Bit des Statusregisters 
beeinflusst. Wenn die Operandengrösse Wort ist, werden alle 16 Bit des Statusregi- 
sters beeinflusst und der Befehl ist privilegiert. 

Tabelle 3.10 Logische Befehle 

mentiert werden. Variationen der AND-, OR- und EOR-Befeh- 
le erlauben die Verwendung von Konstanten als Quellendaten. 
Diese Variationen, «und unmittelbar» (ANDI), «exklusiv- oder 

unmittelbar» (EORI) und «oder unmittelbar» (ORI) arbeiten 
mit Speicher- oder Datenregisteroperanden jeder Länge. Sie 
sind auch anwendbar für Operationen mit dem Statusregister 
oder mit den Bedingungscode. Operationen mit dem Statusregi- 

ster (SR) sind privilegiert. 

3.4.4 Schiebe- und Rotierbefehle 

Der MC 68000 verfügt über vier Schiebebefehle und vier 
Rotierbefehle. Tabelle 3.11 zeigt diese Befehle, und Bild 3.14 
zeigt ihre Funktionsweise. Wie in Tabelle 3.11 dargestellt, ver- 
fügt jeder Befehl über drei Varianten: zwei, die mit einem Daten- 
register operieren (Byte, Wort oder Doppelwort), und eine, die 
mit dem Speicher arbeitet (nur Worte). 

Wenn die Operation mit einem Datenregister ausgeführt wird, 
kann der Schiebe- oder Rotierwert spezifiziert werden mit dem 

Inhalt eines andern Datenregisters (Wert = O bis 63, wobei 0 
einen Wert von 64 erzeugt), oder als unmittelbarer Wert zwi- 

schen 1 und 8. Ein Wortoperand im Speicher kann nur um eine 
Bitposition geschoben oder rotiert werden. 

3.4.4.1 Schiebebefehle 

Zahlen mit Vorzeichen können geschoben werden unter Ver- 
wendung der Befehle «arithmetisch schieben links» (ASL) und 
«arithmetisch schieben rechts» (ASR). ASR schützt das Vor- 

zeichen des Operanden durch Reproduktion des Vorzeichens 

während der ganzen Schiebeoperation. Bei ASL wird das Vor- 
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zeichenbit nicht geschiitzt, aber das Uberlaufbit (V) wird 
gesetzt, wenn das Vorzeichenbit geändert wird. 

Zahlen ohne Vorzeichen lassen sich unter Verwendung der 
Befehle «logisch schieben links» (LSL) und «logisch schieben 
rechts» (LSR) bearbeiten. Bei allen vier Befehlen werden Bit, die 
aus dem Operanden geschoben werden, in den Übertrag (C) 
und die Erweiterung (X) der Bedingungscode übernommen. 
Zusätzlich zur Anwendung dieser Befehle in allgemeinen 
Datenmanipulationen führen diese Schiebebefehle auch schnel- 
le Multiplizier- und Dividieroperationen durch: Jedes Links- 

schieben bedeutet eine Multiplikation des Operanden mit zwei 
und jedes Rechtsschieben eine Division des Operanden durch 
zwei. 

3.4.4.2 Rotierbefehle 

Bei allen vier Rotierbefehlen werden Bit ausserhalb des Operan- 
den in den Übertrag geschrieben. Für den Befehl «rotiere links» 

(ROL) und «rotiere rechts» (ROR) werden die Bit, die an einem 
Ende des Operanden herausrotiert werden, auf der entgegenge- 
setzten Seite des Operanden wieder eingeschrieben. Bei «rotiere 
links mit Erweiterung» (ROXL) und «rotiere rechts mit Erwei- 
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terung» (ROXR) werden die an einem Ende des Operanden her- 
ausrotierten Bit in das Erweiterungs-Flag (X) und in den Uber- 
trag (C) geschrieben, und der vorherige Wert von X wird in das 
entgegengesetzte Ende des Operanden eingeschrieben. 
Die «rotiere mit Erweiterung»-Befehle verfügen über Möglich- 
keiten, die bis jetzt nicht zur Verfügung standen: die Fähigkeit 
des Zugriffes zu den drei höherwertigen Byte in einem Datenre- 
gister. Wir erinnern uns, dass alle Byteoperationen mit dem 
tiefstwertigen Byte eines Datenregisters ausgeführt werden. 
Wie kann man nun mit dem zweiten Byte (das «tiefere mittlere») 

eines Registers operieren? Das ist möglich, indem man dieses 
Byte in die tiefstwertige Position bringt, unter Verwendung der 

Befehle ROL #8, Dn oder ROR #8, Dn. So kann auch auf das 
«höhere mittlere» und das höchstwertige Byte eines Datenregi- 
sters zugegriffen werden. Das höhere mittlere mit einem 

SWAP-Befehl, das höchstwertige mit einem ROL.L #8, DN. 
Aufeinanderfolgend kann zu den höheren drei Byte zugegriffen 
werden (wie zum Beispiel in Zeichenfolgen) unter Ausführung 
von drei Befehlen ROR.L 48, Dn. 

  

  

  

  

  

  

  

  

  

  

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs- 

grösse codes 

Quelle Ziel XNZVC 

ASL ASL Dx,Dy 8, 16, 32 Dn (1) Dn ve 
ASL #d,Dn 8, 16, 32 #d (2) Dn eR 
ASL <ea> 16 Speicher dnderbar ***** 

ASR ASR Dx,Dy 8, 16, 32 Dn (1) Dn eK 
ASR +#d,Dn 8, 16, 32 +#d (2) Dn 
ASR <ea> 16 Speicher änderbar ***** 

LSL LSL Dx,Dy 8, 16, 32 Dn (1) Dn eee QO * 
LSL #d,Dn 8, 16, 32 +td (2) Dn eee QO * 
LSL <ea> 16 Speicher änderbar ***0* 

LSR LSR Dx,Dy 8, 16, 32 Dn (1) Dn *O*O* 
LSR #d,Dn 8, 16, 32 +td (2) Dn *0*0* 
LSR <ea> 16 Speicheränderbar *0*0* 

ROL ROL Dx,Dy 8, 16, 32 Dn (1) Dn -**Q* 
ROL +d,Dn 8, 16, 32 ‘ded (2) Dn _**Q* 

ROL <ea> 16 | Speicheränderbar -**0* 

ROR ROR Dx,Dy 8, 16, 32 Dn (1) Dn —_**Q* 
ROR +#d,Dn 8, 16, 32 +d (2) Dn —_**Q* 
ROR <ea> 16 Speicher dnderbar -**0* 

ROXL ROXL Dx,Dy 8, 16, 32 Dn (1) Dn x EQ * 
ROXL +d,Dn 8, 16, 32 +#d (2) Dn * ee * 
ROXL <ea> 16 Speicher anderbar ***0* 

ROXR ROXR Dx,Dy 8, 16, 32 Dn (1) Dn eee QO * 
ROXR +#d,Dn 8, 16, 32 +d (2) Dn regt 
ROXR <ea> 16 Speicher änderbar ***0* 

Bemerkungen: (1) Das Quellendatenregister enthält den Schiebewert. 
Wert =Obis 63, wobei 0 eine Verschiebung von 64 erzeugt. 

(2) Die Daten sind der Schiebewert 1 bis 8. 

Tabelle 3.11 Schiebe- und Rotierbefehle 
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3.4.4.3 Schnellere Schiebe- und Rotieroperationen 

Weil Worte im Speicher pro Operation nur um eine Bitposition 
geschoben oder rotiert werden können, dauert eine Schiebe- 
oder Rotieroperation um n Bit mindestens n-mal länger als eine 
1-Bit-Schiebe- oder -Rotieroperation. Das Schieben oder Rotie- 
ren eines Worts im Speicher benötigt 9+ Zyklen, wobei «+» die 
Zeit für die Berechnung der effektiven Adresse angibt. Dadurch 

wird eine 2-Bit-Schiebeoperation 2x 9+ Zyklen benötigen, 
usw. 
Das Schieben oder Rotieren eines Datenregisters um nBit 

benötigt 6+2n Zyklen, eine 1-Bit-Schiebeoperation also 8 
Zyklen, eine 2-Bit-Schiebeoperation 10 Zyklen usw. Es ist klar, 
dass für einige Werte von n die Ausführungszeit beträchtlich 
gesenkt werden kann, indem man einen Speicheroperanden in 
ein Datenregister liest, das Register schiebt (oder rotiert) und 
dann das Resultat in den Speicher zurückschreibt. Das benötigt 
drei Befehle. Unter Verwendung von Tabellen über die Ausfüh- 

rungszeiten, die wir später kennenlernen, können wir die totale 
Ausführungszeit wie folgt berechnen: 
  

Befehl Ausführungszeit 

MOVE <ea>,Dn 4+ 
ASL #n, Dn 6+ 2n 
MOVE Dn, <ea> 5+ 

Totalzeit (15+) + 2n       

Zusammengefasst benötigt also eine n-Bit-Schiebe- oder -Ro- 
tieroperation nx 9+ Zyklen im Speicher und [(15+) + 2n] 
Zyklen in einem Datenregister. Von welchem Punkt an bringt es 
nun Vorteile, die Operation in einem Datenregister durchzufüh- 
ren? Es ist klar, dass eine 1-Bit-Schiebeoperation sicher im 

Speicher durchgeführt werden muss (9+ Zyklen im Speicher 
gegenüber 17+ Zyklen in, einem Register). Auch eine 2-Bit- 
Schiebeoperation sollte noch so durchgeführt werden (18+ 
Zyklen im Speicher gegenüber 19+ Zyklen in einem Register). 
Hingegen benötigt eine 3-Bit-Schiebeoperation 27+ Zyklen im 
Speicher, aber nur 21+ Zyklen in einem Datenregister! Schluss- 
folgerung: Wenn das Verschieben oder Rotieren im Speicher um 
mehr als 3 Bit-Positionen nötig ist, sollte die Operation in einem 

Datenregister vorgenommen werden. 

3.4.5 Bitmanipulationsbefehle 

Diese vier Befehle können den Zustand eines spezifizierten Bit 
in einem Datenregister oder einem Byte im Speicher prüfen. 
Diese in der Tabelle 3.12 zusammengefassten Befehle speichern 
den Zustand des spezifizierten Bit im Bedingungscode, Flag 
Null (Z): wenn das Bit 0 ist, wird Z = 1; wenn das Bit 1 ist, wird 
Z=0. 
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Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs- 

grösse codes 

Quelle Ziel XNZVC 

BTST BTST Dn,<ea> 8,32 Dn Daten, ausgenom- --*-- 
BTST #d,<ea> 8,32 +d menunmittelbar --*-- 

BSET BSET Dn,<ea> 8, 32 Dn a 
BSET #d,<ea> 8,32 +d __*__ 

BCLR BCLR Dn,<ea> 8,32 Dn Daten --*__ 

BCLR +d,<ea> 8,32 #d änderbar —_~*__ 

BCHG BCHG Dn,<ea> 8,32 Dn --*__ 
BCHG +#d,<ea> 8,32 #d __*__ 
  

Tabelle 3.12 Befehle für Bitmanipulationen 

Drei der Bitmanipulationsbefehle ändern das Bit unbedingt, wie 

  

  

folgt: 

Befehl Durchgeführte Operation 
mit dem Bit 

BTST (Bit prüfen) Bit wird nicht beeinflusst 
BSET (Bit prüfen und setzen) Bit wird auflogisch 1 gesetzt 
BCLR (Bitprüfen undlöschen) Bit wird auflogisch 0 gesetzt 
BCHG (Bit prüfen und wechseln) Zustand des Bit wird 

umgekehrt 
  

3.4.6 BCD-Befehle 

Im Zusammenhang mit den arithmetischen Befehlen wurde 

erwähnt, dass der MC 68000 über drei Befehle verfügt, mit 
denen Operationen mit BCD-Werten ausgeführt werden kön- 
nen. Alle diese Befehle (Tabelle 3.13) arbeiten mit bytelangen 
Daten, wobei ein Byte immer zwei BCD-Werte mit 4 Bit enthält. 
Im weiteren schliessen die BCD-Befehle wie auch die erweiter- 
ten Binärarithmetikbefehle das X-Bit in die Operationen ein und 
wechseln das Z-Bit dann, wenn ein Resultat generiert wird, das 
verschieden von null ist. In diesem Fall muss vor Ausführung 
der BCD-Befehle das X-Bit mit 0 und das Z-Bit mit 1 initiali- 

siert werden. Am einfachsten kann dies mit dem Befehl MOVE 

  

  

  

  

#4,CCR erreicht werden. 

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs- 
grösse codes 

Quelle Ziel XNZVC 

ABCD ABCD Dy,Dx 8 Dn Dn * U* U* 
ABCD -(Ay),-Ax) 8 -(An) -(An) * U* U* 

SBCD SBCD Dy,Dx 8 Dn Dn * U* U* 

SBCD -(Ay),-(Ax) 8 -(An) -(An) * j* U* 

NBCD NBCD <ea> 8 Daten änderbar * U* U* 
  

Tabelle 3.13 BCD-Befehle 
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3.4.6.1 BCD-Addition (ABCD) und -Subtraktion (SBCD) 

Mit den Befehlen «addiere dezimal mit Erweiterung» (ABCD) 
und «subtrahiere dezimal mit Erweiterung» (SBCD) können 
dezimale Additionen und Subtraktionen mit den tieferwertigen 
Byte von zwei Datenregistern oder mit zwei Byte im Speicher 

ausgeführt werden. Die Befehle ABCD und SBCD beeinflussen 
die fünf Bedingungscodebit wie folgt: | . 
1. Der Übertrag (C) wird gesetzt, wenn ABCD einen Übertrag 

erzeugt oder SBCD einen Entlehnwert benötigt, sonst ist C 
gelöscht. 

2. Überlauf (V) und Negativ (N) sind für beide Befehle nicht 
definiert. 

3. Null (Z) wird gelöscht, wenn das Resultat nicht gleich null ist, 
sonst bleibt Z unverändert. Bei Mehrbyteoperationen zeigt 
dadurch Z den Status der gesamten Operation und nicht nur 

gerade den der letzten Byte. 

4. Die Erweiterung (X) wird wie der Übertrag C gesetzt. 

Obschon die BCD-Befehle eine gewisse Ähnlichkeit mit den 
erweiterten Binärarithmetikbefehlen aufweisen, bedeutet die 
Tatsache, dass die BCD-Befehle auf Byteoperationen 
beschränkt sind doch, dass bei der Programmierung Unter- 
schiede beachtet werden müssen. Zum Beispiel wird es offen- 
sichtlich mehr Befehle erfordern, um BCD-Mehrbyteadditionen 
oder -subtraktionen auszuführen, als für die gleichen Binärope- 

rationen nötig wären, da bei binären Mehrbytezahlen die 
Wort- und Doppelwortkombinationen verwendet werden kön- 
nen. 

Weniger augenscheinlich ist die Tatsache, dass in den meisten 
Fällen die Datenregister auf die Ausführung von Additionen 
und Subtraktionen mit Zweidigit-BCD-Werten beschränkt 

sind, und zwar wegen des Zugriffs auf das mittlere Byte von 
Datenregistern. Dieses Byte müsste zuerst in die tiefstwertige 
Byteposition rotiert werden, wobei wiederum zu beachten ist, 
dass die dafür benötigten Befehle ROR, ROL, ROXR und 
ROXL immer das Z-Bit beeinflussen und damit den Zwischen- 

status null der Mehrbyte-BCD-Operationen zerstören! Wenn 
man also nicht einen speziellen Schutz der CCR-Werte vor und 
nach der Rotieroperation vorsieht, sollten Mehrbyte-BCD- 
Operationen eher mit Werten im Speicher als in Datenregistern 
vorgenommen werden. 

Wenn Additionen und Subtraktionen von Mehrbyte-BCD- 
Operanden im Speicher ausgeführt werden, müssen diese 
Operanden, wie bei Mehrbyte-Binäroperanden, in der Ordnung 
höher nach tiefer gespeichert sein (siehe wieder Bild 1.1). Diese 
Anordnung ist verständlich, wenn die Adressierungsart im Spei- 
cher für ABCD- und SBCD-Befehle betrachtet wird. 
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Bild 3.15 

Addition von zwei BCD-Zahlen 

mit je 4Byte 

Im folgenden Beispiel werden mit der Befehlsequenz 
  

MOVE #4,CCR 
ABCD -(A0), -(Al) 
ABCD -(A0), -(A1) 
ABCD -(A0), -(Al) 
ABCD -(A0), -(A1)       

zwei 8-Digit-BCD-Zahlen (4 Byte) im Speicher addiert. Bild 
3.15 zeigt, wie diese Zahlen gespeichert sind und die Zeiger AO 
(Quelle) und Al (Ziel) durch die Additionssequenz verändert 

werden. 

Speicher 

  

  
A1 (nach — , 2 

. —-| höh h Addition) öher |milte höher 4-Byte-Ziel 

mitte tiefer\ tiefer 

  

  
At (vor 
Addition)   

35 
  

  
AO (nach 

Addition) 

Ao (vor 
Addition) 

—-| hoher \mitte höher   

mitte tiefer| tiefer 
} 4- Byte- Quelle 

  

        
3.4.6.2 BCD-Negierbefehl (NBCD) 
Der NBCD-Befehl subtrahiert den adressierten Byteoperanden 
(in einem Datenregister oder im Speicher) und das Erwei- 
terungsbit (X) von null. Wenn X = 0 ist, wird das Zehnerkom- 
plement erzeugt; wenn X = 1 ist, das Neunerkomplement. 

3.4.7 Programmsteuerbefehle 

Wie bei der Behandlung der Vergleichbefehle erwahnt, werden 
Programmbefehle im Speicher fortlaufend abgelegt, jedoch in 
den seltensten Fällen in dieser Reihenfolge ausgeführt. Auch 
das einfachste Programm verfügt über Verzweigungen, Sprünge 
und Subroutinenaufrufe, die die Ablaufsequenz ändern. Die 
Programmsteuerbefehle (Tabelle 3.14) ermöglichen dem MC 
68000 den Wechsel der Programmausführung von einem Teil 
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des Speichers in einen anderen. Diese Befehlsgruppe kann in 
drei Kategorien unterteilt werden: bedingte, unbedingte und 
Rückkehrbefehle. 

3.4.7.1 Bedingte Befehle 

Die drei ersten Eintragungen in Tabelle 3.14 sind bedingte 
Befehle für den MC 68000. Ihr Operationsmodus hängt ab vom 
Zustand eines oder mehrerer Flags im Bedingungscoderegister. 
Anders als in den vorhergehenden Befehlstabellen dieses Kapi- 

tels zeigt die Tabelle 3.14 nicht die Mnemonik für diesen Be- 
fehlstyp, sondern die symbolische Form Bcc, DBcc und Scc, 
wobei cc die geprüfte Bedingung darstellt. Die cc-Anhänge sind 
in Tabelle 3.15 dargestellt. Der Bcc-Befehl akzeptiert die Bedin- 
gung «immer wahr» (T) und «immer falsch» (F) nicht, mit den 
DBecc-und Scc-Befehlen hingegen können alle 16 Bedingungen 
geprüft werden. Die 14 bedingten Verzweigungsbefehle (Bcc) 
des MC 68000 sind die gleichen wie beim MC 6800. Mit diesen 
Befehlen verzweigt die Programmsteuerung bei erfüllter Bedin- 
gung zum Befehl im Speicherplatz mit der Adresse (PC)+ Ver- 
schiebung. (PC = Programmzahler) 

Wenn die Bedingung nicht erfüllt ist, wird der Programmablauf 
mit dem nächsten Befehl weitergeführt. Der Wert im PC ent- 
spricht dem Speicherplatz des Bcc-Befehls + 2. Die Verschie- 
bung ist ein ganzzahliger Zweierkomplementwert, der der 
Anzahl Byte zwischen dem PC-Wert und dem Speicherplatz. 
des Labels entspricht. Wenn der Operand ein Label ist (was nor- 
malerweise der Fall ist), wird der Assembler die Verschiebung 

  

  

  

  

berechnen. 

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs- 
grösse | codes 

Quelle Ziel XNZVC 

Bedingte Befehle 

Bcc Bcc <label> 8,16 Ifcc,thenPC+d>PC  ) ----- 
DBcc DBcc . Dn,<label> 16 Ifec,then Dn-1>-Dn;  ) ----- 

if Dn + -1, 

then PC +d> PC 
Scc Scc <ea> 8 If cc, then 1s > (ea); Daten ----- 

Os — (ea) veränderbar 

Unbedingte Befehle 

BRA BRA <label> 8,16 PC+d>PC ren 
BSR BSR <label> 8,16 PC>-SP; ==. 

PC +d> PC 
JMP JMP <ea> <ea>>PC Steuerung ----- 
JSR JSR <ea> PC>-(SP); <ea>>PC Steuerung ----- 

Rückkehrbefehle 
RTR RTR (SP)+>CCR; Krk 

(SPA) +>PC 
RTS RTS (SP)+>-PC 222 
  

Tabelle 3.14 Befehle für die Programmsteuerung 
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* Zweierkomplement-Arithmetik Anhang «cc» Bedingung 
  

  

  

Trifft zu wenn 

Symbole: A = UND EQ Gleich Z=1 
[I = ODER NE Nicht gleich Z=0 
© = EXKLUSIV MI Minus N=1 

ODER PL Plus N=0 

"GT Grösser als ZA(NOV)=0 
*LT Kleiner als NOV=1 
*GE Grosser oder gleich NOV=0 
*LE Kleiner oder gleich ZO(NOV)=1 
HI Hoher als CAZ=0 
LS tiefer oder gleich COZ=1 
CS Ubertrag gesetzt C=1 

CC Übertrag gelöscht C=0 
"VS Überlauf V=1 
*VC ~ Kein Uberlauf V=0 

Tabelle 3.15 T Immer wahr 
Bedingungsprüfungen F Immer falsch 

Wenn der Befehl die Form 

BNE *+10 
      

hat, spezifiziert der Operand den Wert der Verschiebung (in die- 
sem Fall dezimal 10) in Byte. Die Bcc-Befehle können ein Wort 
oder zwei Worte lang sein. Mit der Form 
  

Bcc.S 
      

wird der Assembler einen Einwortbefehl mit einer relativen, vor- 

zeichenbehafteten 8-Bit-Verschiebung, die im Operationswort 
eingebettet ist, generieren. In dieser Form kann sich der ange- 
zielte Verzweigungsbefehl bis zu 128 Byte höher oder tiefer im 

Speicher befinden, als das Bcc-Operationswort plus zwei. Wird 
der Anhang «.S» weggelassen, erzeugt der Assembler einen 
Zweiwortbefehl mit einer relativen, vorzeichenbehafteten 16- 
Bit-Verschiebung im zweiten Wort. In dieser Form kann sich 
der angezielte Verzweigungsbefehl bis zu 32 KByte höher oder 

tiefer im Speicher befinden als das Bcc-Operationswort plus 
zwei (das Verschiebungswort). Wenn also der Bec-Befehl am 
Speicherplatz N beginnt, gestattet die Form Bcc.S einen Ver- 

zweigungsbereich zwischen N+$80 und N-$7E, die Form Bcc 
einen solchen zwischen N+$8000 und N-$7FFE. 
Hier einige Beispiele bedingter Verzweigbefehle: 

1.) Die Sequenz 

ADD DO0O,DI 
BCS TOOBIG 
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verzweigt zum Label TOOBIG, wenn die Addition einen Uber- 
trag ausserhalb des tiefern Wortes in D1 ergibt. 
2.) Die Sequenz 

SUB DO,D1 
BEQ ZERO 

  

      

verzweigt zum Label ZERO, wenn die Subtraktion im tiefern 
Wort von D1 Null ergibt. 

3.) Zum blossen Test, ob die tiefern Wörter von DO und DI 
gleich sind, wird, ohne Register zu beeinflussen, anstelle eines 
Subtraktionsbefehls besser ein Vergleichbefehl verwendet. 
Die Sequenz 

CMP D0, D1 
BEQ ZERO 

  

      

verzweigt zum Label ZERO, wenn die tiefern Worte in DO und 
D1 gleich sind. 

4.) Einige Tests erfordern die Wahl zwischen zwei verschiede- 
nen Bcc-Befehlen, je nachdem ob das Resultat einer Operation 
von Werten mit oder ohne Vorzeichen geprüft werden soll. Zur 
Erläuterung nehmen wir an, dass zum Label DIMORE ver- 
zweigt werden soll, wenn das tiefere Wort in DI grösser ist als 
das tiefere Wort in DO. 
Folgende Sequenzen sind zu verwenden: 

  

CMP D0, Di für Werte von DO und D1 
BHI DIMORE ohne Vorzeichen 

CMP Do, D1 für vorzeichenbehaftete Werte 
BGT DIMORE vonD0Ound D1       

Die bedingten Verzweigbefehle werden häufig als letzter Befehl 
in einer Schlaufe eingesetzt, um diese verlassen zu können, 
wenn eine bestimmte «cc»-Bedingung eingetreten ist. Das Bei- 

spiel 3 zeigt diese Methode mit einem Programm, das einen aus- 
gewählten Speicherbereich nach einem spezifizierten Wortwert 

absucht. Die Start- und Endadressen im Speicher befinden sich 
in AO beziehungsweise Al, und der gesuchte Wert befindet sich 
im tiefern Wort von DO. 

Dieses Programm verwendet eine Schlaufe, in der der Wert, auf 
den AO zeigt, mit dem Wert in DO verglichen wird. Wenn der 
gesuchte Wert gefunden ist, verzweigt BEQ.S DONE den 
Mikroprozessor zu DONE, wo AO dekrementiert wird. (Das ist 
nötig, weil AO immer nachher inkrementiert wurde, und dann 
am Schluss auf ein Wort nach dem Speicherplatz des vergliche- 
nen Werts zeigt.) Wenn kein gleicher Wert gefunden wird, prüft 
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CMPA.L AO, A1 auf die Bereichsgrenze und springt auf LOOP 
zuruck, wenn AO kleiner oder gleich A1 ist (wahr wenn C = 0, 
da BCC.S als Abschlussbefehl verwendet wird). 

  

Programmbeispiel 3.1 

* DIESES PROGRAMM PRUEFT, OB EIN AUS- 
*GEWÄHLTER SPEICHERBEREICH EINEN 
*SPEZIFIZIERTEN WORTWERTENTHAELT. VOR 
* DER AUSFUEHRUNG MUESSEN AOUND AI DIE 
* ANFANGS- UND ENDADRESSEN DES BEREICHS 
*ENTHALTEN. DAS TIEFERE WORT VON DO MUSS 
*DEN WERT, DER GESUCHT WIRD, ENTHALTEN. 
* AM SCHLUSS, WENN DER WERT GEFUNDEN 
* WURDE, IST Z = 1 UND AO ENTHAELT DIE 
* ADRESSE, WO DER WERT GEFUNDEN WURDE. 
*FALLS DER WERT NICHT GEFUNDEN WURDE, 
*ISTZ=O0OUND AO=AIl 

ORG 82000 

LOOP CMP (A0)+,D0 WERT GEFUNDEN? 
BEQ.S DONE JA, AUFHOEREN 
CMPA.LAO,A1 GRENZE DES 

BEREICHS? 
BCC.S LOOP NEIN, WEITERFAHREN 

DONE SUBA.L #2,A0 FERTIG. AO ANPASSEN       

Leser, die 8-Bit-Mikroprozessoren programmiert haben, wissen 
gut, dass Schlaufen gewohnlich mit einer Art Zahler, normaler- 
weise einem Register, realisiert werden. Nach jedem Schlaufen- 

durchgang wird der Zähler um 1 dekrementiert, und die Schlau- 
fe wırd dann verlassen, wenn der Zähler null wird. Diese Proze- 
dur benötigt immer mindestens zwei Befehle: einen Dekrement- 
befehl und einen bedingten Verzweigbefehl. Mit dem MC 68000 
kann diese Aufgabe kombiniert werden mit einer Anzahl von 
Prüf-, Dekrement- und Verzweigbefehlen (DBcc: test, decre- 
ment and branch). 
Bei der Ausführung eines DBcc-Befehls fragt der MC 68000 die 

Bedingungscode ab, um herauszufinden, ob die spezifizierte 
Bedingung (irgendeine der 16 Bedingungen aus Tabelle 3.15) 
gesetzt ist. Falls dies der Fall ist, geht das Programm zum näch- 

sten Befehl. Wenn die Bedingung nicht erfüllt ist, dekrementiert 
der MC 68000 das tiefere Wort eines spezifierten Datenregisters 
um eins. Wenn der Wert im Datenregister -1 erreicht hat, wird 
der nächste Befehl ausgeführt, andernfalls verzweigt der 
MC 68000 zum spezifizierten Label im Speicher. Zum besseren 

Verständnis dieses Ablaufs sei auf Bild 3.16 hingewiesen. 
Es wird ausdrücklich darauf aufmerksam gemacht, dass mit 
dem einfachen Befehl DBcc wie zum Beispiel 
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BNE DO0,LOOP 
      

die gleichen Operationen wie mit der Befehlssequenz 
  

BNE.S NEXT 
SUBQ +#1,D0 
BPL LOOP 

NEXT 

      

ausgeführt werden. Zum Wegfall von zwei Zeilen Quellencode 
kommt dazu, dass ein DBcc-Befehl im Speicher zwei Worte 
weniger benötigt als die äquivalente Befehlssequenz (zwei Wor- 
te für DBcc gegen vier Worte für die Sequenz). Ein DBcc-Befehl 
wird also normalerweise doppelt so schnell ausgeführt werden 
wie die entsprechende 3-Befehls-Sequenz. Ein DBcc-Befehl 

benötigt 10 Zyklen, wenn die Verzweigung ausgeführt wird, und 
12 Zyklen, wenn nicht verzweigt wird. Demgegenüber benötigt 
die Sequenz bei ausgeführter Verzweigung 22 Zyklen, und 10 

  

DBcc Dn.<label> 

Befehl 

ausführen       

  

  

      

        

Verzweigung weiter bei 
zu nächstem 

<label> Befehl             
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oder 22 Zyklen, wenn nicht verzweigt wird (je nachdem ob die 
«cc»-Bedingung erfüllt ist oder der Zähler auf -1 dekrementiert 
wurde). 

Die Annahme, dass die DBcc-Befehle nur gerade als Bcc-mit- 
Zähler-Befehle eingesetzt werden können, wäre aber falsch. Es 
gibt vielmehr einige wichtige Unterschiede zwischen den DBcc- 
und den Bcc-Befehlen, die beachtet werden müssen: 

1. Die DBcc-Befehle arbeiten in umgekehrter Art als die Bcc- 
Befehle, das heisst, dass die Bcc-Befehle verzweigen, wenn 
die Bedingung erfüllt ist, während die DBcc-Befehle nicht 

verzweigen, wenn die Bedingung erfüllt ist, und das Pro- 
gramm den nächsten Befehl ausführt. 

2. Bei den DBcc-Befehlen führen zwei Wege aus der Schlaufe, 

da sie sowohl bei erfüllter Bedingung als auch beim Erreichen 
des Werts -1 im Zähler zum nächsten Befehl gehen. Daher 
besitzen die DBcc-Befehle auch die Charakteristik eines 

Befehls «mache bis gleich» (auf -1). 

3. Ein Bcc-Befehl kann in einem Programm vorwärts und rück- 
wärts verzweigen, ein DBcc-Befehl hingegen nur rückwärts, 
das heisst zu einer tieferen Speicheradresse. Die Verzwei- 

gungsmarke darf nicht mehr als 32 766 Byte ($7FFE) tiefer 
als der DBcc-Befehl liegen. 

4. Bcc-Befehle können Ein- oder Zweiwortbefehle sein, DBcc- 
Befehle sind immer Zweiwortbefehle. Daher ist die Form 
DBcc:S illegal. 

Wie bereits erwähnt, können die DBcc-Befehle mit allen 16 
«cc»-Anhängen verwendet werden, also inklusive Tund F. Der 
T-Anhang verlangt die Befehlsform 
  

DBT Dn, «Label» 
      

die immer zum nächsten Befehl führt und daher nichts anderes 
ist als eine Zweiwort-Nulloperation! Der nützlichere F-Anhang 
gestattet es, die Bedingungsabfrage zu unterlassen und die Ent- 
scheidung verzweigen/nicht verzweigen allein auf den Zustand 
des Zählers abzustützen. Das Beispiel 3.2 zeigt, wie unter Ver- 
wendung des DBF-Befehls ein Datenblock im Speicher ver- 
schoben werden kann. Es ist zu beachten, dass der Zähler DO 
mit dem Wert der Anzahl Doppelworte minus eins initialisiert 
wird, weil ja bis auf -1 dekrementiert wird. Wenn acht Doppel- 
worte verschoben werden sollen, muss DO mit dem Wort $0007 
initialisiert werden. Dieses Programm dürfte vor allem Pro- 

grammierer beeindrucken, die bereits Datenverschiebungen in 
einem 8-Bit-Mikroprozessor programmiert haben, denn das 
Programm besteht nur aus zwei Befehlen, besetzt lediglich drei 
Worte im Speicher und ist auch schnell. Der MOVE.L-Befehl 
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benötigt 22 Zyklen und der DBF-Befehl entweder 10 (falls ver- 
zweigt wird) oder 14 Zyklen (wenn nicht verzweigt wird). 
Daher werden bei der Verschiebung von N Doppelworten 
32N+4 Zyklen benötigt, für 100 Doppelworte also z.B. 3204 

Zyklen oder 400,5 us bei 8MHz. 
  

Programmbeispiel 3.2 

* DIESES PROGRAMM KOPIERT EINEN DATEN- 
* BLOCK VON EINEM TEIL DES SPEICHERS IN EINEN 
* ANDERN. DO ENTHAELT DIE ANZAHL DOPPEL- 
* WORTE, DIE VERSCHOBEN WERDEN SOLLEN, -1. 
* AO ENTHAELT DIE URSPRUNGSADRESSE, A1 DIE 
* ZIELADRESSE 

ORG $2000 
BLKMOV MOVE.L (A0)+,(Al)+ VERSCHIEBE EIN 

DOPPELWORT 
DBF DO,BLK MOVE DURCHLAUFE 

SCHLAUFE BIS 
DO + 1 BLOECKE 
VERSCHOBEN 

END SIND.       
Als einzige bedingte Befehle, die bis jetzt nicht diskutiert wur- 
den, bleiben noch die «Setze gemäss Bedingung»-(Scc-)Befehle. 
Diese Befehle prüfen die spezifizierte «cc»-Bedingung (irgend- 
eine aus Tabelle 3.15) und setzen im adressierten Byte alle Bit 
auf 1, falls die Bedingung erfüllt ist, beziehungsweise alle Bit auf 
0, wenn die Bedingung nicht erfüllt ist. Da diese Befehle den 

Bedingungscode nicht beeinflussen, werden sie zur Bildung von 
Indikatoren eingesetzt, die nicht unmittelbar geprüft werden 
müssen, sondern später abgefragt werden können. 

3.4.7.2. Such-Subroutine für ASCII-Zeichenfolgen 

Zur Vertiefung des bisher vermittelten Stoffes betrachten wir ein 
Programmbeispiel, das eine gute Auswahl der bis jetzt diskutier- 
ten Befehle aufweist. Das Beispiel 3.3 ist eine Subroutine, die 
das erste Erscheinen einer ASCII-Zeichenfolge (die sogenannte 
Testzeichenfolge oder «test string») in einer anderen ASCII- 
Zeichenfolge (die sogenannte Hauptzeichenfolge oder «main 
string») im Speicher priift. Das Beispiel hat nicht nur theoreti- 
schen Wert, sondern wird im Zusammenhang mit Textverarbei- 
tung häufig verwendet. 
Im Programm zeigt das Adressregister AO auf die Hauptzei- 
chenfolge (die Zeichenfolge, in der gesucht wird). In einer Text- 
verarbeitungsanwendung ist die Testzeichenfolge wahrschein- 
lich ein Wort, ein Satz, ein Name, eine Telefonnummer oder 
etwas Ahnliches, zu dem fiir eine Verwendung mit einer 
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* DIESE SUBROUTINE SUCHT EINE ASCII-FOLGE IM 
* SPEICHER («HAUPTFOLGE» GENANNT) NACH 
* DEM VORHANDENSEIN EINER ANDERN ASCI- 
* FOLGE («TESTFOLGE» GENANNT). DIE HAUPT- 
* FOLGE WIRD MIT EINEM *-ZEICHEN BEENDET. 
* VOR AUFRUF DER SUBROUTINE MUESSEN DIE 
* STARTADRESSEN VON HAUPTFOLGE UND TEST- 
* FOLGE IN DEN REGISTERN AO UND A1 SEIN, UND 
* DIE LAENGE DER TESTFOLGE IN BYTE MUSS IM 
* DATENREGISTER DO ENTHALTEN SEIN. 
* DAS ERGEBNIS DER SUCHE WIRD IN A2 
* GESCHRIEBEN. WENN DIE TESTFOLGE 
* GEFUNDEN WIRD, ENTHAELT A2 IHRE ADRESSE 
*IN DER HAUPTFOLGE. WENN DIE TESTFOLGE 
* NICHT GEFUNDEN WIRD, ENTHAELT A2 NULL. 
* A2 IST DAS EINZIGE BEEINFLUSSTE REGISTER. 

ORG $ 1000 

ASEARCHMOVEM _ D1/D3,-(SP) SICHERE DATEN- 
MOVEM.L A0/A3,-(SP) REGISTER UND 

ADRESSREGISTER 
IM STAPEL 

SUCHE ERSTES ZEICHEN DER TEST- 
FOLGE 

* 

MOVE.B (A1),D3 LIES ERSTES 
TESTZEICHEN IN 

D3 
FIRST SUBA.L A2,A2 _ A2=0 FUER 

BEGINN 
CHKEND CMPLB +#’*’,(AO) ENDE HAUPT- 

FOLGE 
BEQ.S RETRN JA. ZURUECK. 

CMP.B (A0)+,D3 HAUPTZEICHEN= 
TESTZEICHEN? 

BNE.S CHKEND NEIN. WEITER- 

SUCHEN 

ERSTES TESTZEICHEN GEFUNDEN, 
VERGLEICHE REST DER TESTFOLGE 

MOVE DO,D 1 BRINGE LAENGE 
DER TESTFOLGE 
IN D1. 

SUBQ +#2,D1 D1=LAENGE -2. 
MOVEA.L A1,A3 BRINGE ADR. 

"TESTFOLGE’ IN 
A3.     
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ADDQ.L #1,A3 A3 ZEIGT AUF 
ZWEITES TEST- 
ZEICHEN. 

MOVEA.L A0,A2 A2= LAUFENDE 
ADR. 'HAUPT- 
FOLGE! 

SUBQ.L  +#1,A2 
LOOP _CMPLB +#*(A0) = ENDEHAUPT- 

  
FOLGE? 

BEQS RETRN WENNJA, 
ZURUECK. 

CMPM.B (A3)+,(A0+) HAUPTZEICHEN = 
TESTZEICHEN? 

BNES FIRST NEIN. WEITER- 
FAHREN 

DBF D1,LOOP JA. VERGLEICH 
WEITERFAHREN. 

RETRN MOVEM.L (SP)+,A0/A3 REGISTER 
ZURUECK- 
SPEICHERN 

MOVEM (SP)+,D1/D3 
END     

anschliessenden Operation zugegriffen werden soll. Der einzige 
weitere Parameter, der spezifiziert werden muss, ist die Länge 
der Testzeichenfolge. Dieser Wert in Byte wird im tiefern Wort 
des Datenregisters DO eingeschrieben. 
Das Resultat der Suche wird in das Adressregister A2 geschrie- 

ben. Wenn die Testzeichenfolge in der Hauptzeichenfolge liegt, 
wird A2 die Adresse dieser Hauptzeichenfolge enthalten. Falls 
die Testzeichenfolge nicht in der Hauptzeichenfolge ist, wird A2 

null enthalten. 
Die ASEARCH-Subroutine im Beispiel 3.3 beginnt mit der Ver- 
schiebung von zwei Datenregistern und zwei Adressregistern 

zum Systemstapel, so dass sie nach der Rückkehr aus der Sub- 
routine unverändert sind. Der Rest der Subroutine besteht aus 
zwei Teilen. Im ersten Teil liest der MC 68000 das erste Zeichen 
der Testzeichenfolge in das Datenregister D3 und durchläuft 
dann eine Schlaufe (CHKEND), in der dieses Zeichen mit 
jedem Byte in der Hauptzeichenfolge verglichen wird. Das Zei- 
chen in D3 wird auch mit dem Endezeichen (hier *) verglichen, 
um festzustellen, dass beim Durchsuchen der gesamten Haupt- 
zeichenfolge kein gleicher Wert gefunden wurde. 
Wenn das erste Zeichen der Testzeichenfolge irgendwo in der 
Hauptzeichenfolge gefunden wird, springt der MC 68000 in den 

untern Teil der Subroutine, in der die restliche Testzeichenfolge 
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mit der Hauptfolge verglichen wird. Für diesen Vergleich wird 
der Bytezählerwert der Testzeichenfolge in D1 geschrieben, 
dann 2 davon subtrahiert, weil der DBF-Befehl auf -1 prüft und 
weil das zweite Byte der Testfolge bearbeitet wird. An diesem 
Punkt wird die möglicherweise zutreffende Hauptzeichenfolge- 
adresse in A2 festgehalten. Die LOOP-Sequenz dieses Teils der 
Subroutine vergleicht den Rest der Testfolge und verzweigt 
zurück zu FIRST, wenn noch nicht die ganze Testfolge lokali- 

siert ist. Die Subroutine endet mit zwei MOVEM-Befehlen, um 
die gesicherten Register aus dem Stapel zurückzuholen, und 
einem RTS-Befehl, mit dem die Rückkehradresse geholt wird 
und damit die Kontrolle an das aufrufende Programm zurück- 
gegeben wird. 

3.4.7.3 Unbedingte Sprünge und Verzweigungen, Rückkehr- 
befehle 

Wie beim früheren 8-Bit-Mikroprozessor MC 6800 hat Moto- 
rola auch den MC 68000 mit Sprung- und Subroutinenaufruf- 
befehlen je in Kurz- und Langformat ausgerüstet. Die Sprung- 
befehle werden «springe immer» (JMP) und «verzweige immer» 
(BRA) genannt. Die Subroutinenaufrufbefehle werden «springe 
zur Subroutine» (JSR) und «verzweige zur Subroutine» (BSR) 

genannt. 

Das Langformat dieser Befehle, JMP und JSR, kann verwendet 
werden, um die Programmsteuerung irgendwohin in den 16- 
MByte-Speicherbereich zu transferieren, wahrend das Kurzfor- 

mat, BRA und BRS, beschränkt ist auf Verschiebungen relativ 
zu den Verzweigbefehlen. Wie die bedingten Verzweigbefehle 

(Bcc), können BRA und BSR sowohl für 8-Bit- als auch für 16- 
Bit-Verschiebungen verwendet werden, wobei die 8-Bit-Ver- 
schiebung mit dem Anhang .S angewählt wird (BRA.S oder 

BSR.S). 

Alle vier Befehle veranlassen einen Transfer der Programm- 
steuerung durch das Laden einer neuen Adresse in den Pro- 
srammzähler. Die Subroutinenaufrufbefehle JSR und BSR si- 
chern selbstverständlich die Rückkehr des MC 68000 zu dem 

JSR und BSR folgenden Befehl, indem die Adresse dieses 
Befehls in den Stapel gerettet wird. 

Im Gegensatz zu allen andern Stapeloperationen bringen die 
JSR- und BSR-Befehle zuerst das höhere Wort der Adresse in 
den Stapel und veranlassen damit die Speicherung der Rück- 
kehradresse in der Ordnung tieferes Wort höheres Wort. 
Der Befehl «Rückkehr von Subroutine» (RTS) holt die Rück- 
kehradresse vom Stapel und lädt sie in den Programmzähler. 
Daher muss RTS der letzte ausgeführte Befehl jeder Subroutine 

sein. Zur Erläuterung von Subroutinenaufruf und -rückkehr be- 
trachten wir ein Programm mit den zwei Befehlen: 
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Programm- Befehl Kommentar 
zahler 

$A2000 JSR $4EFE Subroutinenaufruf 
$A2004 MOVE D0O,D1 nächster Befehl       

Bild 3.17 zeigt den Programmzähler und den Stapel zu drei Zeit- 
punkten: vor dem JSR-Befehl (3.17a), nach dem JSR-Befehl 
(3.17b) und nach der Ausführung des RTS-Befehls (3.17c). 

Speicher 

  

a PC |  $000A2000 | 

  

  
    
    

  
      
  

    
    

  
  

SP 

b PC| $O00004EFE | SP—»| $2004 
2 000A 

Bild 3.17 
c PC[ 800042008 | $ 2004 Subroutinenaufruf und -riickkehr 

£ 000A a) vor Ausfiihrung von JSR$4EFE 
SP— b)nach Ausführung von JSR$4EFE 

c)nach Ausführung von RTS     

In früheren Diskussionen der Datentransferbefehle sahen wir, 
dass die Befehlsform 
  

MOVEM (lisb,-(SP) 
      

zur Rettung ausgewählter Register im Stapel während der Sub- 
routinenausführung verwendet werden kann, und zwar um die- 
se unterbrechbar (reentrant) zu machen. In vielen Anwendun- 
gen müssen auch die Bedingungscode gesichert werden, so dass 
die Zusammenhänge des Programms während der Ausführung 
der Subroutine erhalten bleiben. Dies ist ebenfalls mit einem 
bereits besprochenen Befehl möglich. 
  

MOVE SR,-(SP) 
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Selbstverständlich müssen vor der Rückkehr aus der Subrou- 
tine die gesicherten Werte wieder aus dem Stapel geholt werden. 
Dies kann mit der Sequenz 

MOVEM (SP)+,.isb 
MOVE (SP)+,CCR 

gemacht werden. Dennoch verfügt der MC 68000 über eine spe- 
zielle Version des RTS-Befehls, «Rückkehr und Rückspeiche- 
rung der Bedingungscode» (RTR) genannt, der das Bedin- 
gungscoderegister wie die Rückkehradresse aus dem Stapel 
holt. Beispiel 3.4 zeigt, wie die Bedingungscode und gewisse 
Arbeitsregister während der Subroutine erhalten werden und 
wie mit RTR die Rückkehr veranlasst wird. 

  

      

  

  

Programmbeispiel 3.4 

JSR SUBR SUBROUTINE- 
AUFRUF 

MOVE DO,D1 NAECHSTER, 
DIREKTER 
BEFEHL 

SUBR MOVE SR,-(SP) SICHERE STATUS- 
REGISTER IM 

STAPEL. 
MOVEM.L D3-D5/A1,-(SP) SICHERE 

REGISTER IM 
STAPEL. 

WEITERE SUB- 
ROUTINEN- 
BEFEHLE 

*¥ 
&¢ 

&€ 
& 

MOVEM.L (SP)+,A1/D3-D5 REGISTER 
ZURUECK- 

SPEICHERN. 
RTR Ä RUECKKEHR 

UND RUECK- 

SPEICHERN 
BEDINGUNGS- 
CODE.     
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3.4.8 LINK- und UNLK-Befehle 

Die LINK- und UNLK-Befehle (Tabelle 3.16) werden zur 
Zuweisung und Freigabe von Datenbereichen im Systemstapel 
für verschachtelte Subroutinen, verbundene Listen und andere 
Prozeduren verwendet. Nach dem Aufruf (zum Beispiel einer 

verschachtelten Subroutine) setzt LINK einen Adressregister- 
zeiger zum Datenbereich und verschiebt den Stapelzeiger im 

Speicher nach unten, genau nach dem Datenbereich. Nach 
Ausführen der Subroutine kehrt UNLK diese Sequenz um und 
setzt dabei den Stapelzeiger und die Adressregister auf ihre Ori- 
ginalwerte, das heisst auf die Werte von LINK. 

  

  

  

Mnemonik Assemblersyntax Operanden- Erlaubte Adressierungsarten Bedingungs- 
grösse codes 

Quelle Ziel XNZVC 

LINK LINK An,#d unbestimmt VS 

UNLK UNLK An unbestimmt An 0020. 
  

Tabelle 3.16 LINK- und UNLK- Befehle 

Der LINK-Befehl hat zwei Operanden, ein Adressregister und 
einen 16Bit langen, vorzeichenbehafteten Verschiebungswert. 
Während die verschachtelte Subroutine ausgeführt wird, ent- 
hält das Adressregister die Startadresse des Datenbereichs für 
diese Subroutine im Stapel. 

Dieses Adressregister wird Rahmenzeiger (RZ oder FP, fra- 
me pointer) genannt. Der Verschiebungswert spezifiziert in Byte 
den Speicherbedarf im Stapel, der dem Datenbereich zugewie- 
sen wird. Wenn LINK ausgeführt wird, bringt der MC 68000 
den 32-Bit-Inhalt des FP in den Stapel, dekrementiert den Sta- 
pelzeiger (SZ oder SP) um vier, lädt diesen SP-Wert in den FP 

und addiert dann den Verschiebungswert zum SP. Erwähnens- 
wert ist, dass der Verschiebungswert zwei Charakteristiken 
aufweist: 

1.) Weil der Stapelzeigerwert immer gerade sein muss, muss der 

Verschiebungswert eine gerade Zahl sein, und 
2.) weil der Verschiebungswert zum Stapelzeiger addiert wird, 

sollte er für die meisten Anwendungen negativ sein. 
Nach der Ausführung von LINK enthält das Adressregister die 
Startadresse des Datenbereichs und der Stapelzeiger weist auf 
die dem Datenbereich folgende Speicherzeile. Ab diesem Punkt 
kann die Subroutine den Datenbereich sehr einfach benützen, 
durch indirekten Zugriff mit Adressregister und Verschiebungs- 
oder Indexmodus.. Bild 3.18a und 3.18b zeigt den Systemstapel 
nach dem Subroutinenaufruf und nach LINK. 
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6 ° tt} @ 
SZ — 
  

  

    

    

Platz 

für B 

gesicherte 
Register 

SZ —= | Lokale | Lokale 
Vartable d Variable 

für B \ for A 

RZ | AZ für A RZ —e | AZ für       
Rückkehr- 

SZ adresse     
      

z
u
n
e
h
m
e
n
d
e
 

A
d
r
e
s
s
e
n
 

      

      
RZ a | Yorheriger 

put                 
Bild 3.18 Zuweisung und Freigabe von Speicherplatz mit den Befehlen 
LINK und UNLK 

a) nach Subroutinenaufruf, b) nach LINK, c) vor UNLK,d) nach UNLK 
(SZ: Stapelzeiger, RZ: Rahmenzeiger) 

Bild 3.18c zeigt die Stapelzeigeradressierung einer geraden, tie- 
feren Speicherzeile. Diese Darstellung soll zeigen, dass der 

UNLK-Befehl eine normale Riickkehr einleitet (in Bild 3.18d 

gezeigt), ohne Rticksicht darauf, ob der Stapelzeiger inzwischen 
geandert haben konnte. Der UNLK-Befehl, der normalerweise 
unmittelbar vor der Rtickkehr aus der Subroutine ausgefiihrt 
wird, ladt einfach den Stapelzeiger aus dem Rahmenzeigerregi- 
ster und reinitialisiert dann den Rahmenzeiger, indem der Ori- 
ginalwert zuoberst aus dem Stapel geladen wird. Nach UNLK 
enthalten sowohl der Rahmenzeiger wie der Stapelzeiger die 
Werte, die sie vor LINK enthielten. 

3.4.9 Systemsteuerungsbefehle 

Tabelle 3.17 enthält diejenigen Befehle, die in den Herstellerun- 
terlagen als Systemsteuerungsbefehle (system control instruc- 
tions) bezeichnet werden. Es sind drei Typen zu unterscheiden: 
privilegierte Befehle, Trap-Erzeugungsbefehl und Statusregi- 
sterbefehle. Die Statusregisterbefehle wurden in diesem K apitel 
bereits behandelt, und ihre Beschreibung soll nicht wiederholt 
werden. 

3.4.9.1 Privilegierte Befehle 

Wie bekannt ist, konnen privilegierte Befehle nur ausgefiihrt 
werden, wenn sich der MC 68000 im Uberwachungsmodus 
befindet. Jeder Versuch, im Anwendermodus einen privilegier- 
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Operanden- Erlaubte Adressierungsarten 

  

  

  

Mnemonik Assemblersyntax Bedingungs- 

grosse codes 
Quelle Ziel XNZVC 

Privilegierte Befehle 

RESET RESET On 
RTE RTE (SP)+>SP;(SP)+>PC ek 
STOP STOP #d 16 +#d> SR, then STOP a 
ANDI ANDI #d,SR (1) 16 +d SR -**00 
EORI EORI +#d,SR (1) 16 ted SR -**Q0 
ORI ORI #d,SR (1) 16 +#d SR -**00 
MOVE MOVE <ea>,SR (2) 16 Data SR Re 

MOVE USP,An (2) 32 USP An ----=- 
MOVE An,USP (2) 32 An UP _  =----- 

Trap-Erzeugungsbefehle 

TRAP TRAP #<vector> PC>-(SP); nn 
SR > -(SP); 
#<vector> >PC 

TRAPV TRAPV IfV=1,thenTRAP <= — --~+-- 
CHK CHK <ea>,Dn 16 IFDn<OorDn> (ea), Daten - * UUU 

then TRAP 

Status-Registerbefehle 

ANDI ANDLB #d,SR (1) 8 +d CCR -**00 
EORI EORLB +#d,SR (1) 8 +d CCR -**00 
ORI ORI.B #d,SR (1) 8 4d CCR -**00 
MOVE MOVE <ea>,CCR (2) 16 Data CCR eK 

MOVE  SR,<ea> (2) 16 SR Daten —----- 

änderbar   
Bem.: (1) Beschrieben bei der Gruppe der logischen Befehle (Tabelle 3.10 und Text). 

(2) Beschrieben bei der Gruppe der Datentransferbefehle (Tabelle 3.7 und Text). 

Tabelle 3.17 Systemsteuerungsbefehle 

ten Befehl auszuftihren, wird einen Ausnahmezustand herbei- 
fiihren (in K apitel 7 behandelt). 
Der RESET-Befehl (Rticksetzen externer Bausteine) aktiviert 
den RESET-Anschluss des MC 68000 während 124 Taktzy- 
klen. Dieser Anschluss ist normalerweise mit allen externen 

Bausteinen im System verbunden und veranlasst das Rückset- 
zen dieser Bausteine, ohne den Prozessor zu beeinflussen. Der 
RESET-Befehl kann zum Wiederanlauf nach schwerwiegenden 
Systemfehlern verwendet werden. | 
Wie im Kapitel 7 gezeigt werden wird, veranlassen Unterbrüche 
und andere Ausnahmezustände, dass das 16-Bit-Statusregister 
und der 32-Bit-Programmzähler in den Überwachungsstapel 
geschrieben werden, damit der Programmstatus bei Erscheinen 
des Ausnahmefalles gesichert wird. 
Der RTE-Befehl (Riickkehr aus dem Ausnahmezustand, return 
from exception) bringt diese Werte aus dem Stapel zuriick, 

nachdem die Ausnahmeroutine ausgefiihrt wurde. RTE ent- 
spricht also für Ausnahmezustände den Befehlen RTS und 
RTR für Subroutinen. 
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Der «Stopp Programmausführung»-Befehl (STOP) lädt einen 
Wert in das Statusregister und veranlasst den MC 68000, das 
Holen und Ausführen von Befehlen zu stoppen. Die Ausfüh- 
rung wird nicht wiederaufgenommen, bis der MC 68000 einen 

Unterbruch hinreichend hoher Priorität empfängt oder extern 
zurückgesetzt wird. STOP wird im praktischen Gebrauch oft 
benützt, um die Unterbruchsmaske zu ändern, und kann als 
erweiterter «warte auf Unterbruch»-(WAI-)Befehl des 8-Bit- 
Mikroprozessors MC 6800 betrachtet werden. 

3.4.9.2 Trap-Erzeugungsbefehle 

Traps («Fallen») veranlassen wie Unterbrüche, dass der Pro- 
grammzähler mit einer bestimmten Adresse im Speicher gela- 
den wird, je nach «Vektornummer», die dem Prozessor geliefert 
wird. Bei Unterbrüchen werden alle Vektornummern durch 
externe Bausteine geliefert, bei Traps werden sie intern erzeugt. 

Wie später dargestellt wird (Kapitel 7), werden Traps automa- 
tisch durch gewisse Fehlerbedingungen erzeugt; sie lassen sich 
aber auch durch Software mit irgendeinem der drei hier 
beschriebenen Befehle erzeugen. 

Der TRAP-Befehl initialisiert eine unbedingte Trap-Operation 
und liefert eine Vektornummer (0 bis 15) im Operanden. TRAP 
kann also zur Erzeugung von irgendeinem von 16 Softwareun- 
terbruchen verwendet werden. 
Der Befehl «Trap bei Uberlauf» (TRAPV) priift das Uberlaufbit 

(V) im Bedingungscoderegister und führt bei gesetztem V zu 
einer spezifizierten Speicheradresse. Wenn V nicht gesetzt ist, 
wird der nächstfolgende Befehl ausgeführt. Auch der dritte 
Trap-Befehl, «Prüfe Register auf Grenzen» (CHK) operiert 
unbedingt. Dieser Befehl prüft den Inhalt eines Datenregisters 
und verzweigt zu einer spezifizierten Speicherzeile, wenn der 
Registerinhalt einen Wert aufweist, der kleiner als null oder 
grösser als ein adressierter «obere Grenze»-Operand ist. Diese 
Art der Prüfung hilft, Datenbereiche in den definierten Grenzen 

zu halten. 

3.5 Zusammenfassung 

In diesem Kapitel wurden die 14 Adressierungsarten und ihre 
Anwendung behandelt. Sie bieten alle Möglichkeiten früherer 8- 
Bit-Mikroprozessoren sowie eine ganze Anzahl wertvoller 
Ergänzungen. Die Fähigkeit, eine Adresse vor der eigentlichen 
Operation zu dekrementieren oder nachher zu inkrementieren, 
eröffnet dem Programmierer einen schnellen, wirkungsvollen 
Weg zur Behandlung von Zeichenfolgen und Tabellen. Weiter 
ermöglicht der Einbezug der Adressierungsarten mit Verschie- 

bungswerten und Indizes einfachen Zugriff zu Datenbereichen. 
Ebenfalls in diesem Kapitel wurden alle 56 mikrocodierten 
Befehle des MC 68000 behandelt. Wie bei den Adressierungsar- 
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ten dürften auch viele Befehle den Lesern mit Programmierer- 
fahrung auf dem MC 6800 oder andern 8-Bit-Mikroprozesso- 
ren bekannt vorkommen, wobei aber auch hier verbesserte Ver- 
sionen und eine einfachere Anwendung angeboten werden. 
Zum Beispiel wurden die Lade-, Speicher- und Registertransfer- 
befehle in einem einzigen, MOVE genannten Befehl kombiniert. 

Andere häufig verwendete Operationen, die normalerweise 
mehrere Zeilen Code benötigen, sind zu Einzelbefehlen kom- 
biniert worden. So finden wir im MC 68000 Befehle wie «prüfe, 
dekrementiere und verzweige» (DBcc), «inkrementiere mehr- 
fach» (ADDQ) und «dekrementiere mehrfach» (SUBQ). 
Im Hinblick auf die spezielle Unterstützung höherer Program- 
miersprachen stehen zum erstenmal Befehle wie «prüfe Register 

auf Grenzen» (CHK) und für die Zuweisung und Freigabe von 
Platz im Stapel für lokale Variable während Prozeduraufrufen 
(LINK und UNLK) zur Verfügung. Im weiteren erlaubt der 
enorme Adressbereich des MC 68000 (16 MByte) Multitasking 
und Multiprocessing, wobei ein «Speicherzuweisungsbefehl» 

(TAS) eingesetzt werden kann. 

Mit dieser Übersicht über die Programmiermöglichkeiten des 
MC 68000 soll nun in den nächsten zwei Kapiteln deren Einsatz 
an praktischen Anwendungen im Zusammenhang mit mathe- 
matischen Operationen und Verarbeitung von Listen und Kon- 
versionstabellen dargestellt werden. 
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4. Mathematische Routinen 

Leser, die ihre ersten Erfahrungen in der Mikrocomputerpro- 
grammierung mit 4-Bit- oder 8-Bit-Mikroprozessoren gemacht 
haben, werden von den arithmetischen Möglichkeiten des 
MC 68000 beeindruckt sein. Zum Beispiel bringt die Tatsache, 
dass der MC 68000 über Multiplizier- und Dividierbefehle so- 
wohl mit wie ohne Vorzeichen verfügt, einen Gewinn von Stun- 
den (wenn nicht Tagen oder Wochen) bei der Entwicklung von 
Multiplikations- oder Divisionssubroutinen. 

In diesem Kapitel werden wir auf der Basis der angebotenen 
Multiplikations- und Divisionsmöglichkeiten einige mathemati- 
sche Aufgaben behandeln. Wir beginnen mit Multiplikations- 
operationen (32 Bitx 32 Bit) mit und ohne Vorzeichen. Dann 
werden Überlaufsituationen bei Divisionen behandelt, und zum 
Schluss wird ein Programm entwickelt, mit dem die Quadrat- 
wurzel einer 32-Bit-Zahl ermittelt werden kann. 

4.1 Multiplikation 

Im Kapitel 3 lernten wir die Multiplikationsbefehle MULS 
«Multiplikation mit Vorzeichen» und MULU «Multiplikation 
ohne Vorzeichen» kennen und nahmen zur Kenntnis, dass sie 
nur mit 16-Bit-Werten (Wortlänge) operieren können. Wie wer- 
den nun Werte von 32 Bit oder länger multipliziert? Wie jeder- 
mann weiss, der ein Multiplikationsprogramm für einen 8-Bit- 

Mikroprozessor geschrieben hat, genügt die Existenz eines 
Multiplikationsbefehls irgendeiner Länge, um ihn dann für 

bestimmte Anforderungen zu erweitern. | 

4.1.1 32 Bit x 32-Bit-Multiplikation 

ohne Vorzeichen 

Zahlen mit Mehrfachgenauigkeit ohne Vorzeichen können 
multipliziert werden unter Verwendung des MULU-Befehls 
mittels Erzeugen einer Serie von 32-Bit-Zwischenprodukten, die 
dann zum endgültigen Produkt summiert werden. Die gleiche 
Methode wird verwendet zum Multiplizieren von Dezimalzah- 
len von Hand, mit Papier und Bleistift. Wie der Leser sich viel- 
leicht erinnern wird (im Zeitalter der Taschenrechner vielleicht 
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nicht selbstverständlich!), werden die Faktoren untereinander- 
oder nebeneinander geschrieben und die Multiplikation in einer 
Serie von einzelnen Multiplikationen für jede Stelle im Multipli- 
kator durchgeführt. Jedes Zwischenprodukt wird direkt unter 
die entsprechende Stelle im Multiplikator geschrieben. Wenn 
alle Zwischenprodukte berechnet sind, werden sie addiert zum 
Resultat. Zum Beispiel wird die Multiplikation von 124 x 103 in 
der folgenden Art geschrieben: 

  

Die Zwischenprodukte werden versetzt, um das dezimale Ge- 

wicht der einzelnen Multiplikatorstellen berechnen zu können. 
In diesem Beispiel ist die 3 die Einerstelle, die O die Zehnerstelle 
und die 1 die Hunderterstelle. Dadurch kann das Beispiel in der 
folgenden Art geschrieben werden: 

103 x 124=(3 x 124) + (0x 124) + (100 x 124) 
oder 

103 x 124=(3 x 10°x 124) + (0x 10' x 124) + (1 x 10? x 124) 

In diesem Abschnitt werden wir eine Subroutine entwickeln,um 
zwei 32-Bit-Zahlen ohne Vorzeichen zu multiplizieren, was ein 

64-Bit-Produkt ohne Vorzeichen ergibt. Ohne einen Multipli- 
zierbefehl würde das bedeuten, dass 32 Multiplikationsoperatio- 
nen, eine für jedes Bit im Multiplikator, durchgeführt werden 
müssten. Glücklicherweise verfügt der MC 68000 über einen 
Befehl, der 16-Bit-Zahlen ohne Vorzeichen direkt multipliziert. 
Dieser Befehl MULU erlaubt uns, die 32-Bit-Faktoren als zwei- 
stellige Zahlen zu betrachten, jede Stelle mit 16 Bit. Dadurch 
sind nur vier Multiplikationen erforderlich, um das 64-Bit-Pro- 
dukt zu erzeugen. Bild 4.1 zeigt die symbolische Darstellung der 
Faktoren und erläutert, wie die Zwischenprodukte angeordnet 
werden müssen, um das 64-Bit-Endprodukt zu berechnen. Die 
eingekreisten Zahlen in Bild 4.1 zeigen die vier 16-Bit-Additio- 
nen, die zur Berechnung des Produkts durchzuführen sind. 

Unter Verwendung von Bild 4.1 ist es möglich, eine Subroutine 
zu entwickeln, die zwei 32-Bit-Zahlen ohne Vorzeichen multipli- 
zieren kann. Programmbeispiel 4.1 zeigt eine solche Subroutine, 

MULU32 genannt, in der die Faktoren in den Datenregistern 
D2 und DI eingeschrieben sind. Das 64-Bit-Produkt wird in die 
gleichen Register zurückgeschrieben, D1 (die 32 tieferen Bit) 
und D2 (die 32 höheren Bit). 

Die durch die MULU32-Subroutine durchgeführten Operatio- 
nen werden genau in der Reihenfolge von Bild 4.1 ausgeführt, 
wie aus den Befehlen und den entsprechenden Kommentaren 
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Erzeugung eines 64-Bit-Produktes 

mittels vier 16 Bit x 16-Bit-Multi- 

plikationen. 

Mathematische Routinen 
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ersichtlich ist. Die MULU32-Subroutine beginnt mit dem 
Retten des Inhalts der drei allgemein verwendbaren Register 
D3, D4 und D5 im Stapel und der Erstellung einer Kopie des 
Multiplikators in D3 und D4. Der nächste Befehl vertauscht die 
16-Bit-Hälften von D4. Dieses Vertauschen ist eine notwendige 
Vorbereitung zur Erzeugung des zweiten und vierten Zwischen- 
produkts (siehe Bild 4.1), die das höhere Wort des ersten Multi- 
plikanden beinhalten. Dieses Vertauschen ist notwendig, weil 
der MULU-Befehl nur die tiefern Worte von zwei Datenregi- 
stern miteinander multiplizieren kann. Dieser Swap-Befehl ist 
der erste einer ganzen Anzahl in der Subroutine. Ein Swap-D5- 
Befehl wird zwei Instruktionen später verwendet, um das dritte 
und vierte Teilprodukt zu erzeugen. 

Jetzt kann, mit all den Multiplikationsoperanden am richtigen 
Ort, die eigentliche Multiplikation ausgeführt werden. Die Sub- 
routine hat vier aufeinanderfolgende MULU-Befehle, welche die 
Zwischenprodukte eins, zwei, drei und vier in die Datenregister 
D1, D2, D3 und D4 bringen. Die verbleibende Aufgabe ist, die 
Summe dieser Zwischenprodukte zu bilden, unter Berücksichti- 
gung ihrer Stellenwerte, um das 64-Bit-Produkt zu erhalten. 
Die eingekreisten Zahlen in Bild 4.1 bestimmen die vier Paare 
von 16-Bit-Wörtern, die in der entsprechenden Reihenfolge 
addiert werden müssen. Im Programmbeispiel 4.1 folgt den vier 
aufeinanderfolgenden MULU-Befehlen ein SWAP-Befehl, der 
die Wortinhalte von D1 umtauscht (Zwischenprodukt #1). Die- 
ser Tausch ist eine notwendige Vorbereitung für die erste Addi- 
tionsoperation, weil der Additionsbefehl wie der MULU-Befehl 

97



Mathematische Routinen   

Programmbeispiel 4.1: Subroutine für die Multiplikation von zwei 32-Bit-Werten ohne Vorzeichen. 

  

  

  

nur die tieferen Werte von zwei Datenregistern berücksichtigt. 
Nach Durchführen der ersten Addition wird der Übertrag dieser 
Operation (in X) nach D4 gebracht (Zwischenprodukt #4) 

unter Benützung des Registers D5 (enthält Null) als Hilfs- 
operand für die «addiere-erweitert»-Operation. In der zweiten 
Additionsoperation wird das tiefere Wort von D3 (Zwischen- 
produkt #3) zum tieferen Wort von D1 addiert, welches das 
Resultat der ersten Additionsoperation enthält, und ein allfäl- 
liger Übertrag wird wiederum in D4 eingeschrieben. Zu diesem 
Zeitpunkt sind die tieferen 32 Bit des Endprodukts im Daten- 
register 1 jedoch nicht in der richtigen Ordnung. Ein SWAP- 
D1-Befehl bereinigt dieses Problem, und der 68 000 ist bereit zur 

Akkumulierung der 32 höheren Bit des Produkts. Das bedingt 
die Addition des höheren Wortinhaltes von Datenregister 2 und 
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3 (Teilprodukte #2 und #3) zum tieferen Wortinhalt des Daten- 
registers D4 (Teilprodukt #4). Die tieferen Wörter sowohl von 
D2 wie auch D3 enthalten unnötige Daten von den zwei ersten 
Additionen, so dass beide Wörter gelöscht werden und in die 
höhere Wortposition dieser Register getauscht werden. Zwei 
«addiere-lang»-Befehle setzen die tieferwertigen 32 Bit des End- 
produkts in Datenregister D2. Nach der Rückspeicherung des 

Inhalts der Datenregister D3, D4 und D5 vom Stapel endet die 
‚Subroutine. Die MULU32-Subroutine benötigt zur Ausführung 
ein Maximum von 460 Zyklen oder 57,5 us. Weil ein 32-Bit- 

Operand Zahlen ohne Vorzeichen bis 4,294 x 10° darstellen 
kann, verlangen viele Anwendungen keine Multiplikations- 

subroutinen mit grösseren Zahlen (diese würde wahrscheinlich 
Fliesskommaarithmetik verlangen). Es ist aber möglich, Mul- 
tiplikationssubroutinen zu schreiben für 64-Bit- oder längere 
Zahlen mit dem in Beispiel 4.1 verwendeten Prinzip. Aller- 
dings wird man bald über zuwenig Arbeitsregister verfügen 
und benötigt dann Speicherplatz für Zwischenspeicherung. 

4.1.2 32 Bit x 32-Bit-Multiplikation 
mit Vorzeichen 

Obschon das Multiplikationsbeispiel 4.1 als Subroutine zur 
Multiplikation von zwei nicht vorzeichenbehafteten Zahlen 
geschrieben wurde, wird es auch zwei Zahlen mit Vorzeichen 
korrekt multiplizieren, solange beide positiv sind. Das heisst, 
das Beispiel 4.1 ist eine 32 Bit x 32-Bit-Multipliziersubroutine 

fur nicht negative Zahlen. Diese Subroutine kann indessen nicht 
zwei negative Zahlen multiplizieren, weil solche Zahlen nor- 
malerweise in Zweierkomplementform vorhanden sind. Wie 
aber können zwei Zahlen mit Vorzeichen multipliziert werden, 
wenn eine oder beide negativ sind? Eine Lösung wäre, den oder 
die negativen Operanden zu negieren, die Multiplikation durch- 
zuführen, dann das Produkt zu berichtigen, sofern erforderlich. 
Wenn nur einer der beiden Operanden negativ ist, muss das 
Resultat in Zweierkomplement gesetzt werden. Wenn beide 
Operanden negativ sind, ist das (positive) Produkt korrekt. Die- 

ses einfache Vorgehen ist im Programmbeispiel 4.2 angewendet, 
in dem die tieferen Bit des Datenregisters D6 zur Aufnahme 
eines Negativindikators dienen. 

Dieser Indikator, mit Null initialisiert, wird auf alles Eins 
gesetzt, wenn nur einer der beiden Operanden negativ ist. Er 
bleibt aber Null, wenn beide Operanden entweder positiv oder 
negativ sind. Dann, nach Aufruf der MULU32-Subroutine zur 
Durchführung der 32 Bit x 32-Bit-Multiplikation, wird der 

Negativindikator verwendet, um festzustellen, ob das Produkt 
korrekt ist (Indikator Null) oder negiert werden muss (Indika- 
tor nicht Null). Die Subroutine MULS32 im Programmbeispiel 
4.2 wird eine Ausführungszeit benötigen, die abhängig davon 
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Programmbeispiel 4.2: Eine 32 Bit x 32-Bit-Multiplikationssubroutine fur vorzeichenbehaftete Zahlen. 

  
  

ist, ob die Operanden beide positiv oder beide negativ sind oder 
beide entgegengesetzte Vorzeichen haben. Die Ausfiihrungszeit 
‚von MULS32 (eingeschlossen die aufgerufene Subroutine 

  

  

MULU32) ist wie folgt: 

Operanden Maximale Zeit Maximale Zeit 

(in Zyklen) (Mikrosekunden) 

Beide positiv 561 70,125 \ 
Vorzeichen verschieden 579 72,375 
Beide negativ 577 72,125 
  

Eine schnellere Lösung, die nicht die Änderung eines Operan- 
den verlangt, kann unter Beachtung des nachfolgenden Algo- 
rithmus ausgeführt werden: 
  

Wenn einer oder beide Operanden negativ sind, führe die 
Multiplikation durch und modifiziere das Produkt in einer 
von zwei Arten: 

1. Wenn nur ein Operand negativ ist, subtrahiere den 
anderen Operanden (das heisst den positiven Operan- 
den) vom höherwertigen Teil des Produkts. 

2. Wenn beide Operanden negativ sind, subtrahiere beide 
Operanden vom höherwertigen Teil des Produkts.       
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Sind Sie skeptisch? Zur Priifung dieses Algorithmus wollen wir 
das Beispiel 103 x 124 noch einmal durchftihren, aber mit 
einem negativen Multiplikator (-103). Die Papier- und Bleistift- 
methode sieht wie folgt aus: 

01111100  Multiplikand = +124 
x 10011001 Multiplikator = -103 

01111100 
0.0000 000 

00.0000 00 
01111100 

01111100 
0.0000 000 

00000000 
01111100 

0100 10100001 1100 Produkt = +18972 
  

Wenn wir das Resultat mit dem korrekten Wert (-12 772) ver- 
gleichen, sehen wir, dass unser Resultat Unsinn ist. Es ist 
nicht nur zu gross, es hat auch das falsche Vorzeichen. Nun 
wollen wir das Verfahren mit dem erwähnten Algorithmus 

betrachten. Der Algorithmus verlangt die Subtraktion des 
positiven Operanden (+124, ein einfaches Byte) vom höher- 
wertigen Byte des Produkts. In Binärform ist es einfacher für 
uns, zu addieren statt zu subtrahieren, so wird das Zweierkom- 
plement des positiven Operanden zum höherwertigen Byte des 
Produkts addiert: 

  

0100 1010 0001 1100 Originalprodukt = + 18972 
+ 10000100 Zweierkomplement 

Multiplikand = -124 

1100 1110 0001 1100 Neues Produkt = -12 772 

Jetzt ist das Produkt korrekt. Schritt zwei des Algorithmus 
kann durch Anwendung der Papier- und Bleistiftmethode 
auf das Produkt (-103) x (-124) verifiziert werden. 

Bild 4.2 zeigt die zusätzlichen Schritte, die nötig sind für die 
Multiplikation von Zahlen beliebiger Länge mit Vorzeichen. 

Wie man in Bild 4.2 sehen kann, erlaubt dieser Algorithmus das 
Verwenden unserer früher beschriebenen Multiplikationssub- 
routine für Zahlen ohne Vorzeichen (Programmbeispiel 4.1) zur 
Durchführung der Initialisierungsmultiplikation. Es besteht 
jedoch die zusätzliche Anforderung, dass der Originalmultipli- 
kator und der Originalmultiplikand geschützt werden für die 
Produktkorrekturbefehle. Programmbeispiel 4.3 zeigt die neue 

effizientere 32 Bit x 32-Bit-Multiplikationssubroutine für vor- 
zeichenbehaftete Zahlen. 
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Programmbeispiel 4.3: 
Eine verbesserte 32 Bit x 32-Bit-Multiplikationssubroutine für Zahlen mit Vorzeichen. 
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Bild 4.2 

Ein Multiplikationsalgorithmus für 

vorzeichenbehaftete Zahlen. 

  

(start +) 

Ausführung 
Multiplikation 

| ohne Vorzeichen 

  

    

  

    

Nein 
       Multiplikator 

negativ 2 

  

subtrahiere 
Multiplikand vom 

| höheren Produkt 
      

— 

Mul we Nein 
negativ? 

  

    
  
  

subtrahiere 
Multiplikator vom 
höheren Produkt 
      ED 

(ints)     

Diese Subroutine MLTS32 ist nichts anderes als die MULU32- 

Subroutine von Beispiel 4.1 mit einigen zusätzlichen Befehlen 
am Anfang zum Schützen des Multiplikators und des Multipli- 
kanden (in D7 und D6) sowie einigen zusätzlichen Befehlen am 
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Schluss zur Prüfung der Operandenvorzeichen und Korrektur 
des Produkts, sofern nötig. 

Die Ausführungszeiten der MLTS32-Subroutine sind wie folgt: 

  

Operanden Maximale Zeit Maximale Zeit 

  

  

(in Zyklen) (in Mikrosekunden) 

Beide positiv 532 66,5 

Vorzeichen verschieden 536 67,0 
Beide negativ 540 | 67,5 

4.2 Division 

4.2.1 Division ohne Uberlauf 

Es gibt viele Anwendungen fiir die Divisionen, wobei eine der 
häufigsten die der Mittelwertbildung einer Anzahl Zahlen ist, 
zum Beispiel die Resultate einer Serie von Laborversuchen. Pro- 

grammbeispiel 4.4 zeigt eine typische Routine für eine solche 
Aufgabe. Dieses Programm, genannt AVERAGE, mittelt eine 
spezifizierte Anzahl von Werten ohne Vorzeichen, auf die AO 
zeigt, wobei die Anzahl der Werte im tieferen Wort von DO ent- 
halten ist. Der Mittelwert wird zurückgeschrieben als ganze 
Zahl in das tiefere Wort von D1 und ein Rest in das höhere 

Wort Di. Das AVERAGE-Programm verwendet zwei 

  

Programmbeispiel 4.4: Routine für Mittelwertbildung. 
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Scratch-Register D2 (zur Aufnahme der Anzahl Werte) und D3 
(zur Aufnahme der Werte, die aus dem Speicher gelesen wer- 
den), beeinflusst aber keine anderen Register als D1. 

Es ist klar, dass die Dividieroperation in Beispiel 4.4 abbricht, 
wenn DO beim Eintritt 0 enthalt. Aber kann sie auch abge- 
brochen werden durch eine Uberlaufbedingung? Nein, Uberlauf 
kann es hier nicht geben, weil das Verhaltnis des Dividenden 

(Wertetotal) zum Divisor (Werteanzahl) nie den Wert von 
65 536 überschreiten kann. Hingegen könnte es Überlauf geben, 
wenn Langwortwerte verwendet werden zur Mittelwertbildung. 
Für diesen Fall ist es günstig, eine Prozedur zu kennen, mit der 
ein gültiger Quotient erhalten wird, unabhängig davon, ob ein 
Überlauf entsteht oder nicht. 

4.2.2 Division mit Überlauf 

Wie wir von Kapitel 3 wissen, setzt der MC 68000 das Über- 
laufbit (V) und beendet die Operation, wenn ein Überlauf wäh- 
rend der Ausführung der Division mit Vorzeichen (DIVS) oder 
ohne Vorzeichen (DIVU) entsteht, ohne Beeinflussung von 
Divisor oder Dividend. Überlauf entsteht dann, wenn der Divi- 
dend so viel grösser ist als der Divisor, dass der Quotient nicht 
ineinem 16-Bit-Wort untergebracht werden kann. 
In einigen Anwendungen soll Überlauf zu Fehlerbedingungen 
führen. In anderen Anwendungen kann ein Überlauf akzeptiert 
werden, bedeutet aber, dass ein Quotient mit mehr als 16 Bit 
resultiert. Weil die Division abgebrochen wird, wenn der 

MC 68000 eine Überlaufbedingung feststellt, muss eine neue 
Lösung gesucht werden, falls ein solcher Quotient entsteht. Der 
vielleicht einfachste Weg zur Behandlung dieses Quotienten ist 
das Teilen des 32-Bit-Dividenden: in zwei 16-Bit-Zahlen, um 
dann zwei 16 Bit: 16-Bit-Divisionsoperationen durchzuführen 
(die keinen Überlauf produzieren). Wenn der Divisor eine 
16-Bit-Zahl ist (X) und der Dividend eine 32-Bit-Zahl (Y,, Y), 
kann die Divisionsoperation betrachtet werden als 

x[Y,Y, 

oder, sauberer dargestellt, als 

X [| Y,-2'°+Y, 

Die Division erzeugt zwei 16-Bit-Quotientenstellen (Q, und Q, ) 
und zwei 16-Bit-Reststellen (R, und R,) wie folgt: 

Q:° 2" 

X|¥,-2% undR, - 2" 

Qo 
X | (R, +2) + Y¥, und Ry 
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Wie man sehen kann, ist das Resultat dieser zwei Operationen 
ein 32-Bit-Quotient Q,, Q, und ein 32-Bit-Rest R, (der 
Zwischenrest R,, wenn überhaupt erzeugt, wird immer null 
während der zweiten Divisionsoperation). Wenn kein Überlauf 
entsteht, wird Q, Null sein und das Resultat wird zurückge- 
schrieben als Q,=0OundR,=0. 
Ausgehend von den obigen Betrachtungen ist es möglich, eine 
Divisionssubroutine zu entwickeln, die immer einen gültigen 

Quotienten und einen gültigen Rest ergibt, unabhängig davon, 
ob Überlauf entsteht oder nicht. Das Programmbeispiel 4.5 
zeigt die Subroutine DIVUO, welche diese Funktion ausführt. 

  

Programmbeispiel 4.5: Eine Divisionssubroutine mit Behandlung von Überlauf. 
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Bild 4.3 

Divisionsresultate 

a) mit Überlauf 
b) ohne Überlauf 

Mathematische Routinen 

Sie dividiert einen 32-Bit-Dividenden in D1 durch einen 16-Bit- 
Divisor in DO und priift dann auf Uberlauf. Falls ein Uberlauf 
entsteht, verwendet die Subroutine die Datenregister D2 und 
D3, um die Korrektur durchzuftihren. Nach diesen Divisionen 
(sofern sie notwendig sind) führt der MC 68000 die Befehle bei 
FORMAT aus, wo der 32-Bit-Quotient in D1 und der 16-Bit- 
Rest in das tiefere Wort von DO geladen wird. Wenn ein Uber- 
lauf entsteht, wird D1 Q,, Q, enthalten und DO R, wie in Bild 

4.3 a dargestellt. Wenn kein Überlauf entsteht, enthält das tiefe- 
re Wort von D1 Q und von DO R und das höhere Wort beider 
Register enthält Null wie in Bild 4.3 b dargestellt. 

a) | b) 

LG | % | 27 [oo] a |] 
  

  

  
  

[oso | ko | 20 [oo] r |] 

4.3 Quadratwurzel 

Im letzten Teil dieses Kapitels wird ein Programm entwickelt, 
mit dem die Quadratwurzel einer 32 Bit langen, ganzen Zahl 
berechnet werden kann. 

Die Berechnung wird mit Hilfe der klassischen Methode der 
sukzessiven Approximation durchgeführt. Zur Erläuterung 
dieser Methode nehmen wir an, dass die Zahl, deren Wurzel zu 
bestimmen ist, den Wert N haben soll. Die erste Approximation 
für die Quadratwurzel ist aus dem Wert (N/200) + 2 abgeleitet. 
N wird durch diesen Wert dividiert. Das Resultat wird zur 
ersten Approximation addiert und die Summe durch zwei divi- 
diert. Dieses Resultat ist unsere nächste Approximation. 
Zum Beispiel für die Quadratwurzel von 10000: 

N = 10000; erste Approximation ist (10000/200) + 2 oder 52 
10000/ 52=192, (192+52)/2=122 
10000/122= 81, (122 +81)/2=101 
10000/101= 99, (101 + 99)/2 = 100 
10000/100 = 100 

Wir sehen, dass die Quadratwurzel von 10000 gleich 100 ist. 
Wir wissen natürlich, dass 100 die Quadratwurzel von 10000 
ist, weil ja 100 mit sich selbst multipliziert den Originalwert er- 
gibt. Dieser spezielle Wert 10000 hat eine ganzzahlige Quadrat- 
wurzel. Aber wir können nicht annehmen, dass die Lösung im 

allgemeinen eine ganzzahlige Quadratwurzel ist. Die Quadrat- 
wurzel für 9999 zum Beispiel ist keine ganze Zahl. Das bedeu- 
tet, dass bei der Berechnung der Quadratwurzel von 9999 der 
MC68000 die Berechnung laufend fortsetzt. Der Prozessor 
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Programmbeispiel 4.6: Subroutine für die Berechnung der Quadratwurzel aus einer 32-Bit-Zahl mittels suk- 

zessiver Approximation. 

  
  

wird fortfahren, die Approximationsbefehle zu durchlaufen, 
weil das Quadrat der ganzzahligen Approximation nie gleich 
9999 sein wird. Daher muss ein Weg gefunden werden, um den 
Prozessor zu stoppen, wenn er den bestmöglichen Wert für die 
Quadratwurzel gefunden hat. Es gibt verschiedene Methoden 
zur Beendigung der Approximationsprozeduren. Die gewählte 
Methode ist abhängig von der gewünschten Genauigkeit und 
der zur Verfügung stehenden Ausführungszeit. Eine Lösung 

besteht darin, die Schlaufe zehnmal zu durchlaufen und anzu- 
nehmen, dass die Antwort genau genug ist. Diese Methode 
genügt für viele Anwendungen, ist ihrer Natur nach jedoch sehr 
willkürlich. Eine andere, genauere Lösung ist diejenige, den 
MC 68000 die Schlaufe solange durchlaufen zu lassen, bis zwei 
aufeinanderfolgende Approximationen identisch sind oder sich 

nur durch den Wert Eins unterscheiden. Diese Methode wird in. 
unserem Beispiel verwendet. Programmbeispiel 4.6 zeigt eine 
Subroutine (SQRT32), welche die ganzzahlige Quadratwurzel 
einer 32-Bit-Zahl durch sukzessive Approximation berechnet. 
Bei dieser Subroutine enthält das Datenregister DO die 32-Bit- 
Zahl; die 16-Bit-Quadratwurzel wird in Datenregister D1 
geschrieben. Die Subroutine beginnt mit der Approximation 
unter Verwendung der Beziehung (N/200) + 2. Der Rest der 
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Subroutine ist eine Schlaufe, beginnend mit NXTAPP, in der 
der MC 68 000 eine neue Approximation berechnet durch Divi- 
sion der ganzzahligen 32-Bit-Zahl durch die vorhergehende 
Approximation und der Bildung des Mittelwertes beider Appro- 
ximationen. Vor der Mittelwertbildung prüft der MC 68000 die 
Endbedingung dadurch, ob die neue Approximation gleich, um 
Eins grösser oder um Eins kleiner als die vorhergehende Appro- 
ximation ist. Wenn eine dieser drei Bedingungen erfüllt ist, ver- 
lässt der MC 68000 die Subroutine, wobei die 16-Bit-Quadrat- 
wurzel sich im Datenregister D1 befindet. 
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5. Listen und Konversionstabellen 

5.1 Organisation von Daten 

Es gibt verschiedene Methoden, wie Speicherinformationen für 
die Bearbeitung organisiert werden können. Diese Organisa- 
tionstechniken sind für jede Anwendung verschieden. Sie wer- 
den unter die Begriffe Listen, Arrays, Strings, Konversionsta- 
bellen und Vektoren eingeordnet. Wir konzentrieren uns auf 
zwei Organisationstypen, die Listen und Konversionstabellen. 
Listen sind wahrscheinlich das meistverwendete Datenspeicher- 
format. Sie bestehen aus Dateneinheiten (ein oder mehrere 
Byte), sprich Elemente, die hintereinander abgespeichert sind. 
Die Sequenzen der Elemente können direkt aufeinanderfolgen, 
indem jedes Element ein oder mehrere benachbarte Speicher- 

plätze besetzt. Sie können auch verkettet sein, indem jedem 
Datenelement ein Zeiger folgt, der auf das nächste Element 
zeigt. 
Im weiteren können die Datenelemente zufallsweise, in aufstei- 
gender oder in absteigender Ordnung, gespeichert sein. 
Die Konversionstabellen sind Datenstrukturen, die eine spezifi- 
sche Eigenschaft haben. Damit will der Anwender Information 

(weniger Daten oder Adressen) erhalten, die eine wohldefinierte 
Beziehung zu einem bekannten Wort hat. Das Telefonbuch ist 
dafür ein gutes Beispiel. Ist der Name bekannt, so kann die ent- 
sprechende Telefonnummer herausgelesen werden. 

5.2 UngeordneteListen 

In unserer geordneten Gesellschaft, wo die Telefonbücher al- 
phabetisch geordnet, die Hausnummern systematisch zu- oder 
abnehmen, kommt es uns merkwürdig an, von etwas Ungeord- 
netem zu sprechen. 
Ungeordnete Listen sind auch das «Gift» für den Programmie- 
rer, weil sie sehr schwierig anzuwenden sind. Um einen 
bestimmten Wert in einer solchen Liste zu finden, muss jedes- 
mal vom Anfang an mit der Suche danach begonnen werden. Es 
muss jedes Element gelesen werden, bis das richtige gefunden 
oder das Listenende erreicht worden ist. Ob man will oder nicht, 
kommen ungeordnete Listen in vielen Anwendungen des 
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Lebens vor. Sie bieten eine grundsätzliche Möglichkeit, zufälli- 
ge, chronologisch abhängige oder dynamisch sich verändernde 
Daten abzuspeichern. 

5.2.1 Zufügen von Daten zu einer ungeordneten 
Liste 

Die Subroutine ADD2UL (Programmbeispiel 5.1) zeigt, wie 
der Anwender eine ungeordnete Liste kreieren oder ein neues 
Element dazugeben könnte. In diesem Beispiel beinhaltet diese 
Liste wortlange Werte (mit oder ohne Vorzeichen). 

  

Programmbeispiel 5.1: 
Zufugen eines Elementes zu einer ungeordneten Liste 

* Diese Subroutine fiigt das untere Wort des Datenregisters DO einer ungeordneten 
* Liste bei, wenn es nicht schon in der Liste ist. 
* Die Startadresse der Liste steht im Adressregister AO. 
* Die Lange der Liste, in Worten, ist im ersten Wort der Liste untergebracht. 

ORG $2000 
ADD2UL MOVEM.L D1/A1,-(SP) Rette Arbeitsregister. 

MOVEA.L AO,A1 Kopiere Startadresse in Al 
MOVE (Al)+,D1 und den Wortzähler 
SUBQ #1,D1 minus lin D1. 

NXTEL CMP (A1)+,D0 Element schon vorhanden? 
BEQ.S ITSIN Ja, es ist in der Liste. 
DBI D1,NXTEL Nein! Schaue weiter. 
MOVE DO, (A1) Füge Element am Ende an, 
ADDQ #1,(A0) inkrementiere d. Wortzähler. 

ITSIN MOVEM.L (SP)+,D1/Al Hole Arbeitsregister zurück. 
RTS 
END 
  

Diese Subroutine sucht einfach die Liste Element um Element 
ab, um das Vorkommen des Wertes, der beigefügt werden soll, 
zu überprüfen. Wenn der Wert schon in der Liste ist, kehrt der 
68000 von der Subroutine zurück, weil der Anwender keinen 
Wert duplizieren will. Ist der Wert noch nicht vorhanden, so 
wird er am Ende der Liste angehängt. Die Listenstartadresse ist 
im Adressregister AO. Das erste Listenelement (ein Wort) zeigt 
die Listenlange in Worten an. So kann diese Liste maximal 
64 K Worte lang sein. 
Es gibt nichts Besonderes in dieser Subroutine. Sie kopiert die 
Listenstartadresse von AO in Al. Danach liest sie den Wortzäh- 
ler aus dem ersten Wort der Liste und deponiert diesen in D1. 
Dieser Zahler wird sogleich dekrementiert, weil die Suche abge- 
brochen wird, falls der Zähler den Wert -1 hat. Die Suche 
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beginnt bei NXTEL und vergleicht die Listenelemente mit DO. 
Wenn der Wert schon in der Liste ist, springt der 68000 auf 
ITSIN und kehrt zum Hauptprogramm zurtick. Ist der Wert 
nicht vorhanden, so wird er am Listenende angehängt und der 
Elementzähler wird mit einer ADDQ-Instruktion um 1 grösser. 
Wie lange wird dieser Subroutinen-Durchlauf dauern? Offen- 
sichtlich hängt das von der Zahl der Listenelemente ab und ob 
das Element schon vorhanden ist oder nicht. 
Für alle, auch für die kleinste Liste, hängt die Ausführungszeit 
dieser Subroutine von der Anzahl Durchläufe der 3-Befehls- 
Schleife von NXTEL ab. Untersuchen wir einmal die Zeit für 
die Fälle, wenn das Element in der Liste ist und wenn es nicht 
dort ist. Die Liste hat N Elemente. 
Wenn der gesuchte Wert nicht in der Liste ist, wird die NXTEL- 
Schleife N-mal durchlaufen. Für die N-1 ersten Ausführungen 
wird die Schleife 26 Zyklen brauchen; für die letzte 30 Zyklen. 
Die übrigbleibenden Instruktionen der Subroutine werden nur 
einmal ausgeführt und brauchen 110 Zyklen. 

110 + 26 (N-1)+30 
26N + 114 Zyklen 

Totale Ausführungszeit 

So werden also, um ein Element einer Liste mit 100 Elementen 
beizufügen, 2714 Zyklen oder 339,25 us gebraucht. 
Wenn der gesuchte Wert bereits in der Liste ist, wird der 68000 
im Mittel N/2 Vergleiche machen müssen, um den betreffenden 
Wert zu finden. Er braucht so viel, da der gesuchte Wert zu je 
50% in der ersten oder zweiten Listenhälfte sein wird. Für alle 
N/2 ohne den letzten Vergleich werden 26 Zyklen Ausführungs- 
zeit gebraucht. Für den letzten, bei welchem der gesuchte Wert 
in der Liste gefunden wird, werden 18 Zyklen gebraucht. Die 
restlichen Instruktionen werden noch 88 Zyklen ausmachen. 

88 + 26(N/2-1)+18 Totale Ausführungszeit = 
— 13N + 80 Zyklen 

Im Fall der ungeordneten Liste mit 100 Elementen gibt das 
1380 Zyklen oder 172,5 us. 

5,2.2 Löschen eines Elementes aus einer 
ungeordneten Liste 

Um ein Element aus einer ungeordneten Liste zu entfernen, 
muss es zuerst gefunden werden. Danach werden alle folgenden 
Listenelemente um einen Platz nachrutschen. Sie überschreiben 
das gelöschte Element. Mit diesem Elementlöschen ist eines 
weniger in der Liste. Somit muss auch der Elementzähler um 1 
dekrementiert werden. 
Die DELEUL-Subroutine gibt ein Beispiel (5.2), wie eine solche 
Operation durchgeführt werden kann. Dabei wird das untere 
Wort vom Datenregister DO den zu löschenden Wert enthalten, 
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Programmbeispiel 5.2: 
Loschen eines Elementes aus einer ungeordneten Liste 

* Diese Subroutine I6scht den Wert im unteren Datenwort des Registers DO einer 
* ungeordneten Liste, falls dieser Wert in der Liste vorkommt. 
* Die Listenstartadresse steht im Adressregister AO. 
* Die Listenlänge, in Worten, ist im ersten Wort der Liste untergebracht. 
* 

ORG $1000 
DELEUL MOVEM.L D1/A1,-(SP) Retten des Arbeitsregisters. 

MOVEA.L A0,Al Kopiere die Startadresse in Al 

MOVE (A1)+,D1 und den Wortzahler 
SUBQ #1,D1 minus lin D1. 

NEXTEL CMP (A1)+,D0 Kann geloscht werden? 
NEQ.S DELETE Ja, lösche dieses Element. 
DBF D1,NEXTEL Nein, suche bis Listenende. 
BRA.S ALLDUN Element nicht vorhanden. 

* 

* LOsche ein Element, indem alle folgenden Elemente um ein Wort nachgeschoben 

* werden 
* 

DELETE MOVE (Al)+,-4(Al) Schiebeein Wort nach. 
DBF D1,DELETE Alle Elemente nachgesch.? 
SUBQ #1,(A0) Ja, dekrementiere Elementz. 

ALLDUN MOVEM.L (SP)+,D1/Al Hole Arbeitsregister zurück. 
RTS 
END 

  

und wie im Programmbeispiel 5.1 wird die Listenstartadresse im 
Adressregister AO gespeichert sein. 
Der erste Subroutineteil (DELEUL bis NEXTEL) löscht die 
Listenstartadresse in Al, wo der Elementzähler gespeichert ist. 
Danach wird der Elementzähler minus eins im D1-Register 
abgespeichert. Diese Instruktionen sind bis hierher die gleichen 
wie in 5.1. Die NEXTEL-Schleife vergleicht jedes Listenele- 
ment mit dem Wert im Register DO. Wenn das entsprechende 
Element gefunden wird, springt der 68000 auf die DELETE- 
Schleife, die jedes folgende Element um ein Wort aufschliessen 
lässt. Der Elementzahler wird dann um 1 dekrementiert. 

5.2.3 Finden der Minimal- und Maximalwerte in 
einer ungeordneten Liste 

Die Aufgabe, einen Minimal- oder Maximalwert in einer Liste 
zu finden, wird in mancher Anwendung gefordert, speziell dann, 
wenn Textdaten oder Statistikinformation verarbeitet werden 
sollen. Eine Methode geht davon aus, dass bei jedem neuen 
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Suchen das erste Datenelement als der entsprechende Wert 
betrachtet wird. Danach wird jedes weitere Element mit diesem 
Minimal- bzw. Maximalwert verglichen. Findet nun das Pro- 
gramm einen Wert, der kleiner bzw. grösser als das momentan 
gültige Minimum bzw. Maximum ist, dann wird dieser Wert das 
neue Minimum bzw. Maximum sein. 
Die Subroutine MINMAX im Beispiel 5.3 wendet diese Metho- 
de auf eine ungeordnete Liste von Elementen ohne Vorzeichen 
an. Mit dem Aufrufen der Subroutine muss die Listenstart- 
adresse in AO sein. Nach der Rtickkehr von der Subroutine zum 
Hauptprogramm sind die beiden Werte (Minimum, Maximum) 

in den zwei symbolischen Speicherplatzen MINVAL und 

MAXVAL verfügbar. 

  

Programmbeispiel 5.3: 
Finden des Minimal- und Maximalwertes 

in einer ungeordneten Liste 

* Diese Subroutine findet den Minimal- und Maximalwert in einer ungeordneten Liste. 
* Der Minimalwert wird im Speicherplatz MINVAL, der Maximalwert in MAXVAL 

* zurückgegeben. 
* Die Listenadresse steht im Adressregister AO. 

* 

MINVAL 
MAXVAL 
MINMAX 

CHKMIN 

CHKMAX 

CONT 

ORG 
DS.W 
DS.W 
MOVEM.L 
MOVE 
SUBQ 
MOVE 
MOVE 
MOVE 
CMP 

BEQ.S 
BCC.S 
MOVE 
BRA.S 
CMP 
BLS.S 
MOVE 
DBF 
MOVEM.L (SP)+,A0/D0/D1 

RTS 
END 

* Die Listenlänge, in Worten, ist im ersten Listenelement abgespeichert. 

$3000 
1 Minimalwertspeicherplatz, 
1 Maximalwertspeicherplatz. 
A0/D0/D1,-(SP) Rette Arbeitsregister. 
(A0)+,D1 Schiebe Elementzähler in Di 
#1,D1 und dekrementiere ihn. 
(AO), MINVAL 1. Element in MIN. 
(A0)+,MAXVAL 1.ElementinMAX. 
(A0)+, D0 Lade nächstes Elem. in DO. 
MINVAL,DO Ist das Element ein neues 

Minimum? 

CONT 
CHKMAX 
D0,MINVAL Ja, führe MINVAL nach. 
CONT 
MAXVAL,DO Ist das Element ein 
CONT neues Maximum? 
D0,MAXVAL Ja, führe MAXVAL nach. 
D1,CHKMIN Listenende? 

Hole Arbeitsregister zurück. 
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Im Beispiel 5.3 laden die Instruktionen zwischen MINMAX 

und CHKMIN den Elementzähler minus eins in das Datenregi- 
ster D1 und speichern den ersten Datenelementswert in MIN- 
VAL und MAXVAL. 

Bei CHKMIN wird das nächste Element in DO geladen und 
danach mit MINVAL verglichen. Von diesem Punkt aus kön- 
nen drei Wege beschritten werden: 

1. Wenn der Wert in DO gleich wie MINVAL ist (Null-Flag 
gesetzt), springt der 68000 nach CONT, um zu priifen, ob 
alle Elemente bearbeitet worden sind. . 

2. Wenn der Wert in DO grösser als MINVAL ist (Übertrag- 
Flag ist gelöscht), springt der 68000 nach CHKMAX, wo 
DO mit MAXVAL verglichen wird. . 

3. Wenn der Wert in DO kleiner als MINVAL ist (Ubertrag- 
Flag gesetzt), geht der 68000 tiber die Instruktion BCC.S 
CHMAX weg und speichert das Wort DO als neues MIN- 
VAL ab. 

Im Fall 2 oder 3 prüft die Schleifenbedingungsinstruktion bei 
CONT (DBF DI, CHKMIN), ob alle Elemente der Liste 
behandelt worden sind, und springt nach CHKMIN, falls das 
nicht der Fall ist. 
Wie früher schon erwähnt, bearbeitet diese spezielle Subroutine 
Listen, die mit wortlangen Worten ohne Vorzeichen arbeiten. 

Wenn der Anwender das Minimum und Maximum in einer Li- 
ste, bestehend aus wortlangen Werten mit Vorzeichen, finden 

möchte, kann er einfach BCC.S CHKMAX mit BPL.S 
CHKMAX und BLS.S CONT mit BLE.S CONT ersetzen. Die 
anderen Instruktionen bleiben sich gleich. 

5.3 Eine einfache Sortierungstechnik 

5.3.1 Die Technik des «Bubble Sort» 

Ungeordnete Daten sind für viele Anwendungen gerade richtig. 
Demgegenüber sind geordnete Daten einfacher zu analysieren 

und machen das Finden eines Elementes leichter. Wie kann nun 
eine ungeordnete Liste geordnet werden? Es existiert darüber 
eine beachtliche Menge an Literatur. 
Eine der einfachsten Techniken wird «Seifenblasen sortieren» 
genannt («Bubble Sort»). 
Gerade wie Seifenblasen gegen den Himmel hinaufsteigen, stei- 
gen die Listenelemente während des Sortierens im Speicher 
hoch. (Die Daten können in auf- oder absteigender Ordnung 
sortiert werden. Hier ist nur das aufsteigende Ordnen beschrie- 
ben). 

Während des Sortierens werden die Listenelemente, beginnend 
mit dem ersten Element, sequentiell gelesen. Sie werden dann 

mit dem nächsten verglichen. Wenn ein Element grösser als 
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das folgende Listenelement ist, werden diese beiden ausge- 
tauscht. Danach wird das nachste Paar verglichen und je nach- 
dem ausgetauscht usw. Wenn der 68000 beim letzten Listenele- 
ment angekommen ist, wird das grösste Element in die letzte 
Listenposition hochgekommen sein. 

Wenn dieser Seifenblasen-Sortierungsalgorithmus verwendet 
wird, muss der Mikroprozessor gewöhnlich mehrere Male 

durch die Liste sortieren. Im folgenden Beispiel kann das gut 
erkannt werden. Nehmen wir eine Liste von 5 Elementen an: 

5 3 4 1 2 

Nach einem Durchgang sieht diese Liste so aus: 

3 4 1 2 5 

Element 5 ist als grösstes der Liste ans Listenende gelangt. Der 
nächste Durchlauf ergibt diese Folge: 

3 1 2 4 5 

Element 4 ist auf den zweitletzten Listenplatz geschoben wor- 
den. Das Resultat nach dem nächsten Sortieren: 

1 2 3 4 5 

Dieses Beispiel zeigt nicht nur, wie der Seifenblasen-Sortieralgo- 
rithmus funktioniert, sondern gibt uns auch einen Hinweis, was 
für eine Leistung von diesem Algorithmus wir erwarten können. 
Man bemerke, dass drei Durchläufe von 5 Elementen gebraucht 
werden, um eine teilweise geordnete Liste zu sortieren. Ist die 
Liste schon zu Beginn geordnet, genügt ein Durchlauf. Umge- 
kehrt braucht der Seifenblasen-Sortieralgorithmus 5 Durchläu- 
fe für eine Liste, die zu Beginn gerade in absteigender Ordnung 
vorliegt (schlimmster Fall), 4 zum Ordnen und einen zum Fest- 
stellen, dass keine weiteren Elemente auszutauschen sind. Aus 
dieser Beobachtung können wir festhalten, dass der 68000 von 
1 bis N Durchläufe durch eine Liste von N Elementen machen 
muss, um diese Liste zu sortieren. Im Mittel ergibt das N/2 
Durchläufe. 
Wieviel Befehle und Ausführungszeit werden für einen Durch- 
lauf benötigt? Das hängt vor allem vom verwendeten Algorith- 
mus ab. Es gibt die beschriebene Art, die ganze Liste nach und 
nach zu überarbeiten, bis das Programm einen Durchlauf 
macht, in dem keine Elemente mehr ausgewechselt werden müs- 
sen. Mit dieser Methode wird das gesteckte Ziel erreicht, aber 
mit zu viel Zeitaufwand. Warum das? Der Grund liegt in der 
Tatsache, dass Elemente mit bereits «hochgesprudelten» Ele- 
menten noch verglichen werden. Diese Vergleiche sind nicht 
mehr notwendig. Eine schnellere und effizientere Methode ist, 
nur mit den noch nicht zu Ende bearbeiteten Elementen zu ver- 
gleichen. 
Bemerke, dass für jede gegebene Liste beide Methoden gleich 
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viele Durchläufe brauchen. Die Differenz der Ausführungszei- 
ten ist dagegen sehr beachtlich. Wenn wir das oben genannte 
Mittel von N/2 Durchläufen für eine Liste von N Elementen 
nehmen, können wir folgende Rechnung erstellen: Mit der 
ersten Methode vergleicht man in jedem der N/2 Durchläufe N 
Elemente. Mit der zweiten Methode vergleicht man in ebenfalls 
N/2 Durchläufen immer ein Element weniger als im ersten 
Durchgang. Das heisst, im ersten Durchlauf werden N Verglei- 
che, im zweiten N-1 usw. gemacht. 
Während des letzten Durchlaufs werden nur noch zwei Elemen- 
te verglichen. Um ein Gefühl zu bekommen, wieviel mit der 
Methode an Zeit eingespart werden kann, nehmen wir folgendes 
an: Um eine Liste von 100 Elementen zu sortieren, braucht man 
mit der ersten Methode 4950 Vergleiche und mit der zweiten nur 
deren 3675, das bedeutet einen Viertel weniger. 

5.3.2 Sortieren mit 16-Bit-Elementen 

Mit dem vorangegangenen Wissen der Seifenblasenmethode 
wollen wir nun ein aktuelles Problem angehen. Es geht um eine 
Liste mit 16-Bit-Elementen ohne Vorzeichen. Bild 5.1 zeigt ein 
Flussdiagramm, das die benötigten Schritte dieser Aufgabe dar- 
stellt. 
Wenn der Leser die Beschreibung des Seifenblasen-Sortieralgo- 
rithmus verstanden hat, sollte dieses Flussdiagramm ihm keine 
Mühe bereiten. Zu bemerken ist, dass ein Indikator dem 68000 
signalisiert, wann die Liste komplett sortiert ist. 
Dieser Indikator, genannt Auswechsel-Flag, wird nach jedem 
Durchgang geprüft. Es wird gesetzt (logisch 1), wenn minde- 
stens noch eine Auswechslung während des vorangegangenen 
Durchlaufs gemacht wurde. Sonst ist dieses Flag gelöscht 
(logisch 0). 

Die entsprechende Subroutine dieses Flussdiagramms ist im 
Programmbeispiel 5.4 aufgeschrieben. Wie der Leser daraus 
entnehmen kann, muss die Listenstartadresse im Adressregister 
AO sein. Während der Ausführung der Subroutine behält AO die 
Adresse des ersten Datenelements. Diese Adresse wird zu 
Beginn jedes Durchganges in Al geschoben. 
Neben AO und Al verwendet die Subroutine SORT noch wei- 
tere vier Datenregister. Bit 7 von D1 ist das Auswechsel-Flag. 
Register D3 ist der Zähler der nicht sortierten Elemente. D3 
unterstützt DO mit diesem Zähler zu Beginn jedes Durchgangs 
und wird nach jedem Durchlauf durch die DBF-Instruktion 
dekrementiert. D2 enthält während der Vergleichprozedur 
immer ein Element. 

Die zwei Instruktionen nach DBF sollten übrigens noch näher 
betrachtet werden. Die Instruktion NOT.B D1 bildet das Einer- 
komplement des Auswechsel-Flags in D1, und BPL.S LOOP 
initialisiert einen neuen Sortierungsdurchgang, falls die NOT- 

118



Listen und Konversionstabellen 

Auswechse l- 
Flag =0 

! 
Hole 

Wortzahler 
Le 

L_ 

Hole Adresse des 
ersten Listenelementes 

! 
Wortzähler = 

Wortzähler - 1 

! 
Lade Wortzähler 
in den Zahler 

7 

—t 

Hole neves 
Element 

  

      
  

  

  

  

  

  

  

  

      
  

  

  

Wechsle dıe beiden 
Elemente aus 
  

t 
Setze die Aus- 
wechsel - Flag 

=] 
x 

  

    
  

Zähler = 
Zähler -1     
    

    wechsel- Flag 
gesetzt 2 
    

  

Lösche Aus- 
wechsel-Flag 

| 
Bild 5.1 
Flussdiagramm fur den Sortieral- 
gorithmus nach dem «Seifenbla- 
senprinzip» («Bubble-sort»). 
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Programmbeispiel 5.4: 
Eine 16-Bit-Seifenblasen-Sortierungsroutine 

* Diese Subroutine ordnet im Speicher 16-Bit-Listenelemente in aufsteigender Reihen- 

* folge. Sie verwendet den Seifenblasen-Sortieralgorithmus. 
* Die Listenadresse ist in AO, die Listenlänge, in Anzahl Worten, im ersten Listenwort. 
* 

ORG $4000 
SORT MOVEM.L D0-D3/A0/ Rette Arbeitsregister. 

Al, -(SP) 

CLR.B D1 Auswechsel-Flag = 0. 
MOVE (A0)+,D3 Lade Wertzahler in D3. 

LOOP MOVEA.L AO, Al Lade Elementadtresse in Al. 
SUBQ #1,D3 Dekrementiere Wortzähler 
MOVE D3,DO und lade ihn in DO. 

COMP MOVE (A1)+,D2 Bringe Element nach D2. 
CMP (A1),D2 Nächstes Element grösser? 
BLS,S DECCTR Ja, fahre weiter. 
MOVE (A1),-2(A1) Nein, wechsle 
MOVE D2,(A1) diese beiden aus. 
TAS D1 Setze Auswechsel-Flag. 

DECCTR DBF DO, COMP Listenende? 
NOT,B D1 Ja, ist Auswechsel-Flag gesetzt? 
BPL.S LOOP Ja, starte neuen Durchlauf. 
MOVEM.L (SP)+,D0-D3/ Hole Arbeitsregister zurück. 
RTS A0/A1 
END 

  

Operation das Flag auf 0 gesetzt hat. Das bedeutet, dass der 
Sprung auf LOOP nur ausgeführt wird, falls das Auswechsel- 
Flag auf 1 war, bevor die NOT-Instruktion ausgeführt wurde. 
In vielen Anwendungen reicht das Format 8, 16 oder 32 Bit für 
ein Listenelement nicht aus. Der Programmierer muss dann 

dafür eine spezielle Sortierungsroutine für noch längere Elemen- 
te selbst entwickeln. 
Die vorangegangenen Kommentare sollten genügend Wissen 
gegeben haben, um ein Sortierprogramm für irgendeine Ele- 
mentlänge zu entwickeln. 

5,4 GeordneteListen 

Wir haben nun gelernt, eine Liste zu ordnen, und wollen jetzt 
betrachten, wie eine Liste nach einem bekannten Wert abzusu- 
chen ist. Danach wollen wir zeigen, wie zwei gemeinsame 
Operationen, Elemente zufügen und herausnehmen, program- 
miert werden können. 
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5.4.1 Absuchen einer geordneten Liste 

Wir haben gesehen, dass zum Finden eines Elementes in einer 
ungeordneten Liste diese sequentiell, Element für Element, 
abgesucht werden muss. Für eine Liste von N Elementen 
braucht das im Durchschnitt N/2 Vergleiche. Wenn nun eine 
Liste geordnet ist, kann jede Art von Suchtechnik angewen- 

det werden. Für jede, auch für die kürzeste Liste, werden die 
meisten dieser Techniken schneller und effizienter sein als das 
sequentielle Absuchen. 
Eine der bekanntesten Absuchtechniken für geordnete Listen 
wird «Binäres Suchen» genannt. Der Name kommt von der 
Tatsache, dass diese Technik die Liste in eine Serie von stetig 
kleineren Hälften teilt, bis das Element schliesslich gefunden 
wird. Das binäre Suchen beginnt in der Listenmitte und 
bestimmt, in welcher Listenhälfte der gesuchte Wert ist. Danach 
wird diese Listenhälfte genommen und halbiert usw. 
Das Flussdiagramm in Bild 5.2 zeigt, wie das binäre Suchen 
einer geordneten Liste ausgeführt wird. Nach dem Absuchen 
wird als Resultat eine Adresse zurückgegeben. Wenn der 
gesuchte Wert in der Liste gefunden wurde, wird es die Adresse 
des entsprechenden Elementes sein. Falls der Wert nicht in der 
Liste enthalten ist, wird es die Adresse des zuletzt verglichenen 
Elementes sein. Man kann dann feststellen, welche der beiden 
Adressen herausgegeben wird, indem das Element gelesen und 
mit dem gesuchten verglichen wird. 

Programmbeispiel 5.5 stellt eine Subroutine dar, die zum Absu- 

chen einer geordneten Liste gebraucht werden kann. Diese Liste 
besteht nur aus positiven Elementwerten. Die Instruktionen von 
BSRCH bis CALCI führen die ersten Tests zwischen der unte- 
ren und der oberen Listengrenze durch. Diese Sequenz prüft, ob 
der gesuchte Wert in diesem Bereich ist oder nicht. Die restli- 
chen Befehle (von CALCI weg) suchen die Liste mit dem nach 
Bild 5.2 laufenden Algorithmus ab. 

  

Programmbeispiel 5.3: 
Subroutine zum binären Suchen eines 16-Bit-Wortes 

* Diese Subroutine sucht eine geordnete Liste nach dem wortlangen Wert in Daten- 
*register DO ab. Die Startadresse der Liste ist im Adressregister AO und der Wort- 
* zähler im ersten Listenplatz abgespeichert. Die Resultate sind in den Registern Al 
* (alle 32 Bit) und DI (untere 16 Bit) wie folgt abgespeichert: 
*1. Falls der Wert in der Liste ist, so ist D1 = 0, und Al enthält die Adresse des 
* gesuchten Wertes in der Liste. 
*2. Falls der Wert nicht in der Liste enthalten ist, ist Di = 0, und Al enthält die 
* Adresse des zuletzt verglichenen Wortes. 
* 
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ORG $1000 
BSRCH MOVEA.L A0,Al Listenadressein Al. 

CLR.L D1 Losche Indexregister. 

* Prüfe, ob der gesuchte Wert innerhalb des Listenbereichs liegt. 

CMP 2(A1), DO Gesuchter Wert < untere 
Grenze? 

BHI.S TRYHI Nein, prüfe obere Grenze. 
BNE.S CALCA Ja, prüfe ob Wert > untere 
MOVEQ #2,D1 Grenze. 

CALCA ADDQ.L #2,Al 
RTS 

TRYHI MOVE (A1),D1 Hole Wortzahler und 
LSL #1,D1 mache ihn zum Byte-Index. 
CMP 0(A1,D1),D0 Gesuchter Wert > obere 
BLS.S EQHI Grenze? 
ADDA.L D1,Al1 Ja, berechne Adresse und 
CLR D1 losche D1. 

RTS 
EQHI BNE.S CALCI Nein, prüfe ob Wert = obere 

ADDA.L D1,Al Grenze. 

RTS 
* 

* Gesuchter Wert liegt innerhalb der Listengrenzen. Fahre mit suchen weiter. 
* 

CALCI LSR #1,D1 Teile Index durch 2. 
ANDI.B #S$FE,D1 Zwinge Index zu Wortgrenze. 
BEQ.S RETRN Index = 0? 
ADDA.L D1,Al Nein, berechne Suchadresse. 

COMP CMP (A1), DO Gesuchter Wert gefunden? 
BNE.S CHKLOW 

RETRN RTS Ja, Ausgang m. Adresse in Al. 
CHKLOW BCC.S CALCI Nein, gesuchter Wert ist höher. 

LSR #1,D1 Nein, gesuchter Wert ist tiefer. 
ANDI.B #S$FE,D1 Berechne neuen Index. 
BEQ.S : RETRN 
SUBA.L D1,Al Berechne neue Suchadresse 
BRA.S COMP und vergleiche wieder. 
END 

  

Wie in früheren Beispielen in diesem Kapitel wird die Listen- 
startadresse über AO der Subroutine übergeben. Die Subroutine 
wird diese Adresse nicht verändern. Die Resultatsadresse ist in 
Al enthalten und der gefundene bzw. nicht gefundene Indikator 
in D1. Obwohl die BSRCH-Subroutine mit wortlangen Werten 
operiert, muss jedesmal der neu berechnete Index einen geraden 
Wert haben. Das erreicht man, indem die unteren 8 Bit des (16- 
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Hole Index 
(Wortzähler) 

    
  

|     
Dividrere 

Index durch 2 
  

  

  

Suchadresse = 

Adresse + /ndex   
  

  

        

   
gesuchter nein 

Wert gefunden 
2 

ja 
  

  
  

Kehre zurück l   
   

e- 

Suchler Wer 
ist höher in der 

Liste ? 
nein, tiefer 

  

   
Ja     

    
   
  

Dividiere Index 

durch 2 
    

  

ja   
nein 

  

Suchadresse = 
Adresse -/ndex 

Bild 5.2 
Der binare Suchalgorithmus | 
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Bit-)Index mit dem hexadezimalen Wert $FE UND-verknüpft 
wird. 
Wie viel effizienter ist nun das binäre Suchen als das einfache 
sequentielle Vergleichen (vergleiche Beispiel 5.1)? Die mathe- 
matische Untersuchung zeigt, dass beim sequentiellen Suchen 
in einer Liste von N Elementen im Mittel N/2 Vergleiche 
gemacht werden müssen. Mit dem binären Suchen dagegen 
braucht es für die gleiche Liste log,(N) Vergleiche. Für eine 
Liste mit 100 Elementen braucht also die sequentielle Lösung 
50 und die binäre ungefähr 7 Vergleiche! 

5.4.2 Zufügen eines Wertes in eine geordnete Liste 

Das Zufügen eines Wertes in eine geordnete Liste kann in vier 
Schritte unterteilt werden: 

1. Herausfinden, wo der Wert eingefügt werden muss. 
2. Bereitstellen eines Platzes für den neuen Wert, indem alle 

höherwertigen Elemente um einen Platz nach oben verscho- 
ben werden. 

3. Einfügen des neuen Wertes an die freigemachte Stelle. 
4. Nachführen der Listenlänge um 1. 

Die eben beschriebene Subroutine, BSRCH (Beispiel 5.5), gibt 
uns gerade den Ort, wo das Element eingefügt werden muss, da 
sie die Adresse des zuletzt verglichenen Elementes ausgibt. Wir 
müssen nur noch bestimmen, um Schritt 1 zu erfüllen, ob der 
neue Wert vor oder nach dieser Adresse eingefügt werden soll. 
Das kann erreicht werden, indem das letzte Element mit dem 
neuen verglichen wird. 
Da wir nun die vier Schritte kennen, können wir eine entspre- 
chende Subroutine entwickeln. Eine mögliche Lösung ist mit 
der Subroutine ADD2OL im Programmbeispiel 5.6 gegeben. 
Diese Subroutine beginnt mit BSRCH, um festzustellen, ob der 
Wert schon in der Liste ist oder nicht. BSRCH gibt eine Adresse 
in Al und den gefundenen/nicht gefundenen Indikator in DI 
zurück. 
Nach der Rückkehr von BSRCH fragt ADD2OL das Register 
D1 ab und beendet die Verarbeitung, falls D1 = 0 (das neue Ele- 
ment ist schon in der Liste) ist. Falls D1 = 0 ist, berechnet die 
Subroutine die Adresse des Listenendes. Danach wird der 
Inhalt von Al von dieser Adresse abgezogen und das Resultat 
einmal nach rechts geschoben. Der 68000 berechnet die Anzahl 
Worte, die im Speicher verschoben werden müssen (Element- 
Umladezähler), um Platz für das neue Element zu machen. 
Wenn das neue Element kleiner als das zuletzt verglichene ist, 
muss auch dieses noch verschoben werden. Damit wird der 
Umladezähler um 1 erhöht. 
Falls das Eingabeelement grösser als das letzte Listenelement 
ist, dann wird die Eingabe zuhinterst angehängt. Andernfalls 
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Zufügen eines Elementes in eine geordnete Liste 

Listen und Konversionstabellen 

* Diese Subroutine fügt das untere Wort von DO zu einer geordneten Liste zu, falls der 
* Wert nicht schon in der Liste vorhanden ist. 
* Die Listenadresse ist in AO und der Wortzähler im ersten Wort der Liste abgespei- 
* chert. Die BSRCH-Subroutine (Beispiel 5.5) wird aufgerufen, um die Elementsuche 
* auszuführen. 
* 

ADD20L 

INCCNT 
MOVEL 

ADDIT 

ITISIN 

ORG 
MOVEM.L 

JSR 
TST 
BNE.S 
MOVE. L 
ADD.L 
MOVEA.L 
ADDQ.L 
SUB.L 
LSR.L 
SUBQ.L 
CMP 

BCS.L 
TST.L 
BEQ.S 
BRA.S 
ADDQ.L 
MOVE 
DBF 
MOVE 
ADDQ 

MOVEM.L 
RTS 
END 

$2000 
D1/D2/A1/ 
A2,-(SP) 
BSRCH 
D1 
ITSIN 
A0,D2 
(A0),D2 
D2,A2 
#2, A2 
A1,D2 
#1,D2 
#1,D2 
(A1),DO 

INCCNT 
D2 
ADDIT 
MOVEL 
#1,D2 
-(A2),2(A2) 
D2,MOVEL 
D0,(A2) 
#1,(A0) 

(SP)+,D1/ 
D2/A1/A2 

Rette Arbeitsregister 

Suche Liste nach Eingabe ab. 
Ist Eingabe schon in Liste? 
Ja, fertig. 
Nein, berechne Listenendadresse. 

Lade Ende + 2ins A2. 

Berechne Anzahl zu verschie- 
bende Worte und 
subtrahiere 1 von diesem Zähler. 
Verglichenes Element auch 
verschieben? 
Ja, erhöhe diesen Zähler. 
Nein, füge Eingabe an Listenende. 

Inkrementiere Umladezahler. 

Verschiebe nächstes Wort. 
Alle Worte verschoben? 

Ja, füge neues Element in die 
Liste ein und erhöhe Element- 

zähler. 
Restauriere Arbeitsregister 

  

wird dieser Wert in die Liste eingefügt, was ein Verschieben aller 
folgenden Elemente um eine Wortposition notwendig macht. 
Die zwei Instruktionen lange Schlaufe bei MOVEL verschiebt, 
beginnend am Listenende, Element um Element. Nach der Ver- 
schiebung wird von ADDIT weg das Eingabeelement in die 
Liste eingefügt und der Wortzähler um 1 erhöht. 
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5,4.3 Löschen eines Elementes aus einer 
geordneten Liste 

Es ist viel einfacher, ein Element aus einer geordneten Liste zu 
löschen, als eines neu einzufügen, weil der 68000 nur das Ele- 

ment finden, die andern Elemente nachschieben und den Wort- 

zähler dekrementieren muss. 
Das Beispiel 5.7 zeigt eine typische Lösch-Subroutine DELOL, 
die die BSRCH-Subroutine verwendet (Beispiel 5.5), um das zu 
löschende Element zu finden. Wie üblich ist die Listenstart- 
adresse in AO zu übergeben, der zu löschende Wert im untern 
Wort von DO. 
Falls BSRCH den gesuchten Wert in der Liste angibt, kann 
die Subroutine DELOL diese Adresse und die Listenandresse 
verwenden, um die Anzahl Elemente zu berechnen, die verscho- 
ben werden müssen. Die zwei Instruktionen lange Schlaufe bei 
DELETE führt diese Operation aus. Wenn alle Elemente nach- 
geschoben worden sind, wird der Elementzähler im ersten 
Listenwort um 1 dekrementiert. 

  

Programmbeispiel 5.7: 
Löschen eines Elementes aus einer geordneten Liste 

* Diese Subroutine löscht den Wert im unteren Wort von DO aus einer geordneten 
* Liste, falls dieser Wert in der Liste steht. Die Startadresse der Liste ist in AO und die 
* Listenlange im ersten Wort der Liste abgespeichert. Die BSRCH-Subroutine (Bei- 

* spiel 5.5) wird fiir die Elementsuche verwendet. 

ORG $3000 

DELOL MOVEM.L D1/D2/ 
Al,-(SP) Rette Arbeitsregister. 

JSR BSRCH Suche Liste nach Element ab. 
TST D1 Element vorhanden? 
BEQ.S EXIT Nein, kehre zurück. 
MOVE. L AO, D2 Ja, berechne Listenadresse. 
ADD.L (AO), D2 
SUB.L A1l,D2 Berechne Anzahl zu verschiebende 
LSR.L #1,D2 Worte und 
SUBQ.L #1,D2 subtrahiere 1 von diesem Zahler. 

BEQ.S DECCNT | 
DELETE MOVE 2(A1),(A1) + Verschieben eines Wortes. 

DBF D2, DELETE Alle Worte verschoben? 
DECCNT SUBQ #1,(A0) Ja, dekrementiere Elementzähler. 
EXIT MOVEM.L (SP) +,D1/ Hole Arbeitsregister zurtick. 

RTS D2/A1 
END 
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5.5 Konversionstabellen («Look-up tables») 

5.5.1 Beispiel Telefonbuch 

Viele Mikroprozessorprogramme verwenden spezifische Werte, 
die zuerst geholt werden müssen, bevor sie verarbeitet werden 
können. Diese Werte können aus einem Test oder aus einer 
Berechnung stammen. Das könnte zum Beispiel der Sinus eines 
Winkels oder eine Temperatur in Grad Celsius sein. Der ver- 
langte Wert könnte auch ein Parameter sein, der eine bestimmte 
Beziehung zu einem Programmeinsprung hat, die nicht berech- 
net werden kann. Als Beispiel kann die Telefonnummer erwähnt 
werden, die zu einem Namen gehört. Anwendungen wie diese 
lassen sich mit einer Konversionstabelle lösen. Wie der engli- 

sche Name «Look-up table» schon sagt, kann für einen bekann- 
ten Wert (Argument) die entsprechende Information (Funk- 
tionswert) aus einer solchen Tabelle nachgeschaut werden. 
Konversionstabellen ersetzen oft komplizierte oder zeitaufwen- 
dige Umwandlungsoperationen, wie das Berechnen der Qua- 
drat- oder kubischen Wurzel einer Zahl oder einer trigonometri- 
schen Funktion (Sinus, Cosinus usw.) eines Winkels. Diese 
Tabellen sind speziell für Funktionen anzuwenden, die nur auf 
einen kleinen Bereich des Argumentes beschränkt sind. Mit der 
Verwendung von Konversionstabellen muss der Mikroprozes- 
sor keine komplexen Berechnungen durchführen. Der Anwen- 
der wird bald merken, dass in den allermeisten Fällen von Bezie- 
hungen die Konversionstabellen die Ausführungszeit stark 

reduzieren. Es ist typisch für die Tabellen, dass sie viel Spei- 
cherplatz brauchen. Sie sind am effizientesten, falls mehr Spei- 
cherplatz zugunsten der Ausführungszeit geopfert werden kann. 

5.5.2 Konversionstabellen ersetzen Gleichungen 

Man kann Prozessorzeit und Programmentwicklungszeit 

gewinnen, indem die Resultate von komplexeren Gleichungen in 

Konversionstabellen abgespeichert werden. In diesem Ab- 
schnitt werden wir eine haufige Anwendung, das Berechnen des 
Sinus eines Winkels in Grad betrachten. 

Der Sinus aller Winkel zwischen 0° und 360° kann wie in Bild 
5.3b aufgezeichnet werden. Diese Kurve lässt sich mathema- 
tisch durch die in Bild 5.3a gegebene Reihe annähern. 
Selbstverständlich kann ein Programm für diese Approxima- 

tion entwickelt werden. Falls die Anwendung eine hohe Genau- 
igkeit der Funktion verlangt, ist man gezwungen, dafür ein 
solches Programm zu schreiben, wobei dessen Ausführungszeit 

beachtlich lang sein wird. Für Anwendungen mit weniger ho- 
hen Anforderungen an die Genauigkeit kann jedoch eine Win- 

kel-zu-Sinus-K onversionstabelle eingesetzt werden. 
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Man beachte in Bild 5.3, dass der Sinus eines jeden Winkels zwi- 
schen 0° und 180° positiv und zwischen grösser als 180° und 
kleiner als 360° negativ ist. 

Bild 5.3 

a) Mathematische Näherung für 

die Sinusfunktion 

b) Sinusfunktion der Winkel zwi- 

schen 0° und 360°   
Wie man aus Bild 5.3 weiter entnehmen kann, ist der Sinus von 
91° derselbe wie der von 89°. Das Gleiche gilt auch für den 
Sinus von 179° und 1°. Daraus kann geschlossen werden: 

  

für 00<X< 90° > mannehme sin (X) 
für 90° < X< 180° > man nehme sin (180°- X) 

oder sin (90°- [X - 90°])       

Zum Beispiel: 

sin(170°) = sin(90°-[170°-90°]) 
— sin (90°- 80°) 
— sin (10°) 

Weiter gilt, dass die Winkel des 3. und 4. Quadranten einen 
Sinus gleicher Grösse haben, doch verschiedenes Vorzeichen 

gegenüber den Quadranten 1 und 2 aufweisen. Diese Beobach- 
tung erlaubt uns, folgendes festzuhalten: 

  

für 180°<X< 270° > man nehme -sin (X-180°) 
für 270° <X< 360° > mat nehme -sin (360°-X) 

oder -sin (90°-[X-270°])       
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Zum Beispiel: 

sin (190°) = -sin (190°-180°) 
= -sin (10°) 

sin (290°) = -sin (90° - [290°- 270°]) 
-sin (90°- 20°) 
-sin (70°) 

Die vorhergehenden Beziehungen zeigen uns, dass der Sinus 
jedes Winkels zwischen 0° und 360° mit dem Sinus zwischen 0° 
und 90° ausgedrückt werden kann. Für eine Konversionstabel- 
lenanwendung ist das bedeutend, weil die Tabelle nur die Sinus- 
werte von Winkeln zwischen 0° und 90° haben muss. 
Diese Beziehungen erlauben uns also, ein Flussdiagramm für 
eine Winkel-zu-Sinus-Umwandlung zu konstruieren. Dieses 
Flussdiagramm, dargestellt in- Bild 5.4, leitet den Sinus aus 
einem Wert, bestehend aus Grösse und Vorzeichen, ab. 
Beispiel 5.8 zeigt die Winkel-zu-Sinus-Umwandlungsroutine für 
den 68000. Diese Subroutine nimmt Winkel zwischen 0° und 
360° im Datenregister DO an und gibt den kompletten 8-Bit- 
Sinuswert über D1 zurück. In dieser Subroutine SINANG wird 
mit der Prüfung begonnen, ob der Winkel kleiner als 181° ist. 
Wenn dem so ist, springt das Programm auf SINPOS. Andern- 
falls wird das Vorzeichenbit gesetzt. Von diesem Winkel 
(>180°) werden dann 180° subtrahiert. 
Mit dem Vorzeichenbit in Bit 7 von DI vergleicht die CMPI- 
Instruktion bei SINPOS den aktuellen Winkelwert mit 91°. 
Wenn der Winkel grösser oder gleich 91° ist, wird der Winkel- 
wert von 180° subtrahiert. Die einfachste Art, diese Subtraktion 
auszuführen, wäre mit dem Befehl SUBI DO, #180, doch lässt 
der 68000 diese Subtraktion nicht zu (nur SUBI +#data, Dn). 
Darum muss man die Subtraktion über das Zweierkomplement 
von DO auf eine Addition zurückführen. Die folgenden zwei 
Instruktionen laden die Startadresse der Konversionstabelle 
(SINTAB) in AO. Danach wird der Sinus aus der Tabelle her- 
ausgelesen, indem das Adressregister indirekt mit der Index- 
adressierung eingesetzt wird. Das Ganze wird noch mit dem 
Vorzeichenbit in DI ergänzt. Die SINTAB-Tabelle enthält 91 
Byte Sinuswerte, um alle Grade zwischen 0° und 90° darstellen 
zu können. Tabelle 5.1 enthält die SINTAB-Werte. 

Die SINANG-Subroutine braucht 19 Speicherworte. Ihre Aus- 
führungszeit hängt davon ab, in welchem Quadaranten der 
Winkel liegt. In den folgenden Ausführungszeiten sind die JSR- 
und RTS-Instruktionen nicht inbegriffen. 

  

  
Winkel zwischen AnzahlZyklen Ausführungszeit (us) 

0° und 90° 62 1,75 
91° und 270° 72 9,0 

271° und 360° 82 10,25 
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Programmbeispiel 5.8: 
Finden des Sinus eines Winkels 

* Dieses Programm berechnet den binären Sinuswert eines Winkels (0... 360°), der im 
* unteren Wort von DO abgespeichert ist. Es wird eine Konversionstabelle verwendet. 
* Der mit Vorzeichen versehene Sinus wird im unteren Byte von D1 zurückgegeben. 
* DO bleibt unverändert. 
* ü 

  

  

  

  

ORG $1000 
SINANG MOVE DO, -(SP) Rette Arbeitsregister. 

MOVE.L AO, -(SP) 

CLR.B D1 Losche das Sinus-Byte. 
CMPI #180, DO Ist der Winkel < 181°? 
BLS.S SINPOS Ja, Vorzeichen = 0. 
TAS D1 Nein, setze Vorzeichen = 1. 
SUBI #180, DO Subtrahiere vom Winkel 180°. 

SINPOS CMPI #91,D0 Ist der Winkel < 91°? 
BMI.S GETSIN Ja, hole den Sinus. 
NEG DO Nein, subtrahiere 
ADDI #180, DO vom Winkel 180°. 

GETSIN LEA SINTAB, AO Lade Tabellenadresse, 
OR.B 0(A0,D0),D1 gebe Vorzeichen dazu. 

. MOVE.L (SP) +, AO Hole Arbeitsregister zurück. 
MOVE (SP) +, DO 

* Sinustabelle (wie Tabelle 5.1) 

'SINTAB DC.B 0, 2, 4, 8, $B, SD, SF, $11,914,916... 

usw. (Rest der Tabelle, total 91 Byte) 

Winkel Sinus Winkel Sinus 

Grad dezimal dual Grad dezimal dual 

0.00 .0000 00000000 45.00 .7071 01011010 
1.00 .0175 00000010 46.00 .7193 01011100 
2.00 .0349 00000100 47.00 .7313 01011101 

3.00 .0523 00000110 48.00 .7431 01011111 
4.00 .0698 00001000 49.00 .7547 01100000 — 
5.00 .0872 00001011 50.00 .7660 01100010 
6.00 .1045 00001101 51.00 .7771 01100011 
7.00 .1219 00001111 52.00 .7880 01100100 
8.00 .1392 00010001 53.00 .7986 01100110 
9.00 .1564 00010100 54.00 8090 01100111 

10.00 .1736 00010110 55.00 8191 01101000 
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Winkel Sinus Winkel Sinus 
  

Grad dezimal dual Grad dezimal dual 
  

11.00 .1908 00011000 56.00 8290 01101010 
12.00 .2079 00011010 57.00 8387 01101011 
13.00 .2250 00011100 58.00 8480 01101100 
14.00 .2419 00011110 59.00 8572 01101101 
15.00 .2588 00100001 60.00 .8660 01101110 
16.00 .2756 00100011 61.00 8746 O1101111 
17.00 .2924 00100101 62.00 8829 01110001 
18.00 .3090 00100111 63.00 8910 01110010 
19.00 .3256 00101001 64.00 8988 01110011 
20.00 .3420 00101011 65.00 .9063 01110100 

21.00 .3584 00101101 66.00 9135 01110100 
22.00 .3746 00101111 67.00 9205 01110101 
23.00 .3907 00110010 68.00 9272 01110110 
24.00 .4067 00110100 69.00 9336 01110111 
25.00 .4226 00110110 70.00 9397 01111000 
26.00 .4384 00111000 71.00 9455 01111001 
27.00 .4540 00111010 72.00 9511 01111001 
28.00 .4695 00111100 73.00 9563 O1111010 
29.00 .4848 00111110 74.00 9613 O1111011 
30.00 .5000 01000000 75.00 9659 O1111011 

31.00 .5150 01000001 76.00 9703 01111100 
32.00 .5299 01000011 77.00 9744 QO1111100 
33.00 .5446 01000101 78.00 9781 O1111101 
34.00 .5592 01000111 79.00 9816 O1111101 
35.00 .5736 01001001 80.00 9848 01111110 
36.00 .5878 01001011 81.00 9877 O1111110 
37.00 .6018 01001101 82.00 9903 01111110 
38.00 .6157 01001110 83.00 9926 OLIILII11 
39.00 .6293 01010000 84.00 9945 O1LI1111 
40.00 .6428 01010010 85.00 9962 O1111111 

41.00 .6561 01010011 86.00 9976 OLIIIIII 
42.00 .6691 01010101 87.00 9986 O1111111 

43.00 .6820 01010111 88.00 9994 O1111111. 
44.00 .6947 01011000 89.00 9998 OLL11111 

Tabelle 5.1 45.00 .7071 01011010 90.00  .1.0000 O1111111 
Sinuswerte fur Winkel ganzer Grade   
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| Vorzeichen | 

  

  

  

=1 

! 
| Winkel = 

| Vorzeichen 

  

Winkel - 180   
      

  

  

180 - Winkel 

| 
Hole den Sinus 
dieses Winkels 
aus der Tabelle 

! 
| Fuge das Vor- 

| Winkel = 

    
  

  
  

zeichen als MSB zu Bild 5.4 
Flussdiagramm zu programmbei- 

spiel 5.8, bei dem die Sinusfunktion 

mit Hilfe einer Konversionstabelle 

bestimmt wird. 

  
  

5.5.3 Konversionstabellen führen 
Codewandlungen durch 

Konversionstabellen können auch codierte Daten enthalten, 
wie zum Beispiel Anzeigecodes, Druckercodes oder Mitteilun- 
gen. Als Beispiel 5.9 nehmen wir eine Subroutine, die ein Mehr- 
faches an Konversionen zulässt. Sie wandelt eine hexadezimale 
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Programmbeispiel 5.9: 
Eine Code-Umwandlungssubroutine 

* Diese Subroutine verwendet drei Nachschlagetabellen, um eine hexadezimale Ziffer 
*im unteren Byte von DO in ASCII-, BCD- und Gray- Code umzuwandeln. Die um- 
* sewandelten Werte werden in drei aufeinanderfolgenden Speicherbyte, beginnend bei 
*der Adresse in AO, zurtickgegeben. DO und AO werden von der Subroutine nicht 

* verändert. 
* 

ORG 
LOOKUP MOVE 

MOVE.L 
EXT.W 
LEA 
MOVE.B 
MOVE.B 
MOVE.B 
MOVE.L 
MOVE 

RTS 
ATABLE DC.B 

DC.B 
DC.B 
END 

$1000 
DO, -(SP) Rette Arbeitsregister. 
Al, -(SP) 
DO 
ATABLE, Al Al zeigt auf die Tabelle. 
0(A1DO),(AO0) Hole ASCII-Code. 

$10(A1,D0), 1(A0) Hole BCD-Code. 
$20(A1, DO), 2(A0) Hole Gray-Code. 
(SP)+,Al Hole Arbeitsregister 

(SP) +, DO zurück. 

°0123456789ABCDEF’ 
0 
0 

9 

“s
e 

3 
2 
3 

8 
, 3,4, 5,6, 7,8, 9,$10,$11,$12,$13,$14,$15 
, 2,6, 7,5,4,$C,$D, $F, SE, SA, SB, 9, 8 a °9 

  

Ziffer im unteren Byte von DO um in ASCH-, BCD- und Gray- 
Code. Die umgewandelten Werte werden in drei aufeinanderfol- 
genden Speicherbyte zurückgegeben. Die Startadresse dafür 
liegt im Adressregister AO. 

5.6 Sprungtabellen 

Eine Konversionstabelle kann mehr als nur Daten enthalten. In 
vielen Fällen sind die Tabellenelemente Adressen. Eine Fehler- 
routine kann zum Beispiel eine Konversionstabelle verwenden, 
um die Startadresse einer Operationsfehlermeldung, basierend 
auf einem Code in einem Datenregister, zu finden. Auch eine 
Interruptroutine kann eine Konversionstabelle zum Aufrufen 
von verschiedenen Serviceroutinen verwenden, abhängig vom 
Gerät, das die Interruptanforderung generierte. Andere Rou- 
tinen könnten eine Konversionstabelle zum Aufrufen von ver- 

schiedenen Steuerprogrammen gebrauchen, die mit Hilfe von 
Tasten ausgewählt wurden. In all diesen Anwendungen ist die 
Konversionstabelle, bestehend aus Adressen, als Sprungtabelle 
eingesetzt. Sprungtabellen werden vor allem verwendet, wenn 
die Programmsteuerung vom Zustand einer bestimmten Bedin- 

gung abhängig ist. 
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Beispiel 5.10 zeigt, wie eine Sprungtabelle die Bedürfnisse von 
fünf verschiedenen Anwendern in einem Multiterminal-Mikro- 
computersystem befriedigen kann. Die Subroutine SELUSR 
interpretiert den Inhalt von DO als Anwenderidentifikation und 
braucht diesen Code, um eine der Anwenderserviceroutinen 
aufzurufen. SELUSR prüft die Gültigkeit des Eingabecodes 
und geht auf die CHK-Ausnahmeroutine, falls der Code grösser 
als vier ist (mehr über Ausnahmen in Kapitel 7). Die Subroutine 

wandelt die gültige Anwenderidentifikation in einen Index um, 
mit dem die Adresse einer Anwenderroutine (USERO ... 
USER4) ins Register AO geholt werden kann. 

  

Programmbeispiel 5.10: 
Eine Multianwender-Auswahlsubroutine 

* Diese Subroutine ruft eine der fünf Anwendersubroutinen auf, die mit einer An- 
* wenderidentifikation im unteren Byte von DO aktiviert wird. Die Subroutine ver- 
* ändert AD und DO. 
* 

RORG $1000 
SELUSR EXT.W DO Benützercode in Wort. 

CHK #4,DO Falsche Identifikation ID? 
LSL #2,D0 Nein, berechne Index (ID*4). 
LEA UADDR, AO Lade Tabellenbeginn in AO. 

MOVEA.L 0(A0,D0.W),AO Hole Benützeradresse und 
JMP (AO) springe auf diese Subroutine. 

UADDR DC.L USERO, USER], USER2, USER 3, USER4 
END 

  

Diese Aktion benützt den relativen Programmzähler mit Index- 
adressierung. Dieser Modus wird durch die RORG-Zuweisung 
zu Beginn der Subroutine aktiviert. Mit der richtigen Adresse in 
AO kann ein einfacher, indirekter Sprung die Steuerung des Pro- 
gramms auf die Anwendersubroutine übertragen. 
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Bild 6.1 
Anschlussbelegung des 

Mikroprozessors 68000 
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Der 68000-Baustein ist in einem 64poligen, zweireihigen 
Gehäuse untergebracht. Die Anschlussbelegung ist aus Bild 6.1 
herauszulesen. Um die Verwechslung von Signalen mit «logisch 
0» und «logisch 1» sowie «hoch» und «tief» auszuschalten, 
sprechen wir im weiteren von aktiven Signalen, wenn sie 
«wahr» sind, und von inaktiven, wenn sie «unwahr» sind. 
Die externen Signale des 68000 werden in Funktionsgruppen 
beschrieben, damit sie etwas besser verstanden werden können. 
Diese Gruppen sind in Bild 6.2 aufgeführt. 
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6.1 Takt-, Speisungs- und Masseleitungen 

Der 68000 ist über je zwei Anschlüsse für +5V und Masse 
gespeist (+5V = Vpp; Masse = V,,). Der Takt CLK ist ein 
TTL-Eingang, der Frequenzen bis zu 10 MHz verarbeitet. 

6.2 Der Daten- und Adressenbus 

Der 68000 ist ein 16-Bit-Mikroprozessor, da seine Informa- 
tionsgrundeinheit, das Wort, 16 Bit breit ist. Er kann nur eine 
16 Bit lange Information von oder zum Speicher und I/O-Bau- 

stein gleichzeitig transferieren. Um mehr als 16 Bit zu tibertra- 
gen, müssen weitere Transfers ausgeführt werden. Sämtliche 
Informationsaustausche zwischen dem 68000 und peripheren 
Bausteinen werden über den bidirektionalen 16-Bit-Datenbus 
(DO... D15) abgewickelt. 

Wie wird ein Systembaustein vom 68000 adressiert, um Infor- 
mationen gegenseitig auszutauschen? Der 68000 selektiert 
einen externen Baustein, indem er eine einzige Adresse an den 
23 Bit breiten Adressenbus (Al ... A23) legt. Über diesen 
Adressenbus kann der 68000 8388608 Speicherworte (zu 
16 Bit) anwählen. Mit den Signalen UDS und LDS können das 
obere bzw. das untere Byte eines Wortes noch unterschieden 
werden (siehe Kapitel 6.4 «Asynchrone Buskontrolle»). Der 
68000 gibt mit dem (address strobe) Adressensignal AS der 
Peripherie bekannt, dass eine gültige Adresse auf dem Bus ist. 

6.3 Funktionsstatussignale 

Jedesmal, wenn der 68000 mit externen Bausteinen kommuni- 
ziert, gibt er zusätzlich zu den Adressen die drei Signale FCO, 
FC1 und FC2 als weitere Information aus (function code). Die- 
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Bild 6.2 
Nach Funktionsgruppen geordnete 

Anschlüsse des 68000



Tabelle 6.1 

Funktionsstatussignale 

informieren externe Bausteine 

uber den Status des 68 000. 

Bild 6.3 

Speicherunterteilung mit den 
Funktionsstatussignalen 
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se Funktionsstatussignale teilen der Peripherie mit, ob der 
68000 den Daten- oder Programmspeicher adressiert, im 
Anwender- oder Überwachungsstatus ist oder gerade eine 
Unterbrechung bearbeitet. Die Tabelle 6.1 enthält die verschie- 
denen Kombinationen dieser drei Signale. Beachte das höchst- 
wertige Bit FC2, das den Status des Überwachungsbit S im Sta- 
tusregister wiedergibt. 

  

Funktionsstatussignale 
  

  

FC2 FC1 FCO Bedeutung Zuteilung 

0 0 0 Reserviert Anwender 
0 0 1 Datenbereich Anwender 
0 1 0 Programmbereich Anwender 
0 1 1 Reserviert Anwender 

l 0 0 Reserviert Systemüberwachung 
1 0 1 Datenbereich Systemuberwachung 
1 1 0 Programmbereich Systemtiberwachung 
1 1 1 Unterbrechungs- Systemüberwachung 

quittung 
  

Die Funktionsstatussignale zeigen an, dass ein Programmab- 
schnitt adressiert worden ist, falls der Programmzähler PC die 
Adressenquelle ist oder falls der Startvektor geholt worden ist. 
Sie können auch angeben, dass ein Datenbereich adressiert 
wird, falls die meisten Operanden gelesen (PC ist nicht Adres- 
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senquelle), falls alle Operanden geschrieben oder falls andere 
Vektoren als der Startvektor geholt wurden. Die Funktionssta- 
tussignale können mit den Adressen zusammen für die Schreib- 
sperre spezifischer Speicherabschnitte verwendet werden. Sie 
können auch mit externen Einheiten wie zum Beispiel einer Spei- 

cherverwaltungseinheit eingesetzt werden, um bestimmte Ope- 
rationen im richtigen Prozessorstatus durchführen zu lassen. 

Im weiteren können die Funktionsstatussignale für die externe 
Speichererweiterung bis auf 64 MByte (4 Segmente zu 16 MBy- 
te) verwendet werden! Das Bild 6.3 zeigt eine Möglichkeit, wie 
diese Speichersegmentation realisiert werden kann. 

6.4 Asynchrone Bussteuerung 

Einige übliche 8-Bit-Mikroprozessoren, wie der 6800 und der 
6502, können nur mit synchron betreibbaren Einheiten kom- 
munizieren. Diese Mikroprozessoren sind so entwickelt wor- 
den, dass die externen Bausteine innerhalb einer gegebenen Zeit 
Ausgabedaten entgegennehmen oder Eingabedaten bereitstel- 
len müssen. Die Kommunikation mit langsameren oder asyn- 
chronen Bausteinen erfordert jedesmal spezielle Hard- und 

Softwareschnittstellen. Der 68000 dagegen kann ohne weiteren 
Aufwand direkt mit synchronen oder asynchronen Bausteinen 
verbunden werden. Er ist mit je einem Satz Steuerleitungen für 
jeden Typ ausgerüstet. 

6.4.1 Die asynchronen Steuerleitungen 

Wie wir wissen, kann der 68000 mit den einzelnen Byte inner- 
halb eines Wortes arbeiten. So sprechen wir normalerweise 
auch von der 16-MByte- und nicht von der 8-MWort-Adressie- 
rung. Wie werden nun die einzelnen Byte adressiert? Zusätzlich 
zu den Adressenbit gibt es noch zwei spezielle Steuersignale: 
— fiir das hohere Byte UDS (Upper Data Strobe) 
— fiir das untere Byte LDS (Lower Data Strobe). 

Wenn UDS vom 68000 aktiv (logisch 0) gesetzt wird, wird 

die Information auf den höheren 8 Bit des Datenbusses (D8 ... 
D15) transferiert. Wenn die Information auf den unteren 8 
Datenbit (DO ... D7) verkehren soll, setzt der 68000 das Signal 
LDS aktiv (logisch 0). Während eines Worttransfers sind beide 

Signale (UDS und LDS) aktiv, und die Information geht über 
den ganzen Datenbus (DO... D15). 
Wie kann ein adressierter, externer Baustein wissen, ob der 
68000 Informationen haben (lesen) oder ausgeben (schreiben) 
will? Durch das Steuersignal Lesen/Schreiben (R/W) kann der 
externe Baustein erkennen, in welcher Richtung sich der Trans- 
fer abspielen soll. Das Steuersignal R/W ist logisch 1 während 
Lesezyklen und logisch 0 während Schreibzyklen. 
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Byteadressierung auf dem 

asynchronen Bus 
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Jedesmal, wenn ein externer Baustein entweder Daten auf den 
Datenbus gibt (Leseoperation) oder von ihm holt (Schreib- 
operation), lässt der Baustein den 68000 mit dem Signal 
DTACK (Data Transfer Acknowledge) wissen, wann der 
Transfer fertig ist. Wenn der Prozessor das Signal DTACK 
während eines Lesezyklus erkennt, speichert er die Daten ab 
und beendet den Buszyklus. Da dieses Terminieren auf 
DTACK. angewiesen ist, hängt die Geschwindigkeit, mit wel- 
cher der 68000 Daten transferieren kann, von der Zugriffszeit 
des adressierten Bausteins ab. Das bedeutet also, dass der 
68000 mit langsamerer Peripherie auch langsamer arbeitet und 
entsprechend mit schnellerer Peripherie rascher. Die maximale 
Übertragungsrate, gegeben durch den Systemtakt, kann natür- 
lich nicht überschritten werden. 

#5V 

703° 

gerader 
# offener 

Kollekfor- 

ausgang (even)   
Das Bild 6.4 zeigt alle Signale, die notig sind, um auf einen asyn- 
chronen Speicher zugreifen zu können. Das Bild enthält neben 
der CPU und den beiden Speichern noch eine Zeitüberwa- 
chungsschaltung («Watchdog»). Sie lässt eine bestimmte Zeit 
zwischen dem Anlegen von AS und dem Erhalten von DTACK 
zu. Wenn die beiden Speicher die richtige Kombination von 
DTACK ODD und DTACK EVEN innerhalb der gegebenen 
Zeit abgeben, wird das DTACK-Signal zum Mikroprozessor 

geschickt. Werden diese Bedingungen nicht eingehalten, erzeugt 
die Überwachungsschaltung das BERR-Signal (Bus Error), das 
im 68000 die Ausnahmebehandlung dafür initialisiert. Auf diese 
Weise kann das System vor dem «Hängenbleiben» wegen eines 
fehlerhaften Peripheriebausteines bewahrt werden. 
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6.4.2 Zeitbedingungen fur asynchrone 
Datenubertragung 

Nach den asynchronen Steuersignalen wollen wir die zeitli- 
chen Bedingungen während einer Datentransferoperation 
näher betrachten. Bild 6.5 zeigt uns das Zeitverhalten der 
entsprechenden Signale während normaler, wortlanger Lese- 
und Schreibzyklen und eines langsamen (mit verzögertem 

DTACK) Lesezyklus. Diese Impulsdiagramme sind zeitlich auf 
den Systemtakt CLK (Clock, Eingangstakt des 68000) bezogen 
gezeichnet. Mit 8MHz hat CLK eine Periode von 125ns. Ein 
normaler (unverzögerter) Lesezyklus dauert dann 4 Perioden 

oder 500ns. Wegen der internen Verzogerungszeiten und der Not- 
wendigkeit, das Signal R/W auf logisch 0 zu bringen, braucht 
der Schreibzyklus eine weitere Periode, also 625 ns bei 8 MHz. 

so S1 52 $3 Sh S5 56 S7 SO S14 S2 $3 S4 S5 S6 S7 SB S9 SOS1 S2 $3 S4 Sw Sw Sw Sw S5 S6 57 SO 

  

    

  

le — _. lesen —. —_ ie — schreiben — — — — langsam lesen — — —+| 

Der 68000 kann DTACK jederzeit nach Aktivwerden von AS - 
entgegennehmen. Er erwartet aber, DTACK vor der 5. Periode 
(Lesen) oder 7.Periode (Schreiben) des Systemtaktes nach 
Zyklusbeginn zu empfangen. Wenn DTACK nicht vor diesen 
Zeitpunkten erkannt wird, fügt der 68000 Warteperioden (Wait 
States) in den Lese- oder Schreibzyklus ein. Auf der rechten Sei- 
te von Bild 6.5 ist das Zufügen von Warteperioden zu einem 
Lesezyklus dargestellt. 
Die Zeitdiagramme für Byteübertragungen sind den für Wort- 
übertragungen ähnlich, ausser dass nur eines der beiden Bytese- 
lektionssignale (UDS oder LDS) aktiv ist und dass nur eine 
Hälfte des Datenbusses gültige Information führt. Die andere 
Hälfte des Datenbusses wird im hochohmigen Zustand bleiben. 
Das aktive Byteselektionssignal wird vom internen Signal AO, 
dem untersten Bit des Programmzählers, abgeleitet. In der 
Benützeranleitung des 68000 (Kapitel 4.2.1) steht mehr über die 
zeitlichen Abläufe der Byteübertragung. 

6.5 Synchrone Steuersignale 

Der 68000 hat drei Steuersignale, um synchrone, periphere 
Bausteine wie jene aus den 6500- und 6800-Familien am Mikro- 
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Bild 6.6 
Anschluss von Peripherie- 

bausteinen der 68 000er-Serie 

Bild 6.7 
Zeitdiagramm fur synchronen 
Datentransfer (8 Bit) 

prozessor anschliessen zu können. Es sind dies die Signale E 
(Enable, Freigabe), VPA (Valid Peripheral Address, gültige 
Peripherieadresse) und VMA (Valid Memory Address, gültige 

Speicheradresse). 
Das Freigabesignal E ist ein Takt, mit dem die 8-Bit-Peri- 
pheriebausteine den Datentransfer synchronisieren. Dieser frei- 
laufende Takt entspricht dem E- oder ® 2-Signal der bestehen- 
den 6500- und 6800-Systeme. Der E-Takt läuft mit einer Fre- 

quenz von einem Zehntel des 68000-Systemtaktes. In unserem 
Fall von 8MHz heisst das 8S00kHz für den Takt E. Im weiteren 
hat E ein Tastverhältnis von 60 zu 40, logisch 0 fiir 6 Takt- 
perioden und logisch 1 für 4 Perioden. 

Die gültige Peripherieadresse VPA ist ein Eingangssignal, das 
dem 68000 mitteilt, dass ein 6800-Peripheriebaustein adressiert 
wurde und dass die Datentransferoperation durch das Frei- 
gabesignal E synchronisiert werden sollte. Normalerweise wird 
VPA aus der decodierten Adresse und AS gewonnen. Zu 
bemerken ist, dass VPA für die synchrone dasselbe ist wie 
DTACK für die asynchrone Übertragung. 
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Wenn AS noch anliegt, währenddem der 68000 VPA empfängt, 
reagiert der Prozessor mit dem Senden von VMA (gültige Spei- 
cheradresse), mit der der periphere Baustein die endgültige 
Selektion vornehmen kann. 

Bild 6.6 zeigt die Signale auf, die für das Anschliessen eines 
6800-Peripheriebausteins am 68000 normalerweise verwendet 
werden. In Bild 6.7 sind die Zeitdiagramme für einen synchro- 
nen Lese- und Schreibzyklus dargestellt. Das Kapitel 8 enthält 
weitere Anregungen, wie synchrone 8-Bit-Bausteine an den 
68000 angeschlossen werden können. 

6.6 Busaussperrungssignale 

Die Busaussperrungssignale (englisch: bus arbitration signals, 
d.h. «Bus-Schiedsrichter-Signale») werden für direkte Speicher- 
zugriffe (DMA, Direct Memory Access) und Multiprozes- 
soranwendungen verwendet, um die Steuerung des Systembus- 
ses von einem 68000-Mikroprozessor an einen externen Bau- 
stein zu übergeben. Bei all diesen Anwendungen wünscht der 
externe Baustein die Bussteuerung zu übernehmen, indem er 

dies dem 68000 mit dem Signal BR (Bus Request, Busanforde- 
rung) mitteilt. Der 68000 hat immer die geringere Buspriorität 
als ein externer Baustein und wird die Steuerung des Busses 
nach Beenden des momentanen Zyklus abgeben. Nach Erken- 
nen von BR synchronisiert der 68000 intern und zeigt die 
Annahme der Anforderung mit dem Signal BG (Bus Grant, Bus 
freigegeben) an. Wenn mehrere Bussteuerungsanforderungen 

anliegen, muss eine externe Schaltung dafür sorgen, dass nur 
einer der Bausteine das Signal BG empfangen kann. 
Der anfragende Baustein wartet nach Erhalten von BG auf die 
Beendung des vom Prozessor angefangenen Zyklus (zum Bei- 
spiel auf das Zurücksetzen von AS und DTACK) und gibt dem 
68000 danach BGACK (Bus Grant, Acknowledge, Busfreigabe- 
erkennung) zurück. Zwischen dem 68000 und dem anfragenden 
Baustein spielt sich also folgender Dialog ab: Mit dem Anlegen 
von BR sagt der Anfrager: «Ich will den Bus haben.» Mit BG 
antwortet der 68000: «Du kannst den Bus haben.» Am Ende 
des momentanen Zyklus gibt der Anfrager das Signal BGACK 
zum Prozessor und dem restlichen System mit der Bedeutung 
«Ich habe nun die Bussteuerung übernommen» aus. 
Am Ende dieses Dialogs nimmt der neue Busmaster seine 
Anfrage mit dem Zurücksetzen von BR zurück. In gleicher Wei- 
se setzt der Prozessor BG zurück und wartet auf das Beenden 
der Busoperation des externen Bausteins. Zu diesem Zeitpunkt 
setzt der externe Baustein das Signal BGACK zurück. Damit 
kann der Prozessor seine normale Funktion und Arbeit wieder 
aufnehmen. Die Zeitdiagramme dieser ganzen Sequenz sind in 
Bild 6.8 dargestellt. 
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6.7 Systemsteuerungssignale 

Der 68000 hat drei Systemsteuerungssignale. Eines ist als Ein- 
gang und die andern beiden bidirektional definiert. 
RESET (Reset, Zurücksetzen) ist ein bidirektionales Signal, 

das dem Prozessor oder einem externen Baustein erlaubt, das 
ganze System zurückzustellen. Ein Zurücksetzen durch den 
Prozessor, mit Hilfe des Befehls RESET, wird das Signal 
RESET für 124 Systemtaktperioden setzen und danach wieder 
zurückstellen. Das gibt allen externen Bausteinen genügend 
Zeit, sich zurückzusetzen. Der interne Zustand des 68000 wird 
dabei allerdings nicht verändert. 
Während eines katastrophalen Fehlers kann das ganze System 
(Prozessor und alle externen Bausteine) zurückgesetzt werden, 
wenn beide bidirektionalen Signale RESET und HALT wäh- 
rend mindestens 100 ms am 68000 anliegen. Das veranlasst den 
68000, einen «Speisungsreset» zu starten, währenddem der 
Prozessor in den Überwachungszustand übergeht und über den 

Vektor der tiefsten Speicherstufe eine Rückstellroutine startet. 
(Diese Sequenz und weitere Ausnahmesituationen sind in Kapi- 
tel 7 ausführlicher diskutiert.) 
HALT muss aber nicht notwendigerweise von RESET begleitet 

werden. HALT alleine, als Prozessoreingang, kann zu Test- 
zwecken für die Einzelschrittbetriebsart verwendet werden. Die 
Schaltung in Bild 6.9 zeigt uns eine mögliche Realisiserung die- 
ser Funktion. Wenn der Ablauf/Einzelschritt-Schalter in der | 
Position «Einzelschritt» ruht, wird der Prozessor den momen- 
tanen Befehlszyklus beenden und wieder anhalten. Das wird 
jedesmal, wenn der Einzelschritt/Warte-Schalter auf Einzel- 
schritt umgeschaltet wird, so sein. Wenn der Prozessor gestoppt 
wird, sind der Adress-, der Daten- und der Funktionsstatusbus 
in hochohmigem Zustand und die Bussteuerungsleitungen inak- 
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tiv gesetzt (die allgemeine Bussteuerung mit BR, BG und 
BGACK ist immer zur Verfügung). 
Das HALT-Signal kann auch vom 68000 als Ausgang verwen- 
det werden. Der Prozessor kann wegen eines Doppelbusfehlers 
(siehe Kapitel 7) gestoppt werden und setzt dann HALT als 
Ausgang aktiv. | 
Das HALT-Signal kann mit dem Systemsteuersignal BERR 
(Bus Error) zusammen auch als Eingang verwendet werden. 
Die Eigenschaft von BERR ist, den Prozessor uber systemin- 
terne Probleme zu informieren. Das heisst, dass BERR das Auf- 
treten von unerwünschten Vorfällen (zum Beispiel unerwartete 
Interrupts oder illegale Speicherzugriffsanforderungen) oder 
das Nichtauftreten von erwarteten Signalen (zum Beispiel gibt 
ein externer Baustein kein DTACK oder VPA zurück) anzeigt. 

Wenn der 68000 das Signal BERR erkennt, kann er entweder 
ein Busfehlerprogramm aufrufen (siehe Kapitel 7) oder den Bus- 
zyklus noch einmal wiederholen. Der Prozessor wird den Bus- 
zyklus repetieren, wenn HALT von aussen mit dem Auftreten 
von BERR gesetzt wird. Um einen Buszyklus wiederholen zu 
können, wird der Prozessor den Zyklus zuerst beenden, danach 
anhalten und den Adress- und Datenbus, die Funktionsstatus- 
und die Steuerungsleitungen in den hochohmigen Zustand ver- 
setzen. Wenn die externe Schaltung BERR und HALT zurück- 
setzt, wird der 68000 darauf den vorhergehenden Buszyklus 
wiederholen. Es gibt eine einzige Ausnahme: Die Instruktion 

TAS kann in dieser Situation nicht wiederholt werden. 

6.8 Interrupt-Steuersignale 

Externe Bausteine können Interrupt-Anforderungen an den 
68000 senden, indem die codierte Prioritätsanforderungsstufe 
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an die drei Interrupt-Steuereingange IPLO, IPL1 und IPL2 © 
angelegt wird. Am Ende des momentanen Befehlszyklus ver- 
gleicht der 68000 die codierte Prioritatsstufe (1 bis 7, wobei 7 

die hochste Prioritat ist) mit der 3-Bit-Interrupt-Maske des Sta- 
tusregisters. Diese Maske kann in Bild 1.3 und dem Text in 
Kapitel 1 («Elektroniker» 16/82, Seite EL5) nachgesehen und 
-gelesen werden. 

Wenn der Wert der Prioritätsstufe gleich oder kleiner als der 
Wert der Interrupt-Maske ist, wird der 68000 die Anforderung 
einfach übersehen und am Begonnenen weiterfahren. Hat aber 
die Interrupt-Anforderung einen höheren Wert als die Maske, 
setzt der 68000 die Eingabeprioritätsstufe auf den Adressbus 
(Al, A2 und A3), gibt mit Hilfe der Funktionsstatusbit FCO... 
FC2 die Interrupt-Anerkennung aus und initialisiert den Inter- 
rupt-Quittungsablauf. Einzelheiten dieses Ablaufs werden im 
Kapitel 7 folgen. 
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7. Verarbeitungszustände, privilegierte Zustände und 
Ausnahmebetrieb 

Dieses Kapitel beschreibt die Verarbeitungszustände und die 
privilegierten Zustände des MC 68000 und erläutert dann, wie 
Unterbrüche, Traps und andere «Ausnahmen» durch den MC 
68000 behandelt werden. 

7.1 Verarbeitungszustände 

Der Mikroprozessor MC 68000 befindet sich immer in einem 
von drei Zuständen: Normal-, Ausnahme- oder Haltezustand. 
Bis jetzt betrafen unsere Betrachtungen immer den Normalzu- 
stand, in welchem der 68000 die Befehle vom Speicher holt, sie 
ausführt und die Resultate im Speicher oder in einem Register 

ablegt. Ein Spezialfall des Normalzustandes ist der gestoppte 
Zustand, in den der 68000 als Antwort auf einen STOP-Befehl 
eintritt. Wie in Kapitel 3 erklärt wurde, ist STOP ein privilegier- 
ter Befehl, der den 68000 stoppt, bis er einen Unterbruch hoher 
Priorität oder eine externe Rücksetzung erhält. 
Der Ausnahmezustand ist die Art, mit welcher der 68000 auf 

Abweichungen der normalen Programmausführung reagiert. 
Solche Abweichungen oder Ausnahmen können durch Unter- 
brüche, Trap-Befehle, nicht schwerwiegende Hardwarefehler 
oder eine Vielzahl anderer Umstände verursacht werden, und 
zwar sowohl von ausserhalb als auch innerhalb des Mikropro- 
zessors. Wir werden diese Ausnahmen und ihre Behandlung in 
diesem Kapitel später detailliert besprechen. 

Bei schwerwiegenden Hardwarefehlern, wie zum Beispiel zwei 
aufeinanderfolgenden Busfehlern, tritt der 68000 in den Halte- 
zustand. Aus diesem Haltezustand kann der 68000 nur mit 
einer externen Rücksetzung neu gestartet werden. Der Haltezu- 
stand darf nicht mit dem vorher erwähnten softwareverursach- 
ten Stoppzustand verwechselt werden. : 

7.2 Privilegierte Zustände 

7.2.1 Überwachungs- und Benützerzustand 

Bisher haben wir schon öfter die zwei privilegierten Zustände, in 
denen der MC 68000 operieren kann, erwähnt. Diese Zustände, 
der sogenannte Uberwachungszustand und der Benützerzu- 
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stand, gewährleisten ein hohes Mass an Sicherheit durch gewis- 
se zusätzliche «Privilegien» im Uberwachungszustand, die im 
Benützerzustand nicht verfügbar sind (siehe Tabelle 7.1). 

  

Beniitzerzustand Uberwachungszustand 
  

  

  

  

  

  

Eintrittszustand Löschung des Trap. Rücksetzung, 
durch: S-Bit im Unterbruch, 

Statusregister privilegierter Befehl 

Funktionscode 
output FC2 = 0 1 

Systemstapel- Beniitzerstapel- | Uberwachungsstapel- 
zeiger: zeiger zeiger 

Andere Stapel- Register AO...A6 Benützerstapelzeiger 
zeiger: und Register AO... A6 

Statusregister- 
zugriff: | 

(lesen) Gesamtes Status- Gesamtes Statusregister 
register 

(schreiben) Nur Bedingungs- Gesamtes Statusregister 
codes 

Verfügbare Alle, mit Aus- Alle, inklusive 
Befehle: nahme von: derjenigen der links 

RESET aufgelisteten 
RTE 

STOP #d 
ANDI.W#d,SR 
EORI.W #d,SR 
ORI.W #d,SR 
MOVE <ea>,SR 

MOVE USP,An 
MOVE An,USP 
  

Programme, die im weniger privilegierten Benützerstatus arbei- 
ten, können alle 68000-Befehle ausführen, mit Ausnahme derje- 
nigen, welche die höheren acht Bit des Statusregisters ändern 
(das «Systembyte»), den Prozessor stoppen oder eine System- 
rücksetzung aussenden. Im weiteren können Benützerstatus- 
Programme Stapeloperationen ausführen, aber sie können die 

Systemstapelzeiger weder lesen noch schreiben. 
Programme, die im höher privilegierten Überwachungszustand 
arbeiten, haben Zugang zu den vollen Möglichkeiten des 68000. 
Das heisst, dass Überwachungsstatusprogramme Zugang 
haben auf die beiden Systemstapelzeiger und, sofern erforder- 
lich, über die privilegierten Befehle auch das Statusregister 
beeinflussen können. Die Kontrolle über das Statusregister 
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erlaubt den Überwachungsprogrammen das Ändern von Unter- 
bruchsmasken und den Übergang in den Trace-Modus. 
In den meisten Systemen laufen Programme, die nicht für 
Systemsteueraufgaben zuständig sind im Benützerstatus. 
Grundaufgaben des Betriebssystems sollten ausgeführt werden, 
wenn sich der 68000 im Überwachungsstatus befindet. 

7.2.2 Wechsel im privilegierten Status 

Der privilegierte Zustand wird ausgewählt mit dem Überwa- 
chungsbit (S) im Statusregister. Der 68000 ist im Überwa- 
chungsstatus mitS=1 und im Benützerstatus, wenn S= 0 ist. 
Der Übergang von einem privilegierten Zustand in einen andern 
kann auf verschiedene Weise erfolgen. Der Prozessor geht vom 

Überwachungszustand in den Benützerstatus, wenn das S-Bit 
auf 0 gesetzt wird. Diese Operation kann ausgeführt werden 
mit den Befehlen MOVE, ANDI oder EORI, die das Status- 
register (SR) als Ziel haben und eine 0 im Bit 13 des Quellen- 
operanden aufweisen. 

"Hier einige Beispiele: 

Befehl Ausgeführte Aktion 

MOVE #$0400,SR Trace ausschalten; Wechsel zum 
Ä Benützerstatus; Laden der Unter- 

bruchsmaske mit 100,; Löschen der 
Bedingungsbit. 

ANDI #$DFFD,SR Léschen Uberlauf(V); Wechsel zum 
Bentitzerstatus; keine anderen 
Wechsel. 

EORI #$2000,SR  Wechsel zum Beniitzerstatus; keine 
anderen Wechsel. 

Der Prozessor wechselt auch zum Benützerzustand zurück 
nach der Rückkehr aus einem Ausnahmezustand (ausgeführt 
mit einem RTE-Befehl), wenn die Ausnahme im Benützerzu- 
stand auftrat. Die Behandlung der Ausnahmen folgt später in 
diesem Kapitel. | 
Der Prozessor geht vom Benützerstatus in den Überwachungs- 
status, wenn das S-Bit auf 1 gesetzt wird. Normalerweise 
geschieht dies unter Softwaresteuerung mit einem der Trap- 
Befehle, aber es kann auch bei einem Busfehler, einem Unter- 

bruch, erzwungener Ausführung eines privilegierten Befehls 
oder jeder anderen Ausnahme geschehen. Bild 7.1 zeigt eine 
vereinfachte Zusammenfassung der Bedingungen, die den 
Wechsel zum privilegierten Zustand verursachen. 
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Ub ergange können während 
Ausnahmererarbeitung auftreten 

    

    

    

    

       

Anwender- 

Modus 

(S =0) 

   
    

  

    
   

Über- 

wachungs- 

modus 

(S= 1) 

fo 
Übergänge können durch MOVE, ANDI oder EORI 
zum Statusregister oder durch einen RTE-Befehl 
veranlasst werden. 

Bild 7.1 
Übergänge von einem 

privilegierten Zustand 
in einen anderen 

7.3 Ausnahmezustände 

Wie am Anfang des Kapitels erwähnt wurde, ist eine Ausnahme 
eine Abweichung von der normalen Ausführung, abhängig von 
einer internen oder externen Bedingung, die den Prozessor in 
den Überwachungszustand bringt. Diese Ausnahmen (in Tabel- 
le 7.2 zusammengestellt) werden kurz beschrieben; es ist aber 
sinnvoll, zunächst die Art und Weise zu erläutern, wie der 
68000 Ausnahmen behandelt. 

  

  

  

Quelle Ausnahmeart Veranlasst durch 

Intern Befehl TRAP, TRAPV, CHK, 
DIVS, DIVU 

Privilegverletzung Privilegierter Befehl im 

Benützerzustand 
Trace Trace-Modus 
Illegale Adresse Ungerade Adresse mit Wort 

oder Doppelwort 
Tllegaler Befehl Ungiltiges Bitmuster 
Nichtimplementierter | Operationswort Bitmuster 
Befehl 1010 oder 1111 

Extern Rücksetzung RESET aktiviert 
Unterbrüche Unterbruch genügend hoher 
(Interrupts) Priorität 
Busfehler BERR aktiviert 

Falscher Unterbruch BERR aktiviert wahrend Tabelle 7.2 . 
Unterbruchquittung Zusammenstellung interner und 

externer Ausnahmen   

7.3.1 Verarbeitung der Ausnahmen 

Bis auf die Rücksetzung wird jeder Ausnahmezustand, sei er 
durch ein internes Ereignis (ein Trap-Befehl zum Beispiel) oder 
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ein externes Ereignis (ein Unterbruch oder ein Hardwarefehler) 
hervorgerufen, den 68000 veranlassen, fünf eindeutige Schritte 
zu machen. Diese fünf Schritte sind: 

1. Nach Eintritt in den Ausnahmezustand rettet der 68000 den 
16-Bit-Inhalt des Statusregisters in ein nicht adressierbares, 
internes Register. 

2. Das Uberwachungsbit (S) im Statusregister wird auf 1 
gesetzt und bringt den Mikroprozessor in den Uberwa- 
chungsstatus; das Trace-Bit (T) wird auf 0 gesetzt und damit 
der Trace-Modus ausgeschaltet. Wenn der Ausnahmezu- 
stand auf einen Unterbruch zurückzuführen ist, wird die 
Unterbruchsmaske mit der entsprechenden Prioritätsebene 
nachgeführt, um Unterbrüche auf dieser oder tieferen Priori- 
tätsebenen auszuschliessen, bis der behandelte Unterbruch 
ausgeführt ist. 

3. Der 68000 bestimmt die Vektornummer der Ausnahme und 
multipliziert diese mit 4, um sie in eine Vektoradresse umzu- 
wandeln. Der 68000 kann 255 verschiedene Vektornummern 
unterscheiden, O und 2 bis $FF. Bild 7.2 enthält die Vektor- 
nummer und die Vektoradresse für jede Ausnahmebedin- 
gung. Bei Unterbrüchen wird die Vektornummer durch das 
externe Gerät geliefert. Für alle andern Ausnahmen wird die 
Vektornummer intern berechnet, unter Zuhilfenahme des 
Mikrocodes des 68000. 

4. Der aktuelle Wert des Programmzählers und die intern gesi- 
cherte Kopie des Statusregisters werden in den Überwa- 
chungsstapel geschrieben. In den meisten Fällen ist der 
Inhalt des Programmzählers die Adresse des nächsten aus- 
zuführenden Befehls. 

5. Nach dem Retten dieser Informationen lädt der 68000 den 
Programmzähler mit dem Inhalt der berechneten Vektor- 
adresse und beginnt, die Serviceroutine des Ausnahmezu- 
standes auszuführen. 

Eine Spezialbedingung, der doppelte Busfehler, soll hier noch 
erwähnt werden. Ein doppelter Busfehler stellt einen schwerwie- 
genden Fehler im System dar und erscheint, wenn ein Busfehler 
oder eine illegale Adressausnahme erzeugt wird, während eine 
Ausnahme in der oben erwähnten Gruppe O (Rücksetzung, 

Busfehler oder illegale Adresse) in Bearbeitung ist. Nach dem 
Erhalt zweier solcher aufeinanderfolgender Fehler bringt sich 
der 68000 selbst in den Haltezustand. Einmal im Haltezustand, 
kann der Mikroprozessor MC 68000 nur durch eine externe 
Rücksetzung wiedergestartet werden. 
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VEKTOR - VEKTOR - 

ADRESSE (HEX) NUMMER _(HEX) 

00 Pp (SSP) 7 00 
—Rücksetzung — 

08 --Busfehler —— — — - 02 

oc — - Illegale Adresse ~— 03 

10 -- [llegaler Befehl _— 0 

14 > - Nulldivision -—- — - 05 

06 
18 = CHK-Befehl — — — — 1 

’c = TRAPV-Befent -—- Hl ° 
20 _Verletzung m ____ 08 

Privilegmodvs 

24 -- Trace ——- 03 

28 71010 Emulator —-—— oA 

2E br Emulator —--- O78 
300 Oc 

I 
< Reserve 1 

5C Dr 
60 = - Falscher Interrupt  - 18 

64 _ Autovektor ____N 19 
Ebene 7 

68 | _ Autovektor __ 1A 
Ebene 2 

6C _ Autovektor _. _ _] 18 
Ebene 3 

IC 70 | i 

| i! 

3 
#C | _ Autovektor _— IF 

Ebene 7 

80 y 20 
I 

' Trap -Befehle tI 
I 

BC ! i 2F 
co | 30 

' Reserve N 

FC | I 3 
100 | Anwender - Interrupts u 40 

1" 
| 

3FC } | FF 

Bild 7.3 zeigt einen Ablaufplan der eben genannten Sequenz. 
Die Details dieser Ausnahme-Serviceroutine sind selbstver- 
ständlich abhängig davon, welche Ausnahme bearbeitet werden 
muss. Jede Serviceroutine muss grundsätzlich beendet werden 

mit dem Befehl Rückkehr aus dem Ausnahmezustand (RTE), 

der den Statusregister- und Programmzählerwert aus dem 
Überwachungsstapel zurückschreibt und die Rückkehr zur nor- 

  

malen Ausführung der Befehle sicherstellt. 
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Bild 7.3 

Allgemeiner Ablauf fiir die 
Verarbeitung von Ausnahmen 

(ausgenommen Rucksetzung) 
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Start 
Ausnahme 

Kopie von SR 
in MC 68000 
interne 
Register 

    
  

      

  

      

  
Unter- Ja Maske = ——~ 
bruch | Unterbruch- 

e ebene 

Nein Te 

Erhalt 

Vektor- 

nummer 

Vektoradresse = 

Vektornr. x4 

| 
Bringe PC 
und kopiere 
SFR in 

      

  

      

  

      

  

      

  

(Vektoradr.) 
— PC       

  
Weiter - 
verarb. 

7.3.2 Mehrfachausnahmen 

Wie reagiert der 68000, wenn zwei oder mehrere Ausnahmebe- 
dingungen gleichzeitig auftreten? Was passiert zum Beispiel, 
wenn ein Unterbruch erscheint, wahrenddem eine Trace-Aus- 
nahmebedingung in Ausführung begriffen ist? Die Antwort auf 

diese Frage wird in Tabelle 7.3 gegeben, welche die Ausnahme- 
arten mit abnehmender Priorität darstellt. Das bedeutet, dass 
die Bedingungen in Gruppe 0 vor jenen in den Gruppen 1 und 2 
ausgeführt werden. Dadurch wird, wenn ein Busfehler während 
einer Trace-Operation erscheint, die Trace-Operation zurückge- 
stellt (an das Ende des laufenden Taktzyklus), bis die Busfehler- 
bearbeitung beendet ist. 
Die Bedingungen innerhalb jeder Gruppe in Tabelle 7.3 sind 
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ebenfalls in absteigender Prioritätsordnung aufgelistet. 
Dadurch wird zum Beispiel bei einem Unterbruch während 
einer Trace-Ausnahme diese weiterverarbeitet, dann erst wird 
der Unterbruch verarbeitet, und schliesslich wird der 68000 mit 
der Ausführung der Befehle im Programm weiterfahren. 

  

  

  

  

Gruppe Ausnahme Ausnahmeverarbeitung 
| beginnt: 

0 Rucksetzung 

Busfehler Am Ende eines Taktzyklus 
Illegale Adresse 

l Trace, 
Unterbruch, Am Ende eines Befehlszyklus 

Illegaler Befehl. 

Ben andener Am Ende eines Buszyklus 

Privilegverletzung. 

2 TRAP, TRAPV, 

CHK, Am Ende eines Befehlszyklus Tabelle73 
Division durch 0 Ausnahmegruppierung und 

Prioritat   

7.4 Intern erzeugte Ausnahmen 

Wir beschreiben nun alle Ausnahmen, erzeugt durch interne 
Bedingungen im 68000. 

7.4.1 Befehle, die Ausnahmen herbeiführen 
können 

In der Diskussion des Befehlssatzes im Kapitel 3 begegneten 
uns einige Befehle, die Ausnahmezustände veranlassen können. 
Einer dieser Befehle (TRAP) verursacht immer einen Ausnah- 
mezustand; die andern (TRAPV, CHK, DIVS und DIVU) ver- 
ursachen je nach gewissen Bedingungen eine Ausnahme oder 
nicht. 
«Trap» (TRAP = Falle) erzwingt eine Ausnahme zu einer von 
sechzehn benützerdefinierten Trap-Routinen, angewählt durch 

den unmittelbaren Operanden im Befehl. Im speziellen veranlas- 
sen die Befehle TRAP # 0 bis TRAP # 15 die Programmsteue- 
rung zu einem unbedingten Sprung zu den Routinen, deren 
Adressen in den Doppelwortspeicherplätzen $80 bis $BC ent- 
halten sind. Tabelle 7.4 zeigt die Zuordnung für die 16 mögli- 
chen Trapbefehle. 
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Befehl Transferiert Programmsteuerung 
über Vektoradresse: 

TRAP #0 $80 
TRAP #1 $84 
TRAP #2 $88 
TRAP #3 $8C 
TRAP #4 $90 
TRAP #5 $94 
TRAP #6 $98 
TRAP #7 $9C 
TRAP #8 SAO 
TRAP #9 $A4 

TRAP #10 | HABS 
TRAP #11 $AC 
TRAP # 12 $BO 
TRAP # 13 $B4 
TRAP # 14 $B8 
TRAP #15 $BC 
  

Die Trapbefehle wirken als eine Anzahl von Softwareunterbrü- 
chen und sind praktisch für den Aufruf des Betriebssystems, die 
Simulation von Unterbrüchen bei einer Fehlersuche, die Anzei- 
ge der Beendigung von Prozessen oder die Anzeige, dass eine 
Fehlerbedingung in einem Programm entstanden ist. 
«Trap bei Überlauf» (TRAPV) wird einen Trap veranlassen 
durch Vektoradresse $1C, wenn der Überlauf (V) im Bedin- 

gungscoderegister auf 1 gesetzt ist. Eine einfache Routine auf 
der Betriebssystemebene kann dann jeden entstehenden Über- 
lauf behandeln. 
«Prüfe Register auf Grenzen» (CHK,) bestimmt, ob sich das tie- 
fere Wort eines spezifizierten Datenregisters innerhalb der 
Grenzen O und einer spezifizierten Zweierkomplementzahl als 
obere Limite (im Speicher oder in einem anderen Datenregister) 
befindet. Ist der Registerinhalt ausserhalb dieser Grenzen, 
erzeugt der 68000 einen Trap über die Vektoradresse $18. Der 
CHK-Befehl kann verwendet werden zur Überprüfung, dass ein 
Stapel nicht zu gross wird, dass eine Folge von Zeichen den ihr 
zugewiesenen Raum nicht überschreitet, dass ein Array sich in 
den dimensionierten Grössen bewegt oder dass eine bestimmte 
Operation nicht zu Daten ausserhalb eines zugewiesenen Spei- 
cherbereichs zugreift. 
Die Befehle «dividiere mit Vorzeichen» (DIVS) und «dividiere 
ohne Vorzeichen» (DIVU) erzeugen nur auf eine Bedingung 

eine Ausnahme, dann wenn der Divisor 0 ist. Ein Divisor = 0 
veranlasst einen Trap über die Vektoradresse $14. 
Wie in Kapitel 3 erwähnt wurde, ist der Versuch, durch 0 zu 
dividieren, eine von zwei Bedingungen, die verhindern, dass die 
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Divisionsoperation ausgeführt wird. Die Operation wird eben- 
falls gestoppt, wenn ein Überlauf während der Division auftritt 
(in beiden Fällen bleiben Divisor und Dividend unbeeinflusst). 
Wenn das passiert, setzt der 68000 einfach das V-Bit im Status- 
register und fährt mit der Ausführung des nächsten Befehls 
weiter. 
Weil Überlauf eine Fehlerbedingung darstellt, sind in einem 
Divisionsprogramm Massnahmen für die Weiterbehandlung zu 

treffen. Eine Möglichkeit besteht darin, die Divisionsroutine so 
' zu entwerfen, dass ein gültiger Quotient entsteht, unabhängig 
davon, ob Überlauf entsteht oder nicht. Diese Möglichkeit ist in 
Kapitel 4 im Beispiel 4.4 dargestellt. Es ist auch möglich, die 
Überwachung bei Überlauf zu wählen, indem dem DIVS- oder 
DIVU-Befehl ein TRAPV-Befehl nachgestellt wird. 

7.4.2 Verletzung privilegierter Befehle 

Der 68000 initialisiert einen Ausnahmebetriebszustand tiber die 
Vektoradresse $20, wenn ein Bentitzerprogramm versucht, 
einen der privilegierten Befehle auszuführen. Die privilegierten 
Befehle sind im Kapitel 3 beschrieben (Tabelle 3.17 und beglei- 

tender Text) und sind aufgelistet in der «Benützerstatus»- 
Kolonne der Tabelle 7.1. 

7.4.3 Tracing 

Wie die Haltefunktion ist auch die Trace-Funktion vorgesehen 
zur Unterstützung der Programmentwicklung und Fehlerbehe- 
bung. Wenn die Trace-Funktion eingeschaltet ist (T = 1 im Sta- 
tusregister), erzeugt der 68000 nach jedem ausgeführten Befehl 
einen Ausnahmezustand und veranlasst dadurch den Prozes- 
sor, «einzelschrittweise» durch ein Programm zu gehen. Der 
Trace-Ausnahmebetrieb veranlasst die Programmsteuerung, 
über die Vektoradresse $24 zu einer benützerdefinierten Rou- 
tine im Speicher zu wechseln. Wie alle Ausnahmezustände ver- 
anlasst auch der Trace-Ausnahmezustand das Rücksetzen des 
Trace-Bit (T = 0) und das Speichern der gegenwärtigen Inhalte 
des Programmzählers und des Statusregisters in den Überwa- 
chungsstapel. Nach der Rückkehr aus diesem Ausnahmezu- 
stand besteht der Trace-Modus weiter, wenn nicht diese Trace- 
Routine das im Stapel gesicherte T-Bit des Statusregisters 
löscht. Das T-Bit kann gelöscht werden, indem dem RTE- 
Befehl ein ANDI #$7FFF, (SP) vorangestellt wird. 
Die Trace-Routine wird normalerweise verwendet, um einen 
Ausdruck der Registerinhalte nach jedem Befehl .zu erhalten. 
Abhängig von der Programmierart kann die Trace-Routine 

auch andere wichtige Parameter, wie zum Beispiel die Ausfüh- 
rungszeit jedes Befehls, ausdrucken. 
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Der Trace-Modus stellt auch einen einfachen Weg dar, in einem 
System «breakpoints» einzuführen. Dies kann gemacht werden, 
indem die im Stapel geretteten Adressen (durch den Trace-Aus- 
nahmezustand) mit einer Breakpoint-Adressentabelle vergli- 
chen werden. Wenn die Adressen gleich sind, kann der Inhalt 
der Register angezeigt oder ausgedruckt werden. Andernfalls 
würde der 68000 einfach aus dem Trace-Modus zurückkehren 
und den nächsten Befehl des Programms.ausführen. 

7.4.4 Illegale Adressen 

Eine illegale Adresse ist eine ungerade numerierte Adresse, die 
sich auf einen Wort- oder Doppelwortoperanden bezieht. Sie 

wird behandelt über die Vektoradresse $0C. Eine illegale Adres- 
se kann bei jeder Art von speicherbezogenen Operationen 
erscheinen, tritt aber vor allem bei der Verwendung der komple- 
xeren Adressierungsarten auf, wie zum Beispiel Adressregister 
indirekt mit Index, in dem verschiedene Komponenten addiert 
werden, um die effektive Adresse zu erhalten. 

  

  

  

  

  

    
        

  

    

Superstatuswort 

Adressbus hoch 

Adressbus tief 

zunehmende 
Befehlsregister Adressen 

Statusregister 

Programmzähler [K) y 

Programmzähler (L) 

15 #4 3,2 ,41 09 
| | [2/3 | 7 | Funktionscode | Superstatuswort 

4 

T=0 Normal oder Gruppe 2 
Ausnahmeverarbeitung 

  

T=1 Gruppe O oder Gruppe 1 
Ausnahmeverarbeitung 
(siehe Tabelle 7.3) 

    L/S=1 lesen 

L/5=0 Schreiben 

Bei Ausnahmezustand «illegale Adresse» (und auch einer 
extern erzeugten Ausnahme, Busfehler) bringt der 68000 sieben 
Worte Kontext-Information in den Überwachungsstapel. Diese 
Worte sind in Bild 7.4 dargestellt. Wie zu sehen ist, sind die 
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ersten drei Worte der Programmzahler und das Statusregister, 
gefolgt vom Befehlsregister (dem Operationswort des Befehls, 
der die illegale Adresse erzeugt hat), der illegalen Adresse selbst 
und einem «Superstatuswort». Das Superstatuswort vermittelt 
spezifische Information tiber den versuchten Speicherzugriff, 
ob Schreib- oder Lesezugriff, ob der 68000 an einer Befehlsaus- 
führung war (Normalzustand oder Ausführung eines Gruppe- 
2-Befehls) oder in der Ausführung einer Gruppe-O-oder Grup- 
pe-1-Ausnahme und dem Status des Funktionscodes beim Auf- 
treten des illegalen Zugriffs. 
Die Ausnahmegruppen sind in Tabelle 7.3 zusammengestellt. 
Wie früher erwähnt, wird der 68000 in einen Doppelbusfehler- 

fall eintreten, wenn einer der Befehle im Ausnahmezustand 
«illegale Adresse» selbst eine illegale Adresse erzeugt; der Pro- 
zessor geht damit in den Haltezustand. Ein extern erzeugter 
Busfehler (später in diesem Kapitel beschrieben), während der 
Bearbeitung des Ausnahmezustandes «illegale Adresse», wird 
ebenfalls einen Doppelbusfehler veranlassen. 

Was passiert, wenn eine ungerade Adresse unabsichtlich in den 
Vektorspeicherbereichen der illegalen Adressen ($0C...$OF) 
gespeichert wird? Wenn diese unwahrscheinliche und unglückli- 
che Situation auftritt und der 68000 zufällig einen Wort- oder 
Doppelwortspeicherzugriff an einer ungeraden Adresse ver- 

sucht, werden die folgenden Ereignisse stattfinden: 

1. Nach der Feststellung der illegalen Adresse wird der 68000 
den Ausnahmeverarbeitungszustand «illegale Adresse» initi- 
alisieren. Nach dem Übergang in den Überwachungszustand 

(S = 1), Ausschalten des Trace-Modus (T = 0) und Berech- 
nen der Vektoradresse werden sieben Worte in den Stapel 
geschrieben (Bild 7.4) und der Inhalt der durch die Vektor- 

adresse bestimmten Speicherzelle in den Programmzähler 
geladen. 

2. An diesem Punkt würde der 68000 normalerweise mit der 
Ausführung der Befehle der Ausnahmeroutine «illegale 
Adresse» beginnen. In diesem Fall hat aber der Programm- 
zähler eine ungerade Adresse erhalten. Weil diese Befehls- 
adresse ungerade ist, ist sie illegal, und der 68000 versucht 
erneut, den Ausnahmebetriebszustand «illegale Adresse» zu 
initialisieren. Das bedeutet, dass der 68000 zum Schritt 1 
zurückkehrt. 

3. Wird diese zweite aufeinanderfolgende illegale Adresse eine 
Doppelbusfehlerbedingung verursachen? Nein, weil die ille- 
gale Adresse während der Initialisierungssequenz erscheint 
und nicht in der Ausführung der Serviceroutine. Der 68000 
wird aber wiederholt Ausnahmebetriebszustände «illegale 
Adresse» initialisieren und jedesmal sieben Worte in den Sta- 
pel schreiben. 
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4. Weil die Stapel im Speicher rückwärts aufgebaut werden, 
kann irgendeines der folgenden Ereignisse diese wiederholte 
Sequenz schliesslich beenden: 

- Der 68000 gerät ausserhalb des Lese/Schreib-Speichers 
(RAM) und versucht, Information in nicht existierende Spei- 
cher oder Nur-lese-Speicher (ROM) zu bringen. Dies sollte 
externe Schaltungen veranlassen, einen Busfehler-Ausnah- 
mezustand zu initialisieren. 

— Der 68000 kann versuchen, Information in den Programm- 
speicher zu schreiben anstatt in den Datenspeicher, was 
ebenfalls einen Busfehler-Ausnahmezustand herbeiführen 
sollte. 

— Wenn der Stapel bei der Verarbeitung bis zu den tiefsten 
1024 Byte im Speicher vordringt, werden neue Werte eventu- 
ell in den Vektorzeiger «illegale Adresse» (Speicherzellen 

$0C...$0F) gespeichert. Wenn diese neue Adresse unge- 
rade ist, wird mit der vorhergehenden Sequenz fortgefahren. 
Ist sie gerade, wird der Programmzähler versuchen, an dieser 
neuen, zufälligen Adresse einen Befehl auszuführen, mit un- 
definierten Resultaten. 

— Wenn der Stapel versucht, in den Rücksetzvektor im unter- 
sten Teil des Speichers zu schreiben, sollte ein Busfehler 
erzeugt werden, weil diese Speicherzelle einzig ein Nur-lese- 
Speicher (ROM) sein kann. 

7.4.5 Illegaler Befehl 

Ein illegaler Befehl ist ein 16-Bit-Binärmuster, das nicht eines 
der legalen Operationsworte des Befehlsrepertoires des 68000 
darstellt. Es ist unnötig zu sagen, dass ein guter Assembler kein 
illegales Bitmuster erzeugen wird. Hingegen können durch Pro- 
grammierer solche Muster durch Manipulationen im Objekt- 
code erzeugt werden. 

7.4.6 Nichtimplementierte Befehle 

Die Entwurfsspezifikation für den MC 68000 enthält verschie- 
dene Befehle, die in den gegenwärtigen Produktversionen nicht 
implementiert sind. Das sind zum Beispiel Befehle für Stringma- 
nipulation, Feldmanipulation, Codeumsetzung, Fliesskomma- 

Arithmetik, Doppelwort-Multiplikation und spezielle Divisions- 
algorithmen. Motorola reservierte ungefähr 20% des totalen 
Platzes für Mikrocode, um in zukünftigen Versionen diese (oder 
vielleicht auch andere) Erweiterungen einzuführen. 
Der nicht benützte Platz im Microcode schliesst zwei von 16 
möglichen «Operationscodes» (die vier höherwertigen Bit eines 
Befehls) ein. Anstatt diese zwei nicht implementierten Opera- 
tionscodes, binär 1010 und 1111, intern unbenützt zu lassen, 
stellt Motorola eine spezielle Vektornummer im Ausnahmespei- 
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cherbereich für jeden dieser Operationscodes zur Verfügung. 
Das gibt Benützern die Möglichkeit, in ihren Programmen 
Emulationsbefehle einzufügen. Diese Befehle können entweder 
für die zukünftigen Erweiterungen zum MC 68000 vorgesehen 
werden (zum Beispiel String- oder Fliesskomma-Befehle) oder 
auch nur verschiedene praktische Funktionen für Benützeran- 
wendungen zur Verfügung stellen. 
Wie muss bei der Benützung dieser zwei nicht implementierten 
Operationscodes vorgegangen werden? Es ist ganz einfach: zur 
Benützung einer dieser Operationscodes muss einfach nur ein 
Wort im Programm eingefügt werden, dessen höchstwertige 
4 Bit den Wert $A (1010 binär) oder $F (1111 binär) aufweisen. 
Am einfachsten wird die Einfügung gemacht mit einer Konstan- 
tenanweisung (define constant) wie zum Beispiel DC $A000 
oder DC $F000. Wenn der 68000 einem Befehloperationswert 
begegnet, das mit $A oder $F beginnt, wird er es als nicht imple- 
mentierten Befehl einstufen und in eine Serviceroutine über 
Adresse $28 (für 1010) oder $2C (für 1111) eintreten. 
Als Beispiel für nicht implementierte Befehle wollen wir einen 
Satz von Fliesskomma-Befehlen emulieren, unter Benützung 
des Operationscodes 1010. Angenommen wir haben vier ver- 
schiedene Fliesskomma-Befehle: addieren, subtrahieren, multi- 
plizieren und dividieren. Im weitern nehmen wir an, dass jeder 
dieser Befehle mit zwei Datenregistern operiert, einem Quellen- 
register und einem Zielregister. Bild 7.5 zeigt das Bitformat für 
die Fliesskomma-Operationsworte. Aus dieser Darstellung 
lässt sich erkennen, dass der zu emulierende Befehl eine Fliess- 

komma-Multiplikation von D4 mal D5 mit Speicherung des 
Produktes in D5 ist. Der Weg zur Einfügung dieses Befehls in 
einem Programm führt über die Anweisung DC $AA 14. 

  

Quellenregister 
000 = DO 

114 = DF 

  Operationsfteld 
00 = Addiere 
Of =. Subtrahiere 

10 = Multipliziere 
Mt = Dividiere       Bild 7.5 

nicht benützt Bitformat der Fliesskomma- 

Zielregister Befehle   
000 = DO 

14 = DF 

Wie sieht diese Fliesskomma-Serviceroutine aus? Ein Teil die- 
ser Routine, die Befehlsdecodierungssequenz, wird im Pro- 
grammbeispiel 7.1 gezeigt. Der Routine (FLTP) sind zwei 
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Programmbeispiel 7.1: 
Routine zur Initialisierung von Fliesskomma-Mathematik 

* Diese Ausnahmeroutine wird ausgeführt, wenn der MC 68000 im Programm auf 
*einen 1010-Befehl trifft. Sie decodiert das Operationsfeld des Befehls (Bit 3 und 4) 

*und benützt diese Zahl als Index zum Sprung auf eine Fliesskomma-Additions-, 
*_Subtraktions-, -Multiplikations- oder -Divisionsroutine irgendwo im Speicher. Die 
* Register Al und DI werden benützt. 
* 

* Initialisiere 1010 Vektor 
* 

ORG $28 
DC.L FLTP 1010-Vektor zeigt auf FLTP. 

* 

ORG $1000 
FLTP MOVEA.L 2(SP),Al Programmzähleradresse nach 

1010. 
MOVE -2(A1),D1 Bringe 1010-Befehl in D1; 
MOVE D1,-(SP) Kopie im Stapel. 
ANDI# #0018,D1 Erhalte Operationsfeld 

(Bit 3,4). 
LSR #1,D1 Berechne Index (Operations- 

feld x 4). 
LEA OPADDR,AI1 Hole Adresse der Operations- 

tabelle. 
MOVEA.L 0(A1l,D1.W),Al Hole Adresse der gewünschten 

Routine 
JMP (Al) und springe zu 

OPADDR DC.L FLTPADD, FLTPSUB, FLTPMUL, FLTPDIV 
END 

  

Anweisungen vorangestellt, welche die 1010-Vektoradresse mit 
der Adresse von FLTP initialisieren. Zur Decodierung der kor- 
rekten Operation (addieren, subtrahieren, mulitplizieren oder 
dividieren), muss der Originalbefehl geholt und in ein Register 
geschrieben werden, damit die Bitnummern 3 und 4 manipuliert 
und abgefragt werden können. Der im Stapel gesicherte Pro- 
srammzählerwert kann, um zwei vermindert, zum Wiederauf- 
finden des 1010-Befehls durch Zugriff auf diesen Speicherplatz 
verwendet werden. 
Wenn das Operationswort in D1 gespeichert ist, wird eine 
Kopie davon im Stapel gesichert für die spätere Registerdeco- 
dierung durch die Additions-, Subtraktions-, Multiplikations- 
oder Divisionsroutine. Wenn das getan ist, maskiert ein ANDI- 
Befehl das Operationsfeld heraus (Bit 3 und 4) und eine Rechts- 
schiebung um ein Bit wandelt es in einen OPADDR-Tabellenin- 
dex um (entspricht einer Multiplikation mit 4). Was übrigbleibt, 
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ist das Holen der Adresse der Operationsroutine (FLTPADD, 
FLTPSUB, FLTPMUL, oder FLTPDIV) in Al und der 
Sprung zu dieser Routine. Die Adresse wird geholt mit einem 
MOVEA-Befehl unter Benützung der Adressierungsart «Pro- 
grammzähler relativ mit Index». Es ist zu bemerken, dass diese 
FLTP-Routine ganz ähnlich ist zu der Subroutine «Auswahl 
von Mehrfachbenützern», SELUSR, im Programmbeispiel 

5.10, da beide einen Eingangscode benützen zur Ableitung ei- 
nes Index in eine Konversionstabelle. Der Hauptunterschied 
besteht darin, dass SELUSR herausfinden muss, ob der Identi- 
fikationscode gültig ist, wahrend FLTP keine solche Prüfung 
durchführen muss, weil sie ein 2-Bit-Feld zur Auswahl von einer 
aus vier mathematischen Routinen decodiert. Wäre das Feld in 
FLTP drei Bit lang und nur fünf der acht möglichen Kombina- 
tionen wären gültig, müsste ebenfalls eine Gültigkeitsprüfung 
durchgeführt werden. 

7.5 Extern erzeugte Ausnahmen 

Nach Abschluss der Diskussion über intern erzeugte Ausnah- 
men werden nun Bedingungen ausserhalb des MC 68000 dar- 
gestellt, die einen Ausnahmezustand initialisieren. Es gibt 3 sol- 
che Bedingungen: Rücksetzung, Unterbrüche und Busfehler. 

7.5.1 Rücksetzung (RESET) 

Der RESET-Eingang hat die höchste Priorität aller Ausnah- 
men (siehe Tabelle 7.3) und ist bestimmt für die Systeminitiali- 
sierung und den Wiederanlauf nach schwerwiegenden Fehlern 
wie zum Beispiel Spannungsausfall. Im wesentlichen besteht die 
RESET-Funktion darin, dem 68000 mitzuteilen, dass alle in 
Ausführung stehenden Prozesse bedeutungslos sind und zu 
beenden sind. Nach Empfang des RESET-Signals fällt der 
68000 in den Überwachungsmodus (S = 1), schaltet den Trace- 
Modus aus (T = 0) und setzt die Unterbruchsmaske auf die 

höchste Ebene (Level 7), so dass kein Unterbruch diese 
RESET-Prozedur unterbrechen kann. Anders als andere Aus- 
nahmebedingungen schützt eine Rücksetzung weder den Pro- 
grammzähler noch das Statusregister. Der Vektor der Rück- 
setzbedingung ist vier Worte lang und belegt die Adressen $00 
... $07; diese Adressen müssen im Nur-lese-Speicher (ROM) 
liegen. Während des Rücksetzprozesses holt der 68000 die bei- 
den ersten Worte in den Systemstapelzeiger und die zweiten 
zwei Worte in den Programmzähler und beginnt dann die Aus- 
führung der Befehle, die durch den Programmzähler adressiert 
werden. An dieser Stelle befindet sich die K.altstart-/Warmstart- 
Routine (Stromversorgung ein/Wiederanlauf). 
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Bild 7.6 ist ein Flussdiagramm der Ausnahmeverarbeitung für 
die Rücksetzbedingung. Zu sehen ist auch, dass eine Massnah- 
me gegen einen doppelten Busfehler getroffen wird, falls ein 
Bus- oder Adressfehler während der Rücksetzbedingung auf- 
tritt. 

Start . 
Ricksetz- 
ausnahme , 

       

    
      

  

Unter br. - 

maske —- 7 

| 
Hole 

Vektor 0 

      

  

      

  illegale . 
‘Adresse oder J@_ 1 Doppel - Halt 
Bustehler Busfehler 

2 

nein 

($00... $03) 
——— SSP 

Hole 

Vektor 1 

  
      

  

      

  

      

  illegale 
Adresse oder 
Sustehley 

ja 

nein 

($04... $07) 
— PC 

Weiterver- 

arbeitung 

  

      

    

7.5.2 Unterbrüche (Interrupts) 

Leser mit Erfahrung in der Programmierung von Unterbruchs- 
Abfragesequenzen für frühere 8-Bit-Mikroprozessoren werden 
gerne vernehmen, dass der MC 68000 über eine Minicomputer- 
ähnliche Unterbruchsstruktur mit Prioritätsordnung verfügt, 
die Unterbruchsanforderungen sieben verschiedener Ebenen 
akzeptieren kann. Im weiteren können diese Unterbrüche mit 

oder ohne Vektor behandelt werden. 
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Unterbruchsprioritäten gehen von der Ebene 1 (tiefste Priorität) 
bis Ebene 7 (höchste Priorität, nicht maskierbar). Wenn ein 
externer Baustein den 68000 zu unterbrechen wünscht, deco- 
diert er die Unterbruchsebene der Unterbruchsanforderung auf 
den drei Unterbruchskontrolleitungen IPLO, IPL1 und IPL2. 
Vorausgesetzt, dass nicht eine Trace-, eine illegale Adress-, Bus- 
fehler- oder Rücksetz-Ausnahmebedingung in Ausführung 
begriffen ist, wird der 68000 den in Ausführung begriffenen 
Befehl fertig bearbeiten und dann die decodierte Prioritätsebene 
mit einer 3-Bit-Unterbruchsmaske im Statusregister vergleichen 
(siehe Bild 1.3 im Kapitel 1). 
Wenn der decodierte Wert auf den Unterbruchs-K ontrolleitun- 
gen gleich oder kleiner ist als der Wert der Unterbruchsmaske, 
wird der 68000 die Anforderung einfach ignorieren und mit der 
Abarbeitung der Befehle normal weiterfahren. (Die einzige Aus- 
nahme hier ist die Ebene 7, die eine andere Unterbruchsanforde- 
rung der Ebene 7 quittieren wird.) Wenn aber die Unterbruchs- 
anforderung einen höheren Wert als die Unterbruchsmaske auf- 
weist, wird der 68000 eine Ausnahmeverarbeitung einleiten. 
In den meisten Fällen wird die Unterbruchsbearbeitung unserer 
allgemeinen Ausnahme-Verarbeitungssequenz (Bild 7.3) folgen, 
hat aber genug zusätzliche Schritte, um ihre eigene Schritt-für- 
Schritt-Beschreibung zu rechtfertigen. Im folgenden sind die 
Schritte in der Unterbruchs-Behandlungssequenz aufgeführt 
und in Bild 7.7 dargestellt: | 

1. Nach Erhalt einer Unterbruchsanforderung genügend hoher 
Priorität rettet der 68000 den 16-Bit-Inhalt des Statusregi- 
sters in einem nichtadressierbaren, internen Register. 

2. Der 68000 geht in den Überwachungsmodus (S = 1) und ver- 

lässt den Trace-Modus (T = 0). 
3. Die Prioritatsebene des quittierten Unterbruchs (1... 7) wird 

in die Unterbruchsmaske des Statusregisters geschrieben 
und zu allen Bausteinen im System auf den Adressleitungen 
Al, A2 und A3 ausgesendet. Zur Kennzeichnung der 
Adressbusinformation als Unterbruchsquittung beansprucht 
der 68000 alle drei Funktionscodeleitungen (FCO, FC1 und 
FC2). 

4. Andiesem Punkt erwartet der 68000 die Systemantwort, ent- 
weder ein Fehlersignal (BERR) oder eines von zwei Nicht- 
fehlersignalen (VPA oder DTACK). Wenn weder VPA 
(valid peripheral address) noch DTACK (data transfer 
acknowledge) in einer vorbestimmten Zeit erscheint, sollte 
ein externes Uberwachungszeitglied einen Busfehler (BERR) 
senden, damit der 68000 weiss, dass die Unterbruchsanfor- 
derung unecht war. Ein solcher falscher Unterbruch veran- 
lasst den 68000 zur Erzeugung der Vektornummer $18. _ 

5. Wenn die Unterbruchsanforderung nicht falsch war, sind die 
gültigen Unterbruchsquittungen VPA und DTACK. Die 
Bedeutung dieser Antworten sind: 
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Bild 7.7 
Ablauf der Unterbruchs- 
verarbeitung (Interrupt) 

Unterbrechende Einheit 
decodiert /PLO...IPL2 
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(Vektoradresse) 
—> PC 

  

     
       

  

    

Wer terver- 
arbeitung 

— Bausteine, die speziell zur Unterstützung des 68000 ent- 
worfen wurden, antworten auf die Unterbruchsquittung 
durch das Plazieren einer von 192 Benützerunterbruchs- 
Vektornummern ($40 ... $FF) auf dem niedrigstwertigen 
Byte des Datenbus (DBO ... DB7) und Erzeugung von 
DTACK. 

— Friihere Bausteine wie jene, welche die 6800- und 6500- 
Familien untersttitzen, konnen keine Vektornummer aus- 
senden. Diese Bausteine antworten auf die Unterbruchs- 
quittung durch Aktivieren von VPA, was den 68000 ver- 
anlasst, die Prioritätsebene zu prüfen und eine Basisadres- 
se von $18 zu dieser Ebene zu addieren, um eine Autovek- 
tornummer zu erzeugen. Weil die Prioritätsebenen von 
1...7 gehen, liegen die Autovektornummern im Bereich von 

$19 bis $1F. 
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6. Der 68000 multipliziert nun die Vektornummern mit 4 zur 
Erzeugung einer Vektoradresse. Für einen falschen Unter- 
bruch wird die Vektoradresse $60 sein. Für Benützerunter- 
brüche liegen die Vektoradressen im Bereich von $100 bis 
$3FC. Für die Autovektoren hegen die Vektoradressen im 
Bereich von $64 (Ebene 1) bis $7C (Ebene 7). 

7. Der laufende Programmzählerwert und die intern gesicherte 
Kopie des Statusregisters werden in den Überwachungssta- 
pel geschrieben. 

8. Der 68000 lädt den Programmzähler mit dem Inhalt der 
berechneten Vektoradresse und beginnt die Ausführung der 
Unterbruchserviceroutine. 

7.5.3 Busfehler 

Aus früheren Erklärungen wissen wir, dass das Busfehlersignal 

(BERR) ein extern erzeugtes Eingangssignal ist, das dem 68000 
einen Fehler irgendwo im System anzeigt. Wir haben die folgen- 
den Anwendungen von BERR diskutiert: 

1. Allein auftretend dient BERR zur Anzeige, dass einer von 
verschiedenen Fehlern im System aufgetreten ist. Zum Bei- 
spiel kann ein Überwachungszeitglied («Watchdog») BERR 
verwenden zur Anzeige, dass ein adressierter Speicherplatz 
oder eine periphere Schaltung es unterlassen hat, ein VPA 
oder DTACK als Antwort zum 68000 zu senden. Weiter 
kann ein Speicherverwaltungsbaustein BERR verwenden 
zur Anzeige, dass das ausführende Programm einen illegalen 
Speicherzugriff versucht hat (zum Beispiel den Versuch, in 
einen Nur-lese-Speicher zu schreiben). 

2. Zusammen mit HÄLT verursacht BERR ein nochmaliges 
Ablaufen des Bus-Zyklus, mit anschliessendem Halt. 

3. Das Erscheinen von BERR während einer Gruppe-0-Aus- 
nahmeverarbeitung (Rücksetzung, illegale Adresse oder 
Busfehler) verursacht einen Doppelbusfehler, der den Pro- 
zessor in den Haltezustand bringt. 

4. BERR während einer Unterbruchsbehandlung initialisiert 
den Ausnahmefall «falscher Unterbruch» über die Vektor- 
adresse $60. 

Die Bedingung 4 (Ausführung falscher Unterbrüche) veranlasst 
den 68000 zur Speicherung des momentanen Inhalts des Pro- 
grammzählers und des Statusregisters, total drei Worte. Bedin- 
gungen 1, 2 und 3 veranlassen den 68000, sieben Worte zu 
sichern: Programmzähler, Statusregister, Befehlsregister, 
Adressbus (hoch und tief) und ein sogenanntes Superstatus- 
wort. Diese Worte sind unter dem Thema illegale Adressverar- 

beitung beschrieben (Bild 7.4 und begleitender Text im 
Abschnitt 7.4.4). 
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Wie man sehen kann, wird tatsächlich nur die Bedingung 1 dazu 
führen, dass eine Befehlsverarbeitung stattfinden wird. Das 
bedeutet, dass die Busfehler-Ausnahmebedingung mit BERR 
eingeleitet wird, wenn der 68000 Befehle im Normalmodus ver- 
arbeitet oder Ausnahmebedingungen der Gruppe 1 oder Gruppe 
2 verarbeitet, ausgenommen Unterbrüche. Busfehler-Ausnah- 
meverarbeitung veranlasst den 68000 zur internen Erzeugung 
einer Vektornummer von $02, und er initialisiert die Ausfüh- 
rung über die Vektoradresse $08. 
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8. Anschluss von Peripheriebausteinen 

Tabelle 8.1 

Peripheriebausteine für den 68000 

Im Kapitel 6 sind alle Signale beschrieben, die man benötigt, um 
periphere Bausteine richtig anzusteuern. Wir haben auch die 
zeitlichen Beziehungen zwischen den einzelnen Signalen unter- 
sucht und gezeigt, wie der 68000 mit einem asynchronen 16- 
Bit- oder einem synchronen 8-Bit-Baustein kommuniziert. Hier 
folgt eine kurze Übersicht über die Elemente, die an den 68 000 
anschliessbar sind. Dazu ein einfaches Anwendungsbeispiel. 

8.1 Peripheriebausteine der 68000er-Familie 

Die Tabelle 8.1 zeigt die 11 ersten Peripheriebausteine für den 

68000. Sie werden alle an die asynchronen Steuerleitungen des 
Mikroprozessors angeschlossen. 

  

  

Typen- Beschreibung Hersteller Zweit- 
nummer lieferant 

68120/ _ Intelligenter Peripherie- 
68121 Controller (IPC) Motorola Rockwell 
68122 Terminal-Controller 

(CTC) | Motorola - 
68230  Parallel-Schnittstelle/Timer 

(PIT) Motorola - 

68340 Doppelschnittstellen mit 
RAM (DPR) Motorola - 

68341 Gleitkomma-ROM Motorola - 
68450 DMA-Controller Hitachi Motorola, 

(DMAC) Rockwell 

68451 Speicherverwaltungs- 
einheit (MMU) Motorola Rockwell 

68540 Fehlererkennungs- 
und Korrekturbaustein 
(EDCC) Motorola - 

68560 Serieller DMA-Prozessor 
(SDMA) Motorola - 

68561 Multiprotokoll-Kommuni- 
kationskontroller(MPCC) Rockwell Motorola 
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In Kürze können bis zu 30 solche Bausteine erwartet werden. 
Dabei sind auch einige schon bestehende Schaltungen von Sig- 
netics, wie zum Beispiel 
-— 2661 programmierbare Kommunikationsschnittstelle(EPCD 

- 2652 Multi-Protokoll-Kommunikations-Controller (MPCC) 
— 2653 Polynom-Generator Checker (PGC). 

Von Motorola sind ein Hard-Disk-Controller, ein leistungsfahi- 
ger CRT-Controller, eine Multiprozessor-Schnittstelle und ein 
I/O-Prozessor geplant. Konzentrieren wir uns nun auf die in 
Tabelle 8.1 aufgeführten Bausteine: 

Der intelligente Peripherie-Controller (IPC) 68 120 ist ein viel- 
seitig einsetzbarer, anwenderprogrammierbarer I/O-Controller. 
Da er mit einem 8-Bit-Mikroprozessor 6801 aufgebaut ist, kann 
er als I/O-Prozessor oder als Hilfsprozessoreinheit in einem ver- 

teilten Prozesssystem eingesetzt werden. Dieser IPC enthält ne- 
ben der 6801-CPU auch noch 

— eine Systemschnittstelle, 
— eine serielle Kommunikationsschnittstelle, 
— 21 parallele I/O-Leitungen, 
— einen 16-Bit-Timer, 
— einen 128-K Byte-Lese/Schreib-Speicher (RAM), 
— ein ROM von 2 KByte, 
— 6 Hilfsregister. 

Der Terminal-Controller (CTC) 68122 ist ein IPC, der als 
serielles I/O-Subsystem programmiert werden kann. Mit die- 
sem können bis zu 32 Terminale an einem 68 000 angeschlossen 
werden. 
Mit dem Parallel-Schnittstellen-Timer (PIT) 68230 können 
praktisch alle Anwendungen mit parallelen Schnittstellen und 
zeitabhängigen Anforderungen realisiert werden. Er enthält 

- zwei doppelt gepufferte I/O-Schnittstellen für mehrere 
Betriebsarten, 

- eine dritte 8-Bit-Schnittstelle, 
— einen 24-Bit-Timer, 
— Logik fur priorisierte Interruptvektoren. 

Das Gleitkomma-ROM 68 341 besteht aus zwei Bausteinen, die 
dem Anwender erlauben, positionsunabhängige, «reentrante» 

Gleitkommaprogramme ablaufen zu lassen. Die Firmware des 
ROM unterstützt folgende Funktionen: 

- Addition, Subtraktion, Multiplikation, Division; 

- Quadratwurzel, Vergleiche, Absolutwert usw. 

Der DMA-Controller (DMAC) 68450 kann vier unabhängige 
DMA-Kanäle bedienen, mit welchen bis zu 4 MByte pro s wort- 
oder byteweise übertragen werden kann. 
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Tabelle 8.2 

Verfugbare 6800er-Peripherie- 

bausteine 

Die Speicherverwaltungseinheit (MMU) 68 451 berechnet alle 
Adressentranslationen und Speicherschutzfunktionen fiir den 
ganzen Speicherbereich von 16 MByte. Mit einer MMU kann 
man innerhalb des gesamten Speicherbereiches Segmente bis zu 
256 Byte hinunter definieren. Mit Hilfe der Funktionscodezeile 
des Prozessors definiert die MMU fiir jedes Segment einen logi- 
schen Adressbereich (zum Beispiel Programm- und Daten- 
bereich fiir den Uberwachungs- oder Beniitzerstatus). Sie kann 
auch einen Offset zu einer physikalischen Adresse und Spei- 
cherschutz für Segmente verarbeiten. Die MMU generiert einen 

speziellen Busfehler, falls ein nicht erlaubter Zugriff auf ein Seg- 
ment gemacht wird. 

Der Fehlererkennungs- und Korrekturbaustein (EDCC) 68 540 
korrigiert Einzelbitfehler und erkennt Doppelbitfehler sowohl in 

8-Bit- und 16-Bit-Datenbussystemen. Der EDCC kann für 
künftige Systeme direkt auf 32 Bit erweitert werden. 

Der Multi-Protokoll-Kommunikations-Controller (MPCC) 
68561 ist ein leistungsfähiger Datenkommunikationsbaustein, 
der asynchrone, bitorientierte synchrone (X.25, SDLC, 
HDLC) und byteorientierte synchrone (BISYNC und 
DDCMP) Übertragungsprotokolle verarbeiten kann. 

8.2 Peripheriebausteine der 6800er-Familie 

Viele Anwendungen brauchen die hohe Leistungsfähigkeit der 
68 000er-Peripheriebausteine nicht. Hier können zum Teil die 
günstigeren Bausteine der 6800er-und 6500er-Serie verwendet 
werden. Die Tabelle 8.2 zeigt einige gebräuchliche 6800er-Bau- 
steine. Ein jeder kann über die synchronen Steuerleitungen des 
68 000 betrieben werden (siehe Kapitel 6 der Benützeranleitung 
des MC 68 000). 

  

Typen- 
nummer Beschreibung 

MC 6821 Peripherer Schnittstellenadapter (PIA) 
MC 6840 = Programmierbarer Zeitgeber 

MC 6843 Floppy-Disk-Controller (FDC) 
MC 6845 _ Bildschirm-Controller (CRTC) 

MC 6847 Videoanzeige-Generator (VDG) 
MC 6850 Asynchrone Kommunikationsschnittstelle(ACIA) 
MC 6852 Synchrone Kommunikationsschnittstelle (SSDA) 

MC 6854 Erweiterter Datenlink-Controller (ADLC) 
MC 6859 Datensicherheitsbaustein 

MC6860 Digital-Modem (0 bis 600 Bit/s) 
MC 6862 Modulator (2400 Bit/s) 
MC 68488 Schnittstelle für den IEEE-488-Bus (GPIA) 
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Wir wollen nun untersuchen, wie der populäre Baustein 
MC 6821 (PIA) an den 68000 angeschlossen werden kann. 

8.3 Anschluss eines PIA an den 68000 

8.3.1 DerPIA 6821 

Der PIA 6821 (Peripheral Interface Adapter) hat alles Nötige, 
um einen Printer, Bildschirm, eine Tastatur, Schalttafel oder 
ähnliches an einen 6800 oder 68000 anzuschliessen. Der PIA 

kommuniziert mit dem Mikroprozessor über die Systembusse 
(Daten, Adressen, Steuerung). Er kann mit den angeschlosse- 
nen Peripheriegeräten über zwei 8-Bit-Schnittstellen, Port A 

und Port B, verkehren. Jede der 8 Leitungen der beiden Ports 
kann unabhängig von etwas anderem als Ein- oder Ausgang 
programmiert werden. 
Im PIA wird jede bidirektionale Schnittstelle (Port A und Port 
B) unterstützt durch: 

- ein Datenrichtungsregister. Jedes Bit des Datenrichtungsre- 
gisters bestimmt, ob die entsprechende Portleitung als Ein- 

gang (0) oder als Ausgang (1) programmiert wurde. 
- ein Kontrollregister, das die Interruptstatusbit eines Ports 

speichert und die internen logischen Verbindungen innerhalb 
des PIA auswählt. 

- ein Peripheriedatenregister, das Daten zwischen dem Mikro- 
prozessor und der angeschlossenen Peripherie zwischenspei- 
chert. 

— zwei Interruptsteuerleitungen, die ihre Wirkung je nach 
Inhalt des Kontrollregisters erhalten. 

Es sind sechs Register im PIA adressierbar: 

— zwei Peripheriedatenregister; 
- zwei Datenrichtungsregister; 
— zwei Kontrollregister. 

Jedes periphere Register teilt ein Speicherbyte mit einem Daten- 
richtungsregister. Somit brauchen wir nur vier (anstatt sechs) 
Adressen für den PIA. Leser, die die Eigenschaften des 6821- 

PIA nicht kennen, können diese im Datenblatt des Bausteins 
nachschlagen. 

Wie alle 8-Bit-Bausteine, kann auch der 6821-PIA Informatio- 
nen von 8 Bit parallel transferieren. Um mehr als 8 Bit zu über- 

tragen, braucht es zusätzliche Transfers, falls nur ein PIA dafür 
vorhanden ist. Da der 68000 über einen 16-Bit-Datenbus ver- 
fügt, kann er 16 Bit gleichzeitig übertragen, was mit zwei der 
oben beschriebenen PIAs möglich ist (einen für die höheren 8 
Bit und einen für die tieferen 8 Bit). 
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Bild 8.1 
Schnittstelle zwischen einem 

68 000 und zwei PIAs (6821) 

8.3.2 Schnittstelle für 16-Bit-Datentransfer 

Bild 8.1 zeigt ein Beispiel, wie zwei PIAs am Synchronbus des 
68000 angeschlossen werden können, um 16-Bit-Informatio- 
nen gleichzeitig zu übertragen. In diesem Beispiel wird ange- 
nommen, dass die 6800-Peripheriebausteine alle im Adressen- 
bereich von $FEF800 bis $FEFFOO verdrahtet sind, weil die 
gültige periphere Adresse (VPA) nur mit dem Adressenstrobe 
(AS) aktiv und dem Ausgang des 13-Eingangs-NAND 

(74LS133) logisch 0 aktiv werden kann. Im weiteren ist aus Bild 

8.1 zu lesen, dass die beiden PILAs nur selektiert werden, falls die 
Adressen A3 .... A5 logisch 1 sind. Damit sind die beiden Bau- 

steine nur im Adressenbereich $FEF838 bis $FEFFFF 
ansprechbar. Die anderen beiden Adressenbit Al und A2 der 
PIA werden für das Selektieren der internen Register wie folgt 
verwendet: 

  

A2 Al Selektiertes Register 
  

0 0 Peripherieregister A / Datenrichtungsregister A 
(PRA/DDRA) 

0 1 Kontrollregister A (CRA) 
1 0 Peripherieregister B /Datenrichtungsregister B 

(PRB/DDRB) 
1 1 Kontrollregister B (CRB) 
  

Weil jeder PIA vier Speicherbyte besetzt, brauchen die zwei 

PIAs in Bild 8.1 acht Byte (4 Worte), die vier geraden Byte fiir 
den PIA mit D8 ... D15 und die ungeraden Byte für den PLA 
mit DO ... D7. Wir wollen annehmen, dass unsere PIAs die 
Adressen $FEFF00 bis $FEFFO7 (siehe Bild 8.2) besetzen. 

3,3Kn 
! Adresse für 6800 

    

  

  

        
  

  

  

  

  

                          

  

  

  

          

      

  

3 
AS _ 

VHA | N YMA 
” | | N 

[I I) EATS 

A3 5 
Ds . 

68000 a 7$L5 138 P Sale| io NEN ES 
Mikro- AS un “ys 8 SISIN 
prozessor y? 

Ihn. U ¢ Wer + [BSges [IB sees 
75V t x Heherer PAL | Tieferer PIA 

3,3k0 Aus e927 || 8B cee 

| RESET I | 
Pe l 4 — Rie L >             

173



Anschluss von Peripheriebausteinen 
  

  

Gerade ObererPIA Unterer PIA Ungerade 

  

Adresse Adresse 

$EEFF00 PRA/DDRA PRA/DDRA _S$FEFFOI 
¢ FEFFO2 CRA CRA $ FEFF03 
$FEFF0O4 PRB/DDRB PRB/DDRB $¢ FEFF05 
$ FEFF06 CRB CRB $ FEFFO7 
  

8.3.3 Einfache 16-Bit-Transfers mit PIA 

Aus Illustrationsgründen nehmen wir an, dass die PIAs in Bild 

8.1 an zwei 16-Bit-Peripheriegeräte angeschlossen sind. Das 
Gerät, das an Port A der beiden PIAs hängt, sei nur ein Ein- 

gangsgerät (z.B. Schalterreihe). Wenn dieses Gerät ein Daten- 
wort an Port A beider PIAs angelegt hat, teilt es dies dem 68 000 
mittels eines Daten-bereit-Signales über Anschluss CAl des 
oberen PIA mit. Nachdem der 68000 das Wort in den Speicher 
gelesen hat, gibt er mit dem Signal Daten angenommen über den 
Anschluss CA2 dem Peripheriegerät bekannt, dass die Daten 
gelesen wurden. 
Das an Port B beider PIAs angeschlossene Peripheriegerät sei 
nur ein Ausgabegerät (z.B. Gruppe von LED-Anzeigen). Wenn 
das Gerät bereit ist, ein Datenwort zu empfangen, sendet es dem 
68.000 ein Signal Peripherie bereit auf Anschluss CB2 des obe- 
ren PIA. Der 68000 gibt daraufein Ausgabedatenwort auf Port 
B beider PIAs und teilt das mit dem Signal Ausgabe bereit auf 
dem Anschluss CB2 des oberen PIA dem Peripheriegerät mit. 
Bild 8.3 zeigt die eben beschriebenen Datenpfade. 

  

      
   

Eingabe- 

     
      

  

    Höherer Gerät 
PIA CBI 

6821 
CB2 

  

     
    

        

     
   

68000 

Mikro- 
prozessor     

   Ausgabe- 
- | Peripherie- 

Gerat 

PAO...PAF 

Tieferer 
PIA 

6821 

  

    

  

     

Wenn ein PIA mit dem angeschlossenen Peripheriegerät kom- 
munizieren will, muss er zuerst dafür programmiert werden. 
PIAs werden während der Systeminitialisierung als Teil einer 
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Bild 8.2 

Anordnung der PIA-Register im 

Speicher. 

Es bedeuten: PRA/DDRA = Peripherie- 
register/Datenrichtungsregister A-Seite 
CRA = Kontrollregister A-Seite (analog 
für B-Seite). 

Bild 8.3 

Anschluss zweier Peripheriegeräte 
an den Mikroprozessor 68 000 mit 

zwei PIAs 6821.
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Kaltstartroutine programmiert. Das Programmbeispiel 8.1 ist 
eine Initialisierungsroutine für zwei PIAs, wie eben beschrieben. 

Der obere PIA ist so programmiert: 
- DDRAÄ alles 0 > Port A wirkt als Eingang, 
- CRA > %00100110 ($26), Aktivierung des Handshakings 
- DDRB alles 1($FF) > PortB wirkt als Ausgang, 
- CRB> %00100110 ($ 26), Aktivierung des Handshakings. 

Danach wird der untere PIA initialisiert: 
- DDRA alles 0 > Port A wirkt als Eingang, 

- CRA > %00000100 ($04), PRA angewählt, 
— DDRB alles 1 > Port B wirkt als Ausgang, 
— CRB ~- %00000100 ($ 04), PRB angewahlt. 

  

Programmbeispiel 8.1 

PIAD EQU 
PIAC EQU 
PIBD EQU 
PIBC EQU 
* 

MOVEA. L 
* Programmiert 

MOVE. L 
MOVEP. L 

* Programmiert 
MOVE. L 
MOVEP.L 

$FEFFOO 
PIAD +2 
PIAD +4 
PIAD +6 

PIAD. AO 
den oberen PIA 

#$ 26FF26, DO 
D0,0(A0) 
den unteren PLA 

# $04FF04, DO 
D0,0(A0) 

Initialisierung von zwei PIAs 

Adresse von PRA/DDRA 
AdresevonCRA 

Adresse von PRB/DDRB 
Adresse von CRB 

_ Zeigt auf den oberen PIA 

Setzt die Parameter auf und 

sendet sie zum PIA (H) 

Setzt die Parameter auf und 

sendet sie zum PIA (L) 

  

Wenn der PIA einmal initialisiert ist, läuft der Informations- 
transfer zu und von der angeschlossenen Peripherie relativ ein- 
fach ab. Um ein einfaches 16-Bit-Wort an die Peripherie zu 

schicken, muss zuerst auf das Bereitschaftssignal der Einheit 
gewartet werden. Darauf kann das Datenwort zum peripheren 
Register B des PIA geschickt werden. Diese Sequenz ist im Pro- 

  

Programmbeispiel 8.2 
Senden eines 16-Bit-Wortes an eine periphere Einheit 

* Gibt das in DO enthaltene Wort aus. 
OUTW TST.B 

BPL.S 
MOVE 
MOVE 

PIBC 
OUTW 
DO, PIBD 
PIBD, PIBD 

Periphere Einheit bereit? 

Warte bis es soweit ist, 
dann gebe das Wort aus. 
Losche das Bereitschaftsflag. 
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grammbeispiel 8.2 dargestellt. Darin werden als Ausgabewort 
die unteren 16 Bit des Datenregisters DO verwendet. Die schein- 
bar unwirksame Instruktion MOVE PIBD,PIBD am Ende des 
Programms bewirkt mit der Lese-Operation nur das Loschen 
des peripheren Bereitschaftsflags in Bit 7 des Kontrollregisters. 
Im Beispiel 8.3 ist gezeigt, dass das Ubertragen von mehreren 
Datenwortern beinahe so einfach ist wie für eines. Dieses Pro- 
gramm schreibt den Inhalt des Registers DO regelmässig in den 
Ausgang, indem das Wort in DO nach jedem Transfer inkre- 
mentiert wird. 

  

Programmbeispiel 8.3 
Wiederholtes Inkrementieren und Ausgabe eines 16-Bit-Wortes 
* Das Ausgabewort ist ständig im DO. Es wird nach jedem Transfer inkrementiert. 

OUTDO TST.B PIBC Periphere Einheit bereit? 
BPL.S OUTDO Warte bis sie soweit ist, 
MOVE DO, PIBD dann gib das Wort aus. 
ADDQ #1,D0 Erhohe DO um 1. 
MOVE PIBD, PIBD Losche das Bereitschaftsflag 
BRA.S OUTDO und wiederhole. 

  

Das Programm im Beispiel 8.4 zeigt eine typische Eingaberou- 
tine, in der 35 Worte eingelesen und in sich folgenden Speicher- 
platzen abgespeichert werden sollen. Der Transfer ist mit indi- 
rekter Adressierung und nachträglichem Inkrementieren reali- 
siert, damit die Adresse automatisch auf den nächsten Speicher- 
platz zeigt. Das Register DO ist absichtlich mit 34 anstatt 35 
initialisiert worden, weil die Abschlussinstruktion (DBF DO, 
IN35) das Programm erst terminiert, wenn DO den Inhalt -1 
und nicht O hat. 

  

Programmbeispiel 8.4 

Daten von einer peripheren Einheit lesen und abspeichern 
* Dieses Programm liest 35 Datenworte in den Speicher, wobei die jeweilige Speicher- 

* adresse in AO steht. 

MOVE.L # 34,DO Zähler in DO setzen. 
IN35 TST.B PIAC Daten bereit? 

BPL.S IN35 Warte bis es soweit ist, 
MOVE PIAD,(A0) + dann lese ein Wort. 
DBF D0,IN35 Wiederhole für 35 Wörter. 
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9. Unterstutzung fur den MC 68000 

Die Leistungsmerkmale eines Mikroprozessors, sein Preis und 
seine Verfiigbarkeit sind wichtige Faktoren ftir den Erfolg eines 
derartigen Produktes. Nicht weniger wichtig ist jedoch die gan- 
ze Unterstiitzung, die ein Anwender vom Hersteller und Liefe- 
ranten in Form von Bauelementen, fertigen Karten, leistungsfa- 
higen Entwicklungssystemen und geeigneten Softwarepaketen 
erwarten kann. Sie allein macht einen Mikroprozessor in der 
Anwendung erst «lebensfahig». Es ist Ziel dieses Kapitels, eine 
Übersicht der von Motorola erhältlichen Bausteine für den 
MC 68000 zu geben. Darüber hinaus gibt es eine ganze Reihe 
von Firmen, die den MC 68000 unterstützen, sei es durch 

«second source» der Bauteile (z.B. Thomson-Efcis, Mostek, 

Signetics/Philips), eigene Peripheriebausteine, Entwicklungssy- 
steme (GenRad), Hewlett-Packard, Philips, Tektronix usw.) 
oder durch Softwarepakete. 

9.1 M 68000 - eine Prozessorfamilie 

Mit der Einführung ihres Mikroprozessors MC 68000 im Jahr 
1979 folgte Motorola ihrem Konzept der Mikroprozessor- 
Familie, wie sie es bereits beim MC 6800 im Jahr 1974 für 8-Bit- 
Maschinen getan hatte. Im Bild 9.1 ist die Familie der 
M68000er-Mikroprozessoren dargestellt (siehe dazu auch die 

Tabelle 9.1). 

9.1.1 MC68000 

Die Mikroprozessoren MC 68000L4 bis MC 68000L12 un- 

terscheiden sich lediglich durch die Frequenz des Taktes. Das 
Modell LA arbeitet mit 4MHz, das Modell L12 mit 12 MHz. 
Im übrigen entspricht diese Gruppe von 16-Bit-Maschinen 
genau der Beschreibung in dieser Artikelfolge. 

9.1.2 MC68008 

Das Modell MC 68008 stellt eine Version des MC 68000 mit 

einem auf 8 Bit reduzierten Datenbus dar. Der MC 68008 ist 

vollständig softwarekompatibel mit dem MC 68000, sowohl im 
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Baustein- Kurzbe- Beschreibung Eigenschaften, Verwendung 

nummer zeichnung 

MC..... 

68120/ IPC Intelligent Peripheral Controller 21 parallele /O-Leitungen; Seriekanal; 

68121 Universeller, intelligenter 128 Byte RAM; 2 KByte ROM (nur 68120); 
Peripherie-Steuerbaustein 16-Bit-Zeitgeber; Semaphore-Register; externe 

| und interne Interrupts. 

68230 PIT Parallel Interface and Timer 24 I/O-Leitungen; 24-Bit-Zeitgeber; Logik fiir 
Parallel-Interface und Zeitgeber Interruptvektor-Erzeugung. 

68440 DDMA Dual Direct Memory Access Adressierbereich 16 MByte; Datenübertragung 
Controller von Speicher zu Speicher, von Speicher zu 
Steuerbaustein für direkten Peripherie, von Peripherie zu Speicher; zwei 
Speicherzugriff unabhängige Kanäle; Subset des MC68450. 

68450 DMAC Direct Memory Access Controller 4 unabhängige Kanäle; Array-Operationen; 
Steuerbaustein für direkten zwei vektorisierte Interrupts pro Kanal. 

Speicherzugriff 
68451 MMU Memory Management Unit 32 Speichersegmente mit variabler Grösse; 

Speicherverwaltungseinheit berechnet physikalische Adressen aus logischen 
Adressen mittels Funktionscode (FCO...FC2); 

schützt Speicherbereiche vor unerlaubten 
Zugriffen; unterstützt Multitasking-Betriebs- 

systeme. 

68452 BAM Bus Arbitration Module Teilt den Bus nach einem Prioritätsschema 

| Baustein für die Bussteuerung einem von bis zu 8 Bus-Mastern zu. 

68652 MPCC Multi Protocol Communications Unterstützt bitorientierte Protokolle wie 
Controller SDLC, ADCCP, HDLC, X.25; Byte- 

Steuerbaustein fiir synchronen Steuerungsprotokolle wie DDCMP, BISYNC; 
Datenverkehr Datentibertragungsgeschwindigkeit bis 

2 MBaud. 

68653 PGC Polynominal Generator Checker Erzeugt und prüft Paritätsbit; erzeugt und prüft 
Polynomerzeuger und -prüfer Prüfzeichen; für Datenübertragung zwischen 

Prozessor und synchronen und asynchronen 

Sendern und Empfängern; kompatibel mit 

MC68652 und MC68661. 
68661 EPCI Enhanced Programmable Sendet parallele Daten in serieller Form und 

Communications Interface empfängt unabhängig davon serielle Daten für 

Universeller Interfacebaustein parallele Weiterverarbeitung; Baudrate bis 

für synchrone und asynchrone 1 MBit/s; 3 verschiedene Baudratensets 

Datenübertragung (Modell A, B, C). 
68881 FPCP Floating-Point Co-Processor Leistungsfahiger Fliesskomma-Coprozessor 

Coprozessor fiir Fliesskomma- mit der Komplexität des 32-Bit-Mikro- 
arithmetik prozessors MC68020; acht 80-Bit-Register für 

Daten in Fliesskommadarstellung; umfasst 

den vorgeschlagenen IEEE-Standard und geht 

weit über diesen hinaus. 

Tabelle 9.1 
Einige neue Peripheriebausteine, speziell entwickelt für die Familie der Mikroprozessoren MC 68000 
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68 881 FPCP 

68020 

32-BIT-68000 

      

   

  

IMDC 

68450 ) DMAC 

68200 ) 16-BIT MCU 
68 008   ) 

@ 

Reduzierter Bus 68000 

MMU 68 901 MFP 

| ' 

16-BIT-yuP 

68120 ) IPC 

NO ROM 

1979 1980 ~ 1981 1982 1983 

Bild 9.1 
Die 68000-Familie (siehe dazu auch Tabelle 9.1) 

68 230 ) PI/T 68 430 ) DMAI 68440 ) DDMA 

BAM 

Quellencode wie auch im Objektcode. Er wird dadurch zur 
kostengünstigen Alternative zu grösseren Systemen, ohne auf 
die Vorteile eines ausgereiften 16/32-Bit-Konzepts zu verzich- 

ten. 

9.1.3 MC68010 

Mit der Bezeichnung «Virtual Memory Processor» stellt der 
MC 68010 eine leistungsfähige Erweiterung des Grundmodells 

MC 68000 dar. Die Erweiterung umfasst im wesentlichen drei 
Punkte: | 
- Der Prozessor speichert bei einem auftretenden Busfehlersi- 

gnal (BERR) automatisch den vollständigen Zustand ab. 
Nach Beheben des Fehlers kann der Zustand wieder automa- 

tisch hergestellt werden. 
- Der MC 68010 enthält Mechanismen zum Einsatz als virtu- 

eller Prozessor in virtuellem Speicher und übernimmt alle 
Massnahmen, die diese Technik erfordert. 
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— Verzögerte Busfehlersignale können verarbeitet werden. 
Als Anwendung dieser Eigenschaft steht die Fehlersuch- und 
-korrekturtechnik (EDAC, error detection and correction) 
im Vordergrund, die mit dem MC 68010 so gehandhabt 
wird, dass die Ausführungsgeschwindigkeit nicht beein- 
trächtigt ist, falls kein Fehler auftritt. 

9.1.4 MC68020 

Der MC 68020 steht kurz vor seiner Einführung und ist als logi- 
sche Folge des 16/32-Bit-Konzeptes der Familie ein wahrer 32- 
Bit-Prozessor. Die Möglichkeiten des MC 68000 sind hier noch 
erweitert worden, so durch einige leistungsfähige Befehle, durch 
höhere Ausführungsgeschwindigkeiten, mehr Adressierungsar- 
ten, zusätzliche Betriebssystem-Unterstützungsmechanismen, 
Cache-Speicher und neue Bustechniken. Ein Fliesskomma- 
Coprozessor MC 68881 mit acht 80-Bit-Fliesskomma-Daten- 
registern macht mit dem MC 68020 eine aussergewöhnlich lei- 

stungsfähige Prozessorgruppe. Der Coprozessor MC 68881 
erfüllt die Bedingungen der von der IEEE vorgeschlagenen 
Norm und geht weit darüber hinaus. 

9.2 Peripheriebausteine | 
9.2.1 Spezielle Bausteine der 68000er-Familie 

Peripheriebausteine, die speziell für die Mikroprozessoren aus 
der Familie 68000 entwickelt wurden, sind in der Tabelle 9.1 
aufgeführt. 

9.2.2 Weitere geeignete Bausteine 

Neben den in Tabelle 9.1 aufgeführten speziellen Peripheriebau- 
steinen sind weitere Interface-ICs erhältlich, die im Zusammen- 
hang mit dem 8-Bit-Mikrocomputer MC 6800 eingeführt wur- 
den. Ihr Anschluss an den MC 68000 erfolgt so, wie dies grund- 
sätzlich im Kapitel 8.2 für den Peripheriebaustein PIA (MC 
6821) beschrieben wurde. Die Tabelle 9.2 führt eine Reihe sol- 
cher Komponenten auf. 

9.3 Lehrsystem 

Für den Einsatz in Schulen, Instituten und Entwicklungslabora- 
torien wird ein Lehrsystem auf einer Karte mit der Bezeichnung 
.MEX 68KECB angeboten. Es stützt sich auf den MC 68000, 
beinhaltet 32 KByte RAM, ein Monitorprogramm in zwei 
ROMs zu je 8 KByte, zwei serielle Schnittstellen RS 232 mit 

Baudratensteuerung (110 bis 9600 Baud), eine Centronics- 
Druckerschnittstelle (Bild 9.2). 
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Baustein- Beschreibung Bemerkungen 

nummer | 

MC 6821 Peripheral Interface Adapter (PIA) 16 1/O-Leitungen; alle einzeln in der Richtung 
Universeller Parallel-Interface- programmierbar; 4 Handshake-Leitungen. 

baustein 
MC 6822 Industrial Interface Adapter (ITA) Wie 6821, jedoch dank «Open drain»- 

Interfacebaustein fiir die industrielle Ausgängen bis 18V belastbar und damit auch 
Umgebung CMOS-kompatibel bei 15V. 

MC 6828 Priority Interrupt Controller (PIC) 8 Interrupts; erzeugt Vektoradressen; 

Steuerbaustein für Interrupt- berücksichtigt Prioritäten. 
prioritäten | 

MC 6835 CRT-Controller (CRTC) Alphanumerische, halbgrafische und grafische 

Steuerbaustein für Bildschirme Betriebsarten; unterstützt zwei verschiedene 
Bildschirmformate. 

MC 6840 Programmable Timer (PTM) 3 unabhängige Zeitgeber mit je 16 Bit; 
Zeitgeberbaustein für Rechteckgeneratoren, Zeitverzögerungen, 

Einzelimpulse, Pulsbreitenmodulation, 
Frequenzvergleich. 

MC 6847 Video Display Generator (VDG) 
MC 6850 Asynchronous Communications Überträgt bis 1 MBit/s; für 8- und 9-Bit- 

Interface Adapter (ACIA) Übertragung; zweifach gepufferte Daten; 
Asynchroner Datenübertragungs- mit Steuerfunktionen für Modems. 
baustein(UART) 

MC 6852 Synchronous Serial Data Adapter Für bidirektionalen, synchronen Datenverkehr; 
(SSDA) bis 1,5 MHz Taktfrequenz; 3 Byte FIFO- 
Synchroner Datenübertragungs- Speicher beim Sender und Empfänger; 
baustein Modemfunktionen. 

MC 6854 Advanced Data Link Controller Interface zwischen Prozessor und Daten- 
(ADLC) kandlen der Standards ADCCP, HDLC, 

SDLC. 
MC 6859 Data Security Device Mit kryptografischem Algorithmus nach 

Baustein für Datenschutz USA -Standard DES. 
MC 6860 Digital Modem Erzeugt Modulation, Demodulation von 

seriellen Signalen für FSK (frequency shift 
keying) bis 600 Bit/s; kompatibel mit ACIA 

| (MC 6850). 
MC 6862 Digital Modulator Für 1200/2400 Bit/s. 
MC 68488 General Purpose Interface Adapter Ermöglicht Listener- und Talker-Betrieb mit 

Schnittstelle zu IEC-Bus allen Protokollvorschriften des IEC-Bus 
(IEEE 488, GPIB). 

Tabelle 9.2 
Peripheriebausteine aus der Familie des 8-Bit-Mikroprozessors MC 6800, auch geeignet für den MC 68000 
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Bild 9.2 
Das Lehrsystem 
MEX68KECB ist ein 

ideales Hilfsmittel fur den 
Einstieg in das Arbeiten 

mit dem MC 68000 

Unterstützung für den MC 68 000 

Mit Hilfe des Monitorprogramms können Programme mit 

einem einfachen Zeilenassembler entwickelt und ausgetestet 
werden. Programme, die auf einem grösseren System mittels 
«Crosssoftware» entwickelt wurden, lassen sich dank eingebau- 
tem Ladeprogramm bequem in das Lehrsystem umladen. 
Das Monitorprogramm verwendet die gleiche Syntax wie 
«MACSbug», «VERSAbug» und «VMEbug», den Untersttit- 

zungsprogrammen, wie sie für die grösseren Varianten von Ent- 
wicklungssystemen erhältlich sind. 

9.4 VME-Bus 

Auf der Basis des VERSA-Bussystems, das eigens für grössere 
Anwendungen mit dem MC 68000 geschaffen wurde und für 
das eine ganze Familie von Karten mit der Bezeichnung 

  

  

Nummer Beschreibung 

MVME 101 Einplatinencomputer (MC 68000) mit seriellen 
und parallelen I/O-Leitungen 

MVME 110-1 Einplatinencomputer (MC 68000) mit 
I/O-Kanalschnittstelle 

MVME200 Speicherkarte, 64 KByte RAM mit Paritat 
MVME 201 Speicherkarte, 256 KByte RAM mit Parität 
MVME210 Speicherkarte, 128 KByte RAM/ROM 
MVME300 Controllerkarte für den GPIB (IEEE 488) 
MVME310 Universeller Peripheriecontroller 
MVME315 Diskcontroller zu SASI-Adapter (Shugart) 
MVME400 Zweifache Serieschnittstelle RS 232 
MVME410 Zweifache Parallelschnittstelle (je 16 Bit) 
MVME420 Peripherieadapter (SASI von Shugart) 
MVME435 Magnetbandadapter ftir 9 Spuren 
MVME 600 8/16 Kanäle mit analogem Eingang 

(12-Bit-Umsetzer) 
MVME 605 4K.anäle mit analogen Ausgängen 

(12-Bit-Umsetzer) 
MVME 610 Optokoppler-Eingänge für 120/240 V~ 
MVME615 Optokoppler-Ausgänge fiir 120/240 V~ mit 

Nulldurchgangsdetektor Ä 
MVME616 = Optokoppler-Ausgiange fiir 120/240 V~ 
MVME620 Optokoppler-Eingänge für 30 V- 
MVME 625 Optokoppler-Ausgänge für 30 V- 
MVME920 VME-Busplatine für 20 Einschübe 
MVME921 VME-Busplatine ftir 9 Einschübe 
MVME 922 N/O-Kanal-Busplatine für 5 Einschübe 
MVME 941 Gehäuse für 9 VME-Bus- und I/O-Kanalkarten 
  

Tabelle 9.3 _ Lieferbare VME-Bus-Karten 
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«VERSAmodule» existiert, entstand in Zusammenarbeit mit 

den Firmen Mostek, Signetics/Philips und Thomson/Efcis das 
Konzept des VME-Bus. Es handelt sich dabei um ein flexibles 
Bussystem ftir Europakarten, das speziell den Bediirfnissen des 
industriellen Bereichs (Modularität) genügt. Der VME-Bus 
zeichnet sich unter anderem durch folgende Eigenschaften aus: 

- Geeignet für Multiprozessorsysteme; 
— unterstützt Mikroprozessoren bis 32 Bit; 
— Datendurchsatz bis 20 MByte/s; 
— asynchrones, multiplexfreies Busprotokoll; 
— Busbelegung prioritätsgesteuert (4 Ebenen); 
— Interrupt-Verarbeitung zentral oder verteilt (7 Ebenen); 
— Einfach-Europakarten (100mm x 160mm) für Peripherie- 

Schnittstellen; 
— Doppel-Europakarten (233mm x 160mm) fir Prozessor-, 

Speicher- und komplexe Funktionen. 
Die oben genannten Firmen haben sich zu diesem Standardsy- 
stem verpflichtet und sind daran, eine ganze Reihe von Karten 
fiir dieses Buskonzept zu entwickeln und anzubieten. Eine 
Übersicht der bereits von Motorola erhältlichen Karten gibt die 
Tabelle 9.3. | 

9.5 Entwicklungssysteme 

Neben dem in Kapitel 9.3 erwähnten Lehrsystem bietet Moto- 
rola ein leistungsfähiges Entwicklungssystem mit modularem 
Aufbau, «EXORmacs», an, das durch einen Hardware-Ent- 
wicklungszusatz HDS 400 verbunden werden kann. Der 
Zusatz wirkt dann in einem System als Echtzeitemulator. 
Für die Beschreibung dieser Systeme wende man sich an die 
Lieferanten, ebenso für das umfangreiche Angebot an Entwick- 
lungssoftware. 
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Anhang 

Im folgenden werden einige nützliche Angaben in Tabellenform 

  

  

  

  

          

  

  

  

  

                    

aufgeführt. 

Anhang A 

MSD 0 1 2 3 4 5 6 7 
LSD 000 001 010 011 100 101 110 ll 

0 0000 NUL DLE SP 0 @ P N p 
1 0001 SOH DEI { l A Q a q 
2 0010 STX DC2 ” 2 B R b r 
3 0011 ETX DC3 # 3 C S Cc 5 
4 0100 EOT DC4 5 4 D T d t 
5 0101 ENQ NAK % 5 E U e u 

6 0110 ACK SYN & 6 F V f v 
7 0111 BEL ETB / 7 G W g w 
8 1000 BS CAN ( 8 H X h X 
9 1001 HT EM ) 9 I Y i y 
A 1010 LF SUB * : J Z j z 

B 1011 vr ESC + ; K [ k { 
C 1100 FF FS ; < L N | | 
D 1101 CR GS - = M ] m } 
E 1110 SO RS . > N A n ~ 
F hil Si US / ? 0 — 0 DEL 

Tabelle A.1 

Der ASCII-Zeichensatz ist ein 7-Bit-Code; ASCII steht fur 

«American Standard Code for Information Interchange». 

MSD =most significant digit, hoOherwertige Stelle; 
LSD =least significant digit, tieferwertige Stelle. 

Hexadezimal-Kolonne 

6 5 4 3 2 1 

HEX | DEC |HEX I DEC IHEX | DEC |HEX | DEC | HEX | DEC | HEX | DEC 

0 0 0 0 0 0 0 0 0 0 0 0 
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 4 
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2 
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3 
4 4,194,304 | 4 262,144 | 4 16,384 | 4 1.024 | 4 64 | 4 4 
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5 
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6 
7 7,340,032 | 7 458,752 | 7 28,672 | 7 1,792 | 7 112 | 7 7 
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8 
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9 
A 10,485,760 | A 655,360 | A 40,960 | A 2560 | A 160 | A 10 
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11 
C 12,582,912 Cc 786,432 C 49,152 C 3,072 Cc 192 C 12 
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13 
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14 
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15 

7654 3210 7654 3210 7654 3210 

Byte Byte Byte 

Tabelle A.2 

Umrechnungstabelle hexadezimal/dezimal 
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2n n 2° = 16° 
256 8 2* = 16' 
512 9 ° = 162 

1024 10 212 = 16? 
2 048 11 18 = 16! 
4096 12 1 4@8 
8 192 13 Su = er 

16 384 14 28 = 46) 
32 768 15 = 
65 536 16 ” = 16° 

131 072 17 23° = 16° 
262 144 18 940 = 1619 

524 288 19 a= 16" 
1 048 576 20 pat = 1617 
2 097 152 21 a= 16" 
4 194 304 22 nn . 
8 388 608 23 = 16 

16 777 216 24 2° = 16'5 

16" n 

1 0 
16 1 

256 2 
4.096 3 

65 536 4 
1 048 576 5 

16 777 216 6 
268 435 456 7 

4 294 967 296 8 
68 719 476 736 9 

1 099 511 627 776 10 
17 592 186 044 416 11 

281 474 976 710 656 12 
4 503 599 627 370 496 13 

72 057 594 037 927 936 14 
1 152 921 504 606 846 976 15 

AnhangB 

Ausführungszeiten der Befehle des MC 68000 

Dieser Anhang enthält Tabellen, die die Befehlsausführungszeit 
als Anzahl externer Taktintervalle aufführen. Um die eigent- 
liche Ausführungszeit für einen speziellen Befehl zu finden, 
muss der Wert aus der Tabelle mit dem Taktintervall des Mikro- 
prozessors multipliziert werden. 

Wenn Sie zum Beispiel einen 8-MHz-68000 benutzen, dann 
multiplizieren Sie den Wert mit 125 ns. 
Die Zeitangaben in diesen Tabellen enthalten auch die Anzahl 
der «Bus-Lese-und-Schreib-Zyklen» fiir jeden Befehl. Diese 
Information ist in Klammern gesetzt und folgt der Anzahl Takt- 
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Anhang 
  

Tabelle B.1 
Zeit fur die Berechnung 
der effektiven Adresse 

intervalle. Sie wird in der Form (L/S) dargestellt, wobei «L» die 
Anzahl von Lesezyklen und «S» die Anzahl von Schreibzyklen 

  

  

  

  

  

  

  

bedeutet. 

Adressierart 

Register 
Dn Datenregister direkt 
An Adressregister direkt 

Speicher 
An Adressregister indirekt 
An + Adressregister indirekt mit Nachinkrementierung 

An - Adressregister indirekt mit Vordekrementierung 
An (d) Adressregister indirekt mit Verschiebung 

An (d,ix)* Adressregister indirekt mit Index 

Xxx. W Absolut kurz 

xxx. L Absolut lang 
PC (d) Programmzahler mit Verschiebung 

PC (d,ix)* Programmzähler mit Index 
= XXX unmittelbar 
  

* Die Lange des Indexregisters (ix) beeinflusst die Ausfuhrungszeit nicht. 

  

  

  

  

  

                        
  

Ziel 

Quelle Dn An An@ An@+ | An@- | An@(d) | Aneid, if xxxW | xxx.L 

Dn 4(1/0) 4(1/0) 9(1/1) 9(1/1) am) | 13(2/1) | 45(21) | 13(2/1) | 17(3/1) 
An 4(1/0) 4(1/0) 9(1/1) 9(1/1) 1) | 1a) | 1521) | 49¢2/1) | 1781) 
An@ 8(2/0) ezıo) | 13(2/1) | 13(2/1) | 1a) | az) | aaa) | 1713/1) | 21(4/1) 

An@+ 8(2/0) (2/0) | 13(2/1) | 13(2/1) | ar) | 17(8/1) | 19°3/1) | 47°31) | 2174/1) 
An@- 10270) | 1210) | 45(2/1) ] 15(2/1) | 15/1) | 19°31) | 2103/1) | 19(3/1) | 23(4/1) 
An@(d) 12(3/0) | 12(3/0) | 1781) | 15(3/1) | az) | 21a) | 2%Xar1) | 2904/1) | 15(5/1) 

AN@(d, ix)* 14(3/0) | 14(3/0) | 19(3/1) | 419(3/1) | 19(3/1) | 23(4/1) | 25(4/1) | 23471) | 27(5/1) 
xxx.W 42(3/0) | 12(3/0) | 17(3/1) | 17(3/1) | 47(3/1) | 29¢4/1) | 2304/1) | 24(4/1) | 25(5/1) 
xxx.L 16(4/0) | 164410) | 24(4/1) | 21a) | 21a) | 25511) | 27(5/1) | 25(5/1) | 29(6/1) 

PC@(d) 12(3/0) | 12(3/0) | 17/1) | 17(3/1) | az) | 2974/1) | 28(471) | 24(471) | 25(5/1) 
PC@(d, ix)* 14(3/0) } 14(3/0) | 19(3/1) | 1973/1) | 19(3/1) | 23(4/1) | 25(4/1) | 23(4/1) | 27(5/1) 
XXX 8(2/0) 8210) | 4132/1) | 1321) | 13(2/1) | 17(3/1) | ar) | 17°31) | 2174/1) 

Tabelle B.2 — 

Taktintervalle für MOVE (Byte und Wort) 
* Die Länge des Indexregisters (ix) beeinflusst die Ausführungszeit nicht. 
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ziel 
Quelle Dn An An@ An@+ An@- An@(d) }| An@(d, ix) | xxx.W xxx.L 

Dn 4(1/0) 41/0) | 14172) | 14(1/2) | 160112) | 18272) | 200212) | 18212) | 22(312) 
An 4(1/0) 41/0) | 1412) | 14112) | 160112) | 18(2/2) | 20(2/2) | 18(2/2) | 22(3/2) 
An® 12(3/0) | 12(3/0) | 22(3/2) | 22312) | 221312) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2) 

An@+ 12(3/0) | 12(3/0) | 22(3/2) | 22(3/2) | 22(3/2) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2) 
An@- 14(3/0) | 14(3/0) | 24(3/2) | 24(3/2) | 24(3/2) | 28(4/2) | 30(4/2) | 28(4/2) | 32(5/2) 
An@(d) 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 35(5/2) | 30(5/2) | 34(6/2) 

AN@(d, Ix)* 18(4/0) | 18(4/0) | 28(4/2) | 28(4/2) | 28(4/2) | 32(5/2) | 34(5/2) | 32(6/2) | 36(6/2) 
xxx.W 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) | 34(6/2) 
xxx.L 20(5/0) | 20(5/0) | 30(5/2) | 304512) | 30(5/2) | 34(6/2) | 36(6/2) | 34(6/2) | 38(7/2) 

PC@(d) 16(4/0) | 16(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) | 34(6/2) 
PC@(d, Ix)* 18(4/0) | 18(4/0) | 28(4/2) | 28(4/2) | 28(4/2) | 32(5/2) | 34(5/2) | 32(5/2) | 36(6/2) 
#XXX 12(3/0) | 12(3/0) | 22(3/2) | 22(3/2) | 22(3/2) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2) 

Tabelle B.3 
Taktintervalle MOVE (Doppelwort) 
* Die Lange des Indexregisters (ix) beeinflusst die Ausführungszeit nicht. 

Befehl Grösse op <ea>, An op <ea>, Dn op Dn,<M> 

ADD Byte, Wort 8(1/0)+ 4(1/0)+ 9(1/1)+ 
Doppelwort 6(1/0)+** 6(1/0)+** 14(1/2)+ 

AND Byte, Wort _ 4(1/0)+ 9(1/1)+ 

Doppelwort — 6(1/0)+** 14(1/2)+ 
CMP Byte, Wort 6(1/0)+ 4(1/0)+ — 

Doppelwort 6(1/0)+ 6(1/0)+ - 

DIVS — - 158(1/0)+* _ 

DIVU — _ 140(1/0)+* _ 

EOR Byte, Wort ~ 4110) *** 9(1/1)+ 

Doppelwort _ 8(1/0)*** 14(1/2)+ 

MULS - - 70(1/0)+* _ 

MULU — - 70(1/0)+* _ 

OR Byte, Wort _ 4(1/0)+ 9(1/1)+ 

Doppelwort _ 6(1/0)+** 14(1/2)+ 

SUB Byte, Wort 8(1/0)+ 4(1/0)+ 9(1/1)+ 

Doppelwort 6(1/0)+** 6(1/0)+** 14(1/2)+ 

Tabelle B.4 
Taktintervalle fur arithmetische, logische und Vergleichsbefehle 

  

  
+ Addiere Zeit fiir die Berechnung der effektiven Adresse * Zeigt Maximalwert. ** Total 8 Taktintervalle fiir Befehle, wenn die 

effektive Adresse «Registerdirekt» ist. *** Die einzige verfiigbare Adressierart ist «Datenregister direkt». 
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Befehl Grösse op #, Dn op #,M op #, SR 

ADDI Byte, Wort 8(2/0) 13(2/1)+ _ 

Donpelwort 16(3/0) 22(3/2)+ _ 

ADDQ Byte, Wort 4(1/0) 9(1/1)+ _ 

Doppelwort 8(1/0) 14(1/2)+ _ 

ANDI Byte, Wort 8(2/0) 13(2/1)+ 20(3/0) 

Doppelwort 16(3/0) 22(3/2)+ _ 

CMPI Byte, Wort 8(2/0) 8(2/0)+ _ 

Doppelwort 14(3/0) 12(3/0)+ _ 

EORI Byte, Wort 8(2/0) 43(2/1)+ 20(3/0) 
Doppelwort 16(3/0) 22(3/2)+ _ 

MOVEQ Doppelwort 4(1/0) _ _ 

ORI Byte, Wort 8(2/0) 13(2/1)+ 20(3/0) 

Doppelwort 16(3/0) 22(3/2)+ _ 
SUBI Byte, Wort 8(2/0) 13(2/1)+ _ 

Doppelwort 16(3/0) 22(3/2)+ _ j 

SUBQ Byte, Wor 4(1/0) 9(1/1)+ _ 

Doppelwort 8(1/0) 14(1/2)+ = 

Tabelle B.5 

Taktintervalle für «unmittelbar»-Befehle 
+ Addiere Zeit für die Berechnung der eff. Adresse. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

Befehl Grösse Register Speicher 

CLR Byte, Wort 4(1/0) 9(1/1)+ 

Doppelwort 6(1/0) 14(1/2)+ 

NBCD Byte 6(1/0) 9(1/1)+ 

NEG Byte, Wort 4(1/0) 9(1/1)+ 

Doppelwort 6(1/0) 14(1/2)+ 

NEGX Byte, Wort 4(1/0) 9(1/1)+ 

Dopvelwort 6(1/0) 14(1/2)+ 

NOT Byte, Wort 4(1/0) 9(1/1)+ 

Doppelwort 6(1/0) 14(1/2)+ 

Scc Byte, n. erf. 4(1/0) 9(1/1)+ 

Byte, erftillt 6(1/0) 9(1/1)+ 

TAS Byte 4(1/0) 44(4/1)+ 

TST Byte, Wort 4(1/0) 4(1/0)+ 

Doppelwort 4(1/0) 4(1/0)+ 

Tabelle B.6 
Taktintervalle fur «Einfachoperanden-Befehle» 
+ Addiere Zeit fiir Berechnung der effektiven Adresse. 
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Befehl Grösse Register Speicher 
ASR, ASL Byte, Wort 6 + 2n(1/0) 9(1/1)+ 

‘Doppelwort 8 + 2n(1/0) = 

LSR, LSL Byte, Wort 6 + 2n(1/0) 9(1/1)+ 

Doppelwort 8 + 2n(1/0) - 

ROR, ROL Byte, Wort 6 + 2n(1/0) 9(1/1)+ 

Doppelwort 8 + 2n(1/0) _ 

ROXR, ROXL Byte, Wort 6 + 2n(1/0) 9(1/1)+ 

Doppelwort 8 + 2n(1/0) - 

Tabelle B.7 
Taktintervalle fur Schiebe- und Rotierbefehle 
+ Addiere Zeit fiir Berechnung der effektiven Adresse. 

2. Dynamisch Statisch 
Befehl Grosse Register| Speicher| Register] Speicher 

BCHG | Byte — 9(1/1)+ — 43(2/1)+ 

Doppelwort 8(1/0)" - 12(2/0)" - 

BCLR Byte = 9(1/1)+ - 43(2/1)+ 

Dopnelwort 10(1/0)* - 14(2/0)° - 

BSET Byte - 9(1/1)+ - 13(2/1)+ 

Doppelwort 8(1/0)* _ 12(2/0)* — 

BTST Byte _ 4(1/0)+ _ 8(2/0)+ 

Doppelwort 6(1/0) — 10(2/0) — 

Tabelle B.8 
Taktintervalle für Bitmanipulationsbefehle 
+ Addiere Zeit für die Berechnung der effektiven Adresse * Zeigt Maximalwert. 

  

  

  

  

  

  

          

Taktintervalle für Ausnahmeverarbeitung 

* Für die Unterbruchquittung werden vier Taktintervalle angenommen. 

Ausnahme Intervalle | 

Adressfehler 57(417) 

Busfehler 57(417) 

Unterbruch 47(5/3)* 

Illegaler Befehl 37(413) 
Privilegierter Bef. 37(4/3) 

Trace 37(4/3) 

Tabelle B.9 
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Trap odey Trap oder 
Verschie-| Verzweig.| Verzweig. 

Befehl | bung ausgef. n. ausgef. 

Bec Byte. I 10(1/0) 8(1/0) 

Wort 10(1/0) 12(2/0) 

BRA Byte 10(1/0) — 

Wort 10(1/0) _ 

BSR Byte 20(2/2) _ 

Wort 20(2/2) _ 

DBce richtig in 12(210) 

. falsch 10(2/0) 14(3/0 
Tabelle B.10 CHK er 

Taktintervalle für Verzweigung _ 43(9/3)+ 8(1/0)+ 
und Trap-Befehl TRAP _ 37(4/3) ~ 
+ Addiere Zeit fiir die Berechnung der TRAPV _ 37(513) 4(1/0) 
effektiven Adresse * Zeigt Maximalwert. 

Befehl |Grösse An@ An@+ An@- An@(d) | An@{d, Ix)*} xxx.W ULL PC@(d) | PC@(d, Ix)* 

JMP - 8(2/0) _ - 10(2/0) 14(3/0) 10(2/0) 12(3/0) 10(2/0) 14(3/0) 

JSR _ 18(2/2) - _ 201212) 24(2/2) 20(2/2) 22(3/2) 20(2/2) 24(2/2) 

LEA - 4(1/0) - _ 8(2/0) 12(2/0) 8(2/0) 12(3/0) 8(2/0) 12(2/0) 

PEA - 14(1/2) - _ 18(2/2) 22(2/2) 18(2/2) 22(3/2) 18(2/2) 22(2/2) 

12+4n | 12+4n ~ 16+4n | 18+4n | 16+4n | 20+4n | 16+4n | 18+4n 
MOvVEM |Wort | gino] @+no - (4+n0) | (4+ni0)| (4+n/0)} (6+no)| (+) | (4+nio) 

m-R |D'w. 12+8n | 12+8n _ 16+8n | 18+8n | 16+8n | 20+8n | 16+8n | 18+8n 
(3+2n/0) | (3 + 2n/0) _ (4 + 2n/0) | (4+2n/0) | (4+2n/0) | (5+2n/0) | (4+2ni0) | (4+ 2n/0) 

8+5n - 8+5n 12+ 5n 14+5n 12+ 5n 16+ 5n - ~ 
movem |WOrt (2in) _ (2in) (3/n) (3/n) (3in) (An) - - 

)! 8 + 10n - 8+10n | 12+10n | 14+10n | 12+10n | 16+10n - - 
a-M |D W. (2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - _ 

Tabelle B.11 

Taktintervalle fur JMP, JSR, LEA, PEA und MOVEM-Befehle 
n ist die Anzahl der verschobenen Register * Die Länge des Indexregisters (ix) beeinflusst die Befehlsausführungszeit nicht. 

  

  

  

  

  

  

  

  

            

Befenl Grösse op Dn, Dn opM,M 

ADDX Byte Wort 4(1/0) 19(3/1) 

Doppelw. 8(1/0) 32(5/2) 

CMPM Byte Wort — 12(3/0) 

Doppelw. ~ 20(5/0) 

B ort SUBX yte W 4(1/0) 19(3/1) 

Doppelw. 8(1/0) 32(5/2) 

ABCD Byte 6(1/0) 19(3/1) 

Taktintervalle fur Befehle SBCD Byte 6(1/0) 19(3/1) . 

mit mehrfacher Genauigkeit   
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Befehle Grösse |Register Speicher Reg. Speich.| Syeicher Reg. 

MOVE von SR - 6(1/0) 9(1/1)+ _ _ 

MOVE zu CCR _ 12(2/0) 12(2/0)+ _ _ 

MOVE zu SR _ 12(2/0) 12(2/0)+ _ _ 

MOVEP Wort = - 18(2/2) 16(4/0) 
N'wort _ _ 28(2/4) 24(6/0) 

EXG _ 6(1/0) _ _ _ 

Wort 4(1/0) _ _ _ 

EXT D' wort 4(1/0) _ _ _ 

LINX - 18(2/2) _ ~ _ 

MOVE von USP _ 4(1/0) _ _ _ 

MOVE zu USP _ 4(1/0) _ - _ 

NOP - 4(1/0) _ _ _ 

RESET - 132(1/0) _ _ _ 

RTE _ 20(5/0) _ _ _ 

RTR _ 20(5/0) _ _ _ 

RTS - 16(4/0) _ _ _ 

STOP - 4(0/0) _ _ _ 

SWAP - 4(1/0) _ _ _ 

UNLK _ 12(3/0) _ _ _ 

Tabelle B.13 
Taktintervalle weiterer Befehle 
+ addiere Zeit für die Berechnung der effektiven Adresse 

Anhang C 

Der Befehlssatz des MC 68000 

Dieser Anhang enthält drei zusammenfassende Tabellen. 
Tabelle C.1 enthält die Adressierarten des MC 68000 und 
gruppiert sie als Daten, Speicher, Steuerung oder änderbare 
Adressierarten. Sie zeigt auch die Assemblersyntax für jede Art. 
Die gleiche Tabelle ist im Kapitel 3 als Tabelle 3.4 vorhanden 
und ist hier zum schnellen Nachschlagen noch einmal wieder- 

gegeben. 

Tabelle C.2 enthält eine Zusammenstellung der Bedingungen, 
die durch die Bcc-, DBcc- und Scc-Befehle geprüft werden kön- 
nen. Diese Bedingungen erschienen bereits als Tabelle 3.15 in 

Kapitel 3. 
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Adressierungsarten Adressierungskategorien Assembler- 
Daten Speicher Steue- veränder- syntax 

rung bar 

Datenregister direkt X X Dn 
Adressregister direkt X An 
Register indirekt X X X X (An) 
Register indirekt X X x (An)+ 
nachinkrementiert 
Register indirekt X xX X -(An) 

vordekrementiert 
Register indirekt mit Verschiebung X X X X d(An) 
Register indirekt mit Index X X x X d(An.Ri) 
Absolut kurz X X X X XXXX 
Absolut lang X X X X XXXXXXXX 
Relativ mit Verschiebung X X xX d 
Relativ mit Index X X X d(Ri) 
Unmittelbar X X —XXXX 

Tabelle C.1 | 
Effektive Adressierungsarten 

Anhang «cc» Bedingung Trifft zu wenn 

EQ Gleich Z=1 
NE Nicht gleich Z=0 
MI Minus N=1 
PL Plus N=0 
* GT Grosser als Z@(N®V)=0 
*LT Kleiner als NOV=1 
*GE Grosser oder gleich N®V=0 
*LE Kleiner oder gleich Z+(N@®V)=1 
HI Hoher als C@Z=0 
LS tiefer oder gleich C+Z=1 
CS Ubertrag gesetzt C=1 

CC Übertrag gelöscht C=0 
*VS Uberlauf V=1 
*VC Kein Uberlauf V=0 

Tabelle C.2 T Immer wahr 
Bedingte Befehle E Immer falsch 

Symbole: &= UND 

+ = ODER * Zweierkomplement-Arithmetik 
® = EXKLUSIVODER |   

Die Tabelle C.3 enthalt den Befehlssatz des MC 68000 in alpha- 
betischer Ordnung. Sie ist eine Zusammenstellung der im Kapi- 
tel 3 vermittelten Information über die Befehle. Zum besseren 
Aufsuchen ist hier das Befehlsrepertoire in alphabetischer Ord- 

nung nochmals gedruckt. 
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Mnemonik Assembler Syntax Operandengrösse Erlaubte Adressierungsarten Bedingungscode 

Quelle Ziel XNZVC 

ABCD ABCD Dy,Dx 8 Dn Dn * U* U* 
ABCD -(Ay),-(Ax) 8 -(An) -(An) * U* U* 

ADD ADD <ea>,Dn 8, 16, 32 Alle (1) Dn * * ee * 
ADD Dn, <ea> 8, 16,32 Dn änderbar ee nr 

ADDA ADD <ea>,An 16, 32 Alle An -~- - - - - 

ADDI ADDI #d,<ea> 8, 16,32 #d Daten änderbar ko * 

ADDQ ADDQ #d,<ea> 8, 16, 32 #d(2) änderbar (1) ee 

ADDX ADDX Dy,Dx 8, 16, 32 Dn Dn + ee KF 
ADDX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) kr 

AND AND <ea>,Dn 8, 16, 32 Daten Dn - * * 90 0 
AND Dn,<ea> 8, 16, 32 Dn anderbar - * * 0 0 

ANDI ANDI #d,<ea> 8, 16, 32 #d Daten änderbar ~ * * Q 0 
ANDI #d,SR (3) 8,16 #d SR Er 

ASL ASL Dx,Dy 8,16, 32 Dn (4) Dn +k kk 
ASL #d,Dn 8, 16, 32 #-d (5) Dn KR 
ASL <ea> 16 Speicher änderbar se 8 

ASR ASR Dx,Dy 8, 16, 32 Dn(4) Dn + ek OF 
ASR #d,Dn 8, 16, 32 #d (5) Dn ao 
ASR <ea> 16 Speicher änderbar +e ee 

Bcc Bcc <label> 8, 16 Wenn cc, dann PC+d>PC ~ - - = - 

BCHG BCHG Dn,<ea> 8, 32 Dn Daten änderbar -~ —- * ~ KH 
BCHG #d,<ea> 8, 32 Ad Daten änderbar - - 8. - 

BCLR BCLR Dn,<ea> 8,32 Dn Daten änderbar ~ - * = - 
BCLR #d,<ea> 8, 32 #d Daten änderbar ~- * = - 

BRA BRA <label> 8, 16 PC+d>PC ~ = - 

BSET BSET Dn,<ea> 8, 32 Dn Daten änderbar - - * = - 
BSET #d,<ea> 8, 32 #d Daten änderbar -~ =- * 0. - 

BSR BSR <label> 8, 16 PC>-(SP);PC+d>PC Dn ~ - + = - 

BTST BTST Dn,<ea> 8,32 Dn Ausgenommen unmittelbare Daten - -* - - 
BTST #d,<ea> 8,32 #d Ausgenommen unmittelbare Daten un —- 

CHK CHK <ea>,Dn 16 Wenn Dn <0 oder Dn> Daten ~ * UUU 
(ea), dann TRAP 

CLR CLR <ea> 8, 16,32 Daten anderbar - 0100 

CMP CMP <ea>,Dn 8,16, 32 Alle (1) Dn - rn x 

CMPA CMPA <ea>,An 16, 32 Alle An ~ * * * * 

CMPI CMPI #d,<ea> 8, 16, 32 #d Daten änderbar -~ * * * * 

CMPM CMPM (Ay)+,(Ax)+ 8, 16, 32 (An)+ (An)+ _ * * KX 

DBcc DBcc Dn, <label> 16 Wenn cc, dann Dn-1>Dn; - = = = 
wenn Dn=-1, dann PC+d-PC 

DIVS DIVS <ea>,Dn 16 Daten Dn - * * * Q 

DIVU DIVU <ea>,Dn 16 Daten Dn - * * * 9 

EOR EOR Dn,<ea> 8, 16,32 Dn Daten änderbar - * * Q 0 

EORI EORI #d,<ea> 8, 16, 32 #d Daten änderbar - * * 0 0 
EORI #d,SR (3) 8,16 #d SR + * * * * 

EXG EXG Rx,Ry 32 Dn oder An Dn oder An - - - - = 

EXT EXT Dn 16, 32 Dn - * * 0 0 

JMP JMP <ea> <ea>>PC Kontrolle - - - - - 

JSR JSR <ea> PC>-(SP); <ea>>PC Kontrolle - - = = 

LEA LEA <ea>,An 32 Kontrolle An =... - 

LINK LINK An, #d An - 2.020 - 

LSL LSL Dx,Dy 8, 16, 32 _Dn(4) Dn erg %* 
LSL #d,Dn 8, 16, 32 #-d(5) Dn * * * QO * 
LSL <ea> 16 Speicher änderbar + * * 0 * 

LSR LSR Dx,Dy 8, 16, 32 Dn (4) Dn * Oo * 0 * 
LSR #d,Dn 8, 16, 32 #-d (5) Dn * 0 * O * 
LSR <ea> 16 Speicher änderbar * 0 * 0 * 

MOVE MOVE ea,ea 8, 16, 32 Alle (1) Daten änderbar \ - * * 0 0 
MOVE ea, CCR 16 Daten CCR + F Fe  * 
MOVE ea, SR (6) 16 Daten SR * oe eK * 
MOVE SR, ea 16 SR Daten änderbar - .-.-.-  - 
MOVE USP, An (6) 32 USP An - = - - 
MOVE An, USP (6) 32 An USP - - - =   

Tabelle C.3 

Befehlssatz des MC 68 000 in alphabetischer Ordnung 
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Mnemonik Assembler Syntax Operandengrösse Erlaubte Adressierungsarten Bedingungscode 

Quelle Ziel XNZVC 

MOVEA MOVEA <ea>,An 16, 32 Alle An - = - = - 

MOVEM MOVEM <list>,<ea> 16,32 Kontrolle änderbar oder -(An) - = = = - 
MOVEM <ea>, <list> 16,32 Kontrolle oder (An)+ - - - -- - 

MOVEP MOVEP Dx,d(Ay) 16, 32 Dn d(An) - - = = - 
MOVEP d(Ay),Dx 16, 32 d(An) Dn - - = - + 

MOVEQ MOVEQ #d,Dn 32 #d(7) Dn - * * 0 0 

MULS MULS <ea>,Dn 16 Daten Dn - * * Q 0 

MULU MULU <ea>,Dn 16 Daten Dn - * * 90 0 

NBCD NBCD <ea> 8 Daten änderbar * U* U * 

NEG NEG <ea> 8, 16, 32 Daten änderbar ak k° 

NEGX NEGX <ea> 8, 16, 32 Daten änderbar * oe * * 

NOP NOP PC+2-PC ~ - = = - 

NOT NOT <ea> 8, 16, 32 Daten änderbar - * * 90 0 

OR OR <ea>,Dn 8, 16, 32 Daten Dn - * * 0 0 
OR Dn,<ea> 8, 16, 32 Dn anderbar - * * 0 0 

ORI ORI #d, <ea> 8, 16, 32 #d Daten änderbar - * * 00 
ORI #4d,SR (3) 8, 16 #d SR ke 

PEA PEA <ea> 32 Kontrolle - > =  - 

RESET (6) RESET - - + 

ROL ROL Dx,Dy 8, 16, 32 Dn (4) Dn - * * QO * 
ROL 4d,Dn 8, 16, 32 #d (5) Dn - * * QO * 
ROL <ea> 16 Speicher änderbar - * * QO * 

ROR ROR Dx,Dy 8, 16, 32 Dn (4) Dn - * * QO * 
ROR #4d,Dn 8, 16, 32 #d (5) Dn - * * Q * 
ROR <ea> 16 Speicher änderbar - * * QO * 

ROXL ROXL Dx,Dy 8, 16, 32 Dn (4) Dn + * * QO * 
ROXL #d,Dn 8, 16, 32 #6) Dn kg * 
ROXL <ea> 6 Speicher änderbar + * * 0 * 

ROXR ROXR Dx,Dy 8, 16, 32 Dn (4) Dn * * * QO * 
ROXR #d,Dn 8, 16, 32 #(5) Dn * * * 0 * 
ROXR <ea> Speicher änderbar ** * 0 * 

RTE (6) RTE (SP)+>SP;(SP)+>PC + * Fe * 

RTR RTR (SP)+>CCR; (SP)+>PC x 

RTS RTS (SP)+>PC - - - = = 

SBCD SBCD Dy,Dx 8 Dn Dn * U* U * 
SBCD -(Ay),-(Ax) 8 -(An) -(An) * U* U * 

Scc Scc <ea> 8 Wenn cc, dann Is-(ea); Daten änderbar - = = = - 
sonst Os>(ea) 

STOP (6) STOP #d 16 #d>SR, dann STOP x 

SUB SUB <ea>,Dn 8, 16, 32 Alle (1) Dn + * * * * 
SUB Dn,<ea> 8,16, 32 Dn änderbar kn *  # 

SUBA SUBA <ea>,An 16, 32 Alle An - - = = - 

SUBI SUBI #d,<ea> 8, 16, 32 #d Daten änderbar * * ee * 

SUBQ SUBQ #d,<ea> 8, 16, 32 #d(2) änderbar (1) * * eK 

SUBX SUBX Dy,Dx 8, 16, 32 Dn Dn * * eK 
SUBX -(Ay),-(Ax) 8, 16, 32 -(An) -(An) * * KF 

SWAP SWAP Dn 16 Dn - - - - = 

TAS TAS <ea> 8 Daten änderbar - * * 0 0 

TRAP TRAP # <vector> PC>-(SP);SR>-(SP); - - - = = 
# <vector> >PC 

TRAPV TRAPV Wenn V = 1, dann TRAP - - = = = 

TST TST <ea> 8, 16, 32 Daten änderbar - * * 0 0 

UNLK UNLK An An - - - = =   

* Bedingungsbit wird beeinflusst 

Bemerkungen: 

(1) Wenn die Operationslänge Byte ist, ist die Adressierungsart «A dressregister direkt» nicht erlaubt 
(2) unmittelbarer Operand, mit einem Wert von 1b 
(3) Bei Wortoperationen ist der Befehl privilegiert 
(4) Quellendatenregister enthält den Schiebewert: 0...63, wobei der Wert 0 einen Schiebewert 64 ergibt 
(5) Daten sind der Schiebewert, 1 bis 8 
(6) Diese Operation ist privilegiert 
(8) Acht Bit unmittelbare Daten, welche vorzeichenerweitert werden zu einem 32Bit-Operanden 
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