vaszecric w o & ks w o » AMIGA

Peter Wollschlaeger

Erfolgreich starten — sicher nutzen.

WORKSHOPAMIGA

Herausgegeben von .TXT Redaktionsteam Baumann & Partner

Peter Wollschlaeger

Erfolgreich starten — sicher nutzen

Markt&Technik Verlag AG

CIP-Titelaufnahme der Deutschen Bibliothek

Wollschlaeger, Peter:

C : erfolgreich starten — sicher nutzen / Peter Wollschlaeger. —
Haar bei Miinchen : Markt-und-Technik-Verl., 1991
(Markt-&-Technik-Workshop Amiga)

ISBN 3-87791-026-2

Die Informationen in diesem Produkt werden ohne Riicksicht auf einen eventuellen Patentschutz verdffentlicht.
Warennamen werden ohne Gewihrleistung der freien Verwendbarkeit benutzt.
Bei der Zusammenstellung von Texten und Abbildungen wurde mit grofiter Sorgfalt vorgegangen.
Trotzdem konnen Fehler nicht vollstindig ausgeschlossen werden.
Verlag, Herausgeber und Autoren konnen fiir fehlerhafte Angaben und deren Folgen weder eine juristische
Verantwortung noch irgendeine Haftung iibernehmen.
Fiir Verbesserungsvorschlige und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zulidssig.

Amiga ist ein eingetragenes Warenzeichen der Commodore-Amiga Inc., USA
GFA-Basic ist ein eingetragenes Warenzeichen der GFA-Systemtechnik GmbH, Diisseldorf

ISBN 3-87791-026-2

© 1991 by Markt&Technik Verlag Aktiengesellschaft,
Hans-Pinsel-Straf3e 2, D-8013 Haar bei Miinchen/Germany
Alle Rechte vorbehalten
Einbandgestaltung: Grafikdesign Heinz Rauner
Herstellung: Wemner Leidl
Lektorat: TXT-Redaktionsteam Baumann & Partner
Dieses Produkt wurde mit Desktop-Publishing-Programmen erstellt
und auf der Linotronic 300 belichtet.
Druck: Paderborner Druck Centrum
Printed in Germany

NOOAWN —

A

2
3
A
5
5.
5.
5.
5.
5.
5.
5.
6
6.
6.
6.
6.

AN =—

C und der Amlgc

Wie Sie mit diesem Buch arbeiten

Schreibweisen

Hard- und Software-Anforderungen

Die Installation der Compiler

Anfertigen von Sicherungs- und Arbeitskopien
Installation von Aztec C auf der Festplatte
Installation von Aztec C fir zwei Diskettenlaufwerke
Installation von Aztec C fiir ein Diskettenlaufwerk
Installation von Lattice C auf der Festplatte
Installation von Lattice C fir zwei Diskettenlaufwerke
Installation von Lattice C fir ein Diskettenlaufwerk
Grundlagen im Umgang mit C-Compilern

Die Wahl des Editors

Kompilieren und Testen mit Aztec C

Kompilieren und Testen mit Lattice C

Wenn etwas nicht funktioniert

INHALTSVERZEICHNIS

Kupliel 2: 'I'uiorium . 35

2.1 Erste Sitzung: Anatomie eines C-Programms 35
2.2 Zweite Sitzung: C-Spezidlitéten fir die
Amiga-Programmierung 53
23 Dritte Sitzung: Erzeugen eines leeren Windows 70
2.4 Vierte Sitzung: Den Programmfluf3 kontrollieren 84
2.5 Finfte Sitzung: Ein-/Ausgabe und das Malprogramm 98
2.6 Sechste Sitzung: Unser Window bekommt Menis 113
27 Siebte Sitzung: Gadgets fir die Mausklicks 128
2.8 Achte Sitzung: Requester und Alerts 145
2.9 Neunte Sitzung: Und nun wird gemalt 158
2.10 Zehnte Sitzung: Daten von und zur Disk 174

3.1 Haufige Fehler und Lésungswege 191
3.2 Details zum Aztec-Compiler und Linker 196
3.3 Details zum Lattice-Compiler und Linker 198
34 (Uberlebens-)Regeln und Tips fir Programmierer 200
3.5 Kniffe, Tips und Spezialitéten 207
3.5.1 Workbench-Progromme mit lcons 208
3.5.2 Chip-Memory per eigenem Mauszeiger 209
3.5.3 Daten ins Chip-Memory legen mit AllocRemember{) 213
3.5.4 Zeichensdtze, Groflen und Stilarten 215
3.5.5 So schreibt man kompakte Programme 222
3.5.6 Compiler/Linker-Aufruf im Quelltext 224
3.5.7 Trickreiche Makros 225
3.6 Zusatz-Hardware und andere Empfehlungen 225

4.1 Die wichtigsten Standard-C-Funktionen 229
4.2 Die wichtigsten Amiga-Funkfionen 230
4.2.1 Die wichtigsten Funktionen von Intuition 230
4.2.2 Die wichtigsten Grafik-Funktionen 236
4.2.3 Die wichtigsten DOS-Funktionen 238

INHALTSVERZEICHNIS

4.3 Die wichtigsten Amiga-Datenstrukturen 240
4.4 Schnellinformation: Einige Standard-Lésungen in C 247
4.4.2 Das Mehrfachproblem und Lottozahlen 253
4.43 File-I/O in Standard-C 254
4.4.4 Die Kommandozeile, argc und *argv(] 258
4.4.5 Bindr-File-I/O 259
4.4.6 Dynamische Puffer 260

Anhqng I

Die Include-Files zum Malprogramm 263
Glossar 280
Literaturempfehlungen 287

‘Stichwortverzeichn

‘Befehlskarte

INHALTSVERZEICHNIS

Workshop — die Buchreihe fir den engagierten Computerbesitzer — wurde
nach véllig neuem Konzept entwickelt, das sowohl die Méglichkeiten
moderner Computerprogramme als auch aktuelle didaktische Methoden
beriicksichtigt. Die Aufgabenstellung: Nicht einfach die Funktionsvielfalt
eines Programmpakets zu demonstrieren, sondern vor allem die Fahigkeit
der prakfischen Umsetzung zu trainieren. Was herauskam, ist ein aus-
gefeiltes Praxiskonzept: mit fundiertem Startwissen, llustriertem Tutorium,
zahlreichen Ubungsndeen nitzlichen Tips und Knlﬂ:en Fehlerarten und
Lésungsvorschlégen sowie knappem Referenzteil.

Das Herzstiick eines Workshops ist das Tutorial. Es ist in zehn Sitzungen
organisiert und so angelegt, daf3 ein nitzliches Programmprodukt mit
allem Hintergrund-Wissen hergestellt wird. Innerhalb kiirzester Zeit sind
daher praktische, transferierbare Arbeitsergebnisse sichtbar. Dann - bei
steigender Erfahrung — bleiben Know-how und Referenz die niitzlichen
Ratgeber fir die tégliche Praxis. Workshop — die Buchreihe, die mit lhrem
Wissen und Erfahrungsschatz mitwdichst.

Der Autor Pefer Wollschlaeger — bekannt durch eine Fiille von Biichern
zum Amiga und zu anderen Computerthemen — ist einer der bekanntesten
C-Papste. Seine vielfdltigen Erfahrungen helfen thnen, mit diesem Buch
»C« wirklich zu begreifen — und Sie haben auch noch Spaf3 dabei.

Wir hoffen, daf3 lhnen dieses Buch geféllt und weiterhilft. Dennoch - es
gibt nichts, was man nicht noch verbessern kénnte. Teilen Sie uns doch
bitte lhre Meinung zu Buch und Programm mit. Sie helfen damit anderen
Lesern und uns, das Workshop-Konzept noch besser nach thren Bedirf-
nissen auszurichten. Vielen Dank.

Die Herausgeber

.TXT Redaktionsteam, Christine Baumann

VORWORT

10

Einfishrung

C ist eine Programmiersprache wie alle anderen auch. Es nicht schwie-
riger als Basic oder Pascal, viele Leute verwechseln nur etwas mitein-
ander. Einfache Aufgaben, wie sie in Basic 16sbar sind, kann man in C
genauso einfach programmieren. Schwierige Jobs, wie ein ganzes
Betriebssystem, lassen sich in Basic nicht schreiben, wohl aber in C. Ergo
ist nicht die Sprache schwieriger, sondern es sind die Aufgaben, die
damit geldst werden kdnnen.

1.1 Cund der Amiga

Daraus kénnten Sie folgern, daf3 es sich nicht lohnt, C zu lernen, wenn
man nicht vorhat, so schwierige Dinge anzugehen. Sie hétten recht, wenn
es da nicht noch den Amiga gdbe. Dessen Betriebssystem ist (hauptséich-
lich) in C geschrieben worden und — viel wichtiger — auch sein API. AP
heifit »Application Program Interface«, zu deutsch, die Schnittstelle fir
Anwenderprogramme.

Um typische Amiga-Programme mit Windows, Pull-down-Meniis und
Requestern zu schreiben oder um die Grafik-Féhigkeiten des Amiga zu
nutzen, muf3 man tber das APl auf die (im ROM) eingebauten Funktionen
zugreifen. Da diese Funktionen in C geschrieben wurden, kann man auch
in C am besten mit ihnen umgehen, so, wie man mit einem Englénder am
besten englisch spricht. C ist sozusagen die Muttersprache des Amiga.

Andere Sprachen wie Basic kénnen das APl zwar auch ansprechen,
benstigen dafiir aber einen Ubersetzer, hier von Basic nach C. Diese

11

EINFUHRUNG

12

Ubersetzer kénnen aber auch nicht alles - nicht fiir jede API-Funktion gibt
es einen Basic-Befehl — und zwingen somit den Anwender, selbst als
Dolmetscher tétig zu werden. Solche Leute miissen bekanntlich zwei
Sprachen beherrschen, hier also Basic und C.

C an sich

C an sich ist eine sehr einfache Sprache, sie kennt gerade ein gutes
Dutzend Befehle. Dazu kommen dllerdings Hunderte von Funktionen —
praktisch auch Befehle — die Sie je nach Bedarf von der Diskette nach-
laden kénnen. Was C so verddchtig macht, sind zwei Eigenschaften.

Zuerst sind da die Operatoren zu nennen. Den simplen Basic-Befehl i=i+1
kénnen Sie so auch in C schreiben. Das kénnen Sie aber auch auf i+=1
und noch weiter auf i++ kirrzen (wir werden das noch iben). Viele sol-
cher Kiirzel lassen sich in eine Zeile zwéingen, die dann schlielich so un-
ubersichtlich wird, daf3 keiner mehr durchblickt, nach drei Tagen auch
nicht mehr der Erfinder selbst. Man muf3 nicht so programmieren, und ich
werde solche Tricks im Buch vermeiden. Verraten werde ich sie dennoch.

Die zweite Eigenschaft von C ist richtig gefdhrlich. Man muf3 zwar nicht,
doch man kann in C sehr maschinennah programmieren. Wenn Sie wol-
len, kdnnen Sie den Amiga so total umkrempeln, daf alles viel besser
oder nichts mehr geht. Damit das méglich ist, fehlen in C einige Prifun-
gen, die andere Sprachen vornehmen. Gute Systeme geben zwar bei
vielen Fehlern — léngst nicht bei allen — sogenannte Warnmeldungen aus,
doch auch die kdnnen Sie einfach ignorieren. Anders ausgedriickt: Sie
haben in C dlle Freiheiten, aber dafir tragen Sie auch selbst die volle
Verantwortung. Noch ein Gleichnis: Einen Pascal-Programmierer nimmt
die Mama an die Hand und paf3t auf, daf3 ihm nichts passiert. Als C-Pro-
grammierer diirfen Sie alleine und sogar bei Rot iiber die Straf3e gehen.

Compiler, Linker und noch ein paar Begriffe

Grundsétzlich versteht ein Computer weder Basic, C noch Pascal und
auch nicht Assembler. Er versteht iberhaupt keine Programmiersprache,
sondern nur Zahlenkolonnen. Diese Zahlen sind codierte Befehle, die so-
genannte Maschinensprache. Da sich damit sehr schlecht arbeiten l&f3t,
hat man die Hochsprachen erfunden, wozu auch C zéhlt. Eine Hoch-
sprache hat wie jede andere Sprache Vokabeln und Regeln. Im Prinzip ist
die Sprache C englischer Klartext. Der Unterschied ist lediglich, dag es
nur wenige Vokabeln gibt und daf} die Regeln absolut zu beachten sind.

EINFUHRUNG

Ein C-Programm wird in dieser Hochsprache formuliert, mit einer ganz
normalen Textverarbeitung in den Computer eingetippt und schlielich auf
der Diskette gespeichert.

Jetzt muB dieser Text in die Maschinensprache — diese Zahlenkolonnen —
ibersetzt werden. Diese Aufgabe ibernimmt ein Programm mit dem
Namen Compiler. Das Ergebnis, auch Objeki-Code genannt, wird
gleichfalls auf der Disk gespeichert.

Wie schon gesagt, ist C an sich eine sehr einfache Sprache, die gerade
ein gutes Dutzend Befehle kennt. Dazu kommen dllerdings Hunderte von
Funktionen — praktisch auch Befehle —, die zusammen mit dem Compiler
geliefert werden. Einige davon — je nach Fall immer andere — braucht
jedes C-Programm. Deshalb missen diese Funktionen und der eben mit
dem Compiler erzeugte Objekt-Code zusammengebunden, d.h. gemein-
sam in einer Datei gespeichert werden. Genau diese Aufgabe iibernimmt
noch ein Programm mit dem Namen Linker. Das Ergebnis, jetzt also die
dritte Datei, ist das fertige Programm.

1.2 Wie Sie mit diesem Buch arbeiten

Das Buch besteht im wesentlichen aus vier Teilen: der Einfihrung, die Sie
gerade lesen, dem Tutorium, das einen kompletten C-Kurs beinhaltet, dem
Know-how-Teil, der |hr C-Wissen erweitert, und der Referenz, die das
Wichtigste zusammenfaf3t.

Einfihrung

Schon der Elnfuhrungsfell zelgt das grundlegende Konzepf dleses Buchs
Nach einigen grundlegenden Informationen, die Sie fiir die weitere Arbeit
brauchen, geht es sofort in die Praxis. Hier werden die Installation, der
Test und die Bedienung der Software geschildert. Die Installation wird
sehr ausfihrlich beschrieben, weil ein C-Entwicklungssystem ziemlich
komplex ist. Es reicht bei weitem nicht, nur die Disketten zu kopieren.

13

EINFUHRUNG

14

Dos Herzstuck des Buchs bl|de’r das Tu'rorlum Hler |ernen Sle in zehn
Sitzungen, wie man den Amiga in C programmiert. Das Prinzip lautet
auch hier »nach einigen grundlegenden Informationen in die Praxis«.
Daf3 dies nicht so trocken und langweilig wie in einem Lehrbuch erfolgt,
zeigt schon die Auswahl des Beispielprogramms: Ein kleines, aber feines
Malprogramm, das alle Amiga-typischen Merkmale wie Windows, Gad-
gets und Requester aufweist — ein Programmgeriist, das sich mit geringem
Aufwand auf beliebige Aufgobenste”ungen anwenden I&f3t. Einige Fra-
gen zur Selbstkontrolle und ein Ubungsteil mit sinnvollen Erweiterungen
schlief3en jede Sitzung ab.

Know-how

Im Know—how—Te|| werden dle Felnhelten der Comp||er geschlldert Oft
gemachte Fehler und was man dagegen tun kann sind auch ein Thema.
Die goldenen Regeln fiir eine erfolgreiche C-Programmierung, Kniffe, Tips
und Spezialitéten schlieffen diesen Teil ab.

Refarenz

Im Referenz—Tell fmden Sie zunachs’r die wmhhgsten C- Funkﬂonen zu IntU|-
tion, Graphics und DOS sowie die wichtigsten Amiga-Datenstrukturen.
Dann die Schnellinformation, die nach dem Motto »Wie programmiere
ich ...2« einige Standard-Lésungen in C zusammenfaf3t.

Anhang

Der Anhang enthlt alle lnclude Files des Malprogramms, das Glossar
und Literaturtips.

Befehiskarte , .
Die handliche Referenzwcur Dlnge dle man oH nachschlagen muB

EINFUHRUNG

Eine Bitte

Natirlich finde ich es ganz toll, wenn Sie sich gleich mit lhrem Amiga
dieses Buch gekauft haben, doch bitte pausieren Sie an dieser Stelle.
Bevor Sie C lernen, sollten Sie mit lhrem Amiga vertraut sein. Sie missen
die Workbench und — besonders wichtig — das CLI bzw. die Shell kennen.
Sie sollten wissen, wofir die Startup-Sequence gut ist, Directories
(Inhaltsverzeichnisse) anlegen und Dateien kopieren kénnen. Alle diese
Dinge sind in den zum Amiga gehdrenden Handbiichern gut beschrieben.

1.3 Schreibweisen

Es folgen jetzt leider einige Begriffe, die erst spdter erklért werden, doch
das Thema »Schreibweisen« muf3 hier schon angesprochen werden,
damit Sie beim Weiterlesen wissen, was das soll. Im laufenden Text —
nicht in den Listings — werden Bezeichner der Sprache C fast immer kursiv
geschrieben. Das gilt fiir

e Variablennamen, z.B. zaehler, wert]
* Funkfionsnamen, z.B. printf{), ClearMenuStrip()
e Direktiven, z.B. #define, #include

e Grof3 (versal) geschrieben werden Flags und nicht zum Standard-C
gehorende Makros, z.B. DELTAMOVE, BYTE.

Absitze kdnnen mit einem Hinweis- oder mit einem Gefahrensymbol
gekennzeichnet sein.

IS5 Ein Hinweis ist eine Empfehlung oder ein Rat. Wenn Sie ihn ignorieren oder
vergessen, passiert nicht allzuviel. Im schlimmsten Fall meldet der Compiler
einen Fehler, den Sie korrigieren miissen.

/\ Wenn dieses Symbol auftaucht, ist Gefahr im Verzug. Es gibt zum Beispiel
Tippfehler, die der Compiler nicht erkennt. Bei solchen Fehlern lauft das
Programm falsch oder stirzt ab.

15

EINFUHRUNG

16

1.4 Hard- und Software-Anforderungen

Programmentwickler unterscheiden immer zwei Computer-Systeme, ném-
lich das Entwicklungssystem — der Rechner, auf dem die Programme ent-
stehen — und die Zielmaschine. Letztere ist der Computer, auf dem die fer-
tigen Programme laufen sollen. Grundsétzlich gilt, daf3 der Entwicklungs-
rechner mindestens alle Merkmale der Zielmaschine haben sollte, doch
das ist nur die halbe Wahrheit. Es niitzt nichts, eine kleine Zielmaschine
zu definieren, nach dem Motto »weil ich nur einen kleinen Amiga habe,
schreibe ich nur kleine C-Programme«. Die Compiler selbst brauchen eine
gewisse Rechneraustattung, wenn sie verniinftig arbeiten sollen. Fehlen
diese Voraussetzungen, wird so ein System umsténdlich bedienbar und
langsam. Ein Profi kann sich da notfalls noch besser helfen als ein Ein-
steiger — ich habe auch schon mal ein paar Tage mit einem Minimum-
Amiga gearbeitet, weil mein 2000er zur Reparatur war —, doch praktisch
ergibt sich daraus eine seltsame Konsequenz:

Gerade als Einsteiger sollten Sie nicht mit einer zu schmalen Hardware-
Basis starten. Sie haben genug damit zu tun, C zu lernen. Wenn Sie sich
dann noch mit den Unzuléinglichkeiten der Hardware herumérgern, stéin-
dig Diskjockey spielen und nach jedem kleinen (oder grof3en) Fehler ewig
auf den Compiler warten miissen, dann drgern Sie sich mehr, als daf3 Sie
C lernen.

Hardware-Voraussetzungen - ,
Generell arbeiten die in diesem Buch beschriebenen C-Compiler von

Aztec und Lattice auf jedem Amiga 500, 1000, 2000 und 2500. Auf
einem 3000er habe ich sie nicht getestet.

Die ideale Hardware-Basis fir diese C-Systeme ist eine Festplatte und
wenigstens 1 Mbyte RAM. Damit kann man sehr schén arbeiten.

Wenn Sie es ganz eilig haben und sehr grofle Programme entwickeln
wollen, miissen Sie den Compiler nebst »Zubehdr« im RAM halten. Dafiir
braucht man bei Lattice C in der héchsten Ausbaustufe 2,5 Mbyte. Es wird
oft empfohlen —, auch von Lattice — bei Geldmangel eher eine RAM-Auf-
ristung als eine Festplatte zu kaufen. Dem kann ich nicht ganz zustimmen,
denn es dauert »ewig«, bis das ganze System von den Disketten in den
RAM-Speicher geladen wird, und nach so manchem Absturz wird diese
Ubung immer wieder féllig. Bei den kleineren und mittleren Programmen
dieses Buchs ist die Festplatten-Lésung im Endergebnis schneller.

EINFUHRUNG

Mit zwei Diskettenlaufwerken kann man durchaus arbeiten, dann reichen
sogar 512 Kbyte RAM. Genau das ist die von Aztec und Lattice genannte
Minimal-Konfiguration. Sie sollten jedoch bedenken, daf3 fir jeden
Durchlauf diverse Programme und Daten (Editor, Compiler, Linker,
Include-Files und Libraries) immer wieder neu von den Disketten geladen
werden miissen. Da ist es dann sehr praktisch, wenn man wenigstens
1 Mbyte RAM hat, so daf3 einige dieser Dateien im Speicher gehalten
werden kdnnen.

Rechner mit nur einem Diskettenlaufwerk werden von Aztec und Lattice
offiziell nicht unterstiitzt. Die mitgelieferten Installationsprogramme kennen
diesen Fall nicht. Ich zeige dennoch, wie Sie die Software fir diesen Fall
installieren kénnen. Diese Losungen sind aber nur fir die paar Tage
gedacht, die Sie brauchen, um lhren Amiga aufzuriisten. Wenn Sie nicht
viel mehr als 250,-- DM ausgeben wollen, empfehle ich ein zweites Dis-
kettenlaufwerk.

Software-Vorau
Amiga-seitig bendtigen Sie:

e Kickstart 1.3

* Workbench 1.3

Als Compiler empfehlen wir:

* Aztec C der Version 5.0.x
oder

* Lattice C der Version 5.0.x

raussefzunges

In beiden Féllen reicht auch die sogenannte kleine Version. Die groflen
Versionen sollten Sie nicht ohne eine Festplatte einsetzen. Beachten Sie,
daB bei Aztec C die kleine Version »Professional-System« und die grof3e
»Developer-System« heif3t.

I=" Wenn Sie noch keinen dieser beiden Compiler besitzen, lesen Sie dieses
ganze Kapitel durch. Es wird lhrer Entscheidungsfindung niitzen.

Das Buch setzt einen dieser beiden Compiler voraus. Beide haben ihre
kleinen Vor- und Nachteile, ich kann jedoch beim besten Willen nicht
sagen, daf3 der eine besser ist als der andere. Eines bleibt jedoch festzu-
stellen: Wenn der Rechner nur Diskettenlaufwerke — vielleicht sogar nur

17

EINFUHRUNG

18

eines — und wenig RAM-Speicher hat, kommt man mit Aztec C besser
zurecht. Lattice hat den besseren Editor und auch die besseren Hand-
bicher.

Grundsétzlich sind auch andere Compiler einsetzbar, sofern diese den
ANSI-Standard erfilllen. Das Buch erléutert jedoch nur die Bedienung von

Aztec C und Lattice C der Version 5.0.x. Auf Unterschiede zu den Vor-
gdnger-Versionen wird stellenweise hingewiesen.

Ich empfehle jedoch dringend, eine 5er-Version einzusetzen. Nur die
Versionen 5.0.x und hsher erfillen voll den sogenannten ANSI-Standard
(eine anerkannte amerikanische Norm) und stellen damit ein sehr moder-
nes C dar. Natirlich sollten Sie, wenn schon, dann auch das neuste C
lernen, aber »ANSI« hat noch zwei Vorteile.

1. Programme fir den alten K&R-Standard laufen auch unter ANSI C,
umgekehrt gilt das nicht (auf die Unterschiede wird in der ersten
Sitzung noch eingegangen).

2. Auch die Euten C-Compiler anderer Rechner halten sich an den
ANSI-Standard, Sie kénnen also leicht C-Programme oder Listings
auf den Amiga portieren.

1.5 Die Installation der Compiler

Die ersten Schritte sind fir beide Compiler die gleichen, némlich das
Anlegen von Sicherungs- und Arbeitskopien. Das sind zwei verschiedene
Dinge.

Zuerst kopieren Sie lhre kostbaren Originale 1:1, das ergibt die Siche-
rungskopien. Danach legen Sie die Originale gut weg und arbeiten nur
noch mit den Sicherungskopien weiter.

Als Festplattenbesitzer installieren Sie dann von den Sicherungskopien aus
das System auf der Festplatte. Die Disketten brauchen Sie erst wieder,
wenn ein Fehler auf der Festplatte zu beheben ist oder Sie Anderungen
rickgéingig machen wollen.

Wenn Sie nur Disketienlaufwerke haben, miissen Sie die Sicherungs-
kopien nochmals duplizieren. Das ergibt dann die Arbeitskopien. Dieser
Umstand ist erforderlich, weil die Arbeitskopien gedndert werden und
somit mit den Sicherungskopien nicht mehr iibereinstimmen.

EINFUHRUNG

I Wenn Sie Aztec C auf einem Amiga mit zwei Diskettenlaufwerken einsetzen
wollen, brauchen Sie von den Disketten »Aztecl« und »Aztec2« keine
Arbeitskopien zu erstellen, das erledigt das Installationsprogramm.

1.5.1 Anfertigen von Sicherungs- und Arbeitskopien

Wenn Sie eine Lattice-Diskette einlegen, wird sie sich mit einem riesigen
Disk-lcon auf der Workbench breitmachen. Leider hat das auch zur Kon-
sequenz, daf3 Sie die Disketten nicht auf der Workbench duplizieren kén-
nen. Aztec hat das Problem nicht. Dennoch wechseln Sie in beiden Féillen
in die Shell oder in das CLI, indem Sie das Shell- oder das CLI-lcon dop-
pelt anklicken. Alle weiteren Operationen laufen sowieso unter dieser
Umgebung. Fir jede Diskette wiederholen Sie die folgenden Schritte:

Stellen Sie sicher, daf3 auf den Originalen der Schreibschutz eingeschaltet
ist. Geben Sie ein:

Mit zwei Laufwerken:

diskcopy df0: dfl:

Mit einem Laufwerk:

diskcopy df0: dfo0:

Folgen Sie den Anweisungen auf dem Schirm. In diesem Dialog bedeuten:
e Source (From Disk): die Diskette, die kopiert werden soll.

e Destination (To Disk): die Diskette, auf die kopiert werden soll.

15" Der Diskcopy-Befehl kopiert auch die Namen der Disketten 1:1. Bitte &ndern
Sie diese Namen nicht. Sowohl wéhrend der Installation als auch im Betrieb
wird auf diese Namen Bezug genommen.

I Die folgenden sechs Installations-Prozeduren stellen einige, aber nicht alle
denkbaren Méglichkeiten dar. Sie sollten deshalb, nachdem Sie thren Compi-
ler fir lhre Hardware installiert haben, sich einmal die anderen Konfiguratio-
nen anschauen. Vielleicht kénnen Sie davon auch noch etwas gebrauchen.

19

EINFUHRUNG

20

1.5.2 Installation von Aztec C auf der Festplatte

Die Prozedur ist sehr einfach, hier das Kochrezept:

1.

5.

Starten Sie lhren Amiga und wechseln Sie (wenn nicht schon gesche-
hen) auf die Festplatte.

Legen Sie die Kopie von »Aztec1« in das Laufwerk DFO: ein.
Gehen Sie in das CLI und tippen Sie ein:

df0:hdinstall

Im Window SELECT LIBRARIES klicken Sie mit der Maus an:

X Small Code/Small Data
X 32-bit Integers
X MANX IEEE

Foljen Sie dem Dialogf(, der Sie im wesentlichen auffordert, nachein-
ander die anderen Disketten einzulegen.

Jetzt gibt es zwei Mdglichkeiten:

1.

Sie haben noch andere Compiler auf der Festplatte, die auch Um-
gebungsvariablen wie LIB und INCLUDE brauchen. In diesem Fall
legen Sie im s-Directory lhrer Startdiskette bzw. bei einer Autoboot-
Festplatte dort eine Textdatei dieses Inhalts an:

path "dhO:Aztec/Bin"

mset "CCTEMP=ram:"

mset "CLIB=dhO:Aztec/Lib"

mset "INCLUDE=dhO:Aztec/Include"

IS Den im Handbuch héufig erwéhnten set-Befehl gibt es nicht. Statt dessen

missen Sie mset (MANX's sef) so einsetzen, wie es die obigen Beispiele
zeigen.

Wenn Sie den Z-Editor zusammen mit der Quickfix-Compiler-Option
nutzen wollen (siehe 1.6.1, Z-Editor), fiigen Sie noch diese Zeile ein:
mset "CCEDIT=dhO:Aztec/bin/z"

Speichern Sie diese Datei unter dem Namen az. Spéter werden Sie in
das Aztec-Directory wechseln und dann execute az tippen, womit Sie
die Umgebungsvariablen von Aztec C definieren. Diese braucht das
System, um die einzelnen Dateien zu finden.

EINFUHRUNG

2. Aztec C ist lhr einziger Compiler auf der Festplatte. In diesem Falll
reicht es, die obigen vier Zeilen in lhre Startup-Sequence einzu-
tragen.

1.5.3 Installation von Aztec C fiir zwei Diskettenlavfwerke

Vorab: Zumindest bei meiner im September 1990 erworbenen Version
5.0b von Aztec C stimmt die tatséichliche Installations-Prozedur nicht mit
der im Handbuch tberein. Die beiden ersten Disketten (Aztecl und
Aztec2) sind zwar das lauffshige Entwicklungssystem, nur die Startup-
Sequence paft dafiir Gberhaupt nicht, und die Disketten sind voller als fir
den echten Betrieb nétig. Deshalb sollten Sie die mitgelieferte Installations-
Prozedur anwenden und erst danach (oder spdter) mit der Maf3schneide-
rei beginnen, wie sie im Handbuch erwéhnt wird.

Hier das Kochrezept fiir die richtige Installation:

1. Halten Sie zwei leere Disketten bereit, diese missen nicht formatiert
sein.

2. Legen Sie die Kopie von »Aztecl« in lhr Startlaufwerk (DFO:) ein.
Wenn lhr Amiga schon léuft, gehen Sie in das CLI und tippen ein:

execute df0:install

Ist lhr Amiga noch aus, starfen Sie ihn einfach mit der Diskette
»Aztec1« im Startlaufwerk (DFO:).

3. Aufdie Frage »install to hard disk2« antworten Sie mit »n (Return)«.

Auf die Frage »do you wish to read the 'read.me file'2« kénnen Sie

mit »n (Return]« antworten.

5. Auf die Frage »is your second floppy drive called df1:2« antworten
Sie mit »y (Return]«, wenn lhr zweites Laufwerk eingebaut ist. Heif3t
lhr zweites Laufwerk »DF2:« (typisch fir ein externes Laufwerk), ant-

worten Sie »n (Return J«.

6. Eine Aufforderung wie

Insert a blank disk in drive dfx:
then press <enter> and to continue

heiB3t, daf3 Sie eine leere Diskette in das Laufwerk dfx: (DF1: oder
DF2:) einlegen und dann die (Return)-Taste driicken sollen.

21

EINFUHRUNG

22

7. In dem dann erscheinenden Window SELECT LIBRARIES klicken Sie
mit der Maus an:

X Small Code/Small Data
X 32-bit Integers
X MANX IEEE

Nun folgen Sie dem weiteren Dialog. Eine Aufforderung wie

Insert Aztec Disk #2 in dfO0:
Click 'OK' to continue

heif3t, daf3 Sie die zweite Aztec-Diskette (lhre Kopie) in das Laufwerk
DFO: einlegen und dann mit der Maus auf das OK-Feld klicken sollen.

Wenn Sle mit einer Kople der ersten Dlskeh‘e (Aztec]) boofen wird dle
amerikanische Tastaturbelegung eingestellt. Um das zu &ndern, sind zwei
MaB3nahmen erforderlich.

Im Directory :devs/keymaps |6schen Sie die Datei usal und kopieren
dafiir die Datei d von lhrer Workbench-Diskette dorthin.

Mit einem Editor (zum Beispiel ED) éndern Sie die Datei startup-sequence
im s-Directory. Fiigen Sie diese Zeile ein:

:System/setmap d

Wenn Sie mehr als 512 Kbyte RAM haben, sollten Sie diesen nutzen. Um
beispielsweise die Libraries und alle Programme im C-Directory (Compiler
und Linker inklusive) in den RAM-Speicher zu bringen, muf3 der entspre-
chende Teil der Startup-Sequence so aussehen:

copy dfl:libs ram:
mset "CLIB=ram:"
copy df0:c ram:
path ram: add

Prifen Sie bitte, auf welchen Disketten sich tatsdchlich die Directories libs
und ¢ befinden, und setzen Sie die entsprechenden Namen oder Lauf-
werke ein.

I Eine alternative Losung ist mittels »resident« ab der Workbench 1.3 méglich.
Die Startup-Sequence im Abschnitt 1.5.7 zeigt die Anwendung.

EINFUHRUNG

1.5.4 Installation von Aztec C fiir ein Diskettenlavfwerk

Die Arbeit ist nicht schwierig, aber langwierig. Beginnen Sie mit der
Arbeitskopie von »Aztec1« und I8schen Sie alles, was nicht im folgenden
Directory-Listing steht. Dann kopieren Sie dlles, was noch fehlt, von
»Aztec2« auf »Aztecl«.

c (dir)

AddBuffers as
Assign cc
CD Copy
Delete Dir
Echo ed
endcli Execute
1n loadwb
Makedir mset
Path Run
Stack

System (dir)
CLI SettMap

1 (dir)
Disk-Validator Newcon-Handler
Port-Handler Ram-Handler

devs (dir)
keymaps (dir)
d
clipboards (dir)
system-configuration
s (dir)
startup-sequence
t (dir)
fonts (dir)
/* unverdndert utbernommen */

libs (dir)
c.1lib diskfont.library
icon.library info.library

version.library
include (dir)
/* unverandert uUbernommen */
Empty (dir)

Listing 1.5.1: Das Inhaltsverzeichnis von Aztec C

23

EINFUHRUNG

24

Nun missen Sie noch die Startup-Sequence im s-Directory mit einem Edi-
tor (z.B. ED) so &ndern, daf3 sie mindestens wie folgt aussieht:

addbuffers df0: 10

echo "Aztec wird vorbereitet, bitte warten..."
Stack 8000

path ram:

assign ENV: ram:

path Aztecl:system add

mset "CLIB=Aztecl:libs"

mset "INCLUDE=Aztecl:include"
mset "CCTEMP=ram:"

setmap d

echo "Fertig"

Wenn Sie den Z-Editor zusammen mit der Quickfix-Compiler-Option
nutzen wollen (siehe 1.6.1, Z-Editor), fiigen Sie noch diese Zeile ein:

mset "CCEDIT=Aztecl:c/z"
und kopieren auch noch das Z-Programm in das c-Directory.

Das Beispiel unterstellt, daf3 die Diskette »Aztec1« heif3t. Sollten Sie den
Namen gedindert haben, miissen Sie die Startup-Sequence anpassen. Das
Ergebnis ist eine bootféhige Diskette, auf der sich alles befindet, was Sie
fur die C-Entwicklung vorerst bendtigen. Wie schon gesagt: Diese Losung
ist nur fir die paar Tage gedacht, die Sie brauchen, um lhren Amiga auf-
zuristen.

Wen

Wenn Sie 1 Mbyte RAM (oder mehr) haben, kénnen Sie Teile des Systems
in den RAM-Speicher verlagern. Das folgende Beispiel ersetzt die Zeile
mset "CLIB=Aztec]:libs". Entsprechend kénnen Sie — wenn der RAM-
Speicher noch reicht — mit dem INCLUDE-Directory verfahren.

copy df0:1ibs ram:
mset "CLIB=ram:"
copy df0:c ram:
path ram: add

EINFUHRUNG

1.5.5 Installation von Lattice C avf der Festplatte

Die Prozedur ist sehr einfach, hier das Kochrezept:

1. Starten Sie lhren Amiga und wechseln Sie (wenn nicht eh schon da)
auf die Festplatte.

Legen Sie die Kopie von »Lattice_C_5.0.1« in das Laufwerk DFO: ein.
Gehen Sie in das CLI und tippen Sie ein:

execute df0:s/install hd

4. Folgen Sie dem Dialog, der Sie auffordert, nacheinander die anderen
Disﬁeﬂen einzulegen.

Jetzt gibt es zwei Méglichkeiten:

1. Sie haben noch andere Compiler auf der Festplatte, die auch Um-
gebungsvariablen wie LIB und INCLUDE brauchen. In diesem Fall
legen Sie im s-Directory lhrer Startdiskette bzw. bei einer Autoboot-
Festplatte dort eine Textdatei dieses Inhalts an:

assign LC: sys:lc/c

assign INCLUDE: sys:1lc/include
assign LIB: sys/lc/lib

assign QUAD: ram:

Speichern Sie diese Datei unter dem Namen lat. Spéiter werden Sie in
das LC-Directory wechseln und dann execute lat tippen, womit Sie die
Umgebungsvariablen von Lattice C definieren. Diese braucht das
System, um die einzelnen Dateien zu finden.

2. Lattice C ist Ihr einziger Compiler auf der Festplatte. In diesem Faill
reicht es, die obigen vier Zeilen in lhre Startup-Sequence einzu-
tragen.

1.5.6 Installation von Lattice C fiir zwei
Diskettenlaufwerke

Die beiden ersten Disketten (Lattice_C_5.0.1 und Lattice_C_5.0.2) sind

schon das laufféhige Entwicklungssystem. Lattice_C_5.0.1 gehort in das

Startlaufwerk, Lattice_C_5.0.2 in das zweite. Wenn Sie damit lhren Amiga
starten, werden automatisch die Umgebungsvariablen korrekt gesetzt.

25

EINFUHRUNG

26

Damit Sie wenigstens noch vorerst lhre Programme auf den zu 99 Prozent
vollen Disketten unterbringen kénnen, missen Sie einige Dateien [6schen
(bitte nur auf den Arbeitskopien). Auf der Disk 1 (Lattice_C_5.0.1) bieten
sich dafir an:

sys: #?info, "on Lattice C", read.me

c: Avail, List, Queue, RemRad, Rename;
weitere CLI-Befehle, die Sie
selten brauchen.

System: format, Diskcopy, #?info.

devs: narrator.device, serial.device
1: FastFileSystem
libs: translator-library

Auf der Disk 2 (Lattice_C_5.0.2) kénnen Sie im Lib-Directory diese Mathe-
matik-Libraries |6schen:

lcmieeelib
lemffp.lib
lcm881.1ib

Reicht das noch nicht, I6schen Sie auch die beiden Debug-Libraries und
dann weiter nach Gutdiinken. Fehlt Ihnen plétzlich eine Library, wird das
der Linker schon melden. Dann miissen Sie diese eben wieder auf die
Disk kopieren und dafiir eine andere l6schen. Ansonsten empfiehlt sich,
eine dritte formatierte Diskette bereitzuhalten, auf der Sie lhre Quelltexte
und Programme speichern.

Umstellung

Wenn Sie mit einer Kopie der ersten Diskette (Lattice_C_5.0.1) booten,
wird die amerikanische Tastaturbelegung eingestellt. Um das zu éndern,
sind zwei Maf3nahmen erforderlich.

Im Directory :devs/keymaps 16schen Sie die Datei usal und kopieren
dafir die Datei d von lhrer Workbench-Diskette dorthin.

Mit einem Editor (zum Beispiel ED) &ndern Sie die Datei startup-sequence
im s-Directory. Fiigen Sie als zweite Zeile ein:

:System/setmap d

Im Editor LSE bleiben dennoch + (y) und + ver-
tauscht. Sie missen daher eine Zeile mit + |6schen.

EINFUHRUNG

Wenn Sie 1 Mbyte RAM und mehr haben

Wenn Sie einen Amiga mit 1 Mbyte oder mehr RAM haben figen Sle in
der Datei install_floppy im s-Directory diese Zeilen hinzu:

resident lc:1lcl
resident 1lc:1c2
resident lc:blink

Die Texte stehen bereits in Echo-Anweisungen und missen nur noch
getindert werden. Sie erreichen damit, daf3 der Compiler und der Linker
im RAM gehalten und nicht jedesmal neu von der Diskette geladen
werden missen.

Wenn Sie einen Amiga mit 2 Mbyte oder mehr RAM-Speicher haben,
ersetzen Sie in der Datei install_floppy im s-Directory die Zeile

assign LIB: Lattice C 5.0.2:1ib
durch diese beiden Zeilen:

copy Lattice C 5.0.2:1ib ram:
assign LIB: ram:

- Damit werden dlle Libraries in die RAM-Disk kopiert, womit das System
drastisch schneller wird.

1.5.7 Installation von Lattice C fiir ein Diskettenlavfwerk

Die beiden ersten Disketten (Lattice_C_5.0.1 und Lattice_C_5.0.2) sind
schon das lauffahige Entwicklungssystem. Lattice C_5.0.1 gehort in das
Startlaufwerk, Lattice_C_5.0.2 normalerweise in das zweite Laufwerk.
Wenn lefzteres fehlt, kénnen Sie das System nur so konfigurieren, daf3 die
Programme immer abwechselnd die eine oder die andere Diskefte anfor-
dern. Dafiir missen Sie die Startup-Sequence im s-Directory mit einem
Editor (z.B. ED) so &ndern, daf3 sie in etwa wie folgt aussieht:

Auf einem Amiga mit nur 512 Kbyte RAM lassen Sie alle Resident-Befehle
weg.

27

EINFUHRUNG

echo "Lattice C wird vorbereitet, bitte warten..."
c:resident sys:c/resident

resident sys:c/assign

resident sys:c/echo

resident sys:c/path

resident sys:c/dir

resident sys:c/MakeDir

resident sys:c/cd

:SetPatch >NIL:
:AddBuffers df0: 30

:FF >NIL: -0

:cd ram:

:makedir ram:env
:makedir ram:clipboards

Q0 QO

assign CLIPS: ram:clipboards
assign ENV: ram:env

assign QUAD: RAM:

assign LC: Lattice C 5.0.1:c

assign INCLUDE: Lattice C 5.0.2:CompactH
assign LIB: Lattice C 5.0.2:1ib

path lc: add
resident lc:1lcl
resident lc:1lc2
resident lc:blink

cd dfo0:
:system/setmap d
echo "Fertig"

Listing 1.5.2: Startup-Sequence

Damit Sie wenigstens noch vorerst lhre Programme auf den zu 99 Prozent
vollen Disketten unterbringen kénnen, miissen Sie einige Dateien |5schen
(bitte nur auf den Arbeitskopien). Dazu verfahren Sie wie bei der Losung
for zwei Laufwerke (Abschnitt 1.5.6).

Wenn Sie einen Amiga mit 2 Mbyte oder mehr RAM haben, ersefzen Sie
die Zeile

28

EINFUHRUNG

assign LIB: Lattice C 5.0.2:1ib
durch diese beiden:

copy Lattice C 5.0.2:1ib ram:
assign LIB: ram:

Damit werden alle Libraries in die RAM-Disk kopiert, womit das System
drastisch schneller wird und das héufige Diskettenwechseln entfllt.

1.6 Grundlagen im Umgang mit C-Compilern

Wie Sie schon gemerkt haben, war die Installation des Compilers nebst
seinem Zubehor recht aufwendig, doch die Mihe hat sich gelohnt. Sie
kénnen das System bedienen, ohne sich darum kiimmern zu missen, auf
welchen Disketten und in welchen Directories sich die einzelnen Pro-
gramme und Daten befinden. Dennoch bleibt noch etwas zu tun.

1.6.1 Die Wahl des Editors

Wie schon gesagt, ist ein C-Programm zuerst einmal Text, den Sie mit
jedem Textprogramm oder Editor (ein anderer Name) eingeben kdnnen.
Dennoch werden Sie hauptséichlich im Editor arbeiten, hier gestalten Sie
lhr Programm. Daher sollten Sie schon auf ein Werkzeug Wert legen, mit
dem Sie gerne arbeiten.

Die erste Regel lautet: Wenn Sie einen bestimmten Editor gewohnt sind,
bleiben Sie dabei. Wenn Sie mit lhrem Lieblings-Texiverarbeitungspro-
gramm arbeiten wollen, ist das auch OK. Sie missen hierbei nur darauf
achten, daf3 der Text unformatiert (als ASCII) gespeichert wird. Im folgen-
den werden vier Editoren kurz vorgestellt, Sie haben die Qual der Wahl.

Der Amiga-Editor ED

Der Editor ED wird seit »Urzeiten« mit dem Amiga geliefert, ist in seinem
Handbuch und in zahllosen anderen Werken beschrieben und allgemein
sehr beliebt. Wenn Sie lhre C-Programme mit Hilfe von ED erstellen
wollen, ist das OK.

29

EINFUHRUNG

30

MEMACS

MEMACS ist ein Geschenk von Commodore (auf der Extras-Diskette), das
unverdientermaflen wenig bekannt ist. MEMACS ist ein Editor fir Pro-
grammierer, da er — unter vielen anderen Programmierer-Features — er-
laubt, mehrere Textdateien gleichzeitig zu bearbeiten. Gerade beim
Amiga ist das von besonderer Bedeutung, weil sich viele Dinge, wie der
Aufbau von Windows oder Menijs, in allen Programmen wiederholen. Da
ist es denn sehr prakfisch, wenn man die jeweils am besten passende
Routine aus verschiedenen anderen Programmen leicht ausschneiden und
einsetzen kann. Die Bedienung von MEMACS ist dank der Pull-down-
Menis recht einfach. Sie wird im Amiga-DOS-1.3-Benutzerhandbuch
mehr als ausfihrlich auf 38 Seiten beschrieben. Eines kommt jedoch nicht
so klar heraus, und das ist der fir Sie besonders wichtige C-Modus. Um
diese Betriebsart einzuschalten, gehen Sie so vor:

e Tippen Sie + oder wdhlen Sie Set aus dem Extras-Mend.
e Es erscheint die Frage Set what:. Geben Sie mode ein.
e Es erscheint die Frage Mode:. Geben Sie ¢ ein.

Jetzt kdnnen Sie aus dem Search-Menii Fence-match wahlen oder (Esc)+
+ tippen. Generell sucht Fence-match das néichste Auftreten
des Zeichens, auf dem der Cursor gerade steht. Besonders praktisch ist
das, wenn Sie von der offenen »{«-Klammer ausgehend die geschlossene
Klammer »}« suchen. In C werden die geschweiften Klammern sehr héufig
benstigt. Sie konnen damit leicht kontrollieren, ob die Klammern paarig
sind — eine beliebte Fehlerquelle —, aber auch schnell vom Beginn einer
Funktion an ihr Ende gelangen.

Der Z-Editor von Aztec

Der Editor mit dem kurzen Namen »Z« wird mit Aztec C geliefert. Sein
Vorteil ist die QuickFix-Option. Ist diese eingeschaltet, passiert folgendes:
Wenn Sie ein Programm kompilieren und dabei ein Fehler auftritt, wird
automatisch »Z« gestartet, der Cursor steht in der (wahrscheinlich) fehler-
haften Zeile, und die Fehlermeldung wird angezeigt. Sie kdnnen den
Fehler korrigieren, wieder den Compiler aufrufen, und das Spiel kann von
vorne beginnen.

»Z« ist eine ziemlich exakte Kopie des Unix-Editors »Vi«, woraus auch
sein Nachteil resultiert, némlich die furchtbar komplizierte Bedienung, die

EINFUHRUNG

man auf 50 englischen Handbuchseiten regelrecht pauken muf3. Wenn
Sie das mochten... Doch ich kann lhnen wirklich nicht raten, mit »Z« zu
beginnen.

Der Lattice-Screen-Editor LSE

Der Lattice-Editor LSE ist im Vergleich zu »Z« eine richtige Erholung, da
kommt Freude auf. Es handelt sich um einen Multi-Window-Editor (wie
MEMACS) mit Pull-down-Menis, iber die alle wichtigen Funktionen
erreicht werden kdnnen. Der Rest — und dlles alternativ — léuft iber
Tastenkiirzel, doch die missen Sie auch nicht lernen. Ein Druck auf die
(r1)-Taste bringt Hilfe, und mit sind Sie wieder im Text. Mit der
(ra)-Taste starten Sie den Compiler. Stellt der einen Fehler fest, wird er
angezeigt, und der Cursor steht in der fehlerhaften Zeile. Um das Pro-
gramm zu linken und zu starten, miissen Sie aber doch LSE verlassen.

Sie kénnen LSE, ohne auch nur einen Blick in das Handbuch geworfen zu
haben, sofort bedienen. Dennoch wiirde ich Ihnen raten, die rund 80
Seiten einmal durchzubldttern. LSE bietet unheimlich viele Extras.

Einen Nachteil hat auch LSE. Fir die Control-Codes gilt die amerikanische
Tastaturbelegung. Dazu missen Sie aber nur wissen, daf3 Y und Z ver-
tauscht sind und Sie fir die Blockmarkierung + (@) fir den Beginn
sowie + fir das Ende tippen miissen.

1.6.2 Kompilieren und Testen mit Aztec C

Wenn Sie ein Diskettensystem gemdf3 Abschnitt 1.5.3 oder 1.5.4 ein-
setzen, reicht es, lhren Amiga mit diesen Disketten zu starten. Die erste
Diskette (Aztec1) muf3 im Laufwerk DFO: eingelegt sein.

Arbeiten Sie mit einer Festplatte, gehen Sie in das CLI oder die Shell und
wechseln in das Aztec-Directory. Wenn Sie die path- und mset-Befehle
gemdf3 Abschnitt 1.5.2 nicht in lhre Startup-Sequence eingetragen hatten,
geben Sie jetzt ein:

execute az

Geben Sie mit einem Editor lhrer Wahl (siehe 1.6.1) folgenden Text ein,
und speichern Sie ihn unter dem Namen hallo.c.

31

EINFUHRUNG

*32

main ()

{
printf ("Hallo Welt \n");

}
Wieder im CLI, kompilieren Sie diesen Quelltext mit dem Befehl

cc hallo

Jetzt missen Sie noch linken, und zwar mit

1n hallo -lc

Damit ist das Programm erstellt. Wenn Sie jetzt hallo eingeben,
sollten Sie den Text »Hallo Welt« sehen.

1.6.3 Kompilieren und Testen mit Lattice C

Wenn Sie ein Diskettensystem gemdf3 Abschnitt 1.5.3 oder 1.5.4 ein-
seftzen, reicht es, lhren Amiga mit diesen Disketten zu starten. Die erste
Diskette (Aztec1) muf3 im Laufwerk DFO: eingelegt sein.

Arbeiten Sie mit einer Festplatte, gehen Sie in das CLI oder die Shell, und
wechseln Sie in das LC-Directory. Wenn Sie die assign-Befehle gemdf3
Abschnitt 1.5.5 nicht in lhre Startup-Sequence eingetragen hatten, geben
Sie jetzt dieses Kommando ein:

execute lat

Geben Sie mit einem Editor lhrer Wahl (siehe 1.6.1) folgenden Text ein,
und speichern Sie ihn unter dem Namen hallo.c.

void main ()

{
printf ("Hallo Welt \n");

}

Wieder im CLI, kompilieren und linken Sie diesen Quelltext mit dem
Befehl

lc -L hallo
15" Das L bei —L muB3 groB geschrieben werden.

Damit ist das Programm erstellt. Wenn Sie jetzt hallo eingeben,
sollten Sie den Text »Hallo Welt« sehen.

EINFUHRUNG

1.6.4 Wenn etwas nicht funktioniert

Zum SchluB noch einige Tips, fir den Fall, daf3 etwas nicht funktionieren
sollte.

Stellen Sie sicher, daf3 die Datei hallo.c existiert. Testen Sie das durch die
Eingabe von

type hallo.c

Wenn der Compiler einen Fehler (Error) meldet, muf ein Tippfehler vor-
liegen. Prisfen Sie anhand des Listings speziell:

¢ Folgen nach main die runden Klammern »{)«2

¢ Sind die Klammern vor und nach der printf()-Zeile geschweifte Klam-
mern (erst auf, dann zu)?

o Steht der Text innerhalb der runden Klammern von printf{) in Anfih-
rungszeichen? Endet diese Zeile mit einem Semikolon?

Wenn Programme oder Dateien nicht gefunden werden, kann das fol-
gende Griinde haben:

e Die Umgebungsvariablen sind nicht oder falsch eingestellt. Kontrollie-
ren Sie die assign-, path- und mset-Befehle gemaf3 Abschnitt 1.5 auf
Vollstaindigkeit und richtige Schreibweise. Sind diese Befehle nicht
Teil der Startup-Sequence, miissen Sie sie selbst aktivieren (execute
az bzw. execute laf).

¢ Programme oder Daten sind nicht oder in das falsche Verzeichnis
kopiert worden. Das betrifft speziell die Ein-Disketten-Lésung von
Aztec C. Kontrollieren Sie das geméf3 Abschnitt 1.5.4

IS Aus drucktechnischen Griinden wurden &fter sogenannte Stringliterale in
einer Zeile begonnen und in der néchsten fortgesetzt. Das melden die Com-
piler als Fehler. Beachten Sie deshalb unbedingt die folgende 855 Erléiuterun
g »Zeilenumbruch«

Zeilenumbruch von Stringliteralen

Ein Stringliteral ist ein Text, der in Anfihrungszeichen steht. Dieses Literal
muB in einer Zeile stehen. Zum Beispiel ist korrekt:

printf ("Das ist ein String-Literal");

33

EINFUHRUNG

34

Hingegen ist nicht korrekt

printf ("Das ist ein
String-Literal");

Die zweite Form haben wir aus drucktechnischen Griinden manchmal
wahlen missen. Wir meinen, das ist giinstiger als eine zu kleine Schrift.
Der Lattice-Compiler meldet in diesem Falll

String too long or not terminated
Aztec hingegen meldet dann gleich vier Fehler, némlich

unterminated string

need right parenthesis or comma in arg list
missing semikolon

unterminated string

Schreiben Sie solche Literale in eine Zeile, ist der Schaden behoben.

Tutorium

2.1 [Erste Sitzung: Anatomie eines C-Programms

Die Themen dieser Sitzung:

e Wie ist ein C-Programm aufgebaut?
¢ Elemente der Sprache C
e Funktionen

* Variablen

Information

Was halten Sie von einem Fahrlehrer, der einem Anfénger folgendes
sagt? »Treten Sie auf das Pedal links unten, schieben Sie die Stange nach
vorne links, lassen Sie das linke Pedal los, und trefen Sie gleichzeitig auf
das rechte.«. Wahrscheinlich. halten Sie es fir besser, erst einmal zu
erkldren, was Kupplung, Schaltung und Gaspedal sollen. Genau das pas-
siert in dieser Sitzung, zum Schluf3 fahren wir auch ein Stiick. Leider hat
die Sprache C aber viel mehr Pedale, Hebel und Schalter als ein Auto,
weshalb diese erste Fahrstunde etwas léinger davert.

35

TUTORIUM

36

Struktur eines C-Programms

Die Struktur eines C-Programm:s ist sehr einfach. Nach einem nicht unbe-
dingt erforderlichen Einleitungsteil folgen Funkfionen, Funkfionen und
nochmals Funktionen. Das ganze Programm und die Funktionen selbst
missen nach einem vorgeschriebenen Schema aufgebaut — man sagt
auch strukturiert — sein. Am einfachsten |63t sich das System anhand
eines Beispiels erkldren. Wenden wir uns also dem Listing 2.1.1 zu.

/* Hiermit beginnt ein Kommentar,
der erst endet, wenn "Stern-Strich folgt. */

#include <stdio.h> /* Ein Header-File einlesen */
int i; /* Eine Variable deklarieren */
hallo() /* Das ist eine Funktion */

{

printf ("Hallo, lieber Leser! \n");

Hier steht hdufig die Beschreibung
der dann folgenden Funktion

*/

int multipliziere(int mp, int mk)

{
int ergebnis; /* Eine lokale Variable */
ergebnis = mp * mk;
return (ergebnis) ;

}

main() /* Hier startet das Programm */

{
hallo(); /* Funktion wird aufgerufen */
i = 4711; /* Variable erhdlt Wert */
printf ("%d \n", 1); /* Variable wird ausgegeben */
i = multipliziere(3,4);
printf ("%d \n", i);
printf ("%d \n", multipliziere(3,4));

}

Listing 2.1.1: Das erste Programm enthéilt schon fast alle typischen Elemente der Sprache C

TUTORIUM

Funktionen

Eine Funktion ist ein Stiick Programm, das ausgefihrt wird, wenn man die
Funktion aufruft, d.h., den Funktionsnamen hinschreibt. Im Listing 2.1.1 ist
zum Beispiel hallof) eine Funktion. Alle C-Befehle und auch die Funktions-
aufrufe kénnen nur innerhalb von Funktionen auftauchen.

I |m Gegensatz zu Pascal sind in C Schachtelungen verboten, d.h., innerhalb
einer Funktion darf keine weitere Funktion definiert werden.

Jedes C-Programm hat mindestens eine Funktion namens main(). In dem
kleinen Programm laut Listing 2.1.1 treten auch schon fast alle weiteren
Struktur-Elemente der Sprache C auf. Nehmen wir uns diese Elemente
doch einfach einmal der Reihe nach vor.

/* Das ist ein Kommentar */

Kommentare sind erkldrende Texte, die im fertigen Programm nicht mehr
auftauchen, weil sie der Compiler einfach ignoriert. Sie sparen also
nichts, wenn Sie die Kommentare weglassen — noch nicht einmal der
Compilerlauf wird dadurch merklich schneller —, doch Sie verlieren viel,
wenn Sie darauf verzichten. Auch Profis wissen nach ein paar Monaten
nicht mehr, was sie da einst getrickst hatten, wenn sie nur den nackten
Quelltext lesen. Der Sinn einer Funktion, ihre Abhéngigkeiten, die
Bedeutung von Datenstrukturen und vieles mehr bleiben ohne Kommen-
tare unklar. Ein Kommentar beginnt mit /* und endet mit */.
Verschachtelungen sind verboten. Folglich geht das nicht:

/* Im Kommentar /* darf nicht */ noch einer sein */

/\ In einem Kommentar darf die Zeichenfolge /* stehen, und das ist die
Quelle fiir einen beliebten Fehler. Wenn Sie zum Beispiel im Listing 2.1.1
beim Kommentar »/* Variable erhalt Wert */« den AbschluB (*/) weglas-
sen, wird das folgende printf{) nicht mehr ausgefiihrt, weil erst danach der
immer noch offene Kommentar geschlossen wird.

Direktiven

Ziemlich zu Beginn von Listing 2.1.1 finden Sie die Direkfive #include
<stdio.h>. Alle Direktiven beginnen mit dem #-Zeichen. Eine Direktive ist
eine Anweisung an den Compiler. #include bedeutet, daf3 eine Textdatei
eingeschlossen (eingelesen) werden soll. Texte, die immer wieder
gebraucht werden, tippt man nicht jedesmal neu, sondern speichert sie
auf der Disk und »included« sie dann. Die Wirkung ist die gleiche, als ob

37

TUTORIUM

der Text ab dieser Zeile eingetippt worden wire. Die Datei stdio.h wird
bereits mitgeliefert. Von diesen Header-Dateien — kurz H-Files genannt —
gibt es sehr viele. Meistens definieren sie Konstanten mittels der Direktive
#define. Die Direktive

#define ITEMTEXT 2

gibt der Konstanten »2« den symbolischen Namen ITEMTEXT. Ist das ein-
mal definiert, kdnnen Sie anstatt 2 auch ITEMTEXT schreiben. Wenn
solche Begriffe urplétzlich in einem Listing auftauchen, stammen sie immer
aus einem Include-File. Unser ITEMTEXT ist zum Beispiel definiert, wenn
Sie #include <intuition.h> schreiben, weil in diesem H-File auch #define
ITEMTEXT 2 steht.

Befehle

Ein Programm ist eine Folge von Befehlen. In diesem Sinne sind auch
Funktionsaufrufe Befehle. Ein einfacher Befehl ist zum Beispiel die Zuwei-
sung i = 4711;. Nach Befehlen muf3 ein Semikolon folgen. Ansonsten —
und deshalb - ist C formatfrei. Leerstellen, Tabulatoren und Zeilenschal-

- tungen werden vom Compiler ignoriert.

38

I Beachten Sie jedoch, daB Stringliterale (Texte in Anfihrungszeichen) nicht in
der ndchsten Zeile fortgesetzt werden diirfen. Siehe auch die Hinweise am

Ende der Einfihrung.

Schliisselworter und Namen

Schlisselworter sind Elemente der Sprache C. Die Tabelle 2.1.1 enthdilt
nur die Schlisselworter des Standard-C. Einzelne Compiler kénnen
weitere Schlisselwdrter haben. Wichtig zu wissen ist, daf3 Schlisselwdrter
nicht als Namen eingesetzt werden dirfen. Namen vergeben Sie selbst
oder laden sie mit Include-Files. Im Listing 2.1.1 wird mit int i; eine Varia-
ble mit dem Namen i deklariert. Erlaubt sind alle Buchstaben, Ziffern und
der Unterstrich.

Befehle

break else typedef
case for switch
continue goto while
default if

do return

TUTORIUM

Typen und Attribute

auto float static
char int register
const long union
double short volatile
enum signed void
extern size of

Reservierte Worter

arge envp

argv main

Tabelle 2.1.1: Das ist das ganze Vokabular der Sprache C

IS5 C unterscheidet streng zwischen Grof3- und Kleinschreibung. Anton, AnTon
und anton sind drei verschiedene Namen. Wenn Sie IF oder If anstatt if
schreiben, meldet der Compiler einen Fehler.

Variablen und Datentypen

Eine Variable ist nichts weiter als ein symbolischer Name fiir einen
Speicherbereich. Wir sagen nicht »lege die Zahl 4711 im Speicher ab
Adresse 12345 abk, sondern geben ihr einen Namen. Der Compiler
weist dann der Variablen einen Speicherbereich zu und merkt sich, daf3
zum Beispiel die Variable anton die Adresse 12345 hat. Nun kénnen
aber unterschiedliche Variable durchaus verschieden viel Speicher bele-
gen, und ob wir unter anton zwei oder acht Bytes ablegen wollen, muf3
der Compiler schon wissen. Diese Information erhdlt er Uber den
Datentyp, kurz Typ genannt. Deshalb wird eine Variable immer deklariert
als Typ Name;. Mit

int 1i;

wird eine Variable vom Typ int (Integer = Ganzzahl) angelegt, man sagt
auch »deklariert«. Es gibt verschiedene vordefinierte Typen wie int, float
(FlieBkommazahl) oder char (Zeichen). Man kann aber auch eigene
Typen definieren, was wir noch ausfihrlich kennenlernen werden. Eine

Variable heift Variable, weil man ihr immer wieder neue Werte zuweisen
kann. Jede Variable sollte aber initialisiert werden, sprich, einen Anfangs-

39

TUTORIUM

40

wert bekommen. Das kann durch eine Zuweisung geschehen, zum Bei-
spiel miti = 4711; oder gleich bei der Deklaration mit

int 1 = 4711;

Sichtbarkeit von Variablen

Eine Variable kann zu Programmbeginn und damit aufBerhalb aller Funk-
tionen deklariert werden. In diesem Fall steht sie allen Funktionen zur
Verfiigung, man nennt sie global oder extern. Im Listing 2.1.1 ist i eine
globale Variable, ergebnis hingegen ist lokal fir die Funktion multipli-
ziere(). Lokale Variablen kénnen nur innerhalb ihrer Funktion genutzt
werden, alle anderen Funktionen kennen diese Variablen nicht.

Praxis _ ,
Wir wollen uns nun Listing 2.1.1 genauer ansehen und dabei besonders
auf die vielen Feinheiten achten, auf die es in der Praxis ankommt.

Funktion schreiben und anwenden

Wie schon gesagt, besteht ein C-Programm hauptséchlich aus Funktionen,
um diese mijssen wir uns also besonders kimmern. Jede Funktion hat im
Minimum die Form

NameDerFunktion ()
{
}

Innerhalb der geschweiften Klammern stehen die Befehle, die beim Aufruf
der Funktion ausgefihrt werden sollen. Das nennt man den Funktions-
korper, wihrend die Zeile dariiber Funktionskopf heif}t. Bleibt der Raum
zwischen den geschweiften Klammern leer, tut die Funktion gar nichts.

Die Main-Funktion

Jedes C-Programm hat eine Funktion namens main(). Der erste Befehl in
main() ist ist auch derjenige, mit dem das Programm startet. Man spricht
auch vom Startpunkt oder Entry-Point.

A Jede Funktion darf jede aufrufen, auch sich selbst (Rekursion). Sie diirfen
jedoch niemals main() aufrufen, da dann das Programm in eine Endlos-
schleife geht.

TUTORIUM

Das kiirzeste C-Programm, das Sie schreiben kénnen, sieht so aus:

main ()
{
}

Sie kénnen dieses Programm durchaus kompilieren, linken und starten. Es
tut gar nichts, das aber blitzschnell. Da Zeilenschaltungen nur der Lesbar-
keit des Textes dienen, kénnen Sie das Programm auch schreiben als

main () {}

Funktionen avfrufen

Im Listing 2.1.1 gibt es aufler main() noch die Funktionen hallof) und
multipliziere(). Da hallo() keine Argumente hat (in den Klammern steht
nichts), reicht fir den Aufruf die Nennung des Namens. Der Aufruf
hallo(); sorgt dafir, daf3 die Befehle der Funktion ausgefihrt werden.

/\ Auch wenn die Funktion keine Argumente braucht, diirfen Sie die runden
Klammern beim Aufruf nicht weglassen. Tun Sie das, meldet der Compiler
keinen Fehler, die Funktfion wird aber auch nicht ausgefihrt.

Wie gleich noch gezeigt wird, kénnen Funktionen auch einen Wert
zuriickgeben. Daraus resultieren verschiedene Formen des Aufrufs. In der
Form

i = multipliziere(3,4);

wird der Riickgabewert einer Variablen zugewiesen. In diesem Beispiel
hat dann i den Wert 12. Das entspricht der mathematischen Schreib-
weise, wo man zum Beispiel die Sinus-Funktion mit y=sin(x) notiert. Wie
in der Mathematik kann die Funktion aber auch Teil eines Ausdrucks sein.
3 * sin(x) + 100 ware ein Beispiel. In diesem Fall fihrt C die Funktion aus
und setzt ihren Rickgabewert in den Ausdruck ein. Eine Funktion kann
aber auch Argument einer anderen Funktion sein. Listing 2.1.1 zeigt
diese Mdglichkeit hiermit auf:

printf ("$d \n", multipliziere(3,4));

Die Funktion printf{) wird weiter unten erklért. Merken Sie sich an dieser
Stelle: Egal, wo der-Funktionsname auftaucht, die Funktion wird immer
zuerst ausgefhrt, danach wird der Rickgabewert irgendwo eingesetzt.

4]

TUTORIUM

42

Argumente iibergeben

Eine Funktion kann Argumente ibergeben. Im Aufruf multipliziere(3,4)
sind 3 und 4 Argumente. Die Funktion multipliziere() braucht zwei Argu-
mente, némlich die beiden Werte, die miteinander multipliziert werden
sollen. Diese Argumente kénnen wie hier Konstante sein, aber auch
Variablen und sogar Funktionen sind zuléssig.

Argumente kontra Parameter

Natirlich muf3 die Funktion mit den Gbergebenen Argumenten etwas
anfangen kdnnen. Daher muf3 sie wissen, was die Argumente bedeuten,
sprich, den Typ kennen. Dazu gibt es im Funkﬁonskop?von multipliziere()
(hier folgt er)

int multipliziere(int mp, int mk)

die beiden Platzhalter mp und mk. Beide sind vom Typ int. Solche Platz-
halter nennt man Parameter. Erst, wenn die Funktion aufgerufen wird,
werden Werte auf diese Plétze kopiert. Beachten Sie den feinen Unter-
schied: Die Funktion selbst hat Parameter. Wenn sie aufgerufen wird,
werden fir diese Parameter Argumente ibergeben. Anders ausgedriickt:
mp und mk sind Parameter, im Aufruf multipliziere(3,4) sind 3 und 4
Argumente. Weil das so oft verwechselt wird, eine kleine Eselsbriicke:
Nur der Aufrufer kann argumentieren, die Funktion selbst kann den Auf-
trag nur ausfihren.

Riickgabe eines Wertes

Wenn eine Funktion einen Wert zuriickgeben soll, muf3 der Typ des Riick-
gabewertes — Return-Wert genannt — im Funktionskopf vor dem Namen
stehen. Wie Sie sehen, heif3t es »int multipliziere(int mp, int mk)«, aber

nur hallo().

Das verwirrende an der Geschichte ist, daf3 eine Funktion auch dann
einen Wert zuriickgibt, wenn man den Return-Typ wie bei hallo() gar
nicht definiert hat. In diesem Fall ist der Riickgabewert vom Typ int, aber
ziemlich sinnlos, da zuféllig. Es ist aber erlaubt, mit zum Beispiel i =
hallo(); diesen Wert anzufordern. Andererseits kénnen Sie einen defi-
nierten Return-Wert auch einfach ignorieren. So dirfen Sie anstatt i =
multipliziere(3,4); auch einfach multipliziere(3,4); schreiben. Auch das
bringt nichts, weil das Rechenergebnis dann im Leeren landet.

TUTORIUM

Um hier Klarheit zu schaffen, gibt es den Typ void mit der Bedeutung »der
Return-Wert wird nicht gebraucht«. Deshalb schreibt man die Funktion
hallo() korrekter so:

void hallo() /* Das ist eine Funktion */
{ printf("Hallo, lieber Leser! \n");

}

Jetzt weif3 der Compiler, was Sie meinen, und wird deshalb einen Zugriff
auf den Return-Wert anmahnen. Wenn die Funktion hallo() als void
deklariert ist, wird ein Befehl der Art i = hallo(); vom Aztec C als ungiiltige
Typ-Konversion »angemeckert«, Lattice C beklagt einen ungiltigen Void-
Operanden.

Damit die Funktion einen Wert zuriickgeben kann, muf3 man allerdings
noch etwas tun. Die letzte Zeile der Funktion lautet:

return (ergebnis);

Der Return-Befehl bendtigt als Argument einen Wert, der wie hier eine
Variable sein kann, aber auch eine Konstante oder ein Ausdruck ist
erlaubt. Mit einem Ausdruck kénnen wir die Funktion

int multipliziere(int mp, int mk)

{
int ergebnis; /* Eine lokale Variable */
ergebnis = mp * mk;
return (ergebnis) ;

}

kiirzen auf

int multipliziere(int mp, int mk)
{

return (mp * mk);

}

Die im Kopf deklarierten Variablen mp und mk kénnen wie lokale Varia-
blen behandelt werden, was beim néchsten Punkt noch deutlicher wird.

ANSI kontra K&R
Die Deklaration der Art

int multipliziere(int mp, int mk)

43

TUTORIUM

14

ist erst in den 5er-Versionen von Aztec C bzw. Lattice C erlaubt. Sie folgt
dem neusten ANSI-Standard (einer anerkannten amerikanischen Norm).
Mit den <eren Compilern kénnen Sie nur die folgende Form wéhlen, die
neueren Versionen akzeptieren sie auch. Diese Form entspricht dem soge-
nannten K&R-Standard, so benannt nach den Erfindern von C, die
Kernighan und Ritchie heif3en.

int multipliziere (mp, mk)
int mp;
int mk;
{
return (mp * mk);

}

Das kann man noch leicht kiirzen, weil Deklarationen desselben Typs
auch aufgezahlt werden diirfen, was dann so aussieht:

int multipliziere (mp, mk)
int mp, mk;
{

return (mp * mk);

}

Damit ist der Unterschied rein textuell betrachtet nicht mehr sehr grof3. Sie
haben die freie Auswahl.

Prototypen

Ein anderer Punkt des ANSI-Standards bringt allerdings einen erheblichen
Unterschied. Schreiben Sie némlich vor der Funktionsdefinition ~ praktisch
zu Programmbeginn — einen sogenannten Prototyp, kann der Compiler
prifen, ob Sie der Funktion auch die richtigen Argumenttypen iibergeben.
Dazu reicht es, eine Zeile an den Programmanfang zu setzen, zum Bei-
spiel diese:

int multipliziere(int mp, int mk);

Praktisch ist das die Kopfzeile der ANSI-Form-Funktion. Doch beachten
Sie, daf jetzt ein Semikolon am Ende stehen muf. Die Variablennamen

(mp und mk) kénnen dieselben, aber auch andere sein, Hauptsache die
Typen stimmen.

TUTORIUM

I=5" Obwohl der Prototyp wie die Kopfzeile der ANSI-Form-Funktion aussieht, ist
das Prototyping auch méglich, wenn die Funktionen nach dem alten K&R-
Standard definiert werden.

Wenn Sie jetzt die Funktion falsch aufrufen, zum Beispiel mit multipli-
ziere(3, 4.77) (das zweite Argument ist keine Ganz- sondern eine Flief3-
kommazahl), wird der Compiler mit »argument type mismatch« eine
Warnmeldung ausgeben. Lassen Sie das Prototyping weg, erscheint das
falsche Ergebnis 12, weil der Compiler einfach von der 4.77 nur den
Ganzzahlanteil (4) Gbernimmt. Der korrekte Prototyp fiir eine Funktion
ohne Return-Wert und ohne Parameter wie unser hallo() lautet:

void hallo (void);

Wichtig ist das »Prototyping« bei Funktionen, die Sie nicht so genau ken-
nen, weil Sie diese nicht selbst geschrieben haben. Solche Funktionen —
ndmlich die »eingebauten« Amiga-Funktionen — werden Sie spéter sehr
héufig nutzen. Die dafiir erforderlichen Prototypen stehen bei Aztec C in
der Datei functions.h. Es empfiehlt sich dann, ziemlich zu Programm-
beginn zu schreiben:

#include <functions.h>

I Bei Aztec C reicht es nicht, die Prototypen zu definieren oder als Include-File
zu laden. Zusétzlich missen Sie die Ausgabe der Warnmeldung mit der
Compiler-Option -wa einschalten. Zum Beispiel missen Sie den Quelltext
hallo.c mit cc -wa hallo kompilieren.

Die Funktion printf()

Die Sprache C kennt natiirlich einige (wenige) Befehle oder Schlijssel-
worte, doch darunter werden Sie nichts finden, was fir die Ein- oder
Ausgabe - englisch 1/O (Input/Output) — geeignet ist. Einen Befehl wie
»PRINT« in Basic oder »write« in Pascal kennt C nicht. Statt dessen
werden mit dem Compiler Bibliotheken (Libraries) geliefert, welche die
erforderlichen Funktionen bieten. Eine Library ist nichts weiter als eine
bereits kompilierte Sammlung von Funktionen. Mittels des Linkers werden
diese Funktionen lhrem Programm hinzugefigt.

Die wohl bekannteste Funktion aus dieser Sammlung heif3t printf{). In
Listing 2.1.1 setzen wir printf{) fir eine simple Aufgabe ein, némlich die
Ausgabe des Inhalts der Variablen i, eine schlichte »12« soll auf dem
Schirm erscheinen.

45

TUTORIUM

46

printf ("%$d \n", 1);

Etwas kompliziert wird die Sache, weil »printf« das Kirzel fir »print for-
matiert« ist. In Basic wére das PRINT USING. Deshalb brauchen wir
immer einen Format-String, das sind diese Kiirzel in den Anfihrungs-
zeichen. Dabei sind drei Dinge zu unterscheiden:

e Format-Code
* Escape-Zeichen
® Reiner Text

Der Format-Code beginnt immer mit dem %-Zeichen, dem ein Buchstabe
folgt. Hierfiir einige Beispiele:

d (oder i) Dezimalzahl mit Vorzeichen
u Dezimalzahl ohne Vorzeichen

X (oder X) Hexadezimalzahl

f FlieBkommazahl

c Zeichen

s String

Das schauen wir uns gleich mal in der Praxis an.

main ()
{
int i = 4711;
float £ = 47.13;
printf ("%d %X %7.2f \n", i, -1, f);

Listing 2.1.2: printf{) in der Praxis

Listing 2.1.2 ist ein lauffdhiges C-Programm, mit dem Sie spdter noch
weiterarbeiten werden. Beachten Sie zuerst, daf3 wir hier zwei Variable,
ndmlich i und f deklariert und auch gleich initialisiert (mit einem Startwert
versehen) haben. Mehr dazu im néchsten Abschnitt. Beide Variablen sind
lokal fir die Funktion main(), kénnen also in anderen Funktionen nicht
genutzt werden. Doch nun zu printf{). Das Ergebnis sieht so aus:

4711 FFFFFFFF 47.13

Da wir drei Zahlen ausgeben wollen, brauchen wir auch drei Format-
Codes. %d gilt fir die Ganzzahl 4711, %X stellt -1 als Hexadezimalzahl
dar (ergibt FFFFFFFF). Beachten Sie, daf3 auch Konstanten ausgegeben

TUTORIUM

werden kdnnen (hier —1) und - viel wichtiger — printf{) auch zwischen den
Zahlenbasen automatisch konvertiert.

Nun zu den »Kommazahlen«: Nur %f schreibt man eigentlich nie. Statt
dessen steht hier %7.2f mit der Bedeutung, daf3 die Flie3kommazahl sie-
ben Schreibstellen belegen und zwei Nachkommastellen haben soll.

Bliebe noch das Escape-Zeichen, das immer mit einem Backslash (\) ein-
geleitet wird. Diese Zeichen kénnen an beliebiger Stelle im Format-String
auftauchen. Hier einige davon:

\a Alarm (gibt einen Beep aus)
\b Backspace (Riickschritt)

\n Neve Zeile

\t Tabulator

Jetzt wissen Sie auch, warum ich des &fteren \n eingesetzt habe. Das ist
immer ndtig, wenn nach der Ausgabe eine neue Zeile begonnen werden
soll. Auch bei nur einem printf{) sollten Sie daran denken, andernfalls
steht nach dem Programmende der Cursor im CLI sonsiwo.

Typen, Variablen und Konstanten einsetzen

Fir die Amiga-Programmierung werden wir hauptséichlich die »eingebau-
ten« ROM-Funktionen nutzen. Diese Funktionen bendtigen Argumente in
Form von Variablen und Konstanten und geben Werte zuriick, fir die
Variable bereitgestellt werden miissen. Wichtig dabei ist, daf3 all diese
Parameter vom richtigen Typ sind. Wenn Sie die Typ-Problematik beherr-
schen, ist der Rest ganz einfach, also packen wir's an.

Es gibt einfache Variable, aber namentlich keine schwierigen. Ob die
anderen — die strukturierten Variablen — tafséichlich schwieriger sind,
werden Sie nach der dritten Sitzung beurteilen kénnen. Jetzt geht es den
einfachen Variablen an den Kragen. Bei allen Variablen miissen Sie
immer drei Punkfe im Auge haben:

e Deklarieren
e Initialisieren
e Zuweisen

Jede Variable muf3 zuerst deklariert werden. Dann muf3 die Variable
inifialisiert werden, sprich, einen Wert erhalten. Das kann gleich mit der
Deklaration geschehen oder spéter durch eine Zuweisung. Das Prinzip

47

TUTORIUM

438

haben Sie schon im Informationsteil kennengelernt, hier einige praktische
Beispiele:

char zeichen = 'a';

int ganzzahl = -12345;

long lange ganzzahl = 2147483647;

float kommazahl = 11.1;

double doppeltgenaue kommazahl = 66.123456789;
int i,3j,k,1,m; /* bevorzugte Namen fir "int's" */
i=11;

j = i; /* schneller als "j = 11" */

zeichen = 'b';

ganzzahl = 4711;

Wie Sie schon erkannt haben, kénnen die unterschiedlichen Typen ver-
schieden grofe Zahlen aufnehmen. Im Standard-C sind die Typen laut
Tabelle 2.1.2 definiert. Daf3 die Amiga-Compiler dariiber hinaus weitere
Typen kennen, werden wir noch lernen.

Typ-Name Alternativ-Namen Wertbereich

char signed char -128...127

int signed, signed int -32768...32767

short short int, signed short, -32768...32767
signed short int

long long int, signed long, —2147483648 bis
signed long int 2147483647

unsigned char keine 0..255

unsigned unsigned int 0...65,535

unsigned short unsigned short int 0...65535

unsigned long
enum

unsigned long int
keine

0...4294967295
-32768...32767

float keine 3.4E = 38
(7 Digits)
double keine 1.7E = 308
(15 Digts)
long double keine 1.2E & 4932
(19 Digits)

Tabelle 2.1.2: Diese Typen bietet Standard-C

TUTORIUM

Bei der Vergabe von Namen sind einige Regeln zu beachten:
¢ Erlaubt sind Buchstaben, Ziffern und der Unterstrich.

* Das erste Zeichen darf keine Ziffer sein. Ein Unterstrich als erstes Zei-
chen ist zwar erlaubt, doch per Konvention sind solche Namen fiir
den Compiler reserviert.

o Alle Schlisselwérter (siehe Tabelle im Informationsteil) sind verboten.

* Variablennamen werden in aller Regel kleingeschrieben, Konstanten
hingegen grof3.

e C unterscheidet streni Grof3- und Kleinschreibung. Anton, anton und
anTon sind drei verschiedene Namen.

® Nur die ersten 31 Zeichen eines Namens sind signifikant. Sie kdnnen
zwar léngere Namen vergeben, doch werden zwei Namen nicht
unterschieden, wenn die ersten 31 Zeichen gleich sind.

Bei Zuweisungen wie ganzzahl = 12345; ist die Zahl 12345 eine
Konstante. Aber auch in zeichen = 'a’ ist 'a’ eine Konstante.

/\ Beachten Sie, daB die Hochstriche beim Amiga iiber die Tastenkombination
(a1t])+(a) erzeugt werden miissen.

Es gibt also offensichtlich auch bei den Konstanten verschiedene Typen,
und die wollen wir uns einmal ansehen.

Konstante Typ

255 int (dezimal)

OxFF int (hexadezimal fiir 255)
0377 " int (oktal fur 255)

2551 long int

255U unsigned int

OxFFul long unsigned int

1.77 float

123 float

13.7E2 float

"Hallo" String-Konstante (siehe Sitzung 3)

Tabelle 2.1.3: Die verschiedenen Typen bei Konstanten

49

TUTORIUM

50

Fir uns — bzw. die Amiga-Programmierung - ist besonders das Suffix »L«
wichtig. Wenn Sie nichts anderes spezifizieren und die Zahl im Bereich
von —32768...+32767 liegt, nimmt C den Typ int an. Einige Amiga-Funk-
tionen erwarten aber auch, daf kleine Zahlen vom Typ long sind. Daher
sieht man héufig Konstanten wie 1L oder OL.

A Eine filhrende Null heifit »oktal« (Zahlenbasis 8). Folglich hat 0377 den
Wert »3*64 +7 *8 +7 = 255«

Wir bringen die Programme zum Laufen

Die beiden Listings 2.1.1 und 2.1.2 sind Programme, oder2 Nun, wie sie
da so stehen, sind sie reiner Text und sonst gar nichts. »Programmieren«
ist ein Sammelbegriff fir vier Aktivitéten, némlich:

e Editieren

¢ Kompilieren
¢ Linken

e Testen

Editieren heif3t »Eingabe des Textes« und dann spdter — und viel héufiger
- »Andern des Textes«, um Fehler zu beseitigen oder um das Programm
zu &ndern. Danach fo|gt das Kompilieren, also die Ubersetzung des Tex-
tes in die Maschinensprache. Dadurch entsteht ein sogenanntes Objekt-
File. Das ist aber noch nicht laufféhig.

Der Linker hat viele Aufgaben. Zuerst muf3 er alle Library-Funktionen, die
Sie ihm nennen, in das Objekt-File einfigen. Dann muf3 er den soge-
nannten Startup-Code hinzubinden. Ein Amiga-Programm kann némlich
nicht einfach loslaufen, sondern hat einige Spielregeln zu beachten.
SchliefBlich muf3 der Code noch mit einem sogenannten Header versehen
werden, an dem Amiga-DOS erkennt, daf3 es sich um ein ausfihrbares
Programm handelt.

War der Linker erfolgreich, kdnnen Sie das Programm starten und testen.
Fir den Start reicht vorerst die Eingabe des Namens im CLI bzw. in der
Shell. Spéter lernen wir, wie man ein Programm mit einem lcon versieht,
so daf3 es auch von der Workbench aus gestartet werden kann. Meistens
stellt man im Test Fehler fest, woraufhin dann die Folge »Editieren, Kompi-
lieren, Linken, Testen« wieder zu durchlaufen ist. Das nennen die Program-
mierer »Strafschleife«, die dafir benstigte Zeit heif3t »Turn-Around-Zeit«.

TUTORIUM

Anfangs ist die Strafschleife etwas kiirzer, weil viele Fehler schon der
Compiler findet. Logische Fehler kann er allerdings nicht erkennen.

IS Praktisch sind die vier Schritte recht einfach auszufihren. Wir setzen voraus,
daB Sie Ihr System entsprechend den Vorschlégen in Kapitel 1 eingerichtet
haben und daf3 der dort vorgeschlagene Test erfolgreich bestanden wurde.
Im Kapitel 1.6.4 finden Sie auch Vorschlége fir den Fall, daf3 etwas nicht
funktionieren sollte.

Als Festplattenbesitzer wechseln Sie in das Directory, in dem Sie lhren
Compiler (nebst Zubehér) abgelegt haben. Je nach Installation missen Sie
noch execute az oder execute lat eingeben (siehe auch Kapitel 1.5 und
1.6). In den Diskettenversionen starten Sie lhren Amiga mit den eingeleg-
ten C-Disketten.

Nun geben Sie Listing 2.1.1 mit einem Editor ein und speichern den Text
als hallo.c. Jeder andere Name ist auch gut, nur muf3 er immer den
Extender .c (Punkt c) haben.

I Die folgenden Compile-/Link-Beispiele gelten nur fiir Listing 2.1.1. Beachten
Sie den untenstehen Abschnitt »Linken mit floak.

Unter Aztec C geben Sie dann ein:

cc hallo [Return]
1In hallo -1lc [Return]

Unter Lattice C geben Sie ein
lc -L hallo [Return] (-L groR schreiben!)

Die Compiler und Linker geben allerhand Text aus. Solange da nichts von
»Error« steht, ist alles OK.

5" Tips zur Fehlersuche finden Sie im Kapitel 1.6.4.

Sie kénnen nun das Programm durch die Eingabe des Namens (hallo)
starten. Unter Lattice C werden Sie die Warnung »function returns value
mismatch« sehen. Wenn Sie das stort, schreiben Sie nicht main(), sondern
void main().

Linken mit float

Sobald Sie FlieBkommazahlen anziehen, misssen Sie mit der m(Mathema-
tik)-Library linken. Wenn Sie beispielsweise Listing 2.1.2 unter dem .
Namen fkz.c gespeichert hatten, gilt:

51

TUTORIUM

Unter Aztec C:

cc hallo [Return]
In hallo -1m -1lc [Return]

Unter Lattice C:

lc -Lm hallo [Return]

Checkliste
1. Wie wird der Typ des Riickgabewerts einer Funktion bestimmt2
2. Warum miissen Variable deklariert werden?

3. Was ist der Unterschied zwischen externen und lokalen Variablen2

Ideen fiir eigene Ubungen

1. Im Listing 2.1.2 wurde die Anwendung von printf{) demonstriert. Schreiben
Sie auf dieser Basis ein Programm, das eine formatierte Tabelle ausgibt,
zum Beispiel diese:

Titel 1 Titel 2 Titel 3
47 17.5 22.123
66 134.7 1.007

1234 1.2 123.456 ,

2. In die Variablen mp, mk und ergebnis sollen die Zahlen 3, 4 und 12
gebracht werden. Dann soll printf{) unter Anziehung der Variablen den Text
»3 mal 4 ist 12« ausgeben.

Zwei Tips dazu:

In printf{) wird jede Art von Text jm Format-String direkt ausgegeben. Auch
eine Form wie »printf{"Titel 1 Titel 2 Titel 3 \n ");« ist zuldissig.

Sie kdnnen im Format-String Texte auch zwischen die Format-Codes setzen.

52

TUTORIUM

2.2 Zweite Sitzung:
(-Spezidlitiiten fiir die
Amiga-Programmierung

Die Themen dieser Sitzung:

* Was sind Datenstrukturen?

* Arrays
e C-String
e Zeiger
e C-struct

¢ Typ-Casting

e #include

Information . _ .
Ein Amiga-typisches Programm mit seinen Windows und Meniis entsteht
im Prinzip ganz einfach. Man l&dt Datenstrukturen mit den richtigen
Werten und ruft dann die schon im ROM vorhandenen Funktionen auf.
Leider sind diese Datenstrukturen sehr komplexe Gebilde und schwer
begreifbar, wenn man sie das erste Mal sieht. Deshalb lernen Sie in
dieser Sitzung anhand einfacher Beispiele, was Datenstrukturen sind und
wie man mit ihnen umgeht. Noch einige C-Leckerbissen, die in diesem
Zusammenhang vorkommen, nehmen wir uns gleich mit vor.

Einfache und strukturierte Variablen

Einfache Variablen haben wir in der zweiten Sitzung schon kennen-
gelernt. Typisch fiir diese ist, daf3 sie immer nur genau ein Datum auf-
nehmen kénnen. Wie unprakfisch das manchmal ist, zeigt das Beispiel
der Zeichenvariablen. Es macht sicherlich keinen Spaf3, wenn man das
Wort »Hallo« so speichern mijf3te:

53

TUTORIUM

54

char cl = 'H';
char c2 = 'a';
char c3 = '1';
char c4 = '1"';
char c¢c5 = 'o';

Tatséchlich schreibt man dafir

char c[] = "Hallo";

Arrays

Die rechteckigen Klammern hinter einem Variablennamen kennzeichnen
einen Array. Das ist eine Sammlung von Daten des gleichen Typs unter
einem Namen. Das obige Beispiel ist ein Zeichen-Array, genauso sind
Zahlen-Arrays maglich. Einen Array zu deklarieren, ist recht einfach, wie
das folgende Beispiel zeigt:

main ()

{ int ar([3];
ar[0] = 10;
ar(1l] = 20;
ar[2] = 30;

printf ("%d %d %4 \n", ar[0], ar[l], ar(2]);
}

In diesem Beispiel ist ar ein Array vom Typ int, kurz int-Array genannt.
Dieser Array hat drei Elemente, die Gber den Index O, 1 oder 2 ange-
sprochen werden.

I Beachten Sie, daf} in C das erste Element immer den Index O hat im Gegen-
satz zu Pascal oder Basic (mit OPTION BASE 1). Da dieser Array drei Ele-
mente hat (ar[0], ar[1] und ar[2]) ist ar[3] nicht definiert.

Sie kénnen ein einzelnes Array-Element wie eine einfache Variable des
gleichen Typs auffassen, weshalb eine Zuweisung der Art

einf var = ar[2];

durchaus zuldssig ist. Wichtig ist ein anderer Aspekt. Spdtestens bei
groBen Arrays wird némlich die Angabe des Index als Konstante ausge-
sprochen lastig. Meistens zusammen mit Schleifen (siehe vierte Sitzung)
setzt man deshalb fiir den Index eine einfache Variable ein, wozu Sie
wissen mussen:

TUTORIUM

ar[2] = 177; istrgleichwertig mit i = 2;
ar[i] = 177;

Niemand hindert Sie allerdings daran, der Indexvariablen einen grofie-
ren Wert als 2 zu geben. Ein sehr héufiger Fehler ist der Versuch, bei
einem mit int ar[3] deklarierten Array das undefinierte Element ar[3]
anzusprechen. Sie kdnnen damit sehr viel Schaden anrichten, und nie-
mand warnt Sie!

/\ Im Gegensatz zu Basic oder Pascal priift C nicht den Array-Index. Sie kén-
nen bei einem mit int ar[3] deklarierten Array durchaus ar[1733] = 4711;
schreiben. Damit kénnen Daten in wichtigen Speicherbereichen iiberschrie-
ben werden, Guru-Meldungen sind méglich.

Die Besonderheiten eines C-Strings

Ein String in C — kurz C-String genannt — ist prinzipiell nur ein Array vom
Typ char. Er wird zum String, wenn das letzte Zeichen ein Null-Byte ist,
genaver: Der String endet, sobald in der Folge ein Null-Byte auftritt.

Dieses Null-Byte ist nicht mit dem ASCIl-Code des Zeichens »0« (Wert 48)
zu verwechseln. Wenn Sie dem String mit

char c[] = "Hallo";

gleich bei der Deklaration einen Text zuweisen, setzt der Compiler auto-
matisch das Null-Byte ein. Ferner wird er bei einer leeren Klammer selbst
zdhlen und fur die Dimension 5 einsetzen (vier Zeichen und das Null-

Byte).

Beachten Sie aber, daf3 Sie auf diese Art einer Stringvariablen keinen
Text zuweisen konnen. Das geht nur mitttels der Funktion strcpy() (String
Copy), beispielsweise so:

void main ()

{ char str[20];
strcpy (str, "hallo");
printf ("%$s \n", str);

}

55

TUTORIUM

36

Die Bedeutung von Zeigern in C

Es ist unmoglich, ein echtes Amiga-Programm ohne Zeiger zu schreiben,
und Uberhaupt nutzt jedes bessere C-Programm Zeiger (englisch: Pointer)
mehr oder weniger intensiv (meistens mehr). Man braucht Zeiger unter
anderem fir diese Operationen:

* Manipulation von Strings und Arrays

* Riickgabe von mehr als einem Wert bei Funktionen
e Zugriff auf Datenstrukturen

e Zugriff auf Speicherbereiche

Zeiger sind letztlich immer Adressen, und Adressen sind vom Typ
unsigned long. Das gilt aber nur auf Maschinenebene. In C sind Zeiger
an einen Typ gebunden. Mit der Deklaration

int *ptr;

wird ein Zeiger mit dem Namen ptr geschaffen, der nur auf ein Objekt
vom Typ int zeigen kann. Die Typbindung ist deshalb nétig, weil C im
Rahmen seiner Zeiger-Arithmetik (siehe Praxisteil) zum Beispiel von einem
Array-Element auf das néchste schalten kann. Dazu muf3 aber der Wert
des Zeigers (praktisch die Adresse) bei char-Arrays um 1 und bei long-
Arrays um 4 erhdht werden. Daf3 man diese Typbindung mittels des Type-
Casting (siehe Praxisteil) umgehen kann und manchmal sogar umgehen
muf3, ist ein anderes Problem.

In den ersten beiden Kapiteln haben wir den Umgang mit den Compilern
und Linkern gelernt. Ab jetzt gilt: Jedes Programmlisting mit einer main()-
Funktion ist laufféhig, doch glauben Sie das nicht, probieren Sie es aus!
Ernsthaft: Sie lernen C am besten, wenn Sie immer wieder Programme
zum Laufen bringen. Sie werden dabei anfangs Fehler machen, aber
auch das muB sein. Nur die selbst gemachten und ergriindeten Fehler
macht man (meistens) nie wieder.

TUTORIUM

Einen Array deklarieren und nutzen
Wissen Sie, was das sein soll2

00100
00100
11111
00100
00100

Es ist ein Kreuz aus Sicht des Computers. Fiir ihn ist ein Bildpunkt ein Bit,
das nur 0 oder 1 sein kann. Jede Art von Grafik ist so ein Bit-Muster. 8 Bit
sind bekanntlich 1 Byte, 2 Byte sind ein Wort oder aus unserer C-Sicht
eine Zahl vom Typ int. Computer-intern wird jede Zahl als Bit-Muster
gespeichert, zum Beispiel die Zahl 7 als 00000111. Folglich kann man
ein Computer-Bild auch als eine Folge von Zahlen darstellen, und genau
das tut der Amiga. Wenn Sie einen neuen Mauszeiger erzeugen wollen,
missen Sie der Funktion SetPointer() unter anderem einen Array iber-
geben, mit dessen Zahlen der Mauszeiger gemalt wird. Es gibt aber auch
andere Funktionen, die Arrays brauchen. Zum Beispiel iibergeben Sie der
Funktion PolyDraw() einen Array, in dem die Koordinaten der Eckpunkte
eines zu zeichnenden Vielecks stehen. Langer Rede kurzer Sinn: Fir die
Amiga-Programmierung brauchen Sie Kenntnisse iber Arrays, also
packen wir's an.

Betrachten wir noch einmal das Beispiel aus dem Informationsteil:

main ()

{ int ar[3];
ar[0] = 10;
ar[l] = 20;
ar([2] = 30;

printf ("$d %d %d \n", ar[0], ar[l], ar([2]);
}

55" Wenn |hr Compiler die folgenden Listings nicht akzepfiert, zum Beispiel
Lattice Version 4.0, deklarieren Sie die Arrays global (vor main()).

int ar[3] = {10, 20, 30}; /* global */

main ()

{ printf("%d %d %d \n", ar[0], ar[l], arl[2]);
}

57

TUTORIUM

58

So einem kleinen Array drei Zahlen einzeln zuzuweisen, geht ja noch,
aber bei 20 Werten ist das schon ldstig. Deshalb schreibt man das besser
so:

main ()

{ int ar{3] = {10, 20, 30}; /* lokal */
printf ("%d %d %d \n", ar[0], ar[l], arl(2]);

}

Wie einfache Variable kann man also auch Arrays gleich mit der
Deklaration initialisieren. Die Dimension (die »3« in den rechteckigen
Klammern) darf man dann auch weglassen.

I |m Gegensatz zu manchem Pascal, wo so etwas typisierte Konstante heif3t,
kann in C die Dimension gréf3er sein als die Anzahl der aufgefihrten Werte.
Sie konnen aber auch in C nicht mehr Werte auffihren, als die Dimension
erlaubt.

Arrays kdnnen beliebig viele Dimensionen haben, wenn es auch praktisch
kaum mehr als zwei sind. Und so sieht das aus (die Erklérung von short
kommt gleich):

main ()
{ short int ar([3][4] =
{
{01, 02, 03, 04},
{11, 12, 13, 14},
{21, 22, 23, 24}
bi
printf ("$d %d \n", ar[0][0], ar[2][3]):
}

Bei einem zweidimensionalen Array definieren Sie erst Zeile 0, dann
Zeile 1 usw. Jede Zeile setzen Sie in ihr eigenes Klammerpaar, dazwi-
schen kommt je ein Komma.

Dieser Array hat drei Zeilen und vier Spalten. Die »01« und die »24«
werden von printf{) ausgedruckt. Beachten Sie auch hier, daf3 immer ab
Null gezahlt wird, weshalb ar[2][3] die »24« anspricht.

int und short int
Nun éndern Sie einmal die letzte Zeile des obigen Programms wie folgt:

printf ("%d %d %d \n", ar[0], ar[l], ar[2]);

TUTORIUM

Sie werden drei Zahlen sehen, zum Beispiel diese:
12826592 12826600 12826608

Warum Sie damit tatséchlich die Adressen der drei Array-Zeilen drucken,
werden Sie im Abschnitt ber Zeiger noch lernen. Wichtig ist hier die Tat-
sache, daf3 die Differenz zwischen den Zahlen 8 ist. Jede Zeile hat vier
Elemente, folglich belegt jedes Element 2 Byte. Das tut es aber nur, weil
wir anstatt int hier short int geschrieben haben (nur short reicht auch). Der
Typ int bendtigt zwar nur 2 Byte, doch viele Amiga-Compiler legen ihn in
4 Byte ab. Nun macht es bei groflen Arrays schon sehr viel aus, ob man
400 oder 800 Kbyte Speicher belegt, aber noch wichtiger ist folgendes:
Die oben geschilderten Grafik-Funktionen, die in Arrays ihre »Bilder«
erwarten, unterstellen das kurze int-Format.

Strings anlegen und damit umgehen

Es gibt viele Stringfunktionen, doch in der Amiga-Praxis kommen Sie mit
sehr wenigen aus. Mit Listing 2.2.1 wollen wir das iben.

main ()
{
char strl1[80], str2[80];
strcpy (strl, "Guten Tag, mein lieber ");
printf ("Wie heiBen Sie? ");
scanf ("%$s", str2);
strcat (strl,str2);
printf ("%$s \n",strl);

Listing 2.2.1: Der Umgang mit Strings

Das Programm soll nach einem Namen fragen und nach dessen Eingabe
»Guten Tag, mein lieber <Name>« ausgeben. Dazu deklariert es zwei
Strings, ndmlich strT und str2. Beide kénnen maximal 79 Zeichen auf-
nehmen. Mit Hilfe der Funktion strcpy() (string copy) wird der Text »Guten
Tag, mein lieber« nach str1 kopiert.

Neu ist jetzt die Funktion scanf{). Praktisch ist das die Umkehr von printf{),
sogar die Format-Codes sind die gleichen. In diesem Fall wartet scanf()
wegen des Format-Codes %s auf die Eingabe eines Strings. Danach steht
in str2 ein Name.

59

TUTORIUM

60

Jetzt kommt die Funktion strcat{str1,str2) zum Einsatz. Sie verbindet str]
mit str2 und schreibt das Ergebnis nach strl.

/\ Der hier gezeigte Umgang mit scanf{) trifft so nur auf Arrays zu. Bei ein-
fachen Variablen muB vor deren Namen der AdreBoperator & stehen, wie
das folgende Beispiel zeigt:

main ()

{ int =zahl;

printf ("Gebe eine Zahl ein: ");

scanf ("%d", &zahl); /* Beachte das "&" ! */

printf ("$d\n", =zahl);
}

Definieren eines Strukturtyps

Der Array ist bereits eine Datenstruktur, hat jedoch fir manche Anwen-
dungen einen Nachteil: Alle Elemente miissen vom selben Typ sein. Das
ist oft sehr unpraktisch, denn héufig genug gehdren Variable verschie-
denen Typs logisch zusammen. Fiir diesen Zweck gibt es in C den struct-
Typ. Nehmen wir das Beispiel einer Personal-Datei, so sieht das typisch so
aus:

struct person

{
char name[50];
char strasse[30];
int plz;
char ort[20];
float gehalt;

}

Damit haben wir einen neuen Datentyp namens struct person geschaffen.
Das ist erst einmal nur ein Typ wie int oder char auch. Beachten Sie einen
wichtigen Unterschied zu den vordefinierten Typen: Diese heif3en kurz nur
int oder char, unser neuer Typ heif3t nicht person, sondern struct person.
Das struct ist obligatorisch, bei dem Typnamen sind Sie frei.

TUTORIUM

Deklarieren einer Strukturvariablen

Wie iblich, kann man auch hier nicht direkt mit dem Typ arbeiten, son-
dern braucht eine Variable. Das geht ganz einfach so:

struct person meier;

Initialisieren von Strukturvariablen

Um eine Komponente dieser Strukturvariablen anzusprechen, braucht
man nur den Namen, einen Punkt und den Bezeichner aus der Deklara-
tion. Klingt schwierig, ist es aber nicht, wie dieses Beispiel zeigt:

meier.gehalt = 4200.50;

Strings behandelt man auch wie tblich, das heif}t, man muf3 sie mit
strepy() laden. Das sollten Sie jetzt einmal Gben. Geben Sie Listing 2.2.2
ein. Sie haben alles richtig gemacht, wenn das Programm »Franz Meier
verdient 4200.50 DM« ausgibt.

IS5 Wir haben eine float-Variable eingesetzt, weshalb wir bei Aztec mit -Im -Ic
und bei Lattice mit -Lm linken missen.

struct person

{
char name[50];
char strasse[30];
int plz;
char ort([20];
float gehalt;

}

main ()
{ struct person meier;
strcpy (meier.name, "Franz Meier");
meier.plz = 8900;
meier.gehalt = 4200.50;
printf ("%s verdient %7.2f DM\n", meier.name,
meier.gehalt);

Listing 2.2.2: struct in der Praxis

61

TUTORIUM

62

Sie kdnnen nun zig Variable wie meier, miiller und schulze vom Typ struct
person deklarieren, doch Sie werden es wahrscheinlich als unpraktisch
empfinden, auf diese Art eine Personaldatei oder eine Adref3verwaltung
aufzubauen. Doch Sie missen sich nur eines merken: Alles, was mit den
vordefinierten Typen méglich ist, ist auch bei den selbstdefinierten erlaubt.
Nach dieser allgemeinen Typregel kénnen Sie auch einen Array wie
diesen anlegen:

struct person datei[100];
Die Punktregel gilt immer noch, also kdnnen Sie schreiben:

i=13;
datei[i] .gehalt=4200.50;

Diesen Weg sollten Sie einmal ibungshalber verfolgen. Ich m&chte Sie
jedoch zuerst mit einer beim Amiga sehr héufig auftretenden Méglichkeit
bekannt machen. So, wie wir schon einfache Variable und Arrays gleich
bei der Deklaration initialisiert haben, muf3 das nach der allgemeinen
Typregel auch beim struct funktionieren. Sie kénnen deshalb in Listing
2.2.2 die main()-Funktion auch so schreiben:

struct person
{
char name[50];
char strasse[30];
int plz;
char ort[20];
float gehalt;
}
main ()
{ struct person meier =
{
"Franz Meier", "Amselweg 13",
8900, "Muenchen",
4200.50
i
printf ("%$s verdient %7.2f DM\n", meier.name,
meier.gehalt);

Listing 2.2.3: So initialisiert man eine Struktur

TUTORIUM

Natiirlich muf3 vor main() die Typdefinition wie in Listing 2.2.1 stehen,
was ich betonen mu3. Nachher werden Sie némlich die Definitionen der
Strukturen nur noch als Include-Files von Diskette laden. Und wenn da
beispielsweise der Typ NewWindow definiert ist und Sie newwindow
schreiben, meldet der Compiler einen undefinierten Typ. Auch sehr wich-
tig ist, daB Sie bei dieser Losung die Struktur komplett und mit den richti-
gen Typen initialisieren. Wiirden Sie beispielsweise hier die »8900« ver-
gessen, mifite der Compiler "Muenchen" auf den Platz der int-Kompo-
nente plz schreiben. Das kann er nicht, also meckert er.

Struktur in der Struktur

Was beim Amiga auch héufig vorkommt, sind Strukturen innerhalb eines
struct. Das zeigt am besten das Beispiel von Listing 2.2.4.

struct punkt
{ int x;

int y;
}i

struct rechteck
{
struct punkt LinksOben;
struct punkt RechtsUnten;
}i

main ()

{
struct rechteck re;
re.LinksOben.x = 12;
re.LinksOben.y = 20;
printf ("%d\n", re.LinksOben.x) ;

Listing 2.2.4: »structs im struct« gibt es héufig beim Amiga
Die Aufgabe ist folgende: Es gibt einen Typ punkt, der einen Punkt auf
dem Bildschirm mit Werten fir die X- und die Y-Koordinate beschreiben

soll. Dieser Typ punkt ist ein struct mit Feldern fir x und y. Nun soll die
Lage eines Rechtecks auf dem Schirm durch seine linke obere und seine

63

TUTORIUM

rechte untere Ecke beschrieben werden. Beide Ecken sind aber auch

Punkte. Folglich kann das struct rechteck den Typ punkt einsetzen.

Ich habe hier auch schon angefangen, Grof3- und Kleinschreibung in
Bezeichnern zu mischen, weil auch das beim Amiga héufig vorkommt und
gerade hier bei Verwechslung der Schreibweisen besonders der Aztec-
Compiler massenhaft, aber unpréizise Fehler meldet. Ansonsten gilt hier
wieder die Typregel. Weil in einem struct jeder Typ erlaubt ist, darf das
auch struct-Typ sein. Und auch die Referenzregel setzt sich fort: Aus dem

Punkt wird »Punkt Punk«.

IS |m Gegensatz zu Pascal, wo struct record heift, muB ein Typ (hier punki)

definiert sein, bevor er (hier in rechteck) benutzt wird.

Der Gebrauch von Zeigern

Mit Zeigern kann man in C unheimlich viel anfangen, und einiges davon
brauchen wir unbedingt fir die Amiga-Programmierung. Also packen

wir's an. Die erste Uberraschung und Regel lautet:

Die Namen von Arrays sind schon Zeiger.

In Listing 2.2.5 wurde der Array ar auf die altbekannte Art angelegt.
Weiter gibt es den int-Zeiger ptr. Das kennen Sie alles schon. Um ptr zu
initialisieren, muf3 man nun aber nicht ptr=&ar schreiben, sondern nur
noch ptr=ar, wie es Listing 2.2.5 zeigt. Das Programm gibt die Zahlen

11, 12 und 13 aus, aber wie2 Das schauen wir uns einmal genau an.

int ar[] = {11,12,13};
int *ptr;
main ()
{
ptr = ar;
printf ("$d\n", *ptr);
ptr = ptr + 1;
printf ("$d\n", *ptr);
ptr = &ar[0];
ptr = ptr + 2;
printf ("%d\n", *ptr);

Listing 2.2.5: Zeigerarithmetik braucht man fir Arrays

64

TUTORIUM

ar ist die Adresse des Arrays ar. Da steht auch sein erstes Element, hier
die 11. ptr zeigt auf diese Adresse, folglich ist *ptr ihr Inhalt, also die 11.
Die wird mit printf{) ausgedruckt. Nun folgt

prt = ptr + 1;

Damit wird die Adresse nicht um 1, sondern um 4 Byte erhsht. Das tber-
rascht Sie2 Nun, wir hatten schon gelernt, daf3 Zeiger typgebunden sind.
Ein int-Zeiger kann nur auf Integers zeigen. Und hier erkennen Sie auch
den Grund fir die Typgebundenheit. int-Variablen belegen (ohne beson-
dere Compiler-Option) immer 4 Byte. Als Programmierer missen Sie das
aber nicht unbedingt wissen. Sie sagen sich nur: Wenn ich einen Zeiger
um 1 erhdhe, soll er auf die néchste Variable zeigen. Wieviel Bytes der
Compiler braucht, um die Variable abzulegen, interessiert mich nicht. Die °
Korrektur soll der Compiler selber vornehmen.

Wegen der Typgebundenheit wird der Compiler auch nicht ptr=&ar ohne
Warnung akzeptieren. Er stof3t damit zwar auf dieselbe Adresse, das
Programm léuft auch richtig, aber ptr ist ein int-Zeiger und kein ar-Zeiger.
Die einzelnen Elemente des Arrays hingegen sind Integers, weshalb ptr =
&ar[0]; korrekt ist. In ar[0], worauf ptr jetzt zeigt, steht die 11, in ar[2]
die 13. Folglich muf3 ich nur mit ptr = ptr + 2; auf ar[2] zeigen, und schon
steht in *ptr die 13.

Zeiger und Strings

Ein String ist ein char-Array mit einem O-Byte am Ende, aber er ist pri-
mdr ein Array. Wenn aber ein Array-Name ein Zeiger ist, dann kann
man das auch so schreiben. Folglich sind gleichwertig

char text[] und char *text

Die Schreibweise char *fext sieht man sogar ziemlich oft, weshalb ich sie
in Listing 2.2.6 einmal anwende.

char *text = "Hallo";
char *ptr;

main ()

{
ptr = text;
while (*ptr != 0)

65

TUTORIUM

66

{ printf("$c\n", *ptr);
ptr++;
}

Listing 2.2.6: Die Anwendung von Zeigern und Strings

Das Programm soll »Hallo« ausgeben, jetzt aber die Buchstaben unter-
einanderschreiben, wofiir man sie einzeln packen muf. Ich nehme hier
mit der while-Schleife etwas aus der vierten Sitzung vorweg, deshalb
registrieren Sie hier nur:

while (*ptr !'= 0)

heif3t: Solange der Inhalt der Adresse *pfr nicht O ist (am String-Ende steht
0), fihre die Befehle in den folgenden geschweiften Klammern aus. Beim
ersten Durchlauf wird das »H« gedruckt. Dann wird ptr um 1 erhsht und
zeigt auf das »a«. Die Schreibweise ptr++ ist ein empfehlenswertes Kirzel
for ptr=ptr+1.

Zeiger auf Strukturen

Wir haben schon in der ersten Sitzung gelernt, daf3 man einer Funktion
Argumente iibergeben kann, die auch Variable sein dirfen. Sie wissen
auch noch, daf3 diese Argumente dafir auf die Platzhalter (Parameter)
der Funktion kopiert werden. Das hat nun leider zur Folge, daf3 — zumin-
dest solange die Funktion léuft — die Variablen doppelt im Speicher ste-
hen. Bei grofen Arrays kann das sehr viel Speicher kosten, und aufler-
dem braucht das Kopieren auch seine Zeit. Deshalb bergibt man nicht
den ganzen Array, sondern nur seine Adresse. Das ist auch der Grund,
warum in C Array-Namen automatisch die Adressen des Array-Beginns
sind.

Das Platz- und Zeitproblem ergibt sich aber auch fir Strukturen, die
gleichfalls ganz schén gro3 werden kénnen und es beim Amiga auch
sind. Folglich sollte man auch nicht ganze Strukturen, sondern nur ihre
Anfangsadressen ibergeben, also Zeiger auf die Strukturen. Bei den ein-
gebauten Funktionen des Amiga haben Sie oft gar keine andere Wahl,
das missen Sie also kénnen. Nun denn, Listing 2.2.7 bringt die Lésung.

TUTORIUM

struct person

{
char name[50];
char strasse([30];
int plz;
char ort[20];
float gehalt;

}i

void display(struct person *ptr);

main ()
{
struct person meier =
{
"Franz Meier", "Amselweg 13",
8900, "Muenchen",
4200.50
bi
display(&meier);

}

void display(struct person *ptr)
{
printf("%s verdient %7.2f\n", ptr->name,
ptr->gehalt);

Listing 2.2.7: So arbeitet man mit struct-Zeigern

Das Programm soll so wie das in Listing 2.2.3 funktionieren, dllerdings

mit einem Unterschied. Die Ausgabe soll in der Funktion display() erfol-

gen, und dieser Funktion mu3 ein Zeiger auf die Struktur ibergeben

\éverder]. Doch zuerst zur Struktur des Programms: Direkt vor main() steht
ie Zeile

void display(struct person *ptr);

Das ist der Prototyp der Funktion display(), die selbst nach main() steht. In
der ersten Sitzung haben Sie schon gelernt, daf3 man mittels der Proto-
typen sich selbst zur Ordnung zwingen kann, weil es nun dem Compiler

67

TUTORIUM

68

moglich ist, die Argumenttypen auf Richtigkeit zu prifen. Hier hat das
Prototyping aber noch einen Zweck. Die Funktion main() ibergibt dis-
play() einen Zeiger auf die Struktur meier. Damit kénnen main() und dis-
play() auf dieselbe Variable zugreifen. Wir hatten bisher gelernt, daf3
eine Funktion nicht auf die lokalen Variablen einer anderen zugreifen
kann. Tatséchlich kann man aber genau dies mit Hilfe von Zeigern um-
gehen. Eine kleine Sperre gibt es aber noch. Diese Funktionen oder ihre
Prototypen missen vor main() stehen. Wenn Sie im Listing 2.2.7 den
Prototyp weglassen, missen Sie die Funktion display() vor main() setzen.

Nun zu den Zeigern. Im Funktionskopf von display() steht
void display(struct person *ptr)

Das heif3t, die Funktion erwartet einen Zeiger vom Typ struct person. Der
Zeiger selbst heif}t ptr, der Stern sagt, daf3 es ein Zeiger ist. »Zeiger auf«
heifit aber auch »Adresse von«, womit der Aufruf display(&meier);
logisch ist, denn »&« heif}t »Adresse von«.

Aus dem Punkt wird -->

Nun waren wir es bisher gewohnt, auf die Strukturkomponenten mit dem
Punkt-Operator zuzugreifen, zum Beispiel mit meier.name. Da hier der
Parameter *ptr heif3t, mifite man -jetzt *ptr.name schreiben. Das geht
schief, weil der Punkt-Operator eine hshere Prioritét als der Stern hat. C
wiirde also zuerst ptr.name entwickeln, aber das wére die Adresse und
nicht der Inhalt. Also mu3 man C tberlisten und (*ptr).name schreiben.
Das geht tatscichlich — probieren Sie es aus —, doch inzwischen hat man
dafir ein Kirzel erfunden, und das heif3t ptr->name. Da diese Form iber-
sichtlicher und auch tblich ist, missen Sie sich nur merken: Hat man nur
einen Zeiger auf die Struktur, muf3 man anstatt des Punkt-Operators |.)
den Komponenten-Operator (->) nehmen.

TUTORIUM

Workshop
Checkliste
1. Warum muf3 man einen C-String immer um ein Element grofBer deklarieren

als der Text lang ist?

2. Wann mul3 man beim Zugriff auf Strukiurelemente ».« und wann »->«
schreiben?

3. Warum sollte man einer Funktion mdglichst nur einen Zeiger auf eine
Struktur Gbergeben und nicht die Strukturvariable selbst?

Ideen fiir eigene Ubungen

1. Weisen Sie im Listing 2.2.4 allen Komponenten Werte zu, und zeigen Sie
das mittels printf{) in Form einer Postanschrift an (ohne das Gehalt).

2. Erweitern Sie analog zu Punkt 1 die display()-Funktion von Listing 2.2.7.

69

TUTORIUM

70

2.3 Dritte Sitzung:
Erzeugen eines leeren Windows

Die Themen dieser Sitzung:

e Libraries

* Windows

¢ Window-Datenstrukturen
* Window-Flags

¢ Type-Casting

e #include

nformation

Der Umgang mit Datenstrukturen ist das A und O der Amiga-Program-
mierung. In der vorherigen Sitzung haben Sie die Grundlagen dazu
gelernt, hier wenden wir uns den ersten Amiga-Strukturen zu. Dabei gibt
es ein Problem: Damit die Programme laufen, missen wir mit if und for
etwas aus der ndchsten Sitzung vorwegnehmen. Beide Themen werden
nur kurz angeschnitten, mehr dazu finden Sie in der vierten Sitzung.

Grundlagen und Eigenschaften von Windows

Windows sind die Basis fir alle Aktivitdten auf dem Amiga. Zuerst muf3
lhr Programm ein Fenster &ffnen, also dieses Gebilde auf dem Schirm
erscheinen lassen. Dabei gilt:

a) Wenn ein Fenster gedffnet wird, muf3 man ihm dabei Eigenschaften
mitgeben. Die Gréfle und die Lage des Fensters gehdren sicherlich
dazu, aber auch die Gadgets (z.B. die Dinger zum SchlieBen oder
Grof3e dndern in den Ecken).

b) Hat man einem Fenster ein Gadget (oder mehrere) mitgegeben, muf3
man auch sagen, ob Intuition dem Programm melden soll, wenn ein
Gadget betdtigt wurde.

c) Esist Sache des Programms, auf diese Gadget-Meldungen zu warten
und darauf zu reagieren.

TUTORIUM

Die Punkte a) und b) werden beim Offnen des Fensters erledigt. Ein Win-
dow wird durch einen Aufruf von OpenWindow;() gedffnet. Diese Funk-
tion hat nur einen einzigen Parameter, némlich einen Zeiger auf die
NewWindow-Struktur. NewWindow ist eine Daten-Struktur, in die man
vor dem Aufruf von OpenWindow() alle Eigenschaften des Fensters ein-
tragen muf3. Die Funktion gibt einen Zeiger auf eine Daten-Struktur mit
dem Namen Window zuriick. In der Window-Struktur steht zuerst eine
Kopie der Daten von NewWindow aus dem Aufruf, aber auch einiges
mehr. Das hért sich komplizierter an, als es ist. Nehmen wir deshalb mit
Listing 2.3.1 ein wenig Praxis vorweg.

struct NewWindow NeuesWindow =

{

20,20,300,100, ~ /* Lage u. MaBe */
-1,-1, /* Farben */
CLOSEWINDOW, - /* Melde Klick Close-Gadget */
WINDOWCLOSE, /* Installiere Close-Gadget */
NULL, NULL, /* keine Extras */
"Mein Window", /* Titel-Text */
NULL, /* Kein eigener Screen */
NULL, /* kein SuperBitmap-Window */
0,0,0,0 /* keine GrdBendnderung */
WENCHSCREEN, /* Bildschirmtyp */
}i
main ()

{

Window = OpenWindow (&NeuesWindow) ;

}

Listing 2.3.1: Offnen eines Fensters (Beispiel ist unvollstindig!)

Das Beispiel ist zwar noch etwas unvollstéindig (IGuft so nicht), es verdeut-
licht aber schon recht gut das Prinzip von nahezu allen Operationen unter
Intuition. Die NewWindow-Struktur zeigt auch eine weitere typische
Eigenschaft: Es sind viele Features vorgesehen, die man kaum immer alle
braucht. In diesem Fall muf3 man NULL eintragen, falls es sich um einen
Zeiger handelt, oder 0 im Falle von Daten. Fisr »Farben« steht da zweimal
-1, was soviel heifit wie »iUbernehme« (hier die Farben des Screen).
Wichtig ist der Eintrag WBENCHSCREEN. Ein Window braucht immer
einen Screen (Bildschirm), der die Auflésung und die Anzahl der még-

n

TUTORIUM

72

lichen Farben fiir das Window vorgibt. Ein Screen wird so &hnlich wie ein
Window angelegt, doch die Arbeit kdnnen wir uns ersparen, wenn wir

mit WBENCHSCREEN sagen, daf3 das Window den Workbench-Screen
nehmen soll.

Als guter C-Programmierer ist lhnen natiirlich aufgefallen, daf3 hier einige
Konstanten und Typen nicht definiert sind. Keine Sorge, die beschaffen
wir uns spéfer ganz leicht mit einigen #include-Anweisungen.

Libraries

Die im Listing 2.3.1 genannte Funktion OpenWindow() ist eine von Hun-
derten, die im Amiga schon eingebaut sind. Diese Funktionen sind in
Gruppen zusammengefaft, die Libraries (Bibliotheken) heif3en. Bevor man
so eine Funktion nutzen kann, muf3 man ihre Library 6ffnen. Sinn der
Ubung: einige Libraries stehen "nicht im ROM, sondern auf der Disk. Fin-
det der Amiga eine Library nicht im ROM, schaut er im Library-Directory
auf der Diskette nach. Das macht den Amigo sehr flexibel, weil man fir
neue Bertriebssystem-Funktionen nur neue Libraries auf einer Diskette
braucht. Hat ein Programm (Task) die Library geladen, kénnen sie andere
Tasks auch nutzen. Damit die Library nicht ewig den RAM blockiert, muf3
jedes Programm zum Schluf seine Library auch wieder schlief3en. Hat das
letzte Programm eine Library geschlossen, gibt das System den Speicher
wieder frei.

Da dieser Ablauf allgemein giiltig ist, gilt er auch fir ROM-Libraries. Und
sogar hier missen Sie nach dem Offnen mittels der Funkfion
Openlibrary;() prifen, ob kein Fehler aufgetreten ist. Daf3 eine Datei auf
der Diskette fehlt, kann man sich ja noch vorstellen, aber kann da plotz-
lich ein Stick ROM ausfallen2 Nun, das wohl nicht. Doch Tatsache ist,
daf3 der Amiga Speicher braucht, wo er sich notiert, daf3 lhr Programm
?iese Library geofF et hat. Und genau dieser Spelcher kann im Extremfall
ehlen.

Include-Files

Jedes typische Amiga-Programm beginnt mit Include-Anweisungen, wie
beispielsweise den folgenden:

#include <exec/types.h>
#include <intuition/intuition.h>

TUTORIUM

#include ist eine Anweisung an den Compiler, die aufgefishrte Textdatei -
praktisch ein unvollstindiges C-Programm - einzulesen. Das wirkt
genauso, als ob Sie den Text an dieser Stelle eingetippt hdtten. Die
Dateien haben zwar den Extender ».h«, und heiflen Header-Files, doch
#include kann durchaus an beliebiger Stelle im Programm stehen, und die
Datei muf3 auch nicht mit ».h« enden.

Wenn der Name wie hier in spitzen Klammern eingeschlossen ist, sucht
der Compiler zuerst im Directory, auf das die Include-Umgebungsvariable
zeigt. Mit Anweisungen wie »assign INCLUDE: sys:lc/include« hatten wir
das System schon im Kapitel 1.5 so eingerichtet. Wenn Sie hingegen den
Namen (plus Pfad) in Anfihrungsstriche setzen, sucht der Compiler zuerst
dort. Typisch wendet man diese Form fiir eigene Include-Files an. In den
oben genannten Beispielen werden die Include-Files types.h und intui-
tion.h eingezogen. Damit werden diverse Typen und Konstanten definiert.
Schauen Sie sich ruhig einmal mit einem Editor diese Dateien an.

Mit den Include-Direktiven sind wir auch schon mitten in der Praxis des
Listings 2.3.2. Mit der dann folgenden Zeile

struct IntuitionBase *IntuitionBase;

wird eine Variable vom Typ »Zeiger auf die Struktur IntuitionBase« dekla-
riert. Der Typ IntuitionBase steht im Include-File. Beachten Sie, daf3 es
durchaus zuldssig und auch iblich ist, bei selbstdefinierten Typen fir den
Typ und die Variable den gleichen Namen zu verwenden. Die Regelung
ist sinnvoll, da man ja bei der Namensvergabe nicht wissen kann, welche
Typen in den Include-Files stehen. Bei den C-Standardtypen geht das
nicht. Also int int diirfen Sie nie schreiben, wohl aber das:

typedef int ganz;

main ()
{ ganz ganz;
ganz = 13;

printf ("%d",ganz) ;
}

Hier habe ich eine Varicble mit dem Namen ganz vom Typ ganz
geschaffen. Mit typedef der Syntax Synonym kann man in C Typen neue
Namen geben, was meistens zum Ausgleich von Compiler-Unterschieden
gebraucht wird.

73

TUTORIUM

74

L-DHBC2BMEY Az teo> win

Bild 2.3.1:
Das ist unser
Ziel

Doch zuriick zum Listing 2.3.2. Auch der Struktur-Typ struct NewWindow
steht im Inlclude-File intuition.h. Wir missen jetzt die Struktur-Komponen-
ten mit Werten laden, was derart geschieht, daf3 wir die Variable Mein-
Window deklarieren und sie dadurch dabei gleichzeitig initialisieren.

Type-Casting muB sein

Dazu mu3 man natiirlich die Typen der einzelnen Strukturkomponenten
kennen, drucken Sie einfach intuition.h aus. Nur dann finden Sie den
Grund fir die Zeile

(UBYTE *) "Warte...", /* Window-Titel */

Lassen Sie das (UBYTE *) weg, meldet Aztec C eine Pointer-Pointer-Kon-
vertierungs-Warnung, Lattice beanstandet das nicht. Der Grund ist, daf3
in intuition.h die Komponente als »UBYTE *Title« deklariert ist, d.h., *Title
ist ein UBYTE-Zeiger. UBYTE (aus dem Include-File exectypes.h) ist ein mit
typedef definiertes Kiirzel fir den Typ Byte ohne Vorzeichen. Das ist zwar
im Prinzip der Typ char auch, nur erzeugt ein String-Literal wie hier das
"Warte...", einen char-Zeiger und keinen UBYTE-Zeiger.

/* winl.c
Programm Offnet ein Window, 1laRt es fiir einige
Sekunden auf dem Schirm und endet dann.

*/

#include <exec/types.h>

#include <intuition/intuition.h>

struct IntuitionBase *IntuitionBase;

/* Struktur fir ein neues Window initialisieren: */

Listing 2.3.2: (Fortsetzung néichste Seiten)

TUTORIUM

struct NewWindow MeinWindow =

{

170, 80, /* linke obere Ecke */

300,100, /* Breite u. Hohe x/
-1,-1, /* Farbe der Pens */
0L, 0L, /* Keine Flags */
NULL, /* keine User-Gadgets */
NULL, /* keine User-CheckMark */
(UBYTE *)"Warte...", /* Window-Titel *x/
NULL, /* Kein eigener Screen */
NULL, /* keine SuperBitmap */
100, /* Mindestbreite */
30, /* Mindesthohe */
640, /* Maximalbreite */
256, /* Maximalh&he */
WBENCHSCREEN /* Bildschirmtyp */

}i

void main() /* Beachte Unterstrich vor main */

{

struct Window *Window;
long 1i;

/* Offne Intuition-Library: */
IntuitionBase = (struct IntuitionBase ¥*)
Openlibrary ("intuition.library",OL);

/* Abbruch, wenn Fehler: */
if (IntuitionBase == NULL) exit (FALSE);

/* Offne Window: */

Window = (struct Window *) OpenWindow (&MeinWindow) ;

if (Window == NULL) { /* Wenn Fehler: */
CloselLibrary(IntuitionBase); /* Lib schlieBen */
exit (FALSE) ; /* und Abbruch */
}

for (i=1000000; 1i; i--) / * Warteschleife */

Listing 2.3.2: (Fortsetzung néichste Seite)

75

TUTORIUM

76

CloseWindow (Window) ; / * Window schlieBen */
Closelibrary (IntuitionBase); / *Library schlieBen */
exit (TRUE) ; /* Ende */

}

Listing 2.3.2: Die einfachste Art, ein Window zu &ffnen

Generell geht es hier darum, einer Variablen vom Typ x ein Datum vom
Typ y zuzuweisen. Da der C-Compiler nicht wissen kann, ob das ein Ver-
sehen mit teilweise schlimmen Folgen oder Absicht ist, miissen wir ihm
das sagen, sprich, den einen Typ ausdriicklich in den anderen umwan-
deln. Da dieses »Type-Casting« sehr héufig gebraucht wird, misssen wir
das Uben. Listing 2.3.3 hat diesen Zweck.

main ()

{
int 1 = 90;
char ¢ = 'c¢';
char text[] = "ABC" ;

printf ("%c \n", (char) 1i);
printf ("%d \n", (int) c);
text[2] = (char) 65;
printf ("$s \n", text);

Listing 2.3.3: Type-Casting ist wichtig in Amiga C

Das Programm gibt der Reihe nach in drei Zeilen Z, 99 und ABA aus. Im
Rechner werden auch Buchstaben und andere Zeichen als Zahlen gespei-
chert. In einer Norm namens ASCII ist festgelegt, welche Zahl welchem
Zeichen entspricht. Demnach sind Zahlen und Zeichen austauschbar, was
hier angewandt wird.

»printf;("%c \n", (char) i)« soll laut dem Formatsiring ein Zeichen
drucken, wir geben aber die int-Variable i aus. Fir die Umwandlung in
ein Zeichen wird vor das i (char) gesetzt. Umgekehrt soll »printf("%d \n",
(int) c);« laut Formatstring einen int-Wert ausgeben, wir bieten ihm aber
ein Zeichen an. Das wird durch den Vorsatz (int) umgewandelt. Die néich-

TUTORIUM

ste Zeile setzt in den String ABC fiir das C die Zahl 65 ein, was der
ASCll-Code von A ist. Sie sehen, daf3 man den gewiinschten Typ in
Klammern vor den fremden setzen mufi.

Diese Regel gilt generell auch fir Zeigertypen, nur daf3 man hier nach
dem Namen noch einen Stern setzen muf3. Schauen wir uns Listing 2.3.4
an.

typedef unsigned char UBYTE;

main ()

{
UBYTE byte array[4] = {65,66,67,0};
char *char zeiger;

char zeiger = (char *) byte array;
printf ("$s\n", char zeiger);

strcpy (byte array, (UBYTE *) "xyz");
printf ("$s\n", (char *) byte array);

Listing 2.3.4: Typwandlung bei Zeigern

Das hier vorliegende Problem ist an sich trivial und wird von vielen Com-
pilern auch nicht mehr angemeckert. Der Typ char ist im Standard-C als
signed char (signe = Vorzeichen) mit dem Wertbereich —128 bis +127
definiert. Der Amiga hat jedoch viele Sonderzeichen mit den ASCIl-Codes
von 128 bis 255. Deshalb hat man unsigned char mit dem Wertbereich 0
bis 255 als den Typ UBYTE definiert. Die erste Zeile von Listing 2.3.3 steht
so im Include-File /exec/types.h.

In Listing 2.3.4 wird byte_array (vom Typ UBYTE) mit {65,66,67,0}
initialisiert. Das sind die ASCIl-Codes fir ABC gefolgt von einem Null-
Byte, also ist das ein String in der rechnerinternen Darstellung. Bei einem
Array ist der Name gleichzeitig die Adresse, also kann man ihm eine
Zeigervariable zuweisen. Das geschieht mit »char_zeiger = (char *)
byte_array;«. Dabei muf3 der byte_array vom Typ UBYTE in den Typ char
gewandelt werden. Zusétzlich miissen wir aber noch sagen, daf3 es sich
um einen Zeiger handelt, und das tut der Stern in (char *).

77

TUTORIUM

78

Nun zur Umkehr: Mit der Zeile
strcpy (byte array, (UBYTE *) "xyz");

wird der String xyz in den Bytearray kopiert. Weil xyz ein String und
damit ein char-Zeiger ist, muf3 er in einen UBYTE-Zeiger gewandelt
werden. Die Regel (Typ *) gilt fir alle Zeiger, auch solche, die auf Struktu-
ren zeigen. Das erkldrt diese Zeilen:

struct Window *Window;
Window = (struct Window *) OpenWindow (&MeinWindow) ;

Die Variable *Window ist ein Zeiger vom Typ struct Window. Die Funk-
tion OpenWindow hingegen bringt einen allgemeinen Zeiger. Folglich
muB3 man diesen mittels (struct Window *) in einen Window-Zeiger
umwandeln.

Wir miissen nur immer offnen und schlieflen

Nachdem wir nun das schmiickende Beiwerk der C-Funktionen entschlis-
selt haben, kénnen wir uns wieder der Aufgabe, ein Fenster zu &ffnen,
und damit Listing 2.3.2 zuwenden. Wir &ffnen die intuition.library und
merken uns deren Adresse in IntuitionBase. Das erste Argument ist der
Name der Library, das zweite die Versions-Nummer. Trégt man dafiir OL
ein, heif}t das »Version ist mir egal«. Nun folgt die Zeile

if (IntuitionBase == NULL) exit (FALSE);

Im Klartext: Wenn der Zeiger IntuitionBase den Wert NULL hat (keine
giltige Adresse), breche das Programm ab. Mehr zum if-Befehl finden Sie

in der vierten Sitzung. Die Library mufiten wir 6ffnen, weil wir die darin
befindliche Funktion OpenWindow() brauchen.

OpenWindow() hat nur ein Argument, ndmlich die Adresse einer
NewWindow-Struktur. Diese haben wir vorher mit den vielen Zeilen als
MeinWindow initialisiert. Ging beim Offnen etwas schief, was mit »if
(Window == NULL)« abgefragt wird, missen wir alles, was offen ist,
schlieflen. Das ist hier aber nur die intuition.library. Folglich kdnnen wir
das mit Closelibrary(IntuitionBase) erledigen. Sie sehen, die Funktion will
einen Zeiger auf die Library sehen, also gut, daf3 wir uns den in Intuition-
Base gemerkt hatten.

L&t sich das Window &ffnen, ist es auch auf dem Schirm. Damit Sie sich
das Kunstwerk ein paar Sekunden lang ansehen kénnen, luft jetzt die
for-Schleife los. Sie zahlt nur von 1000000 bis 0, was Zeit braucht, mehr

TUTORIUM

dazu in der vierten Sitzung. Ist das Programm bis hierher gelaufen, sind
das Window und die Library offen, also miissen wir beide schlief3en. Nun
kénnen wir mit exit{) das Programm verlassen.

I5" Beachten Sie, daB ich nicht main, sondern _main (mit Unferstrich) geschrie-
ben habe. Der Linker wird deshalb einen kisrzeren Startup-Code einbinden,
der nicht mehr die Standard-1/O-Kandle &ffnet. Damit sind aber auch Funk-
tionen wie printf{) nicht mehr verwendbar. Diese werden allerdings auch
nicht gebraucht.

Wir rationalisieren die Arbeit

Sie haben es schon erkannt: Ein echtes Amiga-Programm ohne Windows
gibt es nicht. Also miissen wir immer die Libraries 6ffnen, dann Intuition,
dann die Windows, und zum Schluf3 missen wir alles wieder schliefen.
Und das sollen wir immer tippen2 Natirlich nicht. Wir schaffen uns ein
paar Funktionen fir diese Arbeiten, packen diese in ein Include-File und
laden dieses dann nur noch, wenn wir ein neues Programm anfangen.
Listing 2.3.5 arbeitet schon auf dieser Basis.

/* win2.c */

#include <exec/types.h>
#include <intuition/intuition.h>

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;
struct Window *Window;

#include "stdwindow.h"™ /* Eigener File! */

void main(void)
{

open libs(); /* Libraries 6ffnen */

Window = (struct Window *) open window (
20,20,500,100," Der Fenstertitel ",
WINDOWCLOSE | WINDOWSIZING | WINDOWDRAG,
CLOSEWINDOW, NULL) ;

Listing 2.3.5: (Fortsetzung néichste Seite)

79

TUTORIUM

80

if (Window == NULL) exit (FALSE);

/* Warte auf Mausklick in Close-Gadget */
Wait (1L << Window->UserPort->mp SigBit);

close all(); /* Alles schlieBen */

Listing 2.3.5: Das rationalisierte Window-Programm

Der Anfang ist noch klar. Es werden zwei Inlude-Files eingelesen und drei
Variablen deklariert. Stéren Sie sich nicht daran, daf3 wir *.GfxBase noch
nicht nutzen, das Include-File braucht sie schon jetzt, wir wenden es
spdter an. Nun folgt

#include "stdwindow.h" /* Eigener File! */

Diese Datei finden Sie in Listing 2.3.6. Sie miissen zuerst dieses Listing
eintippen, es unter dem Namen stdwindow.h speichern und erst dann
Listing 2.3.5 eingeben, es kompilieren und testen. Sie sollten stdwindow.h
im selben Directory wie lhre Programme ablegen. Dieses Header-File stellt
drei Funktionen zur Verfigung, némlich open_libs() zum Offnen der
erforderlichen Libraries, open_window() zum Offnen eines Window, und
close_all() zum SchlieBen des Windows und der Libraries. Damit reduziert
sich unser Programm — vom Vorspann abgesehen — auf die Zeilen

open_libs();

open _window(...);

Wait (1L << Window->UserPort->mp SigBit);
close all();

Die vorletzte Zeile mit der Wait;()-Funktion bringt Sie sicherlich ins
Griibeln, doch glauben Sie mir vorerst, daf3 dadurch das Programm
solange wartet, bis das Close-Gadget des Window angeklickt wird. In der
funften Sitzung gehen wir der Sache auf den Grund. Zuerst misssen wir
uns open_window() laut Listing 2.3.6 ansehen.

/**************** stdwindow.h *******************/
void open libs(void)

{

IntuitionBase = (struct IntuitionBase *)

Listing 2.3.6: (Fortsetzung néchste Seiten)

TUTORIUM

}

str

nw

nw.

nw
nw

nw.

nw

nw.
nw.
nw.
nw.

nw

Openlibrary ("intuition.library",0L);

if (IntuitionBase == NULL) Exit (FALSE);
GfxBase = (struct GfxBase *)
Openlibrary ("graphics.library", OL) ;
if (GfxBase == NULL)
{
Closelibrary (IntuitionBase); /* Int.-Lib zu */
Exit (FALSE) ; /* Abbruch */

}

uct window *open window (short x, short y,
short w, short h,
char *name,
ULONG flags,
ULONG i flags,
struct Gadget *gadget)

struct NewWindow nw;

.LeftEdge = x; /* linke Kante des Fensters */
TopEdge = y; /* obere Kante des Fensters */
.Width = w; /* Breite des Fensters */
.Height = h; /* Hohe des Fensters */
DetailPen = -1;

.BlockPen = -1;

Title = (UBYTE *) name; /* Fenster-Titel */
Flags = flags; /* Welche Gadgets */
IDCMPFlags = i flags; /* Welche IDCMP's */
Screen = NULL;

.Type = WBENCHSCREEN;

nw.FirstGadget = gadget;

nw.CheckMark = NULL;

nw.BitMap = O0;

nw.MinWidth = -1; nw.MinHeight = -1;
nw.MaxWidth = -1; nw.MaxHeight = -1;
return((struct window *) OpenWindow (&nw));

Listing 2.3.6: (Fortsetzung néchste Seite)

81

TUTORIUM

82

}

void close all(void)

{
CloseWindow (Window) ;
Closelibrary (GfxBase) ;
Closelibrary (IntuitionBase) ;
Exit (TRUE) ;

Listing 2.3.6: Das Include-File stdwindow.h

Bisher haben wir die NewWindow-Variable gleich bei der Deklaration
initialisiert. Jetzt legen wir mit

struct NewWindow nw;

eine Variable mit dem Namen nw vom Typ NewWindow an. Da es sich
dabei um ein struct handelt, sind Zuweisungen an die Struktur-Kompo-
nenten in dieser Form méglich:

nw.LeftEdge = 20;
nw.TopEdge 20;
/* u.s.w. */

1

Die Methode erscheint lhnen im Vergleich zur bisherigen zu umstcindlich?
Sie haben ja recht, aber das Verfahren hat Vorteile. Die initialisierten
Strukturvariablen miissen immer global sein, sie sind also auch statisch.
Statische Variable belegen immer ihren Speicherplatz und kénnen nicht
geldscht werden.

Nun missen Sie wissen, daf3 die NewWindow-Struktur nur zum Offnen
des Windows bendtigt wird, danach ist sie iberflissig. Alle weiteren
Zugriffe auf das Window laufen tber die Window- Struktur, ein struct, das
Intuition nach dem Offnen automatisch anlegt. Die von OpenWmdow{)
gelieferte Adresse zeigt darauf. In der Window-Struktur befinden sich alle
Daten aus lhrer NewWindow-Struktur und noch ein paar mehr.

Jetzt stellen Sie sich vor, Sie brauchen drei Windows, dann wiirden Sie
nach der statischen Methode auch dreimal den Platz fir die New-
Window-Strukturen unnétig belegen. Folgerung: Wir legen die ganze
»NewWindow-Geschichte« in eine Funktion. Dort deklarierte Variablen
sind bekanntlich dynamisch (automatische Variable) und existieren somit

TUTORIUM

nur so lange (auf dem Stapel), wie die Funktion aktiv ist. Bei der Gelegen-
heit Gbergeben wir dann die Eigenschaften des Windows, die wir éndern
mdchten, als Argumente. Die Funktion weist diese Werte der New-
Window-Struktur zu - die Ubrigen als Konstanten auch — und 6ffnet dann
das Fenster. Den Zeiger auf die (grof3e) Window-Struktur gibt sie zuriick.
Beide Aktionen (Window &ffnen und Zeiger darauf »returnen«) werden
mit der Zeile »return((struct window *) OpenWindow{&nw));« erledigt.
* Betrachten wir den Aufruf aus Listing 2.3.5, so steht da:

Window = (struct Window *) open window (
20,20,500,100," Der Fenstertitel ",
WINDOWCLOSE | WINDOWSIZING | WINDOWDRAG,
CLOSEWINDOW, NULL);

Die ersten vier Zahlen geben die Lage des Fensters sowie seine Grof3e an.
Nach dem Titel des Window folgt als ein Argument der Ausdruck WIN-
DOWCLOSE | WINDOWSIZING | WINDOWDRAG. Es handelt sich
hierbei um die Flag-Bits (in intuition.h definierte Konstanten), die mittels
der ODER-Funktion () zusammengefafit werden. Damit werden die
Gadgets fir das Schlieflen, die Groflendénderung und das Verschieben
eingeschaltet. Probieren Sie diese Gadgets aus, sie funktionieren automa-
tisch. Es gibt noch das Gadget WINDOWDEPTH fiir das »in den Hinter-
grund bringen« und weitere, die wir spéter kennenlernen werden.

Workshoy
Checkliste

1. Wann braucht ein Programm einen eigenen Screen?

2. Kann man die NewWindow-Struktur nach dem Offnen eines Windows ver-
gessen oder gar l8schen?

3. Warum sollte man eine Library zum Schluf3 immer schlief3en2

Ideen fiir eigene Ubungen

Andern Sie das Listing 2.3.5 so, daf3

¢ das Window einen neuen Titel tréigt,

® eseine andere Lage und Gréf3e hat und

¢ s alle Gadgets hat (auch WINDOWDEPTH).

Kompilieren, linken und testen Sie das Programm.

83

TUTORIUM

84

2.4 Vierte Sitzung:
Den ProgrammfluB kontrollieren

Die Themen dieser Sitzung:

* Entscheidungen
¢ Operatoren
* Verzweigungen

e Schleifen

e Springe

Sie haben es schon in der vorherigen Sitzung gemerkt: Wir missen pri-
fen, ob eine bestimmte Bedingung gegeben ist, und danach das eine oder
das andere tun. Das Programm muB in die eine oder in die andere Rich-
tung verzweigen, der ProgrammfluB wird getindert. Neben diesen ein-
fachen Verzweigungen gibt es auch Mehrfachverzweigungen, die eben-
falls sehr wichtig sind. Zum Beispiel muf3 ein Programm ganz verschie-
dene Dinge tun, je nachdem, welcher Meniipunkt ausgewdhlt wurde. Was
gewdhlt wurde, muf3 das Programm natiirlich erfragen. Und wenn nichts
gewdhlt wurde?2 Dann muf3 es wieder fragen und wieder fragen, so
lange, bis der Anwender etwas tut. In diesem Fall léuft das Programm in
einer Schleife. Aus allem zusammen ergeben sich diese Themen:

e Operatoren in C
e Die verschiedenen Arten der Verzweigung
¢ Endlose, abweisende und nicht abweisende Schleifen

e Das Bilden von Blécken

Arithmetische Operatoren einsetzen

Bis jetzt habe ich immer brav wie in Pascal oder Basic i=i+2 geschrieben,
wenn i um 2 erhdht werden sollte. Aber das tut man nicht in C, sondern
schreibt dafir i+=2. Das gilt nicht nur fir 2, sondern allgemein und auch
fir andere Operatoren, wie die Tabelle 2.4.1 zeigt.

TUTORIUM

Ausdruck Kurzform Operation
x=x*y x* =y Multiplikation
x=x/y x/ =y Division
x=x%y x% =y Modulo
X=X+Yy x+ =y Addition
X=x-y x— =y Subtraktion
X=X<<y x<< =y Links schieben
X=y>>y x>> =y Rechts schieben
x=x&y x& =y Bitweises AND
x=x"Ny xN =y Bitweises XOR
x=xly x| =y Bitweises OR

Tabelle 2.4.1: Operatoren und ihre Kurzformen

Friher galt, daf3 man generell die Kurzform verwenden sollte, weil der
Compiler dann weif3, daf3 er die Variable nicht zweimal zwischenspei-
chern muf3. Moderne Compiler erkennen das aber und wandeln selbstéin-
dig Ausdriicke wie x=x+17in x+=17 um.

Inkrement- und Dekrement-Operatoren

Fir den Sonderfall x+=1 kann man auch x++ schreiben, womit wir bei
den berithmten C-Operatoren ++ und —— angelangt wéiren. Es gilt:

Ausdruck Ist gleichwertig mit

X =x+1 x++ oder ++x (Inkrement)
x =x-1 x— oder —x (Dekrement)
x+ =1 x++ oder ++x

x- =1 x— oder —x

Tabelle 2.4.2: Inkrement- und Dekrement-Operatoren

Die Aussage, daf3 x++ und ++x gleichwertig sind (bzw. x— und ——x), ist
allerdings nur im Fall der Zuweisungen giiltig. Man kann aber auch prak-
tisch an jeder Stelle im Programm Variable mit den Inkrement- bzw.
Dekrement-Operatoren schmiicken, und dann muf3 man beide Formen
sehr wohl unterscheiden. Das folgende Programm gibt 3 und 5 aus.

85

TUTORIUM

86

main () {
int i=3;
printf ("$d\n", i++);
printf ("$d\n", ++i);
}

Die Variable i hat den Anfangswert 3. Die erste printf{)-Zeile gibt i aus
und erhdht es dann um 1, i ist also jetzt gleich 4. Die zweite printf{)-Zeile
erhoht erst i (von 4 auf 5) und druckt es dann. Das nennt man Post-Inkre-
ment (i++) oder Pré-Inkrement (++i). Fir das Dekrement gilt das sinn-
gemaf.

Praxis . .
Es folgen jetzt V|e|e kleine Programme welche die Anwendung der ver-

schiedenen Befehle zeigen. Sie sollten alle zum Laufen bringen, sie variie-
ren und wieder testen. Nur Ubung macht den Meister.

Verzweigungen mit if und logische Operatoren

Listing 2.4.1 bringt zuerst mit der Funktion input{) etwas Wiederholung.
Die Aufgabe: So dhnlich, wie man in Basic »INPUT "Gebe Zahl ein",i«
schreiben darf, wollen wir in C »input{"Gebe Zahl ein", &i)« anwenden.
Sie sehen, wir ibergeben mit & die Adresse von i. Das hat zur Folge,
daf3 die Funktion auf diese Adresse schreibt, wir also so einen Wert fir i
zuriickbekommen. Beachten Sie auch, daf3 jetzt in scanf{) nicht &zahl,
sondern nur zahl steht, denn im Kopf haben wir zahl bereits als Zeiger
deklariert.

void input (char *msg, int *zahl)
{ printf("%s ",msq);
scanf ("%d", =zahl);

}

main ()

{

int i;

input ("Gebe 1 oder 2 ein", &i);
if (i == 1)
puts ("Das war die 1");

TUTORIUM

if (1 == 2)
puts ("Das war die 2");
if (1 !=1&& 1 !'=2)

{
puts ("Tut mir leid");
printf ("%d ist weder 1 noch 2\n", 1i);

}

Listing 2.4.1: Die Anwendung von if

Nun zur Aufgabe: Der Anwender soll 1 oder 2 eingeben, und das soll
bestdtigt werden. Bei jeder anderen Zahl soll die Ausgabe lauten »xxx ist
weder 1 noch 2«. Nun, die Zahl steht nach dem Aufruf unserer input()-
Funktion in i, und jetzt kommt die Abfrage

if (1 == 1)

auf deutsch: »wenn i gleich 1 ist«. Beachten Sie, daf3 der logische Ope-
rator »gleich« mit »==« (zwei Gleichheitszeichen) geschrieben werden
muf3! Wenn diese Bedingung wahr ist (zutrifft), wird der folgende Befehl
oder Befehlsblock (siehe unten) ausgefiihrt. Hier wird mit der Funktion
puts() (put string) ein Text ausgegeben. Wenn Sie Text unformatiert aus-
geben wollen, ist diese Form schneller als printf{).

IS Beachten Sie: Nach if darf kein Semikolon stehen. Es wirkt in diesem Fall als
leerer Befehl. Das heif}t, wenn die Bedingung erfillt ist, wird dieser leere
Befehl und nicht die Folgezeile ausgefihrt.

Nun zur Zeile mit dem tollen Ausdruck
if (i '!'=1 && 1i !'= 2)

Im Klartext: »wenn i ungleich 1 und i ungleich 2«. Sie sehen, daf3 != der
Ungleichoperator ist, und && fir das logische UND steht.

I Beachten Sie, daB C im Gegensatz zu Basic oder Pascal zwischen logischen
Operatoren und Bit-Operatoren unterscheidet. Das logische UND heif3t &&,
das bitweise nur &.

Nach der Abfrage sollen zwei Zeilen ausgefihrt werden, weshalb hier
mittels der geschweiften Klammern ein Block gebildet wird. Ein Block darf
beliebig viele Zeilen und auch weitere Abfragen enthalten. Natirlich darf
er auch dem if folgen.

87

TUTORIUM

838

Andernfalls oder else einsetzen

Listing 2.4.2 ist eine kleine Abwandlung eines Teils von Listing 2.4.1. Den
Rest Gbernehmen Sie bitte. In der ersten Abfrage priifen wir auf »i gleich
1 ODER i gleich 2«. Zwei senkrechte Striche heiflen logisch ODER, nur
einer meint auch hier nur bitweises »Odern.

input ("Gebe 1 oder 2 ein", &i);

if (1 ==1 || 1 == 2)
puts ("Das war 1 oder 2");
else

{

puts ("Tut mir leid");

printf ("$d ist weder 1 noch 2\n", 1i);
}

Listing 2.4.2: Die Anwendung von else (Auszug)

Ist die if-Bedingung nicht erfilli, kommt else (andernfalls) zum Tragen.
Wirden Sie das else weglassen, héiten Sie einen typischen Logik-Fehler,
wonach das Programm einmal korrekt und einmal falsch arbeitet. Gében
Sie dann 55 ein, kéme die richtige Meldung »Tut mir leid / 55 ist weder
1 noch 2«, doch wiirden Sie 1 eingeben, lautete die Ausgabe:

Das war 1 oder 2
Tut mir leid
1 ist weder 1 noch 2

Mehrfachverzweigungen mit switch erledigen

Im Listing 2.4.1 hatten wir mit der Folge

if (1 == 1)
puts ("Das war die 1");
if (1 == 2)

puts ("Das war die 2");

auf nur zwei Werte gepriift, bei 10 verschiedenen Zahlen diirfte diese
Methode langsam léstig werden. Deshalb gibt es dafir eine Kurzform
namens switch. Listing 2.4.3 zeigt die Anwendung.

TUTORIUM

void input (char *msg, int *i)
{ printf("%$s ",msqg);
scanf ("sd", 1i);

main ()
{
int i;
input ("Gebe 1, 2, 3 oder 7 ein", &i);
switch (i)
{
case 1:
puts ("Das war die 1");
break;
case 2:
puts ("Das war die 2");
break;
case 3:
puts ("Das war die 3");
break;
case 7:
puts ("Das war die 7");
puts ("so ein Gliuck");
break;
default:
puts ("War nicht 1,2,3 oder 7");

Listing 2.4.3: switch ist die Kurzform fiir viele if

Per Prinzip schreibt man zuerst diese Zeilen:
switch (i)
{

}

Hier ist i die Variable, die abgefragt werden soll. Da auf switch immer ein
Block folgt, schreibe ich die geschweiften Klammern schon einmal hin, um
dann erst die Zeilen dazwischen einzusetzen. Diese Technik wende ich

89

TUTORIUM

90

immer an — auch bei main() {...} —, weil ich so nicht mitzuzéhlen brauche,
wieviel Klammern ich noch schlieBen muB. Im switch-Block steht nun fir
jeden Fall ein case-Befehl, dem alle zugehérigen Zeilen folgen. Nach der
letzten Zeile eines case folgt break. Die Klammern sind hier fir die Block-
bildung nicht erforderlich.

Aussteigen mit break

Mit dem Break-Befehl wird der aktuelle switch-Block verlassen. Das funk-
tioniert so:

switch (i)

{
break;

}

/* Hier geht es nach break weiter */

I Mit break kénnen Sie nur aus switch-Blécken und Schleifen aussteigen. Ver-
lassen wird immer nur der aktuelle Block und nicht etwa bei Schachtelungen
gleich alles.

Schleifen bilden mit while, do und for

In einer Schleife wird ein bestimmter Programmteil — Schleifenk&rper
genannt — wiederholt. Eine Form séhe so aus:

Beginn:
tue dieses
tue jenes
goto Beginn
Ende:

Die beiden »tue«-Anweisungen sind der Schleifenksrper. Wie leicht zu
erkennen, lauft diese Schleife endlos, die Marke »Ende:« wird nie
erreicht. Im Normalfall prift man deshalb in der Schleife auf eine
bestimmte Bedingung, zum Beispiel darauf, ob die Taste gedriickt
wird, und springt dann zu »Ende:«, also aus der Schleife heraus. Wir
kénnen dafir ein Beispiel in C so formulieren:

TUTORIUM

main ()
{
Beginn:
puts ("Ende mit Taste x");
if (getch() == 'x')
goto Ende;
goto Beginn;
Ende:

}

Beachten Sie den kleinen Trick mit der Funktion getch() (get character,
warte auf Tastendruck). Anstatt

c = getch{();
if (¢ == 'x")

kann man auch gleich mit dem Funktionswert arbeiten. Sie sehen aber
auch schon, daf} diese Losung mit goto sehr uniibersichtlich ist, weshalb C
dafir Besseres bietet. Das schauen wir uns mit Listing 2.4.4 an.

main ()
{ int test;

test = 0;

while (test < 10)

{
printf ("%d\n",test);
test += 2;

test = 0;

do

{
printf ("%d\n",test) ;
test += 2;

} while(test < 10);

Listing 2.4.4: Die Anwendung von while und do

91

TUTORIUM

92

Beide Schleifen drucken die Zahlen O bis 8 in Zweierschritten. Die Zeile
while (test < 10)

bedeutet: Solange der Wert von fest kleiner als 10 ist, filhre den nachfol-
genden Schleifenkdrper aus. Dieser kann wie hier ein Block in geschweif-
ten Klammern, aber auch nur eine Zeile sein. Wichtig ist, daf3 die Bedin-
gung, auf die while() priift, innerhalb des Schleifenksrpers einmal eintritt,
sonst luft die Schleife endlos. Hier wird die VariaEle test bei jedem
Durchlauf um 2 erhsht, so daf3 sie nicht lange < 10 bleiben kann.

Die zweite Schleife mit do...while fihrt hier zum selben Ergebnis, dennoch
gibt es einen wesentlichen Unterschied. Andern Sie némlich in beiden
Féllen den Ausgangszustand fest=0 in zum Beispiel test=20, so wird die
while-Schleife nicht, die do-Schleife hingegen einmal ausgefihrt (sie gibt
die 20 aus). Der Grund ist klar. while prift vor dem Schleifenksrper, do
hingegen erst danach. Die erste Form nennt man abweisende, die zweite
nicht abweisende Schleife.

main ()
{ int test = 0;
while (1)
{
printf ("$d\n", test);
test += 2;
if (test > 10)
break;
}
puts ("Schleife ist abgelaufen");
}

Listing 2.4.5: while endlos mit break-Ausgang

Listing 2.4.5 zeigt eine andere Losung derselben Aufgabe. Bei der while-
Bedingung kommt es letztlich immer darauf an, ob der Ausdruck zu lo-
gisch wahr (TRUE) oder falsch (FALSE) entwickelt werden kann. Praktisch
ist FALSE als Null definiert und TRUE als jeder Wert ungleich Null. Folg-
lich ist in while(1) der Ausdruck immer wahr, die Schleife liefe endlos.
Hier erfolgt jedoch die Abfrage innerhalb der Schleife mit if und gegebe-
nenfalls der Abbruch mit dem oben geschilderten break. Diese Form der
while-Schleife findet man recht héufig, weil es oft nétig ist, auf verschie-

TUTORIUM

dene Abbruchbedingungen zu priifen. Probieren Sie das Programm auch
einmal mit while(0) aus.

Wie schon gesagt, kann in der while-Bedingung jeder beliebige Ausdruck
eingesetzt werden, wie Listing 2.4.6 zeigt.

main ()
{
char s[80];
while (strcmpi (s, "ende"))
{
puts ("Gebe ende ein");
gets(s);
}

Listing 2.4.6: while-Ausdriicke sind viele erlaubt

Die Stringvergleichsfunktion strcmpif) ergibt nur dann Null (FALSE), wenn
beide Strings gleich sind. Folglich léuft die while-Schleife so lange, bis
»ende« eingetippt wird.

Wir ziihlen mit for

Im Listing 2.4.4 hatten wir eine while-Schleife genutzt, um numerische
Variable hochzuzdhlen. Da dieser Fall ziemlich oft vorkommt, bietet C
dafiir eine Sonderlésung namens for. Das kénnen andere Sprachen auch,
aber keine hat die »for-Power« von C. Fangen wir einmal mit Listing
2.4.7 ganz harmlos an.

main ()

{
int test;
for (test=0; test<1l0; test += 2)
printf ("$d\n",test);

Listing 2.4.7: Unsere erste for-Schleife
Das BeisFie| hat dasselbe Ergebnis wie die while-Lésung in Listing 2.4.4.

In einer for-Schleife sind drei Ausdriicke méglich, némlich — in dieser Rei-
hefolge — je einer fir Initialisierung (den Startwert), die Testbedingung

93

TUTORIUM

94

und die Modifikation. Die Variable fest bekommt den Startwert 0. Solange
test < 10 ist, soll die Schleife laufen. In jedem Durchgang soll test — auch
die Laufvariable genannt — um 2 erhdht werden. In diesem Beispiel
besteht der Sch|ei?enk6rper nur aus einer Zeile, er darf aber auch ein
Block (in geschweiften Klammern) sein.

Wir werden trickreich

Die drei Ausdriicke der for-Schleife erlauben viele Varianten und Tricks.
Der erste Trick an der Geschichte ist, daf3 die Ausdriicke auch leer sein
dirfen. Das gleiche Ergebnis wie Listing 2.4.7 bringt diese L&sung:

int test=2;
for(; test<1l0; test += 2)

Hier fehlt der Startwert, und das klappt sogar, weil er vorher schon mit int
test=2 initialisiert wurde. Beachten Sie aber, daf3 das Semikolon nicht
fehlen darf. Auch die Modifikation kann man weglassen, wenn man sie in
den Schleifenksrper verlegt. Das séihe dann so aus:

int test=2;
for(; test<10;)
{
printf ("$d\n",test);
test += 2;
}

Sie kénnen dlles weglassen und for(;;) schreiben. In diesem Fall lauft die
Schleife endlos. Haufig wird das genutzt und dafiir sogar — um das deut-
lich zu machen — ein Makro namens FOREVER (fir immer) definiert.

#define FOREVER for(;;)
main ()
{

FOREVER

{

puts ("Ende m%t x");

if (getch()=='x")
break;

Listing 2.4.8: Mehr ist das beriihmte FOREVER nicht

TUTORIUM

Wir haben hier erstmals ein Makro eingesetzt. Die Sache ist ganz ein-
fach. Sie schreiben »#define NameDesMakros Inhalt«. Das ist reine Text-
verarbeitung. In diesem Fall setzt der Compiler fir FOREVER — wann
immer es im Text auftaucht — einfach for(;;) ein. Natirlich lauft diese
Schleife auch nicht fir immer, sondern nur, solange niemand die (-
Taste driickt. Die Schreibweise hat sich jedoch eingebiirgert.

Den Komma-Operator anwenden

Bisher hatten wir das Komma schon in printf{) angewandt, um Ausdriicke
zu trennen, doch diese Regel ist durchgéingiger, als man vielleicht denkt.
Was halten Sie von Listing 2.4.92

main ()
{
int i, J;
i =10, j = i;
while (i--, j -= 3, j > 0)
printf ("%$4d% 4d\n", i, 7J):

Listing 2.4.9: Diirfen es ein paar Ausdriicke mehr sein?

Da, wo ein Ausdruck erlaubt ist, dirfen es auch ein paar mehr sein.
Beginnen wir mit dem Schlimmsten, némlich der while-Zeile. Hier finden
Sie drei Ausdriicke durch Kommas getrennt. Die drei Ausdriicke werden
der Reihe nach von links nach rechts entwickelt, der letzte bestimmt das
Ergebnis, beriicksichtigt aber alle vorherigen Ergebnisse. Weil hier als
letzter Ausdruck j > O steht, lduft die Schleife nur so lange, wie diese
Bedingung wahr ist. Weil vorher mit j —= 3 die Variable | die Werte 7, 4,
1,-2 angenommen hatte, kann die Schleife nur dreimal laufen.

Auch die Zeile i=10, j=i; folgt dieser Komma-Regel. Und weil das so
schon ist, findet man solche Gebilde hauptsdchlich in for-Schleifen, zum
Beispiel in dieser Art.
for(i=1, j=10; i<10; i++, J++)
printf ("%4d% 4d\n", 1i,73);

Zum Anfang mit continve

In einer Schleife besteht héufig das Problem, daf3 man bei bestimmten
Werten der Laufvariablen nichts tun will. Die einfachste Lésung dafiir
heif3t continue (fortsetzen). Schauen wir uns Listing 2.4.10 an.

95

TUTORIUM

96

main ()
{
int i;
for(i=7; i <= 70; i++)
{
if (1% 7))
continue;
printf ("$d\n", 1)
}
}

Listing 2.4.10: Die Anwendung von continue

Das Programm soll auf eine zugegebenermaf3en besonders umsténdliche
Art das kleine Einmaleins mit der Sieben ausgeben. Die for-Schleife lguft
aber in Einerschritten von 7 bis 70. Folglich darf alles, was nicht ohne
Rest durch 7 teilbar ist, auch nicht gedruckt werden. Genau das prisft der
Modulo-Operator. Der Modulo-Operator ist in C das %-Zeichen. x%y
ergibt den Rest der Division x/y. Ist dieser Rest nicht null, brauchen wir
die Zahl nicht. In diesem Fall wirkt continue. Es wirkt wie ein Sprung zum
Schleifenkopf, wo die néchste lteration (Erhdhung des Schleifenzdhlers)
ausgefihrt wird.

Workshop
Checkliste

1. Das folgende Programm sollte eigentlich nur dann »3 ist gleich 4« drucken,
wenn das wahr ist (also nie), doch leider tut es das immer. Wo liegt der
Fehler2

main ()
{
if (3==4);
printf ("3 ist gleich 4");

}

2. Was passiert, wenn man in einer switch-Anweisung nach einem case das
break vergif3t

3. Wie kann man eine Endlosschleife ohne goto aufbauen?

TUTORIUM

Ideen fir eigene Ubungen

1.

Schreiben Sie ein Programm, das in einer for-Schleife die Zahlen von 1 bis
100 mittels printf{} ausgibt. Nach jeweils finf Zahlen soll eine neuve Zeile
begonnen werden.
Mit Hilfe des Modulo-Operators séhe die Losung der Aufgabe so aus:
main ()
{ int i;
for (i=1;1i<=100;i++) {
printf ("%54",1i);
if (1 % 5 == 0)
printf ("\n");

}

Schreiben Sie aber trotzdem noch ein Programm, das einen Zéhler einsetzt.

97

TUTORIUM

98

2.5 Fiinfte Sitzung:
Ein-/Avsgabe und das Malprogramm

Die Themen dieser Sitzung:

* So entsteht das Malprogramm
¢ Input und Output

* Maus und Tastatur

¢ Die IDCMP-Flags

* Messages empfangen und auswerten

Information

Im Laufe der folgenden Sitzungen soll ein Malprogramm erstellt werden.
Das Programm wird recht einfach sein und keinen Vergleich mit Deluxe
Paint oder anderen Profisystemen aushalten. Das soll es aber auch nicht,
es hat einen ganz anderen Zweck. Unser Programm wird Windows,
Menis und verschiedene Requester haben. Sie kénnen damit zeichnen,
Text ein- und in verschiedenen Zeichensétzen ausgeben. Sie kdnnen
Daten auf die Diskette schreiben und von dort lesen. Kurzum: Sie werden
ein typisches Amiga-Programm entwickeln, das alles hat, was man
meistens braucht. Wenn Sie den Meniis und Requestern andere Texte
geben und die zugeordneten Funktionen neu schreiben, kénnen Sie das
Malprogramm zu einer Datenbank oder was auch immer umfunktionie-
ren. Sie haben den Rahmen, die ganze Bedienoberfléche und die gene-
relle Abfrage- und Verzweigungstechnik. Sie werden sehen, daf3 dies
einen sehr grof3en Teil jeder Anwendung ausmacht.

Bevor wir soweit sind, missen wir allerdings noch ein paar Grundlagen
erarbeiten. So ist es sicherlich einsichtig, daf3 unser Programm auf Maus-
klicks und Tastendriicke reagieren muf3. Es wdre auch ganz schén, wenn
wir einen Text in einem Intuition-Window ausgeben kénnten (printf{) geht
hier nicht). Also miissen wir uns mit dem Thema Ein- und Ausgabe, Input
und Output oder kurz 1/O genannt, befassen.

TUTORIUM

Input und Ovtput via IDCMP

Mit den C-Funktionen wie scanf{) und printf{) ist nur ein Input bzw. Out-
put auf Textebene im CLI maglich. Unter Intuition laufen alle Eingaben von
der Tastatur oder der Maus tber den IDCMP (Intuition Direct Communica-
tion Message Port), der Output in Form von Texten und Grafiken wird in
das Window »gemalt«. Ein Port ist nichts weiter als eine Datenstruktur
(struct), in der Intuition Nachrichten hinterlegt, die Sie dann daraus lesen
missen. Auerdem missen Sie mit ReplyMsg() den Erhalt der Nachricht
quittieren, so daf eine geordnete Kommunikation stattfindet.

Von Events getrieben

Diese Nachrichten — auch als Briefe vorstellbar — melden Events
(Ereignisse). Ein Event ist jede Aktion des Anwenders wie zum Beispiel
»Maus bewegt, »Taste gedriickt« oder »Diskette ausgeworfen«. lhr Pro-
gramm tut erst einmal gar nichts, sondern wartet nur auf solche Events.
Trifft eines ein, bearbeitet es den Fall und setzt sich dann wieder zur
Ruhe, um auf das néchste Event zu warten. Diese Technik nennt man
»event driven« oder ereignisgesteuert.

Das IDCMP ist in diesem Sinne der Briefkasten und Intuition der Brief-
tréiger, allerdings ein ganz untypischer Postbeamter. Sie kdnnen némlich
zum Beispiel sagen: Ich m&chte nur iber ein Window-Close-Ereignis
informiert werden, ich lasse aber andere Ereignisse zu, die dann Intuition
selbstéindig bearbeiten soll. Ein Beispiel dafir: Sie erlauben, daf3 ein
Window verschoben werden dorf, aber diese Arbeit selbst lassen Sie
Intuition machen.

Das IDCMP besteht aus zwei Message-Ports, ndmlich dem WindowPort
und dem UserPort. Unser Briefkasten ist der UserPort, den WindowPort
braucht Intuition fir sich selbst. Beide Ports werden automatisch von Intui-
tion angelegt, wenn Sie ein Window 6ffnen und dabei mindestens ein
IDCMP-Flag setzen. Durch das Setzen dieser Flags sagen Sie Intuition,
welche Ereignisse es an |hr Programm melden soll. Heif3t lhre New-
Window-Struktur nw, kénnen Sie zum Beispiel mit

nw.IDCMPFlags = CLOSEWINDOW | MOUSEMOVE

vorgeben, daf3 Intuition lhrem Programm nur dann eine Nachricht
schicken soll, wenn das Window geschlossen oder die Maus bewegt wird.

99

Tu

TORIUM

100

Horkbench Schaen
HidneshiEll

[E] Anzeige von Events:

Das letzte Event
Maus bewegt auf

Bild 2.5.1:
Das ist unser
Ziel

Die IntviMessage-Struktur

Der Briefkasten, in dem diese Nachrichten ankommen, ist der UserPort,
und dieser ist ein struct vom Typ IntuiMessage. Weil wir auf dessen Kom-
ponenten immer wieder zugreifen miissen, wollen wir uns das Gebilde
laut Listing 2.5.1 einmal Stiick fir Stick ansehen.

struct IntuiMessage

{ struct Message ExecMessage;
ULONG Class;
USHORT Code;
USHORT Qualifier;
APTR IAddress;
SHORT MouseX, MouseY;
ULONG Seconds, Micros;
struct Window *IDCMPWindow;

struct IntuiMessage *SpeciallLink;

Listing 2.5.1: Das Geheimnis des IDCMP (natiirlich eine Struktur)

ExecMessage wird von Exec (Kern des Amiga-Betriebssystems) bendtigt.
Fir uns gilt: Das Berilhren mit den Pfoten ist verboten! Gleiches gilt fir
Speciallink.

Class: Die Bits hier entsprechen direkt den IDCMP-Flags, die wir beim
Window-Offnen gesetzt haben, nur kénnen wir hier abfragen, ob das
Event eingetreten ist (wie, zeige ich gleich).

Was Code fiir eine Bedeutung hat, héngt vom Wert in Class ab. Sagt
zum Beispiel Class, daf3 es ein Tastatur-Event ist, so kdnnen Sie in Code
den Tasten-Code lesen, bei einem Meni-Event die Meni-Nummer.

TUTORIUM

Quadlifier: Diese Komponente benétigen wir manchmal, wenn wir die
Tastatur abfragen (siehe auch Code). »Qualifier« sind Tasten wie Shift,
die zusammen mit anderen Tasten gedriickt werden.

IAddress: Hier finden Sie die Adressen von Intuition-Objekten (deren
Strukturen). Wenn zum Beispiel class sagt, daf3 ein Gadget betdtigt
wurde, so kénnen Sie hier die Adresse des Gadgets erfahren. Bei User-
Gadgets (eigenen Gadgets) missen Sie hier nachsehen.

MouseX, MouseY enthalten die Maus-Koordinaten (relativ zur linken obe-
ren Ecke des Windows).

Seconds, Micros (Sekunden, Mikrosekunden): Hier steht eine Kopie der
Systemzeit. Intuition bedient ein Window (und damit auch diese Daten)
aber nur 10- bis 60mal pro Sekunde, die Uhr ist also nicht fir Kurzzeit-
messungen geeignet.

IDCMPWindow ist die Adresse des Windows fiir die Messages, also sozu-
sagen die Postanschrift fir die Briefe.

Pra

axis

Mit Listing 2.5.2 kommen wir zu einem Programm, das die Aufgabe hat,
Events darzustellen. Zuerst zeigt es sténdig in der Titelleiste des Windows
das Datum und die Uhrzeit bis hin zur Sekunde an. Im Window selbst
steht der Text »Das letzte Event war:« und darunter einer von drei még-
lichen Texten, némlich, »Taste .. gedriickt«, »Maus bewegt auf x=.. y=..«
und »Grofe (des Window) gedndert«. Ein Klick auf das Close-Gadget
(Schlie3-Gadget) beendet das Programm.

/* win3.c
Ein Programm zur Anzeige verschiedener
Events.

*/

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

#include <time.h>

/* Variable fir Windows und Grafik */

struct IntuitionBase *IntuitionBase;

Listing 2.5.2: (Fortsetzung folgende Seiten)

101

Tu

TORIUM

102

struct GfxBase *GfxBase;
struct Window *Window;
struct RastPort *rp;
#include "stdwindow.h" /* siehe 3. Sitzung */

/* Variable zur Message-Bearbeitung */
struct IntuiMessage *msg;

ULONG class;
USHORT code;
SHORT mx, my;
char string([81];
struct tm *tp; /*
time t t;

fur Datum/Uhrzeit */

print () gibt den Text in 'string' an der
Position x,y aus. Vorher wird die Zeile
durch Uberschreiben mit Blanks gel&scht.

void print (int x,

{

SetAPen (rp, 1L);

Move (rp, X,V);
Text (rp, "

/* e
Move (rp, X,V);:
Text (rp, string,
}

void main()
{
open libs();

Window = (struct

int y, char *string)

strlen(string));

Window *) open window (

20,20,500,100,"Anzeige von Events",

WINDOWCLOSE |

/* Die Window-Flags */

Listing 2.5.2: (Fortsetzung folgende Seiten)

TUTORIUM

WINDOWSIZING |
WINDOWDRAG |

WINDOWDEPTH |
REPORTMOUSE |

ACTIVATE,

CLOSEWINDOW | /* Die IDMCP-Flags */
NEWSIZE |

MOUSEMOVE |

VANILLAKEY |

INTUITICKS,

NULL

) ;

if (Window == NULL) exit (FALSE);

rp = Window->RPort;
print (50,38, "Das letzte Event war:");

for(;;) /* FOREVER bis CLOSEWINDOW */
Wait (1L << Window->UserPort->mp SigBit);

while(msg = (struct IntuiMessage *)
GetMsg (Window->UserPort))

class = msg->Class;
code = msg->Code;
mx = msg->MouseX;
my = msg->MouseY;
ReplyMsg(msg);
switch(class)
{
case CLOSEWINDOW: close all();
break;
case NEWSIZE : print (50,50, "Groke geandert");
break;

Listing 2.5.2: (Fortsetzung folgende Seite)

103

Tu

TORIUM

104

case MOUSEMOVE : sprintf(string,
"Maus bewegt auf x=%d y=%d",
mx, my);
print (50,50, string) ;
break;
case VANILLAKEY : sprintf (string,
"Taste %c gedrickt",code);
print (50,50, string);
break;
case INTUITICKS : time (&t);
tp = localtime (&t);
Move (rp, 200, 7);
Text (rp, asctime(tp),24);
break;
} /* end switch */
} /* end while */
} /* end for */
} /* end main */

Listing 2.5.2: Ein Programm zur Event-Abfrage und Anzeige

Gegeniber dem Listing 2.3.5 aus der dritten Sitzung gibt es nur
Erweiterungen, Sie kénnen also darauf aufbauen. Zwei neue Include-Files
kommen hinzu. gfx.h wird fir die Grafikfunktionen gebraucht, die
zustindige Library 6ffnet schon die Funktion open_libs() aus dem Include-
File stdwindow.h. Auch das File kann aus der dritten Sitzung tber-
nommen werden. time.h enthdlt Typen und Funktionen zum Thema
Datum/Uhrzeit. Beachten Sie auch, daf3 ein paar mehr Variablen ein-
gefihrt wurden.

Text in einem Window ausgeben

Zu Anfang des Listings gibt es die Funktion print{), und das hat Griinde.
Unter Intuition kénnen Sie némlich keinen Text mit printf{) ausgeben, son-
dern missen dafir eine Intuition-Funktion einsetzen, die den Text malt.
printf{) tut das letztlich auch, braucht aber ein CLI-Fenster. Die einfachste
Textausgabefunktion unter Intuition heif3t schlicht Text() mit der Syntax

Text (rp, *puffer, anzahl);

Darin ist rp der Zeiger auf den RastPort, *puffer ein Zeiger auf einen Zei-
chen-Array mit dem Text und anzahl die Anzahl der auszugebenden

TUTORIUM

Zeichen. Der RastPort ist eine Datenstruktur, in der notiert wird, wie
momentan gezeichnet wird. Die Vorder- und Hintergrundfarbe, der Zei-
chenmodus (z.B. Uberschreibend oder transparent) und andere Infor-
mationen sind hier festgehalten. Die meisten Grafikfunktionen benétigen
diese Angaben, weshalb man ihnen rp bergeben muf3. Dieser Zeiger
wird mit rp = Window->RPort; ermittelt, d.h., in der Window-Struktur gibt
es einen Zeiger auf den RastPort.

Vor der Textausgabe muf3 mit Movelrp, x,y); der Grafik-Cursor positio-
niert werden. Ab dieser Stelle wird dann der Text geschrieben. Beachten
Sie, daf3 x und y in Bildpunkten relativ zur linken oberen Ecke des Win-
dows angegeben werden missen. Vor der Textausgabe sollte man auch
noch die Zeichenfarbe setzen. Das geschieht hier mit SetAPen(rp, 1L);. 1L
(L for Langzahl) heif3t weif3. In der Standardauflésung haben Sie die Far-
ben 0 bis 3, meistens Rot, Weif3, Blau und Schwarz. Alle drei Schritte sind
in der Funktion print() zusammengefaft. Dieser Funktion wird x, y und ein
String mit dem Text Ubergeben. Beachten Sie: Text() erwartet zwar einen
char-Array, ich ibergebe aber einen String. Das hat den Vorteil, daf3
man mit strlen() die Anzahl der Zeichen ermitteln kann (das Null-Byte
wird dabei nicht gezéhlt) und so die Lénge nicht immer abzdhlen muf3.
Damit reduziert sich schlief3lich unsere ganze Textausgabe auf zum Bei-
spiel »print(100,50,"Hallo");«.

Window-Flags und IDCMP-Flags setzen

Sie wissen noch aus der dritten Sitzung: Ein Window wird gedffnet,
indem man die NewWindow-Struktur mit Daten versorgt und damit
OpenWindow() aufruft. Die Details dazu haben wir in der Funktion
open_window() versteckt, die wiederum im Include-File stdwindow.h steht.
Hier also rufen wir nur noch open_window() auf, und das unter anderem
mit diesen Window-Flags:

Window-Flag | Wirkung

WINDOWCLOSE Window bekommt Close-Gadget
WINDOWSIZING Window bekommt Graflen-Gadget
WINDOWDRAG Window kann verschoben werden
WINDOWDEPTH Window bekommt Vorder-/Hinter-Gadget
REPORTMOUSE Window meldet Maus-Bewegungen
ACTIVATE Window ist sofort aktiv

Tabelle 2.5.1: Window-Flags

105

Tu

TORIUM

106

Beachten Sie, daf3 das alles Bit-Werte (Zahlen) sind, die mittels der Oder-
Verknipfung (1) zu einem einzigen Ausdruck zusammengefaf3t werden.
Das ndchste Argument sind die IDCMP-Flags, glelchfalls Bitwerte, die
auch »verodert« werden.

IDCMP-Flag Intuition bringt Message, wenn
CLOSEWINDOW Window geschlossen wurde
NEWSIZE Gréfle gedindert wurde
MOUSEMOVE Maus bewegt wurde
VANILLAKEY Taste gedriickt wurde
INTUITICKS Uhrzeit gesendet wurde

Tabelle 2.5.2: IDCMP-Flags

Erklérungsbedirftig ist VANILLAKEY. Alternativ dazu (nicht gleichzeitig)
kénnen Sie RAWKEY schreiben. Wenn dieses Bit gesetzt ist, sendet Intui-
tion den »rohen« Tasten-Code als eine Zahl zwischen 0 und 255. Diesen
Code miif}ten Sie erst in den ASCIl-Code umrechnen. Nur mit letzterem
bringen die C-Funktionen verniinftige Texte auf den Schirm. Um die ein-
fachere automatische Umrechnung zu aktivieren, miissen Sie das Bit
VANILLAKEY setzen. Merke: Im Amerikanischen ist Vanilla ein Ausdruck
fur etwas, das schon einfach ist. Die Sache hat einen Haken: VANILLA-
KEY meldet alle Sondertasten, wie z.B. die Funktionstasten nicht.

Wir warten auf Post von Intuition

Das Window ist gedffnet, wir ermitteln noch mit rp = Window->RPort;
den RastPort, geben mittels »print(50,38,"Das letzte Event war:");« diesen
Text aus und gehen dann mit for(;;) in eine Endlosschleife. Diese beginnt
mit der tollen Zeile

Wait (1L << Window->UserPort->mp SigBit);

Im Klartext heifit das etwa: Das Programm soll warten, bis der Wecker
klingelt. Dabei kdnnte ich es bewenden lassen, doch Sie wollen ja C
lernen, also wie funktioniert das?

Damit das Programm nicht stéindig abfragen muf3, ob ein bestimmtes
Ereignis eingetreten ist, kann es sagen: »lch gehe jetzt schlafen, wecke
mich wieder, wenn Post in meinem Briefkasten ist.« Man kénnte auch

TUTORIUM

sagen »der Brieftriger soll klingeln«. Dazu muf3 das Programm die Funk-
tion Wait() aufrufen, und zwar mit einer Bit-Maske (letztlich einer Zahl) als
Argument. In dieser Maske muf3 genau das Bit gesetzt sein, das meinem
Window entspricht. Ein Programm kann mehrere Windows verwalten,
dann hat jedes ein Bit. Nun weif3 ich aber nicht, welches Bit mein Window
ist, ich weif3 aber, wo das steht, némlich in mp_SigBit (Signal-Bit).

Der Weg dahin ist lang. Mit dem Offnen des Windows hatten wir den
Zeiger Window auf die Window-Struktur erhalten. In dieser Window-
Struktur gibt es einen Zeiger auf die UserPort-Struktur und in dieser einen
Zeiger auf mp_SigBit. Nun wissen Sie noch, daf3 man bei Zeigern auf
Strukturen immer -> anstatt des Punktes schreiben mu3, also ist der Weg
Window->UserPort->mp_SigBit schon klar.

Bliebe noch das 1L << am Anfang des Ausdrucks. Das Ergebnis von
Window->UserPort->mp_SigBit ist eine Zahl, zum Beispiel 3. Damit redu-
ziert sich der ganze Ausdruck auf

Wait (1L << 3);

Die Zeichenfolge << ist der Links-Shift-Operator. 1L heif3t die Zahl A als
Langzchl Die 3 ist aber eine Bit-Nummer und Wait{) will eine Maske
sehen, in der Bit 3 gesetzt ist. Daher mache ich folgendes: Ich nehme die
Zahl 1, also bingr 00000001, wo Bit O gesetzt ist. Dann schiebe ich die 1
um 3 Bit nach links und habe somit 00001000, was iibrigens der Zahl 8
entspricht.

Es gibt Ubrigens auch fiese Programmierer, die ohne Wait() arbeiten und
statt dessen schreiben

while (msg = GetMsg (Window->UserPort) == 0)

Im Klartext: Solange keine Message anliegt (== 0) frage immer wieder.
Das ist die sogenannte Polling-Methode. Aus CPU-Sicht vergehen aber
Ewigkeiten, bis mal wirklich eine Message eintrifft. Folglich ist die Antwort
vielleicht 9999mal nein und dann einmal ja. Natirlich kostet diese Fra-
gerei auch Rechnerzeit, kostbare Zeit, die anderen Tasks fehlt. In einem
Multitasking-System — und das haben wir beim Amiga - ist das ein
grober Fehler.

107

Tu

TORIUM

108

Wir werten die Post aus

Wie auch immer, Wait() bewirkt also, daf3 unser Programm an dieser
Stelle so lange wartet, bis die Post klingelt. Ist das der Fall, missen wir
zum Briefkasten gehen und die Briefe dort herausholen, und zwar solange
(while) das Erfolg hat. Wir nehmen aber nicht den Stapel Briefe in d%e
Hand, sondern ziehen einen aus dem Kasten, lesen ihn und schicken
dann Intuition sofort eine Quittung der Art »Brief erhalten«. Den Inhalt des
Briefs hatten wir uns notiert und bearbeiten jetzt den Fall. Dann ziehen
wir den néichsten Brief und verfahren entsprechend. Das geht so lange bis
der Kasten leer ist. An dieser Stelle legen wir uns wieder hin und warten
darauf, daf3 der Brieftréiger klingelt. Wenn der das nicht bis zu 60-mal
pro Sekunde machen wiirde, hétten wir einen ganz tollen Job. Das Spiel-
chen geht so lange, bis da ein Brief erscheint mit der Meldung, daf3 der
Anwender das Close-Gadget angeklickt hat. An dieser Stelle schlief3en
wir mit close_all() alle Libraries und das Window und brechen das Pro-
gramm ab.

Dieser Ablauf sieht in C-ghnlicher Schreibweise etwa so aus:

for(;;) /* an sich endlos */

{
Warte bis Brieftrager klingelt;

while(Brief aus Kasten nehmen == erfolgreich)
{
class = Art der Nachricht;
Quittiere Nachricht;

switch(class)
{
case CLOSEWINDOW: Alles schlieBen und Ende;
break;
case NEWSIZE : Behandle "GroRe geandert";
break;
case U.S.W.

TUTORIUM

In echter C-Schreibweise wird aus dem obigen »Listing« diese Form:

for(;;) /* FOREVER bis CLOSEWINDOW */
{
Wait (1L << Window->UserPort->mp SigBit);

while(msg = GetMsg(Window->UserPort))
{

class = msg->Class;
ReplyMsg (Msqg) ;

switch(class)
{
case CLOSEWINDOW: close all();
break;
case NEWSIZE : print (50,50,"GroBe gedndert");
break;

}
}

Wenn Sie das mit Listing 2.5.2 vergleichen, werden Sie es wiederer-
kennen, es sind nur ein paar Details mehr, zum Beispiel diese:

while(msg = (struct IntuiMessage ¥*)
GetMsg (Window->UserPort))
{
class = msg->Class;
code = msg->Code;
mx = msg->MouseX;
my = msg->MouseY;
ReplyMsg (msg);

Sobald die Message gelesen wurde, fangen wir an, alles, was uns inferes-
siert, aus der msg-Struktur in andere Variable umzuspeichern, zum Bei-
spiel mit class = msg->Class;, Der Grund ist: Sobald wir mit
ReplyMsg(msg); den Empfang quittiert haben, sind die Daten in msg nicht
mehr giiltig. Intuition kann sofort danach neue Daten eintragen.

lhnen ist angenehm aufgefallen, daf3 in msg->class bzw. in class die-
selben Bezeichner wie in den IDCMP-Flags stehen? Das ist korrekt. Mit

109

Tu

TORIUM

110

diesen Flags sagen wir Intuition, was es uns melden soll, mit denselben
Flags fragen wir ab, welche Nachricht anliegt.

Wir tricksen mit sprintf();

Wie eingangs erwdhnt, kénnen wir mit der Funktion Text{) — versteckt in
der Funktion print{) — nur Texte drucken. Das ist ausgesprochen ungiinstig,
wenn wir Zahlen ausgeben miissen, die in Variablen stehen. Diese Zahlen
muissen ndmlich vom rechnerinternen Bindrformat (0101010101) in fir
uns lesbare Zeichenfolgen gewandelt werden. Genau diesen Job haben
wir bisher printf{) erledigen lassen, und das ist jetzt verboten. Die L&sung
heif3t sprintf{) (string-printf). Diese Funktion arbeitet genauso wie printf{),
aber mit einem Unterschied. Die Zeichen werden nicht auf den Schirm,
sondern in einen String geschrieben. Ein Beispiel: In code steht der ASCII-
Code der zuletzt gedriickten Taste. Dieser Code soll als Zeichen ausge-
geben werden. Mit printf{) wiirde man dann schreiben:

printf ("Taste %c gedrickt",code);

Der Unterschied zu sprintf{) ist recht gering. Man mu3 nur noch den
String angeben, in den das Ergebnis geschrieben werden soll. Dafir
haben wir im Programm schon mit char string[81]; eine Variable dekla-
riert und schreiben daher nur noch

sprintf (string, "Taste %c gedrickt",code);

Nun haben wir wieder unseren String und kénnen ihn mit print{50,50,
string); ausgeben.

Wir lassen eine Uhr laufen

Im case-Selektor fir INTUITICK steht diese geheimnisvolle Kommando-
Folge:

time (&t);

tp = localtime (&t);

Move (rp, 200, 7);

Text (rp, asctime (tp),24);

Sinn der Ubung: Immer wenn ein INTUITICK-Event eintrifft, sollen das
Datum und die Uhrzeit angezeigt werden. Einen »Intuition-Tick« von der
Systemuhr gibt es ungiinstigstenfalls zehnmal pro Sekunde, was fir eine
Uhr mit Sekundenanzeige reicht. Wirden wir die Routine in die Haupt-
schleife legen, wiirde sie zu oft aufgerufen, und der Text wiirde flackern.

TUTORIUM

Das Event INTUITICK ist aber nur der Anlaf3, die Routine zu starten. Jetzt
kommt die Arbeit. Die Zeit steht in einer Systemvariablen vom Typ long.
Aus geheimnisvollen Griinden hat man aber dafiir im Include-File time.h
den Typ time_t definiert. Wie auch immer, in dieser Langzahl steht die
Zeit in Sekunden ab Mitternacht vom 1. Januar 1978. Unterschétzen Sie
das nicht, wegen des Long-Wertes reicht das noch fir Gber 100 Jahre.

Die Funktion time(&t) liest diesen Sekundenwert aus und speichert ihn in
der Variablen t. Der néchste Aufruf, némlich fp = localtime(&t); rechnet
die Sekunden um und speichert das Ergebnis in einer Struktur, auf die o
zeigt. Das struct besteht aus lauter int-Komponenten fir Sekunden, Minu-
ten, Stunden, Tag, Monat und Jahr. Die Funktion asctime() schlief3lich
wandelt diesen struct in einen String um, wobei fir die Monatsnummer
sogar noch Text (die ersten Buchstaben) eingesetzt wird. Das Ergebnis ist
ein String von 26 Zeichen, wir drucken aber nur 24, weil wir das »\n\0«
am Ende nicht brauchen. Bliebe noch zu erwdhnen, daf3 ich den Zwi-
schenschritt fo = localtime(&t); nur der Lesbarkeit wegen eingesetzt habe.
Man kann diese Zeile auch weglassen und dann schreiben:

Text (rp, asctime(localtime (&t)), 24) ;

Sie wissen noch: Anstatt einer Variablen, die ein Funktionsergebnis hdilt,
kann man auch gleich den Funktionsaufruf einsetzen.

Workshop @~.. ...
Checkliste

1. Warum sollen Sie die Polling-Methode vermeiden und statt dessen Wait()
einsetzen?

2. Was ist der Unterschied zwischen RAWKEY und VANILLAKEY?

3. Warum muf3 man vor ReplyMsg() die noch benétigten Werte im Message-
Port sichern?

111

TUTORIUM

112

Ideen fiir eigene Ubungen

1.

Erweitern Sie mit Hilfe der IDCMP-Flags (im open_window{)-Aufruf) DISK-
REMOVED und DISKINSERTED sowie neuer case-Selektoren das Programm
so, daf3 im Falle eines Diskettenauswurfs bzw. -einschubs die Meldung
»Diskette ausgeworfen« bzw. »Diskette eingeschoben« erscheint.

Kompilieren, linken und festen Sie das Programm.

Andern Sie im open_window()-Aufruf und im case-Selektor VANILLAKEY in
RAWKEY. Stellen Sie in sprintf{) von Zeichenausgabe (%c) auf Zahlenaus-
gabe (%d) um. Beobachten Sie, welche Tasten welche Codes haben. Andern
Sie dann das Programm so, daf3 es auch mit einem Druck auf die (F1]-
Taste beendet werden kann.

Kompilieren, linken und testen Sie das Programm.

TUTORIUM

2.6 Sechste Sitzung:
Unser Window bekommt Meniis

Die Themen dieser Sitzung:

* Aufbau eines Menis

* Meni-Strukturen und Flags
® Programmieren von Menijs
¢ Der Menii-Code

e Makros

Zuerst besteht ein Meni aus der Menileiste (Titelzeile), in Intuition-
Schreibweise MenuStrip (Meni-Streifen). Jeder einzelne Titel innerhalb
des Streifens/der Leiste heif3t Menii (Menu). Eine Meniileiste gehort immer
zu einem Window. Das Meni kann nur angewdhlt werden, wenn das
Window aktiv ist. Wurde das Menii angewdahlt, erscheint die Meniileiste.
Nun missen Sie mit der Maus ein Meni herunterrollen. Die dann sicht-
baren Unterpunkte nennt man Ifems oder Meniipunkte.

Die Auswahl eines ltems kann aber auch zur Folge haben, daf3 plétzlich
weitere Items sichtbar werden. Das sind dann die sogenannten Sub-ltems
(Untermeniipunkte). Ein Sub-ltem kann durchaus wieder ein Sub-Sub-ltem
produzieren. Theoretisch kann das noch weitergehen, praktisch wird
damit die Bedienung zu kompliziert. Meistens sind die ltems Text. Zum
Beispiel werden Sie unter dem Menii-Titel »Projekt« iblicherweise den
ltem-Text »Laden« finden. Es hindert Sie aber niemand daran, anstatt
dieses Textes eine Grafik abzubilden. Intuition unterstiitzt direkt und sehr
gut Grafiken in Meniis.

Oft ist es zu umstandlich, erst das Menii und dann ein ltem anzuwdhlen.
Als Ldsung des Problems bietet Intuition sogenannte Command-Keys
(Kommando-Tasten). Eine Kommando-Taste ist eine Taste der Tastatur, die
direkt erreichbar ist (zum Beispiel nicht zusammen mit der (a1c)-Taste).
Wird die (rechte amiga)-Taste gleichzeitig mit diesem Command-

113

Tu

TORIUM

114

Key gedriickt, hat das dieselbe Wirkung, wie die Auswahl des zugeord-
neten ltems, und zwar automatisch.

IS Geben Sie niemals kritischen Operationen einen Command-Key. Diese
Kommandos werden némlich direkt und sofort ausgefihrt. Bei einem Meni-
ltem kdnnen Sie die Maus immer noch wegziehen, aber eine Kommando-
Taste kann unbeabsichtigt gedriickt worden sein.

Avfbau eines Meniis

In dieser Sitzung werden wir einen MenuStrip aufbauen, der zwei Titel
(Menis) hat, némlich »Projekt« und »Farben«. Das Projekt-Menii hat die
ltems »Neu«, »Laden«, »Sichern« und »Ende«. Letzteres hat die beiden
Sub-ltems »Wirklich« und »Lieber doch nicht«. Fir »Wirklich« gibt es den
Command-Key »[Amiga] + [x]«. Das Farben-Menii hat die ltems
»Rot«, »Griin« und »Blau.

Bild 2.6.1:
Das ist unser
Ziel

Wie Screens und Windows sind auch Meniis Strukturen, die unter ande-
rem einen Zeiger auf das néchste Menii enthalten. Hier gilt:

Projekt --> Farben --> NULL

In jeder Menii-Struktur gibt es (unter anderem) Zeiger auf die Meni-Titel.
Aus diesen wird der MenuStrip aufgebaut. In jedem Menii gibt es einen
Zeiger auf die ltem-Liste. Hier gelten dann die Folgen:

Neu --> Laden --> Sichern Ende --> NULL
Rot --> Grin --> Blau --> NULL

Auch die ltems sind Strukturen. Jedes Item hat einen Zeiger auf die Sub-
ltem-Liste. Ist dieser Zeiger nicht NULL (d.h. es gibt Sub-Items), gilt wieder:

Wirklich --> Lieber doch nicht --> NULL

TUTORIUM

Innerhalb der ltems und Sub-ltems gibt es einen Zeiger, der auf noch eine
Struktur zeigt. Diese ist entweder eine Textstruktur (kein einfacher String)
fir den Item-Text oder eine Image- Struktur, wenn Grafik anstatt Text dar-
gestellt werden soll. Daf3 die Textstruktur noch einen Zeiger hat, der dann
auf den Text-String zeigt, sei nur noch draufgesetzt. Au? jeden Fall sehen
Sie schon, wir werden wieder frshlich »zeigern« missen. Die 14 wichtig-
sten Zeiger stellt Bild 2.6.2 dar.

Projekt --> Farben --> NULL

: Rot --> Grin --> Blau —--> NULL

Neu --> Laden --> Sichern -->Ende --> NULL
Wirklich

Lieber doch nicht

NULL

Bild 2.6.2: Die wichtigsten Zeiger in einem Menij-System

Prexis .
Bild 2.6.1 ist unser Ziel, doch nun gilt es, das in die Praxis umzusetzen.
Fir Projekt und Farben (in Bild 2.6.1) missen wir zwei structs vom Typ

Menu einsetzen. Im Include-File intuition.h ist Menu gem&B Listing 2.6.1
definiert.

struct Menu

{

struct Menu *NextMenu; /* => ndchstes Menu */

SHORT LeftEdge, TopEdge;/* linke obere Ecke */
SHORT Width, Height; /* Breite und Hoéhe der Box */
USHORT Flags; /* Flags (siehe unten) */
BYTE *MenuName; /* —-=> Titel-Text */
struct Menultem *FirstItem; /* —==> Item-Liste */

/* Nur fiir Intuition intern: */
SHORT JazzX, JazzY, BeatX, BeatY; /* Intui.-intern */
bi

Listing 2.6.1: Die Meni-Struktur

115

Tu

TORIUM

116

Meniis gestalten

Mit LeftEdge geben Sie die Lage des Titels vor. Fir TopEdge kénnen Sie
zur Zeit schreiben, was Sie wollen, Intuition nimmt immer die obere
Schirmkante. Gleiches gilt fir die Hohe Height, wofiir Intuition immer die
Hahe der Titelleiste des Screens einsetzt.

Dem Meni selbst kénnen Sie nur ein Flag mitgeben (oder auch nicht,
dann 0). Ist MENUENABLED gesetzt, ist das Menii wahlbar, sonst ist es
deaktiviert und wird grau gezeichnet (inklusive aller Iltems). Diese
Zusténde kénnen durch die Funktionen MenuOn() und MenuOff{) nach-

triiglich gecindert werden.

*MenuName st ein Zeiger auf einen String. Hier reicht es, den Namen
direkt in Anfishrungszeichen einzutragen.

*Firstitem zeigt auf das erste ltem, und damit wéren wir bei der néchsten
Struktur. Die Item-Struktur gemdf Listing 2.6.2 gilt gleichermafen fir -
ltems und Sub-ltems. Alles auf3er Projekt und Farben in Bild 2.6.1 muf3
vom Typ Menultem sein.

struct Menultem

{

struct Menultem *NextItem; /* —--> nichstes Item */
SHORT LeftEdge, TopEdge; /* linke obere Ecke */
SHORT Width, Height; /* Breite und Hdhe der Box */

USHORT Flags; /* Flags (siehe unten) */
LONG MutualExclude; /* Gegenseitiger AusschluB */
APTR ItemFill; /* Zeiger auf Text oder Image */
APTR SelectFill; /* Text/Image bei Auswahl */
BYTE Command; /* Command-Key */
struct Menultem *Subltem; /* --> Sub-Item-Liste */
USHORT NextSelect; /* Fir Mehrfachwahl */

}i
Listing 2.6.2: Die ltem-Struktur (gilt auch fir Sub-ltems)

Solange Nextltem nicht NULL ist, setzt sich die Liste fort. Mehr als 32 ltems
sind aber nicht erlaubt. Die Lage (LeftEdge, TopEdge) gilt relativ zur Lage
des Menis. Die Breite (Width) und die Hohe (Height) sollten mindestens
die Maf3e des Texts oder der Grafik (Image) abdecken. NextSelect be-
ricksichtigt die sogenannte Mehrfach-Anwahl, die wir hier nicht beriick-
sichtigen. Flags gibt es wieder geniigend, doch wir benutzen nur zwei.

TUTORIUM

Flags setzen

Ist das Flag ITEMENABLED gesetzt, ist das ltem wéhlbar. Setzen Sie hier O
ein, werden auch alle Sub-ltems (wenn vorhanden) deaktiviert. Wenn Sie
im Command-Feld einen Buchstaben fir einen Command-Key einge-
tragen haben, missen Sie auch dieses COMMSEQ-Flag setzen. Intuition
wird dann [Amiga] [A] mit diesen Buchstaben neben den Text schreiben.
Geben Sie dann width breiter als den Text an, damit diese beiden Zei-
chen noch hineinpassen! ITEMTEXT miissen Sie setzen, wenn das ltem Text
sein soll, sonst miite ltemFill auf ein Grakik-Image zeigen. Auf3erdem
setzen wir noch HICOMP, womit das ltem bei der Anwahl invertiert wird.
Wenn Sie statt dessen lieber einen Rahmen um das ltem gezeichnet
haben wollen, setzen Sie HIBOX.

Menii-Strukturen initialisieren

In Bild 2.6.2 gibt es zwei Meni-Strukturen und neun Menultem-Strukturen.
Also missen wir zwei bzw. neun Variablen dieses Typs anlegen und
diese mit Daten fiittern, etwas fachlicher gesagt, initialisieren. Das kdnnte
so aussehen:

struct Menu Projekt =

{

sFarben, /* Zeiger auf Nachfolger */
10, 0, 120, 10, /* Lage und MaBke der Box */
MENUENABLED, /* Flags */
" Projekt ", /* Titel */
&Neu /* Zeiger auf Item-Liste */

}i

Damit wiirde man normalerweise anfangen, doch das klappt nicht. Wenn
ich &Farben schreibe, muf3 Farben schon existieren. In Farben gibt es
aber den Zeiger auf das ltem Rot, also muf3 das noch davorstehen. In Rot
gibt es den Zeiger auf Griin, das mu3 somit noch weiter vorne stehen.
Schliefllich gibt es in Rot noch den Zeiger auf TextVonRot, dieser muf3
also zuerst deklariert sein. Langer Rede kurzer Sinn: Die Reihenfolge im
Listing entspricht nicht mehr der logischen Reihenfolge, ein immer grofler
Nachteil. Problem zwei: Sie missen bei den Datentypen héllisch aufpas-
sen. Irren Sie sich da einmal, gerdt die ganze Kette durcheinander, der
ech|::le Fehlerort ist dann garantiert ein anderer, als der, den der Compiler
meldet.

117

TUTORIUM

Wenn ich hingegen lauter Variable anlegen, dann nach dem Motto:

struct Menu Projekt;

Projekt.Menu = &Farben:
Projekt.LeftEdge = 10;
Projekt.TopEdge = 0;
Projekt.Width = 120;
Projekt.Heigh = 10;

So kann ich diesen Fehler nicht mehr machen, doch wére das eine end-
lose Tipperei, wenn ich diesen Job nicht in Funktionen verlagert hétte. Die
Funktionen decken nicht alle Sonderfille ab, aber wie Sie gleich am Bei-
spiel von »Ende« noch sehen werden, kann man ja struct-Komponenten
auch nachtréglich andere Werte zuweisen, es sind schliefBlich Variable.
Die Variablennamen selbst sind auch so ein Problem. In groflen Pro-
grammen mit zum Beispiel 10 Menijs und 100 ltems sind das 110
Namen, die schwer zu iiberblicken und zu handhaben sind. Wir nehmen
deshalb Arrays, und zwar

/* fiir die Meniis */
; /* fir die Items */
1; /* fir die Item-Texte */

struct Menu menu [2]
struct Menultem item[9]
struct IntuiText itext[9

Und damit wéren wir schon mitten im Listing 2.6.3. Speichern Sie diese
Datei als menu.h. Wir werden sie dann spéter in das Programm aus der
funften Sitzung (Listing 2.5.2) »includen« und miissen dann dort nur noch
ganz wenig hinzubringen.

/* menu.h

Alle Funktionen zum Anlegen und zur Abfrage
von Meniis. (c) 1990 Peter Wollschlaeger
*/

struct Menu menu [2] /* fiur die Menltis */
struct Menultem item[9]; /* fir die Items */
struct IntuiText itext[9]; /* fir Item-Texte */
/* Konstanten fir die spatere

Mentiabfrage

Listing 2.6.3: (Fortsetzung folgende Seiten)

TUTORIUM

*/

#define PROJEKT O
#define FARBEN 1
#define NEU 0
#define LADEN 1
#define SICHERN 2
#define ENDE 3
#define WIRKLICH O
#define NEIN 1
#define ROT 0
#define GRUEN 1
#define BLAU 2

/* Text in ein IntuiText-struct

eintragen

*/

void make text (struct IntuiText *name, char *text,

SHORT left,
{

name->FrontPen = 0;
name->BackPen = 1;
name->DrawMode = JAMI1;
name->LeftEdge = left;
name->TopEdge = top;
name->ITextFont = 0;
name->IText = (UBYTE *) text;
name->NextText = NULL;

SHORT top)

/* Daten in ein Menultem-struct eintragen

*/

void make item(char *itemtext,

Listing 2.6.3: (Fortsetzung folgende Seiten)

119

TUTORIUM

struct
struct
struct
USHORT
USHORT

IntuiText *name,
Menultem *item,
MenulItem *next,
left,USHORT top,
width, USHORT height,

ULONG flags)

item->NextItem =
item->LeftEdge =
item->TopEdge =
item->Width =
item->Height =
item->Flags =

item->MutualExclude =

make text (name,
item->ItemFill =

item->SelectFill
item->Command
item->SubItem

next;
left;

top;
width;
height;
flags |
ITEMTEXT |
NULL;

HIGHCOMP;

itemtext, 0,0
(APTR) name;

)

NULL;
NULL;
NULL;

/* Daten in einen Menu-struct eintragen

*/

void make menu (struct
struct
struct
USHORT
USHORT

Menu *name,
Menu *next,
Menultem *first,
left, USHORT top,
width, USHORT height,

ULONG flags)

name->NextMenu =
name->LeftEdge
name->TopEdge =

next;
left;

char *titel,

top;

Listing 2.6.3: (Fortsetzung folgende Seiten)

120

TUTORIUM

name->Width = width;
name->Height = height;
name->Flags = flags;
name->MenuName = (BYTE *) titel;
name->FirstItem = first;

/* Das ganze Menl-System aufbauen
*/

void MakeTheMenu ()

{

[Kmmmmmm Menti 0 -----=-———--—- */

make item("Neu", /* Text des Items */
&itext[0], /* Adresse IntuiText-struct */
&item([0], /* Adresse der Item-struct */
&item[1], /* Adresse next Item *x/
5,0, /* linke obere Ecke */
120,11, /* Breite und Hohe */
ITEMENABLED /* Flags des Items */
)

make item("Laden", &itext[1l], &item[1l], &item[2],

5,16,120,11, ITEMENABLED);

make item("Sichern", &itext([2], &item[2], &item[3],
5,32,120,11, ITEMENABLED);

make item("Ende", &itext[3], &item[3], NULL,
5,48,120,11, ITEMENABLED);

make item("Wirklich Ende",
&itext[4], &item[4], &item[5],
100,8,200,11,
ITEMENABLED | COMMSEQ) ;

Listing 2.6.3: (Fortsetzung folgende Seiten)

121

TUTORIUM

make item("Lieber doch nicht",
&itext[5], &item[5], NULL,
100,24,200,11, ITEMENABLED);

item[3].Subltem = &item[4]; /* Sub-Item nachtragen */
item[4].Command = 'x'; /* Dito Cmd-Key */

make menu(&menu[0]," Projekt ", &menu[l], &item[O0],
10,0,120,10, MENUENABLED);

make item("Rot", &itext[6], &item[6], &item[7],
5,0,100,11, ITEMENABLED);

make item("Grun", &itext[7],&item[7], &item[8],
5,16,100,11, ITEMENABLED) ;

make item("Blau", &itext([8], é&item[8], NULL,
5,32,100,11, ITEMENABLED) ;

make menu (&menu[l],"Farben", NULL, &item[6],
150,0,100,10, MENUENABLED);
}

/* MENUPICK-Message auswerten und zugehoérige
Aktionen ausfihren
*/
void do_menu ()
{
switch (MENUNUM (code)) /* Switch Titel */
{
case PROJEKT:
switch(ITEMNUM (code)) /* Switch Items */
{
case NEU: print (50,50, "Neu");
break;

Listing 2.6.3: (Fortsetzung folgende Seite)

122

TUTORIUM

case LADEN: print (50,50, "Laden");
break;
case SICHERN: print (50,50,
"Sichern");
break;
case ENDE: switch(SUBNUM (code))
{
case WIRKLICH:
ClearMenuStrip (Window) ;
close_all();
break;
case NEIN: print (50,50,
"Lieber doch nicht");
break;

break;

}

break;

case FARBEN: switch(ITEMNUM (code))

{
case ROT: print (50,50, "Rot"):;
break;

case GRUEN:print (50,50, "Grin");
break;

case BLAU:print (50,50, "Blau"):;
break;

}
break;

Listing 2.6.3: menu.h hat alles, was man fiir Meniis braucht

123

Tu

TORIUM

124

Fir Sie ist die Funktion make_item() die wichtigste, die wie folgt aufge-
rufen wird:

make item("Neu", /* Text des Items */
&itext 01, /* Adresse IntuiText-struct */
&item[O0], /* Adresse der Item-struct */
&item[1], /* Adresse next Item */
5,0, /* linke obere Ecke *x/
120,11, /* Breite und Hohe */
ITEMENABLED /* Flags des Items */

)7

Die Kommentare sind etwas kurz, deshalb noch diese Hinweise: »Neu« ist
der Text des ltems. Dieser wird aber nicht in der ltem-Struktur abgelegt,
sondern in einer Struktur vom Typ IntuiText. Diese ist ein Element des
Arrays itext{9], hier itext{0]. Die Funktion erhélt mit &itext{O] einen Zeiger
darauf. Deshalb kann sie mit

make text (name, itemtext);

die Funktion make_text() aufrufen. Diese wiederum trégt in die mit name
bezeichnete IntuiText-Struktur den Text ein. Ist das geschehen, kann ich
mit

item->ItemFill = (APTR) name;

in der Menultem-Struktur den Zeiger auf diese IntuiText-Struktur eintragen.
APTR (a-pointer) ist ein allgemeiner Zeigertyp, der immer dann verwendet
wird, wenn ein Zeiger auf unterschiedliche Objekte zeigen soll. item-
>ltemFill kann némlich auch auf eine Image-Struktur zeigen, wenn das
Item eine Grafik sein soll.

Nun zu diesen beiden Zeilen:

item[3].SubItem = &item[4]; /* Sub-Item nachtragen */
item[4] .Command 'x'; /* Dito Cms-Key */

Il

Unsere Funktion make_item() hat keinen Parameter fiir Sub-ltems, sondern
triigt dafir immer NULL ein. Bei item[3] ist das falsch, weshalb das mit
der ersten Zeile korrigiert wird. Dito wird auf diese Art fir item[4] der
Command-Key 'x' nachgetragen.

TUTORIUM

Die Meniis erweitern

Wenn Sie die Menis erweitern wollen, ist das kein Problem. Schauven wir
uns dafir das Farben-Menii an. Nehmen wir an, Sie wollen ein ltem mit
dem Text »Gelb« hinzubringen. Nun nehmen Sie das letzte ltem (Blau)
und duplizieren es. Im Text steht dann:

make item("Blau", &itext[8], &item[8], NULL,
5,32,100,11, ITEMENABLED) ;

make item("Blau", &itext[8], &item[8], NULL,
5,32,100,11, ITEMENABLED) ;

In der ersten Zeile steht noch NULL (kein Nachfolger), das éndern Sie in
make item("Blau", &itext[8], &item[8], &item[9],
Nun ist der neue make_item-Aufruf so anzupassen.

make item("Gelb", &itext[9], &item[9], NULL,
5,48,100,11, ITEMENABLED) ;

Wir haben den Text gedindert, die Elemente in [9] und die Y-Position von
32 in 48. Vergessen Sie jetzt nur nicht, auch die Arrays

struct MenulItem item[9]; /* flur die Items */
struct IntuiText itext[9]; /* fir Item-Texte */

von »9« in »10« zu &ndern. Wenn Sie ein neues Menii anlegen wollen,
duplizieren Sie zuerst die ltems wie gehabt. Ihr erstes ltem miifite dann
item[10] heiflen und lhr Meni menu[2]. Nun duplizieren Sie einen
make_menu()-Aufruf und dndern den in

make menu (&menul2],"Figuren", NULL, &item[10],
300,0,100,10, MENUENABLED);

Auch der menu-Array muf3 dann um 1 erhsht werden.

Meniis abfragen mit Makros

Nun kommen wir zu der Funktion do_menu(), die fir die Abfrage der
Menis und die zugehdrigen Aktionen zusténdig ist. Wenn der Anwender
einen Menipunkt ausgewdhlt hat, steht im Code-Feld der IntuiMessage
ein 16-Bit-Wort, in dem codiert ist, welches Meni, welches Item und wel-
ches Sub-ltem selektiert wurde. So ein Menii-Wort teilt sich so auf:

125

Tu

TORIUM

126

sssssiiiiiimmmmm
Das heif3t:

e Bit O bis 4: Meni

e Bit 5 bis 10: ltem

e Bit 11 bis 15: Sub-ltem

Sehr schén, doch wie isoliert man nun die Einzelinformationen2 Nun,
Leser, die Freude am »Bitschieben« haben, kénnen jetzt voll zuschlagen.
Ich empfehle aber dringend, sich beim Programmieren auf die wichtigen
Dinge zu konzentrieren, und diese Aufgabe mittels Makros zu erledigen.
Folgende Makros sind in intuition.h schon eingebaut:

#define MENUNUM(n) (n & Ox1F)
#define ITEMNUM(n) ((n » 5) & O0xO003F)
#define SUBNUM(n) ((n » 11) & O0x001F)

Sie sehen so sehr schdn, wie Funktionsmakros definiert werden. Im Prin-
zip ist das reine Texiverarbeitung. Wenn Sie im Programm zum Beispiel
MENUNUM(3) schreiben, macht der Préprozessor lhres Compilers daraus
3 & OxIF. Er setzt also das Argument ein, er kann aber auch — wie die
ndchsten beiden Makros zeigen — damit rechnen. Im Gegensatz zu echten
Funktionen, die nur einmal im Programm stehen, werden also Funktions-
makros immer wieder neu in das Programm eingeﬂigt. Das kostet natiir-
lich Speicher. Damit Sie das erkennen kénnen — hier kommen die Makros
ja aus einem Include-File —, werden sie meistens (leider nicht immer) grof3
geschrieben.

Damit sind dann so einfache Abfragen wie
if (MENUNUM(code) = 3) /* in Menu 3? */

mdglich. Wir machen das eleganter mit switch und case. Beachten Sie,
daf3 nach den inneren »cases« auch immer ein break steht. Das ist nétig,
weil ein break immer nur aus einem switch herausfihrt, wir aber nach
einer Aktion ganz aus allen Abfragen heraus missen. Beachten Sie
ferner, daf3 vor dem Abruch noch ein

ClearMenuStrip (Window) ;

steht, womit die Menii-Leiste wieder entfernt wird. Sie kdnnen aber auch
mitten im Programm damit das Meni 18schen, und es oder ein anderes
mit einem erneuten Aufruf von SetMenuStrip() wieder einbauen. Doch

TUTORIUM

damit sind wir schon im Hauptprogramm. Nehmen Sie Listing 2.5.2 aus
der finften Sitzung, und bauen Sie folgende Ergénzungen ein:

Direkt vor die Zeile void _main() setzen Sie

#include "menu.h"

Nach der Kontrolle des Window-Offnens mit »if (Window == NULL)
exit{FALSE);« figen Sie ein:

MakeTheMenu () ;
SetMenuStrip (Window, &menul[0]) ;

In den Switch-Selektor fiigen Sie direkt nach dem CLOSEWINDOW einen
neuen case ein, was dann so aussieht:

case CLOSEWINDOW: close _all();
break;

case MENUPICK : do_menu();
break;

Damit Intuition das MENUPICK-Event auch meldet, tragen Sie in die
open_window-Funktion noch dieses Flag ein, zum Beispiel hinter CLOSE-
WINDOW | als MENUPICK 1.

workshop 2202000000
Checkliste

1. Welche Formen von ltems gibt es, und welche dirfen keinesfalls einen
Command-Key haben?

2. Warum sieht ein Programm, das Makros anwendet, viel kiirzer aus, ohne es
wirklich zu sein?

3. Wozu braucht man die Funktion ClearMenusStrip()?

Ideen fir eigene Ubungen

1. Erweitern Sie menu.h so, daf3 ein neues Meni »Figuren« mit den ltems
»Rechteck« und »Kreis« entsteht.

Kompilieren, linken und testen Sie das Programm.
2. Geben Sie einigen weiteren Menij-ltems Command-Keys.

Kompilieren, linken und testen Sie das Programm.

127

Tu

TORIUM

128

2.7 Siebte Sitzung: Gadgets fiir die Mausklicks

Die Themen dieser Sitzung:

e Gadget-Typen
e Strukturen und Flags

* Programmierung von Gadgets

Jede mausorientierte Eingabe mit Ausnahme der Menis lduft Gber
Gadgets. Waértlich Ubersetzt sind das Dingsda, praktisch kénnen es recht
komplizierte Gebilde sein. Ein Gadget ist zuerst ein unsichtbares
Rechteck. Das Drag-Gadget Gber der Titelleiste ist ein Beispiel dafir.
Normalerweise wird man aber ein Gadget sichtbar machen, indem man
ihm einen Rahmen, einen Text (oder beides) oder ein Image (Grafik) gibt.
Die Lage des Textes wird relativ zum Gadget angegeben, der Text kann
somit auch aufBerhalb der Gadgets liegen. Der Rahmen selbst ist auch
relativ zum (unsichtbaren) Gadget zu sehen, weshalb zum Beispiel seine
linke obere Ecke mindestens mit 0,0, besser mit —=1,~1 definiert werden
sollte. Anwender-Gadgets gehéren entweder zu einem Window oder zu
einem Requester. Die Lage eines Gadgets wird relativ zu diesem
Container angegeben.

Die drei Gadget-Typen

Es gibt drei Gadget-Typen. Das Boolean-Gadget wird typisch fir Ja-/
Nein-Aussagen verwendet. Kastchen mit Texten wie »OK« oder
»Abbrechen« sind Beispiele. Diese Gadgets treten zwar oft als Représen-
tanten fir TRUE oder FALSE auf, daher der Name, Sie sind aber nicht auf
zwei Boolean-Gadgets beschrénkt. Ein Taschenrechner zum Beispiel kann
aus 20 Boolean-Gadgets bestehen. Das String-Gadget dient zur Eingabe
von Texten oder Zahlen. Das Proportional-Gadget stellt Schieberegler dar.
Beispiele sind die Farbregler in Preferences.

TUTORIUM

struct Gadget

{

struct Gadget *NextGadget; /* —--> Nachfolger */
SHORT LeftEdge, TopEdge;/* linke obere Ecke */

SHORT Width, Height; /* Breite und Héhe */
USHORT Flags; /* siehe unten */
USHORT Activation; /* Auch Flags, s. unten */
USHORT GadgetType; /* der Typ */
APTR GadgetRender; /* —=> Border oder

Image oder NULL */
APTR SelectRender; /* —-=> oder Image, das

nach Anwahl */
struct IntuiText *GadgetText; /* Text des Gadgets
*/
LONG MutualExclude; /* z.Z. unbenutzt */
APTR SpeciallInfo; /* --> Zusatz-Struktur
bei String- und Prop-Gadgets */

USHORT GadgetID; /* Kenn-Nummer */
APTR UserData; /* Anwender-Erweiterung */

}i

Listing 2.7.1 Die Gadget-Struktur

Datenstrukturen und Flags

Ein Gadget ist eine Struktur (was hétten Sie erwartet?), die Listing 2.7.1
zeigt. Wie Sie sehen, enthdlt diese Struktur wieder diverse Zeiger auf
andere Strukturen. Fiir ein unsichtbares Gadget miissen Sie all diese Zei-
ger auf NULL setzen. Fiir ein Boolean-Gadget brauchen Sie zumindest in
*GadgetText einen Zeiger auf eine Texistruktur. Praktisch werden Sie
einen Rahmen um diesen Text zeichnen (genau: um das Gadget), wofiir
Sie in GadgetRender den Zeiger auf eine Border-Struktur eintragen. Bei
einem String-Gadget miissen Sie in Speciallnfo die Adresse einer
Stringlnfo-Struktur eintragen und fir ein Proportional-Gadget die von
Propinfo. Die Darstellung des Gadgets erfolgt immer geméf3 dem Bild, auf
das GadgetRender zeigt. Das Objekt kann ein Image (Grafik) oder ein
Border (Polygon, Vieleck) sein.

129

Tu

TORIUM

130

Flags und Activation-Flags

Es gibt Unmengen von Flags, hier benutzen wir nur GADGHCOMP,
womit das Gadget bei der Anwahl komplementiert wird. Die Activation-
Flags legen fest, welche Events Intuition meldet, wie sich Gadgets verhal-
ten sollen und was sie bewirken. Wir brauchen hier nur wenige.
RELVERIFY bewirkt, daf3 Events nur gemeldet werden, wenn der Anwen-
der die Maustaste ber dem Gadget losléfit. GADGIMMEDIATE heif3t
sofortige Meldung. STRINGCENTER heif3t: Der Text in einem String-Gad-
get wird zentriert. Fir die Proportional-Gadgets brauchen wir noch
AUTOKNOB (automatischer Schieber) und FREEHORIZ (horizontaler
Schieber).

Die zusiitzlichen Datenstrukturen

Bei String-Gadgets muf3 »Speciallnfo« auf eine Struktur namens Stringlnfo
zeigen. Wie diese aufgebaut ist, zeigt Listing 2.7.2.

struct StringInfo

{

UBYTE *Buffer; /* Arbeitspuffer */

UBYTE *UndoBuffer; /* Kopie Puffer vor Editierung
*/

SHORT BufferPos; /* Zeichen-Position im Puffer */
SHORT MaxChars; /* Puffer-GroBe in Zeichen */
SHORT DispPos; /* Position des 1. sichtb. Zeichens */

/* Die folgenden Felder werden von Intuition
aktualisiert: */
SHORT UndoPos; /* Zeichen-Position im UndoBuffer */
SHORT NumChars; /* Anzahl Zeichen im Buffer *x/
SHORT DispCount; /* Anzahl Zeichen im Gadget */
SHORT CLeft, CTop; /* linke obere Ecke des Gadgets */
struct Layer *LayerPtr; /* RastPort des Gadgets */
LONG LongInt; /* Ergebnis beim Integer-Gadget hier */
struct KeyMap *AltKeyMap; /* --> Key-Map oder NULL */
bi

Listing 2.7.2 Die Stringlnfo-Struktur

TUTORIUM

Wie Sie nachher im Beispiel-Programm sehen werden, reicht es, wenn Sie
die ersten vier Felder initialisieren. Mit Listing 2.7.3 kommen wir zur
Proplnfo, also der Struktur, auf die Speciallnfo im Falle von Proportional-
Gadgets zeigen muf3. Keine Angst vor viel Arbeit, es reicht praktisch,
wenn Sie nur drei Felder initialisieren.

struct PropInfo

{

USHORT Flags; /* z.B. AUTOKNOP | FREEHORIZ */

USHORT HorizPot; /* Stellung des horiz. Potis
in Prozent */

USHORT VertPot; /* bzw. vertikal */

USHORT HorizBody;/* Schrittweite horizontal */
USHORT VertBody; /* vertikal */

/* Die folgenden Felder setzt Intuition: */

USHORT CWidth; /* Container Width */

USHORT CHeight; /* Container Height */

USHORT HPotRes, VPotRes; /* Aufldsung des Potis */
USHORT LeftBorder; /* Container- */

USHORT TopBorder; /* Position */

}i

Listing 2.7.3 Die Proplnfo-Struktur

Wir wollen unser Programm aus der sechsten Sitzung wie folgt erweitern:

* Nach Anwahl von Projekt --> Laden erscheint ein String-Gadget mit
der Frage nach dem Dateinamen. »String-Gadget mit Return verlas-
sen ist ein Event, das angezeigt wird, dito wird dann der Pufferinhalt
ausgegeben.

® Nach Anklicken der Close-Box des Windows folgen die Fragen
»Wirklich schlieBen2« und dazu zwei Boolean-Gadgets mit »Nein«
und »Jawohl«.

* Im Window sind die drei Proportional-Gadgets »Rot«, »Griin« und
»Blau«, mit denen Sie die Schirmfarbe dndern kénnen.

131

Tu

TORIUM

132

Bild 2.7.1:
Das ist unser
Ziel

Gadgets programmieren

Wie schon mit den Menis in der vorigen Sitzung habe ich auch hier alles
zum Thema im Include-File gadget.h laut Listing 2.7.4 untergebracht.

/* gadget.h

Daten und Funktionen zum
Anlegen von Gadgets

*/

APTR iadr;

struct Gadget *gad, gadget[1l1l];
struct IntuiText gtext[11l];

struct StringInfo info;

char dobuffer([80], undobuffer([80];

/* fiir die Rahmen der Gadgets */
SHORT cordsl([] = {0,0, 282,0, 282,12, 0,12, 0,0};
struct Border borderl =

{-2,-2,1,0,JAM1,5, &cords1[0],NULL};
SHORT cords2(] = {0,0, 101,0, 101,21, 0,21, 0,0};
struct Border border2 =

{-1,-1,1,0,JAM1,5, &cords2[0],NULL};

/* fir Prop-Gadget: */
struct Image img[3];
struct PropInfo prop[3];

Listing 2.7.4: (Fortsetzung folgende Seiten)

TUTORIUM

/* Farbe in 16 Schritten: */
#define STEP (OxFFFF/0x10)

/* Text in eine IntuiText-struct
eintragen
*/
void make gtext (struct IntuiText *name,
char *text, SHORT left, SHORT
{
name->FrontPen = 1;
name->BackPen = 0;
name->DrawMode JAM1;
name->LeftEdge = left;
name->TopEdge = top;
name->ITextFont = 0;
name->IText = (UBYTE *) text;
name->NextText = NULL;

/* Gaget-Struktur initialisieren
*/
void make gadget (char *gtext,

top)

struct IntuiText *gname,
SHORT tleft, SHORT ttop,

struct Gadget *gadget,
struct Gadget *next,
SHORT left, SHORT top,

SHORT width, SHORT height,

USHORT flags,

USHORT activation,
USHORT type,

APTR *render,

struct IntuiText *text,
APTR *info,

USHORT id)

Listing 2.7.4: (Fortsetzung folgende Seiten)

133

TUTORIUM

gadget->NextGadget = next;
gadget->LeftEdge = left;
gadget->TopEdge = top;
gadget->Width = width;
gadget->Height = height;
gadget->Flags = flags;
gadget->Activation = activation;
gadget->GadgetType = type;
gadget->GadgetRender = (APTR) render;
gadget->SelectRender = NULL;

make gtext (gname, gtext, tleft, ttop):;
gadget->GadgetText = gname;

gadget->MutualExclude = NULL;
gadget->SpeciallInfo (APTR) info;
gadget->GadgetID = id;
gadget->UserData NULL;

}

/* Alle Gadgets anlegen
*/

void MakeTheGadgets (void)
{

/* Puffer flir String-Gadget initialisieren */
strcpy (dobuffer, "BILD 0.IMG");
info.Buffer = (UBYTE *) dobuffer;
info.UndoBuffer = (UBYTE *) undobuffer;
info.MaxChars = 80;
info.BufferPos = 0;
info.DispPos = 0;
/* Das String-Gadget selbst: */
make gadget ("Geben Sie den Namen der Datei
ein: ",
>ext[0], 0, -15,

Listing 2.7.4: (Fortsetzung folgende Seiten)

134

TUTORIUM

&gadget [0], NULL ,20,80,280,11,
GADGHCOMP,

STRINGCENTER | RELVERIFY,
STRGADGET,

(APTR *) &borderl, >ext[O],
(APTR *) &info, 1);

/* Das erste Bool-Gadget: */

make gadget ("Nein", >ext[1l], 40,7,
&gadget[1], &gadget[2],
180,130,100,20,

GADGHCOMP,

GADGIMMEDIATE | RELVERIFY,
BOOLGADGET,

(APTR *) &border2, >ext[l],
NULL, 2);

/* Das zweite Bool-Gadget: */

make gadget ("Jawohl", >ext[2], 25,7,
&gadget [2],NULL,
350,130,100, 20,

GADGHCOMP,
GADGIMMEDIATE | RELVERIFY,
BOOLGADGET,

(APTR *) &border2, >ext[2],
NULL, 3);

/* Es folgen drei Prop-Gadgets: */

make gadget ("Rot", >ext[3], -35,7,
&gadget [3], &gadget[4],
350,20,200,20,

GADGHCOMP,

GADGIMMEDIATE,

PROPGADGET,

(APTR *) &img[0], >ext([3],
(APTR *) &prop[0], 4);

Listing 2.7.4: (Fortsetzung folgende Seiten)

135

TUTORIUM

prop[0] .Flags
prop[0] .HorizBody
prop[0] .HorizPot

= AUTOKNOB |

FREEHORIZ;
STEP;
0;

make gadget ("Grun", >ext[4], -35,7,

&gadget [4]1,

&gadget [5],

350,45,200,20,
GADGHCOMP,
GADGIMMEDIATE,
PROPGADGET,

(APTR *)
(APTR *)
= AUTOKNOB |

prop[l].Flags
prop([l].HorizBody
prop[l].HorizPot

&img[1l],
&prop[l],

>ext[1],
5);
FREEHORIZ;

STEP;

0;

make gadget ("Blau", >ext[5],-35,7,

&gadget [5],

NULL,

350,70,200,20,
GADGHCOMP,
GADGIMMEDIATE,
PROPGADGET,

(APTR *)
(APTR *)

propl(2] .Flags
prop[2] .HorizBody
prop[2] .HorizPot

} /*End MakeTheGadgets ()

&imgl[2],
&prop[2],
AUTOKNOB |
STEP;
10*STEP;

>ext[2],
6);
FREEHORIZ;

*/

/* Gadget-Events auswerten und passende
Aktionen ausfihren

*/
void do_gadget ()
{
switch(((
iadr)

(struct Gadget *)
->GadgetID))

Listing 2.7.4: (Fortsetzung folgende Seite)

136

TUTORIUM

case 1: print (20,70, "String-Gadget
mit Return verlassen"):;
print (20,20, /* 29 Blanks */
" ")
print (20,20, (char *) &info.Buffer([0]);
RemoveGadget (Window, &gadget[0]);
break;

case 2: RemoveGadget (Window, &gadget[1l]);
RemoveGadget (Window, &gadget[2]);
SizeWindow (Window, 0, -100) ;

break;

case 3: close all();
break;

case 4:

case 5:

case 6: SetRGB4 (&Screen->ViewPort, O,
prop[0] .HorizPot/STEP,
prop[l] .HorizPot/STEP,
prop[2] .HorizPot/STEP) ;

break;

Listing 2.7.4: Alles fir die Gadgets

Die Strukturen cords und border werden nur benétigt, um die Rahmen der
Gadgets zu zeichnen, mehr dazu in der neunten Sitzung. Die Funktion
make_gtext() unterscheidet sich nur durch die Penfarben von make_text()
in menu.h. Das Problem: Mit den Farben fir die Menis lassen sich keine
Gadget-Texte malen, umgekehrt keine Meniis. Da kommt noch eine Auf-
gabe auf Sie zu.

Die Funktion make_gadget{) wendet dieselbe Technik an wie make_item()
aus der vorherigen Sitzung, nur daf3 hier die Gadget-Strukturen initiali-
siert werden.

Fir das String-Gadget muf3 einiges vorab F?efan werden. Zverst mu3 das
Pro?ramm zwei Puffer, némlich char dobuffer[80] und undobuffer[80] zur
Verfigung stellen. In den dobuffer muf3 der String kopiert werden, der

137

Tu

TORIUM

138

nach dem Start im Gadget stehen soll. Den undobuffer braucht Intuition,
weil der Anwender ja mit [Amiga] + [Q] den alten Inhalt wieder her-
stellen kann. Die Zeiger auf beide Puffer miissen in die info-Struktur ein-
getragen werden und deren Adresse schlieSlich in die Gadget-Struktur.
Ansonsten unterscheidet sich der Aufwand nicht von den beiden folgen-
den Boolean-Gadgets, nur daf3 hier anstatt des Zeigers auf info NULL
steht. Die beiden Boolean-Gadgets gehdren zusammen, weshalb der erste
auf das zweite zeigt. Sie kdnnen hier wie bei den Meniis beliebig lange
Listen bilden, nachher werden alle Gadgets auf einmal gezeichnet.

Die folgenden drei PROPGADGET fiir die Farbregler bilden auch eine
Liste. Hier muf3 zusdtzlich die prop-Struktur mit Daten fir den Schiebe-
regler geladen werden. In dieser Struktur ist der Wert von HorizPot die
aktuelle Stellung des Knopfes. Das ist ein 16-Bit-Wert zwischen 0 und
OxFFFF. Auch der HorizBody-Wert fiir die Schrittweite ist ein 16-Bit-Wort.
Sind beide Werte gleich, hat der Regler nur eine feste Stellung, hat Horiz-
Body den halben Wert, sind zwei Stellungen méglich, der Regler liefert
dann die Werte O und 1. Fiir unser Beispiel gil: Wir wollen die Farben
einstellen. Die Farbwerte diirfen nur zwischen O und 15 liegen. Der Reg-
ler darf also nur 16 Werte liefern. In diesem Fall teilt man OxFFFF/0x10
(65536/16) = 0x1000 (4096). Die Body-Komponente wird also auf
4096 gesetzt. Genau das ist die Konstante STEP, die mit »#define STEP
(OxFFFF/0x10)« definiert wurde. Wenn man dann spéter die Reglerstel-
lung aus der HorizPot-Komponente abliest, mu3 man deren Wert auch
durch STEP teilen und kann damit die Farbe setzen. Die Farbeinstellung
erfolgt mittels SetRGB4(). Das ist schon wieder ein Vorgriff, den Sie mir
hoffentlich verzeihen.

Gadgets abfragen

Wenn jemand ein Gadget anklickt, bekommen wir von Intuition u.a. eine
GADGETDOWN-Message und wenn die Maustaste ilber dem Gadget
losgelassen wird GATGETUP. Doch das reicht nicht. Das letzte Argument
in den make_gadget()-Aufrufen ist die von uns vergebene Gadget-ID (eine
Zahl zwischen 1 und 6). Nur darilber kdnnen wir erkennen, welches
Gadget angeklickt wurde. Doch diese Zahl meldet uns Intuition leider
nicht, weshalb wir einige Umwege gehen missen. In der Message-Struk-
tur unter msg->.IAddress steht die Adresse der Struktur, die ein Event aus-
geldst hat. In unserem Fall ist das die Adresse eines Gadgets. Die interes-
siert uns herzlich wenig, wir wollen die ID wissen. Diese ID (Identifikation)
ist die laufende Nummer, die wir selbst im Feld GadgetlD eingetragen

TUTORIUM

haben. Darauf miissen wir also zugreifen, und das geschieht in der Funk-
tion do_gadgef{) etwas trickreich. Wir kdnnten mit

gad = (struct Gadget *) iadr;

den Zeiger auf die Struktur holen und ihn in gad speichern. Nun kénnten
wir daraus die ID holen, wir kénnen sie aber auch gleich in den switch
packen, also:

switch (gad->GadgetID)

Das kann man natirlich trickreicher 16sen, was halten Sie davon?
int 1i;

i = (((struct Gadget *)iadr)->GadgetlID);
switch (i)

Nicht trickreich genug2 Nun denn, hier ist die »Endl&sung«:

switch ((((struct Gadget *)iadr)->GadgetID))

Gadgets in das Window bringen

Nun zum Hauptprogramm: Gegeniiber dem letzten Listing win3.c gibt es
so viele Erweiterungen, daf3 ich mit Listing 2.7.5 lieber die Komplettldsung
zeige.

/* win5.c

Erweiterung von win3.c um
Meniis und Gadgets

*/

#include <exec/types.h>

#include <intuition/intuition.h>
#include <graphics/gfx.h>
#include <time.h>

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;

struct Window *Window;

Listing 2.7.5: (Fortsetzung folgende Seiten)

139

TUTORIUM»

140

struct Screen *Screen;
struct RastPort *rp;

#include "stdwindow.h"

struct IntuiMessage *msg;
ULONG class;
USHORT code;
char string[81];
SHORT mx, my;
struct tm *tp;
time t t;
void print (int x, int y, char *string)
{
SetAPen (rp, 1lL);
Move (rp, X,VY);:
Text (rp,
" ",30L),‘
Move (rp, %X,VY);
Text (rp, string, strlen(string));

#include "menu.h"
#include "gadget.h"

void main()
{
open_libs();
MakeTheGadgets () ;
Window = (struct Window *) open window
(
20,20,619,100,
" Anzeige von Events ",
WINDOWCLOSE |
WINDOWSIZING |
WINDOWDRAG |
WINDOWDEPTH |

Listing 2.7.5: (Fortsetzung folgende Seiten)

TUTORIUM

REPORTMOUSE |

ACTIVATE,

CLOSEWINDOW |

GADGETUP | GADGETDOWN |
NEWSIZE |

MOUSEMOVE |

VANILLAKEY |

INTUITICKS |
DISKREMOVED |

MENUPICK,
&gadget [3] /* Nun nicht NULL */
);
if (Window == NULL) exit (FALSE);
/* Farben auf "normal": */
Screen = Window->WScreen;

SetRGB4 (&Screen->ViewPort,0,0,0,10);

MakeTheMenu () ;
SetMenuStrip (Window, &menu[0]) ;

rp = Window->RPort;
print (50,38, "Das letzte Event war:");
for(;;) /* FOREVER */

{

Wait (1L << Window->UserPort->mp SigBit);

while (msg = (struct IntuiMessage *)
GetMsg (Window->UserPort))

class = msg->Class;

code = msg->Code;
mx = msg->MouseX;
my = msg->MouseY;

Listing 2.7.5: (Fortsetzung folgende Seiten)

141

TUTORIUM

iadr = msg->IAddress;
ReplyMsg(msg);

switch(class)

{

case CLOSEWINDOW:
if (Window->Height == 100)

SizeWindow (Window, 0,100);

AddGadget (Window, &gadget[1l], -1);
AddGadget (Window, &gadget[2], -1);
RefreshGadgets (&gadget [1], Window, NULL);
print (240,110, "Wirklich schliefen?");
break;

case GADGETDOWN

case GADGETUP do_gadget () ;

break;
case MENUPICK
if (MENUNUM (code) == PROJEKT &&
ITEMNUM (code) == LADEN)

print (20,70, /* 34 Blanks */

n ll) ,.
AddGadget (Window, &gadget[0], -1);
RefreshGadgets (&gadget [0], Window, NULL);

}
else do_menu();
break;

case NEWSIZE
print (50,50, "GroBe geédndert");
break;
case MOUSEMOVE
sprintf (string,
"Maus bewegt auf x=%d y=%d", mx, my);
print (50,50, string) ;

Listing 2.7.5: (Fortsetzung folgende Seite)

142

TUTORIUM

break;
case VANILLAKEY :
sprintf (string, "Taste %c gedrickt",code);
print (50,50,string);
break;
case INTUITICKS :
time (&t) ;
Move (rp, 200, 7);
Text (rp, asctime(localtime(&t)),24);
break;
case DISKREMOVED :
print (50,50, "Diskette ausgeworfen");

Listing 2.7.5 Unser Window hat Meniis und Gadgets

In die NewWindow-Struktur muf3 unter FirstGadget die Adresse des
ersten Godgefs eingetragen werden, wenn es und seine Nachfolger
gleich nach dem Offnen des Windows auf dem Schirm sein sollen. Das
trifft fir unsere Farbregler zu. Die anderen Gadgets sollen erst bei Bedarf
erscheinen. Das machen die Funktionen AddGadget() (Aufnahme in die
Gadget-Liste) und RefreshGadgets() (Gadgets neu zeichnen). Ist die Aktion
gelaufen, muf3 man mit RemoveGadget() die Gadgets wieder deaktivieren.

Im case CLOSEWINDOW arbeite ich mit einem Trick. Das Window hat
eine Hohe von 100, die Gadgets starten aber bei 130. Deshalb wird zu-
erst mit SizeWindow() das Fenster um 100 nach unten gezogen. Weil das
wieder passieren wiirde, wenn jemand nochmals auf das Close-Gadget
klickt, und dann der Amiga abstiirzt, wird die Aktion nur zugelassen,
wenn das Window noch 100 hoch ist. Wenn der Anwender au? »Nein«
klickt, geht das Window wieder auf seine alte Hohe. Beachten Sie, daf in
SizeWindow() die beiden Zahlen Delta-Werte fisr Breite und Hohe sind.
Bei positiven Zahlen wird das Window gréfer, bei negativen kleiner.

Der ganze Umstand ist nétig, weil auch deaktivierte Gadgets so lange
sichtbar bleiben, bis man das Window neu zeichnet. Mit Gadgets in
Requestern — dem Thema der néichsten Sitzung — ist das einfacher.

143

TUTORIUM

144

Checklisfe
1.

Worauf missen die Zeiger der Gadget-Struktur zeigen, wenn das Gadget
unsichtbar sein soll?

Welches Gadget braucht eine StringInfo-Struktur?

Darf eine Liste von Boolean-Gadgets mehr als zwei Objekte haben?

Ideen fiir eigene Ubungen

1.

Erweitern Sie gadget.h so, daf3 neben den Gadgets »Nein« und »Jawohl«
ein drittes mit »Vielleicht« erscheint. Wenn dieses Gadget angeklickt wird,
soll mit der print{)-Funktion eine Meldung wie »Na was denn nun« ausge-
geben werden.

Kompilieren, linken und testen Sie das Programm.

Andern Sie das Programm so, daf die Farbregler-Gadgets erst erscheinen,
wenn im Meni »Farben« das ltem »Rot« angewdhlt wird.

Kompilieren, linken und testen Sie das Programm.

TUTORIUM

2.8 Achte Sitzung: Requester und Alerts

Die Themen dieser Sitzung:

® Was sind Requester?

* Requester-Arten und Zeichenmodi
* IDCMP-Flags fir Requester

* Requester und Gadgets

* Die Requester-Struktur

* Requester-Flags

® Programmieren von Requestern

e Alert-Anwendung

Information

Requester sind im Prinzip nichts weiter als eine Ansammlung von Gadgets
in einem gemeinsamen Container, der hier Requester heift. Es gibt
jedoch einige grundsdtzliche Unterschiede zu den »freien« Gadgets.

Requester erscheinen nur auf der Bildfliche, wenn das Programm die
Funktion Request() aufruft. Es gibt noch eine Spezialitdt, némlich den
Requester, der durch einen Doppelklick auf die rechte Maustaste aktiviert
welrcéen kann. Aber auch das geht nur, wenn das Programm diese Aktion
zulabt.

Ist ein Requester sichtbar, wird jeder Input in das Window blockiert
(Ausnahme NOISYREQ, siehe unten). Es sind dann nur noch Eingaben in
den Requester mdglich. Dieser Zustand besteht so lange, bis eines der
Gadgets angeklickt wird, das als »Ende-Gadget« markiert ist. Doch da
ein Requester immer an ein Window gebunden ist, kénnen Sie natiirlich
trotz des aktiven Requesters ein anderes Window anklicken. Wenn Sie
zum Beispiel ein Requester nach einem File-Namen fragt, und Sie wissen
deg nicht, kénnen Sie in das CLI-Window gehen und dort den DIR-Befehl
geben.

Im Gegensatz zum Input ist die Ausgabe eines Fensters nicht durch einen
Requester blockiert. Das kann unter Umstéinden Probleme ergeben, weil

145

Tu

TORIUM

146

dann mit einer gewissen Wahrscheinlichkeit dieser Output einen
Requester Uberschreiben kann. Natirlich stellt Intuition auch hierfir Mittel
bereit, um solche Pannen abzublocken.

Neben den Requestern lhres Programms gibt es noch sogenannte System-
Requester. Wenn Sie zum Beispiel auf eine Diskette kopieren wollen, die
sich in keinem Laufwerk befindet, werden Sie per System-Request auf-
gefordert, diese Diskette einzulegen. Sie kénnen aber auch selbst — und
sehr einfach — System-Requester programmieren. Es hindert Sie auch
niemand daran, als Aktion auf eine Requester-Antwort ein weiteres
Requester aufzubauen. Diesem kann dann noch einer folgen und noch
einer usw. Da aber immer der letzte Requester aktiv ist, missen Sie diese
Kette risckwdirts abbauen.

Requester-Arten und Zeichen-Modi

Prinzipiell gibt es zwei Arten von Requestern, némlich Auto-Requester und
Anwender-Requester. Einen Auto-Requester kdnnen Sie mit einem einzi-
gen Aufruf der Funktion AutoRequest{) erscheinen lassen. Wenn Sie zum
Beispiel Disketten auf der Workbench duplizieren, sind alle Aufforderun-
gen wie »<From>-Disk einlegen« Auto-Requester. Bei Anwender-
Requestern miissen Sie alles selber machen, zum Beispiel, wie in der vori-
gen Sitzung gezeigt, die Gadgets aufbauen. Einziger Unterschied: Sie
kommen nicht in ein Window, sondern in einen Requester-Rahmen.

Eine Abart des Anwender-Requesters ist das Double-Menu-Requester.
Prinzipiell sieht das genauso aus. Der Unterschied ist lediglich, daf3 dieses
Requester aktiviert wird, wenn Sie die Menii-Taste (die rechte Maustaste)
doppelklicken. Dazu mu3 das Requester nicht mit Request{), sondern mit
SetDMRequest{) aufgerufen (hier scharfgemacht) werden. Ab diesem
Zeitpunkt wartet Intuition auf seine Chance, das Requester zu zeigen. Mit
ClearDMRequest{) wird der Zustand wieder aufgehoben.

Das Zeichnen von Requestern kann auch auf zwei Arten erledigt werden,
namlich Intuition zeichnet oder das Programm zeichnet. Wenn Intuition
uns die Arbeit abnehmen soll, miissen wir nur wenige Angaben in die
Requester-Struktur eintragen, primér die Adresse der Gadget-Liste und
der Text-Struktur.

Die Alternative ist ein Anwender-BitMap-Requester. Dazu stellen Sie eine
(natiirlich tolle) Grafik zur Verfigung. Eine Gadget-Liste braucht dieses
Requester auch, doch die Gadgets missen unsichtbar sein (Text- und

TUTORIUM

Image-Zeiger = NULL). Die Gadgets miissen (absolute Pflicht) iber Sym-
bolen liegen, die Sie in der BitMap vorgesehen haben.

Lage der Requester

Ein Requester liegt mit seiner linken oberen Ecke immer realativ zur linken
oberen Ecke des Windows. Ist das Window kleiner als der Requester,
wird nur ein Teil des Requester abgebildet. Da dies katastrophale Folgen
haben kann — im Extremtall sieht man den Requester nicht, aber das Pro-
gramm hdngt —, solllen Sie diesen Fall abfangen (IDCMP-Flag (siehe
unten) oder eigenes Window).

Relative Requester werden von der derzeitigen Intuition-Version nur bei
Double-Menu-Requestern unterstiitzt. Die Wirkung ist, daf3 der Requester
mit dem Offset in Relleft und RelTop relativ zur aktuellen Position des
Mauszeigers erscheint, wenn das Flag POINTREL gesetzt ist. Steht der
Mauszeiger ungiinstig, verschiebt Intuition den Requester auf jeden Fall so
weit, daf3 er noch im Window erscheint.

IDCMP-Flags fiir Requester

Das wichtigste Flag ist REQVERIFY. Dieses Flag schitzt Sie vor einem iber-
raschend auftauchenden Requester. Das kann ein System-Requester oder
ein Double-Menu-Requester sein. Ist das Flag gesetzt, erhalten Sie nur eine
Message der Klasse REQVERIFY, wenn ein Requester verlangt wird.
Gezeichnet wird es erst, wenn Sie die Message mit ReplyMsg() beantworten.

Mit REQSET erhalten Sie eine Nachricht, wenn das erste Requester in
einem Window gezeichnet wurde. Mittels REQCLEAR kénnen Sie erfah-
ren, wann das letzte Requester verschwunden ist.

Requester-Gadgets

Zuerst folgen diese Gadgets den Regeln fir Gadgets aus der Sitzung 7.
Drei Unterschiede gibt es allerdings.

e Jedes Gadget muf3 vom Typ REQGADGET sein.

o Der Zeiger auf die Gadget-Liste wird in der Requester-Struktur notiert.

e Jedes Gadget, das einen Ausstieg aus einem Requester erméglicht,
muB3 im Activation-Feld das Flag ENDGADGET gesetzt haben. Min-
destens ein Gadget muf3 ein ENDGADGET sein, andernfalls werden
Sie das Requester nie los!

147

Tu

TORIUM

148

Natirlich haben wir wieder ein struct vor uns, Listing 2.8.1 zeigt die
Requester-Struktur. Diese ist wie Ublich mit Daten zu fittern. Ist das
geschehen, ruft man eine Funktion mit einem Zeiger auf das Requester-
struct auf, und das war's dann schon. Doch schauen wir uns zuerst Listing
2.8.1 an.

struct Requester

{

struct Requester *OlderRequest; /* Vorganger */
SHORT LeftEdge, TopEdge; /* linke obere Ecke */
SHORT Width, Height; /* Breite und Hohe *x/
SHORT RelLeft, RelTop; /* Wenn relativ */

struct Gadget *ReqgGadget; /* Zeiger auf Gadgets */
struct Border *ReqgBorder; /* Zeiger auf Border */
struct IntuiText *ReqText;/* Zeiger auf IntuiText*/

USHORT Flags; /* siehe unten */
UBYTE BackFill; /* Full-Farbe */
struct Layer *Reglayer; /* Zeiger auf Layer */
UBYTE ReqgPadl[32]; /* Intuition intern */
struct BitMap *ImageBMap; /* Wenn eigenes Image */
struct Window *RWindow; /* Intuition intern */
UBYTE RegPad2[36]; /* Intuition intern */

}i
Listing 2.8.1: Die Requester-Struktur

Das meiste davon dirfte klar sein. Fiir BackFill missen Sie eine Pen-
Nummer (Zeichenfarbe) angeben, mit deren Farbe der Requester-Hinter-
grund gemalt wird. Wahlt man diese Farbe geschickt, kann man sich das
umhiillende Rechteck (Border) sparen. Auf einem Workbench-Screen
ergibt Backfill = 2 schwarz, 3 orange.

Alle Parameter nach BackFill kénnen Sie ignorieren. Auch Flags kénnen
Sie auf NULL setzen, und der Requester funktioniert sehr schén. Variieren
kénnen Sie mit diesen Flags:

POINTREL Bei Double-Menu-Requestern erscheint
der Requester relativ zum Mauszeiger.
PREDRAWN Missen Sie setzen, wenn ReqBMap auf ein eigenes
Image zeigt.

TUTORIUM

NOISYREQ Erméglicht, daf3 der Input nicht ganz abgeblockt
wird. Tastatur- und Maus-Events werden noch
durchgelassen.

Wenn es Sie inferessiert, kénnen Sie die folgenden Flags, die Intuition

setzt, abfragen:

REQOFFWINDOW Mindestens ein Gadget ist teilweise oder ganz
aufBerhalb des Winc?ows.

REQACTIVE Requester ist akfiv.

SYSREQUEST Ein System-Requester ist aktiv.

Programmieren von Requestern

Am einfachsten kommt man zu einem Requester iber die Funktion
AutoRequest(). Dafiir braucht man nicht einmal die Requester-Struktur.
Nehmen Sie das Listing 2.7.5 aus der vorigen Sitzung, und bringen Sie zu
den globalen Variablen (ziemlich am Beginn des Listings) folgende hinzu:

BOOL antwort;
struct IntuiText BodyText, PosText, NegText;

Im Hauptprogramm nach der Zeile SetMenuStrip(...) figen Sie ein:

make text(&BodyText, "Wollen Sie wirklich
schlieBlen?", 50,20);

make text(&PosText, " Ja ", 6, 3);

make text (&NegText, " Nein ", 6, 3);

Nun dndern Sie noch das case CLOSEWINDOW, so daf3 es wie folgt
aussieht:

antwort = AutoRequest (NULL, &BodyText, &PosText,
&NegText, NULL, NULL,
350, 100);
if (antwort)
close all();
break;

Die erste NULL steht fir den Zeiger auf ein Window. Ist dieser Zeiger
NULL, macht Intuition ein eigenes Window auf, das den Titel »System
Request« hat. Nun folgen die Zeiger auf drei IntuiText-Strukturen. Dabei
ist BodyText die Frage (Wollen Sie wirklich...), PosText die Ja-Antwort
(hier Ja) und NegText die negative Antwort (hier Nein). Die Funktion
ergibt nur dann TRUE, wenn PosText angeklickt wurde. Demnach reicht

149

Tu

TORIUM

150

das if (antwort). Sie kénnen die Variable antwort auch sparen, indem Sie
gleich iffAutoRequest{...)) schreiben.

Die beiden néchsten Nullen stehen fir PosFlag und NegFlag. Hier kénnen
Sie IDCMP-Flags eintragen, die die Fragen anstatt eines Mausklicks auf das
Gadget beantworten. Setzen Sie zum Beispiel fir die erste NULL das Flag
DISKREMOVED ein, wird das Programm auch beendet, wenn Sie die Dis-
kette auswerfen. »350,100« schlief3lich sind die Breite und die Héhe des
Requesters. Die Maf3e missen natiirlich zur Lénge und Position der Texte
passen. Ubrigens sind die Argumente »6,3« in make_text) die Abstédnde
zu den Réndern der Gadgets, die automatisch gezeichnet werden.

Wenn Sie der Fenstertitel System Request stort, kdnnen Sie im einfachsten
Fall fur die erste NULL das vorhandene Window, hier also Window ein-
setzen. Sie kdnnen aber auch dafir schnell ein Fenster &ffnen, und das
geht so: Andern Sie die Zeile struct Window *Window; in struct Window
*Window, *rw;, womit Sie noch einen Window-Zeiger hditen. Nun
schreiben Sie direkt nach dem case CLOSEWINDOW: diese Zeilen:

rw = (struct Window *) open window (
0, 0, 350, 100, "Nachfrage",
NULL, NULL, NULL);

if (rw == 0) exit (FALSE);

Nun missen Sie dieses Window rw natiirlich auch schlief3en, weshalb die
Zeilen nach dem AutoRequest{) dann so aussehen miissen:

if (antwort)
{
CloseWindow (rw) ;
close all}
else
CloseWindow (rw) ;
break;

I Noch ein Tip: Wenn nur ein Antwort-Gadget gebraucht wird, kann PosText
NULL sein. Typisch ist das fir Meldungs-Requester der Art »Das geht nicht...
OK«.

Sie haben richtig erkannt, daf3 der Auto-Requester hachstens zwei Gad-
gets haben kann, und das ist oft zu wenig. Sozusagen dls erste Ubung
wollen wir deshalb fast genau denselben Requester noch einmal auf-
baven, diesmal allerdings mit eigenen Gadgets. Das sind dann zwar
auch nur zwei, doch eine Gadget-Liste kann man beliebig verléngern.

TUTORIUM

Genau das demonstriert der zweite Requester. Listing 2.8.2 zeigt die
Lésung in der Form unseres néichsten Header-Files namens requester.h.

/* requester.h */
SHORT cords3[] = {0,0, 69,0, 69,13, 0,13, 0,0};
struct Border border3 = {-1,-1,1,0,

JAM1, 5, &cords3[0],NULL};

struct Requester requestl, request2;
struct IntuiText rtext;

void MakeTheRequester (void)

{

/* Der Requester fur "SchlieBen": */

make gtext (&rtext, "Wollen Sie wirklich schlieBen?",
50,7);
make gadget ("Nein ", >ext[1],40,7,
&gadget 1], &gadget[2],50,40,100, 20,
GADGHCOMP, GADGIMMEDIATE | ENDGADGET,
BOOLGADGET | REQGADGET,
(APTR *) &border2, >ext[l], NULL, 2);

make gadget (" Ja ", >ext[2], 25,7,
&gadget [2],NULL,190,40,100,20,
GADGHCOMP, GADGIMMEDIATE | ENDGADGET,
BOOLGADGET | REQGADGET,
(APTR *) &border2, >ext[2], NULL, 3);

requestl.LeftEdge = 30;
requestl.TopEdge = 20;
requestl.Width = 350;
requestl.Height = 70;
requestl.RegGadget = &gadget[1l];
requestl.RegBorder = NULL;
requestl.ReqText = &rtext;
requestl.Flags = NULL;

requestl.BackFill 3; /* Orange */

Listing 2.8.2: (Fortsetzung folgende Seite)

151

TUTORIUM

requestl.ImageBMap = NULL;
/* Der DM-Requester fur "Farben" */
make gadget ("schwarz", >ext([o6], 3, 1,
&gadget [6], &gadget [7]1,5,3,68,12,
GADGHCOMP, GADGIMMEDIATE | ENDGADGET |
RELVERIFY,
BOOLGADGET | REQGADGET,
(APTR *) &border3, >ext[6], NULL, 7);
make gadget ("weiB", >ext[7], 3, 1,
&gadget [7], &gadget [8], 5,18,68,12,
GADGHCOMP, GADGIMMEDIATE | ENDGADGET |
RELVERIFY,
BOOLGADGET | REQGADGET,
(APTR *) &border3, >ext[7], NULL, 8);
make gadget ("rot", >ext[8], 3, 1,
&gadget [8], &gadget[9],5,35,68,12,
GADGHCOMP, GADGIMMEDIATE | ENDGADGET |
RELVERIFY,
BOOLGADGET | REQGADGET,
(APTR *) &border3, >ext[8], NULL, 9);
make gadget ("blau", >ext[9], 3, 1,
&gadget [9],NULL,5,53,66,12,
GADGHCOMP, GADGIMMEDIATE | ENDGADGET |
RELVERIFY,
BOOLGADGET | REQGADGET,
(APTR *) &border3, >ext[9], NULL, 10);

request2.Relleft = 0;
request2.RelTop = 0;
request2.Width = 87;
request2.Height = 75;
request2.RegGadget = &gadget[6];
request2.RegBorder = NULL;
request2.ReqText = NULL;

request2.Flags = POINTREL | NOISYREQ;
request2.BackFill 2;
request2.ImageBMap NULL;

}

Listing 2.8.2: Das Header-File requester.h

152

TUTORIUM

Das meiste aus dem Listing kennen Sie schon aus der Sitzung 7
(Gadgets). Sie sollten deshalb auch gadget.h kopieren und anpassen.
Die Gadgets und die Texte werden auch genauso aufgebaut, beachten
Sie jedoch die neuen Flags. Sie missen auf jeden Fall REQGADGET
setzen, damit Intuition weif3, daf3 Sie ein Requester-Gadget wollen.
ENDGADGET zu setzen, ist recht praktisch, weil dann der Requester auto-
matisch abgebaut wird, wenn das Gadget angeklickt wird. Sonst miif3ten
Sie das mit EndRequest{&request, Window); selbst tun.

IS Noch ein Trick: Sie sehen, daf} ich mit request.ReqBorder = NULL; dem
Requester keinen Rahmen (Border) spendiert habe. Dennoch féllt er auf, denn
mit request. BackFill = 3; wird die Hintergrundfarbe auf Orange gesetzt.

Requester einsetzen

Nachdem die Requester-Struktur mit den Daten gefillt ist, reicht der
schlichte Aufruf von

Request (&requestl, Window) ;

und der Requester ist auf dem Schirm. Das wére aber in unserem Fall
falsch, denn request] soll nur erscheinen, wenn das Close-Gadget des
Windows angeklickt wird. Doch der Reihe nach. Nachdem Sie Listing
2.8.2 als requester.h gespeichert haben, nehmen Sie sich wieder Listing
2.7.5 vor. Dort fiigen Sie nach der Zeile #include "gadget.h" ein:

#include "requester.h"
Nach der Zeile SetMenuStrip(...); figen Sie ein:

MakeTheRequester () ;
SetDMRequest (Window, &request2);

Das case CLOSEWINDOW miissen wir nun schon wieder éndern, und

Zwdar so:

case CLOSEWINDOW: Request (&requestl, Window);
do_gadget () ;
break;

Die Gadgets werden genauso ausgewertet wie bisher, némlich tber ihre
ID. Doch jetzt kdnnen wir den ganzen Aufwand streichen, weil Requester
mitsamt ihren Gadgets automatisch vom Schirm verschwinden. Deshalb
déndern Sie in gadget.h (Listing 2.7.4) das case 2 schlicht in

153

Tu

TORIUM

154

case 2:
break;

Soll heiflen: Wenn der User »Nein« anklickt, tun wir gar nichts. Der
Requester wird trotzdem automatisch abgebaut, weil wir auch fir das
Nein-Gadget das Flag ENDGADGET gesetzt hatten.

Wir baven einen Double-Menu-Requester

Nun zu unserem zweiten Requester, der request2 heif3t. Dieser wurde mit
SetDMRequest (Window, &request2); aktiviert, aber nichts passiert, oder2
Nun, im Namen der Funktion steckt das Kiirzel fir »Double Menu, soll
heifen, sie miissen die Menii-Taste (die rechte Maustaste) doppelt klicken.
In diesem Fall erscheint der Requester auf dem Schirm, und zwar da, wo
gerade der Mauszeiger ist. Das hat allerdings nichts mit dem »Double
Menu« zu tun, sondern liegt daran, daf3 ich das Flag POINTREL
(zeigerrelativ) gesetzt habe. Das néichste Flag, némlich NOISYREQ, soll
bei der Gelegenheit nur demonstriert werden. Ein »noisy requester«
blockt nicht den Input in das Window ab. Wenn Sie zum Beispiel Tasten
betdtigen, werden die noch angezeigt.

Der Requester selbst bringt untereinander vier kleine Gadgets mit den
Texten schwarz, weif3, rot und blau. Das Anklicken eines Gadgets laf3t
momentan nur den Requester verschwinden. Spéter werden wir ihn noch
nutzen, um ganz schnell die Zeichenfarbe wechseln zu kénnen. Beachten
Sie noch einen Trick: Dieser Requester hat keinen »BodyText«. Wenn man
diese Uberschrift nicht braucht, setzt man einfach ReqText = NULL.

Wir geben Alarm

Zum Schluf} die simpelste Form von Requestern, der sogenannte Alert
(Alarm), wie Sie ihn von den Guru-Meldungen (hoffentlich selten) her
kennen. Es gibt zwei Arten von Alerts, némlich den RECOVERY_ALERT
und den DEADEND_ALERT. Letzterer heif3t nicht »totes Ende« sondern
Sackgasse, also es geht nicht weiter, der Anwender muf3 neu booten. Ein
RECOVERY_ALERT hingegen schlieft das Booten aus, lhr Programm sollte
nach diesem Fall ordnungsgeméf3 enden. Mit Alerts sollten sie nur so kriti-
sche Dinge wie »Library oder Window l&f3t sich nicht 6ffnen« mitteilen.
Ansonisten sind Requester vorzuziehen, die erschrecken die Leute nicht so.

TUTORIUM

/* alert.c */

#include <exec/types.h>
#include <intuition/intuition.h>
#include <graphics/gfx.h>

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;

struct Window *Window;

#include "stdwindow.h"

void main ()
{

open_ libs();

Window = (struct Window *)
open _window(0,0,640,256,NULL,
BORDERLESS, NULL, NULL);
if (Window == NULL) exit (FALSE);

DisplayAlert (RECOVERY ALERT,
"\1\0\30 Panik! \0c\1\0\50 Driicke eine Maustaste
\O\O",70);

close all();

Listing 2.8.3: Alarm mit Alert
Diesmal ist das Listing 2.8.3 kein Header-File, sondern ein solo laufendes
Programm. Die Funktion, DisplayAlert{) hat drei Parameter, némlich
e denTyp,
¢ die Meldung und
e die Hohe der Alert-Box

155

TUTORIUM

Die Meldung ist ein String, der es in sich hat. Dabei missen Sie folgende
Form beachten:

* X-Position des Textes in zwei Bytes

® Y-Position des Textes in einem Byte

® Der erste Text

e Ein O-Byte

® Wenn Ende: noch ein Null-Byte

* Wenn nicht Ende: ein Byte ungleich O
* Nachster Text

Analysieren wir einmal den String

"\1\0\30 Panik! \0c\1\0\50 Driicke eine Maustaste

\ 0 \ ov
so heif3t das:
Teilstring Bedeutung
"\1\0\ X=1*256+0=256
30 Y =30
Panik! \O Text 1
c Fortsetzung folgt
\1\0 X =256
\50 Y =50
Driicke eine Maustaste\O Text 2
\O" Ende

156

TUTORIUM

Checkliste

1. Mu3 man die Fragen in einem Requester gleich beantworten, oder darf man
vorher noch etwas anderes tun?2

2. Mit welchem IDCMP-Flag verhindern Sie, daf3 ein Requester Uberschrieben
werden kann?

3. Wie verhindern Sie, daf3 ein Window so klein wird, daf3 der Requester ab-
geschnitten wird oder gar ganz verschwindef?

Ideen fiir eigene Ubungen/Erweiterungen
1. Der Aufruf der Funktion

AutoRequest (NULL, &BodyText, &PosText,
&NegText, NULL, NULL,
350, 100);

ist etwas umstéindlich, weil man vorher mit drei Aufrufen von make_text() die
IntuiText-Strukturen bereitstellen muf3. Entwickeln Sie deshalb eine Funktion,
die einen Aufruf dieser Art ermdglicht:

AutoRe ("Body-Text, "Pos-Text", "Neg-Text");
Kompilieren, linken und testen Sie das Programm.

2. Entwerfen Sie analog zu request2 einen Requester fir die Strichstirken mit
Gadgets, welche die Zahlen 1 bis 4 als Text haben.

157

Tu

TORIUM

158

2.9 Neunte Sitzung: Und nun wird gemalt

Die Themen dieser Sitzung

¢ Das Malprogramm
e Makros
¢ Grafik-Funktionen

e Tricks und Techniken

In dieser Sitzung wird unser Malprogramm fast komplett, nur das Laden
und das Sichern der Bilder kommt erst in der zehnten Sitzung an die

Reihe. Zuerst miissen Sie natiirlich die Aufgabe kennen. Unser Programm
hat die folgenden Menis:

Projekt Farben Figuren Spezial

Neu Schwarz Rechteck Figur fillen
Laden Weif3 Gefiilltes Rechteck Al?es Ubermalen
Sichern Rot Ellipse Farben regeln
Ende Blau Gefiillte Ellipse

Tabelle 2.9.1: MenUstruktur des Malprogramms

»Ende« und »Alles ibermalen« haben noch Sub-Meniis der Art
»Wirklich2« und »Lieber doch nicht«. Ferner gibt es die vier Requester
laut Bild 2.9.1 mit folgenden Funktionen:

TUTORIUM

Laden/Sichern: Ein String-Gadget fir den Datei-Namen und zwei
BOOL-Gadgets fir »Abbruch« und »OK«.

SchliefBen: Der Text »Wollen Sie wirklich schlieBen2« und zwei
BOOL-Gadgets fir »Nein« und »Ja«.

Farbregler: Drei Prop-Gadgets fiir Rot, Griin und Blau sowie
zwei BOOL-Gadgets fir »Reset« und »OK«.

Farben: Vier kleine BOOL-Gadgets direkt untereinander mit

den vier Farbnamen zur Auswahl. Dieser Requester
erscheint an der Position des Mauszeigers, wenn Sie
die rechte Maustaste zweimal klicken.

Bild 2.9.1: Die vier Requester des Malprogramms

Der letzte Punkt ist zwar nur das Doppel des Menis »Farben«, doch das
sollen Sie spdter noch dndern. Solange nichts im Figuren-Meni ange-
wahlt ist, kénnen Sie einfach losmalen. Sobald Sie die linke Maustaste
driicken und die Maus bewegen, wird in der aktuellen Farbe gezeichnet.
Tippen Sie die Taste (], kénnen Sie nur waagerechte Linien ziehen, nach
nur senkrechte. Sie kénnen, die Maus festhaltend, die beiden Tasten
wechseln und damit zum Beispiel Treppen zeichnen. Jede andere Taste
hebt die Funktionen wieder auf.

Rechtecke und Ellipsen zeichnen Sie so, daf3 Sie erst die linke obere und
dann die rechte untere Ecke anklicken. Die Aufforderungen dazu und
Uberhaupt die Status-Meldungen erscheinen im Fenstertitel. Wie man ein

159

Tu

TORIUM

160

Rechteck mit der Maus ziehen kann, verrate ich noch, Gberlasse diese
Aufgabe vorléufig Thnen. Um eine Figur zu fiillen, missen Sie nur das
Menii anwéhlen und dann in die Figur klicken. Gefiillt wird jede beliebige
Figur, Sie muf3 nur geschlossen sein. Wenn nicht, léuft die Farbe iber das
ganze Window, aber nicht in andere Figuren hinein. »Alles bermalen«
hingegen Ubermalt wirklich das ganze Window mit einer Farbe, die dann
sozusagen der Hintergrund ist. Mit dieser Farbe kénnen Sie auch anders-
farbige Linien oder Figuren radieren. Der Meniipunkt »Neu« ist eine Vari-
ante von »Alles Gbermalen«. Er zeichnet das Window blau und setzt die
Pen-Farbe wieder auf weif3.

Die Meni-ltems »Laden« und »Sichern« lassen zwar den Requester
erscheinen, doch das »OK« wirkt noch nicht. Das Thema heben wir uns
fir die ndchste Sitzung auf. Ein Trost: Sie missen dafir nicht mehr
d@ndern, sondern nur noch einiges hinzubringen.

Unser Hauptprogramm (Listing 2.7.5 mit den Ergéinzungen aus der
achten Sitzung) wird nun nochmals erweitert und stellenweise gedindert.
Damit Sie (und ich) nicht den Uberblick verlieren, zeigt Listing 2.9.1 die
ganze Lésung.

U= Fir das Programm brauchen Sie die Include-Files (H-Files) gadget.h,
requester.h und menu.h auf dem Endstand laut Anhang. Diese Texte wurden
gedindert. Das gleichfalls benstigte stdwindow.h steht dort zu lhrer Referenz,
ist aber nicht neu.

Makros einsetzen
Listing 2.9.1 enthdlt dieses Makro:
#define Titel(t) SetWindowTitles (Window, (t),-1)

Um einen neuen Window-Titel zu setzen, kdnnte man zum Beispiel
schreiben »SetWindowTitles(Window, "Never Titel", —1)«. Da das haufig
vorkommt, spare ich mit dem Makro einiges an Tipperei. In diesem Fall
reicht Titel("Never Titel"). So ein Funktionsmakro kann beliebig viele
Argumente haben, hier ein Beispiel mit zweien:

#define printmult (a,b) (printf("%d", a * b))
printmult (3,7);

TUTORIUM

Beachten Sie ein paar Regeln: Makros missen entweder in einer Zeile
stehen oder mit dem Zeilenfortsetzungszeichen (\) umbrochen werden.
Wird der Makro-Ausruck umbrochen oder enthdlt er Leerstellen, muf3 er
in Klammern gesetzt werden. Schaden kénnen die Klammern nie.
Werden Argumente weiterentwickelt — wiirde man hier zB. a * b + a
schreiben —, muf3 man sie in Klammern setzen ((a) * (b) + (a)). Auch hier
kdnnen ein paar Klammern zuviel nie schaden.

Prototypen deklarieren

Fir alle Funktionen des Hauptprogramms wurden Prototypen definiert.
Das ist nichts weiter als der Funktionskopf, gefolgt von einem Semikolon.
Die MaBBnahme hat zwei Vorteile. Zuerst kann der Compiler damit priifen,
ob die Argumente des Funkfionsaufrufs vom richtigen Typ sind. Zum
zweiten muf3 man dann keine bestimmte Reihenfolge von Funktionen und
H-Files beachten. Daf3 die H-Files selbst noch in einer bestimmten Folge
geladen werden miissen, liegt daran, daf3 ich da die Prototypen aus
Platzgriinden gespart habe. Sonst sollte man das nie tun.

Requester richtig anwenden

Im H-File request.h hat sich einiges getan. Zuerst wurden alle Gadgets in
Requester verlegt. Das hat den Vorteil, daf3 sie automatisch abgebaut
werden und der Hintergrund wieder hergestellt wird. Das String-Gadget
fir die Filenamen-Eingabe hatte einen Fehler, es fehlten die Gadgets ?Ur
»Abbruch« und »OK«. Die gibt es nun, dito wurden die Gadgets fiir die
Farbregler um »Reset« und »OK« erweitert. Diese beiden Requester und
auch der fir »SchliefBen« werden im Hauptprogramm mit MakeThe-
Requester() nur aufgebaut, aktiv werden sie erst spéter.

Die Requester-Strukturen werden jefzt in einem Array vom Typ struct
Requester gehalten. Neu ist dabei request[3]). Das sind zuerst vier kleine
Boolean-Gadgets mit den Farbnamen. Dieser Requester erscheint an der
Position des Mauszeigers, wenn Sie die rechte Maustaste zweimal klicken.
Das fut er, weil er vom Typ POINTREL (zeigerrelativ) ist und weil er mit
SetDMRequest{Window,&request[3]); initialisiert wurde. In unserer open_
window()-Funktion hingegen bleibt der Zeiger auf dem ersten Requester
NULL, also erscheint keiner, wenn das Window &ffnet. Hier kénnen Sie
einen Zeiger auf einen Requester einfragen, der nur zu Programmbeginn
erscheint, z.B. »Guten Tag sagen«. Auflerdem ist der Zeiger immer fir
Testzwecke gut. Wenn Sie einen neuen Requester gestalten, tragen Sie ihn
hier ein. Erst wenn er gut aussieht, bauen Sie ihn richtig in das Programm
ein und setzen den Zeiger wieder auf NULL.

161

Tu

TORIUM

162

Events holen und auswerten

Unser Window muf3 bekanntlich auf Events (Ereignisse oder Messages)
von Intuition warten und dann darauf reagieren. Am Prinzip hat sich
nichts gedindert, es bleibt beim Wait(), GetMsg() usw., doch wurde das
jetzt in die Funktion GetEvents() verlegt. Sinn der Ubung: Wir springen
aus der Hauptschleife zu Funktionen, wo wir auch auf Messages warten
mussen. In diesem Fall rufen wir dann einfach GetEvents() auf.

Auf der Gegenseite steht ein anderes Problem. Nehmen wir als Beispiel
die Menipunkte »Laden« und »Sichern«. In beiden Féllen soll derselbe
Requester erscheinen, der nach dem Datei-Namen fragt. Also sagen wir

zuerst bei einem Event der Klasse MENUPICK schlicht do_menu(). Diese
Funktion (in menu.h) kommt Gber die ltem-Nummer zu den cases:

case LADEN : dflag = 1;
Request (&request [0], Window) ;
break;

case SICHERN: dflag = 2;
Request (&request [0], Window) ;
break;

In der Variable dflag wird notiert, welches Meni angewdhlt wurde. Das
muf3 sein, weil mit der néichsten Message das Code-Feld und damit die
ltem-Nummer einen ganz anderen Wert hat. Nun wird der Requester
aufgerufen. Dort kann der User einen Namen eintippen und dann auf ein
Gadget klicken. An dieser Stelle warten wir wieder auf eine Message,
und zwar jetzt auf eine der Klasse GADGETUP (Maustaste iber Gadget
losgelassen). In diesem Fall rufen wir do_gadget() auf (in gadget.h). Dort
holen wir die ID des Gadgets und kénnen dann — wenn es die ID von
»OK« (Nummer 14) war — mit

case 14: do _datei();
break;

schlieBlich die passende Funktion aufrufen. Sie haben das Problem
erkannt? Die Messages freffen nacheinander ein und Uberschreiben
jeweils den Vorgénger. Wir brauchen aber manchmal zwei verschiedene
Messages, um einen Fall endgiiltig bearbeiten zu k&nnen.

TUTORIUM

Mit der Maus zeichnen

So einen Fall hdttlen wir auch bei der néchsten Aufgabe: Wenn die
Maustaste gedriickt UND die Maus bewegt wird, soll gezeichnet werden.
Doch leider ist das Ergebnis in der Message-Klasse immer nur »Maustaste
betdtigt« ODER »Maus bewegt«. Die Losung sieht im Prinzip so aus:

switch(class)

{

case MOUSEBUTTONS: notiere ob Taste gedriickt
oder losgelassen wurde;
break;

case MOUSEMOVE : 1f (Taste gedriickt)

zeichne;

break;

}

Praktisch wird fir den Fall »Taste gedriicki« die Variable mflag gleich 1
und sonst gleich O gesetzt.

Fir das Zeichnen hatte ich anfangs eine tolle Idee, némlich WritePixel(rp,
mx, my);. Diese Funktion schreibt einen Bildpunkt, mx und my sind die
Mauskoordinaten, wie sie in GetEvents() notiert wurden. rp ist ein Zeiger
auf dem RastPort, den wir uns vorher beschafft hatten. Das funktioniert,
hat aber einen Haken. Wenn die Maus schnell bewegt wird, ist die Linie
nicht mehr durchgezogen, sondern nur noch gepunktet. Es gibt nur 10 bis
60 Messages pro Sekunde, Sie kénnen aber leicht in einer Sekunde den
Mauszeiger iber die volle Schirmbreite von 640 Punkten ziehen. Die
Lésung heif3t Move() und Draw() und sieht im Prinzip so aus:

case MOUSEBUTTONS:

X = mx;
y = my;

case MOUSEMOVE :
if (mtaste)
{
Move (rp, X,Y);:
Draw (rp, mx, my);
y = my;
X = mx;

163

Tu

TORIUM

164

Im case MOUSEBUTTONS wird in x und y die Position des Mauszeigers
im Augenblick des Driickens der Maustaste notiert. Diese Werte éndern
sich so lange nicht, wie die Maustaste niedergehalten wird. Nun kommt
der case MOUSEMOVE zum Zuge. Mit Movelrp, x,)); wird der
(unsichtbare) Grafik-Cursor auf diese Position gesetzt. Dann wird mit
Draw(rp, mx, my); von dort eine Gerade zur aktuellen Mausposition
gezogen. Anschliefend — und jetzt kommt der Trick — werden x und y auf
diese Mausposition gesetzt. Das folgende Move() — wir sind praktisch in
einer Schleife — stellt den Grafik-Cusor dahin, und die néchste Gerade
wird zur aktuellen Mausposition gezogen. Endergebnis: Wie schnell Sie
die Maus auch bewegen, es gibt immer eine Linie, Kurve oder was auch
immer, nur daf3 sie aus einzelnen Geraden zusammengesetzt wird, die im
Extremfall auch nur einen Punkt lang sein kdnnen (und damit mathe-
matisch keine Geraden mehr sind).

Ein Blick auf das Listing 2.9.1 zeigt, da3 da noch mehr in der Schleife
passiert. Es gibt da némlich noch die Klasse VANILLAKEY fir die Tastatur,
wo ein Druck auf () das wilag=1, einer auf (5] das sflag=1 und jede
andere Taste beide Variablen auf O setzt. Dito schaltet aus und
ein. Fir das Zeichnen hat das nun eine sinnige Folge. Ist némlich
zum Beispiel wflag=1, wird mit

if(wflag)
my = y7

einfach die alte y-Position als »Maus-Y« eingetragen. Ergebnis: Die Linie
wird immer waagerecht gezogen. Fijr senkrechte Linien ist sinngemdf3 das
sflag zustéindig.

Die ROM-Grafik nutzen

Die Zeichen-Funktionen sind sogenannte Grafik-Primitiven, die im Amiga-
ROM stehen. Move() und Draw() kennen Sie schon. Damit zeichnen wir
auch Rechtecke aus vier Linien. Gefillte Rechtecke sind mit RectFilllrp,
x1,y1, x2,y2) direkter zu erzeugen. Dabei sind x1,y1 die linke obere
und x2,y2 die rechte untere Ecke. Fiir Ellipsen gibt es die Funktion
DrawEllipse(rp, x0,y0, xr,yr), wobei x0,y0 den Mittelpunkt und xr,yr die
beiden Radien angeben. Da wir die Funktion jedoch wie ein Rechteck
aufrufen, misssen wir die Werte umrechnen.

Die gefillte Ellipse zeigt eine andere Technik. AreaEllipse() zeichnet néim-
lich noch gar nichts, sondern nimmt die Figur nur in die Area-Liste auf.
Jetzt kénnen noch diverse andere Area-Funktionen folgen. Sie dlle

TUTORIUM

werden

erst — und zusammen — gezeichnet, wenn AreaEnd() aufgerufen

wird. Die Liste ist der Grund, warum wir mit InitArea() und den drei fol-
genden Funktionen die »Area-Info« initialisieren und Speicher dafiir
beschaffen miissen. Dieser Speicher muf3 am Programmendpe wieder frei-
gegeben werden, daher die Zeile FreeRasterfram, 640,256) in der
do_close()-Funktion. Bliebe noch das Fillen, was mit Flood;(rp, 1, mx, my)
geschieht. Damit wird einfach vom Punkt mx,my ausgehend die Figur
gefillt. Diese muB3 geschlossen sein, weil die Funktion alles so lange fillt,
wie sie nicht auf schon gesetzte Bildpunkte stsf3t.

/‘k

#inclu
#inclu
#inclu

#defin

struct
struct
struct
struct
struct
struct
struct
SHORT
LONG
struct
ULONG
USHORT
SHORT
SHORT
SHORT
SHORT
SHORT
SHORT
struct

malen.c */

de <exec/types.h>
de <intuition/intuition.h>
de <graphics/gfx.h>

e Titel(t) SetWindowTitles (Window, (t),-1)

IntuitionBase *IntuitionBase;
GfxBase *GfxBase;

Window *Window;

Screen *Screen;

RastPort *rp;

ArealInfo AInfo; /* Fir das Fiallen */
TmpRas TRas; /* von Bereichen */
Buffer[100]; /* mit einer Farbe */
ram;

IntuiMessage *msg; /* Fur das Message- */
class; /* Handling */
code;

mx, my; /* Zum Zeichnen */

X, Y7

mtaste = 0;

wflag = 0;

sflag = 0;

dflag = 0 /* Datei-Modus */

Requester request[4] ;

Listing 2.9.2: (Fortsetzung folgende Seiten)

165

TUTORIUM

/* Prototypen, siehe Listing-Ende

void GetEvents (void);

void do rechteck(int fill);
void do_ellipse(int £fill);
void do_farben (USHORT code) ;
void do_fuellen (void);

void do malen(void);

void do_close(void);

void do neu(void);

void do sysreqg(char *text);
void do datei (void);

#include "stdwindow.h" /* in dieser */
#include "gadget.h" /* Folge */
#include "requester.h" /* */
#include "menu.h" /* bitte. */

void main ()

{

open_ libs();

Window = (struct Window *) open_window (
0,0,640,250," Standard-Modus ",
WINDOWCLOSE |
WINDOWDEPTH | /*Window-Flags */
REPORTMOUSE |
ACTIVATE,

CLOSEWINDOW |

GADGETUP | /* IDCMP-Flags */

MOUSEMOVE |

MOUSEBUTTONS |

VANILLAKEY |

MENUPICK,

NULL); /* Kein Requ. nach Offnen */
if (Window == NULL) exit (FALSE) ;

Screen = Window->WScreen; /* Grundfarben */

SetRGB4 (&Screen->ViewPort,0,0,0,10);

Listing 2.9.2: (Fortsetzung folgende Seiten)

166

TUTORIUM

MakeTheMenu(); /* Meni initialisieren */
SetMenuStrip (Window, &menu[0]) ;

MakeTheRequester(); /* Alle Reqg. initialisieren */
SetDMRequest (Window, &request [3]) ;

rp = Window->RPort;
SetAPen (rp, 1L); /* Starte mit weiBem Pen */

InitArea(&AInfo, Buffer,10);

rp->Arealnfo = &AInfo; /* Init. Area-RAM */
ram = AllocRaster(640,256);
rp->TmpRas = (struct TmpRas *) InitTmpRas (&TRas,

ram, RASSIZE(640,256));

for(;;) /* Hauptschleife */

{
GetEvents () ;

switch(class)

{

case MOUSEBUTTONS:
if (code == SELECTDOWN) /* Wenn linke Maus- */
{ /* Taste gedrickt */
mtaste = 1;

X = mx; y = my; /* Mausposition bei */

} /* beim ersten Klick */
if (code == SELECTUP)
mtaste = 0;
break;
case MOUSEMOVE : /*Freihandzeichnen */
if (mtaste) J* mmmm e */

{
Move (rp, X,Y);:
if(wflag) /* wenn waagerecht */
my = y; /* halte y fest */

Listing 2.9.2: (Fortsetzung folgende Seiten)

167

TUTORIUM

if (sflag) /* wenn senkrecht */
mx = x; /* halte x fest */
Draw(rp, mx, my);
y = my; /* Endwerte = neuer Startwerte */
X = mx;
}

break;

case CLOSEWINDOW: /* Frage, ob schlieBen */
Request (&request[1], Window) ;
break;

case GADGETUP : do_gadget (); /* in "gadget.h" */
break;

case MENUPICK: do menu(); /* in "menu.h" */
break;
case VANILLAKEY:
if (code == 'w')
{
wflag = 1;
Titel (" Waagerchte Linie ");

}

else
wflag = 0;
if (code == 's')
{
sflag = 1;

Titel (" Senkrechte Linie ");
else
sflag = 0;

if (!'(wflag | sflag))
Titel (" Standard-Modus ");

Listing 2.9.2: (Fortsetzung folgende Seiten)

168

TUTORIUM

}

break;
} /* Ende switch */
} /* Ende for */
/* Ende main */

/* Beginn der Funktionen

void GetEvents (void)

{

Wait (1L << Window->UserPort->mp SigBit);
while(msg = (struct IntuiMessage *)
GetMsg (Window->UserPort))

class = msg->Class;
code= msg->Code;

mx= msg—>MouséX;

my= msg->MouseY;
iadr= msg->IAddress;
ReplyMsg (msqg);

void do_rechteck (int £ill) /* Rechtecke zeichnen. */

{

/* Gefiillt, wenn fill==1%*/
SHORT x1,yl, x2,vy2;

Titel ("Klicke linke obere Ecke des Rechtecks");

code = 0;

while (code != SELECTDOWN) /* bis Maustaste unten */
GetEvents () ;

x1l = mx; yl = my;

WritePixel (rp, x1, yl);./* Startpunkt zeichnen */

Titel ("Klicke rechte untere Ecke des Rechtecks");
code = 0;

Listing 2.9.2: (Fortsetzung folgende Seiten)

169

TUTORIUM

while (code != SELECTDOWN) /* bis Maustaste unten */

GetEvents () ;
X2 = mx; y2 = my;
if (£ill)
RectFill (rp, x1,y1l, x2,y2);
else /* Rechteck mit Linien zeichnen */

{
Move (rp, x1,yl);
Draw (rp, x2, yl):
Draw (rp, x2, y2);
Draw (rp, x1, y2);
Draw (rp, x1, yl);

}

Titel ("Standard-Modus") ;

void do_ellipse(int fill) /* Ellipse zeichnen. */
{ /* Gefullt, wenn fill==1 */
SHORT x1,yl, x2,y2, x0, y0;

Titel ("Klicke linke obere Ecke des
umgebenden Rechtecks") ;
code = 0;
while (code != SELECTDOWN)
GetEvents () ;
x1l = mx; yl = my;
WritePixel (rp, x1, yl);
Titel ("Klicke rechte untere Ecke des
umgebenden Rechtecks");
code =10;
while (code != SELECTDOWN)
GetEvents () ;
X2 = mx; y2 = my;
x0 x1l + (x2 - x1) / 2;
y0 =yl + (y2 - yl) / 2;
if (f£fill)

Listing 2.9.2: (Fortsetzung folgende Seiten)

170

TUTORIUM

{
AreaEllipse(rp, x0,y0, (x2-x1)/2, (y2-yl1)/2);
AreaEnd (rp) ;

}

else
DrawEllipse(rp, x0, y0, (x2-x1)/2, (y2-yl)/2);

Titel ("Standard-Modus") ;
}

void do_farben(USHORT code) /* Pen-Farbe setzen */
{

switch (code)

{
case SCHWARZ: SetAPen(rp, 2L);

break;
case WEISS: SetAPen (rp, 1L);
break;
case ROT: SetAPen(rp, 3L);
break;
case BLAU : SetAPen(rp, O0OL);
break;
}
}
void do fuellen(void) /* Figur mit Farbe fiillen */

{
Titel ("Klicke in die Figur");
code = 0;
while (code != SELECTDOWN)
GetEvents () ;
Flood(rp, 1, mx, my);
Titel ("Standard-Modus") ;
}

void do_malen(void) /* Das ganze ganze Window */
{ /* (nicht Meni) ibermalen */

Listing 2.9.2: (Fortsetzung folgende Seite)

171

TUTORIUM

172

RectFill (rp,Window->LeftEdge+2, Window->TopEdge+11,
Window->LeftEdge + Window->Width-4,
Window->TopEdge+Window->Height-2) ;

void do neu(void) /* Menii-Punkt "Neu" malt das */
{ /* Window blau, Pen wird weiB */
SetAPen (rp, OL);
do_malen() ;
SetAPen(rp, 1L);
}

void do_close(void) /* Alles schlieBen, vorher Menu */
{ /* Menu und RAM freigeben */
ClearMenuStrip (Window) ;
FreeRaster (ram, 640,256);
close _all();

}

Die beiden folgenden Funktionen werden
in Sitzung 10 ausgefillt.

void sysreqg(char *text)
{
}

void do_datei (void)
{
}

Listing 2.9.1: Das Haupt-Programm »malen.c«

TUTORIUM

Checkliste

1. Welche Aufgabe hat ein Requester, der sofort nach dem Offnen des Win-
dows erscheint?

2. Was missen Sie tun, wenn Sie fir eine Funktion mehrere Events derselben
Klasse benstigen?

3. Warum ist die Funktion WritePixel() (Setzen eines Bildpunktes) so schlecht
for das Malen geeignet?

Ideen fiir eigene Ubungen

1. Die folgende Funktion zeichnet ein Rechteck von x1,y1 (links oben) nach
x2,y2 (rechts unten):

void rechteck (SHORT x1, SHORT vyl,
SHORT x2, SHORT y2)
{
Move (rp, x1,vy1l);
Draw (rp, x2, yl);
Draw(rp, x2, y2);
Draw (rp, x1, y2);
Draw (rp, x1, yl);
}

Wenn Sie im case MOUSEMOVE anstatt Draw(rp, mx, my) nun recht-
eck(x,y, mx, my) einsetzen, ziehen Sie damit lauter Rechtecke. Wenn Sie
danach in dieses Rechteck ein um ein Pixel (in jeder Richtung) blau gefilltes
Rechteck einsetzen, miif3te ein Rechteck brig bleiben. Eine andere Methode
heif3t »zeichnen, l8schen, zeichnen«. Zum Zeichnen setzen Sie den Draw-
Modus mit SetDrMd(rp, JAMI); auf »normal«. Zum Léschen schreiben Sie
SetDrMd(rp, COMPLEMENT | JAMI). Damit wird in der Komplementdr-
farbe gezeichnet, sprich, die vorhandene geldscht.

173

Tu

TORIUM

174

2,10 Zehnte Sitzung: Daten von und zur Disk

Die Themen dieser Sitzung:

® Der Einsatz von Amiga-DOS
¢ File-Handles und Locks

e Zugriffsarten

e Planes und Farben

e Lesen und Schreiben von Bildern

In dieser Sitzung geht es um Funktionen, die uns Amiga-DOS zur Ver-
figung stellt. Wesentlich ist natiirlich die Frage, wie man Files (Dateien)
auf die Diskette schreibt und wieder von dort liest. Ein gut geschriebenes
Programm beléf3t es aber nicht dabei, sondern stellt auch fest, ob noch
genigend Platz auf der Diskette ist oder hilft dem Anwender bei der
Suche nach einem File-Namen durch die Anzeige dller Files in einem
Directory. Wir werden uns deshalb auch um diese Hilfsfunktionen kiim-
mern missen. Prinzipiell kénnte man auch die Funktionen des Standard C
hierfir einsetzen, nur ist das ein Umweg. Andererseits sind solche Pro-
gramme nicht portabel, weshalb im Kapitel 3 auf dieses Thema noch ein-
gegangen wird.

Locks fiir das Multitasking

Ein — jedenfalls beim Amiga — sehr wichtiger Begriff im Zusammenhang
mit Files ist das »Lock«. Lock heif3t auf deutsch Sperre, und eine Sperre ist
ein Grundelement jedes Multitasking-Systems. Sie kdnnen sich sicherlich
vorstellen, was passiert, wenn zwei Tasks (Programme) versuchen, gleich-
zeitig auf eine Diskette zu schreiben oder was ein File wert ist, wenn Sie
daraus lesen und gleichzeitig ein anderer Task da Daten hineinschreibt.
Genau das verhindern Locks. Es gibt zwei Arten von Locks, némlich das
»Exclusive Write Lock« und das »Shared Read Lock«. Nur der Inhaber
des ersteren kann exklusiv auf die Datei schreiben. Ein »Shared

TUTORIUM

Read Lock« kénnen sich mehrere Tasks teilen, sie kénnen aber nur aus
der gemeinsamen Datei lesen.

IS Sie kdnnen mittels der Locks nicht auf Files schreiben oder aus ihnen lesen.
Sie konnen (sollten) sich das Lock eines Files besorgen und daraus seinen
Status ablesen, bevor Sie (mittels File-Handles) »zuschlagen«.

Ein Lock ist (natiirlich) eine Struktur, wie sie Listing 10.1 zeigt.

struct FileLock
{

BPTR fl Link; /* Zeiger auf Nachfolger */
LONG fl Key; /* Blocknummer auf der Disk */
LONG fl Access; /* zZugriffs-Modus */
struct MsgPort *fl Task; /* MsgPort der Tasks */
BPTR fl Volume /* Zeiger auf Device-Liste */

}i

Listing 2.10.1: Die Struktur eines Lock

Lesen und Schreiben von Files

Die DOS-Funktionen zum Lesen und Schreiben sind in der Syntax sehr an
die entsg)rechenden Befehle der Hochsprachen angelehnt und deshalb
sehr einfach zu handhaben. Zuerst wird ein File gesffnet mit

File handle = Open(File name, Modus);
Der Modus kann sein:

MODE_OLDFILE File existiert.
MODE_NEWFILE File wird neu angelegt oder ein vorhandenes

File wird iberschrieben.
Als Ergebnis erhdlt man ein File-Handle, das genaugenommen ein Zeiger
auf eine Struktur vom Typ FileHandle ist. Sie kénnen aber auch das File-
Handle schlicht als ULONG deklarieren und die Adresse als File-Nummer
auffassen. Wie auch immer, alle weiteren Funktionen verlangen als Para-
meter das File-Handle. Ist ein File offen, kénnen Sie auf es mit Read() oder
Write[) zugreifen. Beide Funktionen haben die gleiche Syntax, némlich:

Ist Zzahl = Write(File handle, Puffer, Soll-Zahl);
Ist Zahl = Read (File handle, Puffer, Soll-Zahl);

175

Tu

TORIUM

176

Das heifit, es werden Soll_Zahl Bytes aus dem Puffer auf die Disk
geschrieben, bzw. in ihn eingelesen. Der Puffer ist eine Variable, die Sie
vor dem Schreiben mit Daten fillen missen, beim Lesen werden die Daten
von der Disk in den Puffer kopiert. Nach den Operationen steht in
Ist Zahl, wie viele Bytes tatscichlich geschrieben bzw. gelesen worden
sind. Ist Zahl ist besonders beim Lesen von Bedeutung. Da es in Amiga-
DOS keine EOF-Funktion (End Of File) gibt, miissen Sie so lange lesen,
bis Ist_Zahl null ist.

Mit Listing 2.10.2 kommen wir zum ersten Programm, das die Aufgabe
hat, ein File zu lesen und es anzuzeigen, also sozusagen ein Type-Befehl.
Beachten Sie, daf3 Bytes gelesen werden, was immer sie auch bedeuten.
EsI gibt in Amiga-DOS keine Unterscheidung zwischen Text- und sonstigen
Files.

/* dos _l.c */

#include <libraries/dos.h>
#include <exec/memory.h>

#define BUF_ SIZE 256

void main (void)

{

ULONG filehandle;
UBYTE *buffer;
int count;

if ((filehandle = Open("dos 1l.c",
MODE OLDFILE)) == 0)
exit (FALSE) ;

buffer = (UBYTE *) AllocMem (BUF SIZE,
MEMF CHIP | MEMF CLEAR) ;
do
{

Listing 2.10.2: (Fortsetzung néchste Seite)

TUTORIUM

count = Read(filehandle,buffer,BUF SIZE);
Write(Output (), buffer, count);
}while (count); /* Solange nicht 0 Byte
gelesen werden */

FreeMem (buffer,BUF_SIZE); /* RAM freigeben */
Close (filehandle) ; /* File schlieBen */
}

Listing 2.10.2: Das Lesen und Anzeigen eines Files

Als Quell-File wird schlicht der Name dieses Listings eingesetzt, das Sie
deshalb als dos_1.c gespeichert haben sollten.

Systen Redues

Bild 2.10.1:
Das istunser Ziel

Speicher dynamisch beschaffen

Wie schon geschildert, brauchen wir einen Puffer, der die Daten von der
Disk aufnimmt. Aber anstatt einfach eine Variable buffer[BUF_SIZE] zu
definieren, habe ich nur mit UBYTE *buffer einen Zeiger angelegt. Der soll
nun auf den Puffer zeigen, der wiederum BUF_SIZE (256) Byte grof3 sein
muBB. Diesen Speicherblock fordern wir beim Betriebssystem an,
Allokieren nennt man das. Das geschieht mit

buffer = (UBYTE *) AllocMem(BUF_ SIZE,
MEMF CHIP | MEMF_CLEAR);

Dazu gibt man die Gréfe des Speicherblocks und seinen Typ (oder seine
Typen) an. Hier heifit MEMF_CHIP | MEMF_CLEAR nehme Chip-Memory
oder was gerade noch frei (clear) ist. Danach mif3te eigentlich noch das
Ergebnis gepriift werden, doch ich nehme einfach an, daf3 die 256 Byte
auf lhrem Amiga noch frei sind (beim néichsten Beispiel prifen wir).

177

Tu

TORIUM

178

Interessant ist schon der Grund, warum ich den Puffer dynamisch allokiert
habe. Amiga-DOS wurde in BCPL geschrieben. Das ist eine C-ghnliche
Sprache, die auf 32-Bit-Rechnern lauft. Zur Folge hat dies, daf3 BCPL-
Adressen immer auf Langwort-Grenzen fallen. Der 68000er des Amiga
ist aber eine Byte-Maschine, weshalb es fir einen 68K-Compiler keinen
Anlaf3 gibt, Daten auf Langwort-Grenzen zu justieren (Wortgrenzen sind
ublich). Halt man sich in Amiga-DOS nicht an diese Langwort-Regel, geht
das meistens auch gut, aber eben nur meistens. AllocMem() hingegen
justiert garantiert auf »lang«.

Das eigentliche Lesen und die Ausgabe laufen mit

count = Read(filehandle,buffer,BUF SIZE);
Write(Output (), buffer, count);

Readfile() versucht immer BUF_SIZE (256) Byte zu lesen, was bei den
ersten Malen auch klappt. Dann sind es vielleicht nur noch zehn und beim
ndichstenmal null Byte. Dieser Wert steht in count. Die count-Bytes werden
mit Write[) geschrieben, nur nicht null Bytes, weil dann die Schleife
abbricht. Doch wohin wird geschrieben2 Nun, die Funktion Output() liefert
das File-Handle des CLI-Windows, in dem Sie gerade sind. Damit erscheint
die Ausgabe auf dem Schirm. Wenn Sie hingegen mit zum Beispiel out-
handle=Open("xxx", MODE_NEWFILE) die Datei xxx &ffnen und dann
Write(outhandle, buffer, count) schreiben, gehen die Daten auf die Disk.

Status von Disketien ermitteln

Gehen die Daten wirklich auf die Disk? Es kdnnte ja sein, daf3 beim
Schreiben die Diskette voll wird. Also formuliert man besser »lst_Zahl =
Write(Output{), buffer, count)« und meldet dann — wenn Ist Zahl == 0 ist
— »Diskette voll«. Doch schon ist diese Methode auch nicht. Besser ist es,
wenn man vorher prijft, ob noch genug Platz auf der Diskette ist. Wie
man an diese Information herankommt, zeigt Listing 2.10.3.

/* dos 2.c */

#include <libraries/dos.h>
#include <exec/memory.h>
#include <libraries/dosextens.h>

Listing 2.10.2: (Fortsetzung néchste Seite)

TUTORIUM

void main ()
{
struct FileLock *lock, *Lock();
struct InfoData *infodata;
if(! (lock = (struct FileLock *)
AllocMem (sizeof (struct FileLock),
MEMF CHIP | MEMF CLEAR)))
exit ();

if (!(infodata = (struct InfoData *)
AllocMem(sizeof (struct InfoData),
MEMF_CHIP | MEMF_CLEAR)))
exit ()

if (!(lock = Lock("DF0:",ACCESS READ)))
exit ();

if(!'Info(lock,infodata))
exit ();

printf ("Unit %1d\n", infodata->id UnitNumber) ;
printf ("Blécke vorhanden: %$1d\n",

infodata->id NumBlocks) ;
printf ("Blocke belegt: %1d\n",

infodata->id NumBlocksUsed) ;

UnLock (lock) ;

Listing 2.10.3: So erhéilt man den Disketten-Status

Das Listing 2.10.3 ist schon »Hohes C«, doch das knacken wir. Die beng-
tigten Informationen liefert die Funktion Infoflock,infodata). Die Argu-
mente sind ein Lock, das mussen wir beschaffen und die Struktur infodata,
die miissen wir bereitstellen. Diese Struktur zeigt Listing 2.10.4.

struct InfoData

{

LONG id NumSoftErrors, /* gefundene Disk-Fehler */
id UnitNumber, /* DF0: == 0 */

id DiskState, /* aktueller Status */

179

Tu

TORIUM

180

id NumBlocks, /* vorhandene Blocke */

id BlocksUsed, /* belegte Bldcke */

id BytesPerBlock,

id DiskType;

BSTR id VolumeNode; /*Zeiger auf BCPL-String
(Ldnge im ersten Byte) */

LONG id_ InUse

b:

Listing 2.10.4: In der Info-Struktur stehen die Daten einer Disk

Fir die Funktion Lock() brauchen wir auch ein struct, némlich lock vom
Typ FileLock (Listing 2.10.1). Sowohl infodata als auch lock sind aber nur
Zeiger, und wie vorhin mit dem Puffer, allokieren wir jetzt den Speicher
dafir mit AllocMem(). Das Besondere daran ist nur, daf3 wir jetzt die
Blockgraf3e nicht kennen. Doch dafiir bietet C die Funktion sizeof{), die als
Argument eine Variable oder deren Typ akzeptiert. So ergibt sizeof(struct
FileLlock) die GroBe einer FileLock-Struktur in Bytes. Folglich heif}t der
ganze Ausdruck bis dahin

lock = (struct FileLock *)
AllocMem(sizeof (struct FilelLock),
MEMF_CH IP | MEMF_CLEAR)

Das Ergebnis ist null, wenn der Speicher nicht allokiert werden konnte.
Folglich kénnte man schreiben ifflock == 0) exit{). Logisch FALSE ist aber
auch O, ergo schreibt man kiirzer iff llock), Sie erinnern sich, »l« ist der
Nicht-Operator. Das klingt auch logischer, sozusagen wie »nicht allokiert«.
Nun brauche ich aber diese Extra-Anweisung iff llock) garnicht nicht, son-
dern kann auch gleich den ganzen Ausdruck in die if-Klammern setzen.

Nachdem nun auf diese Art auch Speicher fir die Lock-Struktur allokiert
wurde, beschaffen wir ein Lock fir das Laufwerk DFO:. Ein Lock bekommt
man ganz einfach mit lock = LockName, Modus). lock ist ein Zeiger auf
eine Variable vom Typ Lock. Name ist der Name eines Files, eines Direc-
torys oder einer Disk. Sperren kann man nur Files, die Locks fir Directo-
ries und Disks braucht man, um Informationen ber sie anfordern zu kén-
nen. Der Modus kann ACCESS_READ (Lesen) oder ACCESS_WRITE
(Schreiben) sein. Nun kommen wir endlich zur Funktion Infof), die das
Lock und die infodata-Struktur als Argumente benétigt. In letzterer steht
das Ergebnis gemé&f Listing 2.10.4. Drei Komponenten davon werden mit
printf{) ausgedruckt.

TUTORIUM

Zugriff auf den FilelnfoBlock

Nun kann auf der Disk noch alles OK sein, aber ein File macht Probleme.
In diesem Fall miissen Sie in einer anderen Struktur nachsehen, némlich
im FilelnfoBlock laut Listing 2.10.5.

struct FileInfoBRlock
{
LONG fib DiskKey;
LONG fib DirEntryType; /* Typ: >0 Directory,
<0 File */

char fib FileName[108]; /* Name O-terminiert */

/* woanders auf 30 begrenzt! */
LONG fib Protection; /* Bitmaske Bit 3-0 = rwxd */
LONG fib EntryType;

LONG fib Size; /* GroRe in Bytes */
LONG fib NumBlocks; /* Belegte Blocke */
struct DateStamp fib Date; /* Datum */

char fib Comment [80]; /* Kommentar-Feld */

char padding[36]; /* Rest (Kommentar war friiher
116 Byte lang*/
}i

Listing 2.10.5: Der FIB oder FilelnfoBlock

Fir FilelnfoBlock schreibt man oft das Kiirzel FIB. Die praktische Anwen-
dung zeigt Listing 2.10.6. Der wesentliche Unterschied zu Listing 2.10.4
ist, daf} anstatt DFO: ein File-Name eingesetzt wurde, und daf3 jetzt f_info
vom Typ FilelnfoBlock anstatt InfoData Verwendung findet. AuBerdem
wurde diese Struktur hier mit Examineflock, fib_zeiger); gefillt, einer
Funktion, die wir gleich (in Listing 2.10.7) noch mehr brauchen werden.

/* dos_3.c */
#include <libraries/dos.h>

#include <exec/memory.h>
#include <libraries/dosextens.h>

void main ()

{
struct FileLock *lock, *Lock():;

181

Tu

TORIUM

182

struct FileInfoBlock *f info;

if(! (lock = (struct FileLock *)
AllocMem(sizeof (struct FilelLock),
MEMF CHIP | MEMF CLEAR)))
exit ();

if (!(f _info = (struct FileInfoBlock *)
AllocMem (sizeof (struct FileInfoBlock),
MEMF CHIP | MEMF CLEAR)))
exit ();

if (!(lock = Lock("dos 3.c",ACCESS_READ)))
exit ();

if (!Examine(lock, f info))
exit ()

printf ("Name : %s\n", f info->fib FileName);
printf ("GroRe: %1d Bytes\n",f info->fib Size);

UnLock (lock) ;

Listing 2.10.6: Zugriff auf den FIB

Nun fragen Sie mich, warum ich einen File-Namen eingebe, um ihn dann
via FIB auszugeben? Da habe ich doch glatt zwei Antworten. 1. Man muf3
nicht mit

if (!(lock = Lock("dos_3.c",ACCESS_READ)))
exit (); /

aus dem Programm aussteigen, sondern kann anstatt exit() das Fehlen des
Files beklagen oder allgemeiner gesagt, damit auf das Vorhandensein
einer Datei priffen. Antwort 2: Vielleicht haben Sie sich schon einmal
gewundert, wieso auf »dir anton« das System »Anton« meldet2 Der
Grund: Wenn das File angelegt wird, wird der Name wie geschrieben
eingetragen. Die dir-Routine unterscheidet aber bei der Suche nicht zwi-
schen Grof3- und Kleinbuchstaben.

TUTORIUM

Directory durchsuchen

Mit »dir« wéren wir beim néchsten Thema und bei Listing 2.10.7. Das
Programm basiert auf zwei Funktionen.

boolean = Examine (lock, fib zeiger);

fillt einen FIB mit den Daten des Files von lock. Die Funktion gibt TRUE
zuriick, wenn sie Erfolg hatte. lock kann aber auch das Lock eines Direc-
torys sein. Nun kommt die néchste Funktion zum Tragen.

boolean = ExNext (lock, fib zeiger);

fullt den FIB des ndchsten Files im Directory mit dessen Daten. Auf diese
Art kann man sich sehr einfach durch’ein Directory bewegen. Wenn Sie
nun noch jedesmal in fib_DirEntryType nachsehen, ob es sich um ein File
(<0) oder um ein Directory (>0) handelt, so kénnen Sie auch sehr einfach
an die Sub-Directories herankommen.

/* dos_4.c */

#include <libraries/dos.h>
#include <exec/memory.h>
#include <libraries/dosextens.h>

void print it (info)
struct FileInfoBlock *info;
{
printf ("%$30s", info->fib FileName) ;
printf (" %7d Bytes\n",info->fib Size);
}

void main ()

{
struct FileLock *lock, *Lock():;
struct FileInfoBlock *f info;

if(!'(lock = (struct FileLock *)
AllocMem(sizeof (struct FileLock),
MEMF CHIP | MEMF CLEAR)))

exit ();

if (!(f_info = (struct FileInfoBlock ¥*)

183

Tu

TORIUM

184

AllocMem (sizeof (struct FileInfoBlock),
MEMF_CHIP | MEMF_CLEAR)))
exit ();

if (!(lock = Lock("DFO:",ACCESS READ)))
exit ();

if (!'Examine(lock,f info)) /* FIB des /*
exit (); /* 1. Files /*

print it (f_info); /* Erstes FIB ausgeben */

while (ExNext (lock,f info)) /* Solange noch */
print it (f info); /* weitere FIBs */

if (IoErr() != ERROR NO MORE ENTRIES)
printf ("\nFehler im Directory\n");

UnLock (lock) ;

Listing 2.10.7: So durchsucht man ein Directory

Wie Sie sehen, arbeitet unser Programm in der while-Schleife, so lange
wie es einen FIB findet. Danach gibt es allerdings zwei Méglichkeiten,
ndmlich es gibt kein File mehr oder ein anderer Fehler ist aufgetreten. In
diesem Fall - wenn ExNext{) den Wert O hat - sollten Sie die Funktion
loErr() aufrufen. Wenn diese NO_MORE_ENTRIES ergibt, ist es ein nor-
males Ende, andernfalls ist ein Lesefehler aufgetreten.

Sie kdnnen natiirlich auch gleich ein Directory angeben, also anstatt DFO:
zum Beispiel auch DHO:LC schreiben. Jokerzeichen sind allerdings nicht
mdglich. Wollen Sie dennoch nur Files listen, die beispielsweise mit ».c«
enden, hilft ein Trick. Schreiben Sie vor print_it(f_info) die Zeile

if (strstr(f info->fib FileName, ".c"))

Die strstr()-Funktion (string in string) gibt die Position des Suchstrings
zuriick, wenn der gefunden wurde, sonst null.

TUTORIUM

Execute anwenden

Man muf3 natirlich nicht — wie in Listings 2.10.7 - die File-Namen aus-
geben, sondern kann mit den Namen weiterarbeiten. Wenn es lhnen nur
auf die Anzeige ankommt, und das Programm nur im CLI laufen soll, kon-
nen Sie es auch billiger haben und zwar so:

#include <libraries/dos.h>

void main ()

{

Execute ("dir", NULL, Output());
}

Die Funktion Execute() fiihrt ein Programm aus, hier eines mit dem Namen
dir. Alle CLI-Befehle sind ausfihrbare Programme. AuBer dem Programm-
Namen erwartet die Funktion zwei File-Handles, eines fiir den Input-File,
eines fir den Output-File. Ersteren habe ich hier auf NULL gesetzt, was
erlaubt ist. Mit Output() trage ich das Handle des Standard-Outputs
(normalerweise das CLI-Window) ein. Gibt man einen Input-File an, wird
sein Inhalt als Befehlssequenz interpretiert, die nach dem Programm (hier:
dir) ausgefishrt wird. Fir das Programm kann ich aber auch NULL ein-
setzen, dann werden sofort die Befehle im Input-File ausgefishrt. Wissen
Sie jetzt, worauf die Excecute-Routine des CLI basiert?

Schreiben und Lesen von Bildern

Nun zu unserer letzten Aufgabe. Im Malprogramm der neunten Sitzung
(Listing 2.9.1) sind noch zwei Funktionen leer, die wir jetzt ausfillen
wollen; wie — zeigt Listing 2.10.8. Doch zuerst fiigen Sie in Listing 2.9.1
noch diese Zeile nach den anderen #includes hinzu:

#include <libraries/dos.h>

Zuerst das Einfache: Die Funktion sysreg(char *fext) wird mit einem String
aufgerufen und zeigt diesen in einem Auto-Requester. Den kennen Sie
schon aus der achten Sitzung, nur eines ist neu: Wenn man fiir den Pos-
Text NULL einsetzt, hat der Requester nur noch ein Gadget. Fiir uns reicht
das, denn der Anwender soll nur einen Text wie »ungiltiger Datei-Name«
sehen und dann auf OK klicken.

Damit ist auch schon der Zweck von sysreq() klar: Die Funktion wird auf-
gerufen, wenn in der Funktion do_datei() etwas schiefgeht. Diese Funktion
soll unsere Bilder speichern oder laden. Wie schon mit Listing 2.10.2
gezeigt, muf3 man eine Datei zuerst mit Open() 6ffnen. Geht dabei etwas

185

Tu

TORIUM

186

schief, kommt unser Auto-Requester zum Einsatz. Die Meniiwahl hatte bei
»laden« dflag=1 und bei »Sichern« dflag=2 gesetzt. Hiernach wird nun
Uber das case entschieden, ob das Bild gelesen oder geschrieben werden
soll.

Nehmen wir zuerst den Fall »Schreiben«. Ich wende dabei einen ein-
fachen Trick an. Es wird nicht etwa das Window gespeichert, sondern der
ganze Screen. Das geht sehr gut, weil unser Window die volle Schirm-
gréBe hat und nicht verschoben werden kann (haben Sie diese Window-
Flags gestrichen2). Genaugenommen liegt das daran, daf3 unser Window
keinen eigenen Screen hat, sondern mit dem Workbench-Screen arbeitet.
Damit ist auch der Rastport des Windows der des Screens. Im RastPort —
unserer Variablen rp — gibt es einen Zeiger auf die BitMap-Struktur. In
dieser wiederum befindet sich ein Array von Zeigern auf die Bit-Planes.
Diese Planes schlieBlich sind nun (endlich) die RAM-Bereiche, in denen
das Bild gehalten wird. Der Workbench-Screen hat zwei Planes (0 und 1).
Jedes Bit in jeder Plane entspricht genau einem (und demselben) Bild-
punkt. Die aus zwei Bit méglichen vier Kombinationen (00, 01, 10, 00)
entsprechen vier Farbregister-Nummern. An eine Plane, zum Beispiel
Plane O, kommt man nun heran mit

rp->BitMap->Planes[0]

Um diesen RAM-Bereich auf ein File schreiben zu kénnen, missen wir ihn
nur der Write-Funktion von Amiga-DOS als Argument iibergeben. Da
diese Funktion jedoch einen Zeiger auf einen Puffer vom Typ UBYTE
erwartet, machen wir noch etwas »ype casting to keep the compiler
happy«. Das ergibt dann den schénen Ausdruck

Write (handle, (UBYTE *) rp->BitMap->Planes[0],
size);

»size« ist die Anzahl der zu schreibenden Bytes, die vorher mit size =
RASSIZE(640,256); ermittelt wurde. Dafir hétte ich auch 20480 schrei-
ben konnen, denn 640*256/8 ergibt das, aber mit dem Makro
RASSIZE(640,256) sieht das natiirlich viel eleganter aus. Mit noch einem
Write{) wird dann rp->BitMap->Planes[1] geschrieben, und das war's
dann schon.

TUTORIUM

void sysreg(char *text)

{
struct IntuiText BodyText, NegText;
BOOL b;

make text(&BodyText, text, 50, 20);

make text(&NegText, " OK ", 3, 3);

b = AutoRequest (NULL, &BodyText,NULL, &NegText,
NULL, NULL, 400,80); '

void do datei (void)
{

ULONG handle;

int size;

size = RASSIZE (640,256);

switch (dflag)
{
case 1:
if ((handle = Open(&info.Buffer[0],
MODE OLDFILE)) == 0)
{

sysreq("Datei nicht gefunden oder defekt") ;
return;

Read (handle, (UBYTE *) rp->BitMap->Planes[0],
size);
Read (handle, (UBYTE *) rp->BitMap->Planes[1],
size);
Close (handle) ;
break;

case 2:

if ((handle = Open(&info.Buffer[0],
MODE_NEWFILE)) == (0)

187

Tu

TORIUM

188

sysreq ("Ungliltiger Datei-Name");
return;

}

Write (handle, (UBYTE *) rp->BitMap->Planes[0],
size);
Write (handle, (UBYTE *) rp->BitMap->Planes|[1l],
size);
Close (handle) ;
break;

}

Listing 2.10.8: Das Lesen und Schreiben von Bildern

Wenn Sie das Ganze perfekt erledigen wollen, miissen Sie die Werte der
aktuellen Auflésung einsetzen. Dazu brauchen Sie:

rp->BitMap->BytesPerRow : X-Aufldsung in Bytes
rp->BitMap->Rows : Y-Auflésung (direkt)
rp->BitMap->Depth : Tiefe = Anzahl Bitplanes

I Beachten Sie, daB} die X-Auflésung in Bytes eingetragen ist, Sie also den
Wert mit 8 malnehmen mussen. Ferner heif3t eine Tiefe von 2, daf3 es eine

Planes[0] und eine Planes[1] gibt.

Bliebe noch anzumerken, daf3 ich gar nichts zu den Farben sage, die
Farbregler kdnnen ja beim Bildspeichern sonstwo stehen. Ich speichere
jedoch das Bild ohne die Farbreglerstellung und hoffe, daf3 bis zum néich-
sten Laden niemand an den Reglern dreht. Wenn Sie das beriicksichtigen
wollen, missen Sie die Ist-Farben mit GetRGB4() erfragen, sie mitspei-
chern und dann mit SetRGB4() setzen. Per Prinzip sieht das fir alle 32
Register so aus (fir die Normalauflésung braucht man nur die ersten 4):

for(i=0; i<=31; i++) /* flir alle 32 Register */
farbe[i] = GetRGB4 (&Screen->ViewPort,i);

Die Farben sind in der Form »0xORGB« (Rot, Griin, Blau) codiert. Jede
Farbe belegt vier Bit, Halbbytes oder auch Nibbles genannt. Zum Setzen
mit SetRGB4(&Screen->ViewPort,i,R,G,B) missen Sie die Nibbles aus den
Worten holen. Da ich dazu schon wahrhaft abenteuerliche arithmetische
Ubungen gesehen habe, hier eine C-gemdf3e Losung.

TUTORIUM

Wenn »f« ein Farbwort ist, gilt:

R=f > 8 & OxF;
G =f > 4 & 0xF;
B = f & OxF;

Im Klartext: Das Rot-Nibble wird um acht Bit nach rechts geschoben und
dann mit OxF oder/und 0000000001111 verknipft. Beim G-Nibble muf3
man nur um vier Bits schieben, und bei B steht das Nibble schon richtig,
nur die anderen zwdlf Bits missen mittels der Maske auf null gesetzt
werden.

Checkliste
1. Wie prifen Sie, wann beim Lesen aus einer Datei das File-Ende erreicht ist?

2. Warum sollte man DOS-Puffer immer mit AllocMem() allokieren?

3. In welcher Datenstrukiur steht die Gréf3e eines Files?

Ideen fiir eigene Ubungen und Erweiterungen

1. Wandeln Sie Listing 2.10.2 so ab, daf3 das Programm immer nach 20
Zeilen anhdlt und auf einen Tastendruck wartet.

2. In der Funktion do_dateif) wird nicht gepriift, ob die Funkfionen Read() und
Write() O zuriickgeben. Bauen Sie diese Tests ein und geben Sie fir den
Fehlerfall mittels sysreq() Meldungen aus. Wenn Sie ganz gut sein wollen,
speichern Sie die Is+-Grofe mit ab und vergleichen sie dann mit der
gelesenen. Sie kénnen auch noch ein Kennwort mit speichern und das
zuriicklesen, um zu verhindern, daf3 eine falsche Datei eingelesen wird.

3. Wandeln Sie Listing 2.10.7 so ab, daf3 dlle Files mit der Endung ».IMG«
(empfohlener Extender fir Bilder) angezeigt werden. Bauen Sie das dann in
das Malprogramm ein. Dazu verldngern Sie das Meni »Projekt« um den
Punkt »Dateien zeigen«. Beachten Sie, daf3 Sie die Texte mit der Funktion
print{) (in Listing 2.7.5) ausgeben missen und dabei jeder Text eine neue x-
y-Position braucht.

189

TUTORIUM

190

Know-how

Dieses Kapitel ist primér in zwei Teile gegliedert. Der erste Teil beschaftigt
sich mit dem Thema »Fehlerbeseitigung«, der zweite behandelt einige
Besonderheiten der Compiler und hilft mit einer Sammlung von Kaniffen,
Tips und anderen Spezialitéten, lhr C-Wissen weiter zu verfeinern.

3.1 Hiivfige Fehler und Losungswege

Sie werden es kaum glauben, doch Profis machen genauso viele Fehler
wie Einsteiger. Der kleine Unterschied: Die Profis brauchen dafiir ein paar
Programmzeilen mehr und — das ist es — sie haben alle Fehler schon ein-
mal gemacht und daraus gelernt. Dieses Know-how soll lhnen die fol-
gende Aufzéhlung méglicher Fehlerquellen vermitteln.

Fin Gleichheitszeichen vergessen

Der Zuweisungsoperator heif}t =, der Gleichheitsoperator hingegen ==.
Verwechselt man das, kann das Programm falsche Ergebnisse bringen
oder abstiirzen. Ein harmloses Beispiel:

int i = 123;
if (i = 10)
puts("i = 10");
Das Programm wird »i = 10« ausgeben, obwohl i 123 ist. Wenn eine

Zuweisung als Ausdruck eingesetzt wird, bekommt dieser den Wert der
Zuweisung, hier also 10. Das ist nicht null, und somit fir C logisch TRUE.

191

KNOW-HOW

192

Die if-Bedingung ist damit erfill. Schlimm wird es, wenn man das mit
Zeigern macht, also zum Beispiel If (Window = NULL) schreibt. Damit
erhdlt Window den Wert 0, also eine sicherlich falsche Adresse. Beim
néichsten Zugriff darauf kracht es.

Klammern vergessen

In der while-Schleife sollen so lange Zeichen in die Variable ch eingelesen
werden, bis die (Escape)-Taste gedriickt wird, doch leider funktioniert das

so nicht:

while (ch = getch() != '\x1B')
printf ("$c",ch);

Der Grund ist, daf3 der Ungleichoperator (!=) eine hshere Prioritdt als der
Zuweisungsoperator hat. Folglich wird zuerst verglichen und erst danach
mit ch = gefch() das Zeichen eingelesen. Die Losung ist ganz einfach.
Umgehen Sie mit der Klammerung die automatische Priorisierung. Hier
also so:

while ((ch = getch()) != "\x1B')

I Kleine Zusatzregel: Setzen Sie im Zweifelsfall immer Klammern, eher zu viele
und berflissige als zu wenig. Der Code wird dadurch nicht schlechter, doch
die Lesbarkeit des Programms wird besser.

Array-Index auflerhalb der Dimension

Besonders bei der Ubertragung von Basic- oder Pascal- Progrcmmen
begeht man haufig folgenden Fehler bei der Ubersetzung von z.B. for i=1
to 4:

int ar(4] = {10, 20, 30, 40};
int i;
for (i=1; i<=4; i++)

printf ("$d\n", ar[i]);

Die Schleife l&uft von 1 bis 4, ein C-Array beginnt aber mit dem Index 0.
Folglich mu3 die Schleife heifSen

for (i=0; i<4; i++)

Mit dem falschen Index bekommen Sie noch nicht einmal eine Fehlermel-
dung, weil C nicht auf Array-Grenzen achtet. Peinlich wird die Sache in

KNOow-HOW

der Umkehr, also zum Beispiel mit der Zuweisung a[55] = 13;. In diesem
Fall schreiben Sie irgendwo in den Speicher, der Schaden kann grof3
sein.

Falscher Index bei mehrdimensionalen Arrays

Auch bei der Ubertragung von Basic- oder Pascal-Programmen begeht
man héufig folgenden Fehler. Aus DIM a(3,5) wird in C

int a[3]11[5];
Nun kann man aber im Eifer des Gefechtes leicht
printf ("sd", all,2]);

schreiben und bekommt keine Fehlermeldung, sondern nur ein falsches
Ergebnis. Der Grund ist, daf es korrekt

printf ("%d", allll2]);

heiflen muf3. Eine Fehlermeldung gibt es nicht, weil C in der Form af7,2]
den Komma-Operator sieht, daher den Ausdruck von links nach rechts
entwickelt und schlieBlich dafiir of2] einsetzt. Das jedoch ist leider nur die
Adresse des Array-Elements.

Fehler im Umgang mit Strings

Zur Erinnerung: C-Strings mijssen am Ende ein 0-Byte, genauer ein Null-
Zeichen haben. Ein Hauptfehler ist das vergessene Null-Byte bzw. die Tat-
sache, daf3 ein String immer wenigstens um 1 gréfler dimensioniert
werden muf3 als die maximale Textlénge. Im Falle von

char s1[5], s2([5];

main () {)
strcpy(sl,"Hallo");
strcpy (s2,"Welt");
printf ("%$s%s\n",sl,s2);

}

kopiert strcpy() den String Hallo plus ein O-Zeichen, also sechs Zeichen, in

en Bereich von s1, fir den der Compiler nur 5 Byte reserviert hatte.
Folglich liegt das 0-Byte auflerhalb des Array Meldung, hier im Bereich
von s2. Das néchste strcpy() kopiert den String Welt dorthin, womit das
W wieder das Null-Byte iberschreibt. s1 wird gedruckt, bis ein Null-Byte

193

KNOW-HOW

194

gefunden wird, und das steht erst am Ende von s2. Dann wird s2
gedruckt. Das Ergebnis ist HalloWeltWelt. Wenn Sie das Beispiel nach-
vollziehen wollen, beachten Sie: Die Strings miissen auf3erhalb von main()
deklariert sein, womit sie statisch werden (immer auf derselben Adresse
stehen). AufBerdem sollten Sie mit den Léingen experimentieren, weil ver-
schiedene Compiler die Strings unterschiedlich auf Wort- oder Langwort-
grenzen ablegen kénnen.

Eine andere Falle ist diese:

char sl[] = "Hallo";
char *ptr;
ptr = malloc(strlen(sl));

strcpy (ptr, sl);

Diesmal ist der Fehler gut versteckt. Die strin()-Funktion ergibt die
Stringlénge ohne das Null-Byte. Dafir alloziert malloc() Speicher. Das
anschlieBende strcpy héngt aber wieder das Null-Byte an. Korrekt muf3
die Zeile also lauten

ptr = malloc(strlen(sl) + 1);

Probleme mit Zeigern

Vier Fehler sind sehr beliebt, némlich nicht initialisierte Zeiger, falsch ini-
tialisierte Zeiger, Zeiger vom falschen Typ und »dangling pointers«
(dangle = wacklig, lose). Beginnen wir mit den nicht initialisierten Zei-
gern. Sie schreiben in einem Programm ganz ordentlich

struct RastPort *rp
/* und etwas spater */
Move (rp, X,VY);:

Leider hatten Sie vergessen, mit rp=Window->RPort dem Zeiger rp auch
eine Adresse zuzuweisen. Die Move()-Funktion schreibt deshalb mitten in
den Systemspeicher: der Crash ist vorprogrammiert. Auch auf diese Art
kann man zu einem initialisierten Zeiger kommen, jedenfalls, wenn man
den Warnlevel des Compilers hochsetzt:

int wert = 10;
int *ptr;
*ptr = &Wert;

KNOW-HOW

*ptr meint nicht mehr den Zeiger pfr, sondern die Adresse, auf die er
zeigt. Dahin wandert auch die Adresse von Wert, nur ptr selbst ist immer
noch nicht initialisiert.

Im Abschnitt Gber Strings hatte ich geschrieben

ptr = malloc(strlen(sl));
strcpy (ptr, sl);

Auch das ist recht gefdhrlich, denn ich weif3 gar nicht, ob malloc() den
Speicher noch beschaffen konnte. In diesem Fall gibt es NULL zuriick, was
meistens auch die Adresse O ist. Korrekt schreibt man also das Stiickchen
Code so:

char s1[] = "Hallo";
char *ptr;
ptr = malloc(strlen(sl) + 1);
if (ptr == NULL)
exit (1) ;
else
strcpy (ptr, sl);

Eine bése Falle kann die Funktion scanf{) sein. Bekanntlich muf3 man
scanf{"%d", &i) schreiben, also die Adresse der Variablen angeben,
damit scanf{) sein Ergebnis da eintragen kann. Vergif}t man das &-Zei-
chen, passieren gleich zwei Fehler. Die Variable bekommt keinen Wert,
ihr Inhalt ist zutdllig, und - viel schlimmer — scanf{) betrachtet diese
Zufallszahl als Adresse und schreibt auf diese.

Ein »dangling pointer« entsteht auf vielféltige Weise. Ich brauche blof3
nach ptr = malloc(...) irgendwann

free(ptr);

zu schreiben, und schon kann das System diesen Speicherbereich ander-
weitig vergeben. Der Pointer zeigt immer noch dahin, aber leider auch
aus Sicht lhres Programms in die Wiste. Ob ein nochmaliger Zugriff
klappt, bleibt Zufall. Eine weitere Mdglichkeit, einen »dangling pointer«
zu erzeugen, ist diese:

195

KN

OW-HOW

196

char *error (int i)

{

char *c_ptr;

c_ptr = "Hallo";
return c_ptr;

}

Die Funktion ist syntaktisch OK, nur logisch nicht. c_ptr ist eine lokale
Variable, die nur so lange existiert, wie die Funktion l&uft. Der Return-
Wert der Funktion ist zwar noch der richtige Zeiger, nur zeigt er auf eine
Variable, die es nach dem Funktionsende gar nicht mehr gibt.

Zeiger auf sich selbst

Sie haben zum Beispiel in der Menii-Struktur menu[1] einen Zeiger auf
den Nachfolger menu[2]. Lassen Sie den aber nicht auf das néchste Meni
zeigen, sondern auf sich selbst, hier menu[1], entsteht ein schwer zu fin-
dender Fehler, weil das Programm sich aufhéngt, sobald es Set-
MenuStrip() aufruft.

3.2 Details zvm Aztec-Compiler und Linker

Der C-Compiler cc wird mit
cc -Optionl -Option2 -Option... name

aufgerufen. Im Beispiel cc —a —r4 —sf name bedeuten:

cc Compiler-Aufruf

-a Erzeuge Assembler-Quelltext
-r4 Nehme A4 fiir Registervariable
—sf Optimiere for-Schleifen

name Name des Quellfiles

Die Optionen missen nicht sein. cc fest kompiliert test.c. Der Extender
».c« wird automatisch angehéngt, wenn er nicht angegeben wurde. Der
Aztec-Compiler gléinzt mit derart vielen Optionen, daf3 ich hier nur die
wichtigsten auffihren kann und ansonsten auf das sehr umfangreiche
Handbuch verweisen muf3.

KNOW-HOW

-3 Akzeptiert Optionen der Version 3.6

-a Erzeugt (zusétzlich) Assembler-Quelltext

—bs Erzeugt Debug-Informationen

—fa FlieBkommazahlen nach Amiga-IEEE

— FlieBkommazahlen nach »Fast Motorola«

~fm FlieBkommazahlen nach Manx (Aztec)

-8 FlieBkommazahlen fir 68881

—hi Siehe 3.6, vorkompilierte H-Files

—ho Siehe 3.6, vorkompilierte H-Files

—i Pfad Directory, wo cc Include-Files suchen soll

-k Kompiliere nach K&R-Standard (UNX V7)

-mc Code fiir das grof3e Speichermodell

-md Daten fiir das grofle Speichermodell

—pp Alle char werden zu unsigned char

—ps int als 16 Bit anstatt 32

-gp Erzeugt Prototypen fiir alle nicht statischen Funktionen
-gs Erzeugt Prototypen fiir alle statischen Funktionen
—sa 2-Assembler-Lauf fir diverse Optimierungen

—sf Optimiert for-Schleifen

-ss Mehrfach deklarierte Strings nur einmal ablegen
-wa Warnt, wenn Funktionsaufruf nicht nach Prototyp
-ws Keine Warnings mehr (gefdhrlich)

-wu Warnung, wenn lokale deklarierte Variable nicht

genutzt (nitzlich).

Der Aztec-Linker
Der Linker In wird mit
1ln Optionl Option2 Option... namel name2 name...

aufgerufen. Im Beispiel In +cd name —Ic bedeuten:

In Linker-Aufruf

+cd Daten ins Chip-Memory
name Name des Obijekifiles
—lc Library c.lib einbinden

Die Form In name —lc ist eine Kurzform von In name.o c.lib

Die Optionen missen nicht sein. In fest —lc linkt test.o zu einem ausfihr-
baren Programm. Der Extender ».0« wird automatisch angehéngt, wenn
er nicht angegeben wurde. Der Aztec-Linker bietet folgende Optionen:

197

OW-HOW

198

+a Justiert auf Langwortgrenzen

+cb BSS-Daten (nicht initialisierte) ins Chip-Memory

+cc Code geht ins Chip-Memory

+cd Daten ins Chip-Memory

+cedb Alles ins Chip-Memory

+ Programm geht ins Fast-Memory

~fname Liest Linker-Kommando aus Datei name

-g Erzeugt File fir Aztec-Quellcode-Debugger

+ Alle folgenden Namen sind Libraries, wirkt wie ein
Schalter bis zum néchsten +

~Iname Library name.lib einbinden

-m Warnt nicht, wenn Library-Symbole iiberschrieben
werden.

~o name Name des Programm-Files, sonst wie Name des
ersten Input-Files.

oli] Plaziert das folgende Modul in das Segment i.

Wird i nicht angegeben, wird das erste
Segment genommen.

—q Schaltet —g wieder aus

+q Schaltet Modulanzeige beim Linken aus

—+ Erzeugt Symbol-Tabelle (lesbarer Text)

-w Symboltabelle fir ROM-Wack-Debugger erzeugen
-v Zeigt die wichtigsten Link-Ergebnisse wie Code-

und Datengrsf3e an.

3.3 Details zum Lattice-Compiler und Linker

Der Lattice-Compiler glénzt mit derart vielen Optionen, daf3 ich hier nur
die wichtigsten auffihren kann und ansonsten auf das sehr umfangreiche
Handbuch verweisen muf3. Der Compiler lc wird mit

lc -Optionl -Option2 -Option... namel name2 name...

aufgerufen. Im Beispiel Ic —L —ad test bedeuten:

-L Nach dem Kompilieren den Linker aufrufen
-ad Daten ins Chip-Memory
test test.c kompilieren

Weil der Linker BLINK schon mit der —L-Option aufgerufen wird, und des-
sen Optionen hier mitgeschildert werden, verzichte ich auf die Beschrei-
bung von BLINK.

KNOW-HOW

Der Extender ».c« wird automatisch angehéingt, wenn er nicht angegeben
wurde. Im Beispiel Ic L —ad test waren es zwei Optionen, es kénnen aber
auch mehr sein. Bei sich widersprechenden Optionen warnt lc. Hier nun
die Liste der wichtigsten Optionen:

-ad
-ac
-ab
-acdb
-b1

-b0
-ca
—cf
—-cm
-co
—cs
—cu
—cusf
-do
-d5
-H
-fl
~ff
fi
-f8
-iPfad
-L

—L+Name.lib
—Lc

—Lm

-

-0

—oh

Daten gehen ins Chip-Memory

Code geht ins Chip-Memory

BSS-Daten (nicht initialisierte) ins Chip-Memory
Alles ins Chip-Memory

Kurze Adressierung. Reicht nur fiir 64 Kbyte Daten,
—b1 ist voreingestellt

Lange Adressierung (32 Bit)

Volle ANSI-Kompatibilitéit

Compiler moniert fehlende Funktionsprototypen
Erlaubt mehrfache Zeichenkonstasten wie 'ab'
Kompatibel mit friheren Versionen

Mehrfach deklarierte Strings nur einmal ablegen
Alle char werden zu unsigned char

Bester Code und bestes Error-Checking

Keine Debug-Information im Code

Volle Debug-Information im Code

Siehe 3.6, vorkompilierte H-Files
FlieBkommazahlen nach Lattice
FlieBkommazahlen nach »Fast Motorola«
FlieBkommazahlen nach Amiga-IEEE
FlieBkommazahlen fir 68881

Directory, wo Ic Include-Files suchen soll
Compiler ruft Linker auf, der lc.lib und
amiga.lib einbindet.

Bindet Name.lib zusétzlich ein

Erzeugt »small code«

Bindet lcm.lib fiir FlieBkommazahlen

Alle Daten auf Langwortgrenzen justieren
Schaltet den globalen Code-Optimierer ein
Siehe 3.6, vorkompilierte H-Files

199

KN

OW-HOW

200

3.4 (Uberlebens-)Regeln und Tips
fiir Programmierer

Es folgen gleich viele (Uberlebens-)Regeln und Tips fiir Programmierer —
doch halt! Ich meine, bevor ich die Regeln so einfach aufzéhle, sollte ich
wenigstens andeuten, warum man sie braucht, sprich, ein paar Grund-
lagen bringen.

Multitasking macht Exec

Zustiindig fir das berihmte Multitasking des Amiga ist Exec. Exec ist die
Abkirzung von Executive, was im Amerikanischen soviel wie Chef
(leitender Angestellter) bedeutet. Exec ist an sich auch nur ein Prozef3, wie
zum Beispiel das CLI, der aber immer (so lange der Amiga eingeschaltet
ist) lauft. Exec selbst ist das Multitasking-System des Amiga. So ein System
hat die Aufgabe, die Ressourcen eines Systems auf verschiedene Tasks
(Programme) zu verteilen. Ressourcen sind die CPU (der 68000), der
Hauptspeicher und die Peripherie-Gerdte. Unteilbare Ressourcen wie die
CPU werden beim Amiga nach einem Prioritéiten-Verfahren vergeben.
Zuerst wird der Task mit der hoheren Prioritit abgearbeitet, dann der
ndchstniedere. Haben mehrere Tasks die gleiche Prioritét, werden sie
nach einem Zeitscheibenverfahren (Time-Sharing) in Intervallen bearbei-
tet. Durch Hardware-Interrupts bekommt Exec die Sache immer wieder in
den Griff, auch wenn ein Task seine Tétigkeit nicht beenden méchte.

Ein Task hat drei Zustdnde, namlich laufend, nicht laufend und wartend.
Mit Riicksicht auf andere Tasks sollte ein Task méglichst oft in den Zustand
wartend (auf Eingabe) gesetzt werden, das aber via Wait{) und nicht
etwa nach der unfeinen Polling-Methode (siehe Regel 9).

Der Zugriff auf System-Routinen

Um von absoluten Adressen unabhdngig zu sein, arbeiten die meisten
Betriebssysteme nach diesem Schema: Alle Unterprogramme erhalten eine
Nummer, Funktionsnummern genannt. Im Betriebssystem steht eine
Tabelle, in der notiert ist, welche Adresse zu jeder Funktionsnummer
gehért. Das Betriebssystem hat nun eine Routine, deren Adresse sich nie
&éndert. Das st der Dispatcher. Um ein Unterprogramm aufzurufen, ber-
gibt man dem Dispatcher die Funktionsnummer. Dieser berechnet danach
(und mit Hilfe der Tabelle) die Adresse der Routine und ruft sie auf. Der
Amiga macht das etwas raffinierter und damit zukunftssicherer. Der

KNOW-HOW

Nachteil der Standard-Methode ist némlich, daf3 man sehr schlecht neue
Routinen hinzufiigen kann (Tabelle steht im ROM). Beim Amiga stehen die
Tabellen im ROM oder RAM oder auf der Diskette. Die Tabellen sind ein
Teil der sogenannten Libraries (Bibliotheken).

Libraries: Schliissel zum Amiga

Eine Library ist, vereinfacht ausgedriickt, eine Sammlung von Unterpro-
grammen mit einer zugehdrigen Tabelle (je Unterprogramm ein Eintrag).
Fir jeden Zweck (zum Beispiel DOS, Intuition, Grafik) gibt es eine eigene
Library. Will man eine Funktion einer Library benutzen, muf3 man die
Library mit OpenLibrary() offnen. »Gemanagt« wird das Ganze vom
sogenannten Library-Manager (ein Teil von Exec). Der Manager weif3, ob
sich eine Library schon im ROM oder RAM befindet. Wenn nicht, versucht
er, die Library von der Diskette zu laden. Klappt das nicht (Library ist
nicht auf der Diskette oder der Speicher ist schon voll), gibt er O als
Adresse zuriick.

Der Umstand hat noch einen Grund: Wir haben ein Multitasking-System,
was auch heifdt, daf3 quasi gleichzeitig verschiedene Tasks (Programme)
eine Library benutzen kénnen. Der erste Task wird die Library notfalls von
der Diskette in den RAM laden (genau: das Laden veranlassen). Offnen
weitere Tasks dieselbe Library, wird der Manager nur noch die Adresse
an diese Tasks melden und sich merken, daf3 dieser Task die Library
(auch) braucht. Daraus folgt: Eine Library darf erst wieder aus dem Spei-
cher geldscht werden, wenn der letzte Task gesagt hat, daf3 er sie nicht
mehr braucht. Dafiir gibt es die Funktion Closelibrary. Jeder Task (also
jedes Programm, das Sie schreiben) muf3 deshalb dlle Libraries, die er
gedfinet hat, auch wieder schliefBen. Andernfalls kénnte bald der Spei-
cher knapp werden.

Regel 1: Es gibt nur eine absolute Adresse

Man sieht immer wieder Listings, die auf absolute Adressen zugreifen,
was brigens in C ganz einfach ist. Man muf3 nur einer Zeigervariablen
die Adresse (als Zahl) zuweisen. Doch nur eine einzige Adresse, némlich
die 4, ist erlaubt; im Listing 3.5.5 sehen Sie eine praktische Anwendung.
Diese Adresse 4 ist die _SysBase und dort liegt der Zeiger auf die Basis
von »Exec«. Alle weiteren Adressen sind ber definierte Offsets und
System-Funktionen zu ermitteln. Gegebenenfalls erhélt man damit die
Zeiger auf Datenstrukturen, die wiederum Zeiger auf andere Datenstruk-
turen halten. Die doppelte Indirektion (**) ist zwar oft die Folge solcher

201

KNow-HOW

202

Wege, aber diese Methode ist die einzig zuléssige. Gehen Sie davon
aus, daB Programme mit absoluten Adressen nur auf lhrem Amiga und
nur mit der einen Kickstart- und Workbench-Version laufen.

Regel 2: Funktions-Ergebnisse testen

Testen Sie generell die Ergebnisse aller Funktionen, die nicht ausdriicklich
als void deklariert sind. Sie missen davon ausgehen, daf3 |hr Programm
in Konkurrenz zu vielen anderen léuft (Mulfitasking), und somit durchaus
nicht klar ist, ob noch der Speicher fiir beispielsweise eine neue Window-
oder Screen-Struktur frei ist. Gehen Sie davon aus, daf3 fast jede Aktion
Speicher kostet. Im Extremfall missen Sie sogar unterstellen daB die paar
Bytes fehlen, die fir das Offnen einer ROM:-Library benohgt werden.

Regel 3: Speicher wieder freigeben

Geben Sie auf jeden Fall allokierten Speicher wieder frei und nicht nur
den mit malloc() beschafften. Schlieflen Sie auch alle Screens, Windows
und die Libraries. Beachten Sie diese Regel besonders im Fehlerfall. Hier
passiert es haufig, daf3 man Speicher fir einige Datenstrukturen beschafft
hat, dann etwas schiefgeht, und vor dem Abbruch des Programms eben
nicht der Speicher fir die bisher allokierten Strukturen freigegeben wird.
Natiirlich kann es vorkommen, daf3 Ihr Programm laut Regel 4 festgestellt
hatte, daf3 der Speicher ausreicht, nun loslegt, und es dann »mitten drin«
doch nicht reicht. Der Grund ist schlicht, daf3 sich ein anderer Task den
Speicher inzwischen »geschnappt« hat. Nun haben Sie aber derweil eine
unbekannte Anzahl von Speicherbldcken fiir Images, Sprites und sonstiges
reserviert. Wie geben Sie diese wieder frei?

Die Losung biefet Intuition mit seiner Funktion AllocRemember(). Ein Bei-
spiel dazu finden Sie im Abschnitt 3.5.3. Diese Funktion notiert alle
erfolgreichen Allokierungen in einer gemeinsamen Liste, einer Struktur
vom Typ Remember, die Sie zur Verfigung stellen miissen, genauer:
— siehe auch Listing 3.5.1 - einen Zeiger darauf. Nehmen wir an, die
Variable heift *rem, dann kénnen Sie mit diesem einen Befehl

FreeRemember (&rem, TRUE)

alle Speicherbldcke auf einmal freigeben. Beachten Sie unbedingt das
»TRUE«, denn — es ist kaum zu glauben — setzen Sie hier »FALSE« ein,
wird nur die Liste geléscht und nicht die Speicherblécke.

KNOW-HOW

Regel 4: Friihzeitig testen

Kein Anwender findet es schén, wenn ein Programm erst anlduft und
dann »mitten drin« aussteigt. Es gilt zwar auch fir diesen Fall die Regel
»informieren Sie den Anwender iiber den Grund des Abbruchs«, doch
am besten priffen Sie gleich zu Programmbeginn, ob noch geniigend
Speicher frei ist und die sonstigen Voraussetzungen fiir diese Applikation
erfillt sind. Wenn nicht, nennen Sie dem User die Griinde und die mdg-
lichen AbhilfemaBBnahmen. Wenn dennoch im Programmlauf Fehler auf-
trefen und alle Stricke reiflen, miissen Sie sogar mit einem Dead-End-Alert
aussteigen (siehe Sitzung 8), also nach einer Guru-Meldung neu booten
lassen. Still aussteigen und den Anwender mit einem anderen Programm
abstiirzen zu lassen, ist nicht die feine englische Art.

Regel 5: Der Ressource-Manager sind Sie

Im Gegensatz zu den ganz groflen Multitasking-Systemen miissen Sie
beim Amiga selbst etwas — wenn auch sehr wenig — tun, wenn es um den
Zugriff auf System-Ressourcen geht. Wenn zwei Tasks auf Ressourcen wie
ein Laufwerk gleichzeitig zugreifen wollen, gibt es Konflikte. Um diese zu
vermeiden, missen Sie diese Aktion einkleiden in

forbid () /* Multitasking aus */
/* Aktion */
permit () /* Multitasking an */

Natiirlich sollte das forbid() nur so kurz wie méglich wirken, weil, solange
alle anderen Tasks keine Chance haben, doch viel wichtiger ist, daf3 man
das permit() nicht vergif3t.

Regel 6: Chip-Daten ins Chip-RAM

Die Custom-Chips des Amiga (Blitter, Copper usw.) kénnen Hardware-
bedingt nur auf die ersten 512 Kbyte — das sogenannte Chip-Memory —
zugreifen. Folglich missen auch alle Datenstrukturen, die von diesen Bau-
steinen genutzt werden, in diesem Bereich liegen. Hat der Amiga aber
mehr als 512 Kbyte RAM, wird ein Programm in aller Regel in den
Erweiterungsspeicher — das sogenannte »Fast Memory« — geladen. »Fast«
(schnell) heif}t das Gbrigens, weil »da oben« die CPU nicht mehr Takt-
zyklen an die Custom-Chips abgeben muf3. Mit dem Programm wandern
auch die Daten in das »Fast Memory«, sind also fir die Custom-Chips
unerreichbar. Ginstigenfalls fihrt das zu einem verschwundenen Maus-

203

KNow-HOW

204

zeiger und dhnlichen Effekten, doch auch Abstiirze sind drin. Die mdg-
lichen Lésungen werden in den Abschnitten 3.5.2 und 3.5.3 beschrieben.

Regel 7: Das Rad nur einmal erfinden

DaB3 man héufig benutzte Routinen in Include-Files hélt und die dann
immer wieder einzieht, ist eine uralte MaBnahme, doch beim Amiga ist
sie besonders wichtig. Wenn man sich némlich bei den vielen komplexen
Datenstrukturen nur einmal ein wenig verhaut, reicht das oft schon fiir
einen bildschonen und schwer zu findenden Absturz. Besonders kritisch
sind Ubrigens als Konstanten definierte Datenstrukturen. Vergif}t man da
einmal eine Komponente oder nimmt den falschen Typ, »gurut« es garan-
tiert. Deshalb: Alles was léuft, gleich in einen Include-File packen und den
im ndchsten Programm einsetzen. Ein ganz nijtzliches Exemplar dieser
Gattung ist Gbrigens unser so oft genutztes stdwindow.h.

Regel 8: Beachten Sie die »Postvorschriften«

Bei der deutschen Bundespost gibt es sehr genaue Vorschriften iber den
Transport und die Behandlung von Nachrichten. Beim Amiga gilt &hn-
liches, kommunizieren doch alle Tasks — die eigenen und die des Betriebs-
systems — mittels Messages (elektronischer Briefe), die sie sich gegenseitig
schicken. Dazu noch einige Details: Jede Eingabe beim Amiga lauft iber
das sogenannte Input-Device in den Input-Stream. Letzterer ist ein Strom
von Daten, genauer ein Puffer-Bereich. Wenn der Anwender eine Taste
driickt, die Maus bewegt oder eine Maus-Taste betitigt, generiert das
Input-Device daraus ein Input-Event (Input-Ereignis). Aus dem Input-Event
wird eine Message (Nachricht), die das Ereignis beschreibt.

Der Input-Stream kann nun von jedem Task abgefragt werden. Diese Ab-
frage ist nicht ganz einfach, na sagen wir, ziemlich umsténdlich zu pro-
grammieren. Deshalb sollten wir auch diesen Job Intuition iiberlassen, da
sind némlich die passenden Routinen schon eingebaut. Dabei funktioniert
Intuition als eine Art Filter, das nur die uns interessierenden Events
durchlaf3t. Intuition sorgt automatisch dafiir, daf3 die Events immer an den
derzeit aktiven Task (an das aktive Window) weitergeleitet werden. Die
Events gelangen (neben dem Console-Device) in den IDCMP (Intuition
Direct Communication Message Port). Der IDCMP ermdglicht den
Empfang aller Ereignisse im »Rohformat«. Bei vielen Ereignissen stort das
nicht, das Window-Close-Event oder die Mauskoordinaten zum Beispiel
kénnen gar nicht besser vorliegen.

KNOW-HOW

Die Abfrage des IDCMP in einem Programm ist an sich ganz einfach. Wir

erhalten eine Message, wenn ein Event eingetreten ist. Im Class-Feld des

Message-Ports steht dann ein Langwort, in dem ein Bit gesetzt ist, das

dem Ereignis-Typ entspricht. Dieses Bit entspricht genau dem des IDCMP-

Flags, das Sie vorher gesetzt hatten. Haben wir also beim Offnen des

:JNindows CLOSEWINDOW gesetzt, kdnnten wir theoretisch nun folgen-
es tun:

msg = GetMsg (Window->UserPort) /* Lese Message */
if(msg->Class == CLOSEWINDOW)

Praktisch dirfen wir aber so nicht verfahren, denn zwei Regeln sollten Sie
immer im Auge behalten, némlich:

¢ Nach GetMsg() muf3 ReplyMsg() folgen

* Nach ReplyMsg() sind die Daten im Message-Port ungiiltig
Daraus folgt mindestens dieser Ablauf:

Message mit GetMsg() holen

Daten aus Message-Port in andere Variable kopieren

Mit ReplyMsg() den Erhalt der Message quittieren

L

Auf Message reagieren
5. Weiter bei 1.

Das »mindestens« mochte ich sehr betonen, weil ein so geschriebenes
Programm gegen eine Grundregel des Multitasking verstéf3t. Jedes Pro-
gramm sollte, wenn es auf ein Ereignis wartet, das auch sagen. Praktisch
geschieht dies mit

Wait (1L << Window->UserPort->mp SigBit)

Damit meldet sich der Task sozusagen mit der Meldung ab »Ich gehe jetzt
schlafen, weckt mich, wenn ein Ereignis fir mich anliegt«. Praktisch wird
damit der Task von Exec aus der Liste der aktiven Tasks auf die Liste der
wartenden Tasks versetzt, womit anderen Tasks mehr Zeit zugeteilt
werden kann. Tritt das Event ein, wird der Task automatisch wieder akti-
viert.

Die falsche Methode wiire das sogenannte Polling. Hierzu fragt das Pro-
gramm in einer Schleife stindig den Message-Port ab, ob eine Message
anliegt. Natirlich vergehen bis dahin aus CPU-Sicht Ewigkeiten, die Ant-
wort kann also durchaus 9999mal Nein und dann einmal Ja lauten. Leider

205

OW-HOW

206

blockiert diese Abfragerei CPU-Zeit, die den anderen Tasks fehlt. Solche
Programme erkennt man am fehlenden Wait{) und einer Programmzeile
dieser Art

while (msg = GetMsg (Window->UserPort) ==)
Beachten Sie das Semikolon. Manchmal steht es noch auf derselben Zeile
wie while(), was dann auch noch schlechter Programmierstil ist.

Regel 9: Denken Sie an FGO

Die drei Buchstaben FGO stehen fiir Funktionalitét, Geschwindigkeit und
Oberfliche. Die Regel stammt aus der Macintosh-Welt — woher auch
sonst? Mit diesem Computer begann der Siegeszug der grafisch orien-
tierten Bedienoberfléichen und auch der Lernprozef3 der Programmierer.
Damit waren wir beim Thema. Wer von einem mauslosen Computer auf
den Amiga umsteigt, ist natiirlich fasziniert von den Méglichkeiten dieser
Grafikmaschine und legt fir sein neues Programm erst einmal eine
Benutzeroberfléiche hin, die so intuitiv bedienbar ist, daf3 jedes Handbuch
iberflissig wird. Das erste Ziel eines solchen GUI (Graphic User Inter-
face), némlich die leichte Erlernbarkeit eines Programms, wurde also
erreicht.

Doch die Anwender sind unverschdmte Leute. Kaum, daf3 sie mit dem
Programm umgehen k&nnen und seine Funktionen beherrschen, verlangen
sie auch schon, da3 diese Funktionen méoglichst schnell ausgefihrt
werden. Ein Testbericht der Art, daf3 lhr Super-Wordprozessor zum
Ersetzen aller »e« durch »xyz« vier Sekunden braucht und die Konkur-
renz nur derer zwei, kann schon das grofle Aus sein. Schauen Sie sich
um (und auf sich selbst), und Sie werden merken, daf3 die schnellsten Pro-
gramme einer Klasse immer auch die beliebtesten sind. Héufig werden
sogar zugunsten der hohen Arbeitsgeschwindigkeit Méngel im GUI in
Kauf genommen.

Woraus folgt: Die leichte Erlernbarkeit ist zwar ein edles Ziel, sie darf
aber nicht dazu fishren, daB3 das Programm fir den fortgeschrittenen
Anwender zu langsam wird. Langsam ist ein Programm in diesem Sinne
auch dann, wenn keine Abkiirzungen vorhanden sind. Sie miissen sich
das vor Augen fihren.

KNOW-HOW

Anstatt

® Driicken der rechten Maustaste

* + Anfahren des Menis

* + Wahl von »Sichern«

* 4+ Warten auf File-Dialog

® + Scrollen durch die Listbox

e+ Wahl des File-Namens aus der Listbox
e +Klick auf OK

tippt der »advanced user« doch lieber (ctri)+(s) <name> (Return).

Kleine Anmerkung dazu: Auch wenn wissenschaftlich erwiesen ist daf3
der kurze Wechsel von der Tastatur zur Maus und zuriick schneller ist als
so manches Tastenkiirzel, hilft lhnen das gar nichts. Wenn der User den
subjektiven Eindruck hat, auf die falsche Art schneller zu sein, dann
geben Sie ihm seine Tasten fir alle Lebenslagen.

Um wieder auf das FGO zu kommen: Kimmern Sie sich zuerst um das F,
also um alle nétigen und — noch besser — um méglichst viele Funkfionen.
Mit der Funktionsvielfalt steigt ndmlich die Zahl der potentiellen User
(Kéufer). Dann sehen Sie zu, daf3 diese Funktionen mit der héchstmog-
lichen Geschwindigkeit ausgefiihrt werden. Erst an dritter Stelle kommt
das O. Das heif}t nun nicht, daf3 Thr GUI den Charme einer Schreib-
maschine haben darf, doch die Oberfléche ist OK, wenn sie dem Intui-
tion-Standard entspricht. Opfern Sie keine Minute fir Gags im GUI, so
lange F und G nicht stimmen. Gerade die kommerziellen Anwender und
die Power-User sehen lber manchen Mangel in der Oberfléiche hinweg,
wenn sie von der Funktionsvielfalt und dem Tempo begeistert sind.

3.5 Kniffe, Tips und Spezialititen

In diesem Abschnitt finden Sie einige Dinge, mit denen Sie das Malpro-
gramm erweitern kdnnen — ein never Mauszeiger und Grafiktexte gehd-
ren dazu —, aber auch einige Tricks fir C im allgemeinen und die Amiga-
C-Compiler im besonderen.

207

KNOW-HOW

208

3.5.1 Workbench-Programme mit Icons

Um unser Malprogramm — und iiberhaupt jedes Intuition-Programm — von
der Workbench aus starten zu konnen, benétigt es nur noch ein Icon.
Damit ein Icon sichtbar wird, muf3 es a) vorhanden sein (logisch) und b) in
einem Directory stehen, das selbst ein lcon hat, sprich, als Schublade
sichtbar ist. Am einfachsten stellen Sie eine solche Schublade her, indem
Sie auf der Workbench die Schublade »Empty« duplizieren. Sie kdnnen
aber auch im CLI einfach tippen

copy empty.info test.info

Kehren Sie nun zur Workbench zuriick, sehen Sie das neue lcon nicht.
SchliefBen Sie dann das Disk-Fenster und &ffnen es wieder. Nun ziehen
Sie die Empty-Schublade etwas weg, und die Test-Schublade wird sicht-
bar.

Jetzt brauchen wir ein Programm-lcon. Dazu nehmen Sie am besten auch
ein vorhandenes Icon, allerdings nicht jedes ist geeignet. Der Amiga
kennt verschiedene Typen von lcons. Welche das sind und was sie fir
eine Bedeutung haben, erfahren Sie automatisch, wenn Sie den Icon-Edi-
tor starten. Fir uns ist es wichtig, zu wissen, daf3 Programme vom Typ
TOOL sein miissen. Geeignet ist zum Beispiel lconED selbst. Nehmen wir
an, Sie haben das Directory (die Schublade) »test« schon erstellt und
unser Programm hiefle »program«. Dann kopieren Sie zuerst das Pro-
gramm mit

copy program :test/program
Nun kopieren Sie ein Icon dazu (IconEd steckt im Tools-Ordner)
copy :tools/iconed.info :test/program.info

Nun sollten Sie auf der Workbench in der Schublade »test« ein Icon fin-
den, das aussieht wie das von lconEd, aber den Titel »program« zeigt.
Das kénnen Sie nun getrost anklicken, »program« wird starten. Wenn Sie
jetzt lhrem lcon ein eigenes Aussehen verpassen wollen, rufen Sie IconEd
auf. Im Disk-Meni wéhlen Sie Load und tfippen dann in den Texi-
Requester

:test/program

sprich, immer den vollen Pfadnamen ein. Das Editieren ist simpel und im
Prinzip selbsterklérend. Probieren Sie einfach die verschiedenen Meni-
Punkte aus. Wichtig zu wissen ist: Um ein lcon zeichnen/éndern zu kén-

KNOW-HOW

nen, missen Sie immer das Meni Color anwéhlen und daraus die pas-
sende Farbe. Radieren kdnnen Sie mit der Hintergrundfarbe. Gezeich-
net/radiert wird mit der Maus. Die linke Taste driickt den Stift auf das
»Papier«. Sie kennen das Prinzip? Richtig, unser Malprogramm arbeitet
genauso.

Sie kénnen aber auch auf den Kopiervorgang ganz verzichten und ein
lcon selbst im Editor erstellen. Sie missen dann nur im Save-Requester
den korrekten Namen eingeben, in unserem Beispiel also wieder
:test/program. Ansonsten keine Sorge. Es kdnnen zwar die unméglichsten
Icons entstehen, aber editiert wird immer nur das Info-File. lhrem Pro-
gramm passiert nichfs.

3.5.2 Chip-Memory per eigenem Mavszeiger

Um einen eigenen Mauszeiger zu erzeugen, braucht man die Funkfion
SetPointer(). Mit ClearPointer() kann man wieder auf den Standardzeiger
(den Pfeil) zuriickschalten. Doch niemand zwingt Sie, in einem Programm
nur einen Pointer (Mauszeiger) einzusetzen. Es kdnnen mehrere sein, und
stﬁindig umschalten dirfen Sie auch. Genau das wollen wir hier auch
iben.

/\ Doch bevor Sie nun loslegen, zuerst eine Warnung. Ein Pointer ist ein
Sprite, und Sprites funktionieren nur im Chip-Memory (in den unteren
512 Kbyte lhres Amiga).

Wenn Sie einen Amiga mit mehr als 512 Kbyte haben, missen Sie etwas
tun. Am einfachsten ist es, vor diesem Programm die Utility »NoFastMem«
(im System-Ordner) aufzurufen. Sie kénnen aber auch einen Compiler-
Switch setzen, der die Daten in das Chip-Memory zwingt. Das hat zwar
den Nachteil, daf3 dann alle Daten in das an sich immer knappe Chip-
Memory gelangen, doch damit wollen wir beginnen. Sollte lhnen diese
Lésung nicht zusagen, dann warten Sie bis zum néchsten Abschnitt.

Listing 3.5.1 hat diese Aufgabe: Wenn der Mauszeiger in der Arbeits-
flache des Fensters ist, soll er ein X sein, kommt er hingegen in die Titel-
leiste, soll er die Pfeilform annehmen.

I Beachten Sie unbedingt die Compiler/Linker-Kommandos zu Beginn des
Listings. Genau damit missen Sie nachher das Programm kompilieren bzw.
linken.

209

KNOW-HOW

/*
* mp.c Mouse-Pointer setzen
* .

* Compiler/Linker-Kommandos:
3 g g g
*

* Aztec cc mp

O In +cd mp -lc

*

* Lattice: lc -L -ad mp

b P —

*/

#include <exec/types.h>
#include <intuition/intuition.h>
#include <graphics/gfx.h>

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;

struct Window *Window;

struct IntuiMessage *msg;

ULONG class;

SHORT my;

#include "stdwindow.h"

USHORT Maus|[] =

{
0x0000, 0x0000,

0x0830, 0x0C10,
0x0460, 0x0620,
0x02c0, 0x0340,
0x0180, 0x0180,

0x0380, 0x01cCO,
0x0640, 0x0260,
0x0C20, 0x0430,
0x1810, 0x0818,

210

KNow-HOW

0x0000, 0x0000
b

void main ()

{

open_libs();

Window = (struct Window *) open window (
20,20,600,170,
"Data im Chip-Memory per Compiler-Option",
WINDOWCLOSE | REPORTMOUSE | ACTIVATE,
CLOSEWINDOW | MOUSEMOVE, NULL);

if (Window == NULL) exit (FALSE);

SetPointer (Window, &Maus, 8, 8, -4, -4);

do{
Wait (1L << Window->UserPort->mp SigBit);
while(msg = (struct IntuiMessage *)
GetMsg (Window->UserPort))

class = msg->Class;
my = msg->MouseY;
ReplyMsg(msg);
}
if (my < 11)
ClearPointer (Window) ;
else
SetPointer (Window, &Maus, 8, 8, -4, -4);
}while(class != CLOSEWINDOW) ;

close _all();

Listing 3.5.1 Ein Window mit eigenem Mauszeiger

Ein Pointer kann bis zu 16 Pixel breit und beliebig hoch sein. Sein Image
wird zeilenweise in einem Array, hier Maus[], abgelegt, wobei dann
jedes gesetzte Bit in diesen Worten einem gesetzten Punkt in der Bit-Plane
entspricht. Arbeitet man wie hier mit zwei Bit-Planes (vier Farben), so
missen die Zeilen in der Folge

211

KN

OW-HOW

212

Zeile 1 flur Plane 1
Zeile 1 fiir Plane 2
Zeile 2 fiir Plane 1
Zeile 2 flir Plane 2
usw.

abgelegt sein. Uber diese sinnige Folge habe ich mich iibrigens auch
schon beim Atari ST gewundert. Nun denn, spielen wir mit. Ansonsten
gibt es ja auch Sprite-Editoren, die solche Arrays kreieren. Ist das eigent-
liche Muster fertig, missen Sie es noch mit je zwei Null-Wértern am
Anfang und Ende einrahmen. Mein Sprite ist ein schlichtes X mit Einsen in
beiden Planes, das ergibt die Farbe 3 (bindr 11). Nun kénnten Sie auch
schon SetPointer() aufrufen. In der Zeile

SetPointer (Window, &Maus, 8, 8, -4, -4);

ist Window unser Window-Zeiger, &Maus zeigt auf die Sprite-Daten und
nun kommt's: Die beiden Achten beschreiben die Breite und Hohe des
Pointers, das ist ja noch einsichtig, aber die beiden Vieren sind das X-
bzw. Y-Offset vom »hot spot«. Dieser heif3e Punkt ist der Punkt, der iiber
einem Ziel sein muf3, wenn Sie die Maustaste driicken. »0,0« heif3t linke
obere Ecke des Pointer-Rechtecks, »-4,~4« hingegen vier nach rechts, vier
nach unten, hier also genau die Mitte. Warum das negative Vorzeichen
sein muf3, weif3 ich nicht, aber es muf3 sein.

Der neue Pointer wird wirksam, sobald er im Window ist, und das
Window aktiv ist. Klicken Sie einfach lhr Window an, das X mifite
erscheinen. Sobald Sie auflerhalb des Windows klicken, entsteht wieder
der alte Pointer. Nun gehdrt aber die Titelleiste noch zum Window, und
ich wollte, daf3 sich schon hier die Zeigerform déndert. Genau das machen
die Zeilen

if (my < 11)
ClearPointer (Window) ;
else
SetPointer (Window, &Maus, 8, 8, -4, -4);

my ist die Mausposition, unter y=11 beginnt die Titelleiste. Ich habe das
hier in eine vereinfachte Form der Event-Schleife gepackt. Wenn Sie das
Ganze in das Malprogramm einbauen wollen, sollten Sie diese Zeilen
dem Case MOUSEMOVE zuordnen.

KNow-HOWwW

3.5.3 Daten ins Chip-Memory legen mit AllocRemember()

Die bisherigen Lésungen zum Thema Chip-Memory haben Sie nicht Gber-
zeugt? Sie haben recht, mich auch nicht so ganz. Wenn ich schon viel
Geld fir die Speichererweiterung bezahlt habe, will ich sie nicht mit
»NoFastMem« wieder abschalten. Und ein ganzes Programm will ich
auch nicht in die unteren 512 Kbyte legen, denn erstens ist da nicht viel
Platz, und zweitens sind die Programme da unten langsamer. Das mit
dem Compiler-Switch geht zwar schon, doch wenn man viele Daten im
Programm hat, ist das auch nicht so gut. Doch die Lésung ist ganz ein-
fach. Man darf halt nur die Daten in das Chip-Memory legen, die da
unbedingt sein miissen, zum Beispiel die Pointer-Strukturen. Wie man das
macht, zeigt Listing 3.5.2.

/* cmem.c
Mauszeiger-Array im Chip-Memory

#include <exec/types.h>
#include <intuition/intuition.h>
#include <graphics/gfx.h>

#define MEMF CHIP 2

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;
struct Window *Window;

#include "stdwindow.h"

USHORT Maus|[] =

{
0x0000, 0x0000, 0x0830, 0x0C10, 0x0460, 0x0620,
0x02Cc0, 0x0340, 0x0180, 0x0180, 0x0380, 0x01cCO,
0x0640, 0x0260, 0x0C20, 0x0430, 0x1810, 0x0818,
0x0000, 0x0000

}i

Listing 3.5.2: (Fortsetzung néichste Seite)

213

OW-HOWw

214

void main ()

{
struct Remember *RememberKey;
UBYTE i;

struct
{
USHORT m[20];
} *MP, *AllocRemember();

open_libs();

Window = (struct Window *) open window (
20,20,400,170,
"Data im Chip-Memory per Programm",
WINDOWCLOSE | ACTIVATE, CLOSEWINDOW,
NULL);

if (Window == NULL) exit (FALSE);

RememberKey = NULL;
MP = AllocRemember (&RememberKey, sizeof (Maus),
MEMF CHIP);
for (i=0; 1i<20; i++)
MP->m([i] = Maus([i];
SetPointer (Window, &MP->m([0], 8, 8, -4, -4);
Wait (1L << Window->UserPort->mp SigBit);
FreeRemember (&RememberKey, TRUE) ;
close all();

Listing 3.5.2: So bringt man Daten in das Chip-Memory

Das Programm generiert denselben Mauszeiger, wie das vorherige, nur
wird dessen Datenstruktur in das Chip-Memory gezwungen. Kern der
Ubung ist diese Zeile:

MP = AllocRemember (&RememberKey, sizeof (Maus),
MEMF CHIP);

Es handelt sich dabei um eine erweiterte malloc()-Funktion. Der
RememberKey zeigt auf die Remember-Struktur, in der Intuition die Spei-
cherreservierungen verwaltet. Vor dem ersten Aufruf muf3 dieser Zeiger

KNOW-HOW

mit NULL geladen werden. Das zweite Argument ist die gewiinschte
Gréf3e (wie bei malloc()), das dritte aber ist das, was wir wollen, némlich
eine Vorgabe fir den Zielbereich. Wenn Sie hier MEMF_CHIP eintragen,
wird der Speicher im Chip-Memory allokiert. Die Konstante habe ich hier
mit #define definiert, weil es mir widerstrebte, nur wegen einer Konstan-
ten einen ganzen Include-File (hier memory.h) zu laden.

Normalerweise beschafft man sich Speicher fir ganze Strukturen, wes-
halb ich in diesem Beispiel auch eine struct angelegt habe, nur um einmal
das »Wie« aufzuzeigen. Da steht zwar jetzt nur der Platz fir den Array
m[20] drin, aber Sie kénnen ja auch noch die ibrigen Sprite-Daten dazu
packen, so wie es sich eigentlich auch gehort.

MP (wie Mouse Pointer) ist nun der Zeiger auf diese Struktur im Chip-
Memory. Der Einfachheit halber erspare ich mir nun die 20 Zuweisungen,
sondern kopiere einfach die Daten aus der schon vorhandenen Struktur
mittels der for-Schleife.

Zum SchluB muB man den Speicher wieder freigeben, und das geschieht
mit
FreeRemember (&RememberKey, TRUE) ;

Das Argument TRUE besagt, daf3 sowohl die Listen-Knoten frei gegeben
werden sollen, die auf die einzelnen Speicherblécke zeigen (voraus-
gesetzt, AllocRemember wurde mehrfach aufgerufen), als auch die Spei-
cherbldcke selbst. Setzen Sie dieses Argument auf FALSE, wird nur die
Liste geldscht, eine gewagte Aktion, wie ich meine, also bleiben Sie »true«.

3.5.4 Zeichensitze, Grofien und Stilarten

Wir hatten zwar IntuiText schon oft genutzt, aber diesmal geht es zur
Sache. Deshalb schauen wir uns dieses struct jetzt genaver an.

struct IntuiText

{

UBYTE FrontPen, BackPen;

UBYTE DrawMode;

SHORT LeftEdge, TopEdge;

struct TextAttr *ITextFont;

UBYTE *IText; struct IntuiText *NextText;
}

215

KN

OW-HOW

Habe ich eine Variable dieses Typs, zum Beispiel mit dem Namen My-
Text, kann ich Text ausgeben mit

PrintIText (rp, &MyText, X,Vy);

rp ist dabei wieder der RastPort. Etwas verwirrend sind x und y, denn mit
LeftEdge/TopEdge in der Struktur wurde die linke obere Ecke des Text-
beginns auch schon festgelegt. Die Lsung: x wird auf LeftEdge und y auf
TopEdge addiert, weshalb man diese beiden Werte in der Struktur
meistens auf O setzt. Interessanter ist deshalb der Rest der Struktur. Front-
Pen gibt die Farbnummer des Vordergrundes an, BackPen die fir den

» Hintergrund. Ob BackPen wirksam wird, héngt von DrawMode ab. Ist

216

dieser JAM1, Uberschreibt der Text den Hintergrund nur im Bereich der
Zeichen. Ist DrawMode hingegen JAM2, wird der Hintergrund im Bereich
der Zeichenmatrix mit BackPen beschrieben. Ich kann damit zum Beispiel
auf dem blauen Hintergrund des Schirms einen orangen Streifen erzeu-

en, in dem mit schwarzer Schrift ein Text steht. Beide Modi kénnen noch
mit COMPLEMENT oder INVERSVID »verodert« werden. COMPLEMENT
komplementiert die vom Text »getroffenen« Bits (aus O wird 1, aus 1 wird
0). Im Ergebnis ist das eine andere Farbe. INVERSVID (invers Video) muf3
zusammen mit JAM1 oder JAM2 gebraucht werden.

JAM1 | INVERSVID Ergibt transparente Zeichen, umrahmt von der
Hintergrun(ﬁorbe.

JAM2 | INVERSVID L&t die Zeichen in der Hintergrundfarbe
erscheinen.

Ganz wichtig ist nun [TextFont. Das ist ein Zeiger auf einen Font (Zeichen-
satz). Ist dieser Zeiger NULL, wird der (langweilige) Standardzeichensatz
genutzt. ITextFont kann aber auch einen Font zeigen, der von der Diskette
geladen wurde. Listing 3.5.3 zeigt, wie man zu solchen Fonts kommt.

/* fonts.c */

#include <exec/types.h>

#include <intuition/intuition.h>
#include <graphics/gfx.h>
#include <graphics/text.h>

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;
ULONG DiskfontBase;

Listing 3.5.2: (Fortsetzung folgende Seiten)

KNow-HOWwW

struct Window *Window;

struct RastPort *rp;

struct TextFont *font rom, *font([2];
struct TextAttr ta rom, tal2];
struct IntuiText intuitext;

#include "stdwindow.h"

/* Funktion zum Offnen eines Disk-Fonts
____________________________________ * /
open_ font (struct TextAttr *ta, char name¥*,
SHORT size, SHORT style, SHORT flags,
struct TextFont *font)

ta->ta Name = (UBYTE *) name;
ta->ta YSize = size;
ta->ta Style style;
ta->ta Flags = flags;
if (! (font = (struct TextFont ¥*)
OpenDiskFont (ta)))

exit (FALSE) ;

}

make ftext (struct IntuiText *name, char *text,
struct TextAttr *ta)
{
name->FrontPen = 1;
name->BackPen = 0;

name->DrawMode = JAM1;
name->LeftEdge = 0;
name->TopEdge = O0;

name->ITextFont = ta;
name->IText = (UBYTE *) text;
name->NextText = NULL;

}

void main ()
{
if(! (DiskfontBase = OpenLibrary

Listing 3.5.2: (Fortsetzung folgende Seiten)

217

KNOW-HOW

("diskfont.library",0)))
exit (1) ;

open_ libs();

Window = (struct Window *)
open_window (0, 0,640,256, "Titel",
WINDOWCLOSE | WINDOWSIZING | ACTIVATE,
CLOSEWINDOW | VANILLAKEY,

NULL
);

if (Window == NULL) exit(1);

rp = Window->RPort;

SetAPen (rp, 1L);

/* Zuerst eine Ubung mit dem ROM-Font
__________________________________ */

ta rom.ta Name = (UBYTE *) "topaz.font";

ta rom.ta YSize = TOPAZ SIXTY;

ta rom.ta Style 0;

ta rom.ta Flags = FPF_ROMFONT;

if (font rom = (struct TextFont ¥*)

OpenFont (&ta_ rom))

1

{
SetFont (rp, font rom);
Move (rp, 50, 50);
Text (rp, "Das ist Topaz 60", 16);
ta_rom.ta_YSize = TOPAZ EIGHTY;
Text (rp," und das ist Topaz 80",21);
CloseFont (font rom) ;

}

/* Nun das Offnen und Nutzen von Disk-Fonts

__ */
open_font (&taf[0], "sapphire.font", 19, 0, O,
font [0]1);
make ftext (&intuitext, "Das ist Saphire",

&tal0]);
PrintIText (rp, &intuitext, 50,70);

Listing 3.5.2: (Fortsetzung folgende Seiten)

218

KNow-HOW

open_font(&tafl], "emerald.font", 20, 0, O,
font[1]);
make ftext (&intuitext, "Das ist Emerald", &tall]);
PrintIText (rp, &intuitext, 50,90);

/* Ist der Font offen, kann man z.B. die Stilart

andern.
*/
taf[l].ta Style = 1; /* unterstrichen */
intuitext.IText = (UBYTE *) "Unterstrichen";

PrintIText (rp, &intuitext, 250,90);

/* Ist der Font-Zeiger NULL, wird der ROM-Font
eingesetzt
*/
make ftext (&intuitext, "Das ist wieder der ROM-
Font", NULL);
PrintIText (rp, &intuitext, 50,120);

Wait (1L << Window->UserPort->mp SigBit);

CloseFont (font[0]); /* Fonts schlieRen! */
CloseFont (font[1]);

CloseLibrary (DiskfontBase); /* Library auch */
close _all();

Listing 3.5.3: So 6ffnet man Fonts

Kern der Ubung ist eine Struktur namens TextAttr (Text-Atiribute). Wie das
Listing zeigt, muf3 man mindestens zwei Werte in diese Struktur eintragen,
némlich den Font-Namen und seine Gréf3e YSize (Hohe). In der Wahl der
Hohe sind Sie nicht frei, sondern an den Bestand gebunden. Schauen Sie
sich einmal das Font-Directory auf lhrer Workbench-Disk an, die Auswahl
ist grof3. Zum Beispiel finden Sie unter fonts/times die Fonts mit den Namen
11,13, 15, 18 und 24. Die Namen sind auch die Gréf3en. Flags kénnen
Sie aufBer acht lassen, Style hingegen erlaubt lhnen folgende Stilarten:

normal

0

1 unterstrichen
2 fett

4 italic (kursiv)
8 Breitschrift

219

KNOW-HOW

220

Sie sehen, es handelt sich wieder um Bits, Sie kénnen also diese Zahlen
verodern oder addieren, um die Stilarten zu kombinieren. Das System
macht aber nicht bei jedem Font alles mit, und manche wilde Kombina-
tion ist auch hilbsch héf3lich. Probieren Sie es aus.

AuBBerdem gibt es zwei ROM-Fonts, beide haben den Namen Topaz. Der
Unterschied liegt in der Hohe. Die vordefinierfen Konstanten
TOPAZ_SIXTY und TOPAZ_EIGTHY bedeuten nicht 60 und 80 hoch, son-
dern bezeichnen die Fonts, die bei 60 bzw. 80 Zeichen pro Zeile ein-
gesetzt werden. Den Unterschied sehen Sie kaum, dem hinter den beiden
Konstanten stecken die Héhen 8 bzw. 9. Auf jeden Fall kénnen Sie auch
einen im ROM befindlichen Font mit OpenFont{) &ffnen, wie hier gezeigt,
und erhalten dann einen Zeiger auf eine Struktur vom Typ TextFont. An
sich brauchen Sie fir alles Weitere nur den Zeiger. Wenn Sie an der
Struktur selbst drehen wollen (vorsichtig!), schauen Sie sie sich einmal an
(steht in graphics/text.h).

Um an die interessanteren Diskfonts heranzukommen, muf3 man nur den
richtigen Namen in die TextAtir-Struktur einsetzen und dann anstatt
OpenFont{) OpenDiskfont() nehmen. Natiirlich muf3 der Font auf der Dis-
kette sein. Fiir den Fall, daf3 dem nicht so ist: ohne jede Meldung einfach
mit exit() auszusteigen, ist nicht die feine Art. Hier sollten Sie noch einen
Auto-Requester einbauen (siehe Sitzung 8).

Texteingabe fiir das Malprogramm

Um im Malprogramm auch Texte einzugeben, gehen Sie wie folgt vor:
Zuerst dffnen Sie alle Fonts, die Sie einsetzen mdchten. Ich habe deshalb
schon mit ta[2] und *font[2] Arrays vorgesehen, wo Sie nur noch die
Zahlen anpassen miissen. Dann bieten Sie in einem Meni die Fonts an
und bekommen von dort die ltem-Nummer i von O bis zum Beispiel 3
geliefert. Jetzt missen Sie nur noch in einer Zeile wie

make ftext (&intuitext, "Das ist Emerald", &tafll]);

anstatt &ta[1] &tafi] schreiben. Auflerdem werden Sie fir "Das ist
Emerald" eine Stringvariable einsetzen, die muf3 nur ein Zeichen auf-
nehmen kdnnen. Warum das so ist, zeigt Listing 3.5.4.

KNOW-HOW

strvoid do_text (int dx)
{

char s[] =" ";

SHORT x,y;

Titel ("Klicke auf Textstart und tippe bis
Return") ;
do{
GetEvents () ;
}while (code != SELECTDOWN) ;
X = mxX; y = my;
Move (rp, %X, VY);

do{
GetEvents();
if (class == VANILLAKEY && code != 13)
{
s[0] = code;
Text (rp, s, 1);
x += dx; /* Zeichenabstand */
Move (rp, x%,VY):
}
}while (code != 13);

Titel ("Standard-Modus") ;

Listing 3.5.4: Texteingabe im Malprogramm

Sie bieten einen Meniipunkt »Texteingabe« an, und wie bei do_rechteck()
wird jetzt do_text{) aktiv. Sie klicken auch zuerst auf den Startpunkt, nur
danach éndert sich etwas. Die do-Schleife endet mit while(code = 13);,
d.h., die Schleife léuft so lange, wie nicht die (Return]-Taste (Code 13)
gedriickt wird. Innerhalb dieser Schleife wird mit »if (class ==
VANILLAKEY ;&& code != 13)« sichergestellt, daf3 die folgenden Aktio-
nen nur bei einem Tastatur-Event (VANILLAKEY) ausgefihrt werden, aber
nicht mehr beim Code 13. Was nun kommt, hat folgenden Sinn: Die
Funktion Text{) braucht als Argument einen String, wir haben aber nur ein
Zeichen. Folglich wird im String s das erste und einzige Zeichen (s[0])

221

KNOW-HOW

222

durch den Code ersetzt. Die Funktion Text() wurde hier nur der Einfach-
heit halber eingesetzt. Sie misssen dafiir praktisch

make ftext (&intuitext, s, &tali]);
PrintIText (rp, &intuitext, x,y);

schreiben. Sie kénnen auch das make_text() aus menu.h verwenden, mijs-
sen dann aber fir left und fop noch zwei Nullen iibergeben. Bliebe noch
zu erwéhnen, daf3 Sie die Funktion mit zum Beispiel do_text{10) aufrufen
missen. Das ist ndmlich der Parameter dx fir den Zeichenabstand, der
vom Font und der Grofle abhangig ist. Wenn Sie auch noch die Schrift-
groflen und die Stilarten variieren wollen — noch ein paar Menis - kein
Problem. Ubergeben Sie do_text{) auch noch diese Argumente und setzen
dann tafil.ta_YSize und tafi].ta_Style auf die passenden Werte.

3.5.5 So schreibt man kompakte Programme

Es gibt viele Tricks, kompakte Programme zu schreiben, womit ich aller-
dings die Code-Gréfe meine und nicht Bandwurmzeilen im Quelltext.
Letztere wirken sich Gbrigens oft nachteilig auf die Code-Grofle aus. Ich
will hier auch nicht Bytes zdhlen, nach dem Motto, daf3 i+=3 kiirzeren
Code ergibt als i=i+3, denn solche Dinge werden zunehmend auch schon
von den Compilern erkannt. Binsenweisheiten wie puts() ist kiirzer als
printf{) mdchte ich auch nicht wiederholen, also was bleibt noch?

_main() anstatt main() bei Lattice

In reinen Amiga-Programmen (unter Intuition) sollten Sie — nur in Lattice C
~ _main() anstatt main() einsetzen. Der Linker wird dann einen kiirzeren
Startup-Code einbinden, der nicht mehr die Standard-1/O-Kanéle &ffnet.
Damit sind zwar Funktionen wie printf{) nicht mehr verwendbar, aber die
brauchen Sie ja nicht unter Intuition.

Amiga.lib zverst

Wenn Sie printf{) und Konsorten einsetzen und damit nur ganze Zahlen,
Zeichen und Strings ausgeben wollen, brauchen Sie die Standard-Library
lhres Compilers nicht, denn diese Funktionen stehen schon im ROM des
Amiga. Dazu linken Sie »amiga.lib« vor Ihre C-Lib (siehe 3.2, 3.3), und
schon wird der ganze printf{)-Code nicht mehr in lhr Programm ein-
gebunden.

KNOW-HOW

Das ROM und die »Protos« nutzen

Wieso soll man eigentlich die aufwendigen Libraries der Unix-Welt ein-
binden, wo doch der Amiga analoge Funktionen schon im ROM hat? Ein

rintf{"Hello World"), in einem File namens hallo.c einfach so mit »lc —L
Ea"o« kompiliert und gelinkt, erzeugt einen Programm-Code von 6372
Byte (Lattice C, Version 5.0). Das gleiche Ergebnis erreiche ich jedoch
auch mit 196 Byte, wohl gesagt, immer noch in C. Nur in Assembler geht
das noch kiirzer (144 Byte). Listing 3.5.5 zeigt die Lésung.

#include "libraries/dos.h"
#include "proto/exec.h"
#include "proto/dos.h"

#define ABSEXECBASE ((struct ExecBase **)4L)
struct DosLibrary *DOSBase;

void hallo ()
{
if (! (DOSBase = (struct DosLibrary *)
OpenLibrary ("dos.library",0)))
return;

Write (Output (), "Hello World\n",12);
CloseLibrary ((struct Library *)DOSBase);
}

Listing 3.5.5: Der Kiirze-Rekord: nur 196 Byte Code.

Typisch fur Lattice sind die Includes aus dem Proto-Directory. Damit wird
ein Dilemma von C ausgeschaltet, némlich: C bringt alle Parameter einer
Funktion auf den Stack, die Systemroutinen erwarten sie jedoch in
Registern. Folglich muf3 der Compiler (Linker) Code einbauen, der die
Parameter vom Stack holt und in Register umlédt. Genau das wird ver-
mieden, wenn man die Profo-Include-Files anzieht. Der Aufruf der System-
routinen sieht dann allerdings auch nicht mehr sehr nach C aus, sondern
eher wie Assembler-Makros. Wenn Sie den Text als hallo.c speichern,
koénnen Sie das Programm kompilieren und linken mit

lc -v -y hallo.c
blink hallo.o

223

KNow-HOW

224

MafB3gebend ist dabei, da3 die Ausgabe iber die Write()-Funktion des
Amiga-DOS léuft. Weshalb soll ich da also mit »Amiga.Lib« linken2
Nach dem Kompilieren mit der v-Option des Lattice C (kein Code zum
Stack-Checking), die hier obligatorisch ist, reicht deshalb auch ein
schlichtes blink hallo.o. Der Linker fiigt jetzt nur den Header (16 Byte)
hinzu, damit der Amiga »hallo« als ausfihrbares Programm anerkennt.

3.5.6 Compiler/Linker-Avfruf im Quelltext

Den folgenden Trick habe ich zuerst auf einer Public-Domain-Disk gese-
hen und bestaunt. Nach dem dritten Hingucken hatte ich es dann kapiert.
Der Trick stammt von John Meissen. Schreiben Sie ein Programm — dies-
mal fir Aztec C — doch einmal so:

echo; /*
cc test.c
1n test -1lc
quit
x/
main ()
{
printf ("echo hat den Wert %d\n", echo);
}

Wenn Sie Ic L fest.c einsetzen, geht das in Lattice C. Das Programm wird
jetzt kompiliert und gelinkt (Name fest.c), indem man aufruft

execute test.c

Des Réitsels Lésung: Das Execute des CLI gibt nach »echo« eine Leerzeile
aus, den Rest der Zeile ignoriert es wegen des Semikolons, weil das im
CLl einen Kommentar einleitet. Danach fihrt execute die Compile- und
Link-Anweisungen aus, mehr nicht, denn jetzt folgt quit. Der C-Compiler
sieht echo; und — das ist der Trick — legt deshalb die int-Variable echo an.
Hier gilt némlich die Regel, daf3 in C alles vom Typ int ist, sofern nicht
anderes gesagt wird. Fiir den Compiler sind alle Zeilen nach echo; wegen
des »/*...*/« aber Kommentare. Sie kdnnen echo durchaus auch als C-
Variable benutzen. Nur um zu zeigen, daf3 es geht, habe ich ihr den
Wert 4711 zugewiesen.

KNOW-HOW

3.5.7 Trickreiche Makros

Wir haben ja schon &fter Makros kennengelernt, aber die waren dlle
relativ klein. Doch eine GroBBenbegrenzung gibt es nicht. Sie kénnen mit
dem Zeilenfortsetzungszeichen (\) immer weiter schreiben. Sie sollten
dann nur den ganzen Ausdruck in Klammern setzen. Sie kdnnen zum Bei-
spiel durchaus dieses Makro schreiben

#define OPENWINDOW (t) (Window = (struct Window *)
\
open window (0,0,640,256, (£t), \
WINDOWCLOSE | WINDOWSIZING | ACTIVATE,

CLOSEWINDOW | VANILLAKEY, \
NULL))

Dann kénnen Sie es aufrufen mit zum Beispiel
OPENWINDOW ("Fenstertitel");

Das spart natiirlich noch nichts. Doch wenn Sie dieses Makro und andere
in ein Header-File packen, brauchen Sie dieses nur noch zu »includen,
und schon stehen alle Makros zur Verfigung. Durchforsten Sie einmal
lhre Programme auf immer wiederkehrende »Bandwiirmer«, und Sie
werden viele Ansdtze fir lhr Makro-H-File finden. Mehr zum Thema
finden Sie im Kapitel 4.4.1 im Zusammenhang mit dem Makro zufalls-

zahl.

3.6 Zusatz-Hardware und andere Empfehlungen

Es gibt einige Mdglichkeiten, sich das Programmierer-Leben etwas leichter
zu machen, wenn man in Hardware investiert. Zur Auswahl haben Sie
allerdings nur drei Dinge, némlich eine Festplatte, viel RAM oder einen
schnelleren Rechner. Lassen wir den Amiga 3000 einmal auflen vor, so
bleibt die Frage »Platte oder RAM2«.

225

KNOW-HOW

226

Eine Festplatte macht Tempo

Zuerst etwas zur Zeitfrage: Fir das komplette Malprogramm benétige ich
mit einem Festplattensystem im »langsamen« Filessystem unter Aztec C 44
Sekunden zum Kompilieren und Linken, unter Lattice C 63 Sekunden. Der
Unterschied zwischen den beiden Compilern ist also nicht sehr grof3, er ist
aber doch ziemlich riesig im Vergleich zu einem Disketten-System. Daraus
sollten Sie folgern, daf3 eine Festplatte immer lohnt.

RAM ist noch schneller, oder?

Man kann die o.g. Zeiten etwa auf ein Zehntel bringen, wenn man das
ganze System im RAM halt. Dazu gehéren nicht nur der Compiler und
der Linker, sondern auch alle H-Files und die Libraries sowie diverse CLI-
Kommandos. So ab 2 Mbyte kann man schon allerhand machen, 4
Mbyte sind besser. Haben Sie jedoch keine Festplatte, dauert es nahezu
ewig, bis das alles von den Disketten in das RAM geladen ist. Nun sagen
Sie nicht, das ist eine Einmal-Zeit. Bei so manchem Absturz — und dafir
gibt es laut Kapitel 3.1 sehr viele Griinde — ist némlich die Prozedur
wieder fdllig. Deshalb ist man auch gezwungen, immer den letzten Stand
der Quell-Files erst auf die Disk zu sichern, bevor man das Programm
testtfef" Das ist natirlich ein extra Schritt, der bei der Festplattenldsung
entralit.

Daraus folgt: Entscheiden Sie sich zuerst fir eine Festplatte. Nur Disketten
und viel RAM sind nicht zu empfehlen, viel RAM plus eine Festplatte ist
die Idealldsung.

Vorkompilierte Header-Files einsetzen

Auch die Header(Include)-Files miissen natiirlich vom Compiler ibersetzt
werden, und das bei jedem Lauf neu. Man kann einiges sparen, wenn
man diese Files einmal @bersetzt und donn dem Compiler sagt, daf er
bitte diese Ubersetzung benutzen soll. Hier das Kochrezepte:

Schreiben Sie einen Quelltext, in dem alle Includes stehen, die Sie brau-
chen, zum Beispiel diese:

#include <exec/types.h>

#include <intuition/intuition.h>
#include <graphics/gfx.h>
#include <graphics/text.h>

KNOW-HOW

Speichern Sie die Datei unter dem Namen x.c und verfahren jetzt je nach
Compiler weiter.

Fiir Aztec C:

Erzeugen Sie das sogenannte Dump-File mit

cc -ho x.dmp x.c

Ist das erledigt, konnen Sie lhre Programme — zum Beispiel prog.c so
Ubersetzen.

cc -hi x.dmp prog.c

Fiir Lattice C:
Erzeugen Sie das sogenannte Dump-File mit
lc -ph -ox.dmp x

Ist das erledigt, kdnnen Sie lhre Programme — zum Beispiel prog.c so
Ubersetzen.

lc -L -Hx.dmp prog

Fiir Aztec und Lattice:

Fir beide Compiler gilt: Die Quelltexte bleiben véllig unveréindert. Auch
die Includes miissen in den Quelltexten bleiben. Sie kdnnen deshalb auch
wahlweise mit und ohne dieses dmp-File kompilieren.

I Die dmp-Files miissen mit demselben Speichermodell kompiliert werden wie
das Hauptprogramm. Optionen wie -mc (Aztec) oder -b0 (Lattice) sind also
in beiden Féllen anzuwenden.

227

KNow-HOW

228

Referenz

In diesem Kapitel finden Sie die Referenzen zu den Themenkreisen des
Buchs, aber auch einiges dariber hinaus. Wie zum Beispiel den Abschnitt
»Schnellinformation«, der eine Reihe von Standardlésungen zu héufigen
Programmierproblemen der Praxis beinhaltet.

4.1 Die wichtigsten Standard-C-Funktionen

Im folgenden finden Sie eine kleine Auswahl von ANSI-C-Funktionen.
Dariiber hinaus bieten Aztec und Lattice spezielle Funktionen fir jeweils
nur diesen Compiler und spezielle Amiga-Funktionen, die sich gleichfalls
unterscheiden. Sie sollten auf jeden Fall das »Library-Manual« einmal
Surchgehen, um all die vorhandenen Maglichkeiten lhres Compilers zu
ennen.

abs(i) Absolutwert einer vorzeichenbehafteten int-Zahl.
labs() fir long, fabs() fir doubble.

atof(s) Konvertiert String in double-Zahl

atoils) Konvertiert String in int-Zahl

cos(d) Ergibt Cosinus einer double-Zahl

div{i) int-Ganzzahl-Division

exit() ;/erléiBt das Programm und gibt malloc()-Speicher
rei

getc() Liest ein Zeichen von der Tastatur

gets() Liest eine Zeile in einen String

is...(c) Die folgenden Funktionen aus ctype.h ergeben

TRUE (nicht 0), wenn die Bedingung erfillt ist.

229

FERENZ

230

isalphalc) c ist ein Buchstabe

isupper(c) c ist ein GroBbuchstabe

islower(c) c ist ein Kleinbuchstabe

isdigit(c) c ist eine Ziffer

isalnum(c) c ist alphanumerisch

isspace(c) c ist ein Blank, Tab, CR, LF oder FF
ispunct{c) c ist ein Punktuationszeichen

isprint(c) c ist ein druckbares Zeichen (Code 32 bis 127)
log(d) Natirlicher Logarithmus, sonst log10(d)
pow(x,y) Ergibt x hoch y (in double)

putc(c) Ausgabe eines Zeichens

puts(s) Ausgabe eines Strings

remove("name") LSscht die Datei »namex

sqri(d) Quadratwurzel einer double-Zahl
streat(z,s) Hangt String s an String z an

strncat(z,s,n) Héngt String s an String z an, Lénge aber max. n
strempl(s1,s2) Ver: %eicht beide Strings, O wenn g?eich
strespn(s1,s2) Ergibt Beginn von s1 in s2, wenn enthalten
tan(d) Tangens einer double-Zahl

tolower(c) Konvertiert Buchstaben in Kleinbuchstaben
toupperfc) Konvertiert Buchstaben in Grof3buchstaben

4.2 Die wichtigsten Amiga-Funktionen

Der Amiga bietet in seinen Libraries mehrere hundert Funktionen, von
denen ich hier nur die meiner Meinung nach wichtigsten auffihren kann.
Darijber kann man streiten, nicht jedoch iiber folgenden Tip: Bevor Sie
das berthmte Rad neu erfinden, ingormieren Sie sich. Im Anhang A3 gibt

es einige Literaturempfehlungen.

4.2.1 Die wichtigsten Funktionen von Intvition

AddGadget(Window, Gadget, Position)

Figt ein Gadget in die Gadget-Liste ein.

Window Zeiger auf das Window
Gadget Zeiger auf das neue Gadget
Position Platz in der Liste

REFERENZ

I" Am sichersten ist Position = —1, womit das Gadget an das Ende der Liste
gehdngt wird.

ocRemember(Remerberkey, ize, Fags) |
Reserviert einen Speicherblock durch Aufruf der Exec-Funktion Alloc-

Mem() und legt einen Knoten in der Intuition-Liste zur Verwaltung dieser
Speicherbldcke an.

RememberKey Zeiger auf Knoten (setzen Sie den zuerst auf NULL)
Size GréBe in Bytes
Flags Speichertyp (Fast-Mem, Chip-Mem)

Baut cutomohsch einen Requester auf und wartet auf Antwort.

Window Zeiger auf eine Window-Struktur,

wenn NULL, wird ein Window angelegt.
BodyText Zeiger auf IntuiText-Struktur mit der Frage
PosText Zeiger auf IntuiText-Struktur mit

positiver Antwort (Ja)
NegText Zeiger auf IntuiText-Struktur mit

negativer Antwort (Nein)
PFlag IDCMP-Flags, die anstatt positiver Antwort wirken
NFlag DCMP-Flags, die anstatt negativer Antwort wirken
W Weite des Requesters
H Hshe

Prinzipiell wie AufoRequest{) nur mit einem Unterschied: Fir die Flags
miissen Sie die IDCMP-Flags einsetzen, mit denen das Window, das diese
Funkfion erzeugt, initialisiert wird. Die Funkfion gibt einen Zeiger auf
diese Window-Struktur zuriick. Dann miissen Sie auch mit
Wait()/GetMsg() usw. den IDCMP-Port wie iblich bedienen.

Siehe auch FreeSysRequest{).

231

FERENZ

232

Entfernt einen DM-Requester aus einem Window.
Siehe auch SetDMRequest{).

Loscht den Menu-Strip eines Windows.
Siehe auch CloseWindow() und SetMenuStrip().

Entfernt einen selbstdefinierten Mauszeiger und ersetzt ihn durch den
Standard-Mauszeiger.

Schlief}t ein Window und gibt den Speicher wieder frei. Eventuell noch
unbeantwortete Messages sind verloren. Vergessen Sie nie, einen Menu-
Strip zu l6schen, sonst bleibt der im Screen stehen. Driickt man dann die
Menii-Taste (linke Maustaste), stiirzt das System ab.

Dispi

Erzeugt einen System-Alarm, siehe Sitzung 8.

DisplayBeep (Scr
L&Bt den Screen einmal kurz aufblitzen. Im Falle eines NULL-Arguments
blitzen alle Screens (oder der einzig vorhandene).

Entfernt den Requester aus einem Window.

requester Zeiger auf Requester-Struktur
Window Zeiger auf Window-Struktur

REFERENZ

srKey, ReallyForget

Gibt den mit AllocRemember() reservierten Speicher wieder frei.

RememberKey Zeiger auf RememberKey-Struktur
ReallyForget Nur TRUE sinnvoll

Entfernt den mit BuildSysRequest{) gebauten Requester. Sie dirfen diese
Funktion keinesfalls aufrufen, wenn BuildSysRequest{) keinen Zeiger
(NULL) auf eine Window-Struktur zuriickgegeben hatte.

Preferenz-Struktur oder Teile davon lesen. Wenn Intuition das erstemal
aufgerufen wird, speichert es die Werte auf der Disk als Defaults ab. Die
aktvellen (verénderten) Daten werden woanders abgelegt. Mit dieser
Funktion lesen Sie die Defaults.

Prefbuffer Zeii;er auf einen Puffer, den Sie stellen missen,
und der mindestens Size Bytes grof3 sein muf3.
Size Anzahl Bytes, die eingelesen werden sollen.

Es ist nicht nétig, die ganze Preference-Struktur zu lesen. Die wichtigsten
Daten stehen vorne.

Wie vor, nun aber fur die aktuellen Werte.

Gibt die Lénge eines Textes zuriick (in Pixel), auf den das Texifeld der
IntuiText-Struktur itext zeigt.

Flag
Uberschreibt die IDCMP-Flags des Windows mit den neuen Werten. Hatte
das Window bis dahin keine Flags, werden die IDCMP-Ports neu ange-

legt.

233

FERENZ

234

Beweit das Window um dx,dy Pixel. Die Funktion gibt kein Ergebnis

zuriick und testet nicht auf Fehler. Bei falschen Werten kann das Pro-
gramm abstiirzen.

Das Gadget wird »disabled« und grau gezeichnet (kann nicht bedient
werden.

Gadgef Zeiger auf die Gadget -Struktur
Window Zeiger auf die Window-Struktur
Req Zeiger auf den Requester, falls das Gadget Teil

eines solchen ist, sonst NULL.

_OffMenu(Wi

»Disabled« (kann nlcht bedlent werden, wird grau gezeichnet) ein Mend,
ein ltem oder Sub-item und alles, was diesen folgt.

OnGadget(Gadget, Ptr, Req)

Die Umkehr der Funktion OffGadget(), d.h., das Gadget ist wieder woh|
bar. Parameter sieche OffGadget().

Dle Umkehr der Funkhon OffMenu() Parameter siche OffMenu().

Offnet ein neues Window. NewWindow ist ein Zeiger auf die zuvor
angelegte NewWindow-Struktur.

Druckt einen Text, der mit all seinen Merkmalen in der Struktur vom Typ
IntuiText steht, ab der Position x,y. rp ist ein Zeiger auf den RastPort.

REFERENZ

Zelchnet c1||e Gadgefs cb Gadgef neu. Das ist erforderllch wenn Sie
Gadget-Parameter gedindert haben, AddGadget() oder RemoveGadgef()
aufgerufen wurden oder der Verdacht besteht, daf3 eine Grafik-Routine
die Gadgets ibermalt hat.

Gadget Zeiger auf die Gadgef-Struktur
Window Zeiger auf die Window-Struktur
Req Zeiger auf den Requester, falls das Gadget

Teil eines solchen ist, sonst NULL.

Entfernt ein Gadget aus der Liste.

'ReportMouse(Window, Boolean

Damit wird das stéindige Melden von Maus-Events (das viel Zeit kostef)
an- (Boolean = TRUE) oder ausgeschaltet (Boolean = 0).;

Damit wird ein Requester gezeichnet.

Requester Zeiger auf die Requester-Struktur
Window Zeiger auf die Window-Struktur

Erlaubt, daf3 ein DM-Requester erscheinen kann, req ist ein Zeiger auf
eine Requester-Struktur

‘SetMenuStrip(Window, Menu!

Schaltet das Mend ein, auf dessen Struktur Menu zeigt.

235

REFERENZ

eight, Width, Xoffs

Schaltet einen neuen Mauszeiger ein.
Siehe Kapitel 3.5.

Schreibt die (gednderten) Daten in PrefBuffer zuriick und l&f3t die neuen
Einstellungen wirksam werden.

Prefbuffer Zeiger auf den Puffer mit den Daten
Size Anzahl Bytes, die geschrieben werden sollen.
flag TRUE: Daten gehen auf Disk und in RAM

FALSE: Daten gehen nur in RAM

Andert die GréBe eines Windows um die dx/dy-Betrége. Es findet keine
Kontrolle statt. Falsche Werte kénnen zum Absturz fishren.

Setzt die entsprechenden Parameter, die sonst in der NewWindow-Struk-
tur vorgegeben werden, neu.

Wi

Bringt ein Window in den Hinter- bzw. Vordergrund.

4.2.2 Die wichtigsten Grafik-Funktionen

In den folgenden Grafik-Funktionen ist rp immer der Zeiger auf den Rast-
Port.

Zeichnet eine Linie vom aktuellen Cursor-Punkt zum Punkt x,y.

236

REFERENZ

Zeichnet einen Kreis mit dem Radius radius um den Punkt x,y.

Zeichnet eine Ellipse mit dem horziontalen Radius h_radius und dem ver-
tikalen Radius v_radius um den Punkt x,y.

Fillt einen Bereich ab dem Punkt x,y. Ist modus==1, gilt das so lange, bis
auf die AuBenlinien getroffen wird. Ist modus==0, wird so lange gefiillt,
bis Punkte der mit SetOpen() gesetzten Farbe angetroffen werden.

Setzt den Grafik-Cursor auf den Punkt x,y.

Zeichnet ein gefilltes Rechteck in der aktuellen SetAPen()-Farbe.

Setzt die Zeichenfarbe.
méglich.

" v .
In der Normalauflésung sind die Register O bis 3

Setzt die Hintergrundfarbe fir Funktionen, die sie nutzen. In der
Normalauflésung sind die Register 0 bis 3 méglich.

Setzt das Muster, mit dem Linien gezeichnet werden, Beispiel: SetDrPi{rp,
OxAAAA);.

237

FERENZ

238

Gibt vom Text string anzahl Zeichen aus.

Setzt einen einzelnen Punkt an der Position x,y.

4.2.3 Die wichtigsten DOS-Funktionen

In den folgenden Funktionen ist fh immer das File-Handle, das die
Openl()-Funktion zu einem File liefert. Am einfachsten deklarieren Sie fh
als eine Variable vom Typ ULONG. Auferdem ist name ein Siring oder
eine Stringvariable.

Schlie}t eine zuvor mit Open() gedfinete Datei. Schlieen Sie nie eine
Datei, die Sie nicht selbst gesffnet haben.

Léscht die Datei name. Die Funktion gibt TRUE zuriick, wenn die Aktion
Erfolg hatte, sonst FALSE.

Liefert das Eingabe-File-Handle des CLI-Windows, in dem das Programm

gestartet wurde.

Liefert die Nummer des zuletzt aufgetretenen DOS-Fehlers.

Offnet die Datei name und liefert ein File-Handle (fh) oder O, wenn die
Datei nicht gedffnet werden konnte. Mit dem modus MODE_OLDFILE wird
eine existierende Datei gedffnet, mit MODE_NEWFILE eine neue angelegt.

REFERENZ

Llefert das Ausgabe-File-Handle des CLI Wmdows in dem das Programm
gestartet wurde.

Es werden Soll_Zahl Bytes aus dem Puffer auf die Disk geschrieben, bzw.
in ihn eingelesen. Der Puffer ist eine Variable, die Sie vor dem Schreiben
mit Daten fillen misssen, beim Lesen werden die Daten von der Diskette in
den Puffer kopiert. Nach den Operationen steht in Ist_Zahl, wie viele
Bytes tatséichlich geschrieben bzw. gelesen worden sind. Ist Zahl ist
besonders beim Lesen von Bedeutung. Da es in Amiga-DOS keine EOF-
Funktion (End Of File) gibt, miissen Sie so lange lesen, bis Ist_Zahl null ist.

Rename(alt_name, nev_name)

Die Datei wird umbenannt. Die Funkhon glbt TRUE zuruck wenn dle
Aktion Erfolg hatte, sonst FALSE.

Seek(fh, position, mode)

Stellt den File-Zeiger (die Position, ab der gelesen bzw. geschrieben wird,
auf position. Dabei wird in Abhéngigkeit von mode so gezdhlt:

OFFSET_BEGINNING Ab Beginn
OFFSET_CURRENT Ab aktueller Position
OFFSET_END Ab Datei-Ende riickwdirts gezahlt

Die Funktion gibt die Position des File-Zeigers vor der Aktion zuriick.

239

FERENZ

240

4.3 Die wichtigsten Amiga-Datenstrukturen

Auch hier gibt es nur eine kleine Auswahl und ansonsten den Hinweis auf
die Literaturtips im Anhang A3.

Die Datenstrukturen von Intuition

struct NewScreen

{
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
SHORT Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewModes;
USHORT Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct BitMap *CustomBitMap;

}i

struct Screen

{
struct Screen *NextScreen;
struct Window *FirstWindow;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
SHORT MouseY, MouseX;
USHORT Flags;
UBYTE *Title;
UBYTE *DefaultTitle;
struct TextAttr *Font;
struct ViewPort ViewPort;
struct RastPort RastPort;
struct BitMap BitMap;
struct Layer_ Info LayerInfo;
struct Gadget *FirstGadget;
UBYTE DetailPen, BlockPen;
USHORT SaveColor0;
struct Layer *BarlLayer;
UBYTE *ExtData;
UBYTE *UserData;

}i

REFERENZ

struct NewWindow

{

}i

SHORT LeftEdge, TopEdge;
SHORT Width, Height;

UBYTE DetailPen, BlockPen;
ULONG IDCMPFlags;

ULONG Flags;

struct Gadget *FirstGadget;
struct Image *CheckMark;
UBYTE *Title;

struct Screen *Screen;
struct BitMap *BitMap;
SHORT MinWidth, MinHeight;
USHORT MaxWidth, MaxHeight;
USHORT Type;

struct Window

{

struct Window *NextWindow;
SHORT LeftEdge, TopEdge;

SHORT Width, Height;

SHORT MouseY, MouseX;

SHORT MinWidth, MinHeight;
USHORT MaxWidth, MaxHeight;
ULONG Flags;

struct Menu *MenuStrip;

UBYTE *Title;

struct Requester *FirstRequest;
struct Requester *DMRequest;
SHORT ReqCount;

struct Screen *WScreen;

struct RastPort *RPort;

BYTE BorderLeft, BorderTop;
BYTE BorderRight, BorderBottom;
struct RastPort *BorderRPort;
struct Gadget *FirstGadget;
struct Window *Parent, *Descendant;
USHORT *Pointer;

BYTE PtrHeight;

BYTE PtrWidth;

BYTE XOffset, YOffset;

241

REFERENZ

ULONG IDCMPFlags;
struct MsgPort *UserPort, *WindowPort;
struct IntuiMessage *MessageKey;
UBYTE DetailPen, BlockPen;
struct Image *CheckMark;
UBYTE *ScreenTitle;
SHORT GZZMouseX;
SHORT GZZMouseY;
SHORT GZZzZWidth;
SHORT GZZHeight;
UBYTE *ExtData;
BYTE *UserData;
struct Layer *WLayer;
struct TextFont *IFont;
i

struct Menu
{

struct Menu *NextMenu;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

USHORT Flags;

BYTE *MenuName;

struct Menultem *FirstItem;

SHORT JazzX, JazzY, BeatX, BeatyY;
}i

struct Menultem

{
struct Menultem *NextItem;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;
LONG MutualExclude;
APTR ItemFill;
APTR SelectFill;
BYTE Command;
struct Menultem *SubItem;
USHORT NextSelect;

}i

struct Gadget

242

REFERENZ

}i

struct Gadget *NextGadget;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;

USHORT Activation;

USHORT GadgetType;

APTR GadgetRender;

APTR SelectRender;

struct IntuiText *GadgetText;
LONG MutualExclude;

APTR SpeciallInfo;

USHORT GadgetID;

APTR UserData;

struct Requester

{

}i

SHORT LeftEdge, TopEdge;
SHORT Width, Height;
SHORT Relleft, RelTop;
struct Gadget *RegGadget;
struct Border *ReqgBorder;
struct IntuiText *ReqText;
USHORT Flags;

UBYTE BackFill;

struct Layer *Reqglayer;
UBYTE ReqgPadl[32];

struct BitMap *ImageBMap;
struct Window *RWindow;
UBYTE ReqgPad2[36];

struct BoolInfo

{

}i

USHORT Flags;
UWORD *Mask;
ULONG Reserved;

struct PropInfo

{

243

REFERENZ

USHORT Flags;
USHORT HorizPot;
USHORT VertPot;
USHORT HorizBody;
USHORT VertBody; USHORT CWidth;
USHORT CHeight;
USHORT HPotRes, VPotRes;
USHORT LeftBorder;
USHORT TopBorder;
}i

struct StringInfo
{
UBYTE *Buffer;
UBYTE *UndoBuffer;
SHORT BufferPos;
SHORT MaxChars;
SHORT DispPos;
SHORT UndoPos;
SHORT NumChars;
SHORT DispCount;
SHORT CLeft, CTop:;
struct Layer *LayerPtr;
LONG LongInt;
struct KeyMap *AltKeyMap;
}:

struct IntuiText
{
UBYTE FrontPen, BackPen;
UBYTE DrawMode;
SHORT LeftEdge;
SHORT TopEdge;
struct TextAttr *ITextFont;
UBYTE *IText;
struct IntuiText *NextText;

}z

struct Border

{
SHORT LeftEdge, TopEdge;
UBYTE FrontPen, BackPen;

244

REFERENZ

UBYTE DrawMode;

BYTE Count;

SHORT *XY;

struct Border *NextBorder;

}i

struct Image
{
SHORT LeftEdge;
SHORT TopEdge;
SHORT Width;
SHORT Height, Depth;
USHORT *ImageData;
UBYTE PlanePick, PlaneOnOff;
struct Image *NextImage;
}i

struct IntuiMessage
{
struct Message ExecMessage;
ULONG Class;
USHORT Code;
USHORT Qualifier;
APTR IAddress;
SHORT MouseX, MouseY;
ULONG Seconds, Micros;
struct Window *IDCMPWindow;
struct IntuiMessage *SpecialLink;
}i

struct Remember

{
struct Remember *NextRemember;
ULONG RememberSize;
UBYTE *Memory;

}i

struct Preferences

{
BYTE FontHeight;
UBYTE PrinterPort;
USHORT BaudRate;

245

REFERENZ

struct timeval KeyRptSpeed;
struct timeval KeyRptDelay;
struct timeval DoubleClick;
USHORT PointerMatrix [POINTERSIZE];
BYTE XOffset;

BYTE YOffset;

USHORT colorl7;

USHORT colorl8;

USHORT colorl9;

USHORT PointerTicks;

USHORT color0;

USHORT colorl;

USHORT color2;

USHORT color3;

BYTE ViewXOffset;

BYTE ViewYOffset;

WORD ViewInitX, ViewInitY;
BOOL EnableCLI;

USHORT PrinterType;

UBYTE PrinterFilename [FILENAME SIZE];
USHORT PrintPitch;

USHORT PrintQuality;

USHORT PrintSpacing;

UWORD PrintLeftMargin;
UWORD PrintRightMargin;
USHORT PrintImage;

USHORT PrintAspect;

USHORT PrintShade;

WORD PrintThreshold;

USHORT PaperSize;

UWORD PaperLength;

USHORT PaperType;

UBYTE SerRWBits;

UBYTE SerStopBuf;

UBYTE SerParShk;

UBYTE LaceWB;

UBYTE WorkName [FILENAME SIZE];

BYTE sys_reservedl;
BYTE sys_reserved2;
UWORD PrintFlags;
UWORD PrintMaxWidth;
UWORD PrintMaxHeight;

246

REFERENZ

UBYTE PrintDensity;

UBYTE PrintXOffset;

UWORD . wb_Width;

UWORD wb Height;

UBYTE wb_Depth;

UBYTE ext size;

BYTE ext bytes[PREF EXTBYTES];

}i

4.4 Schnellinformation:
Einige Standard-Losungen in C

Die folgenden Programme und ihre Beschreibungen sollen lhnen einen
kleinen Einblick in die vielféltigen M&glichkeiten der Sprache C vermitteln.
Merke: Es gibt nichts, was in C nicht l6sbar ist, und kaum etwas, was
nicht schon geldst wurde.

Sortieren und Zufallszahlen

Ein Standardproblem in der Datenverarbeitung ist das Sortieren von
Arrays, wobei diese nicht nur Zahlen, sondern auch Texte enthalten kén-
nen. Hierfir stellt C mit der gsort{)-Funktion einen der besten Algorithmen,
ndmlich den Quick-Sort, zur Verfiigung. Die Funktion setzt voraus, daf3
Sie eine sogenannte Vergleichsfunktion zur Verfiigung stellen. Daf3 diese
recht einfachen Funktionen nicht »eingebaut« sind, ist ein Vorteil. Damit
werden ndmlich die Sortierroutinen unabhéngig vom Datentyp. Bei der
Gelegenheit — mit irgend etwas missen wir den Array ja fillen — bauen
wir noch ein praktisches Makro fir Zufallszahlen.

Das Programm laut Listing 4.4.1 soll

e einen Array mit 1000 Zufallszahlen fillen,
* jede zehnte davon ausgeben,

* den Array sortieren

e und ihn wieder ausgeben.

247

REFERENZ

/* SORT.C
Demo zu Sortieren, Suchen und Zufallszahlen

*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#define ANZAHL 1000
int array[ANZAHL];
/*
Makro zur Erzeugung einer Zufallszahl
im Bereich min...max
_____________________________________ * /
#define zufallszahl(min, max) ((rand() % \
(int) (((max) + 1) - (min))) + (min))

/* Prototypen

void PrintArray (void);
int cmp ();

void main ()
{

int i;

/* Setze Startwert des Zufallsgenerators
auf die Systemzeit

srand((unsigned) time(NULL));

/* Fiille Array mit Zufallszahlen

Listing 4.4.1: (Fortsetzung folgende Seiten)

248

REFERENZ

for(i = 0; i < ANZAHL; i++)
array[i] = zufallszahl(1, 999);

/* Weil der Array so groB ist, zeige nur
jedes zehnte Element
PrintArray();

/* Sortieren nach dem Quicksort-Algorithmus

__ */
printf("\nIch Sortiere...\n");
gsort (
(void *)array , /* Ab wo sortieren x/
ANZAHL, /* Anzahl Elemente *x/
sizeof(int), /* Bytes pro Element */
cmp) ; /* Vergleichsfunktion */

PrintArray();
puts (u")'.

/* Zeige jedes zehnte Element des sortierten Arrays
___ x/
void PrintArray (void)
{
int i, j;
printf ("\nJedes zehnte Element des Arrays:\n");
for(i = 9, j=1; 1 < ANZAHL; i += 10,3j++)
{
printf ("%4d", arrayl[il]):;
if((3 % 18))
printf("\n");

}

/* Flir gsort() muB eine Funktion bereitgestellt

Listing 4.4.1: (Fortsetzung folgende Seite)

249

FERENZ

250

werden, die bei Gleichheit 0 zuriick gibt,
bei eleml > elem2 1 und umgekehrt -1.

int cmp(int *eleml, int *elem2)
{
if(*eleml > *elem2)
return 1;
else 1if(*eleml < *elem2)
return -1;
else
return 0;

Listing 4.4.1: Suchen und Sortieren in C. So ein Zufall?

Das Makro Zufallszahl liefert eine Zufallszahl im Bereich von min bis max.
Der Trick dabei: Die Funktion rand(] liefert eine Zufallszahl im Bereich von
null bis MAX_RAND, eyer Konstanten, die meistens als 32767 definiert
ist. Um diese Zahl auf max zu begrenzen, nimmt man den Modulo-Ope-
rator. Zum Beispiel ist 32767 % 99 == 97 oder 32767 % 33 == 31. Sie
sehen also, wir sind schon dicht dran, der Rest der Riesenformel sorgt fir
die Korrektur bzw. den richtigen min-Wert.

Makros missen entweder in einer Zeile stehen oder mit dem Zeilenfort-
setzungszeichen (\) umbrochen werden. Wird der Makro-Ausdruck um-
brochen (oder enthdlt er Leerstellen), muf3 er in Klammern gesetzt werden.
Schaden kénnen die Klammern nie. Werden Argumente weiterentwickelt,
mufl man sie in Klammern setzen, auch hier kénnen Klammern nie
schaden.

Die Zufallsreihe selbst ist bei jedem Lauf dieselbe, es sei denn, man &éndert
mit srand|) die »seed« (den Startwert). Damit der Startwert selbst wenig-
stens einigermaflen zufdllig ist, setzt man hierfir Ublicherweise die
Systemzeit ein.

Den nun folgenden Funktionsaufruf fir das Sortieren kénnen Sie anhand
der Kommentare sicherlich nachvollziehen. Das Beispiel ist auch deshalb
so einfach, weil hier nur int-Zahlen zu bearbeiten sind. Wenn Sie einen
anderen Typ bearbeiten wollen, ist das auch kein Problem. Im Falle von
z.B. double misssen Sie nur beim Aufruf sizeof(double) schreiben, und in
der Vergleichsfunktion auch double als Typ einsetzen. Manche Compiler
bieten auch schon verschiedene gsort-Funktionen fir die Standardtypen.

REFERENZ

Etwas komplizierter wird die Sache bei Strings, wie Listing 4.4.2 zeigt.

/* TSORT.C
Demo zum Sortieren von Texten
*/
#include <stdlib.h>
#include <string.h>

#include <stdio.h>

#define ANZAHL 5

char *array[ANZAHL] = { "Meiers Franz",
"Meiers Emil",
"Fritze",
"Anton",

"Charly Brown"
}i

void PrintArray(Void);
int cmp (), cmps();

void main ()

{
puts ("Unsortiert:");
PrintArray () ;

/* Sortieren nach dem Quicksort-Algorithmus *x/

gsort ((void *)array, /* Ab wo sortieren x/
ANZAHL, /* Anzahl Elemente */
sizeof (char *), /* Bytes pro Element */
cmps) ; /* Vergleichsfunktion */

puts ("\nSortiert:");
PrintArray () ;

void PrintArray(void)

Listing 4.4.2: (Fortsetzung folgende Seite)

251

FERENZ

252

{
int i; J
for (i=0; i < ANZAHL; i++)
printf("%$s\n", arrayl[il]);

} .

int cmp(char **eleml,char **elem2)
{

if(**eleml > **elem2)

return 1;

else if(**eleml < **elem2)

return -1;

else

return 0;

}

int cmps(char **eleml,char **elem2)
{
return strcmp (*eleml, *elem2);

}

Listing 4.4.2: So sortiert man Strings

Hier ist array ein Array von Strings, also auch ein array von Arrays des
Typs char. Beachten Sie den kleinen Trick in der Deklaration. Man kann
namlich nicht char array]ANZAHL][] schreiben, sondern miifite dann zum
Beispiel array/ANZAHL][20] tippen, was einen zwingt, die grofite
Stringlénge abzuzshlen. Mit *arrayfANZAHL] hingegen kann man den
Compiler berlisten. Der Zweck des Listings ist jedoch ein anderer. Die
Vergleichsfunktion will Zeiger auf die Elemente sehen. Die String-Arrays
sind aber schon Zeiger, also brauchen wir Zeiger auf Zeiger. Praktisch
heif3t das »noch ein Stern«, womit klar ist, warum es z.B. **elem1 heif3t.

I Und noch ein Hinweis: Hier heift die Vergleichsfunktion cmps(). Diese
Methode ist méglich, weil stremp() genau die Werte -1, 0 bzw. 1 liefert, die
von gsort() gefordert werden. Sie kénnen aber genausogut cmp() einsetzen.

REFERENZ

4.4.2 Das Mehrfachproblem und Lottozahlen

Sobald man einen Array sortiert hat, erkennt man sehr schén, ob einige
Eintréige mehrfach vorhanden sind, sie stehen dann ja nebeneinander. Wie
man das programmtechnisch feststellt, zeigt Listing 4.4.3 auszugsweise.

#define ANZAHL 6

int flag;
do
{
flag=0;

srand ((uhsigned) time(NULL));
for(i = 0; i < ANZAHL; i++)
array[i] = zufallszahl(1, 49);
gsort ((void *)array, ANZAHL,

sizeof(int), cmp);

for (i=0; i < ANZAHL-1; i++)

if (array[i] == array[i+1l])
flag = 1;
if (flag) printf(".");

}while (flagqg);

puts("");

for (i=0; i<ANZAHL; i++)
printf ("%5d", arrayl[il]):;

puts (""); '

Listing 4.4.3: Das Programm fiir die Lottozahlen (Auszug)

Die Zahlen selbst werden wie in Listing 4.4.1 erzeugt, nur daf3 hier
ANZAHL auf 6 und der Zufallsbereich auf 1 bis 49 gesetzt wurden. Der
Array wird sortiert, und nun haben wir das Problem. Von den sechs Zah-
len kdnnen (missen nicht) mehrere gleich sein. Unser Ansatz lautet: Wenn
das der Fall ist, erzeuge sechs neue Zahlen, und das so lange, bis es
sechs verschiedene sind. Reduziert man das Listing auf den Kern, sieht
das so aus:

253

REFERENZ

do
{
flag=0;
/* lade Array */
for (i=0; i < ANZAHL-1; i++)
if (arrayl[i] == array[i+1])
flag = 1;
}while (flaqg);

Mit »if (array[i] == array[i+1]« wird verglichen, ob das aktuelle Element
und sein Nachfolger gleich sind. Wenn das der Fall ist, wird flag = 1
gesetzt, womit auch die do-Schleife wieder gestartet wird. Der Rest dient
der Dekoration. So wird zum Beispiel fir jeden Durchlauf ein Punkt aus-
gegeben, damit der Anwender sieht, daf3 sich etwas tut (100 Fehlver-
suche sind durchaus drin). Wichtiger ist folgendes: Die Schleife darf nur
bis zum vorletzten Element laufen, hier ANZAHL-1, weil das letzte Ele-
ment natiirlich keinen Nachfolger hat.

4.4.3 File-1/0 in Standard-C

In der zehnten Sitzung hatten wir uns mit Amiga-DOS befaf3t und dabei
festgestellt, daf3 damit geschriebene Programme nicht portabel sind, also
nicht zum Beispiel auf einem PC laufen. Abhilfe bringt die L&sung in
Standard-C. Hier untferscheidet man zwischen Textfiles und Bindr-Files
(allen anderen). Der Hauptunterschied liegt darin, daf3 in Textfiles die Zei-
chen mit den Codes 10 und 13 als LF (Zeilenvorschub) bzw. als CR
(Return) interpretiert werden, und — jetzt kommt's — wie ein CR in ein CR +
LF umgewandelt wird. Beginnen wir mit dem Textmodus laut Listing 4.4.4.

#include <stdio.h>

main ()
{
FILE *fp;
char string[] = "Ein Beispiel-Text";
/* Offne File */
if((fp = fopen("testfile","w")) != NULL)

{
fputs(string, fp); /* Schreibe String */
fclose(fp); /* SchlieBe File */

REFERENZ

}
else
printf ("Fehler beim Schreiben\n");

/* Offne File */
if((fp = fopen("testfile","r")) != NULL)
{
fgets(string, 80, fp); /* Lese String */
puts(string);
fclose(fp); /* SchlieBe File */
t
else
printf("Fehler beim Lesen\n");

Listing 4.4.4: Text-1/O in Standard-C: Das Prinzip

Ein File wird mit fopen(DateiName, Modus) gedffnet. Die Funktion gibt
einen File-Zeiger zuriick, alle weiteren Zugriffe laufen dariber. Ist der
Return-Wert NULL, konnte das File nicht gesffnet werden. Der Filepointer
wurde hier mit FILE *fp deklariert. Auch gilt die Folge

e Offnen der Datei mit fopen(),
e Schreiben oder Lesen
¢ und SchlieBen der Datei mit fclose),
allerdings mit einem wichtigen Unterschied. Ein File kann mit "w" zum
Schreiben oder mit "r" zum Lesen gedffnet werden. In der Open()-Funk-
tion des Amiga-DOS gibt es diese Unterscheidung nicht. Ein paar Fragen
bleiben noch, aber die kann Listing 4.4.5 besser erkléren.
/ *

ZCOPY.C

Liest ein Textfile (argv[l]),

setzt vor jede Zeile eine 1fd. Nr.
und schreibt nach argv([2].

#include <stdio.h>

Listing 4.4.5.: (Fortsetzung folgende Seiten)

255

REFERENZ

#include <string.h>

#define STRLEN 128

char string[STRLEN];

FILE *infile, *outfile;

char InName[80], OutName[80];
void Meldung (int nr);

void main(int argc, char *argv([])
{

int zeile = 1;

strcpy (InName, argv[l]);

strcpy (OutName, argv[2]);

/* Teste auf richtige Argumente

if (argc != 3)
Meldung (1) ;

if (strcmp(InName, OutName) == 0)
Meldung(2) ;

/* Offne die Files und teste dabei auf Fehler

if((infile = fopen(argv[l], "r")) == NULL)
Meldung (3) ;

if((outfile = fopen(argv[2], "w")) == NULL)
Meldung (4) ;

/* Lese und schreibe

while(1)
{
if(fgets(string, STRLEN - 1, infile) == NULL)
if(feof(infile))
Meldung (0) ;
else
Meldung (5) ;
printf ("%4d: %$s", zeile, string);

Listing 4.4.5.: (Fortsetzung folgende Seite)

256

REFERENZ

fprintf (outfile, "%4d: %s", zeile++, string);

}
void Meldung(int nr)
{
switch (nr)
{
case 0:
printf("\n'%$s' mit Zeilennumern auf '%$s'
kopiert\n", InName, OutName) ;
break;
case 1:
puts ("\nSyntax: zcopy <Qellfile> <Zielfile>");
break;
case 2:
puts ("\nNamen miissen verschieden sein");
break;
case 3:
printf ("\nKonnte Datei '$s' nicht &ffnen\n",
InName) ;
break;
case 4:
printf ("\nKonnte Datei '%s' nicht &ffnen\n",
OutName) ;
break;
case 5:
printf ("\nFehler beim Lesen von '%s'\n",
InName);
break;

fclose (infile);

fclose (outfile);
exit (nr);

Listing 4.4.5: ZCOPY versieht die Zieldatei mit Zeilennummern

Das Programm liest eine Textdatei, versieht jede Zeile mit einer laufenden
Nummer und schreibt sie in eine andere Datei.

257

FERENZ

258

4.4.4 Die Kommandozeile, argc und *argv[]

Das Neue ist zuerst, daf3 die beiden Dateinamen nicht im Programm ste-
hen, sondern beim Aufruf ibergeben werden. Wenn das Programm
zcopy heifdt, und Sie die Datei win.c (mit Zeilennummern) auf win.zn
kopieren wollen, tippen Sie ein

zcopy win.c win.zn

Das Ganze nennt man die Kommandozeile, wobei zcopy das Kommando
ist, dem die Argumente win.c und win.zn folgen. Die Auswertung ist
mdglich, wenn man anstatt main() jetzt

main(int argc, char *argv[])

schreibt. Das sind vordefinierte Variablen. argc (argument count) gibt die
Anzahl der Argumente an, *argv[] (oder **argv) ist ein Array von Strings.
In argv[0] steht der Programmname, in argv[1] das erste Argument, in
argv[2] das zweite, usw. Weil der Programmname immer mitzéhlt, muf3
argc im Falle von Argumenten gleich 3 sein. Deshalb kann ich hier mit if
(argc != 3) ganz einfach den ersten Fehler feststellen und das »Usage«
ausgeben.

Zuriick zu Listing 4.4.5: Die Funktion Meldung hat die Aufgabe, einige
von den vielen Fehlermdglichkeiten auszugeben. Hier ist die Sache noch
einfach. Zum Beispiel missen Sie im Fall von if (argc I= 3) Meldung(1);
nur im case 1 der Funktion Meldung() nachsehen, und wissen, daf3 hier-
mit die falsche Syntax moniert wird. In groBen Programmen - oder wenn
Meldung() in einem H-File steckt — ist es sinnvoller, Konstanten zu definie-
ren. Gibt es z.B ein #define SYNTAX 1, sagt Meldung(SYNTAX) sofort,
was gemeint ist. Fiir die DOS-Fehler gibt es Gibrigens schon Konstanten in
den H-Files.

In der Hauptschleife fallt Ihnen bestimmt etwas auf. Statt printf{) schreibe
ich hier forintf{) (file-print), vorher hatten wir schon gets() und puts() mit
dem »f« versehen. Besonders einfach ist die Sache bei forintf{), wo aufBer
dem zusétzlichen Argument fiir den File-Zeiger prézise die Regeln von
printf{) gelten. Tatséichlich ist der Bildschirm, bzw. das CLI-Window, im
Sinne von C auch nur ein File mit einem Filepointer namens stdout.
printf{"xxx") ist nichts weiter als eine Kurzform von forintf{stdout, "xxx"},
ruft also nur diese Funktion auf.

REFERENZ

4.4.5 Binir-File-1/0

Daraus kdnnen Sie zuerst folgern, daf3 forintf{stdout,... schneller ist, aber
das ist nicht alles. Wenn Sie Zahlen mit fprint() speichern, werden sie als
Text aufgezeichnet. Die int-Zahl 12345 ist in der Textform eine Folge von
ASCII-Zeichen, die auf der Disk auch 5 Byte belegt. Rechnerintern werden
solche Zahlen bingr als 2 Byte abgele?t. Grof3e Preisfrage: Wie bekomme

ich solche Zahlen im Bindrformat au

die Disk und spare damit speziell

bei Arrays gro3e Mengen Platz2 Die Antwort zeigt Listing 4.4.6.

/*BIN.C */
#include <stdio.h>

main ()

{

FILE *fp;
int ar([10], i;

for(i = 0; 1 < 10; i++)
ar[i] = i; /* Fille Array */
if((fp = fopen("binfile", "wb"))
{
fwrite(ar, sizeof(ar), 1, fp):
fclose(fp):
}
else
perror ("Write error");
if((fp = fopen("binfile", "xrb"))
{
fread(ar, sizeof(ar), 1, fp);
fclose(fp):
for(i = 0; 1 < 10; i++)

printf ("%$d\n", ar([i]);
}
else

perror("Read error");

!= NULL)

!= NULL)

Listing 4.4.6: So spart man viel Platz auf der Disk

259

FERENZ

260

In der fopen()-Funktion dndert sich nur der Modus in rb bzw. wb, wobei
das »b« fir bindr steht. Neu sind die Funktionen fread() und fwrite().
Hierin bedeuten:

ar Zeiger auf Puffer
sizeof{ar) Grofe eines Blocks

Anzahl der Blécke
fo Filepointer

Hier wird der Array ar mit einem einzigen write{) auf die Disk geschrie-
ben. Beachten Sie den Untferschied zwischen Puffer- und Blockgréfle. In
diesem Beispiel ist die Blockgrofe gleich der Puffergrofie. Vorstellbar ist
aber auch ein Array von 50 Zeilen, wo man die Blockgrofe auf die Zei-
lengrofle setzt und die Blockzahl auf 50. Man hat auf diese Art viele Frei-
heitsgrade, zum Beispiel diesen:

for (i=0; i<10; i++)
fread(&ar[10-i], sizeof(int), 1, fp):

Als Pufferadresse wird immer ein Array-Element angegeben, die Block-
grofe reicht fir eine int-Zahl. Und was passiert? Nun, auf der Disk stehen
die Bindrwerte der Zahlen 0, 1, 2, 3, usw. und die werden nach ar[9],
ar[8], ar[7], usw. gelesen. Endergebnis: Die Zahlen stehen in der umge-
kehrten Folge im Array.

4.4.6 Dynamische Puffer

Nachdem wir nun wissen, wie man sortiert und wie man Textdateien von
der Diskette liest, kénnen wir uns der praxisgerechten Lésung zuwenden.
Im Gegensatz zum Listing 4.4.2 stehen némlich die Texte nicht im Pro-
gramm, sondern auf der Disk. Um sie sortieren zu kénnen, muf3 man sie
einlesen (logisch), aber auch den ganzen Text im Speicher halten.

/* TSORT 2.C
Demo 2 zum Sortieren von Texten
*/
#include <stdlib.h>
#include <string.h>

#include <stdio.h>

#define ANZAHL 1000

REFERENZ

#define

ZLEN 128

char *zeile[ANZAHL];

void main(int argc, char **argv)
{

FILE *fp;

int i, znr, cmps();

}

char buf[ZLEN];

if (argc !'= 2) exit(l);

if((fp = fopen(argv[l], "r")) == NULL)
exit (1);

for(znr = 0; znr < ANZAHL; ++znr)

{ if (fgets(buf, ZLEN, fp) == NULL)

break;
zeile[znr] =
strcpy (zeile[znr], buf);

}
fclose (fp): ’

(char *) malloc(strlen (buf)+1);

/* Sortieren nach dem Quicksort-Algorithmus

o)

printf ("%$s", zeile[i]);

*/
gsort ((void *) zeile, /* Ab wo sortieren x/
(size t)znr, /* Anzahl Elemente *x/
sizeof (char *), /* Anzahl Elemente x/
cmps) ; /* Vergleichsfunktion */
for (i=0; i<znr; ++i)

int cmps(char **eleml,char **elem2)

{

}

return strcmp(*eleml, *elem2);

Listing 4.4.7 Sortieren einer Textdatei

261

FERENZ

262

Doch wie gro3 mu3 der dafiir zu reservierende Speicherbereich sein?
Wir wollen maximal 1000 Zeilen einlesen, jede Zeile darf bis zu 128 Zei-
chen lang sein. Dafiir einen Array a[1000][128] zu deklarieren, ist nicht
das Ideale. Das sind némlich 128 Kbyte, und die meisten Texte sind klei-
ner als 10 Kbyte. Und Gberhaupt gilt die Regel, daf3 ein Task nicht mehr

Speicher anfordern sollfe, als er unbedingt braucht. '

Nun, wir gehen einen Kompromif3 ein und belegen 4 Kbyte. Das sind
1000 Zeiger auf Strings. Die Strings gibt es noch nicht. Erst wenn eine
Zeile gelesen wurde, wird mit malloc() ein Speicherbereich allokiert, in
den genau diese Zeile paf3t. Dann wird ein String-Zeiger mit der Adresse
dieses Speicherbereiches geladen. Damit ist schon klar, warum die
Schleife {gr(znr = 0; znr < ANZAHL; ++znr) bis 1000 léuft, genaver: so
weit laufen konnte. Tatsdichlich wird nach dem Lesen von null Zeichen
(Datei-Ende) die Schleife mit break verlassen. Wenn nicht, wirkt diese
Zeile:

zeile[znr] = (char *) malloc(strlen (buf)+1);

Der aktuelle String steht in buf, fir seine Linge +1 (des Null-Bytes wegen)
wird Speicher allokiert. malloc() gibt einen Zeiger auf diesen Bereich
zuriick, der Zeiger kann also auch gleich zeile[znr] zugewiesen werden,
denn das ist ein Element des Arrays von char-Zeigern. Und was ist ein
String-Array? Antwort: Ein Array von char-Zeigern. Damit hétten wir
unseren Array, den wir sortieren kdnnen. Der letzte Stand von znr ist
auch die Anzahl der Elemente.

Bliebe noch eine Frage. Muf ich denn mit char *zeilefl ANZAHL]; gleich so
viele Zeiger vorhalten, wenn ich meistens weniger Zeilen lese, kann ich
nicht auch die Zeiger mit malloc() beschaffen? Die Antwort ist ein ganz
klares Jein. In diesem Beispiel muf3 der Zeigerarray statisch sein, nur das
garantiert, daf3 der Array auch fortlaufend im Speicher steht. malloc()
hingegen sucht sich den Speicher irgendwo, wo gerade Platz ist. Wollen
Sie die andere Lésung, miissen Sie sogenannte Listen anwenden. Eine
Liste besteht in diesem Fall aus lauter Strukturen. Jede davon hat zwei
Zeiger, einen auf den Nachfolger und einen auf den Siring einer Zeile.
Fir die Struct's, hier auch Listenknoten genannt, kann man natiirlich den
Speicher auch mit malloc() anfordern.

Die Include-Files zvm Malprogramm

/* Include-File "stdwindow.h"

void open libs(void)
{
IntuitionBase = (struct IntuitionBase *)
OpenlLibrary ("intuition.library",0L);
if (IntuitionBase == NULL) Exit (FALSE) ;

GfxBase = (struct GfxBase *)
OpenlLibrary ("graphics.library",0L);
if (GfxBase == NULL)
{
Closelibrary (IntuitionBase); /* Intu-Lib zu */
Exit (FALSE); /* Ausgang */
}

struct window *open window (short x, short y,
short w, short h,
char *name,
ULONG flags,
ULONG i flags,
struct Gadget *gadget)

263

ANHANG

struct NewWindow nw;

nw.LeftEdge = X;

nw.TopEdge =y:

nw.Width = W,

nw.Height = h;
nw.DetailPen = -1;
nw.BlockPen = -1;

nw.Title = (UBYTE *) name;
nw.Flags = flags;
nw.IDCMPFlags = i_flags;
nw.Screen = NULL;

nw.Type = WBENCHSCREEN;
nw.FirstGadget = gadget;
nw.CheckMark = NULL;
nw.BitMap = 0;
nw.MinWidth = -1;
nw.MinHeight = -1;
nw.MaxWidth = -1;
nw.MaxHeight = -1;

return((struct window *) OpenWindow (&nw));

void close all(void)

{
CloseWindow (Window) ;
CloseLibrary (GfxBase) ;
Closelibrary (IntuitionBase);
exit (TRUE) ;

Das Include-File »stdwindow.h«

/* Include-File "gadget.h"

APTR iadr; /* Gadget-Adresse */
int id; /* Gadget-ID */

264

ANHANG

struct Gadget gadget([14];
struct IntuiText gtext[14];

/* Fiur String-Gadget */
struct StringInfo info;
char dobuffer[80], undobuffer[80];

/* flir Prop-Gadget */

struct Image img[3];

struct PropInfo prop[3];

#define STEP (OxFFFF/0x10) /* Farbe in 16 Schritten */

/* Text in eine IntuiText-struct eintragen

void make gtext (struct IntuiText *name, char *text,
SHORT left, SHORT top)
{
name->FrontPen = 1;
name->BackPen = 0;
name->DrawMode = JAMI1;
name->LeftEdge left;
name->TopEdge = top;
name->ITextFont = 0;
name->IText = (UBYTE *) text;
name->NextText = NULL;

/* Eine Gadget-Struktur fillen

void make gadget (char *gtext, struct IntuiText *gname,
SHORT tleft, SHORT ttop,
struct Gadget *gadget,
struct Gadget *next,
SHORT left, SHORT top,
SHORT width, SHORT height,
USHORT flags, USHORT activation,
USHORT type, APTR *render,
APTR *info, USHORT id)

265

ANHANG

gadget->NextGadget = next;
gadget->LeftEdge = left;
gadget->TopEdge = top;

gadget->Width = width;

gadget->Height = height;

gadget->Flags = flags;
gadget->Activation = activation;
gadget->GadgetType = type;
gadget->GadgetRender = (APTR) render;
gadget->SelectRender = NULL;

make gtext (gname, gtext, tleft, ttop);
gadget->GadgetText = gname;

gadget->MutualExclude = NULL;
gadget->SpecialInfo (APTR) info;
gadget->GadgetID = id;
gadget->UserData NULL;

It

/* Wird bei GADGETDOWN-Event aufgerufen,
ermitttelt ID, behandelt den Fall:

void do_gadget ()
{

id = (((struct Gadget *) iadr) ->GadgetID);

switch (id)

{

case 1: /* Falls String-Gadget auch mit Return */
break; /*verlassen werden soll, hier einhaken.*/

case 2: /* "Nein im SchlieBen-Requester */
break;

case 3: do_close(); /* "Ja" im SchlieBen-Requ.*/
break;

case 4: /* Die Farbregler */

266

ANHANG

case
case

case
case
case
case

case

case

case

case

5:
6:

7:
8:

10:

11:

12:

13:

14:

SetRGB4 (&Screen->ViewPort, 0,
prop[0] .HorizPot/STEP,
propll] .HorizPot/STEP,
propl[2] .HorizPot/STEP) ;

break;

/* Farben iber DM-Requester */

do_farben((USHORT) (id - 7));

break;

/* Reset-Gadget */

SetRGB4 (&Screen->ViewPort,0,0,0,10);

prop([0] .HorizPot = 0;

prop[l].HorizPot 0;

prop(2] .HorizPot = 10*STEP;

RefreshGadgets (&gadget [3], Window,
&request [3]);

1

break;
/* OK-Gadget */
break;

/* "Abbruch" im Datei-Requ. */

break;

do_datei(); /* "OK" im Datei-Requ. */
break; ‘

Das Include-File »gadget.h«

/* Include-File "requester.h"

/* Sie konnen das \ weglassen, wenn Sie das folgende
Makro in eine Zeile schreiben

*/

#define GFLAGS (GADGIMMEDIATE | ENDGADGET | \

RELVERIFY)

267

ANHANG

268

/* fir die Rahmen der Gadgets

SHORT cordsl(] = {0,0, 282,0, 282,12, 0,12, 0,0};

struct Border borderl = {-2,-2,1,0,JAM1,5,
&cordsl1l[0],NULL};

SHORT cords2([] = (0,0, 81,0, 81,21, 0,21, 0,0};
struct Border border2 = {-1,-1,1,0,JAM1,5,
&cords2([0],NULL};

SHORT cords3[] = {0,0, 69,0, 69,13, 0,13, 0,0};
struct Border border3 = {-1,-1,1,0,JAM1,5,
&cords3[0],NULL};

struct IntuiText rtext; /* Text SchlieBen-Requ.
/* Eine Requester-Struktur fillen

void MakeReqg(int i, SHORT left, SHORT top,
SHORT width, SHORT height,
struct Gadget *gadget,
struct IntuiText *text,
USHORT flags, UBYTE fill)

{

request [i] .LeftEdge = left;
request[i] .TopEdge = top;
request[i] .Width = width;
request[i] .Height = height;
request [i] .RegGadget = gadget;
request [i] .RegBorder = NULL;
request [1] .ReqText = text;

request[i] .Flags = flags;
request[i] .BackFill fill;

request [i] .ImageBMap NULL;

}

/* Die Requester anlegen
B TP e e = */
void MakeTheRequester (void)

*/

ANHANG

{
/* Das String-Gadget fiir den File-Namen

strcpy (dobuffer,"bild 0.img");
info.Buffer = (UBYTE *) dobuffer;
info.UndoBuffer = (UBYTE *) undobuffer;
info.MaxChars = 64;

info.BufferPos = 0;
info.DispPos = 0;

make gadget ("Geben Sie den Dateinamen ein:",
>ext[0],0,-15,
&gadget [0], &gadget[l12], 10,24,280,11,
GADGHCOMP, STRINGCENTER | GADGIMMEDIATE,
STRGADGET | REQGADGET,
(APTR *) &borderl, (APTR *) &info, 1):;

make gadget ("Abbruch", >ext[12],14,7,
&gadget[12], &gadget[13],30,50, 80,20,
GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border2, NULL, 13);

make gadget ("OK", >ext[13], 25,7,
&gadget[13],NULL,190,50,80,20,
GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border2, NULL, 14);

MakeReq (0, 50,50, 300,85, &gadget[0], NULL, NULL, 3);

/* Der Requester fiir "SchlieBen"”

make gtext (&rtext, "Wollen Sie wirklich schlieBen?",
50, 7);

make gadget ("Nein", >ext[1l],24,7,
&gadget[1l], &gadget [2],50,40,80, 20,

269

ANHANG

GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border2, NULL, 2);

make gadget ("OK", >ext([2], 25,7,
&gadget[2],NULL,190,40,80,20,
GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border2, NULL, 3);

MakeReqg (1, 30,20, 350,70, &gadget[l], &rtext,
NULL, 3);

/* Der Requester fiir die Farbregler

make gadget ("Rot", >ext[3],-38,7,
&gadget [3], &gadget[4],50,10,200,20,
GADGHCOMP, GADGIMMEDIATE | RELVERIFY,
PROPGADGET | REQGADGET,
(APTR *) &img([0], (APTR *) &prop[0], 4);
prop(0] .Flags = AUTOKNOB | FREEHORIZ;
prop[0] .HorizBody = STEP;
prop[0] .HorizPot = O;

make gadget ("Grun", >ext[4],-38,7,
&gadget [4], &gadget[5],50,35,200,20,
GADGHCOMP, GADGIMMEDIATE | RELVERIFY,
PROPGADGET | REQGADGET,
(APTR *) &img[l], (APTR *) &propll]l, 5):
prop[l].Flags = AUTOKNOB | FREEHORIZ;
prop[l] .HorizBody = STEP;
prop([l].HorizPot = O;

make gadget ("Blau", >ext[5],-38,7,
&gadget [5], &gadget[10], 50,60,200,20,
GADGHCOMP, GADGIMMEDIATE | RELVERIFY,
PROPGADGET | REQGADGET,
(APTR *) &img[2], (APTR *) &propl[2], 6);
prop[2] .Flags = AUTOKNOB | FREEHORIZ;

270

ANHANG

prop[2] .HorizBody = STEP;
prop[2] .HorizPot = 10*STEP;

make gadget ("Reset", >ext[10],20,7,
&gadget [10], &gadget[11l],50, 90,80, 20,
GADGHCOMP, GADGIMMEDIATE | RELVERIFY,
BOOLGADGET | REQGADGET,
(APTR *) &border2, NULL, 11);

make gadget ("OK", >ext[11l], 25,7,
&gadget[11],NULL,170,90,80,20,
GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border2, NULL, 12);

MakeReqg(2, 100,30, 300, 120, &gadget([3], NULL,
NULL, 2);

/* Der DM-Requester fiir "Farben"

make gadget ("schwarz", >ext[6], 3, 1,
&gadget [6], &gadget[7],5,3,68,12,
GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border3, NULL, 7);

make gadget ("weiB", >ext(7], 3, 1,
&gadget[7], &gadget [8], 5,18,68,12,
GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border3, NULL, 8);

make gadget ("rot", >ext[8], 3, 1,
&gadget [8], &gadget [9],5,35,68,12,
GADGHCOMP, GFLAGS,
BOOLGADGET | REQGADGET,
(APTR *) &border3, NULL, 9);

make gadget ("blau", >ext[9], 3, 1,

271

ANHANG

&gadget[9],NULL,5,53,66,12,
GADGHCOMP, GFLAGS,

BOOLGADGET | REQGADGET,

(APTR *) &border3, NULL, 10):;

MakeReqg(3, 0,0, 87,75, &gadget[6], NULL,
POINTREL | NOISYREQ,2);

Das Include-File »requester.h«

/* Include-File "menu.h"

struct Menu menu4];
struct Menultem item[19];
struct IntuiText itext[19];

#define PROJEKT
#define FARBEN
#define FIGUREN
#define SPEZIAL

w N~ O

#define NEU
#define LADEN
#define SICHERN
#define ENDE

w NPk o

#define WIRKLICH
#define NEIN

= O

#define SCHWARZ O
#define WEISS 1
#define ROT 2
#define BLAU 3

272

ANHANG

#define RECHTECK O

#define FRECHTECK 1

#define ELLIPSE 2

#define FELLIPSE 3

#define FUELLE 0

#define MALE 1

#define REGLER 2

/* Text in eine IntuiText-struct eintragen

*/

void make text (struct IntuiText *name, char *text,

SHORT left, SHORT top)

{

name->FrontPen = 0;

name->BackPen = 1;

name->DrawMode = JAMI;

name->LeftEdge = left;

name->TopEdge = top;

name->ITextFont = 0;

name->IText = (UBYTE *) text;

name->NextText = NULL;

/* Daten in ein Menu-Item-struct eintragen

void make item(char *itemtext,
struct IntuiText *name,
struct Menultem *item,
struct Menultem *next,
USHORT left,USHORT top,
USHORT width, USHORT height,
ULONG flags)

item->NextItem = next;

item->LeftEdge = left;

item->TopEdge = top;

item->Width = width;

item->Height = height;

item->Flags = flags | ITEMTEXT | HIGHCOMP;

273

AN

HANG

274

item->MutualExclude = NULL;

make text (name, itemtext, 0, 0);
item->ItemFill = (APTR)name;

item->SelectFill = NULL;

item->Command = NULL;
item->SubItem = NULL;

/* Daten in einen Menu-Titel-struct eintragen

__ * /
void make menu(struct Menu *name, char *titel,
struct Menu *next,
struct Menultem *first,
USHORT left)
{
name->NextMenu = next;
name->LeftEdge = left;
name->TopEdge = 0;
name->Width = strlen(titel) *8+10;
name->Height = 10;
name->Flags = MENUENABLED;
name->MenuName = (BYTE *) titel;
name->FirstItem = first;
}
/* Alle Menus anlegen
__________________ */
void MakeTheMenu ()
{
/*-=—-- Menu 0 --—-—-==—-—=——- x/
make item("Neu", /* Text des Items
&itext[0], /* Adresse IntuiText-struct
&item[O0], /* Adresse der Item-struct
&item[1], /* Adresse next Item
5,0, /* linke obere Ecke
120,11, /* Breite und Ho6he

*/
*/
*/
*/
*/
*/

ANHANG

ITEMENABLED /* Flags des Items */

make item("Laden", &itext[1l], &item[1l], &item[2],
5,16,120,11, ITEMENABLED) ;

make item("Sichern", &itext[2], &item[2], &item[3],
5,32,120,11, ITEMENABLED) ;

make item("Ende", &itext[3], &item[3], NULL,
5,48,120,11, ITEMENABLED);

make item("Wirklich Ende", &itext[4], &item[4],
&item([5], 100,8,200,11,
ITEMENABLED | COMMSEQ) ;

make item("Lieber doch nicht", &itext[5],
’ &item([5], NULL,
100,24,200,11, ITEMENABLED);

item[3].SublItem = &item[4]; /* Sub-Item nachtragen */
item([4] .Command 'x';

make menu (&menu[0], "Projekt", &menull],
&item[0], 10);

make item("Schwarz", &itext[6], &item[6], &item[7],
5,0,100,11, ITEMENABLED) ;

make item("WeiR", &itext[7],&item[7], &item([8],
5,16,100,11, ITEMENABLED) ;

make item("Rot", &itext[8], &item[8], &item[9],
5,32,100,11, ITEMENABLED) ;

make item("Blau", &itext[9], &item[9], NULL,
5,48,100,11, ITEMENABLED) ;

275

ANHANG

276

make menu (&menull], "Farben", &menul2],

&item([6], 120);

make item("Rechteck", &itext[10], &item[10],

&item[11],
5,0, 150,11, ITEMENABLED) ;

make item("Geflilltes Rechteck",

&itext[11],
&item[1l1l], &item[12],
5,16, 150,11, ITEMENABLED):;

make item("Ellipse", &itext[12],

&item[12], &item[13],
5,32, 150,11, ITEMENABLED);

make item("Gefillte Ellipse",

&itext[13], &item[13], NULL,
5,48,150,11, ITEMENABLED) ;

make menu(&menu[2],"Figuren"”, &menul3],

&item[10], 210);

make item("Figur fillen",

&itext[14], &item[14],
&item([15],
5,0,120,11, ITEMENABLED) ;

make item("Alles tibermalen",

&itext[15], &item[15],
&item[18],
5,16, 130,11, ITEMENABLED);

make item("Wirklich Ubermalen",

&itext[16], &item[1l6],

ANHANG

&item([17],
110,8, 150,11, ITEMENABLED
):

make item("Lieber doch nicht",

&itext[17], &item[17],

NULL,

110,24,150,11, ITEMENABLED);
item[15].SublItem = &item[16]; /* Sub-Item hinzu */

make item("Farben regeln",
&itext[18], &item[18],
NULL,
5,32, 130,11, ITEMENABLED);

make menu(&menu(3],"Spezial", NULL,
&item[14], 300);

/* MENUPICK-Message auswerten und zugehdrige
Aktionen ausfiithren

___ */
void do_menu ()
{

switch (MENUNUM (code)) /* Switch Titel */

{

case PROJEKT:
switch(ITEMNUM (code)) /* Switch Items */
{
case NEU : do_neu():;
break;

case LADEN : dflag = 1;
Request (&request [0], Window) ;
break;
case SICHERN: dflag = 2;
Request (&request [0], Window) ;
break;

277

ANHANG

case ENDE :
switch(SUBNUM (code))
{
case WIRKLICH: do_close();
break;
case NEIN

break;

}
break;

}
break;

case FARBEN:
do farben((USHORT) ITEMNUM (code));
break;

case FIGUREN:
switch(ITEMNUM (code))

{
case RECHTECK : do_rechteck(0);

break;
case FRECHTECK: do_rechteck(1);
break;
case ELLIPSE : do _ellipse(0);
break;
case FELLIPSE : do ellipse(1l);
break;
}
break;
case SPEZIAL:
switch(ITEMNUM(code)) /* Switch Items */

{
case FUELLE: do_fuellen();
break;
case MALE
switch (SUBNUM (code))
{
case WIRKLICH: do_malen();
‘ break;

278

ANHANG

case NEIN
break;
}
break;
case REGLER: Request (&request[2], Window);
break;

break;

Das Include-File menu.h

279

ANHANG

280

Glossar

Absolute Adresse: Adresse als Zahl; wird typisch einer Zeigervariablen
zugewiesen.

Alert: Alarmmeldung, die typische Guru-Meldung.

Allokieren: Mit einer Funktion wie malloc() (memory alloc) Speicher fir
Variable zur Laufzeit eines Programms beschaffen.

Amiga-DOS: Disk Operating System (Betriebssystem) des Amiga.

ANSI: American Standard Institute. Amerikanischer Standard, der auch
die Sprache C normt.

ANSI-Kompatibilitét: Ubereinstimmung mit dem ANSI-Standard.

Anwender-Gadgets: Im Gegensatz zu den System-Gadgets vom Anwen-
dungsprogrammierer definierte Gadgets.

API: Application Program Inferface. Schnitistelle zu Betriebssystemfunk-
tionen tir den Anwendungsprogrammierer.

Area: Eine Sammlung von Grafiken, die alle zusammen gezeichnet
werden.

argc: »ar?umenf count«, die Anzahl der Argumente (Worter) der Kom-
mandozeile

Array: Eine Menge von Daten gleichen Typs.

ASCIl: American Standard Code (for) Information Interchange. 256 Zah-
len, die beschreiben, welche Zahl welches Zeichen auf dem Bildschirm
darstellen soll. Nur die ersten 128 Zeichen sind auf allen Computern
identisch.

Auflésung: Hier die Anzahl der Bildpunkte in der Horizontalen (X-Auf-
[6sung) und in der Vertikalen (Y-Auflsung).

Automatische Variable: Variable innerhalb einer Funktion, die automa-
tisch nach dem Funktionsaufruf angelegt wird und nur so lange »lebt«,
wie die Funktion l&uft.

Auto-Requester: Ein Requester, der mit nur wenigen Argumenten auto-
matisch von Intuition gezeichnet wird.

BCPL: Eine C-ghnliche Programmiersprache (genauer: ein C-Vorgénger),
in der u.a. Amiga-DOS geschrieben wurde.

ANHANG

Befehle: Elemente der Sprache C, wie zum Beispiel goto oder break.

Bezeichner: Vom Anwender definierter Name von Variablen, Datentypen,
Funktionen und Makros.

Bibliothek: Eine Sammlung von logisch zusammenhéngenden Funktionen.
Bindr: Zahlendarstellung nur mit 0 und 1, das Computer-interne Format.

Bit-Plane: Ein Speicherbereich, in dem jedes Bit einem Bildpunkt auf dem
Schirm entspricht. Gibt es mehr als eine Bit-Plane, wird aus den Bits auf

gleicher Position eine Zahl gebildet, welche die Farbe eines Bildpunktes
beschreibt.

Bit-Operatoren: Operatoren wie & oder |, die Zahlen Bit fir Bit nach den
Regeln des logischen UND bzw. ODER verkniipfen.

BitMap: Eine Struktur, die einen Bildspeicherbereich beschreibt.

BLINK: sprich B-LINK, ein Linker, der zum Beispiel mit Lattice-C geliefert
wird.

BlockgroBe: Die Anzahl von Bytes, die zusammen auf die Disk geschrie-
ben werden.

Boolean-Gadget: Ein Gadget, das entweder nur angeklickt werden kann
oder nicht (im Gegensatz zu Proportional- und String-Gadgets).

Border: Eine Datenstruktur, die einen Rahmen (typisch ein Rechteck) zum
Beispiel fir Gadgets beschreibt.

BSS: Block Storage Segment, Datenbereich eines Programms, in dem erst
zur Laufzeit Daten eingetragen werden, sog. nicht initialisierte Daten.

C-String: Ein Array vom Typ char, mit einem Null-Byte am Ende, welches
das String-Ende markiert.

Chip-Memory: Die unteren (oder einzigen) 512 Kbyte des Amiga-RAM.
Der Bereich wird auch von den Spezial-Chips des Amiga genutzt.

Code: Eine Zahl, deren Sinn erst im Kontext klar wird. Zum Beispiel
bedeutet der ASCII-Code 65 den Buchstaben A.

Container: Ein Behdlter fir grafische Elemente. Ein Requesterist ist zum
Beispiel der Container fir Gadgets.

CPU: Central Processing Unit. Der Mikroprozessor, der eigentliche Rech-
ner in einem Computer.

281

ANHANG

282

Dangling pointer: Ein Zeiger auf einen Speicherbereich, der nicht (mehr)
dem Programm gehért.

Datenstruktur: Eine gemeinsam unter einem Namen zusammengefafite
Menge von Daten.

Debugger: Ein Werkzeug (Programm) zur Fehlersuche in Programmen.

Debug-Information: Zusétzliche und fir das Programm an sich nicht
erforderliche Informationen, die den Debugger unterstiitzen.

Deklaration: Das Definieren von Variablen.
Dekrementieren: Den Wert einer Variablen erniedrigen.
Dimensionen: Die Grof3e eines Arrays in einer Richtung.
Directory: Inhaltsverzeichnis von Disketten oder Festplatten.

Direktive: Eine Anweisung an den Compiler, zum Beispiel mit #include,
eine Datei einzubeziehen.

Dopppelte Indirektion: Ein Zeiger zeigt auf einen weiteren Zeiger, der
dann erst auf ein Objekt zeigt.

Draw: Englisch zeichnen, Teil vieler Grafikfunktionen.

Dynamische Puffer: Speicherbereiche, die erst zur Laufzeit des Pro-
gramms angelegt werden.

Editieren: Die Eingabe und das Andern von Text.
EOF: End of File: Das Ende einer Datei.

Ereignisse: Bedienaktionen, wie die Betditigung der Tastatur, der Maus
oder ein Disketteneinschub/-auswurf.

Escape-Zeichen: In C das %-Zeichen mit der Bedeutung, daf3 die folgen-
den Zeichen nicht zum Text gehdren, sondern Formatier- und Stever-
zeichen sind.

Events: Siehe Ereignisse.

Exec: Der (u.a.) fir das Multitasking zustandige Teil des Amiga-Betriebs-
systems.

Externe Variable: Eine auf3erhalb aller Funktionen deklarierte Variable,
die fiir alle Funktionen und andere Module zugénglich ist.

FALSE: Logisch falsch, in C als Null definiert.

ANHANG

Fast Memory: Speicherbereich iiber 512 Kbyte, der deshalb schnell (fast)
ist, weil sich die CPU ihn nicht mit den Spezial-Chips teilen muf3.

FIB: Kirzel fir File-Info-Block, eine Datenstruktur mit Kenngréfien eines
Files (Datei).

File: Englisch fir Datei.

Filepointer: Ein Zei?er, der auf das néchste zu lesende Zeichen in einer
Datei zeigt bzw. aut die Position, ab der geschrieben werden soll.

Flag-Bits: Bits innerhalb eines Datenwortes, denen eine bestimmte Bedeu-
tung zugewiesen ist.

Flood: Fluten, Fiillen eines Grafikbereiches mit einer Farbe.
Font: Englisch fir Zeichensatz.

forbid: Verbiete. Hier Zugriff anderer Tasks, praktisch Ausschalten des
Multitasking.

FOREVER: Ausdruck fir eine Endlosschleife, meistens als for(;;) realisiert,
oft auch als Makro definiert.

Format-Code: Die Formatierungs-Codes in printf{) und scanf{).

Gadget: Im amerikanischen Slang »Dingsbums«, hier ein grafisches
Bedienelement (z.B. Schalter).

Grafik-Cursor: Die unsichtbare Position in der Gréf3e eines Bildpunkis,
von der die néchste Zeichenoperation ausgeht.

Icon-Editor: Programm zum Erstellen und Andern von Icons (Sinnbildern).

IDCMP: Intuition Direct Communication Message Port. Datenstruktur, Gber
welche die Kommunikation zwischen Intuition und einem Window lauft,
bzw. dem Programm, dem das Window gehért.

Include-Anweisung: Anweisung an den Compiler, eine Datei in die Uber-
sefzung einzubeziehen.

Index-Variable: Eine Variable, die genutzt wird, um verschiedene Array-
Elemente anzusprechen.

Initialisieren: Einer Variablen einen Anfangswert zuweisen.

Inkrementieren: Den Wert einer Variablen erhshen.

283

ANHANG

284

Intuition: Die grafische Bedienoberfliche und das API (siehe dort) des
Amiga.

ltem: Hier ein Menipunkt

Iteration: Durchlauf (durch eine Schleife).

JAM1: Ein Zeichenmodus des Amiga, hier iiberschreibend.
JAMw: Ein Zeichenmodus des Amiga, hier transparent.

K&R: Kernighan und Ritchie: Erfinder der Sprache C und gleichzeitig
Name fisr den alten C-Standard (neu ist ANSI).

Kommando-Taste: Tastenkiirzel fir einen Menipunkt.

Kommandozeile: Der Programm-Name und die folgenden Argumente,
wie man sie im CLI eintippt.

Kommentar: Erklérender Text in einem Programmtext, der vom Compiler
ignoriert wird.

Komponenten-Operator: Das Punki-Zeichen oder »>« zum Zugriff auf
die Komponenten einer Datenstruktur.

Konstante: Name fir eine Zahl, ein Zeichen oder Text, der im Pro-
grammlauf nicht geéindert wird.

Laufvariable: Variable, die in einer Schleife hoch- oder abwiirts gezahlt
wird und meistens beim Erreichen eines Endwertes zum Abbruch der

Schleife fihrt.
Library: Siehe Bibliothek.

Linken: Verschiedene bereits kompiliete Module und Bibliotheksfunk-
tionen zusammenbinden.

Linker: Programm, welches das Linken (s.o.) ausfihrt.

Lock: Sperre, die verhindert, daf3 mehrere Tasks gleichzeitig auf eine
Datei zugreifen.

Logik-Fehler: Vom Compiler nicht erkennbarer Fehler, der zur Fehlfunk-
tion oder zum Abbruch eines Programms fihrt.

Makro: Ein kurzer Name fir einen ldngeren Text, der immer dann vom
Compiler eingesetzt wird, wenn der Makroname im Programmtext auf-
taucht.

ANHA

NG

Mehrfachproblem: Die Tatsache, daf3 in einem Array oder einer anderen
Datenstrukirur mehrere gleiche Eintréige vorhanden sind, die es zu erken-
nen und ggf. zu eliminieren gilt.

Mehrfachverzweigung: Das Programm soll in Abhéngigkeit vom Wert
einer Variablen an verschiedenen Stellen fortgesetzt werden (in C mittels

switch()).

MenuStrip: Menistreifen oder Meniileiste, die beim Druck auf die rechte
Maustaste erscheint.

Message: Nachricht oder Botschaft, die eine Task an eine andere sendet.
Praktisch werden dafir Daten in eine reservierte Struktur namens Mes-
sage-Port geschrieben.

Nibble: Ein halbes Byte (4 Bit).

Oktal: Ein Zahlensystem auf der Basis 8.

Pixel: Englisches Kiirzel fir »Picture Element, ein Bildpunkt.
Proportional-Gadget: Ein Gadget in Form eines Schiebereglers.

Prototyp: Eine Funktionsdeklaration mit den Namen und Typen der Para-
meter.

Quadlifier: Hier ein Code, der Tasten wie (shirt) und (ctz1) beschreibt.

Requester: Ein Container (meistens ein Rechteck) fir mehrere Gadgets,
die dann dlle auf einmal erscheinen bzw. verschwinden.

ROM-Font: Ein im ROM abgelegter Zeichensatz.

ROM-Grafik: Im ROM abgelegte Grafik-Funktionen, typisch besonders
schnelle Grundroutinen.

Schliisselworter: Reservierte Worter einer Programmiersprache, die nicht
als Bezeichner verwendet werden dirfen.

String: Zeichenkette. Eine Folge beliebiger Zeichen, die in C mit einem
Null-Zeichen abgeschlossen sein muf3.

String-Literal: Ein beliebiger Text in Anfihrungszeichen, wird von C als
String-Konstante betrachtet.

Sub-ltem: Ein Untermeniipunkt.

285

ANHANG

286

Turn-Around-Zeit: Zeit vom Verlassen des Editors ilber Dauer von Com-
piler- und Linkerlauf bis zum Wiedereintritt in den Editor.

Variable: Ein symbolischer Name fiir einen Speicherplatz, in dem immer
neue Daten abgelegt werden kénnen.

Verzweigung: Fortsetzung des Programms an einer anderen Stelle als
beim ndchstfolgenden Befehl.

Zeiger: Die Adresse einer Variablen bzw. eines Speicherplatzes.

ANHA

NG

Literaturempfehlungen

Es gibt sehr viel Literatur fir den Amiga und auch zur Sprache C. Ich per-
sonlich habe eine Unmenge von Biichern — die kosten mich nichts —
arbeite aber praktisch nur mit sehr wenigen.

Amiga Intuition-Reference-Manual: Die Original-Dokumentation von
Commodore zu Intuition. Verlag Addison-Wesley, ISBN 0-201-11076-8.

Sprache Englisch. Interessant fir Leser, die auch das letzte Detail erfahren
wollen, Thematik wird aber auch in deutschsprachigen Biichern gut abge-

deckt.

Amiga ROM-Kernel-Reference-Manual: Libraries and Devices: Die Origi-
nal-Dokumentation von Commodore zu allen ROM-Funktionen und Libra-
ries, ausgenommen Exec. Verlag Addison-Wesley, ISBN 0-201-11076-4.

Sprache Englisch. Ein sehr dicker Walzer. Schon des Umfangs wegen
kann kein »normales« Buch die Thematik so vollstéindig abhandeln.

Amiga ROM-Kernel-Reference-Manual: Exec: Die Original-Dokumen-
tation von Commodore zu Exec, dem Multitasking-Kern des Amiga. Ver-
lag Addison-Wesley, ISBN 0-201-11099-7.

Sprache Englisch. Fir Anwender, die sehr systemnah programmieren
wollen.

Amiga Hardware-Reference-Manual: Die Original-Dokumentation zur
Hardware-Programmierung des Amiga. Verlag Addison-Wesley, ISBN 0-
201-11077-6.

Sprache Englisch. Fir Anwender, welche direkt die Hardware program-
mieren wollen, zum Beispiel fir besonders schnelle Grafiken. Die Hard-
ware selbst, also Schaltbilder u.d., wird nicht beschrieben.

Amiga Programmier-Handbuch von Frank Kremser, Jérg Koch. Verlag
Markt & Technik, ISBN 3-89090-550-1, Preis 79,-- DM.

Das Buch bringt auf 378 Seiten die wichtigsten Funktionen aus dem ROM
Kernel Reference-Manual/ Libraries and Devices sowie Intuition plus zahl-
reiche Beispiele, die auch auf der Diskette vorliegen.

Amiga System-Handbuch von Frank Kremser, Jérg Koch. Verlag Markt &
Technik, ISBN 3-89090-491-2, Preis 69,-- DM.

287

AN

HANG

288

Das Buch bringt auf 421 Seiten fast alles aus dem Hardware Commo-
dore-Reference-Manual, geht aber zusétzlich noch auf die Hardware ein,
Bauanleitungen fiir eigene Erweiterungen inklusive. Zahlreiche Beispiele,
die auch auf der Diskette vorliegen, doch grofifeils in Assembler. Fisr
Le:‘er, welche die Hardware interessiert und die auch Assembler beherr-
schen.

Amiga Programmierpraxis Intuition von Peter Wollschlaeger. Verlag
Markt & Technik, ISBN 3-89090-593-5, Preis 69,-- DM.

Das Buch schildert die Programmierung von Intuition und alle erforder-
lichen Grundlagen sehr detailliert auf 330 Seiten. Alle Beispiele in C und
teilweise zusdtzlich in Assembler auch auf der Diskette. Das Buch entstand
nach dem Motto »nicht von jedem etwas, sondern eines griindlich«.

A

Abs 229

Absolute Adresse 201
ACCESS_READ 180
ACCESS_WRITE 180
ACTIVATE 105
Activation-Flags 130
AddGadget 143, 230
Adressen, 56

Alarm 154

Alert 154

AllocMem 177,178
AllocRemember 214, 231
Allokieren 177
Amiga-DOS 176, 178, 224
Amiga.lib 222, 224
ANSI 43
ANSI-Kompatibilitst 199
Anwender-Gadgets 128
ArecEllipse 164
AreaEnd 165

Argc 258

Argv 258

Arithmetische Operatoren 84
Array 54, 58

Array deklarieren 57
Array-Index 55, 192
Assembler-Quelltext 196
Atof 229

Atoi 229

Auflésung 188
Auto-Requester 186

AUTOKNOB 130
AutoRequest 149, 231
Aztec C 20, 31, 227
Aztec-Compiler 196
Aztec-Linker 197

Backfill 148, 153
BCPL 178

Befehle 38
Bibliotheken 201
Bindr-File-I/O 259
Bindr-Files 254
Bit-Operatoren 87
Bit-Planes 186
BitMap 186

BLINK 198
Blockgrsfie 260
Boolean-Gadget 128
Border 153

Break 90, 126

BSS 198 f.
BuildSysRequest 231

C

C-Array 192

C-String 55

Chip-Memory 197,199, 209, 213
Class 100

ClearDMRequest 146, 232
ClearMenuStrip 126, 232
ClearPointer 209, 232

Close 238

289

STICHWORTVERZEICHNIS

CLOSEWINDOW 99, 106, 127, 232 EndRequest 232

Code 100 EOF 176
Command-Key 113 Ereignisse 99
COMMSEQ 117 Escape-Zeichen 46
Compile-/Link-Beispiele 51 Events 99, 162
Compiler 13 Examine 183
Compiler/Linker-Aufruf 224 Exclusive Write Lock 174
COMPLEMENT 216 Exec 100, 200
Container 128, 145 ExecMessage 100
Continve 95 Execute 185
Cos 229 Exit 79, 229
D ExNext 183
Dangling pointer 194 f. F
Datenstruktur 60, 70 FALSE 92
Datentyp 39 Fast-Memory 198
DEADEND_ALERT 154 Fclose 255
Debug-Information 197, 199 Festplatte 226
Define 38 FGO 206
Deklaration 58 FIB 181
Deklarieren 47, 61 FILE 255
DeleteFile 238 File-Handle 175
Deutsche Tastatur 22 File-1/O in Standard-C 254
Dimensionen 58 File-Nummer 175
Directory durchsuchen 183 File-Zeiger 255
Direktive 37 FileHandle 175
DISKREMOVED 150 FilelnfoBlock 181
DisplayAlert 232 FileLock 180
DisplayBeep 232 Filepointer 255
Div 229 FirstGadget 143
Do 90, 92 Flag-Bits 83
Do...while 92 Flags 130
Doppelte Indirektion 201 Flood 237
Double-Menu-Requester 146 f. 154 - Font 219
Draw 163, 236 Fopen 255, 260
DrawCircle 237 For 90, 93 f.
DrawEllipse 164, 237 For-Schleife 94, 197
Dynamische Puffer 260 Forbid 203
E FOREVER 94
Format-Code 46
Editieren 50 Formatstring 76
Ellipse 164 Forintf 259
Else 88 Fread 260
ENDGADGET 147, 153 FREEHORIZ 130

290

STICHWORTVERZEICHNIS

FreeRaster 165
FreeRemember 202, 215
FreeSysRequest 233
Funktionen 37
Funkfions-Ergebnisse 202
Fwrite 260

G

Gadget-Liste 143
Gadget-Typen 128
Gadgets 70, 83, 128
GADGIMMEDIATE 130
GetDefPrefs 233
GetMsg 162, 205
GetPrefs 233
GetRGB4 188

Gets 229

Gix.h 104
Gleichheitszeichen 191
Goto 91
Grafik-Cursor 105

H

Hardware-Voraussetzungen 16
HIBOX 117

HICOMP 117

Hochsprache 13

Hochstriche 49

HorizBody 138

HorizPot 138

1/O 98
IAddress 101
Icon-Editor 208
IconED 208
IDCMP 99, 205
IDCMP-Flag 99, 106, 109
IDCMP-Flags fir Requester 147
IDCMPWindow 101
If 86,92
If-Bedingung 88
Image 128
Include 72

Include-Files 38, 72
lnéex 54,193
Indexvariablen 55
Info-Struktur 138
Initialisieren 47, 58, 61
Inkrement- und Dekrement-
Operatoren 85

Input 99, 238
Installation 20
IntuiMessage 100, 125
IntuiTextLength(itext) 233
INTUITICK-Event 110
INTUITICKS 106
Intuition 99
Intuition.library 78
IntuitionBase 73, 78
INVERSVID 216

loErr 184, 238
Isalnum 230

Isalpha 230

Isdigit 230

Islower 230

Isprint 230

Ispunct 230

Isspace 230

Isupper 230

ltem-Liste 114
ITEMENABLED 117
ITEMNUM 126

ltems 113 f.

ITEMTEXT 117
lteration 96

[TextFont 216

J
JAMT 216
JAM2 216
K

K&R 43

Klammern 192
Komma-Operator 95
Kommando-Taste 113
Kommandozeile 258

291

STICHWORTVERZEICHNIS

Kommentare 37
Kompakte Programme 222
Kompilieren 50
Komponenten-Operator 68
Konstante 49

L

Lattice C 25, 32, 227
Lattice-Compiler 198
Laufvariable 94
Libraries 72, 201
Library 72

Linken 50

- mit float 51

Linker 13, 50

Lock 175, 180
Lock-Struktur 180
Locks 174

log 230
Logik-Fehler 88
Logische Operatoren 87
Lottozahlen 253

LSE 31

M

Main() 222

Main-Funktion 40

Makro 247

Makros 125 f., 160, 225, 250
Malloc 195, 202

Maus zeichnen 163
Maustaste 163
Mauszeiger 209
Mehrfachproblem 253
Mehrfachverzweigungen 88
MEMACS 30

MEMF_CHIP 177,215
MEMF_CLEAR 177

Meni 113,115
MENUENABLED 116
Menultem 116 f.
MenuName 116
MENUNUM 126

MenuOff 116

MenuOn 116
MENUPICK 127, 162
MenuStrip 113 f.
Message-Ports 99
Micros 101
MODE_NEWFILE 175
MODE_OLDFILE 175
ModifyDCMP 233
MOUSEBUTTONS 164
MOUSEMOVE 99, 106, 164
MouseX 101

MouseY 101

Move 105, 163, 237
MoveWindow 234
Multitasking 174, 201

N

NEWSIZE 106

NewWindow 71, 74, 82, 105
Nextltem 116

Nibbles 188

NOISYREQ 145, 149, 154
Null-Byte 55, 193

o
OffGadget 234

- OffMenu 234

OFFSET_BEGINNING 239
OFFSET_CURRENT 239
OFFSET_END 239

Oktal 50

OnGadget 234

OnMenu 234

Open 238

OpenDiskfont 220
OpenFont 220
Openlibrary 72
OpenWindow 71 f., 78, 82, 234
Operatoren 12

Output 99, 239

P

Permit 203
POINTREL 147, 148, 154

STICHWORTVERZEICHNIS

Pow 230
PREDRAWN 148
Printf{) 45
PrintiText 234
Programm-lcon 208
PROPGADGET 138
Proportional-Gadget 128, 131
Protos 223
Prototypen 44, 161
Punkt-Operator 68
Putc 230

Puts 230

Q

Qsort 247
Qualifier 101
Quick-Sort 247

R

Rand 250

RASSIZE 186

RastPort 104, 106
RAWKEY 106

Read 178, 239
RECOVERY_ALERT 154
RectFill 164, 237
RefreshGadgets 143, 235
Relative Requester 147
Relleft 147

RelTop 147

RELVERIFY 130
RememberKey 214
Remove 230
RemoveGadget 143, 235
Rename 239

ReplyMsg 99, 109, 205
REPORTMOUSE 105, 235
REQACTIVE 149
REQCLEAR 147
REQGADGET 147
REQOFFWINDOW 149
REQSET 147

Request 145 f., 235
Requester 145, 147, 161

ROM-Font 220
ROM-Grafik 164

S

Scanf 86, 195

Scanf() 59

Schachtelungen 37

Schleifen 90

Schlisselworter 38

Schreiben von Files 175
Seconds 101

Seek 239

SetAPen 105, 237

SetBPen 237

SetDMRequest 146, 154, 235
SetDrPt 237

SetMenuStrip 127, 235
SetPointer 209, 212, 236
SetPrefs 236

SetRGB4 138

Shared Read Lock 174

Short int 58

Sichtbarkeit von Variablen 40
Signcll-Bit 107

Sizeof 250

SizeWindow 143, 236
Software-Voraussetzungen 17
Sortieren 247, 250
Specialinfo 130

Speciallink 100

Speicher dynamisch 177
Sprintf 110

Sqrt 230
Standard-C-Funktionen 229
Standard-1/O-Kandle 222
Status von Disketten 178
Stdwindow.h 80

Stilarten 215

Strecat 60, 230

Stremp 230

Strepy 55,78

Strespn 230

String-Gadget 128, 130, 137
String-Literal 74

293

STICHWORTVERZEICHNIS

STRINGCENTER 130
Stringlnfo 130
Stringliteral 33, 38
Strings 59, 65, 193
Stringvergleichsfunktion 93
Strncat 230

Strstr 184

Struct 60

- Boollnfo 243

- Border 244

- Gadget 242

- Image 245

- IntuiMessage 245

- IntuiText 244
—Menu 242

— Menultem 242

- NewScreen 240

- NewWindow 241

— Preferences 245

- Propinfo 243

— Remember 245

- Requester 243

— Screen 240

- Stringlnfo 244

- Window 241
Struktur 36, 63
Struktur-Komponenten 82
Strukturierte Variablen 53, 61
Strukturtyp 60
Sub-ltem 113
SUBNUM 126
Suchstring 184

Switch 88, 90
SYSREQUEST 149
System Request 150
System-Requester 146
System-Ressourcen 203
System-Routinen 200

T

Tan 230

Text 104 f, 110, 238
Text-Attribute 219
TextAttr 219

Texteingabe 220
Texffiles 254

Time 111

Time.h 104
Tolower 230
TOPAZ_EIGTHY 220
TOPAZ_SIXTY 220
Toupper 230

TRUE 92
Turn-Around-Zeit 50
Typ 39
Type-Casting 74,76

U

Ungleichoperator 192
UserPort 99
UserPort-Struktur 107

\'

VANILLAKEY 106, 164, 221
Variable 39
Verzweigungen 84

Vorkompilierte Header-Files 226

w

Wait 80, 106, 162, 205
Warnings 197
WBENCHSCREEN 71
While 90, 92
While-Bedingung 93
Window-Flag 105
Window-Struktur 71
WINDOWCLOSE 105
WINDOWDEPTH 105
WINDOWDRAG 105
Windowlimits 236
WindowPort 99
Windows 70
WINDOWSIZING 105
WindowToBack 236
WindowToFront 236
Workbench-Programme 208
Write 178, 186, 239
WritePixel 163, 238

STICHWORTVERZEICHNIS

z Zeiger auf Strukturen 66
Z-Editor 30 Zeigerarithmetik 64
Zeichen-Array 54 Zeigerarray 262
Zeichensdtze 215 Zeigertypen 77
Zeichenvariablen 53 ZU{G.”S.ZGH _247, 250
Zeiger 56, 64F.,71,74,86,194 Zweidimensionales Array 58

295

Markt&lechnik W O R K S H O P AMIGA

Erfolgreich starten — sicher nutzen.

C auf dem Amig

Wer den Amiga méglichst systemnah pro-
grammieren mdchte, verwendet in der Regel
die Programmiersprache C. Lattice C und
Aztec C sind die ublichen Compiler; beide
erfullen alle Voraussetzungen nach dem.
ANSI-C-Standard.

Workshop—das heiBt: sichere Lernerfolge in
kurzester Zeit.

Im Einfuhrungskapitel erfahren Sie alles, was
zum grundlegenden Umgang mit C und mit
dem Buch notwendig ist. AuBerdem: Start-
hilfe in Sachen Installation. Das Tutorium
fahrt Sie dann in zehn Sitzungen in diese
interessante und leistungsfahige Program-
miersprache ein — ausfuhrlich und praxis-
gerecht —anhand eines unterhaltsamen und
nutzlichen Projekts. Das Ergebnis: ein eige-
nes Malprogramm mit Windows, Men(s und
Requestern.

Das Kapitel Know-how wird Ihr Ratgeber fiir
die tagliche Praxis: haufige Fehlerquellen

und entsprechende Ldsungsvorschlage;
eine umfangreiche Sammlung nitzlicher
Tips & Kniffe und vieles mehr.

Dann die Referenz: knapp und prazise —
alle Befehle auf einen Blick. Als nitzliches
Add-on: eine handliche Befehlskarte mit dem
Allerwichtigsten. Der Abschnitt Schnell-
information nach dem Motto »Wie program-
miere ich ...?« bietet schlieBlich eine Reihe
ausgewahlter Tools zu haufigen Aufgaben-
stellungen der Praxis.

Workshop — verstandlich und informativ; zu
populdren Themen wie Grafik, Musik, Text-
verarbeitung und Programmiersprachen.

Herausgegeben von .TXT Redaktionsteam
Baumann & Partner. Ein Team aus Fach-
lektoren und Spezialisten, die aus eigener
EDV- und Verlagspraxis die Informa-

tionsbedirfnisse von Computeranwendern
kennen.

Hardware:

Commodore Amiga mit zwei Diskettenlauf-
werken und mindestens 512 Kbyte Arbeits-
speicher, empfehlenswert 1 Mbyte RAM

Software:
Aztec C oder Lattice C der Version 5.x

Markt &Iechnik

ISBN3-87791-026-2

03900
9 77838777910269 ’ | ‘
DM 39,- sFr37— &S 304,—

