
Markt&lechnik WO RK $ H O P AMIGA
Peter Wollschlaeger

u
a

worxs#or AMIGA
Herausgegeben von .TXT Redaktionsteam Baumann & Partner

Peter Wollschlaeger

Erfolgreich starten — sicher nutzen

Markt&Technik Verlag AG

CIP-Titelaufnahme der Deutschen Bibliothek

Wollschlaeger, Peter:

C : erfolgreich starten — sicher nutzen / Peter Wollschlaeger. —

Haar bei München : Markt-und-Technik-Verl., 1991

(Markt-&-Technik-Workshop Amiga)

ISBN 3-87791-026-2

Die Informationen in diesem Produkt werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen.

Trotzdem können Fehler nicht vollständig ausgeschlossen werden.

Verlag, Herausgeber und Autoren Können für fehlerhafte Angaben und deren Folgen weder eine juristische

Verantwortung noch irgendeine Haftung übernehmen.

Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.

Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zulässig.

Amiga ist ein eingetragenes Warenzeichen der Commodore-Amiga Inc., USA

GFA-Basic ist ein eingetragenes Warenzeichen der GFA-Systemtechnik GmbH, Düsseldorf

ISBN 3-87791-026-2

© 1991 by Markt&Technik Verlag Aktiengesellschaft,

Hans-Pinsel-Straße 2, D-8013 Haar bei München/Germany

Alle Rechte vorbehalten

Einbandgestaltung: Grafikdesign Heinz Rauner

Herstellung: Werner Leidl

Lektorat: TXT-Redaktionsteam Baumann & Partner

Dieses Produkt wurde mit Desktop-Publishing-Programmen erstellt

und auf der Linotronic 300 belichtet.

Druck: Paderborner Druck Centrum

Printed in Germany

BDXARARKRBAAAAAAAAR WN EnNO OQ RON —
RON —

C und der Amiga

Wie Sie mit diesem Buch arbeiten

Schreibweisen

Hard- und Software-Anforderungen

Die Installation der Compiler

Anfertigen von Sicherungs- und Arbeitskopien

Installation von Aztec C auf der Festplatte

Installation von Aztec C für zwei Diskettenlaufwerke

Installation von Aztec C für ein Diskettenlaufwerk

Installation von Lattice C auf der Festplatte

Installation von Lattice C für zwei Diskettenlaufwerke

Installation von Lattice C für ein Diskettenlaufwerk

Grundlagen im Umgang mit C-Compilern

Die Wahl des Editors

Kompilieren und Testen mit Aztec C

Kompilieren und Testen mit Lattice C

Wenn etwas nicht funktioniert

2]

23

25

25

27

29

29

3]

32

33

INHALTSVERZEICHNIS

2.1 Erste Sitzung: Anatomie eines C-Programms 35

2.2 Zweite Sitzung: C-Spezialitäten für die

Amiga-Programmierung 53

2.3 Dritte Sitzung: Erzeugen eines leeren Windows 70

2.4 Vierte Sitzung: Den Programmfluf3 kontrollieren 84

2.5 Fünfte Sitzung: Ein-/Ausgabe und das Malprogramm 98

2.6 Sechste Sitzung: Unser Window bekommt Menüs 113

2.7 Siebte Sitzung: Gadgets für die Mausklicks 128

2.8 Achte Sitzung: Requester und Alerts | 145

2.9 Neunte Sitzung: Und nun wird gemalt 158

2.10 Zehnte Sitzung: Daten von und zur Disk 174

3.1 Häufige Fehler und Lösungswege 191

3.2 Details zum Aztec-Compiler und Linker 196

3.3 Details zum Lattice-Compiler und Linker 198

3.4 (Uberlebens-)Regeln und Tips für Programmierer 200

3.5 Kniffe, Tips und Spezialitäten 207

3.5.1 __Workbench-Programme mit Icons 208

3.5.2 _ Chip-Memory per eigenem Mauszeiger 209

3.5.3 _ Daten ins Chip-Memory legen mit AllocRemember() 213

3.5.4. Zeichensdtze, Größen und Stilarten | 215

3.5.5 So schreibt man kompakte Programme 222

3.5.6 Compiler/Linker-Aufruf im Quelltext 224

3.5.7 Trickreiche Makros 225

3.6 Zusatz-Hardware und andere Empfehlungen 225

4.2 Die wichtigsten Amiga-Funktionen 230

4.2.1 Die wichtigsten Funktionen von Intuition 230

4.2.2 Die wichtigsten Grafik-Funktionen — 236

4.2.3 _ Die wichtigsten DOS-Funktionen 238

INHALTSVERZEICHNIS

4.3 Die wichtigsten Amiga-Datenstrukturen 240

4.4 Schnellinformation: Einige Standard-Lésungen in C 247

4.4.2 Das Mehrfachproblem und Lottozahlen 253

44.3 File-I/O in Standard-C 254

4.4.4 Die Kommandozeile, argc und *argv[] 258

4.4.5 _ Binär-File-I/O 259

4.4.6 Dynamische Puffer 260

Die Include-Files zum Malprogramm 263

Glossar | 280

Literaturempfehlungen 287

INHALTSVERZEICHNIS

Workshop - die Buchreihe für den engagierten Computerbesitzer — wurde

nach völlig neuem Konzept entwickelt, das sowohl die Möglichkeiten

moderner Computerprogramme als auch aktuelle didaktische Methoden

berücksichtigt. Die Aufgabenstellung: Nicht einfach die Funktionsvielfalt

eines Programmpakets zu demonstrieren, sondern vor allem die Fähigkeit

der praktischen Umsetzung zu trainieren. Was herauskam, ist ein aus-

gefeiltes Praxiskonzept: mit fundiertem Startwissen, illustriertem Tutorium,
zahlreichen Ubungsideen, nützlichen Tips und Kniffen, Fehlerarten und

Lösungsvorschlägen sowie knappem Referenzteil.

Das Herzstück eines Workshops ist das Tutorial. Es ist in zehn Sitzungen

organisiert und so angelegt, daß ein nützliches Programmprodukt mit

allem Hintergrund-Wissen hergestellt wird. Innerhalb kürzester Zeit sind

daher praktische, transferierbare Arbeitsergebnisse sichtbar. Dann - bei

steigender Erfahrung - bleiben Know-how und Referenz die nützlichen

Ratgeber für die tägliche Praxis. Workshop - die Buchreihe, die mit Ihrem

Wissen und Erfahrungsschatz mitwächst.

Der Autor Peter Wollschlaeger - bekannt durch eine Fülle von Büchern

zum Amiga und zu anderen Computerthemen - ist einer der bekanntesten

C-Päpste. Seine vielfältigen Erfahrungen helfen Ihnen, mit diesem Buch

»C« wirklich zu begreifen - und Sie haben auch noch Spaß dabei. —

Wir hoffen, daf3 Ihnen dieses Buch gefällt und weiterhilft. Dennoch - es
gibt nichts, was man nicht noch verbessern könnte. Teilen Sie uns doch

bitte Ihre Meinung zu Buch und Programm mit. Sie helfen damit anderen

Lesern und uns, das Workshop-Konzept noch besser nach Ihren Bedürf-

nissen auszurichten. Vielen Dank.

Die Herausgeber

TXT Redaktionsteam, Christine Baumann

VORWORT

10

Einfü jhrung
C ist eine Programmiersprache wie alle anderen auch. Es nicht schwie-
riger als Basic oder Pascal, viele Leute verwechseln nur etwas mitein-

ander. Einfache Aufgaben, wie sie in Basic lésbar sind, kann man in C

genauso einfach programmieren. Schwierige Jobs, wie ein ganzes
Betriebssystem, lassen sich in Basic nicht schreiben, wohl aber in C. Ergo

ist nicht die Sprache schwieriger, sondern es sind die Aufgaben, die

damit gelöst werden können.

1.1 Cundder Amiga

Daraus könnten Sie folgern, daß es sich nicht lohnt, C zu lernen, wenn

man nicht vorhat, so schwierige Dinge anzugehen. Sie hätten recht, wenn

es da nicht noch den Amiga gäbe. Dessen Betriebssystem ist (hauptsäch-

lich) in C geschrieben worden und - viel wichtiger — auch sein API. API

heist »Application Program Interface«, zu deutsch, die Schnittstelle für

Anwenderprogramme.

Um typische Amiga-Programme mit Windows, Pull-down-Menüs und

Requestern zu schreiben oder um die Grafik-Fähigkeiten des Amiga zu

nutzen, muf3 man über das API auf die (im ROM) eingebauten Funktionen

zugreifen. Da diese Funktionen in C geschrieben wurden, kann man auch

in C am besten mit ihnen umgehen, so, wie man mit einem Engländer am

besten englisch spricht. C ist sozusagen die Muttersprache des Amiga.

Andere Sprachen wie Basic können das API zwar auch ansprechen,

benötigen dafür aber einen Übersetzer, hier von Basic nach C. Diese

I]

EINFUHRUNG

12

Übersetzer können aber auch nicht alles - nicht für jede API-Funktion gibt
es einen Basic-Befehl - und zwingen somit den Anwender, selbst als

Dolmetscher tätig zu werden. Solche Leute müssen bekanntlich zwei

Sprachen beherrschen, hier also Basic und C.

C an sich

C an sich ist eine sehr einfache Sprache, sie kennt gerade ein gutes
Dutzend Befehle. Dazu kommen allerdings Hunderte von Funktionen -

praktisch auch Befehle — die Sie je nach Bedarf von der Diskette nach-

laden können. Was C so verdächtig macht, sind zwei Eigenschaften.

Zuerst sind da die Operatoren zu nennen. Den simplen Basic-Befehl i=i+1

können Sie so auch in C schreiben. Das können Sie aber auch auf i+=1

und noch weiter auf i++ kürzen (wir werden das noch üben). Viele sol-

cher Kürzel lassen sich in eine Zeile zwängen, die dann schließlich so un-

übersichtlich wird, daf3 keiner mehr durchblickt, nach drei Tagen auch

nicht mehr der Erfinder selbst. Man muf3 nicht so programmieren, und ich

werde solche Tricks im Buch vermeiden. Verraten werde ich sie dennoch.

Die zweite Eigenschaft von C ist richtig gefährlich. Man muß zwar nicht,

doch man kann in C sehr maschinennah programmieren. Wenn Sie wol-

len, können Sie den Amiga so total umkrempeln, daf3 alles viel besser

oder nichts mehr geht. Damit das möglich ist, fehlen in C einige Prüfun-

gen, die andere Sprachen vornehmen. Gute Systeme geben zwar bei

vielen Fehlern - längst nicht bei allen - sogenannte Warnmeldungen aus,

doch auch die können Sie einfach ignorieren. Anders ausgedrückt: Sie

haben in C alle Freiheiten, aber dafür tragen Sie auch selbst die volle

Verantwortung. Noch ein Gleichnis: Einen Pascal-Programmierer nimmt

die Mama an die Hand und pat auf, daf3 ihm nichts passiert. Als C-Pro-

grammierer dürfen Sie alleine und sogar bei Rot über die Straf3e gehen.

Compiler, Linker und noch ein paar Begriffe

Grundsätzlich versteht ein Computer weder Basic, C noch Pascal und

auch nicht Assembler. Er versteht überhaupt keine Programmiersprache,

sondern nur Zahlenkolonnen. Diese Zahlen sind codierte Befehle, die so-

genannte Maschinensprache. Da sich damit sehr schlecht arbeiten läßt,

hat man die Hochsprachen erfunden, wozu auch C zählt. Eine Hoch-

sprache hat wie jede andere Sprache Vokabeln und Regeln. Im Prinzip ist

die Sprache C englischer Klartext. Der Unterschied ist lediglich, daf3 es

nur wenige Vokabeln gibt und daf3 die Regeln absolut zu beachten sind.

EINFÜHRUNG

Ein C-Programm wird in dieser Hochsprache formuliert, mit einer ganz

normalen Textverarbeitung in den Computer eingetippt und schließlich auf

der Diskette gespeichert.

Jetzt muf3 dieser Text in die Maschinensprache — diese Zahlenkolonnen -

übersetzt werden. Diese Aufgabe übernimmt ein Programm mit dem

Namen Compiler. Das Ergebnis, auch Objekt-Code genannt, wird

gleichfalls auf der Disk gespeichert.

Wie schon gesagt, ist C an sich eine sehr einfache Sprache, die gerade

ein gutes Dutzend Befehle kennt. Dazu kommen allerdings Hunderte von

Funktionen — praktisch auch Befehle -, die zusammen mit dem Compiler

geliefert werden. Einige davon — je nach Fall immer andere - braucht

jedes C-Programm. Deshalb müssen diese Funktionen und der eben mit

dem Compiler erzeugte Objekt-Code zusammengebunden, d.h. gemein-

sam in einer Datei gespeichert werden. Genau diese Aufgabe übernimmt

noch ein Programm mit dem Namen Linker. Das Ergebnis, jetzt also die

dritte Datei, ist das fertige Programm.

1.2 Wie Sie mit diesem Buch arbeiten

Das Buch besteht im wesentlichen aus vier Teilen: der Einführung, die Sie

gerade lesen, dem Tutorium, das einen kompletten C-Kurs beinhaltet, dem

Know-how-Teil, der Ihr C-Wissen erweitert, und der Referenz, die das

Wichtigste zusammenfaßßt.

13

EINFÜHRUNG

14

Das Herzstück des Buchs bildet das Tutorium. Hier lernen Sie in zehn

Sitzungen, wie man den Amiga in C programmiert. Das Prinzip lautet

auch hier »nach einigen grundlegenden Informationen in die Praxis«.
Daf3 dies nicht so trocken und langweilig wie in einem Lehrbuch erfolgt,

zeigt schon die Auswahl des Beispielprogramms: Ein kleines, aber feines

Malprogramm, das alle Amiga-typischen Merkmale wie Windows, Gad-
gets und Requester aufweist - ein Programmgerüst, das sich mit geringem

Aufwand auf beliebige Aufgabenstellungen anwenden läßt. Einige Fra-

gen zur Selbstkontrolle und ein Übungsteil mit sinnvollen Erweiterungen
schließen jede Sitzung ab.

Im Know-how-Teil werden die Feinheiten der Compiler geschildert. Oft

gemachte Fehler und was man dagegen tun kann sind auch ein Thema.

Die goldenen Regeln für eine erfolgreiche C-Programmierung, Kniffe, Tips

und Spezialitäten schließen diesen Teil ab.

Im Referenz-Teil finden Sie zunächst die wichtigsten C-Funktionen zu Intui-

tion, Graphics und DOS sowie die wichtigsten Amiga-Datenstrukturen.

Dann die Schnellinformation, die nach dem Motto »Wie programmiere

ich ...2« einige Standard-Lösungen in C zusammenfal3t.

Der Anhang enthält alle Include-Files des Malprogramms, das Glossar

und Literaturtips.

EINFÜHRUNG

Eine Bitte

Natürlich finde ich es ganz toll, wenn Sie sich gleich mit Ihrem Amiga

dieses Buch gekauft haben, doch bitte pausieren Sie an dieser Stelle.
Bevor Sie C lernen, sollten Sie mit Ihrem Amiga vertraut sein. Sie müssen

die Workbench und - besonders wichtig - das CLI bzw. die Shell kennen.

Sie sollten wissen, wofür die Startup-Sequence gut ist, Directories

(Inhaltsverzeichnisse) anlegen und Dateien kopieren können. Alle diese

Dinge sind in den zum Amiga gehörenden Handbüchern gut beschrieben.

1.3 Schreibweisen

Es folgen jetzt leider einige Begriffe, die erst später erklärt werden, doch

das Thema »Schreibweisen« muf3 hier schon angesprochen werden,

damit Sie beim Weiterlesen wissen, was das soll. Im laufenden Text -
nicht in den Listings - werden Bezeichner der Sprache C fast immer kursiv

geschrieben. Das gilt für

e Variablennamen, z.B. zaehler, wert!

e Funktionsnamen, z.B. printf(), ClearMenuStrip()

e Direktiven, z.B. #define, #include

e Grof} (versal) geschrieben werden Flags und nicht zum Standard-C

gehörende Makros, z.B. DELTAMOVE, BYTE.

Absätze können mit einem Hinweis- oder mit einem Gefahrensymbol

gekennzeichnet sein.

ES" Ein Hinweis ist eine Empfehlung oder ein Rat. Wenn Sie ihn ignorieren oder

vergessen, passiert nicht allzuviel. Im schlimmsten Fall meldet der Compiler

einen Fehler, den Sie korrigieren müssen.

/\ Wenn dieses Symbol auftaucht, ist Gefahr im Verzug. Es gibt zum Beispiel
Tippfehler, die der Compiler nicht erkennt. Bei solchen Fehlern läuft das

Programm falsch oder stürzt ab.

15

EINFÜHRUNG

16

1.4 Hard- und Software-Anforderungen

Programmentwickler unterscheiden immer zwei Computer-Systeme, näm-

lich das Entwicklungssystem — der Rechner, auf dem die Programme ent-

stehen - und die Zielmaschine. Letztere ist der Computer, auf dem die fer-
tigen Programme laufen sollen. Grundsätzlich gilt, daf3 der Entwicklungs-

rechner mindestens alle Merkmale der Zielmaschine haben sollte, doch

das ist nur die halbe Wahrheit. Es nützt nichts, eine kleine Zielmaschine
zu definieren, nach dem Motto »weil ich nur einen kleinen Amiga habe,

schreibe ich nur kleine C-Programme«. Die Compiler selbst brauchen eine

gewisse Rechneraustattung, wenn sie vernünftig arbeiten sollen. Fehlen

diese Voraussetzungen, wird so ein System umständlich bedienbar und
langsam. Ein Profi kann sich da notfalls noch besser helfen als ein Ein-

steiger — ich habe auch schon mal ein paar Tage mit einem Minimum-

Amiga gearbeitet, weil mein 2000er zur Reparatur war -, doch praktisch

ergibt sich daraus eine seltsame Konsequenz:

Gerade als Einsteiger sollten Sie nicht mit einer zu schmalen Hardware-

Basis starten. Sie haben genug damit zu tun, C zu lernen. Wenn Sie sich

dann noch mit den Unzulänglichkeiten der Hardware herumärgern, stän-
dig Diskjockey spielen und nach jedem kleinen (oder großen) Fehler ewig

au den Compiler warten müssen, dann ärgern Sie sich mehr, als daß Sie

C lernen. |

Die ideale Hardware-Basis für diese C-Systeme ist eine Festplatte und

wenigstens 1 Mbyte RAM. Damit kann man sehr schön arbeiten.

Wenn Sie es ganz eilig haben und sehr große Programme entwickeln

wollen, müssen Sie den Compiler nebst »Zubehör« im RAM halten. Dafür

braucht man bei Lattice C in der höchsten Ausbaustufe 2,5 Mbyte. Es wird

oft empfohlen —, auch von Lattice - bei Geldmangel eher eine RAM-Auf-

rüstung als eine Festplatte zu kaufen. Dem kann ich nicht ganz zustimmen,
denn es dauert »ewig«, bis das ganze System von den Disketten in den

RAM-Speicher geladen wird, und nach so manchem Absturz wird diese

Übung immer wieder fällig. Bei den kleineren und mittleren Programmen

dieses Buchs ist die Festplatten-Lösung im Endergebnis schneller.

EINFÜHRUNG

Mit zwei Diskettenlaufwerken kann man durchaus arbeiten, dann reichen

sogar 512 Kbyte RAM. Genau das ist die von Aztec und Lattice genannte
Minimal-Konfiguration. Sie sollten jedoch bedenken, daß für jeden

Durchlauf diverse Programme und Daten (Editor, Compiler, Linker,
Include-Files und Libraries) immer wieder neu von den Disketten geladen
werden müssen. Da ist es dann sehr praktisch, wenn man wenigstens

1 Mbyte RAM hat, so daf3 einige dieser Dateien im Speicher gehalten

werden können.

Rechner mit nur einem Diskettenlaufwerk werden von Aztec und Lattice

offiziell nicht unterstützt. Die mitgelieferten Installationsprogramme kennen

diesen Fall nicht. Ich zeige dennoch, wie Sie die Software für diesen Fall

installieren können. Diese Lösungen sind aber nur für die paar Tage

gedacht, die Sie brauchen, um Ihren Amiga aufzurüsten. Wenn Sie nicht

viel mehr als 250,-- DM ausgeben wollen, empfehle ich ein zweites Dis-
kettenlaufwerk.

Amiga-seitig benötigen Sie:

e Kickstart 1.3

e Workbench 1.3

Als Compiler empfehlen wir:

e Aztec C der Version 5.0.x

oder

e Lattice C der Version 5.0.x

In beiden Fällen reicht auch die sogenannte kleine Version. Die großen

Versionen sollten Sie nicht ohne eine Festplatte einsetzen. Beachten Sie,

daf3 bei Aztec C die kleine Version »Professional-System« und die große

»Developer-System« heißt.

[5° Wenn Sie noch keinen dieser beiden Compiler besitzen, lesen Sie dieses
ganze Kapitel durch. Es wird Ihrer Entscheidungsfindung nützen.

Das Buch setzt einen dieser beiden Compiler voraus. Beide haben ihre

kleinen Vor- und Nachteile, ich kann jedoch beim besten Willen nicht

sagen, daf3 der eine besser ist als der andere. Eines bleibt jedoch festzu-

stellen: Wenn der Rechner nur Diskettenlaufwerke - vielleicht sogar nur

17

EINFÜHRUNG

18

eines — und wenig RAM-Speicher hat, kommt man mit Aztec C besser

zurecht. Lattice hat den besseren Editor und auch die besseren Hand-

bücher.

Grundsätzlich sind auch andere Compiler einsetzbar, sofern diese den

ANSI-Standard erfüllen. Das Buch erläutert jedoch nur die Bedienung von

Aztec C und Lattice C der Version 5.0.x. Auf Unterschiede zu den Vor-

gänger-Versionen wird stellenweise hingewiesen.

Ich empfehle jedoch dringend, eine 5er-Version einzusetzen. Nur die

Versionen 5.0.x und höher erfüllen voll den sogenannten ANSI-Standard

(eine anerkannte amerikanische Norm) und stellen damit ein sehr moder-

nes C dar. Natürlich sollten Sie, wenn schon, dann auch das neuste C

lernen, aber »ANSI« hat noch zwei Vorteile.

1. Programme für den alten K&R-Standard laufen auch unter ANSI C,
umgekehrt gilt das nicht (auf die Unterschiede wird in der ersten

Sitzung noch eingegangen).

2. Auch die guten C-Compiler anderer Rechner halten sich an den
ANSI-Standard, Sie können also leicht C-Programme oder Listings

auf den Amiga portieren.

1.5 Die Installation der Compiler

Die ersten Schritte sind für beide Compiler die gleichen, nämlich das

Anlegen von Sicherungs- und Arbeitskopien. Das sind zwei verschiedene

Dinge.

Zuerst kopieren Sie Ihre kostbaren Originale 1:1, das ergibt die Siche-

rungskopien. Danach legen Sie die Originale gut weg und arbeiten nur

noch mit den Sicherungskopien weiter.

Als Festplattenbesitzer installieren Sie dann von den Sicherungskopien aus

das System auf der Festplatte. Die Disketten brauchen Sie erst wieder,

wenn ein Fehler auf der Festplatte zu beheben ist oder Sie Änderungen

rückgängig machen wollen.

Wenn Sie nur Diskettehlaufwerke haben, müssen Sie die Sicherungs-
kopien nochmals duplizieren. Das ergibt dann die Arbeitskopien. Dieser

Umstand ist erforderlich, weil die Arbeitskopien geändert werden und

somit mit den Sicherungskopien nicht mehr übereinstimmen.

EINFÜHRUNG

ES" Wenn Sie Aztec C auf einem Amiga mit zwei Diskettenlaufwerken einsetzen

wollen, brauchen Sie von den Disketten »Aztec]« und »Aztec2« keine

Arbeitskopien zu erstellen, das erledigt das Installationsprogramm.

1.5.1 Anfertigen von Sicherungs- und Arbeitskopien

Wenn Sie eine Lattice-Diskette einlegen, wird sie sich mit einem riesigen

Disk-Icon auf der Workbench breitmachen. Leider hat das auch zur Kon-

sequenz, daf3 Sie die Disketten nicht auf der Workbench duplizieren kön-

nen. Aztec hat das Problem nicht. Dennoch wechseln Sie in beiden Fällen

in die Shell oder in das CLI, indem Sie das Shell- oder das CLI-Icon dop-

pelt anklicken. Alle weiteren Operationen laufen sowieso unter dieser

Umgebung. Für jede Diskette wiederholen Sie die folgenden Schritte:

Stellen Sie sicher, daf3 auf den Originalen der Schreibschutz eingeschaltet

ist. Geben Sie ein:

Mit zwei Laufwerken:

diskcopy df0: dfl:

Mit einem Laufwerk:

diskcopy df0: df0:

Folgen Sie den Anweisungen auf dem Schirm. In diesem Dialog bedeuten:

e Source (From Disk): die Diskette, die kopiert werden soll.

e Destination (To Disk): die Diskette, auf die kopiert werden soll.

ES Der Diskcopy-Befehl kopiert auch die Namen der Disketten 1:1. Bitte ändern
Sie diese Namen nicht. Sowohl während der Installation als auch im Betrieb

wird auf diese Namen Bezug genommen.

ES" Die folgenden sechs Installations-Prozeduren stellen einige, aber nicht alle

denkbaren Möglichkeiten dar. Sie sollten deshalb, nachdem Sie Ihren Compi-

ler für Ihre Hardware installiert haben, sich einmal die anderen Konfiguratio-

nen anschauen. Vielleicht können Sie davon auch noch etwas gebrauchen.

19

EINFÜHRUNG

20

1.5.2 Installation von Aztec C auf der Festplatte

Die Prozedur ist sehr einfach, hier das Kochrezept:

1.

5.

Starten Sie Ihren Amiga und wechseln Sie (wenn nicht schon gesche-

hen) auf die Festplatte.

Legen Sie die Kopie von »Aztec1« in das Laufwerk DFO: ein.

Gehen Sie in das CLI und tippen Sie ein:

dfO:hdinstall

Im Window SELECT LIBRARIES klicken Sie mit der Maus an:

X Small Code/Small Data

X 32-bit Integers

X MANX IEEE

Folgen Sie dem Dialog, der Sie im wesentlichen auffordert, nachein-
ander die anderen Disketten einzulegen.

Jetzt gibt es zwei Möglichkeiten:

1. Sie haben noch andere Compiler auf der Festplatte, die auch Um-

gebungsvariablen wie LIB und INCLUDE brauchen. In diesem Fall

legen Sie im s-Directory Ihrer Startdiskette bzw. bei einer Autoboot-

Festplatte dort eine Textdatei dieses Inhalts an: |

path "dAh0:Aztec/Bin"

mset "CCTEMP=ram:"

mset "CLIB=dh0:Aztec/Lib"

mset "INCLUDE=dh0 :Aztec/Include"

ES" Den im Handbuch häufig erwähnten set-Befehl gibt es nicht. Statt dessen

müssen Sie mset (MANX's set) so einsetzen, wie es die obigen Beispiele

zeigen.

Wenn Sie den Z-Editor zusammen mit der Quickfix-Compiler-Option
nutzen wollen (siehe 1.6.1, Z-Editor), fügen Sie noch diese Zeile ein:

mset "CCEDIT=dh0 :Aztec/bin/z"

Speichern Sie diese Datei unter dem Namen az. Später werden Sie in

das Aztec-Directory wechseln und dann execute az tippen, womit Sie

die Umgebungsvariablen von Aztec C definieren. Diese braucht das

System, um die einzelnen Dateien zu finden.

EINFÜHRUNG

2. Aztec C ist Ihr einziger Compiler auf der Festplatte. In diesem Fall

reicht es, die obigen vier Zeilen in Ihre Startup-Sequence einzu-

fragen.

1.5.3 Installation von Aztec C für zwei Diskettenlaufwerke

Vorab: Zumindest bei meiner im September 1990 erworbenen Version
5.0b von Aztec C stimmt die tatsächliche Installations-Prozedur nicht mit

der im Handbuch überein. Die beiden ersten Disketten (Aztecl und
Aztec2) sind zwar das lauffähige Entwicklungssystem, nur die Startup-

Sequence paßt dafür überhaupt nicht, und die Disketten sind voller als für
den echten Betrieb nötig. Deshalb sollten Sie die mitgelieferte Installations-

Prozedur anwenden und erst danach (oder später) mit der Maßschneide-

rei beginnen, wie sie im Handbuch erwähnt wird.

Hier das Kochrezept für die richtige Installation:

1. Halten Sie zwei leere Disketten bereit, diese miissen nicht formatiert

sein.

Legen Sie die Kopie von »Aztecl« in Ihr Startlaufwerk (DFO:) ein.
Wenn Ihr Amiga schon läuft, gehen Sie in das CLI und tippen ein:

execute dfO:install

Ist Ihr Amiga noch aus, starten Sie ihn einfach mit der Diskette

»Aztec1« im Startlaufwerk (DFO:).

Auf die Frage »install to hard disk?« antworten Sie mit »n [Return)«.

Auf die Frage »do you wish to read the 'read.me file'?« können Sie

mit »n (Return]« antworten.

Auf die Frage »is your second floppy drive called df1:2« antworten

Sie mit »y [Return)«, wenn Ihr zweites Laufwerk eingebaut ist. Heißt
Ihr zweites Laufwerk »DF2:« (typisch für ein externes Laufwerk), ant-
worten Sie »n [Return |.

Eine Aufforderung wie

Insert a blank disk in drive dfx:

then press <enter> and to continue

heißt, daß Sie eine leere Diskette in das Laufwerk dfx: (DF1: oder

DF2:) einlegen und dann die (Return)-Taste drücken sollen.

21

EINFÜHRUNG

22

7. In dem dann erscheinenden Window SELECT LIBRARIES klicken Sie

mit der Maus an:

X Small Code/Small Data

X 32-bit Integers

X MANX IEEE

Nun folgen Sie dem weiteren Dialog. Eine Aufforderung wie

Insert Aztec Disk #2 in df0:

Click 'OK' to continue

heif3t, dal Sie die zweite Aztec-Diskette (Ihre Kopie) in das Laufwerk

DFO: einlegen und dann mit der Maus auf das OK-Feld klicken sollen.

Im Directory :devs/keymaps löschen Sie die Datei usal und kopieren

dafür die Datei d von Ihrer Workbench-Diskette dorthin.

Mit einem Editor (zum Beispiel ED) ändern Sie die Datei sfartup-sequence

im s-Directory. Fügen Sie diese Zeile ein:

:System/setmap d

Wenn Sie mehr als 512 Kbyte RAM haben, sollten Sie diesen nutzen. Um

beispielsweise die Libraries und alle Programme im C-Directory (Compiler

und Linker inklusive) in den RAM-Speicher zu bringen, muß der entspre-

chende Teil der Startup-Sequence so aussehen:

copy dfl:libs ram:

mset "CLIB=ram:"

copy df0:c ram:

path ram: add

Prüfen Sie bitte, auf welchen Disketten sich tatsächlich die Directories libs

und c befinden, und setzen Sie die entsprechenden Namen oder Lauf-

werke ein.

ES Eine alternative Lösung ist mittels »resident« ab der Workbench 1.3 möglich.

Die Startup-Sequence im Abschnitt 1.5.7 zeigt die Anwendung.

EINFÜHRUNG

1.5.4 Installation von Aztec C für ein Diskettenlaufwerk

Die Arbeit ist nicht schwierig, aber langwierig. Beginnen Sie mit der

Arbeitskopie von »Aztec1« und löschen Sie alles, was nicht im folgenden

Directory-Listing steht. Dann kopieren Sie alles, was noch fehlt, von

»Aztec2« auf »Aztec1«.

c (dir)

AddBuffers

Assign

CD

Delete

Echo

endcli

in

Makedir

Path

Stack

System

CLI

l (dir)

Disk-Validator

Port-Handler

devs (dir)

keymaps

a

clipboards

(dir)

(dir)

as

cc

Copy
Dir

ed

Execute

loadwb

mset

Run

settMap

Newcon-Handler

Ram-Handler

(dir)

system-configuration

s (dir),

startup-sequence

t (dir)

fonts (dir)

/* unverändert übernommen */

libs (dir)

c.lib diskfont.library

icon.library info.library

version.library

include (dir)

/* unverändert übernommen */

Empty (dir)

Listing 1.5.1: Das Inhaltsverzeichnis von Aztec C

23

EINFÜHRUNG

24

Nun müssen Sie noch die Startup-Sequence im s-Directory mit einem Edi-
tor (z.B. ED) so ändern, daf} sie mindestens wie folgt aussieht:

addbuffers df0: 10

echo "Aztec wird vorbereitet, bitte warten..."

Stack 8000

path ram:

assign ENV: ram:

path Aztecl:system add

mset "CLIB=Aztecl:libs"

mset "INCLUDE=Aztecl:include"

mset "CCTEMP=ram:"

setmap d

echo "Fertig"

Wenn Sie den Z-Editor zusammen mit der Quickfix-Compiler-Option
nutzen wollen (siehe 1.6.1, Z-Editor), fügen Sie noch diese Zeile ein:

mset "CCEDIT=Aztecl:c/z"

und kopieren auch noch das Z-Programm in das c-Directory.

Das Beispiel unterstellt, daf3 die Diskette »Aztec1« heißt. Sollten Sie den

Namen geändert haben, müssen Sie die Startup-Sequence anpassen. Das
Ergebnis ist eine bootfähige Diskette, auf der sich alles befindet, was Sie

für die C-Entwicklung vorerst benötigen. Wie schon gesagt: Diese Lösung

ist nur für die paar Tage gedacht, die Sie brauchen, um Ihren Amiga auf-

zurüsten.

copy df0:libs ram:

mset "CLIB=ram:"

copy dfO:c ram:

path ram: add

EINFÜHRUNG

1.5.5 Installation von Lattice C auf der Festplatte

Die Prozedur ist sehr einfach, hier das Kochrezept:

1.

4.

Starten Sie Ihren Amiga und wechseln Sie (wenn nicht eh schon da)

auf die Festplatte.

Legen Sie die Kopie von »Lattice_C_5.0.1« in das Laufwerk DFO: ein.

Gehen Sie in das CLI und tippen Sie ein:

execute df0:s/install hd

Folgen Sie dem Dialog, der Sie auffordert, nacheinander die anderen

Disketten einzulegen.

Jetzt gibt es zwei Méglichkeiten:

1. Sie haben noch andere Compiler auf der Festplatte, die auch Um-
gebungsvariablen wie LIB und INCLUDE brauchen. In diesem Fall

legen Sie im s-Directory Ihrer Startdiskette bzw. bei einer Autoboot-

Festplatte dort eine Textdatei dieses Inhalts an:

assign LC: sys:lc/c

assign INCLUDE: sys:lc/include

assign LIB: sys/lc/lib

assign QUAD: ram:

Speichern Sie diese Datei unter dem Namen lat. Später werden Sie in

das LC-Directory wechseln und dann execute lat tippen, womit Sie die

Umgebungsvariablen von Lattice C definieren. Diese braucht das
System, um die einzelnen Dateien zu finden.

Lattice C ist lhr einziger Compiler auf der Festplatte. In diesem Fall

reicht es, die obigen vier Zeilen in lhre Startup-Sequence einzu-

tragen.

1.5.6 Installation von Lattice C für zwei

Diskettenlaufwerke

Die beiden ersten Disketten (Lattice_C_5.0.1 und Lattice_C_5.0.2) sind

schon das lauffähige Entwicklungssystem. Lattice_C_5.0.1 gehört in das

Startlaufwerk, Lattice_C_5.0.2 in das zweite. Wenn Sie damit Ihren Amiga

starten, werden automatisch die Umgebungsvariablen korrekt gesetzt.

25

EINFÜHRUNG

26

Damit Sie wenigstens noch vorerst Ihre Programme auf den zu 99 Prozent

vollen Disketten unterbringen können, müssen Sie einige Dateien löschen

(bitte nur auf den Arbeitskopien). Auf der Disk 1 (Lattice_C_5.0.1) bieten
sich dafür an:

sys: #?info, "on Lattice C", read.me

C: Avail, List, Queue, RemRad, Rename;

weitere CLI-Befehle, die Sie

selten brauchen.

System: format, Diskcopy, #?info.

devs: narrator.device, serial.device

1: FastFileSystem

libs: translator-library

Auf der Disk 2 (Lattice_C_5.0.2) können Sie im Lib-Directory diese Mathe-

matik-Libraries löschen:

lcmieeelib

Icmffp.lib

1cm881.lib

Reicht das noch nicht, löschen Sie auch die beiden Debug-Libraries und

dann weiter nach Gutdünken. Fehlt Ihnen plötzlich eine Library, wird das

der Linker schon melden. Dann müssen Sie diese eben wieder auf die

Disk kopieren und dafür eine andere löschen. Ansonsten empfiehlt sich,

eine dritte formatierte Diskette bereitzuhalten, auf der Sie Ihre Quelltexte

und Programme speichern.

Im Directory :devs/keymaps löschen Sie die Datei usal und kopieren

dafür die Datei d von Ihrer Workbench-Diskette dorthin.

Mit einem Editor (zum Beispiel ED) ändern Sie die Datei startup-sequence

im s-Directory. Fügen Sie als zweite Zeile ein:

:System/setmap d

Im Editor LSE bleiben dennoch + (x) und + ver-
tauscht. Sie müssen daher eine Zeile mit + löschen.

EINFÜHRUNG

Wenn Sie einen Amiga mit 1 Mbyte oder mehr RAM haben, fügen Sie in

der Datei install_floppy im s-Directory diese Zeilen hinzu:

resident lc:lcl

resident lc:lc2

resident lc:blink

Die Texte stehen bereits in Echo-Anweisungen und müssen nur noch

geändert werden. Sie erreichen damit, daf3 der Compiler und der Linker
im RAM gehalten und nicht jedesmal neu von der Diskette geladen

werden müssen.

Wenn Sie einen Amiga mit 2 Mbyte oder mehr RAM-Speicher haben,

ersetzen Sie in der Datei install_floppy im s-Directory die Zeile

assign LIB: Lattice C 5.0.2:11b

durch diese beiden Zeilen:

copy Lattice C 5.0.Z:lib ram:

assign LIB: ram:

Damit werden alle Libraries in die RAM-Disk kopiert, womit das System

drastisch schneller wird.

1.5.7 Installation von Lattice C für ein Diskettenlaufwerk

Die beiden ersten Disketten (Lattice C_5.0.1 und Lattice_C_5.0. 2) sind

schon das lauffähige Entwicklungssystem. Lattice_C_5.0.1 gehört in das
Startlaufwerk, Lattice_C_5.0.2 normalerweise in das zweite Laufwerk.

Wenn letzteres fehlt, können Sie das System nur so konfigurieren, daf3 die
Programme immer abwechselnd die eine oder die andere Diskette anfor-
dern. Dafür müssen Sie die Startup-Sequence im s-Directory mit einem

Editor (z.B. ED) so ändern, daf3 sie in etwa wie folgt aussieht:

Auf einem Amiga mit nur 512 Kbyte RAM lassen Sie alle Resident-Befehle

weg.

27

EINFÜHRUNG

28

echo "Lattice C wird vorbereitet,

c:resident sys:c/resident

resident

resident

resident

resident

resident

resident

:cd ram:QaQaaaana
assign CL

sys:

:c/echo

:c/path

:c/dir

sys

sys

sys

sys:

:c/cdsys

IPS:

assign ENV:

assign QUAD:

assign LC: Cs.

assign INCLUDE: Lattice C 5.

CS.assign LIB:

path lc:

resident

resident

resident

cd df0:

add

-0

c/assign

c/MakeDir

:SetPatch >NIL:

:AddBuffers df0: 30

:FF >NIL:

:makedir ram:env

:makedir ram:clipboards

ram:clipboards

ram.enV

RAM:

Lattice 0

: Compact
ibo00NINEILattice

le:lel

le:lc2

lc:blink

:system/setmap d

echo "Fertig"

Damit Sie wenigstens noch vorerst Ihre Programme auf den zu 99 Prozent

vollen Disketten unterbringen können, müssen Sie einige Dateien löschen

(bitte nur auf den Arbeitskopien). Dazu verfahren Sie wie bei der Lösung

Listing 1.5.2: Startup-Sequence

für zwei Laufwerke (Abschnitt 1.5.6).

Wenn Sie einen Amiga mit 2 Mbyte oder mehr RAM haben, ersetzen Sie

die Zeile

bitte warten... "

EINFÜHRUNG

assign LIB: Lattice C_5.0.2:lib

durch diese beiden:

copy Lattice C 5.0.2:lib ram:

assign LIB: ram:

Damit werden alle Libraries in die RAM-Disk kopiert, womit das System

drastisch schneller wird und das häufige Diskettenwechseln entfällt.

1.6 Grundlagen im Umgang mit C-Compilern

Wie Sie schon gemerkt haben, war die Installation des Compilers nebst

seinem Zubehör recht aufwendig, doch die Mühe hat sich gelohnt. Sie

können das System bedienen, ohne sich darum kümmern zu müssen, auf

welchen Disketten und in welchen Directories sich die einzelnen Pro-

gramme und Daten befinden. Dennoch bleibt noch etwas zu tun.

1.6.1 Die Wahl des Editors

Wie schon gesagt, ist ein C-Programm zuerst einmal Text, den Sie mit

jedem Textprogramm oder Editor (ein anderer Name) eingeben können.

Dennoch werden Sie hauptsächlich im Editor arbeiten, hier gestalten Sie

Ihr Programm. Daher sollten Sie schon auf ein Werkzeug Wert legen, mit

dem Sie gerne arbeiten.

Die erste Regel lautet: Wenn Sie einen bestimmten Editor gewohnt sind,

bleiben Sie dabei. Wenn Sie mit Ihrem Lieblings-Textverarbeitungspro-

gramm arbeiten wollen, ist das auch OK. Sie müssen hierbei nur darauf

achten, daf} der Text unformatiert (als ASCII) gespeichert wird. Im folgen-

den werden vier Editoren kurz vorgestellt, Sie haben die Qual der Wahl.

Der Amiga-Editor ED

Der Editor ED wird seit »Urzeiten« mit dem Amiga geliefert, ist in seinem

Handbuch und in zahllosen anderen Werken beschrieben und allgemein

sehr beliebt. Wenn Sie Ihre C-Programme mit Hilfe von ED erstellen

wollen, ist das OK.

29

EINFÜHRUNG

30

MEMACS

MEMACS ist ein Geschenk von Commodore (auf der Extras-Diskette), das

unverdientermafien wenig bekannt ist. MEMACS ist ein Editor für Pro-

grammierer, da er — unter vielen anderen Programmierer-Features — er-

laubt, mehrere Textdateien gleichzeitig zu bearbeiten. Gerade beim
Amiga ist das von besonderer Bedeutung, weil sich viele Dinge, wie der

Aufbau von Windows oder Menüs, in allen Programmen wiederholen. Da

ist es denn sehr praktisch, wenn man die jeweils am besten passende

Routine aus verschiedenen anderen Programmen leicht ausschneiden und

einsetzen kann. Die Bedienung von MEMACS ist dank der Pull-down-

Menüs recht einfach. Sie wird im Amiga-DOS-1.3-Benutzerhandbuch

mehr als ausführlich auf 38 Seiten beschrieben. Eines kommt jedoch nicht

so klar heraus, und das ist der für Sie besonders wichtige C-Modus. Um

diese Betriebsart einzuschalten, gehen Sie so vor:

e Tippen Sie + oder wählen Sie Set aus dem Extras-Menü.

e Es erscheint die Frage Set what:. Geben Sie mode ein.

e Es erscheint die Frage Mode:. Geben Sie c ein.

Jetzt können Sie aus dem Search-Menü Fence-match wählen oder (Esc)+
+ tippen. Generell sucht Fence-match das nächste Auftreten

des Zeichens, auf dem der Cursor gerade steht. Besonders praktisch ist

das, wenn Sie von der offenen »{«-Klammer ausgehend die geschlossene
Klammer »}« suchen. In C werden die geschweiften Klammern sehr häufig

benötigt. Sie können damit leicht kontrollieren, ob die Klammern paarig

sind — eine beliebte Fehlerquelle -, aber auch schnell vom Beginn einer

Funktion an ihr Ende gelangen.

Der Z-Editor von Aztec

Der Editor mit dem kurzen Namen »Z« wird mit Aztec C geliefert. Sein

Vorteil ist die QuickFix-Option. Ist diese eingeschaltet, passiert folgendes:

Wenn Sie ein Programm kompilieren und dabei ein Fehler auftritt, wird

automatisch »Z« gestartet, der Cursor steht in der (wahrscheinlich) fehler-

haften Zeile, und die Fehlermeldung wird angezeigt. Sie können den

Fehler korrigieren, wieder den Compiler aufrufen, und das Spiel kann von

vorne beginnen.

»Z« ist eine ziemlich exakte Kopie des Unix-Editors »Vi«, woraus auch

sein Nachteil resultiert, nämlich die furchtbar komplizierte Bedienung, die

EINFÜHRUNG

man auf 50 englischen Handbuchseiten regelrecht pauken muß. Wenn

Sie das möchten... Doch ich kann Ihnen wirklich nicht raten, mit »Z« zu

beginnen.

Der Lattice-Screen-Editor LSE

Der Lattice-Editor LSE ist im Vergleich zu »Z« eine richtige Erholung, da

kommt Freude auf. Es handelt sich um einen Multi-Window-Editor (wie

MEMACS) mit Pull-down-Menüs, über die alle wichtigen Funktionen

erreicht werden können. Der Rest - und alles alternativ — läuft über

Tastenkürzel, doch die müssen Sie auch nicht lernen. Ein Druck auf die

(F1 }-Taste bringt Hilfe, und mit [Esc] sind Sie wieder im Text. Mit der
(Fa)-Taste starten Sie den Compiler. Stellt der einen Fehler fest, wird er
angezeigt, und der Cursor steht in der fehlerhaften Zeile. Um das Pro-

gramm zu linken und zu starten, müssen Sie aber doch LSE verlassen.

Sie können LSE, ohne auch nur einen Blick in das Handbuch geworfen zu

haben, sofort bedienen. Dennoch würde ich Ihnen raten, die rund 80

Seiten einmal durchzublättern. LSE bietet unheimlich viele Extras.

Einen Nachteil hat auch LSE. Für die Control-Codes gilt die amerikanische

Tastaturbelegung. Dazu müssen Sie aber nur wissen, daf3 Y und Z ver-

tauscht sind und Sie für die Blockmarkierung + (a) für den Beginn

sowie + (*) für das Ende tippen müssen.

1.6.2 Kompilieren und Testen mit Aztec C

Wenn Sie ein Diskettensystem gemäß Abschnitt 1.5.3 oder 1.5.4 ein-

setzen, reicht es, Ihren Amiga mit diesen Disketten zu starten. Die erste

Diskette (Aztec1) muf} im Laufwerk DFO: eingelegt sein.

Arbeiten Sie mit einer Festplatte, gehen Sie in das CLI oder die Shell und

wechseln in das Aztec-Directory. Wenn Sie die path- und mset-Befehle

gemäß Abschnitt 1.5.2 nicht in Ihre Startup-Sequence eingetragen hatten,

geben Sie jetzt ein:

execute az

Geben Sie mit einem Editor Ihrer Wahl (siehe 1.6.1) folgenden Text ein,
und speichern Sie ihn unter dem Namen hallo.c.

3]

EINFÜHRUNG

‘32

main ()

{

printf("Hallo Welt \n");

}

Wieder im CLI, kompilieren Sie diesen Quelltext mit dem Befehl

cc hallo

Jetzt müssen Sie noch linken, und zwar mit

In hallo -lc

Damit ist das Programm erstellt. Wenn Sie jetzt hallo eingeben,

sollten Sie den Text »Hallo Welt« sehen.

1.6.3 Kompilieren und Testen mit Lattice C

Wenn Sie ein Diskettensystem gemäß Abschnitt 1.5.3 oder 1.5.4 ein-

setzen, reicht es, Ihren Amiga mit diesen Disketten zu starten. Die erste

Diskette (Aztec1) muf3 im Laufwerk DFO: eingelegt sein.

Arbeiten Sie mit einer Festplatte, gehen Sie in das CLI oder die Shell, und

wechseln Sie in das LC-Directory. Wenn Sie die assign-Befehle gemäß

Abschnitt 1.5.5 nicht in Ihre Startup-Sequence eingetragen hatten, geben

Sie jetzt dieses Kommando ein:

execute lat

Geben Sie mit einem Editor Ihrer Wahl (siehe 1.6.1) folgenden Text ein,

und speichern Sie ihn unter dem Namen hallo.c.

void main()

{

printf("Hallo Welt \n");

}

Wieder im CLI, kompilieren und linken Sie diesen Quelltext mit dem
Befehl

lc -L hallo

ES Das L bei -L muß groß geschrieben werden.

Damit ist das Programm erstellt. Wenn Sie jetzt hallo eingeben,

sollten Sie den Text »Hallo Welt« sehen.

EINFÜHRUNG

1.6.4 Wenn etwas nicht funktioniert

Zum Schluß noch einige Tips, für den Fall, daß etwas nicht funktionieren

sollte. |

Stellen Sie sicher, daf3 die Datei hallo.c existiert. Testen Sie das durch die

Eingabe von

type hallo.c

Wenn der Compiler einen Fehler (Error) meldet, muß ein Tippfehler vor-

liegen. Prüfen Sie anhand des Listings speziell:

e Folgen nach main die runden Klammern »()«?

e Sind die Klammern vor und nach der printf()-Zeile geschweifte Klam-
mern (erst auf, dann zu)?

e Steht der Text innerhalb der runden Klammern von prinif{) in Anfüh-
rungszeichen? Endet diese Zeile mit einem Semikolon?

Wenn Programme oder Dateien nicht gefunden werden, kann das fol-

gende Gründe haben:

e Die Umgebungsvariablen sind nicht oder falsch eingestellt. Kontrollie-

ren Sie die assign-, path- und mset-Befehle gemäf3 Abschnitt 1.5 auf

Vollständigkeit und richtige Schreibweise. Sind diese Befehle nicht
Teil der Startup-Sequence, müssen Sie sie selbst aktivieren (execufe

az bzw. execute lat).

e Programme oder Daten sind nicht oder in das falsche Verzeichnis

kopiert worden. Das betrifft speziell die Ein-Disketten-Lösung von

Aztec C. Kontrollieren Sie das gemäfß3 Abschnitt 1.5.4

ES" Aus drucktechnischen Gründen wurden öfter sogenannte Stringliterale in
einer Zeile begonnen und in der nächsten fortgesetzt. Das melden die Com-

piler als Fehler. Beachten Sie deshalb unbedingt die folgende PS Erläuterun

g »Zeilenumbruch«

Zeilenumbruch von Stringliteralen

Ein Stringliteral ist ein Text, der in Anführungszeichen steht. Dieses Literal

muß3 in einer Zeile stehen. Zum Beispiel ist korrekt:

printf("Das ist ein String-Literal");

33

EINFÜHRUNG

Hingegen ist nicht korrekt

printf("Das ist ein

String-Literal");

Die zweite Form haben wir aus drucktechnischen Gründen manchmal

wählen müssen. Wir meinen, das ist günstiger als eine zu kleine Schrift.

Der Lattice-Compiler meldet in diesem Fall

String too long or not terminated

Aztec hingegen meldet dann gleich vier Fehler, nämlich

unterminated string

need right parenthesis or comma in arg list

missing semikolon -

unterminated string

Schreiben Sie solche Literale in eine Zeile, ist der Schaden behoben.

34

2.1 Erste Sitzung: Anatomie eines C-Programms

Die Themen dieser Sitzung:

e Wie ist ein C-Programm aufgebaut?

e Elemente der Sprache C

e Funktionen

e Variablen

Was halten Sie von einem Fahrlehrer, der einem Anfänger folgendes

sagt? »Treten Sie auf das Pedal links unten, schieben Sie die Stange nach

vorne links, lassen Sie das linke Pedal los, und treten Sie gleichzeitig auf

das rechte.«. Wahrscheinlich. halten Sie es für besser, erst einmal zu

erklären, was Kupplung, Schaltung und Gaspedal sollen. Genau das pas-

siert in dieser Sitzung, zum Schluf3 fahren wir auch ein Stück. Leider hat

die Sprache C aber viel mehr Pedale, Hebel und Schalter als ein Auto,

weshalb diese erste Fahrstunde etwas länger dauert.

35

TUTORIUM

36

Struktur eines C-Programms

Die Struktur eines C-Programms ist sehr einfach. Nach einem nicht unbe-

dingt erforderlichen Einleitungsteil folgen Funktionen, Funktionen und

nochmals Funktionen. Das ganze Programm und die Funktionen selbst

müssen nach einem vorgeschriebenen Schema aufgebaut - man sagt

auch strukturiert — sein. Am einfachsten läßt sich das System anhand

eines Beispiels erklären. Wenden wir uns also dem Listing 2.1.1 zu.

/* Hiermit beginnt ein Kommentar,

der erst endet, wenn "Stern-Strich folgt. */

#include <stdio.h> /* Ein Header-File einlesen */

int i; /* Eine Variable deklarieren */

hallo() /* Das ist eine Funktion */

{

printf("Hallo, lieber Leser! \n");

Hier steht häufig die Beschreibung

der dann folgenden Funktion

* /

int multipliziere(int mp, int mk)

{

int ergebnis; /* Eine lokale Variable */

ergebnis = mp * mk;

return (ergebnis);

}

main() /* Hier startet das Programm */

{

hallo (); /* Funktion wird aufgerufen */

i = 4711; /* Variable erhält Wert * /

printf£("Sd \n", i); /* Variable wird ausgegeben */

1 = multipliziere (3,4);

printf("%d \n", i);

printf("Sd \n", multipliziere (3,4));

}

Listing 2.1.1: Das erste Programm enthält schon fast alle typischen Elemente der Sprache C

TUTORIUM

Funktionen

Eine Funktion ist ein Stück Programm, das ausgeführt wird, wenn man die

Funktion aufruft, d.h., den Funktionsnamen hinschreibt. Im Listing 2.1.1 ist

zum Beispiel hallo() eine Funktion. Alle C-Befehle und auch die Funktions-

aufrufe können nur innerhalb von Funktionen auftauchen.

ES" Im Gegensatz zu Pascal sind in C Schachtelungen verboten, d.h., innerhalb

einer Funktion darf keine weitere Funktion definiert werden.

Jedes C-Programm hat mindestens eine Funktion namens main(). In dem

kleinen Programm laut Listing 2.1.1 treten auch schon fast alle weiteren

Struktur-Elemente der Sprache C auf. Nehmen wir uns diese Elemente

doch einfach einmal der Reihe nach vor.

/* Das ist ein Kommentar */

Kommentare sind erklärende Texte, die im fertigen Programm nicht mehr

auftauchen, weil sie der Compiler einfach ignoriert. Sie sparen also

nichts, wenn Sie die Kommentare weglassen — noch nicht einmal der

Compilerlauf wird dadurch merklich schneller -, doch Sie verlieren viel,

wenn Sie darauf verzichten. Auch Profis wissen nach ein paar Monaten

nicht mehr, was sie da einst getrickst hatten, wenn sie nur den nackten

Quelltext lesen. Der Sinn einer Funktion, ihre Abhängigkeiten, die

Bedeutung von Datenstrukturen und vieles mehr bleiben ohne Kommen-

tare unklar. Ein Kommentar beginnt mit /* und endet mit */.

Verschachtelungen sind verboten. Folglich geht das nicht:

/* Im Kommentar /* darf nicht */ noch einer sein */

/\ In einem Kommentar darf die Zeichenfolge /* stehen, und das ist die

Quelle für einen beliebten Fehler. Wenn Sie zum Beispiel im Listing 2.1.1

beim Kommentar »/* Variable erhält Wert */« den Abschluß (*/) weglas-

sen, wird das folgende prinif() nicht mehr ausgeführt, weil erst danach der

immer noch offene Kommentar geschlossen wird.

- Direktiven

Ziemlich zu Beginn von Listing 2.1.1 finden Sie die Direktive #include
<stdio.h>. Alle Direktiven beginnen mit dem #-Zeichen. Eine Direktive ist

eine Anweisung an den Compiler. #include bedeutet, daf3 eine Textdatei

eingeschlossen (eingelesen) werden soll. Texte, die immer wieder

gebraucht werden, tippt man nicht jedesmal neu, sondern speichert sie

auf der Disk und »included« sie dann. Die Wirkung ist die gleiche, als ob

37

TUTORIUM

38

der Text ab dieser Zeile eingetippt worden wäre. Die Datei stdio.h wird

bereits mitgeliefert. Von diesen Header-Dateien - kurz H-Files genannt —
gibt es sehr viele. Meistens definieren sie Konstanten mittels der Direktive

#define. Die Direktive

tdefine ITEMTEXT 2

gibt der Konstanten »2« den symbolischen Namen ITEMTEXT. Ist das ein-

mal definiert, können Sie anstatt 2 auch ITEMTEXT schreiben. Wenn

solche Begriffe urplötzlich in einem Listing auftauchen, stammen sie immer

aus einem Include-File. Unser ITEMTEXT ist zum Beispiel definiert, wenn

Sie #include <intuition.h> schreiben, weil in diesem H-File auch #define

ITEMTEXT 2 steht.

Befehle

Ein Programm ist eine Folge von Befehlen. In diesem Sinne sind auch

Funktionsaufrufe Befehle. Ein einfacher Befehl ist zum Beispiel die Zuwei-

sung i = 4711;. Nach Befehlen muß ein Semikolon folgen. Ansonsten -

und deshalb - ist C formatfrei. Leerstellen, Tabulatoren und Zeilenschal-
- tungen werden vom Compiler ignoriert.

E33” Beachten Sie jedoch, daß Stringliterale (Texte in Anführungszeichen) nicht in
der nächsten Zeile fortgesetzt werden dürfen. Siehe auch die Hinweise am

Ende der Einführung.

Schlüsselwörter und Namen

Schlüsselwörter sind Elemente der Sprache C. Die Tabelle 2.1.1 enthält

nur die Schlüsselwörter des Standard-C. Einzelne Compiler können

weitere Schlüsselwörter haben. Wichtig zu wissen ist, dal} Schlüsselwörter

nicht als Namen eingesetzt werden dürfen. Namen vergeben Sie selbst

oder laden sie mit Include-Files. Im Listing 2.1.1 wird mit int i; eine Varia-

ble mit dem Namen i deklariert. Erlaubt sind alle Buchstaben, Ziffern und

der Unterstrich.

Befehle

break else typedef

case for switch

continue goto while

default if

do return

TUTORIUM

Typen und Attribute

auto float static

char int register

const long union

double short volatile

enum signed void

extern size of

Reservierte Worter

argc envp

argv main

Tabelle 2.1.1: Das ist das ganze Vokabular der Sprache C

ES” C unterscheidet streng zwischen Groß- und Kleinschreibung. Anton, AnTon

und anton sind drei verschiedene Namen. Wenn Sie IF oder If anstatt if
schreiben, meldet der Compiler einen Fehler.

Variablen und Datentypen

Eine Variable ist nichts weiter als ein symbolischer Name für einen

Speicherbereich. Wir sagen nicht »lege die Zahl 4711 im Speicher ab

Adresse 12345 ab«, sondern geben ihr einen Namen. Der Compiler

weist dann der Variablen einen Speicherbereich zu und merkt sich, daß

zum Beispiel die Variable anton die Adresse 12345 hat. Nun können

aber unterschiedliche Variable durchaus verschieden viel Speicher bele-

gen, und ob wir unter anton zwei oder acht Bytes ablegen wollen, muf3

der Compiler schon wissen. Diese Information erhält er über den

Datentyp, kurz Typ genannt. Deshalb wird eine Variable immer deklariert

als Typ Name;. Mit

int i;

wird eine Variable vom Typ int (Integer = Ganzzahl) angelegt, man sagt

auch »deklariert«. Es gibt verschiedene vordefinierte Typen wie int, float

(Fließkommazahl) oder char (Zeichen). Man kann aber auch eigene

Typen definieren, was wir noch ausführlich kennenlernen werden. Eine

Variable heif3t Variable, weil man ihr immer wieder neue Werte zuweisen
kann. Jede Variable sollte aber initialisiert werden, sprich, einen Anfangs-

39

TUTORIUM

40

wert bekommen. Das kann durch eine Zuweisung geschehen, zum Bei-

spiel mit i = 4711; oder gleich bei der Deklaration mit

int 1 = 4711;

Sichtbarkeit von Variablen

Eine Variable kann zu Programmbeginn und damit außerhalb aller Funk-

tionen deklariert werden. In diesem Fall steht sie allen Funktionen zur

Verfügung, man nennt sie global oder extern. Im Listing 2.1.1 ist i eine
globale Variable, ergebnis hingegen ist lokal für die Funktion multipli-

ziere(). Lokale Variablen können nur innerhalb ihrer Funktion genutzt

werden, alle anderen Funktionen kennen diese Variablen nicht.

Funktion schreiben und anwenden

Wie schon gesagt, besteht ein C-Programm hauptsächlich aus Funktionen,

um diese müssen wir uns also besonders kümmern. Jede Funktion hat im

Minimum die Form

NameDerFunktion ()

{

}

Innerhalb der geschweiften Klammern stehen die Befehle, die beim Aufruf

der Funktion ausgeführt werden sollen. Das nennt man den Funktions-

körper, während die Zeile darüber Funktionskopf heißt. Bleibt der Raum

zwischen den geschweiften Klammern leer, tut die Funktion gar nichts.

Die Main-Funktion

Jedes C-Programm hat eine Funktion namens main(). Der erste Befehl in

main() ist ist auch derjenige, mit dem das Programm startet. Man spricht

auch vom Startpunkt oder Entry-Point.

/\ Jede Funktion darf jede aufrufen, auch sich selbst (Rekursion). Sie dürfen

jedoch niemals main() aufrufen, da dann das Programm in eine Endlos-

schleife geht.

TUTORIUM

Das kürzeste C-Programm, das Sie schreiben können, sieht so aus:

main()

{

}

Sie können dieses Programm durchaus kompilieren, linken und starten. Es

tut gar nichts, das aber blitzschnell. Da Zeilenschaltungen nur der Lesbar-

keit des Textes dienen, können Sie das Programm auch schreiben als

main() {}

Funktionen aufrufen

Im Listing 2.1.1 gibt es außer main() noch die Funktionen hallo(} und

multipliziere(). Da hallo() keine Argumente hat (in den Klammern steht

nichts), reicht für den Aufruf die Nennung des Namens. Der Aufruf

hallo(}; sorgt dafür, da} die Befehle der Funktion ausgeführt werden.

/\, Auch wenn die Funktion keine Argumente braucht, dürfen Sie die runden

Klammern beim Aufruf nicht weglassen. Tun Sie das, meldet der Compiler

keinen Fehler, die Funktion wird aber auch nicht ausgeführt.

Wie gleich noch gezeigt wird, können Funktionen auch einen Wert

zurückgeben. Daraus resultieren verschiedene Formen des Aufrufs. In der

Form

1 = multipliziere (3,4);

wird der Rückgabewert einer Variablen zugewiesen. In diesem Beispiel

hat dann i den Wert 12. Das entspricht der mathematischen Schreib-

weise, wo man zum Beispiel die Sinus-Funktion mit y=sin(x) notiert. Wie

in der Mathematik kann die Funktion aber auch Teil eines Ausdrucks sein.

3 * sin(x) + 100 wäre ein Beispiel. In diesem Fall führt C die Funktion aus

und setzt ihren Rückgabewert in den Ausdruck ein. Eine Funktion kann

aber auch Argument einer anderen Funktion sein. Listing 2.1.1 zeigt

diese Möglichkeit hiermit auf:

printf("3d \n", multipliziere (3,4));

Die Funktion printf{) wird weiter unten erklärt. Merken Sie sich an dieser

Stelle: Egal, wo der-Funktionsname auftaucht, die Funktion wird immer

zuerst ausgeführt, danach wird der Rückgabewert irgendwo eingesetzt.

4]

TUTORIUM

42

Argumente übergeben

Eine Funktion kann Argumente übergeben. Im Aufruf multipliziere(3,4)

sind 3 und 4 Argumente. Die Funktion multipliziere() braucht zwei Argu-

mente, nämlich die beiden Werte, die miteinander multipliziert werden

sollen. Diese Argumente können wie hier Konstante sein, aber auch

Variablen und sogar Funktionen sind zulässig.

Argumente kontra Parameter

Natürlich muß die Funktion mit den übergebenen Argumenten etwas

anfangen können. Daher mufß3 sie wissen, was die Argumente bedeuten,

sprich, den Typ kennen. Dazu gibt es im Funktionskopf von multipliziere()
(hier folgt er)

int multipliziere (int mp, int mk)

die beiden Platzhalter mp und mk. Beide sind vom Typ int. Solche Platz-

halter nennt man Parameter. Erst, wenn die Funktion aufgerufen wird,

werden Werte auf diese Plätze kopiert. Beachten Sie den feinen Unter-

schied: Die Funktion selbst hat Parameter. Wenn sie aufgerufen wird,

werden für diese Parameter Argumente übergeben. Anders ausgedrückt:

mp und mk sind Parameter, im Aufruf multipliziere(3,4) sind 3 und 4

Argumente. Weil das so oft verwechselt wird, eine kleine Eselsbrücke:

Nur der Aufrufer kann argumentieren, die Funktion selbst kann den Auf-
trag nur ausführen.

Rückgabe eines Wertes

Wenn eine Funktion einen Wert zurückgeben soll, muß3 der Typ des Rück-

gabewertes — Return-Wert genannt - im Funktionskopf vor dem Namen

stehen. Wie Sie sehen, heilt « es »int multipliziere(int mp, int mk)«, aber
nur hallo().

Das verwirrende an der Geschichte ist, daf} eine Funktion auch dann

einen Wert zurückgibt, wenn man den Return-Typ wie bei hallo() gar

nicht definiert hat. In diesem Fall ist der Rückgabewert vom Typ int, aber

ziemlich sinnlos, da zufällig. Es ist aber erlaubt, mit zum Beispiel i =

hallo(); diesen Wert anzufordern. Andererseits können Sie einen defi-

nierten Return-Wert auch einfach ignorieren. So dürfen Sie anstatt i =

multipliziere(3,4); auch einfach multipliziere(3,4); schreiben. Auch das

bringt nichts, weil das Rechenergebnis dann im Leeren landet.

TUTORIUM

Um hier Klarheit zu schaffen, gibt es den Typ void mit der Bedeutung »der

Return-Wert wird nicht gebraucht«. Deshalb schreibt man die Funktion

hallo{) korrekter so:

void hallo() /* Das ist eine Funktion */

{ printf("Hallo, lieber Leser! \n");

}

Jetzt weil} der Compiler, was Sie meinen, und wird deshalb einen Zugriff

auf den Return-Wert anmahnen. Wenn die Funktion hallo() als void

deklariert ist, wird ein Befehl der Art i = hallo(); vom Aztec C als ungültige

Typ-Konversion »angemeckert«, Lattice C beklagt einen ungültigen Void-

Operanden.

Damit die Funktion einen Wert zurückgeben kann, muf} man allerdings

noch etwas tun. Die letzte Zeile der Funktion lautet:

return (ergebnis);

Der Return-Befehl benötigt als Argument einen Wert, der wie hier eine

Variable sein kann, aber auch eine Konstante oder ein Ausdruck ist
erlaubt. Mit einem Ausdruck können wir die Funktion

int multipliziere (int mp, int mk)

{

int ergebnis; /* Eine lokale Variable */

ergebnis = mp * mk;

return (ergebnis);

}

kürzen auf

int multipliziere (int mp, int mk)

{

return (mp * mk);

}

Die im Kopf deklarierten Variablen mp und mk können wie lokale Varia-

blen behandelt werden, was beim nächsten Punkt noch deutlicher wird.

ANSI kontra K&R

Die Deklaration der Art

int multipliziere (int mp, int mk)

43

TUTORIUM

44

ist erst in den Ser-Versionen von Aztec C bzw. Lattice C erlaubt. Sie folgt

dem neusten ANSI-Standard (einer anerkannten amerikanischen Norm).

Mit den älteren Compilern können Sie nur die folgende Form wählen, die

neueren Versionen akzeptieren sie auch. Diese Form entspricht dem soge-

nannten K&R-Standard, so benannt nach den Erfindern von C, die

Kernighan und Ritchie heißen.

int multipliziere (mp, mk)

int mp;

int mk;

{

return (mp * mk);

}

Das kann man noch leicht kürzen, weil Deklarationen desselben Typs

auch aufgezählt werden dürfen, was dann so aussieht:

int multipliziere (mp, mk)

int mp, mk;

{

return (mp * mk);

}

Damit ist der Unterschied rein textuell betrachtet nicht mehr sehr groß. Sie

haben die freie Auswahl.

Prototypen

Ein anderer Punkt des ANSI-Standards bringt allerdings einen erheblichen

Unterschied. Schreiben Sie nämlich vor der Funktionsdefinition - praktisch

zu Programmbeginn - einen sogenannten Prototyp, kann der Compiler

prüfen, ob Sie der Funktion auch die richtigen Argumenttypen übergeben.

Dazu reicht es, eine Zeile an den Programmanfang zu setzen, zum Bei-

spiel diese:

int multipliziere (int mp, int mk);

Praktisch ist das die Kopfzeile der ANSI-Form-Funktion. Doch beachten

Sie, daf3 jetzt ein Semikolon am Ende stehen muß. Die Variablennamen

(mp und mk) können dieselben, aber auch andere sein, Hauptsache die

Typen stimmen.

TUTORIUM

E35” Obwohl der Prototyp wie die Kopfzeile der ANSI-Form-Funktion aussieht, ist
das Prototyping auch möglich, wenn die Funktionen nach dem alten K&R-

Standard definiert werden.

Wenn Sie jetzt die Funktion falsch aufrufen, zum Beispiel mit multipli-

ziere(3, 4.77) (das zweite Argument ist keine Ganz- sondern eine FlieB-

kommazahl), wird der Compiler mit »argument type mismatch« eine

Warnmeldung ausgeben. Lassen Sie das Prototyping weg, erscheint das

falsche Ergebnis 12, weil der Compiler einfach von der 4.77 nur den

Ganzzahlanteil (4) übernimmt. Der korrekte Prototyp für eine Funktion

ohne Return-Wert und ohne Parameter wie unser hallo() lautet:

void hallo (void);

Wichtig ist das »Prototyping« bei Funktionen, die Sie nicht so genau ken-

nen, weil Sie diese nicht selbst geschrieben haben. Solche Funktionen -

nämlich die »eingebauten« Amiga-Funktionen — werden Sie später sehr

häufig nutzen. Die dafür erforderlichen Prototypen stehen bei Aztec C in

der Datei functions.h. Es empfiehlt sich dann, ziemlich zu Programm-

beginn zu schreiben:

#include <functions.h>

ES” Bei Aztec C reicht es nicht, die Prototypen zu definieren oder als Include-File

zu laden. Zusätzlich müssen Sie die Ausgabe der Warnmeldung mit der

Compiler-Option -wa einschalten. Zum Beispiel müssen Sie den Quelltext

hallo.c mit cc -wa hallo kompilieren.

Die Funktion printf()

Die Sprache C kennt natürlich einige (wenige) Befehle oder Schlüssel-

worte, doch darunter werden Sie nichts finden, was für die Ein- oder

Ausgabe - englisch I/O (Input/Output) — geeignet ist. Einen Befehl wie
»PRINT« in Basic oder »write« in Pascal kennt C nicht. Statt dessen

werden mit dem Compiler Bibliotheken (Libraries) geliefert, welche die

erforderlichen Funktionen bieten. Eine Library ist nichts weiter als eine

bereits kompilierte Sammlung von Funktionen. Mittels des Linkers werden

diese Funktionen Ihrem Programm hinzugefügt.

Die wohl bekannteste Funktion aus dieser Sammlung heißt prinfff). In

Listing 2.1.1 setzen wir printf) für eine simple Aufgabe ein, nämlich die

Ausgabe des Inhalts der Variablen i, eine schlichte »12« soll auf dem

Schirm erscheinen.

45

TUTORIUM

46

print£("Sd \n", i);

Etwas kompliziert wird die Sache, weil »printf« das Kürzel für »print for-
matiert« ist. In Basic wäre das PRINT USING. Deshalb brauchen wir

immer einen Format-String, das sind diese Kürzel in den Anführungs-
zeichen. Dabei sind drei Dinge zu unterscheiden:

e Format-Code

e Escape-Zeichen

e Reiner Text

Der Format-Code beginnt immer mit dem %-Zeichen, dem ein Buchstabe

folgt. Hierfür einige Beispiele:

d (oder i) Dezimalzahl mit Vorzeichen
U Dezimalzahl ohne Vorzeichen
x (oder X) Hexadezimalzahl

f Fließkommazahl

c Zeichen

S String

Das schauen wir uns gleich mal in der Praxis an.

main()

{

int i = 4711;

float f = 47.13;

printf ("Sd 3X %7.2£ \n", i, -1, £);

Listing 2.1.2: printf{) in der Praxis

Listing 2.1.2 ist ein lauffahiges C-Programm, mit dem Sie später noch

weiterarbeiten werden. Beachten Sie zuerst, daf3 wir hier zwei Variable,

nämlich i und f deklariert und auch gleich initialisiert (mit einem Startwert

versehen) haben. Mehr dazu im nächsten Abschnitt. Beide Variablen sind

lokal für die Funktion main(), können also in anderen Funktionen nicht

genutzt werden. Doch nun zu prinif(). Das Ergebnis sieht so aus:

A711 FFFFFFFF 47.13

Da wir drei Zahlen ausgeben wollen, brauchen wir auch drei Format-

Codes. %d gilt für die Ganzzahl 4711, %X stellt -1 als Hexadezimalzahl

dar (ergibt FFFFFFFF). Beachten Sie, daf} auch Konstanten ausgegeben

TUTORIUM

werden können (hier -1) und - viel wichtiger — printf[) auch zwischen den

Zahlenbasen automatisch konvertiert.

Nun zu den »Kommazahlen«: Nur %f schreibt man eigentlich nie. Statt

dessen steht hier %7.2f mit der Bedeutung, daf3 die Fließkommazahl sie-

ben Schreibstellen belegen und zwei Nachkommastellen haben soll.

Bliebe noch das Escape-Zeichen, das immer mit einem Backslash (\) ein-

geleitet wird. Diese Zeichen können an beliebiger Stelle im Format-String

auftauchen. Hier einige davon:

\a Alarm (gibt einen Beep aus)

\b Backspace (Rückschritt)

\n Neue Zeile

\t Tabulator

Jetzt wissen Sie auch, warum ich des öfteren \n eingesetzt habe. Das ist

immer nötig, wenn nach der Ausgabe eine neue Zeile begonnen werden

soll. Auch bei nur einem prinff{) sollten Sie daran denken, andernfalls

steht nach dem Programmende der Cursor im CLI sonstwo.

Typen, Variablen und Konstanten einsetzen

Für die Amiga-Programmierung werden wir hauptsächlich die »eingebau-

ten« ROM-Funktionen nutzen. Diese Funktionen benötigen Argumente in

Form von Variablen und Konstanten und geben Werte zurück, für die

Variable bereitgestellt! werden müssen. Wichtig dabei ist, daf3 all diese
Parameter vom richtigen Typ sind. Wenn Sie die Typ-Problematik beherr-

schen, ist der Rest ganz einfach, also packen wir's an.

Es gibt einfache Variable, aber namentlich keine schwierigen. Ob die

anderen — die strukturierten Variablen — tatsächlich schwieriger sind,

werden Sie nach der dritten Sitzung beurteilen können. Jetzt geht es den

einfachen Variablen an den Kragen. Bei allen Variablen müssen Sie

immer drei Punkte im Auge haben:

e Deklarieren

e Initialisieren

e J/uweisen

Jede Variable muß zuerst deklariert werden. Dann muß die Variable

initialisiert werden, sprich, einen Wert erhalten. Das kann gleich mit der

Deklaration geschehen oder später durch eine Zuweisung. Das Prinzip

47

TUTORIUM

48

haben Sie schon im Informationsteil kennengelernt, hier einige praktische
Beispiele:

char zeichen "al;

int ganzzahl = -12345;

long lange ganzzahl = 2147483647;

float kommazahl = 11.1;

double doppeltgenaue kommazahl = 66.123456789;

int i,j,k,1l,m; /* bevorzugte Namen für "int's" */

i = 11;

j = i; /* schneller als "j = 11" */

zeichen = 'b';

ganzzahl = 4711;

Wie Sie schon erkannt haben, kénnen die unterschiedlichen Typen ver-

schieden große Zahlen aufnehmen. Im Standard-C sind die Typen laut
Tabelle 2.1.2 definiert. Daf} die Amiga-Compiler darüber hinaus weitere
Typen kennen, werden wir noch lernen.

Typ-Name Alternativ-Namen Wertbereich

char signed char -128...127

int signed, signed int -32768...32767

short short int, signed short, -32768...32767

signed short int

long long int, signed long, -2147483648 bis

signed long int 2147483647

unsigned char keine 0...255

unsigned unsigned int 0...65,535

unsigned short unsigned short int 0...65535

unsigned long unsigned long int

keine

0...4294967295

-32768...32767enum

float keine 3.4E & 38

(7 Digits)

double keine 1.7E & 308

(15 Digits)

long double keine 1.2E 2 4932

(19 Digits)

Tabelle 2.1.2: Diese Typen bietet Standard-C

TUTORIUM

Bei der Vergabe von Namen sind einige Regeln zu beachten:

e Erlaubt sind Buchstaben, Ziffern und der Unterstrich.

e Das erste Zeichen darf keine Ziffer sein. Ein Unterstrich als erstes Zei-

chen ist zwar erlaubt, doch per Konvention sind solche Namen für

den Compiler reserviert.

e Alle Schlüsselwörter (siehe Tabelle im Informationsteil) sind verboten.

¢ Variablennamen werden in aller Regel kleingeschrieben, Konstanten
hingegen groß.

e C unterscheidet Streng Grof}- und Kleinschreibung. Anton, anton und

anTon sind drei verschiedene Namen.

e Nur die ersten 31 Zeichen eines Namens sind signifikant. Sie können
zwar längere Namen vergeben, doch werden zwei Namen nicht

unterschieden, wenn die ersten 31 Zeichen gleich sind.

Bei Zuweisungen wie ganzzahl = 12345; ist die Zahl 12345 eine

Konstante. Aber auch in zeichen = 'a' ist 'a' eine Konstante.

/\ Beachten Sie, daß die Hochstriche beim Amiga über die Tastenkombination

(ait)+{ä) erzeugt werden müssen.

Es gibt also offensichtlich auch bei den Konstanten verschiedene Typen,

und die wollen wir uns einmal ansehen.

Konstante Typ

255 int (dezimal)

OxFF int (hexadezimal für 255)

0377 int (oktal für 255)

255L long int

255U unsigned int

OxFFul long unsigned int

1.77 | float

.123 float

13.7E2 float

"Hallo" String-Konstante (siehe Sitzung 3)

Tabelle 2.1.3: Die verschiedenen Typen bei Konstanten

49

TUTORIUM

30

Für uns — bzw. die Amiga-Programmierung - ist besonders das Suffix »L«

wichtig. Wenn Sie nichts anderes spezifizieren und die Zahl im Bereich

von -32768...+32767 liegt, nimmt C den Typ int an. Einige Amiga-Funk-

tionen erwarten aber auch, daf3 kleine Zahlen vom Typ long sind. Daher

sieht man häufig Konstanten wie IL oder OL.

Eine führende Null heißt »oktal« (Zahlenbasis 8). Folglich hat 0377 deng

Wert »3 *64+7*8+7 = 255«

Wir bringen die Programme zum Laufen

Die beiden Listings 2.1.1 und 2.1.2 sind Programme, oder? Nun, wie sie

da so stehen, sind sie reiner Text und sonst gar nichts. »Programmieren«

ist ein Sammelbegriff für vier Aktivitäten, nämlich:

e Editieren

e Kompilieren

e Linken

e Testen

Editieren heif3t »Eingabe des Textes« und dann später - und viel häufiger

- »Ändern des Textes«, um Fehler zu beseitigen oder um das Programm
zu ändern. Danach folgt das Kompilieren, also die Übersetzung des Tex-
tes in die Maschinensprache. Dadurch entsteht ein sogenanntes Objekt-

File. Das ist aber noch nicht lauffähig.

Der Linker hat viele Aufgaben. Zuerst mufß3 er alle Library-Funktionen, die

Sie ihm nennen, in das Objekt-File einfügen. Dann muß er den soge-

nannten Startup-Code hinzubinden. Ein Amiga-Programm kann nämlich

nicht einfach loslaufen, sondern hat einige Spielregeln zu beachten.

Schließlich muß der Code noch mit einem sogenannten Header versehen

werden, an dem Amiga-DOS erkennt, daß es sich um ein ausführbares

Programm handelt.

War der Linker erfolgreich, können Sie das Programm starten und testen.

Für den Start reicht vorerst die Eingabe des Namens im CLI bzw. in der

Shell. Später lernen wir, wie man ein Programm mit einem Icon versieht,

so daf3 es auch von der Workbench aus gestartet werden kann. Meistens

stellt man im Test Fehler fest, woraufhin dann die Folge »Editieren, Kompi-

lieren, Linken, Testen« wieder zu durchlaufen ist. Das nennen die Program-

mierer »Strafschleife«, die dafür benötigte Zeit heist »Turn-Around-Zeit«.

TUTORIUM

Anfangs ist die Strafschleife etwas kürzer, weil viele Fehler schon der

Compiler findet. Logische Fehler kann er allerdings nicht erkennen.

ES Praktisch sind die vier Schritte recht einfach auszuführen. Wir setzen voraus,

daf3 Sie Ihr System entsprechend den Vorschlägen in Kapitel 1 eingerichtet

haben und daf3 der dort vorgeschlagene Test erfolgreich bestanden wurde.

Im Kapitel 1.6.4 finden Sie auch Vorschläge für den Fall, daß etwas nicht

funktionieren sollte.

Als Festplattenbesitzer wechseln Sie in das Directory, in dem Sie Ihren

Compiler (nebst Zubehör) abgelegt haben. Je nach Installation müssen Sie

noch execute az oder execute lat eingeben (siehe auch Kapitel 1.5 und

1.6). In den Diskettenversionen starten Sie Ihren Amiga mit den eingeleg-

ten C-Disketten.

Nun geben Sie Listing 2.1.1 mit einem Editor ein und speichern den Text

als hallo.c. Jeder andere Name ist auch gut, nur muß er immer den
Extender .c (Punkt c) haben.

ES" Die folgenden Compile-/Link-Beispiele gelten nur für Listing 2.1.1. Beachten

Sie den untenstehen Abschnitt »Linken mit floak.

Unter Aztec C geben Sie dann ein:

cc hallo [Return]

In hallo -lc [Return]

Unter Lattice C geben Sie ein |

lc -L hallo [Return] (-L groß schreiben!)

Die Compiler und Linker geben allerhand Text aus. Solange da nichts von

»Error« steht, ist alles OK.

ES" Tips zur Fehlersuche finden Sie im Kapitel 1.6.4.

Sie können nun das Programm durch die Eingabe des Namens (hallo)

starten. Unter Lattice C werden Sie die Warnung »function returns value

mismatch« sehen. Wenn Sie das stört, schreiben Sie nicht main({), sondern

void mainf).

Linken mit float

Sobald Sie Fließkommazahlen anziehen, müssen Sie mit der m(Mathema-
tik)-Library linken. Wenn Sie beispielsweise Listing 2.1.2 unter dem .

Namen fkz.c gespeichert hatten, gilt:

5]

TUTORIUM

32

Unter Aztec C:

cc hallo [Return]

In hallo -lm -lc [Return]

Unter Lattice C:

lc -Lm hallo [Return]

Checkliste

1.

2.

3.

Wie wird der Typ des Rückgabewerts einer Funktion bestimmt?

Warum müssen Variable deklariert werden?

Was ist der Unterschied zwischen externen und lokalen Variablen?

Ideen für eigene Übungen

1. Im Listing 2.1.2 wurde die Anwendung von prinif{) demonstriert. Schreiben

Sie auf dieser Basis ein Programm, das eine formatierte Tabelle ausgibt,

zum Beispiel diese: |

Titel 1 Titel 2 Titel 3

47 17.5 22.123

66 134.7 1.007

1234 1.2 123.456 ,

In die Variablen mp, mk und ergebnis sollen die Zahlen 3, 4 und 12

gebracht werden. Dann soll prin#f{) unter Anziehung der Variablen den Text

»3 mal 4 ist 12« ausgeben.

Zwei Tips dazu:

In printf{) wird jede Art von Text im Format-String direkt ausgegeben. Auch

eine Form wie »printf[{"Titel 1 Titel 2 Titel 3 \n ");« ist zulässig.

Sie können im Format-String Texte auch zwischen die Format-Codes setzen.

TUTORIUM

2.2 Zweite Sitzung:

C-Spezialitäten für die
Amiga-Programmierung

Die Themen dieser Sitzung:

e Was sind Datenstrukturen?

e Arrays

e C-String

e Zeiger

e C-struct

e Typ-Casting

e #include

Ein Amiga-typisches Programm mit seinen Windows und Menüs entsteht

im Prinzip ganz einfach. Man lädt Datenstrukturen mit den richtigen

Werten und ruft dann die schon im ROM vorhandenen Funktionen auf.

Leider sind diese Datenstrukturen sehr komplexe Gebilde und schwer

begreifbar, wenn man sie das erste Mal sieht. Deshalb lernen Sie in

dieser Sitzung anhand einfacher Beispiele, was Datenstrukturen sind und

wie man mit ihnen umgeht. Noch einige C-Leckerbissen, die in diesem

Zusammenhang vorkommen, nehmen wir uns gleich mit vor.

Einfache und strukturierte Variablen

Einfache Variablen haben wir in der zweiten Sitzung schon kennen-

gelernt. Typisch für diese ist, daf3 sie immer nur genau ein Datum auf-

nehmen können. Wie unpraktisch das manchmal ist, zeigt das Beispiel

der Zeichenvariablen. Es macht sicherlich keinen Spaf}, wenn man das

Wort »Hallo« so speichern müßte:

53

TUTORIUM

34

char cl = 'H';

char c2 = 'a';

char c3 = '1';

char c4 = '1';

char c5 = 'o';

Tatsächlich schreibt man dafür

char c[] = "Hallo";

Arrays

Die rechteckigen Klammern hinter einem Variablennamen kennzeichnen

einen Array. Das ist eine Sammlung von Daten des gleichen Typs unter

einem Namen. Das obige Beispiel ist ein Zeichen-Array, genauso sind

Zahlen-Arrays möglich. Einen Array zu deklarieren, ist recht einfach, wie

das folgende Beispiel zeigt:

main ()

{ int ar[3];

ar[0] = 10;

ar[{l] = 20;

ar[2] = 30;

printf("sSd @d $d \n", ar[O], ar[1], ar[2]);

}

In diesem Beispiel ist ar ein Array vom Typ int, kurz int-Array genannt.

Dieser Array hat drei Elemente, die über den Index 0, 1 oder 2 ange-

sprochen werden.

ES" Beachten Sie, daß in C das erste Element immer den Index 0 hat im Gegen-

satz zu Pascal oder Basic (mit OPTION BASE 1). Da dieser Array drei Ele-

mente hat (ar[O], ar[1] und ar[2]) ist ar[3] nicht definiert.

Sie können ein einzelnes Array-Element wie eine einfache Variable des

gleichen Typs auffassen, weshalb eine Zuweisung der Art

einf var = ar[2];

durchaus zulässig ist. Wichtig ist ein anderer Aspekt. Spätestens bei
großen Arrays wird nämlich die Angabe des Index als Konstante ausge-

sprochen lästig. Meistens zusammen mit Schleifen (siehe vierte Sitzung)

setzt man deshalb für den Index eine einfache Variable ein, wozu Sie

wissen müssen:

TUTORIUM

ar[2] = 177; istrgleichwertig mit i = 2;

arlil = 177;

Niemand hindert Sie allerdings daran, der Indexvariablen einen größe-

ren Wert als 2 zu geben. Ein sehr häufiger Fehler ist der Versuch, bei

einem mit int ar[3] deklarierten Array das undefinierte Element ar[3]

anzusprechen. Sie können damit sehr viel Schaden anrichten, und nie-

mand warnt Sie!

/\ Im Gegensatz zu Basic oder Pascal prüft C nicht den Array-Index. Sie kön-

nen bei einem mit int ar[3] deklarierten Array durchaus ar[1733] = 4711;

schreiben. Damit können Daten in wichtigen Speicherbereichen überschrie-

ben werden, Guru-Meldungen sind möglich.

Die Besonderheiten eines C-Strings

Ein String in C - kurz C-String genannt - ist prinzipiell nur ein Array vom

Typ char. Er wird zum String, wenn das letzte Zeichen ein Null-Byte ist,

genauer: Der String endet, sobald in der Folge ein Null-Byte auftritt.
Dieses Null-Byte ist nicht mit dem ASCII-Code des Zeichens »0« (Wert 48)

zu verwechseln. Wenn Sie dem String mit

char c[] = "Hallo";

gleich bei der Deklaration einen Text zuweisen, setzt der Compiler auto-
matisch das Null-Byte ein. Ferner wird er bei einer leeren Klammer selbst

zählen und für die Dimension 5 einsetzen (vier Zeichen und das Null-

Byte).

Beachten Sie aber, daf3 Sie auf diese Art einer Stringvariablen keinen

Text zuweisen können. Das geht nur mitttels der Funktion strcpy[) (String

Copy), beispielsweise so:

void main ()

{ char str[20];

strepy (str, "hallo");

printf("Ss \n", str);

}

33

TUTORIUM

56

Die Bedeutung von Zeigern in C

Es ist unmöglich, ein echtes Amiga-Programm ohne Zeiger zu schreiben,

und überhaupt nutzt jedes bessere C-Programm Zeiger (englisch: Pointer)
mehr oder weniger intensiv (meistens mehr). Man braucht Zeiger unter

anderem für diese Operationen:

e Manipulation von Strings und Arrays

e Rückgabe von mehr als einem Wert bei Funktionen

e Zugriff auf Datenstrukturen

e Zugriff auf Speicherbereiche

Zeiger sind letztlich immer Adressen, und Adressen sind vom Typ

unsigned long. Das gilt aber nur auf Maschinenebene. In C sind Zeiger

an einen Typ gebunden. Mit der Deklaration

int *ptr;

wird ein Zeiger mit dem Namen pir geschaffen, der nur auf ein Objekt

vom Typ int zeigen kann. Die Typbindung ist deshalb nötig, weil C im

Rahmen seiner Zeiger-Arithmetik (siehe Praxisteil) zum Beispiel von einem

Array-Element auf das nächste schalten kann. Dazu muf3 aber der Wert

des Zeigers (praktisch die Adresse) bei char-Arrays um 1 und bei long-

Arrays um 4 erhöht werden. Daf3 man diese Typbindung mittels des Type-

Casting (siehe Praxisteil) umgehen kann und manchmal sogar umgehen
muß, ist ein anderes Problem.

TUTORIUM

Einen Array deklarieren und nutzen

Wissen Sie, was das sein soll?

00100

00100

11111

00100

00100

Es ist ein Kreuz aus Sicht des Computers. Für ihn ist ein Bildpunkt ein Bit,

das nur O oder 1 sein kann. Jede Art von Grafik ist so ein Bit-Muster. 8 Bit

sind bekanntlich 1 Byte, 2 Byte sind ein Wort oder aus unserer C-Sicht

eine Zahl vom Typ int. Computer-intern wird jede Zahl als Bit-Muster

gespeichert, zum Beispiel die Zahl 7 als 00000111. Folglich kann man

ein Computer-Bild auch als eine Folge von Zahlen darstellen, und genau

das tut der Amiga. Wenn Sie einen neuen Mauszeiger erzeugen wollen,

“müssen Sie der Funktion SefPointer() unter anderem einen Array über-

geben, mit dessen Zahlen der Mauszeiger gemalt wird. Es gibt aber auch

andere Funktionen, die Arrays brauchen. Zum Beispiel übergeben Sie der

Funktion PolyDraw() einen Array, in dem die Koordinaten der Eckpunkte

eines zu zeichnenden Vielecks stehen. Langer Rede kurzer Sinn: Für die

Amiga-Programmierung brauchen Sie Kenntnisse über Arrays, also

packen wir's an.

Betrachten wir noch einmal das Beispiel aus dem Informationsteil:

main ()

{ int ar[3];

ar[0] = 10;

ar[1] = 20;

ar[2] = 30;

printf£("Sd ¢d $d \n", ar[O], ar{l], ar[2]);

}

ES" Wenn Ihr Compiler die folgenden Listings nicht akzeptiert, zum Beispiel

Lattice Version 4.0, deklarieren Sie die Arrays global (vor main()).

int ar[3] = {10, 20, 30}; /* global */

main ()

{ printf£("Sd $d Sd \n", ar[0O], ar[1], ar[2]);

}

3/

TUTORIUM

38

So einem kleinen Array drei Zahlen einzeln zuzuweisen, geht ja noch,

aber bei 20 Werten ist das schon lästig. Deshalb schreibt man das besser

so:

main()

{ int ar[3] = {10, 20, 30}; /* lokal */

print£f("%d %d $d \n", ar[O], ar[1], ar[2]);

}

Wie einfache Variable kann man also auch Arrays gleich mit der

Deklaration initialisieren. Die Dimension (die »3« in den rechteckigen

Klammern) darf man dann auch weglassen.

ES" Im Gegensatz zu manchem Pascal, wo so etwas typisierte Konstante heißt,

kann in C die Dimension größer sein als die Anzahl der aufgeführten Werte.

Sie können aber auch in C nicht mehr Werte aufführen, als die Dimension

erlaubt.

Arrays können beliebig viele Dimensionen haben, wenn es auch praktisch

kaum mehr als zwei sind. Und so sieht das aus (die Erklärung von short

kommt gleich):

main()

{ short int ar[3] [4] =

{

{01, 02, 03, 04},

{11, 12, 13, 14},

{21, 22, 23, 24}

be

printf("Sd ¢d \n", ar[0] [0], ar[2] [3]);

}

Bei einem zweidimensionalen Array definieren Sie erst Zeile O, dann

Zeile 1 usw. Jede Zeile setzen Sie in ihr eigenes Klammerpaar, dazwi-

schen kommt je ein Komma.

Dieser Array hat drei Zeilen und vier Spalten. Die »01« und die »24«

werden von printf{) ausgedruckt. Beachten Sie auch hier, daf3 immer ab

Null gezählt wird, weshalb ar[2][3] die »24« anspricht.

int und short int

Nun ändern Sie einmal die letzte Zeile des obigen Programms wie folgt:

print£("Sd *d %d \n", ar[0], ar[l], ar[2]);

TUTORIUM

Sie werden drei Zahlen sehen, zum Beispiel diese:

12826592 12826600 12826608

Warum Sie damit tatsächlich die Adressen der drei Array-Zeilen drucken,

werden Sie im Abschnitt über Zeiger noch lernen. Wichtig ist hier die Tat-

sache, dal} die Differenz zwischen den Zahlen 8 ist. Jede Zeile hat vier

Elemente, folglich belegt jedes Element 2 Byte. Das tut es aber nur, weil

wir anstatt inf hier short int geschrieben haben (nur short reicht auch). Der

Typ int benötigt zwar nur 2 Byte, doch viele Amiga-Compiler legen ihn in

4 Byte ab. Nun macht es bei grof3en Arrays schon sehr viel aus, ob man

400 oder 800 Kbyte Speicher belegt, aber noch wichtiger ist folgendes:

Die oben geschilderten Grafik-Funktionen, die in Arrays ihre »Bilder«

erwarten, unterstellen das kurze int-Format.

Strings anlegen und damit umgehen

Es gibt viele Stringfunktionen, doch in der Amiga-Praxis kommen Sie mit

sehr wenigen aus. Mit Listing 2.2.1 wollen wir das üben.

main ()

{

char stri[80], str2[80];

strcpy (strl, "Guten Tag, mein lieber ");

printf("Wie heißen Sie? ");

scanf ("%s", str2);

strcat (strl,str2);

printf("%s \n",strl);

Listing 2.2.1: Der Umgang mit Strings

Das Programm soll nach einem Namen fragen und nach dessen Eingabe

»Guten Tag, mein lieber <Name>« ausgeben. Dazu deklariert es zwei

Strings, nämlich strI und str2. Beide können maximal 79 Zeichen auf-

nehmen. Mit Hilfe der Funktion strcpy() (string copy) wird der Text »Guten

Tag, mein lieber« nach str] kopiert.

Neu ist jetzt die Funktion scanf{). Praktisch ist das die Umkehr von prinfff),

sogar die Format-Codes sind die gleichen. In diesem Fall wartet scanf{)

wegen des Format-Codes %s auf die Eingabe eines Strings. Danach steht

in str2 ein Name.

>9

TUTORIUM

60

Jetzt kommt die Funktion strcat(sir],str2) zum Einsatz. Sie verbindet str]

mit str2 und schreibt das Ergebnis nach strl.

/\ Der hier gezeigte Umgang mit scanf() trifft so nur auf Arrays zu. Bei ein-

fachen Variablen muß vor deren Namen der Adreßoperator & stehen, wie

das folgende Beispiel zeigt:

main()

{ int zahl;

printf("Gebe eine Zahl ein: ");

scanf("%d", &zahl); /* Beachte das "&" ! */

printf ("Sd\n", zahl);

}

Definieren eines Strukturtyps

Der Array ist bereits eine Datenstruktur, hat jedoch für manche Anwen-

dungen einen Nachteil: Alle Elemente müssen vom selben Typ sein. Das

ist oft sehr unpraktisch, denn häufig genug gehören Variable verschie-

denen Typs logisch zusammen. Für diesen Zweck gibt es in C den struct-

Typ. Nehmen wir das Beispiel einer Personal-Datei, so sieht das typisch so

aus:

struct person

{

char name [50];

char strasse[30];

int plz;

char ort [20];

float gehalt;

}

Damit haben wir einen neuen Datentyp namens struct person geschaffen.

Das ist erst einmal nur ein Typ wie int oder char auch. Beachten Sie einen

wichtigen Unterschied zu den vordefinierten Typen: Diese heilen kurz nur

int oder char, unser neuer Typ heißt nicht person, sondern struct person.

Das struct ist obligatorisch, bei dem Typnamen sind Sie frei.

TUTORIUM

Deklarieren einer Strukturvariablen

Wie üblich, kann man auch hier nicht direkt mit dem Typ arbeiten, son-

dern braucht eine Variable. Das geht ganz einfach so:

struct person meier;

Initialisieren von Strukturvariablen

Um eine Komponente dieser Strukturvariablen anzusprechen, braucht

man nur den Namen, einen Punkt und den Bezeichner aus der Deklara-

tion. Klingt schwierig, ist es aber nicht, wie dieses Beispiel zeigt:

meier.gehalt = 4200.50;

Strings behandelt man auch wie üblich, das heif3t, man muß sie mit

strcpy(} laden. Das sollten Sie jetzt einmal üben. Geben Sie Listing 2.2.2

ein. Sie haben alles richtig gemacht, wenn das Programm »Franz Meier

verdient 4200.50 DM« ausgibt.

ES" Wir haben eine float-Variable eingesetzt, weshalb wir bei Aztec mit -Im -Ic
und bei Lattice mit -Lm linken müssen.

struct person

{

char name[50];

char strasse[30];

int plz;

char ort [20];

float gehalt;

}

main ()

{ struct person meier;

strcpy (meier.name, "Franz Meier");

meier.plz = 8900;

meier.gehalt = 4200.50;

printf("Ss verdient %7.2f DM\n", meier.name,

meier.gehalt);

Listing 2.2.2: struct in der Praxis

61

TUTORIUM

Sie können nun zig Variable wie meier, müller und schulze vom Typ struct

person deklarieren, doch Sie werden es wahrscheinlich als unpraktisch

empfinden, auf diese Art eine Personaldatei oder eine Adrefsverwaltung

aufzubauen. Doch Sie müssen sich nur eines merken: Alles, was mit den

vordefinierten Typen möglich ist, ist auch bei den selbstdefinierten erlaubt.

Nach dieser allgemeinen Typregel können Sie auch einen Array wie

diesen anlegen:

struct person datei[l100];

Die Punktregel gilt immer noch, also können Sie schreiben:

1=13;

datei[i].gehalt=4200.50;

Diesen Weg sollten Sie einmal übungshalber verfolgen. Ich möchte Sie

jedoch zuerst mit einer beim Amiga sehr häufig auftretenden Möglichkeit

bekannt machen. So, wie wir schon einfache Variable und Arrays gleich

bei der Deklaration initialisiert haben, muß das nach der allgemeinen

Typregel auch beim struct funktionieren. Sie können deshalb in Listing

2.2.2 die main()-Funktion auch so schreiben:

struct person

{

char name[50];

char strasse[30];

int plz;

char ort [20];

float gehalt;

}

main ()

{ struct person meier =

{

"Franz Meier", "Amselweg 13",

8900, "Muenchen",

4200.50

be

printf("Ss verdient %7.2f DM\n", meier.name,

meier.gehalt);

Listing 2.2.3: So initialisiert man eine Struktur

62

TUTORIUM

Natürlich muf3 vor main() die Typdefinition wie in Listing 2.2.1 stehen,

was ich betonen muß. Nachher werden Sie nämlich die Definitionen der

Strukturen nur noch als Include-Files von Diskette laden. Und wenn da

beispielsweise der Typ NewWindow definiert ist und Sie newwindow

schreiben, meldet der Compiler einen undefinierten Typ. Auch sehr wich-

tig ist, daß Sie bei dieser Lösung die Struktur komplett und mit den richti-

gen Typen initialisieren. Würden Sie beispielsweise hier die »8900« ver-

gessen, müßte der Compiler "Muenchen" auf den Platz der int-Kompo-

nente plz schreiben. Das kann er nicht, also meckert er.

Struktur in der Struktur

Was beim Amiga auch häufig vorkommt, sind Strukturen innerhalb eines
struct. Das zeigt am besten das Beispiel von Listing 2.2.4.

struct punkt

{ int x;

int y;

};

struct rechteck

{

struct punkt LinksOben;

struct punkt RechtsüUnten;

be

main ()

{

struct rechteck re;

re.LinksOben.x = 12;

re.LinksOben.y 20;

print£t ("Sd\n",re.LinksOben.x) ;

Listing 2.2.4: »structs im struct« gibt es häufig beim Amiga

Die Aufgabe ist folgende: Es gibt einen Typ punkt, der einen Punkt auf

dem Bildschirm mit Werten für die X- und die Y-Koordinate beschreiben

soll. Dieser Typ punkt ist ein struct mit Feldern für x und y. Nun soll die

Lage eines Rechtecks auf dem Schirm durch seine linke obere und seine

63

TUTORIUM

64

rechte untere Ecke beschrieben werden. Beide Ecken sind aber auch

Punkte. Folglich kann das struct rechteck den Typ punkt einsetzen.

Ich habe hier auch schon angefangen, Groß- und Kleinschreibung in

Bezeichnern zu mischen, weil auch das beim Amiga häufig vorkommt und

gerade hier bei Verwechslung der Schreibweisen besonders der Aztec-

Compiler massenhaft, aber unpräzise Fehler meldet. Ansonsten gilt hier

wieder die Typregel. Weil in einem struct jeder Typ erlaubt ist, darf das

auch struct-Typ sein. Und auch die Referenzregel setzt sich fort: Aus dem

Punkt wird »Punkt Punk«.

IS” Im Gegensatz zu Pascal, wo struct record heißt, muß ein Typ (hier punkt)

definiert sein, bevor er (hier in rechteck) benutzt wird.

Der Gebrauch von Zeigern

Mit Zeigern kann man in C unheimlich viel anfangen, und einiges davon

brauchen wir unbedingt für die Amiga-Programmierung. Also packen

wir's an. Die erste Überraschung und Regel lautet:

Die Namen von Arrays sind schon Zeiger.

In Listing 2.2.5 wurde der Array ar auf die altbekannte Art angelegt.

Weiter gibt es den int-Zeiger pir. Das kennen Sie alles schon. Um pir zu

initialisieren, muß man nun aber nicht pir=&ar schreiben, sondern nur

noch ptr=ar, wie es Listing 2.2.5 zeigt. Das Programm gibt die Zahlen

11, 12 und 13 aus, aber wie? Das schauen wir uns einmal genau an.

int ar{] = {11,12,13};

int *ptr;

main ()

{

ptr = ar;

printf("td\n", *ptr);

ptr = ptr + 1;

printf ("Sd\n", *ptr);

ptr = &ar[0];

ptr = ptr + 2;

printf ("Sd\n", *ptr);

Listing 2.2.5: Zeigerarithmetik braucht man für Arrays

TUTORIUM

ar ist die Adresse des Arrays ar. Da steht auch sein erstes Element, hier

die 11. pfr zeigt auf diese Adresse, folglich ist *ptr ihr Inhalt, also die 11.

Die wird mit printf) ausgedruckt. Nun folgt

prt = ptr + 1;

Damit wird die Adresse nicht um 1, sondern um 4 Byte erhöht. Das über-

rascht Sie? Nun, wir hatten schon gelernt, daf3 Zeiger typgebunden sind.

Ein int-Zeiger kann nur auf Integers zeigen. Und hier erkennen Sie auch

den Grund für die Typgebundenheit. int-Variablen belegen (ohne beson-

dere Compiler-Option) immer 4 Byte. Als Programmierer müssen Sie das

aber nicht unbedingt wissen. Sie sagen sich nur: Wenn ich einen Zeiger

um 1 erhöhe, soll er auf die nächste Variable zeigen. Wieviel Bytes der

Compiler braucht, um die Variable abzulegen, interessiert mich nicht. Die

Korrektur soll der Compiler selber vornehmen.

Wegen der Typgebundenheit wird der Compiler auch nicht ptr=&ar ohne

Warnung akzeptieren. Er stößt damit zwar auf dieselbe Adresse, das

Programm läuft auch richtig, aber pfr ist ein int-Zeiger und kein ar-Zeiger.

Die einzelnen Elemente des Arrays hingegen sind Integers, weshalb pir =

&ar[0]; korrekt ist. In ar[Ol, worauf pir jetzt zeigt, steht die 11, in ar[2]

die 13. Folglich muß ich nur mit ptr = ptr + 2; auf ar[2] zeigen, und schon

steht in *ptr die 13. -

Zeiger und Strings

Ein String ist ein char-Array mit einem O-Byte am Ende, aber er ist pri-

mär ein Array. Wenn aber ein Array-Name ein Zeiger ist, dann kann

man das auch so schreiben. Folglich sind gleichwertig

char text[] und char *text

Die Schreibweise char *text sieht man sogar ziemlich oft, weshalb ich sie

in Listing 2.2.6 einmal anwende.

char *text = "Hallo";

char *ptr;

main()

{

ptr = text;

while (*ptr != 0)

65

TUTORIUM

66

{ printf("tc\n", *ptr);

ptrtt;

}

Listing 2.2.6: Die Anwendung von Zeigern und Strings

Das Programm soll »Hallo« ausgeben, jetzt aber die Buchstaben unter-

einanderschreiben, wofür man sie einzeln packen mufß3. Ich nehme hier
mit der while-Schleife etwas aus der vierten Sitzung vorweg, deshalb

registrieren Sie hier nur:

while (*ptr != 0)

heist: Solange der Inhalt der Adresse “pir nicht O ist (am String-Ende steht

0), führe die Befehle in den folgenden geschweiften Klammern aus. Beim

ersten Durchlauf wird das »H« gedruckt. Dann wird pir um 1 erhöht und

zeigt auf das »a«. Die Schreibweise pir++ ist ein empfehlenswertes Kürzel

für pfr=ptr+1.

Zeiger auf Strukturen

Wir haben schon in der ersten Sitzung gelernt, daf} man einer Funktion
Argumente übergeben kann, die auch Variable sein dürfen. Sie wissen

auch noch, daf3 diese Argumente dafür auf die Platzhalter (Parameter)

der Funktion kopiert werden. Das hat nun leider zur Folge, daf3 - zumin-

dest solange die Funktion läuft — die Variablen doppelt im Speicher ste-

hen. Bei grofsen Arrays kann das sehr viel Speicher kosten, und außer-

dem braucht das Kopieren auch seine Zeit. Deshalb übergibt man nicht

“den ganzen Array, sondern nur seine Adresse. Das ist auch der Grund,

warum in C Array-Namen automatisch die Adressen des Array-Beginns

sind.

Das Platz- und Zeitproblem ergibt sich aber auch für Strukturen, die

gleichfalls ganz schön grofs werden können und es beim Amiga auch

sind. Folglich sollte man auch nicht ganze Strukturen, sondern nur ihre

Anfangsadressen übergeben, also Zeiger auf die Strukturen. Bei den ein-

gebauten Funktionen des Amiga haben Sie oft gar keine andere Wahl,

das müssen Sie also können. Nun denn, Listing 2.2.7 bringt die Lösung.

TUTORIUM

struct person

{

char name[50];

char strasse[30];

int plz;

char ort [20];

float gehalt;

be

void display(struct person *ptr);

main ()

{

struct person meier =

{

"Franz Meier", "Amselweg 13",

8900, "Muenchen",

4200.50

be

display(&meier);

void display(struct person *ptr)

{

printf("%s verdient %$7.2f\n", ptr->name,

ptr->gehalt);

Listing 2.2.7: So arbeitet man mit struct-Zeigern

Das Programm soll so wie das in Listing 2.2.3 funktionieren, allerdings

mit einem Unterschied. Die Ausgabe soll in der Funktion display() erfol-

gen, und dieser Funktion muß ein Zeiger auf die Struktur übergeben

werden. Doch zuerst zur Struktur des Programms: Direkt vor main() steht

die Zeile

void display(struct person *ptr);

Das ist der Prototyp der Funktion display(), die selbst nach main() steht. In

der ersten Sitzung haben Sie schon gelernt, daf} man mittels der Proto-

typen sich selbst zur Ordnung zwingen kann, weil es nun dem Compiler

67

TUTORIUM

68

möglich ist, die Argumenttypen auf Richtigkeit zu prüfen. Hier hat das

Prototyping aber noch einen Zweck. Die Funktion main() übergibt dis-

play{) einen Zeiger auf die Struktur meier. Damit können main() und dis-

play(} auf dieselbe Variable zugreifen. Wir hatten bisher gelernt, daß

eine Funktion nicht auf die lokalen Variablen einer anderen zugreifen

kann. Tatsächlich kann man aber genau dies mit Hilfe von Zeigern um-

gehen. Eine kleine Sperre gibt es aber noch. Diese Funktionen oder ihre

Prototypen müssen vor main() stehen. Wenn Sie im Listing 2.2.7 den

Prototyp weglassen, müssen Sie die Funktion display() vor main() setzen.

Nun zu den Zeigern. Im Funktionskopf von display() steht

void display(struct person *ptr)

Das heif3t, die Funktion erwartet einen Zeiger vom Typ struct person. Der

Zeiger selbst heißt ptr, der Stern sagt, daß es ein Zeiger ist. »Zeiger auf«

heifft aber auch »Adresse von«, womit der Aufruf display[&meier);

logisch ist, denn »&« heist »Adresse von«.

Aus dem Punkt wird -->

Nun waren wir es bisher gewohnt, auf die Strukturkomponenten mit dem
Punkt-Operator zuzugreifen, zum Beispiel mit meier.name. Da hier der

Parameter *pfr heilt, müßte man jetzt *pfr.name schreiben. Das geht

schief, weil der Punkt-Operator eine höhere Priorität als der Stern hat. C

würde also zuerst pfr.name entwickeln, aber das wäre die Adresse und

nicht der Inhalt. Also muf3 man C überlisten und (*pfr).name schreiben.

Das geht tatsächlich - probieren Sie es aus -, doch inzwischen hat man

dafür ein Kürzel erfunden, und das heißt ptr->name. Da diese Form über-

sichtlicher und auch üblich ist, müssen Sie sich nur merken: Hat man nur

einen Zeiger auf die Struktur, muf man anstatt des Punkt-Operators (.)

den Komponenten-Operator (->) nehmen.

TUTORIUM

Checkliste

1. Warum muß man einen C-String immer um ein Element größer deklarieren

als der Text lang ist?

2. Wann muß man beim Zugriff auf Strukturelemente ».« und wann »->«

schreiben?

3. Warum sollte man einer Funktion möglichst nur einen Zeiger auf eine

Struktur übergeben und nicht die Strukturvariable selbst?

Ideen für eigene Übungen

1. Weisen Sie im Listing 2.2.4 allen Komponenten Werte zu, und zeigen Sie

das mittels printf{) in Form einer Postanschrift an (ohne das Gehalt).

2. Erweitern Sie analog zu Punkt 1 die display()-Funktion von Listing 2.2.7.

69

TUTORIUM

70

2.3 Dritte Sitzung:

Erzeugen eines leeren Windows

Die Themen dieser Sitzung:

e Libraries

e Windows

e Window-Datenstrukturen

e Window-Flags

e Type-Casting

e #include

Der Umgang mit Datenstrukturen ist das A und O der Amiga-Program-

mierung. In der vorherigen Sitzung haben Sie die Grundlagen dazu

gelernt, hier wenden wir uns den ersten Amiga-Strukturen zu. Dabei gibt

es ein Problem: Damit die Programme laufen, müssen wir mit if und for

etwas aus der nächsten Sitzung vorwegnehmen. Beide Themen werden

nur kurz angeschnitten, mehr dazu finden Sie in der vierten Sitzung.

Grundlagen und Eigenschaften von Windows

Windows sind die Basis für alle Aktivitäten auf dem Amiga. Zuerst muß
Ihr Programm ein Fenster öffnen, also dieses Gebilde auf dem Schirm

erscheinen lassen. Dabei gilt:

a) Wenn ein Fenster geöffnet wird, muf3 man ihm dabei Eigenschaften

mitgeben. Die Größe und die Lage des Fensters gehören sicherlich

dazu, aber auch die Gadgets (z.B. die Dinger zum Schlieffen oder

Größe ändern in den Ecken).

b) Hat man einem Fenster ein Gadget (oder mehrere) mitgegeben, muß3

man auch sagen, ob Intuition dem Programm melden soll, wenn ein

Gadget betätigt wurde.

c) Es ist Sache des Programms, auf diese Gadget-Meldungen zu warten

und darauf zu reagieren.

TUTORIUM

Die Punkte a) und b) werden beim Öffnen des Fensters erledigt. Ein Win-
dow wird durch einen Aufruf von OpenWindow;{) geöffnet. Diese Funk-

tion hat nur einen einzigen Parameter, nämlich einen Zeiger auf die

NewWindow-Struktur. NewWindow ist eine Daten-Struktur, in die man

vor dem Aufruf von OpenWindow() alle Eigenschaften des Fensters ein-

tragen muß. Die Funktion gibt einen Zeiger auf eine Daten-Struktur mit

dem Namen Window zurück. In der Window-Struktur steht zuerst eine

Kopie der Daten von NewWindow aus dem Aufruf, aber auch einiges

mehr. Das hört sich komplizierter an, als es ist. Nehmen wir deshalb mit

Listing 2.3.1 ein wenig Praxis vorweg.

struct NewWindow NeuesWindow =

{

20,20,300,100, _/* Lage u. Maße * /

-1,-1, /* Farben */

CLOSEWINDON, /* Melde Klick Close-Gadget */

WINDOWCLOSE, /* Installiere Close-Gadget */

NULL,NULL, /* keine Extras x /

"Mein Window", /* Titel-Text x /

NULL, /* Kein eigener Screen * /

NULL, /* kein SuperBitmap-Window */

0,0,0,0 /* keine Größenänderung x /

WENCHSCREEN, /* Bildschirmtyp x /

};

main ()

{

Window = OpenWindow (&NeuesWindow) ;

}

Listing 2.3.1: Öffnen eines Fensters (Beispiel ist unvollständig!)

Das Beispiel ist zwar noch etwas unvollständig (läuft so nicht), es verdeut-

licht aber schon recht gut das Prinzip von nahezu allen Operationen unter

Intuition. Die NewWindow-Struktur zeigt auch eine weitere typische

Eigenschaft: Es sind viele Features vorgesehen, die man kaum immer alle

braucht. In diesem Fall muß man NULL eintragen, falls es sich um einen
Zeiger handelt, oder O im Falle von Daten. Für »Farben« steht da zweimal

-], was soviel heifft wie »übernehme« (hier die Farben des Screen).

Wichtig ist der Eintrag WBENCHSCREEN. Ein Window braucht immer

einen Screen (Bildschirm), der die Auflösung und die Anzahl der mög-

71

TUTORIUM

72

lichen Farben für das Window vorgibt. Ein Screen wird so ähnlich wie ein

Window angelegt, doch die Arbeit können wir uns ersparen, wenn wir

mit WBENCHSCREEN sagen, daf3 das Window den Workbench-Screen

nehmen soll.

Als guter C-Programmierer ist Ihnen natürlich aufgefallen, daß hier einige

Konstanten und Typen nicht definiert sind. Keine Sorge, die beschaffen

wir uns später ganz leicht mit einigen #include-Anweisungen.

Libraries

Die im Listing 2.3.1 genannte Funktion OpenWindowf) ist eine von Hun-

derten, die im Amiga schon eingebaut sind. Diese Funktionen sind in

Gruppen zusammengefaßt, die Libraries (Bibliotheken) heiffen. Bevor man

so eine Funktion nutzen kann, mul3 man ihre Library öffnen. Sinn der

Übung: einige Libraries stehen nicht im ROM, sondern auf der Disk. Fin-
det der Amiga eine Library nicht im ROM, schaut er im Library-Directory

auf der Diskette nach. Das macht den Amigo sehr flexibel, weil man für
neue Bertriebssystem-Funktionen nur neue Libraries auf einer Diskette

braucht. Hat ein Programm (Task) die Library geladen, können sie andere

Tasks auch nutzen. Damit die Library nicht ewig den RAM blockiert, muß

jedes Programm zum Schluß} seine Library auch wieder schliefSen. Hat das

letzte Programm eine Library geschlossen, gibt das System den Speicher

wieder frei.

Da dieser Ablauf allgemein gültig ist, gilt er auch für ROM-Libraries. Und

sogar hier müssen Sie nach dem Öffnen mittels der Funktion
OpenLibrary;() prüfen, ob kein Fehler aufgetreten ist. Daf} eine Datei auf

der Diskette fehlt, kann man sich ja noch vorstellen, aber kann da plötz-

lich ein Stück ROM ausfallen? Nun, das wohl nicht. Doch Tatsache ist,

daf3 der Amiga Speicher braucht, wo er sich notiert, daf3 Ihr Programm

clese Library geöffnet hat. Und genau dieser Speicher kann im Extremfall

ehlen.

Include-Files

Jedes typische Amiga-Programm beginnt mit Include-Anweisungen, wie

beispielsweise den folgenden:

#include <exec/types.h>

#include <intuition/intuition.h>

TUTORIUM

#include ist eine Anweisung an den Compiler, die aufgeführte Textdatei -

praktisch ein unvollständiges C-Programm - einzulesen. Das wirkt

genauso, als ob Sie den Text an dieser Stelle eingetippt hätten. Die

Dateien haben zwar den Extender ».h«, und heißen Header-Files, doch

#include kann durchaus an beliebiger Stelle im Programm stehen, und die

Datei muf3 auch nicht mit ».h« enden.

Wenn der Name wie hier in spitzen Klammern eingeschlossen ist, sucht

der Compiler zuerst im Directory, auf das die Include-Umgebungsvariable

zeigt. Mit Anweisungen wie »assign INCLUDE: sys:lc/include« hatten wir

das System schon im Kapitel 1.5 so eingerichtet. Wenn Sie hingegen den

Namen (plus Pfad) in Anführungsstriche setzen, sucht der Compiler zuerst

dort. Typisch wendet man diese Form für eigene Include-Files an. In den

oben genannten Beispielen werden die Include-Files types.h und intui-

tion.h eingezogen. Damit werden diverse Typen und Konstanten definiert.

Schauen Sie sich ruhig einmal mit einem Editor diese Dateien an.

Mit den Include-Direktiven sind wir auch schon mitten in der Praxis des

Listings 2.3.2. Mit der dann folgenden Zeile

struct IntuitionBase *IntuitionBase;

wird eine Variable vom Typ »Zeiger auf die Struktur IntuitionBase« dekla-

riert. Der Typ IntuitionBase steht im Include-File. Beachten Sie, daf} es

durchaus zulässig und auch üblich ist, bei selbstdefinierten Typen für den

Typ und die Variable den gleichen Namen zu verwenden. Die Regelung

ist sinnvoll, da man ja bei der Namensvergabe nicht wissen kann, welche

Typen in den Include-Files stehen. Bei den C-Standardtypen geht das

nicht. Also int int dürfen Sie nie schreiben, wohl aber das:

typedef int ganz;

main()

{ ganz ganz;

ganz = 13;

printf ("%d",ganz);

}

Hier habe ich eine Variable mit dem Namen ganz vom Typ ganz

geschaffen. Mit typedef der Syntax Synonym kann man in C Typen neue

Namen geben, was meistens zum Ausgleich von Compiler-Unterschieden

gebraucht wird.

73

TUTORIUM

74

Bild 2.3.1:

Das ist unser

Ziel

Doch zurück zum Listing 2.3.2. Auch der Struktur-Typ struct NewWindow

steht im Inlclude-File intuition.h. Wir müssen jetzt die Struktur-Komponen-

ten mit Werten laden, was derart geschieht, daß wir die Variable Mein-

Window deklarieren und sie dadurch dabei gleichzeitig initialisieren.

Type-Casting muß sein

Dazu muf3 man natürlich die Typen der einzelnen Strukturkomponenten

kennen, drucken Sie einfach intuition.h aus. Nur dann finden Sie den

Grund für die Zeile Ä

(UBYTE *) "Warte...", /* Window-Titel x /

Lassen Sie das (UBYTE *) weg, meldet Aztec C eine Pointer-Pointer-Kon-

vertierungs-Warnung, Lattice beanstandet das nicht. Der Grund ist, daß

in intuition.h die Komponente als »UBYTE *Title« deklariert ist, d.h., *Title

ist ein UBYTE-Zeiger. UBYTE (aus dem Include-File exectypes.h) ist ein mit

typedef definiertes Kürzel für den Typ Byte ohne Vorzeichen. Das ist zwar

im Prinzip der Typ char auch, nur erzeugt ein String-Literal wie hier das

"Warte...", einen char-Zeiger und keinen UBYTE-Zeiger.

/* winl.c

Programm Öffnet ein Window, läßt es für einige

Sekunden auf dem Schirm und endet dann.

* /

#include <exec/types.h>

#include <intuition/intuition.h>

struct IntuitionBase *IntuitionBase;

/* Struktur für ein neues Window initialisieren: */

Listing 2.3.2: (Fortsetzung nächste Seiten)

TUTORIUM

struct NewWindow MeinWindow =

{ |

170,80, /* linke obere Ecke */

300,100, /* Breite u. Höhe * /

-1,-1, /* Farbe der Pens */

OL, OL, /* Keine Flags * /

NULL, /* keine User-Gadgets * /

NULL, . /* keine User-CheckMark */

(UBYTE *)"Warte...", /* Window-Titel * /

NULL, /* Kein eigener Screen */

NULL, /* keine SuperBitmap x /

100, /* Mindestbreite * /

30, /* Mindesthöhe * /

640, /* Maximalbreite x /

256, /* Maximalhöhe * /

WBENCHSCREEN /* Bildschirmtyp * /

};

void main() /* Beachte Unterstrich vor main */

{

struct Window *Window;

long i;

/* Offne Intuition-Library: */

IntuitionBase = (struct IntuitionBase *)

OpenLibrary ("intuition.library", OL);

/* Abbruch, wenn Fehler: */

if (IntuitionBase == NULL) exit (FALSE);

/* Öffne Window: */

Window = (struct Window *) OpenWindow (&MeinWindow) ;

if (Window == NULL) { /* Wenn Fehler: */

CloseLibrary (IntuitionBase); /* Lib schließen */

exit (FALSE) ; /* und Abbruch * /

}

for (i=1000000; i; i--) /* Warteschleife */

Listing 2.3.2: (Fortsetzung nächste Seite)

75

TUTORIUM

76

CloseWindow (Window) ; /* Window schließen */

CloseLibrary (IntuitionBase); / *Library schließen */

exit (TRUE); /* Ende x /

}

Listing 2.3.2: Die einfachste Art, ein Window zu öffnen

Generell geht es hier darum, einer Variablen vom Typ x ein Datum vom
Typ y zuzuweisen. Da der C-Compiler nicht wissen kann, ob das ein Ver-

sehen mit teilweise schlimmen Folgen oder Absicht ist, müssen wir ihm

das sagen, sprich, den einen Typ ausdrücklich in den anderen umwan-

deln. Da dieses »Type-Casting« sehr häufig gebraucht wird, müssen wir

das üben. Listing 2.3.3 hat diesen Zweck.

main ()

{

int i = 90;

char c = 'c';

char text[] = "ABC" ;

printf("Sc \n", (char) i);

printf("Sd \n", (int) c);

text[2] = (char) 65;

printf("Ss \n", text);

Listing 2.3.3: Type-Casting ist wichtig in Amiga C

Das Programm gibt der Reihe nach in drei Zeilen Z, 99 und ABA aus. Im

Rechner werden auch Buchstaben und andere Zeichen als Zahlen gespei-

chert. In einer Norm namens ASCII ist festgelegt, welche Zahl welchem
Zeichen entspricht. Demnach sind Zahlen und Zeichen austauschbar, was

hier angewandt wird. |

»printf;("%c \n", (char) i)« soll laut dem Formatstring ein Zeichen

drucken, wir geben aber die int-Variable i aus. Für die Umwandlung in
ein Zeichen wird vor das i (char) gesetzt. Umgekehrt soll »printf{"%d \n",

(int) c);« laut Formatstring einen int-Wert ausgeben, wir bieten ihm aber

ein Zeichen an. Das wird durch den Vorsatz (int) umgewandelt. Die näch-

TUTORIUM

ste Zeile setzt in den String ABC für das C die Zahl 65 ein, was der

ASCII-Code von A ist. Sie sehen, dal? man den gewünschten Typ in
Klammern vor den fremden setzen muß3.

Diese Regel gilt generell auch für Zeigertypen, nur daf3 man hier nach

dem Namen noch einen Stern setzen muß. Schauen wir uns Listing 2.3.4

an.

typedef unsigned char UBYTE;

main ()

{

UBYTE byte array[4] = {65,66,67,0};

char *char zeiger;

char zeiger = (char *) byte array;

printf("Ss\n", char zeiger);

strcpy (byte array, (UBYTE *) "xyz");

printf("%s\n", (char *) byte array);

Listing 2.3.4: Typwandlung bei Zeigern

Das hier vorliegende Problem ist an sich trivial und wird von vielen Com-

pilern auch nicht mehr angemeckert. Der Typ char ist im Standard-C als

signed char (signe = Vorzeichen) mit dem Wertbereich -128 bis +127

definiert. Der Amiga hat jedoch viele Sonderzeichen mit den ASCII-Codes
von 128 bis 255. Deshalb hat man unsigned char mit dem Wertbereich 0

bis 255 als den Typ UBYTE definiert. Die erste Zeile von Listing 2.3.3 steht

so im Include-File /exec/types.h.

In Listing 2.3.4 wird byte_array (vom Typ UBYTE) mit {65,66,67,0}

initialisiert. Das sind die ASClI-Codes für ABC gefolgt von einem Null-

Byte, also ist das ein String in der rechnerinternen Darstellung. Bei einem

Array ist der Name gleichzeitig die Adresse, also kann man ihm eine

Zeigervariable zuweisen. Das geschieht mit »char_zeiger = (char *)

byte_array;«. Dabei muß der byte_array vom Typ UBYTE in den Typ char

gewandelt werden. Zusätzlich müssen wir aber noch sagen, daf3 es sich
um einen Zeiger handelt, und das tut der Stern in (char *).

77

TUTORIUM

78

Nun zur Umkehr: Mit der Zeile

strcpy (byte array, (UBYTE *) "xyz");

wird der String xyz in den Bytearray kopiert. Weil xyz ein String und

damit ein char-Zeiger ist, muß er in einen UBYTE-Zeiger gewandelt

werden. Die Regel (Typ *) gilt für alle Zeiger, auch solche, die auf Struktu-

ren zeigen. Das erklärt diese Zeilen:

struct Window *Window;

Window = (struct Window *) OpenWindow (&MeinWindow) ;

Die Variable *Window ist ein Zeiger vom Typ struct Window. Die Funk-

tion OpenWindow hingegen bringt einen allgemeinen Zeiger. Folglich

muß man diesen mittels (struct Window *) in einen Window-Zeiger

umwandeln.

Wir müssen nur immer öffnen und schließen

Nachdem wir nun das schmückende Beiwerk der C-Funktionen entschlüs-

selt haben, können wir uns wieder der Aufgabe, ein Fenster zu öffnen,

und damit Listing 2.3.2 zuwenden. Wir öffnen die intuition.library und

merken uns deren Adresse in IntuitionBase. Das erste Argument ist der

Name der Library, das zweite die Versions-Nummer. Trägt man dafür OL

ein, heist das »Version ist mir egal«. Nun folgt die Zeile

if (IntuitionBase == NULL) exit (FALSE);

Im Klartext: Wenn der Zeiger IntuitionBase den Wert NULL hat (keine

gültige Adresse), breche das Programm ab. Mehr zum if-Befehl finden Sie

in der vierten Sitzung. Die Library mußten wir öffnen, weil wir die darin

befindliche Funktion OpenWindow() brauchen.

OpenWindow() hat nur ein Argument, nämlich die Adresse einer

NewWindow-Struktur. Diese haben wir vorher mit den vielen Zeilen als

MeinWindow initialisiert. Ging beim Offnen etwas schief, was mit »if

(Window == NULL)« abgefragt wird, müssen wir alles, was offen ist,

schließfen. Das ist hier aber nur die intuition.library. Folglich können wir

das mit CloseLibrary(IntuitionBase) erledigen. Sie sehen, die Funktion will

einen Zeiger auf die Library sehen, also gut, daf} wir uns den in Intuition-

Base gemerkt hatten.

Lat sich das Window öffnen, ist es auch auf dem Schirm. Damit Sie sich

das Kunstwerk ein paar Sekunden lang ansehen können, läuft jetzt die

for-Schleife los. Sie zählt nur von 1000000 bis 0, was Zeit braucht, mehr

TUTORIUM

dazu in der vierten Sitzung. Ist das Programm bis hierher gelaufen, sind

das Window und die Library offen, also müssen wir beide schliefjen. Nun
können wir mit exif() das Programm verlassen.

ES” Beachten Sie, daß ich nicht main, sondern _main (mit Unterstrich) geschrie-

ben habe. Der Linker wird deshalb einen kürzeren Startup-Code einbinden,

der nicht mehr die Standard-I/O-Kanäle öffnet. Damit sind aber auch Funk-

tionen wie prinif() nicht mehr verwendbar. Diese werden allerdings auch

nicht gebraucht.

Wir rationalisieren die Arbeit

Sie haben es schon erkannt: Ein echtes Amiga-Programm ohne Windows

gibt es nicht. Also müssen wir immer die Libraries öffnen, dann Intuition,

dann die Windows, und zum Schluß müssen wir alles wieder schließen.

Und das sollen wir immer tippen? Natürlich nicht. Wir schaffen uns ein
paar Funktionen für diese Arbeiten, packen diese in ein Include-File und

laden dieses dann nur noch, wenn wir ein neues Programm anfangen.

Listing 2.3.5 arbeitet schon auf dieser Basis.

/* win2.c */

#include <exec/types.h>

#include <intuition/intuition.h>

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

struct Window *Window;

#include "stdwindow.h" /* Eigener File! */

void main (void)
{ .

open libs(); /* Libraries Öffnen */

Window = (struct Window *) open window (

20,20,500,100," Der Fenstertitel ",

WINDOWCLOSE | WINDOWSIZING | WINDOWDRAG,

CLOSEWINDOW, NULL);

Listing 2.3.5: (Fortsetzung nächste Seite]

79

TUTORIUM

80

if (Window == NULL) exit (FALSE);

/* Warte auf Mausklick in Close-Gadget */

Wait (1L << Window->UserPort->mp SigBit);

close all(); /* Alles schließen */

Listing 2.3.5: Das rationalisierte Window-Programm

Der Anfang ist noch klar. Es werden zwei Inlude-Files eingelesen und drei

Variablen deklariert. Stören Sie sich nicht daran, daf3 wir *.GfxBase noch
nicht nutzen, das Include-File braucht sie schon jetzt, wir wenden es

später an. Nun folgt

#include "stdwindow.h" /* Eigener File! */

Diese Datei finden Sie in Listing 2.3.6. Sie müssen zuerst dieses Listing

eintippen, es unter dem Namen sfdwindow.h speichern und erst dann

Listing 2.3.5 eingeben, es kompilieren und testen. Sie sollten stdwindow.h

im selben Directory wie Ihre Programme ablegen. Dieses Header-File stellt

drei Funktionen zur Verfügung, nämlich open_libs() zum Öffnen der
erforderlichen Libraries, open_window() zum Öffnen eines Window, und
close_all() zum Schließen des Windows und der Libraries. Damit reduziert

sich unser Programm — vom Vorspann abgesehen - auf die Zeilen

open libs();

open window(...);

Wait (1L << Window->UserPort->mp SigBit);

close all ();

Die vorletzte Zeile mit der Wait;()-Funktion bringt Sie sicherlich ins

Grübeln, doch glauben Sie mir vorerst, dal? dadurch das Programm

solange wartet, bis das Close-Gadget des Window angeklickt wird. In der

fünften Sitzung gehen wir der Sache auf den Grund. Zuerst müssen wir

uns open_window() laut Listing 2.3.6 ansehen.

[RKKKKKKKKKKKK KKK stdwindow.h KKKKKKKKKKKKKKKKKKK /

void open libs (void)

{

IntuitionBase = (struct IntuitionBase *)

Listing 2.3.6: (Fortsetzung nöchste Seiten)

TUTORIUM

}

OpenLibrary ("intuition.library",OL);

if (IntuitionBase == NULL) Exit (FALSE);

GfxBase = (struct GfxBase *)

OpenLibrary ("graphics.library", OL);

if (GfxBase == NULL)

{

CloseLibrary (IntuitionBase); /* Int.-Lib zu */

Exit (FALSE) ; /* Abbruch * /

}

struct window *open window (short x, short y,

nw.

nw.

nw

nw.

nw.

rw

nw.

nw.

nw.

nw

nw.

nw.

Short w, short h,

char *name,

ULONG flags,

ULONG i flags,

struct Gadget *gadget)

struct NewWindow nw;

LeftEdge = x; /* linke Kante des Fensters */

TopEdge = y; /* obere Kante des Fensters */

.Width = w; /* Breite des Fensters * /

Height = h; /* Höhe des Fensters * /

DetailPen = -l;

.BlockPen = -1;

Title = (UBYTE *) name; /* Fenster-Titel */

Flags = flags; /* Welche Gadgets */

IDCMPFlags = i flags; /* Welche IDCMP's */

.Screen = NULL;

Type = WBENCHSCREEN;

FirstGadget = gadget;

nw.CheckMark = NULL;

nw.BitMap = 0;

nw.MinWidth = -1; nw.MinHeight = -1;

nw.MaxWidth = -1; nw.MaxHeight = -1;

return((struct window *) OpenWindow(é&nw));

Listing 2.3.6: (Fortsetzung nöchste Seite]

8]

TUTORIUM

82

}

void close all (void)

{

CloseWindow (Window) ;

CloseLibrary (GfxBase);

CloseLibrary (IntuitionBase);

Exit (TRUE);

Listing 2.3.6: Das Include-File stdwindow.h

Bisher haben wir die NewWindow-Variable gleich bei der Deklaration

initialisiert. Jetzt legen wir mit

struct NewWindow nw;

eine Variable mit dem Namen nw vom Typ NewWindow an. Da es sich

dabei um ein sfruct handelt, sind Zuweisungen an die Struktur-Kompo-
nenten in dieser Form möglich:

nw.LeftEdge = 20;

nw. TopEdge 20;

/* u.s.w. */

Die Methode erscheint Ihnen im Vergleich zur bisherigen zu umständlich?

Sie haben ja recht, aber das Verfahren hat Vorteile. Die initialisierten

Strukturvariablen müssen immer global sein, sie sind also auch statisch.

Statische Variable belegen immer ihren Speicherplatz und können nicht

gelöscht werden.

Nun müssen Sie wissen, daß die NewWindow-Struktur nur zum Öffnen
des Windows benötigt wird, danach ist sie überflüssig. Alle weiteren

Zugriffe auf das Window laufen über die Window- Struktur, ein struct, das

Intuition nach dem Öffnen automatisch anlegt. Die von OpenWindowf)
gelieferte Adresse zeigt darauf. In der Window-Struktur befinden sich alle

Daten aus Ihrer NewWindow-Struktur und noch ein paar mehr.

Jetzt stellen Sie sich vor, Sie brauchen drei Windows, dann würden Sie

nach der statischen Methode auch dreimal den Platz für die New-

Window-Strukturen unnötig belegen. Folgerung: Wir legen die ganze

»NewWindow-Geschichte« in eine Funktion. Dort deklarierte Variablen

sind bekanntlich dynamisch (automatische Variable) und existieren somit

TUTORIUM

nur so lange (auf dem Stapel), wie die Funktion aktiv ist. Bei der Gelegen-

heit übergeben wir dann die Eigenschaften des Windows, die wir ändern

möchten, als Argumente. Die Funktion weist diese Werte der New-

Window-Struktur zu - die übrigen als Konstanten auch - und öffnet dann

das Fenster. Den Zeiger auf die (grofse) Window-Struktur gibt sie zurück.
Beide Aktionen (Window öffnen und Zeiger darauf »returnen«) werden

mit der Zeile »return((struct window *) OpenWindow(&nw));« erledigt.

* Betrachten wir den Aufruf aus Listing 2.3.5, so steht da:

Window = (struct Window *) open window (

20,20,500,100," Der Fenstertitel ",

WINDOWCLOSE | WINDOWSIZING | WINDOWDRAG,

CLOSEWINDOW, NULL);

Die ersten vier Zahlen geben die Lage des Fensters sowie seine Größe an.

Nach dem Titel des Window folgt als ein Argument der Ausdruck WIN-

DOWCLOSE | WINDOWSIZING | WINDOWDRAG. Es handelt sich

hierbei um die Flag-Bits (in intuition.h definierte Konstanten), die mittels

der ODER-Funktion (l) zusammengefaßt werden. Damit werden die

Gadgets für das Schließen, die Gröfßjenänderung und das Verschieben

eingeschaltet. Probieren Sie diese Gadgets aus, sie funktionieren automa-
tisch. Es gibt noch das Gadget WINDOWDEPTH für das »in den Hinter-

grund bringen« und weitere, die wir später kennenlernen werden.

Checkliste

1. Wann braucht ein Programm einen eigenen Screen?

2. Kann man die NewWindow-Struktur nach dem Öffnen eines Windows ver-

gessen oder gar löschen?

3. Warum sollte man eine Library zum Schluß immer schließen?

Ideen für eigene Übungen

Ändern Sie das Listing 2.3.5 so, daß

e __ das Window einen neuen Titel trägt,

°e es eine andere Lage und Größe hat und

e es alle Gadgets hat (auch WINDOWDEPTH).

Kompilieren, linken und testen Sie das Programm.

83

TUTORIUM

84

2.4 Vierte Sitzung:

Den Programmtluß kontrollieren

Die Themen dieser Sitzung:

e Entscheidungen

e Operatoren

e Verzweigungen

e Schleifen

e Sprünge

Sie haben es schon in der vorherigen Sitzung gemerkt: Wir müssen prü-

fen, ob eine bestimmte Bedingung gegeben ist, und danach das eine oder

das andere tun. Das Programm muf in die eine oder in die andere Rich-

tung verzweigen, der Programmfluß wird geändert. Neben diesen ein-

fachen Verzweigungen gibt es auch Mehrfachverzweigungen, die eben-

falls sehr wichtig sind. Zum Beispiel muf3 ein Programm ganz verschie-

dene Dinge tun, je nachdem, welcher Menüpunkt ausgewählt wurde. Was

gewählt wurde, mus das Programm natürlich erfragen. Und wenn nichts

gewählt wurde? Dann mufl3 es wieder fragen und wieder fragen, so

lange, bis der Anwender etwas tut. In diesem Fall läuft das Programm in

einer Schleife. Aus allem zusammen ergeben sich diese Themen:

e Operatoren in C

e Die verschiedenen Arten der Verzweigung

e Endlose, abweisende und nicht abweisende Schleifen

e Das Bilden von Blöcken

Arithmetische Operatoren einsetzen

Bis jetzt habe ich immer brav wie in Pascal oder Basic i=i+2 geschrieben,

wenn i um 2 erhöht werden sollte. Aber das tut man nicht in C, sondern

schreibt dafür i+=2. Das gilt nicht nur für 2, sondern allgemein und auch

für andere Operatoren, wie die Tabelle 2.4.1 zeigt.

TUTORIUM

Ausdruck Kurzform Operation

x=x*y x* =y Multiplikation

x=x/y x/ Fy Division

x=x%y x% =y Modulo

X=x+y Xt =y Addition

X=xX-y X- =y Subtraktion

Xx=X<<y x<< =y Links schieben

x=y>>y x>> =y Rechts schieben

x=x&y x& =y Bitweises AND

x=xNy x =y Bitweises XOR

x=xly xl =y Bitweises OR

Tabelle 2.4.1: Operatoren und ihre Kurzformen

Früher galt, daf} man generell die Kurzform verwenden sollte, weil der

Compiler dann weiß, daß er die Variable nicht zweimal zwischenspei-

chern muß). Moderne Compiler erkennen das aber und wandeln selbstän-

dig Ausdrücke wie x=x+17 in x+=17 um.

Inkrement- und Dekrement-Operatoren

Für den Sonderfall x+=1 kann man auch x++ schreiben, womit wir bei

den berühmten C-Operatoren ++ und -- angelangt wären. Es gilt:

Ausdruck Ist gleichwertig mit

X =x+] x++ oder ++x (Inkrement)

x =x-] x-—- oder --x (Dekrement)
x+ =] x++ oder ++x

x- =] x— oder —x

Tabelle 2.4.2: Inkrement- und Dekrement-Operatoren

Die Aussage, daf3 x++ und ++x gleichwertig sind (bzw. x-- und ——x), ist

allerdings nur im Fall der Zuweisungen gültig. Man kann aber auch prak-

tisch an jeder Stelle im Programm Variable mit den Inkrement- bzw.

Dekrement-Operatoren schmücken, und dann muf} man beide Formen

sehr wohl unterscheiden. Das folgende Programm gibt 3 und 5 aus.

85

TUTORIUM

main() {

int 1=3;

printf("Sd\n", itt);

printf("Sd\n", ++i);

Die Variable i hat den Anfangswert 3. Die erste printt()-Zeile gibt i aus

und erhöht es dann um 1, i ist also jetzt gleich 4. Die zweite printf()-Zeile

erhöht erst i (von 4 auf 5) und druckt es dann. Das nennt man Post-Inkre-
ment (i++) oder Prä-Inkrement (++i). Für das Dekrement gilt das sinn-

gemäß).

Verzweigungen mit if und logische Operatoren

Listing 2.4.1 bringt zuerst mit der Funktion input() etwas Wiederholung.

Die Aufgabe: So ähnlich, wie man in Basic »INPUT "Gebe Zahl ein" i«

schreiben darf, wollen wir in C »input("Gebe Zahl ein", &i)« anwenden.

Sie sehen, wir übergeben mit &i die Adresse von i. Das hat zur Folge,

daf3 die Funktion auf diese Adresse schreibt, wir also so einen Wert für i

zurückbekommen. Beachten Sie auch, daf3 jetzt in scanf{) nicht &zahl,

sondern nur zahl steht, denn im Kopf haben wir zahl bereits als Zeiger

deklariert.

void input (char *msg, int *zahl)

{ printf("Ss ",msg);

scanf("sd", zahl);

}

main ()

{

int i;

input ("Gebe 1 oder 2 ein", &i);

if (i == 1)

puts("Das war die 1");

86

TUTORIUM

if (1 == 2)

puts("Das war die 2");

if (i !=1 && i != 2)

{

puts("Tut mir leid");

printf("%d ist weder 1 noch 2\n", i);

}

Listing 2.4.1: Die Anwendung von if

Nun zur Aufgabe: Der Anwender soll 1 oder 2 eingeben, und das soll

bestätigt werden. Bei jeder anderen Zahl soll die Ausgabe lauten »xxx ist
weder 1 noch 2«. Nun, die Zahl steht nach dem Aufruf unserer inpuff)-

Funktion in i, und jetzt kommt die Abfrage

if (i == 1)

auf deutsch: »wenn i gleich 1 ist«. Beachten Sie, daf3 der logische Ope-

rator »gleich« mit »==« (zwei Gleichheitszeichen) geschrieben werden

muß! Wenn diese Bedingung wahr ist (zutrifft), wird der folgende Befehl

oder Befehlsblock (siehe unten) ausgeführt. Hier wird mit der Funktion

puts(} (put string) ein Text ausgegeben. Wenn Sie Text unformatiert aus-

geben wollen, ist diese Form schneller als printf().

ES Beachten Sie: Nach if darf kein Semikolon stehen. Es wirkt in diesem Fall als
leerer Befehl. Das heißt, wenn die Bedingung erfüllt ist, wird dieser leere

Befehl und nicht die Folgezeile ausgeführt.

Nun zur Zeile mit dem tollen Ausdruck

if (21 != 1 s& 1 !=2)

Im Klartext: »wenn i ungleich 1 und i ungleich 2«. Sie sehen, daf3 != der

Ungleichoperator ist, und && fiir das logische UND steht.

ES” Beachten Sie, daß C im Gegensatz zu Basic oder Pascal zwischen logischen
Operatoren und Bit-Operatoren unterscheidet. Das logische UND heißt &&,

das bitweise nur &.

Nach der Abfrage sollen zwei Zeilen ausgeführt werden, weshalb hier

mittels der geschweiften Klammern ein Block gebildet wird. Ein Block darf

beliebig viele Zeilen und auch weitere Abfragen enthalten. Natürlich darf

er auch dem if folgen.

87

TUTORIUM

88

Andernfalls oder else einsetzen

Listing 2.4.2 ist eine kleine Abwandlung eines Teils von Listing 2.4.1. Den

Rest übernehmen Sie bitte. In der ersten Abfrage prüfen wir auf »i gleich

1 ODER i gleich 2«. Zwei senkrechte Striche heißen logisch ODER, nur

einer meint auch hier nur bitweises »Odern«.

input ("Gebe 1 oder 2 ein", &i);

if (i == || 1 == 2)

puts("Das war 1 oder 2");

else

{

puts ("Tut mir leid");

printf("Sd ist weder 1 noch 2\n", i);

}

Listing 2.4.2: Die Anwendung von else (Auszug)

Ist die if-Bedingung nicht erfüllt, kommt else (andernfalls) zum Tragen.

Würden Sie das else weglassen, hätten Sie einen typischen Logik-Fehler,

wonach das Programm einmal korrekt und einmal falsch arbeitet. Gäben

Sie dann 55 ein, käme die richtige Meldung »Tut mir leid / 55 ist weder
1 noch 2«, doch würden Sie 1 eingeben, lautete die Ausgabe:

Das war 1 oder 2

Tut mir leid

1 ist weder 1 noch 2

Mehrfachverzweigungen mit switch erledigen

Im Listing 2.4.1 hatten wir mit der Folge

ıf (1 ==)

puts("Das war die 1");

Lt (1 ==)

puts("Das war die 2");

auf nur zwei Werte geprüft, bei 10 verschiedenen Zahlen dürfte diese

Methode langsam lästig werden. Deshalb gibt es dafür eine Kurzform

namens switch. Listing 2.4.3 zeigt die Anwendung.

TUTORIUM

void input (char *msg, int *i)

{ printf ("ss ",msg);

scanf("%d", i);

main ()

{

int i;

input ("Gebe 1, 2, 3 oder 7 ein", &1);

Switch (1)

{

case 1:

puts("Das war die 1");

break;

case 2:

puts ("Das war die 2");

break;

case 3:

puts ("Das war die 3");

break;

case 7:

puts ("Das war die 7");

puts ("so ein Glück");

break;

default:

puts ("War nicht 1,2,3 oder 7");

Listing 2.4.3: switch ist die Kurzform für viele if

Per Prinzip schreibt man zuerst diese Zeilen:

switch (i)

{

}

Hier ist i die Variable, die abgefragt werden soll. Da auf switch immer ein

Block folgt, schreibe ich die geschweiften Klammern schon einmal hin, um

dann erst die Zeilen dazwischen einzusetzen. Diese Technik wende ich

89

TUTORIUM

90

immer an — auch bei main() {...} —, weil ich so nicht mitzuzählen brauche,

wieviel Klammern ich noch schliefSen muß. Im switch-Block steht nun für

jeden Fall ein case-Befehl, dem alle zugehörigen Zeilen folgen. Nach der

letzten Zeile eines case folgt break. Die Klammern sind hier für die Block-

bildung nicht erforderlich.

Aussteigen mit break

Mit dem Break-Befehl wird der aktuelle switch-Block verlassen. Das funk-

tioniert so: |

switch (i)

{

break;

}

/* Hier geht es nach break weiter */

[SS Mit break können Sie nur aus switch-Blöcken und Schleifen aussteigen. Ver-

lassen wird immer nur der aktuelle Block und nicht etwa bei Schachtelungen

gleich alles.

Schleifen bilden mit while, do und for

In einer Schleife wird ein bestimmter Programmteil — Schleifenkörper

genannt — wiederholt. Eine Form sähe so aus:

Beginn:

tue dieses

tue jenes

goto Beginn

Ende:

Die beiden »tue«-Anweisungen sind der Schleifenkörper. Wie leicht zu

erkennen, läuft diese Schleife endlos, die Marke »Ende:« wird nie

erreicht. Im Normalfall prüft man deshalb in der Schleife auf eine

bestimmte Bedingung, zum Beispiel darauf, ob die Taste gedrückt

wird, und springt dann zu »Ende:«, also aus der Schleife heraus. Wir

können dafür ein Beispiel in C so formulieren:

TUTORIUM

main ()

{

Beginn:

puts("Ende mit Taste x");

if (getch() == 'x')

goto Ende;

goto Beginn;

Ende:

.

7

}

Beachten Sie den kleinen Trick mit der Funktion gefch() (get character,

warte auf Tastendruck). Anstatt

c = getch();

if (c == 'x')

kann man auch gleich mit dem Funktionswert arbeiten. Sie sehen aber

auch schon, daf3 diese Lösung mit gofo sehr unübersichtlich ist, weshalb C

dafür Besseres bietet. Das schauen wir uns mit Listing 2.4.4 an.

main ()

{ int test;

test = 0;

while (test < 10)

{

printf ("Sd\n",test) ;

test += 2;

test = 0;

do

{

print£ ("Sd\n",test) ;

test += 2;

} while(test < 10);

Listing 2.4.4: Die Anwendung von while und do

91

TUTORIUM

92

Beide Schleifen drucken die Zahlen O bis 8 in Zweierschritten. Die Zeile

while (test < 10)

bedeutet: Solange der Wert von test kleiner als 10 ist, führe den nachfol-

genden Schleifenkörper aus. Dieser kann wie hier ein Block in geschweif-

ten Klammern, aber auch nur eine Zeile sein. Wichtig ist, daf3 die Bedin-

gung, auf die while() prüft, innerhalb des Schleifenkörpers einmal eintritt,

sonst läuft die Schleife endlos. Hier wird die Variable test bei jedem
Durchlauf um 2 erhöht, so daf3 sie nicht lange < 10 bleiben kann.

Die zweite Schleife mit do...while führt hier zum selben Ergebnis, dennoch

gibt es einen wesentlichen Unterschied. Andern Sie nämlich in beiden

Fällen den Ausgangszustand test=0 in zum Beispiel test=20, so wird die

while-Schleife nicht, die do-Schleife hingegen einmal ausgeführt (sie gibt

die 20 aus). Der Grund ist klar. while prüft vor dem Schleifenkörper, do

hingegen erst danach. Die erste Form nennt man abweisende, die zweite

nicht abweisende Schleife.

main ()

{ int test = 0;

while (1)

{

printf ("Sd\n",test) ;

test += 2;

if (test > 10)

break;

}

puts ("Schleife ist abgelaufen");

}

Listing 2.4.5: while endlos mit break-Ausgang

Listing 2.4.5 zeigt eine andere Lösung derselben Aufgabe. Bei der while-

Bedingung kommt es letztlich immer darauf an, ob der Ausdruck zu lo-

gisch wahr (TRUE) oder falsch (FALSE) entwickelt werden kann. Praktisch

ist FALSE als Null definiert und TRUE als jeder Wert ungleich Null. Folg-

lich ist in while(1) der Ausdruck immer wahr, die Schleife liefe endlos.

Hier erfolgt jedoch die Abfrage innerhalb der Schleife mit if und gegebe-

nenfalls der Abbruch mit dem oben geschilderten break. Diese Form der

while-Schleife findet man recht häufig, weil es oft nötig ist, auf verschie-

_TUTORIUM

dene Abbruchbedingungen zu prüfen. Probieren Sie das Programm auch

einmal mit while(O) aus.

Wie schon gesagt, kann in der while-Bedingung jeder beliebige Ausdruck

eingesetzt werden, wie Listing 2.4.6 zeigt.

main ()

{

char s[80];

while(strcempi (s,"ende"))

{

puts ("Gebe ende ein");

gets (Ss);

}

Listing 2.4.6: while-Ausdrücke sind viele erlaubt

Die Stringvergleichsfunktion strempi() ergibt nur dann Null (FALSE), wenn

beide Strings gleich sind. Folglich läuft die while-Schleife so lange, bis
»ende« eingetippt wird.

Wir zählen mit for

Im Listing 2.4.4 hatten wir eine while-Schleife genutzt, um numerische

Variable hochzuzählen. Da dieser Fall ziemlich oft vorkommt, bietet C
dafür eine Sonderlösung namens for. Das können andere Sprachen auch,

aber keine hat die »for-Power« von C. Fangen wir einmal mit Listing
2.4.7 ganz harmlos an.

main ()

{

int test;

for (test=0; test<1l0; test += 2)

printf ("3dA\n",test);

Listing 2.4.7: Unsere erste for-Schleife

Das Beispiel hat dasselbe Ergebnis wie die while-Lösung in Listing 2.4.4.

In einer for-Schleife sind drei Ausdrücke möglich, nämlich — in dieser Rei-

hefolge - je einer für Initialisierung (den Startwert), die Testbedingung

93

TUTORIUM

94

und die Modifikation. Die Variable test bekommt den Startwert 0. Solange

test < 10 ist, soll die Schleife laufen. In jedem Durchgang soll test - auch

die Laufvariable genannt - um 2 erhöht werden. In diesem Beispiel

besteht der Schleifenkörper nur aus einer Zeile, er darf aber auch ein
Block (in geschweiften Klammern) sein.

Wir werden trickreich

Die drei Ausdrücke der for-Schleife erlauben viele Varianten und Tricks.

Der erste Trick an der Geschichte ist, daf3 die Ausdrücke auch leer sein

dürfen. Das gleiche Ergebnis wie Listing 2.4.7 bringt diese Lösung:

int test=2;

for(; test<10; test += 2)

Hier fehlt der Startwert, und das klappt sogar, weil er vorher schon mit int

test=2 initialisiert wurde. Beachten Sie aber, daß das Semikolon nicht

fehlen darf. Auch die Modifikation kann man weglassen, wenn man sie in

den Schleifenkörper verlegt. Das sähe dann so aus:

int test=2;

for(; test<10;)

{

printf ("Sd\n",test) ;

test += 2;

}

Sie können alles weglassen und for[;;) schreiben. In diesem Fall läuft die

Schleife endlos. Häufig wird das genutzt und dafür sogar — um das deut-

lich zu machen - ein Makro namens FOREVER (für immer) definiert.

#define FOREVER for(;;)

main ()

{

FOREVER

{

puts ("Ende mit x");

if (getch ()=='x')

break;

Listing 2.4.8: Mehr ist das berühmte FOREVER nicht

TUTORIUM

Wir haben hier erstmals ein Makro eingesetzt. Die Sache ist ganz ein-

fach. Sie schreiben »#define NameDesMakros Inhalt«. Das ist reine Text-

verarbeitung. In diesem Fall setzt der Compiler für FOREVER - wann

immer es im Text auftaucht - einfach for(;;) ein. Natürlich läuft diese

Schleife auch nicht für immer, sondern nur, solange niemand die (x)-

Taste drückt. Die Schreibweise hat sich jedoch eingebürgert.

Den Komma-Operator anwenden

Bisher hatten wir das Komma schon in prinif() angewandt, um Ausdrücke

zu trennen, doch diese Regel ist durchgängiger, als man vielleicht denkt.

Was halten Sie von Listing 2.4.92

main ()

{

int i, 7;

i= 10, j =i;

while(i--, j -= 3, j > 0)

printf ("S4d% 4d\n", i, 4);

Listing 2.4.9: Dürfen es ein paar Ausdrücke mehr sein?

Da, wo ein Ausdruck erlaubt ist, dürfen es auch ein paar mehr sein.
Beginnen wir mit dem Schlimmsten, nämlich der while-Zeile. Hier finden

Sie drei Ausdriicke durch Kommas getrennt. Die drei Ausdriicke werden

der Reihe nach von links nach rechts entwickelt, der letzte bestimmt das

Ergebnis, beriicksichtigt aber alle vorherigen Ergebnisse. Weil hier als

letzter Ausdruck j > O steht, läuft die Schleife nur so lange, wie diese

Bedingung wahr ist. Weil vorher mit j -= 3 die Variable j die Werte 7, 4,

1,-2 angenommen hatte, kann die Schleife nur dreimal laufen.

Auch die Zeile i=10, j=i; folgt dieser Komma-Regel. Und weil das so

schön ist, findet man solche Gebilde hauptsächlich in for-Schleifen, zum

Beispiel in dieser Art.

for (i=1, j=10; i<10; i++, J++)

printf("%4d% Ad\n", i,j);

Zum Anfang mit continue

In einer Schleife besteht häufig das Problem, dal} man bei bestimmten

Werten der Laufvariablen nichts tun will. Die einfachste Lösung dafür
heif3t continue (fortsetzen). Schauen wir uns Listing 2.4.10 an.

95

TUTORIUM

9%

main ()

{

int i;

for (i=7; i <= 70; itt)

{

if (1% 7)

continue;

printf£("Sd\n", i);

}

Listing 2.4.10: Die Anwendung von continue

Das Programm soll auf eine zugegebenermaßßen besonders umständliche

Art das kleine Einmaleins mit der Sieben ausgeben. Die for-Schleife läuft

aber in Einerschritten von 7 bis 70. Folglich darf alles, was nicht ohne

Rest durch 7 teilbar ist, auch nicht gedruckt werden. Genau das prüft der

Modulo-Operator. Der Modulo-Operator ist in C das %-Zeichen. x%y

ergibt den Rest der Division x/y. Ist dieser Rest nicht null, brauchen wir

die Zahl nicht. In diesem Fall wirkt continue. Es wirkt wie ein Sprung zum

Schleifenkopf, wo die nächste Iteration (Erhöhung des Schleifenzählers)

ausgeführt wird.

Checkliste
1. Das folgende Programm sollte eigentlich nur dann »3 ist gleich 4« drucken,

wenn das wahr ist (also nie), doch leider tut es das immer. Wo liegt der

Fehler?

main ()

{

if (3==4);

printf("3 ist gleich 4");

}

2. Was passiert, wenn man in einer switch-Anweisung nach einem case das

break vergißt?

3. Wie kann man eine Endlosschleife ohne goto aufbauen?

TUTORIUM

Ideen für eigene Übungen

1. Schreiben Sie ein Programm, das in einer for-Schleife die Zahlen von 1 bis

100 mittels printf{) ausgibt. Nach jeweils fünf Zahlen soll eine neue Zeile

begonnen werden.

Mit Hilfe des Modulo-Operators sähe die Lösung der Aufgabe so aus:

main()

{ int i;

for (i=1;i<=100;i++) {

printf ("S5d",1i);

if (1% 5 == Q)

print£f("\n");

}

Schreiben Sie aber trotzdem noch ein Programm, das einen Zähler einsetzt.

97

TUTORIUM

98

2.5 Fünfte Sitzung:
Ein-/Ausgabe und das Malprogramm

Die Themen dieser Sitzung:

e So entsteht das Malprogramm

e Input und Output

e Maus und Tastatur

e Die IDCMP-Flags

e Messages empfangen und auswerten

Im Laufe der folgenden Sitzungen soll ein Malprogramm erstellt werden.

Das Programm wird recht einfach sein und keinen Vergleich mit Deluxe

Paint oder anderen Profisystemen aushalten. Das soll es aber auch nicht,

es hat einen ganz anderen Zweck. Unser Programm wird Windows,

Menüs und verschiedene Requester haben. Sie können damit zeichnen,

Text ein- und in verschiedenen Zeichensätzen ausgeben. Sie können

Daten auf die Diskette schreiben und von dort lesen. Kurzum: Sie werden

ein typisches Amiga-Programm entwickeln, das alles hat, was man

meistens braucht. Wenn Sie den Menüs und Requestern andere Texte

geben und die zugeordneten Funktionen neu schreiben, können Sie das

Malprogramm zu einer Datenbank oder was auch immer umfunktionie-

ren. Sie haben den Rahmen, die ganze Bedienoberfläche und die gene-

relle Abfrage- und Verzweigungstechnik. Sie werden sehen, daf3 dies

einen sehr großen Teil jeder Anwendung ausmacht.

Bevor wir soweit sind, müssen wir allerdings noch ein paar Grundlagen

erarbeiten. So ist es sicherlich einsichtig, daf} unser Programm auf Maus-

klicks und Tastendrücke reagieren muf3. Es wäre auch ganz schön, wenn

wir einen Text in einem Intuition-Window ausgeben könnten (printf) geht

hier nicht). Also müssen wir uns mit dem Thema Ein- und Ausgabe, Input

und Output oder kurz I/O genannt, befassen.

TUTORIUM

Input und Output via IDCMP

Mit den C-Funktionen wie scanf() und printf{) ist nur ein Input bzw. Out-

put auf Textebene im CLI möglich. Unter Intuition laufen alle Eingaben von

der Tastatur oder der Maus über den IDCMP (Intuition Direct Communica-

tion Message Port), der Output in Form von Texten und Grafiken wird in

das Window »gemalt«. Ein Port ist nichts weiter als eine Datenstruktur

(struct), in der Intuition Nachrichten hinterlegt, die Sie dann daraus lesen

müssen. Außerdem müssen Sie mit ReplyMsg() den Erhalt der Nachricht

quittieren, so daf3 eine geordnete Kommunikation stattfindet.

Von Events getrieben

Diese Nachrichten - auch als Briefe vorstellbar - melden Events

(Ereignisse). Ein Event ist jede Aktion des Anwenders wie zum Beispiel

»Maus bewegt«, »Taste gedrückt« oder »Diskette ausgeworfen«. Ihr Pro-

gramm tut erst einmal gar nichts, sondern wartet nur auf solche Events.

Trifft eines ein, bearbeitet es den Fall und setzt sich dann wieder zur

Ruhe, um auf das nächste Event zu warten. Diese Technik nennt man

»event driven« oder ereignisgesteuert.

Das IDCMP ist in diesem Sinne der Briefkasten und Intuition der Brief-

träger, allerdings ein ganz untypischer Postbeamter. Sie können nämlich

zum Beispiel sagen: Ich möchte nur über ein Window-Close-Ereignis

informiert werden, ich lasse aber andere Ereignisse zu, die dann Intuition

selbständig bearbeiten soll. Ein Beispiel dafür: Sie erlauben, daß ein

Window verschoben werden darf, aber diese Arbeit selbst lassen Sie

Intuition machen.

Das IDCMP besteht aus zwei Message-Ports, nämlich dem WindowPort

und dem UserPort. Unser Briefkasten ist der UserPort, den WindowPort

braucht Intuition für sich selbst. Beide Ports werden automatisch von Intui-

tion angelegt, wenn Sie ein Window öffnen und dabei mindestens ein

IDCMP-Flag setzen. Durch das Setzen dieser Flags sagen Sie Intuition,

welche Ereignisse es an Ihr Programm melden soll. Heif3t Ihre New-

Window-Struktur nw, können Sie zum Beispiel mit

nw.IDCMPFlags = CLOSEWINDOW | MOUSEMOVE

vorgeben, daß Intuition Ihrem Programm nur dann eine Nachricht

schicken soll, wenn das Window geschlossen oder die Maus bewegt wird.

99

Tu TORIUM

100

Bild 2.5.1:

Das ist unser

Ziel

Die IntuiMessage-Struktur

Der Briefkasten, in dem diese Nachrichten ankommen, ist der UserPort,

und dieser ist ein struct vom Typ IntuiMessage. Weil wir auf dessen Kom-

ponenten immer wieder zugreifen müssen, wollen wir uns das Gebilde
laut Listing 2.5.1 einmal Stück für Stück ansehen.

struct IntuiMessage

{ struct Message ExecMessage;

ULONG Class;

USHORT Code;

USHORT Qualifier;

APTR IAddress;

SHORT MouseX, MouseY;

ULONG | Seconds, Micros;

struct Window * TDCMPWindow;

struct IntuiMessage *SpecialLink;

Listing 2.5.1: Das Geheimnis des IDCMP (natürlich eine Struktur)

ExecMessage wird von Exec (Kern des Amiga-Betriebssystems) benötigt.

Für uns gilt: Das Berühren mit den Pfoten ist verboten! Gleiches gilt für

SpecialLink.

Class: Die Bits hier entsprechen direkt den IDCMP-Flags, die wir beim

Window-Offnen gesetzt haben, nur kénnen wir hier abfragen, ob das

Event eingetreten ist (wie, zeige ich gleich).

Was Code für eine Bedeutung hat, hängt vom Wert in Class ab. Sagt

zum Beispiel Class, dal3 es ein Tastatur-Event ist, so können Sie in Code

den Tasten-Code lesen, bei einem Menü-Event die Menü-Nummer.

TUTORIUM

Qualifier. Diese Komponente benötigen wir manchmal, wenn wir die

Tastatur abfragen (siehe auch Code). »Qualifier« sind Tasten wie Shift,

die zusammen mit anderen Tasten gedrückt werden.

Address: Hier finden Sie die Adressen von Intuition-Objekten (deren

Strukturen). Wenn zum Beispiel class sagt, daß ein Gadget betätigt

wurde, so können Sie hier die Adresse des Gadgets erfahren. Bei User-

Gadgets (eigenen Gadgets) müssen Sie hier nachsehen.

MouseX, MouseY enthalten die Maus-Koordinaten (relativ zur linken obe-

ren Ecke des Windows).

Seconds, Micros (Sekunden, Mikrosekunden): Hier steht eine Kopie der

Systemzeit. Intuition bedient ein Window (und damit auch diese Daten)

aber nur 10- bis 60mal pro Sekunde, die Uhr ist also nicht für Kurzzeit-

messungen geeignet. j

IDCMPWindow ist die Adresse des Windows für die Messages, also sozu-

sagen die Postanschrift für die Briefe.

/* win3.c

Ein Programm zur Anzeige verschiedener

BKvents.

* /

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

#include <time.h>

/* Variable für Windows und Grafik */

struct IntuitionBase *IntuitionBase;

Listing 2.5.2: (Fortsetzung folgende Seiten)

101

TUTORIUM

struct GfxBase *GfxBase;

struct Window *Window;

struct RastPort *rp;

#include "stdwindow.h" /* siehe 3. Sitzung */

/* Variable zur Message-Bearbeitung */

struct IntuiMessage *msg;

ULONG class;

USHORT code;

SHORT mx, My;

char string[81];

struct tm *tp; /* für Datum/Uhrzeit */

time t t;

print () gibt den Text in 'string' an der

Position x,y aus. Vorher wird die Zeile

durch Überschreiben mit Blanks gelöscht.

void print (int x, int y, char *string)

{

SetAPen(rp, 1L);

Move (rp, X,Y);

Text (rp, "TM ",30L);

/* <------ 30 Leerstellen ------ > x /

Move (rp, X,Y);

Text (rp, string, strlen(string));

}

void main()

{

open libs();

Window = (struct Window *) open window (

20,20,500,100,"Anzeige von Events",

WINDOWCLOSE | /* Die Window-Flags */

Listing 2.5.2: (Fortsetzung folgende Seiten)

102

TUTORIUM

WINDOWSIZING |

WINDOWDRAG |

WINDOWDEPTH |

REPORTMOUSE |

ACTIVATE,

CLOSEWINDOW | /* Die IDMCP-Flags */

NEWSIZE |

MOUSEMOVE |

VANILLAKEY |

INTUITICKS,

NULL

);

if (Window == NULL) exit (FALSE);

rp = Window->RPort;

print (50,38,"Das letzte Event war:");

for(;;) /* FOREVER bis CLOSEWINDOW */

{

Wait (1L << Window->UserPort->mp SigBit);

while(msg = (struct IntuiMessage *)

GetMsg (Window->UserPort))

class = msg->Class;

code = msg->Code;

mx = msg->MouseX;

my = msg->MouseY;

ReplyMsg(msg);

switch(class)

{

case CLOSEWINDOW: close all();

break;

case NEWSIZE : print (50,50,"Größe geändert");

break;

Listing 2.5.2: (Fortsetzung folgende Seite)

103

Tu TORIUM

104

case MOUSEMOVE : sprintf (string,

"Maus bewegt auf x=%d y=%Sd",

mx, My);

print (50,50,string);

break;

case VANILLAKEY : sprintf (string,

"Taste Sc gedrückt",code);

print (50,50,string);

break;

case INTUITICKS : time (&t);

tp = localtime (&t);

Move (rp, 200, 7);

Text (rp, asctime(tp),24);

break;

} /* end switch */

} /* end while */

} /* end for * /

} /* end main */

Listing 2.5.2: Ein Programm zur Event-Abfrage und Anzeige

Gegenüber dem Listing 2.3.5 aus der dritten Sitzung gibt es nur

Erweiterungen, Sie können also darauf aufbauen. Zwei neue Include-Files

kommen hinzu. gfx.h wird für die Grafikfunktionen gebraucht, die

zuständige Library öffnet schon die Funktion open _libs(} aus dem Include-

File stdwindow.h. Auch das File kann aus der dritten Sitzung über-

nommen werden. time.h enthält Typen und Funktionen zum Thema

Datum/Uhrzeit. Beachten Sie auch, daf3 ein paar mehr Variablen ein-

geführt wurden.

Text in einem Window ausgeben

Zu Anfang des Listings gibt es die Funktion print{), und das hat Gründe.

Unter Intuition können Sie nämlich keinen Text mit printf[) ausgeben, son-

dern müssen dafür eine Intuition-Funktion einsetzen, die den Text malt.

printf{) tut das letztlich auch, braucht aber ein CLI-Fenster. Die einfachste

Textausgabefunktion unter Intuition heißt schlicht Text() mit der Syntax

Text (rp, *puffer, anzahl);

Darin ist rp der Zeiger auf den RastPort, “puffer ein Zeiger auf einen Zei-

chen-Array mit dem Text und anzahl die Anzahl der auszugebenden

TUTORIUM

Zeichen. Der RastPort ist eine Datenstruktur, in der notiert wird, wie

momentan gezeichnet wird. Die Vorder- und Hintergrundfarbe, der Zei-

chenmodus (z.B. überschreibend oder transparent) und andere Infor-

mationen sind hier festgehalten. Die meisten Grafikfunktionen benötigen

diese Angaben, weshalb man ihnen rp übergeben muß. Dieser Zeiger

wird mit rp = Window->RPort; ermittelt, d.h., in der Window-Struktur gibt

es einen Zeiger auf den RastPort.

Vor der Textausgabe muf3 mit Move(rp, x,y); der Grafik-Cursor positio-
niert werden. Ab dieser Stelle wird dann der Text geschrieben. Beachten

Sie, daf3 x und y in Bildpunkten relativ zur linken oberen Ecke des Win-

dows angegeben werden müssen. Vor der Textausgabe sollte man auch
noch die Zeichenfarbe setzen. Das geschieht hier mit SetAPen(rp, IL);. IL

(L für Langzahl) heif3t weil. In der Standardauflösung haben Sie die Far-

ben O bis 3, meistens Rot, Weiß, Blau und Schwarz. Alle drei Schritte sind

in der Funktion print{) zusammengefaßt. Dieser Funktion wird x, y und ein

String mit dem Text übergeben. Beachten Sie: Text() erwartet zwar einen

char-Array, ich übergebe aber einen String. Das hat den Vorteil, daf3

man mit sfrlen() die Anzahl der Zeichen ermitteln kann (das Null-Byte

wird dabei nicht gezählt) und so die Länge nicht immer abzählen muß.

Damit reduziert sich schließlich unsere ganze Textausgabe auf zum Bei-

spiel »print(100,50,"Hallo");«.

Window-Flags und IDCMP-Flags setzen

Sie wissen noch aus der dritten Sitzung: Ein Window wird geöffnet,

indem man die NewWindow-Struktur mit Daten versorgt und damit

OpenWindow({) aufruft. Die Details dazu haben wir in der Funktion

open_window() versteckt, die wiederum im Include-File stdwindow.h steht.

Hier also rufen wir nur noch open_window/() auf, und das unter anderem

mit diesen Window-Flags:

Window-Flag | Wirkung

WINDOWCLOSE Window bekommt Close-Gadget
WINDOWSIZING Window bekommt Größen-Gadget
WINDOWDRAG Window kann verschoben werden
WINDOWDEPTH Window bekommt Vorder-/Hinter-Gadget
REPORTMOUSE Window meldet Maus-Bewegungen
ACTIVATE Window ist sofort aktiv

Tabelle 2.5.1: Window-Flags

105

Tu TORIUM

106

Beachten Sie, daf3 das alles Bit-Werte (Zahlen) sind, die mittels der Oder-

Verknüpfung (1) zu einem einzigen Ausdruck zusammengefaßt werden.

Das nächste Argument sind die IDCMP-Flags, gleichfalls Bitwerte, die
auch »verodert« werden.

IDCMP-Flag Intuition bringt Message, wenn

CLOSEWINDOW Window geschlossen wurde

NEWSIZE Größe geändert wurde
MOUSEMOVE Maus bewegt wurde

VANILLAKEY Taste gedrückt wurde
INTUITICKS Uhrzeit gesendet wurde

Tabelle 2.5.2: IDCMP-Flags

Erklärungsbedürftig ist VANILLAKEY. Alternativ dazu (nicht gleichzeitig)

können Sie RAWKEY schreiben. Wenn dieses Bit gesetzt ist, sendet Intui-

tion den »rohen« Tasten-Code als eine Zahl zwischen O und 255. Diesen

Code müßten Sie erst in den ASCII-Code umrechnen. Nur mit letzterem

bringen die C-Funktionen vernünftige Texte auf den Schirm. Um die ein-
fachere automatische Umrechnung zu aktivieren, müssen Sie das Bit

VANILLAKEY setzen. Merke: Im Amerikanischen ist Vanilla ein Ausdruck

für etwas, das schön einfach ist. Die Sache hat einen Haken: VANILLA-

KEY meldet alle Sondertasten, wie z.B. die Funktionstasten nicht.

Wir warten auf Post von Intuition

Das Window ist geöffnet, wir ermitteln noch mit rp = Window->RPort;

den RastPort, geben mittels »print(50,38,"Das letzte Event war:");« diesen

Text aus und gehen dann mit for(;;) in eine Endlosschleife. Diese beginnt

mit der tollen Zeile

Wait (1L << Window->UserPort->mp SigBit);

Im Klartext heißt das etwa: Das Programm soll warten, bis der Wecker

klingelt. Dabei könnte ich es bewenden lassen, doch Sie wollen ja C

lernen, also wie funktioniert das?

Damit das Programm nicht ständig abfragen muß, ob ein bestimmtes

Ereignis eingetreten ist, kann es sagen: »Ich gehe jetzt schlafen, wecke

mich wieder, wenn Post in meinem Briefkasten ist.« Man könnte auch

TUTORIUM

sagen »der Briefträger soll klingeln«. Dazu muf3 das Programm die Funk-

tion Wait{) aufrufen, und zwar mit einer Bit-Maske (letztlich einer Zahl) als

Argument. In dieser Maske muf3 genau das Bit gesetzt sein, das meinem

Window entspricht. Ein Programm kann mehrere Windows verwalten,

dann hat jedes ein Bit. Nun weiß ich aber nicht, welches Bit mein Window
ist, ich weil aber, wo das steht, nämlich in mp_SigBit (Signal-Bit).

Der Weg dahin ist lang. Mit dem Öffnen des Windows hatten wir den
Zeiger Window auf die Window-Struktur erhalten. In dieser Window-

Struktur gibt es einen Zeiger auf die UserPort-Struktur und in dieser einen

Zeiger auf mp_SigBit. Nun wissen Sie noch, daf man bei Zeigern auf

Strukturen immer -> anstatt des Punktes schreiben muß, also ist der Weg

Window->UserPort->mp_SigBit schon klar.

Bliebe noch das IL << am Anfang des Ausdrucks. Das Ergebnis von

Window->UserPort->mp_SigBit ist eine Zahl, zum Beispiel 3. Damit redu-

ziert sich der ganze Ausdruck auf

Wait(1L << 3);

Die Zeichenfolge << ist der Links-Shift-Operator. IL heifst die Zahl Las

Langzahl. Die 3 ist aber eine Bit-Nummer und Wait() will eine Maske

sehen, in der Bit 3 gesetzt ist. Daher mache ich folgendes: Ich nehme die

Zahl 1, also binär 00000001, wo Bit O gesetzt ist. Dann schiebe ich die 1

um 3 Bit nach links und habe somit 00001000, was übrigens der Zahl 8

entspricht.

Es gibt übrigens auch fiese Programmierer, die ohne Waif{) arbeiten und

statt dessen schreiben

while(msg = GetMsg (Window->UserPort) == 0)

Im Klartext: Solange keine Message anliegt (== 0) frage immer wieder.

Das ist die sogenannte Polling-Methode. Aus CPU-Sicht vergehen aber

Ewigkeiten, bis mal wirklich eine Message eintrifft. Folglich ist die Antwort

vielleicht 9999mal nein und dann einmal ja. Natürlich kostet diese Fra-

gerei auch Rechnerzeit, kostbare Zeit, die anderen Tasks fehlt. In einem

Multitasking-System -— und das haben wir beim Amiga - ist das ein

grober Fehler.

107

Tu TORIUM

Wir werten die Post aus

Wie auch immer, Wait{) bewirkt also, daf} unser Programm an dieser

Stelle so lange wartet, bis die Post klingelt. Ist das der Fall, müssen wir

zum Briefkasten gehen und die Briefe dort herausholen, und zwar solange

(while) das Erfolg hat. Wir nehmen aber nicht den Stapel Briefe in die

Hand, sondern ziehen einen aus dem Kasten, lesen ihn und schicken

dann Intuition sofort eine Quittung der Art »Brief erhalten«. Den Inhalt des

Briefs hatten wir uns notiert und bearbeiten jetzt den Fall. Dann ziehen

wir den nächsten Brief und verfahren entsprechend. Das geht so lange bis

der Kasten leer ist. An dieser Stelle legen wir uns wieder hin und warten

darauf, das der Briefträger klingelt. Wenn der das nicht bis zu 60-mal

pro Sekunde machen würde, hätten wir einen ganz tollen Job. Das Spiel-

“chen geht so lange, bis da ein Brief erscheint mit der Meldung, daf3 der

108

Anwender das Close-Gadget angeklickt hat. An dieser Stelle schliefsen

wir mit close_all() alle Libraries und das Window und brechen das Pro-

gramm ab.

Dieser Ablauf sieht in C-ähnlicher Schreibweise etwa so aus:

for(;;) /* an sich endlos */

{

Warte bis Briefträger klingelt;

while(Brief aus Kasten nehmen == erfolgreich)

{

class = Art der Nachricht;

Quittiere Nachricht;

switch(class)
a

case CLOSEWINDOW: Alles schließen und Ende;

. break;

case NEWSIZE : Behandle "Größe geändert";

| break;

case u.S.w.

TUTORIUM

In echter C-Schreibweise wird aus dem obigen »Listing« diese Form:

for(;;) /* FOREVER bis CLOSEWINDOW */

{

Wait (1L << Window->UserPort->mp SigBit);

while(msg = GetMsg (Window->UserPort))

{

class = msg->Class;

ReplyMsg (Msg) ;

Switch(class)

{

case CLOSEWINDOW: close all();

break;

case NEWSIZE : print (50,50,"Größe geändert");

break;

}

}

Wenn Sie das mit Listing 2.5.2 vergleichen, werden Sie es wiederer-
kennen, es sind nur ein paar Details mehr, zum Beispiel diese:

while(msg = (struct IntuiMessage *)

GetMsg (Window->UserPort))

class = msg->Class;

code = msqg->Code;

mx msg->Mousex;

my = msg->MouseY;

ReplyMsg(msg);

|

Sobald die Message gelesen wurde, fangen wir an, alles, was uns interes-

siert, aus der msg-Struktur in andere Variable umzuspeichern, zum Bei-

spiel mit class = msg->Class;. Der Grund ist: Sobald wir mit

ReplyMsg(msg); den Empfang quittiert haben, sind die Daten in msg nicht

mehr gültig. Intuition kann sofort danach neue Daten eintragen.

Ihnen ist angenehm aufgefallen, daf} in msg->class bzw. in class die-

selben Bezeichner wie in den IDCMP-Flags stehen? Das ist korrekt. Mit

109

Tu TORIUM

110

diesen Flags sagen wir Intuition, was es uns melden soll, mit denselben

Flags fragen wir ab, welche Nachricht anliegt.

Wir tricksen mit sprintf();

Wie eingangs erwähnt, können wir mit der Funktion Text() - versteckt in

der Funktion print{} - nur Texte drucken. Das ist ausgesprochen ungünstig,

wenn wir Zahlen ausgeben müssen, die in Variablen stehen. Diese Zahlen

müssen nämlich vom rechnerinternen Binärformat (0101010101) in für

uns lesbare Zeichenfolgen gewandelt werden. Genau diesen Job haben

wir bisher printf{) erledigen lassen, und das ist jetzt verboten. Die Lösung

heißt sprinif() (string-printf). Diese Funktion arbeitet genauso wie prinfff),

aber mit einem Unterschied. Die Zeichen werden nicht auf den Schirm,

sondern in einen String geschrieben. Ein Beispiel: In code steht der ASCII-

Code der zuletzt gedrückten Taste. Dieser Code soll als Zeichen ausge-
geben werden. Mit printf() würde man dann schreiben:

printf("Taste tc gedruckt", code) ;

Der Unterschied zu sprinif() ist recht gering. Man muß nur noch den

String angeben, in den das Ergebnis geschrieben werden soll. Dafür

haben wir im Programm schon mit char string[81]; eine Variable dekla-

riert und schreiben daher nur noch

sprintf(string, "Taste %c gedrückt",code);

Nun haben wir wieder unseren String und können ihn mit print{50,50, -

string); ausgeben.

Wir lassen eine Uhr laufen

Im case-Selektor für INTUITICK steht diese geheimnisvolle Kommando-

Folge:

time (&t);

tp = localtime (&t);

Move (rp, 200, 7);

Text (rp, asctime(tp),24);

Sinn der Übung: Immer wenn ein INTUITICK-Event eintrifft, sollen das
Datum und die Uhrzeit angezeigt werden. Einen »Intuition-Tick« von der

Systemuhr gibt es ungünstigstenfalls zehnmal pro Sekunde, was für eine

Uhr mit Sekundenanzeige reicht. Würden wir die Routine in die Haupt-

schleife legen, würde sie zu oft aufgerufen, und der Text würde flackern.

TUTORIUM

Das Event INTUITICK ist aber nur der Anlaß, die Routine zu starten. Jetzt

kommt die Arbeit. Die Zeit steht in einer Systemvariablen vom Typ long.

Aus geheimnisvollen Gründen hat man aber dafür im Include-File time.h

den Typ time_t definiert. Wie auch immer, in dieser Langzahl steht die

Zeit in Sekunden ab Mitternacht vom 1. Januar 1978. Unterschätzen Sie

das nicht, wegen des Long-Wertes reicht das noch für über 100 Jahre.

Die Funktion time(&t) liest diesen Sekundenwert aus und speichert ihn in

der Variablen t. Der nächste Aufruf, nämlich to = localtime(&t); rechnet

die Sekunden um und speichert das Ergebnis in einer Struktur, auf die fp

zeigt. Das struct besteht aus lauter int-Komponenten für Sekunden, Minu-

ten, Stunden, Tag, Monat und Jahr. Die Funktion asctime() schließlich

wandelt diesen struct in einen String um, wobei für die Monatsnummer

sogar noch Text (die ersten Buchstaben) eingesetzt wird. Das Ergebnis ist

ein String von 26 Zeichen, wir drucken aber nur 24, weil wir das »\n\0«

am Ende nicht brauchen. Bliebe noch zu erwähnen, daf3 ich den Zwi-

schenschritt tp = localtime(&t); nur der Lesbarkeit wegen eingesetzt habe.

Man kann diese Zeile auch weglassen und dann schreiben:

Text (rp, asctime(localtime (&t)),24);

Checkliste

l. Warum sollen Sie die Polling-Methode vermeiden und statt dessen Wait()

einsetzen?

Was ist der Unterschied zwischen RAWKEY und VANILLAKEY2

Warum muß man vor ReplyMsg() die noch benötigten Werte im Message-

Port sichern?

111

TUTORIUM

112

Ideen für eigene Übungen

1. Erweitern Sie mit Hilfe der IDCMP-Flags (im open_window()-Aufruf) DISK-

REMOVED und DISKINSERTED sowie neuer case-Selektoren das Programm

so, daf3 im Falle eines Diskettenauswurts bzw. -einschubs die Meldung

»Diskette ausgeworfen« bzw. »Diskette eingeschoben« erscheint.

Kompilieren, linken und testen Sie das Programm.

Ändern Sie im open_window()-Aufruf und im case-Selektor VANILLAKEY in

RAWKEY. Stellen Sie in sprintf{) von Zeichenausgabe (%c) auf Zahlenaus-

gabe (%d) um. Beobachten Sie, welche Tasten welche Codes haben. Andern

Sie dann das Programm so, daf3 es auch mit einem Druck auf die [F1 }-

Taste beendet werden kann.

Kompilieren, linken und testen Sie das Programm.

TUTORIUM

2.6 Sechste Sitzung:
Unser Window bekommt Menüs

Die Themen dieser Sitzung:

© Aufbau eines Menüs

¢ Menii-Strukturen und Flags

e Programmieren von Menüs

e Der Menü-Code

e Makros

Die Auswahl eines Items kann aber auch zur Folge haben, daf3 plötzlich

weitere Items sichtbar werden. Das sind dann die sogenannten Sub-Items

(Untermenüpunkte). Ein Sub-Item kann durchaus wieder ein Sub-Sub-Item

produzieren. Theoretisch kann das noch weitergehen, praktisch wird

damit die Bedienung zu kompliziert. Meistens sind die Items Text. Zum

Beispiel werden Sie unter dem Menü-Titel »Projekt« üblicherweise den

ltem-Text »Laden« finden. Es hindert Sie aber niemand daran, anstatt

dieses Textes eine Grafik abzubilden. Intuition unterstützt direkt und sehr

gut Grafiken in Menüs.

Oft ist es zu umständlich, erst das Menü und dann ein Item anzuwählen.

Als Lösung des Problems bietet Intuition sogenannte Command-Keys

(Kommando-Tasten). Eine Kommando-Taste ist eine Taste der Tastatur, die

direkt erreichbar ist (zum Beispiel nicht zusammen mit der (ait }-Taste).

Wird die (rechte Amiga)-Taste gleichzeitig mit diesem Command-

113

Tu TORIUM

114

Key gedrückt, hat das dieselbe Wirkung, wie die Auswahl des zugeord-

neten Items, und zwar automatisch.

IS’ Geben Sie niemals kritischen Operationen einen Command-Key. Diese
Kommandos werden nämlich direkt und sofort ausgeführt. Bei einem Menü-

Item können Sie die Maus immer noch wegziehen, aber eine Kommando-

Taste kann unbeabsichtigt gedrückt worden sein.

Aufbau eines Menüs

In dieser Sitzung werden wir einen MenuStrip aufbauen, der zwei Titel

(Menüs) hat, nämlich »Projekt« und »Farben«. Das Projekt-Menü hat die

Items »Neu«, »Laden«, »Sichern« und »Ende«. Letzteres hat die beiden

Sub-Items »Wirklich« und »Lieber doch nicht«. Für »Wirklich« gibt es den

Command-Key » [Amiga] + [x]«. Das Farben-Menü hat die Items

»Rot«, »Grün« und »Blau«.

Bild 2.6.1:

Das ist unser

Ziel

Wie Screens und Windows sind auch Menüs Strukturen, die unter ande-

rem einen Zeiger auf das nächste Menü enthalten. Hier gilt:

Projekt --> Farben --> NULL

In jeder Menü-Struktur gibt es (unter anderem) Zeiger auf die Menü-Titel.

Aus diesen wird der MenuStrip aufgebaut. In jedem Menü gibt es einen

Zeiger auf die Item-Liste. Hier gelten dann die Folgen:

Neu --> Laden --> Sichern Ende --> NULL

Rot --> Grün --> Blau --> NULL

Auch die Items sind Strukturen. Jedes Item hat einen Zeiger auf die Sub-

ltem-Liste. Ist dieser Zeiger nicht NULL (d.h. es gibt Sub-Items), gilt wieder:

wirklich --> Lieber doch nicht --> NULL

TUTORIUM

Innerhalb der Items und Sub-Items gibt es einen Zeiger, der auf noch eine

Struktur zeigt. Diese ist entweder eine Textstruktur (kein einfacher String)

für den Item-Text oder eine Image- Struktur, wenn Grafik anstatt Text dar-

gestellt werden soll. Daf} die Textstruktur noch einen Zeiger hat, der dann

auf den Text-String zeigt, sei nur noch draufgesetzt. Auf jeden Fall sehen

Sie schon, wir werden wieder fröhlich »zeigern« müssen. Die 14 wichtig-

sten Zeiger stellt Bild 2.6.2 dar.

Projekt --> Farben --> NULL

! Rot --> Grün --> Blau --> NULL

Neu --> Laden --> Sichern -->Ende --> NULL

wirklich

Lieber doch nicht

NULL

Bild 2.6.2: Die wichtigsten Zeiger in einem Menü-System

struct Menu

{

struct Menu *NextMenu; /* -> nächstes Menu x /

SHORT LeftEdge, TopEdge;/* linke obere Ecke * /

SHORT Width, Height; /* Breite und Höhe der Box */

USHORT Flags; /* Flags (siehe unten) */

BYTE *MenuName; /* --> Titel-Text * /

struct Menultem *FirstItem; /* --> Item-Liste */

/* Nur für Intuition intern: */

SHORT JazzX, JazzY, BeatX, BeatY; /* Intui.-intern */

be

Listing 2.6.1: Die Menü-Struktur

115

TUTORIUM

Meniis gestalten

Mit LeftEdge geben Sie die Lage des Titels vor. Für TopEdge können Sie

zur Zeit schreiben, was Sie wollen, Intuition nimmt immer die obere

Schirmkante. Gleiches gilt für die Höhe Height, wofür Intuition immer die
Höhe der Titelleiste des Screens einsetzt.

Dem Menü selbst können Sie nur ein Flag mitgeben (oder auch nicht,

dann O). Ist MENUENABLED gesetzt, ist das Menü wählbar, sonst ist es

deaktiviert und wird grau gezeichnet (inklusive aller Items). Diese

Zustände können durch die Funktionen MenuOn() und MenuOff{) nach-

träglich geändert werden.

*MenuName ist ein Zeiger auf einen String. Hier reicht es, den Namen

direkt in Anführungszeichen einzutragen.

*Firstltem zeigt auf das erste Item, und damit wären wir bei der nächsten

Struktur. Die Item-Struktur gemäß Listing 2.6.2 gilt gleichermaßen für :

Items und Sub-Items. Alles außer Projekt und Farben in Bild 2.6.1 muß

vom Typ Menultem sein.

struct Menultem

{

struct Menultem *NextItem; /* --> nächstes Item */

SHORT LeftEdge, TopEdge; /* linke obere Ecke */

SHORT Width, Height; /* Breite und Höhe der Box */

USHORT Flags; /* Flags (siehe unten) */

LONG MutualExclude; /* Gegenseitiger Ausschluß */

APTR ItemFill; /* Zeiger auf Text oder Image */

APTR SelectFill; /* Text/Image bei Auswahl */

BYTE Command; /* Command-Key */

struct Menultem *SubItem; /* --> Sub-Item-Liste */

USHORT NextSelect; /* Für Mehrfachwahl */

by

Listing 2.6.2: Die Item-Struktur (gilt auch für Sub-Items)

Solange Nextltem nicht NULL ist, setzt sich die Liste fort. Mehr als 32 Items

sind aber nicht erlaubt. Die Lage (LeftEdge, TopEdge) gilt relativ zur Lage

des Menüs. Die Breite (Width) und die Höhe (Height) sollten mindestens

die Maße des Texts oder der Grafik (Image) abdecken. NextSelect be-

rücksichtigt die sogenannte Mehrfach-Anwahl, die wir hier nicht berück-

sichtigen. Flags gibt es wieder genügend, doch wir benutzen nur zwei.

116

TUTORIUM

Flags setzen

Ist das Flag ITEMENABLED gesetzt, ist das Item wählbar. Setzen Sie hier 0

ein, werden auch alle Sub-Items (wenn vorhanden) deaktiviert. Wenn Sie

im Command-Feld einen Buchstaben für einen Command-Key einge-

tragen haben, müssen Sie auch dieses COMMSEQ-Flag setzen. Intuition

wird dann [Amiga] [A] mit diesen Buchstaben neben den Text schreiben.

Geben Sie dann width breiter als den Text an, damit diese beiden Zei-

chen noch hineinpassen! ITEMTEXT müssen Sie setzen, wenn das Item Text

sein soll, sonst müßte ItemFill auf ein Grakik-Image zeigen. Außerdem

setzen wir noch HICOMP, womit das Item bei der Anwahl invertiert wird.

Wenn Sie statt dessen lieber einen Rahmen um das Item gezeichnet

haben wollen, setzen Sie HIBOX.

Menü-Strukturen initialisieren

In Bild 2.6.2 gibt es zwei Menü-Strukturen und neun Menultem-Strukturen.

Also müssen wir zwei bzw. neun Variablen dieses Typs anlegen und

diese mit Daten füttern, etwas fachlicher gesagt, initialisieren. Das könnte

so aussehen:

struct Menu Projekt =

{

Farben, /* Zeiger auf Nachfolger */

10, 0, 120, 10, /* Lage und Maße der Box */

MENUENABLED, /* Flags */

" Projekt ", /* Titel */

&Neu /* Zeiger auf Item-Liste */

}7

Damit würde man normalerweise anfangen, doch das klappt nicht. Wenn

ich &Farben schreibe, muf3 Farben schon existieren. In Farben gibt es

aber den Zeiger auf das Item Rot, also muf3 das noch davorstehen. In Rot
gibt es den Zeiger auf Grün, das muf3 somit noch weiter vorne stehen.

Schließlich gibt es in Rot noch den Zeiger auf TextVonRot, dieser muf3

also zuerst deklariert sein. Langer Rede kurzer Sinn: Die Reihenfolge im

Listing entspricht nicht mehr der logischen Reihenfolge, ein immer großer

Nachteil. Problem zwei: Sie müssen bei den Datentypen höllisch aufpas-

sen. Irren Sie sich da einmal, gerät die ganze Kette durcheinander, der
echte Fehlerort ist dann garantiert ein anderer, als der, den der Compiler
meldet.

117

TUTORIUM

Wenn ich hingegen lauter Variable anlegen, dann nach dem Motto:

struct Menu Projekt;

Projekt .Menu = &Farben:

Projekt.LeftEdge = 10;

Projekt.TopEdge = 0;

Projekt.Width = 120;

Projekt.Heigh = 10;

So kann ich diesen Fehler nicht mehr machen, doch wäre das eine end-

lose Tipperei, wenn ich diesen Job nicht in Funktionen verlagert hätte. Die

Funktionen decken nicht alle Sonderfälle ab, aber wie Sie gleich am Bei-

spiel von »Ende« noch sehen werden, kann man ja struct-Komponenten

auch nachträglich andere Werte zuweisen, es sind schließlich Variable.

Die Variablennamen selbst sind auch so ein Problem. In großen Pro-

grammen mit zum Beispiel 10 Menüs und 100 Items sind das 110

Namen, die schwer zu überblicken und zu handhaben sind. Wir nehmen

deshalb Arrays, und zwar

struct Menu menu [2] /* für die Menüs x /

struct Menultem item[9]; /* ftir die Items x /

struct IntuiText itext [9]; /* für die Item-Texte */

Und damit waren wir schon mitten im Listing 2.6.3. Speichern Sie diese

Datei als menu.h. Wir werden sie dann später in das Programm aus der

fünften Sitzung (Listing 2.5.2) »includen« und müssen dann dort nur noch

ganz wenig hinzubringen.

/* menu.h

Alle Funktionen zum Anlegen und zur Abfrage

von Menus. (c) 1990 Peter Wollschlaeger

* /

struct Menu menu [2] /* fiir die Menüs */

struct Menultem item[9]; /* für die Items */

struct IntuiText itext[9]; /* für Item-Texte */

/* Konstanten für die spätere

Menüabfrage

Listing 2.6.3: (Fortsetzung folgende Seiten)

118

TUTORIUM

* /

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

/* Text in ein IntuiText-struct

PROJEKT

FARBEN.

NEU

LADEN

SICHERN

ENDE

WIRKLICH

NEIN

ROT

GRUEN

BLAU

eintragen

* /

© WN FO
NO FR

void make text (struct IntuiText *name, char *text,

name->FrontPen

name->BackPen

name->DrawMode

name->LeftEdge

name->TopEdge

name->ITextFont

name->IText

name->NextText

I

I

I

SHORT left,

0;

1;

JAM1;

left;

top;

0;

(UBYTE *)

NULL;

SHORT top)

/* Daten in ein Menultem-struct eintragen

* /

void make item(char *itemtext,

Listing 2.6.3: (Fortsetzung folgende Seiten)

119

TUTORIUM

struct

struct

struct

USHORT

USHORT

IntuiText *name,

Menultem *item,

Menultem *next,

left,USHORT top,

width,USHORT height,

ULONG flags)

item->NextItem = next;

item->LeftEdge = left;

item->TopEdge = top;

item->Width = width;

item->Height = height;

item->Flags = flags |

ITEMTEXT | HIGHCOMP;

item->MutualExclude = NULL;

make text(name, itemtext, 0,0);

item->ItemFill = (APTR) name;

item->SelectFill = NULL;

i1tem->Command = NULL;

item->Subltem = NULL;

/* Daten in einen Men

* /

void make menu (struct

struct

struct

USHORT

USHORT

ULONG

name->NextMenu =

name->LeftEdge

name->TopEdge

ne

le

top

u-struct eintragen

Menu *name, char *titel,

Menu *next,

Menultem *first,

left, USHORT top,

width, USHORT height,

flags)

Xt;

ft;

.

[4

Listing 2.6.3: (Fortsetzung folgende Seiten)

120

TUTORIUM

name->Width =

name->Height =

name->Flags =

name->MenuName =

name->FirstlItem =

width;

height;

flags;

(BYTE *) titel;

first;

/* Das ganze Menü-System aufbauen

* /

void MakeTheMenu ()

{

make item("Neu",

&itext [0],

&item[0],

&item[1],

5,0,

120,11,

I TEMENABLED

);

make item("Laden",

make item("Sichern",

make item("Ende",

/*

/*

/*

/*

/*

/*

&itext[1],

5,16,120,11,

&itext [2],

/* Text des Items * /

Adresse IntuiText-struct */

Adresse der Item-struct */

Adresse next Item x /

linke obere Ecke * /

Breite und Höhe * /

Flags des Items * /

&item[1], &item[2],

ITEMENABLED);

&item[2], &item[3],

ITEMENABLED);5,32,120,11,

&itext[3], &item[3], NULL,

5,48,120,11, ITEMENABLED);

make item("Wirklich Ende",

&itext [4], &item[4],

100,8,200,11,

ITEMENABLED | COMMSEQ);

Listing 2.6.3: (Fortsetzung folgende Seiten)

&item[5],

121

TUTORIUM

make item("Lieber doch nicht",

&itext[5], &item[5], NULL,

100,24,200,11, ITEMENABLED);

item[3].SubItem = &item[4]; /* Sub-Item nachtragen */

item[4].Command = 'x'; /* Dito Cmd-Key x /

make menu(émenu[0]," Projekt ", &menu[l]l, &item[0],

10,0,120,10, MENUENABLED);

make item("Rot", &itext[6], &item[6], &item[7],

5,0,100,11, ITEMENABLED);

make item("Grün", &itext[7],&item[7], &item[8],

5,16,100,11,ITEMENABLED);

make item("Blau", &itext[8], &item[8], NULL,

5,32,100,11,ITEMENABLED);

make menu (&menu[ll],"Farben", NULL, &item[6],

150,0,100,10, MENUENABLED);

}

/* MENUPICK-Message auswerten und zugehörige

Aktionen ausführen

*/

void do menu ()

{

switch (MENUNUM (code)) /* Switch Titel */

{

case PROJEKT:

switch(ITEMNUM (code)) /* Switch Items */

{

case NEU: print (50,50, "Neu");

break;

Listing 2.6.3: (Fortsetzung folgende Seite)

122

TUTORIUM

case LADEN: print (50,50, "Laden");

break;

case SICHERN: print (50,50,

"Sichern");

break;

case ENDE: switch(SUBNUM (code))

{

case WIRKLICH:

ClearMenuStrip (Window);

close all();

break;

case NEIN: print (50,50,

"Lieber doch nicht");

break;

}

break;

}

break;

case FARBEN: switch(ITEMNUM (code))

{

case ROT: print (50,50, "Rot");

break;

case GRUEN:print (50,50, "Grün");

break;

case BLAU:print (50,50, "Blau");

break;

}

break;

Listing 2.6.3: menu.h hat alles, was man für Menüs braucht

123

Tu TORIUM

124

Für Sie ist die Funktion make_item() die wichtigste, die wie folgt aufge-

rufen wird:

make item("Neu", /* Text des Itens * /

&itext[0O], /* Adresse IntuiText-struct */

&item[0], /* Adresse der Item-struct */

&item[1], /* Adresse next Item x /

5,0, /* linke obere Ecke x /

120,11, /* Breite und Höhe * /

ITEMENABLED /* Flags des Items * /

);

Die Kommentare sind etwas kurz, deshalb noch diese Hinweise: »Neu« ist

der Text des Items. Dieser wird aber nicht in der Item-Struktur abgelegt,

sondern in einer Struktur vom Typ IntuiText. Diese ist ein Element des

Arrays itext[9], hier itext[O]. Die Funktion erhält mit &itext[O] einen Zeiger

darauf. Deshalb kann sie mit

make text (name, itemtext);

die Funktion make_text() aufrufen. Diese wiederum trägt in die mit name

bezeichnete IntuiText-Struktur den Text ein. Ist das geschehen, kann ich
mit

item->ItemFill = (APTR) name;

in der Menultem-Struktur den Zeiger auf diese IntuiText-Struktur eintragen.

APTR (a-pointer) ist ein allgemeiner Zeigertyp, der immer dann verwendet

wird, wenn ein Zeiger auf unterschiedliche Objekte zeigen soll. item-

>ItemFill kann nämlich auch auf eine Image-Struktur zeigen, wenn das

Item eine Grafik sein soll.

Nun zu diesen beiden Zeilen:

item[3].SubItem = &item[4]; /* Sub-Item nachtragen */

item[4].Command = 'x'; /* Dito Cms-Key * /

Unsere Funktion make_item() hat keinen Parameter fiir Sub-Items, sondern

trägt dafür immer NULL ein. Bei ifem[3] ist das falsch, weshalb das mit

der ersten Zeile korrigiert wird. Dito wird auf diese Art für item[4] der

Command-Key 'x' nachgetragen.

TUTORIUM

Die Menüs erweitern

Wenn Sie die Menüs erweitern wollen, ist das kein Problem. Schauen wir

uns dafür das Farben-Menü an. Nehmen wir an, Sie wollen ein Item mit

dem Text »Gelb« hinzubringen. Nun nehmen Sie das letzte Item (Blau)
und duplizieren es. Im Text steht dann:

make item("Blau", &itext[8], &item[8], NULL,

5,32,100,11,ITEMENABLED);

make item("Blau", &itext[8], &item[8], NULL,

5,32,100,11, ITEMENABLED);

In der ersten Zeile steht noch NULL (kein Nachfolger), das ändern Sie in

make item("Blau", &itext [8], &item[8], &item[9],

Nun ist der neue make_item-Aufruf so anzupassen.

make item("Gelb", &itext[9], &item[9], NULL,

5,48,100,11,ITEMENABLED);

Wir haben den Text geändert, die Elemente in [9] und die Y-Position von

32 in 48. Vergessen Sie jetzt nur nicht, auch die Arrays

struct Menultem item[9]; /* für die Items */

struct IntuiText itext [9]; /* für Item-Texte */

von »9« in »10« zu ändern. Wenn Sie ein neues Menü anlegen wollen,

duplizieren Sie zuerst die Items wie gehabt. Ihr erstes Item mite dann

item[10] heifsen und Ihr Menü menu[2]. Nun duplizieren Sie einen

make _menuf()-Aufruf und ändern den in

make menu (&menu[2],"Figuren", NULL, &item[10],

300,0,100,10, MENUENABLED);

Auch der menu-Array muß dann um 1 erhöht werden.

Menüs abfragen mit Makros

Nun kommen wir zu der Funktion do_menuf), die für die Abfrage der

Menüs und die zugehörigen Aktionen zuständig ist. Wenn der Anwender

einen Menüpunkt ausgewählt hat, steht im Code-Feld der IntuiMessage

ein 16-Bit-Wort, in dem codiert ist, welches Menü, welches Item und wel-
ches Sub-Item selektiert wurde. So ein Menü-Wort teilt sich so auf:

125

Tu TORIUM

126

Sssssitiiiimmmmm

Das heißt:

e Bit O bis 4: Menü

e Bit 5 bis 10: Item

e Bit 11 bis 15: Sub-Item

Sehr schön, doch wie isoliert man nun die Einzelinformationen? Nun,

Leser, die Freude am »Bitschieben« haben, können jetzt voll zuschlagen.

Ich empfehle aber dringend, sich beim Programmieren auf die wichtigen

Dinge zu konzentrieren, und diese Aufgabe mittels Makros zu erledigen.

Folgende Makros sind in intuition.h schon eingebaut:

#define MENUNUM (n) (n & OxIF)

#define ITEMNUM(n) ((n » 5) & Ox003F)

#define SUBNUM(n) ((n » 11) & OXxOOI1F)

Sie sehen so sehr schön, wie Funktionsmakros definiert werden. Im Prin-

zip ist das reine Textverarbeitung. Wenn Sie im Programm zum Beispiel

MENUNUM(3) schreiben, macht der Präprozessor Ihres Compilers daraus

3 & OxIF. Er setzt also das Argument ein, er kann aber auch - wie die

nächsten beiden Makros zeigen - damit rechnen. Im Gegensatz zu echten

Funktionen, die nur einmal im Programm stehen, werden also Funktions-

makros immer wieder neu in das Programm eingefügt. Das kostet natür-

lich Speicher. Damit Sie das erkennen können - hier kommen die Makros

ja aus einem Include-File —, werden sie meistens (leider nicht immer) groß

geschrieben.

Damit sind dann so einfache Abfragen wie

if (MENUNUM (code) = 3) /* in Menü 3? */

möglich. Wir machen das eleganter mit switch und case. Beachten Sie,

daf3 nach den inneren »cases« auch immer ein break steht. Das ist nötig,

weil ein break immer nur aus einem switch herausführt, wir aber nach

einer Aktion ganz aus allen Abfragen heraus müssen. Beachten Sie

ferner, daß? vor dem Abruch noch ein

ClearMenuStrip (Window) ;

steht, womit die Menii-Leiste wieder entfernt wird. Sie können aber auch

mitten im Programm damit das Menü löschen, und es oder ein anderes

mit einem erneuten Aufruf von SetMenuStrip() wieder einbauen. Doch

TUTORIUM

damit sind wir schon im Hauptprogramm. Nehmen Sie Listing 2.5.2 aus

der fünften Sitzung, und bauen Sie folgende Ergänzungen ein:

Direkt vor die Zeile void _main() setzen Sie

#include "menu.h"

Nach der Kontrolle des Window-Offnens mit »if (Window == NULL)
exit{FALSE);« fügen Sie ein:

MakeTheMenu () ;

SetMenuStrip (Window, &menu[0]);

In den Switch-Selektor fügen Sie direkt nach dem CLOSEWINDOW einen

neuen case ein, was dann so aussieht:

case CLOSEWINDOW: close all();

break;

case MENUPICK : do menu();

break;

Damit Intuition das MENUPICK-Event auch meldet, tragen Sie in die

open_window-Funktion noch dieses Flag ein, zum Beispiel hinter CLOSE-

WINDOW | als MENUPICK I.

l. Welche Formen von Items gibt es, und welche dürfen keinesfalls einen
Command-Key haben?

2. Warum sieht ein Programm, das Makros anwendet, viel kürzer aus, ohne es

wirklich zu sein?

3. Wozu braucht man die Funktion ClearMenuStrip(]?

Ideen für eigene Übungen

1. Erweitern Sie menu.h so, daf3 ein neues Menü »Figuren« mit den Items

»Rechteck« und »Kreis« entsteht.

Kompilieren, linken und testen Sie das Programm.

2. Geben Sie einigen weiteren Menü-Items Command-Keys.

Kompilieren, linken und testen Sie das Programm.

Tu TORIUM

128

2.7 Siehte Sitzung: Gadgets für die Mausklicks

Die Themen dieser Sitzung:

e Gadget-Typen

e Strukturen und Flags

e Programmierung von Gadgets

Jede mausorientierte Eingabe mit Ausnahme der Menüs läuft über

Gadgets. Wörtlich übersetzt sind das Dingsda, praktisch können es recht

komplizierte Gebilde sein. Ein Gadget ist zuerst ein unsichtbares

Rechteck. Das Drag-Gadget über der Titelleiste ist ein Beispiel dafür.

Normalerweise wird man aber ein Gadget sichtbar machen, indem man

ihm einen Rahmen, einen Text (oder beides) oder ein Image (Grafik) gibt.

Die Lage des Textes wird relativ zum Gadget angegeben, der Text kann

somit auch außerhalb der Gadgets liegen. Der Rahmen selbst ist auch
relativ zum (unsichtbaren) Gadget zu sehen, weshalb zum Beispiel seine

linke obere Ecke mindestens mit 0,0, besser mit -1,-1 definiert werden

sollte. Anwender-Gadgets gehören entweder zu einem Window oder zu

einem Requester. Die lage eines Gadgets wird relativ zu diesem

Container angegeben.

Die drei Gadget-Typen

Es gibt drei Gadget-Typen. Das Boolean-Gadget wird typisch für Ja-/

Nein-Aussagen verwendet. Kästchen mit Texten wie »OK« oder

»Abbrechen« sind Beispiele. Diese Gadgets treten zwar oft als Repräsen-

tanten für TRUE oder FALSE auf, daher der Name, Sie sind aber nicht auf

zwei Boolean-Gadgets beschränkt. Ein Taschenrechner zum Beispiel kann

aus 20 Boolean-Gadgets bestehen. Das String-Gadget dient zur Eingabe

von Texten oder Zahlen. Das Proportional-Gadget stellt Schieberegler dar.

Beispiele sind die Farbregler in Preferences.

TUTORIUM

struct Gadget

{

struct Gadget *NextGadget; /* --> Nachfolger */

SHORT LeftEdge, TopEdge;/* linke obere Ecke */

SHORT Width, Height; /* Breite und Höhe */

USHORT Flags; /* siehe unten */

USHORT Activation; /* Auch Flags, s. unten */

USHORT Gadget Type; /* der Typ */

APTR GadgetRender; /* --> Border oder

Image oder NULL */

APTR SelectRender; /* --> oder Image, das

nach Anwahl */

struct IntuiText *GadgetText; /* Text des Gadgets

* /

LONG MutualExclude; /* z.Z. unbenutzt */

APTR Speciallnfo; /* --> Zusatz-Struktur

bei String- und Prop-Gadgets */

USHORT GadgetID; /* Kenn-Nummer */

APTR UserData; /* Anwender-Erweiterung */

};

Listing 2.7.1 Die Gadget-Struktur

Datenstrukturen und Flags

Ein Gadget ist eine Struktur (was hätten Sie erwartet?), die Listing 2.7.1

zeigt. Wie Sie sehen, enthält diese Struktur wieder diverse Zeiger auf

andere Strukturen. Für ein unsichtbares Gadget müssen Sie all diese Zei-

ger auf NULL setzen. Für ein Boolean-Gadget brauchen Sie zumindest in

*GadgetText einen Zeiger auf eine Textstruktur. Praktisch werden Sie

einen Rahmen um diesen Text zeichnen (genau: um das Gadget), wofür

Sie in GadgetRender den Zeiger auf eine Border-Struktur eintragen. Bei

einem String-Gadget müssen Sie in Speciallnfo die Adresse einer

StringInfo-Struktur eintragen und für ein Proportional-Gadget die von

PropInfo. Die Darstellung des Gadgets erfolgt immer gemäf3 dem Bild, auf

das GadgefRender zeigt. Das Objekt kann ein Image (Grafik) oder ein

Border (Polygon, Vieleck) sein.

129

Tu TORIUM

130

Flags und Activation-Flags

Es gibt Unmengen von Flags, hier benutzen wir nur GADGHCOMP,

womit das Gadget bei der Anwahl komplementiert wird. Die Activation-

Flags legen fest, welche Events Intuition meldet, wie sich Gadgets verhal-

ten sollen und was sie bewirken. Wir brauchen hier nur wenige.

RELVERIFY bewirkt, daf3 Events nur gemeldet werden, wenn der Anwen-

der die Maustaste über dem Gadget losläft. GADGIMMEDIATE heißt
sofortige Meldung. STRINGCENTER heißt: Der Text in einem String-Gad-

get wird zentriert. Für die Proportional-Gadgets brauchen wir noch

AUTOKNOB (automatischer Schieber) und FREEHORIZ (horizontaler

Schieber).

Die zusätzlichen Datenstrukturen

Bei String-Gadgets muf3 »Speciallnfo« auf eine Struktur namens StringInfo

zeigen. Wie diese aufgebaut ist, zeigt Listing 2.7.2.

struct StringInfo

{

UBYTE *Buffer; /* Arbeitspuffer */

UBYTE *UndoBuffer; /* Kopie Puffer vor Editierung

* /

SHORT BufferPos; /* Zeichen-Position im Puffer */

SHORT MaxChars; /* Puffer-Größe in Zeichen */

SHORT DispPos; /* Position des 1. sichtb. Zeichens */

/* Die folgenden Felder werden von Intuition

aktualisiert: */

SHORT UndoPos; /* Zeichen-Position im UndoBuffer */

SHORT NumChars; /* Anzahl Zeichen im Buffer */

SHORT DispCount; /* Anzahl Zeichen im Gadget */

SHORT CLeft, CTop; /* linke obere Ecke des Gadgets */

struct Layer *LayerPtr; /* RastPort des Gadgets */

LONG LongInt; /* Ergebnis beim Integer-Gadget hier */

struct KeyMap *AltKeyMap; /* --> Key-Map oder NULL */

};

Listing 2.7.2 Die StringInfo-Struktur

TUTORIUM

Wie Sie nachher im Beispiel-Programm sehen werden, reicht es, wenn Sie

die ersten vier Felder initialisieren. Mit Listing 2. 7.3 kommen wir zur

Propinfo, also der Struktur, auf die Speciallnfo im Falle von Proportional-

Gadgets zeigen muß. Keine Angst vor viel Arbeit, es reicht praktisch,
wenn Sie nur drei Felder initialisieren.

struct PropInfo

{

USHORT Flags; /* z.B. AUTOKNOP | FREEHORIZ */

USHORT HorizPot; /* Stellung des horiz. Potis

in Prozent */

USHORT VertPot; /* bzw. vertikal */

USHORT HorizBody;/* Schrittweite horizontal */

USHORT VertBody; /* vertikal */

/* Die folgenden Felder setzt Intuition: */

USHORT CWidth; /* Container Width */

USHORT CHeight; /* Container Height */

USHORT HPotRes, VPotRes; /* Auflösung des Potis */

USHORT LeftBorder; /* Container- */

USHORT TopBorder; /* Position * /

be

Listing 2.7.3 Die Propinfo-Struktur

e Nach Anwahl von Projekt --> Laden erscheint ein String-Gadget mit

der Frage nach dem Dateinamen. »String-Gadget mit Return verlas-

sen« ist ein Event, das angezeigt wird, dito wird dann der Pufferinhalt

ausgegeben.

e Nach Anklicken der Close-Box des Windows folgen die Fragen
»Wirklich schließen®« und dazu zwei Boolean-Gadgets mit »Nein«

und »Jawohl«.

e Im Window sind die drei Proportional-Gadgets »Rot«, »Grün« und

»Blau«, mit denen Sie die Schirmfarbe ändern können.

131

TUTORIUM

Geben Sie den Hanen der Ratei ein:

i EiLD_@.2NG 2

Bild 2.7.1:

Das ist unser

Ziel

Gadgets programmieren

Wie schon mit den Menüs in der vorigen Sitzung habe ich auch hier alles

zum Thema im Include-File gadget.h laut Listing 2.7.4 untergebracht.

/* gadget.h

Daten und Funktionen zum

Anlegen von Gadgets

* /

APTR jadr;

struct Gadget *gad, gadget [11];

struct IntuiText gtext [11];

struct StringInfo info;

char dobuffer[80], undobuffer [80];

/* für die Rahmen der Gadgets */

SHORT cordsl1[] = {0,0, 282,0, 282,12, 0,12, 0,0};

struct Border borderl =

{-2,-2,1,0,JAM1,5, &cords1[0],NULL};

SHORT cords2[] = {0,0, 101,0, 101,21, 0,21, 0,0};

struct Border border2 =

{-1,-1,1,0,JAM1,5,&cords2[0],NULL};

/* flr Prop-Gadget: */

struct Image img[3];

struct PropInfo prop[3];

Listing 2.7.4: (Fortsetzung folgende Seiten)

132

TUTORIUM

/* Farbe in 16 Schritten: */

#define STEP (0OxFFFF/0x10)

/* Text in eine IntuiText-struct

eintragen

* /

void make gtext (struct IntuiText *name,

char *text, SHORT left, SHORT top)

{

name->FrontPen = 1;

name->BackPen = 0;

name->DrawMode = JAMI;

name->LeftEdge = left;

name->TopEdge = top;

name->ITextFont = 0;

name->IText = (UBYTE *) text;

name->NextText = NULL;

/* Gaget-Struktur initialisieren

* /

void make gadget (char *gtext,

struct IntuiText *gname,

SHORT tleft, SHORT ttop,

Struct Gadget *gadget,

struct Gadget *next,

SHORT left, SHORT top,

SHORT width, SHORT height,

USHORT flags,

USHORT activation,

USHORT type,

APTR *render,

struct IntuiText *text,

APTR *info,

USHORT id)

Listing 2.7.4: (Fortsetzung folgende Seiten)

133

TUTORIUM

gadget ->NextGadget = next;

gadget->LeftEdge = left;

gadget->TopEdge = top;

gadget->Width = width;

gadget->Height = height;

gadget->Flags = flags;

gadget->Activation = activation;

gadget->GadgetType = type;

gadget->GadgetRender = (APTR) render;

gadget->SelectRender NULL;

make gtext (gname, gtext, tleft, ttop);

gadget->GadgetText = gname;

gadget->MutualExclude = NULL;

gadget->Speciallinfo = (APTR)info;

gadget->GadgetID = id;

gadget->UserData = NULL;

/* Alle Gadgets anlegen

* /

void MakeTheGadgets (void)

{

/* Puffer für String-Gadget initialisieren */

strcpy (dobuffer, "BILD 0.IMG");

info.Buffer = (UBYTE *) dobuffer;

info.UndoBuffer = (UBYTE *) undobuffer;

info.MaxChars = 80;

info.BufferPos = 0;

info.DispPos = 0;

/* Das String-Gadget selbst: */

make gadget ("Geben Sie den Namen der Datei

ein: ", |

>ext [0], 0, -15,

Listing 2.7.4: (Fortsetzung folgende Seiten)

134

TUTORIUM

&gadget [0], NULL ,20,80,280,11,

GADGHCOMP,

STRINGCENTER | RELVERIFY,

STRGADGET,

(APTR *) &borderl, >ext [0],

(APTR *) &info, 1);

/* Das erste Bool-Gadget: */

make gadget ("Nein", >ext[1], 40,7,

&gadget[1],&gadget [2],

180,130,100,20,

GADGHCOMP,

GADGIMMEDIATE | RELVERIFY,

BOOLGADGET,

(APTR *) &border2, >ext[1],

NULL, 2);

/* Das zweite Bool-Gadget: */

make gadget ("Jawohl", >ext[Z2], 25,7,

&gadget [2],NULL,

350,130,100,20,

GADGHCOMP,

GADGIMMEDIATE | RELVERIFY,

BOOLGADGET,

(APTR *) &border2, >ext[2],

NULL, 3);

/* Es folgen drei Prop-Gadgets: */

make gadget ("Rot", >ext[3], -35,7,

&gadget [3], &gadget [4],

350,20,200,20,

GADGHCOMP,

GADGIMMEDIATE,

PROPGADGET,

(APTR *) &img[0O], >ext[3],

(APTR *) &prop[0], 4);

Listing 2.7.4: (Fortsetzung folgende Seiten)

135

TORIUMTu

136

prop[0].Flags = AUTOKNOB | FREEHORIZ;

prop[0].HorizBody = STEP;

prop[0].HorizPot = 0;

make gadget ("Grün",>ext [4], -35,7,

&gadget [4], &gadget [5],

350,45,200,20,

GADGHCOMP,

GADGIMMEDIATE,

PROPGADGET,

(APTR *) &img[1], >ext[1],

(APTR *) &prop[1], 9);

|prop[1].Flags = AUTOKNOB | FREEHORIZ;

prop[1].HorizBody = STEP;

prop[1].HorizPot = 0;

make gadget ("Blau", >ext[5],-35,7,

&gadget [5], NULL,

350,70,200,20,

GADGHCOMP,

GADGIMMEDIATE,

PROPGADGET,

(APTR *) &img[2], >ext[2],

(APTR *) &prop[2], 6);

prop[2].Flags AUTOKNOB | FREEHORIZ;

prop[2].HorizBody = STEP;

prop[2].HorizPot LO*STEP;

} /*End MakeTheGadgets() */

/* Gadget-Events auswerten und passende

Aktionen ausführen

* /

void do gadget ()

{

Switch((((struct Gadget *)

iadr) ->GadgetID))

Listing 2.7.4: (Fortsetzung folgende Seite)

TUTORIUM

case 1: print (20, 70,"String-Gadget

mit Return verlassen");

print (20,20, /* 29 Blanks */

" ") 5

print (20,20, (char *) &info.Buffer[0]);

RemoveGadget (Window, &gadget[0]);

break;

case 2: RemoveGadget (Window, &gadget [1]);

RemoveGadget (Window, &gadget [2]);

SizeWindow (Window,0D,-100);

break;

case 3: close all(); =

break;

case 4:

case 5:

case 6: SetRGB4 (&Screen->ViewPort, 0,

prop[0].HorizPot/STEP,

prop[1].HorizPot/STEP,

prop[2].HorizPot/STEP);

break;

Listing 2.7.4: Alles für die Gadgets

Die Strukturen cords und border werden nur benötigt, um die Rahmen der

Gadgets zu zeichnen, mehr dazu in der neunten Sitzung. Die Funktion
make_gtext() unterscheidet sich nur durch die Penfarben von make_tfext()

in menu.h. Das Problem: Mit den Farben fiir die Meniis lassen sich keine

Gadget-Texte malen, umgekehrt keine Menüs. Da kommt noch eine Auf-

gabe auf Sie zu.

Die Funktion make_gadget() wendet dieselbe Technik an wie make_item/()

aus der vorherigen Sitzung, nur daß hier die Gadget-Strukturen initiali-

siert werden.

Für das String-Gadget muß einiges vorab getan werden. Zuerst muß das

Programm zwei Puffer, nämlich char dobuffer[80] und undobuffer[80] zur

Verfügung stellen. In den dobuffer muß der String kopiert werden, der

137

Tu TORIUM

138

nach dem Start im Gadget stehen soll. Den undobuffer braucht Intuition,

weil der Anwender ja mit [Amiga] + [Q] den alten Inhalt wieder her-

stellen kann. Die Zeiger auf beide Puffer miissen in die info-Struktur ein-

getragen werden und deren Adresse schließlich in die Gadget-Struktur.

Ansonsten unterscheidet sich der Aufwand nicht von den beiden folgen-

den Boolean-Gadgets, nur daf hier anstatt des Zeigers auf info NULL

steht. Die beiden Boolean-Gadgets gehören zusammen, weshalb der erste

auf das zweite zeigt. Sie können hier wie bei den Menüs beliebig lange

Listen bilden, nachher werden alle Gadgets auf einmal gezeichnet.

Die folgenden drei PROPGADGET für die Farbregler bilden auch eine

Liste. Hier muf3 zusätzlich die prop-Struktur mit Daten für den Schiebe-

regler geladen werden. In dieser Struktur ist der Wert von HorizPot die

aktuelle Stellung des Knopfes. Das ist ein 16-Bit-Wert zwischen 0 und

OxFFFF. Auch der HorizBody-Wert für die Schrittweite ist ein 16-Bit-Wort.

Sind beide Werte gleich, hat der Regler nur eine feste Stellung, hat Horiz-

Body den halben Wert, sind zwei Stellungen möglich, der Regler liefert

dann die Werte O und 1. Für unser Beispiel gilt: Wir wollen die Farben

einstellen. Die Farbwerte dürfen nur zwischen O und 15 liegen. Der Reg-

ler darf also nur 16 Werte liefern. In diesem Fall teilt man OxFFFF/Ox10

(65536/16) = Ox1000 (4096). Die Body-Komponente wird also auf

A096 gesetzt. Genau das ist die Konstante STEP, die mit »#define STEP

(OxFFFF/Ox10)« definiert wurde. Wenn man dann später die Reglerstel-

lung aus der HorizPot-Komponente abliest, mul? man deren Wert auch

durch STEP teilen und kann damit die Farbe setzen. Die Farbeinstellung

erfolgt mittels SefRGB4(). Das ist schon wieder ein Vorgriff, den Sie mir

hoffentlich verzeihen. Bu

Gadgets abfragen

Wenn jemand ein Gadget anklickt, bekommen wir von Intuition u.a. eine

GADGETDOWN-Message und wenn die Maustaste über dem Gadget

losgelassen wird GATGETUP. Doch das reicht nicht. Das letzte Argument

in den make_gadget()-Aufrufen ist die von uns vergebene Gadget-ID (eine

Zahl zwischen 1 und 6). Nur darüber können wir erkennen, welches

Gadget angeklickt wurde. Doch diese Zahl meldet uns Intuition leider

nicht, weshalb wir einige Umwege gehen müssen. In der Message-Struk-

tur unter msg->.lAddress steht die Adresse der Struktur, die ein Event aus-

gelöst hat. In unserem Fall ist das die Adresse eines Gadgets. Die interes-

siert uns herzlich wenig, wir wollen die ID wissen. Diese ID (Identifikation)

ist die laufende Nummer, die wir selbst im Feld GadgetlD eingetragen

TUTORIUM

haben. Darauf müssen wir also zugreifen, und das geschieht in der Funk-

tion do_gadget{) etwas trickreich. Wir könnten mit

gad = (struct Gadget *) iadr;

den Zeiger auf die Struktur holen und ihn in gad speichern. Nun könnten

wir daraus die ID holen, wir können sie aber auch gleich in den switch

packen, also:

switch (gad->GadgetID)

Das kann man natürlich trickreicher lösen, was halten Sie davon?

int i;

1 = (((struct Gadget *)iadr) ->GadgetID);

switch (i)

Nicht trickreich genug? Nun denn, hier ist die »Endlésung«:

switch ((((struct Gadget *)iadr)->GadgetID))

Gadgets in das Window bringen

Nun zum Hauptprogramm: Gegenüber dem letzten Listing win3.c gibt es

so viele Erweiterungen, dal} ich mit Listing 2.7.5 lieber die Komplettlösung

zeige.

/* wind.c

Erweiterung von win3.c um

Menüs und Gadgets

* /

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

#include <time.h>

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

struct Window *Window;

Listing 2.7.5: (Fortsetzung folgende Seiten)

139

TUTORIUM

140

struct Screen *Screen;

struct RastPort *rp;

#include "stdwindow.h"

struct IntuiMessage *msg;

ULONG class;

USHORT code;

char string[81];

SHORT mx, My;

struct tm *tp;

time t t;

void print (int x, int y, char *string)

{

SetAPen(rp, 1L);

Move (rp, X,Y);

Text (rp,

" ",30L);

Move (rp, X,Y);

Text (rp, string, strlen(string));

#include "menu.h"

#include "gadget.h"

void _main()

{

open libs();

MakeTheGadgets ();

Window = (struct Window *) open window

(

20,20,619,100,

"Anzeige von Events ",

WINDOWCLOSE |

WINDOWSIZING |

WINDOWDRAG |

WINDOWDEPTH |

Listing 2.7.5: (Fortsetzung folgende Seiten)

TUTORIUM

REPORTMOUSE |

ACTIVATE,

CLOSEWINDOW |

GADGETUP | GADGETDOWN |

NEWSIZE |

MOUSEMOVE |

VANILLAKEY |

INTUITICKS |

DISKREMOVED |

MENUPICK,

&gadget [3] /* Nun nicht NULL */

);

if (window == NULL) exit (FALSE);

/* Farben auf "normal": */

Screen = Window->WScreen;

SetRGB4 (&Screen->ViewPort,0,0,0,10);

MakeTheMenu () ;

SetMenuStrip (Window, &menu[0]);

rp = Window->RPort;

print (50,38,"Das letzte Event war:");

for(;;) /* FOREVER */

{

Wait (1L << Window->UserPort->mp_ SigBit);

while(msg = (struct IntuiMessage *)

GetMsg (Window->UserPort))

class = msg->Class;

code = msg->Code;

mx = msg->MouseX;

my = msqg->MouseY;

Listing 2.7.5: (Fortsetzung folgende Seiten)

141

TUTORIUM

ijadr = msg->IAddress;

ReplyMsg(msg);

Switch(class)

{

case CLOSEWINDOW:

if (Window->Height == 100)

SizeWindow (Window, 0,100);

AddGadget (Window, &gadget [1], -1);

AddGadget (Window, &gadget [2], -1);

RefreshGadgets (&gadget [1], Window, NULL);

print (240,110, "Wirklich schließen?");

break;

case GADGETDOWN

case GADGETUP : do gadget ();

break;

case MENUPICK

L£ (MENUNUM (code) == PROJEKT &&

ITEMNUM (code) == LADEN)

print (20,70, /* 34 Blanks */

W ") ;

AddGadget (Window, &gadget[0], -1);

RefreshGadgets (&gadget [0], Window, NULL);

}

else do menu ();

break;

case NEWSIZE

print (50,50,"Größe geändert");

break;

case MOUSEMOVE

sprintf(string,

"Maus bewegt auf x=%sd y=-%d", mx, My);

print (50,50,string);

Listing 2.7.5: (Fortsetzung folgende Seite)

142

TUTORIUM

break;

case VANILLAKEY : |

sprintf(string, "Taste %c gedrückt",code);

print (50,50,string);

break;

case INTUITICKS :

time (&t) ;

Move(rp, 200, 7);

Text (rp, asctime(localtime(&t)),24);

break;

case DISKREMOVED :

print (50,50,"Diskette ausgeworfen") ;

Listing 2.7.5 Unser Window hat Menüs und Gadgets

In die NewWindow-Struktur muf3 unter FirstGadget die Adresse des

ersten Gadgets eingetragen werden, wenn es und seine Nachfolger

gleich nach dem Offnen des Windows auf dem Schirm sein sollen. Das
trifft für unsere Farbregler zu. Die anderen Gadgets sollen erst bei Bedarf

erscheinen. Das machen die Funktionen AddGadget() (Aufnahme in die

Gadget-Liste) und RefreshGadgets() (Gadgets neu zeichnen). Ist die Aktion

gelaufen, muf3 man mit RemoveGadget() die Gadgets wieder deaktivieren.

Im case CLOSEWINDOW arbeite ich mit einem Trick. Das Window hat

eine Höhe von 100, die Gadgets starten aber bei 130. Deshalb wird zu-

erst mit SizeWindow({) das Fenster um 100 nach unten gezogen. Weil das

wieder passieren würde, wenn jemand nochmals auf das Close-Gadget

klickt, und dann der Amiga abstürzt, wird die Aktion nur zugelassen,

wenn das Window noch 100 hoch ist. Wenn der Anwender auf »Nein«

klickt, geht das Window wieder auf seine alte Höhe. Beachten Sie, daf3 in

SizeWindow{) die beiden Zahlen Delta-Werte für Breite und Höhe sind.

Bei positiven Zahlen wird das Window größer, bei negativen kleiner.

Der ganze Umstand ist nötig, weil auch deaktivierte Gadgets so lange

sichtbar bleiben, bis man das Window neu zeichnet. Mit Gadgets in

Requestern — dem Thema der nächsten Sitzung - ist das einfacher.

143

Tu TORIUM

144

1. Worauf müssen die Zeiger der Gadget-Struktur zeigen, wenn das Gadget

unsichtbar sein soll?

2. Welches Gadget braucht eine StringInfo-Struktur®

3. Darf eine Liste von Boolean-Gadgets mehr als zwei Objekte haben?

Ideen für eigene Übungen

1. Erweitern Sie gadget.h so, daf3 neben den Gadgets »Nein« und »Jawohl«

ein drittes mit »Vielleicht« erscheint. Wenn dieses Gadget angeklickt wird,

soll mit der print{)-Funktion eine Meldung wie »Na was denn nun« ausge-

geben werden.

Kompilieren, linken und testen Sie das Programm.

2. Ändern Sie das Programm so, daß die Farbregler-Gadgets erst erscheinen,
wenn im Menü »Farben« das Item »Rot« angewählt wird.

Kompilieren, linken und testen Sie das Programm.

TUTORIUM

2.8 Achte Sitzung: Requester und Alerts

Die Themen dieser Sitzung:

e Was sind Requester?

e Requester-Arten und Zeichenmodi

e IDCMP-Flags für Requester

e Requester und Gadgets

e Die Requester-Struktur

e Requester-Flags

e Programmieren von Requestern

e = Alert-Anwendung

Requester erscheinen nur auf der Bildfläche, wenn das Programm die

Funktion Request() aufruft. Es gibt noch eine Spezialität, nämlich den

Requester, der durch einen Doppelklick auf die rechte Maustaste aktiviert

werden kann. Aber auch das geht nur, wenn das Programm diese Aktion
zulälht.

Ist ein Requester sichtbar, wird jeder Input in das Window blockiert

(Ausnahme NOISYREQ, siehe unten). Es sind dann nur noch Eingaben in

den Requester möglich. Dieser Zustand besteht so lange, bis eines der

Gadgets angeklickt wird, das als »Ende-Gadget« markiert ist. Doch da

ein Requester immer an ein Window gebunden ist, können Sie natürlich

trotz des aktiven Requesters ein anderes Window anklicken. Wenn Sie

zum Beispiel ein Requester nach einem File-Namen fragt, und Sie wissen

con nicht, können Sie in das CLI-Window gehen und dort den DIR-Befehl

geben.

Im Gegensatz zum Input ist die Ausgabe eines Fensters nicht durch einen

Requester blockiert. Das kann unter Umständen Probleme ergeben, weil

145

Tu TORIUM

146

dann mit einer gewissen Wabhrscheinlichkeit dieser Output einen

Requester überschreiben kann. Natürlich stellt Intuition auch hierfür Mittel

bereit, um solche Pannen abzublocken.

Neben den Requestern Ihres Programms gibt es noch sogenannte System-

Requester. Wenn Sie zum Beispiel auf eine Diskette kopieren wollen, die

sich in keinem Laufwerk befindet, werden Sie per System-Request auf-

gefordert, diese Diskette einzulegen. Sie können aber auch selbst — und

sehr einfach — System-Requester programmieren. Es hindert Sie auch

niemand daran, als Aktion auf eine Requester-Antwort ein weiteres

Requester aufzubauen. Diesem kann dann noch einer folgen und noch

einer usw. Da aber immer der letzte Requester aktiv ist, müssen Sie diese

Kette rückwärts abbauen.

Requester-Arten und Zeichen-Modi

Prinzipiell gibt es zwei Arten von Requestern, nämlich Auto-Requester und

Anwender-Requester. Einen Auto-Requester können Sie mit einem einzi-

gen Aufruf der Funktion AutoRequest{] erscheinen lassen. Wenn Sie zum

Beispiel Disketten auf der Workbench duplizieren, sind alle Aufforderun-

gen wie »<From>-Disk einlegen« Auto-Requester. Bei Anwender-

Requestern müssen Sie alles selber machen, zum Beispiel, wie in der vori-

gen Sitzung gezeigt, die Gadgets aufbauen. Einziger Unterschied: Sie

kommen nicht in ein Window, sondern in einen Requester-Rahmen.

Eine Abart des Anwender-Requesters ist das Double-Menu-Requester«.

Prinzipiell sieht das genauso aus. Der Unterschied ist lediglich, daf3 dieses

Requester aktiviert wird, wenn Sie die Menü-Taste (die rechte Maustaste)

doppelklicken. Dazu muf3 das Requester nicht mit Request{), sondern mit

SetDMRequest() aufgerufen (hier scharfgemacht) werden. Ab diesem

Zeitpunkt wartet Intuition auf seine Chance, das Requester zu zeigen. Mit

ClearDMRequest() wird der Zustand wieder aufgehoben.

Das Zeichnen von Requestern kann auch auf zwei Arten erledigt werden,

nämlich Intuition zeichnet oder das Programm zeichnet. Wenn Intuition

uns die Arbeit abnehmen soll, müssen wir nur wenige Angaben in die

Requester-Struktur eintragen, primär die Adresse der Gadget-Liste und

der Text-Struktur.

Die Alternative ist ein Anwender-BitMap-Requester. Dazu stellen Sie eine

(natürlich tolle) Grafik zur Verfügung. Eine Gadget-Liste braucht dieses

Requester auch, doch die Gadgets müssen unsichtbar sein (Text- und

TUTORIUM

Image-Zeiger = NULL). Die Gadgets müssen (absolute Pflicht) über Sym-

bolen liegen, die Sie in der BitMap vorgesehen haben.

Lage der Requester

Ein Requester liegt mit seiner linken oberen Ecke immer realativ zur linken

oberen Ecke des Windows. Ist das Window kleiner als der Requester,
wird nur ein Teil des Requester abgebildet. Da dies katastrophale Folgen

haben kann - im Extremfall sieht man den Requester nicht, aber das Pro-

gramm hängt -, sollten Sie diesen Fall abfangen (IDCMP-Flag (siehe

unten) oder eigenes Window).

Relative Requester werden von der derzeitigen Intuition-Version nur bei

Double-Menu-Requestern unterstützt. Die Wirkung ist, daf3 der Requester

mit dem Offset in Relleft und RelTop relativ zur aktuellen Position des

Mauszeigers erscheint, wenn das Flag POINTREL gesetzt ist. Steht der
Mauszeiger ungünstig, verschiebt Intuition den Requester auf jeden Fall so

weit, daf3 er noch im Window erscheint.

IDCMP-Flags für Requester

Das wichtigste Flag ist REQVERIFY. Dieses Flag schützt Sie vor einem über-

raschend auftauchenden Requester. Das kann ein System-Requester oder

ein Double-Menu-Requester sein. Ist das Flag gesetzt, erhalten Sie nur eine

Message der Klasse REQVERIFY, wenn ein Requester verlangt wird.

Gezeichnet wird es erst, wenn Sie die Message mit ReplyMsg() beantworten.

Mit REQSET erhalten Sie eine Nachricht, wenn das erste Requester in

einem Window gezeichnet wurde. Mittels REQCLEAR können Sie erfah-
ren, wann das letzte Requester verschwunden ist.

Requester-Gadgets

Zuerst folgen diese Gadgets den Regeln für Gadgets aus der Sitzung 7.

Drei Unterschiede gibt es allerdings.

e Jedes Gadget mus vom Typ REQGADGET sein.

e Der Zeiger auf die Gadget-Liste wird in der Requester-Struktur notiert.

e Jedes Gadget, das einen Ausstieg aus einem Requester ermöglicht,
mu} im Activation-Feld das Flag ENDGADGET gesetzt haben. Min-

destens ein Gadget mufß3 ein ENDGADGET sein, andernfalls werden
Sie das Requester nie los!

147

Tu TORIUM

148

Natürlich haben wir wieder ein sfruct vor uns, Listing 2.8.1 zeigt die

Requester-Struktur. Diese ist wie üblich mit Daten zu füttern. Ist das

geschehen, ruft man eine Funktion mit einem Zeiger auf das Requester-
struct auf, und das war's dann schon. Doch schauen wir uns zuerst Listing

2.8.1 an.

struct Requester

{

struct Requester *OlderRequest; /* Vorgänger */

SHORT LeftEdge, TopEdge; /* linke obere Ecke * /

SHORT Width, Height; /* Breite und Höhe * /

SHORT RelLeft, RelTop; /* Wenn relativ * /

struct Gadget *ReqGadget; /* Zeiger auf Gadgets */

struct Border *ReqBorder; /* Zeiger auf Border */

struct IntuiText *ReqText;/* Zeiger auf IntuiText*/

USHORT Flags; /* siehe unten * /

UBYTE BackFill; /* Füll-Farbe * /

struct Layer *ReqLayer; /* Zeiger auf Layer * /

UBYTE RegPad1 [32]; /* Intuition intern * /

struct BitMap *ImageBMap; /* Wenn eigenes Image */

struct Window *RWindow; /* Intuition intern * /

UBYTE RegPad2 [36]; /* Intuition intern * /

}7

Listing 2.8.1: Die Requester-Struktur

Das meiste davon dürfte klar sein. Für BackFill müssen Sie eine Pen-

Nummer (Zeichenfarbe) angeben, mit deren Farbe der Requester-Hinter-

grund gemalt wird. Wählt man diese Farbe geschickt, kann man sich das

umhüllende Rechteck (Border) sparen. Auf einem Workbench-Screen

ergibt Backfill = 2 schwarz, 3 orange.

Alle Parameter nach BackFill können Sie ignorieren. Auch Flags können

Sie auf NULL setzen, und der Requester funktioniert sehr schön. Variieren
können Sie mit diesen Flags:

POINTREL Bei Double-Menu-Requestern erscheint

der Requester relativ zum Mauszeiger.

PREDRAWN Müssen Sie setzen, wenn ReqBMap auf ein eigenes

Image zeigt.

TUTORIUM

NOISYREQ Ermöglicht, daf3 der Input nicht ganz abgeblockt
wird. Tastatur- und Maus-Events werden noch

durchgelassen.

Wenn es Sie interessiert, können Sie die folgenden Flags, die Intuition
setzt, abfragen:

REQOFFWINDOW Mindestens ein Gadget ist teilweise oder ganz
außerhalb des Windows.

REQACTIVE Requester ist aktiv.

SYSREQUEST Ein System-Requester ist aktiv.

Programmieren von Requestern

Am einfachsten kommt man zu einem Requester über die Funktion

AutoRequest{J. Dafür braucht man nicht einmal die Requester-Struktur.

Nehmen Sie das Listing 2.7.5 aus der vorigen Sitzung, und bringen Sie zu
den globalen Variablen (ziemlich am Beginn des Listings) folgende hinzu:

BOOL antwort;

struct IntuiText BodyText, PosText, NegText;

Im Hauptprogramm nach der Zeile SetMenuStrip(...) fügen Sie ein:

make text (&BodyText, "Wollen Sie wirklich

schließen?", 50,20);

make text (&PosText, " Ja ", 6, 3);

make text (&NegText, " Nein ", 6, 3);

Nun ändern Sie noch das case CLOSEWINDOW, so daß es wie folgt
aussieht:

antwort = AutoRequest (NULL, &BodyText, &PosText,

&NegText, NULL, NULL,

350, 100);

1£ (antwort)

close all();

break;

Die erste NULL steht für den Zeiger auf ein Window. Ist dieser Zeiger

NULL, macht Intuition ein eigenes Window auf, das den Titel »System
Request« hat. Nun folgen die Zeiger auf drei IntuiText-Strukturen. Dabei

ist BodyText die Frage (Wollen Sie wirklich...), PosText die Ja-Antwort

(hier Ja) und NegText die negative Antwort (hier Nein). Die Funktion

ergibt nur dann TRUE, wenn PosText angeklickt wurde. Demnach reicht

149

Tu TORIUM

150

das if (antwort). Sie können die Variable antwort auch sparen, indem Sie |
gleich if[/AutoRequest{...)) schreiben.

Die beiden nächsten Nullen stehen für PosFlag und NegFlag. Hier können

Sie IDCMP-Flags eintragen, die die Fragen anstatt eines Mausklicks auf das

Gadget beantworten. Setzen Sie zum Beispiel für die erste NULL das Flag

DISKREMOVED ein, wird das Programm auch beendet, wenn Sie die Dis-

kette auswerfen. »350,100« schließlich sind die Breite und die Höhe des

Requesters. Die Mafse müssen natürlich zur Länge und Position der Texte

passen. Übrigens sind die Argumente »6,3« in make_texi) die Abstände
zu den Rändern der Gadgets, die automatisch gezeichnet werden.

Wenn Sie der Fenstertitel System Request stört, können Sie im einfachsten

Fall für die erste NULL das vorhandene Window, hier also Window ein-

setzen. Sie können aber auch dafür schnell ein Fenster öffnen, und das

geht so: Ändern Sie die Zeile struct Window *Window; in struct Window

*Window, *rw;, womit Sie noch einen Window-Zeiger hätten. Nun

schreiben Sie direkt nach dem case CLOSEWINDOW: diese Zeilen:

rw = (struct Window *) open window (

0, 0, 350, 100, "Nachfrage",

NULL, NULL, NULL);

if (rw == 0) exit (FALSE);

Nun müssen Sie dieses Window rw natürlich auch schließen, weshalb die

Zeilen nach dem AufoRequest() dann so aussehen müssen:

if (antwort)

{

CloseWindow(rw);

close all}

else

CloseWindow (rw);

break;

ES” Noch ein Tip: Wenn nur ein Antwort-Gadget gebraucht wird, kann PosText

NULL sein. Typisch ist das für Meldungs-Requester der Art »Das geht nicht...

Ok«. |

Sie haben richtig erkannt, daf} der Auto-Requester höchstens zwei Gad-

gets haben kann, und das ist oft zu wenig. Sozusagen als erste Übung
wollen wir deshalb fast genau denselben Requester noch einmal auf-

bauen, diesmal allerdings mit eigenen Gadgets. Das sind dann zwar

auch nur zwei, doch eine Gadget-Liste kann man beliebig verlängern.

TUTORIUM

Genau das demonstriert der zweite Requester. Listing 2.8.2 zeigt die

Lösung in der Form unseres nächsten Header-Files namens requester.h.

/* requester.h */

SHORT cords3[] = {0,0, 69,0, 69,13, 0,13, 0,0};

struct Border border3 = {-1,-1,1,0,

JAM1,5,&cords3[0], NULL};

struct Requester requestl, request2;

struct IntuiText rtext; |

void MakeTheRequester (void)

{

/* Der Requester für "Schließen": */

make gtext (&rtext, "Wollen Sie wirklich schließen?",

50,7);

make gadget("Nein ", >ext[1],40,7,

&gadget [1],&gadget[2],50,40,100,20,

GADGHCOMP, GADGIMMEDIATE | ENDGADGET,

BOOLGADGET | REOGADGET,

(APTR *) &border2, >ext [1], NULL, 2);

make gadget (" Ja ", >ext[2], 25,7,

&gadget [2] , NULL,190,40,100,20,

GADGHCOMP, GADGIMMEDIATE | ENDGADGET,

BOOLGADGET | REQGADGET,

(APTR *) &border2, >ext [2], NULL, 3);

requestl.LeftEdge = 30;

request1.TopEdge = 20;

requestl.Width = 350;

requestl.Height = 70;

requestl.ReqGadget = &gadget [1];

requestl.ReqBorder = NULL;

requestl.RegqText = &rtext;

requestl.Flags = NULL;

requestl.BackFill = 3; /* Orange */

Listing 2.8.2: (Fortsetzung folgende Seite)

151

TUTORIUM

requestl.ImageBMap = NULL;

/* Der DM-Requester für "Farben" */

make gadget ("schwarz", >ext [6], 3, 1,

&gadget [6], s&gadget [7],5,3,68,12,

GADGHCOMP, GADGIMMEDIATE | ENDGADGET |

RELVERIFY,

BOOLGADGET | REOGADGET,

(APTR *) &border3, >ext[6], NULL, 7);

make gadget ("weiß", >ext[7], 3, 1,

&gadget[7],&gadget [8], 5,18,68,12,

GADGHCOMP, GADGIMMEDIATE | ENDGADGET |

RELVERIFY,

BOOLGADGET | REOGADGET,

(APTR *) &border3, >ext[{7], NULL, 8);

make gadget ("rot", >ext[8], 3, 1,

&gadget [8], &gadget [9],5,35,68,12,

GADGHCOMP, GADGIMMEDIATE | ENDGADGET |

RELVERIFY,

BOOLGADGET | REOGADGET,

(APTR *) &border3, >ext [8], NULL, 9);

make gadget ("blau", >ext[9], 3, 1,

&gadget [9],NULL,5,53,66,12,

GADGHCOMP, GADGIMMEDIATE | ENDGADGET |

RELVERIFY,

BOOLGADGET | REOGADGET,

(APTR *) &border3, >ext[9], NULL, 10);

request2.Relleft = 0;

request2.RelTop = 0;

request2.Width > = 87;

request2.Height = 75;

request2.ReqGadget = &gadget [6];

request2.ReqBorder = NULL;

request2.ReqgText = NULL;

request2.Flags = POINTREL | NOISYREO;

request2.BackFill 2;

request2.ImageBMap NULL;

}

I

I

Listing 2.8.2: Das Header-File requester.h

152

TUTORIUM

Das meiste aus dem Listing kennen Sie schon aus der Sitzung 7

(Gadgets). Sie sollten deshalb auch gadget.h kopieren und anpassen.
Die Gadgets und die Texte werden auch genauso aufgebaut, beachten

Sie jedoch die neuen Flags. Sie müssen auf jeden Fall REQGADGET

setzen, damit Intuition weil}, daf} Sie ein Requester-Gadget wollen.

ENDGADGET zu setzen, ist recht praktisch, weil dann der Requester auto-

matisch abgebaut wird, wenn das Gadget angeklickt wird. Sonst müßten

Sie das mit EndRequest{&request, Window); selbst tun.

ES" Noch ein Trick: Sie sehen, daß ich mit request.RegBorder = NULL; dem

Requester keinen Rahmen (Border) spendiert habe. Dennoch fällt er auf, denn

mit request. BackFill = 3; wird die Hintergrundfarbe auf Orange gesetzt.

Requester einsetzen

Nachdem die Requester-Struktur mit den Daten gefüllt ist, reicht der

schlichte Aufruf von

Request (&requestl, Window);

und der Requester ist auf dem Schirm. Das wäre aber in unserem Fall
falsch, denn request] soll nur erscheinen, wenn das Close-Gadget des

Windows angeklickt wird. Doch der Reihe nach. Nachdem Sie Listing
2.8.2 als requester.h gespeichert haben, nehmen Sie sich wieder Listing

2.7.5 vor. Dort fügen Sie nach der Zeile #include "gadget.h" ein:

#include "requester.h"

Nach der Zeile SetMenuStrip(...); fügen Sie ein:

MakeTheRequester();

SetDMRequest (Window, &request2);

Das case CLOSEWINDOW müssen wir nun schon wieder ändern, und

zwar SO.

case CLOSEWINDOW: Request (&requestl, Window);

do gadget ();

break;

Die Gadgets werden genauso ausgewertet wie bisher, nämlich über ihre

ID. Doch jetzt können wir den ganzen Aufwand streichen, weil Requester

mitsamt ihren Gadgets automatisch vom Schirm verschwinden. Deshalb

ändern Sie in gadget.h (Listing 2.7.4) das case 2 schlicht in

153

Tu TORIUM

154

case 2:

break;

Soll heißen: Wenn der User »Nein« anklickt, tun wir gar nichts. Der

Requester wird trotzdem automatisch abgebaut, weil wir auch für das

Nein-Gadget das Flag ENDGADGET gesetzt hatten.

Wir baven einen Double-Menu-Requester

Nun zu unserem zweiten Requester, der request2 heif}t. Dieser wurde mit
SetDMRequest (Window, &request2); aktiviert, aber nichts passiert, oder?

Nun, im Namen der Funktion steckt das Kürzel für »Double Menu«, soll

heißen, sie müssen die Menü-Taste (die rechte Maustaste) doppelt klicken.

In diesem Fall erscheint der Requester auf dem Schirm, und zwar da, wo

gerade der Mauszeiger ist. Das hat allerdings nichts mit dem »Double

Menu« zu tun, sondern liegt daran, daß ich das Flag POINTREL

(zeigerrelativ) gesetzt habe. Das nächste Flag, nämlich NOISYREQ, soll

bei der Gelegenheit nur demonstriert werden. Ein »noisy requester«

blockt nicht den Input in das Window ab. Wenn Sie zum Beispiel Tasten

betätigen, werden die noch angezeigt.

Der Requester selbst bringt untereinander vier kleine Gadgets mit den

Texten schwarz, weiß, rot und blau. Das Anklicken eines Gadgets läßt

momentan nur den Requester verschwinden. Später werden wir ihn noch

nutzen, um ganz schnell die Zeichenfarbe wechseln zu können. Beachten

Sie noch einen Trick: Dieser Requester hat keinen »BodyText«. Wenn man

diese Überschrift nicht braucht, setzt man einfach RegText = NULL.

Wir geben Alarm

Zum Schluß die simpelste Form von Requestern, der sogenannte Alert

(Alarm), wie Sie ihn von den Guru-Meldungen (hoffentlich selten) her

kennen. Es gibt zwei Arten von Alerts, nämlich den RECOVERY_ALERT

und den DEADEND_ALERT. Letzterer heif3t nicht »totes Ende« sondern

Sackgasse, also es geht nicht weiter, der Anwender muf3 neu booten. Ein
RECOVERY_ALERT hingegen schlief3t das Booten aus, Ihr Programm sollte

nach diesem Fall ordnungsgemäß enden. Mit Alerts sollten sie nur so kriti-

sche Dinge wie »Library oder Window läßt sich nicht öffnen« mitteilen.
Ansonsten sind Requester vorzuziehen, die erschrecken die Leute nicht so.

TUTORIUM

/* alert.c */

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

struct Window *Window;

#include "stdwindow.h"

void main()

{

open libs();

window = (struct Window *)

open window (0,0,640,256,NULL,

BORDERLESS, NULL, NULL);

if (window == NULL) exit (FALSE);

DisplayAlert (RECOVERY ALERT,

"\1\0\30 Panik! \Oc\1\0\50 Drücke eine Maustaste

\O\0", 70);

close all();

Listing 2.8.3: Alarm mit Alert

Diesmal ist das Listing 2.8.3 kein Header-File, sondern ein solo laufendes

Programm. Die Funktion, DisplayAlert() hat drei Parameter, nämlich

e den Typ, |

e die Meldung und

e die Höhe der Alert-Box

155

TUTORIUM

Die Meldung ist ein String, der es in sich hat. Dabei müssen Sie folgende

Form beachten:

e X-Position des Textes in zwei Bytes

e Y-Position des Textes in einem Byte

e Der erste Text

e Ein O-Byte

e Wenn Ende: noch ein Null-Byte

e Wenn nicht Ende: ein Byte ungleich 0

e Nächster Text

Analysieren wir einmal den String

"\1\0\30 Panik! \Oc\1\0\50 Drücke eine Maustaste
\ 0 \ 6 WW

so heißt das:

Teilstring Bedeutung

"\1\0\ X = 1 * 256+0= 256

30 —- Y=30

Panik! \O Text 1

c Fortsetzung folgt
\1\0 X = 256

\50 Y= 50

Drücke eine Maustaste\0 Text 2

\0" Ende

156

TUTORIUM

Checkliste
1. Muß man die Fragen in einem Requester gleich beantworten, oder darf man

vorher noch etwas anderes tun?

Mit welchem IDCMP-Flag verhindern Sie, daf3 ein Requester überschrieben

werden kann?

Wie verhindern Sie, daf} ein Window so klein wird, daf3 der Requester ab-

geschnitten wird oder gar ganz verschwindet?

Ideen für eigene Ubungen/Erweiterungen

1. Der Aufruf der Funktion

AutoRequest (NULL, &BodyText, &PosText,

&NegText, NULL, NULL,

350, 100);

ist etwas umständlich, weil man vorher mit drei Aufrufen von make_text[{) die

IntuiText-Strukturen bereitstellen muß. Entwickeln Sie deshalb eine Funktion,

die einen Aufruf dieser Art ermöglicht:

AutoRe("Body-Text, "Pos-Text", "Neg-Text");

Kompilieren, linken und testen Sie das Programm.

Entwerfen Sie analog zu request2 einen Requester für die Strichstärken mit

Gadgets, welche die Zahlen 1 bis 4 als Text haben.

157

Tu TORIUM

158

2.9 Neunte Sitzung: Und nun wird gemalt

Die Themen dieser Sitzung

e Das Malprogramm

e Makros

e Grafik-Funktionen

e Tricks und Techniken

Projekt Farben Figuren Spezial

Neu Schwarz Rechteck Figur füllen
Laden Weiß Gefülltes Rechteck Alles übermalen
Sichern Rot Ellipse Farben regeln

Ende Blau Gefüllte Ellipse

Tabelle 2.9.1: Menüstruktur des Malprogramms

»Ende« und »Alles übermalen« haben noch Sub-Menüs der Art

»Wirklich®« und »Lieber doch nicht«. Ferner gibt es die vier Requester

laut Bild 2.9.1 mit folgenden Funktionen:

TUTORIUM

Laden/Sichern: Ein String-Gadget für den Datei-Namen und zwei

BOOL-Gadgets für »Abbruch« und »OK«.

Schließen: Der Text »Wollen Sie wirklich schließen®« und zwei
BOOL-Gadgets für »Nein« und »Ja«.

Farbregler: Drei Prop-Gadgets für Rot, Grün und Blau sowie

zwei BOOL-Gadgets für »Reset« und »OK«.

Farben: Vier kleine BOOL-Gadgets direkt untereinander mit

Bild 2.9.1: Die vier Requester des Malprogramms

Der letzte Punkt ist zwar nur das Doppel des Menüs »Farben«, doch das

sollen Sie später noch ändern. Solange nichts im Figuren-Menü ange-

wählt ist, können Sie einfach losmalen. Sobald Sie die linke Maustaste

drücken und die Maus bewegen, wird in der aktuellen Farbe gezeichnet.

Tippen Sie die Taste (w), können Sie nur waagerechte Linien ziehen, nach

nur senkrechte. Sie können, die Maus festhaltend, die beiden Tasten

wechseln und damit zum Beispiel Treppen zeichnen. Jede andere Taste

hebt die Funktionen wieder auf.

Rechtecke und Ellipsen zeichnen Sie so, dafd Sie erst die linke obere und

dann die rechte untere Ecke anklicken. Die Aufforderungen dazu und

überhaupt die Status-Meldungen erscheinen im Fenstertitel. Wie man ein

159

Tu TORIUM

160

Rechteck mit der Maus ziehen kann, verrate ich noch, überlasse diese

Aufgabe vorläufig Ihnen. Um eine Figur zu füllen, müssen Sie nur das

Menü anwählen und dann in die Figur klicken. Gefüllt wird jede beliebige

Figur, Sie muß nur geschlossen sein. Wenn nicht, läuft die Farbe über das

ganze Window, aber nicht in andere Figuren hinein. »Alles übermalen«

hingegen übermalt wirklich das ganze Window mit einer Farbe, die dann

sozusagen der Hintergrund ist. Mit dieser Farbe können Sie auch anders-

farbige Linien oder Figuren radieren. Der Menüpunkt »Neu« ist eine Vari-

ante von »Alles übermalen«. Er zeichnet das Window blau und setzt die

Pen-Farbe wieder auf weiß.

Die Meni-ltems »Laden« und »Sichern« lassen zwar den Requester

erscheinen, doch das »OK« wirkt noch nicht. Das Thema heben wir uns

für die nächste Sitzung auf. Ein Trost: Sie müssen dafür nicht mehr

ändern, sondern nur noch einiges hinzubringen.

ES" Für das Programm brauchen Sie die Include-Files (H-Files) gadget.h,

requester.h und menu.h auf dem Endstand laut Anhang. Diese Texte wurden

geändert. Das gleichfalls benötigte stdwindow.h steht dort zu Ihrer Referenz,

ist aber nicht neu.

Makros einsetzen

Listing 2.9.1 enthält dieses Makro:

#define Titel(t) SetWindowTitles (Window, (t),-1)

Um einen neuen Window-Titel zu setzen, könnte man zum Beispiel

schreiben »SetWindowTitles(Window, "Neuer Titel", -1)«. Da das häufig

vorkommt, spare ich mit dem Makro einiges an Tipperei. In diesem Fall

reicht Titel("Never Titel”). So ein Funktionsmakro kann beliebig viele
Argumente haben, hier ein Beispiel mit zweien:

#define printmult (a,b) (printf£("Sd", a * b))

printmult (3, 7);

TUTORIUM

Beachten Sie ein paar Regeln: Makros müssen entweder in einer Zeile

stehen oder mit dem Zeilenfortsetzungszeichen (\) umbrochen werden.

Wird der Makro-Ausruck umbrochen oder enthält er Leerstellen, muß er

in Klammern gesetzt werden. Schaden können die Klammern. nie.

Werden Argumente weiterentwickelt - würde man hier z.B. a * b + a

schreiben —, muß man sie in Klammern setzen ((a) * (b) + (a)). Auch hier

können ein paar Klammern zuviel nie schaden.

Prototypen deklarieren

Für alle Funktionen des Hauptprogramms wurden Prototypen definiert.

Das ist nichts weiter als der Funktionskopf, gefolgt von einem Semikolon.
Die Mafgnahme hat zwei Vorteile. Zuerst kann der Compiler damit prüfen,

ob die Argumente des Funktionsaufrufs vom richtigen Typ sind. Zum

zweiten mul3 man dann keine bestimmte Reihenfolge von Funktionen und

H-Files beachten. Daf} die H-Files selbst noch in einer bestimmten Folge

geladen werden müssen, liegt daran, daß ich da die Prototypen aus
Platzgründen gespart habe. Sonst sollte man das nie tun.

Requester richtig anwenden

Im H-File request.h hat sich einiges getan. Zuerst wurden alle Gadgets in

Requester verlegt. Das hat den Vorteil, daf3 sie automatisch abgebaut

werden und der Hintergrund wieder hergestellt wird. Das String-Gadget

für die Filenamen-Eingabe hatte einen Fehler, es fehlten die Gadgets Tor
»Abbruch« und »OK«. Die gibt es nun, dito wurden die Gadgets für die

Farbregler um »Reset« und »OK« erweitert. Diese beiden Requester und

auch der für »Schließßen« werden im Hauptprogramm mit MakeThe-
Requester() nur aufgebaut, aktiv werden sie erst später.

Die Requester-Strukturen werden jetzt in einem Array vom Typ struct

Requester gehalten. Neu ist dabei request[3]). Das sind zuerst vier kleine

Boolean-Gadgets mit den Farbnamen. Dieser Requester erscheint an der

Position des Mauszeigers, wenn Sie die rechte Maustaste zweimal klicken.

Das tut er, weil er vom Typ POINTREL (zeigerrelativ) ist und weil er mit

SetDMRequest{Window,&request{3]); initialisiert wurde. In unserer open_

window(}-Funktion hingegen bleibt der Zeiger auf dem ersten Requester

NULL, also erscheint keiner, wenn das Window öffnet. Hier können Sie
einen Zeiger auf einen Requester eintragen, der nur zu Programmbeginn

erscheint, z.B. »Guten Tag sagen«. Außerdem ist der Zeiger immer für
Testzwecke gut. Wenn Sie einen neuen Requester gestalten, tragen Sie ihn

hier ein. Erst wenn er gut aussieht, bauen Sie ihn richtig in das Programm

ein und setzen den Zeiger wieder auf NULL.

161

Tu TORIUM

162

Events holen und auswerten

Unser Window muf3 bekanntlich auf Events (Ereignisse oder Messages)
von Intuition warten und dann darauf reagieren. Am Prinzip hat sich

nichts geändert, es bleibt beim Wait(), GetMsg() usw., doch wurde das

jetzt in die Funktion GetEvents() verlegt. Sinn der Übung: Wir springen

aus der Hauptschleife zu Funktionen, wo wir auch auf Messages warten

müssen. In diesem Fall rufen wir dann einfach GetEvents() auf.

Auf der Gegenseite steht ein anderes Problem. Nehmen wir als Beispiel

die Menüpunkte »Laden« und »Sichern«. In beiden Fällen soll derselbe

Requester erscheinen, der nach dem Datei-Namen fragt. Also sagen wir

zuerst bei einem Event der Klasse MENUPICK schlicht do_menu(). Diese

Funktion (in menu.h) kommt über die Item-Nummer zu den cases:

case LADEN : dflag = 1;

Request (&request [0], Window);

break;

case SICHERN: dflag = 2;

Request (&request [0], Window);

break;

In der Variable dflag wird notiert, welches Menü angewählt wurde. Das

muß3 sein, weil mit der nächsten Message das Code-Feld und damit die

ltem-Nummer einen ganz anderen Wert hat. Nun wird der Requester

aufgerufen. Dort kann der User einen Namen eintippen und dann auf ein

Gadget klicken. An dieser Stelle warten wir wieder auf eine Message,

und zwar jetzt auf eine der Klasse GADGETUP (Maustaste über Gadget

losgelassen). In diesem Fall rufen wir do_gadget{) auf (in gadget.h). Dort

holen wir die ID des Gadgets und können dann - wenn es die ID von

»OK« (Nummer 14) war - mit

case 14: do datei();

break;

schließlich die passende Funktion aufrufen. Sie haben das Problem

erkannt? Die Messages treffen nacheinander ein und überschreiben

jeweils den Vorgänger. Wir brauchen aber manchmal zwei verschiedene

Messages, um einen Fall endgültig bearbeiten zu können.

TUTORIUM

Mit der Maus zeichnen

So einen Fall hätten wir auch bei der nächsten Aufgabe: Wenn die

Maustaste gedrückt UND die Maus bewegt wird, soll gezeichnet werden.

Doch leider ist das Ergebnis in der Message-Klasse immer nur »Maustaste

betätigt« ODER »Maus bewegt«. Die Lösung sieht im Prinzip so aus:

switch(class)

{

case MOUSEBUTTONS: notiere ob Taste gedrückt

| oder losgelassen wurde;

break;

case MOUSEMOVE : if (Taste gedrückt)

zeichne;

break;

}

Praktisch wird für den Fall »Taste gedrückt« die Variable mflag gleich 1

und sonst gleich O gesetzt.

Für das Zeichnen hatte ich anfangs eine tolle Idee, nämlich WritePixel(rp,

mx, my);. Diese Funktion schreibt einen Bildpunkt, mx und my sind die

Mauskoordinaten, wie sie in GetEvents() notiert wurden. rp ist ein Zeiger

auf dem RastPort, den wir uns vorher beschafft hatten. Das funktioniert,

hat aber einen Haken. Wenn die Maus schnell bewegt wird, ist die Linie

nicht mehr durchgezogen, sondern nur noch gepunktet. Es gibt nur 10 bis

60 Messages pro Sekunde, Sie können aber leicht in einer Sekunde den

Mauszeiger über die volle Schirmbreite von 640 Punkten ziehen. Die

Lösung heißt Move() und Draw({) und sieht im Prinzip so aus:

case MOUSEBUTTONS:

x = mx;

y= my;

case MOUSEMOVE :

if (mtaste)

{

Move (rp, X,Y);

Draw(rp, mx, my);

y = My,

x = MX;

163

Tu TORIUM

164

Im case MOUSEBUTTONS wird in x und y die Position des Mauszeigers

im Augenblick des Drückens der Maustaste notiert. Diese Werte ändern

sich so lange nicht, wie die Maustaste niedergehalten wird. Nun kommt

der case MOUSEMOVE zum Zuge. Mit Movelrp, x,yl; wird der

(unsichtbare) Grafik-Cursor auf diese Position gesetzt. Dann wird mit
Draw(rp, mx, my); von dort eine Gerade zur aktuellen Mausposition

gezogen. Anschließend - und jetzt kommt der Trick - werden x und y auf

diese Mausposition gesetzt. Das folgende Move() - wir sind praktisch in

einer Schleife - stellt den Grafik-Cusor dahin, und die nächste Gerade

wird zur aktuellen Mausposition gezogen. Endergebnis: Wie schnell Sie

die Maus auch bewegen, es gibt immer eine Linie, Kurve oder was auch

immer, nur daf} sie aus einzelnen Geraden zusammengesetzt wird, die im

Extremfall auch nur einen Punkt lang sein können (und damit mathe-

matisch keine Geraden mehr sind).

Ein Blick auf das Listing 2.9.1 zeigt, dal} da noch mehr in der Schleife

passiert. Es gibt da nämlich noch die Klasse VANILLAKEY für die Tastatur,
wo ein Druck auf [w) das wflag=1, einer auf (s} das sflag=1 und jede

andere Taste beide Variablen auf 0 setzt. Dito schaltet aus und

ein. Für das Zeichnen hat das nun eine sinnige Folge. Ist nämlich

zum Beispiel wflag=1, wird mit

if(wflag)

my = Yr

einfach die alte y-Position als »Maus-Y« eingetragen. Ergebnis: Die Linie

wird immer waagerecht gezogen. Für senkrechte Linien ist sinngemäfß3 das

sflag zuständig.

Die ROM-Grafik nutzen

Die Zeichen-Funktionen sind sogenannte Grafik-Primitiven, die im Amiga-

ROM stehen. Move{) und Draw{) kennen Sie schon. Damit zeichnen wir

auch Rechtecke aus vier Linien. Gefüllte Rechtecke sind mit Rec#Fill(rp,

x1,yl, x2,y2) direkter zu erzeugen. Dabei sind x1,yI die linke obere

und x2,y2 die rechte untere Ecke. Für Ellipsen gibt es die Funktion

DrawEllipse(rp, x0,y0, xr,yr), wobei x0,y0 den Mittelpunkt und xr,yr die

beiden Radien angeben. Da wir die Funktion jedoch wie ein Rechteck

aufrufen, müssen wir die Werte umrechnen.

Die gefüllte Ellipse zeigt eine andere Technik. AreaEllipse() zeichnet näm-

lich noch gar nichts, sondern nimmt die Figur nur in die Area-Liste auf.

Jetzt können noch diverse andere Area-Funktionen folgen. Sie alle

TUTORIUM

werden erst - und zusammen - gezeichnet, wenn AreaEnd() aufgerufen

wird. Die Liste ist der Grund, warum wir mit InitArea() und den drei fol-

genden Funktionen die »Area-Info« initialisieren und Speicher dafür

beschaffen müssen. Dieser Speicher muf3 am Programmende wieder frei-

gegeben werden, daher die Zeile FreeRaster[jram, 640,256) in der

do_close()-Funktion. Bliebe noch das Füllen, was mit Flood;{rp, 1, mx, my)

geschieht. Damit wird einfach vom Punkt mx,my ausgehend die Figur

gefüllt. Diese muß geschlossen sein, weil die Funktion alles so lange füllt,
wie sie nicht auf schon gesetzte Bildpunkte stößt.

/* malen.c */

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

#define Titel (t)

struct

struct

struct

struct

struct

struct

struct

SHORT

LONG

struct

ULONG

USHORT

SHORT

SHORT

SHORT

SHORT

SHORT

SHORT

SetWindowTitles (Window, (t),-1)

IntuitionBase *IntuitionBase;

GfxBase *GfxBase;

Window *Window;

Screen *Screen;

RastPort *rp;

Arealnfo Alnfo; /* Für das Füllen */

TmpRas TRas; /* von Bereichen * /

Buffer[100]; /* mit einer Farbe */

ram;

IntuiMessage *msg; /* Für das Message- */

class; /* Handling * /

code;

mx, my; /* Zum Zeichnen */

x, Vi

mtaste = 0;

wflag = 0;

sflag = 0;

dflag = 0 /* Datei-Modus */

struct Requester request [4]

Listing 2.9.2: (Fortsetzung folgende Seiten)

165

TUTORIUM

/* Prototypen, siehe Listing-Ende

void GetEvents (void);

void do rechteck (int fill);

void do ellipse (int fill);

void do farben (USHORT code);

void do fuellen (void);

void do malen (void);

void do_close (void);

void do neu (void);

void do sysreq(char *text);

void do datei (void);

#include "stdwindow.h" /* in dieser */

#include "gadget.h" /* Folge x /

#include "requester.h" /* * /

#include "menu.h" /* bitte. x /

void main()

{

open libs();

Window = (struct Window *) open window (

0,0,640,250," Standard-Modus ",

WINDOWCLOSE |

WINDOWDEPTH | /*window-Flags */

REPORTMOUSE |

ACTIVATE,

CLOSEWINDOW |

GADGETUP | /* IDCMP-Flags */

MOUSEMOVE |

MOUSEBUTTONS |

VANILLAKEY |

MENUPICK,

NULL); /* Kein Requ. nach Öffnen */

if (Window == NULL) exit (FALSE);

Screen = Window->WScreen; /* Grundfarben */

SetRGB4 (&Screen->ViewPort,0,0,0,10);

Listing 2.9.2: (Fortsetzung folgende Seiten)

166

TUTORIUM

MakeTheMenu(); /* Menti initialisieren */

SetMenuStrip (Window, &menu[0]);

MakeTheRequester (); /* Alle Reg. initialisieren */

SetDMRequest (Window, &request[3]);

rp = Window->RPort;

SetAPen(rp, 1L); /* Starte mit weißem Pen */

InitArea(&AInfo, Buffer,10);

rp->Arealnfo = &Alnfo; | /* Init. Area-RAM */

ram = AllocRaster(640,256);

rp->TmpRas = (struct TmpRas *) InitTmpRas (&TRas,

ram, RASSIZE(640,256));

for(;;) /* Hauptschleife */

{

GetEvents();

switch(class)

{

case MOUSEBUTTONS:

if(code == SELECTDOWN) /* Wenn linke Maus- */

{ /* Taste gedrückt * /

mtaste = 1;

xX = mx; y = my; /* Mausposition bei */

} /* beim ersten Klick */

if (code == SELECTUP)

mtaste = 0;

break;

case MOUSEMOVE : /*Freihandzeichnen */

if (mtaste) [#222 * /

{

Move (rp, X,Y);

if (wflag) /* wenn waagerecht */

my = y; /* halte y fest * /

Listing 2.9.2: (Fortsetzung folgende Seiten)

167

TUTORIUM

if (sflag) /* wenn senkrecht */

mx = x; /* halte x fest * /

Draw(rp, mx, my);

y= my; /* Endwerte = neuer Startwerte */

xX = Mx;

}

break;

case CLOSEWINDOW: /* Frage, ob schließen */

Request (&request [1], Window);

break;

case GADGETUP : do gadget(); /* in "gadget.h" */

break;

case MENUPICK: do menu(); /* in "menu.h" */

break;

case VANILLAKEY:

if (code == 'w')

{

wflag = 1;

Titel (" Waagerchte Linie ");

}

else

wflag = 0;

if (code == 's')

{

sflag = 1;

Titel (" Senkrechte Linie ");

}

else

sflag = 0;

if (!(wflag | sflag))

Titel(" Standard-Modus ");

Listing 2.9.2: (Fortsetzung folgende Seiten)

168

TUTORIUM

}

break;

} /* Ende switch */

} /* Ende for */

/* Ende main */

/* Beginn der Funktionen

void GetEvents (void)

{

Wait (1L << Window->UserPort->mp SigBit);

while(msg = (struct IntuiMessage *)

GetMsg (Window->UserPort))

class = msg->Class;

code= msg->Code;

mx= msg->MouseX;

my= msg->MouseY;

jadr= msg->IAddress;

ReplyMsg(msg);

void do rechteck (int fill) /* Rechtecke zeichnen. */

{ /* Gefüllt, wenn fill==1*/

SHORT x1,yl, x2,y2;

Titel ("Klicke linke obere Ecke des Rechtecks");

code = 0;

while (code != SELECTDOWN) /* bis Maustaste unten */

GetEvents();

xl = mx; yl = my;

WritePixel(rp, x1, yl);./* Startpunkt zeichnen */

Titel ("Klicke rechte untere Ecke des Rechtecks");

code = 0;

Listing 2.9.2: (Fortsetzung folgende Seiten)

169

TUTORIUM

while (code != SELECTDOWN) /* bis Maustaste unten */

GetEvents();

x2 = mx; y2 = my;

if (fill)

RectFill(rp, xl,yl, x2,y2);

else /* Rechteck mit Linien zeichnen */

{

Move(rp, xl,yl);

Draw(rp, x2, yl);

Draw(rp, x2, y2);

Draw(rp, xl, y2);

Draw(rp, xl, yl);

}

Titel ("Standard-Modus") ;

void do ellipse(int fill) /* Ellipse zeichnen. x /

{ /* Gefüllt, wenn fill==1 */

SHORT x1,yl, x2,y2, x0, yO;

Titel ("Klicke linke obere Ecke des

umgebenden Rechtecks");

code = 0;

while (code != SELECTDOWN)

GetEvents ();

xl = mx; yl = my;

WritePixel(rp, xl, yl);

Titel ("Klicke rechte untere Ecke des

umgebenden Rechtecks");

code = 10;

while (code != SELECTDOWN)

GetEvents();

x2 = mx; y2 = my;

xO = xl + (x2 - x])

yO = yl + (y2 - yl)
if (fill)

[4/ 2

/ 2;

Listing 2.9.2: (Fortsetzung folgende Seiten)

170

TUTORIUM

AreaEllipse(rp, x0,y0, (x2-x1)/2, (y2-y1)/2);

AreaEnd(rp);

}

else

DrawEllipse(rp, x0, yO, (x2-x1)/2, (y2-y1)/2);

Titel ("Standard-Modus") ;

void do farben(USHORT code) /* Pen-Farbe setzen */

{

Switch (code)

{

case SCHWARZ: SetAPen(rp, 2L);

break;

case WEISS: SetAPen(rp, 1L);

break;

case ROT: SetAPen(rp, 3L);

break;

case BLAU : SetAPen(rp, OL);

break;

}

}

void do fuellen (void) /* Figur mit Farbe füllen */

{

Titel ("Klicke in die Figur");

code = 0;

while (code != SELECTDOWN)

GetEvents();

Flood(rp, 1, mx, my);

Titel ("Standard-Modus");

void do malen(void) /* Das ganze ganze Window */

{ /* (nicht Menü) übermalen */

Listing 2.9.2: (Fortsetzung folgende Seite)

171

TUTORIUM

172

RectFill (rp,Window->LeftEdget+2, Window->TopEdget1l1,

Window->LeftEdge + Window->Width-4,

Window->TopEdget+Window->Height-2) ;

void do neu(void) /* Menü-Punkt "Neu" malt das */

{ /* window blau, Pen wird weiß */

SetAPen(rp, OL);

do malen ();

SetAPen(rp, 1L);

}

void do close (void) /* Alles schließen, vorher Menu */

{ /* Menu und RAM freigeben * /

ClearMenuStrip (Window) ;

FreeRaster(ram, 640,256);

close all();

}

Die beiden folgenden Funktionen werden

in Sitzung 10 ausgefullt.

void sysreq(char *text)

{

}

void do datei (void)

{

}

Listing 2.9.1: Das Haupt-Programm »malen.c«

TUTORIUM

Checkliste
1. Welche Aufgabe hat ein Requester, der sofort nach dem Öffnen des Win-

dows erscheint?

2. Was müssen Sie tun, wenn Sie für eine Funktion mehrere Events derselben

Klasse benötigen?

3. Warum ist die Funktion WritePixel() (Setzen eines Bildpunktes) so schlecht

für das Malen geeignet?

Ideen für eigene Übungen

1. Die folgende Funktion zeichnet ein Rechteck von x1,y1 (links oben) nach

x2,y2 (rechts unten):

void rechteck (SHORT x1, SHORT yl,

SHORT x2, SHORT y2)

{

Move (rp, Xl,yl);

Draw(rp, x2, yl);

Draw(rp, x2, y2);

Draw(rp, Xl, y2);

Draw(rp, Xl, yl);

}

Wenn Sie im case MOUSEMOVE anstatt Draw(rp, mx, my) nun recht-

eck(x,y, mx, my) einsetzen, ziehen Sie damit lauter Rechtecke. Wenn Sie

danach in dieses Rechteck ein um ein Pixel (in jeder Richtung) blau gefülltes

Rechteck einsetzen, müßte ein Rechteck übrig bleiben. Eine andere Methode

heißt »zeichnen, löschen, zeichnen«. Zum Zeichnen setzen Sie den Draw-

Modus mit SetDrMd(rp, JAM1); auf »normal«. Zum Löschen schreiben Sie

SetDrMd(rp, COMPLEMENT | JAMI). Damit wird in der Komplementär-

farbe gezeichnet, sprich, die vorhandene gelöscht.

173

Tu TORIUM

174

2.10 Zehnte Sitzung: Daten von und zur Disk

Die Themen dieser Sitzung:

e Der Einsatz von Amiga-DOS

e File-Handles und Locks

e _Zugriffsarten

e Planes und Farben

e Lesen und Schreiben von Bildern

In dieser Sitzung geht es um Funktionen, die uns Amiga-DOS zur Ver-

fügung stellt. Wesentlich ist natürlich die Frage, wie man Files (Dateien)

auf die Diskette schreibt und wieder von dort liest. Ein gut geschriebenes

Programm beläfßt es aber nicht dabei, sondern stellt auch fest, ob noch

genügend Platz auf der Diskette ist oder hilft dem Anwender bei der

Suche nach einem File-Namen durch die Anzeige aller Files in einem
Directory. Wir werden uns deshalb auch um diese Hilfsfunktionen küm-

mern müssen. Prinzipiell könnte man auch die Funktionen des Standard C

hierfür einsetzen, nur ist das ein Umweg. Andererseits sind solche Pro-

gramme nicht portabel, weshalb im Kapitel 3 auf dieses Thema noch ein-

gegangen wird.

Locks für das Multitasking

Ein - jedenfalls beim Amiga - sehr wichtiger Begriff im Zusammenhang

mit Files ist das »Lock«. Lock heif3t auf deutsch Sperre, und eine Sperre ist

ein Grundelement jedes Multitasking-Systems. Sie können sich sicherlich

vorstellen, was passiert, wenn zwei Tasks (Programme) versuchen, gleich-

zeitig auf eine Diskette zu schreiben oder was ein File wert ist, wenn Sie

daraus lesen und gleichzeitig ein anderer Task da Daten hineinschreibt.

Genau das verhindern Locks. Es gibt zwei Arten von Locks, nämlich das

»Exclusive Write Lock« und das »Shared Read Lock«. Nur der Inhaber

des ersteren kann exklusiv auf die Datei schreiben. Ein »Shared

TUTORIUM

Read Lock« können sich mehrere Tasks teilen, sie können aber nur aus

der gemeinsamen Datei lesen. |

IS’ Sie können mittels der Locks nicht auf Files schreiben oder aus ihnen lesen.

Sie können (sollten) sich das Lock eines Files besorgen und daraus seinen

Status ablesen, bevor Sie (mittels File-Handles) »zuschlagen«.

Ein Lock ist (natürlich) eine Struktur, wie sie Listing 10.1 zeigt.

struct FileLock

{

BPTR fl Link; /* Zeiger auf Nachfolger */

LONG fl Key; /* Blocknummer auf der Disk */

LONG fl Access; /* Zugriffs-Modus */

struct MsgPort *fl Task; /* MsgPort der Tasks */

BPTR fl Volume /* Zeiger auf Device-Liste */

};

Listing 2.10.1: Die Struktur eines Lock

Lesen und Schreiben von Files

Die DOS-Funktionen zum Lesen und Schreiben sind in der Syntax sehr an

die entsprechenden Befehle der Hochsprachen angelehnt und deshalb

sehr einfach zu handhaben. Zuerst wird ein File geöffnet mit

File handle = Open (File name, Modus);

Der Modus kann sein:

MODE _OLDFILE File existiert.

MODE_NEWFILE File wird neu angelegt oder ein vorhandenes
File wird überschrieben.

Als Ergebnis erhält man ein File-Handle, das genaugenommen ein Zeiger

auf eine Struktur vom Typ FileHandle ist. Sie können aber auch das File-
Handle schlicht als ULONG deklarieren und die Adresse als File-Nummer
auffassen. Wie auch immer, alle weiteren Funktionen verlangen als Para-
meter das File-Handle. Ist ein File offen, können Sie auf es mit Read() oder

Write() zugreifen. Beide Funktionen haben die gleiche Syntax, nämlich:

Ist Zahl = Write (File handle, Puffer, Soll-Zahl);

Ist Zahl = Read (File handle, Puffer, Soll-Zahl);

175

Tu TORIUM

176

Das heifft, es werden Soll Zahl Bytes aus dem Puffer auf die Disk

geschrieben, bzw. in ihn eingelesen. Der Puffer ist eine Variable, die Sie

vor dem Schreiben mit Daten füllen müssen, beim Lesen werden die Daten

von der Disk in den Puffer kopiert. Nach den Operationen steht in

Ist Zahl, wie viele Bytes tatsächlich geschrieben bzw. gelesen worden

sind. Ist_Zahl ist besonders beim Lesen von Bedeutung. Da es in Amiga-

DOS keine EOF-Funktion (End Of File) gibt, müssen Sie so lange lesen,

bis Ist Zahl null ist.

Mit Listing 2.10.2 kommen wir zum ersten Programm, das die Aufgabe

hat, ein File zu lesen und es anzuzeigen, also sozusagen ein Type-Befehl.

Beachten Sie, daf3 Bytes gelesen werden, was immer sie auch bedeuten.

Es gibt in Amiga-DOS keine Unterscheidung zwischen Text- und sonstigen

Files.

/* dos 1.c */

#include <libraries/dos.h>

#include <exec/memory.h>

#define BUF SIZE 256

void main (void)

{

ULONG filehandle;

UBYTE *buffer;

int count;

if ((filehandle = Open("dos 1.c",

MODE OLDFILE)) == Q)

exit (FALSE);

buffer = (UBYTE *) AllocMem(BUF SIZE,

MEMF CHIP | MEMF CLEAR);

do

{

Listing 2.10.2: (Fortsetzung nächste Seite)

TUTORIUM

count = Read(filehandle,buffer,BUF SIZE);

Write(Output (), buffer, count);

}while (count); /* Solange nicht O0 Byte

gelesen werden */

FreeMem (buffer,BUF SIZE); /* RAM freigeben */

Close (filehandle); /* File schließen */

}

Listing 2.10.2: Das Lesen und Anzeigen eines Files

Als Quell-File wird schlicht der Name dieses Listings eingesetzt, das Sie

deshalb als dos_1.c gespeichert haben sollten.

Bild 2.10.1:

Das ist unser Ziel

Speicher dynamisch beschaffen

Wie schon geschildert, brauchen wir einen Puffer, der die Daten von der

Disk aufnimmt. Aber anstatt einfach eine Variable buffer[BUF_SIZE] zu

definieren, habe ich nur mit UBYTE *buffer einen Zeiger angelegt. Der soll

nun auf den Puffer zeigen, der wiederum BUF_SIZE (256) Byte grof} sein

muß. Diesen Speicherblock fordern wir beim Betriebssystem an,

Allokieren nennt man das. Das geschieht mit

buffer = (UBYTE *) AllocMem(BUF SIZE,

MEMF CHIP | MEMF CLEAR);

Dazu gibt man die Größe des Speicherblocks und seinen Typ (oder seine

Typen) an. Hier heißt MEMF_CHIP | MEMF_CLEAR nehme Chip-Memory

oder was gerade noch frei (clear) ist. Danach müßte eigentlich noch das

Ergebnis geprüft werden, doch ich nehme einfach an, daß die 256 Byte

auf Ihrem Amiga noch frei sind (beim nächsten Beispiel prüfen wir).

177

Tu TORIUM

178

Interessant ist schon der Grund, warum ich den Puffer dynamisch allokiert

habe. Amiga-DOS wurde in BCPL geschrieben. Das ist eine C-ähnliche

Sprache, die auf 32-Bit-Rechnern läuft. Zur Folge hat dies, daf} BCPL-
Adressen immer auf Langwort-Grenzen fallen. Der 68000er des Amiga

ist aber eine Byte-Maschine, weshalb es für einen 68K-Compiler keinen

Anlaß gibt, Daten auf Langwort-Grenzen zu justieren (Wortgrenzen sind

üblich). Hält man sich in Amiga-DOS nicht an diese Langwort-Regel, geht

das meistens auch gut, aber eben nur meistens. AllocMem() hingegen

justiert garantiert auf »lang«.

Das eigentliche Lesen und die Ausgabe laufen mit

count = Read(filehandle,buffer,BUF SIZE);

Write(Output(), buffer, count);

Readfile() versucht immer BUF_SIZE (256) Byte zu lesen, was bei den

ersten Malen auch klappt. Dann sind es vielleicht nur noch zehn und beim

nächstenmal null Byte. Dieser Wert steht in count. Die count-Bytes werden

mit Write() geschrieben, nur nicht null Bytes, weil dann die Schleife

abbricht. Doch wohin wird geschrieben? Nun, die Funktion Oufput() liefert

das File-Handle des CLI-Windows, in dem Sie gerade sind. Damit erscheint

die Ausgabe auf dem Schirm. Wenn Sie hingegen mit zum Beispiel ouf-

handle=Open("xxx", MODE_NEWFILE) die Datei xxx öffnen und dann

Write(outhandle, buffer, count) schreiben, gehen die Daten auf die Disk.

Status von Disketten ermitteln

Gehen die Daten wirklich auf die Disk? Es könnte ja sein, daf3 beim

Schreiben die Diskette voll wird. Also formuliert man besser »Ist_Zahl =

Write(Output{), buffer, count)« und meldet dann - wenn Ist_Zahl == 0 ist
— »Diskette voll«. Doch schön ist diese Methode auch nicht. Besser ist es,

wenn man vorher prüft, ob noch genug Platz auf der Diskette ist. Wie

man an diese Information herankommt, zeigt Listing 2.10.3.

/* dos 2.c */

#include <libraries/dos.h>

#include <exec/memory.h>

#include <libraries/dosextens.h>

Listing 2.10.2: (Fortsetzung nächste Seite)

TUTORIUM

void main ()

{

struct FileLock *lock, *Lock();

struct InfoData *infodata;

if(!(lock = (struct FileLock *)

AllocMem(sizeof (struct FileLock),

MEMF CHIP | MEMF CLEAR)))

exit();

if (!(infodata = (struct InfoData *)

AllocMem (sizeof (struct InfoData),

MEMF CHIP | MEMF CLEAR)))

exit ();

if (! (lock = Lock ("DF0:",ACCESS READ)))

exit();

if(!Info(lock,infodata))

exit();

printf ("Unit %3ld\n", infodata->id UnitNumber) ;

printf ("Blöcke vorhanden: %ld\n",

infodata->id NumBlocks);

printf("Blöcke belegt: %ld\n",

infodata->id NumBlocksUsed);

UnLock (lock);

Listing 2.10.3: So erhält man den Disketten-Status

Das Listing 2.10.3 ist schon »Hohes C«, doch das knacken wir. Die benö-

tigten Informationen liefert die Funktion Info(lock,infodata). Die Argu-

mente sind ein Lock, das müssen wir beschaffen und die Struktur infodata,

die müssen wir bereitstellen. Diese Struktur zeigt Listing 2.10.4.

struct InfoData

{

LONG idNumSoftErrors, /* gefundene Disk-Fehler */

id UnitNumber, /* DFO: == 0 */

id DiskState, /* aktueller Status */

179

Tu TORIUM

180

id NumBlocks, /* vorhandene Blöcke */

id BlocksUsed, /* belegte Blöcke */

id BytesPerBlock,

idDiskType; _

BSTR idVolumeNode; /*Zeiger auf BCPL-String

(Lange im ersten Byte) */

LONG id InUse

be

Listing 2.10.4: In der Info-Struktur stehen die Daten einer Disk

Für die Funktion Lock{) brauchen wir auch ein struct, nämlich lock vom

Typ FileLock (Listing 2.10.1). Sowohl infodata als auch lock sind aber nur

Zeiger, und wie vorhin mit dem Puffer, allokieren wir jetzt den Speicher

dafür mit AllocMem(). Das Besondere daran ist nur, daß wir jetzt die

Blockgröße nicht kennen. Doch dafür bietet C die Funktion sizeof[), die als

Argument eine Variable oder deren Typ akzeptiert. So ergibt sizeof(struct

FileLock) die Größe einer FileLock-Struktur in Bytes. Folglich heif3t der

ganze Ausdruck bis dahin

lock = (struct FileLock *)

AllocMem(sizeof(struct FileLock),

| MEMF CHIP | MEMF CLEAR)

Das Ergebnis ist null, wenn der Speicher nicht allokiert werden konnte.

Folglich könnte man schreiben ifflock == 0) exit{). Logisch FALSE ist aber

auch O, ergo schreibt man kürzer iff !lock), Sie erinnern sich, »!« ist der

Nicht-Operator. Das klingt auch logischer, sozusagen wie »nicht allokiert«.

Nun brauche ich aber diese Extra-Anweisung iff lock) garnicht nicht, son-

dern kann auch gleich den ganzen Ausdruck in die if-Klammern setzen.

Nachdem nun auf diese Art auch Speicher für die Lock-Struktur allokiert

wurde, beschaffen wir ein Lock für das Laufwerk DFO:. Ein Lock bekommt

man ganz einfach mit lock = Lock(Name, Modus). lock ist ein Zeiger auf

eine Variable vom Typ Lock. Name ist der Name eines Files, eines Direc-

torys oder einer Disk. Sperren kann man nur Files, die Locks für Directo-

ries und Disks braucht man, um Informationen über sie anfordern zu kön-

nen. Der Modus kann ACCESS READ (Lesen) oder ACCESS WRITE

(Schreiben) sein. Nun kommen wir endlich zur Funktion Info{), die das

Lock und die infodata-Struktur als Argumente benötigt. In letzterer steht

das Ergebnis gemäß Listing 2.10.4. Drei Komponenten davon werden mit

printf) ausgedruckt.

TUTORIUM

Zugriff auf den FilelnfoBlock

Nun kann auf der Disk noch alles OK sein, aber ein File macht Probleme.

In diesem Fall müssen Sie in einer anderen Struktur nachsehen, nämlich

im FilelnfoBlock laut Listing 2.10.5.

struct FileInfoBlock

{

LONG fib DiskKey;

LONG fib DirEntryType; /* Typ: >0 Directory,

<0 File */

char fib FileName[108]; /* Name O-terminiert */

/* woanders auf 30 begrenzt! */

LONG fib Protection; /* Bitmaske Bit 3-0 = rwxd */

LONG fib EntryType;

LONG fib Size; /* Größe in Bytes */

LONG fib NumBlocks; /* Belegte Blöcke */

struct DateStamp fib Date; /* Datum */

char fib Comment[80]; /* Kommentar-Feld */

char padding[36]; /* Rest (Kommentar war früher

116 Byte lang*/

};

Listing 2.10.5: Der FIB oder FileInfoBlock

Für FilelnfoBlock schreibt man oft das Kürzel FIB. Die praktische Anwen-

dung zeigt Listing 2.10.6. Der wesentliche Unterschied zu Listing 2.10.4

ist, daß anstatt DFO: ein File-Name eingesetzt wurde, und dafß3 jetzt f_info

vom Typ FilelnfoBlock anstatt InfoData Verwendung findet. Außerdem

wurde diese Struktur hier mit Examineflock, fib_zeiger); gefüllt, einer

Funktion, die wir gleich (in Listing 2.10.7) noch mehr brauchen werden.

/* dos 3.c */

#include <libraries/dos.h>
#include <exec/memory.h>

#include <libraries/dosextens.h>

void main()

{

struct FileLock *lock, *Lock();

181

Tu TORIUM

182

struct FileInfoBlock *f info;

if(! (lock = (struct FileLock *)

AllocMem(sizeof(struct FileLock),

MEME CHIP | MEMF CLEAR)))

exit ();

if (!(f info = (struct FileInfoBlock *)

AllocMem (sizeof (struct FileInfoBlock),

MEMF CHIP | MEMF CLEAR)))

exit();

if (!(lock = Lock ("dos 3.c",ACCESS READ)))

exit ();

if(!Examine(lock,f info))

exit ();

printf("Name : %s\n", £ info->fib FileName);

printf ("Groke: Sld Bytes\n",f info->fib Size);

UnLock (lock);

Listing 2.10.6: Zugriff auf den FIB

Nun fragen Sie mich, warum ich einen File-Namen eingebe, um ihn dann
via FIB auszugeben? Da habe ich doch glatt zwei Antworten. 1. Man muß

nicht mit

if (!(lock = Lock ("dos 3.c",ACCESS READ)))

exit ();

aus dem Programm aussteigen, sondern kann anstatt exit) das Fehlen des

Files beklagen oder allgemeiner gesagt, damit auf das Vorhandensein

einer Datei prüfen. Antwort 2: Vielleicht haben Sie sich schon einmal

gewundert, wieso auf »dir anton« das System »Anton« meldet? Der

Grund: Wenn das File angelegt wird, wird der Name wie geschrieben

eingetragen. Die dir-Routine unterscheidet aber bei der Suche nicht zwi-

schen Groß- und Kleinbuchstaben.

TUTORIUM

Directory durchsuchen

Mit »dir« wären wir beim nächsten Thema und bei Listing 2.10.7. Das

Programm basiert auf zwei Funktionen.

boolean = Examine (lock, fib zeiger);

füllt einen FIB mit den Daten des Files von lock. Die Funktion gibt TRUE

zurück, wenn sie Erfolg hatte. lock kann aber auch das Lock eines Direc-

torys sein. Nun kommt die nächste Funktion zum Tragen.

boolean = ExNext (lock, fib zeiger);

füllt den FIB des nächsten Files im Directory mit dessen Daten. Auf diese

Art kann man sich sehr einfach durch’ein Directory bewegen. Wenn Sie

nun noch jedesmal in fib_DirEntryType nachsehen, ob es sich um ein File

(<O) oder um ein Directory (>0) handelt, so können Sie auch sehr einfach

an die Sub-Directories herankommen.

/* dos A.c */

#include <libraries/dos.h>

#include <exec/memory.h>

#include <libraries/dosextens.h>

void print _it (info)

struct FileInfoBlock *info;

{

printf ("s30s", info->fib FileName) ;

printf(" %7d Bytes\n",info->fib Size);

}

void main ()

{

struct FileLock *lock, *Lock();

struct FileInfoBlock *f info;

if(! (lock = (struct FileLock *)

AllocMem(sizeof (struct FileLock),

MEMF CHIP | MEMF CLEAR)))

exit();

if (!(f info = (struct FileInfoBlock *)

183

Tu TORIUM

184

AllocMem(sizeof (struct FileInfoBlock),

MEMF CHIP | MEMF CLEAR)))

exit();

if (! (lock = Lock ("DF0:",ACCESS READ)))

exit();

if(!Examine(lock,f info)) /* FIB des /*

exit(); /* 1. Files /*

print it(f info); /* Erstes FIB ausgeben */

while (ExNext (lock, £ info)) /* Solange noch */

print it (f info); /* weitere FIBs */

if (IoErr() != ERROR NO MORE ENTRIES)

printf("\nFehler im Directory\n");

UnLock (lock);

Listing 2.10.7: So durchsucht man ein Directory

Wie Sie sehen, arbeitet unser Programm in der while-Schleife, so lange

wie es einen FIB findet. Danach gibt es allerdings zwei Möglichkeiten,

nämlich es gibt kein File mehr oder ein anderer Fehler ist aufgetreten. In

diesem Fall - wenn ExNext{}) den Wert O hat - sollten Sie die Funktion

loErr() aufrufen. Wenn diese NO_MORE_ENTRIES ergibt, ist es ein nor-

males Ende, andernfalls ist ein Lesefehler aufgetreten.

Sie können natürlich auch gleich ein Directory angeben, also anstatt DFO:

zum Beispiel auch DHO:LC schreiben. Jokerzeichen sind allerdings nicht

möglich. Wollen Sie dennoch nur Files listen, die beispielsweise mit ».c«

enden, hilft ein Trick. Schreiben Sie vor print_it{f_info) die Zeile

if (strstr(f info->fib FileName, ".c"))

Die strstr()-Funktion (string in string) gibt die Position des Suchstrings

zurück, wenn der gefunden wurde, sonst null.

TUTORIUM

Execute anwenden

Man muß natürlich nicht — wie in Listings 2.10.7 - die File-Namen aus-

geben, sondern kann mit den Namen weiterarbeiten. Wenn es Ihnen nur

auf die Anzeige ankommt, und das Programm nur im CLI laufen soll, kön-

nen Sie es auch billiger haben und zwar so:

#include <libraries/dos.h>

void main()

{

Execute ("dir", NULL, Output ());

} |

Die Funktion Execute() führt ein Programm aus, hier eines mit dem Namen

dir. Alle CLI-Befehle sind ausführbare Programme. Außer dem Programm-

Namen erwartet die Funktion zwei File-Handles, eines für den Input-File,

eines für den Output-File. Ersteren habe ich hier auf NULL gesetzt, was

erlaubt ist. Mit Output() trage ich das Handle des Standard-Outputs

(normalerweise das CLI-Window) ein. Gibt man einen Input-File an, wird

sein Inhalt als Befehlssequenz interpretiert, die nach dem Programm (hier:
dir) ausgeführt wird. Für das Programm kann ich aber auch NULL ein-

setzen, dann werden sofort die Befehle im Input-File ausgeführt. Wissen

Sie jetzt, worauf die Excecute-Routine des CLI basiert?

Schreiben und Lesen von Bildern

Nun zu unserer letzten Aufgabe. Im Malprogramm der neunten Sitzung

(Listing 2.9.1) sind noch zwei Funktionen leer, die wir jetzt ausfüllen

wollen; wie — zeigt Listing 2.10.8. Doch zuerst fügen Sie in Listing 2.9.1

noch diese Zeile nach den anderen #includes hinzu:

#include <libraries/dos.h>

Zuerst das Einfache: Die Funktion sysreq(char *text) wird mit einem String

aufgerufen und zeigt diesen in einem Auto-Requester. Den kennen Sie

schon aus der achten Sitzung, nur eines ist neu: Wenn man fir den Pos-

Text NULL einsetzt, hat der Requester nur noch ein Gadget. Fiir uns reicht

das, denn der Anwender soll nur einen Text wie »ungültiger Datei-Name«

sehen und dann auf OK klicken.

Damit ist auch schon der Zweck von sysreq() klar: Die Funktion wird auf-

gerufen, wenn in der Funktion do_dafei[) etwas schiefgeht. Diese Funktion

soll unsere Bilder speichern oder laden. Wie schon mit Listing 2.10.2

gezeigt, muf3 man eine Datei zuerst mit Open() öffnen. Geht dabei etwas

185

Tu TORIUM

186

schief, kommt unser Auto-Requester zum Einsatz. Die Menüwahl hatte bei

»Laden« dflag=1 und bei »Sichern« dflag=2 gesetzt. Hiernach wird nun

über das case entschieden, ob das Bild gelesen oder geschrieben werden

soll.

Nehmen wir zuerst den Fall »Schreiben«. Ich wende dabei einen ein-
fachen Trick an. Es wird nicht etwa das Window gespeichert, sondern der

ganze Screen. Das geht sehr gut, weil unser Window die volle Schirm-

größe hat und nicht verschoben werden kann (haben Sie diese Window-

Flags gestrichen?). Genaugenommen liegt das daran, daf3 unser Window

keinen eigenen Screen hat, sondern mit dem Workbench-Screen arbeitet.

Damit ist auch der Rastport des Windows der des Screens. Im RastPort —

unserer Variablen rp - gibt es einen Zeiger auf die BitMap-Struktur. In

dieser wiederum befindet sich ein Array von Zeigern auf die Bit-Planes.

Diese Planes schließlich sind nun (endlich) die RAM-Bereiche, in denen

das Bild gehalten wird. Der Workbench-Screen hat zwei Planes (0 und 1).

Jedes Bit in jeder Plane entspricht genau einem (und demselben) Bild-
punkt. Die aus zwei Bit möglichen vier Kombinationen (00, 01, 10, 00)

entsprechen vier Farbregister--Nummern. An eine Plane, zum Beispiel
Plane 0, kommt man nun heran mit

rp->BitMap->Planes[0]

Um diesen RAM-Bereich auf ein File schreiben zu können, müssen wir ihn

nur der Write-Funktion von Amiga-DOS als Argument übergeben. Da

diese Funktion jedoch einen Zeiger auf einen Puffer vom Typ UBYTE

erwartet, machen wir noch etwas »type casting to keep the compiler

happy«. Das ergibt dann den schönen Ausdruck

Write (handle, (UBYTE *) rp->BitMap->Planes[0],

size);

»size« ist die Anzahl der zu schreibenden Bytes, die vorher mit size =

RASSIZE(640,256); ermittelt wurde. Dafür hätte ich auch 20480 schrei-

ben können, denn 640*256/8 ergibt das, aber mit dem Makro

RASSIZE(640,256) sieht das natürlich viel eleganter aus. Mit noch einem

Write() wird dann rp->BitMap->Planes[1] geschrieben, und das war's

dann schon.

TUTORIUM

void sysreqg(char *text)

{

struct IntuiText BodyText, NegText;

BOOL b;

make text (&BodyText, text, 50, 20);

make text(&NegText, " OK ", 3, 3);

b = AutoRequest (NULL, &BodyText, NULL, &NegText,

NULL, NULL, 400,80); |

void do datei (void)

{

ULONG handle;

int size;

size = RASSIZE (640,256);

switch (dflag)

{

case 1: |

if ((handle = Open (&info.Buffer[0],

MODE OLDFILE)) == 0)

{

sysreq ("Datei nicht gefunden oder defekt");
return;

}

Read (handle, (UBYTE *) rp->BitMap->Planes[0],

size);

Read (handle, (UBYTE *) rp->BitMap->Planes[1],

size);

Close (handle);

break;

case 2:

if ((handle = Open (&info.Buffer[0],

MODE NEWFILE)) == 0)

187

Tu TORIUM

188

sysreq("Ungültiger Datei-Name");

return;

}

Write (handle, (UBYTE *) rp->BitMap->Planes[0],

size);

Write (handle, (UBYTE *) rp->BitMap->Planes[1],

size);

Close (handle);

break;

}

Listing 2.10.8: Das Lesen und Schreiben von Bildern

Wenn Sie das Ganze perfekt erledigen wollen, müssen Sie die Werte der

aktuellen Auflösung einsetzen. Dazu brauchen Sie:

rp->BitMap->BytesPerRow : X-Auflösung in Bytes
rp->BitMap->Rows : Y-Auflösung (direkt)

rp->BitMap->Depth : Tiefe = Anzahl Bitplanes

ES” Beachten Sie, daß die X-Auflösung in Bytes eingetragen ist, Sie also den
Wert mit 8 malnehmen müssen. Ferner heißt eine Tiefe von 2, daß es eine

Planes[O] und eine Planes[1] gibt.

Bliebe noch anzumerken, daf3 ich gar nichts zu den Farben sage, die

Farbregler können ja beim Bildspeichern sonstwo stehen. Ich speichere

jedoch das Bild ohne die Farbreglerstellung und hoffe, daf3 bis zum näch-

sten Laden niemand an den Reglern dreht. Wenn Sie das berücksichtigen

wollen, müssen Sie die Ist-Farben mit GetRGB4() erfragen, sie mitspei-

chern und dann mit SetRGBA4() setzen. Per Prinzip sieht das für alle 32

Register so aus (für die Normalauflösung braucht man nur die ersten 4):

for (i=0; i<=31; i++) /* für alle 32 Register */

farbe[i] = GetRGB4 (&Screen->ViewPort,i);

Die Farben sind in der Form »0xORGB« (Rot, Grün, Blau) codiert. Jede

Farbe belegt vier Bit, Halbbytes oder auch Nibbles genannt. Zum Setzen

mit SetRGB4(&Screen->ViewPort,i,R,G,B) müssen Sie die Nibbles aus den

Worten holen. Da ich dazu schon wahrhaft abenteuerliche arithmetische

Übungen gesehen habe, hier eine C-gemäfße Lösung.

TUTORIUM

Wenn »f« ein Farbwort ist, gilt:

R= f>>8& OXF;

G= f>> 4 & OxF;

B= £ & OXF;

Im Klartext: Das Rot-Nibble wird um acht Bit nach rechts geschoben und

dann mit OxF oder/und 0000000001111 verknüpft. Beim G-Nibble muß
man nur um vier Bits schieben, und bei B steht das Nibble schon richtig,

nur die anderen zwölf Bits müssen mittels der Maske auf null gesetzt

werden.

Checkliste

1. Wie prüfen Sie, wann beim Lesen aus einer Datei das File-Ende erreicht ist?

2. Warum sollte man DOS-Puffer immer mit AllocMem() allokieren?

3. In welcher Datenstruktur steht die Größe eines Files?

Ideen für eigene Übungen und Erweiterungen

1. Wandeln Sie Listing 2.10.2 so ab, daß das Programm immer nach 20

Zeilen anhält und auf einen Tastendruck wartet.

2. In der Funktion do_datei() wird nicht geprüft, ob die Funktionen Read() und

Write() O zurückgeben. Bauen Sie diese Tests ein und geben Sie für den

Fehlerfall mittels sysreg() Meldungen aus. Wenn Sie ganz gut sein wollen,

speichern Sie die Ist-Größe mit ab und vergleichen sie dann mit der

gelesenen. Sie können auch noch ein Kennwort mit speichern und das

zurücklesen, um zu verhindern, daß eine falsche Datei eingelesen wird.

3. | Wandeln Sie Listing 2.10.7 so ab, daf3 alle Files mit der Endung ».IMG«

(empfohlener Extender für Bilder) angezeigt werden. Bauen Sie das dann in

das Malprogramm ein. Dazu verlängern Sie das Menü »Projekt« um den

Punkt »Dateien zeigen«. Beachten Sie, daf3 Sie die Texte mit der Funktion

print() (in Listing 2.7.5) ausgeben müssen und dabei jeder Text eine neue x-

y-Position braucht. |

189

TUTORIUM

190

Know-how
Dieses Kapitel ist primär in zwei Teile gegliedert. Der erste Teil beschäftigt

sich mit dem Thema »Fehlerbeseitigung«, der zweite behandelt einige

Besonderheiten der Compiler und hilft mit einer Sammlung von Kniffen,

Tips und anderen Spezialitäten, Ihr C-Wissen weiter zu verfeinern.

3.1 Häufige Fehler und Lösungswege

Sie werden es kaum glauben, doch Profis machen genauso viele Fehler

wie Einsteiger. Der kleine Unterschied: Die Profis brauchen dafür ein paar

Programmzeilen mehr und - das ist es — sie haben alle Fehler schon ein-

mal gemacht und daraus gelernt. Dieses Know-how soll Ihnen die fol-

gende Aufzählung möglicher Fehlerquellen vermitteln.

Ein Gleichheitszeichen vergessen

Der Zuweisungsoperator heist =, der Gleichheitsoperator hingegen ==.

Verwechselt man das, kann das Programm falsche Ergebnisse bringen

oder abstürzen. Ein harmloses Beispiel:

int i = 123;

if (1 = 10)

puts ("i = 10");

Das Programm wird »i = 10« ausgeben, obwohl i 123 ist. Wenn eine

Zuweisung als Ausdruck eingesetzt wird, bekommt dieser den Wert der

Zuweisung, hier also 10. Das ist nicht null, und somit für C logisch TRUE.

191

KNOW-HOW

192

Die if-Bedingung ist damit erfüllt. Schlimm wird es, wenn man das mit

Zeigern macht, also zum Beispiel If (Window = NULL) schreibt. Damit

erhalt Window den Wert 0, also eine sicherlich falsche Adresse. Beim

nächsten Zugriff darauf kracht es.

Klammern vergessen

In der while-Schleife sollen so lange Zeichen in die Variable ch eingelesen

werden, bis die (Escape }-Taste gedrückt wird, doch leider funktioniert das

so nicht:

while (ch = getch() != '\x1B')

printf("%c",ch);

Der Grund ist, daf3 der Ungleichoperator (!=) eine höhere Priorität als der

Zuweisungsoperator hat. Folglich wird zuerst verglichen und erst danach

mit ch = getch() das Zeichen eingelesen. Die Lösung ist ganz einfach.

Umgehen Sie mit der Klammerung die automatische Priorisierung. Hier

also so:

while ((ch = getch()) != '\x1B')

ES” Kleine Zusatzregel: Setzen Sie im Zweifelsfall immer Klammern, eher zu viele

und überflüssige als zu wenig. Der Code wird dadurch nicht schlechter, doch

die Lesbarkeit des Programms wird besser.

Array-Index außerhalb der Dimension

Besonders bei der Übertragung von Basic- oder Pascal- ‚Programmer
begeht man häufig folgenden Fehler bei der Übersetzung von z.B. for i=1
to 4:

int ar[4] = {10, 20, 30, 40};

int i;

for (i=1; i<=4; i++)

printf("Sd\n", arli]);

Die Schleife läuft von 1 bis 4, ein C-Array beginnt aber mit dem Index 0.

Folglich muß3 die Schleife heißen

for (i=0; i<4; i++)

Mit dem falschen Index bekommen Sie noch nicht einmal eine Fehlermel-

dung, weil C nicht auf Array-Grenzen achtet. Peinlich wird die Sache in

KNOW-HOW

der Umkehr, also zum Beispiel mit der Zuweisung a[55] = 13;. In diesem

Fall schreiben Sie irgendwo in den Speicher, der Schaden kann groß

sein.

Falscher Index bei mehrdimensionalen Arrays

Auch bei der Übertragung von Basic- oder Pascal-Programmen begeht
man häufig folgenden Fehler. Aus DIM a(3,5) wird in C

int a[3] [5];

Nun kann man aber im Eifer des Gefechtes leicht

printf ("3d", all,2]);

schreiben und bekommt keine Fehlermeldung, sondern nur ein falsches
Ergebnis. Der Grund ist, daf} es korrekt

printf("%d", a[1][2]);

heien muß. Eine Fehlermeldung gibt es nicht, weil C in der Form a[1,2]

den Komma-Operator sieht, daher den Ausdruck von links nach rechts

entwickelt und schließlich dafür a[2] einsetzt. Das jedoch ist leider nur die

Adresse des Array-Elements.

Fehler im Umgang mit Strings

Zur Erinnerung: C-Strings müssen am Ende ein O-Byte, genauer ein Null-
Zeichen haben. Ein Haupifehler ist das vergessene Null-Byte bzw. die Tat-

sache, daß ein String immer wenigstens um 1 größer dimensioniert

werden muß3 als die maximale Textlänge. Im Falle von

char s1[5], s2[5];

main() { |

strcpy (sl,"Hallo");

strcpy (s2,"Welt");

printf ("Ss%ss\n",sl,s2);

}

kopiert strcpy() den String Hallo plus ein O-Zeichen, also sechs Zeichen, in

en Bereich von sI, für den der Compiler nur 5 Byte reserviert hatte.

Folglich liegt das O-Byte außerhalb des Array Meldung, hier im Bereich

von s2. Das nächste strcpy() kopiert den String Welt dorthin, womit das

W wieder das Null-Byte überschreibt. sT wird gedruckt, bis ein Null-Byte

193

KNOW-HOW

194

gefunden wird, und das steht erst am Ende von s2. Dann wird s2

gedruckt. Das Ergebnis ist HalloWeltWelt. Wenn Sie das Beispiel nach-

vollziehen wollen, beachten Sie: Die Strings müssen außerhalb von main()

deklariert sein, womit sie statisch werden (immer auf derselben Adresse

stehen). Aufserdem sollten Sie mit den Längen experimentieren, weil ver-

schiedene Compiler die Strings unterschiedlich auf Wort- oder Langwort-

grenzen ablegen können.

Eine andere Falle ist diese:

char sl[] = "Hallo";

char *ptr;

ptr = malloc(strlen(sl));

strcpy (ptr, sl);

Diesmal ist der Fehler gut versteckt. Die strln()-Funktion ergibt die

Stringlänge ohne das Null-Byte. Dafür alloziert malloc() Speicher. Das

anschließende strepy hängt aber wieder das Null-Byte an. Korrekt muß

die Zeile also lauten

ptr = malloc(strlen(sl) + 1);

Probleme mit Zeigern

Vier Fehler sind sehr beliebt, nämlich nicht initialisierte Zeiger, falsch ini-

tialisierte Zeiger, Zeiger vom falschen Typ und »dangling pointers«

(dangle = wacklig, lose). Beginnen wir mit den nicht initialisierten Zei-

gern. Sie schreiben in einem Programm ganz ordentlich

struct RastPort *rp

/* und etwas später */

Move (rp, X,Y);

Leider hatten Sie vergessen, mit ro=Window->RPort dem Zeiger rp auch

eine Adresse zuzuweisen. Die Movel)-Funktion schreibt deshalb mitten in

den Systemspeicher: der Crash ist vorprogrammiert. Auch auf diese Art

kann man zu einem initialisierten Zeiger kommen, jedenfalls, wenn man

den Warnlevel des Compilers hochsetzt:

int wert = 10;

int *ptr;

Aptr = &Wert;

KNOW-HOW

*otr meint nicht mehr den Zeiger ptr, sondern die Adresse, auf die er

zeigt. Dahin wandert auch die Adresse von Wert, nur pir selbst ist immer

noch nicht initialisiert.

Im Abschnitt über Strings hatte ich geschrieben

ptr = malloc(strlen(sl));

strcpy (ptr, sl);

Auch das ist recht gefährlich, denn ich weiß gar nicht, ob malloc{) den

Speicher noch beschaffen konnte. In diesem Fall gibt es NULL zurück, was

meistens auch die Adresse O ist. Korrekt schreibt man also das Stückchen

Code so:

char sl[] = "Hallo";

char *ptr;

ptr = malloc(strlen(sl) +1);

if (ptr == NULL)

exit (1);

else

strcepy (ptr, sl);

Eine böse Falle kann die Funktion scanf() sein. Bekanntlich muß man

scanf["%d", &i) schreiben, also die Adresse der Variablen angeben,

damit scanf{) sein Ergebnis da eintragen kann. Vergifft man das &-Zei-

chen, passieren gleich zwei Fehler. Die Variable bekommt keinen Wert,

ihr Inhalt ist zufällig, und - viel schlimmer - scanf() betrachtet diese

Zufallszahl als Adresse und schreibt auf diese.

Ein »dangling pointer« entsteht auf vielfältige Weise. Ich brauche bloß

nach ptr = malloc(...) irgendwann

free (ptr);

zu schreiben, und schon kann das System diesen Speicherbereich ander-

weitig vergeben. Der Pointer zeigt immer noch dahin, aber leider auch

aus Sicht Ihres Programms in die Wüste. Ob ein nochmaliger Zugriff

klappt, bleibt Zufall. Eine weitere Möglichkeit, einen »dangling pointer«

zu erzeugen, ist diese:

195

KN OW-HOW

196

char *error(int 1)

{

Char *c ptr;

c ptr = "Hallo";

return c ptr;

}

Die Funktion ist syntaktisch OK, nur logisch nicht. c_ptr ist eine lokale

Variable, die nur so lange existiert, wie die Funktion läuft. Der Return-
Wert der Funktion ist zwar noch der richtige Zeiger, nur zeigt er auf eine

Variable, die es nach dem Funktionsende gar nicht mehr gibt.

Zeiger auf sich selbst

Sie haben zum Beispiel in der Menü-Struktur menu[1] einen Zeiger auf

den Nachfolger menu[2]. Lassen Sie den aber nicht auf das nächste Menü
zeigen, sondern auf sich selbst, hier menu[1], entsteht ein schwer zu fin-

dender Fehler, weil das Programm sich aufhängt, sobald es Ser-

MenuStrip() aufruft.

3.2 Details zum Aztec-Compiler und Linker

Der C-Compiler cc wird mit

cc -Optionl -Option2 -Option... name

aufgerufen. Im Beispiel cc -a -r4 -sf name bedeuten:

cc Compiler-Aufruf
-a Erzeuge Assembler-Quelltext
—r4 Nehme A4 fiir Registervariable

—sf Optimiere for-Schleifen
name Name des Quellfiles

Die Optionen müssen nicht sein. cc test kompiliert test.c. Der Extender

».c« wird automatisch angehängt, wenn er nicht angegeben wurde. Der

Aztec-Compiler glänzt mit derart vielen Optionen, daf3 ich hier nur die

wichtigsten aufführen kann und ansonsten auf das sehr umfangreiche

Handbuch verweisen muß.

KNOW-HOW

-3 Akzeptiert Optionen der Version 3.6
-a Erzeugt (zusätzlich) Assembler-Quelltext

—bs Erzeugt Debug-Informationen
-fa Fließkommazahlen nach Amiga-IEEE

ff Fließkommazahlen nach »Fast Motorola«

-fm Fließkommazahlen nach Manx (Aztec)

-f8 Fließkommazahlen für 68881
hi Siehe 3.6, vorkompilierte H-Files

—ho Siehe 3.6, vorkompilierte H-Files

-i Pfad Directory, wo cc Include-Files suchen soll

—k Kompiliere nach K&R-Standard (UNX V7)

-mc Code für das große Speichermodell

-md Daten für das große Speichermodell
-pp Alle char werden zu unsigned char

-ps int als 16 Bit anstatt 32

-gp Erzeugt Prototypen für alle nicht statischen Funktionen

—qs Erzeugt Prototypen für alle statischen Funktionen

-5Q 2-Assembler-Lauf für diverse Optimierungen
—sf Optimiert for-Schleifen

55 Mehrfach deklarierte Strings nur einmal ablegen
-wa Warnt, wenn Funktionsaufruf nicht nach Prototyp
ws Keine Warnings mehr (gefährlich)
wu Warnung, wenn lokale deklarierte Variable nicht

genutzt (nützlich).

Der Aztec-Linker

Der Linker In wird mit

In Optionl Option2 Option... namel name2 name...

aufgerufen. Im Beispiel In +cd name -Ic bedeuten:

In Linker-Aufruf

+cd Daten ins Chip-Memory

name Name des Objektfiles

-Ic Library c.lib einbinden

Die Form In name -Ic ist eine Kurzform von In name.o c.lib

Die Optionen müssen nicht sein. In test -Ic linkt test.o zu einem ausführ-

baren Programm. Der Extender ».0« wird automatisch angehängt, wenn
er nicht angegeben wurde. Der Aztec-Linker bietet folgende Optionen:

197

KNOW-HOW

198

+d Justiert auf Langwortgrenzen

+cb BSS-Daten (nicht initialisierte) ins Chip-Memory

+cc Code geht ins Chip-Memory

+cd Daten ins Chip-Memory

+ccdb Alles ins Chip-Memory

+f Programm geht ins Fast-Memory

-fname Liest Linker-Kommando aus Datei name

-g Erzeugt File für Aztec-Quellcode-Debugger

+ Alle folgenden Namen sind Libraries, wirkt wie ein

Schalter bis zum nächsten +1

-Iname Library name.lib einbinden

-m Warnt nicht, wenn Library-Symbole überschrieben

werden. |

-o name Name des Programm-Files, sonst wie Name des

ersten Input-Files.

ofi] Plaziert das folgende Modul in das Segment i.
Wird i nicht angegeben, wird das erste

Segment genommen.

~q Schaltet -g wieder aus

+q Schaltet Modulanzeige beim Linken aus

+t Erzeugt Symbol-Tabelle (lesbarer Text)

—w Symboltabelle fiir ROM-Wack-Debugger erzeugen

_v Zeigt die wichtigsten Link-Ergebnisse wie Code-

und Datengröße an.

3.3 Details zum Lattice-Compiler und Linker

Der Lattice-Compiler glänzt mit derart vielen Optionen, daß ich hier nur

die wichtigsten aufführen kann und ansonsten auf das sehr umfangreiche

Handbuch verweisen muß. Der Compiler Ic wird mit

lc -Optionl -Option2 -Option... namel name2 name...

aufgerufen. Im Beispiel Ic -L -ad test bedeuten:

— Nach dem Kompilieren den Linker aufrufen
-ad | Daten ins Chip-Memory
test test.c kompilieren

Weil der Linker BLINK schon mit der -L-Option aufgerufen wird, und des-

sen Optionen hier mitgeschildert werden, verzichte ich auf die Beschrei-

bung von BLINK.

KNOW-HOW

Der Extender ».c« wird automatisch angehängt, wenn er nicht angegeben

wurde. Im Beispiel Ic -L -ad test waren es zwei Optionen, es können aber

auch mehr sein. Bei sich widersprechenden Optionen warnt Ic. Hier nun

die Liste der wichtigsten Optionen:

-ad

-ac

-ab

-acdb

-b1

-bO

-ca

-ch

-cm

-co

-c5

-CU

-cusf

-dO

-d5

+H

fl

ff

fi

-f8

-iPfad

—L

—L+Name.lib

—Le

—Lm

—|
~O

~ph

Daten gehen ins Chip-Memory

Code geht ins Chip-Memory

BSS-Daten (nicht initialisierte) ins Chip-Memory

Alles ins Chip-Memory

Kurze Adressierung. Reicht nur fiir 64 Kbyte Daten,

-b1 ist voreingestellt

Lange Adressierung (32 Bit)

Volle ANSI-Kompatibilität

Compiler moniert fehlende Funktionsprototypen

Erlaubt mehrfache Zeichenkonstasten wie 'ab'

Kompatibel mit früheren Versionen

Mehrfach deklarierte Strings nur einmal ablegen

Alle char werden zu unsigned char

Bester Code und bestes Error-Checking

Keine Debug-Information im Code

Volle Debug-Information im Code

Siehe 3.6, vorkompilierte H-Files

Fließkommazahlen nach Lattice

Fließkommazahlen nach »Fast Motorola«

Fließkommazahlen nach Amiga-lEEE

Fließkommazahlen für 68881

Directory, wo Ic Include-Files suchen soll

Compiler ruft Linker auf, der Ic.lib und

amiga.lib einbindet.

Bindet Name.lib zusätzlich ein

Erzeugt »small code«

Bindet /cm.lib für Fließkommazahlen

Alle Daten auf Langwortgrenzen justieren

Schaltet den globalen Code-Optimierer ein

Siehe 3.6, vorkompilierte H-Files

199

KNOW-HOW

200

3.4 (Uberlebens-)Regeln und Tips
fiir Programmierer

Es folgen gleich viele (Uberlebens-)Regeln und Tips für Programmierer -
doch halt! Ich meine, bevor ich die Regeln so einfach aufzähle, sollte ich

wenigstens andeuten, warum man sie braucht, sprich, ein paar Grund-

lagen bringen.

Multitasking macht Exec

Zuständig für das berühmte Multitasking des Amiga ist Exec. Exec ist die

Abkürzung von Executive, was im Amerikanischen soviel wie Chef

(leitender Angestellter) bedeutet. Exec ist an sich auch nur ein Prozeß, wie

zum Beispiel das CLI, der aber immer (so lange der Amiga eingeschaltet

ist) läuft. Exec selbst ist das Multitasking-System des Amiga. So ein System

hat die Aufgabe, die Ressourcen eines Systems auf verschiedene Tasks

(Programme) zu verteilen. Ressourcen sind die CPU (der 68000), der

Hauptspeicher und die Peripherie-Geräte. Unteilbare Ressourcen wie die

CPU werden beim Amiga nach einem Prioritäten-Verfahren vergeben.

Zuerst wird der Task mit der höheren Priorität abgearbeitet, dann der

nächstniedere. Haben mehrere Tasks die gleiche Priorität, werden sie

nach einem Zeitscheibenverfahren (Time-Sharing) in Intervallen bearbei-

tet. Durch Hardware-Interrupts bekommt Exec die Sache immer wieder in

den Griff, auch wenn ein Task seine Tätigkeit nicht beenden möchte.

Ein Task hat drei Zustände, nämlich laufend, nicht laufend und wartend.

Mit Rücksicht auf andere Tasks sollte ein Task möglichst oft in den Zustand

wartend (auf Eingabe) gesetzt werden, das aber via Wait{) und nicht

etwa nach der unfeinen Polling-Methode (siehe Regel 9).

Der Zugriff auf System-Routinen

Um von absoluten Adressen unabhängig zu sein, arbeiten die meisten

Betriebssysteme nach diesem Schema: Alle Unterprogramme erhalten eine

Nummer, Funktionsnummern genannt. Im Betriebssystem steht eine

Tabelle, in der notiert ist, welche Adresse zu jeder Funktionsnummer

gehört. Das Betriebssystem hat nun eine Routine, deren Adresse sich nie

ändert. Das ist der Dispatcher. Um ein Unterprogramm aufzurufen, über-

gibt man dem Dispatcher die Funktionsnummer. Dieser berechnet danach

(und mit Hilfe der Tabelle) die Adresse der Routine und ruft sie auf. Der

Amiga macht das etwas raffinierter und damit zukunftssicherer. Der

KNOW-HOW

Nachteil der Standard-Methode ist nämlich, daß man sehr schlecht neve

Routinen hinzufügen kann (Tabelle steht im ROM). Beim Amiga stehen die

Tabellen im ROM oder RAM oder auf der Diskette. Die Tabellen sind ein

Teil der sogenannten Libraries (Bibliotheken).

Libraries: Schlüssel zum Amiga

Eine Library ist, vereinfacht ausgedrückt, eine Sammlung von Unterpro-

grammen mit einer zugehörigen Tabelle (je Unterprogramm ein Eintrag).

Für jeden Zweck (zum Beispiel DOS, Intuition, Grafik) gibt es eine eigene

Library. Will man eine Funktion einer Library benutzen, muß man die

Library mit OpenLibrary() öffnen. »Gemanagt« wird das Ganze vom

sogenannten Library-Manager (ein Teil von Exec). Der Manager weiß, ob

sich eine Library schon im ROM oder RAM befindet. Wenn nicht, versucht

er, die Library von der Diskette zu laden. Klappt das nicht (Library ist

nicht auf der Diskette oder der Speicher ist schon voll), gibt er O als

Adresse zuriick.

Der Umstand hat noch einen Grund: Wir haben ein Multitasking-System,

was auch heif3t, daf3 quasi gleichzeitig verschiedene Tasks (Programme)

eine Library benutzen können. Der erste Task wird die Library notfalls von

der Diskette in den RAM laden (genau: das Laden veranlassen). Öffnen
weitere Tasks dieselbe Library, wird der Manager nur noch die Adresse

an diese Tasks melden und sich merken, daf} dieser Task die Library

(auch) braucht. Daraus folgt: Eine Library darf erst wieder aus dem Spei-

cher gelöscht werden, wenn der letzte Task gesagt hat, daf3 er sie nicht

mehr braucht. Dafür gibt es die Funktion CloseLibrary. Jeder Task (also

jedes Programm, das Sie schreiben) muf3 deshalb alle Libraries, die er

geöffnet hat, auch wieder schließen. Andernfalls könnte bald der Spei-

cher knapp werden.

Regel 1: Es gibt nur eine absolute Adresse

Man sieht immer wieder Listings, die auf absolute Adressen zugreifen,

was übrigens in C ganz einfach ist. Man muf3 nur einer Zeigervariablen

die Adresse (als Zahl} zuweisen. Doch nur eine einzige Adresse, nämlich

die 4, ist erlaubt; im Listing 3.5.5 sehen Sie eine praktische Anwendung.
Diese Adresse 4 ist die _SysBase und dort liegt der Zeiger auf die Basis

von »Exec«. Alle weiteren Adressen sind über definierte Offsets und

System-Funktionen zu ermitteln. Gegebenenfalls erhält man damit die

Zeiger auf Datenstrukturen, die wiederum Zeiger auf andere Datenstruk-

turen halten. Die doppelte Indirektion (**) ist zwar oft die Folge solcher

201

KNOW-HOW

202

Wege, aber diese Methode ist die einzig zulässige. Gehen Sie davon

aus, daf3 Programme mit absoluten Adressen nur auf Ihrem Amiga und
nur mit der einen Kickstart- und Workbench-Version laufen.

Regel 2: Funktions-Ergebnisse testen

Testen Sie generell die Ergebnisse aller Funktionen, die nicht ausdrücklich

als void deklariert sind. Sie müssen davon ausgehen, daf3 Ihr Programm
in Konkurrenz zu vielen anderen läuft (Multitasking), und somit durchaus

nicht klar ist, ob noch der Speicher für beispielsweise eine neue Window-

oder Screen-Struktur frei ist. Gehen Sie davon aus, daß fast jede Aktion
Speicher kostet. Im Extremfall müssen Sie sogar unterstellen, dal} die paar
Bytes fehlen, die für das Öffnen einer ROM-Library benötigt werden.

Regel 3: Speicher wieder freigeben

Geben Sie auf jeden Fall allokierten Speicher wieder frei und nicht nur
den mit malloc() beschafften. Schließen Sie auch alle Screens, Windows

und die Libraries. Beachten Sie diese Regel besonders im Fehlerfall. Hier

passiert es häufig, daf} man Speicher für einige Datenstrukturen beschafft
hat, dann etwas schiefgeht, und vor dem Abbruch des Programms eben

nicht der Speicher für die bisher allokierten Strukturen freigegeben wird.

Natürlich kann es vorkommen, daß Ihr Programm laut Regel 4 festgestellt
hatte, daf3 der Speicher ausreicht, nun loslegt, und es dann »mitten drin«

doch nicht reicht. Der Grund ist schlicht, daf3 sich ein anderer Task den

Speicher inzwischen »geschnappt« hat. Nun haben Sie aber derweil eine

unbekannte Anzahl von Speicherblöcken für Images, Sprites und sonstiges

reserviert. Wie geben Sie diese wieder frei?

Die Lösung bietet Intuition mit seiner Funktion AllocRemember(). Ein Bei-

spiel dazu finden Sie im Abschnitt 3.5.3. Diese Funktion notiert alle

erfolgreichen Allokierungen in einer gemeinsamen Liste, einer Struktur

vom Typ Remember, die Sie zur Verfügung stellen müssen, genauer:

— siehe auch Listing 3.5.1 - einen Zeiger darauf. Nehmen wir an, die

Variable heißt *rem, dann können Sie mit diesem einen Befehl

FreeRemember (&rem, TRUE)

alle Speicherblöcke auf einmal freigeben. Beachten Sie unbedingt das
»TRUE«, denn - es ist kaum zu glauben - setzen Sie hier »FALSE« ein,

wird nur die Liste gelöscht und nicht die Speicherblöcke.

KNOW-HOW

Regel 4: Frühzeitig testen

Kein Anwender findet es schön, wenn ein Programm erst anläuft und

dann »mitten drin« aussteigt. Es gilt zwar auch für diesen Fall die Regel

»informieren Sie den Anwender über den Grund des Abbruchs«, doch

am besten prüfen Sie gleich zu Programmbeginn, ob noch genügend

Speicher frei ist und die sonstigen Voraussetzungen für diese Applikation

erfüllt sind. Wenn nicht, nennen Sie dem User die Gründe und die mög-

lichen Abhilfemafsnahmen. Wenn dennoch im Programmlauf Fehler auf-

treten und alle Stricke reifjen, müssen Sie sogar mit einem Dead-End-Alert

aussteigen (siehe Sitzung 8), also nach einer Guru-Meldung neu booten

lassen. Still aussteigen und den Anwender mit einem anderen Programm

abstürzen zu lassen, ist nicht die feine englische Art.

Regel 5: Der Ressource-Manager sind Sie

Im Gegensatz zu den ganz großen Multitasking-Systemen müssen Sie

beim Amiga selbst etwas - wenn auch sehr wenig - tun, wenn es um den

Zugriff auf System-Ressourcen geht. Wenn zwei Tasks auf Ressourcen wie

ein Laufwerk gleichzeitig zugreifen wollen, gibt es Konflikte. Um diese zu

vermeiden, müssen Sie diese Aktion einkleiden in

forbid() /* Multitasking aus */

/* Aktion */

permit () /* Multitasking an */

Natürlich sollte das forbid() nur so kurz wie möglich wirken, weil, solange

alle anderen Tasks keine Chance haben, doch viel wichtiger ist, daf} man

das permit() nicht vergif3t.

Regel 6: Chip-Daten ins Chip-RAM

Die Custom-Chips des Amiga (Blitter, Copper usw.) können Hardware-

bedingt nur auf die ersten 512 Kbyte - das sogenannte Chip-Memory -

zugreifen. Folglich müssen auch alle Datenstrukturen, die von diesen Bau-

steinen genutzt werden, in diesem Bereich liegen. Hat der Amiga aber

mehr als 512 Kbyte RAM, wird ein Programm in aller Regel in den

Erweiterungsspeicher — das sogenannte »Fast Memory« — geladen. »Fast«

(schnell) heist das übrigens, weil »da oben« die CPU nicht mehr Takt-

zyklen an die Custom-Chips abgeben muß. Mit dem Programm wandern

auch die Daten in das »Fast Memory«, sind also für die Custom-Chips

unerreichbar. Günstigenfalls führt das zu einem verschwundenen Maus-

203

KNOW-HOW

204

zeiger und ähnlichen Effekten, doch auch Abstürze sind drin. Die mög-

lichen Lösungen werden in den Abschnitten 3.5.2 und 3.5.3 beschrieben.

Regel 7: Das Rad nur einmal erfinden

Daf} man häufig benutzte Routinen in Include-Files hält und die dann

immer wieder einzieht, ist eine uralte Mafsnahme, doch beim Amiga ist

sie besonders wichtig. Wenn man sich nämlich bei den vielen komplexen
Datenstrukturen nur einmal ein wenig verhaut, reicht das oft schon für

einen bildschönen und schwer zu findenden Absturz. Besonders kritisch

sind übrigens als Konstanten definierte Datenstrukturen. Vergifft man da

einmal eine Komponente oder nimmt den falschen Typ, »gurut« es garan-

tiert. Deshalb: Alles was läuft, gleich in einen Include-File packen und den

im nächsten Programm einsetzen. Ein ganz nützliches Exemplar dieser

Gattung ist übrigens unser so oft genutztes stdwindow.h.

Regel 8: Beachten Sie die »Postvorschriften«

Bei der deutschen Bundespost gibt es sehr genaue Vorschriften über den

Transport und die Behandlung von Nachrichten. Beim Amiga gilt ähn-

liches, kommunizieren doch alle Tasks — die eigenen und die des Betriebs-

systems — mittels Messages (elektronischer Briefe), die sie sich gegenseitig

schicken. Dazu noch einige Details: Jede Eingabe beim Amiga läuft über

das sogenannte Input-Device in den Input-Stream. Letzterer ist ein Strom

von Daten, genauer ein Puffer-Bereich. Wenn der Anwender eine Taste

drückt, die Maus bewegt oder eine Maus-Taste betätigt, generiert das

Input-Device daraus ein Input-Event (Input-Ereignis). Aus dem Input-Event

wird eine Message (Nachricht), die das Ereignis beschreibt.

Der Input-Stream kann nun von jedem Task abgefragt werden. Diese Ab-

frage ist nicht ganz einfach, na sagen wir, ziemlich umständlich zu pro-

grammieren. Deshalb sollten wir auch diesen Job Intuition überlassen, da

sind nämlich die passenden Routinen schon eingebaut. Dabei funktioniert

Intuition als eine Art Filter, das nur die uns interessierenden Events

durchläfßt. Intuition sorgt automatisch dafür, daf3 die Events immer an den

derzeit aktiven Task (an das aktive Window) weitergeleitet werden. Die

Events gelangen (neben dem Console-Device) in den IDCMP (Intuition

Direct Communication Message Port). Der IDCMP ermöglicht den

Empfang aller Ereignisse im »Rohformat«. Bei vielen Ereignissen stört das

nicht, das Window-Close-Event oder die Mauskoordinaten zum Beispiel

können gar nicht besser vorliegen.

KNOW-HOW

Die Abfrage des IDCMP in einem Programm ist an sich ganz einfach. Wir

erhalten eine Message, wenn ein Event eingetreten ist. Im Class-Feld des

Message-Ports steht dann ein Langwort, in dem ein Bit gesetzt ist, das

dem Ereignis-Typ entspricht. Dieses Bit entspricht genau dem des IDCMP-

Flags, das Sie vorher gesetzt hatten. Haben wir also beim Öffnen des

Windows CLOSEWINDOW gesetzt, könnten wir theoretisch nun folgen-

es tun:

msg = GetMsg (Window->UserPort) /* Lese Message */

if(msg->Class == CLOSEWINDOW)

Praktisch dürfen wir aber so nicht verfahren, denn zwei Regeln sollten Sie

immer im Auge behalten, nämlich:

e Nach GetMsg() muf3 ReplyMsg() folgen

e Nach ReplyMsg() sind die Daten im Message-Port ungültig

Daraus folgt mindestens dieser Ablauf:

Message mit GetMsg[) holen

Daten aus Message-Port in andere Variable kopieren

Mit ReplyMsg() den Erhalt der Message quittierenP @ N Auf Message reagieren

5. Weiter bei 1.

Das »mindestens« möchte ich sehr betonen, weil ein so geschriebenes

Programm gegen eine Grundregel des Multitasking verstößt. Jedes Pro-

gramm sollte, wenn es auf ein Ereignis wartet, das auch sagen. Praktisch

geschieht dies mit

Wait (1L << Window->UserPort->mp SigBit)

Damit meldet sich der Task sozusagen mit der Meldung ab »Ich gehe jetzt

schlafen, weckt mich, wenn ein Ereignis für mich anliegt«. Praktisch wird
damit der Task von Exec aus der Liste der aktiven Tasks auf die Liste der
wartenden Tasks versetzt, womit anderen Tasks mehr Zeit zugeteilt

werden kann. Tritt das Event ein, wird der Task automatisch wieder akti-
viert.

Die falsche Methode wäre das sogenannte Polling. Hierzu fragt das Pro-

gramm in einer Schleife ständig den Message-Port ab, ob eine Message

anliegt. Natürlich vergehen bis dahin aus CPU-Sicht Ewigkeiten, die Ant-

wort kann also durchaus 9999mal Nein und dann einmal Ja lauten. Leider

205

KNOW-HOW

206

blockiert diese Abfragerei CPU-Zeit, die den anderen Tasks fehlt. Solche
Programme erkennt man am fehlenden Wait() und einer Programmzeile

dieser Art

while(msg = GetMsg (Window->UserPort) == 0)

Beachten Sie das Semikolon. Manchmal steht es noch auf derselben Zeile

wie while(), was dann auch noch schlechter Programmierstil ist.

Regel 9: Denken Sie an FGO

Die drei Buchstaben FGO stehen für Funktionalität, Geschwindigkeit und

Oberfläche. Die Regel stammt aus der Macintosh-Welt — woher auch

sonst? Mit diesem Computer begann der Siegeszug der grafisch orien-

tierten Bedienoberflächen und auch der Lernprozef} der Programmierer.

Damit wären wir beim Thema. Wer von einem mauslosen Computer auf

den Amiga umsteigt, ist natürlich fasziniert von den Möglichkeiten dieser

Grafikmaschine und legt für sein neues Programm erst einmal eine
Benutzeroberfläche hin, die so intuitiv bedienbar ist, daf3 jedes Handbuch

überflüssig wird. Das erste Ziel eines solchen GUI (Graphic User Inter-

face), nämlich die leichte Erlernbarkeit eines Programms, wurde also

erreicht.

Doch die Anwender sind unverschämte Leute. Kaum, daf3 sie mit dem

Programm umgehen können und seine Funktionen beherrschen, verlangen

sie auch schon, daf3 diese Funktionen möglichst schnell ausgeführt

werden. Ein Testbericht der Art, daf} Ihr Super-Wordprozessor zum

Ersetzen aller »e« durch »xyz« vier Sekunden braucht und die Konkur-

renz nur derer zwei, kann schon das große Aus sein. Schauen Sie sich

um (und auf sich selbst), und Sie werden merken, daß die schnellsten Pro-
gramme einer Klasse immer auch die beliebtesten sind. Häufig werden

sogar zugunsten der hohen Arbeitsgeschwindigkeit Mängel im GUI in

Kauf genommen.

Woraus folgt: Die leichte Erlernbarkeit ist zwar ein edles Ziel, sie darf

aber nicht dazu führen, daf} das Programm für den fortgeschrittenen

Anwender zu langsam wird. Langsam ist ein Programm in diesem Sinne

auch dann, wenn keine Abkürzungen vorhanden sind. Sie müssen sich

das vor Augen führen.

KNOW-HOW

Anstatt |

e Drücken der rechten Maustaste

e + Anfahren des Menüs

e + Wahl von »Sichern«

e + Warten auf File-Dialog

e + Scrollen durch die Listbox

e + Wahl des File-Namens aus der Listbox

e +Klick auf OK

tippt der »advanced user« doch lieber (ctrı)+[s) <name> (Return).

Kleine Anmerkung dazu: Auch wenn wissenschaftlich erwiesen ist daf3

der kurze Wechsel von der Tastatur zur Maus und zurück schneller ist als

so manches Tastenkürzel, hilft Ihnen das gar nichts. Wenn der User den

subjektiven Eindruck hat, auf die falsche Art schneller zu sein, dann

geben Sie ihm seine Tasten für alle Lebenslagen.

Um wieder auf das FGO zu kommen: Kümmern Sie sich zuerst um das F,

also um alle nötigen und — noch besser - um möglichst viele Funktionen.

Mit der Funktionsvielfalt steigt nämlich die Zahl der potentiellen User

(Käufer). Dann sehen Sie zu, daf3 diese Funktionen mit der höchstmög-

lichen Geschwindigkeit ausgeführt werden. Erst an dritter Stelle kommt

das ©. Das heißt nun nicht, daß Ihr GUI den Charme einer Schreib-

maschine haben darf, doch die Oberfläche ist OK, wenn sie dem Intui-

tion-Standard entspricht. Opfern Sie keine Minute für Gags im GUI, so

lange F und G nicht stimmen. Gerade die kommerziellen Anwender und

die Power-User sehen über manchen Mangel in der Oberfläche hinweg,

wenn sie von der Funktionsvielfalt und dem Tempo begeistert sind.

3.5 Kniffe, Tips und Spezialitäten

In diesem Abschnitt finden Sie einige Dinge, mit denen Sie das Malpro-

gramm erweitern können — ein neuer Mauszeiger und Grafiktexte gehö-

ren dazu -, aber auch einige Tricks für C im allgemeinen und die Amiga-

C-Compiler im besonderen.

207

KNOW-HOW

208

3.5.1 Workbench-Programme mit Icons

Um unser Malprogramm - und überhaupt jedes Intuition-Programm - von

der Workbench aus starten zu können, benötigt es nur noch ein Icon.

Damit ein Icon sichtbar wird, muf3 es a) vorhanden sein (logisch) und b) in

einem Directory stehen, das selbst ein Icon hat, sprich, als Schublade

sichtbar ist. Am einfachsten stellen Sie eine solche Schublade her, indem

Sie auf der Workbench die Schublade »Empty« duplizieren. Sie können

aber auch im CLI einfach tippen

copy empty.info test.info

Kehren Sie nun zur Workbench zurück, sehen Sie das neue Icon nicht.

Schließen Sie dann das Disk-Fenster und öffnen es wieder. Nun ziehen

Sie die Empty-Schublade etwas weg, und die Test-Schublade wird sicht-

bar.

Jetzt brauchen wir ein Programm-Icon. Dazu nehmen Sie am besten auch

ein vorhandenes Icon, allerdings nicht jedes ist geeignet. Der Amiga

kennt verschiedene Typen von Icons. Welche das sind und was sie für

eine Bedeutung haben, erfahren Sie automatisch, wenn Sie den Icon-Edi-

tor starten. Für uns ist es wichtig, zu wissen, dal} Programme vom Typ

TOOL sein müssen. Geeignet ist zum Beispiel IconED selbst. Nehmen wir

an, Sie haben das Directory (die Schublade) »test« schon erstellt und

unser Programm hieße »program«. Dann kopieren Sie zuerst das Pro-

gramm mit

copy program :test/program

Nun kopieren Sie ein Icon dazu (IconEd steckt im Tools-Ordner)

copy :tools/iconed.info :test/program.info

Nun sollten Sie auf der Workbench in der Schublade »test« ein Icon fin-

den, das aussieht wie das von IconEd, aber den Titel »program« zeigt.

Das können Sie nun getrost anklicken, »program« wird starten. Wenn Sie

jetzt Ihrem Icon ein eigenes Aussehen verpassen wollen, rufen Sie IconEd

auf. Im Disk-Menü wählen Sie Load und tippen dann in den Text-

Requester

:test/program

sprich, immer den vollen Pfadnamen ein. Das Editieren ist simpel und im

Prinzip selbsterklärend. Probieren Sie einfach die verschiedenen Menü-

Punkte aus. Wichtig zu wissen ist: Um ein Icon zeichnen/ändern zu kön-

KNOW-HOW

nen, müssen Sie immer das Menü Color anwählen und daraus die pas-

sende Farbe. Radieren können Sie mit der Hintergrundfarbe. Gezeich-
net/radiert wird mit der Maus. Die linke Taste drückt den Stift auf das

»Papier«. Sie kennen das Prinzip? Richtig, unser Malprogramm arbeitet

genauso.

Sie können aber auch auf den Kopiervorgang ganz verzichten und ein

Icon selbst im Editor erstellen. Sie müssen dann nur im Save-Requester

den korrekten Namen eingeben, in unserem Beispiel also wieder

:test/program. Ansonsten keine Sorge. Es können zwar die unmöglichsten

Icons entstehen, aber editiert wird immer nur das Info-File. Ihrem Pro-
gramm passiert nichts.

3.5.2 Chip-Memory per eigenem Mauszeiger

Um einen eigenen Mauszeiger zu erzeugen, braucht man die Funktion

SetPointer(). Mit ClearPointer() kann man wieder auf den Standardzeiger

(den Pfeil) zurückschalten. Doch niemand zwingt Sie, in einem Programm

nur einen Pointer (Mauszeiger) einzusetzen. Es können mehrere sein, und

ständig umschalten dürfen Sie auch. Genau das wollen wir hier auch
üben.

/\ Doch bevor Sie nun loslegen, zuerst eine Warnung. Ein Pointer ist ein

Sprite, und Sprites funktionieren nur im Chip-Memory (in den unteren

512 Kbyte Ihres Amiga).

Wenn Sie einen Amiga mit mehr als 512 Kbyte haben, müssen Sie etwas
tun. Am einfachsten ist es, vor diesem Programm die Utility »NoFastMem«

(im System-Ordner) aufzurufen. Sie können aber auch einen Compiler-

Switch setzen, der die Daten in das Chip-Memory zwingt. Das hat zwar
den Nachteil, daß dann alle Daten in das an sich immer knappe Chip-
Memory gelangen, doch damit wollen wir beginnen. Sollte Ihnen diese

Lösung nicht zusagen, dann warten Sie bis zum nächsten Abschnitt.

Listing 3.5.1 hat diese Aufgabe: Wenn der Mauszeiger in der Arbeits-

fläche des Fensters ist, soll er ein X sein, kommt er hingegen in die Titel-
leiste, soll er die Pfeilform annehmen.

ES" Beachten Sie unbedingt die Compiler/Linker-Kommandos zu Beginn des

Listings. Genau damit müssen Sie nachher das Programm kompilieren bzw.

linken.

209

KN OW- HOW

210

/x

* mp.c Mouse-Pointer setzen

* >

* Compiler/Linker-Kommandos:

X ee - - ---- -- -- - -- - -- -

*

x Aztec cc mp

dee In +cd mp -Ic

*

* Lattice: lc -L -ad mp

Ke

* /

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

struct Window *Window;

struct IntuiMessage *msg;

ULONG class;

SHORT my;

#include "stdwindow.h"

USHORT Maus[] =

{

0x0000, 0x0000,

0x0830, Ox0C10,

0x0460, 0x0620,

0x02C0, 0x0340,

0x0180, 0x0180,

0x0380, OxO1C0O,

0x0640, 0x0260,

0x0C20, 0x0430,

0x1810, 0x0818,

KNOW-HOW

0x0000, Ox0000

be

void main()

{

open libs();

Window = (struct Window *) open window (

20,20,600,170,

"Data im Chip-Memory per Compiler-Option",

WINDOWCLOSE | REPORTMOUSE | ACTIVATE,

CLOSEWINDOW | MOUSEMOVE, NULL);

if (Window == NULL) exit (FALSE);

SetPointer (Window, &Maus, 8, 8, -4, -4);

do{

Wait (1L << Window->UserPort->mp SigBit);

while(msg = (struct IntuiMessage *)

GetMsg (Window->UserPort))

class = msg->Class;

my = msg->MouseY;

ReplyMsg(msg);

}

if (my < 11)

ClearPointer (Window) ;

else

SetPointer (Window, &Maus, 8, 8, -4, -4);

}while(class != CLOSEWINDOW) ;

close all();

Listing 3.5.1 Ein Window mit eigenem Mauszeiger

Ein Pointer kann bis zu 16 Pixel breit und beliebig hoch sein. Sein Image

wird zeilenweise in einem Array, hier Maus[], abgelegt, wobei dann

jedes gesetzte Bit in diesen Worten einem gesetzten Punkt in der Bit-Plane
entspricht. Arbeitet man wie hier mit zwei Bit-Planes (vier Farben), so
müssen die Zeilen in der Folge

211

KN OW-HOW

212

Zeile 1 fur Plane 1

Zeile 1 fur Plane 2

Zeile 2 für Plane 1

Zeile 2 für Plane 2

usw.

abgelegt sein. Uber diese sinnige Folge habe ich mich übrigens auch
schon beim Atari ST gewundert. Nun denn, spielen wir mit. Ansonsten

gibt es ja auch Sprite-Editoren, die solche Arrays kreieren. Ist das eigent-

liche Muster fertig, müssen Sie es noch mit je zwei Null-Wörtern am

Anfang und Ende einrahmen. Mein Sprite ist ein schlichtes X mit Einsen in

beiden Planes, das ergibt die Farbe 3 (binär 11). Nun könnten Sie auch

schon SefPointer() aufrufen. In der Zeile

SetPointer (Window, &Maus, 8, 8, -4, -4);

ist Window unser Window-Zeiger, &Maus zeigt auf die Sprite-Daten und

nun kommt's: Die beiden Achten beschreiben die Breite und Höhe des

Pointers, das ist ja noch einsichtig, aber die beiden Vieren sind das X-

bzw. Y-Offset vom »hot spot«. Dieser heiße Punkt ist der Punkt, der über

einem Ziel sein muß, wenn Sie die Maustaste drücken. »0,0« heißt linke

obere Ecke des Pointer-Rechtecks, »-4,-4« hingegen vier nach rechts, vier

nach unten, hier also genau die Mitte. Warum das negative Vorzeichen

sein muß, weiß ich nicht, aber es muß sein.

Der neue Pointer wird wirksam, sobald er im Window ist, und das

Window aktıv ist. Klicken Sie einfach Ihr Window an, das X müßte

erscheinen. Sobald Sie außerhalb des Windows klicken, entsteht wieder

der alte Pointer. Nun gehört aber die Titelleiste noch zum Window, und

ich wollte, daf3 sich schon hier die Zeigerform ändert. Genau das machen

die Zeilen

if (my < 11)

ClearPointer (Window) ;

else

SetPointer (Window, &Maus, 8, 8, -4, -4);

my ist die Mausposition, unter y=11 beginnt die Titelleiste. Ich habe das

hier in eine vereinfachte Form der Event-Schleife gepackt. Wenn Sie das

Ganze in das Malprogramm einbauen wollen, sollten Sie diese Zeilen

dem Case MOUSEMOVE zuordnen.

KNOW-HOW

3.5.3 Daten ins Chip-Memory legen mit AllocRemember()

Die bisherigen Lösungen zum Thema Chip-Memory haben Sie nicht über-

zeugt? Sie haben recht, mich auch nicht so ganz. Wenn ich schon viel

Geld für die Speichererweiterung bezahlt habe, will ich sie nicht mit

»NoFastMem« wieder abschalten. Und ein ganzes Programm will ich

auch nicht in die unteren 512 Kbyte legen, denn erstens ist da nicht viel

Platz, und zweitens sind die Programme da unten langsamer. Das mit

dem Compiler-Switch geht zwar schon, doch wenn man viele Daten im

Programm hat, ist das auch nicht so gut. Doch die Lösung ist ganz ein-

fach. Man darf halt nur die Daten in das Chip-Memory legen, die da

unbedingt sein müssen, zum Beispiel die Pointer-Strukturen. Wie man das

macht, zeigt Listing 3.5.2.

/* cmem.c

Mauszeiger-Array im Chip-Memory

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

#define MEMF CHIP 2

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

struct Window *Window;

#include "stdwindow.h"

USHORT Maus[] =

{

0x0000, 0x0000, 0x0830, Ox0C10, 0x0460, 0x0620,

0x02C0, 0x0340, 0x0180, 0x0180, 0x0380, O0xO1C0,

0x0640, 0x0260, 0x0C20, 0x0430, 0x1810, 0x0813,

0x0000, 0x0000

}7

Listing 3.5.2: (Fortsetzung nächste Seite)

213

KN OW-HOW

214

void main()

{

struct Remember *Rememberkey;

UBYTE i;

struct

{

USHORT m[20];

} *MP, *AllocRemember () ;

open libs();

Window = (struct Window *) open window (

20,20,400,170,

"Data im Chip-Memory per Programm",

WINDOWCLOSE | ACTIVATE, CLOSEWINDOW,

NULL);

if (Window == NULL) exit (FALSE);

RememberKey = NULL;

MP = AllocRemember (&RememberKey, sizeof (Maus),

MEMF CHIP);

for (i=0; 1<20; itt)

MP->m[i] = Mausl[i];

SetPointer (Window, &MP->m[0], 8, 8, -4, -4);

Wait (1L << Window->UserPort->mp SigBit);

FreeRemember (&RememberKey, TRUE);

close all();

Listing 3.5.2: So bringt man Daten in das Chip-Memory

Das Programm generiert denselben Mauszeiger, wie das vorherige, nur
wird dessen Datenstruktur in das Chip-Memory gezwungen. Kern der

Übung ist diese Zeile:

MP = AllocRemember (&RememberKey, sizeof (Maus),

MEMF CHIP);

Es handelt sich dabei um eine erweiterte malloc()-Funktion. Der

RememberKey zeigt auf die Remember-Struktur, in der Intuition die Spei-

cherreservierungen verwaltet. Vor dem ersten Aufruf muß dieser Zeiger

KNOW-HOW

mit NULL geladen werden. Das zweite Argument ist die gewünschte

Größe (wie bei malloc()), das dritte aber ist das, was wir wollen, nämlich

eine Vorgabe für den Zielbereich. Wenn Sie hier MEMF_CHIP eintragen,

wird der Speicher im Chip-Memory allokiert. Die Konstante habe ich hier

mit #define definiert, weil es mir widerstrebte, nur wegen einer Konstan-

ten einen ganzen Include-File (hier memory.h) zu laden.

Normalerweise beschafft man sich Speicher für ganze Strukturen, wes-

halb ich in diesem Beispiel auch eine struct angelegt habe, nur um einmal

das »Wie« aufzuzeigen. Da steht zwar jetzt nur der Platz für den Array

m[20] drin, aber Sie können ja auch noch die übrigen Sprite-Daten dazu

packen, so wie es sich eigentlich auch gehört.

MP (wie Mouse Pointer) ist nun der Zeiger auf diese Struktur im Chip-

Memory. Der Einfachheit halber erspare ich mir nun die 20 Zuweisungen,

sondern kopiere einfach die Daten aus der schon vorhandenen Struktur

mittels der for-Schleife.

Zum Schluf muß man den Speicher wieder freigeben, und das geschieht

mit

FreeRemember (&RememberKey, TRUE);

Das Argument TRUE besagt, daf3 sowohl die Listen-Knoten frei gegeben

werden sollen, die auf die einzelnen Speicherblöcke zeigen (voraus-

gesetzt, AllocRemember wurde mehrfach aufgerufen), als auch die Spei-

cherblöcke selbst. Setzen Sie dieses Argument auf FALSE, wird nur die

Liste gelöscht, eine gewagte Aktion, wie ich meine, also bleiben Sie »true«.

3.5.4 Zeichensätze, Größen und Stilarten

Wir hatten zwar IntuiText schon oft genutzt, aber diesmal geht es zur

Sache. Deshalb schauen wir uns dieses sfruct jetzt genauer an.

struct IntuiText

{

UBYTE FrontPen, BackPen;

UBYTE DrawMode;

SHORT LeftEdge, TopEdge;

struct TextAttr *ITextFont;

UBYTE *IText; struct IntuiText *NextText;

}

215

KNOW-HOW

Habe ich eine Variable dieses Typs, zum Beispiel mit dem Namen My-

Text, kann ich Text ausgeben mit

PrintIText (rp, &MyText, x,y);

rp ist dabei wieder der RastPort. Etwas verwirrend sind x und y, denn mit

LeftEdge/TopEdge in der Struktur wurde die linke obere Ecke des Text-

beginns auch schon festgelegt. Die Lösung: x wird auf LeftEdge und y auf
TopEdge addiert, weshalb man diese beiden Werte in der Struktur

meistens auf O setzt. Interessanter ist deshalb der Rest der Struktur. Front-

Pen gibt die Farbnummer des Vordergrundes an, BackPen die für den

> Hintergrund. Ob BackPen wirksam wird, hängt von DrawMode ab. Ist

dieser JAMI, überschreibt der Text den Hintergrund nur im Bereich der
Zeichen. Ist DrawMode hingegen JAM2, wird der Hintergrund im Bereich

der Zeichenmatrix mit BackPen beschrieben. Ich kann damit zum Beispiel

auf dem blauen Hintergrund des Schirms einen orangen Streifen erzeu-

en, in dem mit schwarzer Schrift ein Text steht. Beide Modi können noch

mit COMPLEMENT oder INVERSVID »verodert« werden. COMPLEMENT

komplementiert die vom Text »getroffenen« Bits (aus O wird 1, aus 1 wird

QO). Im Ergebnis ist das eine andere Farbe. INVERSVID (invers Video) muf3

zusammen mit JAM1 oder JAM2 gebraucht werden.

JAM1 | INVERSVID Ergibt transparente Zeichen, umrahmt von der
Hintergrundfarbe,

JAM2 | INVERSVID Lat die Zeichen in der Hintergrundfarbe
erscheinen.

Ganz wichtig ist nun /TextFont. Das ist ein Zeiger auf einen Font (Zeichen-

satz). Ist dieser Zeiger NULL, wird der (langweilige) Standardzeichensatz

genutzt. ITextFont kann aber auch einen Font zeigen, der von der Diskette

geladen wurde. Listing 3.5.3 zeigt, wie man zu solchen Fonts kommt.

/* fonts.c */

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

#include <graphics/text.h>

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

ULONG DiskfontBase;

Listing 3.5.2: (Fortsetzung folgende Seiten)

216

KNOW-HOW

struct Window *Window;

struct RastPort *rp;

struct TextFont *font rom, *font[2];

struct TextAttr ta_rom, tal2];

struct IntuiText intuitext;

#include "stdwindow.h"

/* Funktion zum Offnen eines Disk-Fonts

oe x /

open font (struct TextAttr *ta, char name*,

SHORT size, SHORT style, SHORT flags,

struct TextFont *font)

ta->ta Name = (UBYTE *) name;

ta->ta YSize = size;

ta->ta Style style;

ta->ta Flags = flags;

1f (! (font = (struct TextFont *)

OpenDiskFont (ta)))

exit (FALSE);

}

make ftext (struct IntuiText *name, char *text,

struct TextAttr *ta)

name->FrontPen 1;

name->BackPen = (0;

name->DrawMode = JAMI;

name->LeftEdge = 0;

name->TopEdge = 0;

name->ITextFont = ta;

name->IText = (UBYTE *) text;

name->NextText = NULL;

}

void main ()

{

if(!(DiskfontBase = OpenLibrary

Listing 3.5.2: (Fortsetzung folgende Seiten]

217

KNOW-HOW

("diskfont.library",0)))

exit (1);

open libs();

Window = (struct Window *)

open window (0,0,640,256, "Titel",

WINDOWCLOSE | WINDOWSIZING | ACTIVATE,

CLOSEWINDOW | VANILLAKEY,

NULL

i

if (Window == NULL) exit (1);

rp = Window->RPort;

SetAPen(rp, 1L);

/* Zuerst eine Übung mit dem ROM-Font

----------2---------- ee x /

ta_rom.ta Name = (UBYTE *) "topaz.font";

ta_rom.ta YSize = TOPAZ SIXTY;

ta_rom.ta Style = 0;

ta_rom.ta Flags = FPF ROMFONT;

if (font rom = (struct TextFont *)

OpenFont (&ta_rom))

SetFont (rp, font_rom);

Move (rp,50, 50);

Text (rp,"Das ist Topaz 60", 16);

ta rom.ta YSize = TOPAZ EIGHTY;

Text (rp," und das ist Topaz 80",21);

CloseFont (font rom);

}

/* Nun das Offnen und Nutzen von Disk-Fonts

oe ee x /

open font(é&ta[0], "sapphire.font", 19, 0, O,

font [0]);

make ftext (&intuitext, "Das ist Saphire",

&tal0]);

PrintIText (rp, &intuitext, 50,70);

Listing 3.5.2: (Fortsetzung folgende Seiten)

218

KNOW-HOW

open font(&tall], "emerald.font", 20, 0,0,

font [1]);

make ftext (&intuitext, "Das ist Emerald", &ta[ll]);

PrintIText (rp, &intuitext, 50,90);

/* Ist der Font offen, kann man z.B. die Stilart

andern.

x /

ta[l].ta_ Style = 1; /* unterstrichen */

intuitext.IText = (UBYTE *) "Unterstrichen";

PrintIText (rp, &intuitext, 250,90);

/* Ist der Font-Zeiger NULL, wird der ROM-Font

eingesetzt

* /

make ftext (&intuitext, "Das ist wieder der ROM-

Font", NULL);

PrintIText (rp, &intuitext, 50,120);

Wait (1L << Window->UserPort->mp SigBit);

CloseFont (font[0]); /* Fonts schließen! */

CloseFont(font[1]);

CloseLibrary (DiskfontBase); /* Library auch */

close all();

Listing 3.5.3: So öffnet man Fonts

Kern der Übung ist eine Struktur namens TextAftr (Text-Attribute). Wie das
Listing zeigt, muf3 man mindestens zwei Werte in diese Struktur eintragen,

nämlich den Font-Namen und seine Größe YSize (Höhe). In der Wahl der

Höhe sind Sie nicht frei, sondern an den Bestand gebunden. Schauen Sie

sich einmal das Font-Directory auf Ihrer Workbench-Disk an, die Auswahl

ist grof3. Zum Beispiel finden Sie unter fonts/times die Fonts mit den Namen

11, 13, 15, 18 und 24. Die Namen sind auch die Größen. Flags können

Sie außer acht lassen, Style hingegen erlaubt Ihnen folgende Stilarten:

0 normal

1 unterstrichen

2 fett

4 italic (kursiv)

8 Breitschrift

219

KNOW-HOW

220

Sie sehen, es handelt sich wieder um Bits, Sie können also diese Zahlen
verodern oder addieren, um die Stilarten zu kombinieren. Das System

macht aber nicht bei jedem Font alles mit, und manche wilde Kombina-

tion ist auch hübsch häßlich. Probieren Sie es aus.

Außerdem gibt es zwei ROM-Fonts, beide haben den Namen Topaz. Der

Unterschied liegt in der Höhe. Die vordefinierten Konstanten
TOPAZ_SIXTY und TOPAZ_EIGTHY bedeuten nicht 60 und 80 hoch, son-

dern bezeichnen die Fonts, die bei 60 bzw. 80 Zeichen pro Zeile ein-

gesetzt werden. Den Unterschied sehen Sie kaum, dem hinter den beiden

Konstanten stecken die Höhen 8 bzw. 9. Auf jeden Fall können Sie auch

einen im ROM befindlichen Font mit OpenFont{) öffnen, wie hier gezeigt,

und erhalten dann einen Zeiger auf eine Struktur vom Typ TextFont. An

sich brauchen Sie für alles Weitere nur den Zeiger. Wenn Sie an der
Struktur selbst drehen wollen (vorsichtig!), schauen Sie sie sich einmal an

(steht in graphics/text.h).

Um an die interessanteren Diskfonts heranzukommen, muf3 man nur den
richtigen Namen in die TextAttr-Struktur einsetzen und dann anstatt

OpenFont() OpenDiskfont{) nehmen. Natürlich muf3 der Font auf der Dis-

kette sein. Für den Fall, daf3 dem nicht so ist: ohne jede Meldung einfach

mit exit{) auszusteigen, ist nicht die feine Art. Hier sollten Sie noch einen

Auto-Requester einbauen (siehe Sitzung 8).

Texteingabe für das Malprogramm

Um im Malprogramm auch Texte einzugeben, gehen Sie wie folgt vor:

Zuerst öffnen Sie alle Fonts, die Sie einsetzen möchten. Ich habe deshalb

schon mit ta[2] und *font[2] Arrays vorgesehen, wo Sie nur noch die

Zahlen anpassen müssen. Dann bieten Sie in einem Menü die Fonts an

und bekommen von dort die Item-Nummer i von 0 bis zum Beispiel 3

geliefert. Jetzt müssen Sie nur noch in einer Zeile wie

make ftext (&intuitext, "Das ist Emerald", &ta[1]);

anstatt &ta[1] &tafi] schreiben. Außerdem werden Sie für "Das ist

Emerald" eine Stringvariable einsetzen, die muß nur ein Zeichen auf-

nehmen können. Warum das so ist, zeigt Listing 3.5.4.

KNOW-HOW

strvoid do text (int dx)

{

char s[] = "";

SHORT x,y;

Titel ("Klicke auf Textstart und tippe bis

Return");

do{

GetEvents();

}while (code != SELECTDOWN) ;

xX = MX; y = My;

Move(rp, xX, y);

do {

GetEvents();

if (class == VANILLAKEY && code != 13)

{

s[0] = code;

Text (rp, Ss, 1);

x += dx; /* Zeichenabstand */

Move (rp, X,Y);
|

YIwhile (code != 13);

Titel ("Standard-Modus");

}

Listing 3.5.4: Texteingabe im Malprogramm

Sie bieten einen Menüpunkt »Texteingabe« an, und wie bei do_rechteck()
wird jetzt do_text() aktiv. Sie klicken auch zuerst auf den Startpunkt, nur

danach ändert sich etwas. Die do-Schleife endet mit while(code != 13);,
d.h., die Schleife läuft so lange, wie nicht die (Return]-Taste (Code 13)

gedrückt wird. Innerhalb dieser Schleife wird mit »if (class ==

VANILLAKEY ;&& code != 13)« sichergestellt, daf3 die folgenden Aktio-
nen nur bei einem Tastatur-Event (VANILLAKEY) ausgeführt werden, aber

nicht mehr beim Code 13. Was nun kommt, hat folgenden Sinn: Die

Funktion Text() braucht als Argument einen String, wir haben aber nur ein

Zeichen. Folglich wird im String s das erste und einzige Zeichen (s[0])

221

KNOW-HOW

222

durch den Code ersetzt. Die Funktion Text() wurde hier nur der Einfach-

heit halber eingesetzt. Sie müssen dafür praktisch

make ftext (&intuitext, s, &tali]);

PrintIText (rp, &intuitext, x,y);

schreiben. Sie können auch das make_text{) aus menu.h verwenden, müs-

sen dann aber für left und top noch zwei Nullen übergeben. Bliebe noch

zu erwähnen, daf3 Sie die Funktion mit zum Beispiel do_text[10) aufrufen

müssen. Das ist nämlich der Parameter dx für den Zeichenabstand, der
vom Font und der Größe abhängig ist. Wenn Sie auch noch die Schrift-

größen und die Stilarten variieren wollen - noch ein paar Menüs - kein

Problem. Ubergeben Sie do_text() auch noch diese Argumente und setzen
dann tali].ta_YSize und tali].ta_Style auf die passenden Werte.

3.5.5 So schreibt man kompakte Programme

Es gibt viele Tricks, kompakte Programme zu schreiben, womit ich aller-

dings die Code-Gréfse meine und nicht Bandwurmzeilen im Quelltext.

Letztere wirken sich übrigens oft nachteilig auf die Code-Größe aus. Ich

will hier auch nicht Bytes zählen, nach dem Motto, daf3 i+=3 kürzeren

Code ergibt als i=i+3, denn solche Dinge werden zunehmend auch schon
von den Compilern erkannt. Binsenweisheiten wie puts() ist kürzer als

printf{) möchte ich auch nicht wiederholen, also was bleibt noch?

_main() anstatt main() bei Lattice

In reinen Amiga-Programmen (unter Intuition) sollten Sie - nur in Lattice C

- _main() anstatt main() einsetzen. Der Linker wird dann einen kürzeren

Startup-Code einbinden, der nicht mehr die Standard-I/O-Kanäle öffnet.

Damit sind zwar Funktionen wie printf{) nicht mehr verwendbar, aber die

brauchen Sie ja nicht unter Intuition.

Amiga.lib zuerst

Wenn Sie prinif() und Konsorten einsetzen und damit nur ganze Zahlen,

Zeichen und Strings ausgeben wollen, brauchen Sie die Standard-Library

Ihres Compilers nicht, denn diese Funktionen stehen schon im ROM des

Amiga. Dazu linken Sie »amiga.lib« vor Ihre C-Lib (siehe 3.2, 3.3), und

schon wird der ganze printf()-Code nicht mehr in Ihr Programm ein-

gebunden.

KNOW-HOW

Das ROM und die »Protos« nutzen

Wieso soll man eigentlich die aufwendigen Libraries der Unix-Welt ein-

binden, wo doch der Amiga analoge Funktionen schon im ROM hat? Ein

printf{"Hello World"), in einem File namens hallo.c einfach so mit »Ic -L

hallo« kompiliert und gelinkt, erzeugt einen Programm-Code von 6372

Byte (Lattice C, Version 5.0). Das gleiche Ergebnis erreiche ich jedoch

auch mit 196 Byte, wohl gesagt, immer noch in C. Nur in Assembler geht

das noch kürzer (144 Byte). Listing 3.5.5 zeigt die Lösung.

#include "libraries/dos.h"

#include "proto/exec.h"

#include "proto/dos.h"

#define ABSEXECBASE ((struct ExecBase **) 4L)

struct DosLibrary *DOSBase;

void hallo()

{

if (!(DOSBase = (struct DosLibrary *)

OpenLibrary ("dos.library",O)))

return; |

Write (Output (),"Hello World\n",12);

CloseLibrary ((struct Library *)DOSBase);

}

Listing 3.5.5: Der Kürze-Rekord: nur 196 Byte Code.

Typisch für Lattice sind die Includes aus dem Proto-Directory. Damit wird

ein Dilemma von C ausgeschaltet, nämlich: C bringt alle Parameter einer
Funktion auf den Stack, die Systemroutinen erwarten sie jedoch in

Registern. Folglich muß der Compiler (Linker) Code einbauen, der die
Parameter vom Stack holt und in Register umlädt. Genau das wird ver-
mieden, wenn man die Proto-Include-Files anzieht. Der Aufruf der System-
routinen sieht dann allerdings auch nicht mehr sehr nach C aus, sondern

eher wie Assembler-Makros. Wenn Sie den Text als hallo.c speichern,
können Sie das Programm kompilieren und linken mit

lc -v -y hallo.c

blink hallo.o

223

KNOW -HOW

Mafigebend ist dabei, daß die Ausgabe über die Write()-Funktion des

Amiga-DOS läuft. Weshalb soll ich da also mit »Amiga.Lib« linken?

Nach dem Kompilieren mit der v-Option des Lattice C (kein Code zum

Stack-Checking), die hier obligatorisch ist, reicht deshalb auch ein

schlichtes blink hallo.o. Der Linker fügt jetzt nur den Header (16 Byte)

hinzu, damit der Amiga »hallo« als ausführbares Programm anerkennt.

3.5.6 Compiler/Linker-Autruf im Quelltext

Den folgenden Trick habe ich zuerst auf einer Public-Domain-Disk gese-

hen und bestaunt. Nach dem dritten Hingucken hatte ich es dann kapiert.

Der Trick stammt von John Meissen. Schreiben Sie ein Programm - dies-

mal für Aztec C - doch einmal so:

echo; /*

' cc test.c

In test -Ic

quit

* /

main ()

{

printf("echo hat den Wert %d\n", echo);

}

Wenn Sie Ic -L test.c einsetzen, geht das in Lattice C. Das Programm wird

jetzt kompiliert und gelinkt (Name fest.c), indem man aufruft

execute test.c

Des Rätsels Lösung: Das Execute des CLI gibt nach »echo« eine Leerzeile

aus, den Rest der Zeile ignoriert es wegen des Semikolons, weil das im

CLI einen Kommentar einleitet. Danach führt execute die Compile- und

Link-Anweisungen aus, mehr nicht, denn jetzt folgt quit. Der C-Compiler

sieht echo; und - das ist der Trick - legt deshalb die int-Variable echo an.

Hier gilt nämlich die Regel, daß in C alles vom Typ int ist, sofern nicht

anderes gesagt wird. Für den Compiler sind alle Zeilen nach echo; wegen

des »/*...*/« aber Kommentare. Sie können echo durchaus auch als C-

Variable benutzen. Nur um zu zeigen, daß es geht, habe ich ihr den

224

Wert 4711 zugewiesen.

KNOW-HOW

3.5.7 Trickreiche Makros

Wir haben ja schon öfter Makros kennengelernt, aber die waren alle

relativ klein. Doch eine Größenbegrenzung gibt es nicht. Sie können mit

dem Zeilenfortsetzungszeichen (\) immer weiter schreiben. Sie sollten

dann nur den ganzen Ausdruck in Klammern setzen. Sie können zum Bei-

spiel durchaus dieses Makro schreiben

#define OPENWINDOW (t) (Window = (struct Window *)

\

open window (0,0,640,256, (t), \

WINDOWCLOSE | WINDOWSIZING | ACTIVATE,

CLOSEWINDOW | VANILLAKEY, \

NULL))

Dann können Sie es aufrufen mit zum Beispiel

OPENWINDOW ("Fenstertitel");

Das spart natürlich noch nichts. Doch wenn Sie dieses Makro und andere

in ein Header-File packen, brauchen Sie dieses nur noch zu »includen«,

und schon stehen alle Makros zur Verfügung. Durchforsten Sie einmal
Ihre Programme auf immer wiederkehrende »Bandwürmer«, und Sie

werden viele Ansätze für Ihr Makro-H-File finden. Mehr zum Thema

finden Sie im Kapitel 4.4.1 im Zusammenhang mit dem Makro zufalls-

zahl.

3.6 Zusatz-Hardware und andere Empfehlungen

Es gibt einige Möglichkeiten, sich das Programmierer-Leben etwas leichter

zu machen, wenn man in Hardware investiert. Zur Auswahl haben Sie

allerdings nur drei Dinge, nämlich eine Festplatte, viel RAM oder einen
schnelleren Rechner. Lassen wir den Amiga 3000 einmal außen vor, so

bleibt die Frage »Platte oder RAM2«.

225

KNOW-HOW

226

Fine Festplatte macht Tempo

Zuerst etwas zur Zeitfrage: Für das komplette Malprogramm benötige ich

mit einem Festplattensystem im »langsamen< Filessystem unter Aztec C 44

Sekunden zum Kompilieren und Linken, unter Lattice C 63 Sekunden. Der

Unterschied zwischen den beiden Compilern ist also nicht sehr groß, er ist

aber doch ziemlich riesig im Vergleich zu einem Disketten-System. Daraus

sollten Sie folgern, daf3 eine Festplatte immer lohnt.

RAM ist noch schneller, oder?

Man kann die o.g. Zeiten etwa auf ein Zehntel bringen, wenn man das

ganze System im RAM hält. Dazu gehören nicht nur der Compiler und

der Linker, sondern auch alle H-Files und die Libraries sowie diverse CLI-

Kommandos. So ab 2 Mbyte kann man schon allerhand machen, 4

Mbyte sind besser. Haben Sie jedoch keine Festplatte, dauert es nahezu

ewig, bis das alles von den Disketten in das RAM geladen ist. Nun sagen

Sie nicht, das ist eine Einmal-Zeit. Bei so manchem Absturz — und dafür

gibt es laut Kapitel 3.1 sehr viele Gründe - ist nämlich die Prozedur

wieder fällig. Deshalb ist man auch gezwungen, immer den letzten Stand

der Quell-Files erst auf die Disk zu sichern, bevor man das Programm

lester, Das ist natürlich ein extra Schritt, der bei der Festplattenlösung

enträllt.

Daraus folgt: Entscheiden Sie sich zuerst für eine Festplatte. Nur Disketten

und viel RAM sind nicht zu empfehlen, viel RAM plus eine Festplatte ist

die Ideallösung.

Vorkompilierte Header-Files einsetzen

Auch die Header(Include)-Files müssen natürlich vom Compiler übersetzt

werden, und das bei jedem Lauf neu. Man kann einiges sparen, wenn

man diese Files einmal übersetzt und dann dem Compiler sagt, daf er

bitte diese Übersetzung benutzen soll. Hier das Kochrezepte:

Schreiben Sie einen Quelltext, in dem alle Includes stehen, die Sie brau-

chen, zum Beispiel diese:

#include <exec/types.h>

#include <intuition/intuition.h>

#include <graphics/gfx.h>

#include <graphics/text.h>

KNOW-HOW

Speichern Sie die Datei unter dem Namen x.c und verfahren jetzt je nach

Compiler weiter.

Für Aztec €:

Erzeugen Sie das sogenannte Dump-File mit

cc -ho x.dmp x.c

Ist das erledigt, können Sie Ihre Programme - zum Beispiel prog.c so

übersetzen.

cc -hi x.dmp prog.c

Für Lattice €:

Erzeugen Sie das sogenannte Dump-File mit

lc -ph -ox.dmp x

Ist das erledigt, können Sie Ihre Programme — zum Beispiel prog.c so

übersetzen.

lc -L -Hx.dmp prog

Für Aztec und Lattice:

Für beide Compiler gilt: Die Quelltexte bleiben völlig unverändert. Auch

die Includes müssen in den Quelltexten bleiben. Sie können deshalb auch

wahlweise mit und ohne dieses dmp-File kompilieren.

ES Die dmp-Files müssen mit demselben Speichermodell kompiliert werden wie

das Hauptprogramm. Optionen wie -mc (Aztec) oder -bO (Lattice) sind also
in beiden Fällen anzuwenden.

227

KNOW-HOW

228

4.1 Die wichtigsten Standard-C-Funktionen
Im folgenden finden Sie eine kleine Auswahl von ANSI-C-Funktionen.

Darüber hinaus bieten Aztec und Lattice spezielle Funktionen für jeweils

nur diesen Compiler und spezielle Amiga-Funktionen, die sich gleichfalls

unterscheiden. Sie sollten auf jeden Fall das »Library-Manual« einmal

durchgehen, um all die vorhandenen Möglichkeiten Ihres Compilers zu
ennen.

abs(i) Absolutwert einer vorzeichenbehafteten int-Zahl.
labs() für long, fabs() für doubble.

atoffs) Konvertiert String in double-Zahl
atoi(s) Konvertiert String in int-Zahl
cos(d) Ergibt Cosinus einer double-Zahl
div(i) int-Ganzzahl-Division
exit() vertal das Programm und gibt malloc()-Speicher

rei

getc() Liest ein Zeichen von der Tastatur
gets() Liest eine Zeile in einen String

is...(c) Die folgenden Funktionen aus ctype.h ergeben

TRUE (nicht 0), wenn die Bedingung erfüllt ist.

229

FERENZ

230

isalpha(c) c ist ein Buchstabe

isupper(c) c ist ein Großbuchstabe
islower(c} c ist ein Kleinbuchstabe
isdigit(c) c ist eine Ziffer

isalnum(c) c ist alphanumerisch
isspace(c) c ist ein Blank, Tab, CR, LF oder FF

ispunct(c) c ist ein Punktuationszeichen
sprint) c ist ein druckbares Zeichen (Code 32 bis 127)

log(d) Natürlicher Logarithmus, sonst log 1 O(d)
pow(x,y) Ergibt x hoch y (in double)

putc(c) Ausgabe eines Zeichens

puts(s) Ausgabe eines Strings
remove("name") Löscht die Datei »name«

sart(d) Quadratwurzel einer double-Zahl
strcat{z,s) _ Hängt String s an String z an

strncat(z,s,n) an! String s an String z an, Länge aber max. n

strcemp(s1,s2) Vergleicht beide Strings, O wenn gleich
strcspn(s1,s2) Ergibt Beginn von sl in s2, wenn enthalten
tan(d) Tangens einer double- Zahl
tolower(c) Konvertiert Buchstaben in Kleinbuchstaben
toupper(c} Konvertiert Buchstaben in Großbuchstaben

4.2 Die wichtigsten Amiga-Funktionen

Der Amiga bietet in seinen Libraries mehrere hundert Funktionen, von

denen ich hier nur die meiner Meinung nach wichtigsten aufführen kann.

Darüber kann man streiten, nicht jedoch über folgenden Tip: Bevor Sie

das berühmte Rad neu erfinden, informieren Sie sich. Im Anhang A3 gibt
es einige Literaturempfehlungen.

4.2.1 Die wichtigsten Funktionen von Intuition

Window Zeiger auf das Window

Gadget Zeiger auf das neue Gadget
Position Platz in der Liste

REFERENZ

ES” Am sichersten ist Position = -1, womit das Gadget an das Ende der Liste

gehängt wird.

RememberKey Zeiger auf Knoten (setzen Sie den zuerst auf NULL)
Size Größe in Bytes
Flags Speichertyp (Fast-Mem, Chip-Mem)

Window Zeiger auf eine Window-Struktur,
| wenn NULL, wird ein Window angelegt.

BodyText Zeiger auf IntuiText-Struktur mit der Frage
PosText Zeiger auf IntuiText-Struktur mit

positiver Antwort (Ja)

Neglext Zeiger auf IntuiText-Struktur mit

negativer Antwort (Nein)

PFlag IDCMP-Flags, die anstatt positiver Antwort wirken

NFlag DCMP-Flags, die anstatt negativer Antwort wirken

W Weite des Requesters
H Höhe

231

FERENZ

232

requester Zeiger auf Requester-Struktur.

Window Zeiger auf Window-Struktur

REFERENZ

Gibt den mit AllocRemember() reservierten Speicher wieder frei.

RememberKey Zeiger auf RememberKey-Struktur
ReallyForget Nur TRUE sinnvoll

Entfernt den mit BuildSysRequest{) gebauten Requester. Sie dürfen diese

Funktion keinesfalls aufrufen, wenn BuildSysRequest() keinen Zeiger

(NULL) auf eine Window-Struktur zurückgegeben hatte.

Preferenz-Struktur oder Teile davon lesen. Wenn Intuition das erstemal

aufgerufen wird, speichert es die Werte auf der Disk als Defaults ab. Die

aktuellen (veränderten) Daten werden woanders abgelegt. Mit dieser

Funktion lesen Sie die Defaults.

Prefbuffer Zeiger auf einen Puffer, den Sie stellen müssen,
und der mindestens Size Bytes groß3 sein muß.

Size Anzahl Bytes, die eingelesen werden sollen.

Es ist nicht nötig, die ganze Preference-Struktur zu lesen. Die wichtigsten
Daten stehen vorne.

Wie vor, nun aber für die aktuellen Werte.

Gibt die Länge eines Textes zurück (in Pixel), auf den das Textfeld der

IntuiText-Struktur itext zeigt.

Überschreibt die IDCMP-Flags des Windows mit den neuen Werten. Hatte
das Window bis dahin keine Flags, werden die IDCMP-Ports neu ange-

legt.

233

FERENZ

Gadget Zeiger auf die Gadget-Struktur
Window Zeiger auf die Window-Struktur
Req Zeiger auf den Requester, falls das Gadget Teil

»Disabledk (kann nicht bedient werden, wird grau gezeichnet) ein 1 Menü,
ein Item oder Sub-Item und alles, was s diesen folgt.

Die Umkehr der Funktion OffGadget{), d.h., das Gadget ist wieder wähl-
bar. Parameter siehe OffGadget).

234

Druckt einen Text, der mit all seinen Merkmalen in der Struktur vom Typ

IntuiText steht, ab der Position x,y. rp ist ein Zeiger auf den RastPort.

REFERENZ

Zeichnet alle Gadgets ab Gadget neu. Das ist erforderlich, wenn Sie

Gadget-Parameter geändert haben, AddGadget{) oder RemoveGadget()

aufgerufen wurden oder der Verdacht besteht, daf} eine Grafik-Routine

die Gadgets übermalt hat.

Gadget Zeiger auf die Gadget-Struktur
Window Zeiger auf die Window-Struktur
Req Zeiger auf den Requester, falls das Gadget

Teil eines solchen ist, sonst NULL.

Entfernt ein Gadget aus der Liste.

Damit wird das ständige Melden von Maus-Events (das viel Zeit kostet)
an- (Boolean = TRUE) oder ausgeschaltet (Boolean = 0).;

Damit wird ein Requester gezeichnet.

Requester Zeiger auf die Requester-Struktur
Window Zeiger auf die Window-Struktur

Erlaubt, daß ein DM-Requester erscheinen kann, req ist ein Zeiger auf

eine Requester-Struktur.

Schaltet das

235

FERENZ

236

Schaltet einen neuen Mauszeiger ein.

Siehe Kapitel 3.5.

Schreibt die (geänderten) Daten in PrefBuffer zurück und läßt die neuen
Einstellungen wirksam werden.

Prefbuffer Zeiger auf den Puffer mit den Daten
Size Anzahl Bytes, die geschrieben werden sollen.
flag TRUE: Daten gehen auf Disk und in RAM

Ändert die Größe eines Windows um die dx/dy-Beträge. Es findet keine
Kontrolle statt. Falsche Werte können zum Absturz führen.

Setzt die entsprechenden Parameter, die sonst in der NewWindow-Struk-
tur vorgegeben werden, neu.

4.2.2 Die wichtigsten Grafik-Funktionen

In den folgenden Grafik-Funktionen ist rp immer der Zeiger auf den Rast-

Port.

Zeichnet eine Linie vom aktuellen Cursor-Punkt zum Punkt x,y.

REFERENZ

Zeichnet einen Kreis mit dem Radius radius um den Punkt x,

Zeichnet eine Ellipse mit dem horziontalen Radius h_radius und dem ver-

tikalen Radius v_radius um den Punkt x,y.

Füllt einen Bereich ab dem Punkt x,y. Ist modus==1, gilt das so lange, bis

auf die Außenlinien getroffen wird. Ist modus==0, wird so lange gefüllt,

bis Punkte der mit SetOpen() gesetzten Farbe angetroffen werden.

Setzt den Grafik- Cursor auf den Punkt x,y.

Zeichnet ein gefülltes Rechteck in der aktuellen SetAPen()-Farbe.

Setzt die Zeichenfarbe. In der Normalauflösung sind die Register O bis 3
möglich.

Setzt die Hintergrundfarbe für Funktionen, die sie nutzen. In der

Normalauflösung sind die Register O bis 3 möglich.

Setzt das Muster, mit dem Linien gezeichnet werden, Beispiel: SefDrPt(rp,

OxAAAA)..

237

FERENZ

238

Gibt vom Text string anzahl Zeichen aus.

Setzt einen einzelnen Punkt an der Position x,y.

4.2.3 Die wichtigsten DOS-Funktionen

In den folgenden Funktionen ist fh immer das File-Handle, das die

Open()-Funktion zu einem File liefert. Am einfachsten deklarieren Sie fh
als eine Variable vom Typ ULONG. Außerdem ist name ein String oder

eine Stringvariable.

Schließt eine zuvor mit Open() geöffnete Datei. Schließen Sie nie eine
Datei, die Sie nicht selbst geöffnet haben.

Lösch die Datei name. Die Funktion gibt TRUE zurück, wenn die Aktion
Erfolg hatte, sonst FALSE. |

Liefert das Eingabe-File-Handle des CLI "Windows, in dem das Programm
gestartet wurde.

Liefert die Nummer des zuletzt aufgetretenen DOS-Fehlers.

Öffnet die Datei name und liefert ein File-Handle (fh) oder 0, wenn die
Datei nicht geöffnet werden konnte. Mit dem modus MODE_OLDFILE wird

eine existierende Datei geöffnet, mit MODE_NEWFILE eine neue angelegt.

REFERENZ

Liefert das Ausgabe-File-Handle des CLI-Windows, in dem das Programm
gestartet wurde.

Die Datei wird umbenannt. Die Funktion gibt TRUE zurück, wenn die

Aktion Erfolg hatte, sonst FALSE.

Stellt den File-Zeiger (die Position, ab der gelesen bzw. geschrieben wird,

auf position. Dabei wird in Abhängigkeit von mode so gezählt:

OFFSET_BEGINNING Ab Beginn

OFFSET_CURRENT Ab aktueller Position

OFFSET_END Ab Datei-Ende rückwärts gezählt

Die Funktion gibt die Position des File-Zeigers vor der Aktion zurück.

239

FERENZ

4.3 Die wichtigsten Amiga-Datenstrukturen

Auch hier gibt es nur eine kleine Auswahl und ansonsten den Hinweis auf

die Literaturtips im Anhang A3.

Die Datenstrukturen von Intuition

struct NewScreen

{

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

SHORT Depth;

UBYTE DetailPen, BlockPen;

USHORT ViewModes;

USHORT Type;

struct TextAttr *Font;

UBYTE *DefaultTitle;

struct Gadget *Gadgets;

struct BitMap *CustomBitMap;

be

struct Screen

{

struct Screen *NextScreen;

struct Window *FirstWindow;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

SHORT MouseY, MouseX;

USHORT Flags;

UBYTE *Title;

UBYTE *DefaultTitle;

struct TextAttr *Font;

struct ViewPort ViewPort;

struct RastPort RastPort;

struct BitMap BitMap;

struct Layer Info LayerInfo;

struct Gadget *FirstGadget;

UBYTE DetailPen, BlockPen;

USHORT SaveColor0;

struct Layer *BarLayer;

UBYTE *ExtData;

UBYTE *UserData;

240

REFERENZ

struct NewWindow

{

};

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

UBYTE DetailPen, BlockPen;

ULONG IDCMPFlags;

ULONG Flags;

struct Gadget *FirstGadget;

struct Image *CheckMark;

UBYTE *Title;

struct Screen *Screen;

struct BitMap *BitMap;

SHORT MinWidth, MinHeight;

USHORT MaxWidth, MaxHeight;

USHORT Type;

struct Window

{

struct Window *NextWindow;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

SHORT MouseY, MouseX;

SHORT MinWidth, MinHeight;

USHORT MaxWidth, MaxHeight;

ULONG Flags;

struct Menu *MenuStrip;

UBYTE *Title;

struct Requester *FirstRequest;

struct Requester *DMRequest;

SHORT ReqCount;

struct Screen *WScreen;

struct RastPort *RPort;

BYTE BorderLeft, BorderTop;

BYTE BorderRight, BorderBottom;

struct RastPort *BorderRPort;

struct Gadget *FirstGadget;

struct Window *Parent, *Descendant;

USHORT *Pointer;

BYTE PtrHeight;

BYTE PtrWidth;

BYTE XOffset, YOffset;

241

REFERENZ

ULONG IDCMPFlags;

struct MsgPort *UserPort, *WindowPort;

struct IntuiMessage *Messagekey;

UBYTE DetailPen, BlockPen;

struct Image *CheckMark;

UBYTE *ScreenTitle;

SHORT GZZMousex;

SHORT GZZMouseY;

SHORT GZZWidth;

SHORT GZZHeight;

UBYTE *ExtData;

BYTE *UserData;

struct Layer *WLayer;

struct TextFont *IFont;

}7

struct Menu

{

struct Menu *NextMenu;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

USHORT Flags;

BYTE *MenuName;

struct Menultem *FirstItem;

SHORT JazzX, JazzY, BeatX, BeatY;

}7

struct Menultem

{

struct Menultem *Nextlten;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

USHORT Flags;

LONG MutualExclude;

APTR ItemFill;

APTR SelectFill;

BYTE Command;

struct Menultem *Sublten;

USHORT NextSelect;

};

struct Gadget

242

REFERENZ

}7

struct Gadget *NextGadget;

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

USHORT Flags;

USHORT Activation;

USHORT GadgetType;

APTR GadgetRender;

APTR SelectRender;

struct IntuiText *GadgetText;

LONG MutualExclude;

APTR Speciallnfo;

USHORT Gadget ID;

APTR UserData;

struct Requester

{

};

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

SHORT RelLeft, RelTop;

struct Gadget *ReqGadget;

struct Border *ReqBorder;

Struct IntuiText *ReqText;

USHORT Flags;

UBYTE BackFill;

struct Layer *Reqlayer;

UBYTE ReqPad1[32];

struct BitMap *ImageBMap;

struct Window *RWindow;

UBYTE ReqPad2 [36];

struct BoollInfo

{

};

USHORT Flags;

UWORD *Mask;

ULONG Reserved;

struct PropInfo

{

243

REFERENZ

244

USHORT

USHORT

USHORT

USHORT

USHORT

USHORT

USHORT

USHORT

USHORT

3

struct Str

{

UBYTE

UBYTE

SHORT

SHORT

SHORT

SHORT

SHORT

SHORT

SHORT

struct

LONG L

struct

};

struct Int

{

UBYTE

UBYTE

SHORT

SHORT

struct

UBYTE

struct

};

struct Bor

{

SHORT

UBYTE

Flags;

HorizPot;

VertPot;

HorizBody;

VertBody; USHORT CWidth;

CHeight;

HPotRes, VPotRes;

LeftBorder;

TopBorder;

ingInfo

*Buffer;

*UndoBuffer;

BufferPos;

MaxChars;

DispPos;

UndoPos;

NumChars;

DispCount;

Cleft, CTop;

Layer *LayerPtr;

ongInt;

KeyMap *AltKeyMap;

uiText

FrontPen, BackPen;

DrawMode;

LeftEdge;

TopEdge;

TextAttr *ITextFont;

*I Text;

IntuiText *NextText;

der

LeftEdge, TopEdge;

FrontPen, BackPen;

REFERENZ

UBYTE DrawMode;

BYTE Count;

SHORT *XY;

struct Border *NextBorder;

};

struct Image

{

SHORT LeftEdge;

SHORT TopEdge; -

SHORT Width;

SHORT Height, Depth;

USHORT *ImageData;

UBYTE PlanePick, PlaneOnoff;

struct Image *NextImage;

}7

struct IntuiMessage

{

struct Message ExecMessage;

ULONG Class;

USHORT Code;

USHORT Qualifier;

APTR IAddress;

SHORT MouseX, MouseY;

ULONG Seconds, Micros;

struct Window *IDCMPWindow;

struct IntuiMessage *SpecialLink;

}7

struct Remember

{

struct Remember *NextRemember;

ULONG RememberSize;

UBYTE *Memory;

}e

struct Preferences

{

BYTE FontHeight;

UBYTE PrinterPort;

USHORT BaudRate;

245

REFERENZ

struct timeval KeyRptSpeed;

struct timeval KeyRptDelay;

struct timeval DoubleClick;

USHORT PointerMatrix[POINTERSIZE];

BYTE XOffset;

BYTE YOffset;

USHORT colorl/7;

USHORT color18;

USHORT colorl9;

USHORT PointerTicks;

USHORT color;

USHORT colorl;

USHORT color2;

USHORT color3;

BYTE ViewXOffset;

BYTE ViewYOffset;

WORD ViewlInitX, ViewlInitY;

BOOL EnableCLI;

USHORT PrinterType;

UBYTE PrinterFilename [FILENAME SIZE];

USHORT PrintPitch;

USHORT PrintQuality;

USHORT PrintSpacing;

UWORD PrintLeftMargin;

UWORD PrintRightMargin;

USHORT Printlmage;

USHORT PrintAspect;

USHORT PrintShade;

WORD PrintThreshold;

USHORT PaperSize;

UWORD PaperLength;

USHORT PaperType;

UBYTE SerRWBits;

UBYTE SerStopBuf;

UBYTE SerParShk;

UBYTE LaceWB;

UBYTE WorkName [FILENAME SIZE];

BYTE sys reservedl;

BYTE Sys reserved2;

UWORD PrintFlags;

UWORD PrintMaxWidth;

UWORD PrintMaxHeight;

246

REFERENZ

UBYTE PrintDensity;

UBYTE PrintXOffset;

UWORD . wb Width;

UWORD wb Height;

UBYTE wb Depth;

UBYTE ext _ size;

BYTE ext _bytes[PREF EXTBYTES];

};

4.4 Schnellinformation:
Einige Standard-Losungen in C

Die folgenden Programme und ihre Beschreibungen sollen Ihnen einen

kleinen Einblick in die vielfältigen Möglichkeiten der Sprache C vermitteln.

Merke: Es gibt nichts, was in C nicht lösbar ist, und kaum etwas, was

nicht schon gelöst wurde.

Sortieren und Zufallszahlen

Ein Standardproblem in der Datenverarbeitung ist das Sortieren von

Arrays, wobei diese nicht nur Zahlen, sondern auch Texte enthalten kön-

nen. Hierfür stellt C mit der qsort{)-Funktion einen der besten Algorithmen,

nämlich den Quick-Sort, zur Verfügung. Die Funktion setzt voraus, daf3

Sie eine sogenannte Vergleichsfunktion zur Verfügung stellen. Daf3 diese
recht einfachen Funktionen nicht »eingebaut« sind, ist ein Vorteil. Damit

werden nämlich die Sortierroutinen unabhängig vom Datentyp. Bei der

Gelegenheit - mit irgend etwas müssen wir den Array ja füllen - bauen

wir noch ein praktisches Makro für Zufallszahlen.

Das Programm laut Listing 4.4.1 soll

¢ einen Array mit 1000 Zufallszahlen füllen,

e jede zehnte davon ausgeben,

e den Array sortieren

e und ihn wieder ausgeben.

247

FERENZ

248

/* SORT.C

Demo zu Sortieren, Suchen und Zufallszahlen

* /

#include <stdlib.h>

#include <string.h>

tinclude <stdio.h>

#include <time.h>

#define ANZAHL 1000

int array [ANZAHL];

/*

Makro zur Erzeugung einer Zufallszahl

im Bereich min...max

#define zufallszahl(min, max) ((rand()

(int) (((max) + 1) - (min))) + (min)

/* Prototypen

void PrintArray (void);

int cmp ();

void main()

{

int i;

/* Setze Startwert des Zufallsgenerators

auf die Systemzeit

srand((unsigned) time(NULL));

/* Fülle Array mit Zufallszahlen

Listing 4.4.1: (Fortsetzung folgende Seiten)

REFERENZ

for(i = 0; i < ANZAHL; itt)

arrayli] = zufallszahl(1, 999);

/* Weil der Array so groß ist, zeige nur

jedes zehnte Element

PrintArray();

/* Sortieren nach dem Quicksort-Algorithmus

eee ee x /

printf("\nIch Sortiere...\n");

gqsort (

(void *)array , /* Ab wo sortieren * /

ANZAHL, /* Anzahl Elemente * /

sizeof(int), /* Bytes pro Element */

cmp); /* Vergleichsfunktion */

PrintArray();

puts ("") ;

/* Zeige jedes zehnte Element des sortierten Arrays

=--22227277217217721727721722121221122222222222222_202. ee x /

void PrintArray (void)

{

int i, j;

printf("\nJedes zehnte Element des Arrays:\n");

for(i = 9, j=l; 1 < ANZAHL; 1 += 10, j++)

{ |

printf("34d", arrayli]);

if(!(j3 < 18))

printf("\n");

}

/* Für qsort () muß eine Funktion bereitgestellt

Listing 4.4.1: (Fortsetzung folgende Seite)

249

FERENZ

250

werden, die bei Gleichheit 0 zurück gibt,

bei eleml > elem2 1 und umgekehrt -1.

int cmp(int *eleml, int *elem2)

{ |
if(*eleml > *elem2)

return 1;

else if (*eleml < *elem2)

return -];

else

return 0;

Listing 4.4.1: Suchen und Sortieren in C. So ein Zufall?

Das Makro Zufallszahl liefert eine Zufallszahl im Bereich von min bis max.
Der Trick dabei: Die Funktion rand{) liefert eine Zufallszahl im Bereich von

null bis MAX_RAND, einer Konstanten, die meistens als 32767 definiert
ist. Um diese Zahl auf max zu begrenzen, nimmt man den Modulo-Ope-

rator. Zum Beispiel ist 32767 % 99 == 97 oder 32767 % 33 == 31. Sie

sehen also, wir sind schon dicht dran, der Rest der Riesenformel sorgt für

die Korrektur bzw. den richtigen min-Wert.

Makros müssen entweder in einer Zeile stehen oder mit dem Zeilenfort-

setzungszeichen (\) umbrochen werden. Wird der Makro-Ausdruck um-

brochen (oder enthält er Leerstellen), muß er in Klammern gesetzt werden.

Schaden können die Klammern nie. Werden Argumente weiterentwickelt,

muß man sie in Klammern setzen, auch hier können Klammern nie

schaden.

Die Zufallsreihe selbst ist bei jedem Lauf dieselbe, es sei denn, man ändert

mit srand() die »seed« (den Startwert). Damit der Startwert selbst wenig-

stens einigermaßen zufällig ist, setzt man hierfür üblicherweise die

Systemzeit ein.

Den nun folgenden Funktionsaufruf für das Sortieren können Sie anhand

der Kommentare sicherlich nachvollziehen. Das Beispiel ist auch deshalb

so einfach, weil hier nur int-Zahlen zu bearbeiten sind. Wenn Sie einen

anderen Typ bearbeiten wollen, ist das auch kein Problem. Im Falle von

z.B. double müssen Sie nur beim Aufruf sizeof[double) schreiben, und in

der Vergleichsfunktion auch double als Typ einsetzen. Manche Compiler

bieten auch schon verschiedene gsort-Funktionen für die Standardtypen.

REFERENZ

Etwas komplizierter wird die Sache bei Strings, wie Listing 4.4.2 zeigt.

/* TSORT.C

Demo zum Sortieren von Texten

x /

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#define ANZAHL 5

char *array[ANZAHL] = { "Meiers Franz",

"Meiers Emil",

"Fritze",

"Anton",

"Charly Brown"

};

void PrintArray (void);

int cmp(), cmps();

void main ()

{

puts ("Unsortiert:");

PrintArray();

/* Sortieren nach dem Quicksort-Algorithmus */

qsort((void *)array, - /* Ab wo sortieren */

ANZAHL, | /* Anzahl Elemente x /

sizeof(char *), /* Bytes pro Element */

cmps); /* Vergleichsfunktion */

puts ("\nSortiert:");

PrintArray();

void PrintArray (void)

Listing 4.4.2: (Fortsetzung folgende Seite)

251

REFERENZ

252

int i;

for(i=0; i < ANZAHL; i++)

printf("%s\n", arrayli]);

} | -

int cmp(char **eleml,char **elem2)

{

if(**eleml > **elem2)

return 1; |

else if(**eleml < **elem2)

return -1;

else

return 0;

}

int cmps(char **eleml,char **elem2)

{

return strcmp(*eleml, *elem2);

}

Listing 4.4.2: So sortiert man Strings

Hier ist array ein Array von Strings, also auch ein array von Arrays des

Typs char. Beachten Sie den kleinen Trick in der Deklaration. Man kann

nämlich nicht char array[ANZAHL][] schreiben, sondern müßte dann zum

Beispiel array[ANZAHL][20] tippen, was einen zwingt, die größte

Stringlänge abzuzählen. Mit *arrayf[ANZAHL] hingegen kann man den

Compiler überlisten. Der Zweck des Listings ist jedoch ein anderer. Die

Vergleichsfunktion will Zeiger auf die Elemente sehen. Die String-Arrays
sind aber schon Zeiger, also brauchen wir Zeiger auf Zeiger. Praktisch

heif3t das »noch ein Stern«, womit klar ist, warum es z.B. **elemI heißt.

ES’ Und noch ein Hinweis: Hier heißt die Vergleichsfunktion cmps(). Diese
Methode ist möglich, weil strcemp() genau die Werte -1, O bzw. 1 liefert, die

von qsori{) gefordert werden. Sie können aber genausogut cmp/() einsetzen.

REFERENZ

4.4.2 Das Mehrfachproblem und Lottozahlen

Sobald man einen Array sortiert hat, erkennt man sehr schön, ob einige

Einträge mehrfach vorhanden sind, sie stehen dann ja nebeneinander. Wie

man das programmtechnisch feststellt, zeigt Listing 4.4.3 auszugsweise.

#define ANZAHL 6

int flag;

do

{

flag=0;

srand ((unsigned) time(NULL));
for(i = 0; i < ANZAHL; i++)

array[i] = zufallszahl(1, 49);

qsort((void *)array, ANZAHL,

sizeof(int), cmp);

for (i=0; i < ANZAHL-1; i++)

if (array[i] == arraylitl])

flag = 1;

if (flag) printf(".");

}while (flag);

puts ("");

for(i=0; i<ANZAHL; itt)

printf("S5d", arrayli]);

puts (""); a

Listing 4.4.3: Das Programm für die Lottozahlen (Auszug)

Die Zahlen selbst werden wie in Listing 4.4.1 erzeugt, nur daß hier

ANZAHL auf 6 und der Zufallsbereich auf 1 bis 49 gesetzt wurden. Der

Array wird sortiert, und nun haben wir das Problem. Von den sechs Zah-

len können (müssen nicht) mehrere gleich sein. Unser Ansatz lautet: Wenn

das der Fall ist, erzeuge sechs neue Zahlen, und das so lange, bis es

sechs verschiedene sind. Reduziert man das Listing auf den Kern, sieht

das so aus:

253

REFERENZ

do

{

flag=0;

/* lade Array */

for(i=0; i < ANZAHL-1; i++)

if (array[i] == array[itl])

flag = 1;

}while(flag);

Mit »if (array[i] == array[i+1]« wird verglichen, ob das aktuelle Element

und sein Nachfolger gleich sind. Wenn das der Fall ist, wird flag = 1
gesetzt, womit auch die do-Schleife wieder gestartet wird. Der Rest dient

der Dekoration. So wird zum Beispiel für jeden Durchlauf ein Punkt aus-

gegeben, damit der Anwender sieht, daf} sich etwas tut (100 Fehlver-

suche sind durchaus drin). Wichtiger ist folgendes: Die Schleife darf nur
bis zum vorletzten Element laufen, hier ANZAHL-1, weil das letzte Ele-

ment natürlich keinen Nachfolger hat.

4.4.3 File-1/0 in Standard-C

In der zehnten Sitzung hatten wir uns mit Amiga-DOS befaßt und dabei

_ festgestellt, daf3 damit geschriebene Programme nicht portabel sind, also
nicht zum Beispiel auf einem PC laufen. Abhilfe bringt die Lösung in

Standard-C. Hier unterscheidet man zwischen Textfiles und Binär-Files

(allen anderen). Der Hauptunterschied liegt darin, daß in Textfiles die Zei-

chen mit den Codes 10 und 13 als LF (Zeilenvorschub) bzw. als CR

(Return) interpretiert werden, und - jetzt kommt's — wie ein CR in ein CR +

LF umgewandelt wird. Beginnen wir mit dem Textmodus laut Listing 4.4.4. |

#include <stdio.h>

main ()

{

FILE *fp;

char string[] = "Ein Beispiel-Text";

/* Öffne File * /

if((fp = fopen("testfile","w")) != NULL)

{

fputs(string, fp); /* Schreibe String */

fclose(fp); /* Schließe File * /

REFERENZ

}

else

printf("Fehler beim Schreiben\n");

/* Öffne File * /

if((fp = fopen("testfile","r")) != NULL)

{

fgets (string, 80, fp); /* Lese String */

puts(string);

fclose(fp); /* SchlieRe File * /

}

else

printf("Fehler beim Lesen\n");

Listing 4.4.4: Text-I/O in Standard-C: Das Prinzip

Ein File wird mit fopen(DateiName, Modus) geöffnet. Die Funktion gibt

einen File-Zeiger zurück, alle weiteren Zugriffe laufen darüber. Ist der

Return-Wert NULL, konnte das File nicht geöffnet werden. Der Filepointer

wurde hier mit FILE *fo deklariert. Auch gilt die Folge

e Öffnen der Datei mit fopen(),

e Schreiben oder Lesen

e und Schließen der Datei mit fclose(),

allerdings mit einem wichtigen Unterschied. Ein File kann mit "w" zum

Schreiben oder mit "r" zum Lesen geöffnet werden. In der Open()-Funk-

tion des Amiga-DOS gibt es diese Unterscheidung nicht. Ein paar Fragen

bleiben noch, aber die kann Listing 4.4.5 besser erklären.

/ *

ZCOPY.C

Liest ein Textfile (argv[l]),

setzt vor jede Zeile eine lfd. Nr.

und schreibt nach argv[2].

#include <stdio.h>

Listing 4.4.5.: (Fortsetzung folgende Seiten)

255

REFERENZ

#include <string.h>

#define STRLEN 128

char string[STRLEN];

FILE *infile, *outfile;

char InName[80], OutName [80];

void Meldung (int nr);

void main(int argc, char *argv[])

{

int zeile = 1;

strcepy(InName, argv[l]);

strcpy (OutName, argv[2]);

_

/* Teste auf richtige Argumente

if (argc != 3)

Meldung (1);

if (strcemp (InName, OutName) ==)

Meldung (2);

/* Öffne die Files und teste dabei auf Fehler

=2--22272721717[7"77727727272772222222222222_______ */

if((infile = fopen(argv[1], "r")) == NULL)

Meldung (3);

if((outfile = fopen(argv[2], "w")) == NULL)

Meldung (4); j

/* Lese und schreibe

ee ee ee x /

while(1)

{

if(fgets(string, STRLEN - 1, infile) == NULL)

if(feof(infile))

Meldung (0);

else

Meldung (5);

print€ ("S4d: 6s", zeile, string);

Listing 4.4.5.: (Fortsetzung folgende Seite)

256

REFERENZ

fprintf (outfile, "%4d: Ss", zeilet+, string);

}

void Meldung(int nr)

{

switch(nr)

{

case 0:

printf("\n'%s' mit Zeilennumern auf '%s'

kopiert\n", InName, OutName) ;

break; |

case 1:

puts ("\nSyntax: zcopy <Qellfile> <Zielfile>");

break;

case 2:

puts ("\nNamen müssen verschieden sein");

break;

case 3: |

printf("\nKonnte Datei '%Ss' nicht öffnen\n",

InName);

break;

case 4: |

printf("\nKonnte Datei '%s' nicht öffnen\n",

OutName);

break;

case 5:

printf("\nFehler beim Lesen von '%s'\n",
InName);

break;

fclose (infile);

fclose (outfile);

exit (nr);

Listing 4.4.5: ZCOPY versieht die Zieldatei mit Zeilennummern

Das Programm liest eine Textdatei, versieht jede Zeile mit einer laufenden
Nummer und schreibt sie in eine andere Datei.

257

FERENZ

258

4.4.4 Die Kommandozeile, argc und *argv[]

Das Neue ist zuerst, dal} die beiden Dateinamen nicht im Programm ste-

hen, sondern beim Aufruf übergeben werden. Wenn das Programm

zcopy heißt, und Sie die Datei win.c (mit Zeilennummern) auf win.zn

kopieren wollen, tippen Sie ein

zcopy win.c win.zn

Das Ganze nennt man die Kommandozeile, wobei zcopy das Kommando

ist, dem die Argumente win.c und win.zn folgen. Die Auswertung ist

möglich, wenn man anstatt main() jetzt

main(int argc, char *argv[])

schreibt. Das sind vordefinierte Variablen. argc (argument count) gibt die

Anzahl der Argumente an, *argv[] (oder **argv) ist ein Array von Strings.

In argv[0] steht der Programmname, in argv[1] das erste Argument, in

argv[2] das zweite, usw. Weil der Programmname immer mitzählt, muf

argc im Falle von Argumenten gleich 3 sein. Deshalb kann ich hier mit if

(argc != 3) ganz einfach den ersten Fehler feststellen und das »Usage«

ausgeben.

Zurück zu Listing 4.4.5: Die Funktion Meldung hat die Aufgabe, einige

von den vielen Fehlermöglichkeiten auszugeben. Hier ist die Sache noch

einfach. Zum Beispiel müssen Sie im Fall von if (argc != 3) Meldung(1);

nur im case | der Funktion Meldung() nachsehen, und wissen, daß3 hier-

mit die falsche Syntax moniert wird. In großen Programmen - oder wenn

Meldung() in einem H-File steckt - ist es sinnvoller, Konstanten zu definie-

ren. Gibt es z.B ein #define SYNTAX 1, sagt Meldung(/SYNTAX) sofort,

was gemeint ist. Für die DOS-Fehler gibt es übrigens schon Konstanten in

den H-Files.

In der Hauptschleife fällt Ihnen bestimmt etwas auf. Statt printf[) schreibe

ich hier forintf{) (file-print), vorher hatten wir schon gets() und puts() mit

dem »f« versehen. Besonders einfach ist die Sache bei fprintf{), wo außer

dem zusätzlichen Argument für den File-Zeiger präzise die Regeln von
printf{) gelten. Tatsächlich ist der Bildschirm, bzw. das CLI-Window, im

Sinne von C auch nur ein File mit einem Filepointer namens stdout.

printf{"xxx") ist nichts weiter als eine Kurzform von fprintf(stdout, "xxx"),

ruft also nur diese Funktion auf.

-

REFERENZ

4.4.5 Binir-File-1/0

Daraus können Sie zuerst folgern, dal} forintf{stdout,... schneller ist, aber

das ist nicht alles. Wenn Sie Zahlen mit fprint{] speichern, werden sie als

Text aufgezeichnet. Die int-Zahl 12345 ist in der Textform eine Folge von

ASCll-Zeichen, die auf der Disk auch 5 Byte belegt. Rechnerintern werden

solche Zahlen binär als 2 Byte abgelegt. Große Preisfrage: Wie bekomme

ich solche Zahlen im Binärformat auf die Disk und spare damit speziell

bei Arrays großße Mengen Platz? Die Antwort zeigt Listing 4.4.6.

/*BIN.C */

#include <stdio.h>

main ()

{

FILE *fp;

int ar[10], i;

for(i= 0; i< 10; i++)

ar[i] = i; /* Fülle Array */

if((fp = fopen("binfile", "wb")) != NULL)

{

fwrite(ar, sizeof(ar), 1, fp);

fclose(fp);

}

else

perror("Write error");

if((fp = fopen("binfile", "rb")) != NULL)
|

fread(ar, sizeof(ar), 1, fp);

fclose (=;)?

for(1 = 0; i < 10; i++)

printf("Sd\n", arli]);

}

else

perror("Read error");

Listing 4.4.6: So spart man viel Platz auf der Disk

259

FERENZ

260

In der fopen()-Funktion ändert sich nur der Modus in rb bzw. wb, wobei

das »b« für binär steht. Neu sind die Funktionen fread() und fwrite().
Hierin bedeuten:

ar Zeiger auf Puffer
sizeoflar) Größe eines Blocks

Anzahl der Blöcke

fp Filepointer

Hier wird der Array ar mit einem einzigen write() auf die Disk geschrie-

ben. Beachten Sie den Unterschied zwischen Puffer- und Blockgröße. In

diesem Beispiel ist die Blockgröße gleich der Puffergröße. Vorstellbar ist
aber auch ein Array von 50 Zeilen, wo man die Blockgröße auf die Zei-
lengröße setzt und die Blockzahl auf 50. Man hat auf diese Art viele Frei-

heitsgrade, zum Beispiel diesen:

for (i=0; i<10; i++)

fread(sar[10-i], sizeof(int), 1, fp);

Als Pufferadresse wird immer ein Array-Element angegeben, die Block-

größe reicht für eine int-Zahl. Und was passiert? Nun, auf der Disk stehen

die Binärwerte der Zahlen O0, 1, 2, 3, usw. und die werden nach ar[?],

ar[8], ar[7], usw. gelesen. Endergebnis: Die Zahlen stehen in der umge-

kehrten Folge im Array.

4.4.6 Dynamische Puffer

Nachdem wir nun wissen, wie man sortiert und wie man Textdateien von

der Diskette liest, können wir uns der praxisgerechten Lösung zuwenden.
Im Gegensatz zum Listing 4.4.2 stehen nämlich die Texte nicht im Pro-

gramm, sondern auf der Disk. Um sie sortieren zu können, muf3 man sie

einlesen (logisch), aber auch den ganzen Text im Speicher halten.

/* TSORT_2.C

Demo 2 zum Sortieren von Texten

*/

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#define ANZAHL 1000

REFERENZ

#define ZLEN 128

char *zeile[ANZAHL];

void main(int argc, char **argv)

{

FILE *fp;

int i, znr, cmps();

char buf[ZLEN];

if (argc != 2) exit (1);

if((fp = fopen (argv[1], "r")) == NULL)

exit (1);

for(znr = 0; znr < ANZAHL; ++znr)

{

if (£gets (buf, ZLEN, fp) == NULL)

break;

zeile[znr] = (char *) malloc(strlen (buf)+1);

strcpy (zeile[znr], buf);

}

fclose (£fp); 3

/* Sortieren nach dem Quicksort-Algorithmus

* /

aqsort((void *) zeile, /* Ab wo sortieren

(size t)znr, | /* Anzahl Elemente

sizeof(char *), /* Anzahl Elemente

cmps); /* Vergleichsfunktion

for (i=0; i<znr; ++i)

printf("%s", zeile[i]);

}

int cmps(char **eleml,char **elem2)

{

return strcmp(*eleml, *elem2);

Listing 4.4.7 Sortieren einer Textdatei

*/

* /

* /

* /

261

FERENZ

262

Doch wie grof} muß der dafür zu reservierende Speicherbereich sein?

Wir wollen maximal 1000 Zeilen einlesen, jede Zeile darf bis zu 128 Zei-

chen lang sein. Dafür einen Array a[1000][128] zu deklarieren, ist nicht

das Ideale. Das sind nämlich 128 Kbyte, und die meisten Texte sind klei-

ner als 10 Kbyte. Und überhaupt gilt die Regel, daß ein Task nicht mehr

Speicher anfordern sollte, als er unbedingt braucht.

Nun, wir gehen einen Kompromil3 ein und belegen 4 Kbyte. Das sind
1000 Zeiger auf Strings. Die Strings gibt es noch nicht. Erst wenn eine

Zeile gelesen wurde, wird mit malloc() ein Speicherbereich allokiert, in

den genau diese Zeile paf3t. Dann wird ein String-Zeiger mit der Adresse

dieses Speicherbereiches geladen. Damit ist schon klar, warum die

Schleife for(znr = 0; zur < ANZAHL; ++znr) bis 1000 läuft, genauer: so.

weit laufen könnte. Tatsächlich wird nach dem Lesen von null Zeichen

(Datei-Ende) die Schleife mit break verlassen. Wenn nicht, wirkt diese
Zeile:

zeilelznr] = (char *) malloc(strlen (buf)+1);

Der aktuelle String steht in buf, für seine Länge +1 (des Null-Bytes wegen)

wird Speicher allokiert. malloc() gibt einen Zeiger auf diesen Bereich

zurück, der Zeiger kann also auch gleich zeile[znr] zugewiesen werden,

denn das ist ein Element des Arrays von char-Zeigern. Und was ist ein

String-Array® Antwort: Ein Array von char-Zeigern. Damit hätten wir

unseren Array, den wir sortieren können. Der letzte Stand von znr ist

auch die Anzahl der Elemente.

Bliebe noch eine Frage. Muß ich denn mit char *zeile[ANZAHL]; gleich so

viele Zeiger vorhalten, wenn ich meistens weniger Zeilen lese, kann ich

nicht auch die Zeiger mit malloc() beschaffen? Die Antwort ist ein ganz

klares Jein. In diesem Beispiel muf3 der Zeigerarray statisch sein, nur das

garantiert, daf der Array auch fortlaufend im Speicher steht. malloc()

hingegen sucht sich den Speicher irgendwo, wo gerade Platz ist. Wollen

Sie die andere Lösung, müssen Sie sogenannte Listen anwenden. Eine

Liste besteht in diesem Fall aus lauter Strukturen. Jede davon hat zwei

Zeiger, einen auf den Nachfolger und einen auf den String einer Zeile.

Für die Struct's, hier auch Listenknoten genannt, kann man natürlich den

Speicher auch mit malloc() anfordern.

void open libs (void)
|

IntuitionBase = (struct IntuitionBase *)

OpenLibrary ("intuition.library",OL);

if (IntuitionBase == NULL) Exit (FALSE);

GfxBase = (struct GfxBase *)
OpenLibrary ("graphics.library",OL);

if (GfxBase == NULL)

{

CloseLibrary (IntuitionBase) ; /* Intu-Lib zu */

Exit (FALSE); — /* Ausgang * /

}

struct window *open window (short x, short y,

short w, short h,

char *name,

ULONG flags,

ULONG i flags,

struct Gadget *gadget)

263

ANHANG

264

struct NewWindow nw;

nw.LeftEdge = x;

nw.TopEdge = y;

nw.Width = W;

nw.Height = h;

nw.DetailPen = -1;

nw.BlockPen = -l; |

nw.Title = (UBYTE *) name;

nw.Flags = flags;

nw.IDCMPFlags = 1 flags;

nw.Screen = NULL;

nw.Type = WBENCHSCREEN;

nw.FirstGadget = gadget;

nw.CheckMark = NULL;

nw.BitMap = 0;

nw.MinWidth = -1;

nw.MinHeight = -1;

nw.MaxWidth = -1;

nw.MaxHeight = -];

return((struct window *) OpenWindow (&nw));

void close all(void)

{

CloseWindow (Window) ;

CloseLibrary (GfxBase);

CloseLibrary (IntuitionBase) ;

exit (TRUE) ;

Das Include-File »stdwindow.h«

/* Include-File "gadget.h"

APTR iadr; /* Gadget-Adresse */

int id; /* Gadget-ID * /

ANHANG

struct Gadget gadget [14];

struct IntuiText gtext [14];

/* Für String-Gadget */

struct StringInfo info;

char dobuffer[80], undobuffer[80];

/* flr Prop-Gadget */

struct Image img[3];

struct PropInfo prop[3];

#define STEP (OxFFFF/0x10) /* Farbe in 16 Schritten */

/* Text in eine IntuiText-struct eintragen

void make gtext (struct IntuiText *name, char *text,

SHORT left, SHORT top)

name->FrontPen = 1;

name->BackPen = 0;

name->DrawMode JAM1 ;

name->LeftEdge = left;

name->TopEdge = top;

name->ITextFont = 0; .

name->IText = (UBYTE *) text;

name->NextText = NULL;

/* Eine Gadget-Struktur füllen

void make gadget (char *gtext, struct IntuiText *gname,

| SHORT tleft, SHORT ttop,

struct Gadget *gadget,

struct Gadget *next,

SHORT left, SHORT top,

SHORT width, SHORT height,

USHORT flags, USHORT activation,

USHORT type, APTR *render,

APTR *info, USHORT id)

265

ANHANG

gadget->NextGadget = next;

gadget->LeftEdge = left;

gadget->TopEdge = top;

gadget->Width = width;

gadget->Height = height;

gadget->Flags = flags;

gadget->Activation = activation;

gadget->GadgetType = type;

gadget->GadgetRender = (APTR) render;

gadget->SelectRender = NULL;

make gtext (gname, gtext, tleft, ttop);

gadget->GadgetText = gname;

gadget->MutualExclude = NULL;

gadget->Speciallnfo (APTR)info;

gadget->GadgetID = id;

gadget->UserData NULL;

/* Wird bei GADGETDOWN-Event aufgerufen,

ermitttelt ID, behandelt den Fall:

void do gadget ()

{

id = (((struct Gadget *) iadr) ->GadgetID);

switch (id)

{

case 1: /* Falls String-Gadget auch mit Return */

break; /*verlassen werden soll, hier einhaken.*/

case 2: /* "Nein im Schließen-Requester */

break;

case 3: do _close(); /* "Ja" im Schließen-Requ.*/

break;

case 4: /* Die Farbregler */

266

ANHANG

case 5:

case 6: SetRGB4(&Screen->ViewPort,0O,

| prop[0].HorizPot/STEP,

prop[1].HorizPot/STEP,

prop[2].HorizPot/STEP) ;

break;

case 7: /* Farben über DM-Requester */

case 8:

case 9:

case 10: do farben((USHORT) (id - 7));

break;

case 11: /* Reset-Gadget */

Set RGB4 (&Screen->ViewPort,0,0,0,10);

prop[0].HorizPot = 0;

prop[1].HorizPot 0;

prop[2].HorizPot = 10*STEP;

RefreshGadgets (&gadget [3], Window,

&request[3]);

|

break;

case 12: /* OK-Gadget */

break;

case 13: /* "Abbruch" im Datei-Requ. */

break;

case 14: do datei(); /* "OK" im Datei-Requ. */

break; |

Das Include-File »gadget.h«

/* Include-File "requester.h"

/* Sie können das \ weglassen, wenn Sie das folgende

Makro in eine Zeile schreiben

* /

#define GFLAGS (GADGIMMEDIATE | ENDGADGET | \

RELVERIFY)

267

ANHANG

268

/* für die Rahmen der Gadgets

SHORT cordsl1[] = {0,0, 282,0, 282,12, 0,12, 0,0};

struct Border borderl = {-2,-2,1,0,JAMl,5,

&cords1[0],NULL};

SHORT cords2[] = {0,0, 81,0, 81,21, 0,21, 0,0};

struct Border border2 = {-1,-1,1,0,JAMl,5,

&cords2[0],NULL};

SHORT cords3[] = {0,0, 69,0, 69,13, 0,13, 0,0};

struct Border border3 = {-1,-1,1,0,JAMl,5,

&cords3[0],NULL};

struct IntuiText rtext; /* Text Schließen-Requ.

/* Eine Requester-Struktur füllen

void MakeReq(int i, SHORT left, SHORT top,

SHORT width, SHORT height,

struct Gadget *gadget,

struct IntuiText *text,

USHORT flags, UBYTE fill)

{

request[i].LeftEdge = left;

request [i] .TopEdge = top;

request [i] .Width = width;

request [i] .Height = height;

request [i] .ReqGadget = gadget;

request [i] .ReqBorder = NULL;

request [i] .ReqText = text;

request [i] ..Flags = flags;

request [i].BackFill = fill;

]request [i

}

.ImageBMap = NULL;

/* Die Requester anlegen

*/

void MakeTheRequester (void)

“/

ANHANG

/* Das String-Gadget für den File-Namen

22222222227122222277-217"12121_____--- x /

strcpy (dobuffer,"bild 0.img");

info.Buffer = (UBYTE *) dobuffer;

info.UndoBuffer = (UBYTE *) undobuffer;

info.MaxChars = 64;

info.BufferPos = 0;

info.DispPos = 0;

make gadget ("Geben Sie den Dateinamen ein:",

>ext[0],0,-15,

&gadget [0], &gadget[12], 10,24,280,11,

GADGHCOMP, STRINGCENTER | GADGIMMEDIATE,

STRGADGET | REQGADGET,

(APTR *) &borderl, (APTR *) &info, 1);

make gadget ("Abbruch", é>ext[12],14,7,

&gadget [12], &gadget [13],30,50,80,20,

GADGHCOMP, GFLAGS,

. BOOLGADGET | REOGADGET,

(APTR *) &border2, NULL, 13);

make gadget ("OK", >ext[13], 25,7,

&gadget [13],NULL,190,50,80,20,

GADGHCOMP, GFLAGS,

BOOLGADGET | REQGADGET,

(APTR *) &border2, NULL, 14);

MakeReq(0, 50,50, 300,85, &gadget[0], NULL, NULL, 3);

/* Der Requester für "Schließen"

make gtext (&rtext, "Wollen Sie wirklich schließen?",

50, 7);

make gadget ("Nein", >ext[1],24,7,

&gadget [1], &gadget [2],50,40, 80,20,

269

ANHANG

GADGHCOMP, GFLAGS,

BOOLGADGET | REQGADGET,

(APTR *) &border2, NULL, 2);

make gadget ("OK", >ext[2], 25,7,

&gadget [2] ,NULL, 190,40, 80,20,

GADGHCOMP, GFLAGS,

BOOLGADGET | REQGADGET,

(APTR *) &border2, NULL, 3);

MakeReq (1, 30,20, 350,70, &gadget [1], &rtext,

NULL, 3);

/* Der Requester für die Farbregler

make gadget ("Rot", é>ext[3],-38,7,

&gadget [3], &gadget[4],50,10,200,20,

GADGHCOMP, GADGIMMEDIATE | RELVERIFY,

PROPGADGET | REQGADGET,

(APTR *) &img[0], (APTR *) &prop[0], 4);

prop[0].Flags = AUTOKNOB | FREEHORIZ;

prop[0].HorizBody = STEP;

prop[0].HorizPot = 0;

make gadget ("Grün",sgtext [4], -38,7,

&gadget [4], &gadget[5],50,35,200,20,

GADGHCOMP, GADGIMMEDIATE | RELVERIFY,

PROPGADGET | REQGADGET,

(APTR *) &img[1], (APTR *) &prop[1], 5);

prop[1].Flags = AUTOKNOB | FREEHORIZ;

prop[1].HorizBody = STEP;

prop[1].HorizPot = 0;

make gadget ("Blau", &égtext [5],-38,7,

&gadget [5], &gadget[10], 50,60,200,20,

GADGHCOMP, GADGIMMEDIATE | RELVERIFY,

PROPGADGET .| REQGADGET,

(APTR *) &img[2], (APTR *) &prop[2], 6);

prop[2].Flags = AUTOKNOB | FREEHORIZ;

270

ANHANG

prop[2].HorizBody = STEP;

prop[2].HorizPot = 10*STEP;

make gadget ("Reset", >ext{10],20,7,

&gadget [10], &gadget [11],50,90,80,20,

GADGHCOMP, GADGIMMEDIATE | RELVERIFY,

BOOLGADGET | REOGADGET,

(APTR *) &border2, NULL, 11);

make gadget ("OK", >ext [11], 25,7,

&gadget [11] ,NULL,170,90,80,20,

GADGHCOMP, GFLAGS,

BOOLGADGET | REOGADGET,

(APTR *) &border2, NULL, 12);

MakeReq (2, 100,30, 300, 120, &gadget [3], NULL,

NULL, 2);

/* Der DM-Requester für "Farben"

make gadget ("schwarz", >ext[6]l, 3, 1,

&gadget [6], &gadget[7],5,3,68,12,

GADGHCOMP, GFLAGS,

BOOLGADGET | REQGADGET,

(APTR *) &border3, NULL, 7);

make gadget ("weiß", >ext[7], 3, 1,

&gadget[7],&gadget [8], 5,18,68,12,

GADGHCOMP, GFLAGS,

BOOLGADGET | REOGADGET,

(APTR *) &border3, NULL, 8);

make gadget ("rot", >ext[8], 3, 1,

&gadget [8], &gadget [9] ,5,35,68,12,

GADGHCOMP, GFLAGS,

BOOLGADGET | REQGADGET,

(APTR *) &border3, NULL, 9);

make gadget ("blau", >ext[9], 3, 1,

271

ANHANG

&gadget [9], NULL,5,53,66,12,

GADGHCOMP, GFLAGS,

BOOLGADGET | REOGADGET,

(APTR *) &border3, NULL, 10);

MakeReq(3, 0,0,

POINTREL |

87,15,

NOISYREQ, 2

&gadget [6],

);

NULL,

Das Include-File »requester.h«

272

/* Include-File "menu.h"

--_2_2___________ */

struct Menu menu[4];

struct Menultem item[19];

struct IntuiText itext[19];

#define PROJEKT 0

#define FARBEN 1

#define FIGUREN 2

#define SPEZIAL 3

#define NEU 0

#define LADEN 1

#define SICHERN 2

#define ENDE 3

#define WIRKLICH 0

#define NEIN 1

#define SCHWARZ 0

#define WEISS 1

#define ROT 2

#define BLAU 3

ANHANG

#define RECHTECK

#define FRECHTECK

#define ELLIPSE

#define FELLIPSE ww Hr ©
#define FUELLE 0

#define MALE

#define REGLER 2

k

/* Text in eine IntuiText-struct eintragen

~ eee ee x /

void make text (struct IntuiText *name, char *text,

SHORT left, SHORT top)

{

name->FrontPen = 0;

name->BackPen = 1;

name->DrawMode = JAMIl;

name->LeftEdge = left;

name->TopEdge = top;

name->ITextFont = 0;

name->IText = (UBYTE *) text;

name->NextText = NULL;

/* Daten in ein Menu-Item-struct eintragen

void make item(char *itemtext,

struct IntuiText *name,

struct Menultem *item,

struct Menultem *next,

USHORT left,USHORT top,

USHORT width, USHORT height,

ULONG flags)

item->NextItem = next;

item->LeftEdge = left;

item->TopEdge = top;

item->Width = width;

item->Height = height;

item->Flags = flags | ITEMTEXT | HIGHCOMP;

273

ANHANG

274

item->MutualExclude NULL;

make text (name, itemtext, 0, 0);

item->ItemFill = (APTR)name;

item->SelectFill

item->Command

item->Subltem =

= NULL;

NULL;

NULL;

/* Daten in einen Menu-Titel-struct eintragen

---------- 2222200000008 /

void make menu (struct Menu *name, char *titel,

struct Menu *next,

struct Menultem *first,

USHORT left)

name->NextMenu = next;

name->LeftEdge = left;

name->TopEdge = Q;

name->Width = strlen (titel) *8+10;

name->Height = 10;

name->Flags = MENUENABLED;

name->MenuName = (BYTE *) titel;

name->FirstItem = first;

/* Alle Menus anlegen

ee x /

void MakeTheMenu ()

{

/*---- Menu 0 -------------- x /

make item("Neu", /* Text des Items

&itext[0], /* Adresse IntuiText-struct

&item[0], /* Adresse der Item-struct

&item[1], /* Adresse next Item

5,0, /* linke obere Ecke

120,11, /* Breite und Höhe

* /

* /

* /

* /

* /

* /

ANHANG

ITEMENABLED /* Flags des Itens */

);

make item("Laden", &itext [1], &item[1], &item[2],

5,16,120,11, ITEMENABLED) ;

make item("Sichern", &itext[2], &item[2], &item[3],

5,32,120,11, I TEMENABLED) ;

make item("Ende", &itext[3], &item[3], NULL,

5,48,120,11, ITEMENABLED);

make item("Wirklich Ende", &itext[4], &item[4],

&item[5], 100,8,200,11,

ITEMENABLED | COMMSEQ) ;

make item("Lieber doch nicht", é&itext[5],

| &item[5], NULL,

100,24,200,11, ITEMENABLED);

item[3] .SubItem = &item[4]; /* Sub-Item nachtragen */

item[4].Command = 'x';

make menu (&menu[0],"Projekt", &menull],

&item[0], 10);

make item("Schwarz", &itext[6], &item[6], &item[7],

5,0,100,11, ITEMENABLED) ;

make item("Weiß", &itext[7],&item[7], &item[8],

5,16,100,11,ITEMENABLED) ;

make item("Rot", &litext [8], &item[8], &item[9],

5,32,100,11,ITEMENABLED);

make item("Blau", &itext[9], &item[9], NULL,

5,48,100,11, ITEMENABLED) ;

275

ANHANG

make menu (&menu[1],"Farben", &menu[2],

&item[6], 120);

make item("Rechteck", &itext[10], &item[10],

&item[11],

5,0, 150,11, ITEMENABLED);

make item("Gefülltes Rechteck",

&itext [11],

&item[11], &item[12],

5,16, 150,11, ITEMENABLED) ;

make item("Ellipse", &itext[12],

&item[12], &item[13],

5,32, 150,11, ITEMENABLED) ;

make item("Gefüllte Ellipse",

&itext [13], &item[13],

5,48,150,11, ITEMENABLED) ;

make menu(émenu[2],"Figuren", &menul3],

&item[10], 210);

make item("Figur füllen",

gitext [14], &item[14],

&item[15],

5,0,120,11,ITEMENABLED);

make item("Alles übermalen",

&itext [15], &item[15],

&item[18],

5,16, 130,11, ITEMENABLED) ;

make item("Wirklich übermalen",

&itext [16], &item[16],

276

ANHANG

&item[17],

110,8, 150,11, ITEMENABLED

);

make item("Lieber doch nicht",

&itext{17], é&item[17],

NULL,

110,24,150,11, ITEMENABLED);

item[15].SubItem = &item[16]; /* Sub-Item hinzu */

make item("Farben regeln",

&itext [183], &item[13],

NULL,

5,32, 130,11, ITEMENABLED);

make menu (&menu[3], "Spezial", NULL,

&item[14], 300);

/* MENUPICK-Message auswerten und zugehörige

Aktionen ausführen

222222222727722227222177222_7”722222--__ x /

void do _ menu ()

{

switch (MENUNUM(code)) /* Switch Titel */

{

case PROJEKT:

Switch(ITEMNUM(code)) /* Switch Items */

{

case NEU : do neu();

break;

case LADEN : dflag = 1;

Request (&request [0], Window);

break;

case SICHERN: dflag = 2;

Request (&request [0], Window);

break;

277

ANHANG

case ENDE

switch (SUBNUM (code))

{

case WIRKLICH: do_close();

break;

case NEIN

break;

}

break;

}

break;

case FARBEN:

do farben((USHORT) ITEMNUM (code));

break;

case FIGUREN:

switch(ITEMNUM (code))

{

case RECHTECK : do rechteck (0);

break;

case FRECHTECK: do_rechteck (1);

break;

case ELLIPSE : do ellipse (0);

break;

case FELLIPSE : do ellipse (1);

break;

}

break;

case SPEZIAL:

switch(ITEMNUM (code)) /* Switch Items */

{

case FUELLE: do fuellen ();

break;

case MALE

switch(SUBNUM (code))

{

case WIRKLICH: do malen ();

| break;

278

ANHANG

case NEIN :

break;

}

break;

case REGLER: Request (&request [2], Window);

break;

break;

Das Include-File menu.h

279

ANHANG

Glossar

Absolute Adresse: Adresse als Zahl; wird typisch einer Zeigervariablen
zugewiesen.

Alert: Alarmmeldung, die typische Guru-Meldung.

Allokieren: Mit einer Funktion wie malloc() (memory alloc) Speicher für

Variable zur Laufzeit eines Programms beschaffen.

Amiga-DOS: Disk Operating System (Betriebssystem) des Amiga.

ANSI: American Standard Institute. Amerikanischer Standard, der auch

die Sprache C normt.

ANSI-Kompatibilität: Übereinstimmung mit dem ANSI-Standard.

Anwender-Gadgets: Im Gegensatz zu den System-Gadgets vom Anwen-

dungsprogrammierer definierte Gadgets.

API: Application Program Interface. Schnittstelle zu Betriebssystemfunk-

tionen für den Anwendungsprogrammierer.

Area: Eine Sammlung von Grafiken, die alle zusammen gezeichnet

werden.

argc: »argument count«, die Anzahl der Argumente (Wörter) der Kom-
mandozeile

Array: Eine Menge von Daten gleichen Typs.

ASCII: American Standard Code (for) Information Interchange. 256 Zah-

len, die beschreiben, welche Zahl welches Zeichen auf dem Bildschirm

darstellen soll. Nur die ersten 128 Zeichen sind auf allen Computern

identisch.

Auflösung: Hier die Anzahl der Bildpunkte in der Horizontalen (X-Auf-

lösung) und in der Vertikalen (Y-Auflösung).

Automatische Variable: Variable innerhalb einer Funktion, die automa-

tisch nach dem Funktionsaufruf angelegt wird und nur so lange »lebi«,

wie die Funktion läuft.

Auto-Requester: Ein Requester, der mit nur wenigen Argumenten auto-

matisch von Intuition gezeichnet wird.

-BCPL: Eine C-ähnliche Programmiersprache (genauer: ein C-Vorgänger),

in der u.a. Amiga-DOS geschrieben wurde.

280

ANHANG

Befehle: Elemente der Sprache C, wie zum Beispiel goto oder break.

Bezeichner: Vom Anwender definierter Name von Variablen, Datentypen,

Funktionen und Makros.

Bibliothek: Eine Sammlung von logisch zusammenhängenden Funktionen.

Binär: Zahlendarstellung nur mit O und 1, das Computer-interne Format.

Bit-Plane: Ein Speicherbereich, in dem jedes Bit einem Bildpunkt auf dem
Schirm entspricht. Gibt es mehr als eine Bit-Plane, wird aus den Bits auf
gleicher Position eine Zahl gebildet, welche die Farbe eines Bildpunktes

beschreibt.

Bit-Operatoren: Operatoren wie & oder |, die Zahlen Bit für Bit nach den

Regeln des logischen UND bzw. ODER verknüpfen.

BitMap: Eine Struktur, die einen Bildspeicherbereich beschreibt.

BLINK: sprich B-LINK, ein Linker, der zum Beispiel mit Lattice-C geliefert

wird.

Blockgröße: Die Anzahl von Bytes, die zusammen auf die Disk geschrie-

ben werden.

Boolean-Gadget: Ein Gadget, das entweder nur angeklickt werden kann
oder nicht (im Gegensatz zu Proportional- und String-Gadgets).

Border: Eine Datenstruktur, die einen Rahmen (typisch ein Rechteck) zum

Beispiel für Gadgets beschreibt.

BSS: Block Storage Segment, Datenbereich eines Programms, in dem erst

zur Laufzeit Daten eingetragen werden, sog. nicht initialisierte Daten.

C-String: Ein Array vom Typ char, mit einemNul-öye am Ende, welches
das String-Ende markiert.

Chip-Memory: Die unteren (oder einzigen] : 512 Kbyte des Amiga-RAM.
Der Bereich wird auch von den Spezial-Chips des Amiga genutzt.

Code: Eine Zahl, deren Sinn erst im Kontext klar wird. Zum Beispiel

bedeutet der ASCII-Code 65 den Buchstaben A.

Container: Ein Behälter für grafische Elemente. Ein Requesterist ist zum
Beispiel der Container für Gadgets.

CPU: Central Processing Unit. Der Mikroprozessor, der eigentliche Rech-
ner in einem Computer.

281

ANHANG

282

Dangling pointer: Ein Zeiger auf einen Speicherbereich, der nicht (mehr)

dem Programm gehört.

Datenstruktur: Eine gemeinsam unter einem Namen zusammengefaßte

Menge von Daten.

Debugger: Ein Werkzeug (Programm) zur Fehlersuche in Programmen.

Debug-Information: Zusätzliche und für das Programm an sich nicht

erforderliche Informationen, die den Debugger unterstützen.

Deklaration: Das Definieren von Variablen.

Dekrementieren: Den Wert einer Variablen erniedrigen.

Dimensionen: Die Größe eines Arrays in einer Richtung.

Directory: Inhaltsverzeichnis von Disketten oder Festplatten.

Direktive: Eine Anweisung an den Compiler, zum Beispiel mit #include,

eine Datei einzubeziehen.

Dopppelte Indirektion: Ein Zeiger zeigt auf einen weiteren Zeiger, der

dann erst auf ein Objekt zeigt.

Draw: Englisch zeichnen, Teil vieler Grafikfunktionen.

Dynamische Puffer: Speicherbereiche, die erst zur Laufzeit des Pro-

gramms angelegt werden.

Editieren: Die Eingabe und das Ändern von Text.

EOF: End of File: Das Ende einer Datei.

Ereignisse: Bedienaktionen, wie die Betätigung der Tastatur, der Maus

oder ein Disketteneinschub/-auswurf.

Escape-Zeichen: In C das %-Zeichen mit der Bedeutung, daß die folgen-
den Zeichen nicht zum Text gehören, sondern Formatier- und Steuer-

zeichen sind.

Events: Siehe Ereignisse.

Exec: Der (u.a.) für das Multitasking zuständige Teil des Amiga-Betriebs-

systems.

Externe Variable: Eine außerhalb aller Funktionen deklarierte Variable,

die für alle Funktionen und andere Module zugänglich ist.

FALSE: Logisch falsch, in C als Null definiert.

ANHANG

Fast Memory: Speicherbereich über 512 Kbyte, der deshalb schnell (fast)

ist, weil sich die CPU ihn nicht mit den Spezial-Chips teilen muß}.

FIB: Kürzel für File-Info-Block, eine Datenstruktur mit Kenngrößen eines

Files (Datei).

File: Englisch für Datei.

Filepointer: Ein Zeiger der auf das nächste zu lesende Zeichen in einer

Datei zeigt bzw. auf die Position, ab der geschrieben werden soll.

Flag-Bits: Bits innerhalb eines Datenwortes, denen eine bestimmte Bedeu-

tung zugewiesen ist. |

Flood: Fluten, Füllen eines Grafikbereiches mit einer Farbe.

Font: Englisch für Zeichensatz.

forbid: Verbiete. Hier Zugriff anderer Tasks, praktisch Ausschalten des
Multitasking.

FOREVER: Ausdruck für eine Endlosschleife, meistens als for(;;) realisiert,

oft auch als Makro definiert.

Format-Code: Die Formatierungs-Codes in printf) und scanff).

Gadget: Im amerikanischen Slang »Dingsbums«, hier ein grafisches

Bedienelement (z.B. Schalter).

Grafik-Cursor: Die unsichtbare Position in der Größe eines Bildpunkts,

von der die nächste Zeichenoperation ausgeht.

Icon-Editor: Programm zum Erstellen und Ändern von Icons (Sinnbildern).

IDCMP: Intuition Direct Communication Message Port. Datenstruktur, über

welche die Kommunikation zwischen Intuition und einem Window läuft,

bzw. dem Programm, dem das Window gehört.

Include-Anweisung: Anweisung an den Compiler, eine Datei in die Über-
setzung einzubeziehen.

Index-Variable: Eine Variable, die genutzt wird, um verschiedene Array-

Elemente anzusprechen.

Initialisieren: Einer Variablen einen Anfangswert zuweisen.

Inkrementieren: Den Wert einer Variablen erhöhen.

283

ANHANG

284

Intuition: Die grafische Bedienoberfläche und das API (siehe dort) des

Amiga.

Item: Hier ein Menüpunkt

Iteration: Durchlauf (durch eine Schleife).

JAM1: Ein Zeichenmodus des Amiga, hier überschreibend.

JAMw: Ein Zeichenmodus des Amiga, hier transparent.

K&R: Kernighan und Ritchie: Erfinder der Sprache C und gleichzeitig

Name für den alten C-Standard (neu ist ANSI).

Kommando-Taste: Tastenkürzel für einen Menüpunkt.

Kommandozeile: Der Programm-Name und die folgenden Argumente,

wie man sie im CLI eintippt.

Kommentar: Erklärender Text in einem Programmtext, der vom Compiler

ignoriert wird.

Komponenten-Operator: Das Punkt-Zeichen oder »->« zum Zugriff auf

die Komponenten einer Datenstruktur.

Konstante: Name für eine Zahl, ein Zeichen oder Text, der im Pro-

grammlauf nicht geändert wird.

Laufvariable: Variable, die in einer Schleife hoch- oder abwärts gezählt

wird und meistens beim Erreichen eines Endwertes zum Abbruch der

Schleife führt.

Library: Siehe Bibliothek.

Linken: Verschiedene bereits kompilierte Module und Bibliotheksfunk-

tionen zusammenbinden.

Linker: Programm, welches das Linken (s.o.) ausführt.

Lock: Sperre, die verhindert, daf} mehrere Tasks gleichzeitig auf eine

Datei zugreifen.

Logik-Fehler: Vom Compiler nicht erkennbarer Fehler, der zur Fehlfunk-

tion oder zum Abbruch eines Programms führt.

Makro: Ein kurzer Name für einen längeren Text, der immer dann vom

Compiler eingesetzt wird, wenn der Makroname im Programmtext auf-

taucht.

ANHA NG

Mehrfachproblem: Die Tatsache, daf3 in einem Array oder einer anderen

Datenstruktrur mehrere gleiche Eintrage vorhanden sind, die es zu erken-

nen und ggf. zu eliminieren gilt.

Mehrfachverzweigung: Das Programm soll in Abhängigkeit vom Wert

einer Variablen an verschiedenen Stellen fortgesetzt werden (in C mittels

switch()).

MenuStrip: Menüstreifen oder Menüleiste, die beim Druck auf die rechte

Maustaste erscheint.

Message: Nachricht oder Botschaft, die eine Task an eine andere sendet.

Praktisch werden dafür Daten in eine reservierte Struktur namens Mes-

sage-Port geschrieben.

Nibble: Ein halbes Byte (4 Bit).

Oktal: Ein Zahlensystem auf der Basis 8.

Pixel: Englisches Kürzel für »Picture Element«, ein Bildpunkt.

Proportional-Gadget: Ein Gadget in Form eines Schiebereglers.

Prototyp: Eine Funktionsdeklaration mit den Namen und Typen der Para-

meter.

Qualifier: Hier ein Code, der Tasten wie und beschreibt.

Requester: Ein Container (meistens ein Rechteck) für mehrere Gadgets,

die dann alle auf einmal erscheinen bzw. verschwinden.

ROM-Font: Ein im ROM abgelegter Zeichensatz.

ROM-Grafik: Im ROM abgelegte Grafik-Funktionen, typisch besonders

schnelle Grundroutinen.

Schlüsselwörter: Reservierte Wörter einer Programmiersprache, die nicht

als Bezeichner verwendet werden dürfen.

String: Zeichenkette. Eine Folge beliebiger Zeichen, die in C mit einem

Null-Zeichen abgeschlossen sein muß.

String-Literal: Ein beliebiger Text in Anführungszeichen, wird von C als

String-Konstante betrachtet.

Sub-Item: Ein Untermenüpunkt.

285

ANHANG

286

Turn-Around-Zeit: Zeit vom Verlassen des Editors über Dauer von Com-

piler- und Linkerlauf bis zum Wiedereintritt in den Editor.

Variable: Ein symbolischer Name für einen Speicherplatz, in dem immer
neue Daten abgelegt werden können.

Verzweigung: Fortsetzung des Programms an einer anderen Stelle als

beim nächstfolgenden Befehl.

Zeiger: Die Adresse einer Variablen bzw. eines Speicherplatzes.

ANHANG

Literaturempfehlungen

Es gibt sehr viel Literatur für den Amiga und auch zur Sprache C. Ich per-

sönlich habe eine Unmenge von Büchern — die kosten mich nichts -

arbeite aber praktisch nur mit sehr wenigen.

Amiga Intuition-Reference-Manual: Die Original-Dokumentation von

Commodore zu Intuition. Verlag Addison-Wesley, ISBN 0-201-11076-8.

Sprache Englisch. Interessant für Leser, die auch das letzte Detail erfahren

wollen, Thematik wird aber auch in deutschsprachigen Büchern gut abge-

deckt.

Amiga ROM-Kernel-Reference-Manual: Libraries and Devices: Die Origi-

nal-Dokumentation von Commodore zu allen ROM-Funktionen und Libra-

ries, ausgenommen Exec. Verlag Addison-Wesley, ISBN 0-201-11076-4.

Sprache Englisch. Ein sehr dicker Wälzer. Schon des Umfangs wegen
kann kein »normales« Buch die Thematik so vollständig abhandeln.

Amiga ROM-Kernel-Reference-Manual: Exec: Die Original-Dokumen-

tation von Commodore zu Exec, dem Multitasking-Kern des Amiga. Ver-

lag Addison-Wesley, ISBN 0-201-11099-7.

Sprache Englisch. Für Anwender, die sehr systemnah programmieren
wollen.

Amiga Hardware-Reference-Manual: Die Original-Dokumentation zur

Hardware-Programmierung des Amiga. Verlag Addison-Wesley, ISBN O-

201-11077-6.

Sprache Englisch. Für Anwender, welche direkt die Hardware program-

mieren wollen, zum Beispiel für besonders schnelle Grafiken. Die Hard-

ware selbst, also Schaltbilder u.ä., wird nicht beschrieben.

Amiga Programmier-Handbuch von Frank Kremser, Jörg Koch. Verlag

Markt & Technik, ISBN 3-89090-550-1, Preis 79,-- DM.

Das Buch bringt auf 378 Seiten die wichtigsten Funktionen aus dem ROM

Kernel Reference-Manual/ Libraries and Devices sowie Intuition plus zahl-

reiche Beispiele, die auch auf der Diskette vorliegen.

Amiga System-Handbuch von Frank Kremser, Jörg Koch. Verlag Markt &

Technik, ISBN 3-89090-491-2, Preis 69,-- DM.

287

ANHANG

288

Das Buch bringt auf 421 Seiten fast alles aus dem Hardware Commo-

dore-Reference-Manual, geht aber zusätzlich noch auf die Hardware ein,

Bauanleitungen für eigene Erweiterungen inklusive. Zahlreiche Beispiele,

die auch auf der Diskette vorliegen, doch großteils in Assembler. Für
Leser, welche die Hardware interessiert und die auch Assembler beherr-

schen. |

Amiga Programmierpraxis Intuition von Peter Wollschlaeger. Verlag

Markt & Technik, ISBN 3-89090-593-5, Preis 69 ,-- DM.

Das Buch schildert die Programmierung von Intuition und alle erforder-

lichen Grundlagen sehr detailliert auf 330 Seiten. Alle Beispiele in C und

teilweise zusätzlich in Assembler auch auf der Diskette. Das Buch entstand

nach dem Motto »nicht von jedem etwas, sondern eines gründlich«.

Abs 229

Absolute Adresse 201

ACCESS_READ 180

ACCESS_WRITE 180

ACTIVATE 105

Activation-Flags 130

AddGadget 143, 230

Adressen, 56

Alarm 154

Alert 154

AllocMem 177,178 |

AllocRemember 214, 231

Allokieren 177

Amiga-DOS 176, 178, 224

Amiga.lib 222, 224

ANSI 43

ANSI-Kompatibilität 199

Anwender-Gadgets 128

AreaEllipse 164

AreaEnd 165

Argc 258

Argv 258

Arithmetische Operatoren 84

Array 54, 58

Array deklarieren 57

Array-Index 55, 192

Assembler-Quelltext 196

Atof 229

Atoi 229

Auflösung 188

Auto-Requester 186

AUTOKNOB 130

AutoRequest 149, 231

Aztec C 20, 31, 227

Aztec-Compiler 196

Aztec-Linker 197°

Backfill 148, 153

BCPL 178

Befehle 38

Bibliotheken 201

Binär-File-I/O 259

Binär-Files 254

Bit-Operatoren 87

Bit-Planes 186

BitMap 186

BLINK 198

Blockgrößße 260

Boolean-Gadget 128

Border 153

Break 90, 126

BSS 198 f.

BuildSysRequest 231

C

C-Array 192

C-String 55

Chip-Memory 197, 199, 209, 213
Class 100

ClearDMRequest 146, 232

ClearMenuStrip 126, 232

ClearPointer 209, 232

Close 238

289

STICHWORTVERZEICHNIS

CLOSEWINDOW 99, 106, 127, 232 EndRequest 232

Code 100 EOF 176

Command-Key 113 Ereignisse 99

COMMSEQ 117 Escape-Zeichen 46

Compile-/Link-Beispiele 51 Events 99, 162

Compiler 13 Examine 183

Compiler/Linker-Aufruf 224 Exclusive Write Lock 174

COMPLEMENT 216 Exec 100, 200

Container 128, 145 ExecMessage 100

Continue 95 Execute 185

Cos 229 Exit 79, 229

D ExNext 183

Dangling pointer 194 f. F
Datenstruktur 60, 70 FALSE 92

Datentyp 39 Fast-Memory 198

DEADEND_ALERT 154 Fclose 255

Debug-Information 197, 199 Festplatte 226

Define 38 FGO 206

Deklaration 58 FIB 181

Deklarieren 47, 61 FILE 255

DeleteFile 238 File-Handle 175

Deutsche Tastatur 22 File-I/O in Standard-C 254

Dimensionen 58 File-Nummer 175

Directory durchsuchen 183 File-Zeiger 255

Direktive 37 FileHandle 175

DISKREMOVED 150 FilelnfoBlock 181

DisplayAlert 232 ~ FileLock 180

DisplayBeep 232 Filepointer 255

Div 229 FirstGadget 143

Do 90, 92 Flag-Bits 83

Do...while 92 Flags 130

Doppelte Indirektion 201 Flood 237

Double-Menu-Requester 146 f. 154 - Font 219

Draw 163, 236 Fopen 255, 260

DrawCircle 237 For 90, 93 f.

DrawEllipse 164, 237 For-Schleife 94, 197

Dynamische Puffer 260 Forbid 203

E FOREVER 94

Format-Code 46

Editieren 50 Formatstring 76
Ellipse 164 Fprintf 259

Else 88 Fread 260
ENDGADGET 147, 153 FREEHORIZ 130

290

STICHWORTVERZEICHNIS

FreeRaster 165

FreeRemember 202, 215

FreeSysRequest 233

Funktionen 37

Funktions-Ergebnisse 202

Fwrite 260

G

Gadget-Liste 143

Gadget-Typen 128

Gadgets 70, 83, 128

GADGIMMEDIATE 130

GetDefPrefs 233

GetMsg 162, 205

GetPrefs 233

GetRGB4 188

Gets 229

Gfx.h 104

Gleichheitszeichen 191

Goto 9]

Grafik-Cursor 105

H

Hardware-Voraussetzungen 16

HIBOX 117

HICOMP 117

Hochsprache 13

Hochstriche 49

HorizBody 138

HorizPot 138

/O 98

[Address 101

Icon-Editor 208

IconED 208

IDCMP 99, 205

IDCMP-Flag 99, 106, 109

IDCMP-Flags fiir Requester 147

IDCMPWindow 101

If 86, 92

IfBedingung 88

Image 128

Include 72

Include-Files 38, 72

index 54,193
Indexvariablen 55

Info-Struktur 138

Initialisieren 47, 58, 61

Inkrement- und Dekrement-

Operatoren 85

Input 99, 238

Installation 20

IntuiMessage 100, 125

IntuiTextLengthlitext) 233

INTUITICK-Event 110

INTUITICKS 106

Intuition 99

Intuition.library 78

IntuitionBase 73, 78

INVERSVID 216

loErr 184, 238

Isalnum 230

lsalpha 230

Isdigit 230

Islower 230

Isprint 230

Isounct 230

Isspace 230

Isupper 230

ltem-Liste 114

ITEMENABLED 117.

ITEMNUM 126

ltems 113 f.

ITEMTEXT 117

Iteration 96

ITextFont 216

J

JAM1 216

JAM2 216

K

K&R 43

Klammern 192

Komma-Operator 95

Kommando-Taste 113

Kommandozeile 258

291

STICHWORTVERZEICHNIS

Kommentare 37

Kompakte Programme 222

Kompilieren 50

Komponenten-Operator 68

Konstante 49

L

Lattice C 25, 32, 227

Lattice-Compiler 198

Laufvariable 94

Libraries 72, 201

Library 72

Linken 50

- mit float 51

Linker 13, 50

Lock 175, 180

Lock-Struktur 180

Locks 174

Log 230

Logik-Fehler 88

Logische Operatoren 87

Lottozahlen 253

LSE 31

M

Mainl() 222

Main-Funktion 40

Makro 247 |

Makros 125 f., 160, 225, 250

Malloc 195, 202

Maus zeichnen 163

Maustaste 163

Mauszeiger 209

Mehrfachproblem 253

Mehrfachverzweigungen 88

MEMACS 30

MEMF_CHIP 177, 215

MEMF_CLEAR 177

Menü 113, 115

MENUENABLED 116

Menultem 116 f.

MenuName 116

MENUNUM 126

MenuOf 116

MenuOn 116

MENUPICK 127, 162

MenuStrip 113 f.

Message-Ports 99

Micros 101

MODE_NEWFILE 175

MODE_OLDFILE 175

ModifyIDCMP 233

MOUSEBUTTONS 164

MOUSEMOVE 99, 106, 164

MouseX 101

MouseY 101

Move 105, 163, 237

MoveWindow 234

Multitasking 174, 201
N

NEWSIZE 106

NewWindow 71,74, 82, 105

Nextltem 116

Nibbles 188

NOISYREQ 145, 149, 154

Null-Byte 55, 193

O

OffGadget 234

- OffMenu 234

OFFSET_BEGINNING 239

OFFSET_CURRENT 239

OFFSET_END 239

Oktal 50

OnGadget 234

OnMenu 234

Open 238

OpenDiskfont 220

OpenFont 220

OpenLibrary 72

OpenWindow 71 f., 78, 82, 234

Operatoren 12

Output 99, 239

P

Permit 203

POINTREL 147, 148, 154

STICHWORTVERZEICHNIS

Pow 230

PREDRAWN 148

Printf{) 45

PrintlText 234

Programm-Icon 208

PROPGADGET 138

Proportional-Gadget 128, 131

Protos 223

Prototypen 44, 161

Punkt-Operator 68

Putc 230

Puts 230

Q

Qsort 247

Qualifier 101

Quick-Sort 247

R

Rand 250

RASSIZE 186

RastPort 104, 106

RAWKEY 106

Read 178, 239

RECOVERY_ALERT 154

RectFill 164,237 —

RefreshGadgets 143, 235

Relative Requester 147

Relleft 147

RelTop 147

RELVERIFY 130

RememberKey 214

Remove 230

RemoveGadget 143, 235

Rename 239

ReplyMsg 99, 109, 205

REPORTMOUSE 105, 235

REQACTIVE 149

REQCLEAR 147

REQGADGET 147

REQOFFWINDOW 149

REQSET 147

Request 145 f., 235

Requester 145, 147, 161

ROM-Font 220

ROM-Grafik 164

5

Scanf 86, 195

Scanfl) 59

Schachtelungen 37

Schleifen 90

Schlüsselwörter 38

Schreiben von Files 175

Seconds 101

Seek 239

SetAPen 105, 237

SetBPen 237

SetDMRequest 146, 154, 235

SetDrPt 237

SetMenuStrip 127, 235

SetPointer 209, 212, 236

SetPrefs 236

SetRGB4 138

Shared Read Lock 174

Short int 58

Sichtbarkeit von Variablen 40

Signal-Bit 107

Sizeof 250

SizeWindow 143, 236

Software-Voraussetzungen 17

Sortieren 247, 250

Speciallnfo 130

Speciallink 100

Speicher dynamisch 177

Sprintf 110

Sqrt 230

Standard-C-Funktionen 229

Standard-I/O-Kanäle 222

Status von Disketten 178

Stdwindow.h 80

Stilarten 215

Strcat 60, 230

Stremp 230

Strepy 55, 78

Strespn 230

String-Gadget 128, 130, 137

String-Literal 74

293

STICHWORTVERZEICHNIS

STRINGCENTER 130

StringInfo 130

Stringliteral 33, 38

Strings 59, 65, 193

Stringvergleichsfunktion 93

Strncat 230

Strstr 184

Struct 60

—Boollnfo 243

- Border 244

- Gadget 242

- Image 245

— IntuiMessage 245

— IntuiText 244

- Menu 242

- Menultem 242

— NewScreen 240

- NewWindow 241

— Preferences 245

- PropInfo 243

- Remember 245

— Requester 243

- Screen 240

— StringInfo 244

- Window 241

Struktur 36, 63

Struktur-Komponenten 82

Strukturierte Variablen 53, 61

Strukturtyp 60

Sub-ltem 113

SUBNUM 126

Suchstring 184

Switch 88,90 _

SYSREQUEST 149

System Request 150

System-Requester 146

System-Ressourcen 203

System-Routinen 200

T

Tan 230

Text 104 f., 110, 238

Text-Attribute 219

TextAttr 219

Texteingabe 220

Textfiles 254

Time 111

Time.h 104

Tolower 230

TOPAZ_EIGTHY 220

TOPAZ_SIXTY 220

Toupper 230

TRUE 92

Turn-Around-Zeit 50

Typ 39 —

Type-Casting 74, 76

U

Ungleichoperator 192

UserPort 99

UserPort-Struktur 107

V

VANILLAKEY 106, 164, 221

Variable 39

Verzweigungen 84

Vorkompilierte Header-Files 226

W

Wait 80, 106, 162, 205

Warnings 197

WBENCHSCREEN 71

While 90, 92

While-Bedingung 93

Window-Flag 105

Window-Struktur 71

WINDOWCLOSE 105

WINDOWDEPTH 105

WINDOWDRAG 105

WindowLimits 236

WindowPort 99

Windows 70

WINDOWSIZING 105

WindowToBack 236

WindowToFront 236

Workbench-Programme 208

Write 178, 186, 239

WritePixel 163, 238

STICHWORTVERZEICHNIS

Z Zeiger auf Strukturen 66

Z-Editor 30 Zeigerarithmetik 64

Zeichen-Array 54 Zeigerarray 262
Zeichensätze 215 Zeigertypen 77
Zeichenvariablen 53 Zufallszahl 247, 250
Zeiger 56, 64 f., 71,74, 86, 194 Zweidimensionales Array 58

295

Markt&lechnik W OR K SH O P AMIGA
Erfolgreich starten — sicher nutzen.

ie a AS "

| Zum Progrems ha

Workshop — das heißt: sichere Lernerfolge in

kurzester Zeit.

Im Einführungskapitel erfahren Sie alles, was

zum grundlegenden Umgang mit C und mit

dem Buch notwendig ist. Außerdem: Start-

hilfe in Sachen Installation. Das Tutorium

fährt Sie dann in zehn Sitzungen in diese

interessante und leistungsfähige Program-

miersprache ein — ausführlich und praxis-

gerecht - anhand eines unterhaltsamen und

nützlichen Projekts. Das Ergebnis: ein eige-

nes Malprogramm mit Windows, Menüs und

Requestern.

Das Kapitel Know-how wird Ihr Ratgeber für

die tägliche Praxis: häufige Fehlerquellen

C auf dem Amiga
und entsprechende Lösungsvorschläge;

eine umfangreiche Sammlung nützlicher

Tips & Kniffe und vieles mehr.

Dann die Referenz: knapp und präzise —

alle Befehle auf einen Blick. Als nützliches

Add-on: eine handliche Befehlskarte mit dem

Allerwichtigsten. Der Abschnitt Schnell-

information nach dem Motto »Wie program-

miere ich ...?« bietet schließlich eine Reihe

ausgewählter Tools zu häufigen Aufgaben-

stellungen der Praxis.

Workshop — verständlich und informativ; zu

populären Themen wie Grafik, Musik, Text-

verarbeitung und Programmiersprachen.

Herausgegeben von .TXT Redaktionsteam

Baumann & Partner. Ein Team aus Fach-

lektoren und Spezialisten, die aus eigener

EDV- und Verlagspraxis die Informa-

tionsbedürfnisse von Computeranwendern

kennen.

Software:

Aztec C oder Lattice C der Version 5.x

Markt&fechnik

ISBN 3-87791-026-2

03900

9783877910269

DM 39,-— sFr 37,- 65 304,-

