S
a5
L
<
5
5
<
=
X7
i
~J
a

Bleek
Maelger
Weltner

Amiga
Tips & Tricks

DATA BECKER

5. Uberarbeitete und erweiterte Auflage 1989

ISBN 3-89011-211-0

Copyright © 1986

DATA BECKER GmbH
Merowingerstr. 30
4000 Disseldorf

Umschliaggestaltung: Werner Leinhos
Textverarbeitung und Gestaltung: Sabine Wingerath

Text verarbeitet mit Word 4.0, Microsoft
Ausgedruckt mit Hewlett Packard LaserJet Il
Druck und Verarbeitung: Mohndruck, Gitersioh

Alle Rechte vorbehalten

Kein Teil dieses Buches darf in irgendeiner Form (Druck, Fotokopie oder einem anderen
Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH reproduziert oder
unter Verwendung elektronischer Systeme verarbeitet, vervielfaltigt oder verbreitet werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Verfahren und Programme werden ohne Riick-
sicht auf die Patentlage mitgeteilt. Sie sind ausschlieBlich fiir Amateur- und Lehrzwecke
bestimmt und diirfen nicht gewerblich genutzt werden.

Alle technischen Angaben und Programme in diesem Buch wurden von den Autoren

mit groBter Sorgfalt erarbeitet bzw. zusammengestellt und unter Einschaltung wirksa-

mer KontrolimaBnahmen reproduziert. Trotzdem sind Fehler nicht ganz auszuschlieBen.

DATA BECKER sieht sich deshalb gezwungen, darauf hinzuweisen, daB weder eine Ga-

rantie noch die juristische Verantwortung oder irgendeine Haftung fir Folgen, die auf

fehlerhafte Angaben zuriickgehen, libernommen werden kann. Fiir die Mitteilung even-
tueller Fehler sind die Autoren jederzeit dankbar.

Vorwort zur 5. Auflage

30.000 Exemplare sind verkauft und wieder einmal haben wir
uns zusammengesetzt, um neue, bessere und noch trickreichere
Kniffe zu finden, mit denen wir neuen und alten Lesern brand-
heie Informationen bieten konnen. Diese vollkommen neu
iiberarbeitete Auflage enthidlt Tips & Tricks aus noch mehr
Themengebieten als es bisher der Fall war. Neben den jetzt voll-
kommen aktualisierten Informationen zum Betriebssystem 1.3
haben wir nun auch das brandheile GFA-BASIC mit in den
Kreis der Programmiertricks aufgenommen.

Fir die Erstellung der Hardware-Schaltungen danken wir ganz
herzlich Frank Dzubilla, der in seiner zuverldssigen Art dafiir
gesorgt hat, daB wir bei der Arbeit mit dem Amiga mehr
Komfort haben und viele Leser diesen Vorteil jetzt auch nutzen
kénnen.

Hinweis: Die fiir diese Auflage verwendeten Kickstart- und
Workbench-Versionen sind die allerneuesten auf dem Markt. Wir
verwendeten als Kickstart die Version 34.5, die unter der Be-
zeichnung 1.3 ab jetzt bei allen Commodore-Vertragshindlern
als Kickstart-Diskette oder als ROM-Version zu beziehen sind,
und als Workbench die Version 34.20, die auch unter der glei-
chen Bezeichnung 1.3 iiberall zusammen mit einer Dokumenta-
tion kduflich zu erwerben ist.

Dazu gehort eine Extras-Diskette mit vielen neuen Utilities, die
wir auch in diesem Buch erkliren und Anwendungen dafiir vor-
stellen werden. Fiir die Programmierer unter Ihnen gibt es auch
noch neue Include-Files. Das ist besonders wichtig, da einige
Strukturen erginzt und andere optimiert wurden.

Wer seinen Amiga wirklich ausnutzen und aus der groBen Fiille
des Moglichen schopfen mochte, der liegt mit diesem Buch ge-
nau richtig! Das Bestreben dieses Buches ist es, sowohl dem

Hobby- als auch dem Profiprogrammierer viele Tips und Tricks
iiber seinen Rechner, den Amiga, zu verraten und zu erkliren,
wie diese Dinge ermoglicht werden.

Oftmals sind nur wenige Systemkenntnisse nétig, um selbstge-
schriebene Programme zu verkiirzen, ihnen Profil zu geben, sie
zu beschleunigen oder durch ganz neuartige Moglichkeiten auf-
zuwerten. Hier setzt dieses Buch ein: Auf den vor Ihnen liegen-
den Seiten verraten wir Ihnen nicht nur viele Detailkenntnisse
iitber das Betriebssystem, den AmigaBASIC-Interpreter und das
Disk Operating System, Sie finden auch eine wahre Fiille kleiner
und deshalb iibersichtlicher Programme, die diese neuen Er-
kenntnisse verdeutlichen. Die meisten dieser Programme lassen
sich problemlos in eigene, selbstgeschriebene Programme iiber-
nehmen und somit sofort anwenden.

Diese Konzeption, die dem Profi das Hintergrundwissen und
dem Anfinger fix und fertige Problemldser liefert, hat sich be-
stens bewihrt: Bereits die erste Auflage von "Amiga Tips &
Tricks" bot aufregende Programme: Im wohl ersten deutsch-
sprachigen Buch wurde der BASIC-Programmierer intensiv mit
der Benutzung der Systemroutinen vertraut gemacht - Dinge
wurden moglich, an die man gar nicht gedacht hatte. Heute nun
wiinschen wir Thnen viel SpaBl mit der komplett neubearbeiteten
und um vieles reichhaltiger gewordenen Neuauflage!

Grofhansdorf, im Mai 1989 Wolf-Gideon Bleek
Stefan Maelger
Tobias Weltner

Inhaltsverzeichnis

1. Einleitung

3.2.6

Floodfill einmal anders

2. CLI - Command Line Interpretercccooooriinnnnn.
2.1 Fragen zum CLIcccooiiiiiiiiiiniiiiiiiiceee e,
2.2 Neue CLI-Befehlecccoeeveeieiiiieieecceieeeeennnnn.
2.3 Neue Startup-Sequencesccccceeveeeeeeeeennns
2.3.1 RAM-Disk und Datenverarbeitung
2.3.1.1 MACROs im CLI mit ALIAS
2.3.1.2 CLI-Startup, die Startup-Sequence

des CLI .o e ee e
2.3.1.3 ALIAS-Befehlecccccceeveeeeeecriieieeeeeeeeeeees
2.3.1.4 Batch-Programmierungcccccceeeeeeeevennnnn.
2.4 Richtiges Ausnutzen des Mount-Befehls
2.4.1 Neue Namen fiir alte Hiiteccccecunnnnnnnee.
2.4.2 Weniger ist mehr!cccccvvvveviivereenininnnnnenennn
2.4.3 Drucker-Spoolercoceeeiviveiiiiiiiieeiiiieeeeeeeens

3. Das AmigaBASICcccooiiee
3.1 Implementierung der

Amiga-Kernel-Befehlecccccvvvvvevvvenvennnnnn.
3.1.1 Nutzung der Systembibliotheken in GFA
3.1.2 Umwandlung GFA-AmigaBASIC
3.2 AmigaBASIC-Grafikcccoovivieeiiiiiciciinneenenn.
3.2.1 Zeichenmodi verdndernccccevvvvvvvvennnns
3.2.2 Veranderter Text-Stilccccceeeveieiiiiiienneennne.
323 Move - Kontrolle iiber den

AmigaBASIC-Cursorcccoeveveeeeeereecccnnnnnnnnn.
324 Schnelleres Grafikformat <-> IFF
3.2.5 IFF-Brushes werden Objectscccccuvvuenennnn..

...................................

3.2.7 Windows manipulierenccccceeeeeeeeeeccnnnnns 109
3.2.7.1 Borderless:BASIC-Windows, die

aus dem Rahmen fallencccccceeevnveeennnnee 109
3.2.7.2 Gadgets an und ausschaltenccccuuuunneee 110
3.2.7.3 BorderDraw, der Formen-Zauberer 111
3.2.7.4 ChangeBorderColor -jetzt wird’s bunt 113
3.2.7.5 Monocolor-Workbenchcccoceevveeeiririniannnnnee. 115
3.2.7.6 Neuer SCREEN-Befehl fiir

alle Grafikmodiccccccvvveeericecceeeeeeeeeeeeeeee 116
3.2.7.7 Das Koordinatenproblemcccceeeveeerrrennnnne. 122
3.2.8 Intuition macht das Leben leicht - mit

HoldAndModify, Halfbrite und OverScan 123
3.3 Fading (Ein- und Ausblenden

von Grafiken)ccocovvveieeeeiiiiiiirnreeeeeeeeeennnns 127
3.3.1 Fading - die Grundideeccccceeeeerrerereennnenns 127
3.3.2 Fade-OVeriiveeeccreereeeecccccereeeeeee e 130
3.3.3 Fading fiir jeden RGB-Anteilcc......... 132
34 Schnelle Vektorgrafikcccccovvieeeeiieieeiinnnnes 135
34.1 Gittermodelle darstellenccccoeeeevieieieannnnn.. 135
3.4.2 Gittermodelle bewegencccccevvecvveeeeecnenen. 142
343 Beschleunigung durch

Betriebssystem-Routinenccccceeeeennnnnnene 142
3.4.4 3D-Bilder fiir die Rot-Griin-Brille 147
3.5 Die Zeichensidtze des Amigaccceeeeeennnnen. 155
3.6 SuperPrint - schneller und komfortabler 159
3.6.1 Das Console Device unter GFA 164
Professionelle Gestaltung eigener
Anwenderprogrammeccccceeeciemeiereenenrencsneenseessenes 165
4.1 Alternativen zu PullDown-Meniis 165
4.1.1 Die erste Select-BoXcccoeeeveenieeeeeieeiiiennnnns 169
4.1.2 Grafik bringt die Erkenntnisccccuuuuueeen. 173
4.1.3 Wahltabellencccooeeirivireiiiieeecccineeeeeecneeenen. 180
4.14 Schiebereglercooeeevveeveeereeenreeieeeveerereeneens 189
4.2 Rubberbandingccccoecevvervieninvieniensenennnens 196
4.2.1 Flichenbestimmung von Rechtecken 197

422 Punkte verbinden (Formenbestimmung) 199

4.2.3 Positionierung von Objektenccccceeennnnne 201

4.3 Intuition-Programmierungcccccccveeeeennnnen. 204
43.1 Die fertigen Bedien-Elemente 206
AmigaBASIC Intern ... 213
5.1 FileMonitor der Superlativecccoeevveennnnee. 214
5.1.1 Arbeiten mit dem FileMonitor 227
5.1.2 Patching, arbeiten mit dem FileMonitor 229
5.1.3 AmigaBASIC eindeutschencccccuuunnn... 230
5.14 Andere Programme patchenccc.cceeee. 230
5.2 Aufbau der AmigaBASIC-Files 231
5.2.1 Typ feststellencooevvevvvviiiiiiiiiiiiiieeiiieieeeeeeeeen, 232
5.2.1.1 BASIC-CheCK ...couvvrrrrrrerrrrreerrrvrvereeeeeenenneennnnnnns 233
5.2.1.2 HeaderCheck - Wie wurde das

Programm gespeichert?ccooovvvveeveeeirenennnnn. 235
5.2.2 ASCII-FileS ..ooeeeeeenerrreeeeeieeeecnnreeeeeeeeeeeeeeannens 238
5.2.3 BINAT-FileSccoovviirriiiieiiiieecinereeeeeeeeeeeeennnne 239
5.2.3.1 Aufbau einer AmigaBASIC-Zeile 240
5.2.3.2 Leerzeilenccceeveeeeeeeiiieeriiiiiiieeeeeerrenieeeeees 242
5.2.3.3 Die letzte Zeileuuueeeeeeeeeeeeveeeeeeeenenreerennnnnnnnn 243
5.2.3.4 Die Variablentabelleccccccevereeeeerrnrennnnnnnn. 243
5.2.3.5 Labelhandlingcccceevvreveeereeeeeeeeeeeeeeeennnnnennns 246
5.2.3.6 Label anspringencccceevveeeeeeeereerenennieeeeens 247
5.2.3.7 Zeilennummern anspringenccceevvene. 248
5.2.3.8 Werte in AmigaBASIC-Programmen 248
5.2.3.9 Besondere TOKENccccvvvrerveerevereeeeeeeerennnennanns 252
5.2.3.10 Subprogrammeccccevvrrerrereeeeneeeeeereeneeeeeaen. 254
5.2.3.11 Andere TOKENcccuvvereveeiereeeereereeeeeeeeeeeeeeneenns 255
53 Niitzliche Programme zur Manipulation von

AmigaBASIC ... 257
5.3.1 DATA-GENeratorcccceeeveeeeeveevennennnennnnnnnnns 257
5.3.2 Cross-Reference-Listeccccocvvviveeeeieerennnnns 262
533 Leerzeilen-Killerccooeevvvveeeeeeeeeiiennneeenennn. 269
5.3.4 REMarks entfernencccceeeevvvveeeeeeeeirevvnnnne 275
5.3.5 Variablen auflistencccccceveeeevieeeeecnvennnn. 280
5.3.6 Variablenmiill beseitigenccccceeeuvveennenn. 285

5.3.7 Selbstmodifizierende Programme 287

Die WOrKDBenCh ... ecceeeeee e nrenee e e 293

6.1 Arbeiten mit der Workbench 293
6.1.1 TastaturtriCkscceeeeveeeereeeeeeieceeciriiccrccceceeees 293
6.1.2 Der MUlleimereevvieeeeeeeeiereeeeeeeecccnneeens 295
6.1.3 Mehrfachaktivierungccccceeeeeeeeeeeceececeennnn. 296
6.1.4 611 0T UP SRR 297
6.1.4.1 Das Info-Feldccooovmmriiimiiiiiieeeeieecccnneens 298
6.1.4.2 Praktische Beispiele zum Info-Feld 301
6.1.5 Viele Wege fithren nachcccccooennnnnneeenn. 302
6.1.6 ArbeitserleiChterungccccoeeevvveeeeeerereccinnnnnenes 305
6.2 Systemdaten selbst einstellenccuuuueeeee 308
6.3 Betriebssystem-Editorcccccceeeeiiiieiiinnennes 311
6.3.1 Die Bedienung des Programms und

besondere Features.ccccccceeeeveieeiieiennnnnnccienens 320
6.3.2 Ersetzen der fehlerhaften

PAL-Test-Routineccceeeeeuereeeeeeeceeecnnnennens 321
6.4 Virus-festes Betriebssystemcccceuvvveeuenn. 322
6.5 Betriebssystem-Version patchen 324
2] 1 - 327
7.1 Die verschiedenen Icon-Typen 327
7.2 Der Aufbau eines Iconsceveevvveveenvennnnen. 329
7.2.1 Die DiskObject-Strukturcccoevvvvvvvnnennnn. 329
7.2.2 Die Drawer-Strukturcccccevvvveveeeeveeeenennnn. 332
7.2.3 Die Image-Strukturcccccccvvvevvvveveeeeeveeennnns 334
7.2.4 Der DefaultTool-Textcccccceeeeeeercnveeeneeenn. 335
7.2.5 Der ToolTypes-TeXt ...ccceeeveeerereerrrererreererreeenens 336
7.2.6 Der Icon-Analyzercccccooeieeveeeiieecireecceeeennn. 337
7.3 Eigene Icons erstellencccccceeeeeeeeecennnnnnns 340
7.3.1 Zwei Bilder fiir ein Iconccccceevevvevnnnnnnnens 341
7.3.2 Text im Bildcccoevveviieiiiieecieeecciiecceeeeeee 342
7.3.3 Der Icon-Editorcccoevveeenennnnrnnmnnnnenrennennenn. 342
7.34 Farbliche Verinderungccoevvveveeernnnnennn. 349
Kontrollierte Fehlerbehandiungcccooovrinnennee. 351

8.1 Wann treten im Programm Fehler auf? 351

10.

8.1.1 Fehler beim Diskettenzugriff 352
8.1.2 Fehler bei Benutzereingaben 353
8.1.3 Fehler durch oder bei der Meniiauswahl 354
8.2 Von der Moglichkeit, einen

Fehler aufzufangenccceceovvvveeeeeeeeeececnnnne 354
8.2.1 Freundliche Aufforderung an

den Benutzerccooevivvviiiiiiiiiiiiiiiiiriieeeere e, 356
8.2.2 Fehler vermeiden durch Abfrage

wihrend der Benutzereingabecccoeun....... 363
8.3 Fehler beheben durch Korrektur falsch

ausgew#hlter Funktionencccccoeeeeveiinennnn. 366
8.3.1 Auswahl unmdglicher Kombinationen

grafisch ausschlieBenccccoeeveeeeeieeiienennnnn. 368
Maschinenspracheccccooovviiirienieciecceeeeee e 373
9.1 Super-Handler fiir Division-By-Zero 374
9.2 Achtung: Viren-Alarm!cccoceeeiiiiiiieciinnnns 378
9.2.1 Der ultimative Virus-Killerccccceeeeunnn.. 379
9.3 ASSEMBLER und BASICccccceeeeeevnnnnns 383
9.3.1 Assembler- und C-Programme von BASIC

aus nachladen und aufrufen 386
9.3.2 BASIC-Erweiterung ColorCycle 389
9.3.3 BASIC-Erweiterung Zzzccccceevvveveveeereennns 392
9.34 Neue BASIC-Erweiterungenccceeeeun.. 394
1/0 - Kommunikation mit der AuBenwelt 403
10.1 Das Trackdisk-Device: Direkter

Zugriff auf Diskettenccccccvvveeeeerieeeccnnnne 405
10.1.1 Die I/O-Kommandos des

i TrackdiSk-DeVICESccocevvevrrieirirrriiieiriieeeeeeeeen. 413

10.1.2 Simultanes Arbeiten mit

mehreren Laufwerkencccoeeevviveeieiieennnnnnn. 414
10.1.3 Der Aufbau der Sektorenccccceevvvevvvnnnnnnee 414
10.2 Memory Handlingcccoeeeeevvveereeeeeeeieccnnnne 417
10.2.1 Speicher durch Variablen reservieren 417
10.2.2 Speicher gezielt reservierencccceuvveeenn. 418

11.

12.

13.

10.3 Das Printer.Deviceccccceeviieiiiiiiiiieieicceneneene
10.3.1 Auslesen der Druckparameter
10.3.2 Grafik-Dumps mit dem Printer-Device

Hardware-Basteleiencocoveoennniinccnneieccccee
11.1 Speichererweiterungen abschalten
11.1.1 Die 2000a-Platineccccoeveererenieninenreniennnes
11.1.2 Die 500er-Platinecccccoveeeerrrneecerrcnnecennne
11.2 Floppylaufwerke abschaltenccceeeeeenn.
11.3 Umriistung auf den MC 68010
11.4 Laute Lifter stéren sehr!ccccceevevvneeeeennnes
11.5 Den Amiga aus dem Takt bringen

11.5.1 Stop! Der Amiga hilt ancccceeevvvevvvvnennnneene
11.5.2 Die Bremse im Huckepackcccccceeeevveeeeeennnnes

11.6 Prozessor-Umschaltung macht
doppelt kompatibelccoovvveervvereerirrrneieeennenns

11.7 Das Null-Modem zur
Datenkommunikationccceeeeevevuieeiennereennnnnes

Das Workbench-Equipment ...

12.1 Mit Vorliebe: Preferencesccccceeeeeevevvvvvnnnnen.
12.1.1 Daten lesen und setzencccceeeeevvnnieennnnnns
12.1.2 Die neuen Preferences (Version 1.3.10)

12.2 Die Utilities auf der Workbench-Diskette
12.3 Die Utilities auf der Extras-Diskette

Sammelsurium der Tips & Trickscccccocvvrerereecrennne

13.1 Tips zum CLI: schneller, bunter, besser
13.2 Tips zum AmigaBASIC: rauf und runter!
13.3 . Ohne Miih’ und Not: Tips zum Drucker

13.4 Tips zur Arbeit mit dem Amiga
13.5 Verstecktes und Unbekanntes

14. Arbeiten mit Betriebssystem V1.3 ... 491

14.1
14.2

14.3

14.4
14.5
14.6

14.7
14.8

15. Betriebssystem-Erweiterungen

15.1

Stichwortverzeichnis

Die Pipeline im Amiga - das PIPE-Device ..

Das Shell hilt Vortrige (oder

was das SPEAK -Device kann)

Eine Muschel fiir’s CLI - das

NewCon-Devidceccceeiereeeeceecnnneeeeeeeeenn.
Das FastFileSystemcccccceeeeevveveveeeeeeeennnn.
Das FastFileSystem auf Harddisks

FastFileSystem auf der resetfesten

RAME-DISK ...ceeieieieceriiecrneeeeeccneeeeeesneeeessnnes
FastFileSystem auf normalen Disketten
Die neuen MatheLibraryscccccccevriveennnnnnns

Lade- und Speicherfunktionen

mit Pack-Algorithmusccccceeeevcveveennnnenn.

491

—— Einleitung 17

1. Einleitung

Das Wort Amiga hat es in sich! Es steht fiir beeindruckende
Grafik, klaren Sound, gute Programme und ein Betriebssystem
der unerschopflichen Moglichkeiten. Alles dies liegt nun vor ei-
nem, doch man kann es nicht nutzen. Wo soll man anfangen? So
lautet eine oft formulierte Frage. Dabei ist es klar! Bei den Tips
& Tricks fangen wir hier an.

Wir mochten Thnen aus moéglichst vielen Themengebieten ver-
steckte und bisher unbekannte Informationen bieten. Wir wollen
kurze, aber wirkungsvolle Programme vorstellen, die nicht das
tagliche Einerlei darstellen. Wir haben lange an dieser Superma-
schine gearbeitet und alle unsere Erfahrungen zusammgngetra-
gen, um sie Thnen zu prisentieren. In dieser Einleitung wollen
wir Thnen einen kurzen Wegweiser durch alle Kapitel geben,
damit Sie schon jetzt genau wissen, welche Informationen Sie wo
bekommen. In Kapitel 2, dem CLI-Kapitel, haben wir unsere
besten Erfahrungen zum Command Line Interpreter zusammen-
getragen. Welche Probleme treten bei der Arbeit mit dem CLI
auf, welche neuen Befehle gibt es, wie arbeite ich mit Batchda-
teien und was bringt z.B. der Mount-Befehl im Detail?

Dann steigen wir in die Welt des AmigaBASIC, der kostenlos
mitgelieferten Programmiersprache von Microsoft. Sie lernen,
auch die internen Funktionen des Betriebssystems zu nutzen und
erfahren vieles iiber Grafik und Programmierung. Hier haben
wir drei unser ‘Bestes gegeben.

Unter der Voraussetzung, dafl wir mit Ihnen einen aktiven Pro-
grammierer vor uns haben, kénnen Sie im vierten Kapitel alles
Wissenswerte zum Thema anwenderfreundliche und besonders
professionelle Gestaltung der eigenen Programme erfahren.
Wolf-Gideon Bleek und Sie werden mit Hilfe der Intui-
tion.Library aus dem Vollen schépfen und Programme schreiben,
die den Preferences in der Bedienerfreundlichkeit in nichts
nachstehen.

18 Amiga Tips & Tricks

Wissen Sie eigentlich, wie die Arbeit mit der Diskettenstation
funktioniert? Das ist eine wichtige Frage, denn jede Datensi-
cherung im Programm und auBerhalb lduft dariiber ab! Doch
keine Angst, wenn Sie nicht alles zu diesem Gebiet wissen. Die
nodtigen Grundlagen wird Ihnen leichtverstindlich Tobias Welt-
ner erkliren, der sich im DOS so gut ausgekennt, wie keiner von
uns.

Ohne vor noch so komplizierten Aufgaben zuriickzuscheuen, hat
sich Stefan Maelger auf den Dschungelpfad durch das Amiga-
BASIC gemacht und erstaunliche Dinge herausgefunden. Wissen
Sie, wie AmigaBASIC seine Programme oder Variablen organi-
siert? Konnen Sie sich vorstellen, was man mit Eingriffen alles
erreichen kann? Lesen und staunen Sie!

Jeder hat tagtiglich mit der Workbench zu tun. Ob es nur die
kleinen Aufgaben der File-Pflege sind oder auch die grolen und
aufwendigen Arbeiten. Wolf-Gideon Bleek hat sich lange damit
beschiftigt und sogar einen Weg herausgefunden, wie man die
englische Benutzeroberfliche zu einer deutschen und ganz indi-
viduellen macht. Wer mehr wissen will und sich nicht mit dem
Einfachen zufrieden gibt, ist hier genau richtig.

Die Icons, ein weiteres Spezialgebiet von Wolf-Gideon Bleek,
haben im achten Kapitel besondere Aufmerksamkeit gefunden.
Welche Daten im .info-File stehen und wie man sie nutzt oder
verdndert, ist ein groBes Themengebiet in diesem Kapitel. Sie
lernen die Bedienung des IconMerge von der Extras-Diskette
kennen und auch, wie man mit eigenen Programmen die Icons
modifiziert oder vollkommen umkrempelt. Fehler machen wir
alle, doch wie kann man sie verhindern? Diese wirklich wichtige
Frage wird durch die "Kontrollierte Fehlerbehandlung" erdrtert
und auch gelost. Somit sind Ihre Programme vor Bedien- und
Systemfehlern gefeit. Endlich!

Nachdem Sie nun sowohl fehlerfrei als auch geschickt unter
Ausnutzung aller Libraries programmieren, steht der n#chste
wichtige Punkt auf dem Papier. Ein weiteres Ziel der professio-
nellen Programmierung ist das Verkiirzen von Routinen und das

— Einleitung 19

damit verbundene Beschleunigen von Programmen. Hier hat sich
Wolf-Gideon Bleek wie auch im vorhergehenden Kapitel Ge-
danken gemacht, und herausgekommen ist die effektive Pro-
grammierung, mit deren Hilfe Sie IThre Programme um bis zu
20% in der Geschwindigkeit steigern kénnen. Wer hitte das ge-
dacht?

Nachdem nun so viel iiber AmigaBASIC und seine Program-
mierung gesagt wurde, meldet sich wieder Stefan Maelger zu
Wort, um mit interessanten und ausgekliigelten Beispielen die
Programmierung in Maschinensprache iiber BASIC darzubieten.
Das Problem des Ladens und Zusammenfiigens von Maschinen-
programmen wird genauso besprochen wie auch viele kleine und
gréBere Beispiele, die Funktionen ermoglichen, die aus BASIC
einfach unmoglich sind!

Eine wichtige Schnittstelle zur AuBlenwelt stellt die I/O-Kom-
munikation dar. Sie ermoglicht die Ausgabe auf dem Drucker,
das Ansprechen des Trackdisk.Devices und die Besorgung von
Speicher. Alles dies sind elementare Dinge, die man zur besseren
Programmierung einfach braucht. Tobias Weltner weifl, wie man
sie anwendet und hat sie ausfiihrlich beschrieben.

Nun wird es ernst. Es geht an das Innere des Amiga. Wir be-
schiftigen uns mit der Hardware. Wuflten Sie, dafl der laute
Lifter am 2000er leiser gemacht werden kann? Haben Sie ein
externes Laufwerk, das unbedingt abgeschaltet werden muf3?
Oder haben Sie stérenden Speicher, ohne den so manches Pro-
gramm laufen wiirde? Zu all diesen Problemen und noch einigen
Raffinessen mehr haben Wolf-Gideon Bleek und Stefan Maelger
Informationen zusammengetragen, die es Ihnen heil und den
Amiga kalt werden lassen!

Kennen Sie die DATA BECKER Software? Wissen Sie auch, wie
man damit umgeht? Sie haben zwar das Handbuch gelesen, doch
dies erkldrt nur alle Funktionen, nicht die komplexé Anwendung
am Arbeitstisch. Mit den Tips eines erfahrenen Autors wird es
Ihnen leichtfallen, mit BECKERtext oder TEXTOMAT zu ar-
beiten!

20 Amiga Tips & Tricks

Lange Arbeit, viele Erfahrungen. Wo bringt man dies unter? Das
haben wir uns alle gefragt und daraus ist das 13. Kapitel ent-
standen: "Sammelsurium der Tips & Tricks". Wolf-Gideon Bleek
hat sich die Aufgabe gestellt, alle als "Kleinigkeiten" abgetanen
Kniffe, Tips, Hilfen und natiirlich Tricks aufzuschreiben und in
dieses Buch aufzunehmen. Jetzt kdnnen auch Sie auf jahrelange
Arbeit zuriickgreifen. Oft helfen Kleinigkeiten mehr als grofle
Programme!

Hurra, es ist soweit! Tobias Weltner und Stefan Maelger mit ih-
rem Amiga 1000 haben das neue Betriebssystem Version 1.3 ge-
testet. Herausgekommen ist ein ganzes Kapitel voller speziell auf
diese Version abgestimmter Informationen. Was hat sich gedn-
dert? Wie kompatibel ist das neue Kickstart wirklich? Dies und
vieles mehr finden Sie hier.

Als Abschlu3 und Abrundung des neuesten Tips & Tricks zum
Amiga werden Sie im letzten Kapitel mit der Bedienung und
Anwendung der mitgelieferten Utility-Programme vertraut ge-
macht. Es gibt haufenweise neue Parameter! Viele kleine Hilfen
sind dazugekommen! Wolf-Gideon Bleek hat aufmerksam und
genau hingeschaut und alles Wichtige fiir Sie ausprobiert. Hier
ist es!

Nun haben Sie einen runden Uberblick iiber das neueste Tips &
Tricks. Wir alle hoffen, dal Sie Freude haben und viele Ent-
deckungen mit uns zusammen machen werden. Sie halten eine
Fundgrube an Informationen zu allen méglichen Themengebieten
in Thren Hinden. Wie Sie alles nutzen kénnen, steht hier. Sie
brauchen nur noch zu lesen!}

1 Aus drucktechnischen Griinden ist es uns leider nur méglich, maximal 70
Zeichen pro Zeile zu drucken. Aus diesem Grund kann es bei Programmen zu
erzwungenen Zeilenumbriichen kommen. Wir bitten um Verstindnis.

—— CLI - Command Line Interpreter 21

2. CLI-Command Line Interpreter

CLI steht fir Command Line Interpreter. Es ist eine Benutzer-
oberfliche, die sich ohne die vielen bunten Symbole (Icons) und
ohne Maus ganz auf die Tastatur verlif3t. Das CLI kennt im
Moment ca. 50 verschiedene Befehle (Workbench Version 1.2),
es werden aber in Zukunft noch viele weitere dazu kommen.

Das CLI arbeitet eng mit AmigaDOS, dem Disk Operating Sy-
stem, zusammen. Viele Spezialbefehle erleichtern den Umgang
mit Disketten; einige Funktionen lassen sich sogar von der
Workbench aus iiberhaupt nicht 16sen. Das CLI wird normaler-
weise vom Benutzer via Intuition aufgerufen. Es ist aber auch
moglich, beliebige CLI-Kommandos von BASIC-Programmen
aus zu benutzen (dasselbe gilt fiir "C").

2.1 Fragen zum CLI

Nach einigen Gesprichen mit frischgebackenen Amiga-Besitzern
stellten wir fest, daB einige Fragen immer wieder auftauchen.
Da wir davon ausgehen, dafl auch viele von Ihnen sich diese
Fragen stellen werden, geben wir IThnen hier Antwort.

Frage 1
Wie gelange ich zum CLI?

Der Command Line Interpreter befindet sich serienmifBig auf
jeder Workbench-Diskette. Es gibt eine Reihe von Wegen, um
ans CLI heranzukommen:

a) Mit Intuition. Dies ist der Normalfall. Sie haben Ihr System
gebootet, die Workbench-Diskette befindet sich im Lauf-
werk. Vor Thnen liegt nun die tiefblaue "Workbench-Screen".
Folgen Sie diesen Schritten:

22

b)

c)

Amiga Tips & Tricks

» Klicken Sie das Disk-Icon der Workbench-Disk an.

Es wird sich ein Fenster namens "Workbench.." mit
allerlei Dingen darin 6ffnen.

» Klicken Sie die Schublade "System” an.

Es wird sich ein Fenster namens "System" Offnen,
wiederum randvoll gefiilit mit den Errungenschaften
unserer heutigen Leistungsgesellschaft, vor allem aber mit
einem Icon namens "CLI", das entweder "1>" darstellt
(Version 1.1) oder ein nettes kleines Fenster mit 1> darin
(Version 1.2 und dariiber).

Sollten Sie kein CLI-Icon vorfinden, so liegt das daran,
daB bei Ihrer Workbench-Diskette noch die
Kindersicherung eingeschaltet war. Klicken Sie in diesem
Fall das Icon "Preferences" im "Workbench..."-Fenster an,
und schalten Sie im Feld CLI von OFF auf ON. Speichern
Sie am besten das Ergebnis mit SAVE gleich wieder ab.
Nun miissen Sie das "System"-Fenster schlieen und
erneut 6ffnen. Und siehe da: Ein CLI-Icon!

» Klicken Sie das CLI-Icon an.

Es wird unverziiglich ein Fenster namens "New CLI" er-
scheinen, das Sie in alle Richtungen vergréflern und ver-
kleinern konnen, das jedoch keinen Ausknips-Knopf in
der linken oberen Ecke besitzt. Sie haben es geschafft! Sie
haben Ihr eigenes CLI!

Mit AmigaDOS. AmigaDOS verfiigt iiber den Befehl "Exe-
cute", mit dem beliebige CLI-Befehle ausgefithrt werden
kénnen. AmigaDOS wiederum kann iiber die systeminternen
Libraries angesprochen werden. Auf diese Art und Weise
kommen selbst AmigaBASIC und "C" ans CLI (sieche Bei-
spielprogramme in diesem Buch).

Noch raffinierter! Ein ganz einfacher Weg ist der folgende:
Sie haben gerade Ihr System eingeschaltet. Die Kickstart-
Disk ist bereits erfolgreich geladen worden, nun flimmert
eine gigantische Hand mit einer Workbench-Disk darin auf
dem Bildschirm. Bis jetzt ist alles Routine. Aber jetzt! Legen
Sie die Workbench-Disk ins Laufwerk. Die Hand ver-

—— CLI- Command Line Interpreter 23

schwindet, das System bootet. Geben Sie nun rasch "Tobi ist
lieb!" iiber die Tastatur ein! Nun brauchen Sie nur noch zu
warten, bis das Laufwerk zum Stillstand gekommen ist. Ist
die rote Lampe erloschen, dann nehmen Sie die Workbench-
Disk rasch aus dem Laufwerk. Loéschen Sie nun "Tobi ist
lieb!" wieder mit der BACKSPACE-Taste. Sobald der letzte
Buchstabe getilgt ist, treten eine Reihe Fehlerrequester auf.
Beachten Sie sie einfach nicht, sondern klicken Sie resolut
immer wieder auf CANCEL. Endlich erscheint

1>

auf dem Bildschirm - das CLI! Geben Sie schnell noch
1> Loadwb

ein, und das CLI steht zu Ihrer vollen Verfiigung!

Frage 2
Wie kriege ich das CLI wieder weg?

Das CLI-Fenster hat keinen Ausschalter. Es 18st sich mit folgen-
der Eingabe von selbst in Wohlgefallen auf:

1> endcli

Haben Sie von einem CLI aus Programme gestartet, dann bleibt
das CLI-Fenster allerdings solange erhalten, wie die Programme
laufen.

Frage 3

Ich habe keine Schreibmaschine, aber einen an meinen Amiga an-
geschlossenen Drucker. Kann man da nichts machen?

Na klar! Das CLI ist der geborene Problemldser. Geben Sie fol-
gendes CLI-Kommando ein:

1> copy * to prt:

24 Amiga Tips & Tricks

wobei * das Symbol des aktiven CLI-Fensters ist. Nach dieser
Eingabe verschwindet das gewohnte CLI-Prompt "1>", lediglich
der Cursor hilt Thnen die Treue. Jede Tastatureingabe wird nun
nach Druck der RETURN-Taste auf den Drucker ausgegeben -
quasi eine Schreibmaschine mit einzeiligem Korrekturspeicher!

Aus dem Schreibmaschinen-Modus kommen Sie wieder heraus,
wenn Sie gleichzeitig die CTRL- und \-Taste driicken. Je nach
Lust und Laune kénnen Sie iibrigens auch Text in ein anderes
Fenster kopieren...

1> copy * to CON:10/10/300/100/Kopie-Text

...oder sich selbst wiederholen...

1> copy * to *

Frage 4

Ich besitze nur ein Diskettenlaufwerk. Jedesmal, wenn ich einen
CLI-Befehl verwende, muB ich kurz die Workbench-Diskette ein-
legen. Kann man das nicht verhindern?

Jedes CLI-Kommando ist auf der Workbench-Disk als kleines
Programm im Directory "c:" abgespeichert. Wenn Sie nun einen
CLI-Befehl verwenden, lidt der Amiga diesen normalerweise
jedesmal von der Workbench-Disk nach. Dadurch spart man
natiirlich eine Menge Speicherplatz, denn die CLI-Kommandos
belegen so keinen Systemspeicher. Auf der anderen Seite muf}
man laufend Disketten wechseln, wenn man nur iber ein Lauf-
werk verfiigt. Wenn Sie iiber geniigend Speicher verfiigen, kon-
nen Sie aber alle (oder selektierte) CLI-Befehle ins RAM ko-
pieren. Das geht so:

1> makedir ram:c
1> copy sys:c to ram:c
1> assign c: ram:c

Zunichst wird in der RAM-Disk ein Unter-Directory namens
"c" angelegt. Anschlieend werden alle CLI-Befehle in dieses
Directory kopiert. SchlieBlich wird dem Amiga mitgeteilt, daB

——— CLI - Command Line Interpreter 25

das Kommando-Directory ¢: nun auf der RAM-Disk liegt. Ist
Ihnen der Speicher Thres Rechners doch noch zu schade, dann
kénnen Sie sich auf die meistbenutzten CLI-Kommandos be-
schrinken. Zum Beispiel so:

1> makedir ram:c

1> copy sys:c/copy to ram:c
1> copy syss12:c/dir to ram:c
1> copy sys:c/list to ram:c
(...)

1> assign c: ram:c

Wollen Sie wieder zuriick zum Workbench-CLI, dann funktio-
niert das in jedem Fall (sofern Sie die Workbench-Disk in das
eingebaute Laufwerk 0 legen):

1> df0:c/assign c: df0:c

Nach Beendigung Ihrer Vorhaben empfiehlt es sich, das RAM-
CLI wieder zu l6schen, um Speicherplatzreserven zuriickzube-
kommen:

1> delete ram:c#?
1> delete ram:c

Frage 5
Wie lassen sich CLI-Kommandos unterbrechen?

CTRL-C unterbricht einen Befehl. CTRL-D veranlaf3t einen
Execute-Befehl, so schnell wie moglich den Programmablauf zu
unterbrechen. CTRL-E und CTRL-F werden nur in ganz be-
sonderen Fillen gebraucht.

Frage 6

Gibt es einen Joker, vergleichbar dem * bei alten Commodore-
Rechnern?

Ja, es handelt sich um die Symbolkombination #?. Das Zeichen
* reprisentiert ja bereits das aktuelle CLI-Fenster.

1> delete ram:#?

26 Amiga Tips & Tricks

16scht die gesamte RAM-Disk.

1> run amig#?

funktioniert jedoch beispielsweise nicht, denn der Amiga weil3
nicht, welches Programm ausgefithrt werden soll. Es konnten ja
mehrere Programme existieren, die mit der Buchstabenkombina-
tion "amig" beginnen.

Frage 7

Gibt es eine Moglichkeit, die Befehissyntax eines besiimmten CLI-
Befehls herauszufinden?

Fast alle CLI-Befehle verfiigen iiber eine Eingabehilfe. Falls Sie
also nicht mehr genau wissen, wie ein spezieller Befehl aufge-
rufen wird, dann geben Sie einfach den Befehlsnamen gefolgt
von einem Leer- und einem Fragezeichen ein. Zum Beispiel:

1> list ?

Das Ergebnis ist:

DIR,P=PATH/K,KEYS/S,DATES/S,NODATES/S, T0/K, S/K, SINCE/K, UPTO/K,
QUICK/S:

Na, alles klar? DIR steht fiir ein Directory, kann aber auch
weggelassen werden (dann wird das augenblickliche Directory
ausgegeben). Alle weiteren Angaben enthalten neben dem Op-
tionswort eine Bedingung:

/A: Dieses Argument muB angegeben werden.

/K: Dieses Argument muB in Verbindung mit einem Parameter
gegeben werden.

/S: Dieses Argument steht fiir sich allein.

So sind die folgenden Kommandos moglich:

1> list df0: keys nodates

—— CLI- Command Line Interpreter 27

Gibt das Inhaltsverzeichnis "df0:" mit den jeweiligen Anfangs-
blocken, jedoch ohne Datumsangabe aus.

1> list df0: since 04-Oct-86 upto today

Gibt die Programme des Inhaltsverzeichnisses "df0:" aus, die
zwischen dem 4. Oktober 1986 und heute geschrieben worden
sind.

Frage 8

Ich verfiige iiber ein Laufwerk und moéchte ein Programm kopieren.
Wie funktioniert das?

Erste Moglichkeit: Es handelt sich um ein kleines Programm.
Laden Sie es zunichst in die RAM-Disk:

1> copy programm to ram:
1> copy c/copy to ram:

Der Copy-Befehl wurde in der zweiten Anweisung ebenfalls ko-
piert, um zu verhindern, dafl die Workbench nachgelegt werden
mufBl. Legen Sie nun die Zieldiskette ins Laufwerk. AnschlieBend
wird das Programm zuriickkopiert:

1> ram:copy ram:programm to dfO0:

Legen Sie nun bitte wieder die Workbench-Disk ein. Die RAM-
Disk mufB3 nur noch geloscht werden, und schon sind wir fertig:

1> delete ram:#?

Eine andere Methode bedient sich der Intuition-Icons. Sie miis-
sen dazu zunichst die Originaldiskette einlegen und das Disk-
Icon anklicken. Sobald das Icon des gewiinschten Programms
erscheint, legen Sie die Zieldiskette ein. Offnen Sie auch diese
durch Anklicken des Disk-Icons. Nun kénnen Sie das Icon des
Originalprogramms mit Hilfe der Maus ins Fenster der Zieldis-
kette bewegen. Der Rest geschieht automatisch per Requester:
Die Disketten miissen ein paarmal gewechselt werden.

28 Amiga Tips & Tricks

Achtung: Es gibt Programme, die gar kein Icon besitzen. Sie
erscheinen also auch nicht als Symbol in einem In-
tuition-Fenster. Sie konnen aber solch einem Pro-
gramm ein Icon beschaffen! Legen Sie dazu die
Workbench-Disk ein. Die folgenden Zeilen sind
notig:
1> copy dfO:clock.info to ram:

1> rename ram:clock.info as ram:programm.info
1> copy c/copy to ram:

Jetzt legen Sie die Diskette ein, auf der sich Ihr Originalpro-
gramm befindet. Geben Sie nun ein:

1> ram:copy ram:programm.info to df0:

Nun hat Thr Programm (hier namens programm) ein Icon. Legen
Sie wieder die Workbench ein, und 16schen Sie die RAM-Disk:

1> delete ram:#?

Frage 9
lch méchte gern eine Liste aller CLI-Befehisworte auf den Drucker
ausgeben. Geht das?

Das funktioniert mit einer einfachen Befehlskombination:

1> list quick sys:c to prt:

Die Option "quick" bewirkt, dal nur die Befehlsnamen ausgege-
ben werden. Erschaffungsdaten, Uhrzeit, Schutzstatus sowie Fi-
legréBe werden nicht ausgedruckt. Die CLI-Befehle selbst stehen
im Unter-Directory c: des System-Directories sys:. Schneller geht
es, wenn Sie die Multitasking-F#ihigkeiten Ihres Amigas aus-
nutzen:

1> run list quick sys:c to prt:

—— CLI - Command Line Interpreter 29

Hier wird ein weiterer Task gedffnet, der die Druckerausgabe
bewerkstelligt. Sie konnen also gleich mit anderen Sachen wei-
terarbeiten, wihrend Thr Amiga quasi im Hintergrund die Be-
fehlsworte ausgibt.

Frage 10
ich habe zwei Laufwerke und méchte ein Programm kopieren. Ein
leichtes Unterfangen?

Sicher. Es geniigt eine CLI-Zeile:

1> copy dfO:originalprogramm to df1:

Hierbei mufl sich das Originalprogramm in Laufwerk 0 im Di-
rectory df0: befinden. Falls Thr Programm ein Icon besitzt, muf3
auch dieses kopiert werden:

1> copy dfO:originalprogramm.info to df1:

Natiirlich kénnen Sie auch per Intuition das Programm-Icon di-
rekt von einer Diskette zur anderen schieben (siehe Frage 10).

Frage 11
lch méchte eine ganze Diskette kopieren. Wie geht das?

Mit dem Befehl "diskcopy". Es spielt dabei keine Rolle, ob Sie
iiber einen oder mehrere Drives verfiigen. Achtung: Um ein un-
gewolltes Loschen der Original-Disk auf jeden Fall zu verhin-
dern, sollten Sie den Schutzpin an der Seite der Originaldiskette
zumindest fiir die Dauer des Kopierens nach oben schieben, falls
dies noch nicht getan wurde.

Sie besitzen ein Laufwerk:
1. Legen Sie die Workbench-Diskette ein.
2. Tippen Sie den CLI-Befehl ein:

1> diskcopy from df0: to df0: name "kopie"

30 Amiga Tips & Tricks

Nun erscheint die Aufforderung, die Quell-Diskette
(SOURCE) einzulegen. Kommen Sie dem nach. Nach einer
Weile muB3 die Ziel-Diskette (DESTINATION) eingelegt
werden, und nach ein paar weiteren Wechseln haben Sie es
geschafft.

Sie besitzen zwei Laufwerke:
1. Legen Sie die Workbench-Diskette ein.
2. Tippen Sie den CLI-Befehl ein:

1> diskcopy from df0: to df1: name "kopie"

Stecken Sie nun gemif der Aufforderung die Quell-Disk in
Laufwerk 0, die Ziel-Disk in Laufwerk 1. Die Disketten
brauchen natiirlich nicht mehr gewechselt zu werden.

Frage 12
Was ist eine Startup-Sequence und was kann man mit ihr machen?

Die Startup-Sequence ist eine Liste von CLI-Befehlen, die ganz
zu Anfang beim Booten des Systems ausgefithrt wird. Wie das
aussieht, konnen Sie sich leicht veranschaulichen:

1> execute s/startup-sequence

Sie konnen sich diese CLI-Befehle auch einmal anschauen:

1> type s/startup-sequence

Wenn Sie Lust haben, kénnen Sie sich auch eine eigene Startup-
Sequenz schreiben. Sie sollten jedoch beachten, da8 das Kom-
mando loadwb unbedingt iibernommen wird, da sonst das Intui-
tion-Icon-System nicht aktiviert wird. Sollten Sie dann einmal
den CLI durch endcli verlassen, stehen Sie quasi vor zugeschla-
gener Haustiir, denn es wiren keine Icons da, nur ein leerer
Bildschirm. Eine eigene Startup-Sequenz kann man iiber das
Kommando "ed" erstellen:

1> ed s/startup-sequence

——— CLI - Command Line Interpreter 31

Bei Version 1.2 der Workbench sehen Sie nun:

echo "Workbench Diskette (Version 1.2/33.43)"
echo "wu
echo "(Datum und Uhrzeit mit 'Preferences' einstellbar)"
if EXISTS sys:system
path sys:system add
endif
BindDrivers
setmap d
Loadwb
endcli > nil:

Mit den Cursortasten konnen Sie den Cursor bewegen. Auf
Druck der ESC-Taste landen Sie in der Kontrollzeile. Ein "d"
16scht die Zeile, in der sich der Cursor zuletzt befand. Léschen
Sie beispielsweise die folgenden Anweisungen:

setmap d
endcli > nil:

Nun speichern Sie die Sequenz wieder durch Druck auf die
ESC-Taste und anschlieBend "x". Probieren Sie die neue Sequenz
doch gleich mal aus!

1> execute s/startup-sequence
Wie Sie sehen, haben Sie wieder eine amerikanische Tastaturbe-

legung, und das CLI-Fenster ist auch nicht verschwunden.

Frage 13
Kann der Amiga im CLI sprechen?

Sicherlich, wenngleich man auch keine Parameter veridndern
kann. Das Kommando heifit "say" und wirkt wie ein Print-
Kommando. Leider ist es unmoglich, Programm-Files aus-
sprechen zu lassen. Lediglich unmittelbar nachfolgender Text
wird verlesen:

1> say tobi is a real nice guy!

32 Amiga Tips & Tricks

Interessant ist dieser Befehl auch in Zusammenhang mit der
Startup-Sequenz (Frage 13)! Stellen Sie sich vor, IThr Amiga be-
grit Sie jedesmal nach dem Einschalten mit einem netten
"Guten Tag!".

Frage 14
Wie kann ich ein C-Listing auf den Drucker ausgeben?

Am besten geschieht dies mit dem CLI-Befehl type. Ein Bei-
spiel: Sie haben ein C-Listing, erstellt wahrscheinlich mit ed
unter dem Namen test.c auf dfl:. Geben Sie nun ein:

run type dfl:test.c to prt: opt n

Mit "run" nutzen Sie die Multitasking-Fihigkeit des Amiga -
wihrend der Drucker lustig rattert, konnen Sie schon wieder et-
was anderes fabrizieren. Der Zusatz "opt n" sorgt dafiir, dafl der
Ausdruck des C-Listings mit Zeilennummern versehen wird.
Dies ist recht hilfreich bei der Fehlersuche.

Frage 15
Wie nutze ich die Multitasking-Féhigkeiten des Amigas bei der tag-
lichen Arbeit mit dem CLI?

Normalerweise verarbeitet das CLI immer einen Befehl nach
dem anderen; von Multitasking kann also keine Rede sein. Man
muf3 hier ganz klar sagen, dal das CLI selbst nicht mehrere
Aufgaben gleichzeitig l6sen kann. Durch das Multitasking-Be-
triebssystem des Amiga ist es aber moglich, mehrere Single-
Task-CLIs gleichzeitig ablaufen zu lassen.

Wollen Sie also beispielsweise das Inhaltsverzeichnis der System-
Diskette ausdrucken, anschlieBend einen Text editieren und
schlieBlich einen Satz vom Amiga aussprechen lassen, so ge-
schieht dies normalerweise so:

1> list sys: to prt:
1> ed text
1> say hello user

—— CLI- Command Line Interpreter ‘33

Schneller geht es, bedient man sich mehrerer CLIs:

1> run list sys: to prt:
1> run ed text
1> say hello user

Der vorgestellte Befehl "run" bewirkt, dafl die nachfolgende Be-
fehlskombination einem neuen CLI iibertragen wird. Das ur-
spriingliche CLI hat dann damit nichts mehr zu schaffen und
kann schon an die niichste Aufgabe gehen, ohne auf die Erledi-
gung der ersten Aufgabe zu warten.

Einschrinkend mufB3 an dieser Stelle jedoch gesagt werden, daf3
auf jeden Fall vermieden werden sollte, daf3 zwei CLIs gleich-
zeitig auf ein und dasselbe Laufwerk (oder den Drucker) zu-
rickgreifen. Im Falle des Disk Drives teilen sich dann n&mlich
beide CLIs Rechenzeit. Das hat zur Folge, dal die gesamte
Operation linger dauert, als wenn sie nacheinander erfolgt wire.

Eine weitere Moglichkeit, mehrere Aufgaben gleichzeitig 16sen
zu lassen, ist das Offnen mehrerer CLIs durch den Befehl
"NEWCLI". Dadurch bekommt der Anwender eine komplette
weitere Eingabeschnittstelle. Diese Methode eignet sich beson-
ders, wenn man nicht kurzfristig CLI-Befehle ausfithren lassen
mochte, sondern iiber einen lingeren Zeitraum mit mehreren
Funktionen des CLI beschiftigt ist. Das folgende Beispiel macht
dies deutlich:

1> newcli
1> list df0: quick
2> type files opt h

Hier wurde ein neues CLI geoffnet, und alle Filenamen des In-
haltsverzeichnisses df0: wurden ausgegeben. AnschlieBend wur-
den von dem zweiten, neuen CLI aus die Datei-Inhalte ausgege-
ben. Dabei kdnnen Sie nun Dateinamen fiir Dateinamen aus dem
ersten CLI-Fenster lesen und im zweiten Fenster ungestort ar-
beiten, ohne daf3 die Liste der Namen zerstort wiirde.

34 Amiga Tips & Tricks

Eine weitere Moglichkeit des NEWCLI-Befehls sind seine Op-
tionen. Man kann nimlich die Dimensionen des neuen CLI-
Fensters selbst festlegen. Dies geschieht so:

1> newcli con:0/10/639/100/neuesCli

Die ersten beiden Zahlen geben x- und y-Koordinate der linken
oberen Fensterecke an, die beiden folgenden Zahlen legen Breite
und Hohe fest. Dadurch lassen sich neue CLI-Fenster geschickt
legen, ohne andere zu verdecken. Arbeitet man mit mehreren
CLIs, ist es lediglich: notig, jeweils die rechte obere Ecke eines
jeden Fensters unbedeckt zu lassen. So kann man ein jedes Fen-
ster bei Bedarf in den Vordergrund holen, um damit zu arbeiten.

Frage 16
Welche Maglichkeiten bietet der Amiga, Texte ausgeben aus-
zugeben?

Die simpelste Méglichkeit ist das folgende Statement:

1> copy * to prt:

Sie finden nihere Informationen hierzu bei Frage 4. Etwas
komfortabler ist der eingebaute CLI-Editor "ed". Wenn Sie also
einen kurzen Brief schreiben wollen, bietet sich diese Moglich-
keit an:

1> run ed ram:brief

Sofort erscheint das Ed-Fenster, und Sie kénnen mit der Ausar-
beitung Ihres Briefes beginnen. Soliten Sie dabei die deutsche
Tastaturbelegung benutzen wollen, geniigt der verinderte Auf-
ruf’

1> setmap d
1> run ed brief
1> setmap usa

Unabhéngig von Ihrem Grund-CLI liuft nun "Ed". Sie kénnen
jetzt ganz nach Herzenslust Texte eingeben. Wenn der Brief

—— CLI - Command Line Interpreter 35

schlieBlich fertiggestellt ist, geniigt die Tastenkombination
ESC+X, um ihn unter dem Namen "brief" auf die Diskette zu
speichern. AnschlieBend kann er mittels

1> type brief to prt:

ausgedruckt werden. Als weiteren Vorteil gegeniiber der einfa-
chen Ausgabe von Frage 4 kann man die Tatsache ansehen, daf3
der geschriebene Text auf der Diskette gespeichert ist. Er geht
also nach dem Ausschalten des Rechners nicht verloren und
kann auch noch nach Wochen gedruckt oder durch

1> run ed brief

erneut verindert werden. Wollen Sie den Text jedoch nicht lin-
ger speichern, geniigt:

1> delete brief

Eine dritte Moglichkeit, Texte zu erstellen, bietet das Notepad.
Sie rufen es wie folgt auf:

1> setmap d
1> run utilities/notepad
1> setmap usa

Hierbei handelt es sich um einen etwas erweiterten Notizblock,
mit dem Sie die verschiedenen Zeichensitze (Fonts) benutzen
konnen. Das ist aber auch sein grofter Vorteil, ansonsten ist
"Ed" vorzuziehen.

Frage 17

Ilch méchte die Dateien auf meiner Workbench-Diskette sichtbar
machen. Wie geht das?

Wann immer Sie mit der Maus ein Disk-Icon anklicken, erschei-
nen auf dem Bildschirm nur die Dateien, die iiber ein gleich-
namiges Info-File verfiigen. Dieses Info-File enthdlt das Aus-
sehen des Symbols, mit dem das entsprechende File reprisentiert
werden soll.

36 Amiga Tips & Tricks

Nun gibt es auf der Workbench-Diskette oftmals Dateien ohne
ein solches .info-File. Mochte man auch diese Dateien sichtbar
machen, bedient man sich am besten der nachfolgenden Kom-
mandosequenz. Geben Sie zu diesem Zweck bitte zunichst die
folgende Anweisung ein:

1> ed S:show

Kurz darauf wird sich der Editor "Ed" melden. Nun schreiben
Sie einfach den folgenden Text ab:

.key datei/a
.bra (
ket)
if exists sys:cli.info
echo "erstelle .info-File"
if exists (datei)
copy sys:cli.info to (datei).info

else
echo "es gibt gar kein solches quell-file!™"
endif
else
echo "kein .info-original gefunden"
endi f
quit

Nun driicken Sie zunichst die ESC-, dann die X-Taste. Darauf-
hin wird dieser Text unter dem Namen "Show" als Kommando-
sequenz in das Verzeichnis S: geschrieben. Sie konnen nun jede
Datei, die iiber kein eigenes .info-File verfiigt und deshalb bis-
her unsichtbar blieb, nachtriglich mit einem .info-File versehen.
Dazu geben Sie lediglich ein:

1> execute show NameDesFiles

Durch den Execute-Befehl wird die Kommandosequenz "show"
aktiviert. Der Befehl .key sorgt dafiir, da3 das Argument, der
Name des gewiinschten Programms, an Stelle des Platzhalters
"datei" eingesetzt wird. Der Zusatz "/A" bewirkt, da3 dieses Ar-
gument zwingend eingegeben werden muf3. Die Befehle .bra und
ket definieren die Zeichen, die als Anfang und Ende den Platz-
halter markieren.

—— CLI- Command Line Interpreter 37

Nun wird gepriift, ob es das .info-File "cli.info" gibt, denn das
soll als Original dienen. Sollte sich dieses File nicht in Ihrem
Directory befinden, dann sollten Sie es vor Aufruf des Executes
mittels

1> copy dfO:system/cli.info to dfO:

ins Haupt-Directory kopieren. Unter Umstinden liegen die
neuen Datei-Symbole genau iibereinander, denn es sind ja
eineiige Zwillinge. Sie brauchen dann die Icons bloB auseinan-
derzuziehen und mittels des Workbench-Meniipunktes "Snapshot"
einzufrieren.

Frage 18
Wie kann ich verschiedene Texte zusammenfassen?

Sehr hiufig kommt es vor, da3 man iiber verschiedene separate
Textstiicke verfiigt. Das kénnten zum Beispiel Teile eines "C"-
Listings sein oder Briefkopf, Text sowie ein Anhang. "Ed" kennt
leider keine Moglichkeit, zusidtzliche Texte nachzuladen. Statt
dessen gibt es den JOIN-Befehl. Nehmen wir den Fall an, Sie
verfiigen iiber die drei Text-Dateien "kopf", "text" und "schluss".
Sie wollen aus diesen Teilstiicken einen zusammenhingenden
Text erstellen. Dies erledigt JOIN:

1> JOIN kopf text schluss AS brief

Sie erhalten unter dem Dateinamen "brief" eine Zusammen-
fassung der drei Einzelkomponenten.

Frage 19

Wie kann ich bestimmte Textpassagen meiner Dateien suchen las-
sen?

Mit Hilfe des SEARCH-Befehls konnen Sie beliebige Dateien
nach einem markanten Wort oder Satz durchsuchen. Sie rufen
ihn mit diesen Parametern auf:

1> search (name) SEARCH (suchtext) ALL

38 Amiga Tips & Tricks

name Name der zu durchsuchenden Datei, sonst Disketten-
Directory.

suchtext Text, nach dem gefahndet werden soll.

ALL Alle untergeordneten Directories werden ebenfalls
durchsucht.

Beispiele

1> search df0: SEARCH "tobi" ALL

grast alle Dateien der Diskette im Laufwerk df0: nach dem Wort
"tobi" ab.

1> search brief SEARCH "Meier"

kontrolliert, ob sich der Name "Meier" im File "brief" befindet.

1> search dokum#? SEARCH "Rinteln, den"

sucht alle Dateien im aktuellen Verzeichnis, die mit den Buch-
staben "dokum" beginnen, nach dem Satzanfang "Rinteln, den"
ab. C-Programmierer kénnen ebenfalls mit diesem Befehl auf
die Suche gehen, und zwar nach den Namen ihrer Prozeduren
und Variablen innerhalb ihrer Quell-Listings.

Frage 20
LéBt sich der Inhalt eines Textfiles eigentlich sortieren?

Ja, das geht. Dazu dient der SORT-Befehl. Mit ihm lassen sich
Text-Dateien mit bis zu 200 Zeilen alphabetisch sortieren. Dies
ist besonders niitzlich fiir AdreBdateien. Befinden sich bei-
spielsweise in der Datei "adressen" die ungeordneten Adressen
Ihres Freundeskreises, so geniigt dieser Aufruf:

1> sort adressen to geordnet

um eine alphabetisch geordnete Liste unter dem Namen "geord-
net" wiederzufinden. Sollen mehr als 200 Zeilen Text sortiert
werden, dann wird es nétig, den Stack zu erhéhen. Das kann
man mit dem STACK-Befehl machen.

—— CLI- Command Line Interpreter 39

2.2 Neue CLI-Befehle

Mit dem Ende des Jahres 1988 ist auch endlich die neue giiltige
Version der Workbench herausgekommen! Mit dem Kickstart 1.3
und der Workbench 34.20 liegt vor uns eine vollkommen iiber-
arbeitete Version des Betriebssystems. Neu hinzugekommen sind
CLI-Befehle, die dem Benutzer das Leben noch leichter machen
sollen. Es handelt sich dabei um "Ask", "Avail", "Break", "Eval",
"FF", "GetEnv", "Lock", "NewShell", "RemRAD", "Resident",
"SetPatch", "SetEnv", "Which", "EndSkip" und "XlIcon". Alle diese
Befehle sind natiirlich nicht in den #4lteren Handbiichern er-
wihnt und sollen deshalb hier erklirt werden. Um keinen zu be-
nachteiligen, werden sie jetzt in alphabetischer Reihenfolge be-
schrieben:

Ask (Fragen an den Benutzer)

Bisher war es in Batchdateien nur moglich, einen vorgegebenen
Befehlsablauf abzuarbeiten. Dabei war die einzige Moglichkeit,
diesen Ablauf zu beeinflussen, iiber das IF-Kommando erlaubt.
Allerdings wiinschen sich viele CLI-Anwender auch einmal den
Weg iiber den Dialog zum Benutzer. So kénnte man in der Star-
tup-Sequence fragen, ob nicht z.B., anstatt das CLI zu schlieBen,
dieses lieber offen bleiben soll, damit man nicht wieder erst das
Icon anklicken mufl. Und genau fiir dieses Problem wurde Ask
geschaffen. Es ist jetzt endlich implementiert worden, daf3 Sie
auch Fragen an den Benutzer richten kénnen.

Dafiir schreiben Sie einen Text hinter Ask, genau wie Sie es
auch bei Echo machen. Dann wird beim Abarbeiten daraus eine
Frage, die der Benutzer mit Yes oder No beantworten kann.
Wenn die Frage nun mit Y oder N beantwortet wird, so erhilt
das Programm einen entsprechenden Fehlercode. Das heif3t: Bei
Y oder Yes liuft das Programm ohne irgendwelche Anderungen
ab. Bei N oder No wird ein Fehlercode von 5 erzeugt, der dann
z.B. iiber If Warn abgefragt werden kann. Sehen Sie hier ein
Beispiel fiir eine Batch-Datei mit dem ASK-Kommando:

40 Amiga Tips & Tricks

Avail (Wieviel? Wovon iiberhaupt?)

Vielleicht hatten Sie auch schon einmal folgendes Problem: Sie
arbeiten gerade im CLI z.B. mit einem Compiler und brauchen
unbedingt die Speicherbelegung, damit Sie beurteilen kdnnen, ob
der neue Programm-Code noch in den Speicher paflt. Bisher war
die Lésung des Problems nur damit zu bewiltigen, dafl man die
Workbench iiber LoadWB lud und dann mit einem Klick in die
Workbench-Screen in der Titelleiste den freien Speicher an-
gezeigt bekam.

Natiirlich war auch diese Angabe ziemlich ungenau, aber es
reichte. Viele Softwarehersteller boten deshalb kleine Info-Pro-
gramme an, die laufend die aktuelle Speicherverteilung in einem
kleinen Window ausgaben. Aber der Nachteil war ein neuer
Task, der vielleicht wertvolle Prozessorzeit stiehlt, und auch der
Platz auf dem Bildschirm, der verdeckt wurde.

Im neuen CLI ist dies anders! Es gibt den Befehl Avail, mit dem
die aktuelle Speicherverteilung ausgegeben wird. Aber nicht nur
dies! Weil man das ja schon alles kennt, haben sich die Pro-
grammierer von Commodore noch einige Features ausgedacht: So
wird zuséitzlich zum freien FAST- und CHIP-RAM noch das
belegte in einer Tabelle vermerkt. Weiterhin fithrt die Tabelle
eine Spalte, in der nach momentaner Konfiguration die maxi-
malen Speichergréflen angegeben sind.

Und als letztes finden wir noch den jeweils groften freien
Speicherblock der RAM-Sorten. Somit kann man auch beurtei-
len, warum z.B. AllocMem() einen Fehler zuriickliefert, obwohl
bei anderen Programmen angezeigt wurde, daB geniigend freier
Speicher vorhanden ist. Dann war nidmlich der Speicher nur in
kleinen Bruchstiicken erreichbar und nicht als Ganzes! Zum
AbschluBB dieser Befehlserklirung hier ein Beispiel der Spei-
chertabelle. Ich habe sie ausgegeben, wihrend ich diesen Text
schrieb:

1> avail

—— CLI- Command Line Interpreter a1

Type | Available In-Use Maximum Largest

chip 197984 325248 523232 175376

fast 48104 4685784 516888 44192

total 246088 794032 1040120 175376
Break (SchiuB3 damitl)

Bei der Arbeit mit dem CLI ist es mir hiufig passiert, daf3 ich,
ohne daran zu denken, einen Befehl mit RUN losschickte, damit
er nebenbei abgearbeitet wird. Hier vergift man aber hiufig,
daB dieser nicht mehr abgebrochen werden kann, weil keine
Tastenkombination (weder CTRL-C, -D, -E noch -F) den Task
erreicht. Er liegt praktisch in einer unerreichbaren Zone des
CLI

Dieses Manko kann aber verheerende Folgen haben! Und des-
halb wurde auch dafiir ein neues CLI-Kommando geschrieben:
Mit Break haben Sie die Moglichkeit, jeden laufenden Task, den
Sie vom CLI aus gestartet haben und den Sie sonst mit einer
CTRL-Kombination abbrechen kénnten, auch wieder abzubre-
chen! Das allgemeine Format des Kommandos lautet:

Break PROCESS/A, ALL/S, C/S, D/S, E/S, F/S

Nach Break geben Sie also als erstes die Nummer des Tasks an,
der unterbrochen werden soll. Wenn Sie die Nummer gerade
nicht wissen, konnen Sie eine Liste iiber Status anfordern. Als
nichstes folgt die Art der Unterbrechung. Hierfiir stehen die
bekannten Buchstaben, die Sie auch iiber die Tastatur betitigen
wiirden. Mit dem besonderen Schliisselwort ALL kdnnen Sie das
System anweisen, es mit allen Kombinationen zu versuchen, da-
mit moglichst schnell und sicher abgebrochen wird.

Zum Austesten des Befehls sollten Sie folgendes einmal versu-
chen: Kopieren Sie ein moglichst langes Programm von der Dis-
kette ins RAM. Z.B. Run Copy SYS:Clock to RAM:; und geben
Sie dann Break 2 ALL ein. (Es wird dabei vorausgesetzt, daB3
der Befehl in den zweiten Process gelegt wurde!) Nach kurzer
Zeit meldet das CLI, daB das Kommando unterbrochen und das
File wieder geloscht wurde.

42 Amiga Tips & Tricks

FF (Schneller, schneller, schneller!)

Wenn Sie sich bei einer Erkundung der Workbench die neue
Startup-Sequence angesehen haben, wird Thnen der Aufruf die-
ses neuen Befehls aufgefallen sein. Dort steht nimlich:

FF >NIL: -0

Damit wird ein Programm aufgerufen, das die Ausgabe um ca.
50% beschleunigt! Es hei3t FastFonts und verspricht wirklich
nicht zu viel. Diese Neuerung konnen Sie, wie iibrigens alle
neuen CLI-Kommandos, auch mit dem Kickstart V1.2 (33.180)
nutzen. Selbst hier wird die Textausgabe so schnell, daf3 das Ar-
beiten mit dem BASIC-Editor endlich einmal zur Freude wird!

Wenn Sie, was zwar unvorstellbar erscheint, aber immer einmal
wider Erwarten vorkommt, die Textausgabe in die alte Ge-
schwindigkeit schalten miissen, geben Sie dazu als Parameter
einfach -n an (das n steht fiir irgendeine Zahl gréBer null).

GetEnv (Hole einen definierten Wert)

Es wird der Inhalt einer Variablen gelesen. Da es im CLI aber
eigentlich keine Variablen gibt, legt dieser Befehl eine Datei in
der RAM-Disk an. Sie liegt im Verzeichnis "RAM:Env" und be-
sitzt den gleichen Namen wie die Variable, der etwas zugewiesen
werden soll. Der Inhalt selbst wird in der Datei abgespeichert.
Hier ist erst einmal ein Beispiel:

1> getenv test

Sie bekommen als Antwort die Meldung

Can't get test

womit Thnen der Amiga ganz freundlich mitteilt, da3 unter die-
sem Namen noch nichts abgespeichert worden ist. Ein zweiter
Befehl muf3 hinzugezogen werden, mit dem man eine Zuweisung
durchfithren kann.

—— CLI- Command Line Interpreter 43

SetEnv (Speichere einen neuen Wert)

Hiermit kénnen Sie einer Variablen ein String zuweisen. Name
Name ist die Bezeichnung der Variablen. String String enthilt
eine Zeichenkette, die der Variablen zugewiesen wird. Schreiben
Sie zum Beispiel:

1> setenv test "der bdse wol f"

So erzeugen Sie damit einen neuen Wert im oben ange-
sprochenen Verzeichnis. Im File "RAM:Env/Test" steht der Text
"der bdse wolf". Schauen Sie ruhig einmal nach! Diesen Aufruf
kann man so oft und so verschieden wiederholen wie man will.
Immer wieder wird der neue Wert in das File gleichen Namens
geschrieben. Eine sinnvolle Anwendung, mit der sich viele gute
Kniffe erstellen lassen, sehen Sie im Verlauf des Kapitels.

Lock (Der Schliissel zum ...)

Blockiert oder gibt den Zugriff auf eine Festplattenpartition
frei. Sie geben dafiir als Parameter die Bezeichnung der Fest-
plattenpartition an (z.B. HDO0), zusitzlich einen Schalter, mit
dem Sie den Schutz ein- oder ausschalten und ergidnzen diese
Angaben mit einem Passwort, das maximal vier Zeichen lang
sein kann.

1> lock hd0: ON DATA

Nur mit der Eingabe von

1> lock hd0: OFF DATA

kann dieser Schutz wieder aufgehoben werden.

RemRAD

Wie Sie vielleicht wissen, bietet das neue System 1.3 eine reset-
feste RAM-Disk. Doch die Sache hat auch einen Haken! Da
diese immer den konstanten Speicher belegt, also nicht wie die
alte dynamisch wichst oder schrumpft, stellt sie ein "speicher-
fressendes" Problem dar. Und wie soll man sie l6schen, schlie3-

44 Amiga Tips & Tricks

lich ist sie ja resetfest. Aus diesem Grunde gibt es einen Befehl,
der diese Arbeit iibernimmt. Er 18scht die resetfest RAM-Disk
aus dem System. Das Icon bleibt zwar bestehen, doch hat es
keine Bedeutung. Bei dem nichsten Reset ist sie dann ganz ver-
schwunden!

Resident

Beim Arbeiten im CLI stellt man fest, da beim Zugriff auf
eine zweite Diskette jedesmal der CLI-Befehl von der Work-
bench-Diskette nachgeladen werden muf. Dies war in Version
1.0, 1.1 und 1.2 so. Gott sei dank ist dies in Version 1.3 nicht
mehr notig! Hier koénnen Sie jedes Kommando fest in den
Speicher integrieren. Dazu verfihrt man folgendermafen:

Zuerst rufen Sie das Kommando Resident gefolgt von dem Na-
men des Befehls, der resident in den Speicher gelegt werden
soll, auf. Ab jetzt ist ein Speicherbereich reserviert, in dem das
Kommando abgelegt ist. Bei einem Aufruf wird nun nicht von
der Diskette, sondern aus dem Speicher geladen. Schliet man
das letzte CLI-Fenster, so wird der Speicher fiir die Befehle ja
nicht mehr gebraucht und alle Blécke werden wieder freigege-
ben. Allerdings behilt die neue Shell eine Liste der als resident
gekennzeichneten Befehle, und sobald man ein neues CLI-Fen-
ster wieder 6ffnet, werden nach dieser Liste alle Befehle wieder
resident gemacht. Sehen wir uns jetzt das allgemeine Format an,
um noch weitere Mdoglichkeiten zu erkunden:

Resident Name, File, Delete/S, Add/S, Replace/S, Pure/S, SYSTEM/S

Wir kénnen also als erstes den Namen angeben, gefolgt von dem
File (den Files), die dementsprechend vorhanden sein sollen.
AuBerdem gibt es natiirlich verschiedene Modi, um neue Befehle
resident zu machen, alte zu entfernen oder durch neue Files zu
ersetzen. Alles dies wird durch die dementsprechenden Worte
angezeigt. Verwendet man Resident ohne jeden Zusatz, wird
eine Liste aller bisher resident gemachten Files ausgegeben. Dies
ist sehr nitzlich, wenn man z.B. eingeschrinkt ohne Workbench-
Diskette arbeitet und wissen mochte, auf welche Befehle man
zuriickgreifen kann.

——— CLI- Command Line Interpreter 45

Fir die tigliche Arbeit mit dem CLI empfehle ich zwei Batch-
dateien. Die erste sollte die folgenden Kommandos fiir resident
erkliren: List, Dir, Info, Delete, Run, Cd und Copy. Sie kénnen
die Liste natiirlich nach Belieben #ndern. In dem zweiten Exe-
cute-File werden alle diese Befehle wieder aus der Liste ent-
fernt. Auch das ist zu empfehlen, wenn man wieder die Work-
bench-Diskette im Laufwerk hat, denn dann kann man den
Speicher wesentlich besser fiir andere Anwendungen gebrauchen.
Die Resident-Tabelle nach dem Start iiber die Startup-Sequence:

Name UseCount

Execute 1

cu SYSTEM

FileHandler SYSTEM

Restart SYSTEM

CLI SYSTEM
SetPatch

Nicht selten treten gerade wihrend des Programmierens fatale
Fehler auf, die das System mit einer Guru-Meditation quittiert.
Doch in vielen Fillen wire dies nicht notig. Es wire vollkom-
men ausreichend, wenn man iiber den Sachverhalt durch einen
Guru informiert wiirde, der Task entfernt wiirde und das Leben
weiter seinen Lauf ginge. Aber bisher wurden gleich alle lau-
fenden Tasks unterbrochen und geldoscht, um das gesamte System
neu zu booten.

Damit soll jetzt SchluB sein! Durch das im Hintergrund laufende
Programm SetPatch wird jeder kleine Guru abgefangen und in
einen gutartigen umgewandelt. Somit werden manche Gurus
vollstindig in ihrer Wirkung unterbunden, und die Arbeit
braucht nicht unterbrochen zu werden. In der tiglichen Anwen-
dung werden Sie aber trotzdem weniger mit dem neuen Kom-
mando in Berithrung kommen, denn genauso wie z.B. auch Fast-
Fonts wird SetPatch nur einmal als neuer Task in der Startup-
Sequence aufgerufen und ist danach still im Hintergrund. Dies
sieht iibrigens so aus:

Run >NIL: C:SetPatch

46 Amiga Tips & Tricks

Die Ausgabe wird dabei an das nicht existierende Gerit NIL:
geschickt, damit das DOS-Window nicht fiir eine eventuelle
Ausgabe aufgehalten wird, wie es sonst geschehen wiirde.

Which

Which erleichtert die Arbeit besonders bei komplex aufgebauten
Amiga-Benutzersystemen. Hier soll uns als Beispiel ein Anwen-
der mit einer Festplatte dienen. Er hat sicherlich alle Befehle,
die sich aus dem CLI ansprechen lassen, gut geordnet in mehre-
ren Verzeichnissen. Die bekannten Kommandos im C:-Verzeich-
nis, dann noch das System-Verzeichnis usw.

Mochte man eines dieser Kommandos kopieren, tritt ein Pro-
blem auf: Bei der bisherigen Arbeit brauchte man iiberhaupt
nicht zu wissen, wo dieser Befehl untergebracht war, denn mit
Hilfe des Path-Kommandos suchte das CLI danach. Jetzt ist man
aber auf sich gestellt und muf3 alleine suchen. Doch nun tritt
Which in Aktion! Which durchsucht alle angegebenen Verzeich-
nisse und gibt dann den Pfad aus, unter dem das Kommando
wirklich zu erreichen ist.

1> Which Format
Workbench 1.3:System/Format

EndSkip

EndSkip ist ein Kommando nur fiir die Batch-Dateien. Es 143t
einen Sprung, der bis hierher noch nicht sein LAB gefunden
hat, hier aufhoren und damit den nichsten Befehl hinter diesem
Kommando ausfithren.

Xlcon (Execute auch auf der Workbench)

Dieser Befehl ermoéglicht es, CLI-Befehle iiber Symbole der
Workbench zu aktivieren und nicht erst in das CLI gehen zu
miissen. Es funktioniert! Dazu gehen Sie wie folgt vor:

Schreiben Sie zuerst den oder die gewiinschten Befehle in eine
Batchdatei. Dabei sind alle Features des CLI erlaubt. Nun besor-

—— CLI- Command Line Interpreter 47

gen Sie sich ein Project-Icon. Das kénnen Sie von den BASIC-
Programmen oder den NotePad-Texten "klauen". Fiir genauere
Informationen lesen Sie bitte im Kapitel "Icons" nach. Dieses
Icon versehen Sie mit dem Namen der Batchdatei. Beide miissen
in einem Verzeichnis liegen, das auch iiber Icons, also z.B. die
Diskette erreichbar ist.

Dann trigt man zu guter Letzt noch iiber die Info-Funktion der
Workbench bei DEFAULT-TOOL das Programm C:XlIcon ein,
und wir sind fertig! Jetzt reicht ein Doppelklick auf das neue
Icon, und die CLI-Befehle werden ausgefiihrt. Fiir den Fall, daf3
Texte ausgegeben werden miissen, 6ffnet das Programm noch ein
CON:-Fenster. Dieses wird nach dem Abarbeiten aber wieder
geschlossen.

Alte Befehle - neue Parameter

Nicht nur neue Befehle sind seit der Version 1.3 in das CLI im-
plementiert worden. Auch die alten schon vorhandenen Kom-
mandos haben eine griindliche Uberarbeitung durchgemacht. So
sind z.B. alle CLI-Kommandos vollkommen neu programmiert
worden. Dadurch sind alle schneller und in vielen Fillen auch
wesentlich kiirzer.

Das Interessante fiir die Anwender sind aber die neuen Parame-
ter, die vielfiltige und neue Einsatzgebiete erschlieffen. In die-
sem Kapitel finden Sie nun eine Auswahl der Befehle, bei denen
Parameter erginzt wurden. Jedoch wird die Workbench immer
wieder neu bearbeitet. Deshalb tut man gut daran, sich von Zeit
zu Zeit die neueste Version zu besorgen und dort bei den Kom-
mandos mit dem Fragezeichen die neuesten Angaben abzurufen.
So bekommt man Informationen, die in keinem Handbuch
stehen!

Assign

Assign hat in seiner neuesten Version einiges hinzugelernt. Jetzt
kann man nicht nur einem Namen ein Verzeichnis zuordnen.
Wenn diese Zuordnung nicht mehr gebraucht wird, kann sie
auch wieder mit dem Wort DISMOUNT oder UNMOUNT ge-

48 Amiga Tips & Tricks

16scht werden. Das ist insofern interessant, als eine Diskette so-
lange als Symbol auf der Workbench gelassen wird, wie sie ir-
gendwie in Gebrauch ist. Das ist auch der Fall, wenn wir ein
Verzeichnis von ihr mit Assign gebrauchen. Ebenfalls neu ist die
Priifmoéglichkeit von Assign. Verwendet man das Schliisselwort
EXISTS, dann gibt Assign einen Wert von 5 zuriick, wenn der
Name nicht existierte.

Copy

Copy wurde noch mehr auf das Kopieren und Herstellen von
Originalen getrimmt. So bietet die jetzige Version vier Flags, mit
deren Hilfe man alle Parameter einstellen kann. Mit DATE und
COM kann man Copy anweisen, auch das Datum und den
Kommentar des Originals mit zu iibernehmen. Weiterhin erlaubt
NOPRO eine Verdnderung der Protection-Bits. Allgemein wer-
den diese ja bei der Kopie iibernommen. Verwendet man
CLONE, dann werden alle drei Einstellungen genau aus dem
Original iibernommen.

Format

Auch Format hat einige Verbesserungen erfahren. Mit QUICK
beschleunigt sich das Formatieren um einiges. Dabei werden
jetzt nicht mehr alle Tracks geloscht, sondern nur noch der
Root-Block, der Boot-Block und die BitMap der Diskette. FFS
weist Format an, das neue FastFileSystem als Format zu nehmen,
und NOFFS unterbindet diese Einstellung.

Install

Die Programmierer des Amiga kennen das Viren-Problem. Des-
halb wurde Install um einige Optionen erginzt. Install kann jetzt
auch den Boot-Block daraufhin iiberpriifen, ob sich dort viel-
leicht unbekannte Daten (Daten eines Virus) befinden. Dann
wird eine Warnung ausgegeben und der Fail-Code auf 5 gesetzt.
Mit NOBOOT kann eine Diskette von einem Virus gereinigt
werden, und trotzdem ist sie dann nicht bootfihig.

—— CLI - Command Line Interpreter 49

List

List hat eine #uBerst interessante Variante erfahren. Zusitzlich
zu all den Parametern, die man bisher angeben konnte, gibt es
jetzt auch noch LFORMAT. Hiermit definiert man einen String,
iiber den die Ausgabe erstellt wird. In diesem String kann man
feststehenden Text und das Formatzeichen %S gebrauchen. Der
Text wird bei der Ausgabe einfach wiedergegeben, doch fiir das
%S setzt List den Filenamen ein. So kénnen Sie Listen kreieren,
die z.B. in eine Batchdatei umgeleitet werden, um diese nachher
ausfithren zu lassen. Hier ein Beispiel:

LIST >RAM:Test #? LFORMAT="Copy %S to RAM:C"

Dieses Komando erstellt ein Batchfile, in dem alle Copy-Kom-
mandos stehen, die das aktuelle Directory in das RAM-Ver-
zeichnis C kopieren. Wenn Sie %S zweimal im String verwenden,
werden beide Male die Filenamen eingesetzt. Somit kann man
leicht Renames konstruieren:

LIST >RAM:Test #? LFORMAT="Rename %s /Backup/#%S"

Wenn Sie %S im String dreimal verwenden, wird der erste durch
den Filenamen mit Path ersetzt und der zweite nur durch den
Filenamen. Braucht man den zweiten nicht, kann man ihn mit
dem Kommatarzeichen ; unterdriicken:

LIST >RAM:Test #? LFORMAT="Join %S%S to RAM:Oberfile ;%S"

Protect

Seit der Version 1.3 gibt es vier weitere Protection-Bits, die
auch von Protect unterstiitzt werden. Es sind dies Hidden (H),
Script (S), Pure (P) und Archive (A). Wenn Hidden gesetzt ist
und man #ber List den Inhalt eines Verzeichnisses ausgeben
148t, werden diese Files nicht ausgegeben: Sie sind versteckt
(Betriebssystem 1.3 unterstiitzt dies nicht).

Setzt man bei einem File das Script-Flag, kann dieses auch ohne
Execute als Batch-Datei ausgefithrt werden. Das Pure-Flag muf}
bei allen Programmen gesetzt werden, die resident gemacht wer-

50 Amiga Tips & Tricks

den sollen, Archive wird immer dann gesetzt, wenn ein Pro-
gramm gerade kopiert wurde. Somit kénnen Kopierprogramme
die Files auslassen, die schon kopiert sind.

Version

Als letzter der erneuerten Befehle ist Version zu nennen. Mit
ihm koénnen wir jetzt auch die Versionsnummern der Libraries
erfahren. Dazu gibt man hinter Version noch die Namen der Li-
brary an:

Version intuition.library
intuition.library version 33.702

23 Neue Startup-Sequences

Wer nicht eine Akku-gepufferte Uhr sein Eigen nennen kann,
wird sich bereits gefragt haben, ob die Systemzeit auch in der
Startup-Sequence eingestellt werden kann. Dem ist in der Tat so.
Der Schliissel zu diesem ist der DATE-Befehl. Gibt man anstelle
von Zeitangaben ein Fragezeichen ein, erkliart sich der Befehl
selbst und wartet auf die Eingabe der aktuellen Zeit. Erweitern
Sie Thre Startup-Sequence doch einmal um folgende Zeilen:

Resident Echo ;Nur unter Kickstart V1.3
Resident DATE ;Nur unter Kickstart V1.3

DATE 1Ausgabe der aktuellen Zeit

Echo

Echo "Bitte geben Sie das aktuelle Datum in obigem Format ein."
Echo

DATE ? ;Eingabe der aktuellen Zeit

Echo

Echo "Das aktuelle Datum ist nun:"

Echo

DATE ;Ausgabe des gednderten Datums

Echo

Ahnliche Abfragen kénnen Sie mit allen Befehlen erstellen, die
anstelle von Parametern ein Fragezeichen akzeptieren. Sollten Sie
IThren Amiga jeden Tag einmal anschalten, besteht eine weitere
Moglichkeit, das aktuelle Datum zu setzen:

—— CLI - Command Line Interpreter 51

;noch ist das Datum von Gestern eingestellt
DATE tomorrow ;Datum um einen Tag erhdhen
Echo "Heute haben wir den"
Date
Echo
Echo "System:"
Info ;Information Uber Disks ausgeben

Die Betriebssystem-Version 1.3 bietet bekanntlich endlich die
Méglichkeit, von einem anderen Gerit zu booten als dem inter-
nen Laufwerk DFO0. Einige Festplatten beziehungsweise deren
Controller fahren unter V1.3 das System hoch, ohne daB eine
Bootdisk in einem Diskettenlaufwerk liegt. Nicht jeder Control-
ler gestattet den Autoboot, so daB bei den meisten Platten
grundsitzlich von Disk gebootet werden muS8.

Um die Geschwindigkeit einer Harddisk sowohl unter V1.2 wie
auch unter V1.3 beim Boot-Vorgang nutzen zu konnen, muf} der
groflte Teil der Startup-Sequence auf der Festplatte ausgefiihrt
werden. Ebenso sollten alle weiteren Diskettenzugriffe des Be-
triebssystems auf die Festplatte umgelenkt werden. Gehen Sie
folgendermaflen vor:

1. Geben Sie im CLI ein:

Copy SYS: DHO: all quiet

Damit wird die gesamte Workbench-Disk auf die Festplatte
kopiert.

2. Editieren Sie die Startup-Sequence, die sich nun auf Ihrer
Harddisk befindet:

Ed DHO:S/Startup-Sequence

In der obersten Zeile fligen Sie ein:
DHO:C/Assign C: DHO:C

Assign SYS: DHO:

Assign DEVS: DHO:DEVS

Assign SYSTEM: DHO:SYSTEM
Assign L: DHO:L

Assign S: DHO:S

Assign LIBS: DHO:LIBS

Assign FONTS: DHO:FONTS

Assign UTILITIES: DHO:UTILITIES
CD DHO:

52 Amiga Tips & Tricks

Léschen Sie mit CTRL-B die Zeilen:

BindDrivers
Mount DHO:

3. Andern Sie die Startup-Sequence der Workbench durch
ED s/Startup-Sequence

L&schen Sie alle Befehle und ersetzen Sie sie durch

BINDDRIVERS ;nicht vergessen!
MOUNT DHO: ;sofern nicht bereits durch binddrivers

vorhanden (Automount-Controller).
;Bei einigen Controllern noch *'CD DHO:' hinzufugen.
EXECUTE DHO:S/Startup-Sequence

4. Fihren Sie einen Reset durch und priifen Sie, ob es funk-
tioniert.

5. Bei einwandfreier Funktion kénnen folgende Dateien auf
der Harddisk geloscht werden:

Die Expansion-Schublade (Treiber wurden durch bind-
drivers bereits geladen),

DEVS/system-configuration

Von der Workbench konnen alle nicht bendétigten Dateien
geloscht werden. Da das vom Controller abhiingt, sollten Sie
sich vorher eine Sicherheitskopie dieser Disk anfertigen.

Bedenkenlos kénnen im allgemeinen die Verzeichnisse SYSTEM,
FONTS, UTILITIES, T, DEVS/PRINTERS, DEVS/KEYMAPS,
LIBS/Mmagic.library und DEVS/clipboards geloscht werden.

Wer im Besitz des Kickstart V1.3 ist, keinen Autoboot-Control-
ler hat, sich aber eines geniigend groBen Speichers erfreut, kann
natiirlich auch noch einen anderen Weg gehen. Die von Haus aus
bootfihige resetfeste RAM-Disk wird zunichst durch die Star-
tup-Sequence der Workbench eingerichtet (mehr dazu an anderer
Stelle dieses Buches). Die beim Systemstart benotigten Dateien
und Verzeichnisse werden auf die resetfeste RAM-Disk kopiert
(inklusive einer Startup-Sequence, die der der Workbench ent-
spricht, jedoch nicht die Initialisierung der RAM-Disk beinhal-

—— CLI- Command Line Interpreter 53

tet). Danach diirfte unsere bootfihige RAM-Disk genauso be-
stiickt sein wie die abgespeckte Workbench bei der Bootumlei-
tung von Disk auf HardDisk. Bei einem Reset wird die Startup-
Sequence im RAM abgearbeitet, von dort auf DHO verzweigt.

2.3.1 RAM-Disk und Datenverarbeitung

Wer war nicht schon einmal dem Herzinfarkt nahe, als der
Amiga ausgerechnet bei der wichtigsten Datendisk einen
READ/WRITE-ERROR meldete; wer ist noch nicht mit einem
schmerzenden Abdruck der Space-Taste unter seinem linken
Auge aufgewacht, nach dem er Stunden zuvor SUPERBASE zum
reformatieren seiner Dateien aufgefordert hat?!?

Kennen Sie derartige Probleme? Ja? Dann sind Sie hier genau
richtig. Derartige Probleme hatte ich ndmlich auch hiufig genug
- bis, ja bis ich mir die Parameter der 1.3-CLI-Befehle einmal
genauer angesehen habe.

Bringen wir einmal die Probleme auf einen Punkt. Das nervigste
an Datenverarbeitungen ist das stindige Schrubben der Disketten
(es miissen ja eine Unmenge Daten bearbeitet werden konnen,
die eventuell nicht ins RAM passen kénnten). Das ewige hin
und her schreiben der Daten, diese recht zeitintensive Hauptbe-
schédftigung mancher Datenbanken ist es auch, die zu den
Schreib-/Lese-Fehlern fithrt. Die Aufzeichnungsdichte des
Amiga iibersteigt niamlich bereits leicht die Aufzeichnungs-
dichte, fir die die allgemein erhiltlichen Disketten ausgelegt
sind. Wenn dann auf handelsiiblichen Disks (135 TPI) stindig die
Schreib-/Lese-KoOpfe die Magnetschicht abhobeln...

Wir miissen also die Disketten-Zugriffe auf ein Minimum be-
schrinken. Sinnvollerweise sortieren wir Dateien daher im RAM.
Da wir unsere Dateiverwaltung kaum davon iiberzeugen kénnen,
nicht auf einer Disk zu sortieren, nehmen wir die RAM-Disk
(die resetfeste, wenn moglich). Zu diesem Zweck ist es ange-
bracht, Thre Dateien in Gruppen zu ordnen und jede Gruppe in
ein eigenes Directory zu legen. Die bendtigten Directories wer-

54 Amiga Tips & Tricks

den dann je nach Bedarf ins RAM kopiert, eventuell schon
durch die Startup-Sequence. Bevor wir uns niher damit be-
schiftigen, sollten wir uns noch ein anderes Problem ansehen,
den Stromausfall. Dieser bereitete mir haufig Kopfzerbrechen
dariiber, wie ich am sinnvollsten meine RAM-Dateien vor dem
Totalverlust retten kann. Klar, ich kénnte regelmiBlig die RAM-
Dateien auf die Disk zuriickschreiben. Die Sache hat nur einen
Haken: Normalerweise verindere ich nicht alle im RAM stehen-
den Dateien, so daB ein arg zeitintensives Diskettenquilen an-
gesagt wire. Man miiBte daher nur die geinderten Dateien auf
die Diskette zuriickschreiben kénnen, und das geht so:

Bei jedem Schreibzugriff auf eine Datei wird deren Datum neu
gesetzt. Hier bietet sich uns ein Ansatzpunkt. Die Dateien miis-
sen so ins RAM kopiert werden, daf3 ihr urspriingliches Datum
unverdndert bleibt. Zu diesem Zweck bietet der COPY-Befehl
den Parameter DATE an:

COPY "Datei" RAM: DATE

Leider ist es nicht méglich, dem COPY-Befehl mitzuteilen, daB
nur Dateien ab einem bestimmten Datum kopiert werden sollen.
So muB fiir jede Datei, die vom RAM auf Disk zuriickkopiert
werden soll, angegeben werden:

COPY RAM:Datei Datendisk:

Gliicklicherweise existiert aber noch der LIST-Befehl, der in der
V1.3-Version den Parameter LFORMAT hat (sieche neue CLI-
Befehle). Mit diesem Befehl kann man sich nun eine Batch-Da-
tei erstellen, die aus lauter COPY-Befehlen besteht. Damit sieht
ein Batchfile zum Kopieren aller gednderter Dateien aus dem
RAM auf Disk so aus:

LIST >RAM:Batchfile RAM: SINCE TODAY LFORMAT "COPY RAM:%s
Datendisk:"

EXECUTE RAM:Batchfile

DELETE RAM:Batchfile

DELETE Datendisk:Batchfile

—— CLI- Command Line Interpreter 55

Mit einem Icon ausgestattet und Xlcon als DefaultTool (siehe
neue CLI-Befehle) konnen Sie dieses Batchfile jederzeit von der
Workbench anklicken, eine feine Sache, wie ich meine.

Wer die Geschichte gern automatisieren moéchte, kann dank des
neuen SKIP-Befehls folgendermaflen vorgehen:

1. Batchfile dndern in:
LAB meinlabel ;Label definieren

WAIT 600 ;10 Minuten warten
LIST >RAM:Batchfile RAM: SINCE TODAY LFORMAT "COPY RAM:%s
Datendisk:"

EXECUTE RAM:Batchfile

DELETE RAM:Batchfile

DELETE Datendisk:Batchfile

SKIP meinlabel ;nur V1.3 Skip springt auch rickwérts

2. Eingeben:
RUN NamedesBatchFiles

3. Nach dem Beenden der Datenverarbeitung:
BREAK [Prozess] (siehe neue CLI-Befehle)

2.3.1.1 MACROs im CLI mit ALIAS

Der neue Befehl ALIAS (V1.3) gestattet es dem Benutzer, CLI-
Befehle zu definieren. Dabei wird einem frei erfundenen Namen
eine CLI-Kommando-Sequenz iibergeben. Es besteht die Mog-
lichkeit, Variablen, die spiter hinter dem Namen angegeben
werden, zu iibernehmen. Ein Beispiel ist xcopy:

ALIAS xcopy copy [1 clone

Die eckigen Klammern dienen der Variableniibernahme. Um den
neuen Befehl xcopy auszuprobieren, den wir hiermit definiert
haben, schreiben wir folgendes:

Xcopy sys:c/assign ram:

56 Amiga Tips & Tricks

Der Assign-Befehl wird in die RAM-Disk kopiert. Das mag
sicherlich noch nicht sehr sinnvoll sein, zeigt aber zumindest
schon einmal die Variablen-Ubergabe, denn intern wird durch
obige Eingabe folgender Befehl ausgefiihrt:

copy sys:c/assign ram: clone

So richtig interessant wird die Sache mit Beispielen wie diesem:

ALIAS start ed s/startup-sequence

Geben Sie nun "start" ein, kénnen Sie unmittelbar darauf die
Startup-Sequence editieren! Nun kann man natiirlich einmal die
Namen oder Bedeutungen der selbsterfundenen Befehlsworte
vergessen haben. Dann geniigt:

ALIAS

Schon werden alle festgelegten Namen und ihre Definitionen
ausgegeben.

2.3.1.2 CLI-Startup, die Startup-Sequence des CLI

Vielleicht haben Sie bereits die neue Datei im S-Directory der
Workbench 1.3 entdeckt: "CLI-Startup”. Sie ist nichts anderes als
eine Startup-Sequence fiir das CLI. Alles, was Sie in dieser Datei
finden, ist beim Offnen des Shells aktiviert, beispielsweise soll-
ten Sie immer benétigte ALIAS-Definitionen in diesem Batchfile
ablegen. Klicken Sie von der Workbench aus das SHELL an,
koénnen Sie auch schon die in dieser Datei mit ALIAS definier-
ten Befehlsworte verwenden.

Das EXECUTE [Batchdatei] entfillt also. Auch alle anderen
Voreinstellungen (etwa mit RESIDENT im RAM abgelegte Be-
fehle) werden beim Starten des Shell sofort ausgefithrt. Im fol-
genden Kapitel finden Sie etliche Beispiele fiir ALIAS, die Sie
mit ED in der CLI-Startup-Datei verewigen kénnen.

—— CLI - Command Line Interpreter 57

2.3.1.3 ALIAS-Befehle
Anwendungen von ALIAS gibt es sicherlich unbegrenzt viele.

Hier ein paar Beispiele:

ALIAS BORDERLESS echo "*e[Ox*e[Oy*e[0;0H*e[J"

Das Shell-Window hat keinen Rahmen mehr, die gesamte Fliche
wird zur Ausgabe genutzt. Vorher sollte das Window auf die
gewiinschte Grofle gebracht werden.

ALIAS CLS echo "*e[0;OH*e[J"

Loscht den Bildschirm.

ALIAS FETT echo "*e[1;31;40m"

Schaltet auf Fettdruck um.

ALIAS ULINE echo "*e[4;31;40m"

Schaltet Unterstreichen ein, was beim LIST-Befehl von Vorteil
sein diirfte.

ALIAS NORM echo "*e[0;31;40m"

Schaltet zuriick auf normale Darstellung.

ALIAS PRINT run >nil: type >prt: []

Gibt das als Parameter anzugebende ASCII-File im Multitas-
king-Betrieb auf dem Drucker aus.

ALIAS DELDISK sys:system/format >nil: <nil: drive [] name "Leer" quick

Loscht blitzschnell alle Dateien und Verzeichnisse auf dem an-
gegebenen Drive.

ALIAS CtoRAM run >nil: copy sys:c ram: all quiet

Kopiert das C-Directory ins RAM.

58 Amiga Tips & Tricks

ALIAS Tree dir []1 opt a

Gibt alle Verzeichnisse und Dateien des angegebenen Directories
aus.

ALIAS PrintTree run >nil: dir >prt: opt a

Gibt im Multitasking-Betrieb alle Dateien und Verzeichnisse des
aktuellen Directories auf dem Drucker aus.

ALIAS Batch run >nil: execute "Filename"

Fithrt im Multitasking-Betrieb eine gewiinschte Batch-Datei aus,
wodurch das liastige Eingeben von Execute entfillt.

ALIAS myC copy >nil: sys:c(assign]typeldir]copy) ram:

Kopiert alle in der runden Klammer mit dem senkrechten Strich
voneinander getrennten CLI-Befehle ins RAM.

2.3.1.4 Batch-Programmierung

Zur richtigen Batch-Programmierung gehéren Abfragen und
Verzweigungen, denn fiir jede Kleinigkeit eine neue Batch-
Datei zu erstellen, diirfte wohl etwas aufwendig sein. Kommen
wir gleich zu einigen neuen Features der Workbench 1.3. Neu ist
hier beispielsweise der ASK-Befehl, der auf eine Eingabe war-
tet. Ist diese Eingabe 'Y’ oder ’YES’, gibt dieser Befehl einen
Fehlercode zuriick, den man als Warnung einstufen kann. Diese
Warnung kann durch den IF-Befehl abgefragt werden. Hier ein
Beispiel, das in die Startup-Sequence eingebaut das C-Directory
bei Bedarf ins RAM kopiert:

ASK "Soll ich das C-Directory ins RAM kopieren (Y/N)?"
IF WARN

COPY SYS:C RAM: ALL QUIET

ASSIGN C: RAM:
ENDIF

—— CLI- Command Line Interpreter 59

Sollten Sie bei obigem Beispiel nicht mit Y(ES) antworten, wird
die Befehlsfolge iibersprungen und mit dem auf ENDIF folgen-
den Programm weitergemacht. Auch Verschachtelungen sind
moglich:

ASK "Wollen Sie ein gutes Programm starten (Y/N)?"
IF WARN
ASK "Eine Textverarbeitung (Y/N)?"
IF WARN
ASK “BECKERtext (Y/N)?"
IF WARN
ASSIGN FONTS: BECKERtext:FONTS
ASSIGN PRT: BECKERtext:PRT
CD BECKERtext:
BECKERtext
SKIP Ende
ENDIF
ASK "TEXTOMAT (Y/N)?"
IF WARN
ASSIGN FONTS: TEXTOMAT:FONTS
TEXTOMAT : TEXTOMAT
SKIP Ende
ENDIF
ENDIF
ASK "Oder vielleicht PROFIMAT?"
IF WARN
ASSIGN TABELLEN: PROFIMAT:TABELLEN
CD PROFIMAT:
PROF IMAT
ENDIF
ENDIF
LAB Ende

Wie Sie hier sehen konnen, liegt eine relativ einfache Ver-
schachtelung von IF-ENDIF-Bereichen vor. Eine solcherart pro-
grammierte Batch-Datei paBit sich dem jeweiligen Wunsch des
Users an. Bei allen, die nicht stindig von der Workbench aus ar-
beiten, sich vielmehr h#dufig mit bestimmten Programmen be-
schiftigen, bietet sich der Einbau in die Startup-Sequence férm-
lich an.

Gerade die Startup-Sequence bot unter Workbench 1.2 meist ein
recht trauriges Bild. Zunichst eventuell eine Abfrage, gefolgt
von einem oder mehreren Programmen und danach war Feier-
abend. Der neue SKIP-Befehl (1.3) erlaubt jetzt erstmalig das
Zurickspringen in einer Batch-Datei. So lassen sich ganz wun-

60 Amiga Tips & Tricks

derbare Schleifen programmieren. Ein Beispiel fiir alle, die die
Finger nicht vom C-Compiler lassen kénnen:

. ;<< Initialisierung

LAB loop ;Label fur Schleife definieren
ED RAM:Source.C ;Aufruf eines C-Source-Editors
CC RAM:Source.C -oTMP.0O ;Compilieren (Optionen nach
LN RAM:TMP.O +lc ;Linken Wunsch)

ASK “Editieren (Y/N)" ;Abfrage

IF WARN SKIP loop ;Ricksprung

24 Richtiges Ausnutzen des Mount-Befehls

Mount

Ja, der Mount-Befehl wird wahrlich sehr selten genutzt. Aber
warum? SchlieBllich bietet er Moglichkeiten, von denen man bis-
her nur getriumt hat! Um den Befehl genauer zu erkunden,
miissen wir erst einmal verstehen, was er iiberhaupt macht. Das
Kommando Mount bindet in das Betriebssystem des Amiga ein
neues Device ein. Sehen wir uns dazu zuerst an, welche Devices
es schon gibt. Dies kann man ganz leicht iiber Assign erfahren.
Sie konnten dann etwa folgenden Ausdruck bekommen:

Volumes:
Tips & Tricks [Mounted]
RAM DISK [Mounted]

BECKERtext

Workbench 1.3 Wgb [Mounted]
Directories:

FONTS Volume: BECKERtext

ENV RAM:Env

T RAM:T

S Workbench 1.3 Wgb:S

L Workbench 1.3 Wgb:L

c Workbench 1.3 Wgb:C
DEVS Workbench 1.3 Wgb:devs
LIBS Workbench 1.3 Wgb:libs
SYS Workbench 1.3 Wgb:
Devices:

NEWCON DF1 DFO PRT
PAR SER RAW CON RAM

—— CLI - Command Line Interpreter - 61

Fiir uns ist dabei der letzte Abschnitt besonders interessant.
Nachdem alle angeschlossenen Laufwerke und die besonderen
Directories aufgefiihrt sind, kommt eine Liste der ansprechbaren
Devices.

DFO: und DFI: sind Thnen hinreichend bekannt. Mit PRT: kann
man den Drucker erreichen, und PAR: bzw. SER: stellen die
beiden Schnittstellen dar. Uber RAW: und CON: kann man die
Ausgabe erledigen, ohne den Weg iiber Intuition zu gehen. Das
letzte Device RAM: kennzeichnet die RAM-Disk, mit der wir
fast tiglich arbeiten.

Nun sind alle hier aufgefithrten Devices schon von Anfang an in
das System eingebunden und koénnen jederzeit erreicht werden.
Wollen wir aber ein neues Device ansprechen, ist dies erst iiber
Mount dem System bekannt zu machen. Diesen Weg miissen wir
z.B. gehen, um fiir das neue CLI, die Shell, einen Editor zu er-
stellen, der intelligenter ist (NEWCON). Lesen Sie mehr zu die-
sem Thema im Kapitel iiber das neue Betriebssystem.

Fiir dieses Vorhaben brauchen wir einen Eintrag in der Mount-
List, die sich im Verzeichnis DEVS: befindet. Hier ist zunichst
ein Beispiel fiir ein externes Laufwerk, das auch als DF1: ange-
sprochen werden kann. Sie finden dieses Beispiel iibrigens schon
in Threr Mountlist:

DF1: Device = trackdisk.device
Unit =1
Flags =1

Surfaces = 2
BlocksPerTrack = 11
Reserved = 2
PreAlloc = 11
Interleave = 0
LowCyl = 0 ; HighCyl = 79
Buffers = 20
BufMemType = 3

#

Die Definition besteht im wesentlichen aus dem Namen des
neuen Devices, also DFI:, und der Endkennung #. Alles, was

62 Amiga Tips & Tricks

dazwischen steht, hingt von dem jeweiligen Device ab. Es gibt
allerdings Parameter, die hiufig benutzt werden:

Device

Hier findet Mount den Namen des Device-Treibers. Alle Devi-
ces werden natiirlich im Verzeichnis DEVS: abgelegt, wo Sie z.B.
das ramdrive.device oder das narrator.device finden. Setzen Sie
den Namen entsprechend ein.

Unit

Hiermit bezeichnet man die Nummer des jeweiligen Gerites. So
hat das erste physikalische Diskettenlaufwerk die Nummer 0, das
zweite - ob intern oder extern, ist egal - die Nummer 1 usw.
Ein 5i"-Laufwerk hat in jedem Fall die Nummer 2. Man zihlt
hier also die Nummer der bisher angeschlossenen Laufwerke
eines Typs. Dies gilt nicht nur fiir Diskettenstationen!

Flags

Enthiilt einen Wert, der je nach Device unterschiedlich ist.
Surfaces

Gibt an, um wie viele Schreiboberflichen es sich handelt. Ein

Diskette hat im Normalfall 2 Schreibseiten, wohingegen die
Harddisk schon ab 4 hat.

Reserved
Anzahl der Datenbliocke des Boot-Blocks.

BufMemType
Speichertyp fiir den Datenpuffer:

0,1 = egal; 2,3 = CHIP-RAM; 4,5 = FAST-RAM

—— CLI- Command Line Interpreter 63

BootPri

Setzt die Prioritit des Laufwerks fiir einen Boot. Je hoéher die
Nummer, desto eher wird von diesem Device gebootet. Diese
Option wird besonders ab Version 1.3 des Betriebssystems wich-
tig. Dann kann auch das Booten von der RAM-Disk oder der
Festplatte eingestellt werden. Und so geht das fiir jeden Eintrag
weiter. Ich mochte hier nicht detailliert auf jeden eingehen, weil
die Daten doch sehr stark davon abhingen, welches Device ein-
gebunden werden soll. Sehen Sie sich lieber die Tips & Tricks
fiir Spezialfille an:

2.4.1 Neue Namen fiir alte Hiite

Wenn man es gewohnt ist, die Geritenamen der IBM-Kompati-
blen zu benutzen, wird man einige Schwierigkeiten haben, sich
an die Bezeichnungen des Amiga zu gewOhnen. Diese Er-
fahrungen macht man besonders stark, wenn man oft zwischen
beiden System wechselt, sei es im Betrieb und zu Hause oder
wenn man stolzer Besitzer einer PC-Karte ist. Fiir diesen Fall
wire es am geeignetsten, die Namen DF0, DF1 und wie sie alle
heiflen nach denen der IBMs zu benennen.

Ein findiger Leser wird sogleich bemerken, daB doch iiber As-
sign jedem Verzeichnis ein neuer Name zugeordnet werden
kann. Also probieren wir es aus:

Assign B: DF1:

Wenn Sie es wirklich einmal ausprobieren, werden Sie sicherlich
begeistert sein. Anstatt immer DFI1: tippen zu miissen, reicht
jetzt B: aus. Doch wechseln Sie einmal die Diskette. Schon stellt
sich der Amiga stur und fordert die andere Diskette. Assign be-
zieht sich also immer nur auf das existierende Verzeichnis und
nicht auf eine Diskettenstation. Dafiir gehen wir einen anderen
Weg.

Zunichst wird in der MountList einfach die Definition fiirr DF1:
kopiert, denn sie enthilt alle ndtigen Daten fiir ein Disketten-

64 Amiga Tips & Tricks

laufwerk. Dann #4ndern wir den Namen DFI: in B: um. Das
war’s schon, denn jetzt reicht nach dem Abspeichern ein Mount
B: aus, und sofort kann auch das Laufwerk DFI: als B: ange-
sprochen werden. Das gleiche ist natiirlich auch mit DF0: mog-
lich. Dazu muB in der MountList noch einmal eine Kopie des
alten Eintrags gemacht werden. Jetzt verindern Sie aber nicht
nur den Namen in A:, sondern auch die Unit von 1 auf 0, damit
wirklich das 0. Laufwerk angesprochen wird.

Nach diesen Definitionen konnen Sie DF1: sowohl unter seinem
alten Namen als auch unter dem neuen Namen B: ansprechen.
Gleiches gilt auch fiir DF0:! Die Tabelle der Devices wurde um
die beiden neuen Gerite erginzt, wie man leicht iiber Assign
nachpriifen kann.

Devices:

A B NEWCON DF1 DFO
PRT PAR SER RAW CON
RAM

2.4.2 Weniger ist mehr!

Nicht nur die oben genannte Spielerei kann iiber Mount reali-
siert werden. Es gibt sogar sehr ernsthafte Anwendungen, mit
denen man Geld sparen und bei vielen Freunden Verwirrung
stiften kann! Fiir dieses Vorhaben werden wir nicht - wie eben
beschrieben - einfach den Namen unseres Devices 4ndern. Wie
gehen tiefer und wagen uns in die Welt der Parameter vor.
Hierunter finden wir drei Stiick, deren Bedeutung leicht erkenn-
bar ist und deren Verinderung mehr erreicht, als man denken
kénnte.

Stellen Sie sich folgende Situation vor: Sie haben bei RAMSCH-
KAUF eine 10er Packung ABCD-Disketten gekauft, die im Su-
per-Sonder-Angebot nur 45,80 DM gekostet haben. Nur stand es
leider nicht auf der Verpackung, daB sie minderwertig waren.
Erst beim Formatieren als Datendisketten merkten Sie, daB fast
alle Disks auf der Seite 1 einen Hardwarefehler meldeten und
das Formatieren abgebrochen wurde.

—— CLI- Command Line Interpreter 65

Nun kommt der Trick! Wir gehen wieder in die MountList und
kopieren die Einstellungen fiir DF1:, verindern den Namen in
"WGB:" und - das ist der Clou - verindern weiterhin unter Sur-
faces den Eintrag von 2 in 1. Damit haben wir eine neue Dis-
kettenstation geschaffen, die unsere Disketten nur auf einer
Seite formatiert!

Wenn Sie jetzt die Formatierungsroutine im CLI aufrufen mit:
Format Drive WGB: Name "1 Surface Test", werden Sie feststel-
len, daB das Formatieren schneller geht, weil nur noch die
Hilfte beschrieben wird, und Sie kdnnen auch noch diese Dis-
ketten benutzen. Somit ist nur noch die Hilfte verloren! Es ist
dabei darauf hinzuweisen, daB diese Diskette nur iiber das neu
eingerichtete Device gelesen werden kann. Sie haben also nur
iiber eine personliche Schnittstelle Zugriff auf die darauf abge-
speicherten Daten. Es ist somit gleichzeitig ein gewisser Ko-
pierschutz! Kleiner Tip am Rande: Kaufen Sie demnichst lieber
Qualititsdisketten, dann brauchen Sie unseren Tip nicht!

Unter dem gleiche Stichwort gibt es noch zwei andere Metho-
den. Die erste behandelt den Fall, daB nicht immer nur eine
Seite der Diskette beschidigt oder defekt sein kann. Gut ist es
auch moéglich, daB z.B. die ersten 5 Tracks stindig Read-Errors
produzieren. Dann kann man die Anzahl der Schreibseiten las-
sen, wie sie ist. Hier empfiehlt es sich, eher die Variable
LowCyl auf 5 zu stellen. Dann beginnt der Formatierungsvor-
gang erst ab diesem Track. Alles weitere lauft genauso ab wie
oben beschrieben. Der umgekehrte Fall beinhaltet Read-Errors
am anderen Ende der Diskette. Dort sind vielleicht Track 71-79
nicht mehr lesbar. Hier d4ndern Sie einfach HighCyl und gehen
wieder den schon beschriebenen Weg.

Ein letzter Hinweis zu der hier erwihnten Methode sei noch ge-
nannt: Bei der Verwendung neuer Formate gibt es einige Kom-
plikationen mit der Workbench und den Diskettenstationen. Das
erste Problem liegt an der Workbench. Wenn ein neues Laufwerk
eingerichtet wurde und Sie dort Ihre Diskette formatiert haben,
werden Sie erstens nicht mehr das Icon DF1:NDOS los. Das mag
zwar nicht so schlimm sein, aber daraus resultiert das zweite

66 Amiga Tips & Tricks

Problem. Das Laufwerk DFI: ist jetzt nicht mehr ansprechbar,
ob man eine Diskette im normalen Amiga-Format einlegt oder
nicht. Er meldet sich immer mit "No disk present in unit 1",
womit unmifBverstindlich zu verstehen gegeben wird, daB nur
noch das neue Format akzeptiert wird. Allerdings kénnen Sie das
neue Format auch von der Workbench ansprechen!

Und darin liegen einige interessante Anwendungen. Wenn man
z.B. alle Datendisketten mit diesem Format verwendet, stellt das
eigene Lesen kein Problem dar, doch alle anderen, die nicht un-
bedingt die Daten lesen sollen, haben keinen Zugriff ohne die
richtige MountList.

2.4.3 Drucker-Spooler

Wenn wir im Zusammenhang mit dem Multitasking von einem
Drucker-Spooler sprechen, kann dies eigentlich nur eines be-
deuten: Wir binden einen neuen Task in das System ein, der eine
Datei auf dem Drucker ausgibt.

Fir einen neuen Task haben wir im CLI ja bekanntlich den
Befehl RUN, als Spooler-Programm wihlen wir eine Batch-Da-
tei. Das Ganze sieht dann so aus:

Nehmen Sie sich das CLI und geben Sie ein:

ED c:PRINT

Nun das folgende Programm:

.key filename/a, typ/s ;Ubernehmen der Parameter

if not exists <filename> ;Prifen ob File vorhanden

echo "File not found" ;nein?

—— CLI - Command Line Interpreter 67

quit ;-dann raus hier
else ;ansonsten:
copy <filename> to ram:<filename>
;File in die RAM-Disk kopieren
if <typ> eq "DUMP" ;Hex-Dump ausgeben?
run >nil: type ram:<filename> to prt: opt h
; ~HexDump-Spool ing
else ;sonst:
run >nil: type ram:<filename> to prt: opt n
;-normales Spooling

endif

delete ram:<filename> ;Speicher wieder freigeben
endif

echo "printing" ;Ausgabe bestatigen

quit

Speichern Sie das File nun mit ESCAPE-X ab. Die Routine
kénnen Sie ab jetzt mit der Eingabe von:

EXECUTE PRINT filename (DUMP)

aufrufen. Der Parameter DUMP ist optional und kann daher
weggelassen werden. Da der Befehl EXECUTE sehr lang ist -
man ist ja schlielich schreibfaul - empfehle ich, folgendes
einzugeben:

run >nil: copy sys:c/EXECUTE to sys:c/DO quiet

Damit steht Thnen neben dem alten Befehl EXECUTE jetzt auch
noch der Befehl DO zur Verfiigung, der natiirlich das gleiche
macht, was EXECUTE auch tut. Also beispielsweise:

DO PRINT filename

Von einem einfachen "RENAME sys:.c/EXECUTE TO sys:c/DO"
muf} ich hier abraten, da es zwar ganz wunderbar die Arbeit
erleichtert, wenn alle CLI-Befehle nur noch ein oder zwei
Buchstaben lang sind, Ihnen aber mit ziemlicher Sicherheit nach
einiger Zeit die Ubersicht fehlt, so daB Sie schlieBlich nicht
mehr wissen, welcher Befehl nun was bewirkt.

Amiga Tips & Tricks

—— Das AmigaBASIC 69

3. Das AmigaBASIC

Das mit dem Amiga ausgelieferte BASIC stammt aus dem Hause
Microsoft. Kenner werden die Ohren spitzen: Sollte es méglich
sein, daB diese Firma einen BASIC-Interpreter entwickelt hat,
der auf die unglaublichen Moglichkeiten des Amiga abgestimmt
ist?

Leider nutzt das AmigaBASIC nicht alle Moglichkeiten Ihres
Geridtes aus. Zwar werden Fenster, Screens und Maus voll
unterstiitzt, aber eine Reihe anderer Dinge lassen sich mit den
herkdmmlichen Befehlen des Interpreters nicht programmieren,
wie zum Beispiel nachladbare Zeichensitze, ausfiithrliche
Diskettenprogrammierung und Zugriff auf das Disk Operating
System (DOS).

Einen Befehl gibt es allerdings, dem der fortgeschrittene BA-
SIC-Programmierer besondere Beachtung schenken sollte. Es ist
der LIBRARY-Befehl. Mit seiner Hilfe werden sich all die feh-
lenden Befehle nachtriglich implementieren lassen. Wie das
funktioniert, erfahren Sie auf den nichsten Seiten.

3.1 Implementierung der Amiga-Kernel-Befehle

Das AmigaBASIC 148t sehr flexible Programmierungen zu. Ne-
ben den ureigenen Befehlen des AmigaBASIC (wie zum Beispiel
"PRINT", "IF... THEN...ELSE") kann der Interpreter auch fremde
Befehle verarbeiten, wenn sie in Form kleiner Maschinen-
sprache-Routinen organisiert sind. So lassen sich eigene Befehle
leicht in den bestehenden Befehlsvorrat des BASIC integrieren.
Viel einfacher als das miihevolle Programmieren eigener neuer
Routinen ist der Zugriff auf bereits bestehende Maschinen-
programme. Das Betriebssystem des Amiga verfiigt bereits iiber
solche Maschinenprogramme, die normalerweise die immer an-
fallende Arbeit des Systems verrichten. Diese Routinen werden

70 Amiga Tips & Tricks

zusammengefaBt als "Kernel" bezeichnet, was englisch ist und
fir "Kern" steht: der eigentliche Kern des Systems.

Das Betriebssystem unterteilt diese zahllosen Maschinenpro-
gramme in insgesamt dreizehn "Libraries" (engl. Biichereien),
streng geordnet nach Thematik. Fiir unsere weiteren Routinen
werden jedoch nur finf dieser Libraries benétigt, und zwar:

- exec.library
Zustindig fir Tasks, Listen, I/O, allgemeine Systembelange,
Speicherverwaltung

- graphics.library
Zustindig fiir Text und elementare Grafik.

- intuition.library
Zustindig fiir Fenster, Screens, Requester, Alarmmeldungen.

- dos.library
Zustiandig fir das Disk Operating System (DOS).

- diskfont.library
Zustindig fir die Verwaltung nachladbarer Zeichensitze.

Jede dieser Libraries ist gefiillt mit Maschinenroutinen fiir die
entsprechenden Aufgabenbereiche. Damit AmigaBASIC diese
Routinen verwenden kann, bendtigt es dreierlei Informationen:
Vor allem muf3 der Interpreter den Namen einer jeden Routine
wissen. Dieser Name unterliegt keinerlei Beschrinkungen. Sie
konnen prinzipiell jeder Maschinenroutine einen selbstkreierten
Namen zuordnen.

In der Praxis gibt es jedoch fiir jede Maschinenroutine einen
standardisierten Namen. Zweitens mu3 dem Interpreter mitge-
teilt werden, an welcher Stelle innerhalb der Library die ent-
sprechende Routine gefunden werden kann. Dazu besitzt jede
Library eine Offset-Tabelle.

—— Das AmigaBASIC 71

muB das AmigaBASIC wissen, welche Ubergaberegister fiir die
Routine benétigt werden. Insgesamt gibt es acht Daten- und
finf AdreBregister, die AmigaBASIC benutzen kann:

Datenregister dO
Datenregister d1
Datenregister d2
Datenregister d3
Datenregister d4
Datenregister d5
Datenregister d6
Datenregister d7
AdreBregister a0
AdreBregister a1
AdreBregister a2
AdreBregister a3
AdreBregister a4

WN=-200CONOOOOLWN =

- ed h b

Fiir jede Library gibt es deshalb ein sogenanntes .bmap-File. In
dieser Datei sind die notigen Informationen fiir alle Befehle ent-
halten, die in der Library organisiert sind. Mittels des vom
Amiga auf der "Extras"-Diskette mitgelieferten "ConvertFd"-
Programms konnen Sie die noétigen .bmap-Files leicht erstellen.
Bevor Sie nun fortfahren, sollten Sie diese Dateien anlegen:

graphics.bmap
intuition.bmap
exec.bmap
dos.bmap
diskfont.bmap

Kopieren Sie diese Dateien anschlieBend auf die Workbench-
Diskette in das Unter-Directory "LIBS:", oder sorgen Sie dafiir,
daB sich die .bmap-Dateien immer zusammen mit Ihren Pro-
grammen in ein- und demselben Inhaltsverzeichnis befinden.
Vom CLI aus kénnte das Kopieren so geschehen:

1> copy graphics.bmap to libs:
1> copy intuition.bmap to libs:

72 Amiga Tips & Tricks

3.1.1 Nutzung der Systembibliotheken in GFA

Auch der GFA-Programmierer verfiigt iiber die Moglichkeit, die
zahlreichen System-Bibliotheken und die in ihnen enthaltenen
Funktionen fiir seine Zwecke zu verwenden. Im Vergleich zu
AmigaBASIC hat er es sogar ein wenig einfacher.

GFA unterscheidet zwischen zwei Arten von Bibliotheken. Da
sind zunichst die gebriuchlichsten unter ihnen wie beispiels-
weise Intuition, Exec und Graphics. Diese Bibliotheken hat GFA
in weiser Voraussicht bereits fiir Sie ged6ffnet. Doch damit nicht
genug: GFA kennt bereits alle in diesen Bibliotheken abgelegten
Routinen beim Namen und weif3, welche Parameter sie verlan-
gen. Der Umgang mit diesen Bibliotheken und Routinen ist also
denkbar einfach, denn Sie brauchen diese Bibliotheken weder zu
o6ffnen noch die in ihnen lagernden Routinen zu deklarieren
noch "fd."- oder ".bmap"-Dateien zu erzeugen. Allerdings kennt
GFA nicht alle Bibliotheken, denn das wire zu speicheraufwen-
dig. So besteht die zweite Kategorie aus den restlichen Biblio-
theken, deren Funktionen nicht ohne weiteres verwendet werden
koénnen.

Ob nun eine von Thnen gewihite Betriebssystem-Funktion zur
ersten und benutzerfreundlichen oder zur zweiten, etwas auf-
wendigeren Kathegorie zdhlt, 148t sich leicht herausfinden. Sie
brauchen namlich lediglich den korrekten Funktionsaufruf in ihr
Programmlisting einzufiigen. So beispielsweise:

mem=al Locmem(100,2°16)

Da GFA die Funktion AllocMem aus der Exec-Bibliothek kennt,
wandelt der Interpreter obige Zeile automatisch um in:

mem=Al LocMem(100,2°16)

Damit ist dieser Funktionsaufruf akzeptiert. Handelt es sich aber
um eine unbekannte Funktion, so interpretiert GFA diese als
Variable und beldt die Kleinschreibung. Solche Aufrufe sind
nicht erlaubt und miissen von Ihnen wieder geldscht werden.

—— Das AmigaBASIC 73

Wollen Sie jedoch partout eine der weniger gebrduchlichen und
fir GFA unbekannten Routinen verwenden, so hilft Thnen das
folgende Programm weiter. Es benétigt allerdings die von Com-
modore mitgelieferte Extras-Diskette, bzw. die auf ihr enthalte-
nen fd.-Dateien. Aus diesen Informationen entwickelt es ein
GFA-Makro der gewiinschten Funktion. Zunichst das Listing:

' Betriebssystem-Bibliotheksfunktionen untersuchen
' MExtras"-Diskette (bzw. fd.-Dateien) erforderlich
1
OPENW 0
bibliotheken_holen
DO
SLEEP
Loop

PROCEDURE bibliotheken_holen
count=2
volume$="Extras 1.3:"
inhalt$="fd1.3»
work$=volume$+inhalt$
CHDIR work$
DIR work$ TO "RAM:bibliotheken.user"
DIM biblio$(200)
DIM store$(200)
DIM func$(30)
OPEN "I" #1,"RAM:bibliotheken.user"
WHILE NOT EOF(#1)
LINE INPUT #1,in$
in$=TRIM$(in$)
IF RIGHT$(in$,7)="_Lib. fd"
INC count .
biblio$(count)=LEFT$(in$,LEN(in$)-7)
ENDIF
WEND
CLOSE #1
biblio$(0)="Bibliotheken"
biblio$(1)="QUIT"
biblio$(2)="MAKE MAKRO"
biblio$(count+1)=1n
biblio$(count+2)=1n
count=count+1
MENU biblio$()
ON MENU GOSUB auswertung
KILL "“RAM:bibliotheken.user"
PRINT "Programm initialisiert. Das Menue steht Ihnen";
PRINT " jetzt zur Verfuegung."
RETURN

74 Amiga Tips & Tricks

PROCEDURE auswertung
eintrag=MENU(0)
IF eintrag<19
IF eintrag=1
END
ELSE IF eintrag=2
make_makro
ELSE
bibliothek1$=biblio$(eintrag)
CLS
PRINT "Lade die Funktionsdefinitionen der Bibliothek ";bibliothek1$
PRINT
bibliothek$=bibliothek1$+"_Lib.fd"
OPEN "I", #1,bibliothek$
fix=25
fax=fix+1
offset=fix
position=0
faktor=-1
WHILE NOT EOF(#1)
LINE INPUT #1,in$
PRINT in$
IF LEFT$(in$,1)<>"*n AND LEFT$(in$,1)<>"#n
INC offset
INC position
IF offset>fix
INC faktor
offset=2
biblio$(count+faktor*fax+0)=""
biblio$(count+faktor*fax+1)="Funktionen "
ENDIF
finder=INSTR(in$,"(")
biblio$(count+offset+fax*faktor)=LEFT$(in$,finder-1)
store$(position)=in$
ELSE
temp=INSTR(in$, "base")
IF temp>0
basis$=MID$(in$, temp+5,4)+"Base"
ENDIF
ENDIF
WEND
CLOSE #1
PRINT "Ladevorgang beendet."
biblio$(count+offset+fax*faktor+1)=nu
biblio$(count+offset+fax*faktor+2)="n
MENU biblio$()
ENDIF
ELSE
feld$=biblio$(eintrag)
fw:llll
FOR loop=1 TO position
IF INSTR(store$(loop), feld$)=1
found$=store$(loop)

—— Das AmigaBASIC 75

lib_offset=24+6*loop
Lloop=position
ENDIF
NEXT loop
CLS
PRINT "“Name der Routine: ";felds$
PRINT
PRINT "Basis = ";basis$
PRINT "Offset = -";lib_offset
PRINT "Template: ";
check(found$)
func=VAL(func$(1))
PRINT func$(0);" (";
IF func>0
FOR loop=1 TO func
PRINT func$(1+loop);
IF loop<func
PRINT ®, u;
ELSE
PRINT ")
ENDIF
NEXT loop
PRINT
PRINT
PRINT “Registerzuordnung:"
PRINT
FOR loop=1 TO func
PRINT func$(1+func+loop);" = ";func$(1+loop)
NEXT loop
ELSE
PRINT w)u
ENDIF
ENDIF
RETURN
PROCEDURE make_makro
IF felds<>un
datei$="RAM:"+UPPER$(feld$)+".LST"
OPEN "O",#1,datei$
PRINT #1,"DIM reg%(16)"
IF basis$<>"_SysBase" AND basis$<>"_IntBase" AND basis$<>"_GfxBase™
basis$=RIGHT$(basis$, LEN(basis$)-1)
PRINT #1,"bibliothek$="+CHR$(34);bibliothek1$;".library";
PRINT #1,CHR$(34);"+chr$(0)"
PRINT #1,basis$;"=0OpenLibrary(VARPTR(bibliothek$),0)"
PRINT #1,"IF ":basis$;"=0"
PRINT #1," PRINT "+CHR$(34);bibliothek1$;
PRINT #1," konnte nicht geoeffnet werden."
PRINT #1," PRINT "+CHR$(34);"Ist ";bibliothek1$;
PRINT #1," vielleicht ein Device?"
PRINT #1,“ENDIF"
ENDIF
PRINT #1,"FUNCTION ";feld$;
IF func>0

76 Amiga Tips & Tricks

IF func>0
PRINT #1,'(";
FOR loop=1 TO func
PRINT #1, func$(1+loop);"%";
IF Loop<func
PRINT #1,n, m.
ELSE
PRINT #1,m)n
ENDIF
NEXT loop
FOR loop=1 TO func
IF UPPERS(LEFT$(func$(1+func+loop),1))="A"
adder=8
ELSE
adder=0
ENDIF
reg=VAL(RIGHT$(func$(1+func+loop), 1))
reg=reg+adder
PRINT #1," reg%(";reg;") = ";func$(1+loop);"%"
NEXT loop
ELSE
PRINT #1 v n
ENDIF
IF basis$="_SysBase"
basis$="LPEEK(4)"
ENDIF
PRINT #1," reg%(14)=";basis$
PRINT #1," RCALL ";basis$;"-";lib_offset;", reg4()"
PRINT #1," RETURN reg%(0)"
PRINT #1,"ENDFUNC"
CLOSE #1
PRINT "MACRO DONE."
ELSE
PRINT "MACRO FAILED - CHOOSE FUNCTION FIRST.™
ENDIF
RETURN
> PROCEDURE check(k$)
flag=0
index=0
ERASE func$()
DIM func$(30)
FOR loop=1 TO LEN(k$)
c$=MID$(k$, Loop, 1)
IF flag=2
IF c$<>"(" AND c$<>M)n
lF cS:ll/" OR C$=","
INC index
ELSE
func$(index)=func$(index)+c$
ENDIF
ENDIF
ELSE IF flag=1
IF c$<>myn

—— Das AmigaBASIC 77

1F C$=","
INC index
ELSE
func$(index)=func$(index)+c$
ENDIF
ELSE
flag=2
func$(1)=STR$(index-1)
INC index
ENDIF
ELSE IF flag=0
IF c$<>n ("
func$(index)=func$(index)+c$
ELSE
flag=1
INC index
INC index
ENDIF
ENDIF
NEXT loop
IF func$(2)="n
func$(1)="0"
ENDIF
RETURN

Nun zur Anwendung des "Makro-Makers". Tippen Sie das Pro-
gramm ab. Nachdem Sie das Listing sicherheitshalber auf Dis-
kette abgespeichert haben, kénnen Sie es starten. Falls Sie noch
nicht die Extras-Diskette eingelegt haben, werden Sie hierzu
aufgefordert. Wie aus dem Listing unschwer zu entnehmen ist
(zweite Zeile der Prozedur "bibliotheken_holen"), verlangt das
Programm die Extras-Diskette "Extras 1.3". Sollten Sie Ihre Ex-
tras-Diskette umbenannt haben oder es sich um die Version 1.2
handeln, ist es ein leichtes Unterfangen, diese Zeile Threm Dis-
kettennamen anzupassen.

AnschlieBend 14dt das Programm alle auf dieser Diskette im
Directory "fd1.3" gespeicherten Bibliotheksnamen ein. Auch hier
miissen Sie das "fd1.3" in "fd" oder "fd1.2" dndern, wenn Sie eine
dltere Extras-Diskette besitzen, da das Programm das gesuchte
Verzeichnis sonst natiirlich nicht finden kann.

Sobald der Ladevorgang abgeschlossen ist, steht IThnen ein Menii
zur Verfiigung. Es besitzt den Punkt "Bibliotheken". Wihlen Sie
ihn einfach einmal an. Neben den Funktionen "QUIT" und

78 Amiga Tips & Tricks

"MACROQO" finden Sie dort alle zur Verfiigung stehenden Biblio-
theken. Sie kénnen nun eine beliebige davon anklicken.

Auf dem Bildschirm werden die jetzt eingelesenen Daten sicht-
bar dargestellt. Ist der Lesevorgang abgeschlossen, finden Sie die
erweiterten Menii-Punkte "Funktionen". Sie enthalten alle Routi-
nen der zuvor angeklickten Bibliothek. Nun kénnen Sie sich eine
beliebige Routine herauswihlen, indem Sie sie anklicken. Prompt
wird der korrekte Routinenname, der Aufruf, die Bibliothek
und das Template sowie die verwendeten Eingaberegister auf
dem Bildschirm ausgegeben. Dies soll nur Ihrer Information die-
nen. Sie konnen nun jedoch auch den unter "Bibliotheken" zu
findenden Meniipunkt "MACRO" anwihlen. In Sekundenschnelle
erstellt das Programm ein GFA-Makro, das den Aufruf dieser
Routine ermoglicht. Auf diese Weise konnen Sie beliebig viele
Routinen aus beliebigen Bibliotheken in Makros umwandeln.

Sobald Sie geniigend Routinen in Makros verwandelt haben,
koénnen Sie das Programm iiber den Meniipunkt "QUIT" verlas-
sen. Geben Sie jetzt "NEW" ein, um den GFA-Programmspeicher
zu léschen. Die Makros befinden sich nun in der RAM-Disk als
ASCII-Dateien. Wihlen Sie den GFA-Meniipunkt "MERGE" an,
anschlieBend das Laufwerk "RAM:". Jetzt kOonnen Sie alle ge-
wiinschten Makros miteinander kombinieren, indem Sie sie
nacheinander mittels MERGE einladen.

Da die Makros als Funktionen deklariert sind, erfolgt ihr Aufruf
so:

rickwert=aFunktionsname(parameter1, ..., parameterx)

bzw. am Beispiel der AllocMem-Routine:

mem=aal locmem(100,2°16)

Ist Thnen der Riickwert egal, so besteht alternativ die Moglich-
keit:

VOID Funktion(parameter1,...,parameterx)
bzw.
~ Funktion(s.o.)

—— Das AmigaBASIC 79

Anmerkung: Wenn Ihr Makro keine Bibliothek 6ffnet (einige
Zeilen vor dem Makro), so steht Thnen dieselbe
Funktion auch ohne Makro zur Verfiigung.

3.1.2 Umwandiung GFA-AmigaBASIC

Beim Aufruf von internen Routinen des Betriebssystems werden
oft Standardparameter bendtigt, die je nach BASIC-Dialekt auf
unterschiedliche Weise ermittelt werden kénnen.

Die Grafikbibliothek verwendet bei fast jedem Aufruf den Pa-
rameter "Rastport”. AmigaBASIC liefert den Rastport des aktu-
ellen Fensters immer in der Variablen WINDOW(8). GFA-BASIC
liefert diesen Wert nur indirekt auf folgende Weise:

OPENW 0
rastport=LPEEK(WINDOW(0)+50)

Wurde ein anderes Fenster als Nr. 0 ged6ffnet, dndert sich die
Zahl in der zweiten Zeile entsprechend.

Ein in der Intuition-Bibliothek hiufig gebrauchter Wert ist der
Zeiger auf die aktuelle Fensterstruktur. Dieser Zeiger liegt bei
AmigaBASIC in der Variablen WINDOW(7). GFA liefert densel-
ben Wert in der Variablen WINDOW(x), wobei x die Nummer
des gewiinschten und zuvor mittels OPENW x gedffneten Fen-
sters ist.

Oftmals ist es bei einem Systemaufruf nétig, Textstrings zu
iibergeben. Hierzu iibergibt man lediglich die Anfangsadresse
der Speicherstelle, ab der der Text hinterlegt ist. Als Textende-
Kennzeichen dient hierbei ein CHR$(0) am Ende des Textes.

AmigaBASIC liefert die Anfangsadresse eines einfachen Strings
mit Hilfe der Funktion SADD:

Anfangsadresse=SADD(a$)

80 Amiga Tips & Tricks

Anders bei GFA. Hier leistet die Funktion VARPTR dieselbe
Aufgabe:

Anfangsadresse=VARPTR(a$)

oder:

Anfangsadresse=LPEEK(*a$)

Der Ausgleich dieser wenigen Unterschiede reicht in den
meisten Fillen aus, unter AmigaBASIC verwendete Systemauf-
rufe in GFA zu verwenden (und umgekehrt).

3.2 AmigaBASIC-Grafik

Sicherlich werden Sie an dieser Stelle keine ausfiithrliche Ein-
fuhrung in das Grafiksystem des Amiga finden, denn dazu ist
dieser Spezialbereich viel zu komplex und umfangreich (schauen
Sie doch einmal in das Amiga Supergrafikbuch von DATA
BECKER, wenn Sie dieses Thema ganz besonders reizt!). Viel-
mehr moéchten wir Thnen kleine Tips und Tricks vorstellen, mit
denen Sie eigene Programme schneller, professioneller und oft-
mals wesentlich vielseitiger gestalten konnen. Sehen Sie selbst:

3.2.1 Zeichenmodi verandern

Ob Sie es bemerkt haben oder nicht: Thr Amiga verfiigt tber
insgesamt vier verschiedene Zeichenmodi. Jeder Zeichenmodus
stellt Grafiken auf seine ganz spezielle Art auf dem Bildschirm
dar. Dies sind die Darstellungsarten:

JAM 1: Nur die eigentliche Zeichenfarbe wird auf
den Bildschirm gebracht. Der Hintergrund
bleibt unbeschidigt.

—— Das AmigaBASIC 81

JAM 2: Wie JAM 1, jedoch werden alle ungesetzten
Punkte im Zielgebiet mit der Hintergrund-
farbe gezeichnet. Der Hintergrund wird also
geldscht.

INVERSEVID: Wie JAM 2, jedoch werden Hinter- und
Vordergrund vertauscht. Die Zeichnung er-
scheint invers.

COMPLEMENT: Wie JAM 1, jedoch wird die neue Zeich-
nung mit dem Hintergrund Punkt fiir Punkt
verkniipft. Ein gesetzter Punkt wird ge-
16scht, ein geloschter gesetzt.

Diese vier Modi lassen sich auBerdem untereinander mischen,
wobei neun Kombinationsmoglichkeiten entstehen. Leider kennt
AmigaBASIC keinen Befehl, um diese Zeichenmodi willkiirlich
zu verdndern. Deshalb muf3 der entsprechende Befehl aus der
internen Grafik-Bibliothek aktiviert werden. Er hat das Format:

SetDrMd (rastport, modus)

Die Adresse des Rastports ist fiir das aktuelle Ausgabefenster
immer in der Variablen WINDOW(8) gespeichert. Fiir BASIC
sieht das Format also so aus:

SetDrMd (WINDOW(8), modus)

Hier nun eine Sammlung kleiner Routinen, die die Verwendung
des SetDrMd()-Befehls veranschaulichen:

,

'#
'# Programm: Zeichenmodi
'# Autor: tob

'# Datum: 3.8.87
'# Version: 1.0
'#

33 I

l

LIBRARY "graphics.library"
Schatten "Guten Abend, liebe Leute!™, 11
LOCATE 4,8
Outline "“OUTLINE: Zum Hervorheben gut geeignet.", 10

82 Amiga Tips & Tricks

LIBRARY CLOSE
END
SUB Schatten (text$, space%) STATIC
cX% = P0S(0)*8
cY% = (CSRLIN - 1)*8
IF cY% < 8 THEN cY% = 8
CALL SetDrMd(WINDOW(8),0) 'JAM1
FOR loop% = 1 TO LEN(text$)
in$ = MID$(text$, loop%, 1)
CALL Move(WINDOW(8), cX¥%+1, cY¥+1)
COLOR 2, O
PRINT ins;
CALL Move(WINDOW(8), cX%, cY%)
CoLorR 1, O
PRINT in$;
cXX = cX¥% + space%
NEXT loopX
CALL SetDrMd(WINDOW(8),1) 'JAM2
PRINT
END SUB
SUB Outline (text$, space%) STATIC
cX% = POS(0)*8
cY% = (CSRLIN - 1)*8
IF cY% < 8 THEN cY% = 8
FOR loop% = 1 TO LEN(text$)
in$ = MID$(text$, loop%, 1)
CALL SetDrMd(WINDOW(8),0) 'JAM1
FOR loop1% = -1 TO0 1
FOR loop2% = -1 T0 1
CALL Move(WINDOW(8),cX% + loop2%, cY% + loop1%)
PRINT in$;
NEXT loop2%
NEXT loop1%
CALL SetDrMd(WINDOW(8),2) 'COMPLEMENT
CALL Move(WINDOW(8), cX%, cY%)
PRINT in$;
cX% = cX¥% + space%
NEXT loop%
CALL SetDrMd(WINDOW(8),1) 'JAM2
PRINT
END SUB

Eine weitere Anwendung demonstriert noch einmal den
COMPLEMENT-Modus: Das Rubberbanding. Was, Sie wissen
nicht, was das ist? Dabei arbeiten Sie damit sicherlich téglich:
Jedesmal, wenn Sie die GroBe eines Windows verindern, er-
scheint dieses erfrischend orange Gummiband, mit dessen Hilfe
Sie eine passende GrofBle finden konnen.

—— Das AmigaBASIC 83

Dieses Gummiband wird normalerweise von Intuition verwaltet.
Die Technik ist recht einfach: Um zu verhindern, dal durch das
Gummiband der Bildhintergrund verindert wird, friert Intuition
zunichst alle Bildaktivititen ein (Dies ist der Grund, warum ein
Malprogramm zum Beispiel die Arbeit unterbricht, wenn Sie ein
Window vergréBern oder verkleinern). Das Gummiband wird
anschlieend im Zeichen-Modus COMPLEMENT auf den Bild-
schirm gezeichnet. So kann es durch einfaches Uberschreiben
problemlos wieder geloscht werden, ohne den Bildhintergrund zu
verdndern.

Dieser Effekt 148t sich auch von BASIC aus recht einfach pro-
grammieren. Das folgende Programm ermdglicht einen Einblick
und benutzt auch gleich noch ein paar andere interessante Ami-
gaBASIC-Befehle. Professionelles "Rubberbanding" ist kein Pro-
blem mehr:

R R R R R

"#
'# Programm: Rubberbanding
'# Autor: tob

'# Datum: 3.8.87
'# Version: 2.0
‘#
VTR B
LIBRARY "graphics.library"
main: '* Demonstriert Rubberbanding
CLS
'* Rechteck
PRINT "a) Zeichnen Sie ein Rechteck!"
Rubberband
LINE (m.x, m.y) - (m.s, m.t),,b
'* Linie
LOCATE 1,1
PRINT "b) ...und nun eine Linie! "
Rubberband
LINE (m.x, m.y) - (m.s, m.t)
'* Flaeche bestimmen
LOCATE 1,1
PRINT "c) Nun wird eine Flaeche bestimmt..."
Rubberband
X = ABS(m.x - m.s)
Yy = ABS(m.y - m.t)
PRINT "Breite (x)
PRINT "Hoehe (y)
PRINT "Inhalt
LIBRARY CLOSE

TR

iy
";x*y; " Punkte."

84 Amiga Tips & Tricks

END
SUB Rubberband STATIC
SHARED m.x, m.y, m.s, m.t
CALL SetDrMd(WINDOW(8),2) 'COMPLEMENT
WHILE MOUSE(0) = O
maus = MOUSE(0)
WEND
m.x = MOUSE(1)
MOUSE(2)
m.x
m.y
WHILE maus < 1
m.s
m.t
MOUSE (1)
m.t = MOUSE(2)
IF m.a <> m.s OR m.b <> m.t THEN
LINE (m.x, m.y) - (m.a, m.b),,b
LINE (m.x, m.y) - (m.s, m.t),,b
END IF
maus = MOUSE(0)
WEND
LINE (m.x, m.y) - (m.s, m.t),,b
PSET (m.x, m.y)
CALL SetDrMd(WINDOW(8), 1)
END SUB

3
:
»
[I T]

3.2.2 Veranderter Text-Stil

Der Amiga ist in der Lage, Schrift durch Rechenoperationen zu
verdndern. Einfache Algorithmen (Rechenvorschriften) kénnen
so die Schriftarten "Unterstreichen", "Fettdruck" und "Kursiv-
druck" erzeugen. Vor allem in Textverarbeitungen, aber auch zur
besseren Aufgliederung jeglichen Textes sind diese Modi auB3er-
ordentlich niitzlich. Leider unterstiitzt BASIC die Schriftverfor-
mung von Hause aus nicht. Wieder ist eine Systemfunktion aus
der Grafik-Bibliothek der Retter in der Not:

SetSoftStyle (WINDOW(8), stil, enable)

stil:

0 normal (reset)

1 unterstrichen

2 fett

3 unterstrichen + fett

—— Das AmigaBASIC 85

kursiv

unterstrichen + kursiv

fett + kursiv

unterstrichen, fett + kursiv

N\ N

Das folgende Programm demonstriert die Méglichkeiten:

'#

'# Programm: Text-Stil

'# Autor: tob

'# Datum: 12.8.87

'# Version: 1.0

'#

1 i S-S S

DECLARE FUNCTION AskSoftStyleX LIBRARY

DECLARE FUNCTION SetSoftStyleX% LIBRARY

LIBRARY "graphics.library"

var: '* Die Modi (die Zahlenwerte koennen auch
'* direkt verwendet werden)
normal%
unterstri
fettk
kursivi

demo: '* Beispiel

CLS

Stil unterstr¥ + kursivX

PRINT TAB(20); "Die verschiedenen Schriftarten"

LOCATE 5,1

Stil normal%

PRINT "Ihr Amiga ist in der Lage, vier verschiedene Schriftarten"

PRINT "darzustellen. Das sind:"

PRINT

PRINT "a) NORMALnormal"

Stil unterstr¥

PRINT "b) UNTERSTRICHENunterstrichen"

Stil fett%

PRINT "c) FETTfett"

Stil kursiv¥

PRINT "d) KURSIVkursiv"

PRINT

Stil normal%

PRINT "Hier alle Formen, inkl. Mischformen:

FOR loop% = 0 TO 7

Stil loop%
PRINT "Mischform Nr. ";loop%

NEXT loop%

* ...und mit "Normal" beenden...

Stil normal%

LIBRARY CLOSE

LR X X X X X

SN0

86 Amiga Tips & Tricks ——

END
SUB Stil (nr%) STATIC
bits¥ = AskSoftStyle%X(WINDOW(8))
news% = SetSoftStyle%(WINDOW(8), nr¥%, bits%)
IF (nr% AND 4) = & THEN
CALL SetDrMd(WINDOW(8),0)

ELSE
CALL SetDrMd(WINDOW(8),1)
END IF
END SUB
Variablen
blits% diejenigen Stil-Bits, die mit diesem Zeichensatz
mdglich sind
news% neu gesetzte Stil-Bits
nr% eingegebene Stil-Bits
Programmbeschreibung

Denkbar einfach: Sie iibergeben an das SUB "Stil" die Bitkombi-
nationen des Stils (siehe oben). Intern wird die AskSoftStyle()-
Routine aufgerufen, die die méglichen Bits fiir den augenblick-
lichen Zeichensatz zuriickgibt. Diese Bits werden zusammen mit
den neu zu setzenden Bits an SetSoftStyle() iibergeben. Diese
Funktion setzt den neuen Stil, wenn die entsprechenden Mas-
kenbits in bits% vorhanden sind. Ansonsten werden die Bits
nicht gesetzt.

Ist in irgendeiner Kombination der Stil "Kursiv" (nr% and 4 = 4)
gewidhlt worden, dann wird der Zeichenmodus "JAMI" einge-
schaltet (siehe Kapitel 3.2.1). Nur so wird kursiver Text ein-
wandfrei ausgegeben, weil im normalen Modus JAM2 jeweils
der rechte, in das Feld des nichsten Buchstabens hinein-
reichende Teil des Zeichens beschidigt (abgehackt) wird. Wurde
der Punkt "Kursiv" nicht benutzt, setzt SetDrMd() den Nor-
malmodus "JAM2",

—— Das AmigaBASIC 87

3.2.3 Move - Kontrolle iiber den AmigaBASIC-Cursor

In einigen der vorangegangenen Befehle haben wir ihn schon
benutzt, den "graphics.library"-Befehl Move. Kennt Amiga-
BASIC nur die Moglichkeit, die Cursorposition zeichenweise
(LOCATE-Befehl) oder pixelweise in x-Richtung (durch PTAB)
zu veridndern, so 1iBt sich die Cursorposition mit Hilfe des
Move-Befehls problemlos pixelweise sowohl in x- als auch y-
Richtung verschieben. Der Aufruf des Befehls in BASIC muf
folgendermaflen erfolgen:

Move&(WINDOW(8),x%, y%)

Um die Sache zu vereinfachen, haben wir wieder einen kleinen
Befehl geschrieben, der in den verschiedensten Situationen
duflerst praktisch sein kann:

xyPTAB x%,Yy%

Programm-Gro6Be: 455 Bytes
Bemerkung: "graphics.bmap" muf3 sich auf Disk befinden.

DECLARE FUNCTION Move& LIBRARY
LIBRARY "graphics.library"
var:
text$="Es geht bergab..."
text$=" "+text$+n »
empty$=SPACES(LEN(text$))
fontheight%=8
main:
FOR y%=6 TO 100
. XyPTAB x%,y%
PRINT text$
xyPTAB x%,y%-fontheight%
PRINT empty$
X%=x%+1
NEXT y%
LIBRARY CLOSE
END

SUB xyPTAB(x%,y%) STATIC
e&=Move& (WINDOW(8),x%, y%)
END SUB

88 Amiga Tips & Tricks

Fehlerquellen: Kaum méglich

Variablen
text$ Demo-Text
empty$ Leerstring, der fiir ein restloses Verschwinden beim
y-Verschieben sorgt
fontheight% Hohe des Font
x%, y% Bildschirm-Koordinaten
e& Error-Meldung des Move&-Befehls

Programmbeschreibung

Der Move&-Befehl wird als Funktion deklariert, und die ein-
schlagige Library wird gedffnet. Der Demo-Text huscht im
SoftScroll-Mode iiber den Bildschirm, die Library wird wieder
dichtgemacht, und das Programm endet. Die eigentliche SUB-
Routine ist denkbar einfach, denn im Prinzip werden die noti-
gen Koordinaten nur dem Move-Befehl iibergeben.

So simpel diese Routine aussieht, so leistungsfihig ist sie. Mit
ihrer Hilfe kann Text, wie im Beispiel, pixelweise in sdmtliche
Himmelsrichtungen verschoben werden. Entweder im Smear-
Effekt (SetDrMd mode%=JAMI1) oder als SoftScrolling (SetDrMd
mode%=JAM2).

3.2.4 Schnelleres Grafikformat <-> IFF

Das Schone am IFF-ILBM-Dateiformat ist zweifellos die Tat-
sache, daB es sich schnell als Standard durchgesetzt hat. Die
Konzeption von IFF ist geradezu einzigartig. Sie 143t neben den
wenigen allgemeinverstindlichen Dateiteilen auch jede Erweite-
rung von Programmen in Form weiterer Dateiteile zu. Die ein-
zelnen Dateiblécke nennt man Chunks.

Sicherlich haben Sie bereits viele Ladeprogramme fiir ILBM-
Bilder in Zeitschriften gesehen, oder gar den Schnellader fiir
IFF-Grafiken im DATA-BECKER-Buch "Supergrafik Amiga",
der von Tobias Weltner stammt. Wenn Sie sich aber - bei den
Grafikfihigkeiten des Amiga - einmal damit befaB3t haben, fiir

—— Das AmigaBASIC 89

ein eigenes Programm ein Titelbild zu laden, kann ich mir gut
vorstellen, da3 Thnen die User schon wihrend der langen Lade-
zeit davongelaufen sind, richtig?

Wir sollten uns daher ernsthafte Gedanken dariiber machen,
warum das so sein muf3. IFF-ILBM-Grafiken haben entschei-
dende Nachteile, wenn es darum geht, sie schnell zu laden. Der
erste Punkt ist der, daB3 sehr viel Zeit damit verloren geht, die
verschiedenen Chunks zu identifizieren und unwichtige zu
iiberlesen. Der zweite Punkt sind die verschiedenen Methoden,
wie ein Bild schlieBlich gespeichert wurde, also das ILBM-For-
mat. Hierbei wird beispielsweise bei einem Bild mit fiinf Bit-
planes zundchst Zeile 1 der ersten Bitplane gespeichert, dann
folgt Zeile 1 der zweiten Bitplane und so weiter, bis schliefllich
Zeile 1 der funften Bitplane an die Reihe kommt. Wenn Sie
dazu noch wissen, daf3 eine Bitplane immer in einem Stiick im
Speicher liegt, konnen Sie sich wohl nur wenige Anwendungen
vorstellen, bei denen eine derartige Umstindlichkeit von Nutzen
sein kann. Der dritte Punkt kommt beispielsweise bei Deluxe-
Paint II dazu. Hier wird zusitzlich jede Zeile einer Bitplane ge-
packt und mufl daher beim Laden wieder decodiert werden.

Aus diesen Griinden werden Sie bei keinem Profi-Programm,
welches nicht IFF-Files laden kénnen soll, ein derartiges Datei-
format vorfinden. Ein Profi will ja zum einen nicht, daB seine
Bilder (z.B.: Defender of the Crown) zu anderen Programmen
kompatibel sind, zum anderen legt er HuBersten Wert darauf,
seine Bilder schnell in den Speicher zu bekommen. Selbst ein
Malprogramm muf} seine Bilder nicht im langsamen Standard-
format speichern und laden, obwohl hier die Moglichkeit dazu
vorhanden sein sollte.

Da man als Programmierer seinen Programmen, auch wenn sie in
AmigaBASIC geschrieben wurden, einen professionellen Touch
mitgeben mochte, schrieb ich folgendes Programm. Dieses Pro-
gramm liest zunidchst eine IFF-ILBM-Grafik ein (Wer will
schlieBlich auf DPaint als Malprogramm verzichten?) und
speichert sie danach in folgendem Format ab:

90 Amiga Tips & Tricks ——

Bitplane 1 (in einem Stiick)
Bitplane 2 ...

. letzte Bitplane
Hardware-Farbregister-Inhalt

Dazu wird ein AmigaBASIC-Ladeprogramm generiert, welches
dieses Bild l4dt und anzeigt (bis zum Maus-Klick). Das Amiga-
BASIC-Programm ist natiirlich ein ASCII-File, das sich sowohl
mit MERGE oder CHAIN mit anderen Programmen verkniipfen
14B8t, als auch durch ein Anklicken des Icons von der Workbench
aus startbar ist.

In dem folgenden Listing ist ein Schnellader fiir IFF-ILBM-
Grafiken eingebaut. Vergleichen Sie einmal! Bei eigenen Tests
des neuen Formates ergab sich unter Verwendung eines Bildes
im Format 320 mal 200 mal 5 eine reine Ladegeschwindigkeit
von MEHR ALS 41000 BYTE PRO SEKUNDE !

Zu gut deutsch: Das Bild war nach einer LADEZEIT VON
UNTER EINER SEKUNDE im Speicher. Im Gegensatz dazu
brauchte das Laden des IFF-Files etwa 100mal solange! Hier nun
das Listing:

HHH BB R R
load pictures like a prof with

B #
R AL CE TP #

*
-
>
(7]
-
.
(2]
-
x
>
3
@
o
*

(W) 1987 by Stefan Maelger
HRRHH R R

DECLARE FUNCTION xOpen& LIBRARY
DECLARE FUNCTION xRead& LIBRARY
DECLARE FUNCTION xWrite& LIBRARY
DECLARE FUNCTION Seek& LIBRARY
DECLARE FUNCTION AllocMem& LIBRARY
DECLARE FUNCTION AllocRaster& LIBRARY

REM *hkh LIBRARYS OEFFNEN Jo e e de de oo Je de e e A e e de e e e e e de ke ok
LIBRARY "dos.library"
LIBRARY "exec.library"
LIBRARY "graphics.library"

REM **%% FEHIERVERZWEIGUNG EINRICHTEN **¥kkkiinx
ON ERROR GOTO errorcheck

RE” ekl
eingabe:

REM **%*
REM dedekd

Das AmigaBASIC 91

EINGABE DER DATEINAMEN **¥¥kkkikiiikkdiik

SPEICHERPLATZ VOM BASIC-WINDOW ~ ****%%%
FREIGEBEN UND MINISCREEN OEFFNEN **¥*¥%%

WINDOW CLOSE WINDOW(O)

SCREEN 1,320,31,1,1

WINDOW 1,"FAST-GFX-CONVERTER", ,0,1
PALETTE 0,0,0,0

PALETTE 1,1,0,0

FOR i=1 TO 4
MENU §,0,0,""
NEXT

PRINT “IFF-ILBM-Bild:"
LINE INPUT filename$
PRINT “Fast-GFX-Bild:"
LINE INPUT target$

PRINT "Name des Loaders:"
LINE INPUT loader$

CHDIR “dfQ:"

REM **** [FEF-DATEI OEFFNEN ***%kdkkkkkkkkkkkhkikit

file$=filename$+CHR$(0)
handl e&=x0pen&(SADD(file$),1005)
IF handle&=0 THEN ERROR 255

REM **%* EINGABE-BUFFER SCHAFFEN ****aaxkaiiidns

buffer&=AllocMem&(160,65537&)
IF buffer&=0 THEN ERROR 254
farbbuf fer&=buffer&+96

REM **** FORM-CHUNK LESEN, BZW. PRUEFEN **¥*¥kikx

r&=xRead&(handle&, buffer&, 12)

IF PEEKL(buffer&)<>1179603533& THEN ERROR 253
IF PEEKL(buffer&+8)<>1229734477& THEN ERROR 252
bmhdf lag%=0

flag#%=0

REM ***% |ESE CHUNKNAME + CHUNKLAENGE ***¥*#wwkkk

WHILE flag¥<>1
r&=xRead&(handle&, bufferg&,8)
IF r&<8 THEN flag%=1:GOTO whileend

Llang&=PEEKL (buffer&+4)

REM *kdkk BMHD-CHUNK? (CVL("BMHDII)) khkhkkhkhkhkkikkhkik

IF PEEKL(buffer&)=1112361028& THEN
r&=xRead&(handle&, buffer&, lang&)
breite%=PEEKW(buffer&) :REM * BILDBREITE

hoehe%=PEEKW(buffer&+2) :REM * BILDHOEHE
tiefeX=PEEK(buffer&+8) :REM * BILDTIEFE

92

REM

REM

REM

REM

REM

REM

REM
REM

Amiga Tips & Tricks

gepackt%=PEEK(buffer&+10) :REM * PACK-STATUS
sbreiteX=PEEKW(buffer&+16) :REM * SCREENBREITE
shoehe%=PEEKW(buffer&+18) :REM * SCREENHOEHE

bytes%=(breite%-1)\8+1

sbytesX=(sbreite%-1)\8+1

colmax¥%=2"tiefe%

IF colmax¥>32 THEN colmax%=32

IF breite%<321 THEN mode%=1 ELSE mode%=2

IF hoehe%>256 THEN mode%=mode%+2

IF tiefe%=6 THEN planedazu%=1 ELSE planedazu%=0

**%% NEUEN SCREEN HOCHFAHREN *¥akiiiiiassii
WINDOW CLOSE 1
SCREEN CLOSE 1
SCREEN 1,breite%,hoehe%, tiefe%-planedazu%, mode%
WINDOW 1,,,0,1

xhkhh SCREEN-DATEN ERMITTELN % v de Je 3 e I e e de I o e e ok e
picscreen&=PEEKL (WINDOW(7)+46)
viewport&=picscreen&+44
rastport&=picscreen&+84
colormap&=PEEKL (viewport&+4)
colors&=PEEKL(colormap&+4)
bmap&=PEEKL(rastport&+4)

%* HALFBRIGHT ODER HOLD-AND-MODIFY ? *%x%
IF planedazu%=1 THEN

**** DANN 6. BITPLANE ERSTELLEN LASSEN ***%*x
plane6&=AllocRaster&(sbreite%, shoehe%)
IF plane6&=0 THEN ERROR 251

%% UND IN DIE DATENSTRUKTUR EINBINDEN *¥%
POKE bmap&+5,6
POKEL bmap&+28, planeb&
END IF
bmhdf lag%=1

%* CMAP-CHUNK (FARBEN, JE FARBE: R,G,B) *
ELSEIF PEEKL(buffer&)=1129136464& THEN

IF (lang& OR 1)=1 THEN lang&=lang&+1
r&=xRead&(handle&,buffer&, lang&)

FOR i%=0 TO colmax%-1

%* UMRECHNEN IN DIE FORM, IN DER SIE IN *

**** DEN HARDWARE-REGISTERN LIEGEN el
POKE farbbuffer&+i%*2,PEEK(buffer&+i%*3)/16
gruenbl au%=PEEK(buffer&+i%*3+1)

—— Das AmigaBASIC

gruenbl au¥%=gruenbl au¥+PEEK(buf fer&+i%*3+2)/16
POKE farbbuffer&+i%*2+1,gruenblau¥®

NEXT

REM **** CAMG-CHUNK = VIEWMODE (Z.B. HAM,LACE ***
ELSEIF PEEKL(buffer&)=1128353095& THEN

r&=xRead&(handle&,buffer&, Lang&)

viewmode&=PEEKL (buffer&)
REM **** BODY-CHUNK = BITMAPS, ZEILE FUER ZEILE *
ELSEIF PEEKL(buffer&)=1112491097& THEN

REM **** EXISTIERT DIE SCREEN UEBERHAUPT ? *¥¥iik
IF bmhdflag%=0 THEN ERROR 250

REM **** SIND DIE EINZELNEN ZEILEN ETWA *¥**¥&¥dk%
REM **** AUCH NOCH CODIERT ? badadedudobdododl
IF gepackt%=1 THEN

REM **%** DANN HILFT NUR NOCH POKEN !l #*¥kkkikdkik
FOR y%=0 TO hoehe%-1
FOR z%=0 TO tiefe%-1
ad&=PEEKL (bmap&+8+4*z%)+y%*sbytes%
count%=0
WHILE count¥%<bytes¥%

r&=xRead&(handle&,buffer&, 1)

code%=PEEK(buffer&)

IF code%>128 THEN
r&=xRead&(handle&, buffer&,1)
wert%=PEEK(buffer&)
endbyte%=count¥+257-code%

FOR x%=count% TO endbyte%
POKE ad&+x%,wert%

NEXT

count%=endbyte%

ELSEIF code%<128 THEN
r&=xRead&(handle&, ad&+count%, code%+1)
count¥=count¥%+code%+1

END IF

WEND
NEXT z%,y%

REM **** ODER ETWA NICHT GEPACKT ? - WIE SCHOEN *
ELSEIF gepackt%=0 THEN

REM **** DER DOS-BEFEHL READ FUELLT DIE BITMAPS *
FOR y%=0 TO hoehe%-1
FOR z%=0 TO tiefe%-1
ad&=PEEKL (bmap&+8+4*z%)+y%*sbytes%
r&=xRead&(handle&, ad&,bytes%)
NEXT 2%,Y%

93

94 Amiga Tips & Tricks

REM **** NANU? CODIERUNGS-METHODE UNBEKANNT? ****
ELSE

ERROR 249
END IF
ELSE

REM **** CHUNK KOENNEN WIR NICHT BRAUCHEN. *¥*%¥%x
REM **** | FSEZEIGER IN DATEI VERSCHIEBEN Fedekk ek
IF (lang& OR 1)=1 THEN lang&=lang&+1

now&=Seek&(handle&, lang&,0)

END IF

REM Khehk ENDE DER LESERwTINE B v e Je I e Je o v de I I ok o e K ok ek
whileend:

WEND

REM **** FARBEN EINLADEN UND FILE SCHLIESSEN ****
1F bmhdflag%=0 THEN ERROR 248
CALL LoadRGB4(viewport&, farbbuffer&, colmax%)
CALL xClose(handle&)

REM **** VIEWMODE GELESEN? DANN AUCH EINSTELLEN *
IF viewmode&<>0 THEN
POKEW viewport&+32,viewmode&
END IF

REM Kdkehk ZlELDATEl OEFFNEN e e de de e e de e e e g o v de de ok e ek ok ke ke
file$=target$+CHR$(0)
handle&=x0Open&(SADD(file$),1005)

IF handle&=0 THEN
handle&=x0pen&(SADD(file$),1006)
END IF

REM *%*kkkkkkhkkkhkkhkkhkhkhkhkkhhkhkhhhhhhhhhhhhhhhihhki

REM **** 50 KOENNEN SIE IN SEKUNDENSCHNELLE *****
REM **** GRAFIKEN ABSPEICHERN Fekdkkk

bitmap&=sbytes¥%*hoehe¥% :REM GROESSE EINER BITPLANE
FOR i%=0 TO tiefe%-1
ad&=PEEKL (PEEKL (WINDOW(8)+4)+8+4*i%)
w&=xWrite&(handle&, ad&, bitmap&)
NEXT
=xWrite&(handle&, farbbuffer&, 64)

REM **** DATE] SCHLIESSEN, BUFFER FREIGEBEN *****
CALL xClose(handle&)

—— Das AmigaBASIC

CALL FreeMem(buffer&,160)

REM KRERARRRRAAARRERARRRRRRAARARRRAARRRA R AR Ak kX

REM **** BASIC-PROGRAMM ERZEUGEN (ASCII-FORMAT) *
OPEN loader$ FOR OUTPUT AS 1

PRINTHY, MY RAHHASRHRHHAE ; CHRS(10);

PRINT#1, # Fast-Gfx Loader #';CHR$(10);

PRINTHI, M fommmmmmmmeommemeo #";CHR$(10);

PRINT#1, " # ":CHR$(169);"'87 S. Maelger #";CHR$(10);
PRINTHI, Nt RABHRHHARSASHH CHRS (10) ;
PRINT#1,CHRS$(10);

REM **** BETRIEBSSYSTEM-ROUTINEN ZUM LADEN ***¥*%
PRINT#1,"DECLARE FUNCTION xOpen& LIBRARY";CHR$(10);
PRINT#1,"DECLARE FUNCTION xRead& LIBRARY";CHR$(10);
PRINT#1,"DECLARE FUNCTION AllocMem& LIBRARY";CHR$(10);

REM **** IM FALLE VON H.A.M. ODER HALFBRIGHT *¥#*x
IF tiefe%=6 THEN

PRINT#1,"DECLARE FUNCTION AllocRaster& LIBRARY";
PRINT#1,CHR$(10);

END IF

REM *kdkk BENOETIGTE LIBRARIES RhkkERERTEhhhkhkihhi
PRINT#1,CHR$(10);
PRINT#1,"LIBRARY ";CHR$(34);"dos.library";CHR$(34);
PRINT#1,CHR$(10);
PRINT#1,"LIBRARY ";CHR$(34);"exec.library";CHR$(34);
PRINT#1,CHR$(10);

PRINT#1,"LIBRARY ";CHR$(34);"graphics. library";CHR$(34);

PRINT#1,CHR$(10);
PRINT#1,CHR$(10);

REM **** SPEICHER FUER PALETTE RESERVIEREN ***¥%%
PRINT#1,"b&=Al locMem& (64 ,65537&)"; CHR$(10);
PRINT#1,"1F b&=0 THEN ERROR 7";CHR$(10);

REM *hkh BILD-DATEI OEFFNEN dkkhhkhhhhihkhhrhhhkhkd

PRINT#1,"file$=";CHRS$(34); target$;CHRS(34); "+CHR$(0)";
PRINT#1,CHR$(10);
PRINT#1,"h&=x0pen&(SADD(file$),1005)";CHR$(10);

REM Kkkk SCREEN ERSTELLEN Ahkkhkhkhkkhkhkhkhrkhhhhhhhhkd
PRINT#1,"WINDOW CLOSE WINDOW(0)";CHR$(10);
PRINT#1,"SCREEN 1,";MID$(STR$(sbreite%X),2);",";

PRINT#1 MIDS(STRS(hoehe%) 2);",".
PRINT#1 MID$(STR$(tlefe%-planedazu%),2);",“;
PRINT#1,HIDS(STRS(modeX),2);CHR$(10);
PRINT#1,"WINDOW 1,,,0,1";CHR$(10);
PRINT#1,"viewport&=PEEKL (WINDOW(7)+46)+44" ;CHR$(10);
REM **** ALLE FARBEN AUF NULL SETZEN *#¥**kkkikkkk

95

96 Amiga Tips & Tricks

Llcm$="CALL LoadRGB4(viewport&,b&,"
Lem$=Lcm$+MIDS(STR$(colmax®),2)+")"+CHR$(10)
PRINT#1, lcn$;

REM **** BE] HAM ODER HALFBRIGHT 6.PLANE ******x%
IF tiefeX=6 THEN

PRINT#1,"n&=Al locRaster&(";
PRINT#1,MID$(STR$(sbreite%),2);",";
PRINT#1,MID$(STR$(hoehe¥X),2);")";CHR$(10);

PRINT#1,"IF n&=0 THEN ERROR 7";CHR$(10);

PRINT#1, "bmap&=PEEKL (PEEKL (WINDOW(7)+46)+88)"; CHR$(10);

PRINT#1,"POKE bmap&+5,6";CHR$(10);

PRINT#1,"POKEL bmap&+28,n&";CHR$(10);

PRINT#1,"POKEL viewport&+32,PEEKL(viewport&+32)0R 2°";

REM *%#** UND VIEWMODE EINSTELLEN *¥iidikhkiksis
IF (viewmode& OR 2°7)=2"7 THEN

REM ***% HALFBRIGHT-BIT SETZEN *k**wkwwwikik
PRINT#1,17%;

ELSE

REM **** HOLD-AND-MODIFY - BIT SETZEN *¥wasxwwwsw
PRINT#1,411;

END IF
PRINT#1,CHR$(10);
END IF
REM **** UND NUN DIE LADEROUTINE ***¥kkkiikuksin

PRINT#1,"FOR i%=0 TO";STR$(tiefe%-1);CHR$(10);
PRINT#1," ad&=PEEKL(PEEKL(WINDOW(8)+4)+8+4*i%)";CHR$(10);
PRINT#1," r&=xRead&(h&,ad&,";

PRINT#1,MID$(STRS(bi tmap&),2);"&)"; CHR$(10);
PRINT#1,"NEXT";CHR$(10);

REM **** PALETTE LESEN (GLEICH IN RICHTIGER FORM)
PRINT#1,"r&=xRead&(h&, b&, 64)"; CHR$(10);

REM **** FILE WIEDER SCHLIESSEN *****wawwwwssssss
PRINT#1,"CALL xClose(h&)";CHR$(10);

REM **%* FARBTABELLE SETZEN LASSEN ****¥kkwkikiik
PRINT#1,lcm$;

REM **** BUFFER FUER FARBEN WIEDER FREIGEBEN ****
PRINT#1,"CALL FreeMem(b&,64)";CHRS(10);

REM **** | IBRARIES WIEDER SCHLIESSEN *****kkkkixi

—— Das AmigaBASIC

PRINT#1,"LIBRARY CLOSE";CHR$(10);

REM *%%% UARTEN AUF MOUSE-CLICK *****aaaawkiiins
PRINT#1,"WHILE MOUSE(0)<>0:WEND";CHR$(10);
PRINT#1,"WHILE MOUSE(0)=0:WEND";CHR$(10);

REM **#** SCREEN SCHLIESSEN UND BASIC-WINDOW ***%*
REM **#* UIEDER AUF WORKBENCH-SCREEN HOLEN **¥%*
PRINT#1,"WINDOW CLOSE 1";CHR$(10);
PRINT#1,"SCREEN CLOSE 1";CHR$(10);
PRINT#1,"WINDOW 1,";CHR$(34);"0K"; CHR$(34);
PRINT#1,",(0,11)-(310,185),0,-1";
PRINT#1,CHR$(10); CHR$(10);

CLOSE 1

RE" KhkR ZURUECK ZUR HORKBENCH o e de e e de e o de e K o de e e e ke ok
WINDOW CLOSE 1
SCREEN CLOSE 1
wINDOW 1,,,0,-1
PRINT "Creating Loader-Icon"

REM **** DATEN FUER SPEZIAL-ICON EINLESEN ***%¥%x
RESTORE icondatas

file$=loader$+".info"+CHR$(0)

ap=nn
FOR i%=1 TO 486
READ b$
a$=a$+CHRS(VAL("&H"+b$))
NEXT

REM **** UND PER WRITE UEBER DAS DATEN-FILE- ****
REM **** [CON SCHREIBEN (MODE=OLDFILE) ek
h&=x0Open&(SADD(file$),1005)
w&=xWrite&(h&, SADD(a$),498)

CALL xClose(h&)

LIBRARY CLOSE
MENU RESET
END

REM hkh FEHLER-ABFANGEN Je e e e e ok ok ok ok ke e e e ek kAR
errorcheck:

n%=ERR

IF n%=255 THEN
PRINT "Bild nicht gefunden"
GOTO goon

ELSEIF n%=254 THEN

97

98 Amiga Tips & Tricks

PRINT "Nicht genug Speicher!™
GOTO goon

ELSEIF n%=253 OR n%=252 THEN
PRINT "Kein IFF-ILBM-Bildi"
GOTO goon

ELSEIF n¥%=251 THEN
PRINT "Kann keine 6.Plane hochziehen."
GOTO goon

ELSEIF n¥%=250 THEN
PRINT “Kein BMHD-Chunk vorm BODY!"
GOTO goon

ELSEIF nX%=249 THEN
PRINT "Crunch-Algorythmus unbekannt"
GOTO goon

ELSEIF nX=248 THEN
PRINT "Ich blicke nicht mehr durch"
GOTO goon

ELSE
CLOSE
CALL xClose(handle&)
CALL FreeMem(buffer&,160)
LIBRARY CLOSE
MENU RESET
ON ERROR GOTO O
ERROR n%
sTOP

END IF
sTOP
goon:

IF n%<>255 THEN

CALL xClose(handle&)

IF n¥%<>254 THEN CALL FreeMem(buffer&,160)
END IF

BEEP
LIBRARY CLOSE
RUN

icondatas:

DATA 0,1,
DATA 0
DATA O
DATA 2
DATA 3
DATA 0
DATA 1
DATA 0

—— Das AmigaBASIC

DATA 0,0,0,7,FE,0,0,0,0,0,FF,80,7F EF, FF,FD, FF,F8,
DATA EF,FF,FD,EO,38,7F EF,FF,FD,FF,F8,0,0,0,0,0,
DATA 0,0,0,0,0,0,0,0,0,0,0,0, 3, 7C, F9,80,0,0,20,
DATA 80,A0,0,0,3C,4C,F0,40,0,0,20,44,80,A0,0,0,2
DATA 81,80,0,0,0,0,0,0,0,0,0,0,0,0,0,3,FF,FF,FF,FF,0
DATA 4,0,0,0,0,80,4,FF, FF,FF,FC,80,5,FF,FF, FF,FE,80
DATA 5,FF,FF,FF,FE,80,5,FF,FF,FF,FE,80,5,FF,FF,FF,FE
DATA 80,5,FF,FF,FF,FE,80,5,FF,FF,FF,FE,80,5,FF,FF,FF
DATA FE,80,5,FF,FF,FF,FE,80,5,FF,FF,FF,FE,80,5,FF,FF
DATA FF,FE,80,4,FF,FF,FF,FC,80,4,0,3,FF,80,80,7,FF
DATA 95,7F,FF,80,1,FF,FF,FF,FE,O0,7F,FF,FF,FF,FF,F8
DATA 80,10,0,2,FF,84,80,10,0,2,7F,C4,B0,10,0,2,0,4
DATA 7F,FF,FF,FF,FF,FC,38,0,0,0,0,38,30,0,0,0,0,
DATA 0,
DATA 0,C,3A, 4
DATA 6D,69,67,61,42,41,53,49,43,0

3.2.5 IFF-Brushes werden Objects

Sie besitzen ein Super-Malprogramm wie DeLuxe Paint? Was
liegt denn dann nidher, als es zum Erstellen von Sprites,
VSprites, BOb’s, AnimOb’s oder was der Dinge mehr sind zu
verwenden? Dazu miissen wir jedoch vorher eine Formatwand-
lung vornehmen. Dazu habe ich das folgende Programm ge-
schrieben. Es wandelt jedes IFF-Bild in ein Object-File um.
Voraussetzung hierfiir ist jedoch, dal das Bild nicht zu groB fiir

einen Object-String ist.

Danach wird dieses Object aktiviert und kurz bewegt. Da dabei
keine speziellen Techniken der Speicherung des Hintergrundes
verwendet werden, kann es bei zu vielen Bitplanes zu einem

leichten Flimmereffekt kommen.
Nun aber zunichst das Programm:
Use DPaint as Object-Editor with

#BRUSH- TRANSFORMERH#

3*
' H
.
)
)
)
)
)
)
)
L
1
.
L}
L
.
1
.
L
L
L
L
L
L
L
L
L
L
L}
L}
L
L
)
)
)
L}
1
*

(W) 1987 by Stefan Maelger
B

CLEAR, 30000&
DIM r(31),9(31),b(31)

100 Amiga Tips & Tricks

eingabe:
PRINT "Brush-Name (+Pfad): “;
LINE INPUT brush$
PRINT
PRINT "Object-Datei (+Pfad): ";
LINE INPUT objectfile$
PRINT
PRINT "Farbdatei anlegen? (J/N) ";
warte:
a$=LEFT$(UCASE$(INKEYS+CHR$(0)),1)
IF a$="N" THEN
PRINT “NEINI™
ELSEIF a$="J" THEN
PRINT "Na klar."
colorflag%=1
PRINT
PRINT "Farbdatei-Name (+Pfad): “;
LINE INPUT colorfile$
ELSE
GOTO warte
END IF
PRINT

OPEN brush$ FOR INPUT AS 1
a$=INPUTS$(4,1)
IF a$<>"FORM" THEN CLOSE 1:RUN

a$=INPUTS$(4,1)
a$=INPUTS$(4,1)
IF a$<>"ILBM" THEN CLOSE 1:RUN

lesechunk:
a$=INPUT$(4,1)

IF a$="BMHD" THEN

PRINT "“BMHD-Chunk gefunden."
PRINT
a$=INPUTS$(4,1)
breiteX=ASC(INPUT$(1,1)+CHR$(0))*256
breiteX=breite%+ASC(INPUT$(1,1)+CHR$(0))
PRINT “Bildbreite:";breite%;" Pixel"
IF breiteX>320 THEN

PRINT "Ist mir zu breit."

BEEP

CLOSE 1

RUN
END IF
hoehe%=ASC(INPUT$(1,1)+CHR$(0))*256
hoehe%=hoehe%+ASC(INPUT$(1,1)+CHR$(0))
PRINT "Bildhdhe :";hoehe%;" Pixel"
IF hoehe¥%>200 THEN

PRINT "Ist mir zu hoch."

—— Das AmigaBASIC 101

BEEP
CLOSE 1
RUN
END IF
a$=INPUTS$(4, 1)
planes%=ASC(INPUT$(1,1))
PRINT "Bildtiefe :";planes¥;" Planes"
IF planes%>5 THEN
PRINT "Zu viele Planes!"
BEEP
CLOSE 1
RUN
ELSEIF planes¥%*((breite%-1)\16+1)*2*hoehe¥>32000 THEN
PRINT "Hey! Zu viele Bytes fuer einen Object-String!"
BEEP
CLOSE 1
RUN
END IF
a$=INPUTS$(1,1)
gepackt%=ASC(INPUT$(1,1)+CHR$(0))
IF gepackt%=0 THEN
PRINT "Packstatus: NICHT gepackt."
ELSEIF gepackt%=1 THEN
PRINT "Packstatus: ByteRunl-Algorythmus."
ELSE
PRINT "Packstatus: unbekannt"
BEEP
CLOSE 1
RUN
END IF
a$=INPUT$(9,1)
Status%=Status¥+1
PRINT
PRINT

ELSEIF a$="CMAP" THEN

PRINT "CMAP-Chunk gefunden."

a$=INPUTS$(3,1)

L%=ASC(INPUTS(1,1))

farben¥%=1%\3

PRINT farbenX%;"Farben gefunden”

FOR i%=0 TO farben%-1
r(i%)=ASCCINPUT$(1,1)+CHR$(0))/255
g(i%)=ASC(INPUT$(1,1)+CHR$(0))/255
b(i%)=ASC(INPUT$(1, 1)+CHR$(0))/255

NEXT

Status¥=Status¥%+2

PRINT

PRINT

102 Amiga Tips & Tricks

ELSEIF a$="BODY" THEN
PRINT "“BODY-Chunk gefunden."
PRINT
a$=INPUTS(4,1)
bytes¥=(breite%-1)\8+1
bmap%=bytes%*hoehe%
ob j$=STRING$(bytes¥k*hoehe%¥*planes%,0)
FOR i%=0 TO hoehe%-1
PRINT "Ich lese Zeile";i%+1
FOR j%=0 TO planes%-1
IF gepackt%=0 THEN
FOR k%=1 TO bytes%
a$=LEFT$(INPUT$(1,1)+CHR$(0), 1)
MID$(obj$, j%*bmap%+i%*bytes¥+k%, 1)=a$
NEXT
ELSE
pointer%=1
WHILE pointer¥%<bytes%+1
a%=ASC(INPUT$(1,1)+CHR$(0))
IF a%<128 THEN
FOR k%=pointer% TO pointer%+a%
a$=LEFTS(INPUT$(1,1)+CHR$(0),1)
MID$(obj$, j%*bmap%+i%*bytes%+k%, 1)=a$
NEXT
pointer%=pointer¥+a%+1
ELSEIF a%>128 THEN
a$=LEFTS(INPUT$(1,1)+CHR$(0),1)
FOR k¥%=pointer¥% TO pointer¥%+257-a%
MID$(obj$, j%*bmap%+i%*bytesk+k%, 1)=a$
NEXT
pointer%=pointer%+256-a%
END IF
WEND
END IF
NEXT
NEXT
Status¥%=Status¥%+4

ELSE
PRINT a$;" gefunden."
a=CVL(INPUT$(4,1))/4
FOR i%=1 TO a
a$=INPUT$(4,1)
NEXT
GOTO lesechunk

END IF

checkstatus:
IF Status%<7 GOTO lesechunk

CLOSE 1
PRINT

—— Das AmigaBASIC 103

PRINT "OK, baue Object auf."
°b$=“ [1]
FOR i%=0 TO 10

ob$=0b$+CHR$(0)
NEXT
ob$=0b$+CHR$(planes%)+CHR$(0)+CHRS(O)
ob$=0b$+MKI1$(breite%)+CHR$(0)+CHR$(0)
ob$=0b$+MKI1$(hoehe%)+CHR$(0)+CHR$(24)
ob$=0b$+CHR$(0)+CHR$(3)+CHRS(0)+CHRS(0)
ob$=ob$+obj$
PRINT

PRINT "Speichere Object als ";CHR$(34);
PRINT objectfile$;CHR$(34)
PRINT

OPEN objectfile$ FOR OUTPUT AS 2
PRINT#2,0b$;

CLOSE 2

PRINT "Object gespeichert.”

IF colorflag%=1 THEN
PRINT
PRINT "Speichere Farbdatei:"
OPEN colorfile$ FOR OUTPUT AS 3
PRINT#3,CHRS(planes%);
PRINT " 1.Byte = Anzahl der Bitplanes"
FOR i%=0 TO 2°planes%-1 .
PRINT i%*3+42;".Byte = rot (";i%;")*255"
PRINT#3,CHR$(r(i%)*255);
PRINT i%*3+3;" Byte = gruen(";i%;")*255"
PRINT#3,CHR$(g(i%)*255);
PRINT i%*3+4;" Byte = blau (";i%;")*255"
PRINT#3,CHR$(b(i%)*255);
NEXT
CLOSE 3
END IF

SCREEN 1,320,200,planes%,1

WINDOW 2,,,0,1

FOR i%=0 TO 2°planes%-1
PALETTE i%,r(i%),9(i%),b(i%)

NEXT

OBJECT.SHAPE 1,0b$
OBJECT.PLANES 1,2 planes%-1,0

FOR i=0 TO 300 step .1
OBJECT.X 1,i
OBJECT.Y 1,(i\2)
OBJECT.ON

NEXT

104 Amiga Tips & Tricks

WINDOW CLOSE 2
SCREEN CLOSE 1

RUN

Variablen-Liste:

Status gibt AufschluB iiber gelesene Chunks

a Hilfsvariable

b Feld, Blauanteil einer Farbe

bmap GroBe einer Bitplane des BOB in Byte
breite Breite des BOB in Pixel

brush Name des IFF-ILBM-Files

bytes Breite des BOB in Bytes

coloffile Name der Farbdatei

colorflag Flag, Abspeichern der Farbdatei ja/nein
farben Anzahl im IFF-File gespeicherter Farben
g Feld, Griinanteil einer Farbe

gepackt Packstatus: 0=nicht gepackt 1=ByteRun1
hoehe Hoéhe des BOB in Pixel

i Schleifenvariable

j Schleifenvariable

k Schleifenvariable

l Chunklange

ob Object-String

obj Image-String

objectfile Datei, in die ob$ abgespeichert wird
planes Anzahl der Bitplanes des BOB (Tiefe)
pointer Zahlvariable fiir gelesene Byte einer Zeile
r Feld, Rotanteil einer Farbe

So, soweit das Programm. In der optionalen Farbdatei liegen die
Daten wie folgt:

1.Byte = Anzahl der Bitplanes des Objects

Jetzt folgen 2~(Bytel) Farbwerte, also bei einer Plane:

2.Byte
3.Byte
4 .Byte

Rot-Anteil der Hintergrundfarbe * 255
Grun-Anteil der Hintergrundfarbe * 255
Blau-Anteil der Hintergrundfarbe * 255

nun

—— Das AmigaBASIC 105

5.Byte
6.Byte
7.Byte

Rot-Anteil der 1. Farbe * 255
Grun-Anteil der 1. Farbe * 255
Blau-Anteil der 1. Farbe * 255

Noch schnell ein paar Worte zum IFF-ILBM-Format:

Ein derartiges File setzt sich aus mehreren hintereinander abge-
speicherten Dateien zusammen, die man Chunks nennt. Jeder
Chunk ist dabei gleich aufgebaut:

1. Chunk-Name
2. Chunk-Lénge
3. Chunk-Daten

4 Byte langer String, z.B.: "BODY"
4-Byte-Integer, also LONG-Format
#Chunk-Lange Bytes

Der Aufbau des Headerchunk, mit dem jedes IFF-File beginnt,
ist zwar #dhnlich, nicht aber genauso aufgebaut:

1. File-Art = “FORM", der Header von IFF-Files
2. File-Lange = Long-Wert
3. Daten-Typ = in diesem Falle "ILBM" (interleaved bitmaps)

Die wichtigsten Chunks in Kurzform:
Der BMHD-Chunk:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
1.
12.
13.
14.
15.

Long
Long
Word
Word
Word
Word
Byte
Byte
Byte
Byte
Word
Byte
Byte
Word
Word

“BMHD" (BitmapHeader-Chunk)
Chunklange

Breite der Grafik in Pixel
Hohe der Grafik in Pixel
X-Position der Grafik
Y-Position der Grafik
Anzahl der BitPlanes des Screens
Maskierung

Crunch-Art

7?

transparente Farbe
X-Aspect

Y-Aspect

Breite des Screens in Pixel
Hohe des Screens in Pixel

Der CMAP-Chunk:

1.
2.
3.
4.

Long
Long
Byte
Byte

“CMAP" (ColorMap)
Chunk lange

Farbe 0 Rotwert *255
Farbe 0 Grinwert *255

106

5.
6.

Byte
Byte

7. ...

Amiga Tips & Tricks

Farbe 0 Blauwert *255
Farbe 1 Rotwert *255

Der CRNG-Chunk von DeLuxe Paint:

1.
2.
3.
4.
5.
6.
7.

Long
Long
Word
Word
Word
Byte
Byte

"CRNG" (ColorCycle-Chunk von DPaint - 4 mal)
Chunklénge

bisher immer 0

Geschwindigkeit

Aktiviert oder nicht

untere Farbe

obere Farbe

Der CCRT-Chunk:

1.
2.
3.
4.
5.
6.
7.

Long
Long
Word
Byte
Byte
Long
Long

"CCRT" (ColorCycle-Chunk von Graphicraft)
Chunklange

Richtung
Startfarbe
Endfarbe
Sekunden
micro-Sekunden

Der wichtigste, der BODY -Chunk:

Long
Long
1.
1.

1.
2.

= “BODY" (BitMaps)

= Chunkléange

Zeile der 1. Bitplane (eventuell gepackt - s. BMHD)
Zeile der 2. Bitplane (sofern vorhanden)

Zeile der letzten Bitplane
Zeile ...

Noch ein paar Zeilen zum ByteRunl-Crunch-Algorythmus:

Es wird niemals mehr als eine Zeile einer Bitplane auf einmal
gepackt. Daher kann das Entpacken auch zeilenweise geschehen.
Die Kodierung besteht zunichst aus einem CodeByte. Ist dieses
Byte groBer als der Wert 128, wird das nichste Byte 258-Code-
Byte Mal wiederholt, also mindestens dreimal. Da in FOR-
NEXT-Schleifen jedoch auch der Startwert der Schleifenvariable
mitdurchlaufen wird, miissen wir bei solchen Konstruktionen
noch den Wert 1 abziehenm, also eigentlich folgendes erhalten:
FOR i=startwert TO startwert+258-Codebyte-1. Daher schrieb
ich oben gleich 257-Codebyte. Die zweite Codierung gilt fiir

—— Das AmigaBASIC 107

Code-Bytes, die kleiner als 128 sind. Hier werden die nichsten
CodeByte+l Bytes nicht codiert iibernommen. Der Code-Wert
128 selbst wird hierbei iiberlesen. Zusammenfassend kénnen wir
sagen, daBl sowohl bei der ersten, wie auch bei der zweiten Co-
dierungsart maximal 128 Byte auf einmal codiert sein kdnnen.
Da die Breite eines 640*x - Screens jedoch nur 80 Byte betrigt,
kann so durchaus eine Zeile einer Bitplane auf einen Schlag co-
diert werden.

3.2.6 Floodfill einmal anders

Wie Sie sicherlich wissen, hat der Amiga die Moéglichkeit, mit
einer Geschwindigkeit von einer Million Pixel pro Sekunde so
komplizierte Vorginge wie das Ausfiilllen von Flichen in
irgendeiner Farbe durchzufithren. Das geschieht von Amiga-
BASIC aus zumeist mit dem Befehl PAINT. Dieser Befehl hat
nun aber einen entscheidenden Nachteil. Er fillt ab den ange-
gebenen Koordinaten den Bildschirm nur bis zu einer bestimm-
ten Farbe. Dadurch wird seine Anwendung zum Beispiel in
einem selbstgeschriebenen Malprogramm stark eingeschrinkt.
Besser wire es gewesen, die AmigaBASIC-Entwickler hitten die
Moglichkeit eingerdumt, durch einen bestimmten Parameter den
PAINT-Befehl mit dem Fiillen bis zu irgendeiner anderen Farbe
zu beauftragen. Besonders verwunderlich ist, daBl es eine
Betriebssystem-Routine gibt, die dieses leistet. Zudem handelt es
sich um eine Routine der graphics-library, deren Programme
bekanntlich immer im Speicher sind und daher nicht einmal von
der Workbench nachgebootet werden miif3te.

Die Routine heif3t Flood und kann von AmigaBASIC aus folgen-
dermaflen aufgerufen werden:

CALL Flood&(Rastport,Modus,x,y)

Hier also eine S U B-Routine, die Flood nutzt;

108 Amiga Tips & Tricks

REM HHHHHHHHRR AR
REM# FLOODFILL Amiga #

REM #-----=--cocccccccccnccncnan- #
REM # PAINT bis zu irgendeiner #
REM # anderen Farbe... #
REM #==-=m-cmoommmmmcmeccaaaenae #
REM # (W) 1987 by Stefan Maelger #

LIBRARY "graphics.library"

SCREEN 1,640,255,2,2
WINDOW 2,"FLOODFILL",,0,1

LOCATE 2,2
PRINT "Floodfill-Demo"

CIRCLE (200,80),150,2
CIRCLE (400,80),150,3

FLOODFILL 200,80, 1
FLOODFILL 300,80, 1
FLODDFILL 400,80, 1

LIBRARY CLOSE

LOCATE 4,2
PRINT "PRESS ANY KEY®

WHILE INKEY$=m»
WEND

STOP

SUB FLOODFILL(x%,y%,farbe%) STATIC

PSET (0,0),0

PAINT (0,0),0

COLOR farbe%

rastport&=WINDOW(8)

ToAnyColorMode%=1

CALL Flood&(rastport&, ToAnyColorMode%, x%,y%)
END SUB

Der Einfachheit halber initialisieren wir die Routine mit einem
einfachen PAINT, das nichts weiter bewirkt - auBer dafl der
AmigaBASIC-Interpreter vorher schon einmal eine Bitplane ein-
richten muf}, die der Flood-Befehl fiir seine Arbeit benétigt.

—— Das AmigaBASIC 109

3.2.7 Windows manipulieren

DaB3 sich mit Windows eine ganze Menge anstellen ldBt, sollte
Thnen spitestens seit dem DB-Buch Supergrafik bekannt sein.
DaBl man auch ausgefallenere, nichtsdestoweniger aber eminent
effiziente Dinge mit BASIC-Windows tun kann, dariiber soll
Ihnen dieses Kapitel einen kleinen Einblick vermitteln, der
sicherlich nicht der Weisheit letzter Schluf3 ist, Ihnen aber Anlaf3
genug sein sollte, kriaftig drauflos zu experimentieren.

3.2.7.1 Borderless: BASIC-Windows, die aus dem
Rahmen fallen

Nachdem ich in einer bekannten Zeitschrift das Superlisting
eines "AmigaBASIC-Profis" sah, in dem er mithsam minutenlang
die Adressen in den Bitmaps ausfindig machte, um schlieB3lich
den Border (=den Rahmen) des Windows Byte fiir Byte wegzu-
poken, entschlof3 ich mich, Thnen diese Routine vorzustellen:

R R R R R R
BORDERLESS fuer AmigaBASIC-Windows

1
1
L]
' # (W) 1987 by Stefan Maelger #
W
1

LIBRARY "intuition.library"

CLS

PRINT "Wie gefdllt Ihnen denn dieses Fenster?"
PRINT

warte 2

PRINT "Und ohne Border (Rahmen) ?"

PRINT

kil lborder

wartetaste
remake
LIBRARY CLOSE
end

SUB remake STATIC
WINDOW CLOSE 1
WINDOW 1

110 Amiga Tips & Tricks

END SUB

SUB warte(sekunden¥%) STATIC
t=TIMER+sekunden%
WHILE t>TIMER
WEND

END SUB

SUB wartetaste STATIC
WHILE INKEY$=""
WEND

END SUB

SUB killborder STATIC
borderless& =2"11
gimmezerozero&=2-10
window.base&=WINDOW(7)
window.modi&=window.base&+24
Modus&=PEEKL (window.modi&)
Modus&=Modus& AND(2°26-1-gimmezerozero&)
Modus&=Modus& OR borderless&
POKEL window.modi&,Modus&
CALL RefreshWindowFrame(window.base&)
END SUB

3.2.7.2 Gadgets an und ausschalten

Hat es Thnen gefallen? Nein? Wieso, haben Sie etwa die Gadgets
gestort? Dann nichts wie weg mit ihnen! Wie? Tja...

R
GADGETon/off in AmigaBASIC-Windows

]
1
)
' # (W) 1987 by Stefan Maelger #
O C
1

LIBRARY "intuition.library"

PRINT "Lassen wir die Gadgets verschwindent"
SaveGadgetPointer Gaddy&

warte 5

UnlinkGadgets

warte 10

PRINT "Und nun holen wir sie uns wieder."
warte 5

SetGadgets Gaddy&

LIBRARY CLOSE

WINDOW CLOSE 1

—— Das AmigaBASIC 111

WINDOW 1
END

SUB warte(sekunden¥) STATIC
t=TIMER+sekunden%
WHILE t>TIMER
WEND

END SUB

SUB SaveGadgetPointer(Pointer&) STATIC
Wwindow.base& =WINDOW(7)
gadget.pointer&=window.base&+62
Pointer&=PEEKL (gadget.pointer&)

END SUB

SUB UnlinkGadgets STATIC
window.base& =WINDOW(7)
gadget.pointer&=window.based&+62
POKEL gadget.pointer&,0
CALL RefreshWindowFrame(window.base&)

END SUB

SUB SetGadgets(Pointer&) STATIC
window.base& =WINDOW(7)
gadget.pointer&=window.base&+62
POKEL gadget.pointer&,Pointer&

CALL RefreshWindowFrame(window.base&)

END SUB

3.2.7.3 BorderDraw, der Formen-Zauberer

Jetzt wollen wir einmal von Intuition einen lustig bunten Border
zeichnen lassen. Dazu miissen wir jedoch wissen, wie die Bor-
der-Struktur aussieht, deren Adresse wir mit der DrawBorder-
Routine iibergeben miissen. Eigentlich recht simpel:

1. Word horizontaler Abstand von der im Aufruf der Routine angegebenen X-
Koordinate (so eine Art erweitertes STEP - man braucht nur einmal
eine Form zu definieren und kann sie dann in einem beliebigen
Abstand noch einmal zeichnen)

2. Word vertikaler Abstand der Y-Koordinaten

3. Byte Zeichenfarbe (die von BASIC bekannten Nummern)
4. Byte Hintergrundfarbe

5. Byte Zeichenmodus (JAM1=0)

6. Byte Anzahl der X-Y-Koordinatenpaare

7. Long Adresse der Koordinaten-Tabelle

8. Long Adresse der nachsten Struktur oder der Wert 0

112 Amiga Tips & Tricks

Spitestens bei Punkt 7 werden Sie bemerkt haben, da3 wir noch
eine Koordinatentabelle benotigen. Diese ist ganz einfach aufge-
baut:

Die Tabelle besteht nur aus Words. Dabei kommt immer zuerst
die X-Koordinate, dann die Y-Koordinate eines Punktes. Da-
durch benétigt also ein Punkt vier Bytes oder zwei Words. Das
wars auch schon, sie sehen, ich hatte Recht mit meiner Be-
hauptung, alles wire ganz einfach.

Eines noch: Wenn Sie beim Aufruf der Routine anstelle des
Rahmen-Rastports den Window-Rastport einsetzen
(WINDOW(8)), konnen Sie auch beliebig komplizierte Strukturen
im BASIC-Window zeichnen lassen. Dabei gibt es nur eine
Schwierigkeit: Der Zeichen-Cursor des Windows steht hinterher
auf dem letzten Punkt der letzten Struktur. Ein nachfolgender
PRINT-Befehl wiirde an dieser Position mit der Ausgabe begin-
nen! Erst NACH einem PRINT aktualisiert AmigaBASIC die
Cursor-Position! Schieben Sie bei einem solchen Akt also ein
PRINT hinter den Aufruf von DrawBorder. Dann funktioniert’s
niamlich wieder.

VIR R
' # DRAWBORDER - der Formenzeichner #
L R et #
' # (W) 1987 by Stefan Maelger #
U HRBHH R R R R
L]

LIBRARY "intuition.library"
PRINT "Ich setze den Koordinaten-String zusammen"

breiteX%=PEEKW(WINDOW(7)+8)-1
hoehe%=PEEKW(WINDOW(7)+10)-1
xlinks%=0

yoben¥=0

xy$=MKI$(xl inks%)+MKI$(yoben%)
xy$=xy$+MKI$(x | inks%)+MKI$(hoeheX)
xy$=xy$+MK1$(breite%)+MKI$(hoeheX)
xy$=xy$+MKI$(breite%)+MKI$(yoben¥)
Paare%=4

x0f fset%=0

yOffset%=0

farbeX=0

—— Das AmigaBASIC 113

PRINT "Ich zeichne den Border"
Setborder xy$,PaareX, farbe%,x0ffset%,yOffset%

FOR iX=3 to 1 STEP -1
PRINT "Ich warte ein wenig"
t=TIMER+10:WHILE t>TIMER:WEND
PRINT "Ich zeichne in Farbe";i%
Setborder xy$,PaareX%,i%,x0ffset%X,yOffset%
NEXT

LIBRARY CLOSE
END

SUB Setborder(xy$, anzahl%, farbe%,x%,y%) STATIC
window.base&=WINDOW(7)
borderrastport&=PEEKL (window.base&+58)
IF borderrastport&=0 THEN EXIT SUB
a$=MK1$(0) 'horizontaler Abstand
a$=a$+MKI$(0) 'vertikaler Abstand
a$=a$+CHR$(farbe%) 'Zeichenfarbe
a$=a$+CHR$(0) 'Hintergrund (unbenutzt)
a$=a$+CHR$(0) 'Modus: JAM1
a$=a$+CHR$(anzahl%) 'Anzahl x-y-Paare
a$=a$+MKL$(SADD(xy$)) 'Zeiger auf Koordinaten
a$=a$+MKL$(0) '2eiger auf nachste Struktur
CALL DrawBorder(borderrastport&, SADD(a$),x%,y%)
! ----- letzte Parameter: relative X- und Y-Koordinate
END SUB

Sie werden sicherlich die tollsten Anwendungen fiir diese Rou-
tine finden, auch wenn das Programm sehr einfach aussieht.

3.2.7.4 ChangeBorderColor -jetzt wird’s bunt

Kommen wir zu einem recht wertvollen optischen Schmankerl.
Sie werden mit der nichsten Routine die Farben des Rahmens
(inklusive der Titelleiste) verindern kénnen. Ach, das kOénnen
Sie auch? Sie meinen, man briuchte ja lediglich mit dem
PALETTE-Befehl die Farben 0 und 1 zu dndern? Das stimmt,
zugegeben, aber ich werde Thnen jetzt zeigen, was Sie tun miis-

114 Amiga Tips & Tricks

sen, um dabei die Hintergrund- und Zeichenfarbe des Windows
nicht mit zu verdndern! Natiirlich das Ganze wie gewohnt in
Form eines SUB-Befehls:

'"#CHANGE BORDERCOLORH#

LIBRARY "intuition.library"

PRINT "Hat es Sie schon einmal gestort, dag"
PRINT "die Zeichenfarbe des Borders immer aus"
PRINT "Farbregister 0 und der Hintergrund immer"
PRINT "aus Register 1 gezeichnet wird 2"

PRINT

PRINT "Das konnen wir namlich im Gegensatz zu dem"
PRINT "Window-Befehl selbst bestimmen!"

LOCATE 10,1:PRINT "Vordergrund:"
LOCATE 13,1:PRINT "Hintergrund:"
t=TIMER+15:WHILE t>TIMER:WEND
FOR i=0 TO 3
LINE (i*30,136)-STEP(30,20),1,bf
LINE (i*30,136)-STEP(30,20),1,b
NEXT

FOR h%=0 T0 3
FOR v%=0 TO0 3

ChangeBorderColor v%,h%
LOCATE 10,14:PRINT V%
LOCATE 13,14:PRINT h%
t=TIMER+5
WHILE t>TIMER
WEND

NEXT v%,h%

ChangeBorderColor 1,0

LIBRARY CLOSE
END

SUB ChangeBorderColor(DetailPen%,BlockPen%) STATIC
window.base&=WINDOW(7)
Detail.Pen& =window.base&+98
Block.Pen& =window.base&+99
POKE Detail.Pen&,DetailPen%

—— Das AmigaBASIC 115

POKE Block.Pen&,BlockPen%
CALL RefreshWindowFrame(window.base&)
END SUB

3.2.7.5 Monocolor-Workbench

Nun kommen wir zu einem wirklich niitzlichen Programm. Sie
hitten gern 16 KByte Speicher mehr (ohne etwas dafiir bezahlen
zu miissen)? Sie moéchten beim editieren von BASIC-Program-
men, daB endlich einmal das Listing in angemessener Geschwin-
digkeit iiber den Bildschirm jagt, anstatt endlos langsam dahin-
zukriechen? Sie moéchten, daB uberhaupt fast alles doppelt so
schnell geht wie bisher? Okay, nehmen wir der Workbench eine
Bitplane und Sie haben erreicht, was Sie wollen:

(W) 1987 by Stefan Maelger
HRBHH R

LIBRARY "intuition.library"
LIBRARY “graphics.library"

Setplanes 1

LIBRARY CLOSE
SYSTEM

SUB Setplanes(planes¥) STATIC
IF planes¥%<1 OR planes%>6 THEN EXIT SUB
rastport& =WINDOW(8)
bitmaps& =PEEKL(rastport&+4)
current.planes%=PEEK(bi tmaps&+5)
window.base& =WINDOW(7)
screen.base& =PEEKL(window.base&+46)
screen.breite% =PEEKW(screen.base&+12)
screen.hoehe¥ =PEEKW(screen.base&+14)
IF current.planes¥*>planes¥% THEN
POKE bitmaps&+5,planes%
FOR kill.plane¥%=current.planes% TO planes%+1 STEP -1
plane.ad&=PEEKL (bitmaps&+4+4*kill.plane%)
CALL FreeRaster(plane.ad&,screen.breite%,screen.hoehe%)
CALL RemakeDisplay
CALL RefreshWindowFrame(WINDOW(7))

116 Amiga Tips & Tricks

CLS
NEXT
END IF
END suB

3.2.7.6 Neuer SCREEN-Befehl fiir alle Grafikmodi

Wie Sie gesehen haben, gibt FreeRaster den Speicherbereich frei,
den die zweite Plane belegte. Da wir jetzt auch wissen, wo die
Adressen und wo die Anzahl der Bitplanes liegen, sollte es uns
auch nicht schwerfallen, weitere Planes hinzuzufiigen.

Wie Sie wissen, haben die Programmierer von AmigaBASIC die
Modi Hold-And-Modify (4096 Farben gleichzeitig) und Half-
bright (Slang: Halfbrite = 64 Farben gleichzeitig) vollig links lie-
genlassen. Diese bendtigen sechs Bitplanes, und die konnen be-
kanntlich mit AmigaBASIC-Befehlen nicht so einfach erzeugt
werden - nimmt man einmal den LIBRARY-Befehl heraus. Eine
Einbindung des Bildschirmrandes in die Zeichenfliche, somit die
Erzeugung von Screens hoherer Auflosung (OVERSCAN-Modus
z.B. 704 mal 576 Pixel) ist ebenso nicht vorgesehen. Wer seinem
Amiga tolle Grafikeffekte entlocken will braucht dringend Ab-
hilfe. Deshalb schrieb ich eine SUB-Routine, die den SCREEN-
Befehl etwas erweitert und Thnen HAM, Halfbright und Over-
Scan bietet:

'# Neuer SCREEN-Befehl (w)'88 by SMmagic #
#

'# OVERSCAN HOLD-AND-MODIFY HALFBRIGHT #

Demo:

DEFLNG a-2z 'alle Variablen sind Longs
DECLARE FUNCTION AllocMem LIBRARY

LIBRARY"exec. l ibrary"

DECLARE FUNCTION ViewAddress LIBRARY

LIBRARY"intuition. library"

newSCREEN 2,320,256,6,5 'Screen im HAM-Modus
WINDOW 2,"HoldAndModi fy",, ,2
FOR g%=0 TO 15 'Alle 4096 Farben zeigen

r%=0

—— Das AmigaBASIC 117

b%=0
LINE(O,g%*10)-STEP(0,9),0
LINE(1,9%*10)-STEP(0,9),g%+48
FOR xX%=0 TO 7
FOR r%=1 TO 15
LINE(x%*32+r%+1,g%*10)-STEP(0,9), r%+32
NEXT
bX=b%+1
LINE(x%*32+17,9%*10)-STEP(0,9),b%+16
FOR rX=14 TO O STEP -1
LINE(xX*32+17+15-r%,g%*10)-STEP(0,9), r¥+32
NEXT
bX=b%+1
IF b%<16 THEN LINE(Xx%*32+33,g%*10)-STEP(0,9),b%+16
NEXT
NEXT

t=TIMER+10
WHILE t>TIMER
WEND

WINDOW CLOSE 2
newSCREEN.CLOSE 2

newSCREEN 3,320,256,6,7 'Screen im Halfbright-Modus

WINDOW 3,"Halfbrite",,,3

FOR i%=0 TO 63 'alle 64 Farben zeigen
LINE(i%*4+1,0)-(i%*4+3,240),1%,bf

NEXT

t=TIMER+10
WHILE t>TIMER
WEND

WINDOW CLOSE 3
newSCREEN.CLOSE 3

newSCREEN 4,352,288,2,9 'Screen im OverScan-Modus
WINDOW 4,"OverScan",,,4

FOR i%=0 TO 350 STEP 16 'Bis in den Rand malen
FOR j%=0 TO0 3
LINE(i%+j%*4,0)-(i%+j%*4,270),j%
NEXT
1F i%<280 THEN
FOR j%=0 TO 3
LINE(O, i%+j%*4)-(350,i%+j%*4), j%
NEXT
END IF
NEXT

t=TIMER+10
WHILE t>TIMER

118 Amiga Tips & Tricks

WEND

WINDOW CLOSE 4
newSCREEN.CLOSE 4

LIBRARY CLOSE
STOP

SUB newSCREEN(n%,b%,h%, t%, m%)STATIC
SHARED overscan.x%,overscan.y%
IF m¥>16 OR m%<1 THEN ERROR 5
IF t%>6 OR t%<1 THEN ERROR 5
IF h%>1024 OR h%<1 THEN ERROR 5
IF b%>1024 OR b%<1 THEN ERROR 5
t2%=t%+(t%=6)
mm%=m¥%+8* (m%>8)
mx%=1-(mm%=2) - (mm%=4)
m2%=mx%-2* ((mm%=3)+ (mm%=4)+ (mm%=6)+ (mm%=8))
IF m%¥>8 AND overscan.x%=0 THEN
overscan.x%=mx%*16
overscan.y%=(1-(m2%>2))*16
prefs=AllocMem(120,2)
IF prefs=0 THEN ERROR 7
GetPrefs prefs, 120
POKE prefs+118, (PEEK(prefs+118)-overscan.x%)AND 255
POKE prefs+119, (PEEK(prefs+119)-overscan.y%)AND 255
SetPrefs prefs,120,-1
FreeMem prefs, 120
END IF
SCREEN n%,b%,h%, t2%,m2%
IF t%5 THEN
view=ViewAddress
vp=PEEKL(view)
bi tmap=PEEKL (vp+44)
plsz=PEEKW(bi tmap)*PEEKW(bi tmap+2)
plane=AllocMem(plsz,65538&)
IF plane=0 THEN ERROR 7
POKEL bitmap+28,plane
POKE bitmap+5,6
IF mm%=5 OR mm%=6 THEN POKEW vp+32,2°11
IF mm%=7 OR mm%=8 THEN POKEW vp+32,2°7
RemakeDisplay
END IF
END SUB

SUB newSCREEN.CLOSE(n%)STATIC 'NUR BEI OVERSCAN
SHARED overscan.x%,overscan.y% 'ERFORDERLICH!!!
IF overscan.x%<>0 THEN
prefs=AllocMem(120,2)
IF prefs=0 THEN ERROR 7
GetPrefs prefs, 120
POKE prefs+118, (PEEK(prefs+118)+overscan.x%)AND 255

—— Das AmigaBASIC 119

POKE prefs+119, (PEEK(prefs+119)+overscan.y%)AND 255
SetPrefs prefs,120,-1
FreeMem prefs, 120
END IF
SCREEN CLOSE n%
END SUB

Na, ist Thnen etwas aufgefallen? Wir malen mit den Farben O bis
63! Von wegen AmigaBASIC unterstiitzt diese Modi nicht!
AmigaBASIC unterstiitzt lediglich das Errichten der Screens
nicht. Sollten Sie einmal in diesen Modi arbeiten wollen, so
miissen Sie noch einiges wissen. Zuvor aber zu den Parametern
des neuen SCREEN-Befehls. Diese habe ich weitgehend den
Original-Parametern angepaB3t, so daB Ihnen die Umstellung
nicht allzu schwer werden wird:

Neuer SCREEN-Befehl, Bedeutung der Parameter:

SCREEN n,Breite,Hohe,Tiefe,Modus
Neu: Tiefe - jetzt auch 6 Planes moglich
Neu: Modus - 1 = 320 mal 256 Normale Modi

2 = 640 mal 256 High Resolution

3 = 320 mal 512 Interlace

4 = 640 mal 512 Interlace + HiRes

5 = 320 mal 256 HoldAndModify

6 = 320 mal 512 HoldAndModify + Interlace

7 = 320 mal 256 Halfbrite

8 = 320 mal 512 Halfbrite + Interlace

9 = 352 mal 288 OverScan

10 = 704 mal 288 OverScan + HiRes

11 = 352 mal 576 OverScan + Interlace

12 = 704 mal 576 OverScan + HiRes + Interlace

13 = 352 mal 288 HoldAndModify + OverScan

14 = 352 mal 576 HoldAndModify+Interlace+OverScan
15 = 352 mal 288 Halfbrite + OverScan

16 = 352 mal 576 Halfbrite + OverScan + Interlace

Alle anderen Parameter entsprechen denen des normalen
SCREEN-Befehls. Sollten Sie nicht mit OverScan arbeiten, ge-
niigt der Befehl SCREEN CLOSE. Bei OverScan muf3 new-
SCREEN.CLOSE aufgerufen werden, damit das Display wieder
an die alte Stelle geriickt wird. Der Parameter ist die Screen-
Nummer, ebenso wie bei SCREEN CLOSE.

120 Amiga Tips & Tricks

Der OverScan-Modus

Dieser Modus unterscheidet sich von den bekannten Grafik-
Modi nicht sonderlich. Die einzige Anderung besteht darin, daB
alle Koordinaten nach links oben verschoben sind und der sicht-
bare Bereich um etliche Pixel groBer geworden ist.

Der Halfbright-Modus

’Half> heif3t auf deutsch ’halb’, ’bright’ soviel wie ’hell’. Eine
sehr treffende Bezeichnung, wie ich meine, denn hier sind die
Farben 0 bis 31 genau die 32 Farben, die es auch bei 5 Bitplanes
sind, wihrend die Farben 32 bis 63 die halben Helligkeitswerte
der unteren Farben haben. Die neu hinzugekommenen Farben
sind direkt abhingig von den ’normalen’ Farben. Ist beispiels-
weise die Farbe 1 ein helles Rot, ist die Farbe 33 ein dunkles
Rot (halb so hell wie Farbe 1). Um die zu einer normalen Farbe
gehorige Halfbright-Farbe zu ermitteln, muf} lediglich der Wert
32 zur Registernummer addiert werden:

zugehorige Halfbright-Farb-Nummer = Farb-Nummer + 32

Man beachte, dafl es nur moglich ist, 16 verschiedene Farbab-
stufungen pro Farbanteil (Rot/Griin/Blau) einzustellen. Da auch
die Halfbright-Farben nur diese Farbstufen annehmen konnen,
kann es fiir mehrere verschiedene 'Normal’-Farben die gleiche
Halfbright-Farbe geben:

Normalfarbe Halfbright-Farbe
PALETTE x, 15/15, 13/15,8/15 x+32 = 7/15,6/15,4/15

14/15, 13/15, 9/15
15/15, 12/15,9/15
14/15, 12/15,9/15
15/15, 13/15, 8/15
14/15, 13/15, 8/15
15/15, 12/15, 8/15
14/15, 12/15, 8/15

7/15,6/15, 4/15
7/15, 6/15, 4/15
7/15,6/15, 4/15
7/15,6/15, 4/15
7/15,6/15, 4/15
7/15,6/15, 4/15
7/15,6/15, 4/15

FarbanteilHB = INT (Farbanteil * 15 /2) / 15

—— Das AmigaBASIC 121

Hier kann man gut sehen, daB jeweils acht verschiedene Farb-
werte die gleiche Halfbright-Farbe ergeben. Um es noch einmal
zu betonen: Der PALETTE-Befehl kann nur die unteren 32 Far-
ben einstellen. Die einzustellenden Farben sollten Sie immer so
wihlen, daB verschiedene Halfbright-Farben dabei herauskom-
men.

Der Hold’'n’Modify-Modus

Bei HAM wird es schwierig. Hier sind nur die Farben 0-15 fest
einstellbar. Malt man einen Punkt in einer dieser Farben, so er-
scheint er auch immer in der mit PALETTE eingestellten Farbe:

Farben 0 - 15 sind normal mit PALETTE bestimmbar

Bei den Farben 16-31 ist es schon etwas anders. Hier werden
zunichst die RGB-Werte des Pixels links neben dem zu malen-
den Pixel iibernommen (Hold), und dann der Blauanteil gedndert
(Modify). Der neue Blauanteil ergibt sich dann so:

Blauanteil = (Farbnummer - 16) / 15

Die Farben 32-47 verindern nur den Rotanteil:

Rotanteil = (Farbnummer - 32) / 15

Mit den Farben 48-63 148t sich schlieBlich der Griinanteil
modifizieren:

Grunanteil = (Farbnummer - 48) / 15

Auf diese Weise kommt man nach spitestens 3 Pixeln auf die
gewiinschte Farbe.

Um den Griinanteil eines Pixel auf den Wert 13/15 zu_ bringen,
mufl man mit der Farbe 13+48=61 malen, bei einer Anderung
des Rotanteils auf 7/15 mit der Farbe 7+32=39.

122 Amiga Tips & Tricks

3.2.7.7 Das Koordinatenproblem

Wie Sie ja wissen, ist der Punkt mit den Koordinaten (0,0) nicht
etwa in der linken oberen Ecke des Screens zu finden, sondern
liegt unterhalb des Titel-Borders und rechts neben dem linken
Teil des Borders. Etwas ganz merkwiirdiges geschieht nun, wol-
len Sie ein Window ohne Titel direkt iiber die Titelleiste eines
Windows mit Titel, zum Beispiel das BASIC-Standard-Ausgabe-
fenster, plazieren.

Nehmen wir einmal an, wir wiinschen uns ein Window, das ge-
nau acht Pixel hoch sein soll. Nun miissen wir den Befehl ein-
geben:

WINDOW 2,,(¢0,0)-(311,-2),16,-1

Ist Thnen etwas aufgefallen? Die Y-Koordinaten gehen von 0 bis
-2. Hier liegt nimlich wieder einmal ein Fehler im System vor.
Das erste Koordinatenpaar (0,0) wird tatsdchlich richtig inter-
pretiert, das zweite Koordinatenpaar jedoch zumindest beim Y-
Wert falsch, da sich nur in diesem Falle der Interpreter auf die
relativen Koordinaten des darunterliegenden BASIC-Standard-
Fensters bezieht. Fordern Sie also ein Window mit dem Befehl:

WINDOW 2,,¢0,0)-(311,8),16,-1

so erhalten Sie ein Fenster, das 18 Pixel hoch ist! Wir miissen in
einem solchen Fall also zunichst die Hohe des Titel-Borders (10
Pixel) abziehen, um an das Screen-Koordinatensystem anzu-
gleichen (8 - 10 = -2).

Soll ein Window nur die Titelleiste des Standard-Fensters be-
decken, ergeben sich die Koordinaten wie folgt:

y2=10 (Hohe unseres neuen Windows)

y2=y2-10 (Hohe der Titelleiste abziehen zum Angleichen der Koordi-
naten)

y2=y2-4 (Hohe des oberen und unteren Borders des neuen Windows

abziehen)

—— Das AmigaBASIC 123

also:

WINDOW 2,,(0,0)-(311,-4),16,-1

3.2.8 Intuition macht das Leben leicht - mit
HoldAndModify, Halfbrite und OverScan

Wer nur mit Betriebssystem-Routinen auf sein Display zugreifen
mochte, was schlieBlich etwa zehnmal so schnell geht wie mit
BASIC-Befehlen, beim PRINT-Befehl sogar 1000mal so schnell,
der kann sich auch von Intuition einen Screen oder ein Window
o6ffnen lassen. Dazu legen wir im folgenden Programm eine so-
genannte NewScreen-Struktur an, in der Intuition die noétigen
Daten iibergeben werden. Ein besonderer Punkt ist noch anzu-
merken: Der letzte Screen wird im OVERSCAN-Modus betrie-
ben, d.h. daB der Bildschirm-Rand mit zur Zeichenfliche ge-
hort.

Ermoglicht wird dies durch eine Manipulation der sogenannten
View-Struktur, die angibt, wo die Zeichenfliche beginnt. Zu
diesem Zweck laden wir einen Teil der Preferences-Struktur,
der gerade noch die in Preferences einstellbaren ViewOffsets
(+#118 und +119) enthilt. Diese Offsets lesen wir aus, um spiter
das Original-Display wiederherzustellen und ziehen von x- und
y-Koordinate einen Wert ab, der den Zeichenflichen-Anfang
garantiert auBerhalb Ihres Monitors positioniert (linke obere
Ecke). Die neuen Werte werden dann in der Preferences-Struk-
tur abgelegt und mit SetPrefs gesetzt. Die Screengréf3e mufl na-
tirlich entsprechend vergréfert werden. Zu Demonstrations-
zwecken zeichnen wir nun etliche Linien, damit Sie sehen, daf3
wirklich jeder Millimeter des Bildschirmrandes zur Verfiigung
steht.

Den Effekt des OVERSCAN haben Sie mit Sicherheit bereits in
vielen Demos oder Intros zu sehen bekommen, meist in Verbin-
dung mit scrollenden Schriften, die Sie natiirlich auch einbauen
konnen. OverScan funktioniert auch mit jedem anderen Screen
oder Window - Voraussetzung ist jedoch immer entweder die

124 Amiga Tips & Tricks

GetPrefs/SetPrefs-Anwendung oder die direkte Manipulation
der Copper-Liste, deren Anfangsadresse in dem Offset +56 von
der Basisadresse der Graphics.Library zu finden ist. Hier das
Programm, das auch unter V1.3 seinen Dienst tut:

DEFLNG a-z

DECLARE FUNCTION AllocMem LIBRARY
LIBRARY":bmaps/exec.library"

DECLARE FUNCTION OpenScreen LIBRARY
LIBRARY":bmaps/intuition.library"
LIBRARY":bmaps/graphics. library"

GrafikDemo:

WINDOW CLOSE 1
NewScreenSize%=32
PreferencesSize%=120
MemorySizeX%=NewScreenSizeX+PreferencesSize%
MEMF.CHIP=2
MEMF . CLEAR=65536&
MEMF=MEMF . CHIP+MEMF .CLEAR
NewScreen=Al locMem(MemorySize%, MEMF)
1F NewScreen=0 GOTO failed
xSize%=320
ySize%=256
zSize%=5
ScreenQuiet%=256
CustomScreen%=15
ViewMode%=0
ScreenType%=ScreenQuiet%+CustomScreen’%
POKEW NewScreen+é4,xSize%
POKEW NewScreen+6,ySize%
POKEW NewScreent+8,zSize%
POKEW NewScreen+14,ScreenType%
Preferences=NewScreen+NewScreenSize%
GetPrefs Preferences,PreferencesSize%
ViewX%=118
ViewY%=119
OldX%=PEEK(Preferences+ViewX%)
OldY%=PEEK(Preferences+ViewY%)
OverScan%=0
Demo:
ScreenBase=0OpenScreen(NewScreen)
IF ScreenBase=0 GOTO failed
RastPort=ScreenBase+84
ViewPort=ScreenBase+44
IF OverScan%>0 GOTO NewPrefs
SetRGB4 ViewPort,0,0,0,0
SetRGB4 ViewPort,1,15,15,15
IF ViewMode%*=0 THEN
yStep%=8
GOSUB ShowColors
GOSUB ShowSData

—— Das AmigaBASIC

ELSEIF ViewMode%=128 THEN
yStepX=4
GOSUB ShowColors
GOSUB ShowSData

ELSEIF ViewModeX%=2048 THEN
GOSUB ShowHAM

END IF

warte:

zeit!=TIMER+7
WHILE zeit!>TIMER
WEND
READ ViewMode%
IF ViewMode¥%>-1 THEN
READ OverScank%
xSize%=320+0verScan¥
ySize%=256+0verScan¥
POKEW NewScreent+é4,xSize%
POKEW NewScreent+6,ySize%
READ zSize%
POKEW NewScreen+8,zSize%
POKEW NewScreen+12,ViewMode%
CloseScreen ScreenBase
GOTO Demo
END IF
POKE Preferences+ViewX%,0ldX%
POKE Preferences+ViewY%,0ldY%
SetPrefs Preferences, 120, -1
CloseScreen ScreenBase
FreeMem NewScreen,MemorySize%
LIBRARY CLOSE
WINDOW 1,,,,-1
END

NewPrefs:
POKE Preferences+ViewX%,0ldX%-16
POKE Preferences+ViewY%,0ldY%-16

SetPrefs Preferences, 120, -1
SetAPen RastPort,1

FOR i%=1 T0 11

Move RastPort,0,0

Draw RastPort, i%*32,287
Move RastPort,0,287

Draw RastPort,i%*32,0
Move RastPort,351,0

Draw RastPort, i%*32,287
Move RastPort,351,287
Draw RastPort, i%*32,0
NEXT

SetDrMd RastPort,0

SetAPen RastPort,2

READ a$
Move RastPort, 144,146

Text RastPort,SADD(a$),LEN(a$)
GOTO warte

125

126 Amiga Tips & Tricks

ShowColors:
FOR i%=0 TO 2°zSize%-1
SetAPen RastPort,i%
RectFill RastPort,0,i%*yStep¥%,xSize%-1, (i%+1)*yStep%-1
NEXT
RETURN
ShowSData:
READ a$
col¥%=2"zSize%-1
SetAPen RastPort,col%
SetBPen RastPort,0
SetDrMd RastPort,1
Move RastPort,0,6
Text RastPort,SADD(a$),LEN(a$)
RETURN
ShowHAM:
SetDrMd RastPort, 1
FOR g%=0 TO 15
b%=0
Move RastPort,0,9%*10
SetAPen RastPort,0
Draw RastPort,0,g%*10+9
Move RastPort,1,9%*10
SetAPen RastPort,g%+48
Draw RastPort,1,g%*10+9
FOR x%=0 1O 7
FOR r%=1 10 15
SetAPen RastPort, ri+32
Move RastPort, x%*32+r%+1,g%*10
Draw RastPort,x%*32+r¥%+1,g%*10+9
NEXT
b%=b%+1
Move RastPort,x%*32+17,g%*10
SetAPen RastPort,b%+16 .
Draw RastPort, x%*32+17,g%*10+9
FOR r%=14 TO O STEP -1
SetAPen RastPort,r%+32
Move RastPort,x¥%*32+32-r%,g%*10
Draw RastPort,x%*32+32-r%,g%*10+9
NEXT '
b%=b%+1
IF b%<16 THEN
SetAPen RastPort,b%+16
Move RastPort,x%*32+33,g%*10
Draw RastPort,x¥*32+33, g%*10+9
END IF
NEXT
NEXT
READ a$
Move RastPort,0,180
SetAPen RastPort,1
SetBPen RastPort,0
Text RastPort,SADD(a$),LEN(a$)

—— Das AmigaBASIC 127

GOTO warte
DATA "Farben: 32 Modus: Normal"
DATA 128,0,6
DATA “Farben: 64 Modus: Halfbright"
DATA 2048,0,6
DATA "Farben: 4096 Modus: HoldAndModify"
DATA 0,32,2,"OVERSCAN", -1

3.3 Fading (Ein- und Ausblenden von Grafiken)

Hiermit konnen Sie viele interessante Effekte erzielen. Zum
Beispiel werden so Texte ein- oder ausgeblendet, oder manche
Grafiken verindern kontinuierlich ihre Farbe (das heif3it "cycle").
Alles wunderbare Fihigkeiten, die ein Programm erst an-
sprechend machen.

Wie vielleicht einige unter Ihnen, die den Begriff "Fading" noch
nicht gehort haben, méchte ich ihn kurz erliutern. "Fading" ist
das englische Wort fiir "Blenden" und wird im Zusammenhang
mit dem Ein- oder Ausblenden benutzt. Eigentlich wird der Be-
griff in der Musik verwendet, viele moderne Lieder werden zum
Schluf3 ausgeblendet. Im Englischen nennt man dies "Fade-Out".
Das Gegenstiick dazu wire das "Fade-In". Nun kann man natiir-
lich auch die beiden Ausdriicke auf die Optik beziehen. Ich
denke dabei z.B. an das Ein- und Ausblenden von Bildern oder
Schriftziigen. Genau dies soll jetzt beschrieben werden.

3.3.1 Fading - die Grundidee

Wie alle weiteren Programme dienen die nun folgenden natiirlich
nur als Beispiel. Sie konnen dann die Routinen ausbauen und in
eigene Werke einsetzen. Das erste Programm zeigt die Grund-
idee. Es bietet die Moglichkeit, jede beliebige Farbe der Palette
vom Schwarz ausgehend aufzublenden und diese dann wieder
verdunkeln zu lassen. Damit wire eigentlich schon die gesamte
Programmleistung beschrieben. Sehen Sie sich einmal das dazu-
gehorige Listing an:

128 Amiga Tips & Tricks

1 e e e e de de e e e v e v e e e de % e e e e e e de e e e e e e de e de e e ok

1% *
'* Farbfléchen ein- oder ausblenden *
I ceecececcecccccccnensenccancacans *
" *
'* Autor : Wolf-Gideon Bleek *
'* Datum : Juni '87 *
' Mai '88 *
'* Gruefe : Schulze *
'* Version: 1.0 *
‘* Betriebssystem: V1.2 & V1.3 *
1k *
1 dede e de e de e e e e de A e o e ok e e e o e e o e e e e e o o e ok e o e o
Variablen:

DEFINT a-2z

In =1 'Modus-Definition
out =-1

Anzahl=7

DIM SHARED Rot!(Anzahl),Grn!(Anzahl),Bla!(Anzahl)
HauptProgramm:

GOSUB BildschirmAufbauen

Blenden:

GOSUB FarbenFestlegen
CALL Fade (0,7,16,1n)
CALL Fade (0,7,16,0ut)
GOTO Blenden
END
FarbenFestlegen:
FOR i=1 TO Anzahl
Rot!(i)=RND
Grn! (i)=RND
Bla! (i)=RND
NEXT i
RETURN
Bi ldschirmAufbauen:
SCREEN 2,640,256,3,2
WINDOW 1,"Farbtest",(0,0)-(623,200),0,2
FOR i=0 TO Anzahl
PALETTE i,0,0,0
NEXT i
Breite=640/Anzahl
FOR j=0 TO 20
FOR i=1 TO Anzahl
x=RND*600
y=RND*150
LINE (x,y)-(x+Breite,y+Breite/2),i,bf
NEXT i
NEXT j
RETURN
SUB Fade (Start,Anzahl,Schritte,Modus) STATIC
Anf=0 : Ende=Schritte
IF Modus=-1 THEN
Anf=Schritte : Ende=0

—— Das AmigaBASIC 129

END IF
FOR j=Anf TO Ende STEP Modus
Faktor!=j/Schritte
FOR i=Start TO Start+Anzahl
PALETTE i,Rot!(i)*Faktor!,Grn!(i)*Faktor!,Bla!(i)*Faktor!
NEXT i

NEXT j
END SUB
Variablenfelder
Bla() Feld fiir Blauwerte
Gm() Feld fiir Griinwerte
Rot() Feld fiir Rotwerte
Variablen
Anf Anfangsstadium der Farben
Anzahl Anzahl der Farben
Im SUB: Anzahl der zu blendenden Farben
Breite Ausdehnung der Beispielflachen
Ende Endstadium der Farben
Faktor Farbanteil zum jetzigen Zeitpunkt
In Pointer fiir das Aufblenden
Modus Modusangabe: Ein- oder Ausblenden
Out Pointer fiir das Ausblenden
Schritte Anzanhl der Schritte fiir den Vorgang
Start Erste Farbnummer
ij Laufvariablen
X,y Koordinaten der Beispielfelder
Programmbeschreibung

Die oben gegebenen Anmerkungen reichen nicht unbedingt aus,
um alles zu verstehen. Hier folgen die genaueren Angaben. Das
Programm definiert eine Funktion, die jede beliebige Farbe der
Palette ein- oder ausblendet. Auch zusammenhingende Farb-
gruppen konnen gemeinsam ’geblendet’ werden. Zuerst werden
zwei Variablen fiir die Art des Fading mit Werten belegt. Somit
brauchen Sie sich nicht die Zahlen zu merken, sondern Sie kén-
nen einfach den Namen benutzen. Als nichstes legen wir die
Auflésung mit sieben Farben fest (zuziiglich dem Hintergrund).

130 Amiga Tips & Tricks

Dann wird fiir jede Farbe ein Feld definiert, auf das auch die
SUB-Routine zugreifen kann. In diesem Feld werden die Farb-
werte gespeichert, die beim Fading erreicht werden sollen.

Zur Demonstration wird daraufhin im Unterprogramm "Bild-
schirmaufbauen” ein neuer Screen ge6ffnet - mit der vorher ein-
gestellten Farbtiefe. Auf ihm wird das Ausgabe-Window mit al-
lerhand bunten Rechtecken vollgezeichnet.

Nun zum Hauptteil, der dann vom Programm abgearbeitet wird.
Es wird ein Unterprogramm angesprungen, das die Farbfelder
mit "zufilligen" Werten versorgt. Danach wird die wichtigste
SUB-Routine gleich zweimal hintereinander aufgerufen. Als
Parameter werden ihr die Nummer der ersten Farbe und deren
Anzahl, die Abstufung und der Pointer iibergeben. Letztes sagt
aus, ob von Schwarz zur gewiinschten Farbe (=einblenden) oder
ausgeblendet werden soll. Die Abstufung bestimmt, in wie vielen
Einzelschritten das geschehen soll, und die ersten beiden Werte
dirften wohl klar sein.

Kommen wir nun zur Besprechung der eigentlichen Routine.
Der Anfangswert wird in Abhingigkeit zum Pointer gesetzt,
entweder 0 fiir Schwarz oder der Wert von "Schritte" fiir "voll-
stindig" dargestellt. Auch das Ende wird dadurch bestimmt. Die
Schleife, in der die Farbwerte in Teilschritten ausgegeben wer-
den, berechnet fiir jede Abstufung einen Faktor und weist dann
in einer inneren Schleife mit der PALETTE-Anweisung die
neuen Farben zu. Dies wird so lange wiederholt, bis entweder
die gewollte Farbe erreicht ist oder alles auf Schwarz abgedun-
kelt wurde.

3.3.2 Fade-Over

Dies ist eine Variante des obigen Programms. Hier wird nicht
immer stur von Schwarz zur Farbe und dann wieder zum
Schwarz geblendet, sondern man legt die Ausgangs- und End-
farbe frei fest. Sie konnen so jeden Ubergang simulieren. Die
Farben des Regenbogens diirften nun kein Problem mehr sein.

—— Das AmigaBASIC 131

PhkkRhhhhhhkrrhhhhkhhhrrkkihihid

1% *
' Farbfléchen umblenden *
I ccccmcccccnccnccccaaae *
e *
'* Autor : Wolf-Gideon Bleek *
'* Datum : Juni '87 *
bl Mai '88 *
'* Gruefe : Herrchen & Frauchen *
'* Version: 1.0 *
'* Betriebssystem: v1.2 & V1.3 *
e S
1 Fede e e de de e de e v o de de e s de de e e e e e de e de e e e e e de e
Variablen:

DEFINT a-z

Anzahl=7

DIM SHARED Rot!(Anzahl,1),Grn!(Anzahl,1),Bla!(Anzahl,b1)
HauptProgramm:

GOSUB BildschirmAufbauen

Blenden:

GOSUB FarbenFestlegen
CALL Fade (0,7,8)
GOTO Blenden
END
FarbenFestlegen:
FOR i=1 TO Anzahl
Rot!(i,0)=Rot!(i,1)
Grn!(i,0)=Grn!(i,1)
Blat!(i,0)=Blal(i,1)
Rot!(i,1)=RND
Grn! (i, 1)=RND
Bla!(i,1)=RND
NEXT i
RETURN
BildschirmAufbauen:
SCREEN 2,640,256,3,2
WINDOW 1,"Farbtest®, (0,0)-(623,200),0,2
FOR i=0 TO Anzahl
PALETTE i,0,0,0
NEXT 1
Breite=640/Anzahl
FOR j=0 TO 20
FOR i=1 TO Anzahl
x=RND*600
y=RND*150
LINE (x,y)-(x+Breite,y+Breite/2),i,bf
NEXT i
NEXT j
RETURN
SUB Fade (Start,Anzahl,Schritte) STATIC
FOR j=0 TO Schritte
FOR i=Start TO Start+Anzahl
Rdiffi=(Rot!(i,1)-Rot!(i,0))/Schritte*]

132 Amiga Tips & Tricks

Gdiff!=(Grn!(i,1)-Grn!(i,0))/Schritte*j
Bdiffi=(Bla!(i,1)-Bla!(i,0))/Schritte*]
PALETTE i,Rot!(i,0)+Rdiff!,Grn! (i, 0)+Gdiff!, Bla!(i,0)+Bdiff!
NEXT i
NEXT j
END SUB

Programmbeschreibung

Die Grundstruktur des Programms ist eigentlich gleich geblie-
ben. Jedoch sind kleine, aber feine Anderungen gemacht wor-
den. Bei der Variablendefinition fillt auf, da3 die beiden Poin-
ter In und Out nicht mehr bendétigt werden. Das ist klar, denn es
wird immer zur neuen Farbe geblendet. Deswegen ist auch im
Hauptprogramm ein Aufruf der Fade-Routine weggelassen wor-
den. Es werden nur immer neue Farben ausgesucht und zu die-
sen wird dann iiberblendet.

Weil die Farbfelder jetzt eine weitere Dimension bekommen ha-
ben, mit der gekennzeichnet wird, ob es die Ausgangsfarbe (0)
oder die Zielfarbe (1) ist, wird beim Festlegen der neuen Farb-
werte der letzte neue Wert in das Register fiir den Ausgangswert
kopiert, und die Zielwerte werden dann neu definiert. So kann
das Programm immer auf den momentanen Zustand zugreifen,
denn eine Abfragefunktion existiert nicht.

Die Fading-SUB-Routine geht nun in beliebig groBen Schritten
von der einen Farbe zur anderen. Dafiir wird die Differenz
durch die Schritte geteilt und mit der Zahl der schon vollzoge-
nen Schritte multipliziert. Das Ergebnis jeder einzelnen RGB-
Farbe wird zum entsprechenden Wert addiert. Wenn die duBerste
Schleife durchlaufen ist, sind die neuen Farben erreicht.

3.3.3 Fading fiir jeden RGB-Anteil

Die letzte Fading-Moglichkeit ist eigentlich aus der ersten ent-
standen. Warum muf3 denn die Farbe gleich vollstindig einge-
blendet werden? Durch den PALETTE-Befehl haben wir auch
die Moglichkeit, jede der RGB-Farben einzeln aufzublenden.

—— Das AmigaBASIC 133

Deshalb erscheinen die Farben hier erst rot, dann wird Griin
dazugemischt, und erst zum Schluf wird auch Blau hinzuge-
geben.

1hkkdkhhhkhhhhhkhihhkhhihhhiikhkhikkiir
(2] *

'* Farbflédchen Uber RGB umblenden *

I ceccccccccccccccccccccccncaaaa

*

% *
'* Autor : Wolf-Gideon Bleek *
'* Datum : Juni '87 *
'x Mai '88 *
'* Gruefe : Jana & Svolli *
'* Version: 1.0 *
'* Betriebssystem: V1.2 & V1.3 *
" *
e e v e v e v de s v e e o e e e e e I e e g g e o vk ok o o e o o e o
Variablen:

DEFINT a-z

In =1 'Modus-Definitoin
Out =-1

Anzahl=7

DIM SHARED Rot!(Anzahl),Grn!(Anzahl),Bla!(Anzahl)
HauptProgramm:
GOSUB BildschirmAufbauen
Blenden:

GOSUB FarbenFestlegen
CALL Fade (0,7,16,1In)
CALL Fade (0,7,16,0ut)
GOTO Blenden
END
FarbenFestlegen:
FOR i=1 TO Anzahl
Rot! (i)=RND
Grn! (1)=RND
Bla! (i)=RND
NEXT i
RETURN
Bi ldschirmAufbauen:
SCREEN 2,640,256,3,2
WINDOW 1,"Farbtest",(0,0)-(623,200),0,2
FOR i=0 TO Anzahl
PALETTE i,0,0,0
NEXT i
Breite=640/Anzahl
FOR j=0 TO 20
FOR i=1 TO Anzahl
x=RND*600
y=RND*150
LINE (x,y)-(x+Breite,y+Breite/2),i,bf
NEXT i

134 : Amiga Tips & Tricks

NEXT j
RETURN
SUB Fade (Start,Anzahl,Schritte,Modus) STATIC
Schritte=Schritte/2
Anf=0 : Ende=Schritte
IF Modus=-1 THEN
Anf=Schritte : Ende=0
END IF
AnfZu=Anf/Schritte
EndZu=Ende/Schritte
FOR j=Anf TO Ende STEP Modus
Faktor!=j/Schritte
FOR i=Start TO Start+Anzahl
PALETTE i,Rot!(i)*Faktor!,Grn!(i)*AnfZu,Bla!(i)*AnfZu
NEXT i
NEXT j
FOR j=Anf TO Ende STEP Modus
Faktor!=j/Schritte
FOR i=Start TO Start+Anzahl
PALETTE i,Rot!(i)*EndZu,Grn!(i)*Faktor!,Bla!(i)*AnfZu
NEXT i
NEXT j
FOR j=Anf TO Ende STEP Modus
Faktor!=j/Schritte
FOR i=Start TO Start+Anzahl
PALETTE i,Rot!(1)*End2u,Grn!(i)*EndZu,Bla!(i)*Faktor!
NEXT i
NEXT j
END SUB

Programmbeschreibung

Bis auf die SUB-Routine gleicht das Listing dem ersten dieses
Abschnittes. Ich empfehle deswegen, diesen Teil zu kopieren. Sie
ersparen sich viel Tipparbeit. Als erstes kiirzt die Routine die
angegebene Schrittezahl um die Hilfte. Dies wurde deshalb ge-
macht, damit Sie bei allen Programmen etwa gleiche "Geschwin-
digkeitseinstellungen" machen koénnen. Denn hier wird die glei-
che Schleife dreimal durchlaufen. Es dauert so fast dreimal so-
lange! Zu Beginn wird wieder der Startwert fiir die Blend-
schleife gesucht. Entweder wird mit dem Schwarzwert begonnen
oder aber mit der Farbe, das stellen Sie mit dem Modus-Pointer
ein.

Weil die PALETTE-Anweisung immer alle Farbwerte braucht,
muf} z.B. in der ersten Schleife, die nur den Rotwert beeinfluft,
bei den beiden anderen Werten der Anfangszustand gesetzt wer-

—— Das AmigaBASIC 135

den. In den anderen Schleifen braucht das Programm aber die
Endwerte, da der Rotwert schon abgehandelt wurde. Dafiir be-
rechnet das Unterprogramm am Anfang zwei Faktoren (AnfZu,
EndZu). Sonst aber lduft hier alles genau wie im ersten Pro-
gramm ab.

3.4 Schnelle Vektorgrafik

Bei der Vektorgrafik werden alle Objekte nicht vollstindig
durch ihre Flichen dargestellt, sondern nur ihre Kanten, die
Vektoren. Dadurch wird eine schnelle Darstellung ermoglicht,
denn die aufwendige Zeichenarbeit fiir die groen Oberflichen
entfillt ganz und ist nur auf die Eckpunkte und die dadurch
resultierenden Kanten beschrinkt.

3.4.1 Gittermodelle darstellen

Fiir die Verarbeitung eines 3D-KOrpers speichern wir seine
Eckpunkte als dreidimensionale Koordinaten. Zusitzlich wird
noch eine Verbindungsvorschrift aufgestellt, nach der alle Koor-
dinaten-Tripel verbunden werden. Hat man alle diese Daten, so
miissen sie vom Raum auf die Bildschirmfliche projiziert wer-
den, denn die Darstellung erfolgt auf einer Fliche. In dem fol-
genden Programm wurde eine zentrische Abbildung auf der
Bildschirmebene gewihlt. Als Information fiir die Kiinstler und
Zeichner unter Ihnen: Alle Objekte werden durch eine Ein-
Fluchtpunkt-Perspektive abgebildet.

Da die Ebene, unser Bildschirm, durch ihre z-Koordinate ein-
deutig festgelegt ist, wird dieser Wert bei allen Punkten unin-
teressant. Darauf baut nun die Uberlegung auf, das Gitternetz
abzubilden. Um die x- und y-Koordinaten auf dem Bildschirm
zu finden, stellen wir uns einen Raum vor, in dem sich der
Korper befindet. Weiterhin denken wir uns irgendwo im Raum
einen Punkt, er wird im folgenden "Fluchtpunkt" genannt.

136 Amiga Tips & Tricks

Zwischen dem Korper und dem Fluchtpunkt liegt unser Bild-
schirm als Ebene, die durch ihren z-Wert bekannt ist. Jetzt zie-
hen wir von jedem Eckpunkt unseres Korpers eine Strecke zum
Fluchtpunkt. Da, wo sich diese Strecke mit der Bildschirmebene
schneidet, finden wir die gesuchten x- und y-Werte fiir diesen
Eckpunkt und damit seine Lage auf dem Bildschirm!

Wie soll nun ein Programm aufgebaut sein, das diese Abbildung
vornimmt? Am wichtigsten sind sicherlich die Daten der Eck-
punkte. Damit wir erst einmal damit arbeiten kénnen und nicht
zuviel Aufwand und Umstand betreiben, habe ich sie in DATA-
Zeilen abgelegt. Zusitzlich zu den Eckpunktkoordinaten miissen
noch die Verbindungsvorschriften vorhanden sein, auch diese le-
gen wir in DATA-Zeilen ab. In spiteren Versionen des Pro-
gramms konnen Sie zusdtzlich von Speicherroutinen einbauen,
um mit verschiedenen Koérpern und verschiedenen Bewegungen
zu arbeiten.

v A

Fluchtpunkt Objekt

Bildschirmebene

».
>

z

Abb. 1 Fluchtpunktperspektive

—— Das AmigaBASIC 137

Wenn das Programm alle Raumkoordinaten kennt, kann es mit
der Berechnung der Bildschirmkoordinaten beginnen. Dazu ver-
wendet es die Streckenformel im dreidimensionalen Raum:

3D Sreckenformel

pXx dx
= PY | +1 | dy
Pz dz

N & X

Abb. 2 3D-Streckenformel

Um die Formel benutzen zu kénnen, miissen Sie folgendes wis-
sen: Die gesuchten Bildschirmkoordinaten heilen x und y. Der
z-Wert ist uns bekannt, weil wir ihn festlegen. Die p-Koordina-
ten wissen Sie, weil sie zu dem Punkt gehdren, mit dem wir die
Berechnung durchfithren wollen. Bleiben nur noch die d-Werte.
Es sind die Differenzen der einzelnen Koordinaten des Punktes
und des Fluchtpunktes (px-fx, py-fy, pz-fz). Die kennen Sie
auch, wenn Sie sie berechnet haben!

¥ e % e e Je de e e de e e de de e o de e e de de ke de ke e de e e ek e e ok

'* 3D - Netzgrafik *

'* Autor : Wolf-Gideon Bleek *

'* Datum : 8. Mai 1987 *

" 14. Mai 1988 *

'* Gruefe : Franky *

'* Version: 1.0 *

'* Betriebssystem: V1.2 & V1.3 *

1 e e v e e e v e e v e e e e e de e e e e e e e e e de e ok ok ok ok ok

Variablen:

RESTORE WuerfelDaten

DEFINT B, V

Punkte = 25 ' Anzahl der Objektpunkte
ZEbene =-25 ' Bildschirmebene

PktAnz = 0 ' Anzahl der Objektpunkte
Verbind = 0 ' Anzahl der Verbindungen

OPTION BASE 1

DIM P(Punkte,3) ' Raumkoordinaten

DIM B(Punkte,2) ' Bildkoordinaten

DIM V(Punkte*1.8,2) ' Verbindungsvorschrift
DIM D(3) ' Differenz

DIM F(3) ' Fluchtpunkt (x,y,z)
F(1)=-70 ' Fluchtpunkt x

138 Amiga Tips & Tricks

F(2)=-50 'y
F(3)=240 'tz
Hauptprogramm:
PRINT "Fluchtpunkt (x,y,z) ? ";F(1)","F(2)","F(3)
Punktelesen:
Grund=PktAnz ' Basis fr Verbindungen
Loop:
READ px,pYy,pz
IF px<>255 THEN
PktAnz=PktAnz+1
P(PktAnz, 1)=px
P(PktAnz,2)=py*-1
P(PktAnz,3)=pz
GOTO Loop
END IF

VerbindLesen:
READ v1,v2
IF v1<>255 THEN
Verbind=Verbind+1
V(Verbind, 1)=Grund+v1
V(Verbind, 2)=Grund+v2
GOTO VerbindLesen

END IF

READ Ende

IF Ende<>0 THEN GOTO Punktelesen

BildBerechnen:
FOR i=1 TO PktAnz
FOR j=1 TO0 3
DCjI=F(j)-P(i,))
NEXT j
Lambda=(ZEbene-P(i,3))/D(3)
B(i,1)=P(i,1)+lambda*D(1)
B(i,2)=P(i,2)+lambda*D(2)
NEXT i
BildAusgeben:

FOR i=1 TO Verbind
x1=B(V(i,1),1)+50
x2=B(V(i,2),1)+50
y1=B(V(i,1),2)+100
y2=B(V(i,2),2)+100
LINE (x1,y1)-(x2,y2)

NEXT i

END
WuerfelDaten:

REM x,y,z

DATA 32, 20, 20

DATA -32, 20, 20

DATA -32,-20, 20

DATA 32,-20, 20

DATA 32, 20,-20

DATA -32, 20,-20

DATA -32,-20,-20

—— Das AmigaBASIC

DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

32,-20,-20
255,0,0

R

~ =

NNODWSrRONOUVNT=2SUWN-T
VIONNOO VIO NONVT =2 N

UVis ~
N
o
~
-

PyramidenDaten:

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

-32, 25,-20
32, 25,-20
32, 25, 20

-32, 25, 20

0, 65, 0
lol0

w

-

S s % s s o~

NNV NV WN =N

Uls
VNTHWN=22ar~WNOW

-
o
o

Variablenfelder

PQ
B(
D)
F)
V0

Raumkoordinaten

int, Bildkoordinaten

Differenzen der Abbildung
Fluchtpunktkoordinaten

int, Verbindungsvorschrift fiir alle Objekte

Variablen

Ende
Grund Bezug fiir die Verbindungen eines Objektes
PktAnz Anzahl aller abzubildenden Punkte

Punkte maximale Anzahl der Objektpunkte

Verbind Anzahl der Verbindungen

gelesener Wert, der bei Ende = 0 ist

139

140 Amiga Tips & Tricks

ZEbene z-Koordinate der Bildschirmebene

ij Laufvariablen

lambda Faktor der Koordinatenumrechnung

PX, py, pz Koordinaten eines Punktes im Raum

vi erster Punkt einer Verbindung

v2 zweiter Punkt einer Verbindung

x1,y1 Bildkoordinaten fiir die Ausgabe (1. Punkt)
X2, y2 Bildkoordinaten fiir die Verbindung (2. Punkt)

Programmbeschreibung

Zuerst, bei der Variablendefinition, wird der DATA-Pointer auf
den Anfang der Punktdaten gesetzt. In diesem Fall sind es die
Koordinaten eines Wiirfels. Dann werden alle Variablen, die mit
einem B oder V anfangen, als Integer eingestuft. Sie werden
gleich sehen, warum. Damit spiter die Felder fiir die Punkte
dimensioniert werden koénnen, hilt das Programm in der Vari-
ablen "Punkte" fest, wie viele Punkte maximal gespeichert wer-
den sollen. AuBlerdem wird die Lage der Bildschirmebene im
Raum durch die z-Koordinate eingestellt. Dann wird die Anzahl
der gelesenen Punkte und Verbindungen erst einmal auf Null
gesetzt.

Nun folgt die Dimensionierung der benétigten Variablenfelder.
Es sind dies einmal das Feld P, in dem die Punktkoordinaten
gespeichert werden (deswegen mit dem Index 3), dann das Feld
B (Integer), in dem die spiteren Bildschirmkoordinaten zu jedem
Raumpunkt abgelegt werden. AuBlerdem das Feld V (auch inte-
ger), das immer zwei Punktnummern enthilt, die angeben, wel-
che Punkte miteinander verbunden werden sollen. Und als letz-
tes das Feld D mit drei Elementen, das fiir die Differenzen bei
der Punktberechnung gebraucht wird. Auch die Position des
Fluchtpunktes wird in einem Feld F abgelegt, anstatt mit einem
Buchstaben als Index (FPx, FPy, FPz), weil somit die Berech-
nungen automatisiert werden koénnen. Sehen wir uns nun das
Hauptprogramm an:

Um die Grafik spiter besser beurteilen zu konnen, werden in
der nichsten Zeile die Fluchtpunkt-Koordinaten ausgegeben.
Dann folgt die Punktlese-Routine. In ihr wird zuerst der Pointer
"Grund" auf die erste Nummer des zu lesenden Punktes gesetzt.

—— Das AmigaBASIC 141

Er dient zur Verarbeitung von mehreren Objekten, so brauchen
Sie spiter nicht auszuzihlen, welche Nummer der erste Punkt im
siebten Objekt hat, Sie schreiben einfach eine Eins. In der
Schleife werden Raumkoordinaten gelesen und es wird iiber-
priift, ob der px-Wert gleich 255 ist. Dies ist die Kennung da-
fiir, daB alle Punkte eines Objektes gelesen sind und nun die
Verbindungsvorschriften folgen. Sonst wird der neue Punkt in
die Tabelle eingetragen, und von neuem werden Koordinaten
gelesen.

Die Schleife zum Lesen der Verbindung arbeitet eigentlich nach
dem gleichen Prinzip. Zuerst werden die Nummern der beiden
Punkte gelesen, die verbunden werden sollen. Entsprechen sie
der Endkennung, so wird die Schleife verlassen, andernfalls
werden die beiden Zahlen in das Feld eingetragen, und alles
fangt von vorne an. Als letztes wird eine Zahl aus den Daten
gelesen, die Auskunft dariiber gibt, ob noch ein weiterer Korper
folgt. Dieser Fall ist gegeben, wenn der Wert ungleich null war.

Sind beide Schleifen endgiiltig abgeschlossen, werden die Bild-
schirmpunkte des Objektes berechnet. Dies geschieht in einer
Schleife, die einfach die Liste Punkt fiir Punkt durchgeht und
fir jeden die Bildschirmwerte ausrechnet. Das Verfahren ist
oben schon beschrieben, trotzdem mochte ich noch einmal dar-
auf eingehen. Nachdem die Differenzen der Fluchtpunktwerte
und des aktuellen Punktes in dem Feld D abgelegt worden sind,
wird der Lambda-Faktor berechnet. Darauf setzt das Programm
den gewonnenen Wert in die Gleichungen fiir die x- und y-
Werte ein. Fertig!

Zum SchluBl folgt noch die Ausgabe des Gitternetzes. Hierfiir
durchlduft eine Schleife alle Verbindungen und sucht sich fiir
jede die benoétigten Punktkoordinaten heraus. Dabei kann es
durchaus vorkommen, daB ein vorher berechneter Punkt gar
nicht gebraucht wird, weil er in keiner Verbindung auftaucht.
Da das Objekt in der Nihe des Nullpunktes definiert wurde,
mufl es jetzt noch, um es sichtbar darzustellen, in die Bild-
schirmmitte verschoben werden. Dann wird Linie fiir Linie ge-
zeichnet.

142 Amiga Tips & Tricks

3.4.2 Gittermodelle bewegen

Die Bewegung ist grundsitzlich nur eine Aneinanderreihung von
stehenden Bildern. Deshalb konnen wir aufbauend auf die Dar-
stellung programmieren und nur die Raumkoordinaten fiir jedes
Bild leicht beeinflussen. Leider stellte sich aber heraus, daB es
damit nicht getan ist, denn die Bewegung wird dann viel zu
langsam.

Fiir eine fliissige Bewegung auf dem Bildschirm darf wihrend
der Ausgabe zuerst einmal nicht gerechnet werden, alle Werte
miissen schon vorher feststehen. Auflerdem reicht die einfache
Art mit vielen LINE-Befehlen nicht aus. Da es eine Betriebssy-
stemroutine gibt, die fiir die Ausgabe zusammengehodriger Linien
zustindig ist, wollen wir diese verwenden.

3.4.3 Beschleunigung durch Betriebssystem-
Routinen

Die Entwickler des Amiga-Betriebssystems haben sich viele Ge-
danken iiber die Anwendungen gemacht, die spiter auf dem Su-
percomputer laufen werden. Sicherlich kannten sie auch die
Netzgrafik. Denn nur mit ihr ist eine Echtzeitbetrachtung unter
abgespeckten Bedingungen moéglich. Deshalb schufen sie eine
Grafikroutine, die alle Punkte einer Liste nacheinander verbin-
det. Genau diese Routine ist die letzte Moglichkeit fiir uns, noch
eine schnellere Darstellung zu bekommen. Durch sie lassen wir
unser Gitternetz zeichnen. Dafiir legen wir wie immer zuerst die
Eckpunkte durch ihre Raumkoordinaten ab, die spiter auf den
Bildschirm projiziert werden. Die Eckpunkte werden fir die
Bewegung im Raum bewegt, auch dies bleibt beim alten. Damit
wir die durch die schnelle Routine gewonnene Zeit nicht wieder
verlieren, berechnet das Programm vor der Ausgabe alle Szenen
und legt diese in ein Feld ab.

Nun kommt aber das erste Problem! Die Routine erwartet eine
Liste der Bildschirmkoordinaten, die in ihrer angegebenen Rei-
henfolge auch verbunden werden. Dies ist ein groBer Nachteil

—— Das AmigaBASIC 143

und zugleich ein Vorteil. Einmal brauchen nicht immer Koordi-
natenpaare gespeichert zu werden, zum anderen muf3 aber die
Figur so aufgebaut sein, daB sie mit einer durchgehenden Linie
gezeichnet werden kann. Wenn nicht, so werden manche Kanten
mehrmals abgeschritten, was eigentlich unndétig ist. Aber es gibt
eben Objekte, bei denen sich mit nur einer Endloslinie nichts
machen 148t.

Wegen dieser Vorschrift des Betriebssystems miissen Sie die
Verbindungsvorschrift dndern. Sie geben jetzt nicht mehr Koor-
dinatenpaare ein, sondern Sie miissen auf den Kanten des Ob-
jektes entlangwandern (keine vergessen!) und tragen nacheinan-
der die Nummern der Eckpunkte ein, die Sie in Gedanken
iiberschritten haben.

Wenn das Programm diese Daten hat, kann es mit den Berech-
nungen beginnen. Zuerst erfolgt das Verschieben des Korpers im
Raum mit dem Ablegen der Bildschirmkoordinaten, dann der
neue Grafiktransfer. In diesem Teil werden die vorhandenen
Bildschirmwerte in eine lange Liste eingetragen, die spiter der
Betriebssystemroutine in Teilabschnitten iibergeben wird.

Ist die Liste vollstindig erstellt, geht es in der Ausgabeschleife
weiter. Hier werden wieder alle Szenen durchlaufen, und ein
entsprechender Pointer zeigt in der Liste auf die Daten fiir die
aktuelle Szene. Dann werden die Werte an die Routine iiberge-
ben, die diese Ausgabe iibernimmt. Um auch gleich wieder das
Bild zu l6schen, wird die Farbe auf Hintergrund gesetzt und das
Objekt wird von neuem gezeichnet. Wenn alle Bilder ausgegeben
worden sind, springt das Programm zum Anfang der Ausgabe
und alles startet wieder.

1 e e de v de e e e e e e 3 9 3 e e e e o e e e e e e e o ok o e e e

'* 3D - Netzgrafik

'* Autor : Wolf-Gideon Bleek
'* Datum : Juni 1987

', 14. Mai 1988

'* Version: 1.5

'* Betriebssystem: V1.2 & V1.3
§ % de s o o e o de e e e e de e e e e e e e e v o e e ok e e e de e e
LIBRARY ":bmaps/graphics.library"
RESTORE

* % ¥ ¥ ¥ ¥

144

OPTION BASE 1
Variablen:

DEFINT B,V,G

READ Punkte

READ Verbind

ZEbene=25

Szenen=50

DIM P(Punkte,3)

DIM B(Szenen,Punkte,?2)
DIM G(Verbind*2*Szenen)
DIM V(Verbind)

DIM D(3)

DIM F(3)

F(1)=-70

F(2)=-50

F(3)=180

PRINT "Fluchtpunkt (x,y,z) :

Punktelesen:
RESTORE PyramidenDaten
FOR i=1 TO Punkte
READ px,py,pz
P(i,1)=px
P(i,2)=py*-1
P(i,3)=pz
NEXT i

VerbindLesen:
FOR i=1 TO Verbind
READ V(i)
NEXT i
BildVorausBerechnen:
FOR sz=1 TO Szenen
FOR i=1 TO Punkte
FOR j=1T0 3

DC))=F(j)-P(i, J)

NEXT j
P(i,3)=P(i,3)+3
P(i,2)=P(i,2)-2
PCi,1)=P(i,1)+2

Anzahl der Objektpunkte
Zéhler der Verbindungen
Bildschirm Ebene

Anzahl der Szenen
Raumkoordinaten

Bi ldkoordinaten

Verbindungsvorschrift
Differenz

Fluchtpunkt (x,y,z)
Fluchtpunkt x

y (neg. wg. nichtkathes.
b2

II;F(1)ll,llF(z)ll,llF(s)

Objekt

Amiga Tips & Tricks

Koord.Sys.)

Transfer in anderes Koordinatensystem

Lambda=(ZEbene-P(i,3))/D(3)
B(sz,i,1)=P(i,1)+Lambda*D(1)+200
B(sz,i,2)=P(i,2)+Lambda*D(2)+200

NEXT i
NEXT sz
GraphikTransfer:
FOR j=0 TO Szenen-1

FOR i=1 TO Verbind*2 STEP 2
G(i+j*Verbind*2)=B(j+1,V(i/2+.5),1)
G(i+1+j*Verbind*2)=B(j+1,V(i/2+.5),2)

NEXT i
NEXT j
Bi ldAusgeben:

—— Das AmigaBASIC

FOR i=0 TO Szenen-1
Pointer=Verbind*2*i
FOR j=1 TO O STEP-1
COLOR j
CALL Move(WINDOW(8),G(1+Pointer),G(2+Pointer))
CALL PolyDraw(WINDOW(8),Verbind-1,VARPTR(G(3+Pointer)))
NEXT j
NEXT iq
GOTO BildAusgeben
GraphikDaten:
DATA 5,10
' Punkte,Verbindungen
PyramidenDaten:
DATA -32, 25,-20
DATA 32, 25,-20
DATA 32, 25, 20
DATA -32, 25, 20
DATA 0, 65, O

Verbindungen:
DATA 2,1,5,4,3,5,2,3,4,1
DATA 4,1
Variablenfelder
B() Bildschirmkoordinaten
D() Differenz der Koordinatenumrechnung
F() Fluchtpunktkoordinaten
G(Zusammentassung: Koordinaten aller Szenen
PO Raumkoordinaten aller Punkte
VO Verbindungsvorschrift

Variablen-Liste

Lambda Faktor der Koordinatenberechnung

Pointer Zeiger auf die Koordinatenliste einer Szene
Punkte Anzahl aller Objektpunkte

Szenen Anzahl der zu berechnenden Szenen
Verbind Anzahl der Verbindungselemente

ZEbene z-Position der Ebene, auf die abgebildet wird
i j Laufvariablen

PX, py, pZ Raumkoordinaten eines Eckpunktes

sz Schleifenzahler fir die Szenen

145

146 Amiga Tips & Tricks

Programmbeschreibung

Bevor die Variablen definiert werden, 6ffnet das Programm die
graphics-Library. Hierdurch kénnen Sie die Grafikroutinen an-
sprechen, die fiir die Gitternetzausgabe gebraucht werden. Dann
werden alle Variablen, die mit B, V oder G beginnen, als Inte-
ger deklariert. Dies erspart das stindige Anhidngen von Typen-
zeichen. Fir die Gitternetzausgabe ist das neue Feld G hinzuge-
kommen, in ihm werden alle Koordinaten in ihrer Verbin-
dungsreihenfolge abgelegt. Und zwar immer ein 2-Byte-Inte-
gerwert fir die x-Koordinate und ein 2-Byte-Integerwert fir
die y-Koordinate.

Neu im Programm ist die Punkt- und Verbindungsleseschleife.
Sie gehen jetzt von festen Werten aus, die am Anfang des Pro-
gramms am Kopf der DATA-Zeilen gelesen werden. Somit er-
sparen Sie sich die Endkennung, und das Programm wird etwas
schneller. Das Verbindungsfeld ist nur noch mit einer Dimension
definiert, da es keine Paare, sondern die Kette der zu verbin-
denden Punkte speichert.

Nach der Berechnung miissen die so gewonnenen Daten in ein
Format gebracht werden, das die Betriebssystemroutine verar-
beiten kann. Die Routine mit dem Namen PolyDraw braucht
einmal eine Tabelle, in der nacheinander die x- und y-Werte als
kurze Integer-Zahlen stehen. Andererseits muf3 sie auch wissen,
wie viele Elemente sie davon verwenden soll. Die Tabelle kann
also ruhig sehr lang sein, es werden nur so viele Daten gelesen,
wie vorgeschrieben. Damit wird ein Pointer fiir das Ende ge-
spart. Wir legen die Grafikdaten fiir alle Szenen in das eine Feld
und iibergeben der Routine immer die Adresse des ersten Ele-
ments fir die ndchste Szene, auBerdem geben wir ihr noch die
Zahl der Eckpunkte mit auf den Weg. Alles andere erledigt Po-
lyDraw von selbst.

Die Ausgabe erfolgt in einer neuen Schleife. Sie wird entspre-
chend der Anzahl der Szenen durchlaufen. In ihr wird erst ein
Zeiger berechnet, der auf das erste Element fiir die Ausgabe des
Gitternetzes zeigt. Dann folgt eine zweite Schleife, die zweimal

—— Das AmigaBASIC 147

durchlaufen wird. Zuerst zeichnet sie das Netz, indem der Gra-
fik-Cursor auf den Anfangspunkt gesetzt wird und die Poly-
Draw-Routine ihre Aufgabe erledigt.

Beim zweiten Durchlauf ist der Wert der Laufvariablen von Eins
auf Null gesetzt, und somit schaltet der COLOR-Befehl von der
ersten Zeichenfarbe auf die Hintergrundfarbe. Obwohl jetzt
wieder das Gitternetz gezeichnet wird, wird es fiir den Betrach-
ter effektiv geléscht. Dieser Yorgang wiederholt sich solange, bis
alle Szenen geplottet worden sind. Dann fingt die Ausgabe-
schleife wieder von vorne an.

3.4.4 3D-Bilder fur die Rot-Griin-Brille

Beim Experimentieren mit Mehrfluchtpunktsystemen und dem
zufilligen Betrachten eines 3D-Bildes kam mir die Idee, eine
Rot-Griin-Brille einzusetzen. Zuerst soll das Prinzip erklirt
werde, nach dem die 3D-Brille funktioniert.

Da der Mensch zwei Augen hat, sieht er auch zwei verschiedene
Bilder. Aus diesen Bildern "errechnet" das Gehirn die unter-
schiedlichen Raumlagen aller Gegenstinde. Wie soll man nun mit
einem Bild die beiden Informationen fiir das Gehirn bereithal-
ten? Da tritt die Brille in Aktion! Die farbigen Folien der 3D-
Brille (meist sind es rote und griine) filtern aus dem Bild die
beiden Einzelbilder heraus.

Durch das rote Glas kann man nur das rote Licht sehen. Versu-
chen Sie es! Und dementsprechend kénnen Sie durch das griine
Glas nur alles Griine sehen. Das Problem, dal an manchen Stel-
len beide Farben vorhanden sein kénnen, hat man durch konse-
quentes Mischen beider Farben gelost. Denn sie werden durch
die Farbfilter wieder getrennt. So kann man zwar nur einfarbige
Bilder darstellen, aber der Effekt ist groBartig.

Wie wurde diese Moglichkeit in ein Programm umgesetzt? Die
dargesteliten 3D-Bilder sind natiirlich wieder Gitternetze, wie
auch in den vorigen Programmen. Das Programmierprinzip be-

148 Amiga Tips & Tricks

ruht nun auf der Tatsache, daB jedes Auge einen eigenen
Fluchtpunkt fiir sein Bild haben muB3. Weil beide Augen etwas
auseinander liegen, miissen folglich auch die Fluchtpunkte etwas
versetzt sein. Im Programm wird jetzt nicht mehr ein Gitternetz
berechnet und gezeichnet, sondern zwei Bilder mit auf der Ho-
rizontalen verschobenen Fluchtpunkten. Wie besprochen wird ein
Bild in Rot und das andere in Griin geplottet. Alle Stellen, an
denen sich beide Farben iiberlagern, werden in Braun, der addi-
tiven Mischfarbe, dargestellit.

Damit die Bedienung auch richtig komfortabel gestaltet ist, habe
ich Schieberegler fiir die Farbeinstellung gewdhlt. So konnen Sie
die Farbintensitit von Rot, Griin und Braun selber einstellen
(fur verwohnte Augen!). AuBerdem koénnen Sie die Lage der
Fluchtpunkte verindern, um einen optimalen 3D-Effekt zu er-
zielen. Wenn Sie alles nach Ihren Wiinschen eingestellt haben,
driicken Sie eine Taste, und das Programm gibt IThnen alle Werte
aus. Somit konnen Sie die Werte fest einbauen oder fiir eigene
3D-Programme nutzen.

Thkkhkhkhkhhkhhkkhkkhkkkkhkhhhhhkhhkhhkhk

" *
'* 3D - Netzgrafik *
I connewvcesancanencccnnssscscan *
" *
'* Autor : Wolf-Gideon Bleek *
'* Datum : 24. Mai 1987 *
e 14. Mai 1988 *
'* GrueBfe : Lars *
'* Version: 2.0 *
'* Betriebssystem: V1.2 & V1.3 *
e *

thkkkhkhhkhkhkhkhhhhkhkkhhhhhhhkhhkhhkhkhk

LIBRARY ":bmaps/graphics.library"
RESTORE WuerfelDaten

DEFINT B,V

OPTION BASE 1

Variablen:

Punkte = 25 ' Anzahl der Objektpunkte
2Ebene =-25 ' Bildschirmebene

PktAnz = 0 ' Anzahl der Objektpunkte
Verbind = 0 ' Anzahl der Verbindungen
ClickAnz=0

clickmoeg=20
DIM SHARED ClickTab(clickmoeg,4)
DIM SHARED Clickwrt(clickmoeg)

—— Das AmigaBASIC

DIM SHARED ClickArt(clickmoeg)
DIM P(Punkte,3) ' Raumkoordinaten
DIM B(2,Punkte,2) Bildkoordinaten

]
DIM V(Punkte*1.8,2) ' Verbindungsvorschrift
DIM D(3) ' Differenz
DIM F(2,3) ' Fluchtpunkt (x,Yy,2)
F(1,1)=-40 ' 1. Fluchtpunkt x
F(1,2)=-50 . 'y
F(1,3)=240 L 3
F(2,1)=-80 ' 2. Fluchtpunkt x
F(2,2)=-50 'y
F(2,3)=240 'z
TextAusgabe:
CLS

LOCATE 1,40

PRINT "Fluchtpunkt 1 (x,y,z) :"

LOCATE 2,40

PRINT "Fluchtpunkt 2 (x,y,z) :"

GOSUB KoordinatenAusg

Farbeinstel lungen:

PALETTE 0,.6,.55,.4 ' Hintergrund = hell-beige

PALETTE 1,.4,.35,0 ' Neutrale Farbe = dunkel Braun
PALETTE 2,.7,0,0 ' Rot 70%

PALETTE 3,0,.65,0 ' Grn 65%

Schieberegler:

Text$="Rot"

DefMove 40!,8!,100!,70!,2!

Text$="Grin"

DefMove 45!,8!,100!,65!,2!

Text$="Braun"

DefMove 50!,8!,100!,40¢,2!

Text$="FPkt1"

DefMove 60!,8!,100!,40!,2!

Text$="FpPkt2"

DefMove 65!,8!,100!,80!,2!

Punktelesen:

Grund=PktAnz ' Basis fur Verbindungen

Loop:

READ px, py,pz

IF px<>255 THEN
PktAnz=PktAnz+1
P(PktAnz, 1)=px
P(PktAnz,2)=py*-1
P(PktAnz,3)=pz
GOTO Loop

END IF

VerbindLesen:
READ v1,v2
IF v1<>255 THEN
Verbind=Verbind+1
V(Verbind, 1)=Grund+v1
V(Verbind, 2)=Grund+v2

150 Amiga Tips & Tricks

GOTO VerbindLesen
END IF
READ Ende
IF Ende<>0 THEN GOTO PunktelLesen
BildBerechnen:

FOR k=1 TO 2 ' 2 Fluchtpunkte
FOR i=1 TO PktAnz ' Alle Punkte
FOR j=1 TO 3 ' Diff von x,y,2
NEXT j

lambda=(2Ebene-P(i,3))/D(3)
B(k,i,1)=P(i,1)+lambda*D(1)
B(k,i,2)=P(i,2)+lambda*D(2)
NEXT i
NEXT k
BildAusgeben:

LINE (0,0)-(300,200),0,bf ' Flache loschen

FOR j=1TO 2
COLOR 1+j
IF j=2 THEN CALL SetDrMd&(WINDOW(8),7)

FOR i=1 TO Verbind

x1=B(j,V(i,1),1)+100

x2=B(j,V(i,2),1)+100

y1=B(j,V(i, 1),2)+70

y2=B(j,V(i,2),2)+70

LINE (x1,y1)-(x2,y2)
NEXT i

NEXT j

CALL SetDrMd&(WINDOW(8),1)

COLOR 1

Interrupt:

ON MOUSE GOSUB CheckTab

ON TIMER (.5) GOSUB ColorSet

TIMER ON

MOUSE ON

Warten:

IF ClickWrt(4)*-1<>F(1,1) THEN
F(1,1)=ClickWrt(4)*-1
NeuZeichnen:

GOSUB KoordinatenAusg
GOTO BildBerechnen

END IF

IF ClickWrt(5)*-1<>F(2,1) THEN
F(2,1)=ClickWrt(5)*-1
GOTO NeuZeichnen

END IF '

IF INKEY$="" THEN GOTO Warten

OBJECT.OFF

TIMER OFF

MOUSE OFF

LOCATE 15,1

PRINT "Rotwert :";ClickWrt(1);"x"

PRINT "Grinwert:";ClickWrt(2);"%"

—— Das AmigaBASIC

PRINT "Braunwert aus :"

PRINT ClickWrt(3);"% Rot und "ClickWrt(3)*.875;"% Grun"

PRINT "Fluchtpunktwerte der X-Koordinaten:"

PRINT "F1 ";ClickWrt(4)*-1;" und F2 ";ClickWrt(5)*-1

END
KoordinatenAusg:
LOCATE 1,63
PRINT F(1,1)","F(1,2)","F(1,3)
LOCATE 2,63
PRINT F(2,1)","F(2,2)","F(2,3)
RETURN
CheckTab:
IF ClickAnz=0 THEN RETURN
FOR i=1 TO ClickAnz
mstat=MOUSE(0)
mx=MOUSE(1)-6
my=MOUSE(2)
IF mx>=ClickTab(i,1) THEN
IF my>=ClickTab(i,2) THEN
IF mx<=ClickTab(i,3) THEN
IF my<=ClickTab(i,4) THEN

ClickWrt(i)=(my-ClickTab(i,2))
OBJECT.Y i,ClickTab(i,2)+ClickWrt(i)+12

END IF
END IF
END IF
END IF

NEXT i
IF MOUSE(0)=-1 THEN CheckTab
RETURN
ColorSet:

Rot=Clickwrt(1)/100
Gruen=ClickWrt(2)/100
Zeichen=Clickwrt(3)/100

PALETTE 2,Rot,0,0

PALETTE 3,0,Gruen,0

PALETTE 1,Zeichen,(Zeichen*.875),0
RETURN
SUB DefMove (sx,sy,yd,po,mo) STATIC

SHARED ClickAnz

Xx=sx*8 'Koordinaten fuer Line *10 bei 60 Zeichen
y=sy*8
LINE (x,y)-(x+20,y+8+yd),,B
'Extras erwuenscht?
IF mo AND 1 THEN ' Skalierung
FOR sk=y TO y+yd+8 STEP (yd+8)/16 '16 Einheiten
LINE (x,sk)-(x+2,sk)
LINE (x+20,sk)-(x+18,sk)
NEXT sk
END IF

151

152 Amiga Tips & Tricks

IF mo AND 2 THEN ' Text

SHARED Text$

sy=sy-LEN(Text$)

FOR txt=1 TO LEN(Text$)

LOCATE sy+txt,sx+2
PRINT MID$(Text$,txt,1)

NEXT txt
END IF
'Clickwerte in Tabelle eintragen
ClickAnz=ClickAnz+1
ClickTab(ClickAnz,1)=x
ClickTab(ClickAnz,2)=y
ClickTab(ClickAnz,3)=x+20
ClickTab(ClickAnz,4)=y+yd
ClickArt(ClickAnz)=1 '1 steht fuer Schieber
ClickWrt(ClickAnz)=po 'vom Benutzer gewaehlter Anfangswert
' Als Schieber sollte ein Sprite in Kreisform definiert werden!
OPEN "Schieber" FOR INPUT AS ClickAnz
OBJECT.SHAPE ClickAnz, INPUT$(LOF(ClickAnz),ClickAnz)
CLOSE ClickAnz
OBJECT.X ClickAnz,x-1
OBJECT.Y ClickAnz,ClickTab(ClickAnz,2)+ClickWrt(ClickAnz)+12
OBJECT.ON ClickAnz
END SUB
WuerfelDaten:
REM Xx,y,z
DATA 32, 20, 20
DATA -32, 20, 20
DATA -32,-20, 20
DATA 32,-20, 20
DATA 32, 20,-20
DATA -32, 20,-20
DATA -32,-20,-20
DATA 32,-20,-20
DATA 255,0,0
REM p1,p2
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA 255,0,1
PyramidenDaten:
DATA -32, 25,-20
DATA 32, 25,-20
DATA 32, 25, 20

. =

.« s & = =

.~ -

-

NWHARONOVT2PBWN =
ONOUVIONOWVN=2SWN

~ =

—— Das AmigaBASIC

DATA -32, 25, 20
DATA 0, 65, 0
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

v
-

o
-

o

« % = = s s

NV WN-=2N

Wi~
VNHEWN=aaplrWNOWT

-
o

-
o

Variablenfelder

B Bildschirmkoordinaten
D Differenzen der Koordinatenumrechnung
F Koordinaten der beiden Fluchtpunkte
ClickArt Kennung, hier Schieberegler
ClickTab Koordinaten der Schieberegler
ClickWrt Wert eines Reglers
P Raumkoordinaten der Punkte
v Verbindungsvorschrift
Variablen
ClickAnz Anzahl der definierten Klickfelder
Ende DATA-Endkennung fiir "keine Daten mehr"
Gruen Farbgriinwert
Grund Basis fiir Verbindungen bei mehreren Objekten
PktAnz Tatsachliche Anzahl der Punkte
Punkte Maximale Anzahl der Punkte
Rot Farbrotwert
Text Textausgabe bei Schiebereglerdefinition
Verbind Anzahl der Verbindungen
ZEbene z-Koordinate der Bildschirmebene
Zeichen Zeichenfarbe fur "Braun”
clickmoeg Maximale Anzahl der Clickfelder
ik Laufvariablen
lambda Faktor fiir die Koordinatenumrechnung
mo Modusangabe fiir Extras beim Schieberegler
mstat Mausstatus
mx, my Mauskoordinaten
po Startposition des Schiebereglers
PX, pY, pZ Punktkoordinaten
sk Laufvariable Skalierung

153

154 Amiga Tips & Tricks

SX, Sy Koordinaten Textausgabe

txt Laufvariable Textausgabe

vl, v2 Verbindungspunkte

Xy Position des Schiebereglers

x1, y1 Koordinaten mit einem Fluchtpunkt
x2, y2 Koordinaten zum anderen Fluchtpunkt
yd Ausdehnung des Schiebereglers

Programmbeschreibung

Zuerst wird die graphics-Library geéffnet, denn in ihr befinden
sich die Einspriinge fiir wichtige Grafikroutinen! Dann wird der
DATA-Zeiger auf die Wiirfeldaten gerichtet, und nachdem die
Felder, die mit B oder V beginnen, als Integer definiert wurden,
wird das Minimum fiir die Feldindizes auf 1 gesetzt. Die be-
nutzten Variablen entsprechen den bisher verwendeten, aller-
dings sind die der Schieberegler hinzugekommen (siehe dort).
Bei den Feldern sind natiirlich die Schiebereglervariablen neu
dabei, aber auch die bekannten Variablen haben sich etwas ge-
dndert.

Das Feld, in dem der Fluchtpunkt abgelegt war, ist jetzt mit ei-
nem zusitzlichen Index versehen. Er entspricht der Nummer des
Fluchtpunktes und macht die spitere Verarbeitung wesentlich
einfacher. Wie Sie sehen, liegen die beiden Punkte 40 Einheiten
auseinander. Dieser Wert hat sich bei den gegebenen Entfernun-
gen zwischen Fluchtpunkt und Projektionsfliche als ideal er-
wiesen. Aber Sie konnen natiirlich noch alles verindern!

Bei der Ausgabe des Fluchtpunktes muflte ein neuer Weg be-
schritten werden. Einmal ist ein weiterer hinzugekommen, der
beriicksichtigt werden will. AuBlerdem miissen spiter noch, falls
eine Veridnderung erfolgt, die neuen Werte ausgegeben werden.
Deshalb wurden diese in ein Unterprogramm gelegt. Neu sind
auch die Farbeinstellungen. Alle vier Farben werden gebraucht.
Der Hintergrund kann bei einer zu krassen Einstellung den 3D-
Effekt behindern, deshalb wurde auch er beriicksichtigt. Die an-
deren drei Farben sind vorher schon erklirt worden.

—— Das AmigaBASIC 155

Als nichstes folgen die Definitionen der Schieberegler. Die
Werte der ersten drei Regler stehen fiir die Farben, die beiden
anderen Schieber ermoglichen in einem kleinen Bereich das
Einstellen der Fluchtpunkte auf ihrer Horizontalen. Danach ar-
beiten die alten Punkt- und Verbindungsleseroutinen wieder
ganz normal. Nur beim Berechnen des Bildes hat sich wieder
etwas verindert. Die Schleife wird von einer weiteren umklam-
mert, die beide Fluchtpunkte durchzihlt. Dieser Zihler ist auch
bei den Bildschirmkoordinaten als Index hinzugekommen.

Yor der Bildschirmausgabe wird erst der Bereich geloscht, in
dem das Objekt erscheinen koénnte. Dann werden fiir beide
Fluchtpunkte die Bilder in den entsprechenden Farben ausgege-
ben. Wenn das Gitternetz des zweiten Punktes gezeichnet wird,
setzt das Programm zusitzlich noch einen neuen Zeichenmodus.
Aus der Tabelle im Kapitel 4 konnen Sie ersehen, dafl damit alle
Modi gleichzeitig aktiviert werden. So wird beim Zeichnen mit
der zweiten Farbe die rote Linie jetzt mit brauner Farbe tiber-
schrieben. Am Ende der Schleife wird der Zeichenmodus wieder
auf den Normalzustand gesetzt und die Zeichenfarbe wird auf 1
eingestellt.

Dann wird ein Mouse- und ein Timer-Interrupt eingeschaltet.
Der erste dient zur Abfrage der Schieberegler, der zweite setzt
die Farben neu, wenn sie verindert wurden. In der Warteschleife
tiberpriift das Programm, ob jemand den Fluchtpunkt eins oder
zwei verdndert hat. Wenn ja, so wird der Wert iibertragen, und
das Bild wird neu berechnet. Ansonsten wird auf einen Tasten-
druck gewartet. Ist dieser erfolgt, schaltet das Programm alle
Objekte, Schieberegler, die Maus- und die Timer-Abfrage aus
und gibt dann alle eingestellten Werte auf dem Bildschirm aus.

3.5 Die Zeichensatze des Amiga

Erwihnt haben wir sie schon, diese Zeichensidtze, und damit
vielleicht einigen Lesern bereits den Mund wissrig gemacht. Ja,
es funktioniert. Auch in AmigaBASIC-Programmen kénnen ver-

156 Amiga Tips & Tricks

schiedene Zeichensitze gleichzeitig miteinander verwendet wer-
den. Normalerweise stehen dazu zwei Quellen zur Verfiigung:

1. Die ROM-Zeichensitze, die von Anfang an im Amiga re-
sidieren.

2. Die Diskettenzeichensitze, die im Verzeichnis "Fonts" (engl.
= Zeichensitze) auf der Workbench-Diskette gelagert sind.

Das folgende Programm "beschert” Ihnen den neuen SUB-Befehl
"Zeichensatz", mit dem Sie sowohl auf die ROM- als auch auf
die RAM-Zeichensiitze zugreifen kénnen. Sein Aufruf sieht so
aus:

Zeichensatz "“Name", hohe%

Um zu erfahren, welche Zeichensidtze unter welchen Namen auf
der Workbench-Diskette gespeichert sind, empfehlt sich ein de-
zentes Nachschauen, zum Beispiel so:

FILES "SYS:fonts"

Neben diesen Zeichensitzen kénnen Sie den ROM-Zeichensatz
"topaz" in den H6hen 8 und 9 benutzen. Wenn Sie mit dem
ROM-Zeichensatz arbeiten wollen, ist es von grof3ter Wichtig-
keit, den Namen topaz in Kleinbuchstaben anzugeben, denn die
Funktion OpenFont() ist beziiglich Grof3-/Kleinschreibung sehr
pingelig und wiirde unter dem Namen "Topaz" oder "TOPAZ"
nicht den ROM-Zeichensatz, sondern allenfalls den 11 Punkt
hohen Disk-Zeichensatz "Topaz" laden. Hier das Listing:

VIR AR R AR R

'#
'# Programm: Zeichensaetze
'# Autor: tob

'# Datum: 12.8.87
'# Version: 1.0

#
2

DECLARE FUNCTION OpenDiskFont& LIBRARY

DECLARE FUNCTION OpenFont& LIBRARY

LIBRARY "diskfont.library"

LIBRARY "graphics.library"

demo: '* demonstriert einige Zeichensaetze

IR

—— Das AmigaBASIC

LOCATE 4,1

Zeichensatz "Sapphire", 19

PRINT "Dies ist Sapphire 19 Punkt!"
Zeichensatz "“Diamond", 20

PRINT ",...ein anderer Zeichensatz..."
Zeichensatz "“Garnet", 16

PRINT "...und wieder einer! Amiga kennt noch mehr!"
Zeichensatz "ruby", 12

PRINT “Aber dies soll erst einmal genuegen!"
Zeichensatz "topaz", 8

LIBRARY CLOSE

END

SUB Zeichensatz

f.old&
f.prefX

welcher0$
tAttr&(0)
tAttr&(1)

f.neu&

f.check%
IF f.neu&
f.neuk

(welcher$, hoeheX) STATIC
PEEKL(WINDOW(8)) + 52

0

welcher$ + "_font" + CHR$(0)
SADD(welcher0$)

hoehe%*2°16 + f.pref%
OpenFont&(VARPTR (tAttr&(0)))
PEEKW (WINDOW(8) + 60)

0 THEN

OpenD iskFont&(VARPTR (tAttr&(0)))

ELSEIF f.check% <> hoehe¥% THEN
CALL CloseFont(f.neuk)
f.neudk =

END IF

OpenDiskFont&(VARPTR (tAttr&(0)))

IF f.neu& <> 0 THEN
CALL CloseFont(f.old&)
CALL SetFont(WINDOW(8), f.neu&)
ELSEIF UCASE$(welcher$) = "UNDO" THEN
CALL CloseFont(f.old&)
CALL SetFont(original&)

ELSE
BEEP
END IF
END SUB
Variablen
welcher$ Name des Zeichensatzes
welcher0$ wie welcher$, jedoch mit CHR$(0) abgeschlossen
hoehe% Hohe des Zeichensatzes in Punkten
fold& Adresse des bisher aktiven Zeichensatzes
f.pref% Preference-Bits; hier=0
tAttr&() TextAttr-Struktur; Variablenfeld wird als Speicher verwendet
f.neu& Adresse des neu gedffneten Zeichensatzes
f.check% tatsachliche Hohe des neuen Zeichensatzes

157

158 Amiga Tips & Tricks

Programmbeschreibung

Um einen Zeichensatz 6ffnen zu kénnen, muf3 zunichst eine
TextAttr-Struktur ausgefiillt werden. Diese ist in dem Vari-
ablenfeld tAttr& gespeichert. Mit der Adresse auf den Anfang
dieses Feldes (VARPTR) wird die Grafik-Routine OpenFont()
aufgerufen. Diese versucht, einen Zeichensatz zu finden, der
den Angaben in der TextAttr-Struktur am néichsten kommt.
Normalerweise gibt es im ROM lediglich den Zeichensatz "topaz"
in den Hohen 8 und 9, aber wenn andere Zeichensidtze noch
nicht geschlossen worden sind, konnen auch diese mittels Open-
Font() aktiviert werden.

Da OpenFont() flexibel genug ist, einen den Angaben dhnlichen
Zeichensatz zu laden, wenn der gewiinschte nicht zu finden ist,
kann nicht immer davon ausgegangen werden, dafl der von
OpenFont() gefundene Zeichensatz auch wirklich der richtige ist.
Deshalb wird in check% die Hohe des gefundenen Zeichensatzes
mit der geforderten Hohe in hoehe% verglichen. Sind die Werte
ungleich, wird der félschlicherweise geoffnete Zeichensatz ge-
schlossen, und OpenDiskFont() startet eine zweite Suchaktion,
diesmal auf der Diskette.

Ist auf dem einen oder anderen Wege ein Zeichensatz gefunden
worden (f.old& <> 0), wird mittels CloseFont() der bisher aktive
Zeichensatz geschlossen und der neu geoffnete via SetFont() ak-
tiviert. Andernfalls ertont ein kurzer Warnton, und der alte
Zeichensatz bleibt aktiviert.

Weitergehende Informationen zum Thema "Zeichensitze", insbe-
sondere die Programmierung ginzlich eigener Zeichen, wiirde
den Rahmen dieses auf kurze Tips und Tricks ausgelegten Bu-
ches sprengen. Weitere Informationen konnen Sie aber ein-
schldgiger Spezialliteratur entnehmen. Zum Beispiel geht das im
DATA BECKER Verlag erschienene Buch "Amiga Supergrafik"
gerade auf diese Problematik ein und bietet sowohl BASIC- als
auch "C"-Programme hierzu.

—— Das AmigaBASIC 159

3.6 SuperPrint - schneller und komfortabler

Der wohl schwichste Befehl des AmigaBASIC heifit "PRINT".
Seine Ausfithrung ist unendlich langsam, Text kann bei langen
Siatzen das Fenster verlassen, und es gibt keine Editorbefehle.
Gehen wir die Mingelliste der Reihe nach durch. Die Ausfiih-
rung eines durchschnittlichen PRINT-Befehls geht so langsam,
daB der Anwender ihm dabei zusehen kann. Wird eine ganze
Bildschirmseite voller Text ausgegeben, kann das bereits einige
Sekunden dauern.

PRINT bemerkt nicht, wenn das Ende einer Bildschirmzeile er-
reicht ist. Lange Textstrings werden in diesen Fillen nicht in der
folgenden Bildschirmzeile fortgesetzt, sondern verlassen einfach
das Fenster; dem Anwender fehlt ein Stiick Information. Gerade
bei Fenstern mit variabler GroBe ist dies édrgerlich, weil das
Fenster wihrend des Programmablaufs verkleinert werden kann.
Selbst in der Linge abgestimmte Textausgaben funktionieren
dann nicht mehr.

SchlieBlich ist PRINT nur in der Lage, Text auszugeben. PRINT
kann keine Editorbefehle ausfithren, wie zum Beispiel "Bild-
schirm 16schen", "Cursor hoch", "Insert Zeile" etc. Da PRINT ei-
ner der meistgenutzten Befehle des AmigaBASIC ist, wollen wir
IThnen nun eine Loésung all dieser Probleme prisentieren. Die
Losung ist iiberraschend simpel: Wir aktivieren das systeminterne
"Console Device". Diese Systemkomponente dient der Ein- und
Ausgabe von Text. Einmal aktiviert, iibernimmt das Console De-
vice selbstindig all die Aufgaben, die BASICs PRINT nicht
schafft: Text wird blitzschnell ausgegeben, an die jeweilige
Breite des Fensters angepafBt, und als Clou kénnen sogar eine
Vielzahl von Editor-Kommandos in den Text integriert werden!

Leider ist es nicht ganz so leicht, das Console Device fiir eigene
Zwecke einzusetzen, denn dazu muBl es wie ein I/O-Gerit be-
handelt werden. Eine Vielzahl von Exec-Funktionen sind dazu
notig. Wenn diese Arbeit aber erst einmal erledigt ist, steht Ih-
nen ein PRINT-Befehl einer hoheren Dimension zur Verfiigung.

160 Amiga Tips & Tricks

Mit seiner Hilfe werden Ihre Programme nicht nur schneller,
viele Anwendungen werden sich mit den neuen Editor-Sequen-
zen wesentlich leichter programmieren lassen. Das folgende Pro-
gramm besteht im Wesentlichen aus den SUBs "CreatePort",
"RemovePort", "CreateStdIO", "RemoveStdIO", "OpenConsole",
"CloseConsole", "SystemEin", "SystemAus" sowie "ConPrint".
Gliucklicherweise brauchen Sie sich nur mit "ConPrint" auseinan-
derzusetzen. Hier zunichst das Programm:

'#

'# Programm: Console Device
'# Autor: tob

'# Datum: 4. 8. 87

'# Version: 1.0

#
#
#
#
#
'# #

DECLARE FUNCTION OpenDevice% LIBRARY
DECLARE FUNCTION AllocMem& LIBRARY
DECLARE FUNCTION AllocSignal% LIBRARY
DECLARE FUNCTION FindTask& LIBRARY
DECLARE FUNCTION DoIO& LIBRARY
LIBRARY "exec.library"
init: '* Kontroll-Sequenzen definieren
C1$ = CHR$(155) 'Control Sequence Introducer

C2$ = CHR$(8) 'Backspace
C3$ = CHR$(10) 'Line Feed
C4$ = CHR$(11) 'VTab

C5% = CHR$(12) 'Form Feed
C6$ = CHR$(13) 'CR

C7% = CHR$(14) 'SHIFT IN
C8% = CHR$(15) 'SHIFT OUT
C9$ = CHR$(155) + “1E™ 'RETURN

demo: '* Demonstration
ConPrint C1$+"20CGuten Morgen!"+C9$
ConPrint “Es war einmal ein ganz normaler Tag,"“;
ConPrint " an dem wir uns auf den Weg zur Scheune begaben",
ConPrint " und daraufhin einen grossen Baer sahen!"
SystemAus
SUB ConPrint (text$) STATIC
SHARED c.io&
IF c.io& = 0 THEN : SystemEin
POKEL c.io& + 36, LEN(text$)
POKEL c.io& + 40, SADD(text$)
e& = Dol0&(c.iok)
END SUB
SUB SystemAus STATIC
SHARED c.io&
CloseConsole c.io&

—— Das AmigaBASIC 161

END SUB

SUB SystemEin STATIC
SHARED c.io&, c.c$
OpenConsole c.io&
POKEW c.io& + 28, 3

END SUB

SUB OpenConsole (result&) STATIC
CreatePort "basic.con", 0, c.port&
IF c.port& = 0 THEN ERROR 255
CreateStdIO c.port&, c.io&
POKEL c.io& + 36, 124
POKEL c.io& + 40, WINDOW(7)
dev$ = "console.device" + CHR$(0)
c.error¥% = OpenDevice%(SADD(dev$), 0, c.io&, 0)
IF c.error% <> 0 THEN ERROR 255
result& = c.io&

END SUB

SUB CloseConsole (io&) STATIC
port& = PEEKL (io& + 14)
CALL CloseDevice(io&)
RemovePort port&
RemoveStdIO io&

END SUB
SUB CreateStdIO (port&, result&) STATIC
opt& = 2716

result& = AllocMem&(48, opt&)
IF result& = 0 THEN ERROR 7
POKE result& + 8, 5
POKEL result& + 14, port&
POKEW result& + 18, 50

END SuUB

SUB RemoveStdIO (io&) STATIC
IF io& <> 0 THEN

CALL FreeMem(io&, 48)

ELSE
ERROR 255
END IF
END SuB
SUB CreatePort (port$, pri%, result&) STATIC
opt& = 2716
byte& = 38 + LEN(port$)
port& = AllocMem&(byte&, opt&)

IF port& = 0 THEN ERROR 7
POKEW port&, byte&
port& = port& + 2
sigBit¥% = AllocSignal%(-1)
IF sigBit% = -1 THEN
CALL FreeMem(port&, byte&)
ERROR 7
END IF
sigTask& = FindTask&(0)
POKE port& + 8 , 4
POKE port& + 9 , pri%

162 Amiga Tips & Tricks

POKEL port& + 10, port& + 34
POKE port& + 15, sigBit%
POKEL port& + 16, sigTask&
POKEL port& + 20, port& + 24
POKEL port& + 28, port& + 20
FOR loop% = 1 TO LEN(port$)
char% = ASC(MID$(port$, loop%, 1))
POKE port& + 33 + loop%, char%
NEXT loop%
CALL AddPort(port&)
result& = port&
END SUB
SUB RemovePort (port&) STATIC
byte& = PEEKW(port& - 2)
sigBit¥ = PEEK (port& + 15)
CALL RemPort(port&)
CALL FreeSignal(sigBit%)
CALL FreeMem(port&-2, byte&)
END SuB

Wie Sie sehen, funktioniert das neue ConPrint fast genauso wie
das herkémmliche PRINT:

ConPrint "auszugebender Text"

jedoch mit einem wesentlichen Geschwindigkeitsunterschied. Das
ist aber noch nicht alles: Lange Sitze werden bereits auf die
Breite des Fensters zugeschnitten. Sind Sie lidnger als das Fenster
breit ist, werden sie in der nichsten Zeile fortgesetzt. Auflerdem
werden Thnen sicherlich die Editorsequenzen C1$ bis C9$ auf-
gefallen sein:

Cc1$ CSl (Control Sequence Introducer)

Cc2% Backspace, ein Zeichen nach links

C3% Line Feed, eine Zeile nach unten

C4% VTab, eine Zeile nach oben

C5% Form Feed, Bildschirm Ioschen

c6% CR, zuriick an den Anfang der augenblicklichen Zeile
Cc7s$ SHIFT IN, GroBschrift

(of:13 SHIFT OUT, Normalschrift

C98 RETURN, schiieBt eine Zeile ab

Dies sind die einfachen Editor-Sequenzen. Sie fiigen sie in den
laufenden Text durch "+"-Zeichen ein. Zum Beispiel so:

ConPrint "Guten Tag, liebe Welt!"+C9$

—— Das AmigaBASIC

163

Das Console Device kann aber noch wesentlich mehr. Die fol-
genden Editor-Sequenzen beginnen immer mit dem Control Se-
quence Introducer (CSI), den Sie in C1$ finden. Hier diese Edi-

tor-Sequenzen:

Ci$ + Bedeutung
"[nj@" Fiige [n] Zeichen in diese Zeile ein
“[n]A" Cursor [n] Zeilen hoch
“[n]B* Cursor [n] Zeilen runter
“[n]C" Cursor [n] Zeichen nach rechts
*[n]D" Cursor [n] Zeichen nach links
“[n]E" Cursor [n] Zeilen runter + an den Anfang
"[n]F” Cursor [n] Zeilen hoch + an den Anfang
"[n};[n]H" Cursor nach Zeile [n], Spalte [n]
"J" ab Cursor Bildschirm l6schen
"K" ab Cursor Zeile I6schen
"L Fiige Zeile ein
"M* Losche Zeile
“[n]P" Lésche Zeichen ab Cursor zur Rechten
"[n]S" Scroll [n] Zeilen hoch
“[n]T" Scroll [n] Zeilen runter
"20h" Set Mode
200" Reset Mode
"[n};[n];[n]Jm" Grafik-Modus
Stil:
0 = normal
1 = fett
3 = kursiv
4 = unterstrichen
7 = invers
Vordergrundfarbe:
30-37
Hintergrundfarbe:
40 - 47
“[n]t" Hohe des Fensters in Rasterzeilen
“[nJu" Lange einer Zeile in Pixel
"[n]x" [n] Zeichen einriicken
"[nly" [n] Zeilen am oberen Rand freihalten

164 Amiga Tips & Tricks

3.6.1 Das Console Device unter GFA

Eine erfreuliche Nachricht fiir die Freunde des GFA-BASIC:
Das soeben mehr oder weniger komplex implementierte Console-
Device fiir das AmigaBASIC existiert bei GFA bereits, denn der
normale GFA-Befehl PRINT entspricht zu 100% dem neuen
AmigaBASIC-Befehl SuperPrint. Simtliche Steuercodes lassen
sich also unter GFA in Zusammenhang mit ganz normalen
PRINT-Anweisungen umsetzen. Die Steuercodes finden sich auf
den vorangegangenen Seiten. Hier ein kleines Beispiel:

PRINT CHR$(155)+"3;4;31;42mkursiv, unterstrichen, farbig!"

Unter optimaler Ausnutzung aller vorhandenen Steuercodes las-
sen sich so komplexere Anwendungen wie Textverarbeitungen
oder individuelle Eingaberoutinen programmtechnisch leicht
umsetzen. Zu beachten ist, daB die genannten Steuercodes
selbstverstindlich nur auf dem Bildschirm als Ausgabegerit die
gewiinschte Wirkung zeigen und auf dem Drucker keine Wir-
kung haben.

——— Gestaltung eigener Anwenderprogramme ——— 165

4. Professionelle Gestaltung eigener
Anwenderprogramme

In diesem Kapitel werden wir Thnen zeigen, wie Sie als Pro-

grammierer alle Moglichkeiten ausnutzen kdnnen, um Ihre Pro-
gramme wesentlich anwenderfreundlicher zu gestalten. Die Ge-

staltung eines Anwenderprogramms ist fiir die spitere Bedienung

und besonders fiir den Bediener sehr wichtig. Gerade bei solch

einem Computer wie dem Amiga ist es wichtig, daf3 alle Einga-

ben, Auswahlen und Einstellungen besonders bedienungsfreund-

lich gestaltet sind.

Oft wird dies iiber Piktogramme oder andere Bedienelemente
erledigt. Auf jeden Fall sollte die Bedienung gréBtenteils mit der
Maus mdéglich sein, schlieBlich ist sie nicht nur dazu da, das
Programm zu starten und dann in der Ecke zu liegen. Deshalb
sehen Sie jetzt, wie man diese Funktionen einfach programmiert
und auch in jedes eigene Programm einbauen kann.

4.1 Alternativen zu PullDown-Menls

Weil mit den Meniis nicht alles zu machen ist, wird jetzt nach
Alternativen gesucht. BloB: Was sind unsere Alternativen?
"Warum in die Ferne schweifen, siehe, das Gute liegt doch so
nahe." Legen Sie Ihre Workbench-Diskette in Ihr Laufwerk, und
offnen Sie das Hauptinhaltsverzeichnis. Hier findet man im
Normalfall das Programm "Preferences", mit dem alle wichtigen
Voreinstellungen gemacht werden konnen. Wenn Sie das Pro-
gramm aktivieren, werden Sie alle Elemente einer benutzer-
freundlichen Bedienung vor sich sehen.

Da sind einmal die Schieberegler, mit denen die Farben und die
Zeit eines Doppelklicks eingestellt werden kénnen. AuBlerdem
findet man Wahltabellen wie z.B. fiir die Einstellung der Zei-
chen pro Zeile. Auch im Teil "Change Printer" werden Tabellen

166 Amiga Tips & Tricks

en masse benutzt. Weiterhin findet man iiberall Kisten, die beim
Anklicken sofort eine Aktion auslosen, z.B. "Save", "Use" und
"Cancel" auf dem Hauptbildschirm.

Alle diese eben genannten Bedienelemente wollen wir im fol-
genden programmieren. Dazu bendtigen wir eine Ausgabegrund-
lage auf dem Amiga. Dies ist im Normalfall ein Window, das
sich iiber BASIC sehr leicht 6ffnen 148t. Jedoch gehen wir einen
etwas anderen Weg, bei dem uns mehr Moglichkeiten offen-
stehen und iiber den wir keine Eingriffe in das AmigaBASIC
selbst machen miissen.

Hier ist deshalb das erste Programm, das nichts weiter tut, als
ein Window auf der Workbench-Screen zu 6ffnen. Dafiir benutzt
es die Intuition.Library, die wir auch weiterhin fiir alle anderen
Modifikationen nutzen werden:

1 e e de 9 v e o v e e e e e e v e o e e e e o e ke ok e de ke e de e o
ok *

'* Window Uber Intuition 6ffnen *

*
[
'
'
v
'
'
'
'
'
'
[
'
[
'
l|
'
[
[
[l
‘
[
'
[
:
.
*

%

'* Autor : Wolf-Gideon Bleek
'* Datum : 22. Mai '88

'* Gruefe : Denis "Angle"

'* Version: 1.1

'* Betriebssystem: V1.2 & V1.3 |

"
Ihkkkhhkhhkhhhhhkhhhkkhrhhihikkikhikhr

OPTION BASE 1
DEFLNG a-z

* % ¥ ¥ * ¥ %

LIBRARY “:bmaps/exec.library"
DECLARE FUNCTION AllocMem LIBRARY
LIBRARY ":bmaps/intuition.library"
DECLARE FUNCTION OpenWindow LIBRARY

MList = 0&
HauptProgramm:
GOSUB OpenAll

' Hauptteil
FOR i = 1 TO 10000 : NEXT i

GOSUB CloseAll

END

—— Gestaltung eigener Anwenderprogramme

OpenAll:
Titel$ = "Mein erstes BASIC-Window"

167

WinDef NWindow, 100, 100, 460, 150, 32+64+512&, 158+4096&, 08, Titels

WinBase = OpenWindow(NWindow)
IF WinBase = 0 THEN ERROR 7
RETURN - -

CloseAll:
CloseWindow(WinBase)
CALL UnDef

SUB DefChip(Buffer, Size) STATIC
SHARED MList
Size=Size+8
Buffer=AllocMem(Size,65538&)
IF Buffer>0 THEN
POKEL Buffer MList
POKEL Buffer+4,Size
MList=Buffer
Buffer=Buffer+8
ELSE
ERROR 7
END IF
END SUB

SUB UnDef STATIC
SHARED MList
undef. loop:
IF MList>0 THEN
Adresse = PEEKL(MList)
Groesse = PEEKL(MList+4)
FreeMem MList, Groesse

MList = Adresse
GOTO undef.loop
END IF
END SUB

SUB WinDef(bs, x%, Y%, b%, h%, IDCMP, f, gad, T$) STATIC
Size = 48+LEN(T$)+1
DefChip bs,Size

POKEW bs ,x% ' LeftEdge

POKEW bs+ 2,y% ' TopEdge

POKEW bs+ 4,b% ' Width

POKEW bs+ 6,h% ' Height

POKEW bs+ 8,65535& ' Detail- BlockPen
POKEL bs+10, IDCMP ' IDCMPFlags

POKEL bs+14,f ' Flags

POKEL bs+18,gad ' FirstGadget
POKEL bs+26,bs+48 ' Title

168 Amiga Tips & Tricks

POKEW bs+46,1 ' ScreenType
FOR i%=1 TO LEN(TS)
POKE bs+47+i%,ASC(MID$(TS,i%,1))
NEXT
END SUB

Programmbeschreibung

Die wichtigsten Elemente des Programms finden wir am Ende.
Hier sind drei SUB-Routinen, die alle #uBerst wichtige Aufga-
ben erfiillen. Mit DefChip() fordert man einen Speicherbereich
in der gewiinschten GroBe an. Die wird dann iiber AllocMem(),
die Betriebssystemfunktion der Exec.Library, besorgt. Gleichzei-
tig verwaltet die Routine in den ersten 8 Bytes zwei Werte, mit
deren Hilfe eine Speicherliste aufgebaut wird. Dadurch hat
UnDef() leichtere Arbeit beim Freigeben des Speichers. Dazu
geht es mit Hilfe des Zeigers MList alle Bereiche durch und gibt
sie nacheinander frei.

Die beiden Unterroutinen sind aber nur Hilfswerkzeug. Die ei-
gentlich wichtige finden wir erst danach. WinDef() erstellt unter
Hinzunahme alle geforderten Daten eine sog. NewWindow-
Struktur. Diese wird von Intuition benétigt, um ein neues Win-
dow zu o6ffnen. WinDef() legt die bekannten Daten aber nur in
einen neuen Speicherbereich. Alles weitere erledigt eine Teil-
routine des Hauptprogramms.

Nachdem wir jetzt die Aufgaben der Unterroutinen kennen,
wollen wir uns das Hauptprogramm ansehen. Hier werden zuerst
die beiden Libraries Intuition und Exec gedéffnet. Aus beiden
bendtigen wir einige Funktionen. Im Hauptteil wird dann das
Unterprogramm OpenAll angesprungen. Hier wird die Definition
einer NewWindow-Struktur iiber WinDef() aufgerufen und dann
wird diese gerade erstellte Struktur mittels OpenWindow() an
Intuition weitergeleitet. Wenn ein neues Window ge6ffnet wer-
den konnte, erhdlt man von dieser Funktion einen Zeiger auf
die Window-Struktur zuriick. Diese neue Struktur enthilt alle le-
bensnotwendigen Daten fiir ein Window.

Nach der Riickkehr in die Hauptschleife wird erst einmal in der
leeren FOR-TO-NEXT-Schleife einige Zeit gewartet, damit Sie

—— Gestaltung eigener Anwenderprogramme — 169

beim Testen auch das Window einen Augenblick betrachten
kénnen. Dann springt der Interpreter in ein weiteres Unterpro-
gramm. Es trigt den bezeichnenden Titel CloseAll und schlief3t
alles bisher Geoffnete. Es erledigt sozusagen die Aufriumarbei-
ten. Bei genauerer Betrachtung finden wir dort wirklich nur den
Aufruf zum SchlieBen des Windows und zur Freigabe des be-
legten Speichers.

Damit haben wir die Grundlage fiir unser professionell zu ge-
staltendes Programm. In dieses Window kénnen wir jetzt nach
und nach die bedienfreundlichen Elemente, wie in einem Bau-
kastensystem einsetzen.

4.1.1 Die erste Select-Box

Das erste bedienfreundliche Element, das wir bei Preferences
feststellen, sind die Klick-Felder. Mit einem Druck auf die
linke Maustaste kann man bestitigen, dafl die Einstellungen so
richtig sind (OK, Use), oder man hat es sich doch anders iiber-
legt und mochte alles wieder riickgidngig machen. Dazu betitigt
man einfach "Cancel". '

Alles dies sind grafisch klar erkennbare Felder mit einer ein-
deutig definierten Position - somit haben sie einen hohen Wie-
dererkennungswert - die durch einen Klick sofort eine Aktion
auslésen. Dies kénnen wir auch in BASIC programmieren. Dazu
nutzen wir die Anwendung von Gadgets iiber Intuition, die wir
ganz leicht in unser Window einbinden konnen. Mit der folgen-
den SUB-Routine ist sofort ein neues Klickfeld definiert:

SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, a%, 1%, i, txt, si, n%) STATIC

DefChip bs,44& ' Gadget-Struktur Lange
POKEL bs ,nx '*NextGadget

POKEW bs+ 4,x% ' LeftEdge

POKEW bs+ 6,y% TopEdge

POKEW bs+ 8,b% Width

POKEW bs+10,h% Height

'
]
'
POKEW bs+12, f% ' Flags
'
L)
L}

POKEW bs+14,a% Activation
POKEW bs+16,T% GadgetType
POKEL bs+18,i GadgetRender

170 Amiga Tips & Tricks

POKEL bs+26, txt I*GadgetText

POKEL bs+34,si ' Speciallnfo

POKEW bs+38,n% ' GadgetID
END SUB

Die Routine trigt wieder eine Reihe von Werten in einen
Speicherbereich ein. Diesen Vorgang wollen wir uns genauer
ansehen. In bs finden wir die Basisadresse unseres Speicherbe-
reichs, es handelt sich hier um den Riickgabewert der Spei-
cherallozierungsroutine. Nx bezeichnet die Startadresse des
nichsten Klickbereiches und dient der Verkettung mehrerer. Wir
brauchen diesen Wert spiter fiir mehrere Klickbereiche. Mit x%,
v%, b% und h% definieren wir die AusmafBe des Gadgets. Posi-
tion und Ausdehnung in Breite und H6he kénnen bestimmt wer-
den.

Mit f% und a% werden zwei Flags definiert, auf die wir spiter
noch zuriickkommen werden. T% kennzeichnet den Typ, der bei
unserem ersten Beispiel auf 1 gesetzt wird. Im weiteren Verlauf
werden wir einen anderen Typ kennenlernen. Mit i und txt wer-
den zusidtzliche grafische Informationen untergebracht. So kann
man unter i ein Bild oder einen Rand definieren, der zusitzlich
gezeichnet wird, und unter txt einen beschreibenden Text. Si
wird bei anderen Gadget-Typen benutzt, die mit den Informa-
tionen dieser Struktur nicht auskommen. Als letztes legen wir
einen Identifikationswert in n%. Es handelt sich hierbei um eine
Nummer, mit deren Hilfe wir spiter bei mehreren Gadgets eine
Unterscheidung treffen konnen.

Nach dieser ausfiithrlichen Beschreibung alle Werte kommen wir
zu unserem ersten Beispiel. Setzen Sie dazu diese Sub-Routine in
das Beispielprogramm vom Anfang ein, und erginzen Sie in dem
OpenAll-Unterprogramm folgende Zeile:

GadgetDef Gadget, 0&, 50, 50, 20, 10, 0, 1, 1, 0&, 0&, 0%, 1

Damit beauftragen wir GadgetDef mit der Definition eines
neuen Gadgets. Dieses hat die folgenden Eigenschaften:

- Die Adresse der Gadget-Struktur werden wir nach Abschlufl
der Routine in Gadget finden.

—— Gestaltung eigener Anwenderprogramme —— 171

- Es werden keine weiteren Gadgets eingebunden.
- Die Position liegt bei 50,50.
- Das Gadget ist 20 Pixel breit und 10 Pixel hoch.

- Es handelt sich um ein Gadget, das beim Anklicken erst rea-
giert, wenn auch im Klickbereich losgelassen wird.

- Das Gadget ist vom Typ Boolean und kann nur aktiviert wer-
den.

- Es gibt keine Grafik und keinen Text.
- Es wird keine Zusatz-Struktur benotigt.
- Das Probe-Gadget hat die Nummer 1.

Diese gerade definierte Gadget-Struktur binden wir in das neue
Window ein:

WinDef NWindow, 100, 100, 460, 150, 32+64+512&, 158+4096&, Gadget,Titel$

So! Nun konnten Sie zwar das Programm starten, doch gebrau-
chen konnen wir es noch nicht. Das Programm ist nidmlich noch
nicht in der Lage, die Aktivierung des Gadgets abzufragen.
Wenn Sie jetzt RUN eingeben, wird zwar das Fenster erscheinen
und nach einigem Herumklicken findet man auch den Bereich,
in dem das Gadget definiert ist, doch bisher kénnen wir keine
Reaktion erwarten. Dazu miissen wir erst noch eine weitere
Unterroutine schreiben, die vom Hauptprogramm angesprungen
wird, wenn eine Nachricht vorliegt.

Hier ist deshalb zuerst die neue Hauptprogrammabfrage, die
darauf wartet, dal am Nachrichtenkanal des neuen Windows
eine neue Nachricht anliegt. Dann verzweigt sie in ein ebenfalls
neues Unterprogramm zur Auswertung:

Lauf =1
HauptProgramm:
GOSUB OpenAll
' Hauptteil
MainLoop:
IF Lauf = 1 THEN
IntuiMsg = GetMsg(UserPort)
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg

172 Amiga Tips & Tricks

GOTO MainLoop
END IF

GOSUB CloseAll

END

Mit der Funktion GetMsg() aus der Exec.Library ist es moglich,
den MessagePort eines Windows auf eine Nachricht hin zu te-
sten. Dieser MessagePort liegt in der Window-Struktur, die wir
von OpenWindow() zuriickgegeben bekommen haben. Dort muf
die neue Variable initialisiert werden:

UserPort = PEEKL(WinBase+86)

Nun konnen wir uns endlich die Unterroutine ansehen, die die
Auswertung einer ankommenden Nachricht ibernimmt. Sie un-
terscheidet zuerst den Typ der Nachricht, da wir hier verschie-
dene Auswertungsverfahren anwenden miissen. Die erste Nach-
richt, die wir dann wirklich auswerten koénnen, ist die
CLOSEWINDOW-Message. Bei der Betitigung eines Gadgets
kénnen wir jetzt nur die Nummer ausgeben, die wir ja in die
Struktur geschrieben haben.

IntuitionMsg:
MsgTyp = PEEKL(IntuiMsg+20)
Item = PEEKL(IntuiMsg+28)

GadgetNr¥ = PEEK(Item+39)
CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN
'sofortige Aktivierung
PRINT "DOWN Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN
‘relverify Modus
PRINT "UP Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = CLOSEW) THEN
'System-Gadget Window schliefen
PRINT "“CLOSEWINDOW"

Lauf = 0

END IF

RETURN

—— Gestaltung eigener Anwenderprogramme — 173

Wenn Sie aus den bisherigen Programmteilen das Programm zu-
sammensetzen, miiBte nach dem Start wieder das Window er-
scheinen. Nun kommt unser erster Test. Klicken Sie dazu zuerst
im linken oberen Viertel des Windows. Irgendwo wird das neue
Gadget erkennbar sein. Nach jedem Loslassen erscheint in dem
Ausgabe-Window des AmigaBASIC die Gadget-Nummer. Hof-
fentlich!

Beim zweiten Test klicken Sie bitte das Close-Gadget des Win-
dows an. Zuerst erscheint der Text im Ausgabe-Window, dann
wird das Window geschlossen. Damit haben wir die Vorarbeit
geleistet!

4.1.2 Grafik bringt die Erkenntnis

Eine sehr wichtige Eigenschaft fehlt unserem Gadget bisher
noch: Kein Mensch kann es erkennen! Diesen kleinen Mif3stand
wollen wir deshalb sofort beheben. Bei der Besprechung der
SUB-Routine GadgetDef haben wir schon die Variablen txt und
i kennengelernt. Dabei handelt es sich um die elementaren
Grafikelemente Intuitions. Mit txt konnen wir eine IntuiText-
Struktur in das Gadget einbinden und mit i eine Grafik oder
Linien. Alle drei Méglichkeiten haben ihre Bedeutung und sollen
deshalb genutzt werden.

Sehen wir uns dazu zuerst den Text an, mit dem die meisten
Aufgaben am einfachsten geldst werden kénnen. Dazu benétigen
wir eine eigens von Intuition benutzte IntuiText-Struktur. Sie
enthilt Einstellungen zu Position, Farbe, Zeichensatz und -art.
Und natiirlich auch den Text. Hier ist das SUB-Programm, das
einen Speicherbereich mit den geforderten Daten initialisiert:

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC
Size=20+LEN(T$)+1 ' Strukturldnge + Textlange + Nullbyte
DefChip bs,Size
POKE bs ,c1% ' FrontPen
POKE bs+ 2,1 ' DrawMode
POKEW bs+ 4,x% ' LeftEdge
POKEW bs+ 6,y% ' TopEdge
POKEL bs+12,bs+20 ' IText

174 - Amiga Tips & Tricks

POKEL bs+16,nx ' NextText
FOR i%=1 TO LEN(TS)
POKE bs+19+i%,ASC(MID$(TS,i%,1))
NEXT
END SUB

Um die Angelegenheit nicht zu kompliziert zu machen, wurden
die Parameter wieder auf das Notige gekiirzt. Nach der obliga-
torischen Startadresse der Struktur stellen wir die Zeichenfarbe
des Textes und die Position in Pixel ein. Des weiteren iibergeben
wir natiirlich den Text selbst. Da auch hier wieder das Linken
mehrerer Texte zugelassen ist, kann man als letzten Wert einen
Zeiger auf eine weitere IntuiText-Struktur iibergeben.

Die Routine setzt selbstindig den Zeichenmodus auf JAM2. Da-
mit ist garantiert, dafl auch der Hintergrund iiberschrieben wird.
Sie kénnen also sicher sein, da3 man den Text spiter lesen kann.
Mochten Sie trotzdem auch die zweite Farbe beeinflussen kon-
nen, ergdnzen Sie ganz einfach einen Wert in der Parameterliste
und POKEn sie den neuen Farbwert in bs+1! Um jetzt z.B. das
Gadget mit einem Text zu versehen, kann man zuerst einen Text
iiber das neue Unterprogramm erstellen und diesen dann in die
Gadget-Definition einbinden:

TestTxt$ = "Test-Text"
IntuiText Text, 2, 10, 2, TestTxt$, 0&
GadgetDef Gadget, 0&, 50, 50, 90, 15, 1, 1, 1, 0&, Text, 0&, 1

Als nichstes wollen wir uns mit den Linien beschiftigen. Sie
dienen hauptsidchlich der Abgrenzung von Klickflichen und zur
Unterteilung. Da auch die Rinder mit in die Gadget-Struktur
eingebunden werden, brauchen wir dazu eine eigene Struktur. Es
handelt sich hierbei um die Border-Struktur, die neben der
Farbe und der Position auch eine Koordinatentabelle benétigt.
Diese Koordinaten selbst werden im Speicher nach der Struktur
abgelegt.

Fiir diese Border-Struktur haben wir ein etwas anderes SUB-
Programm entwickelt. Es setzt nicht nur die Werte in den
Speicherbereich ein, sondern es berechnet auch anhand der

—— Gestaltung eigener Anwenderprogramme — 175

Werte die Koordinaten fiir die Tabelle. Somit wird es ganz ein-
fach, einen Kasten um ein Gadget zu definieren. Sehen Sie dazu
hier die Funktion:

SUB Border(bs, x%, y%, c%, b%, h%) STATIC
DefChip bs,48& Strukturlange + Koordinatentabelle

1
POKEW bs ,x% ' LeftEdge
POKEW bs+2,y% ' TopEdge
POKE bs+4,c% ' FrontPen
POKE bs+7,8 ' Count
POKEL bs+8,bs+16 VXY
FOR i%=0 TO 1

POKEW bs+22+i%*4 h%-
POKEW bs+24+i%*4 ,bX-
POKEW bs+32+i%*4,1
POKEW bs+38+i%*4,h%-1
POKEW bs+40+i%*4,b%-2
NEXT
END suB

1
1

Wenn wir jetzt die Routine mit den entsprechenden Werten
aufrufen und die Basisadresse der Struktur wie auch bei der In-
tuiText-Struktur in die Definition des Gadgets einsetzen, dann
wird auch der Rand mit dem Gadget kombiniert. Auch dazu
mochte ich ein Beispiel geben:

Border Rand, 0, 0, 3, 90, 15
GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Rand, Text, 0%, 1

Das Gadget nutzt gleichzeitig zum Rand auch noch den vorher
schon bestimmten Text. Diesen kénnen Sie natiirlich auch noch
erginzen. AbschlieBend méchte ich noch einmal das gesamte Li-
sting zeigen, das jetzt alle bisher besprochenen Unterprogramme
und die gezeigten Definitionen enthilt. Sie kénnen daran noch
Fehler erkennen, die Sie vielleicht beim Zusammensetzen der
Module gemacht haben.

(K22 222t d 2t sl st 2l sl el sl
"~ *
'* Boolean-Gadgets Uber Intuition *
IR cccccccccccccccccccccnnccccnas
(R 3

'* Autor : Wolf-Gideon Bleek
'* Datum : 23. Mai '88

*

'* Gruefe : Uuuuwe
'* Version: 1.2

* ¥ ¥ * ¥

176 Amiga Tips & Tricks

'* Betriebssystem: V1.2 & V1.3 *
1% *

1 e de e de Je e de v e s 9 e e e e e e de e de e de e e de e e e de e e de e

OPTION BASE 1
DEFLNG a-z

LIBRARY ":bmaps/exec.library"
DECLARE FUNCTION AllocMem LIBRARY
DECLARE FUNCTION GetMsg LIBRARY
LIBRARY ":bmaps/intuition.library"
DECLARE FUNCTION OpenWindow LIBRARY

GADGETDOWN
GADGETUP
CLOSEW

328&
648&
5128&

MList
Lauf

0&
1

HauptProgramm:
GOSUB OpenAl L
' Hauptteil
MainLoop:
IF Lauf = 1 THEN
IntuiMsg = GetMsg(UserPort)
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg
GOTO MainLoop
END IF

GOSUB CloseAll
END

OpenAll:
Border Rand, 0, 0, 3, 90, 15
TestTxt$ = "Test-Text"
IntuiText Text, 2, 10, 2, TestTxt$, 0&
GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Rand, Text, 0&, 1
Titel$ = "Mein erstes BASIC-Window"
WinDef NWindow,100,100,460,150,32+64+512&, 15&+4096&,Gadget,Titel$
WinBase = OpenWindow(NWindow)
IF WinBase = 0 THEN ERROR 7
RastPort = PEEKL(WinBase+50)
UserPort = PEEKL(WinBase+86)
RETURN

CloseAll:
CALL CloseWindow(WinBase)
CALL UnDef

RETURN

IntuitionMsg:
MsgTyp = PEEKL(IntuiMsa+20)

—— Gestaltung eigener Anwenderprogramme

Item PEEKL(IntuiMsg+28)
GadgetNr% = PEEK(Item+39)
CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN
'sofortige Aktivierung
PRINT "DOWN Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN
‘relverify Modus
PRINT "UP Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = CLOSEW) THEN
'System-Gadget Window schliefen
PRINT "“CLOSEWINDOW"

Lauf = 0

END IF

RETURN

SUB DefChip(Buffer,Size)STATIC
SHARED MList
Size=Size+8
Buffer=AllocMem(Size,65538&)
1F Buffer>0 THEN
POKEL Buffer,MList
POKEL Buffer+4,Size
MList=Buffer
Buffer=Buffer+8
ELSE
ERROR 7
END IF

END SUB

SUB UnDef STATIC

SHARED MList

undef. loop:

IF MList>0 THEN

Adresse = PEEKL(MList)
Groesse = PEEKL(MList+4)
FreeMem MList, Groesse

MList = Adresse
GOTO undef.loop
END IF
END SUB

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, gad, T$) STATIC

Size = 48+LEN(TS$)+1
DefChip bs,Size

POKEW bs ,x% ' LeftEdge
POKEW bs+ 2,y% ' TopEdge
POKEW bs+ 4,b% ' Width

POKEW bs+ 6,h% ' Height

177

178 Amiga Tips & Tricks

POKEW bs+ 8,65535& ' Detail- BlockPen
POKEL bs+10, IDCMP ' IDCMPFlags
POKEL bs+14,f ' Flags
POKEL bs+18,gad ' FirstGadget
POKEL bs+26,bs+48 ' Title
POKEW bs+46,1 ' ScreenType
FOR i%=1 TO LEN(TS)

POKE bs+47+i%,ASC(MID$(TS,i%,1))

NEXT
END SUB
SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si, n¥%) STATIC
DefChip bs,44& ' Gadget-Struktur Lénge
POKEL bs ,nx '*NextGadget
POKEW bs+ 4,x% ' LeftEdge
POKEW bs+ 6,y% TopEdge
POKEW bs+ 8,b% Width
POKEW bs+10,h% Height

L]
L]
1
POKEW bs+12,f% ' Flags
]
]
1

POKEW bs+14,a% Activation
POKEW bs+16,T% GadgetType
POKEL bs+18,i GadgetRender
POKEL bs+26, txt '*GadgetText
POKEL bs+34,si ' Speciallnfo
POKEW bs+38,n% ' GadgetID

END SuB

SUB IntuiText(bs, c1%, x¥, y%, T$, nx) STATIC
Size=20+LEN(T$)+1 ' Strukturldnge + Textlange + Nullbyte
DefChip bs,Size

POKE bs ,c1% ' FrontPen
POKE bs+ 2,1 ' DrawMode
POKEW bs+ 4,x% ' LeftEdge
POKEW bs+ 6,y% ' TopEdge
POKEL bs+12,bs+20 ' IText

POKEL bs+16,nx ! NextText

FOR i%=1 TO LEN(TS)
POKE bs+19+i%,ASC(MIDS(TS, i%,1))
NEXT
END SUB

SUB Border(bs, x%, y%, c%, b%, h%) STATIC
DefChip bs,48& Strukturldnge + Koordinatentabelle

1
POKEW bs ,x% ! LeftEdge
POKEW bs+2,y% ' TopEdge
POKE bs+4,c% ' FrontPen
POKE bs+7,8 ' Count
POKEL bs+8,bs+16 1Y
FOR i%=0 TO 1

POKEW bs+22+i%*4,h%-1
POKEW bs+24+i%*4,b%-1

—— Gestaltung eigener Anwenderprogramme — 179

POKEW bs+32+i%*4,1
POKEW bs+38+i%*4,h%-1
POKEW bs+40+i%*4,b%-2
NEXT
END SUB

Nachfolgend finden Sie noch vier Gadgets, die man immer in
einem Window fiir Einstellungen gebrauchen kann. Zu OK oder
Cancel, die die Funktion entweder bestitigen oder abbrechen,
sind noch Reset, alle Werte werden auf den Ausgangszustand
gesetzt, und Undo gekommen. Mit Undo wird der letzte verdn-
derte Wert wieder zuriickgesetzt.

Dies ist eine sehr bedienfreundliche Funktion, die es besonders
Unentschlossenen einfacher macht: Man hat schon alles einge-
stellt und moéchte nur noch eine Verdnderung riickgingig ma-
chen, weill aber nicht, wie es eingestellt war. Dann hilft Undo!
Sehen Sie dazu die Gadget-, Text- und Rand-Definitionen und
im zweiten Teil die Abfrageroutinen mit den Verzweigungen fiir
die vier Gadgets.

Die Gadget-Definitionen:

Border Rand, -1, -1, 1, 67, 14

IntuiText OKTxt, 1, 26, 2, "OK", 0&

IntuiText CancelTxt, 1, 10, 2, "Cancel", 0&

IntuiText ResetTxt, 1, 14, 2, "Reset", 0&

IntuiText UndoTxt, 1, 20, 2, "Undo", 0&

GadgetDef UndoGad, 0&, 380, 52, 65, 12, 0, 1, 1, Rand, UndoTxt, 0&, 1
GadgetDef ResetGad,UndoGad,380,68,65,12,0,1,1,Rand,ResetTxt,0&,2
GadgetDef OKGad, ResetGad, 380, 84, 65, 12, 0, 1, 1, Rand, OKTxt, 0&, 3
GadgetDef CancGad,OKGad,380,100,65,12,0,1,1,Rand,CancelTxt,0&,4
Titel$ = “Ein Beispiel flr bedienfreundliche Gadgets"

WinDef NWindow,100,100,460,150,32+64+512&, 15&+4096&,CancGad, Titel$

Die Abfrage-Routinen:

IF (MsgTyp = GADGETDOWN) THEN
'sofortige Aktivierung
PRINT "DOWN Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN

180 Amiga Tips & Tricks ——

‘relverify Modus
PRINT “"UP Gadget-Nr.:";GadgetNr%
IF GadgetNrX% = 1 THEN
GOSUB UNDO ' alten Wert eintragen
END IF
IF GadgetNr% = 2 THEN
gsoub RESET ! alle Werte wieder auf Urzustand

END IF
IF GadgetNr% = 3 THEN

GOSUB OK ' Werteeingabe beendet
END IF

IF GadgetNr% = 4 THEN
GOSUB CANCEL ' Werteeingabe abgebrochen
END IF
END IF

IF (MsgTyp = CLOSEW) THEN
'System-Gadget Window schliefen
PRINT "“CLOSEWINDOW"

Lauf = 0

END IF

4.1.3 Wahiltabellen

Bei der Gestaltung eines Windows mit Auswahl-Gadgets ist es
nicht empfehlenswert, immer nur einzelne Gadgets zu verwen-
den. Man sollte vielmehr darauf achten, Gruppen zu bilden, die
alle eine Auswahl aus einem bestimmten Themenkreis darstellen.
Meist ist es dann so, daB nur eines der Gadget-Gruppe ausge-
wihlt werden kann. Als Beispiel konnte die Auswahl des Zei-
chensatzes dienen. Nur ein Zeichensatz kann zur Zeit aktiv sein.
In einer Wahltabelle wihlt man den entsprechenden aus, und der
vorher gewihlte Zeichensatz wird inaktiv.

Volistandige Tabellen

Die Programmierung liuft nun etwas anders ab als bei den bis-
her gesehenen Gadgets. Zwar erstellt man die Strukturen, Grafi-
ken und Texte genauso, wie wir es gewohnt sind, jedoch muf
bei der Auswahl einiges beachtet werden! So miissen wir nach
der Aktivierung des Gadgets dieses auch aktiviert lassen. Intui-
tion hebt den Status gleich wieder auf, deshalb invertieren wir
den Bereich erneut. Dann aber dauerhaft. Dazu nutzen wir die
Graphics.Library, die uns mit zwei Befehlen zur Hilfe steht.

—— Gestaltung eigener Anwenderprogramme —— 181

Auflerdem muf3 unsere Auswertungsroutine in der Lage sein, ein
zuvor ausgewihltes Gadget wieder auszuschalten. Alles dies wer-
den wir uns jetzt ansehen. Dazu nehmen wir zuvor einige Gad-
gets als Grundlage:

Border Rand, -1, -1, 1, 100, 14

IntuiText To60, 1, 10, 2, "Topaz 60", 0&

IntuiText To80, 1, 10, 2, "Topaz 80", 0&

IntuiText PC60, 1, 26, 2, "PC 60", 0&

IntuiText PC80, 1, 26, 2, "PC 80", 0&

GadgetDef To60Gad, 0&, 80, 61, 98, 12, 0, 1, 1, Rand, To60, 0&, 1
GadgetDef To80Gad, To60Gad, 80, 74, 98, 12, 0, 1, 1, Rand, To80, 0&, 2
GadgetDef PC60Gad, To80Gad, 80, 87, 98, 12, 0, 1, 1, Rand, PC60, 0&, 3
GadgetDef PC80Gad, PC60Gad, 80, 100, 98, 12, O, 1, 1, Rand, PC80, 0%, &
Titel$ = “Font-Auswahl"

WinDef NWindow,100,100,460,150,32+64+512&, 158+4096& , PCB0Gad, Titel$

Alle Gadgets benutzen eine Border-Struktur, die die Tabellen-
gliederung spiter erreicht. Weiterhin haben wir vier Texte, die
jeden einzelnen Zeichensatz kennzeichnen. Uber Pointer haben
wir alle Gadgets in einer Liste verbunden. Diese Liste wird mit
ihrem Kopf in das Window eingepaft.

Nach dem Programmstart haben wir eine Tabellengrafik im
Window, aus der man seinen gewiinschten Zeichensatz auswihlen
kann. Zur Kennzeichnung des gerade aktiven Zeichensatzes in-
vertieren wir einfach den Kasten. Sehen Sie dazu die Abfrage-
routine der Gadget-Nachrichten:

IF (MsgTyp = GADGETUP) THEN
‘relverify Modus
PRINT "UP Gadget-Nr.:";GadgetNr%
IF aktiv THEN
SetDrMd RastPort, 2
RectFill RastPort, 80&, 13*aktiv+48&, 177&, 13*aktiv+59&
SetDrMd RastPort, 1
END IF
aktiv = GadgetNr%
SetDrMd RastPort, 2
RectFill RastPort, 80&, 13*aktiv+48&, 177&, 13*aktiv+59&
SetDrMd RastPort, 1
END IF

182 Amiga Tips & Tricks —

Die Abfrage geht davon aus, daB dem Programm iiber die Va-
riablen bekannt ist, welcher der Zeichensitze gewihlt wurde.
Dann wird bei einer erneuten Wahl der Textkasten iiber die
Grafikbefehle wieder in den Normalzustand gebracht.

Als nichstes wird ausgewertet, welcher neue Zeichensatz vom
Benutzer ausgewihlt wurde. Die Koordinaten des Kastens wer-
den berechnet, und er wird grafisch hervorgehoben. Dann kehrt
die Auswertung wieder zum Hauptprogramm zuriick.

Auf diese sehr einfache Art lassen sich Tabellen fiir alle géngi-
gen Zwecke errichten. Der Programmierer mufl dafiir nur die
entsprechende Anzahl von Gadgets bereitstellen und die Berech-
nungen fiir die Invertierung der Grafik anpassen. Dies sollte
aber keine Schwierigkeit darstellen, da bei einer Tabelle alle
Abstinde gleichmiBig sind und sich somit auch einfach berech-
nen lassen.

Scroll-Tabellen

Problematisch wird die Tabellenform bei sehr vielen Punkten
oder einer vorher nicht definierten Anzahl von Elementen.
Hierfiir empfehlen sich sog. Scroll-Tabellen, bei denen man nur
eine kleine Auswahl der Elemente sieht, diese aber hoch- oder
runterschieben kann.

Ein gutes Beispiel dafiir ist die Scroll-Tabelle aus den Prefe-
rences fiir die Druckertreiberauswahl. Hierbei ist vorher nicht
bekannt, wie viele Druckertreiber auf der Diskette zu finden
sein werden. Man regelt ganz einfach den Ausschnitt iiber zwei
Pfeile, die beim Anklicken den Ausschnitt verschieben.

Und genau da setzt unsere Arbeit ein. Wir entwerfen eine Gra-
fik, in die iiber eine Ausgaberoutine der Ausschnitt der Tabelle
geschrieben wird. Weiterhin fiigen wir zwei Gadgets ein, jeweils
eins fiir einen Pfeil. Bei Betitigung der Gadgets verschiebt die
Auswertungsroutine den Ausschnitt entsprechend und gibt er-
neut die Tabelle aus. Als ausgewihlt betrachtet man immer das

— Gestaltung eigener Anwenderprogramme —— 183

mittlere von drei Elementen. Hier sehen Sie zuerst die beiden
Pfeil-Gadgets ohne Grafiken. Der Aufbau der Grafik wird iiber
extra darauf folgende Ausgabebefehle erledigt:

Border Rand, -1, -1, 1, 200, 14

Border Kasten, 0, -1, 1, 50, 21

GadgetDef Hoch, 0&, 51, 60, 48, 18, 0, 1, 1, 0&, 0&, 0&, 1
GadgetDef Runter, Hoch, 51, 80, 48, 18, 0, 1, 1, 0&, 0&, 0&, 2
Titel$ = “Scroll-Tabelle"

WinDef NWindow,100,100,460,150,32+64+512&, 15&+4096&,Runter, Titel$
WinBase = OpenWindow(NWindow)

IF WinBase = O THEN ERROR 7

RastPort = PEEKL(WinBase+50)

UserPort = PEEKL(WinBase+86)

DrawBorder RastPort, Rand, 100&, 60&

DrawBorder RastPort, Rand, 100&, 73&

DrawBorder RastPort, Rand, 100&, 86&

DrawBorder RastPort, Kasten, 50&, 60&

DrawBorder RastPort, Kasten, 50&, 79&

x =50 ty=60

x- y- Werte
x(1) =17+x : x(2) =16+y
x(3) =34+x : x(4) =16+y
x(5) =34+x : x(6) =10+y
x(7) =40+x : x(8) =10+y

x(9) =25+x : x(10)=2+y
X(11)=10+x : x(12)=10+y
x(13)=17+x : x(14)=10+y

x(15)=17+x : x(16)=16+y

Move RastPort, 17+50&, 16+60&
PolyDraw RastPort, 8&, VARPTR(x(1))

y = 62
'y- Werte

x(2) =20+y
x(4) =20+y
x(6) =26+y
x(8) =26+y
x(10)=34+y
x(12)=26+y
x(14)=26+y
x(16)=20+y

Move RastPort, 17+50&, 20+62&
PolyDraw RastPort, 8&, VARPTR(x(1))

184 Amiga Tips & Tricks

FOR i =1T05

READ Tabelle$(i)

IntuiText ITxt(i), 1, 0, 0, Tabelle$(i), 0&
NEXT i
TabOut Aktiv

Nachdem iiber DrawBorder() die Ausgabe der Border-Strukturen
direkt abgewickelt wurde, tritt PolyDraw() aus der
Graphics.Library in Aktion. Diese Funktion erlaubt es, Koordi-
natentabellen iiber verbundene Linien auszugeben. Ein Beispiel,
die 3D-Netzgrafik, finden Sie im Kapitel 3 AmigaBASIC. Hier
verwenden wir die Routine nur, um die Pfeilgrafik auszugeben.

Danach liest OpenAll aus DATA-Zeilen 5 Texte ein, die spiter
in unserer Tabelle stehen werden. Die Ausgabe erledigt die
SUB-Routine TabOut. Sehen Sie hier deshalb noch einmal das
ganze Programm mit dieser neuen Ausgaberoutine und den
DATA-Zeilen:

(R 22222 222t a2ttt sl ss sy
1%
'* Scroll-Tabellen-Gadgets
I cecccccccccccccccceenan
"

'* Autor : Wolf-Gideon Bleek
'* patum : 31. Mai '88

'* Gruefe : Myrna

'* Version: 1.2

'* Betriebssystem: V1.2 & V1.3

"

* % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

e e de e e e e e e e e e e e e v e e e e o e o e ok e e e de ok de e e ok

OPTION BASE 1

DEFLNG a-w

DEFINT x

LIBRARY ":bmaps/exec.library"
DECLARE FUNCTION AllocMem LIBRARY
DECLARE FUNCTION GetMsg LIBRARY
LIBRARY ":bmaps/intuition.library"
DECLARE FUNCTION OpenWindow LIBRARY
LIBRARY “:bmaps/graphics.library"

GADGETDOWN = 32&
GADGETUP = 64&
CLOSEW = 5128
MList = 0&
Lauf =1
Aktiv =2

—— Gestaltung eigener Anwenderprogramme

DIM x(16)

DIM SHARED Tabelle$(5), ITxt(5)

HauptProgramm:

GOSUB OpenAl L

! Hauptteil
MainLoop:

IF Lauf = 1 THEN
IntuiMsg = GetMsg(UserPort)

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg

GOTO MainLoop

END IF

GOSUB CloseAll

END
OpenAl l:

Border Rand, R
Border Kasten, 0, -1, 1, 50, 21

GadgetDef Hoch, 0&, 51, 60, 48, 18, 0, 1, 1, 0&, 0%, 0%, 1
GadgetDef Runter, Hoch, 51, 80, 48, 18, 0, 1, 1, 0&, 0%, 0&, 2

Titel$ =

WinDef NWindow,100,100,460,150,32+64+512&, 158+4096& ,Runter, Titel$

WinBase =
IF WinBase
RastPort =
UserPort =
DrawBorder
DrawBorder
DrawBorder
DrawBorder
DrawBorder

x =50

Ix-

x(1) =17+x
X(3) =34+x
x(5) =34+x
x(7) =40+x
X(9) =25+x

-1, -1, 1, 200, 14

"Scroll-Tabel le"

OpenWindow(NWindow)

0 THEN ERROR 7

PEEKL (WinBase+50)
PEEKL(WinBase+86)

RastPort, Rand, 100&, 60&
RastPort, Rand, 100&, 73&
RastPort, Rand, 100&, 86&
RastPort, Kasten, 50&, 60&
RastPort, Kasten, 50&, 79&

x(11)=10+x :
x(13)=17+x :

x(15)=17+x

y = 60

y- Werte
x(2) =16+y
x(4) =16+y
x(6) =10+y
x(8) =10+y
x(10)=2+y
x(12)=10+y
x(14)=10+y
x(16)=16+y

Move RastPort, 17+50&, 16+60&

PolyDraw RastPort, 8&, VARPTR(x(1))

y = 62

'y- Werte
x(2) =20+y
x(4) =20+y

185

186 Amiga Tips & Tricks

x(6) =26+y
x(8) =26+y
x(10)=34+y
x(12)=26+y
x(14)=26+y
x(16)=20+y

Move RastPort, 17+50&, 20+62&
PolyDraw RastPort, 8&, VARPTR(x(1))

FOR i =1T05
READ Tabelle$(i)
IntuiText ITxt(i), 1, 0, 0, Tabelle$(i), 0&
NEXT i
TabOut Aktiv
RETURN

CloseAll:
CALL CloseWindow(WinBase)
CALL UnDef

RETURN

IntuitionMsg:
MsgTyp PEEKL(IntuiMsg+20)

Item PEEKL(IntuiMsg+28)

GadgetNr% = PEEK(Item+39)

CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN
'sofortige Aktivierung
PRINT "DOWN Gadget-Nr.:";GadgetNr#%
END IF

IF (MsgTyp = GADGETUP) THEN
'relverify Modus
PRINT "UP Gadget-Nr.:";GadgetNr%
IF GadgetNr% = 1 AND Aktiv<>4 THEN Aktiv=Aktiv+1
IF GadgetNr% = 2 AND Aktiv<>1 THEN Aktiv=Aktiv-1
END IF

IF (MsgTyp = CLOSEW) THEN
'System-Gadget Window schliefen
PRINT “CLOSEWINDOW"

Lauf = 0

END IF

SUB DefChip(Buffer,Size)STATIC
SHARED MList
Size=Size+8
Buffer=AllocMem(Size, 65538&)
IF Buffer>0 THEN
POKEL Buffer,MList

: TabOut(Aktiv)
: TabOut(Aktiv)

—— Gestaltung eigener Anwenderprogramme

POKEL Buffer+4,Size
MList=Buffer
Buffer=Buffer+8
ELSE
ERROR 7
END IF
END SUB

SUB UnDef STATIC
SHARED MList
undef. loop:
IF MList>0 THEN
Adresse = PEEKL(MList)
Groesse = PEEKL(MList+4)
FreeMem MList, Groesse

MList = Adresse
GOTO undef. loop
END IF
END SUB

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, Gad, T$) STATIC

Size = 48+LEN(T$)+1
DefChip bs,Size

POKEW bs ,x% ' LeftEdge

POKEW bs+ 2,y% ' TopEdge

POKEW bs+ 4,b% ' Width

POKEW bs+ 6,h% ' Height

POKEW bs+ 8,65535& ' Detail- BlockPen
POKEL bs+10, IDCMP ' IDCMPFlags

POKEL bs+14,f ' Flags

POKEL bs+18,Gad ' FirstGadget
POKEL bs+26,bs+48 ' Title

POKEW bs+46,1 ' ScreenType

FOR i%=1 TO LEN(TS$)
POKE bs+47+i%,ASC(MIDS(TS, i%,1))
NEXT

187

END SUB
SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si, n¥) STATIC
DefChip bs,44& ' Gadget-Struktur Lange
POKEL bs ,nx '*NextGadget
POKEW bs+ &4,x% LeftEdge
POKEW bs+ 6,y% TopEdge
POKEW bs+ 8,b% Width

)
]
]
POKEW bs+10,h% ' Height
]
1
1

POKEW bs+12, f% Flags

POKEW bs+14,a% Activation
POKEW bs+16,T% GadgetType
POKEL bs+18,i ' GadgetRender
POKEL bs+26, txt '*GadgetText
POKEL bs+34,si ' Speciallnfo
POKEW bs+38,n% ' GadgetID

END SuB

188 Amiga Tips & Tricks

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC
S1ze=20+LEN(T$)+1 ' Strukturlange + Textlange + Nullbyte
DefChip bs,Size

POKE bs ,c1% ' FrontPen
POKE bs+ 2,1 ' DrawMode
POKEW bs+ 4,x% ' LeftEdge
POKEW bs+ 6,y% ' TopEdge
POKEL bs+12,bs+20 ' IText

POKEL bs+16,nx ' NextText

FOR i%=1 TO LEN(TS)
POKE bs+19+i%,ASC(MID$(TS, i%,1))

NEXT
END SUB
SUB Border(bs, x%, y%, C%, b%, h%) STATIC
DefChip bs,48& ' Strukturlange + Koordinatentabelle
POKEW bs ,x% ' LeftEdge
POKEW bs+2,y% ' TopEdge
POKE bs+4,C% ' FrontPen
POKE bs+7,8 ' Count
POKEL bs+8,bs+16 1RXY
FOR i%=0 TO 1

POKEW bs+22+i%*4 , h%-
POKEW bs+24+i%*4 , b%-
POKEW bs+32+i%*4,1
POKEW bs+38+i%*4, h%-
POKEW bs+40+i%*4, b%-
NEXT
END SUB

1
1
1
2

'austauschen gegen ein PropInfo
SUB STRINGINFO(bs,max%,buff$) STATIC
IF LEN(buff$)>max% THEN
nmax%=LEN(buff$)
ELSE
nmax%=max%
END IF
IF (nmax% AND 1) THEN nmax%=nmax%+1
Size=36+2* (nmax%+4)
DefChip bs,Size
POKEL bs,bs+36
POKEL bs+4,bs+40+nmax%
POKEW bs+10, max%+1
IF buff$<>""THEN
FOR i%=1 TO LEN(buff$)
POKE bs+35+i%,ASC(MID$(buff$,i%,1))
NEXT
END IF
END SUB

SUB TabOut(Aktiv) STATIC
SHARED RastPort

—— Gestaltung eigener Anwenderprogramme — — 189

COLOR 0,0
FOR i =0 T0 2
SetAPen RastPort, 0
RectFill RastPort, 101&, 13*i+60&, 296&, 13*i+71&
NEXT i
COLOR 1,0
FOR i = Aktiv-1 TO Aktiv+1
IF i>0 AND i<5 THEN
POKEW ITxt(i)+6, 62+(i-Aktiv+1)*13
PrintlText RastPort, ITxt(i), 110&, 0&
END IF
NEXT i
SetDrMd RastPort, 2
RectFill RastPort, 101&, 73&, 296&, 84&
SetDrMd RastPort, 1
END SUB

DATA Scroll-Tabelle
DATA Schieberegler

DATA Tabelle

DATA Gadget

DATA Systemgadgets

4.1.4 Schieberegler

Wie schon oben erwidhnt, sind Schieberegler eines von vielen
Bedienelementen. Sie eignen sich ganz besonders, um Werte
einzustellen, die in einem bestimmten Bereich liegen, oder Ob-
jekte zu positionieren. Als bekanntestes Beispiel gilt hier sicher-
lich die Farbeinstellung. Jeder Regler kann einen Wert zwischen
0 und 15 annehmen, der die Intensitit eines Farbwertes darstellt.
Natiirlich kénnte man auch drei INPUT-Befehle schreiben, die
jeweils auf den Wertebreich uberpriift werden. Aber mit den
Schiebereglern ist die Einstellung doch viel bequemer. Sie kén-
nen sogar durch leichte Rechts- und Linksbewegung die Rot-,
Griin- und Blauwerte stufenlos einstellen.

Auch hierzu bietet die Intuition.Library wieder Unterstiitzung.
Es handelt sich hierbei um erweiterte Gadgets! Der Klickbereich
ist bei Schiebereglern der Bereich, in dem man den Schieber hin
oder her bewegen kann. Dies kann sowohl horizontal, vertikal
als auch in beide Richtungen gleichzeitig sein. Die Grafik, die
den Schieberegler an sich verkorpert, wird iber die Gadget-
Grafik organisiert oder aber von Intuition als Standard vorgege-

190 Amiga Tips & Tricks

ben. Zur Kenntlichmachung ist es iiblich, da3 von Intuition der
Schiebebereich mit einem Kasten umrandet wird. Wie bei allem,
so kénnen wir auch hier diese Funktion evtl. abstellen.

Fiir die oben angesprochene Erweiterung der Gadget-Struktur
brauchen wir eine sog. PropInfo-Struktur, die in den Zeiger
Speciallnfo eingebunden wird. Hierfiir habe ich wieder eine
SUB-Routine, die die Speicher- und Parameterarbeit iibernimmt:

SUB PropInfo(bs, Flags%, HPot%, VPot%, HBody%, VBody%) STATIC
DefChip bs,22&
POKEW bs ,Flags%
POKEW bs+ 2,HPot%
POKEW bs+ &4,VPot%
POKEW bs+ 6,HBody%
POKEW bs+ 8,VBody%
END SUB

Wir tragen in die Info-Struktur mehrere Werte ein, die wir zu-
erst besprechen sollten. Mit Flags konnen wir einstellen, ob sich
der Schieber horizontal (2) oder vertikal (4) bewegen lassen soll.
Weiterhin weisen wir Intuition mit autoknob (1) an, daB keine
eigene Grafik fiir den Schieber vorhanden ist, sondern daf3 In-
tuition eine eigene zu zeichnen hat. H- und VPot bezeichnen
jeweils die Ausgangsposition des Schiebers. Mit 0 befindet er
sich rechts bzw. unten, und mit &HFFFF befindet er sich links
bzw. oben. Nach einer Verschiebung durch den Benutzer kénnen
wir hier auch die neue Position auslesen. In H- und VBody gibt
man die Schrittweite des Schiebers an, mit der er bei einem
Klick in die Box springen soll. Beide Werte werden als Teile
vom Ganzen (&HFFFF) gerechnet! Alle weiteren Werte, die
noch in der Struktur zu finden sind, stellt Intuition ein und sol-
len uns hier nicht weiter kiimmern.

Fir die Verwendung eines AutoKnobs, den von Intuition gra-
fisch unterstiitzten Schieber, benétigen wir weiterhin noch einen
8 Byte langen Speicherbereich, der die Position (x- und y-Ko-
ordinaten) und die Breite enthilt. Werden alle vier Werte nicht
gesetzt, so macht dies die Initialisierungsroutine. Fiir ein Gadget
brauchen wir jetzt also zwei weitere Strukturen:

—— Gestaltung eigener Anwenderprogramme — 191

PropInfo Propl, 142, 0, 0, &HFFF, O

IntuiText Text, 2, -80, 2, "Schieber:", 0&

DefChip Buffer, 8&

GadgetDef Gadget, 0&, 150, 30, 100, 10, 0, 1+2, 3, Buffer, Text, Propl,1

Aus diesen neuen und allen bekannten Moglichkeiten lassen sich
jetzt auch mehrere Proportional-Gadgets zusammenbauen. Als
Beispiel habe ich hier ein Listing, das drei solcher Gadgets in
das Window einbindet und die Abfrage dahingehend auswertet,
daf3 es nach dem Loslassen des Schiebers die Werte entsprechend
in ein Farbregister eintrigt. Somit kénnen Sie gleich das Ergeb-
nis der Einstellung betrachten.

1hhkhkhhkhkhhihhdkhhkhhdhihidhikhkhihid
1%

'* Proportional -Gadgets

'* Autor : Wolf-Gideon Bleek
'* Datum : 23. Mai '88

'* GrueBe : Daniel & Nils

'* Version: 1.2 .

'* Betriebssystem: V1.2 & V1.3

* % * ¥ ¥ ¥ ¥ ¥ * ¥

1 e e g o e o e e o e e A e v e vk e e e e ok e e vk o o e o e e de ke ke ok

OPTION BASE 1
DEFLNG a-z

LIBRARY ":bmaps/exec.library"
DECLARE FUNCTION AllocMem LIBRARY
DECLARE FUNCTION GetMsg LIBRARY
LIBRARY ":bmaps/intuition.library"
DECLARE FUNCTION OpenWindow LIBRARY
GADGETDOWN = 32&

GADGETUP 64&

CLOSEW 512&

MList
Lauf

0&
1

HauptProgramm:
GOSUB OpenAll
! Hauptteil
MainLoop:
IF Lauf = 1 THEN
IntuiMsg = GetMsg(UserPort)
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg
GOTO MainLoop
END IF
GOSUB CloseAll

192 Amiga Tips & Tricks

END

OpenAll:

IntuiText RotTxt, 2, -80, 2, “Rot", 0&

IntuiText GrnTxt, 2, -80, 2, "Grun", 0&

IntuiText BlaTxt, 2, -80, 2, "Blau", 0&

PropInfo Prop1, 1+2, 0, O, &HFFF, O

PropInfo Prop2, 1+2, 0, O, &HFFF, O

PropInfo Prop3, 1+2, 0, O, &HFFF, O

DefChip Puffer(1), 8&

DefChip Puffer(2), 8&

DefChip Puffer(3), 8&

GadgetDef RotGad,0&,150,30,114,10,0,1+2,3,Puffer(1),RotTxt,Prop1,1
GadgetDef GrnGad,RotGad,150,45,114,10,0,1+2,3,Puffer(2),GrnTxt,Prop2,2
GadgetDef BlaGad,GrnGad,150,60,114,10,0,1+2,3,Puffer(3),BlaTxt,Prop3,3

Titel$ = "Farbeinstellungen"

WinDef NWindow,100,100,460,150,32+64+512&,15&+4096&,BlaGad, Titel$

WinBase = OpenWindow(NWindow)

IF WinBase = 0 THEN ERROR 7

RastPort = PEEKL(WinBase+50)

UserPort = PEEKL(WinBase+86)
RETURN
CloseAll:
CALL CloseWindow(WinBase)
CALL UnDef
RETURN
IntuitionMsg:
MsgTyp = PEEKL(IntuiMsg+20)
Item = PEEKL(IntuiMsg+28)
GadgetNr% = PEEK(Item+39)

CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN
'sofortige Aktivierung
PRINT "DOWN Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN
‘relverify Modus
PRINT "UP Gadget-Nr.:";GadgetNr¥%;
PRINT " Pos:";PEEKW(Puffer(GadgetNr¥%))

Rot = PEEKW(Puffer(1))
Grn = PEEKW(Puffer(2))
Bla = PEEKW(Puffer(3))

— Gestaltung eigener Anwenderprogramme

PALETTE 1, Rot/100, Grn/100, Bla/100

END IF

IF (MsgTyp = CLOSEW) THEN
'System-Gadget Window schlieBen

PRINT "CLOSEWINDOW"

Lauf = 0
END IF

SUB DefChip(Buffer,Size)STATIC

SHARED MList
Size=Size+8

Buffer=AllocMem(Size,65538&)

IF Buffer>0 THEN
POKEL Buffer MList

POKEL Buffer+4,Size

MList=Buffer
Buffer=Buffer+8
ELSE
ERROR 7
END IF
END SUB

SUB UnDef STATIC
SHARED MList

undef. loop:
IF MList>0 THEN
Adresse = PEEKL(MList)
Groesse = PEEKL(MList+4)

FreeMem MList, Groesse

MList = Adresse
GOTO undef. loop
END IF
END SuB

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, Gad, T$) STATIC

Size = 48+LEN(T$)+1
DefChip bs,Size
POKEW bs ,x%
POKEW bs+ 2,y%
POKEW bs+ 4,b%
POKEW bs+ 6,h%
POKEW bs+ 8,65535&
POKEL bs+10, IDCMP
POKEL bs+14,f
POKEL bs+18,Gad
POKEL bs+26,bs+48
POKEW bs+46,1

FOR i%=1 TO LEN(T$)

LeftEdge

TopEdge

Width

Height

Detail- BlockPen
IDCMPF lags

Flags
FirstGadget
Title

ScreenType

POKE bs+47+i%,ASC(MID$(TS,i%,1))

NEXT
END SUB

193

194 Amiga Tips & Tricks

SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, a%, T4, i, Txt, si, n¥%) STATIC

DefChip bs,44& ' Gadget-Struktur Lange
POKEL bs ,nx "*NextGadget
POKEW bs+ 4,x% ' LeftEdge
POKEW bs+ 6,y% ' TopEdge
POKEW bs+ 8,b% ' Width

POKEW bs+10,h% ! Height

POKEW bs+12, f% ' Flags

POKEW bs+14,a% ' Activation
POKEW bs+16,T% ' GadgetType
POKEL bs+18,i ' GadgetRender
POKEL bs+26,Txt '*GadgetText
POKEL bs+34,si ' Speciallnfo
POKEW bs+38,n% ' GadgetID

END SUB

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC
Si1ze=20+LEN(T$)+1 ' IntuiText-Struktur Lange + Textlange + Nullbyte
DefChip bs,Size

POKE bs ,c1% ' FrontPen
POKE bs+ 2,1 ' DrawMode
POKEW bs+ &4,x% ' LeftEdge
POKEW bs+ 6,y% ' TopEdge
POKEL bs+12,bs+20 ' IText
POKEL bs+16,nx ' NextText

FOR i%=1 TO LEN(T$)
POKE bs+19+i%,ASC(MIDS(TS, i%,1))
NEXT
END SUB

SUB Border(bs, x%, y%, c%, b%, h%) STATIC
DefChip bs,48& Border-Struktur Lange + Koordinatentabelle

]
POKEW bs ,x% ' LeftEdge
POKEW bs+2,y% ' TopEdge
POKE bs+4,c% ' FrontPen
POKE bs+7,8 ' Count
POKEL bs+8,bs+16 ey
FOR i%=0 TO 1

POKEW bs+22+i%*4 ,h%-1
POKEW bs+24+l%*4 b%-1
POKEW bs+32+i%*4,1
POKEW bs+38+i%*4,h%-1
POKEW bs+40+i%*4,b%-2
NEXT
END SuB

SUB PropInfo(bs, Flags%, HPot%, VPot%, HBody% VBody#%) STATIC
DefChip bs,22&
POKEW bs ,Flags%
POKEW bs+ 2. HPot%

—— Gestaltung eigener Anwenderprogramme ——— 195

POKEW bs+ 4,VPot%

POKEW bs+ 6,HBody%

POKEW bs+ 8,VBody%
END SUB

Ausblicke

Aus all den in diesem Kapitel gegebenen Informationen kénnen
Sie nun einiges machen. Wir haben versucht, ein Schema zu
entwickeln, das sich gut in das des Betriebssystems, speziell von
Intuition, einpafB3t. Alle hier vorgestellten Programme sind
modular aufgebaut und ermoéglichen es so auf einfachste Weise,
in eigene und neue Programme aufgenommen zu werden. Dafiir
gehen Sie folgenden Weg:

Schreiben Sie jede SUB-Routine in ein neues Verzeichnis in ein
extra ASCII-Programm-File. Setzen Sie am besten vor jede
Routine eine Kommentarliste, die Informationen zu jedem Pa-
rameter enthilt. Ben6tigen Sie jetzt einen Intuition-Aufruf, dann
laden Sie das SUB-File iiber MERGE hinzu und erginzen in
dem OpenAll-Unterprogramm einfach den Aufruf. Am besten
spielen wir dies an einem konkreten Fall durch!

Als Abschlu3 dieses Kapitels folgt eine vollstindige Beschrei-
bung fiir ein Programm, mit dem es moglich ist, alle vier Stan-
dard-Farbregister zu modifizieren. Dazu brauchen wir alle bis-
her besprochenen Unterroutinen. Das Programm ruft dann fol-
gende Gadgets ins Leben. Wir benétigen die vier Grund-Gadgets
fur die Riicksetzung der Einstellungen oder zur Korrektur.

Die drei Proportional-Gadgets werden fiir die Rot-, Griin- und
Blauwert-Einstellungen gebraucht und sind auch unabkémmlich.
Auflerdem miissen noch vier neue Gadgets entworfen werden,
die zu einer Tabelle zusammenzufiigen sind, iiber die man die
gerade einzustellende Farbe selektieren kann. Sind alle Gadgets
in das Window eingebunden, mit den richtigen Unterstiitzungs-
strukturen ausgestattet und im Window mit ausreichender Glie-
derung positioniert, so kann die Abfrageroutine entwickelt wer-
den.

196 Amiga Tips & Tricks

Die Abfrage muf3 zuerst einmal iiber die Farbtabelle in einer
Variablen speichern, welche Farbe gerade beeinfluf3t oder ge-
16scht werden kann. Auf diese Variable werden alle weiteren
Gadgets zuriickgreifen. Mit den vier Grund-Gadgets erreicht
man einerseits die Abbruch- oder Bestitigungsfunktion. Ande-
rerseits kann man alle Farben auf ihren Ursprungswert oder nur
eine darauf setzen. Dafiir ist die Farbnummer entscheidend!

Als letztes kommen die elementaren Proportional-Gadgets, ohne
deren Hilfe eine Farbverinderung natiirlich nicht zustande
kime. Die Verinderungen der Regler werden von der Abfrage-
routine an die Farbwerte der einzelnen Farben entsprechend der
Farbnummer weitergeleitet. Die Farben miissen dann iiber Pa-
lette gleich umgesetzt werden, damit der Benutzer sofort einen
Uberblick iiber die Verinderung hat.

Wenn Sie unter Beriicksichtigung aller Grundregeln, die auf den
vorhergehenden Seiten genannt wurden, so eine Farbpalette zu-
sammenbauen, haben Sie sicherlich die Kenntnis erworben, wie
man professionell programmiert und sein Programm gestaltet.

4.2 Rubberbanding

Im bisherigen Verlauf dieses Kapitels haben Sie erfahren, wie
man die wichtigsten Elemente einer professionellen Programm-
gestaltung programmiert. Sie sollten sich aber nicht davon ab-
halten lassen, neue Wege zu suchen. Jedes neue Problem erfor-
dert eine speziell abgestimmte Losung!

In diesem Teil méchte ich noch auf eine Funktion eingehen, die
Sie sicher stindig benutzen. Gemeint ist das Rubberbanding, was
zu deutsch etwa "Gummibanderin" heif3t. Sie kénnen damit ganz
einfach durch Ziehen oder Driicken an einem Band, welches be-
liebig dehnbar ist (daher Gummiband), die Gré8e von Windows
einstellen. Intuition versieht das entsprechende Window dann mit
einem Sizing-Gadget. Aber uns interessiert die Programmierung
und damit die Anwendung in BASIC.

—— Gestaltung eigener Anwenderprogramme — 197

Der Trick besteht darin, daB die zu verschiebende Linie nicht
einfach gezeichnet wird, sondern im "complement"-Modus gezo-
gen wird. Somit erreicht man durch nochmaliges Zeichnen, daB
der Hintergrund wieder vollstindig hergestellt ist. Man erspart
dem Programmierer und dem Programm so eine aufwendige
Speicherung des Hintergrundes und die Restauration. Gewdhn-
lich verwendet man das Rubberbanding fiir die Einstellung von
Arbeitsbereichen (siehe Windows). Aber auch das Ziehen von
Rechtecken in Grafikprogrammen 148t sich so sehr komfortabel
gestalten.

4.2.1 Flachenbestimmung von Rechtecken

Das Thnen hier vorliegende Programm ist nur als Mittel zum
Zweck geschrieben, denn es erfiillt keinen Sinn. Es soll Thnen
nur zeigen, wie man diese Funktion programmiert. Sie kénnen
dann die Mausabfrage in eigene Anwendungen iibernehmen.
Wenn Sie es starten, so wird ein leeres Window mit dem
Mauscursor vor IThnen liegen. Driicken Sie nun an einer beliebi-
gen Position im Window die linke Taste, und bewegen Sie bei
gedriickter Taste die Maus, so sehen Sie das noch frei verstell-
bare Rechteck. Erst wenn Sie die Taste wieder loslassen, wird
das Rechteck mit der Zeichenfarbe 1 auf den Bildschirm ge-
bracht.

B v de e e e e e e vk e e 2 o e e o A e o e ok e e e ok de vk e e ke ke e
" *

'* Grofziehen mit Rubbers

*
'
'
'
[
'
[
[
'
'
[
]
'
]
'
[
[
'
'
'
'
'
'
'
'
'
'
[
'
* *

(k3

'* Autor : Wolf-Gideon Bleek
'* Datum : Juni '87

'* Version: 1.0

'* Betriebssystem: V1.2 & V1.3

1k
[R2 222222 22222ttt sss sl sy sy s

LIBRARY ":graphics.library"
ON MOUSE GOSUB SetPoint
MOUSE ON
WHILE INKEY$<>M ®

SLEEP
WEND
MOUSE OFF

* % ¥ ¥ * ¥

198 Amiga Tips & Tricks

END
SetPoint:

MStat=MOUSE(0)

IF MStat<>-1 THEN RETURN

xStart=MOUSE(3)
yStart=MOUSE(4)

CALL SetDrMd&(WINDOW(8),2)
NewPosition:

mx=MOUSE(1)
my=MOUSE (2)

LINE (xStart,yStart)-(mx,my),,b

WHILE MOUSE(0)=-1
IF mx<>MOUSE(1) OR my<>MOUSE(2) THEN
LINE (xStart,yStart)-(mx,my),,b
GOTO NewPosition
END IF
WEND

CALL SetDrMd&(WINDOW(8),1)
LINE (xStart,yStart)-(mx,my),,b

RETURN
Variablen
MStat Mausstatus
mx, my Mauskoordinaten
xStart x-Anfangsposition des Rechtecks
yStart y-Anfangsposition des Rechtecks

Programmbeschreibung

Weil die Fithrungslinien im Zeichenmodus "complement" geplot-
tet werden, muf3 die "graphics"-Library getéffnet werden. Sie
enthilt die Aufrufsequenz. Zu Anfang wird die Mausabfrage auf
die Unterroutine "SetPoint" gesetzt. Dann wartet das Programm
auf einen Tastendruck. Hat es diesen erhalten, so schaltet es die
Mausabfrage wieder ab und beendet sich selbst.

Die Mausabfrage ist der Kern dieses Programms. Sehen wir uns
diese Programmzeilen etwas genauer an. Der Mausstatus wird in
einer Variablen gesichert. Wenn er kennzeichnet, daB der An-
wender die linke Maustaste nicht gedriickt hilt, wird aus dem
Unterprogramm wieder zuriickgesprungen. Ansonsten merkt sich

—— QGestaltung eigener Anwenderprogramme —— 199

das Programm die Position als Startwert, und der Zeichenmodus
wird auf "complement" gesetzt. Dann zeichnet die Routine das
Rechteck und wartet auf eine Mausbewegung.

Erfolgt diese, so wird das Rechteck geloscht, indem es nochmal
gezeichnet wird, und mit der neuen Mausposition wird wieder
von vorne begonnen. Erst wenn der Benutzer die Maustaste los-
1aBt, wird die Schleife verlassen. Dann schaltet das Programm
wieder den normalen Zeichenmodus ein, und das Rechteck wird
endgiiltig ausgegeben.

4.2.2 Punkte verbinden (Formenbestimmung)

Nicht nur die Moéglichkeit, mit dem Rubberbanding Flichen-
groBBen zu bestimmen, bleibt dem Programmierer offen. Sie kén-
nen noch ganz andere Dinge damit anstellen. Denken Sie sich
zum Beispiel eine mathematische Funktion, von der ein beliebi-
ger Punkt ausgewdhlt werden soll. Das Programm zeichnet die
Funktion, und Sie sollen den gewiinschten Punkt markieren, da-
mit von zwei weiteren Eckpunkten Verbindungen gezogen wer-
den konnen (zu welchem Zweck, ist ja nicht so wichtig). Auch
hier kann man eine Abwandlung des Rubberbanding anwenden.
Sehen Sie sich dazu einmal das folgende Programm an:

ThRkkkkkhhkhhkhhkhhhkhhhhidhhkhdikhkikikd

'* Verbinden mit Rubbers *
'* Autor : Wolf-Gideon Bleek *
'* Datum : Juni '87 *
'* Version: 1.0 *
'* Betriebssystem: V1.2 & V1.3 *
TRhRREREARRRRAKARANEARRARR KT RAhh
LIBRARY ":graphics.library"
BasisGrafik:

LINE (100,180)-(540,180)

FOR =100 TO 540
x=(i-100)/2.444444
y=SIN(x*3.1415/180)*100
LINE -(i,180-y)

NEXT i

ON MOUSE GOSUB SetPoint
MOUSE ON
WHILE INKEY$<>" ®

200 Amiga Tips & Tricks ——

SLEEP
WEND
MOUSE OFF
END
SetPoint:
MStat=MOUSE(0)
IF MStat<>-1 THEN RETURN
CALL SetDrMd&(WINDOW(8),2)
NewPosition:
mx=MOUSE (1)
CALL Connect(mx)
WHILE MOUSE(0)=-1
IF mx<>MOUSE(1) THEN
CALL Connect(mx)
GOTO NewPosition
END IF
WEND
CALL SetDrMd&(WINDOW(8),1)
CALL Connect(mx)
RETURN
SUB Connect (x) STATIC
IF x<100 THEN x=100
IF x>540 THEN x=540
xw=(x-100)/2.444444
yw=SIN(xw*3.1415/180)*100
LINE (100,180)-(x, 180-yw)
LINE -(540,180)
PSET (x,180-yw)

END SUB
Variablen
MStat Mausstatus
i Laufvariable
mx Mausposition
X,y Grafikkoordinaten
XW, yw Koordinaten im Sub-Programm

Wenn Sie das Programm starten und dann die linke Maustaste
driicken, so sehen Sie, wie auf diesem Bogen ein Punkt wandert,
mit dem die Bogenendpunkte verbunden werden. Eine Ab-
wandlung des Thaleskreises! Wie programmiert man dies nun?

Programmbeschreibung

Der Aufbau gleicht eigentlich dem ersten Listing. Hinzugekom-
men ist noch die Ausgabe des Bogens, der iiber eine kleine Si-
nus-Spielerei errechnet wird. Dann sehen Sie aber die gleiche

— Gestaltung eigener Anwenderprogramme — 201

Warteschleife. GroBere Anderungen sind aber im Unterpro-
gramm geschehen: Nach dem Kontrollieren des Mausstatus wird
nur noch die x-Position des Cursors iiberpriift. Von ihr abhingig
wird eine SUB-Routine aufgerufen. Sie zeichnet die beiden Ver-
bindungslinien. Auch das Warten beschrinkt sich auf die Ab-
frage einer x-Verschiebung. Dann wird, wie beim ersten Pro-
gramm, das Gezeichnete geléscht und mit einer neuen Position
geplottet.

Sehen Sie sich ruhig mal die Verbindungsroutine an. Zuerst
werden die x-Werte in einen bestimmten Bereich gebracht, denn
nicht fiir jede x-Position existiert ein grafischer Funktionswert.
Danach berechnet das Programm anhand -"sehr komplizierter
Formeln" die Punktkoordinaten und zeichnet die Linien. Fertig!

\

4.2.3 Positionierung von Objekten

Diese letzte Variante entstand aus der Idee, ein Zeichenpro-
gramm fir zweidimensionale Netzgrafik zu schreiben. Wenn Sie
in so einem Programm mehrere Objekte gezeichnet haben, kann
es leicht vorkommen, dafl Ihnen die Lage von einigen nicht
mehr gefillt. Am einfachsten wire es nun, wenn man mit der
Maus in das Objekt fiahrt, die Maustaste gedriickt hilt und es
solange frei bewegen kann. Ahnliches macht nun das folgende
Programm.

Zuerst errechnet es die Eckpunkte eines Kreises. Eigentlich hat
ein Kreis keine Ecken, aber er soll doch nur vereinfacht darge-
stellt werden und, dafiir miissen 11 Punkte eben reichen. Viel-
leicht schreiben Sie das 2D-Netzgrafikprogramm und bauen
diese kleine Routine ein? Den Kreis kénnen Sie nach Driicken
der linken Taste solange bewegen, bis Sie die Taste wieder los-
lassen. Dann ist er fixiert.

202 Amiga Tips & Tricks

Phkdkhhkhhhhhhhhhkhhkhhhhhhhhhkhkihir

1% *
'* Objekte mit Rubbers *
IR cacecacwcccccacsaccsecsansascaas *
Tk *
'* Autor : Wolf-Gideon Bleek *
'* Datum : Juni '87 *
'* Version: 1.0 *
'* Betriebssystem: V1.2 & V1.3 *
1% *

§de e

LIBRARY ":graphics.library"
ObjektDefinieren:
DIM SHARED 0b%(10,1)
Pi=3.141593
FOR i=0 TO 360 STEP 36
x=COS(i*Pi/180)*30
y=SIN(i*Pi/180)*15
0b%(i/36,0)=x
0b%(i/36,1)=y
NEXT i

ON MOUSE GOSUB SetObjekt
MOUSE ON

WHILE INKEY$<>" u

SLEEP

WEND
MOUSE OFF
END

SetObjekt:

MStat=MOUSE(O0)

IF MStat<>-1 THEN RETURN

CALL SetDrMd&(WINDOW(8),2)
NewPosition:
=MOUSE(1)
my=MOUSE (2)
CALL DrawObjekt(mx,my)
WHILE MOUSE(0)=-1
IF mx<>MOUSE(1) OR my<>MOUSE(2) THEN
CALL DrawObjekt(mx,my)
GOTO NewPosition
END IF
WEND
CALL SetDrMd&(WINDOW(8),1)
CALL DrawObjekt(mx,my)
RETURN
SUB DrawObjekt(x,y) STATIC
PSET (0b%(0,0)+x,0b%(0,1)+y)
FOR i=1 TO 10

—— Gestaltung eigener Anwenderprogramme — 203

LINE -(Ob%(i,0)+x,0b%(i,1)+y)
NEXT i

LINE -(Ob%(10,0)+x,0b%(10,1)+y)
END SUB

Variablenfelder

Ob Feld fiir die Kreispunkte
Variablen

MStat Mausstatus

Pi 3.141593

i Laufvariable

mx, my Mauskoordinaten

Xy Koordinaten des Kreises

Programmbeschreibung

Nach dem Offnen der "graphics"-Library werden in das Feld
Ob% die x- und y-Werte eingelesen. Sie werden iiber eine
Schleife errechnet, die fiir 11 Punkte auf dem Kreisrand die
Koordinaten "raussucht". Der Rest des Hauptprogramms ist wie
bekannt gestaltet.

Wichtige Anderungen sind erst bei der Mausabfrage zu finden.
Zuerst wird wieder nachgesehen, ob die linke Maustaste ge-
driickt wird, denn sonst springt BASIC gleich wieder ins Haupt-
programm. Ist sie noch gedriickt, so wird der Zeichenmodus ge-
setzt, und an der momentanen Position wird das Objekt gezeich-
net. Dafiir trigt die neue SUB-Routine Sorge, die ich gleich
noch nidher beschreibe. Danach arbeitet das Programm in der
Warteschleife weiter, die wie immer erst verlassen wird, wenn
Sie die Maustaste loslassen. Allerdings springt das Programm
noch einmal vor die Schleife, wenn Sie die Position der Maus
verdndern, denn dann muf} das alte Gitternetz geloscht werden,
damit es am neuen Ort wieder gezeichnet werden kann.

Die SUB-Routine zum Zeichnen des Objektes ist darauf einge-
stellt, daB im Feld Ob% 11 Koordinatenpaare gespeichert sind.
Zuerst zeichnet es den ersten Punkt und verbindet dann alle

204 Amiga Tips & Tricks

weiteren mit dem LINE-Befehl in ihrer Reihenfolge. Vom letz-
ten wird dann noch zum allerersten eine Linie gezogen. Somit
sind alle Punkte zu einem Kreis verbunden.

4.3 Intuition-Programmierung unter GFA-BASIC

Auch das neue GFA-BASIC, das wesentlich schneller und kom-
fortabler in Programmierung und Anwendung ist als das Amiga-
BASIC, bietet die Moglichkeit, Vorteile und Bedienkomfort von
Intuition zu nutzen.

Dazu stehen neben schon vorgefertigten Befehlen auch die vom
Amiga her bekannten Libraries jedem Programmierer offen. Al-
lerdings werden sie auf eine etwas andere Weise als beim
AmigaBASIC zuginglich gemacht. Die vier wichtigsten stehen
dem Programmierer schon ohne Vorarbeit zur Verfiigung. Als
Grundlage dienen die FD-Files, wie wir es schon am Anfang
des AmigaBASIC-Kapitels erklirt haben. Auch hier miissen
diese von Commodore vorgefertigten Files erst mit Hilfe eines
Umsetzungs-Programms in die fiir GFA-BASIC nétige Form ge-
bracht werden.

Sehen Sie hier das Listing des im GFA-Handbuch abgedruckten
Umsetzungs-Programms in einer modifizierten Form. Es wurde
erweitert und funktioniert nun fiir alle Libraries, die von GFA-
BASIC unterstiitzt werden.

' Programm zur Konvertierung von FD-Files
' in GFA-BASIC Format

' (mod) by Wolf-Gideon Bleek

DIM a$(15) ! Register-Variable definieren
INPUT "Welche Library";lib$! Eingabe des Library-Namens
IF Libg="n I Abbruch-Moglichkeit flur die Eingabe
END
ENDIF
OPEN "i", #1,"df0:fd1.3/"+lib$+"_Lib.fd" ! FD-File zum Lesen &ffnen
OPEN "o", #2,"df1:"+(lib$+"_Lib.GFA" ! MERGE-File auf Diskette erzeugen
DO UNTIL EOF(#1) ! HAUPTSCHLEIFE
LINE INPUT #1,a$! 1 Befehlszeile einlesen

IF LEFT$(a$)="#" ! auf internen Befehl Uberprifen

—— Gestaltung eigener Anwenderprogramme

IF LEFT$(a$)="#n
SELECT CVL(MID$(a$,3))
CASE "“base"
SELECT UPPER$(MID$(a$,8))
CASE "_DoOs"
L$="_DosBase"
CASE "_LAY"
L$="_LayersBase"
CASE "_INT"
L$="_IntBase"
CASE "_GFX"
L$="_GfxBase"
CASE "_sys"
L$={4)"
DEFAULT
L$=MID$(a$,9)+"%"
ENDSELECT
CASE "bias"
0%=VAL(MID$(a$,8))
CASE "publ"
CASE “priv"
ENDSELECT
ELSE IF LEFT$(a$)<>"*n
PRINT #2,"PROCEDURE *;
n$=LEFT$(a$, INSTR(a$,")"))
nl$=LEFT$(n$, INSTR(a$,"(")-1)
PRINT #2,nl$;
nr$=MID$(n$,LEN(nL$)+2)
i%=0
WHILE LEN(nr$)>1
a%=INSTR(nr$,",")
IF a%=0
a%=LEN(nr$)
ENDIF
a$(i%)=LEFT$(nr$,a%-1)
INC i%
nr$=MID$(nr$, a%+1)
WEND
IF i%
a%=1
WHILE a%<i%
b%=0
WHILE b%<a%

IF a$(a%)=a$(b%)
a$(a%)=a$(a%)+STR$(a%)
a$(b%)=a$(b%)+STR$(b%)

ENDIF

INC b%

WEND

INC a%
WEND
PRINT #2,"(";
j%=0

205

auf internen Befehl Uberprifen
Basis-Identifikation
DOS-Library

Layers-Library
Intuition-Library
Graphics-Library

Exec-Library

Basis-Adresse

ungleich Kommentar
Funktion: neue Prozedur beginnen

Name der Prozedur als Funktion

! wenn mit Parametern

! Klammer auf fir Parameter

206 Amiga Tips & Tricks

WHILE j%<i%-1
PRINT #2,a$(j%);"%,"; | Parametername
INC j%
WEND
PRINT #2,a$(j%);"%)"; ! letzter Parameter
ENDIF
PRINT #2
r$=MID$(a$,LEN(N$)+2)
i%=0
WHILE LEN(r$)
SELECT ASC(r$)

CASE "D" ! Datenregister
PRINT #2,"m68%(";MID$(r$,2,1);")=";a$(i%);"%"
CASE “A“ | Adressregister
PRINT #2,"m68%(";VAL(MID$(r$,2,1))+8;")=";a$(i%);"%"
ENDSELECT
INC i%
- r$=MID$(r$,4)
WEND
PRINT #2,"m68%(14)="; 1% ! Prozessorvariablen
PRINT #2,"RCALL ";L$;"-";0%;",m68%()" ! Routine aufrufen
ADD 0%,6
PRINT #2,"RETURN" ! Prozedur verlassen
ENDIF
LOOP
CLOSE #2 ! Files wieder schliefen
CLOSE #1

Listing FD_Konvert (GFA-BASIC)

Programmbeschreibung

Nun ist es uns moglich, auf fast die gleiche Weise, wie wir es
schon am Anfang des Kapitels getan haben, Intuition uber
BASIC zu Programmieren. Hinzugekommen ist aber die Bedien-
freundlichkeit und die Geschwindigkeit des GFA-BASIC.

4.3.1 Die fertigen Bedien-Elemente

Sicherlich ist es ein beruhigendes Gefithl, wenn man weif3, daf3
auch in GFA-BASIC alle Programmiersaiten gezupft werden
konnen, doch manchmal ist man froh, wenn die aufwendigen
Betriebssystem-Eingriffe erspart bleiben und mit weniger Auf-
wand das gleiche Ziel erreicht werden kann.

— Gestaltung eigener Anwenderprogramme —— 207

Deshalb bietet GFA-BASIC neben der freien Betriebssystem-
Programmierung auch zwei sehr wichtige und komplexe BASIC-
Befehle. Der erste heiBt ALERT und #hnelt sehr stark dem
System-Requester, der hier aber mit drei Auswahlmoglichkeiten
eine erweiterte Version darstellt, somit also noch individueller
gestaltet werden kann. Lassen Sie sich aber nicht durch den
Namen irritieren! Alert wurde vom Atari ST tibernommen und
hat nichts mit der Guru-Meditation zu tun.

Mit dem zweiten Befehl wird endlich das groBe Problem der
File-Auswahl behoben, das jedem Programmierer ein Dorn im
Auge war. Mit einem einzigen Aufruf wird eine duflerst kom-
fortable File-Auswahl ermdéglicht, die dem Programm zum
Schluf3 nur noch den vom Benutzer ausgewihlten File-Namen
iibergibt.

Die Programmierung der File-Select-Box stellt kein grofBles Pro-
blem dar. Sie wird mit nur wenigen Parametern - einer Uber-
schrift, dem Text fiir das OK-Feld und der Riickgabevariablen
- aufgerufen, leistet dafiir aber hervorragende Arbeit. Sehen Sie
am besten das Beispielprogramm, anhand dessen sich die Funk-
tion viel leichter erklidren 1483t:

e e Je Je 9 e 7 e 9 9 e e e e e e e e A ok ok ok ok I A e e e e e e
File - Select - Test *

*

Demonstration zum Aufruf
einer File-Select-Box

F|r Amiga Tips & Tricks DB
(p) im Marz 1989 by Wgb
Version: 1.2/1.3

GFA: 3.0

* % % ¥ % ¥ % ¥ ¥ ¥ ¥
* ¥ F F * ¥ ¥ ¥ ¥

e e e e e A o e o vk o e A o ke e ok e e e e ok e e ke e o ke e ok e

FILESELECT "Bitte wdhlen Sie ein File", "Bestatige","RAM:", pfad$

IF pfad$=1n I Keine Auswahl erfolgt
PRINT "“Abbruch"

ELSE ! Auswahl auswerten
]
zeigerd=1

WHILE MID$(pfad$,zeigerd,1)<>":" AND zeigerd<=LEN(pfad$)

208

Amiga Tips & Tricks

zeigerd=zeigerd+1

WEND
device$=LEFT$(pfad$, zeigerd)
]

IF LEN(device$)=LEN(pfad$)

file$=device$
device$=""

ELSE

zeigerf=LEN(pfad$)

WHILE MID$(pfad$,zeigerf,1)<>"/" AND MID$(pfad$,zeigerf,1)<>":" AND
zeigerf>=1

zeigerf=zeigerf-1
WEND
file$=MID$(pfad$,zeigerf+1)
verzeichnis$=MID$(pfad$,zeigerd+1,zeigerf-zeigerd)
1

ENDIF
PRINT "Device : ";device$
PRINT "Verzeichnis: ";verzeichnis$
PRINT "File-Name : ";file$

ENDIF

Listing: GFA File-Select-Box

Programmbeschreibung

Mit dem ersten Befehl wird die File-Select-Box aufgerufen. Wir
iibergeben die Uberschrift der Box ("Bitte wihlen Sie ein File"),
den Text ("Bestitige"), den Pfad, von dem zuerst das Verzeichnis
geladen werden soll ("RAM", damit’s schneller geht), und die
Variable, in der wir spiiter unser Ergebnis erhalten. Danach
erfolgt die Auswertung:

1.

Ist die Variable leer, so hat der Benutzer das Abbruch-
Gadget betitigt, die File-Auswahl wurde verweigert.

Ist ein Inhalt in der Variablen, dann wird dieser auf Device,
Verzeichnis- und File-Angabe hin untersucht. Das Pro-
gramm liefert zum Schlufl die Ausgabe jedes einzelnen der
drei Bestandteile. Dies erleichtert spiter die Bearbeitung von
Verzeichnis- oder Diskettenwechseln oder die Anderung des
Suffixes am File-Namen.

—— Gestaltung eigener Anwenderprogramme ——— 209

Bte udhlen Sie ein File
A Trashcan
; ERT-BOX GFA

Abb. 3: File-Select-Box

Als nichstes soll die Alert-Box betrachtet werden, die vom Atari
ST mit GFA-BASIC ibernommen wurde. Der vom Amiga be-
kannte System-Requester bietet zwei Gadgets zur Auswahl. Da
es oftmals drei Antworte-Moglichkeiten auf eine Frage gibt,
stellt dieser Alert auch drei Gadgets zur Verfiigung. Das fol-
gende Listing verwendet auch diesen Befehl zur Demonstration:

hhkdhhhhhdkhhhkkhkhrhhrkhhihikhkhihhiih

Kkkhdhhkhhdhhhkihkkhhhihhkhkhkd

]

L Alert-Box Testprogramm *
I ¥ cecceccccccccccccccccss *
1% *
' * Fir Amiga Tips & Tricks DB *
t * (p) im Marz 1989 by Wgb *
' * Version: 1.2/1.3 *
' * GFA: 3.0 *
1 % *
)

)

210 Amiga Tips & Tricks ———

ALERT 0,ERR$(100),1,"OK",var

ALERT 0,"Wie geht es Ihnen|Lieber Amiga
User™,1,"Gut |Mittel |Schlecht",var

1

1F var=1

PRINT "Das freut micht, denn mir geht es ja auch immer gut!®"
ELSE IF var=2

PRINT "Man kann sich als Mensch ja nicht jeden Tag gut flhlen.®
ELSE IF var=3

PRINT "Das ist schade, ich hoffe, ich kann Ihnen helfen!"
ENDIF

Listing: GFA Alert-Box

Programmbeschreibung

Der Befehl ALERT ist sehr einfach aufzurufen. Im Ganzen
werden finf Parameter iibergeben. Der erste steht fiir ein
Symbol, das in dem Alert-Fenster erscheinen soll. Das war beim
Atari ST so iiblich. Doch weil der Amiga diese Symbole nicht
kennt, hat die dort stehende Zahl keine Bedeutung. Wéhlen Sie
einfach immer 0, damit spiter bei einer Implementierung keine
Probleme auftreten.

Als nichstes folgt der Erlduterungs-Text, der aus fiinf Zeilen 4
40 Zeichen bestehen kann. Jede Zeile wird mit einem "|"-Strich
von der folgenden getrennt. Uberstehende Zeichen oder Zeilen
werden einfach abgetrennt, weil sie nicht dargestellt werden
koénnen.

Fir die maximal drei Antwort-Gadgets wird wieder eine String-
Variable definiert, in der entsprechend den Gadgets bis zu drei
Texte getrennt durch das oben verwendete Zeichen angegeben
werden miissen. Vor dieser Variablen wird noch die Nummer
des Gadgets angegeben, bei dem die Bestitigung noch zusitzlich
tiber die RETURN-Taste geschehen kann.

Nun fehlt nur noch die Angabe der Variablen, in der die Num-
mer des ausgewihlten Gadgets tibertragen werden soll. Fertig ist
dieser Befehl!

Im Programm selbst rufen wir zuerst den Befehl mit der Funk-
tion ERR$() auf, da diese je nach Wahl der Nummer einen

— Gestaltung eigener Anwenderprogramme —— 211

Fehlertext liefert, der fir die Alert-Box vorbereitet ist. Unter
der Nummer 100 findet man die System-Meldung von GFA-
BASIC. Als zweites Beispiel ist nach dem Aufruf der Alert-Box
eine Auswertung programmiert, die Sie angepaflt in eigene Pro-
gramme {ibernehmen kénnen.

212 Amiga Tips & Tricks

—— AmigaBASIC Intern 213

5. AmigaBASIC Intern

AmigaBASIC, das sich auf jeder Extras-Disk befinden sollte,
zeichnet sich bekanntlich nicht nur durch einen sehr michtigen
Befehlssatz aus, sondern auch durch eine recht diirftige Doku-
mentation, die sich im wesentlichen auf eine zumeist unvollstin-
dige Beschreibung der Befehle beschrinkt. Wer vor der Be-
kanntschaft mit seinem Amiga bereits einen C64 hatte, wird sich
sicherlich an die vielen kleinen Utilities erinnern, mit deren
Hilfe man Programme verdndern, Programme erzeugen oder nur
aus ihnen Daten herauslesen konnte. Unmoéglich auf dem Amiga,
werden Sie jetzt sagen, schlieBlich wird jedes Programm an eine
andere Adresse geladen usw.

Sie haben durchaus recht, wenn Sie denken, daf3 eine Manipula-
tion im Speicher derart kompliziert ist, daB3 ein solches Manipu-
lationsprogramm ungeahnte Ausmafe annehmen miifite. Gliick-
licherweise verfiigen wir aber iiber Hilfsmittel, die Programm-
Verinderungen zulassen. Ich meine die Laufwerke wie das ein-
gebaute Diskettenlaufwerk df0:, die allseits beliebten RAM-
Disks ram: und RAD: und eventuell angeschlossene Zusatzlauf-
werke. SchlieBlich werden Programme auf Disketten abgespei-
chert. Die Moglichkeiten, die uns diese Laufwerke er6ffnen, ge-
hen sogar so weit, da3 es machbar ist, laufende Programme sich
selbst verdndern zu lassen und sie in dieser gednderten Form
weiterlaufen zu lassen, doch dazu spiter mehr.

Man kann AmigaBASIC-Programme auf drei verschiedene Arten
abspeichern. Dieses macht unsere folgenden Exkursionen etwas
komplizierter, die Anwendungen, die noch folgen, jedoch um so
leichter. Bevor ich allerdings die Programmierung der Ultilities
beschreibe, mochte ich, dafl Sie die dazu notwendigen Kennt-
nisse iiber den Aufbau der drei verschiedenen File-Typen erlan-
gen, damit es Ihnen moglich ist, die Utilities fiir Thren persén-
lichen Bedarf umzuschreiben bzw. eigene zu entwickeln. Durch
die zugegebenermaflen groBe Menge Theorie, die jetzt folgen
wird, werden wir uns also durchbeiflen miissen.

214 Amiga Tips & Tricks —

5.1 FileMonitor der Superlative

Zunichst mochte ich Thnen einen File-Monitor vorstellen, der es
Ihnen gestatten wird, jedes beliebige Programm hexadezimal und
als ASCII-Text anzuschauen und zu verdndern. Diesen oder
einen beliebigen anderen FileMonitor werden Sie in den nach-
folgenden Kapiteln hiufig brauchen, um die entsprechenden
Manipulationen durchfithren zu kénnen und die beschriebenen
Punkte zu verdeutlichen. Hier das Programm:

OPTION BASE 1

DEFLNG a-z

ON ERROR GOTO FAILED

DECLARE FUNCTION ALLOCMEM LIBRARY
DECLARE FUNCTION GETMSG LIBRARY
LIBRARY":bmaps/exec. library"
LIBRARY":bmaps/graphics. library"
DECLARE FUNCTION OPENSCREEN LIBRARY
DECLARE FUNCTION OPENWINDOW LIBRARY
LIBRARY":bmaps/intuition. library"
DECLARE FUNCTION LOCK LIBRARY
DECLARE FUNCTION EXAMINE LIBRARY
DECLARE FUNCTION EXNEXT LIBRARY
DECLARE FUNCTION IOERR LIBRARY
DECLARE FUNCTION XOPEN LIBRARY
DECLARE FUNCTION XREAD LIBRARY
DECLARE FUNCTION XWRITE LIBRARY
DECLARE FUNCTION SEEK LIBRARY
LIBRARY":bmaps/dos. library"

LPRINT
PRINTH-==-ccmen- FILEMONITOR-V1.0---------- "
PRINT"~ 188 by DATA BECKER (w)'88 by S. M."
PRINT

PRINT"Program starts in a few seconds."
PRINT"Please stand by...(no Multitasking"
PRINT"during initialization!)"
DIM SHARED borders(14),itxt(25),gadgets(24),sinfo(2)
bfec01=12577793&
clearentry$=SPACE$(30)
clearstring$=STRING$(80,0)
INITIALIZE
DIRECTORY
start%=-1
gesperrt%=0
WHILE (-1)
qualifier%=PEEK(bfec01)
IF (qualifier%>&H60)AND(qualifier¥%<&H68)THEN
IF qualifier%AND 1 THEN GOSUB tastendruck
END IF .

—— AmigaBASIC Intern 215

intuimsg=GETMSG(userport)
IF intuimsg>0 THEN GOSUB IntuitionMsg

WEND

IntuitionMsg:

MsgTyp=PEEKL (intuimsg+20)

IF MsgTyp=2097152& THEN
IF startX% THEN RETURN
ascii.i%=PEEKW(intuimsg+24)

IF ascii.i%>0 GOTO. tastendruck
END IF
Item=PEEKL(intuimsg+28)
GadgetNr%=PEEK(Item+39)
IF MsgTyp=32 THEN
IF(GadgetNr%=10)OR(GadgetNr¥%=14)THEN gesperrt%=-1
RETURN
END IF
IF MsgTyp<>64 THEN RETURN
gesperrtX=0
IF GadgetNr%<0 THEN ERROR 255
1F GadgetNr%<5 THEN
COPYMEM SADD(clearstring$),sinfo(1)+36,80
POKEL sinfo(1)+36,CVL("DF"+CHR$(47+GadgetNr¥)+":")
lasttype%=0
DIRECTORY
ELSEIF GadgetNr%<10 THEN
SETFILEACTDIR
IF lasttype%=1 THEN
STATUS "Loading Block"
OPENFILE .
IF oldhandle>0 THEN :STATUS "Edit"
RETURN

END IF

DIRECTORY

ELSEIF GadgetNr%=10 THEN
gesperrt%=0
DIRECTORY
RETURN

ELSEIF GadgetNr%=11 THEN
IF dirstart%>4 THEN dirstartX=dirstart%-5:DISPLAYDIR

ELSEIF GadgetNr%=12 THEN
IF anzahl%>dirstart%+5 THEN

dirstart%=dirstart%+5
DISPLAYDIR
END IF

ELSEIF GadgetNr%=13 THEN
DIRECTORY

ELSEIF GadgetNr%=14 THEN
gesperrt%=0
newof fset=PEEKL(sinfo(2)+28)*488
IF (newoffset>=newflen)OR(newoffset<0) THEN

POKEL sinfo(2)+36,CVL("0"+MKI$(0)+CHR$(0))
STATUS “illegal Input"
DISPLAYBEEP scrbase

216 Amiga Tips & Tricks

RETURN
END IF
oldpos=SEEK(oldhandle, newoffset,-1)
currentoffset=newoffset
STATUS “reading Block"
READBLOCK
RETURN
ELSEIF oldhandle=0 THEN
POKEL sinfo(2)+36,CVL("0"+MKI$(0)+CHR$(0))
STATUS "no File selected"
DISPLAYBEEP scrbase
RETURN
ELSEIF GadgetNr%=15 THEN
COPYMEM fundo, fbuffer,488
DISPLAYBUFFER
ELSEIF GadgetNr%=16 THEN
STATUS "reading again"
oldpos=SEEK(oldhandle, -gelesen,0)
READBLOCK
ELSEIF GadgetNr%=17 THEN
IF currentoffset<newflen-488 THEN
STATUS "reading next Sec"
currentoffset=currentoffset+488
READBLOCK
END IF
ELSEIF GadgetNr%=18 THEN
IF currentoffset>487 THEN
STATUS “reading last Sec"
currentoffset=currentoffset-488
oldpos=SEEK(oldhandle, -gelesen-488,0)
READBLOCK
END IF
ELSEIF GadgetNr%=19 THEN
STATUS "writing Buffer®
oldpos=SEEK(oldhandle,-gelesen,0)
wr=XWRITE(oldhandle, fbuffer,gelesen)
ELSEIF GadgetNr%=20 THEN
DUMPFILE
ELSEIF GadgetNr%=21 THEN
DUMPBUFFER
ELSEIF GadgetNr#%=22 THEN
edmode%=0
STATUS “switched to HEX"
ELSEIF GadgetNr#%=23 THEN
edmode¥=1
STATUS “switched to ASCII"
ELSEIF GadgetNr#%=24 THEN
STATUS "ARE YOU SURE? Y/N"
t%=0
WHILE (t%<>&H9D)AND(t%<>&H93)
t%=PEEK(bfec01)
WEND
‘IF t%=&H9D THEN

—— AmigaBASIC Intern 217

STATUS "You ARE sure! BYE"
GOTO FAILED
END IF
END IF
STATUS "OKAY"
RETURN
tastendruck:
ascii$=UCASE$(CHR$(ascii.i%))
IF edmodeX=1 GOTO ASCIImode
wertX=INSTR("0123456789ABCDEF",ascii$)-1
IF qualifier¥=&H67 THEN
of fsetX=of fset%-24
IF offset%<0 THEN offset%=gelesen-1:nibble%=1
CURSORAUS
CURSORAN
RETURN
ELSEIF qualifier¥=&H65 THEN
of fset¥=of fsetX+24
IF offset%>=gelesen THEN offset%=0:nibble%=0
CURSORAUS
CURSORAN
RETURN
ELSEIF qualifier¥=&H63 THEN
IF nibble%=0 THEN
nibble%=1
ELSE
nibble%=0
of fset%=of fset%+1
IF offset%>=gelesen THEN offset%=0
END IF
CURSORAUS
CURSORAN
RETURN
ELSEIF qualifier¥%=&H61 THEN
IF nibble%=1 THEN
nibble%=0
ELSE
nibble%=1
of fset¥%=offset%-1
IF offset%<0 THEN offset%=gelesen-1
END IF
CURSORAUS
CURSORAN
RETURN
END IF
IF wert%>=0 THEN
IF nibble%=0 THEN andi%=15:muls%=16:GOTO mk
andi%=240
muls%=1
mk: a%=(PEEK(fbuffer+offset%)AND andi%)+wert%*muls%
POKE fbuffer+offset%,a%
CURSORAUS
MOVE rastport,o0.x%,0.y%+6

218 Amiga Tips & Tricks —

SETAPEN rastport,1
SETBPEN rastport,0
TEXT rastport,SADD("0123456789ABCDEF")+wert%, 1
MOVE rastport, (0.b%+54)*8,0.y%+6
SETAPEN rastport,0
SETBPEN rastport,1
TEXT rastport, fbuffer+offset%, 1
IF nibble%=0 THEN nibble%=1:G0TO mk2
nibbleX=0
of fset¥k=offset%+1
IF offset¥%>=gelesen THEN offset%=0
mk2:

CURSORAN
RETURN

END IF

RETURN

ASCIImode:

IF qualifier%=&H67 THEN
of fset%=of fset%-24
IF offset%<0 THEN offset%=gelesen-1:nibble%=1
CURSORAUS
CURSORAN
RETURN

ELSEIF qualifier¥%=&H65 THEN
offset¥%=of fset%+24
IF offset%>=gelesen THEN offset%=0:nibble%=0
CURSORAUS
CURSORAN
RETURN

ELSEIF qualifier%=&H63 THEN
of fset¥%=offset%+1:1F offset¥%>=gelesen THEN offset%=0
CURSORAUS
CURSORAN
RETURN

ELSEIF qualifier%=&H61 THEN
offset%=offset%-1
IF offset%<0 THEN offset%=gelesen-1
CURSORAUS
CURSORAN
RETURN

END IF

IF ascii$<>CHR$(0) THEN
wert%=ascii.i%
POKE fbuffer+offset%,wert%
CURSORAUS
MOVE rastport,o.x%+(o.m%=0)*nibble%, 0.y%+6
SETAPEN rastport,1
SETBPEN rastport,0
TEXT rastport,SADD(RIGHT$("0"+HEX$(wert%),2)),2
SETAPEN rastport,0
SETBPEN rastport,1
MOVE rastport, (0.b%+54)*8,0.y%+6
TEXT rastport, fbuffer+offset%,1

—— AmigaBASIC Intern 219

of fset%=of fset%+1
IF offset%>=gelesen THEN offset%=0
CURSORAN
RETURN
END IF
RETURN
FAILED:
UNDEF
IF scrbase>0 THEN
IF winbase>0 THEN
CLOSEWINDOW winbase
IF oldhandle>0 THEN :XCLOSE oldhandle
END IF
CLOSESCREEN scrbase
END IF
LIBRARY CLOSE
SYSTEM
SUB DUMPBUFFER STATIC
SHARED fbuffer, HEXBUFF,currentlongs,currentoffset
ausgabe$=SPACE$(1134)
HEXBUFF currentlongs-1, fbuffer, SADD(ausgabe$) !
STATUS "printing"
FOR i%=0 TO 20

LPRINT RIGHT$(" "+STR$(currentoffset+i%*20),8);": ";
LPRINT MID$(ausgabe$, i%*54+1,54)

NEXT

LPRINT

END SUB

SUB DUMPFILE STATIC
SHARED gelesen,oldhandle,currentoffset
savedoffset=currentoffset
oldpos=SEEK(oldhandle,0,-1)
currentoffset=0
df.loop:
READBLOCK
DUMPBUFFER
currentoffset=currentoffset+488
IF gelesen=488 GOTO df.loop
currentoffset=savedoffset
oldpos=SEEK(oldhandle,currentoffset,-1)
READBLOCK
END SUB
SUB CURSORAN STATIC
SHARED o.x%,0.y%,edmode%,0.m%, rastport,offset¥,nibble%
SHARED o.b%
2%=INT(of fset%/24)
o.b%=of fset%-z%*24
L%=INT(0.b%/4)
0.x%=(0.b%*2+|%- (edmode%=0)*nibble%)*8
0.Yy%=2%*8+2
SETAPEN rastport,3
SETDRMD rastport,3
RECTFILL rastport,o0.x%,0.y%,0.x%+7-(edmode%=1)*8,0.y%+7

220 Amiga Tips & Tricks

RECTFILL rastport,(0.b%+54)*8,0.y%, (0.b%+54)*8+7,0.y%+7
SETDRMD rastport,1

SUB CURSORAUS STATIC
SHARED o0.xX,0.y%,0.m%,0.b%, rastport
SETAPEN rastport,3
SETDRMD rastport,3
RECTFILL rastport,o0.x%,0.y%,0.X%+7-(0.m%=1)*8,0.y%+7
RECTFILL rastport,(0.b%+54)*8,0.y%, (0.b%+54)*8+7,0.y%+7
SETDRMD rastport,1
END SUB
SUB OPENFILE STATIC
SHARED oldhandle,scrbase,currentoffset,actdir, newflen
SHARED numblocks
IF oldhandle>0 THEN :XCLOSE oldhandle
oldhandle=XOPEN(actdir, 1005)
IF oldhandle=0 THEN
STATUS "File Open Error"
DISPLAYBEEP scrbase
EXIT SuB
END IF
numblocks=newflen/488
W=CVL(RIGHT$(" "+STR$(numblocks),4))
POKEL itxt(12)+20,w
currentoffset=0
READBLOCK
END SUB
SUB READBLOCK STATIC
SHARED oldhandle, fbuffer, fundo,gelesen,currentlongs
SHARED currentoffset
gelesen=XREAD(oldhandle, fbuffer,488)
1F gelesen<488 THEN
v$=STRING$(488-gelesen,0)
COPYMEM SADD(v$), fbuffer+gelesen, LEN(V$)
END IF
x=currentoffset/488
W=CVL(LEFT$(MIDS(STR$(x),2)+MKL$(0),4))
POKEL sinfo(2)+36,w
currentlongs=(gelesent+3)/4
COPYMEM fbuffer, fundo, 488
DISPLAYBUFFER
END SUB
SUB DISPLAYBUFFER STATIC
SHARED HEXBUFF,currentlongs, fbuffer,rastport,gelesen
SHARED start%,offset%,nibble%
ASCIIbuffer$=SPACE$(1134)
HEXBUFF currentlongs-1, fbuffer,SADD(ASCIIbuffer$)
SETAPEN rastport,0
RECTFILL rastport,0,0,639,190
SETAPEN rastport,1
SETBPEN rastport,0
FOR i%=0 TO 20

—— AmigaBASIC Intern 221

MOVE rastport,0,i%*8+8
TEXT rastport,SADD(ASCIIbuffer$)+i%*54,54
NEXT
SETAPEN rastport,0
SETBPEN rastport,1
L%=24
FOR i%=0 TO 20 .
MOVE rastport,432,i%*8+8
IF i%=20 THEN l%=8
TEXT rastport, fbuffer+i%*24, 1%
NEXT
start¥=0
offset%=0
nibble%=0
CURSORAN
END SUB
SUB SETFILEACTDIR STATIC
SHARED GadgetNr%,actdir,scrbase,clearstring$,newflen
SHARED dirstart%,dirbuff, lasttype%
vergl1$=STRING$(31,0)
vergl2$=STRING$(80,0)
COPYMEM actdir,SADD(vergl2$),79
COPYMEM itxt(GadgetNr%)+20,SADD(vergl1$),30
12%=INSTR(vergl2%$,CHR$(0))-1
L1%=INSTR(vergl1$,CHR$(0))-1
IF lasttype%=1 THEN
12%=INSTR(vergl2$,1:1)
sfad. loop:
L3%=INSTR(L2%+1,vergl2$, /")
IF 13%>12% THEN 12%=13%:G0TO sfad.loop
END IF
IFCL1%+12%)>78 THEN
STATUS “FileName Too Long"
DISPLAYBEEP scrbase
EXIT SUB
END IF
Vv8=LEFT$(vergl2$, 12%)
IF(lasttype%>1)AND(RIGHTS$(VS, 1)<>":")THEN ve=v+it/n
lasttype%=PEEK(dirbuff+(dirstart%+GadgetNr¥-5)*36+31)
Vv$=LEFT$(v$+vergl1$+clearstring$, 79)
COPYMEM SADD(v$),actdir,79
newf len=PEEKL (dirbuf f+(dirstart%+GadgetNr%-5)*36+32)
END SUB
SUB DISPLAYDIR STATIC
SHARED dirstart%,anzahl%,clearentry$,dirbuff,winbase
FOR i%=5 TO 9
COPYMEM SADD(clearentry$),itxt(i%)+20,30
NEXT
i%=0
IF anzahl¥<=dirstart% GOTO displaydir.show
REFRESHGADGETS gadgets(23),winbase,0
displaydir.loop:
a=dirbuff+(i%+dirstart¥)*36

222 Amiga Tips & Tricks

COPYMEM a, itxt(i%+5)+20,30
POKE itxt(i%+5),PEEK(a+31)
i%=i%+1
IF (i%<5)AND(anzahl%>(dirstart%+i%))GOTO displaydir.loop
displaydir.show:
REFRESHGADGETS gadgets(23),winbase,0
END SUB
SUB DIRECTORY STATIC
SHARED anzahl%,dirstart%,actdir,lasttype%
SHARED fileinfo,clearentry$,dirbuff,newflen
STATUS "Examining Entry"
dirlock=L0CK(actdir,-2)
IF dirlock=0 THEN
STATUS “"File not found"
EXIT SUB
END IF
e=EXAMINE(dirlock,fileinfo)
IF e=0 THEN
UNLOCK dirlock
STATUS "Examine Error"
EXIT SUB
END IF
IF PEEKL(fileinfo+120)<0 THEN
newflen=PEEKL(fileinfo+124)
UNLOCK dirlock
OPENFILE
lasttype¥=1
EXIT SUB
END IF
lasttype¥=3
anzah 1 %=0
dirstart%=0
FOR i%=5 TO 9
COPYMEM SADD(clearentry$),itxt(i%)+20,30
NEXT
STATUS “reading Directory"
directory. loop:
e=EXNEXT(dirlock, fileinfo)
IF e=0 THEN
e=]10ERR
IF e<>232 THEN
STATUS "Directory invalid"
anzah | %=0
ELSE
STATUS “Okay"
END IF
UNLOCK dirlock
DISPLAYDIR
EXIT SuB
END IF
a=dirbuff+anzah %*36
COPYMEM fileinfo+8,a,30
IF PEEKL(fileinfo+120)<0 THEN c%=1 ELSE c%=3

—— AmigaBASIC Intern 223

POKE a+31,c%
POKEL a+32,PEEKL(fileinfo+124)
anzahl%=anzah | %+1
IF anzahl%<72 GOTO directory.loop
UNLOCK dirlock
STATUS "Okay"
DISPLAYDIR
END SUB
SUB INITIALIZE STATIC
SHARED HEXBUFF, fbuffer, fundo,nscreen,dirbuff,fileinfo
SHARED actdir,scrbase,winbase,viewport,rastport
SHARED userport
FORBID
DEFCHIP HEXBUFF,60&
DEFCHIP fbuffer,b488&
DEFCHIP fundo,488&
DEFCHIP nscreen,88&
DEFCHIP dirbuff,b2592&
DEFCHIP fileinfo,252&
DEFCHIP darts,68&
borders(13)=darts+28
borders(14)=darts+48
FOR i%=0 TO 14
READ i$
POKEW HEXBUFF+i%*4,VAL("&H"+LEFT$(i$,4))
POKEW HEXBUFF+i%*4+2,VAL("&H"+RIGHT$(i$,4))
NEXT
FOR i%=0 TO 6
READ i$
POKEW darts+i%*4,VAL("&H"+LEFT$(i$,4))
POKEW darts+i%*4+2, VAL("&H"+RIGHT$(i$,4))
NEXT
POKE darts+29,10
POKE darts+31,3
POKE darts+33,7
POKE darts+35,7
POKE darts+37,1
POKEW darts+42,256
COPYMEM darts+28,darts+48,20
FOR i%=0 7O 1
POKEL darts+i%*20+38,darts+i%*14
NEXT
FOR i%=1 TO 12
READ a%,b%,c%,d%,e%, %
BORDER borders(i%),a%, b%,c%,d%,e%
IF f%>0 THEN POKEL borders(i%)+12,borders(f%)
NEXT
FOR i%=1 TO 4
INTUITEXT itxt(i%),1,6,3,"DF"+CHR$(47+i%)+":", 0&
NEXT
FOR i%=5 TO 9
INTUITEXT itxt(i%),1,8,0,SPACES$(30),0&
NEXT

224 Amiga Tips & Tricks ——

FOR i%=10 TO 25
READ a%,b%,c%,d$,e%
IF eX%>0 THEN f=itxt(e%) ELSE f=0
INTUITEXT itxt(i%),a%,b%,c%,ds,f
NEXT
STRINGINFO sinfo(1),79,"DF0:"
STRINGINFO sinfo(2),4,"0"+STRING$(15,0)
actdir=sinfo(1)+36
d=0
FOR i%=1 TO 24
READ eX,fX,G%,h%, j%, k%, L%, m%,n%, 0%
IF 0%>0 THEN a=sinfo(o%) ELSE a=0
IF n¥>0 THEN b=itxt(nX) ELSE b=0
IF mX>0 THEN c=borders(m%) ELSE c=0
GADGET gadgets(i%),d,e%, f%,G%,h%, j%,k%,l%,c,b,a,i%
d=gadgets(iX)
NEXT
POKEL nscreent+é4,41943296&
POKE nscreen+9,2
POKE nscreen+12,192
POKEW nscreen+14,&H10F
nwindow=nscreen+32
POKEL nwindow+4,41943296&
POKEW nwindow+8,259
POKE nwindow+11,32
POKE nwindow+13,96
POKE nwindow+15,1
POKE nwindow+16,24
POKEL nwindow+18,d
POKE nwindow+47,15
POKEW nscreen+82,&HFFF
POKE nscreen+84,15
POKEW nscreen+86,&HFDO
PERMIT
scrbase=0PENSCREEN(nscreen)
IF scrbase=0 THEN ERROR 7
POKEL nwindow+30,scrbase
winbase=0PENWINDOW(nwindow)
IF winbase=0 THEN ERROR 7
rastport=PEEKL(winbase+50)
viewport=scrbase+44
userport=PEEKL(winbase+86)
LOADRGB4 viewport,nscreen+80,4
END SuB
SUB STATUS(t$)STATIC
SHARED winbase
t$=LEFTS(t$+SPACE$(17),17)
COPYMEM SADD(t$),itxt(22)+20,17
REFRESHGADGETS gadgets(23),winbase,0
END SUB
SUB DEFCHIP(Buffer,size)STATIC
SHARED MList
size=size+8

AmigaBASIC Intern

Buffer=ALLOCMEM(size,65538&)

IF Buffer>0 THEN
POKEL Buffer MList
POKEL Buffer+4,size
MList=Buffer
Buffer=Buffer+8

ELSE
ERROR 7

END IF

END SUB

SUB UNDEF STATIC
SHARED MList

undef. loop:

IF MList>0 THEN
Buffer=PEEKL(MList)
size=PEEKL(MList+4)
FREEMEM MList,size
MList=Buffer
GOTO undef. loop

END IF

END SUB
SUB GADGET(bs,nx,x%,y%,b%, h%, f%,a%,t%,i,txt,si,n%)STATIC

DEFCHIP bs,44&

POKEL bs,nx

POKEW bs+4,x%

POKEW bs+6,y%

POKEW bs+8,b%

POKEW bs+10,h%

POKEW bs+12,f%

POKEW bs+14,a%

POKEW bs+16,t%

POKEL bs+18,i

POKEL bs+26,txt

POKEL bs+34,si

POKEW bs+38,n%

END SUB
SUB INTUITEXT(bs,c1%,x%,y%,t$,nx)STATIC
size=20+LEN(t$)+1

DEFCHIP bs,size

POKE bs,c1%

POKE bs+2,1

POKEW bs+4,x%

POKEW bs+6,y%

POKEL bs+12,bs+20

POKEL bs+16,nx

COPYMEM SADD(t$),bs+20,LEN(t$)

END SUB
SUB BORDER(bs, x%,Y%,c%,b%,h%)STATIC

DEFCHIP bs,48&

POKEW bs, x%

POKEW bs+2,y%

POKE bs+é4,c%

POKE bs+7,8

225

226

POKEL bs+8,bs+16

FOR i%=0 TO 1
POKEW bs+22+i%*4,h%-1
POKEW bs+24+i%*4,b%-1
POKEW bs+32+i%*4,1
POKEW bs+38+i%*4,h%-1
POKEW bs+40+i%*4,b%-2

NEXT

END SUB

SUB STRINGINFO(bs,max¥,buff$)STATIC

Amiga Tips & Tricks

IF LENCbuff$)>max¥% THEN nmaxX%=LEN(buff$) ELSE nmax%=max%

IF(nmax%AND 1)THEN nmax%=nmax%+1
size=36+2* (nmax%+4)

DEFCHIP bs,size

POKEL bs,bs+36

POKEL bs+4,bs+40+nmax%

POKEW bs+10,max%+1

IF buff$<>""THEN

COPYMEM SADD(buff$),6bs+36,LEN(buff$)

END IF
END SUB

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

4BETFOCO, 4CEF0308,001C5303, 22187407, E9991001, 0200000F
06000030, 0CO0003A, 65040600, 000712C0, 51CAFFES, 12FC0020
51CBFFDA, 4CDFO30F , 4E750000, 10003800, 7COOFEO0, 38003800
38003800, 38003800, FE007C00, 38001000
0,0,2,43,13,0,-6,-3,2,268,45,0,-6,-3,3,268,13,0
0,0,2,28,13,0,0,-45,2,28,13,4,0,-15,2,28,13,5
-62,-3,2,172,13,0,0,0,2,65,13,0,0,0,2,109,13,0
0,15,2,218,13,9,0,0,2,60,13,0,0,0,2,43,28,0

DATA 3,-56,0,"Block:",0,3,40,0,"0f:",10,1,72,0," O", 11
DATA 3,6,3,"0K",0,1,6,3,"UNDO",0,1,6,3,"PRINT BUFFER",0
DATA 1,6,3," PRINT FILE",0,1,17,3,"READ",0,1,17,3,"NEXT",0
DATA 1,17,3,"BACK",0,1,13,3,"WRITE",0,3,6,18,"Status:",15
DATA 1,70,18,"reading Directory",21,1,9,3,"ASCII",0

DATA 1,9,3," HEX",0,1,6,10,"QUIT",0

DATA 0,198,43,13,0,3,1,1,1,0,0,213,43,13,0,3,1,1,2,0

DATA 0,228,43,13,0,3,1,1,3,0,0,243,43,13,0,3,1,1,4,0

DATA 52 201,256,8,0,3,1,2,5,0,52 209 256,8,0,3,1,0,6,0
DATA 52,217,256,8,0,3,1,0,7,0,52,225,256,8,0,3,1,0,8,0
DATA 52,233,256,8,0,3,1,0,9,0,52,246,256,8,0,3,4,3,0,1
DATA 317,198,28,13,4,3,1,13,0,0,317, 228 28,13,4,3,1,14,0,0
DATA 317,243,28,13,0,3,1,6,13,0

DATA 416,201,40,8,0,2051,4,7,12,2

DATA 529,198,43,13,1,3,1,1,14,0

DATA 575,198,65,13,0,3,1,8,17,0,575,213,65,13,0,3,1,8,18,0
DATA 575,228,65,13,0,3,1,8,19,0,575,243,65,13,0,3,1,8,20,0
DATA 354,213,109,13,0,3,1,9,16,0

DATA 354,228,109,13,0,3,1,10,22,0

DATA 466,213,60, 13 ,0,3,1,11,24,0

DATA 466,228,60,13,0,3,1,11,23,0

DATA 529,213,43,28,1 8,3,1,12,25,0

—— AmigaBASIC Intern ~ 227

511 Arbeiten mit dem FileMonitor

Zunichst muf3 darauf aufmerksam gemacht werden, dafl dieser
Monitor sehr viel Chip-RAM benétigt - andere Programme
sollten daher nicht gleichzeitig betrieben werden. Des weiteren
wird gleich zu Anfang des Programms der eingestellte Drucker-
treiber geladen. Verfiigen Sie noch nicht iiber einen solchen, ist
das erste LPRINT wegzulassen.

Voreinstellungen: Fiir die integrierte Directory-Routine sind
unter anderem vier Gadgets vorhanden, mit denen die am
hdufigsten benutzten Laufwerke per Anklicken eingestellt wer-
den kénnen. In diesem Falle handelt es sich um die Drives DFOQ
bis DF3. Sollten Sie andere Laufwerke in die Schnell-selektier-
Gadgets eintragen wollen, dndern Sie in den DATA-Zeilen die
entsprechenden Namen ab, wobei darauf zu achten ist, daf3 der
Name inklusive des Doppelpunktes nicht linger als 4 Zeichen
ist. Sie konnen auch vor dem Laden dieses Monitors mit
ASSIGN den gewiinschten Laufwerken (Beispiel: RAD) die
Laufwerksbezeichnungen DF0Q bis DF3 zuweisen.

Funktionen der Gadgets

Die vier Gadgets am linken Rand dienen dem schnellen An-
wihlen des Hauptverzeichnisses eines Laufwerkes. So geniigt das
Anklicken von "DFO0:", um das aktuelle Directory auf das interne
Laufwerk umzulegen, dieses einzulesen und zur Anzeige zu
bringen.

Der groBle Kasten ist zur Anzeige von jeweils funf Directory-
Eintrigen bestimmt. Hier werden Dateien und Programme in
weill und Directories in gelb angezeigt. Das Anklicken eines
Directories fithrt zum sofortigen Auslesen des Directories und
dessen Anzeige. Klickt man ein File an, wird der erste Daten-
block der gewiinschte Dateien zur Anzeige gebracht und kann
editiert werden.

Das liangliche Gadget unter dem groBen Kasten ist ein String-
Gadget, das der Anzeige des aktuellen Directories und des
eventuell selektierten Files dient. Klickt man es an, erscheint ein

228 Amiga Tips & Tricks

Cursor, mit dessen Hilfe man von Hand Pfade und Dateinamen
angeben kann. Dies ist besonders empfehlenswert, wenn es sich
um lange Pfade handelt oder auf ein nicht in den vier linken
Gadgets angegebenes Laufwerk zugegriffen werden soll. Einge-
gebene Directories und Files werden ebenso schnell behandelt,
wie das beim Anklicken eines Eintrages im groflen Kasten der
Fall ist.

Die Pfeile rechts neben dem groBen Kasten sind fiir das Scrollen
des Directories gedacht. Hier wird das angezeigte Directory um
jeweils fiunf Eintrige gescrollt. Das OK-Feld hat die gleiche
Funktion wie das Aktivieren und anschlieBende Desaktivieren
des String-Gadgets: Der angegebene Eintrag wird entsprechend
behandelt.

Die Anzeige "Block: #### of: ####" zeigt Ihnen bei einer an-
gewihlten Datei die aktuelle Datenblocknummer des angezeigten
Blocks und die letzte Datenblocknummer der Datei an. Bei der
ersten Zahl handelt es sich um ein Integer-Gadget, in das Sie
nach dem Aktivieren durch Anklicken die gewiinschte Daten-
blocknummer eingeben koénnen, die zur sofortigen Anzeige des
gewiinschten Blockes fiihrt.

Mit den beiden PRINT-Gadgets 148t sich entweder der Editor-
puffer oder das gesamte File hexadezimal auf dem Drucker aus-
geben. Danach wird automatisch der zuletzt editierte Block wie-
der zur Anzeige gebracht. Die Status-Anzeige zeigt alle Fehler
und aktuellen Operationen an.

Mit den Gadgets "ASCII" und "HEX" kénnen Sie den Editor von
der hexadezimalen Anzeige auf die ASCII-Anzeige umschalten,
was gerade beim Andern von Texten, wie z.B. beim Eindeut-
schen der Meniis von AmigaBASIC eine sinnvolle Option ist.
Das Quit-Gadget beendet, verbunden mit einer Sicherheitsab-
frage, die uiber direkten Hardware-Zugriff gelost wurde, dieses
Programm.

Die Gadgets "READ", "NEXT" und "BACK" dienen dem noch-
maligen Einlesen des aktuellen Blocks, dem Einlesen des niich-

—— AmigaBASIC Intern 229

sten und des vorhergehenden Datenblocks. Das WRITE-Gadget
schreibt den Editor-Buffer auf die Diskette zuriick. Hierbei
wird aus Geschwindigkeitsgriinden keine Sicherheitsabfrage ge-
macht. Sollte es einmal zu einem versehentlichen Abspeichern
kommen, wihlen Sie zunichst die UNDO-Funktion an und da- -
nach erneut das WRITE-Gadget.

Die UNDO-Funktion versetzt den Editor-Puffer (das sind die
Daten, die angezeigt und editiert werden kénnen) zuriick in den
Zustand, in dem sich der Editor-Puffer genau nach dem Ein-
lesen des aktuellen Blocks befand. Im Klartext heif3it das fiir Sie:
Sobald Sie einen Block einlesen, wird dessen Inhalt in einen
Undo-Puffer kopiert.

Der Editor akzeptiert neben allen Zeichen, die auf der Tastatur
eingegeben werden kdénnen, auch die Cursor-Tasten. Grundsitz-
lich sind zwei Cursors zu sehen, einer im hexadezimalen und ei-
ner im ASCII-Anzeigefeld. Dies ist sinnvoll, da man dadurch
immer genau weifl, welcher Hex-Code zu welchem angezeigten
Zeichen gehort. Den aktuellen Editor-Modus erkennt man an
der Breite des Cursors im Hex-Display: Ist dieser einen Nibble
breit (ein Hex-Zeichen), befindet der Editor sich im Hexadezi-
mal-Modus, bei doppelter Cursor-Breite im ASCII-Modus.

Das Programm ist Multitasking-fihig. Mit den bekannten Ta-
stenkombinationen (linke Sondertaste + M oder +N) kann zwi-
schen Monitor und Workbench umgeschaltet werden. Letzte
Anmerkung: Es konnen jeweils nur 72 Eintrige eines Directories
eingelesen werden. Sollten Sie mehr wiinschen, muf3 der Direc-
tory-Puffer entsprechend gréBer dimensioniert und die Abfrage
im DIRECTORY-SUB angepafit werden. Ansonsten kommen Sie
auch durch direkte Eingabe an jedes File heran.

5.1.2 Patching, arbeiten mit dem FileMonitor
Unter Patching versteht man das Andern vorhandener Pro-

gramme durch das Manipulieren bestimmter Bytes eines abge-
speicherten Files. So ist es moglich, jedes erreichbare Programm

230 Amiga Tips & Tricks

seinen Wiinschen entsprechend anzupassen. Eines soliten Sie da-
bei allerdings beriicksichtigen: Das Andern von Copyrights oder
die Weitergabe gepatchter Programme versto3t gegen eine ganze
Reihe von Gesetzen. Um sich nicht strafbar zu machen, sollten
Sie daher nur fiir den eigenen Gebrauch patchen.

5.1.3 AmigaBASIC eindeutschen

Wie wire es denn mit einem BASIC-Interpreter, der mit deut-
schen Meniis und deutschen Fehlermeldungen aufwarten kann?
Zu diesem Zweck laden Sie den FileMonitor und klicken in dem
groBen Kasten AmigaBASIC an. Suchen Sie nun durch An-
klicken des NEXT-Gadgets solange, bis Sie englische Texte oder
gar die Menii-Texte gefunden haben. Fahren Sie mit dem Cursor
auf den ersten Buchstaben des Textes.

Vorsicht: Um keine Programm-Daten zu zerstoren, diirfen Sie
die vorhandene Text-Linge nicht iiberschreiten. Zeichen, die
zwischen zwei Wortern stehen, diirfen nur dann iiberschrieben
werden, wenn sie im Hex-Display mit dem Code 20 (=dezimal
32 =SPACE) angezeigt werden. Da die Ubersetzung der Meniis
unter Beriicksichtigung der maximal moglichen Zeichen nicht
gerade einfach ist, hier das deutsche Menii meines BASIC-Inter-
preters:

"Projekt" “Edit " "Los" “Fenster"
"Neu " VYRaus " "Start " "Listing "
"Offnen " "Kopie" "Stop " “Ausgabe "
“Sichern® "“Rein " "Weiter "
" als" “Abbruch *
“Ende " "Trace an "

"Trace aus"

"Schritt

5.1.4 Andere Programme patchen

Die Anwendungsmoglichkeiten des Patching sind nahezu unbe-
schrinkt. So kénnen Sie beispielsweise das ED-Fenster auf volle
PAL-Gro6Be bringen, indem Sie die entsprechenden Gréfenan-

—— AmigaBASIC Intern 231

gaben im Programm #dndern. Bevor Sie sich allerdings an die
Verinderung von Programmen machen, sollten Sie sich genau
informieren, ob es nicht einen einfacheren Weg gibt. Gerade die
Betriebssystemversionen des Amiga und die Funktionen der
einzelnen Tools machen uns deutlich, wie stark auf volle Kom-
patibilitidt zu vorhergehenden Versionen Wert gelegt wird.

So ist es schon vorgekommen, dal ein Programm als Utility zu
einem anderen Programm (DPaint) herauskam, das mit einer ge-
patchten Version nicht mehr lauffihig war. Ein sehr schdnes
Beispiel dafiir, wie es auch anders geht, ist das Shell-Icon der
neuen Workbench V1.3. Wihlen Sie hier im WB-Menii den
Punkt Info an, sehen Sie ganz unten die MaBangaben fiir das zu
o6ffnende Fenster, die Sie nun einfach IThren Wiinschen entspre-
chend dndern kénnen.

5.2 Aufbau der AmigaBASIC-Files

Wie Sie sicherlich aus dem AmigaBASIC-Handbuch wissen, kann
man hinter dem SAVE-Befehl angeben, wie man ein Programm
abspeichern moéchte. Es gibt drei verschiedene Moglichkeiten:

SAVE "Test",a

speichert das Programm als ASCII-File.

SAVE "Test",b

speichert das Programm normal ab.

SAVE "Test",p speichert das Programm geschiitzt ab.

Bevor Sie ein Programm abspeichern, sollten Sie sich dariiber im
klaren sein, was Sie spiter mit diesem File vorhaben. Dazu
miissen Sie natiirlich wissen, wozu man in dieser oder jener Si-
tuation eine bestimmte Art eines Files braucht.

Beginnen wir mit dem ASCII-File. Sie benottigen ASCII-Files,
um zwei Programme durch den Befehl MERGE oder CHAIN

232 Amiga Tips & Tricks

MERGE zu verbinden. Wenn Sie ein Programm als ASCII-File
gespeichert haben, kénnen Sie es spiter (z.B. nach erneutem La-
den) immer wieder als ASCII-, Bindr- oder Protected-File
speichern.

Der Nachteil von ASCII-Files (und von modularem Program-
mieren iiberhaupt) ist der groBe Speicherplatzbedarf. Das tritt
besonders bei sehr langen und hiufig verwendeten Variablenna-
men auf. Doch dazu spiter mehr. Das Binidr-File ist kurz, Be-
fehle und Variablen sind in Token iibersetzt. Auch ein binires
File kann jederzeit als ASCII-, Binidr- oder Protected-File ge-
speichert werden.

Sollten Sie einmal ein Programm "protected" gespeichert haben,
entdeckten dann eine Kleinigkeit, die Sie schnell noch korrigie-
ren wollten, so haben Sie sich wahrscheinlich erstmal tiichtig die
Haare gerauft. Im Gegensatz zu anderen Computern hilt das
Wort protected beim Amiga, was es verspricht.: Was man einmal
geschiitzt gespeichert hat, sieht man garantiert nicht wieder.
Deshalb empfiehlt es sich, vorher eine Sicherheitskopie des Pro-
gramms anzufertigen.

5.2.1 Typ feststellen

Erinnern wir uns daran, was wir eigentlich vorhaben. Wir wollen
AmigaBASIC-Programme manipulieren, ob sie bereits auf Dis-
kette vorliegen und ob es sich um ein BASIC-Programm han-
delt.oder Zwischenspeicherung auf sich selbst einwirken sollen.
Sobald Sie den Aufbau von AmigaBASIC-Files kennen, sollte
das auch keine allzugroBen Schwierigkeiten mehr bereiten.

Ein Problem stellt sich aber: Stellen Sie sich einmal vor, Sie ha-
ben ein Programm geschrieben, das in der Lage ist, aus einem
diskettenresidenten Programm ein neues AmigaBASIC-Programm
zu generieren. Dieses Programm erwartet eine Auswahl der
User, welches Programm sie modifizieren moéchten. Nachdem
wir nun festgestellt haben, daB3 das Programm tatsichlich auf der

—— AmigaBASIC Intern 233

eingelegten Diskette vorhanden ist, muf3 sich dem Programmie-
rer geradezu die Frage aufdringen: Ist das denn tatsidchlich ein
AmigaBASIC-File?

5.2.1.1 BASIC-Check

Um Sie nicht v6llig im Dunkeln tappen zu lassen, hier eine
Routine, die das nachpriift:

goto start

REM

REM# B A S I C - C H E C K #
REM #------ccccccoccmccccmcccccccccccaane #

REM # (W) 1987 by Stefan Maelger #
REM HHBHHBH B
REM SUB-Routine zum Priifen, ob ein File
REM ein AmigaBASIC-Programm ist
start:
DECLARE FUNCTION xOpen& LIBRARY
DECLARE FUNCTION xRead% LIBRARY
DECLARE FUNCTION Seek% LIBRARY
LIBRARY "dos. library"
main:
CLS
LOCATE 2,2
PRINT "Name des AmigaBASIC-Programms:*"
LOCATE 4,1
PRINT ">"::LINE INPUT Filename$
BASICcheck Filename$,Flag%
LOCATE 6,2
IF Flag% THEN
PRINT “TATSACHE! Ein AmigaBASIC-Programm"
ELSE
PRINT "Leider kein AmigaBASIC-Programm..."
END IF
LIBRARY CLOSE
END
SUB BASICcheck (Filename$,ok%) STATIC
File$ = Filename$+".info"+CHR$(0)
Default.Tool$ = SPACE$(12)
OpenOldFile% = 1005
Of fsetEOF% = 1
Offset% = -12
OpenfFile:
File.handle& = xOpen&(SADD(File$),0penOldFile%)
IF File.handle& = 0 THEN
CLS
LOCATE 2,2

234 Amiga Tips & Tricks

PRINT "Ich finde “;Filename$;" nicht!"
BEEP
EXIT SUB

ELSE
OldPosition¥=Seek%(File.handle&, Of fset%,Of fsetEOF%)
GotThemX=xRead%(File.handle&, SADD(Defaul t.Tool$),12)
IF GotThem%<12 THEN

CLS
LOCATE 2,2
PRINT “READ-ERROR"™
BEEP
EXIT SUB
ELSE
IF INSTR(Default.Tool$,":AmigaBASIC")>0 THEN
ok%=-1
ELSE
ok%=0
END IF
END IF
CALL xClose(File.handle&)
END IF
END SUB
Variablen
Filename$ Name des vermeintlichen AmigaBASIC-Programms.
Flag% =-1: Das File ist ein AmigaBASIC-Programm.
ok% Bezeichnung der SUB-Variablen von Flag%
File$ Name des ".info"-Files von Filename$ + CHR$(0)
Default.Tool$ 12-Byte-String, der die letzten 12 Byte von File$ aufnimmt.
OpenOldFile% Angabe dariiber, daB ein vorhandenes File gedffnet werden soll
(1006 =neues File 6ffnen).
OffsetEOF% Cursor der File-Leseroutine auf das Ende des Files setzen
(-1=Anfang, 0=derzeitige Position).
Offset% Wert, um den der File-Cursor von OffsetEOF% an verschoben
wird.
File.handle& Adresse des File-Handlers (0=File wurde nicht geéffnet).
OldPosition% Alter Offset des File-Cursors.
GotThem% Anzahl tatséchlich gelesener Bytes.

Zum Programm

Haben Sie schon einmal im Workbench-Menii den Punkt Info
angewihlt? Wenn ja, dann fiel Thnen sicherlich der Punkt De-
fault-Tool auf. Das Default-Tool ist das Programm, das beim
Anklicken eines Icons als erstes gestartet wird. So ist es dann
auch nicht weiter verwunderlich, dal bei AmigaBASIC-Pro-

—— AmigaBASIC Intern 235

grammen dort der Eintrag " AmigaBASIC" zu finden ist. Fraglich
ist nun natiirlich, woher diese Information kommt. Zu jedem
Programm (zumindest zu jedem AmigaBASIC-Programm) exi-
stiert ein File, das den gleichen Namen wie das Programm selbst
tragt, allerdings mit dem Zusatz .info. Im wesentlichen besteht
ein solches .info-File aus der Bitmap fiir das Icon und am Ende
dem Default-Tool.

Da wir nun wissen, wo sich die Information versteckt hilt, ob es
sich um ein AmigaBASIC-Programm handelt oder nicht, brau-
chen wir natiirlich nur noch das zugehoérige .info-File zu 6ffnen,
den Lese-Cursor auf das File-Ende zu setzen und mit einem
Offset von -12 Bytes ab dieser Position die 12 Byte des Default-
Tools einzulesen. Warum 12 Byte? Nun, der Eintrag selbst
scheint zwar nur 11 Byte zu haben, doch muf3 man wissen, daf3
das AmigaDOS nur Namen akzeptiert, die mit CHR$(0) ab-
geschlossen sind. Daher das 12. Byte.

Kleiner Tip am Rande: Einige Programme, die Icons manipulie-
ren oder neue Icons schaffen, sind nicht ganz korrekt program-
miert. Dieser kleine Programmierfehler kann dazu fiithren, daf
unser "hochgeschitztes" Default-Tool verschoben wird. Im
Ernstfall konnen Sie diesen Fehler ausschalten, indem Sie ein-
fach die Anzahl der einzulesenden Bytes erhéhen (auch vom
String!).

5.2.1.2 HeaderCheck - Wie wurde das Programm
gespeichert?

Jetzt wissen wir also, wie wir feststellen kénnen, ob es sich bei
einem File um ein AmigaBASIC-Programm handelt oder nicht.
Eine solche Routine sollte nie in einem Programm fehlen, das
ein anderes AmigaBASIC-Programm verdndern kann. Als nich-
stes sollten wir feststellen, um was fiir einen Programm-Typ es
sich bei dem angepeilten Programm handelt. Um das erkennen
zu konnen, ist es wichtig zu wissen, wie der AmigaBASIC-In-
terpreter die verschiedenen Programme unterscheidet.

236 Amiga Tips & Tricks

Wir kommen dabei bereits zum ersten Byte eines AmigaBASIC-
Programms, dem Header-Byte. Das Header-Byte zeigt dem Ami-
gaBASIC-Interpreter, um was fiir ein Programm es sich handelt.
Und das geht folgendermaBen. Bei bindr gespeicherten Pro-
grammen, und dazu z#dhlt auch ein protected gespeichertes Pro-
gramm, ist ein Byte vor das File gehingt worden, das sogen-
nannte Header-Byte. Sicherlich werden Sie jetzt nach den
ASCII-Files fragen. Tatsichlich ist bei ASCII-Files kein Header-
Byte vorhanden! Beachten Sie das bitte beim Programmieren.
Wieso das so ist? Nun, bei ASCII-Files ist kein Header-Byte no-
tig. Warum das so ist, werden Sie spitestens dann merken, wenn
Sie den Aufbau von ASCII-Files kennen. Es ist nimlich kaum
moglich, daB ausgerechnet die Werte der Header-Bytes fir
binire Programme am File-Anfang auftreten. Merken Sie sich
am besten folgendes:

- Liegt am File-Anfang das Byte $F5 (=245 dezimal), handelt
es sich um ein normal gespeichertes Programm, ein Binir-
Programm.

- Finden Sie dagegen das Byte $F4 (=244 dezimal), ist es ein
protected gespeichertes Bindr-Programm.

- Liegt am File-Anfang weder $F5 noch $ F4 vor, so handelt
es sich um ein Binir-Files.

Wie immer, haben wir auch hier eine kleine Routine, die Ihnen
die Uberpriifung abnimmt. Da Manipulationsprogramme wohl
kaum ohne die dos.library-Routinen xRead und xWrite auskom-
men werden, wurden diese Routinen verwendet. Beachten Sie
jedoch, daBB die folgende Routine nur dann funktionieren kann,
wenn ein AmigaBASIC-Programm vorliegt.

GOTO start
TR R
H E ADER-CHETCK

(W) 1987 by Stefan Maelger
g

SUB-Routine zum Auslesen des File-
Headers eines AmigaBASIC-Programms, um

'
]
]
]
]
]
L)
)
' den File-Typ zu bestimmen.

—— AmigaBASIC Intern

start:

DECLARE FUNCTION xOpen& LIBRARY
DECLARE FUNCTION xRead% LIBRARY
LIBRARY "dos.library"

main:

ProgrammTyp$(0)="ASCII-File"
ProgrammTyp$(1)="Binar-File"
ProgrammTyp$(2)="Protected-Binar-File"
LINE INPUT “Filename: >";Filename$
HeaderCheck Filename$, ErgebnisX

LOCATE 10,1

PRINT "“Das Programm ";CHR$(34);
PRINT Filename$;CHR$(34);
PRINT * ist ein ";ProgrammTyp$(Ergebnis¥)

LOCATE 15,1
LIBRARY CLOSE
END

SUB HeaderCheck(Filename$,Ergebnis%) STATIC
File$=Filename$+CHR$(0)
OpenOldFi le%=1005
handl e&=xO0pen&(SADD(File$),OpenOldFile%)
IF handle&=0 THEN ERROR 53

sg=n n
Byte&=1

gelesen&=xRead%(handle&, SADD(s$),Byte&)
CALL xClose(handle&)

Ergebnis%=0
d%=ASC(s$)
IF d%=&HF5 THEN
Ergebnis%=1
ELSEIF d%=&HF4 THEN
Ergebnis%=2
END IF
END SuB
Variablen
ProgrammTyp$() | die Programmarten im Klartext
Filename$ Name des zu priifenden AmigaBASIC-Programms
Ergebnis% 0=ASCIl; 1=Dbinér; 2=protected
File$ Filename$ + abschlieBendes CHR$(0) fir DOS
OpenOldFile% ein bereits existierendes File 6ffnen
handle& Adresse des File-Handlers
s$ String, in den das erste Byte gelesen wird
Byte& Anzahl einzulesender Bytes
gelesen& Anzahl tatsichlich gelesener Bytes
d% ASCII-Wert von s$

237

238 Amiga Tips & Tricks

5.22 ASCII-Files

Der Aufbau von ASCII-Files ist denkbar einfach. Nehmen Sie
sich einmal die Zeit, ein eingegebenes Programm mit der fol-
genden Zeile abzuspeichern:

SAVE "Test",A

Beispielprogramm:

a=1
PRINT a

Laden Sie nun den File-Monitor, der in Kapitel 5.1 beschrieben
wurde, oder einen beliebigen anderen File-Monitor. Laden Sie
dieses ASCII-File und sehen Sie sich die Daten an. Wenn man
die rechte Seite der Ausgabe betrachtet, so sicht man das Pro-
gramm im Klartext. So wiirde dort beispielsweise stehen:

a=1.PRINT a..

und als Hex-Dump:

61 3D 31 0A 50 52 49 4E 54 20 61 OA OA (hexadezimal)

Rechnen wir diese hexadezimalen Zahlen um, erhalten wir:

97 61 49 10 80 82 73 78 84 32 97 10 10 (dezimal)

Schlagen Sie nun im AmigaBASIC-Handbuch die ASCII-Zei-
chencode-Tabellen auf. Sie sehen, das Programm wurde im
Klartext gespeichert. LF (10) heif3t im iibrigen LINE FEED, also
auf gut deutsch: nichste Zeile. Wollen Sie von einem Programm
aus ein ASCII-File ausdrucken, geniigen daher folgende Zeilen:

LINE INPUT file$
OPEN file$ FOR INPUT AS 1
WHILE NOT EOF(1)
PRINT INPUT$(1,1);
WEND
CLOSE 1

—— AmigaBASIC Intern 239

Toll, nicht wahr? Nehmen Sie sich jetzt die Workbench zur
Hand, laden Sie das Shell, sofern Sie Version 1.3 besitzen, oder
das CLI (System-Schublade). Nun geben Sie ein:

ed Diskname:Test

Fiir "Diskname” geben Sie den Namen der Diskette ein, auf der
sich das Testprogramm befindet. Jetzt sollite das Programm auf
dem Bildschirm erscheinen. Man kann also den komfortablen
ED-Editor zum Editieren von ASCII-Programmen verwenden.
Der einzige Nachteil dabei ist, daB man die Programme nicht
gleich austesten kann. Da man sie vorher jedoch in jedem Fall
speichern sollte - und schlieSlich einen Multitasking-Computer
besitzt - hat man eine wirklich gute Modglichkeit, an einen
neuen Programm-Editor zu kommen. Doch das nur am Rande.

Sollten Sie jetzt auf die Idee kommen, einfach per OPEN-FOR -
OUTPUT-Anweisung ein neues Programm zu erzeugen, so ist
das sicherlich kein schlechter Einfall. Die Tiicke des Objektes ist
hierbei jedoch, daB3 Sie Schwierigkeiten haben kénnen, wenn Sie
Ihr neues Programm spiter per Anklicken aus dem Directory la-
den wollen. Das File Name.info hat schlieBlich nicht ":Amiga-
BASIC" als Default-Tool. Um auf jeden Fall vorbereitet zu sein,
sollte man einfach ein neues .info-File erzeugen:

SAVE "Dummy": KILL file$+".info"
NAME "Dummy.info" AS file$+". info"
KILL "Dummy"

Anwendungen zum Thema ASCII-Files finden Sie unter Kapitel
5.3.

5.2.3 Binar-Files

Wir werden jetzt ausfiithrlich den Aufbau von bindr gespeicher-
ten Programmen beschreiben. Der Aufbau dieser Files ist beson-
ders wichtig, da er die einzige Form des Programmaufbaus dar-
stellt, die der AmigaBASIC-Interpreter direkt abarbeiten kann.
Alle anderen File-Arten miissen also zunichst in das binidre

240 Amiga Tips & Tricks

Format uiberfiihrt werden, bevor sie ausgefiihrt werden konnen.
Die Bedeutung des ersten Bytes eines biniren Programms kennen
Sie bereits: das Header-Byte ($F5 fiir Binidr-Files).

5.2.3.1 Aufbau einer AmigaBASIC-Zeile

Mit dem zweiten Byte des Programms beginnt bereits die erste
Programmzeile. Wir sollten daher den Aufbau einer Zeile be-
trachten. Das erste Byte einer Zeile ist der Zeilen-Header. Die-
ses Byte kann zwei Werte haben, den Wert Null oder den Wert
128 ($80). Beginnt eine Zeile mit dem Wert 0, handelt es sich
um eine Zeile ohne Zeilennummer, beginnt sie mit dem Wert
128, ist es eine Zeile mit Zeilennummer. Label sind in diesem
Zusammenhang nicht von Bedeutung. Wir werden sie spiter be-
handeln.

Das zweite Byte einer Zeile ist der Offset zur niichsten Zeile. Da
ein AmigaBASIC-Programm nach jedem Laden an einer anderen
Speicherstelle beginnen kann, wire es etwas zu aufwendig,
wiirde man mit Pointern auf die nichste Zeile arbeiten. Es
reicht doch vollig aus, wenn an einer festgelegten Stelle einer
Zeile die Gesamtlinge derselben angegeben ist. Der Interpreter
braucht sich nur die Adresse zu merken, an der die Zeile be-
ginnt, und dazu die Nummer des gerade bearbeiteten Bytes.
MuB sich - beispielsweise durch einen Sprungbefehl - der Inter-
preter viele Zeilen vorwirts bewegen, wird jedesmal nur die
Zeilenlinge der aktuellen Zeile zu der Anfangsadresse derselben
addiert.

Hier wird auch ersichtlich, weshalb eine Programmzeile nicht
langer als 255 Byte sein kann. Schliellich steht nur ein Byte fir
die Zeilenldnge zur Verfiigung. Sie werden sicherlich Ihre eige-
nen Programme sehr iibersichtlich eingeben, was eine eventuelle

—— AmigaBASIC Intern 241

Fehlersuche oder das Verstindnis des Programmablaufs positiv
unterstiitzt. Dann sehen Thre Programme wahrscheinlich 4hnlich
aus wie dieses:

Viele.FOR.NEXT.Schleifen:

FOR ersteSchleife=1 TO 100
FOR zweiteSchleife=1 TO 10
FOR dritteSchleife=1 TO 50
LPRINT FNstefan (x,y,z)
NEXT dritteSchleife,zweiteSchleife,ersteSchleife

NOOVSNOO

Die Zahlen auf der rechten Seite gehdren nicht zum Programm.
Ich habe mit diesen Zahlen den Wert angegeben, den das dritte
Byte der jeweiligen Programmzeile annimmt. Priiffen Sie dieses
ruhig mit einem File-Monitor nach. Das dritte Byte wird nur
fiir den Befehl LIST und fiir Editierzwecke bendtigt. Es gibt
den Abstand des ersten Befehls zum linken Rand an. Damit ist
jetzt die Frage geklirt, ob es die Programmlinge oder die Pro-
gramm-Ablaufgeschwindigkeit beeinfluf3t, wenn man wie oben
die Programmzeilen bei Verschachtelungen einriickt. Sie sehen:
Die einzige Verinderung ist der Wert des dritten Byte. Pro-
grammieren Sie also ruhig weiter ibersichtlich.

Bis zu dieser Stelle ist der Aufbau einer Zeile mit Zeilennummer
genauso wie der Aufbau einer Zeile ohne Zeilennummer. An
dieser Stelle haben wir den Kopf einer Zeile ohne Zeilennum-
mer bereits vollstindig behandelt. Daher noch einmal zur Uber-
sicht:

Kopf einer Zeile ohne Zeilennummer:

Byte-Nr. Wert Bedeutung
1 00 Es folgt eine Zeile ohne Zeilennummer.
2 XX Lange der Zeile in Byte (mit Kopf und Ende).
3 XX Abstand des ersten Befehls vom linken Rand
(nur fur LISTen des Programms).

Bei Zeilen mit Zeilennummer folgen nun weitere zwei Bytes.
Der Zeilenkopf einer solchen Zeile ist also fiinf Byte lang. Jetzt
folgt noch die Zeilennummer. Sie wird im High-Low-Format

242 Amiga Tips & Tricks

angegeben. Ist die Zeilennummer beispielsweise 10000, so folgen
nun die Bytes $27 und $10 (39 und 16 dezimal,._also 39*256 + 16
= Zeilennummer). Auch hier noch einmal eine Ubersicht:

Kopf einer Zeile mit Zeilennummer:

Byte-Nr. Wert Bedeutung
1 128 Es folgt eine Zeile mit Zeilennummer.
2 XX Lange der Zeile in Byte (mit Kopf und Ende).
3 XX Abstand des ersten Befehis vom linken Rand.
4 XX High-Byte der Zeilennummer.
5 XX Low-Byte der Zeilennummer.

Jetzt ist der Aufbau der Zeile wieder bei beiden Zeilentypen
gleich. Es folgen die Token, das heif3t, die zu ein oder zwei Byte
kodierten Befehle. Was mit den Labeln ist? Geduld, Geduld,
deren Kodierung kommt noch. Abgeschlossen wird jede BASIC-
Zeile mit dem Wert Null, also mit einem weiteren Byte. Zusam-
menfassend konnen wir also feststellen: Eine Programmzeile be-
steht aus:

- Zeilenkopf mit oder ohne Zeilennummer
- Token (Befehle, Label, Variablen und Werte)
- Ende-Byte mit dem Wert 0

5.2.3.2 Leerzeilen

Mit dem Wissen, das Sie jetzt haben, konnen Sie bereits ange-
ben, wie Leerzeilen gespeichert sind. Unter Leerzeilen verstehe
ich Zeilen, in denen weder ein Befehl noch eine Zeilennummer
auftritt. Sehen wir uns das Problem gemeinsam an:

- Das erste Byte, also das Zeilentyp-Byte, muf3 den Wert Null
haben, da keine Zeilennummer folgt.

- Das dritte Byte, also der Abstand vom linken Rand, ist meist
auch Null.

- Mit dem vierten Byte miifSiten die Token folgen. Da diese
Zeile jedoch leer ist, folgt nun der Zeilenende-Code, nimlich
ein Null-Byte.

—— AmigaBASIC Intern 243

Damit wire unsere Zeile abgeschlossen, und wir kénnen in dem
zweiten Byte die Zeilenlinge mit vier Byte angeben. Eine Leer-
zeile sieht also folgendermaf3en aus:

$00 - $04 - $xx - $00

Wie hieraus ersichtlich ist, verlingert jede leere Zeile nicht nur
das Programm um vier Byte, sondern beeinfluf3t auch die Ab-
laufgeschwindigkeit des Programms nachteilig, da der Interpreter
jedesmal diese Zeile nach Befehlen absuchen und den Anfang
der nichsten Zeile errechnen muB. Sie sollten daher Leerzeilen
aus IThren Programmen entfernen, auch wenn dadurch die Lauf-
geschindigkeit nur unerheblich erh6ht wird. Denn wie der Bauer
schon sagt: Kleinvieh macht auch Mist. Ein Programm, das diese
Arbeit fiir Sie erledigt, finden Sie im Kapitel 5.3.

5.2.3.3 Die letzte Zeile

Da jedes Programm einmal ein Ende haben muf3, folgt auf die
letzte Zeile des Programms zunichst ein Null-Byte zur Anzeige,
daBB keine Zeilennummer folgt. Darauf folgt das Zeilenlidnge-
Byte, das ebenfalls auf Null gesetzt ist, des weiteren ein Zei-
lenende-Code, also noch eine Null. Es kommt vor, dafl weitere
Bytes folgen, je nachdem, wie das Programm editiert wurde.
Diese Bytes konnen die "wildesten" Werte annehmen (!). Vorsicht
ist also geboten, wollen Sie die Variablentabelle einlesen.

5.2.3.4 Die Variablentabelle

Variablen-Namen kénnen in AmigaBASIC sehr lang sein, z.B.:

Anzahl.der.eingelesenen.Bytes%

Es wire geradezu haarstriubend, wiirde man bei jedem Auf-
tauchen einer Variablen ihren vollen Namen abspeichern. Um
derartig lange Variablen-Namen verwalten zu kénnen, ohne die

244 Amiga Tips & Tricks

Ablaufgeschwindigkeit von AmigaBASIC unendlich trige werden
zu lassen, muBten sich die Programmierer dieses BASIC-Dialek-
tes also etwas einfallen lassen:

Tritt in einem Programm eine Variable auf, so erkennt der In-
terpreter das an einem speziellen Token. Dieses Token hat im-
mer den Wert $01. Auf dieses Token folgt eine Nummer im alt-
bekannten High-Low-Format. Richtig, Sie haben es erraten. Der
Interpreter numeriert einfach alle Variablen der Reihe nach
durch und benutzt beim Programm-Ablauf folglich nur noch
Variablennummern. Um beim Auflisten des Programms wieder
die vollen Variablennamen ausgeben zu kdénnen, miissen diese
natiirlich irgendwo gespeichert werden. Das geschieht am Pro-
gramm-Ende in Form einer Variablentabelle. Ein Eintrag in
dieser Tabelle hat folgendes Format:

1. Byte: Lange des Variablen-Namen in Byte.
folgende Bytes: Variablen-Name in ASCII-Code.

Verwenden Sie zum Beispiel in Threm Programm die Variablen
a%, Zeichenkette$ und Adresse&, so wiirde die Variablentabelle
folgendermafen aussehen:

Hexadezimal ASCII

01 61 .a
0OC 5A 65 69 63 68 65 6E 6B 65 74 74 65 .Zeichenkette
07 41 64 72 65 73 73 65 .Adresse

Hiermit wiirde das letzte Byte IThres Programms das Byte $65
sein. Wie Sie aber auch bemerkt haben diirften, steht in der Va-
riablentabelle nicht, ob es sich bei der Variablen um eine
String-Variable, eine der Floating-Point-Variablen oder eine der
Integer-Variablen handelt. Diese Angabe finden Sie - sofern sie
im Listing aufgefithrt wird - hinter der Variablen-Nummer, die
dem Token $01 folgt. Bleiben wir bei dem obigen Beispiel, so
wiirde die Variable a% in folgender Form im Programm stehen:

—— AmigaBASIC Intern 245

Byte-Nr. Wert Bedeutung
1 1 Variablennummer folgt
2 0 High-Byte der Variablennummer
3 0 Low-Byte der Variablennummer
4 37 ASCII-Code des Zeichens "%"

Sie sehen des weiteren an dieser Tabelle, daB3 die erste vorkom-
mende Variable die Nummer Null bekommt. Leider haben die
Programmierer von AmigaBASIC die Geschichte mit den Vari-
ablen noch etwas kompliziert. So ist es zwar richtig, wenn ich
oben gesagt habe, daB die Variablen der Reihe nach durchnu-
meriert werden, ich habe Thnen allerdings verschwiegen, dafl mit
der "Reihe" die Reihenfolge gemeint ist, in der Sie die Variablen
beim Eintippen des Programms eingeben! Wenn Ihnen jetzt Bo-
ses "schwant", haben Sie damit leider recht. Damit Sie das ganz
grofle Problem beziehungsweise den groflen "Bug" erkennen, ge-
hen Sie bitte wie folgt vor:

1. Laden Sie AmigaBASIC.

2. Geben Sie folgendes ein:

Der.grosse.Fehler%=0
Blablabla%=Der.Fehler%
Hal lo%=0

3. Andern Sie die Zeile Blablabla%=... in:
Blablabla%=Der.grosse.Fehler¥%

4. Speichern Sie das Programm binir ab, und sehen Sie es sich
mit einem File-Monitor an.

Im Programm taucht die Variable Der.Fehler% iiberhaupt nicht
mehr auf. In der Variablentabelle wird sie aber aufgefiihrt und
auch abgespeichert! Sollten Sie einmal ein langes Programm
schreiben, das Sie bei der folgenden Fehlersuche hiufig dndern
miissen, oder haben Sie etwa einen Tippfehler bei einem BA-
SIC-Befehl gemacht (dann wird er auch sofort in die Variablen-
tabelle iibernommen), kann es durchaus sein, dal Ihr Programm
infolge von Variablenmiill gleich etliche KByte linger ist. Uber
die Herabsetzung der Ablaufgeschwindigkeit wollen wir hier gar
nicht erst reden...

246 Amiga Tips & Tricks —

Wie Sie diesen Fehler ausmerzen konnen, sehen Sie in dem Ka-
pitel 5.3.6. Eine weitere Tiicke, die die Programmierer von
AmigaBASIC eingebaut haben, ist die Tatsache, dafl alle Sub-
programm-Namen, ihre Aufrufe und auch alle Betriebssystem-
routinen, die Sie mit LIBRARY und/oder DECLARE FUNC-
TION eingebunden haben, als Variablen abgelegt werden -
ebenso in der Tabelle wie im Programm-Text selbst.

AmigaBASIC kann diese Namen nur nach einer vollstindigen
Syntax-Uberpriifung als Funktionen oder SUB-Erweiterungen
erkennen! Das macht dem BASIC-Interpreter nicht viel aus, da
er nach dem Laden des Programms sowieso zuallererst eine voll-
stindige Priiffung des Programms vornimmt und daher diese Ar-
beit gleich mit erledigen kann. Deshalb dauert es auch immer
erst ein wenig, bis ein geladenes Programm endlich startet.

5.2.3.5 Labelhandling

Bis jetzt war alles schon und gut, doch wo bleiben die Label,
werden Sie sich fragen. Nun, Label werden ganz &hnlich ver-
waltet wie Variablen. Auch hier ergab sich fiir die Entwickler
von AmigaBASIC das Problem mit den langen Namen, die Label
annehmen konnen. Die Losung, die sie fanden, sieht folgender-
mafBen aus: Label sind spezielle Variablen, die sich nur dadurch
von anderen Variablen unterscheiden, daB sie angesprungen
werden kénnen.

Das bedeutet nun, daB3 ein im Programm auftauchendes Label
ebenso in die Variablentabelle einsortiert wird wie eine normale
Variable. Nun muf3 der BASIC-Interpreter nur noch erkennen
konnen, daf3 es sich bei einer solchen Variablen um ein Label
handelt, fiir das kein Speicherplatz angelegt werden mufB3. Dies
wird ganz einfach durch ein anderes Spezial-Token geldst, durch
Verwendung von $02 anstelle von $01 im Programm. Trifft der
Interpreter also auf das Token $02, so ist die folgende Nummer
im High-Low-Format die Nummer eines Labels. Ein Beispiel:

—— AmigaBASIC Intern 247

Byte-Nr. Wert Bedeutung
1 2 Label-Nummer foigt
2 XX High-Byte der Label-Nummer
3 XX Low-Byte der Label-Nummer

Finde der Interpreter $02 $00 $09 im Programm, so wiiflte er,
daB es sich um ein Label handelt, dessen Name an zehnter Stelle
in der Variablentabelle zu finden ist (Sie erinnern sich: Vari-
ablen werden von Null an durchnumeriert).

5.2.3.6 Label anspringen

Jetzt soll so ein Label natiirlich irgendwie angesprungen werden
koénnen, ansonsten wire es ebenso iiberflilssig wie ein REMark.
Ich werde Ihnen das Verfahren anhand des BASIC-Befehls
GOTO erkldren, obwohl es selbstverstindlich ebenso fiir GOSUB
gilt. Beispiel:

GOTO division

Nehmen wir an, daB3 "division" an 3. Stelle in der Variablenta-
belle steht, so finde der Interpreter im Programm folgendes vor:

Byte-Nr. Wert Bedeutung
1 151 Token fiir GOTO (siehe Anhang
2 32 Space (wird mit abgespeichert!)
3 3 Token = ein Label soll angesprungen werden
4 0 immer Null
5 0 High-Byte der Nummer in der Variablentabelle
6 2 Low-Byte der Nummer

Sie sehen, wir haben ein neues Token kennengelernt - $03. Der
Interpreter braucht sich nun nur noch ein passendes $02-$00-
$02 zu suchen und an dieser Stelle mit der Programm-Abarbei-
tung fortfahren.

248 Amiga Tips & Tricks —

5.2.3.7 Zeilennummern anspringen

Das eben gezeigte Verfahren 148t sich natiirlich nicht auf Zei-
lennummern anwenden, da diese nicht in der Variablentabelle
stehen. Ein neues Token muf} also her. Beispiel:

GOTO 10000
Byte-Nr. Wert Bedeutung
1 151 Token von GOTO (siehe Anhang)
2 32 Space
3 14 Token = springe zu folgender Zeilennummer
4 0 immer Null
5 39 High-Byte der Zeilennummer (39*256)
6 16 Low-Byte der Zeilennummer (+16 = 10000)

Das Token $0E besagt also, daf3 in allen Zeilen, deren Header-
Byte $80 ist, die Bytes 4 und 5 mit den obigen Bytes 5 und 6
verglichen werden miissen, um das Sprungziel zu finden.

5.2.3.8 Werte in AmigaBASIC-Programmen

Wir kommen nun zu der Ablage von Werten in AmigaBASIC-
Programmen. Sie geben beispielsweise ein:

Amiga=1

Uns soll an dieser Stelle interessieren, in welcher Form die "1"
im Programm gespeichert wird. Entgegen der Methode anderer
BASIC-Dialekte, in denen Zahlen ganz einfach durch ihren
ASCII-Code vertreten sind, und weil wihrend des Programmab-
laufs eine stindige Umrechnerei Zeit kostet, wird bei Amiga-
BASIC die Zahl bzw. der Wert gleich in dem wahrscheinlich
bendtigten Format abgelegt. Fiir jedes Format, beispielsweise
Floating-Point- oder Oktal-Zahlen, muf3 nun natiirlich ein neues
Token her. Keine Angst, wir werden uns das ganze Verfahren
Schritt fiir Schritt ansehen.

—— AmigaBASIC Intern 249

Dummerweise ist der EntscheidungsprozeB3, ob dieses oder jenes
Format gewihlt wird, nicht davon abhingig, was fiir ein Format
die Variable, der der Wert zugewiesen werden soll, schluend-
lich benétigt. Aber warum sollte man BASIC-Programme auch
beschleunigen?!?

Sehen wir uns obiges Beispiel noch einmal an. Bei der Zahl 1
handelt es sich unzweifelhaft um eine Integer-Zahl. Der nichste
wichtige Punkt ist der, daBl es ein einstelliger Wert ist. Wenn
jetzt noch dazukommt, daBl der Wert positiv ist, erfihrt er eine
Sonderbehandlung:

Ganzzahlige positive Werte im Bereich von 0 bis 9 werden ohne
Token im Programm gespeichert. Dabei wird nicht der ASCII-
Code verwendet! Auch ein direktes Speichern des Wertes kommt
nicht in Frage (da "0" beispielsweise "Zeilenende" bedeutet und
"1" "Variablennummer folgt" etc.). Vielmehr werden die Werte
wie folgt kodiert:

Hex. | dez. | Wert (dez.)
$11 17 0

$12 18 1

$13 19 2

$19 25 8

$1A 26 9

Findet der Interpreter folglich ein Byte zwischen 17 und 26, so
zieht er lediglich den Wert 17 ab und erhilt so den richtigen
Wert. Bleiben wir zunichst bei positiven Integer-Werten. Liegen
diese im Bereich zwischen 10 und 255, so geniigt ein Byte fiir
das Abspeichern. Hier benotigen wir wieder ein Token, an dem
der Interpreter erkennt, dafl das folgende Byte nicht etwa ein
Befehls-Token oder ein anderes Token ist. Das Format ist:

Byte-Nr. Wert Bedeutung

1 15 Es folgt ein positiver Int-Wert zwischen 10 und 255.
2 XX Wert zwischen 10 und 255.

250

Amiga Tips & Tricks

Integer-Werte konnen nun natiirlich noch groBer werden oder
vorzeichenbehaftet sein. Dann wird dieses Format benutzt:

Byte-Nr. Wert Bedeutung
1 28 Es folgt ein vorzeichenbehafteter 2-Byte-Integerwert.
2 XX High-Byte (Bit 7 = Vorzeichenbit)
3 XX Low-Byte

Integer-Werte, die sich hiermit nicht mehr darstellen lassen, z.B.:
Werte groBer als 32767, werden im Long-Integer-Format darge-

stellt:
Byte-Nr. Wert Bedeutung
1 30 Token: vorzeichenbehafteter 4-Byte-Integer-Wert folgt.
2-5 XX 4-Byte-Integer-Zahl, Bit 7 in Byte 2 ist das Vorzeichen-

Bit.

Sollte es sich bei dem Wert um eine FlieBkommazahl handeln,
wird folgendes Format verwendet:

Byte-Nr. Wert Bedeutung
1 29 Token: 4-Byte-FlieBkommazahl foigt.
25 XX 4-Byte-Float (Genauigkeit = 7 Stellen).

Nun das Ganze mit doppeltgenauen FlieBkommazahlen:

Byte-Nr. Wert Bedeutung
1 31 Token: 8-Byte-Floating-Point folgt.
29 XX 8-Byte-Float (Genauigkeit = 16 Stellen).

Soliten Sie der Auffassung sein, daBl das alles war, haben Sie
sich getduscht. Geben Sie doch einmal in einem Programm ein:

a=&hff

Nach dem Verlassen dieser Zeile korrigiert der Amiga gleich:

a=&HFF

—— AmigaBASIC intern

Daran kénnen wir schon sehen, dafl der Amiga auch diese Werte
erkennen muf3. Aber sehen Sie selbst:

Byte-Nr. Wert Bedeutung
1 12 Token: Hexadezimalzahl folgt
2 XX High-Byte
3 XX Low-Byte

Dann sind da noch die Oktalzahlen wie &0123456. Sie werden
zunidchst ins 2-Byte-Format umgerechnet und treten dann so
auf:

Byte-Nr. Wert Bedeutung
1 11 Token: Oktalzahl folgt
2+3 XX Oktalzahl (6 Stellen genau)

In Zusammenhang mit Werten iiber Strings zu reden erscheint
vielleicht etwas merkwiirdig, trotzdem an dieser Stelle eine Be-
merkung dariiber: Strings werden im ASCII-Klartext gespeichert.
Um Speicherplatz zu sparen, wird bei einer direkten Wertzu-
weisung kein neuer Speicherplatz reserviert, in die dann der
String aus dem Programm iibertragen wird, sondern es werden
einfach die Zeiger, die auf die Anfangsadresse der Strings wei-
sen, auf den Klartext im Programm gesetzt. Das 148t sich sofort
beweisen:

aS:ll L1}
b$="He, ich habe mich verandert!"
FOR i=1 TO LEN(bS$)

POKE SADD(a$)+i-1,ASC(MID$(b$,i,1))
NEXT
LIST

Sollten Sie das Programm nicht ganz verstanden haben, empfehle
ich Thnen, die Beschreibung des Befehles SADD in IThrem Ami-
gaBASIC-Handbuch einmal durchzulesen. Lassen Sie das Pro-
gramm laufen und vergleichen Sie anschlieBend das Listing mit
dem, was Sie eingegeben haben. Sie werden vorfinden:

a$="He, ich habe mich verédndert!®
="He, ich habe mich verandert!"
FOR i=1 TO LEN(bS)

252 Amiga Tips & Tricks

Zum einen sehen Sie, wie gefihrlich es sein kann, ein Programm
zu starten, ohne daB es vorher abgespeichert wurde, zum ande-
ren haben Sie die erste Moéglichkeit eines selbstmodifizierenden
Programms: In a$ konnte doch zum Beispiel der Name eines
Windows stehen. Der Programmbenutzer kdnnte nun nach Pre-
ferences-Voreinsteller-Manier wihrend des Programmlaufes den
neuen Namen eingeben, der gepoket wird, und wenn das Pro-
gramm sich dann mittels SAVE selbst abspeichert, liegt es in
verinderter Form auf Disk vor. Hierbei sind IThrer Kreativitit
kaum Grenzen gesetzt.

5.2.3.9 Besondere Token

Bei den Befehls-Token (groBler als 127) treten einige Besonder-
heiten auf, die Sie unbedingt beachten sollten. $8E (ELSE) tritt
im Programm niemals alleine auf. Der Interpreter kann das Ende
eines Befehles nur dann feststellen, wenn entweder der Code $00
fir Zeilenende oder der Code $3A, der Doppelpunkt, erreicht
wird. Da nach einem IF ... THEN ... nicht unbedingt ein ELSE
folgen muf3, wird IF-THEN vom Interpreter als ein Befehl ab-
gehandelt.

Folgt nun ein ELSE, so werden Sie mit einem File-Monitor
feststellen konnen, daB3 der BASIC-Interpreter einen Doppel-
punkt vor $8E gehidngt hat, der beim Listen des Programms nie
auftaucht. Wer also bisher vor jedes ELSE einen Doppelpunkt
gesetzt hat, wird mit einem File-Monitor erkennen, daf3 vor $8E
zwei Doppelpunkte stehen, von denen nur einer bendétigt wird,
der beim Listen nicht sichtbare nimlich.

Ein dhnliches Phinomen tritt bei REMarks auf. Auch hier stellt
der Interpreter immer einen Doppelpunkt davor. Merkwiirdiger-
weise tut er das auch, wenn vor dem REMark kein anderer Be-
fehl steht. So kann eine Zeile derartig aussehen:

Pk %

00 OE OO(3A(AF E8{20 2A 20 31 2E 20 2A |00

Kopf * 1 . *|Ende

—— AmigaBASIC Intern 253

Eine weitere Merkwiirdigkeit tritt auf, wenn Sie ein Programm
erzeugen und dabei den Befehl WHILE beziehungsweise sein
Token $BE verwenden. Belassen Sie es dabei, meldet der Amiga
beim Programmablauf einen ERROR 22 (Missing operand). Er-
stellt man mit AmigaBASIC ein Programm, so hidngt der Inter-
preter grundsitzlich ein $EC hinter den scheinbaren Ein-Byte-
Token $BE. Sie sollten das auch immer tun - dann funktioniert
es nimlich. Also immer $BE+$EC verwenden.

Was noch sehr wichtig ist

Es existiert ein merkwiirdiges Token, das niemals gelistet wer-
den kann - und kaum jemand benutzt es nicht. Sie wissen si-
cherlich, daBB das Aufrufen von SUB-Routinen nur direkt nach
THEN oder ELSE mit dem Befehl CALL durchgefiihrt werden
mul}. Ansonsten kann man den Namen des SUB-Programms an-
stelle eines BASIC-Befehls verwenden. SchlieBlich haben die
SUB-Programme nur einen Sinn: Sie ermoglichen das Program-
mieren von Befehlserweiterungen in BASIC. Wer um diesen
Umstand weif3, verwendet - aufler zum Aufruf von Betriebssy-
stem-Routinen - nie den Befehl CALL, dafiir aber (oft ohne es
zu wissen) dieses merkwiirdige Token. Im Gegensatz zu CALL
steht es hinter den Zeigern auf die Variablentabelle. Es handelt
sich hierbei um das Doppel-Token $F8-$DI.

Auflerdem wire noch etwas zu dem Befehl DATA zu sagen. Auf
ein DATA folgt grundsitzlich alles im (ASCII-)Klartext, ebenso
wie nach einem REM, da der Interpreter nunmal keine hellse-
herischen Fihigkeiten besitzt und daher nicht wissen kann, ob
Sie zum Beispiel aus folgender Zeile in Variablen einlesen wol-
len, wie Float oder Integer, oder ob dies die Zeichenketten fiir
eine Stringvariable sind:

DATA &hffe2,123,806666

5.2.3.10 Subprogramme

Wie kam es iiberhaupt dazu, dafl Subprogramme in AmigaBASIC
implementiert wurden? Dazu wird jeder ehemals stolze Besitzer

254 Amiga Tips & Tricks

eines C64 oder dhnlichen Computers ein Lied singen kdénnen.
Etwa nicht? Dann moéchte ich an dieser Stelle noch einmal daran
erinnern. Der erste Punkt ist sicherlich der, daB damit modulares
Programmieren erst moglich wird. Sicherlich trigt zwar auch der
Befehl MERGE oder CHAIN dazu bei, jedoch miissen bei deren
Methoden die Variablennamen immer gleich sein, sofern sie
iibergeben werden sollen.

Des weiteren mufl auch der Name des nichsten Programmteils
feststehen, es sei denn, man 14dt das nichste Programm als Va-
riable nach, die dann aber leider auch feststehen muf3. An SUB-
Routinen kénnen jedoch beliebige Variablen(namen) iibergeben
werden, da in der Klammer vor dem STATIC Platzhalter defi-
niert werden, in die die iibergebenen Werte iibertragen werden.

Es ist daher ratsam, jedes Subprogramm einzeln zu editieren und
als ASCII-File abzuspeichern, um es bei Bedarf nach dem Edi-
tieren eines Programms mittels MERGE im Direktmodus oder
im Programm (was unglaublich viel Zeit kostet, von wegen der
- Syntax-Priifung und so...) einfach an das speicherresidente
BASIC-File anzuhidngen. Die Aufrufkonventionen (z.B.: welche
Betriebssystemroutinen vorher als Funktion deklariert werden
miissen etc.) sollten Sie sich allerdings aufschreiben beziehungs-
weise mit einer Dateiverwaltung archivieren.

Der zweite Punkt war wohl der, daB3 bei den bisher erhiltlichen
Computern stindig jemand beklagte, wie unvollstindig doch der
Befehlssatz sei und wie schwer es doch fiir einen BASIC-Pro-
grammierer wire, den Befehlssatz zu erweitern. Nun, Befehlser-
weiterungen lassen sich auf dem Amiga nicht nur in Maschi-
nensprache oder C programmieren (eigene Libraries), sondern
mit SUB-Programmen auch in BASIC. Beispielsweise:

PRINTAT 10,20,"Blabla"

SUB PRINTAT (x,y,Text$) STATIC
LOCATE vy, x
PRINT Text$

END SUB

Der dritte Punkt ist ein Anschlag auf Programmierer in anderen
Sprachen wie Pascal oder dhnlichen. Wozu komplizierte Sprachen

—— AmigaBASIC Intern 255

erlernen, wenn BASIC das auch kann - und auf dem Amiga
nicht gerade langsam. Jetzt sagen natiirlich schon wieder einige,
das wire mit Pascal nicht zu vergleichen, da sich die SUB-Pro-
gramme nicht aufrufen konnen. Das ist nur insofern richtig, als
Variablen nicht wieder in Platzhaltervariablen iiberfithrt werden
(was sich programmiertechnisch allerdings auch 16sen 1af3t).

Geht es nur darum, daB3 ein Befehl sich selbst bis zu einem ge-
wissen Punkt immer wieder selbst durchliuft, mehrere Iteratio-
nen also durchgefithrt werden, so hilft ein einfaches Label am
Anfang der Routine, zu der dann innerhalb des SUBs dauernd
verzweigt werden kann. Programmintern werden SUB-Routinen
wie Variablen behandelt. Nur aus dem Zusammenhang heraus
kann der Amiga sie als Unterroutinen erkennen.

Wichtige Besonderheiten

Was macht Thr Manipulationsprogramm, wenn es auf die Code-
folge $20-$F8-$8F-$20 trifft? Blittern Sie einmal in der Token-
Liste im Anhang nach. Unzweifelbar handelt es sich hier um das
$F8-Doppel-Token END, eingeschlossen von zwei Spaces. Ist das
Programm hier zu Ende? Was, wenn jetzt die Codes $F8-$BE
folgen? Richtig, das ist der Code fiir SUB! Und von dieser Art
gibt es noch geniigend Beispiele (INPUT in "OPEN x$ FOR
INPUT..."). ,

Sie sehen, ein Token gibt nicht allein Aufschlu3 iiber das, was
tatsdchlich geschieht. Erst der Zusammenhang, in dem das To-
ken zu anderen Token steht, macht die Art der Ausfithrung aus
(hatten wir das nicht auch bei der Verwaltung der Namen von
SUB-Programmen?). Das gilt iibrigens auch fiir PRINT# und?#
- die Token sind gleich!

5.2.3.11 Andere Token

Was, noch mehr? Ja, leider. Wenn Sie fleiBig mitnotiert haben,
werden Sie gewisse Locher in der Token-Reihenfolge mit Wer-
ten unter 128 festgestellt haben. Nicht, daB diese Token unge-

256 Amiga Tips & Tricks

nutzt sind, beileibe nicht! Sollten Sie Ihr gerade editiertes Pro-
gramm nicht mit dem ersten Befehl im Direkt-Modus sichern,
hat sich Thr Programm auch schon verindert. Thnen ist sicher
schon aufgefallen, daB der Interpreter bereits bei der Eingabe
einige schwerwiegende Fehler entdeckt, und zwar in dem Mo-
ment, in dem Sie einen Direkt-Modus-Befehl eingeben, anstelle
dessen Ausfithrung dann der Fehler-Requester erscheint.

Ausgenommen hiervon ist aus Sicherheitsgriinden der SAVE-
Befehl. Mir ist es schon passiert, daB sich AmigaBASIC in der
Fehler-Anzeige-Routine aufgehidngt hat und nur noch den glei-
chen Fehler anzeigte, ohne wieder Befehle anzunehmen (keine
Angst, ich habe 20mal auf OK geklickt).

Es wird also eine einfache Programmiiberpriifung eingeleitet, bei
der das Programm bereits gedndert wird. Und zwar handelt es
sich bei den "Loch-Token" um Token, die der Programmablauf-
steuerung dienen. So ist beispielsweise $8 zustindig fiir die Auf-
nahme von Sprungoffsets bei IF-THEN-Verzweigungen, die
aber nicht unbedingt gleich in Programme eingebaut werden.
Um fiir Manipulationsprogramme die Aufgabe nicht unnétig zu
erschweren - es gibt eine ganze Reihe Sonderformen - treffen
wir folgende Vereinbarung:

1. Bei Manipulationsprogrammen oder Programmen zum
Auslesen von Daten aus anderen Programmen, die ein
bindres File-Format benoétigen, ist folgendermaBlen vorzu-
gehen:

- Speichern des zu bearbeitenden Files als ASCII-Datei.
- Laden und mit dem ersten weiteren Befehl gleich wie-
der als Binidr-File speichern.

2. Bei ASCII-Files ist keine Sonderbehandlung noétig, da mit
dem Abspeichern die Programmsteuerungscodes nicht ab-
gespeichert werden.

—— AmigaBASIC Intern 257

5.3 Nutzliche Programme zur Manipulation von
AmigaBASIC

Die nachfolgenden Unterkapitel stellen Ihnen einige Programme
zur Verfiigung, mit denen Sie Thre BASIC-Programme bearbei-
ten konnen.

5.3.1 DATA-Generator

Dieses Programm demonstriert, wie man von einem Programm
aus ein AmigaBASIC-ASCII-Programm erzeugen kann. Nun ist
es zwar eleganter, Daten in einem File auf Diskette abzuspei-
chern und dann jedesmal wieder zu laden, dennoch gibt es Pro-
jekte, bei denen man ohne DATA-Zeilen nicht mehr auskommt.
So gibt es bei einem guten Programm immer die Moglichkeit, es
einmal in einer Zeitschrift abdrucken zu lassen und dafiir natiir-
lich auch etwas Geld (fiir Erweiterungen natiirlich!) zu bekom-
men.

Was aber, wenn das Programm nicht ohne Sprites, BOBs, Ma-
schinenspracheroutinen oder dhnlichem auskommt? Da gibt es
gar keine Frage: DATA-Zeilen miissen her. Nun, das vorlie-
gende Programm erzeugt DATA-Zeilen von jedem beliebigen
File. Fir andere Anwendungszwecke steht es Ihnen natiirlich
frei, das Programm nach eigenen Wiinschen umzuschreiben.

Das erzeugte ASCII-File 148t sich ganz einfach an das Pro-
gramm, das die DATAs benotigt, durch MERGE anhidngen. Um
die DATA-Zeilen nicht unnétig lang zu machen, werden die
Werte als Hexadezimalzahlen ausgegeben. Eine Leseroutine fiir
die DATAs wird mit abgespeichert. Ungewohnlich an der Ein-
leseroutine ist fur eifrige Leser des AmigaBASIC-Handbuches
sicherlich die Umwandlung von Hexadezimalzahlen in Dezimal-
zahlen.

Hier ist das BASIC-Handbuch schlichtweg falsch! Natiirlich ist
es fiir den Interpreter véllig egal, ob Sie a%=255 oder a%=&HFF
schreiben. Ebenso funktioniert das selbstverstindlich auch bei

258 Amiga Tips & Tricks

VAL und #hnlichen Funktionen! Die umstindlichen Umrechen-
routinen - in 64er BASIC gehalten - die man immer wieder in
Amiga-Listings findet, entsprechen keinesfalls dem Standard von
AmigaBASIC. Sie konnen daher ohne weiteres schreiben:

daten: DATA ff,ec,0,1,f
RESTORE daten:FOR i=1 TO 5:READ a$:x(i)=VAL("&H"+a$):NEXT

Man bemerke: Nur ein Befehl anstelle eines ganzen Subpro-
gramms! Nun aber zum Listing:

GOTO start

' "dos.bmap" und "exec.bmap" muessen auf
' Disk vorhanden sein!

' Betriebssystemroutinen als Funktionen

' deklarieren

]

start:
DECLARE FUNCTION xOpen& LIBRARY
DECLARE FUNCTION xRead% LIBRARY
DECLARE FUNCTION AllocMem& LIBRARY
DECLARE FUNCTION Examine& LIBRARY
DECLARE FUNCTION Lock& LIBRARY

' Bibliotheken 6ffnen

LIBRARY "exec.library"
LIBRARY "dos. library"

' Eingaben
)
sourcefile:
CLS
LINE INPUT "Name des Source-Files: ";source$
PRINT
PRINT "Diskette einlegen (RETURN)"
WHILE A$<>CHR$(13)
A$=INKEY$
WEND
LOCATE 3,1:PRINT “"Checking File... "
CHDIR "dfO:"
CheckFile source$,Bytes&
IF Bytes&=0 THEN

—— AmigaBASIC Intern 259

LOCATE 3,1:PRINT “File not found...":BEEP
A=TIMER+3 :WHILE A>TIMER:WEND
GOTO sourcefile
ELSEIF Bytes&=-1 THEN
LOCATE 3,1:PRINT "Directories kann ich nicht..."
BEEP :A=TIMER+3:WHILE A>TIMER:WEND
GOTO sourcefile
END IF
LOCATE 3,1:PRINT "File gefunden. Lénge=";Bytes&;" Byte"

Buffer einrichten

Publ i cRAM&=65537&

Buffer&=AllocMem&(Bytes&,Publ icRAM&)

1F Buffer&=0 THEN
LOCATE 5,1:PRINT “Nicht genug Speicher vorhanden."
LOCATE 7,1
PRINT "Programm kann mit RUN wieder gestartet werden."
BEEP :END

END IF

File in Buffer laden

source$=source$+CHR$(0)

Opened&=xOpen&(SADD (source$), 1005)

IF Opened&=0 THEN
LOCATE 5,1:PRINT "Ich kann das File nicht 6ffnen!"
BEEP :A=TIMER+3:WHILE A>TIMER:WEND
GOTO sourcefile

END IF

gelesen%=xRead%(Opened&,Buffer&,Bytes&)

CALL xClose(Opened&)

' Eingabe Target-File
1
targetfile:
LOCATE 9,1:PRINT "Name des BASIC-ASCII-Files,"
FOR i=11 TO 17 STEP 2
LOCATE i,1:PRINT SPACE$(80)
NEXT
LOCATE 11,1:LINE INPUT "das erzeugt werden soll: “;target$
LOCATE 13,1:PRINT "Target-Disk einlegen (RETURN)"
A$="" WHILE A$<>CHR$(13):A$=INKEY$:WEND
CHDIR "df0O:"
LOCATE 15,1:PRINT "“Checking Disk..."
CheckFile target$,vorhanden&
IF vorhanden&=-1 THEN
LOCATE 15,1:PRINT "Das ist der Name eines Directory!"
BEEP :A=TIMER+3:WHILE A>TIMER:WEND
GOTO targetfile
ELSEIF vorhanden&<>0 THEN
LOCATE 15,1:PRINT "“Es ist bereits ein File mit diesem"
LOCATE 17,1:PRINT "Namen vorhanden. File ldéschen? (J/N)"

260 Amiga Tips & Tricks

warte:
A$=INKEY$:IF A$<>"" THEN A$=UCASE$(AS)
IF AS="J" GOTO weiter
IF A$<>"N" GOTO warte
GOTO targetfile
END IF
weiter:

' DATA-ASCII-File erzeugen
1]

LOCATE 19,1:PRINT “ASCII-File wird erzeugt."
LOCATE 21,1:PRINT "Bitte etwas Geduld..."
OPEN target$ FOR OUTPUT AS 1
anzah&=0
PRINT#1,"RESTORE datas";CHR$(10);
PRINT#1,"datastring$=";CHR$(34);CHR$(34) ;CHR$(10);
PRINT#1,"FOR i=1 TO ";STR$(Bytes&);CHR$(10);
PRINT#1,"READ a$";CHR$(10);
PRINT#1,"a$=";CHR$(34);"&H";CHR$(34);"+a$" ;CHR$(10);
PRINT#1,"datastring$=datastring$+CHR$(VAL(a$))";
PRINT#1,CHR$(10);
PRINT#1,"NEXT";CHR$(10);
PRINT#1,"datas:";CHR$(10);
Zeile:
PRINT#1,"DATA ";
zahl=0
Wert:
PRINT#1,HEX$(PEEK(Buffer&+anzahl&));
zahl=zahl+1 :anzahl&=anzahl&+1
IF anzahl&<Bytes& THEN
IF zahl<20 THEN
PRINT#1,n n-
GOTO Wert
ELSE
PRINT#1,CHR$(10);
GOTO Zeile
END IF
END IF
PRINT#1,CHR$(10);CHR$(10);
CLOSE 1

.info-file &andern

SAVE "DATA-GENINFO"

weg$=target$+".info"

KILL weg$-

NAME "DATA-GENINFO.info" AS target$+".info"
KILL "DATA-GENINFO"

CLS

PRINT “fertig."

CALL FreeMem(Buffer&,Bytes&)

END

—— AmigaBASIC Intern 261

' SUBROUTINE
1
SUB CheckFile(Filename$,Length&) STATIC
ChipRAM&=65538&
InfoBytes&=252
Info&=Al locMem&(InfoBytes&, ChipRAM&)
IF Info&=0 THEN ERROR 7
File$=Filename$+CHR$(0)
DosLock&=Lock&(SADD(File$),-2)
IF DosLock&=0 THEN
Length&=0
ELSE
Dummy&=Examine&(DosLock&, Info&)
Length&=PEEKL(Info&+4) .-
IF Length&>0 THEN
Length&=-1
ELSE
Length&=PEEKL (Info&+124)
END IF
END IF
CALL UnLock(DosLock&)
CALL FreeMem(Info&, InfoBytes&)

END SsuB
Variablen

A String, Hilfsvariable

AllocMem EXEC-Routine, Speicher reservieren

Buffer Adresse des reservierten Speichers

Bytes Lange der zu bearbeitenden Datei

CheckFile SUB-Routine, priift, ob File vorhanden, wenn ja, ob Directory,
wenn nicht, Liange holen

ChipRAM Option fiir AllocMem: 2”16 (65536) = Bereich I6schen, 21
(2) =Chip-RAM-Bereich

DosLock File-Handle der Checkfile-Routine

Dummy nicht genutzte Variable

Examine DOS-Routine, untersucht File

File Filename mit abschlieBender Null fir DOS

Filename Name der zu bearbeitenden Datei

FreeMem EXEC-Routine, gibt Speicherbereich frei

Info Adresse der File-Info-Struktur

InfoBytes Lénge der File-Info-Struktur

Length Lénge des Files

Lock DOS-Routine, sperrt File gegen Zugriffe von anderen Programmen
und besorgt Handle

Opened Adresse des File-Handlers der Source-Datei

PublicRAM Option fiir AllocMem: 2”16 (65536) =Bereich loschen, 2™0
(1) = Public-Bereich

262 Amiga Tips & Tricks —

Unlock DOS-Routine, hebt Lock auf

anzahl Zahler fiir geschriebene DATA-Werte
gelesen Anzahl tatsachlich gelesener Bytes

i Schleifenvariable

source Ausgangsdatei

target Zieldatei im ASCII-Format fiir DATAs
vorhanden Flag: | existiert File?

weg Hilfsvariable

xClose DOS-Routine, schlieBt File

xOpen DOS-Routine, 6ffnet File

xRead DOS-Routine, liest aus File

zahl Zahler fir Bytes in einer DATA-Zeile

5.3.2 Cross-Reference-Liste

Dieses Programm demonstriert das Auslesen von Werten aus bi-
nir gespeicherten AmigaBASIC-Programmen. Um den Rahmen
dieses Buches nicht zu sprengen, wird keine vollstindige Syntax-
Priifung des Programms vorgenommen. Dadurch ergibt sich, daB3
eventuell vom Interpreter eingebaute Programmablaufsteue-
rungsmarken sowie Speichermiill zwischen dem Programmrumpf
und der Variablentabelle vor dem Einsatz dieses Programms aus
dem zu bearbeitenden File entfernt werden miissen. Um das zu
erreichen, gehen Sie folgendermaflen vor:

Laden des zu bearbeitenden Files
SAVE "filename",A
AmigaBASIC beenden
AmigaBASIC neu laden

LOAD "filename"

SAVE "filename",B

AR

Haben Sie dies getan, so kénnen Sie sich mit folgendem Pro-
gramm eine Kreuzverweis-Liste auf dem Drucker ausgeben las-
sen. Dabei werden sowohl Label als auch Zeilennummern in der
Reihenfolge, in der sie im Programm auftauchen, ausgegeben.
Zu diesen Sprungmarken wird durch "<--" markiert angegeben,
von welchen Labeln oder Zeilennummern aus diese Sprungmarke
angesprungen wird.

—— AmigaBASIC Intern

Erfolgt der Ansprung von einer Stelle im Programm, an der
noch keine Sprungmarke definiert ist, zum Beispiel von der er-
sten Programmzeile aus, so wird dies mit dem geklammerten
Pseudo-Label "(Programm-Anfang)" kenntlich gemacht. Dann
folgen noch durch "-->" gekennzeichnet die Sprungmarken, die
von dieser Sprungmarke aus angesprungen werden. Zu beachten
ist hierbei, dal weder Betriebssystemaufrufe noch SUB-Routi-
nen beriicksichtigt werden, da diese von dem AmigaBASIC-In-
terpreter wie Variablen abgelegt werden. Trotzdem haben Sie
hiermit ein wunderbares Werkzeug, um Ihre Programme zu do-

kumentieren.

#CrossReference Amiga #

(W) 1987 by Stefan Maelger
R R IR

Dieses Programm erstellt auf Ihrem
Printer eine Kreuzverweis-Liste

(Cross-Reference-Chart), die es

Ihnen erlaubt, jedes BINAR gespeicherte
AmigaBASIC-Programm zu dokumentieren.

Da SUB-Routinen vom Interpreter wie in
AmigaBASIC programmierte AmigaBASIC-
Befehls-Erweiterungen gehandhabt werden,

bleiben deren Aufrufe unberuecksichtigt.
g g g g g

'----Speicher reservieren, Druckertreiber ----
'----laden,Bibliothek 6ffnen und Variablen----
CLEAR, 45000&

LPRINT

DECLARE FUNCTION xOpen& LIBRARY

DECLARE FUNCTION xRead% LIBRARY

DECLARE FUNCTION Seek% LIBRARY

LIBRARY ":dos.library"

DIM Cross$(5000),names$(1000)

LOCATE 2,2

PRINT CHR$(187);" Cross Reference Amiga ";CHR$(171)

LOCATE 5,2

PRINT “Name des bindren AmigaBASIC-Programms:"
LOCATE 7,2

LINE INPUT Filename$

CHDIR “dfO:"

BASICcheck Filename$,Result%

LOCATE 10,2

IF Result¥%=-1 THEN

264 Amiga Tips & Tricks

PRINT "Ich kann kein Info-File finden."
ELSEIF Result%=0 THEN

PRINT "Lese-Fehler!"

ELSEIF Result¥=1 THEN

PRINT "Das ist kein AmigaBASIC-Programm."
END IF

IF Result¥<>2 THEN

BEEP

WHILE INKEY$="n

WEND

RUN

END IF

PRINT CHR$(34);Filename$;".info";CHR$(34)
PRINT

PRINT " weist dieses Prg als AmigaBASIC-File aus."
OpenFile Filename$, handle&

LOCATE 14,2

IF handle&=0 THEN

PRINT "AAAaargh! Ich finde ";CHR$(34);
PRINT Filename$;CHR$(34);" nicht!!n

BEEP

WHILE INKEY$="":WEND:RUN
ELSE

PRINT "File gedffnet."
END IF

LOCATE 16,2

HeaderCheck handle&,Header$

IF ASC(Header$)<>&HF5 THEN
PRINT "Sorry, ich kann nur binar-Files"
BEEP
WHILE INKEY$="":WEND:RUN

ELSE
PRINT "File hat bindres Format"
PRINT :PRINT "Bitte etwas Geduld. ";
PRINT "Ich melde mich wieder..."

END IF

pointer%=-1

main:

GetLine handle&,Current$

IF LEN(Current$)<4 THEN
PRINT
PRINT " Ende des Binar-Codes erreicht®
PRINT :PRINT " Lese Variablentabelle."
GOTO Vartab

END IF

IF ASC(Current$)=128 THEN
pointer%=pointer%+1
Cross$(pointer%)=CHR$(128)+MID$(Current$,4,2)
Current$=MID$(Current$,6)

ELSE
Current$=MID$(Current$,4)

END IF

GetToken:

—— AmigaBASIC Intern 265

Token¥=ASC(Current$+CHR$(0))

1F Token%=0 GOTO main
'----BefehlsToken?----

IF Token%>127 THEN
IF Token¥=175 OR Token%=141 GOTO main
IF Token%=190 OR Token%>247 THEN

Current$=MID$(Current$,3)

ELSE

Current$=MID$(Current$,?2)

END IF
GOTO GetToken

END IF

V----String?----

IF Token%=34 THEN
Byte%=INSTR(2,Current$,CHR$(34))
IF Byte%=0 GOTO main
Current$=MID$(Current$,Byte%+1)
GOTO GetToken

END IF

'----Folgt 2-Byte-Wert?----

IF Token¥%=1 OR Token%=11 OR Token%=12 OR Token%=28 THEN
Current$=MID$(Current$,4)

GOTO GetToken

END IF

'----Folgt 1-Byte-Wert?----

IF Token%=15 THEN Current$=MID$(Current$,3):GOTO GetToken

'----Folgt 4-Byte-Wert?----

IF Token¥%=29 OR Token%=30 THEN
Current$=MID$(Current$,6)

GOTO GetToken

END IF

'----Folgt 8-Byte-Wert?----

IF Token%=31 THEN Current$=MID$(Current$,10):GOTO GetToken

'----Ist es ein Label?----

IF Token¥%=2 THEN
pointer%=pointer%+1
Cross$(pointer%)=LEFT$(Current$,3)
Current$=MID$(Current$,4)

GOTO GetToken

END IF

'----1st es ein Sprungziel?----

IF Token%=3 OR Token%=14 THEN
pointer¥%=pointer%+1
Cross$(pointer%)=CHR$(Token%)+MID$(Current$,3,2)
Current$=MID$(Currents$,5)

GOTO GetToken

END IF
Current$=MID$(Current$,?2)

GOTO GetToken

Vartab:

p2%=-1

notforever:

GetlLength handle&,bytes%

266 Amiga Tips & Tricks

IF bytes%=0 GOTO goon
GetName handle&,Current$,bytes%
p2%=p2%+1
names$(p2%)=Current$
GOTO notforever
goon:
IF pointer%=-1 THEN
PRINT
PRINT "Ich habe kein Label und keine Zeilennummer"
PRINT
PRINT "entdecken konnen!™
BEEP
WHILE INKEY$="":WEND:RUN
ELSEIF p2%=-1 THEN

PRINT

PRINT "Hmm - keine Variablentabel le"
BEEP

WHILE INKEY$="":WEND:RUN

ELSE

PRINT :PRINT " Gebe Daten aus."

END IF

LPRINT ">>> CrossReference Amiga <<<"
LPRINT M---c-cccmccmmcccccnacncnnaa- "
LPRINT "Programm: “;Filename$

LPRINT

FOR i=0 TO pointer%
ascii%=ASC(Cross$(i))

IF ascii%=2 THEN
LPRINT names$(CVI(MID$(Cross$(i), 2)));":"
FOR j=0 TO pointer%
IF ASC(Cross$(j))=3 THEN
IF CVI(MID$(Cross$(j),2))=CVI(MID$(Cross$(i),2)) THEN
k=]
WHILE k>-1
k=k-1
IF k>-1 THEN
IF ASC(Cross$(k))=2 THEN
LPRINT " <-- W
LPRINT names$(CVI(MID$(Cross$(k),2)))
k=-2
ELSEIF ASC(Cross$(k))=128 THEN
LPRINT " <-- W.CVI(MID$(Cross$(k),2))
k=-2
END IF
END IF
WEND
IF k=-1 THEN LPRINT " <--(Programm-Anfang)"
END IF
END IF
NEXT j
ELSEIF ascii%=3 THEN
LPRINT " --> ";names$(CVI(MID$(Cross$(i),2)))
ELSEIF ascii%=14 THEN

—— AmigaBASIC Intern 267

LPRINT " --> M.CVI(MID$(Cross$(i),2))
ELSEIF ascii%=128 THEN
LPRINT CVI(MID$(Cross$(i),2))
FOR j=0 TO pointer%
IF ASC(Cross$(j))=14 THEN
IF CVI(MID$(Cross$(j),2))=CVI(MID$(Cross$(i),2)) THEN
k=j
WHILE k>-1
k=k-1
IF k>-1 THEN
IF ASC(Cross$(k))=2 THEN
LPRINT " <-- W;
LPRINT names$(CVI(MID$(Cross$(k),2)))
k=-2
ELSEIF ASC(Cross$(k))=128 THEN
LPRINT " <-- ",CVI(MID$(Cross$(k),2))
=-2
END IF
END IF
WEND
IF k=-1 THEN LPRINT " <--(Programm-Anfang)"
END IF
END IF
NEXT j
END IF
NEXT i
PRINT :PRINT "Fertig."
BEEP
WHILE INKEY$="":WEND:RUN

SUB GetName(handle&,Current$,bytes%) STATIC
Current$=SPACE$(bytes%)
Length%=xRead%(handle&, SADD(Current$),bytes%)

END SUB

SUB GetLength(handle&, bytesX) STATIC
Current$=CHR$(0)

readit:

Length%=xRead%(handle&, SADD(Current$),1)
IF Length%=0 THEN
CALL xClose(handle&)
bytes%=0
EXIT SUB
END IF
bytes¥%=ASC(Current$)
IF bytes%=0 THEN readit
IF bytes%>60 THEN readit

END SuB

SUB GetLine(handle&,Current$) STATIC
Current$=STRING$(3,0)
Length%=xRead%(handle&, SADD(Current$),3)
OldPos¥%=Seek%(handle&,-3,0)

268 Amiga Tips & Tricks

LoL%=ASC(MID$(Current$,2,1))

IF LoL%=0 THEN
EXIT SuB

ELSE
Current$=STRING$(LoL%,0)
Length¥%=xRead%(handle&, SADD(Current$),LoL%)

END IF

END SUB

SUB HeaderCheck(handle&,Header$) STATIC
Header$=")u
OldPos%=Seek%(handle&,0,-1)
gotit¥%=xRead%(handle&, SADD(Header$),1)

END SUB

SUB OpenFile(Filename$, handle&) STATIC
file$=Filename$+CHR$(0)
handl e&=x0pen&(SADD(file$),1005)

END SuB

SUB BASICcheck(Filename$,Result¥) STATIC
file$=Filename$+".info"+CHR$(0)
Default.Tool$=SPACE$(20)
handl e&=x0pen&(SADD(file$),1005)
1F handle&=0 THEN
Resul t%=-1

ELSE
oldPos%=Seek%(handle&,-20,1)
gotit¥%=xRead%(handle&, SADD(Default.Tool$),20)
IF gotit¥%<20 THEN

Resul t%=0
ELSE
IF INSTR(Default.Tool$,"AmigaBASIC")>0 THEN
Resul t%=2
ELSE
Resul t%=1
END IF
END IF
CALL xClose(handle&)
END IF
END SuB
Variablen
BASICcheck SUB-Routine zum Priifen des Default-Tools
Byte Pointer auf Byte im String
Bytes Hilfsvariable, z.B. Stringlange
Cross Stringfeld zur Zwischenspeicherung der Sprungmarken und
Spriinge
Current String, eingelesene BASIC-Zeile
Default.Tool String, in den das Default-Tool gelesen wird

—— AmigaBASIC Intern 269

Filename
GetlLength
Getline
GetName
Header
HeaderCheck
Length
LoL
OldPos
OpenfFile
Resuft
Seek
Token
ascii

file

gotit
handle

i

i

k

names
p2
pointer
xClose
xOpen
xRead

String, Name des zu bearbeitenden Files
SUB-Routine, holt die Label-Lénge
SUB-Routine, liest Zeile ein

SUB-Routine, liest Label-Name ein

String, File-Header-Byte

SUB-Routine, die die Abspeicherart priift
Anzabhl tatsachlich gelesener Bytes

Zeilenlange

alte Pointer-Position im File

SUB-Routine, 6ffnet File

Flag, Ergebnis der Untersuchung

DOS-Routine, verschiebt Schreib-Lese-Zeiger im File
ASCII-Wert des nachsten Bytes einer Zeile
Wert des Codes in Cross$

String, Filename mit Null abgeschlossen fiir DOS-Routinen
tatsachlich gelesene Bytes

Adresse auf den File-Handler

Schleifenvariable

Schleifenvariable

Schleifenvariable

Stringfeld, Namen der Sprungmarken
Hilfsvariable

Hilfsvariable

DOS-Routine, schlieBt File

DOS-Routine, 6ffnet File

DOS-Routine, liest aus File an Speicheradresse

5.3.3 Leerzeilen-Killer

Da wir wissen, wie Leerzeilen aufgebaut sind, sollte es uns nun

leichtfallen,

diese zu entfernen. Das folgende Programm erledigt

diese Arbeit fiir uns. Vorher muf3 jedoch jeglicher Speichermiill
beseitigt werden. Wie das vor sich geht, sehen Sie im Text zur
Cross-Reference-Liste.

Wichtig:

Wenn Sie das Programm abtippen, konnte Ihnen ein
winziger Fehler unterlaufen, der Ihr Originalpro-
gramm zerstoren wiirde. Verwenden Sie daher nur
Kopien TIhrer Originale, und priifen Sie nach der
Bearbeitung die Lauffiahigkeit. Das vorliegende Pro-
gramm #ndert das Ausgangsfile ab. Des weiteren

270

W) 1

"dos . bmap"

DECLARE FUN
DECLARE FUN
DECLARE FUN
DECLARE FUN
DECLARE FUN
DECLARE FUN
LIBRARY ":e
LIBRARY ":di
WINDOW CLOS
WINDOW 1,"L
Allocation.1:
COLOR 3,1:C

Amiga Tips & Tricks

wird aus Griinden der Speicher-Ersparnis wihrend
der Bearbeitung das gerade aktuelle Fenster ge-
schlossen. Sollte noch ein kleiner Fehler im Pro-
gramm sein, wie beispielsweise eine Endlosschleife,
kommen Sie daher nicht mehr an Ihr Programm
heran. Ausweg: Solange das Programm noch nicht
einwandfrei 1iuft, lassen Sie das List-Fenster offen -
aber nicht aktiviert! Es ist jedoch ganz normal, wenn
sich das Programm eine ganze Zeit lang nicht zu-
riickmeldet - je nach Linge des zu bearbeitenden
Files.

987 by Stefan Maelger #

und "“exec.bmap" muessen auf

Disk vorhanden sein

CTION AllocMem& LIBRARY

CTION Lock& LIBRARY

CTION Examine& LIBRARY

CTION xOpen& L IBRARY

CTION xRead& LIBRARY

CTION xWrite& LIBRARY

xec. library"

os.library"

E WINDOW(O)
eerzeilen-Killer",(0,0)-(250,50),16

LS

info&=Al locMem&(252&,65538&)

IF info&=0
ALLOCERR
GOTO Allo

END IF

Source:

THEN

cation.1

REQUEST "SOURCE"

SELECT boxX*

IF box% THEN CALL FreeMem(info&,252):SYSTEM

CHDIR "dfO:
GetFilename:

LINPUT Filename$
GETINFO Filename$, info&,Length&

1F Lengthé&<

1 THEN

IF Length&=-1 THEN

—— AmigaBASIC Intern 271

DIRERR
ELSEIF Length&=0 THEN
FILEERR
END IF
GOTO GetFilename
END IF
Allocation.2:
COLOR 3,1:CLS
buffer&=AllocMem&(Length&,65537&)
IF buffer&=0 THEN
ALLOCERR
GOTO Allocation.2
END IF
LOADFILE Filename$, buffer&, Length&
IF Filename$="" THEN
CALL FreeMem(buffer&,Length&)
LOADERR
GOTO GetFilename
END IF
IF PEEK(buffer&)<>&HF5 THEN
CALL FreeMem(buffer&, Length&)
FORMERR
GOTO GetFilename
END IF
NEWFILE Filename$, handle&
IF handle&=0 THEN
CALL FreeMem(buffer&,Length&)
CALL FreeMem(info&,b252&)
OPENERR
SYSTEM
END IF
Bytes&=1
DWRITE handle&,buffer&,Bytes&
IF Bytes&=0 THEN
CALL xClose(handle&)
CALL FreeMem(buffer&,Length&)
CALL FreeMem(info&,252&)
WRITEERR
SYSTEM
END IF
pointer&=buffer&+1
GetLength:
Bytes&=PEEK(pointer&+1)
IF Bytes&=4 THEN
pointer&=pointer&+4
GOTO GetlLength
ELSEIF Bytes&>4 THEN
DWRITE handle&,pointer&,Bytes&
IF Bytes&=0 THEN
CALL xClose(handle&)
CALL FreeMem(buffer&,Length&)
CALL FreeMem(info&,252&)
WRITEERR

272 Amiga Tips & Tricks

SYSTEM
END IF
pointer&=pointer&+Bytes&
GOTO GetlLength
ELSE
Bytes&=Length&-(pointer&-buffer&+1)
DWRITE handle&,pointer&,Bytes&
IF Bytes&=0 THEN
CALL xClose(handle&)
CALL FreeMem(buffer&,Length&)
CALL FreeMem(info&,b252&)
WRITEERR
SYSTEM
END IF
END IF
CALL xClose(handle&)
CALL FreeMem(buffer&,Length&)
CALL FreeMem(info&,252&)
LIBRARY CLOSE
COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."
WHILE INKEY$="":WEND
SYSTEM
SUB WRITEERR STATIC
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error."
ShowCont
END SUB
SUB DWRITE(handle&,adr&,Length&) STATIC
written&=xWrite&(handle&, adr&,Length&)
IF written&<>Length& THEN Length&=0
END SUB
SUB OPENERR STATIC
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open File."
ShowCont
END SUB
SUB NEWFILE(Filename$,handle&) STATIC
File$=Filename$+CHR$(0)
handl e&=x0pen&(SADD(File$),1005)
END SUB
SUB FORMERR STATIC
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary File."
ShowCont
END SUB
SUB LOADERR STATIC
COLOR 1,3:CLS:LOCATE 2,2:PRINT ™ERROR: Load-error."
ShowCont
END SUB
SUB LOADFILE(Filename$,buffer&, Length&) STATIC
File$=Filename$+CHR$(0) :handle&=xOpen&(SADD(File$),1005)
IF handle&=0 THEN
Filename$=""
ELSE
inBuffer&=xRead&(handle&,buffer&, Length&)
CALL xClose(handle&)

—— AmigaBASIC Intern

IF inBuffer&<>Length& THEN Filename$=""
END IF
END SUB
SUB FILEERR STATIC
COLOR 1,3:CLS:LOCATE 2,2:PRINT “ERROR: File not found."
ShowCont
END SUB
SUB DIRERR STATIC
COLOR 1,3:CLS:LOCATE 2,2
PRINT “ERROR: File is a Directory."
ShowCont
END SUB
SUB GETINFO(Filename$, info&,Length&) STATIC
File$=Filename$+CHR$(0) :DosLock&=Lock&(SADD(File$),-2)
IF DosLock&=0 THEN
Length&=0
ELSE
Dummy&=Examine&(DosLock&, info&)
IF PEEKL(info&+4)>0 THEN
Length&=-1
ELSE
Length&=PEEKL(info&+124)
END IF
END IF
CALL UnLock(DosLock&)
END SUB
SUB LINPUT(Filename$) STATIC
COLOR 3,1:CLS:WINDOW 2,"Filename:",(0,0)-(250,10),0
WINDOW OUTPUT 1:LOCATE 5,2
PRINT "Name of a binary saved File";
LINE INPUT Filename$:WINDOW CLOSE 2
END SUB
SUB SELECT(box%) STATIC
Check:
WHILE MOUSE(0)=0:WEND:x=MOUSE(1):y=MOUSE(2)
IF y>27 AND y<43 THEN
IF x>9 AND x<38 THEN box%=0:EXIT SUB
IF x>177 AND x<238 THEN box%=-1:EXIT SUB
END IF
GOTO Check
END SUB
SUB ALLOCERR STATIC
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Allocation denied."
ShowCont
END SUB
SUB ShowCont STATIC
LOCATE 4,2:PRINT "Press SPACE to continue,"
LOCATE 5,7:PRINT "ESCAPE to exit.";
WHILE a$<>CHR$(32) AND a$<>CHR$(27)
a$=INKEY$
WEND
IF a$=CHR$(27) THEN SYSTEM
END SUB

273

274

SUB REQUEST(disk$) STATIC

COLOR 3,1:CLS
LOCATE 2,2:PRINT M“INSERT ";disk$;" DISK INTO DRIVE"

LOCATE 3,14:PRINT "“DFO:":LOCATE 5,3:PRINT “OK";

LOCATE 5,24:PRINT “CANCEL";:LINE(10,28)-(37,42),3,b

LINE(178,28)-(237,42),3,b

Amiga Tips & Tricks

END SUB

Variablen
ALLOCERR SUB: Fehler beim Reservieren ven Speicher
AllocMem EXEC-Routine: reserviert Speicherplatz
Bytes Lange
DIRERR SUB: Fehler - keine Datei
DWRITE SUB: schreibe in File
DosLock Handie von Lock
Dummy nicht bendtigt
Examine DOS-Routine: untersucht File
FILEERR SUB: Fehler s.o.
FORMERR SUB: Fehler s.o.
File Filename + Null fir DOS-Routinen
Filename Programm
FreeMem EXEC-Routine: Speicher freigeben
GETINFO SUB: File-check
LINPUT SUB: Eingabe
LOADERR SUB: Fehler s.o.
LOADFILE SUB: ladt Programm
Length Lange des Programms
Lock DOS-Routine: "saugt" sich am File fest
NEWFILE SUB: erstellt neues File
OPENERR SUB: Fehler s.o.
REQUEST SUB: Zeichne primitiven Requester
SELECT SUB: Auswahl per Mausklick
ShowCont SUB: zeige Moglichkeiten
UnlLock DOS-Routine: 16st SaugfuB
WRITEERR SUB: Fehler
a Hilfsvariable
adr Adresse
b Hilfsvariable
box Hilfsvariable
buffer Adresse des reservierten Speichers
disk Diskette
handle Adresse des File-Handlers
inBuffer gelesene Bytes
info Adresse der File-Info-Struktur
pointer Hilfsvariable

—— AmigaBASIC Intern

written

xClose
xOpen
xRead
xWrite

geschriebene Bytes
Hilfsvariable

DOS-Routine: schlieBt File
DOS-Routine: 6ffnet File
DOS-Routine: liest aus File
DOS-Routine: schreibt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>