
(BLEEK : MAELGER - WELTNER
=

=
=

=
S
S

=
S
S

S
S

S
e

SS

=

=
 S
S

= S
S

=

=

S
S

[
S
S
S

—

S
e

—
=

Bleek
Maelger
Weltner

Amiga
Tips & Tricks

DATA BECKER

5. überarbeitete und erweiterte Auflage 1989

ISBN 3-89011-211-0

Copyright © 1986

DATA BECKER GmbH

Merowingerstr. 30

4000 Düsseldorf

Umschlaggestaltung: Werner Leinhos

Textverarbeitung und Gestaltung: Sabine Wingerath

Text verarbeitet mit Word 4.0, Microsoft

Ausgedruckt mit Hewlett Packard LaserJet Il

Druck und Verarbeitung: Mohndruck, Gütersloh

Alle Rechte vorbehalten

Kein Teil dieses Buches darf in irgendeiner Form (Druck, Fotokopie oder einem anderen

Verfahren) ohne schriftliche Genehmigung der DATA BECKER GmbH reproduziert oder

unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Verfahren und Programme werden ohne Rück-

sicht auf die Patentlage mitgeteilt. Sie sind ausschließlich für Amateur- und Lehrzwecke

bestimmt und dürfen nicht gewerblich genutzt werden.

Alle technischen Angaben und Programme in diesem Buch wurden von den Autoren

mit größter Sorgfalt erarbeitet bzw. zusammengestellt und unter Einschaltung wirksa-

mer Kontrollmaßnahmen reproduziert. Trotzdem sind Fehler nicht ganz auszuschließen.

DATA BECKER sieht sich deshalb gezwungen, darauf hinzuweisen, daß weder eine Ga-

rantie noch die juristische Verantwortung oder irgendeine Haftung für Folgen, die auf

fehlerhafte Angaben zurückgehen, übernommen werden kann. Für die Mitteilung even-

tueller Fehler sind die Autoren jederzeit dankbar.

Vorwort zur 5. Auflage

30.000 Exemplare sind verkauft und wieder einmal haben wir

uns zusammengesetzt, um neue, bessere und noch trickreichere

Kniffe zu finden, mit denen wir neuen und alten Lesern brand-

heiße Informationen bieten können. Diese vollkommen neu
überarbeitete Auflage enthält Tips & Tricks aus noch mehr
Themengebieten als es bisher der Fall war. Neben den jetzt voll-
kommen aktualisierten Informationen zum Betriebssystem 1.3
haben wir nun auch das brandheiße GFA-BASIC mit in den
Kreis der Programmiertricks aufgenommen.

Für die Erstellung der Hardware-Schaltungen danken wir ganz
herzlich Frank Dzubilla, der in seiner zuverlässigen Art dafür
gesorgt hat, daß wir bei der Arbeit mit dem Amiga mehr
Komfort haben und viele Leser diesen Vorteil jetzt auch nutzen
können.

Hinweis: Die für diese Auflage verwendeten Kickstart- und
Workbench-Versionen sind die allerneuesten auf dem Markt. Wir
verwendeten als Kickstart die Version 34.5, die unter der Be-

zeichnung 1.3 ab jetzt bei allen Commodore-Vertragshändlern

als Kickstart-Diskette oder als ROM-Version zu beziehen sind,

und als Workbench die Version 34.20, die auch unter der glei-
chen Bezeichnung 1.3 überall zusammen mit einer Dokumenta-
tion käuflich zu erwerben ist.

Dazu gehört eine Extras-Diskette mit vielen neuen Utilities, die
wir auch in diesem Buch erklären und Anwendungen dafür vor-

stellen werden. Für die Programmierer unter Ihnen gibt es auch
noch neue Include-Files. Das ist besonders wichtig, da einige

Strukturen ergänzt und andere optimiert wurden.

Wer seinen Amiga wirklich ausnutzen und aus der großen Fülle
des Möglichen schöpfen möchte, der liegt mit diesem Buch ge-
nau richtig! Das Bestreben dieses Buches ist es, sowohl dem

Hobby- als auch dem Profiprogrammierer viele Tips und Tricks
über seinen Rechner, den Amiga, zu verraten und zu erklären,

wie diese Dinge ermöglicht werden.

Oftmals sind nur wenige Systemkenntnisse nötig, um selbstge-
schriebene Programme zu verkürzen, ihnen Profil zu geben, sie
zu beschleunigen oder durch ganz neuartige Möglichkeiten auf-
zuwerten. Hier setzt dieses Buch ein: Auf den vor Ihnen liegen-
den Seiten verraten wir Ihnen nicht nur viele Detailkenntnisse
über das Betriebssystem, den AmigaBASIC-Interpreter und das
Disk Operating System, Sie finden auch eine wahre Fülle kleiner
und deshalb übersichtlicher Programme, die diese neuen Er-
kenntnisse verdeutlichen. Die meisten dieser Programme lassen

sich problemlos in eigene, selbstgeschriebene Programme über-
nehmen und somit sofort anwenden.

Diese Konzeption, die dem Profi das Hintergrundwissen und

dem Anfänger fix und fertige Problemlöser liefert, hat sich be-
stens bewährt: Bereits die erste Auflage von "Amiga Tips &
Tricks" bot aufregende Programme: Im wohl ersten deutsch-
sprachigen Buch wurde der BASIC-Programmierer intensiv mit

der Benutzung der Systemroutinen vertraut gemacht - Dinge

wurden möglich, an die man gar nicht gedacht hatte. Heute nun
wünschen wir Ihnen viel Spaß mit der komplett neubearbeiteten

und um vieles reichhaltiger gewordenen Neuauflage!

Großhansdorf, im Mai 1989 | Wolf-Gideon Bleek

Stefan Maelger
Tobias Weltner

Inhaltsverzeichnis

1. Einleitung sane aassueececeecceeecaeaassseceeeeesuaaeaseeeeceeseuenseeeseeeseeaaeneseesenas 17

2. CLI - Command Line Interpreter..............................---.......... 21

2.1 Fragen zum CILI................2202s0seseseessensenseeseeeeenn 21

2.2 Neue CLI-Befehleu2000sssssseesseneeeneeeen 39

2.3 Neue Startup-Sequencescccccecesceseeeecees 50

2.3.1 RAM-Disk und Datenverarbeitung 53

2.3.1.1 MACROs im CLI mit ALIAS 55
2.3.1.2 CLI-Startup, die Startup-Sequence

des CLT De 56

2.3.1.3 ALIAS-Befehle0cuesseeseseesnesenenneseeneneen 57
2.3.1.4 Batch-Programmierungeeessesseesseeeseeeeeennn 58

2.4 Richtiges Ausnutzen des Mount-Befehls 60
2.4.1 Neue Namen für alte Hite oo... 63
2.4.2 Weniger ist mehr! oo... eeccecceeccesseesceseseeess 64

2.4.3 Drucker-Spooler Lececcececececcscececeucececes 66

3. Das AmigaBASIC oo... ccc ccececrcceeeeeeeeeeeeeeeeeeeeseeeeas 69

3.1 Implementierung der
Amiga-Kernel-Befehlenuussseeeeenenneen 69

3.1.1 Nutzung der Systembibliotheken in GFA 72
3.1.2 Umwandlung GFA-AmigaBASIC 79

3.2 AmigaBASIC-Grafikeeesssssssseeesnenssesesnenenn 80
3.2.1 Zeichenmodi verändern.ucessseesseeeeeeeeeennn 80 =
3.2.2 Veränderter Text-Stilucnceessenssesseeeeeneennen 84

3.2.3 Move - Kontrolle über den

| AmigaBASIC-Cursorcccccesecccessccnssseceeeees 87
3.2.4 Schnelleres Grafikformat <-> IFF 88 —

3.2.5 IFF-Brushes werden Objectsceeceseceees 99 =

3.2.6 Floodfill einmal anderscccceeeeesseensneeeennn 107

3.2.7
3.2.7.1

3.2.7.2
3.2.7.3
3.2.7.4
3.2.7.5
3.2.7.6

3.2.7.7
3.2.8

3.3

3.3.1
3.3.2
3.3.3

3.4
3.4.1
3.4.2
3.4.3

3.4.4

3.5

3.6
3.6.1

Windows manipuliereneesseossesssesseeneeeeenn 109

Borderless:BASIC-Windows, die
aus dem Rahmen fallenu00cnsnn 109
Gadgets an und ausschalten0.....- 110

BorderDraw, der Formen-Zauberer 111

ChangeBorderColor - jetzt wird’s bunt 113
Monocolor-Workbenchz02s0000000en 20022 115

Neuer SCREEN-Befehl für
alle Grafikmodiu022002s0ssennenenenssnennnnenenn 116
Das Koordinatenproblemu0.0...... 122

Intuition macht das Leben leicht - mit

HoldAndModify, Halfbrite und OverScan 123

Fading (Ein- und Ausblenden
von Grafiken)ccnossenseseenaseonassnnnnennannnnneennnen 127
Fading - die Grundideeunncsesssenneesreenn 127
Fade-Overcccceccescnsceccevcescescceccsccesenseasees 130

Fading für jeden RGB-Anteil 132

Schnelle Vektorgrafik.............u022002seeeeeseeenenenenn 135

Gittermodelle darstellenc000000000 00. 135

Gittermodelle bewegen.uuncsessensseenseeneennnn 142
Beschleunigung durch
Betriebssystem-Routinencccseeceeeeees we. 142
3D-Bilder für die Rot-Griin-Brille 147

Die Zeichensätze des Amiga IEDPEIELPLSPPSPRSERTFERR ‚155

SuperPrint - schneller und komfortabler 159

Das Console Device unter GFA...................... 164

Professionelle Gestaltung eigener
Anwenderprogrammee422220000@0022n0nnennnnnnnnnnnnnennnnnn 165

4.1 Alternativen zu PullDown-Meniis 165
4.1.1 Die erste Select-Boxcenncseeesnsesenassnnnnenennnennn 169
4.1.2 Grafik bringt die Erkenntnis00068 173
4.1.3 Wahltabellen200200000200002eeonannnannnnenennnen 180
4.1.4 Schiebereglercccccccccssssssssssscecceeceeessscees 189

4.2 Rubberbanding0cscussseeeenneeenneeeenneenn 196
4.2.1 Flächenbestimmung von Rechtecken 197
4.2.2 Punkte verbinden (Formenbestimmung) 199

4.2.3 Positionierung von Objektennnucnneeenne 201

4.3 Intuition-Programmierungccccceeceeeeeees 204
4.3.1 Die fertigen Bedien-Elemente 206

AmigaBASIC Intern200002000224444004 nn nnnnnnnennnnnne nenn 213

53.1 FileMonitor der Superlative... 214
5.1.1 Arbeiten mit dem FileMonitor 227
5.1.2 Patching, arbeiten mit dem FileMonitor 229
5.1.3 AmigaBASIC eindeutschencccceecceeeee 230

5.1.4 Andere Programme patchen deseescesccsccuseeces 230

5.2 Aufbau der AmigaBASIC-Files 231
5.2.1 Typ feststellen ooo... ccc ccccceccesccsscescesseeseees 232

5.2.1.1 BASIC-Check oo... ec cssccscccecceececcsecenceeeees 233

5.2.1.2 HeaderCheck - Wie wurde das
Programm gespeichert?cccccccsescesesoeeees 235

5.2.2 ASCIH-Filesc..ccccccscccceeccceescceesceeeees deseeeceevees 238
5.2.3 Binär-Filescccccccccceecccescceesccescessceeeseeeeces 239
5.2.3.1 Aufbau einer AmigaBASIC-Zeile 240
5.2.3.2 Leerzeilencccccceeccsescesccesceccesceeceescescessees 242

5.2.3.3 Die letzte Zeileccnnecesssnenssensnenneennnnsnennennnnnn 243

5.2.3.4 Die Variablentabelle0u00unseeeeneeennn 243
5.2.3.5 Labelhandlingccsccsseeeseensenssessennnnneen 246

5.2.3.6 Label anspringenn2c02202senseenennennnennennenn 247

5.2.3.7 Zeilennummern anspringenensseesseeseeeeeeenenn 248
5.2.3.8 Werte in AmigaBASIC-Programmen 248
5.2.3.9 Besondere Token oo... ccccccsccescccneseeceeecenees 252
5.2.3.10 Subprogrammecnsseesssessessnnsennsnnennnennnnennen 254

5.2.3.11 Andere Token eenenssunsnsssssossrnssnennnn 255

5.3 Nützliche Programme zur Manipulation von
AmigaBASICenneesnnseennssennasnnnnnnsnnenneneneennnnn 257

5.3.1 DATA-Generäatoreeseesseessennennanoneennennnenneennen 257
5.3.2 Cross-Reference-Listeccccceceecceeseseeeeeees 262
5.3.3 Leerzeilen-Killerescceeseseesseeneseeseeeneeeennnn 269

5.3.4 REMarks entfernencccccceesesceesceeeevens 275
5.3.5 Variablen auflistenuuceseeeeseseeeennssseennneneenn 280
5.3.6 Variablenmüll beseitigen.cceenneeeeeneeeeeenn 285
5.3.7 Selbstmodifizierende Programme-- 287

Die Workbenchccccccccsscccssscccsscccccecescecsscescceeseceuses 293

DN

N
N

N
N
N
N
A
N
 M

N
bu
ch

cr
ee

b
h

co
e

ee

ce

A
ca
e

c
e

Se
m Arbeiten mit der Workbench. 293

1 Tastaturtrickscccccscccscccesccsccssccescoscesscesees 293

2 Der Mülleimerccccessccsecceecceeceeeceeeees 295
3 Mehrfachaktivierungccccccsecesccesceeeceeees 296
4 Infoscccccsscccescccesccescccescenseccescceecsesesessceesees 297
4.1 Das Info-Feld wo... cccceccccessceeesceeeeseeeeceees 298
.4.2 Praktische Beispiele zum Info-Feld 301
i) Viele Wege führen nachcccccecceesceesees 302°
6 Arbeitserleichterungcccccccsssceecceesceesees 305

6.2 Systemdaten selbst einstellen 308

6.3 Betriebssystem-Editorccccceecceescesceeees 311
6.3.1 | Die Bedienung des Programms und

besondere Features.ccccsccsscescescceceeceeees 320
6.3.2 Ersetzen der fehlerhaften |

PAL-Test-Routinecccceesscceescceescceesceees 321

6.4 Virus-festes Betriebssystemccccccceesceees 322

6.5 Betriebssystem-Version patchen 324

ICONS _..eronunnonnnnunsonnunuunnnonnunnunnsnnuunnnonsnnununnonnnnnonnanannnsennen 327

7.1 Die verschiedenen Icon-Typen un 327

7.2 Der Aufbau eines Iconsc.c eee ceeeceeeece ences 329
7.2.1 Die DiskObject-Struktureeeeessennneenesnnenn 329
7.2.2 Die Drawer-Strukturcccccecessseeecccceeeeees 332
7.2.3 Die Image-Struktureeeesseeesesensseenenennenneennnnn 334

7.2.4 Der DefaultTool-Textcuncceeensseeenanenennnn 335
7.2.5 Der ToolTypes-Textcccccsscseceecceveeseees 336

7.2.6 Der Icon-Analyzerccccccsesccesccesscessecesees 337

7.3 Eigene Icons erstellennucceeseseesnsenneenennennnn 340

7.3.1 Zwei Bilder für ein ICOMencnseececeeenen. 341
7.3.2 Text im Bildcccessesensseennsseonnnnoneneonnnnnsnnennn 342
7.3.3 Der Icon-Editorcesss0sessssensnsennsnnnnsneneenennn 342
1.3.4 Farbliche Veränderungursssnssseeneneeeenenn 349

Kontrollierte Fehlerbehandiungnneeeee 351

8.1 Wann treten im Programm Fehler auf? 351

10.

8.1.1 Fehler beim Diskettenzugriff.......................... 352
8.1.2 Fehler bei Benutzereingaben 353
8.1.3 Fehler durch oder bei der Menüauswahl 354

8.2 Von der Möglichkeit, einen
Fehler aufzufangencccccccsescceeecesseseeees 354

8.2.1 Freundliche Aufforderung an
den Benutzerccccceccsscccsccesccsccescesesscesetes 356

8.2.2 Fehler vermeiden durch Abfrage
während der Benutzereingabe- 363

8.3 Fehler beheben durch Korrektur falsch

ausgewählter Funktionencccceceeeceeees 366

8.3.1 Auswahl unmöglicher Kombinationen

grafisch ausschließen.c.ccccescesscceeeceeeees 368

Maschinensprache uansenssnnsnsnnnsnsnnsnnessnsensnnnnssnsensnnnsnnnnenn 373

9.1 Super-Handler fiir Division-By-Zero 374

9.2 Achtung: Viren-Alarm! .0..............ccccceseeceeeevenes 378
9.2.1 Der ultimative Virus-Killer 379

9.3 ASSEMBLER und BASIC ou... ee eee eens 383
9.3.1 Assembler- und C-Programme von BASIC

aus nachladen und aufrufen 386
9.3.2 BASIC-Erweiterung ColorCycle 389°

9.3.3 BASIC-Erweiterung ZZZccccccceccescecceseeece 392

9.3.4 Neue BASIC-Erweiterungen ccecc00e 394

1/O - Kommunikation mit der Außenwelt- 403

10.1 . Das Trackdisk-Device: Direkter
Zugriff auf Disketten.cccceescseecceeeseeees 405

10.1.1 Die I/O-Kommandos des
Trackdisk-Devicesc..ccceccceseccsssceeesceeseeeess 413

10.1.2 Simultanes Arbeiten mit
mehreren Laufwerkencccceecceeseessceesees 414

10.1.3 Der Aufbau der Sektoren ooo... eee ees 414

10.2 Memory Handlingesssesesensesseennenerennen 417
10.2.1 Speicher durch Variablen reservieren 417

10.2.2 Speicher gezielt reservierencccccccceeees 418

11.

12.

13.

10.3 Das Printer.Deviceccneseeeeeeseeeseessnenenenennenn 420

10.3.1 Auslesen der Druckparameterersereeneen: 421

10.3.2 Grafik-Dumps mit dem Printer-Device 426

Hardware-Basteleien.2222s44s00000s00snnnnnnnnnnenen 433

11.1 Speichererweiterungen abschalten 434
11.1.1 Die 2000a-Platineeeesessseesesnneseenseeneensnen 435
11.1.2 Die 500er-Platineessenssesseassesssensennneneenenn 436

11.2 Floppylaufwerke abschalten. 437

11.3 Umrüstung auf den MC 68010cneeneeencene 439

11.4 Laute Lüfter stören sehr!uesscesseeseeesseeneeen 442

11.5 Den Amiga aus dem Takt bringen. 444
11.5.1 Stop! Der Amiga hält anceesceeneeeeseenneeenn 445
11.5.2 Die Bremse im Huckepackcecnnnenen 446

11.6 Prozessor-Umschaltung macht |
doppelt kompatibeluu02s020ssenneneneeeneeeenn 448

11.7 Das Null-Modem zur
Datenkommunikationeencsesssesesssenennnnensennn 452

Das Workbench-Equipment440424444 en 455

12.1 Mit Vorliebe: Preferencescccceeesesceees 455

12.1.1 Daten lesen und setzeneeceseeseeeseseenensene nenn 456

12.1.2 Die neuen Preferences (Version 1.3.10) 458

12.2 Die Utilities auf der Workbench-Diskette 466

12.3 Die Utilities auf der Extras-Diskette 469

Sammelsurium der Tips & Trickscccccccccssseeceeseeees 473

13.1 Tips zum CLI: schneller, bunter, besser 473

13.2 Tips zum AmigaBASIC: rauf und runter! 479

13.3 . Ohne Müh’ und Not: Tips zum Drucker 484

13.4 Tips zur Arbeit mit dem Amiga 486

13.5 Verstecktes und Unbekanntes0.. 488

14. Arbeiten mit Betriebssystem V1.3nnn 491

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

15. Betriebssystem-Erweiterungen

15.1

Stichwortverzeichnis

Die Pipeline im Amiga - das PIPE-Device ..

Das Shell hält Vorträge (oder
was das SPEAK -Device kann)0.......

Eine Muschel fiir’s CLI - das

NewCon-Devidcenesssssenseennnsnannnunnnnnnenennnnn

Das FastFileSystemccccccccssscccsssscceeeeees

Das FastFileSystem auf Harddisks

FastFileSystem auf der resetfesten
RAM-DiskKeeesssssennsseonnnnnonnnennnnneonnnenaneeennnn

FastFileSystem auf normalen Disketten.

Die neuen MatheLibraryssscceseccseeeees

Lade- und Speicherfunktionen
mit Pack-Algorithmuscccccccessscceeeeeees

Seveeevesssnecseensessaeeaesenceanvnaneasaeseaveeoe

491

—— Einleitung 17

1. Einleitung

Das Wort Amiga hat es in sich! Es steht für beeindruckende
Grafik, klaren Sound, gute Programme und ein Betriebssystem

der unerschöpflichen Möglichkeiten. Alles dies liegt nun vor ei-

nem, doch man kann es nicht nutzen. Wo soll man anfangen? So

lautet eine oft formulierte Frage. Dabei ist es klar! Bei den Tips
& Tricks fangen wir hier an.

Wir möchten Ihnen aus möglichst vielen Themengebieten ver-
steckte und bisher unbekannte Informationen bieten. Wir wollen
kurze, aber wirkungsvolle Programme vorstellen, die nicht das
tägliche Einerlei darstellen. Wir haben lange an dieser Superma-
schine gearbeitet und alle unsere Erfahrungen zusammengetra-

gen, um sie Ihnen zu präsentieren. In dieser Einleitung wollen
wir Ihnen einen kurzen Wegweiser durch alle Kapitel geben,

damit Sie schon jetzt genau wissen, welche Informationen Sie wo
bekommen. In Kapitel 2, dem CLI-Kapitel, haben wir unsere

besten Erfahrungen zum Command Line Interpreter zusammen-
getragen. Welche Probleme treten bei der Arbeit mit dem CLI

auf, welche neuen Befehle gibt es, wie arbeite ich mit Batchda-

teien und was bringt z.B. der Mount-Befehl im Detail?

Dann steigen wir in die Welt des AmigaBASIC, der kostenlos
mitgelieferten Programmiersprache von Microsoft. Sie lernen,
auch die internen Funktionen des Betriebssystems zu nutzen und

erfahren vieles über Grafik und Programmierung. Hier haben
wir drei unser Bestes gegeben.

Unter der Voraussetzung, daß wir mit Ihnen einen aktiven Pro-
grammierer vor uns haben, können Sie im vierten Kapitel alles
Wissenswerte zum Thema anwenderfreundliche und besonders
professionelle Gestaltung der eigenen Programme erfahren.
Wolf-Gideon Bleek und Sie werden mit Hilfe der Intui-
tion.Library aus dem Vollen schöpfen und Programme schreiben,

die den Preferences ın der Bedienerfreundlichkeit in nichts
nachstehen.

18 Amiga Tips & Tricks

Wissen Sie eigentlich, wie die Arbeit mit der Diskettenstation
funktioniert? Das ist eine wichtige Frage, denn jede Datensi-
cherung im Programm und außerhalb läuft darüber ab! Doch
keine Angst, wenn Sie nicht alles zu diesem Gebiet wissen. Die
nötigen Grundlagen wird Ihnen leichtverständlich Tobias Welt-
ner erklären, der sich im DOS so gut ausgekennt, wie keiner von

uns.

Ohne vor noch so komplizierten Aufgaben zurückzuscheuen, hat
sich Stefan Maelger auf den Dschungelpfad durch das Amiga-
BASIC gemacht und erstaunliche Dinge herausgefunden. Wissen
Sie, wie AmigaBASIC seine Programme oder Variablen organi-
siert? Können Sie sich vorstellen, was man mit Eingriffen alles
erreichen kann? Lesen und staunen Sie!

Jeder hat tagtäglich mit der Workbench zu tun. Ob es nur die
kleinen Aufgaben der File-Pflege sind oder auch die großen und
aufwendigen Arbeiten. Wolf-Gideon Bleek hat sich lange damit
beschäftigt und sogar einen Weg herausgefunden, wie man die
englische Benutzeroberfläche zu einer deutschen und ganz indi-
viduellen macht. Wer mehr wissen will und sich nicht mit dem
Einfachen zufrieden gibt, ist hier genau richtig.

Die Icons, ein weiteres Spezialgebiet von Wolf-Gideon Bleek,

haben im achten Kapitel besondere Aufmerksamkeit gefunden.

Welche Daten im .info-File stehen und wie man sie nutzt oder

verändert, ist ein großes Themengebiet in diesem Kapitel. Sie
lernen die Bedienung des IconMerge von der Extras-Diskette
kennen und auch, wie man mit eigenen Programmen die Icons
modifiziert oder vollkommen umkrempelt. Fehler machen wir
alle, doch wie kann man sie verhindern? Diese wirklich wichtige
Frage wird durch die "Kontrollierte Fehlerbehandlung" erörtert
und auch gelöst. Somit sind Ihre Programme vor Bedien- und
Systemfehlern gefeit. Endlich!

Nachdem Sie nun sowohl fehlerfrei als auch geschickt unter
Ausnutzung aller Libraries programmieren, steht der nächste
wichtige Punkt auf dem Papier. Ein weiteres Ziel der professio-
nellen Programmierung ist das Verkürzen von Routinen und das

——— Einleitung 19

damit verbundene Beschleunigen von Programmen. Hier hat sich
Wolf-Gideon Bleek wie auch im vorhergehenden Kapitel Ge-
danken gemacht, und herausgekommen ist die effektive Pro-
grammierung, mit deren Hilfe Sie Ihre Programme um bis zu
20% ın der Geschwindigkeit steigern können. Wer hätte das ge-
dacht?

Nachdem nun so viel über AmigaBASIC und seine Program-
mierung gesagt wurde, meldet sich wieder Stefan Maelger zu
Wort, um mit interessanten und ausgeklügelten Beispielen die
Programmierung in Maschinensprache über BASIC darzubieten.

Das Problem des Ladens und Zusammenfügens von Maschinen-

programmen wird genauso besprochen wie auch viele kleine und

größere Beispiele, die Funktionen ermöglichen, die aus BASIC

einfach unmöglich sind!

Eine wichtige Schnittstelle zur Außenwelt stellt die I/O-Kom-
munikation dar. Sie ermöglicht die Ausgabe auf dem Drucker,
das Ansprechen des Trackdisk.Devices und die Besorgung von

Speicher. Alles dies sind elementare Dinge, die man zur besseren
Programmierung einfach braucht. Tobias Weltner weiß, wie man
sie anwendet und hat sie ausführlich beschrieben.

Nun wird es ernst. Es geht an das Innere des Amiga. Wir be-
schäftigen uns mit der Hardware. Wußten Sie, daß der laute
Lüfter am 2000er leiser gemacht werden kann? Haben Sie ein
externes Laufwerk, das unbedingt abgeschaltet werden muß?

Oder haben Sie störenden Speicher, ohne den so manches Pro-

gramm laufen würde? Zu all diesen Problemen und noch einigen
Raffinessen mehr haben Wolf-Gideon Bleek und Stefan Maelger
Informationen zusammengetragen, die es Ihnen heiß und den
Amiga kalt werden lassen!

Kennen Sie die DATA BECKER Software? Wissen Sie auch, wie

man damit umgeht? Sie haben zwar das Handbuch gelesen, doch

dies erklärt nur alle Funktionen, nicht die komplexe Anwendung
am Arbeitstisch. Mit den Tips eines erfahrenen Autors wird es
Ihnen leichtfallen, mit BECKERtext oder TEXTOMAT zu ar-

beiten!. ze | |

20 Amiga Tips & Tricks ———

Lange Arbeit, viele Erfahrungen. Wo bringt man dies unter? Das
haben wir uns alle gefragt und daraus ist das 13. Kapitel ent-
standen: "Sammelsurium der Tips & Tricks". Wolf-Gideon Bleek

hat sich die Aufgabe gestellt, alle als "Kleinigkeiten" abgetanen
Kniffe, Tips, Hilfen und natürlich Tricks aufzuschreiben und in

dieses Buch aufzunehmen. Jetzt können auch Sie auf jahrelange
Arbeit zurückgreifen. Oft helfen Kleinigkeiten mehr als große
Programme!

Hurra, es ist soweit! Tobias Weltner und Stefan Maelger mit ih-
rem Amiga 1000 haben das neue Betriebssystem Version 1.3 ge-
testet. Herausgekommen ist ein ganzes Kapitel voller speziell auf

diese Version abgestimmter Informationen. Was hat sich geän-
dert? Wie kompatibel ist das neue Kickstart wirklich? Dies und

vieles mehr finden Sie hier.

Als Abschluß und Abrundung des neuesten Tips & Tricks zum
Amiga werden Sie im letzten Kapitel mit der Bedienung und

Anwendung der mitgelieferten Utility-Programme vertraut ge-
macht. Es gibt haufenweise neue Parameter! Viele kleine Hilfen

sind dazugekommen! Wolf-Gideon Bleek hat aufmerksam und
genau hingeschaut und alles Wichtige für Sie ausprobiert. Hier
ist es!

Nun haben Sie einen runden. Überblick über das neueste Tips &
Tricks. Wir alle hoffen, daß Sie Freude haben und viele Ent-
deckungen mit uns zusammen machen werden. Sie halten eine
Fundgrube an Informationen zu allen möglichen Themengebieten
in Ihren Händen. Wie Sie alles nutzen können, steht hier. Sie

brauchen nur noch zu lesen!!

1 Aus drucktechnischen Gründen ist es uns leider nur möglich, maximal 70

Zeichen pro Zeile zu drucken. Aus diesem Grund kann es bei Programmen zu

erzwungenen Zeilenumbrüchen kommen. Wir bitten um Verständnis.

—— CLiI- Command Line Interpreter 21

2. CLI- Command Line Interpreter

CLI steht fiir Command Line Interpreter. Es ist eine Benutzer-
oberfläche, die sich ohne die vielen bunten Symbole (Icons) und
ohne Maus ganz auf die Tastatur verläßt. Das CLI kennt im
Moment ca. 50 verschiedene Befehle (Workbench Version 1.2),
es werden aber in Zukunft noch viele weitere dazu kommen.

Das CLI arbeitet eng mit AmigaDOS, dem Disk Operating Sy-
stem, zusammen. Viele Spezialbefehle erleichtern den Umgang
mit Disketten; einige Funktionen lassen sich sogar von der
Workbench aus überhaupt nicht lösen. Das CLI wird normaler-

weise vom Benutzer via Intuition aufgerufen. Es ist aber auch
möglich, beliebige CLI-Kommandos von BASIC-Programmen
aus zu benutzen (dasselbe gilt für "C").

2.1 Fragen zum CLI

Nach einigen Gesprächen mit frischgebackenen Amiga-Besitzern
stellten wir fest, daß einige Fragen immer wieder auftauchen.
Da wir davon ausgehen, daß auch viele von Ihnen sich diese
Fragen stellen werden, geben wir Ihnen hier Antwort.

Frage 1

Wie gelange ich zum CLI?

Der Command Line Interpreter befindet sich serienmäßig auf
jeder Workbench-Diskette. Es gibt eine Reihe von Wegen, um
ans CLI heranzukommen:

a) Mit Intuition. Dies ist der Normalfall. Sie haben Ihr System
gebootet, die Workbench-Diskette befindet sich im Lauf-
werk. Vor Ihnen liegt nun die tiefblaue "Workbench-Screen".
Folgen Sie diesen Schritten:

22

b)

c)

Amiga Tips & Tricks

> Klicken Sie das Disk-Icon der Workbench-Disk an.

Es wird sich ein Fenster namens "Workbench..." mit

allerlei Dingen darin öffnen.

> Klicken Sie die Schublade "System" an.

Es wird sich ein Fenster namens "System" Öffnen,
wiederum randvoll gefüllt mit den Errungenschaften
unserer heutigen Leistungsgesellschaft, vor allem aber mit
einem Icon namens "CLI", das entweder "I>" darstellt

(Version 1.1) oder ein nettes kleines Fenster mit 1> darin
(Version 1.2 und darüber).

Sollten Sie kein CLI-Icon vorfinden, so liegt das daran,

daß bei Ihrer Workbench-Diskette noch die

Kindersicherung eingeschaltet war. Klicken Sie in diesem
Fall das Icon "Preferences" im "Workbench..."-Fenster an,

und schalten Sie im Feld CLI von OFF auf ON. Speichern

Sie am besten das Ergebnis mit SAVE gleich wieder ab.

Nun müssen Sie das "System"-Fenster schließen und
erneut öffnen. Und siehe da: Ein CLI-Icon!

» Klicken Sie das CLI-Icon an.

Es wird unverzüglich ein Fenster namens "New CLI" er-
scheinen, das Sıe in alle Richtungen vergrößern und ver-
kleinern können, das jedoch keinen Ausknips-Knopf in
der linken oberen Ecke besitzt. Sie haben es geschafft! Sie
haben Ihr eigenes CLI!

Mit AmigaDOS. AmigaDOS verfügt über den Befehl "Exe-
cute", mit dem beliebige CLI-Befehle ausgeführt werden

können. AmigaDOS wiederum kann über die systeminternen
Libraries angesprochen werden. Auf diese Art und Weise
kommen selbst AmigaBASIC und "C" ans CLI (siehe Bei-
spielprogramme in diesem Buch).

Noch raffinierter! Ein ganz einfacher Weg ist der folgende:
Sie haben gerade Ihr System eingeschaltet. Die Kickstart-
Disk ist bereits erfolgreich geladen worden, nun flimmert
eine gigantische Hand mit einer Workbench-Disk darin auf
dem Bildschirm. Bis jetzt ist alles Routine. Aber jetzt! Legen
Sie die Workbench-Disk ins Laufwerk. Die Hand ver-

—— CLI- Command Line Interpreter 23

schwindet, das System bootet. Geben Sie nun rasch "Tobi ist

lieb!" über die Tastatur ein! Nun brauchen Sie nur noch zu
warten, bis das Laufwerk zum Stillstand gekommen ist. Ist
die rote Lampe erloschen, dann nehmen Sie die Workbench-

Disk rasch aus dem Laufwerk. Löschen Sie nun "Tobi ist

lieb!" wieder mit der BACKSPACE-Taste. Sobald der letzte
Buchstabe getilgt ist, treten eine Reihe Fehlerrequester auf.

Beachten Sie sie einfach nicht, sondern klicken Sie resolut

immer wieder auf CANCEL. Endlich erscheint

1>

auf dem Bildschirm - das CLI! Geben Sie schnell noch

1> loadwb

ein, und das CLI steht zu Ihrer vollen Verfügung!

Frage 2 |

Wie kriege ich das CLI wieder weg?

Das CLI-Fenster hat keinen Ausschalter. Es löst sich mit folgen-
der Eingabe von selbst in Wohlgefallen auf:

1> endcli

Haben Sie von einem CLI aus Programme gestartet, dann bleibt
das CLI-Fenster allerdings solange erhalten, wie die Programme
laufen.

Frage 3

Ich habe keine Schreibmaschine, aber einen an meinen Amiga an-

geschlossenen Drucker. Kann man da nichts machen?

Na klar! Das CLI ist der geborene Problemlöser. Geben Sie fol-
gendes CLI-Kommando ein:

1> copy * to prt:

24 Amiga Tips & Tricks ————

wobei * das Symbol des aktiven CLI-Fensters ist. Nach dieser
Eingabe verschwindet das gewohnte CLI-Prompt "1>", lediglich
der Cursor hält Ihnen die Treue. Jede Tastatureingabe wird nun
nach Druck der RETURN-Taste auf den Drucker ausgegeben -

quasi eine Schreibmaschine mit einzeiligem Korrekturspeicher!

Aus dem Schreibmaschinen-Modus kommen Sie wieder heraus,
wenn Sie gleichzeitig die CTRL- und \-Taste drücken. Je nach
Lust und Laune können Sie übrigens auch Text in ein anderes
Fenster kopieren...

1> copy * to CON:10/10/300/100/Kopie-Text

..oder sich selbst wiederholen...

1> copy * to *

Frage 4

Ich besitze nur ein Diskettenlaufwerk. Jedesmal, wenn ich einen

CLI-Befehl verwende, muß ich kurz die Workbench-Diskette ein-
legen. Kann man das nicht verhindern?

Jedes CLI-Kommando ist auf der Workbench-Disk als kleines
Programm im Directory "c:" abgespeichert. Wenn Sie nun einen
CLI-Befehl verwenden, lädt der Amiga diesen normalerweise
jedesmal von der Workbench-Disk nach. Dadurch spart man

natürlich eine Menge Speicherplatz, denn die CLI-Kommandos

belegen so keinen Systemspeicher. Auf der anderen Seite muß
man laufend Disketten wechseln, wenn man nur über ein Lauf-
werk verfügt. Wenn Sie über genügend Speicher verfügen, kön-
nen Sie aber alle (oder selektierte) CLI-Befehle ins RAM ko-
pieren. Das geht so:

1> makedir ram:c

1> copy sys:c to ram:c
1> assign c: ram:c

Zunächst wird in der RAM-Disk ein Unter-Directory namens
"c" angelegt. Anschließend werden alle CLI-Befehle in dieses
Directory kopiert. Schließlich wird dem Amiga mitgeteilt, daß

—— CLI- Command Line Interpreter 25

das Kommando-Directory c: nun auf der RAM-Disk liegt. Ist
Ihnen der Speicher Ihres Rechners doch noch zu schade, dann

können Sie sich auf die meistbenutzten CLI-Kommandos be-
schränken. Zum Beispiel so:

1> makedir ram:c
1> copy sys:c/copy to ram:c
1> copy syss12:c/dir to ram:c

1> copy sys:c/list to ram:c

(...)

1> assign c: ramsc

Wollen Sie wieder zurück zum Workbench-CLI, dann funktio-
niert das in jedem Fall (sofern Sie die Workbench-Disk in das
eingebaute Laufwerk 0 legen):

1> df0O:c/assign c: df0:c

Nach Beendigung Ihrer Vorhaben empfiehlt es sich, das RAM-

CLI wieder zu löschen, um Speicherplatzreserven zurückzube-
kommen:

1> delete ram:c#?

1> delete ram:c

Frage 5

Wie lassen sich CLI-Kommandos unterbrechen?

CTRL-C unterbricht einen Befehl. CTRL-D veranlaßt einen
Execute-Befehl, so schnell wie möglich den Programmablauf zu
unterbrechen. CTRL-E und CTRL-F werden nur in ganz be-

sonderen Fällen gebraucht. |

Frage 6

Gibt es einen Joker, vergleichbar dem * bei alten Commodore-

Rechnern?

Ja, es handelt sich um die Symbolkombination #?. Das Zeichen
* repräsentiert ja bereits das aktuelle CLI-Fenster.

1> delete ram:#?

26 Amiga Tips & Tricks

löscht die gesamte RAM-Disk.

1> run amig#?

funktioniert jedoch beispielsweise nicht, denn der Amiga weiß

nicht, welches Programm ausgeführt werden soll. Es könnten ja
mehrere Programme existieren, die mit der Buchstabenkombina-

tion "amig" beginnen.

Frage 7

Gibt es eine Möglichkeit, die Befehlssyntax eines bestimmten CLI-
Befehls herauszufinden?

Fast alle CLI-Befehle verfügen über eine Eingabehilfe. Falls Sie
also nicht mehr genau wissen, wie ein spezieller Befehl aufge-
rufen wird, dann geben Sie einfach den Befehlsnamen gefolgt

von einem Leer- und einem Fragezeichen ein. Zum Beispiel:

1> list ?

Das Ergebnis ist:

DIR,P=PATH/K,KEYS/S,DATES/S, NODATES/S, TO/K,S/K,SINCE/K,UPTO/K,

QUICK/S:

Na, alles klar? DIR steht fiir ein Directory, kann aber auch

weggelassen werden (dann wird das augenblickliche Directory
ausgegeben). Alle weiteren Angaben enthalten neben dem Op-
tionswort eine Bedingung:

/A: Dieses Argument muß angegeben werden.

/K: Dieses Argument muB in Verbindung mit einem Parameter
gegeben werden.

/S: Dieses Argument steht für sich allein.

So sind die folgenden Kommandos möglich:

1> list df0: keys nodates

——— CLI- Command Line Interpreter 27

Gibt das Inhaltsverzeichnis "df0:" mit den jeweiligen Anfangs-
blöcken, jedoch ohne Datumsangabe aus.

1> list dfO: since 04-Oct-86 upto today

Gibt die Programme des Inhaltsverzeichnisses "df0:" aus, die
zwischen dem 4. Oktober 1986 und heute geschrieben worden
sind.

Frage 8

Ich verfuge uber ein Laufwerk und mochte ein Programm kopieren.
Wie funktioniert das?

Erste Möglichkeit: Es handelt sich um ein kleines Programm.

Laden Sie es ; zunächst in die RAM-Disk:

1> copy programm to ram:
1> copy c/copy to ram:

Der Copy-Befehl wurde in der zweiten Anweisung ebenfalls ko-
piert, um zu verhindern, daß die Workbench nachgelegt werden

muß. Legen Sie nun die Zieldiskette ins Laufwerk. Anschließend
wird das Programm zurückkopiert:

1> ram:copy ram:programm to df0:

Legen Sie nun bitte wieder die Workbench-Disk ein. Die RAM-.
Disk muß nur noch gelöscht werden, und schon sind wir fertig:

1> delete ram:#?

Eine andere Methode bedient sich der Intuition-Icons. Sie müs-
sen dazu zunächst die Originaldiskette einlegen und das Disk-
Icon anklicken. Sobald das Icon des gewünschten Programms
erscheint, legen Sie die Zieldiskette ein. Öffnen Sie auch diese
durch Anklicken des Disk-Icons. Nun können Sie das Icon des
Originalprogramms mit Hilfe der Maus ins Fenster der Zieldis-
kette bewegen. Der Rest geschieht automatisch per Requester:

Die Disketten müssen ein paarmal gewechselt werden.

28 Amiga Tips & Tricks ——

Achtung: Es gibt Programme, die gar kein Icon besitzen. Sie
erscheinen also auch nicht als Symbol in einem In-
tuition-Fenster. Sie können aber solch einem Pro-
gramm ein Icon beschaffen! Legen Sie dazu die
Workbench-Disk ein. Die folgenden Zeilen sind
nötig:

1> copy df0:clock.info to ram:

1> rename ram:clock.info as ram:programm. info

1> copy c/copy to ram:

Jetzt legen Sie die Diskette ein, auf der sich Ihr Originalpro-
gramm befindet. Geben Sie nun ein:

1> ram:copy ram:programm.info to df0:

Nun hat Ihr Programm (hier namens programm) ein Icon. Legen
Sie wieder die Workbench ein, und löschen Sie die RAM-Disk:

1> delete ram:#?

Frage 9

Ich möchte gern eine Liste aller CLI-Befehlsworte auf den Drucker
ausgeben. Geht das?

Das funktioniert mit einer einfachen Befehlskombination:

1> list quick sys:c to prt:

Die Option "quick" bewirkt, daB nur die Befehlsnamen ausgege-
ben werden. Erschaffungsdaten, Uhrzeit, Schutzstatus sowie Fi-
legröße werden nicht ausgedruckt. Die CLI-Befehle selbst stehen
im Unter-Directory c: des System-Directories sys:. Schneller geht
es, wenn Sie die Multitasking-Fähigkeiten Ihres Amigas aus-
nutzen:

1> run list quick sys:c to prt:

——— CLI- Command Line Interpreter 29

- Hier wird ein weiterer Task geöffnet, der die Druckerausgabe
bewerkstelligt. Sie können also gleich mit anderen Sachen wei-
terarbeiten, während Ihr Amiga quası im Hintergrund die Be-
fehlsworte ausgibt.

Frage 10 u

Ich habe zwei Laufwerke und möchte ein Programm kopieren. Ein
leichtes Unterfangen?

Sicher. Es genügt eine CLI-Zeile:

1> copy dfO:originalprogramm to df1:

Hierbei muß sich das Originalprogramm in Laufwerk 0 im Di-
rectory df0: befinden. Falls Ihr Programm ein Icon besitzt, muß
auch dieses kopiert werden:

1> copy dfO:originalprogramm.info to df1:

Natürlich können Sie auch per Intuition das Programm-Icon di-
rekt von einer Diskette zur anderen schieben (siehe Frage 10).

Frage 11

Ich möchte eine ganze Diskette kopieren. Wie geht das?

Mit dem Befehl "diskcopy". Es spielt dabei keine Rolle, ob Sie
über einen oder mehrere Drives verfügen. Achtung: Um ein un-
gewolltes Löschen der Original-Disk auf jeden Fall zu verhin-
dern, sollten Sie den Schutzpin an der Seite der Originaldiskette
zumindest für die Dauer des Kopierens nach oben schieben, falls
dies noch nicht getan wurde.

Sie besitzen ein Laufwerk:

1. Legen Sie die Workbench-Diskette ein.

2. Tippen Sie den CLI-Befehl ein:

1> diskcopy from df0: to df0: name "kopie"

30 Amiga Tips & Tricks

Nun erscheint die Aufforderung, die Quell-Diskette
(SOURCE) einzulegen. Kommen Sie dem nach. Nach einer

Weile muß die Ziel-Diskette (DESTINATION) eingelegt

werden, und nach ein paar weiteren Wechseln haben Sie es

geschafft.

Sie besitzen zwei Laufwerke: |

1. Legen Sie die Workbench-Diskette ein.

2. Tippen Sie den CLI-Befehl ein:

1> diskcopy from df0: to df1: name "kopie"

Stecken Sie nun gemäß der Aufforderung die Quell-Disk in
Laufwerk 0, die Ziel-Disk in Laufwerk 1. Die Disketten

brauchen natürlich nicht mehr gewechselt zu werden.

Frage 12

Was ist eine Startup-Sequence und was kann man mit ihr machen?

Die Startup-Sequence ist eine Liste von CLI-Befehlen, die ganz
zu Anfang beim Booten des Systems ausgeführt wird. Wie das
aussieht, können Sie sich leicht veranschaulichen:

1> execute s/startup-sequence

Sıe können sich diese CLI-Befehle auch einmal anschauen:

1> type s/startup-sequence

Wenn Sie Lust haben, können Sie sich auch eine eigene Startup-

Sequenz schreiben. Sie sollten jedoch beachten, daß das Kom-

mando loadwb unbedingt übernommen wird, da sonst das Intui-
tion-Icon-System nicht aktiviert wird. Sollten Sie dann einmal
den CLI durch endcli verlassen, stehen Sie quasi vor zugeschla-
gener Haustür, denn es wären keine Icons da, nur ein leerer
Bildschirm. Eine eigene Startup-Sequenz kann man über das
Kommando "ed" erstellen:

1> ed s/startup-sequence

——— 2 CLI-Command Line Interpreter 31

Bei Version 1.2 der Workbench sehen Sie nun:

echo "Workbench Diskette (Version 1.2/33.43)"
echo u u

echo "(Datum und Uhrzeit mit 'Preferences' einstellbar)"

if EXISTS sys:system
path sys:system add

endif

BindDrivers

setmap d
LoadWb

endcli > nil:

Mit den Cursortasten können Sie den Cursor bewegen. Auf
Druck der ESC-Taste landen Sie in der Kontrollzeile. Ein "d"
löscht die Zeile, in der sich der Cursor zuletzt befand. Löschen

Sie beispielsweise die folgenden Anweisungen:

setmap d
endcli > nil:

Nun speichern Sie die Sequenz wieder durch Druck auf die
ESC-Taste und anschließend "x". Probieren Sie die neue Sequenz

doch gleich mal aus!

1> execute s/startup-sequence

Wie Sie sehen, haben Sie wieder eine amerikanische Tastaturbe-

legung, und das CLI-Fenster ist auch nicht verschwunden.

Frage 13

Kann der Amiga im CLI sprechen?

Sicherlich, wenngleich man auch keine Parameter verändern
kann. Das Kommando heißt "say" und wirkt wie ein Print-
Kommando. Leider ist es unmöglich, Programm-Files aus-
sprechen zu lassen. Lediglich unmittelbar nachfolgender Text
wird verlesen: |

1> say tobi is a real nice guy!

32 Amiga Tips & Tricks ——

Interessant ist dieser Befehl auch in Zusammenhang mit der
Startup-Sequenz (Frage 13)! Stellen Sie sich vor, Ihr Amiga be-
grüßt Sie jedesmal nach dem Einschalten mit einem netten
"Guten Tag!".

Frage 14

Wie kann ich ein C-Listing auf den Drucker ausgeben?

Am besten geschieht dies mit dem CLI-Befehl type. Ein Bei-
spiel: Sie haben ein C-Listing, erstellt wahrscheinlich mit ed
unter dem Namen test.c auf dfl:. Geben Sie nun ein:

run type dfi:test.c to prt: opt n

Mit "run" nutzen Sie die Multitasking-Fähigkeit des Amiga -
während der Drucker lustig rattert, können Sie schon wieder et-
was anderes fabrizieren. Der Zusatz "opt n" sorgt dafür, daß der

Ausdruck des C-Listings mit Zeilennummern versehen wird.
Dies ist recht hilfreich bei der Fehlersuche.

Frage 15

Wie nutze ich die Multitasking-Fähigkeiten des Amigas bei der täg-
lichen Arbeit mit dem CLI?

Normalerweise verarbeitet das CLI immer einen Befehl nach
dem anderen; von Multitasking kann also keine Rede sein. Man
muß hier ganz klar sagen, daß das CLI selbst nicht mehrere
Aufgaben gleichzeitig lösen kann. Durch das Multitasking-Be-
triebssystem des Amiga ist es aber möglich, mehrere Single-
Task-CLIs gleichzeitig ablaufen zu lassen.

Wollen Sıe also beispielsweise das Inhaltsverzeichnis der System-
Diskette ausdrucken, anschließend einen Text editieren und

schließlich einen Satz vom Amiga aussprechen lassen, so ge-

schieht dies normalerweise so:

1> list sys: to prt:
1> ed text

1> say hello user

——— CLI-Command Line Interpreter (33

Schneller geht es, bedient man sich mehrerer CLIs:

1> run list sys: to prt:
1> run ed text
1> say hello user

Der vorgestellte Befehl "run" bewirkt, daB die nachfolgende Be-
_fehlskombination einem neuen CLI übertragen wird. Das ur-
sprüngliche CLI hat dann damit nichts mehr zu schaffen und

kann schon an die nächste Aufgabe gehen, ohne auf die Erledi-
gung der ersten Aufgabe zu warten.

Einschränkend muß an dieser Stelle jedoch gesagt werden, daß
auf jeden Fall vermieden werden sollte, daB zwei CLIs gleich-
zeitig auf ein und dasselbe Laufwerk (oder den Drucker) zu-
rückgreifen. Im Falle des Disk Drives teilen sich dann nämlich
beide CLIs Rechenzeit. Das hat zur Folge, daß die gesamte
Operation länger dauert, als wenn sie nacheinander erfolgt wäre.

Eine weitere Möglichkeit, mehrere Aufgaben gleichzeitig lösen
zu lassen, ist das Öffnen mehrerer CLIs durch den Befehl
"NEWCLI". Dadurch bekommt der Anwender eine komplette

weitere Eingabeschnittstelle. Diese Methode eignet sich beson-
ders, wenn man nicht kurzfristig CLI-Befehle ausführen lassen
möchte, sondern über einen längeren Zeitraum mit mehreren
Funktionen des CLI beschäftigt ist. Das folgende Beispiel macht

dies deutlich:

1> newcli
1> list df0: quick
2> type files opt h

Hier wurde ein neues CLI geöffnet, und alle Filenamen des In-
haltsverzeichnisses df0: wurden ausgegeben. Anschließend wur-
den von dem zweiten, neuen CLI aus die Datei-Inhalte ausgege-

ben. Dabeı können Sie nun Dateinamen für Dateinamen aus dem
ersten CLI-Fenster lesen und im zweiten Fenster ungestört ar-

beiten, ohne daß die Liste der Namen zerstört würde.

34 Amiga Tips & Tricks ———

Eine weitere Möglichkeit des NEWCLI-Befehls sind seine Op-
tionen. Man kann nämlich die Dimensionen des neuen CLI-
Fensters selbst festlegen. Dies geschieht so:

1> newcli con:0/10/639/100/neuesCl i

Die ersten beiden Zahlen geben x- und y-Koordinate der linken
oberen Fensterecke an, die beiden folgenden Zahlen legen Breite
und Höhe fest. Dadurch lassen sich neue CLI-Fenster geschickt
legen, ohne andere zu verdecken. Arbeitet man mit mehreren
CLIs, ist es lediglich nötig, jeweils die rechte obere Ecke eines
jeden Fensters unbedeckt zu lassen. So kann man ein jedes Fen-
ster bei Bedarf in den Vordergrund holen, um damit zu arbeiten.

Frage 16

Welche Möglichkeiten bietet der Amiga, Texte ausgeben aus-
zugeben?

Die simpelste Möglichkeit ist das folgende Statement:

1> copy * to prt:

Sie finden nähere Informationen hierzu bei Frage 4. Etwas
komfortabler ist der eingebaute CLI-Editor "ed". Wenn Sie also
einen kurzen Brief schreiben wollen, bietet sich diese Möglich-
keit an:

1> run ed ram:brief

Sofort erscheint das Ed-Fenster, und Sie können mit der Ausar-

beitung Ihres Briefes beginnen. Sollten Sie dabei die deutsche
Tastaturbelegung benutzen wollen, genügt der veränderte Auf-
ruf: |

1> setmap d
1> run ed brief
1> setmap usa

Unabhängig von Ihrem Grund-CLI läuft nun "Ed". Sie können
jetzt ganz nach Herzenslust Texte eingeben. Wenn der Brief

—— CLI- Command Line Interpreter 35

schließlich fertiggestellt ist, genügt die Tastenkombination
ESC+X, um ihn unter dem Namen "brief" auf die Diskette zu

speichern. Anschließend kann er mittels

1> type brief to prt:

ausgedruckt werden. Als weiteren Vorteil gegenüber der einfa-
chen Ausgabe von Frage 4 kann man die Tatsache ansehen, daß

der geschriebene Text auf der Diskette gespeichert ist. Er geht
also nach dem Ausschalten des Rechners nicht verloren und
kann auch noch nach Wochen gedruckt oder durch

1> run ed brief

erneut verändert werden. Wollen Sie den Text jedoch nicht län-
ger speichern, genügt:

1> delete brief

Eine dritte Möglichkeit, Texte zu erstellen, bietet das Notepad.

Sie rufen es wie folgt auf:

1> setmap d
1> run utilities/notepad
1> setmap usa

Hierbei handelt es sich um einen etwas erweiterten Notizblock,

mit dem Sie die verschiedenen Zeichensätze (Fonts) benutzen
können. Das ist aber auch sein größter Vorteil, ansonsten ist

"Ed" vorzuziehen.

Frage 17

Ich möchte die Dateien auf meiner Workbench-Diskette sichtbar

machen. Wie geht das?

Wann immer Sie mit der Maus ein Disk-Icon anklicken, erschei-

nen auf dem Bildschirm nur die Dateien, die über ein gleich-
namiges Info-File verfügen. Dieses Info-File enthält das Aus-
sehen des Symbols, mit dem das entsprechende File repräsentiert

werden soll.

36 - Amiga Tips & Tricks

Nun gibt es auf der Workbench-Diskette oftmals Dateien ohne
ein solches .info-File. Méchte man auch diese Dateien sichtbar
machen, bedient man sich am besten der nachfolgenden Kom-
mandosequenz. Geben Sie zu diesem Zweck bitte zunächst die
folgende Anweisung ein:

1> ed S:show

Kurz darauf wird sich der Editor "Ed" melden. Nun schreiben

Sie einfach den folgenden Text ab:

.key datei/a

.bra (

.ket)
if exists sys:cli.info

echo "erstelle .info-File"
if exists (datei)

copy sys:cli.info to (datei).info
else

echo "es gibt gar kein solches quell-file!"

endif

else

echo "kein .info-original gefunden"

endif

quit

Nun drücken Sie zunächst die ESC-, dann die X-Taste. Darauf-

hin wird dieser Text unter dem Namen "Show" als Kommando-
sequenz in das Verzeichnis S: geschrieben. Sie können nun jede
Datei, die über kein eigenes .info-File verfügt und deshalb bis-
her unsichtbar blieb, nachträglich mit einem .info-File versehen.
Dazu geben Sie lediglich ein: |

1> execute show NameDesFiles

Durch den Execute-Befehl wird die Kommandosequenz "show"

aktiviert. Der Befehl .key sorgt dafür, daß das Argument, der
Name des gewünschten Programms, an Stelle des Platzhalters
"datei" eingesetzt wird. Der Zusatz "/A" bewirkt, daß dieses Ar-
gument zwingend eingegeben werden muß. Die Befehle .bra und
-ket definieren die Zeichen, die als Anfang und Ende den Platz-
halter markieren.

— CLI- Command Line Interpreter 37

Nun wird geprüft, ob es das .info-File "cli.info" gibt, denn das

soll als Original dienen. Sollte sich dieses File nicht in Ihrem
Directory befinden, dann sollten Sie es vor Aufruf des Executes
mittels

1> copy dfO:system/cli.info to df0:

ins Haupt-Directory kopieren. Unter Umständen liegen die
neuen Datei-Symbole genau übereinander, denn es sind ja

eineiige Zwillinge. Sie brauchen dann die Icons bloß auseinan-
derzuziehen und mittels des Workbench-Menüpunktes "Snapshot"

einzufrieren.

Frage 18

Wie kann ich verschiedene Texte zusammenfassen?

Sehr häufig kommt es vor, daß man über verschiedene separate

Textstücke verfügt. Das könnten zum Beispiel Teile eines "C"-
Listings sein oder Briefkopf, Text sowie ein Anhang. "Ed" kennt
leider keine Möglichkeit, zusätzliche Texte nachzuladen. Statt

dessen gibt es den JOIN-Befehl. Nehmen wir den Fall an, Sie
verfügen über die drei Text-Dateien "kopf", "text" und "schluss".
Sıe wollen aus diesen Teilstücken einen zusammenhängenden

Text erstellen. Dies erledigt JOIN:

1> JOIN kopf text schluss AS brief

Sie erhalten unter dem Dateinamen "brief" eine Zusammen-

fassung der drei Einzelkomponenten.

Frage 19

Wie kann ich bestimmte Textpassagen meiner Dateien suchen las-
sen?

Mit Hilfe des SEARCH-Befehls können Sie beliebige Dateien
nach einem markanten Wort oder Satz durchsuchen. Sie rufen

ihn mit diesen Parametern auf:

1> search (name) SEARCH (suchtext) ALL

38 Amiga Tips & Tricks

name Name der zu durchsuchenden Datei, sonst Disketten-

Directory.

suchtext Text, nach dem gefahndet werden soll.

ALL Alle untergeordneten Directories werden ebenfalls

durchsucht. |

Beispiele

1> search df0O: SEARCH "tobi" ALL

grast alle Dateien der Diskette im Laufwerk df0: nach dem Wort
"tobi" ab.

1> search brief SEARCH "Meier"

kontrolliert, ob sich der Name "Meier" im File "brief" befindet.

1> search dokum#? SEARCH "Rinteln, den"

sucht alle Dateien im aktuellen Verzeichnis, die mit den Buch-

staben "dokum" beginnen, nach dem Satzanfang "Rinteln, den"

ab. C-Programmierer können ebenfalls mit diesem Befehl auf

die Suche gehen, und zwar nach den Namen ihrer Prozeduren

und Variablen innerhalb ihrer Quell-Listings.

Frage 20

Läßt sich der Inhalt eines Textfiles eigentlich sortieren?

Ja, das geht. Dazu dient der SORT-Befehl. Mit ihm lassen sich

Text-Dateien mit bis zu 200 Zeilen alphabetisch sortieren. Dies

ist besonders nützlich für Adreßdateien. Befinden sich bei-
spielsweise in der Datei "adressen" die ungeordneten Adressen
Ihres Freundeskreises, so genügt dieser Aufruf:

1> sort adressen to geordnet

um eine alphabetisch geordnete Liste unter dem Namen "geord-
net" wiederzufinden. Sollen mehr als 200 Zeilen Text sortiert
werden, dann wird es nötig, den Stack zu erhöhen. Das kann
man mit dem STACK-Befehl machen.

—— 2 CLi- Command Line Interpreter 39

2.2 Neue CLI-Befehle

Mit dem Ende des Jahres 1988 ist auch endlich die neue gültige
Version der Workbench herausgekommen! Mit dem Kickstart 1.3
und der Workbench 34.20 liegt vor uns eine vollkommen über-
arbeitete Version des Betriebssystems. Neu hinzugekommen sind
CLI-Befehle, die dem Benutzer das Leben noch leichter machen

sollen. Es handelt sich dabei um "Ask", "Avail", "Break", "Eval",

"FF", "GetEnv", "Lock", "NewShell", "RemRAD", "Resident",
"SetPatch", "SetEnv", "Which", "EndSkip" und "XIcon". Alle diese

Befehle sind natürlich nicht in den älteren Handbüchern er-
wähnt und sollen deshalb hier erklärt werden. Um keinen zu be-
nachteiligen, werden sie jetzt in alphabetischer Reihenfolge be-
schrieben: |

Ask (Fragen an den Benutzer)

Bisher war es ın Batchdateien nur möglich, einen vorgegebenen
Befehlsablauf abzuarbeiten. Dabei war die einzige Möglichkeit,
diesen Ablauf zu beeinflussen, über das IF-Kommando erlaubt.

Allerdings wünschen sich viele CLI-Anwender auch einmal den
Weg über den Dialog zum Benutzer. So könnte man in der Star-
tup-Sequence fragen, ob nicht z.B., anstatt das CLI zu schließen,
dieses lieber offen bleiben soll, damit man nicht wieder erst das

Icon anklicken muß. Und genau für dieses Problem wurde Ask
geschaffen. Es ist jetzt endlich implementiert worden, daß Sie
auch Fragen an den Benutzer richten können.

Dafür schreiben Sie einen Text hinter Ask, genau wie Sie es
auch bei Echo machen. Dann wird beim Abarbeiten daraus eine
Frage, die der Benutzer mit Yes oder No beantworten kann.

Wenn die Frage nun mit Y oder N beantwortet wird, so erhält
das Programm einen entsprechenden Fehlercode. Das heißt: Bei
Y oder Yes läuft das Programm ohne irgendwelche Änderungen
ab. Bei N oder No wird ein Fehlercode von 5 erzeugt, der dann
z.B. über If Warn abgefragt werden kann. Sehen Sie hier ein
Beispiel für eine Batch-Datei mit dem ASK-Kommando:

40 Amiga Tips & Tricks ———_

Avail (Wieviel? Wovon überhaupt?)

Vielleicht hatten Sie auch schon einmal folgendes Problem: Sie
arbeiten gerade im CLI z.B. mit einem Compiler und brauchen
unbedingt die Speicherbelegung, damit Sie beurteilen können, ob
der neue Programm-Code noch in den Speicher paßt. Bisher war
die Lösung des Problems nur damit zu bewältigen, daß man die
Workbench über LoadWB lud und dann mit einem Klick in die
Workbench-Screen in der Titelleiste den freien Speicher an-

gezeigt bekam.

Natürlich war auch diese Angabe ziemlich ungenau, aber es
reichte. Viele Softwarehersteller boten deshalb kleine Info-Pro-

gramme an, die laufend die aktuelle Speicherverteilung in einem

kleinen Window ausgaben. Aber der Nachteil war ein neuer

Task, der vielleicht wertvolle Prozessorzeit stiehlt, und auch der

Platz auf dem Bildschirm, der verdeckt wurde.

Im neuen CLI ist dies anders! Es gibt den Befehl Avail, mit dem

die aktuelle Speicherverteilung ausgegeben wird. Aber nicht nur
dies! Weil man das ja schon alles kennt, haben sich die Pro-
grammierer von Commodore noch einige Features ausgedacht: So
wird zusätzlich zum freien FAST- und CHIP-RAM noch das
belegte in einer Tabelle vermerkt. Weiterhin führt die Tabelle
eine Spalte, in der nach momentaner Konfiguration die maxi-
malen Speichergrößen angegeben sind.

Und als letztes finden wir noch den jeweils größten freien
Speicherblock der RAM-Sorten. Somit kann man auch beurtei-

len, warum z.B. AllocMem() einen Fehler zurückliefert, obwohl
bei anderen Programmen angezeigt wurde, daß genügend freier

Speicher vorhanden ist. Dann war nämlich der Speicher nur in

kleinen Bruchstücken erreichbar und nicht als Ganzes! Zum
Abschluß dieser Befehlserklärung hier ein Beispiel der Spei-
chertabelle. Ich habe sie ausgegeben, während ich diesen Text
schrieb:

1> avail

——— CLI- Command Line Interpreter 41

Type | Available In-Use Maximum Largest

chip 197984 325248 523232 175376

fast 48104 468784 516888 44192

total 246088 794032 1040120 175376

Break (Schluß damit!)

Bei der Arbeit mit dem CLI ist es mir häufig passiert, daß ich,
ohne daran zu denken, einen Befehl mit RUN losschickte, damit

er .nebenbei abgearbeitet wird. Hier vergißt man aber häufig,
daB dieser nicht mehr abgebrochen werden kann, weil keine

Tastenkombination (weder CTRL-C, -D, -E noch -F) den Task

erreicht. Er liegt praktisch in einer unerreichbaren Zone des
CLI.

Dieses Manko kann aber verheerende Folgen haben! Und des-
halb wurde auch dafiir ein neues CLI-Kommando geschrieben:

Mit Break haben Sie die Möglichkeit, jeden laufenden Task, den
Sie vom CLI aus gestartet haben und den Sie sonst mit einer
CTRL-Kombination abbrechen könnten, auch wieder abzubre-

chen! Das allgemeine Format des Kommandos lautet:

Break PROCESS/A, ALL/S, C/S, D/S, E/S, F/S

Nach Break geben Sie also als erstes die Nummer des Tasks an,

der unterbrochen werden soll. Wenn Sie die Nummer gerade

nicht wissen, können Sie eine Liste über Status anfordern. Als

nächstes folgt die Art der Unterbrechung. Hierfür stehen die
bekannten Buchstaben, die Sie auch über die Tastatur betätigen
würden. Mit dem besonderen Schlüsselwort ALL können Sie das
System anweisen, es mit allen Kombinationen zu versuchen, da-

mit möglichst schnell und sicher abgebrochen wird.

Zum Austesten des Befehls sollten Sie folgendes einmal versu-

chen: Kopieren Sie ein möglichst langes Programm von der Dis-
kette ins RAM. Z.B. Run Copy SYS:Clock to RAM:; und geben
Sie dann Break 2 ALL ein. (Es wird dabei vorausgesetzt, daß
der Befehl in den zweiten Process gelegt wurde!) Nach kurzer
Zeit meldet das CLI, daß das Kommando unterbrochen und das

File wieder gelöscht wurde.

42 Amiga Tips & Tricks

FF (Schneller, schneller, schneller!)

Wenn Sie sich bei einer Erkundung der Workbench die neue
Startup-Sequence angesehen haben, wird Ihnen der Aufruf die-

ses neuen Befehls aufgefallen sein. Dort steht nämlich:

FF >NIL: -0

Damit wird ein Programm aufgerufen, das die Ausgabe um ca.
50% beschleunigt! Es heißt FastFonts und verspricht wirklich
nicht zu viel. Diese Neuerung können Sie, wie übrigens alle
neuen CLI-Kommandos, auch mit dem Kickstart V1.2 (33.180)
nutzen. Selbst hier wird die Textausgabe so schnell, daß das Ar-
beiten mit dem BASIC-Editor endlich einmal zur Freude wird!

Wenn Sie, was zwar unvorstellbar erscheint, aber immer einmal
wider Erwarten vorkommt, die Textausgabe in die alte Ge-
schwindigkeit schalten müssen, geben Sie dazu als Parameter
einfach -n an (das n steht für irgendeine Zahl größer null).

GetEnv (Hole einen definierten Wert)

Es wird der Inhalt einer Variablen gelesen. Da es im CLI aber
eigentlich keine Variablen gibt, legt dieser Befehl eine Datei in
der RAM-Disk an. Sie liegt im Verzeichnis "RAM:Env" und be-
sitzt den gleichen Namen wie die Variable, der etwas zugewiesen
werden soll. Der Inhalt selbst wird in der Datei abgespeichert.
Hier ist erst einmal ein Beispiel:

1> getenv test

Sie bekommen als Antwort die Meldung

Can't get test

womit Ihnen der Amiga ganz freundlich mitteilt, daß unter die-
sem Namen noch nichts abgespeichert worden ist. Ein zweiter
Befehl muß hinzugezogen werden, mit dem man eine Zuweisung
durchführen kann.

— 2 CLI- Command Line Interpreter 43

SetEnv (Speichere einen neuen Wert)

Hiermit kénnen Sie einer Variablen ein String zuweisen. Name
Name ist die Bezeichnung der Variablen. String String enthält
eine Zeichenkette, die der Variablen zugewiesen wird. Schreiben

Sie zum Beispiel:

1> setenv test "der böse wolf!

So erzeugen Sie damit einen neuen Wert im oben ange-
sprochenen Verzeichnis. Im File "RAM:Env/Test" steht der Text
"der böse wolf". Schauen Sie ruhig einmal nach! Diesen Aufruf
kann man so oft und so verschieden wiederholen wie man will.
Immer wieder wird der neue Wert in das File gleichen Namens
geschrieben. Eine sinnvolle Anwendung, mit der sich viele gute
Kniffe erstellen lassen, sehen Sie im Verlauf des Kapitels.

Lock (Der Schlüssel zum ...)

Blockiert oder gibt den Zugriff auf eine Festplattenpartition

frei. Sie geben dafür als Parameter die Bezeichnung der Fest-
plattenpartition an (z.B. HDO), zusätzlich einen Schalter, mit

dem Sie den Schutz ein- oder ausschalten und ergänzen diese

Angaben mit einem Passwort, das maximal vier Zeichen lang
sein kann.

1> lock hdO: ON DATA

Nur mit der Eingabe von

1> lock hdO: OFF DATA

kann dieser Schutz wieder aufgehoben werden.

RemRAD

Wie Sie vielleicht wissen, bietet das neue System 1.3 eine reset-
feste RAM-Disk. Doch die Sache hat auch einen Haken! Da
diese immer den konstanten Speicher belegt, also nicht wie die
alte dynamisch wächst oder schrumpft, stellt sie ein "speicher-

fressendes" Problem dar. Und wie soll man sie löschen, schließ-

44 Amiga Tips & Tricks

lich ist sie ja resetfest. Aus diesem Grunde gibt es einen Befehl,
der diese Arbeit übernimmt. Er löscht die resetfest RAM-Disk
aus dem System. Das Icon bleibt zwar bestehen, doch hat es

keine Bedeutung. Bei dem nächsten Reset ist sie dann ganz ver-
schwunden!

Resident

Beim Arbeiten im CLI stellt man fest, daß beim Zugriff auf
eine zweite Diskette jedesmal der CLI-Befehl von der Work-
bench-Diskette nachgeladen werden muß. Dies war in Version
1.0, 1.1 und 1.2 so. Gott sei dank ist dies in Version 1.3 nicht
mehr nötig! Hier können Sie jedes Kommando fest in den
Speicher integrieren. Dazu verfährt man folgendermaßen:

Zuerst rufen Sie das Kommando Resident gefolgt von dem Na-
men des Befehls, der resident in den Speicher gelegt werden
soll, auf. Ab jetzt ist ein Speicherbereich reserviert, in dem das

Kommando abgelegt ist. Bei einem Aufruf wird nun nicht von
der Diskette, sondern aus dem Speicher geladen. Schließt man

das letzte CLI-Fenster, so wird der Speicher für die Befehle ja

nicht mehr gebraucht und alle Blöcke werden wieder freigege-

ben. Allerdings behält die neue Shell eine Liste der als resident

gekennzeichneten Befehle, und sobald man ein neues CLI-Fen-
ster wieder öffnet, werden nach dieser Liste alle Befehle wieder

resident gemacht. Sehen wir uns jetzt das allgemeine Format an,
um noch weitere Möglichkeiten zu erkunden:

Resident Name, File, Delete/S, Add/S, Replace/S, Pure/S, SYSTEM/S

Wir können also als erstes den Namen angeben, gefolgt von dem

File (den Files), die dementsprechend vorhanden sein sollen.

Außerdem gibt es natürlich verschiedene Modi, um neue Befehle
resident zu machen, alte zu entfernen oder durch neue Files zu

ersetzen. Alles dies wird durch die dementsprechenden Worte

angezeigt. Verwendet man Resident ohne jeden Zusatz, wird
eine Liste aller bisher resident gemachten Files ausgegeben. Dies
ist sehr nützlich, wenn man z.B. eingeschränkt ohne Workbench-
Diskette arbeitet und wissen möchte, auf welche Befehle man
zurückgreifen kann.

—— CLI- Command Line Interpreter | 45

Für die tägliche Arbeit mit dem CLI empfehle ich zwei Batch-

dateien. Die erste sollte die folgenden Kommandos für resident
erklären: List, Dir, Info, Delete, Run, Cd und Copy. Sie können

die Liste natürlich nach Belieben ändern. In dem zweiten Exe-

cute-File werden alle diese Befehle wieder aus der Liste ent-
fernt. Auch das ist zu empfehlen, wenn man wieder die Work-
bench-Diskette ım Laufwerk hat, denn dann kann man den

Speicher wesentlich besser für andere Anwendungen gebrauchen.

Die Resident-Tabelle nach dem Start über die Startup-Sequence:

Name UseCount

Execute 1

CLI SYSTEM

FileHandler SYSTEM

Restart SYSTEM

CLI SYSTEM

SetPatch

Nicht selten treten gerade während des Programmierens fatale
Fehler auf, die das System mit einer Guru-Meditation quittiert.

Doch in vielen Fällen wäre dies nicht nötig. Es wäre vollkom-
men ausreichend, wenn man über den Sachverhalt durch einen

Guru informiert würde, der Task entfernt würde und das Leben

weiter seinen Lauf ginge. Aber bisher wurden gleich alle lau-
fenden Tasks unterbrochen und gelöscht, um das gesamte System

neu zu booten.

Damit soll jetzt Schluß sein! Durch das im Hintergrund laufende
Programm SetPatch wird jeder kleine Guru abgefangen und in
einen gutartigen umgewandelt. Somit werden manche Gurus

vollständig in ihrer Wirkung unterbunden, und die Arbeit
braucht nicht unterbrochen zu werden. In der täglichen Anwen-
dung werden Sie aber trotzdem weniger mit dem neuen Kom-
mando in Berührung kommen, denn genauso wie z.B. auch Fast-
Fonts wird SetPatch nur einmal als neuer Task in der Startup-

Sequence aufgerufen und ist danach still im Hintergrund. Dies
sieht übrigens so aus:

Run >NIL: C:SetPatch

46 Amiga Tips & Tricks

Die Ausgabe wird dabei an das nicht existierende Gerät NIL:
geschickt, damit das DOS-Window nicht für eine eventuelle
Ausgabe aufgehalten wird, wie es sonst geschehen würde.

Which

Which erleichtert die Arbeit besonders bei komplex aufgebauten

Amiga-Benutzersystemen. Hier soll uns als Beispiel ein Anwen-

der mit einer Festplatte dienen. Er hat sicherlich alle Befehle,

die sich aus dem CLI ansprechen lassen, gut geordnet in mehre-
ren Verzeichnissen. Die bekannten Kommandos im C:-Verzeich-

nis, dann noch das System-Verzeichnis usw.

Möchte man eines dieser Kommandos kopieren, tritt ein Pro-

blem auf: Bei der bisherigen Arbeit brauchte man überhaupt

nicht zu wissen, wo dieser Befehl untergebracht war, denn mit
Hilfe des Path-Kommandos suchte das CLI danach. Jetzt ist man
aber auf sich gestellt und muß alleine suchen. Doch nun tritt
Which in Aktion! Which durchsucht alle angegebenen Verzeich-

nisse und gibt dann den Pfad aus, unter dem das Kommando
wirklich zu erreichen ist.

1> Which Format
Workbench 1.3:System/Format

EndSkip

EndSkip ist ein Kommando nur für die Batch-Dateien. Es läßt

einen Sprung, der bis hierher noch nicht sein LAB gefunden

hat, hier aufhören und damit den nächsten Befehl hinter diesem

Kommando ausführen.

Xicon (Execute auch auf der Workbench)

Dieser Befehl ermöglicht es, CLI-Befehle über Symbole der
Workbench zu aktivieren und nicht erst in das CLI gehen zu
müssen. Es funktioniert! Dazu gehen Sie wie folgt vor:

Schreiben Sie zuerst den oder die gewünschten Befehle in eine
Batchdatei. Dabei sind alle Features des CLI erlaubt. Nun besor-

——— CLI- Command Line Interpreter 47

gen Sie sich ein Project-Icon. Das können Sie von den BASIC-
Programmen oder den NotePad-Texten "klauen". Für genauere

Informationen lesen Sie bitte im Kapitel "Icons" nach. Dieses

Icon versehen Sie mit dem Namen der Batchdatei. Beide müssen
in einem Verzeichnis liegen, das auch über Icons, also z.B. die

Diskette erreichbar ist.

Dann trägt man zu guter Letzt noch über die Info-Funktion der
Workbench bei DEFAULT-TOOL das Programm C:XIcon ein,
und wir sind fertig! Jetzt reicht ein Doppelklick auf das neue
Icon, und die CLI-Befehle werden ausgeführt. Für den Fall, daß

Texte ausgegeben werden müssen, öffnet das Programm noch ein
CON:-Fenster. Dieses wird nach dem Abarbeiten aber wieder
geschlossen.

Alte Befehle - neue Parameter

Nicht nur neue Befehle sind seit der Version 1.3 in das CLI ım-

plementiert worden. Auch die alten schon vorhandenen Kom-

mandos haben eine gründliche Überarbeitung durchgemacht. So
sind z.B. alle CLI-Kommandos vollkommen neu programmiert
worden. Dadurch sind alle schneller und ın vielen Fällen auch

wesentlich kürzer.

Das Interessante für die Anwender sınd aber die neuen Parame-
ter, die vielfältige und neue Einsatzgebiete erschließen. In die-
sem Kapitel finden Sie nun eine Auswahl der Befehle, bei denen
Parameter ergänzt wurden. Jedoch wird die Workbench immer
wieder neu bearbeitet. Deshalb tut man gut daran, sich von Zeit
zu Zeit die neueste Version zu besorgen und dort bei den Kom-
mandos mit dem Fragezeichen die neuesten Angaben abzurufen.
So bekommt man Informationen, die in keinem Handbuch
stehen!

Assign

Assign hat in seiner neuesten Version einiges hinzugelernt. Jetzt
kann man nicht nur einem Namen ein Verzeichnis zuordnen.
Wenn diese Zuordnung nicht mehr gebraucht wird, kann sie
auch wieder mit dem Wort DISMOUNT oder UNMOUNT ge-

48 Amiga Tips & Tricks ——

löscht werden. Das ist insofern interessant, als eine Diskette so-
lange als Symbol auf der Workbench gelassen wird, wie sie ir-

gendwie in Gebrauch ist. Das ist auch der Fall, wenn wir ein
Verzeichnis von ihr mit Assign gebrauchen. Ebenfalls neu ist die
Prüfmöglichkeit von Assign. Verwendet man das Schlüsselwort
EXISTS, dann gibt Assign einen Wert von 5 zurück, wenn der

Name nicht existierte.

Copy

Copy wurde noch mehr auf das Kopieren und Herstellen von
Originalen getrimmt. So bietet die jetzige Version vier Flags, mit
deren Hilfe man alle Parameter einstellen kann. Mit DATE und
COM kann man Copy anweisen, auch das Datum und den

Kommentar des Originals mit zu übernehmen. Weiterhin erlaubt
NOPRO eine Veränderung der Protection-Bits. Allgemein wer-
den diese ja bei der Kopie übernommen. Verwendet man
CLONE, dann werden alle drei Einstellungen genau aus dem

Original übernommen.

Format

Auch Format hat einige Verbesserungen erfahren. Mit QUICK
beschleunigt sich das Formatieren um einiges. Dabei werden
jetzt nicht mehr alle Tracks gelöscht, sondern nur noch der
Root-Block, der Boot-Block und die BitMap der Diskette. FFS

weist Format an, das neue FastFileSystem als Format zu nehmen,
und NOFFS unterbindet diese Einstellung.

Install

Die Programmierer des Amiga kennen das Viren-Problem. Des-
halb wurde Install um einige Optionen ergänzt. Install kann jetzt

auch den Boot-Block daraufhin überprüfen, ob sich dort viel-

leicht unbekannte Daten (Daten eines Virus) befinden. Dann
wird eine Warnung ausgegeben und der Fail-Code auf 5 gesetzt.
Mit NOBOOT kann eine Diskette von einem Virus gereinigt
werden, und trotzdem ist sie dann nicht bootfähig.

—— CLI- Command Line Interpreter 49

List

List hat eine äußerst interessante Variante erfahren. Zusätzlich
zu all den Parametern, die man bisher angeben konnte, gibt es
jetzt auch noch LFORMAT. Hiermit definiert man einen String,
über den die Ausgabe erstellt wird. In diesem String kann man
feststehenden Text und das Formatzeichen %S gebrauchen. Der
Text wird bei der Ausgabe einfach wiedergegeben, doch für das
%S setzt List den Filenamen ein. So können Sie Listen kreieren,

die z.B. in eine Batchdatei umgeleitet werden, um diese nachher

ausführen zu lassen. Hier ein Beispiel:

LIST >RAM:Test #? LFORMAT="Copy %S to RAM:C"

Dieses Komando erstellt ein Batchfile, in dem alle Copy-Kom-

mandos stehen, die das aktuelle Directory in das RAM-Ver-

zeichnis C kopieren. Wenn Sie %S zweimal im String verwenden,

werden beide Male die Filenamen eingesetzt. Somit kann man
leicht Renames konstruieren:

LIST >RAM:Test #? LFORMAT="Rename %s /Backup/4%S"

Wenn Sie %S im String dreimal verwenden, wird der erste durch
den Filenamen mit Path ersetzt und der zweite nur durch den
Filenamen. Braucht man den zweiten nicht, kann man ihn mit

dem Kommatarzeichen ; unterdrücken:

LIST >RAM:Test #? LFORMAT="Join %S%S to RAM:Oberfile ;%S"

Protect

Seit der Version 1.3 gibt es vier weitere Protection-Bits, die
auch von Protect unterstützt werden. Es sind dies Hidden (H),
Script (S), Pure (P) und Archive (A). Wenn Hidden gesetzt ist
und man über List den Inhalt eines Verzeichnisses ausgeben
läßt, werden diese Files nicht ausgegeben: Sie sind versteckt
(Betriebssystem 1.3 unterstützt dies nicht).

Setzt man bei einem File das Script-Flag, kann dieses auch ohne
Execute als Batch-Datei ausgeführt werden. Das Pure-Flag muß
bei allen Programmen gesetzt werden, die resident gemacht wer-

50 Amiga Tips & Tricks

den sollen, Archive wird immer dann gesetzt, wenn ein Pro-

gramm gerade kopiert wurde. Somit können Kopierprogramme

die Files auslassen, die schon kopiert sind.

Version

Als letzter der erneuerten Befehle ist Version zu nennen. Mit
ihm können wir jetzt auch die Versionsnummern der Libraries
erfahren. Dazu gibt man hinter Version noch die Namen der Li-
brary an:

Version intuition. library
intuition. library version 33.702

2.3 Neue Startup-Sequences

Wer nicht eine Akku-gepufferte Uhr sein Eigen nennen kann,
wird sich bereits gefragt haben, ob die Systemzeit auch in der
Startup-Sequence eingestellt werden kann. Dem ist in der Tat so.

Der Schlüssel zu diesem ist der DATE-Befehl. Gibt man anstelle
von Zeitangaben ein Fragezeichen ein, erklärt sich der Befehl
selbst und wartet auf die Eingabe der aktuellen Zeit. Erweitern
Sie Ihre Startup-Sequence doch einmal um folgende Zeilen:

Resident Echo ;Nur unter Kickstart V1.3

Resident DATE ;Nur unter Kickstart V1.3
DATE ‚Ausgabe der aktuellen Zeit

Echo

Echo "Bitte geben Sie das aktuelle Datum in obigem Format ein."

Echo

DATE ? ;Eingabe der aktuellen Zeit

Echo

Echo "Das aktuelle Datum ist nun:"

Echo

DATE ‚Ausgabe des geänderten Datums
Echo

Ähnliche Abfragen können Sie mit allen Befehlen erstellen, die
anstelle von Parametern ein Fragezeichen akzeptieren. Sollten Sie
Ihren Amiga jeden Tag einmal anschalten, besteht eine weitere
Möglichkeit, das aktuelle Datum zu setzen:

——— CLI- Command Line Interpreter 51

‚noch ist das Datum von Gestern eingestellt
DATE tomorrow ;Datum um einen Tag erhöhen
Echo "Heute haben wir den"
Date

Echo
Echo "System:"

Info ‚Information über Disks ausgeben

Die Betriebssystem-Version 1.3 bietet bekanntlich endlich die
Möglichkeit, von einem anderen Gerät zu booten als dem inter-
nen Laufwerk DFO. Einige Festplatten beziehungsweise deren
Controller fahren unter V1.3 das System hoch, ohne daß eine
Bootdisk in einem Diskettenlaufwerk liegt. Nicht jeder Control-
ler gestattet den Autoboot, so daß bei den meisten Platten

grundsätzlich von Disk gebootet werden muß.

Um die Geschwindigkeit einer Harddisk sowohl unter V1.2 wie
auch unter V1.3 beim Boot-Vorgang nutzen zu können, muß der
größte Teil der Startup-Sequence auf der Festplatte ausgeführt

werden. Ebenso sollten alle weiteren Diskettenzugriffe des Be-

triebssystems auf die Festplatte umgelenkt werden. Gehen Sie
folgendermaßen vor:

l. Geben Sie ım CLI ein:

Copy SYS: DHO: all quiet

Damit wird die gesamte Workbench-Disk auf die Festplatte
kopiert. |

2. Editieren Sie die Startup-Sequence, die sich nun auf Ihrer
Harddisk befindet:

Ed DHO:S/Startup-Sequence
In der obersten Zeile fügen Sie ein:

DHO:C/Assign C: DHO:C

Assign SYS: DHO:

Assign DEVS: DHO:DEVS

Assign SYSTEM: DHO:SYSTEM

Assign L: DHO:L

Assign S: DHO:S

Assign LIBS: DHO:LIBS

Assign FONTS: DHO:FONTS

Assign UTILITIES: DHO:UTILITIES

CD DHO:

52 Amiga Tips & Tricks

Löschen Sie mit CTRL-B die Zeilen:

BindDrivers

Mount DHO:

3. Andern Sie die Startup-Sequence der Workbench durch

ED s/Startup-Sequence

Löschen Sie alle Befehle und ersetzen Sie sie durch

BINDDRIVERS ;nicht vergessen!
MOUNT DHO: ;sofern nicht bereits durch binddrivers

vorhanden (Automount-Controller).

;Bei einigen Controllern noch ‘CD DHO:' hinzufügen.

EXECUTE DHO:S/Startup-Sequence

4. Führen Sie einen Reset durch und prüfen Sie, ob es funk-

tioniert.

5. Bei einwandfreier Funktion können folgende Dateien auf
der Harddisk gelöscht werden:

Die Expansion-Schublade (Treiber wurden durch bind-
drivers bereits geladen),

DEVS/system-configuration

Von der Workbench können alle nicht benötigten Dateien
gelöscht werden. Da das vom Controller abhängt, sollten Sie

sich vorher eine Sicherheitskopie dieser Disk anfertigen.

Bedenkenlos können im allgemeinen die Verzeichnisse SYSTEM,
FONTS, UTILITIES, T, DEVS/PRINTERS, DEVS/KEYMAPS,
LIBS/Mmagic.library und DEVS/clipboards gelöscht werden.

Wer im Besitz des Kickstart V1.3 ist, keinen Autoboot-Control-

ler hat, sich aber eines genügend großen Speichers erfreut, kann
natürlich auch noch einen anderen Weg gehen. Die von Haus aus
bootfähige resetfeste RAM-Disk wird zunächst durch die Star-
tup-Sequence der Workbench eingerichtet (mehr dazu an anderer
Stelle dieses Buches). Die beim Systemstart benötigten Dateien
und Verzeichnisse werden auf die resetfeste RAM-Disk kopiert

(inklusive einer Startup-Sequence, die der der Workbench ent-
spricht, jedoch nicht die Initialisierung der RAM-Disk beinhal-

——— 2 CLI- Command Line Interpreter 53

tet). Danach dürfte unsere bootfahige RAM-Disk genauso be-
stückt sein wie die abgespeckte Workbench bei der Bootumlei-

tung von Disk auf HardDisk. Bei einem Reset wird die Startup-
Sequence im RAM abgearbeitet, von dort auf DHO verzweigt.

2.3.1 RAM-Disk und Datenverarbeitung

Wer war nicht schon einmal dem Herzinfarkt nahe, als der

Amiga ausgerechnet bei der wichtigsten Datendisk einen
READ/WRITE-ERROR meldete; wer ist noch nicht mit einem
schmerzenden Abdruck der Space-Taste unter seinem linken

Auge aufgewacht, nach dem er Stunden zuvor SUPERBASE zum
reformatieren seiner Dateien aufgefordert hat?!?

Kennen Sie derartige Probleme? Ja? Dann sind Sie hier genau
richtig. Derartige Probleme hatte ich nämlich auch häufig genug
- bis, ja bis ich mir die Parameter der 1.3-CLI-Befehle einmal
genauer angesehen habe.

Bringen wir einmal die Probleme auf einen Punkt. Das nervigste
an Datenverarbeitungen ist das ständige Schrubben der Disketten
(es müssen ja eine Unmenge Daten bearbeitet werden können,

die eventuell nicht ins RAM passen könnten). Das ewige hin
und her schreiben der Daten, diese recht zeitintensive Hauptbe-

schäftigung mancher Datenbanken ist es auch, die zu den
Schreib-/Lese-Fehlern führt. Die Aufzeichnungsdichte des
Amiga übersteigt nämlich bereits leicht die Aufzeichnungs-
dichte, für die die allgemein erhältlichen Disketten ausgelegt
sind. Wenn dann auf handelsüblichen Disks (135 TPI) ständig die
Schreib-/Lese-Köpfe die Magnetschicht abhobeln...

Wir müssen also die Disketten-Zugriffe auf ein Minimum be-
schränken. Sinnvollerweise sortieren wir Dateien daher im RAM.
Da wir unsere Dateiverwaltung kaum davon überzeugen können,
nicht auf einer Disk zu sortieren, nehmen wir die RAM-Disk
(die resetfeste, wenn möglich). Zu diesem Zweck ist es ange-
bracht, Ihre Dateien in Gruppen zu ordnen und jede Gruppe in
ein eigenes Directory zu legen. Die benötigten Directories wer-

54 Amiga Tips & Tricks

den dann je nach Bedarf ins RAM kopiert, eventuell schon

durch die Startup-Sequence. Bevor wir uns näher damit be-
schäftigen, sollten wir uns noch ein anderes Problem ansehen,
den Stromausfall. Dieser bereitete mir häufig Kopfzerbrechen
darüber, wie ich am sinnvollsten meine RAM-Dateien vor dem

Totalverlust retten kann. Klar, ich könnte regelmäßig die RAM-
Dateien auf die Disk zurückschreiben. Die Sache hat nur einen
Haken: Normalerweise verändere ich nicht alle im RAM stehen-
den Dateien, so daß ein arg zeitintensives Diskettenquälen an-

gesagt wäre. Man müßte daher nur die geänderten Dateien auf
die Diskette zurückschreiben können, und das geht so:

Bei jedem Schreibzugriff auf eine Datei wird deren Datum neu
gesetzt. Hier bietet sich uns ein Ansatzpunkt. Die Dateien müs-
sen so ins RAM kopiert werden, daß ihr ursprüngliches Datum

unverändert bleibt. Zu diesem Zweck bietet der COPY-Befehl

den Parameter DATE an:

COPY "Datei" RAM: DATE

Leider ist es nicht möglich, dem COPY-Befehl mitzuteilen, daß

nur Dateien ab einem bestimmten Datum kopiert werden sollen.

So muß für jede Datei, die vom RAM auf Disk zurückkopiert
werden soll, angegeben werden:

COPY RAM:Datei Datendisk:

Glücklicherweise existiert aber noch der LIST-Befehl, der in der
V1.3-Version den Parameter LFORMAT hat (siehe neue CLI-
Befehle). Mit diesem Befehl kann man sich nun eine Batch-Da-
tei erstellen, die aus lauter COPY-Befehlen besteht. Damit sieht

ein Batchfile zum Kopieren aller geänderter Dateien aus dem
RAM auf Disk so aus:

LIST >RAM:Batchfile RAM: SINCE TODAY LFORMAT "COPY RAM:%s
Datendisk:"

EXECUTE RAM:Batchfile

DELETE RAM:Batchfile

DELETE Datendisk:Batchfile

——— CLI- Command Line Interpreter 55

Mit einem Icon ausgestattet und XIcon als DefaultTool (siehe
neue CLI-Befehle) können Sie dieses Batchfile jederzeit von der
Workbench anklicken, eine feine Sache, wie ich meine.

Wer die Geschichte gern automatisieren möchte, kann dank des

neuen SKIP-Befehls folgendermaßen vorgehen:

1. Batchfile ändern in:

LAB meinlabel sLabel definieren
WAIT 600 ;10 Minuten warten

LIST >RAM:Batchfile RAM: SINCE TODAY LFORMAT "COPY RAM:%s

Datendisk:"
EXECUTE RAM:Batchfile
DELETE RAM:Batchfile

DELETE Datendisk:Batchfile
SKIP meinlabel ;nur V1.3 Skip springt auch rückwärts

2. Eingeben:

RUN NamedesBatchFiles

3. Nach dem Beenden der Datenverarbeitung:

BREAK [Prozess] (siehe neue CLI-Befehle)

2.3.1.1 MACROs im CLI mit ALIAS

Der neue Befehl ALIAS (V1.3) gestattet es dem Benutzer, CLI-

Befehle zu definieren. Dabei wird einem frei erfundenen Namen

eine CLI-Kommando-Sequenz übergeben. Es besteht die Mög-
lichkeit, Variablen, die später hinter dem Namen angegeben
werden, zu übernehmen. Ein Beispiel ist xcopy:

ALIAS xcopy copy [] clone

Die eckigen Klammern dienen der Variablenübernahme. Um den
neuen Befehl xcopy auszuprobieren, den wir hiermit definiert
haben, schreiben wir folgendes:

xcopy sys:c/assign ram:

56 Amiga Tips & Tricks

Der Assıgn-Befehl wird in die RAM-Disk kopiert. Das mag

sicherlich noch nicht sehr sinnvoll sein, zeigt aber zumindest
schon einmal die Variablen-Übergabe, denn intern wird durch
obige Eingabe folgender Befehl ausgeführt:

copy sys:c/assign ram: clone

So richtig interessant wird die Sache mit Beispielen wie diesem:

ALIAS start ed s/startup-sequence

Geben Sie nun "start" ein, können Sie unmittelbar darauf die
Startup-Sequence editieren! Nun kann man natürlich einmal die

Namen oder Bedeutungen der selbsterfundenen Befehlsworte
vergessen haben. Dann genügt:

ALIAS

Schon werden alle festgelegten Namen und ihre Definitionen
ausgegeben.

2.3.1.2 CLI-Startup, die Startup-Sequence des CLI

Vielleicht haben Sie bereits die neue Datei im S-Directory der
Workbench 1.3 entdeckt: "CLI-Startup". Sie ist nichts anderes als

eine Startup-Sequence fiir das CLI. Alles, was Sie in dieser Datei

finden, ist beim Offnen des Shells aktiviert, beispielsweise soll-

ten Sie immer benötigte ALIAS-Definitionen in diesem Batchfile
ablegen. Klicken Sie von der Workbench aus das SHELL an,
können Sie auch schon die in dieser Datei mit ALIAS definier-

ten Befehlsworte verwenden.

Das EXECUTE [Batchdatei] entfallt also. Auch alle anderen
Voreinstellungen (etwa mit RESIDENT im RAM abgelegte Be-
fehle) werden beim Starten des Shell sofort ausgeführt. Im fol-
genden Kapitel finden Sie etliche Beispiele für ALIAS, die Sie

mit ED in der CLI-Startup-Datei verewigen können.

—— CLI- Command Line Interpreter 57

2.3.1.3 ALIAS-Befehle

Anwendungen von ALIAS gibt es sicherlich unbegrenzt viele.
Hier ein paar Beispiele:

ALIAS BORDERLESS echo "*e[(0x*e [0y*e (0; OH*e[J"

Das Shell-Window hat keinen Rahmen mehr, die gesamte Flache

wird zur Ausgabe genutzt. Vorher sollte das Window auf die
gewünschte Größe gebracht werden.

ALIAS CLS echo "*e[0;0H*e[U"

Löscht den Bildschirm.

ALIAS FETT echo "*e[1;31;40m"

Schaltet auf Fettdruck um.

ALIAS ULINE echo "*e[4;31;40m"

Schaltet Unterstreichen ein, was beim LIST-Befehl von Vorteil

sein dürfte.

ALIAS NORM echo "*e[0;31;40m!"

Schaltet zurück auf normale Darstellung.

ALIAS PRINT run >nil: type >prt: []

Gibt das als Parameter anzugebende ASCII-File im Multitas-
king-Betrieb auf dem Drucker aus.

ALIAS DELDISK sys:system/format >nil: <nil: drive [] name "Leer" quick

Löscht blitzschnell alle Dateien und Verzeichnisse auf dem an-

gegebenen Drive.

ALIAS CtoRAM run >nil: copy sys:c ram: all quiet

Kopiert das C-Directory ins RAM.

58 Amiga Tips & Tricks ———_

ALIAS Tree dir [] opt a

Gibt alle Verzeichnisse und Dateien des angegebenen Directories
aus.

ALIAS PrintTree run >nil: dir >prt: opt a

Gibt im Multitasking-Betrieb alle Dateien und Verzeichnisse des
aktuellen Directories auf dem Drucker aus.

ALIAS Batch run >nil: execute "Filename"

Führt im Multitasking-Betrieb eine gewünschte Batch-Datei aus,
wodurch das lästige Eingeben von Execute entfällt.

ALIAS myC copy >nil: sys:c(assign!type!dir!copy) ram:

Kopiert alle in der runden Klammer mit dem senkrechten Strich

voneinander getrennten CLI-Befehle ins RAM.

2.3.1.4 Batch-Programmierung

Zur richtigen Batch-Programmierung gehören Abfragen und
Verzweigungen, denn für jede Kleinigkeit eine neue Batch-
Datei zu erstellen, dürfte wohl etwas aufwendig sein. Kommen
wir gleich zu einigen neuen Features der Workbench 1.3. Neu ist
hier beispielsweise der ASK-Befehl, der auf eine Eingabe war-

tet. Ist diese Eingabe ’Y’ oder ’YES’, gibt dieser Befehl einen
Fehlercode zurück, den man als Warnung einstufen kann. Diese
Warnung kann durch den IF-Befehl abgefragt werden. Hier ein
Beispiel, das in die Startup-Sequence eingebaut das C-Directory

bei Bedarf ins RAM kopiert:

ASK "Soll ich das C-Directory ins RAM kopieren (Y/N)?"
IF WARN

COPY SYS:C RAM: ALL QUIET

ASSIGN C: RAM:

ENDIF

——— CLI- Command Line Interpreter 59

Sollten Sie bei obigem Beispiel nicht mit Y(ES) antworten, wird
die Befehlsfolge übersprungen und mit dem auf ENDIF folgen-
den Programm weitergemacht. Auch Verschachtelungen sind
möglich:

ASK "Wollen Sie ein gutes Programm starten (Y/N)?"

IF WARN

ASK "Eine Textverarbeitung (Y/N)?"

IF WARN

ASK "BECKERtext (Y/N)?"

IF WARN

ASSIGN FONTS: BECKERtext: FONTS

ASSIGN PRT: BECKERtext:PRT

CD BECKERtext:

BECKERtext

SKIP Ende

ENDIF

ASK "TEXTOMAT (Y/N)?"

IF WARN

ASSIGN FONTS: TEXTOMAT: FONTS

TEXTOMAT : TEXTOMAT

SKIP Ende

ENDIF

ENDIF

ASK "Oder vielleicht PROFIMAT?"

IF WARN

ASSIGN TABELLEN: PROFIMAT:TABELLEN

CD PROFIMAT:

PROFIMAT

ENDIF

ENDIF

LAB Ende

Wie Sie hier sehen können, liegt eine relativ einfache Ver-
schachtelung von IF-ENDIF-Bereichen vor. Eine solcherart pro-

grammierte Batch-Datei paßt sich dem jeweiligen Wunsch des
Users an. Bei allen, die nicht ständig von der Workbench aus ar-
beiten, sich vielmehr häufig mit bestimmten Programmen be-
schäftigen, bietet sich der Einbau in die Startup-Sequence förm-

lich an.

Gerade die Startup-Sequence bot unter Workbench 1.2 meist ein

recht trauriges Bild. Zunächst eventuell eine Abfrage, gefolgt
von einem oder mehreren Programmen und danach war Feier-
abend. Der neue SKIP-Befehl (1.3) erlaubt jetzt erstmalig das
Zurückspringen in einer Batch-Datei. So lassen sich ganz wun-

60 Amiga Tips & Tricks

derbare Schleifen programmieren. Ein Beispiel fiir alle, die die
Finger nicht vom C-Compiler lassen können:

‚<< Initialisierung

LAB loop ‚Label für Schleife definieren
ED RAM:Source.C ‚Aufruf eines C-Source-Editors
CC RAM:Source.C -oTMP.O ;Compilieren (Optionen nach
LN RAM:TMP.O +lc sLinken Wunsch)

ASK "Editieren (Y/N)" ‚Abfrage
IF WARN SKIP loop ‚Rücksprung

2.4 Richtiges Ausnutzen des Mount-Befehls

Mount

Ja, der Mount-Befehl wird wahrlich sehr selten genutzt. Aber
warum? Schließlich bietet er Möglichkeiten, von denen man bis-
her nur geträumt hat! Um den Befehl genauer zu erkunden,
müssen wir erst einmal verstehen, was er überhaupt macht. Das

Kommando Mount bindet in das Betriebssystem des Amiga ein
neues Device ein. Sehen wir uns dazu zuerst an, welche Devices
es schon gibt. Dies kann man ganz leicht über Assign erfahren.
Sıe könnten dann etwa folgenden Ausdruck bekommen:

Volumes:

Tips & Tricks [Mounted]
RAM DISK [Mounted]

BECKERtext

Workbench 1.3 Wgb [Mounted]

Directories:

FONTS Volume: BECKERtext

ENV RAM:Env

T RAM:T

Ss Workbench 1.3 Wgb:S

L Workbench 1.3 Wgb:L

C Workbench 1.3 Wgb:C

DEVS Workbench 1.3 Wgb:devs

LIBS Workbench 1.3 Wgb:libs

SYS Workbench 1.3 Wgb:

Devices:

NEWCON DF1 DFO PRT

PAR SER RAW CON RAM

——— CLI- Command Line Interpreter 61

Für uns ist dabei der letzte Abschnitt besonders interessant.

Nachdem alle angeschlossenen Laufwerke und die besonderen
Directories aufgeführt sind, kommt eine Liste der ansprechbaren
Devices.

DFO: und DFI: sind Ihnen hinreichend bekannt. Mit PRT: kann
man den Drucker erreichen, und PAR: bzw. SER: stellen die

beiden Schnittstellen dar. Uber RAW: und CON: kann man die
Ausgabe erledigen, ohne den Weg über Intuition zu gehen. Das
letzte Device RAM: kennzeichnet die RAM-Disk, mit der wir
fast taglich arbeiten.

Nun sind alle hier aufgeführten Devices schon von Anfang an in
das System eingebunden und können jederzeit erreicht werden.

Wollen wir aber ein neues Device ansprechen, ist dies erst über

Mount dem System bekannt zu machen. Diesen Weg müssen wir
z.B. gehen, um für das neue CLI, die Shell, einen Editor zu er-
stellen, der intelligenter ist (NEWCON). Lesen Sie mehr zu die-
sem Thema im Kapitel über das neue Betriebssystem.

Für dieses Vorhaben brauchen wir einen Eintrag in der Mount-
List, die sich im Verzeichnis DEVS: befindet. Hier ist zunächst
ein Beispiel für ein externes Laufwerk, das auch als DFI: ange-

sprochen werden kann. Sie finden dieses Beispiel übrigens schon
in Ihrer Mountlist:

DF1: Device = trackdisk.device

Unit = 1
Flags = 1

Surfaces = 2

BlocksPerTrack = 11

Reserved = 2

PreAlloc = 11

Interleave = 0

LowCyl = 0 ; HighCyl = 79
| Buffers = 20

| BufMemType = 3

Die Definition besteht im wesentlichen aus dem Namen des

neuen Devices, also DFl:, und der Endkennung #. Alles, was

62 Amiga Tips & Tricks

dazwischen steht, hängt von dem jeweiligen Device ab. Es gibt
allerdings Parameter, die häufig benutzt werden:

Device

Hier findet Mount den Namen des Device-Treibers. Alle Devi-

ces werden natürlich im Verzeichnis DEVS: abgelegt, wo Sie z.B.
das ramdrive.device oder das narrator.device finden. Setzen Sie

den Namen entsprechend ein.

Unit

Hiermit bezeichnet man die Nummer des jeweiligen Gerätes. So
hat das erste physikalische Diskettenlaufwerk die Nummer 0, das

zweite - ob intern oder extern, ist egal - die Nummer |! usw.

Ein 54"-Laufwerk hat in jedem Fall die Nummer 2. Man zählt
hier also die Nummer der bisher angeschlossenen Laufwerke
eines Typs. Dies gilt nicht nur für Diskettenstationen!

Flags

Enthält einen Wert, der je nach Device unterschiedlich ist.

Surfaces

Gibt an, um wie viele Schreiboberflächen es sich handelt. Ein

Diskette hat im Normalfall 2 Schreibseiten, wohingegen die

Harddisk schon ab 4 hat.

Reserved

Anzahl der Datenblöcke des Boot-Blocks.

BufMemType

Speichertyp für den Datenpuffer:

0,1 = egal; 2,3 = CHIP-RAM; 4,5 = FAST-RAM

—— 2 CLI- Command Line Interpreter 63

BootPri

Setzt die Priorität des Laufwerks für einen Boot. Je höher die
Nummer, desto eher wird von diesem Device gebootet. Diese
Option wird besonders ab Version 1.3 des Betriebssystems wich-

tig. Dann kann auch das Booten von der RAM-Disk oder der

Festplatte eingestellt werden. Und so geht das für jeden Eintrag
weiter. Ich möchte hier nicht detailliert auf jeden eingehen, weil
die Daten doch sehr stark davon abhängen, welches Device ein-
gebunden werden soll. Sehen Sie sich lieber die Tıps & Tricks

für Spezialfälle an:

2.4.1 Neue Namen für alte Hüte

Wenn man es gewohnt ist, die Gerätenamen der IBM-Kompati-
blen zu benutzen, wird man einige Schwierigkeiten haben, sich
an die Bezeichnungen des Amiga zu gewöhnen. Diese Er-
fahrungen macht man besonders stark, wenn man oft zwischen
beiden System wechselt, sei es im Betrieb und zu Hause oder

wenn man stolzer Besitzer einer PC-Karte ist. Für diesen Fall
wäre es am geeignetsten, die Namen DFO, DFI und wie sie alle

heißen nach denen der IBMs zu benennen.

Ein findiger Leser wird sogleich bemerken, daß doch über As-
sign jedem Verzeichnis ein neuer Name zugeordnet werden
kann. Also probieren wir es aus:

Assign B: DFi:

Wenn Sie es wirklich einmal ausprobieren, werden Sie sicherlich
begeistert sein. Anstatt immer DFIl: tippen zu müssen, reicht

jetzt B: aus. Doch wechseln Sie einmal die Diskette. Schon stellt

sich der Amiga stur und fordert die andere Diskette. Assign be-
zieht sich also immer nur auf das existierende Verzeichnis und
nicht auf eine Diskettenstation. Dafür gehen wir einen anderen
Weg.

Zunächst wird in der MountList einfach die Definition für DF1:
kopiert, denn sie enthält alle nötigen Daten für ein Disketten-

64 Amiga Tips & Tricks

laufwerk. Dann ändern wir den Namen DFI: in B: um. Das
war’s schon, denn jetzt reicht nach dem Abspeichern ein Mount
B: aus, und sofort kann auch das Laufwerk DFI: als B: ange-

sprochen werden. Das gleiche ist natürlich auch mit DFO: mög-
lich. Dazu muß in der MountList noch einmal eine Kopie des

alten Eintrags gemacht werden. Jetzt verändern Sie aber nicht
nur den Namen in A:, sondern auch die Unit von 1 auf 0, damit

wirklich das 0. Laufwerk angesprochen wird.

Nach diesen Definitionen können Sie DF1: sowohl unter seinem
alten Namen als auch unter dem neuen Namen B: ansprechen.

Gleiches gilt auch für DFO:! Die Tabelle der Devices wurde um
die beiden neuen Geräte ergänzt, wie man leicht über Assıgn
nachprüfen kann.

Devices:

A B NEWCON DF1 DFO

PRT PAR SER RAW CON

RAM

2.4.2 Weniger ist mehr!

Nicht nur die oben genannte Spielerei kann über Mount reali-

siert werden. Es gibt sogar sehr ernsthafte Anwendungen, mit
denen man Geld sparen und bei vielen Freunden Verwirrung

stiften kann! Für dieses Vorhaben werden wir nicht - wie eben
beschrieben - einfach den Namen unseres Devices ändern. Wie
gehen tiefer und wagen uns in die Welt der Parameter vor.
Hierunter finden wir drei Stück, deren Bedeutung leicht erkenn-
bar ist und deren Veränderung mehr erreicht, als man denken
könnte.

Stellen Sie sich folgende Situation vor: Sie haben bei RAMSCH-
KAUF eine 10er Packung ABCD-Disketten gekauft, die im Su-
per-Sonder-Angebot nur 45,80 DM gekostet haben. Nur stand es
leider nicht auf der Verpackung, daß sıe minderwertig waren.
Erst beim Formatieren als Datendisketten merkten Sie, daß fast
alle Disks auf der Seite 1 einen Hardwarefehler meldeten und
das Formatieren abgebrochen wurde.

——— CLI- Command Line Interpreter 65

Nun kommt der Trick! Wir gehen wieder in die MountList und
kopieren die Einstellungen für DF1l:, verändern den Namen in

"WGB:" und - das ist der Clou - verändern weiterhin unter Sur-
faces den Eintrag von 2 in 1. Damit haben wir eine neue Dis-

kettenstation geschaffen, die unsere Disketten nur auf einer
Seite formatiert!

Wenn Sie jetzt die Formatierungsroutine im CLI aufrufen mit:
Format Drive WGB: Name "1 Surface Test", werden Sie feststel-

len, daß das Formatieren schneller geht, weil nur noch die
Hälfte beschrieben wird, und Sie können auch noch diese Dis-

ketten benutzen. Somit ist nur noch die Hälfte verloren! Es ist
dabei darauf hinzuweisen, daß diese Diskette nur über das neu

eingerichtete Device gelesen werden kann. Sie haben also nur
über eine persönliche Schnittstelle Zugriff auf die darauf abge-

speicherten Daten. Es ist somit gleichzeitig ein gewisser Ko-

pierschutz! Kleiner Tip am Rande: Kaufen Sie demnächst lieber

Qualitätsdisketten, dann brauchen Sie unseren Tip nicht!

Unter dem gleiche Stichwort gibt es noch zwei andere Metho-
den. Die erste behandelt den Fall, daß nicht immer nur eine

Seite der Diskette beschädigt oder defekt sein kann. Gut ist es
auch möglich, daß z.B. die ersten 5 Tracks ständig Read-Errors

produzieren. Dann kann man die Anzahl der Schreibseiten las-
sen, wie sie ist. Hier empfiehlt es sich, eher die Variable

LowCyl auf 5 zu stellen. Dann beginnt der Formatierungsvor-
gang erst ab diesem Track. Alles weitere läuft genauso ab wie

oben beschrieben. Der umgekehrte Fall beinhaltet Read-Errors

am anderen Ende der Diskette. Dort sind vielleicht Track 71-79

nicht mehr lesbar. Hier ändern Sie einfach HighCyl und gehen
wieder den schon beschriebenen Weg.

Ein letzter Hinweis zu der hier erwähnten Methode sei noch ge-

nannt: Bei der Verwendung neuer Formate gibt es einige Kom-

plikationen mit der Workbench und den Diskettenstationen. Das

erste Problem liegt an der Workbench. Wenn ein neues Laufwerk

eingerichtet wurde und Sie dort Ihre Diskette formatiert haben,
werden Sie erstens nicht mehr das Icon DF1:NDOS los. Das mag
zwar nicht so schlimm sein, aber daraus resultiert das zweite

66 Amiga Tips & Tricks

Problem. Das Laufwerk DFI: ist jetzt nicht mehr ansprechbar,

ob man eine Diskette im normalen Amiga-Format einlegt oder

nicht. Er meldet sich immer mit "No disk present in unit 1",

womit unmißverständlich zu verstehen gegeben wird, daß nur
noch das neue Format akzeptiert wird. Allerdings können Sıe das
neue Format auch von der Workbench ansprechen!

Und darin liegen einige interessante Anwendungen. Wenn man
z.B. alle Datendisketten mit diesem Format verwendet, stellt das

eigene Lesen kein Problem dar, doch alle anderen, die nicht un-

bedingt die Daten lesen sollen, haben keinen Zugriff ohne die
richtige MountList.

2.4.3 Drucker-Spooler

Wenn wir im Zusammenhang mit dem Multitasking von einem
Drucker-Spooler sprechen, kann dies eigentlich nur eines be-
deuten: Wir binden einen neuen Task in das System ein, der eine
Datei auf dem Drucker ausgibt.

Für einen neuen Task haben wir im CLI ja bekanntlich den
Befehl RUN, als Spooler-Programm wählen wir eine Batch-Da-
tei. Das Ganze sieht dann so aus:

Nehmen Sie sich das CLI und geben Sie ein:

ED c:PRINT

Nun das folgende Programm:

.key filename/a,typ/s ‚Übernehmen der Parameter

if not exists <filename> ‚Prüfen ob File vorhanden

echo "File not found" nein?

——— CLI- Command Line Interpreter 67

quit ‚-dann raus hier
else ‚ansonsten:
copy <filename> to ram:<filename>

‚File in die RAM-Disk kopieren
if <typ> eq "DUMP" ;Hex-Dump ausgeben?
run >nil: type ram:<filename> to prt: opt h

;-HexDump-Spooling
else ‚sonst:
run >nil: type ram:<filename> to prt: opt n

‚normales Spooling
endif

delete ram:<filename> ‚Speicher wieder freigeben

endif
echo "printing" Ausgabe bestätigen

quit

Speichern Sie das File nun mit ESCAPE-X ab. Die Routine

können Sie ab jetzt mit der Eingabe von:

EXECUTE PRINT filename (DUMP)

aufrufen. Der Parameter DUMP ist optional und kann daher

weggelassen werden. Da der Befehl EXECUTE sehr lang ist -
man ist ja schließlich schreibfaul - empfehle ich, folgendes
einzugeben: |

run >nil: copy sys:c/EXECUTE to sys:c/DO quiet

Damit steht Ihnen neben dem alten Befehl EXECUTE jetzt auch
noch der Befehl DO zur Verfügung, der natürlich das gleiche

macht, was EXECUTE auch tut. Also beispielsweise:

DO PRINT filename

Von einem einfachen "RENAME sys:c/EXECUTE TO sys:c/DO"

muß ich hier abraten, da es zwar ganz wunderbar die Arbeit
erleichtert, wenn alle CLI-Befehle nur noch ein oder zwei

Buchstaben lang sind, Ihnen aber mit ziemlicher Sicherheit nach
einiger Zeit die Übersicht fehlt, so daß Sie schließlich nicht
mehr wissen, welcher Befehl nun was bewirkt.

68 Amiga Tips & Tricks

—— Das AmigaBASIC 69

3. Das AmigaBASIC

Das mit dem Amiga ausgelieferte BASIC stammt aus dem Hause
Microsoft. Kenner werden die Ohren spitzen: Sollte es möglich

sein, daß diese Firma einen BASIC-Interpreter entwickelt hat,

der auf die unglaublichen Möglichkeiten des Amiga abgestimmt
ist?

Leider nutzt das AmigaBASIC nicht alle Möglichkeiten Ihres
Gerätes aus. Zwar werden Fenster, Screens und Maus voll

unterstützt, aber eine Reihe anderer Dinge lassen sich mit den
herkömmlichen Befehlen des Interpreters nıcht programmieren,

wie zum Beispiel nachladbare Zeichensätze, ausführliche

Diskettenprogrammierung und Zugriff auf das Disk Operating
System (DOS).

Einen Befehl gibt es allerdings, dem der fortgeschrittene BA-
SIC-Programmierer besondere Beachtung schenken sollte. Es ist
der LIBRARY-Befehl. Mit seiner Hilfe werden sich all die feh-
lenden Befehle nachträglich implementieren lassen. Wie das
funktioniert, erfahren Sie auf den nächsten Seiten.

3.1 Implementierung der Amiga-Kernel-Befehle

Das AmigaBASIC läßt sehr flexible Programmierungen zu. Ne-
ben den ureigenen Befehlen des AmigaBASIC (wie zum Beispiel
"PRINT", "IF... THEN...ELSE") kann der Interpreter auch fremde

Befehle verarbeiten, wenn sie in Form kleiner Maschinen-

sprache-Routinen organisiert sind. So lassen sich eigene Befehle
leicht in den bestehenden Befehlsvorrat des BASIC integrieren.

Viel einfacher als das mühevolle Programmieren eigener neuer
Routinen ist der Zugriff auf bereits bestehende Maschinen-
programme. Das Betriebssystem des Amiga verfügt bereits über
solche Maschinenprogramme, die normalerweise die immer an-
fallende Arbeit des Systems verrichten. Diese Routinen werden

70 Amiga Tips & Tricks

zusammengefaßt als "Kernel" bezeichnet, was englisch ist und
für "Kern" steht: der eigentliche Kern des Systems.

Das Betriebssystem unterteilt diese zahllosen Maschinenpro-
gramme in insgesamt dreizehn "Libraries" (engl. Büchereien),

streng geordnet nach Thematik. Für unsere weiteren Routinen
werden jedoch nur fünf dieser Libraries benötigt, und zwar:

- exec.library
Zustandig fiir Tasks, Listen, I/O, allgemeine Systembelange,
Speicherverwaltung

- graphics.library
Zuständig für Text und elementare Grafik.

- intuition.library
Zustandig fiir Fenster, Screens, Requester, Alarmmeldungen.

- dos.library
Zuständig für das Disk Operating System (DOS).

- diskfont.library
Zuständig für die Verwaltung nachladbarer Zeichensätze.

Jede dieser Libraries ist gefüllt mit Maschinenroutinen für die
entsprechenden Aufgabenbereiche. Damit AmigaBASIC diese
Routinen verwenden kann, benötigt es dreierlei Informationen:
Vor allem muß der Interpreter den Namen einer jeden Routine
wissen. Dieser Name unterliegt keinerlei Beschränkungen. Sie
können prinzipiell jeder Maschinenroutine einen selbstkreierten
Namen zuordnen.

In der Praxis gibt es jedoch für jede Maschinenroutine einen
standardisierten Namen. Zweitens muß dem Interpreter mitge-
teilt werden, an welcher Stelle innerhalb der Library die ent-
sprechende Routine gefunden werden kann. Dazu besitzt jede
Library eine Offset-Tabelle.

—— Das AmigaBASIC [A

muß das AmigaBASIC wissen, welche Übergaberegister für die
Routine benötigt werden. Insgesamt gibt es acht Daten- und
fünf Adreßregister, die AmigaBASIC benutzen kann:

1 = Datenregister dO

2 = Datenregister d1

3 = Datenregister d2

= Datenregister d3

= Datenregister d4

6 = Datenregister d5

= Datenregister d6

= Datenregister d7

= AdreBregister a0

10 = AdreBregister a1

11 = Adreßregister a2

12 = AdreBregister a3

13 = AdreBregister a4

Für jede Library gibt es deshalb ein sogenanntes .bmap-File. In
dieser Datei sind die nötigen Informationen für alle Befehle ent-
halten, die in der Library organisiert sind. Mittels des vom
Amiga auf der "Extras"-Diskette mitgelieferten "ConvertFd"-
Programms können Sie die nötigen .bmap-Files leicht erstellen.
Bevor Sie nun fortfahren, sollten Sie diese Dateien anlegen:

graphics.bmap

intuition.bmap

exec.bmap

dos.bmap

diskfont.bmap

Kopieren Sıe diese Dateien anschließend auf die Workbench-

Diskette in das Unter-Directory "LIBS:", oder sorgen Sie dafür,

daß sich die .bmap-Dateien immer zusammen mit Ihren Pro-

grammen in ein- und demselben Inhaltsverzeichnis befinden.
Vom CLI aus könnte das Kopieren so geschehen:

1> copy graphics.bmap to libs:
1> copy intuition.bmap to libs:

72 Amiga Tips & Tricks

3.1.1 Nutzung der Systembibliotheken in GFA

Auch der GFA-Programmierer verfügt über die Möglichkeit, die
zahlreichen System-Bibliotheken und die in ihnen enthaltenen
Funktionen für seine Zwecke zu verwenden. Im Vergleich zu
AmigaBASIC hat er es sogar ein wenig einfacher.

GFA unterscheidet zwischen zwei Arten von Bibliotheken. Da
sind zunächst die gebräuchlichsten unter ihnen wie beispiels-
weise Intuition, Exec und Graphics. Diese Bibliotheken hat GFA

in weiser Voraussicht bereits für Sie geöffnet. Doch damit nicht
genug: GFA kennt bereits alle in diesen Bibliotheken abgelegten
Routinen beim Namen und weiß, welche Parameter sıe verlan-
gen. Der Umgang mit diesen Bibliotheken und Routinen ist also
denkbar einfach, denn Sie brauchen diese Bibliotheken weder zu

öffnen noch die in ihnen lagernden Routinen zu deklarieren
noch "fd."- oder ".bmap"-Dateien zu erzeugen. Allerdings kennt
GFA nicht alle Bibliotheken, denn das wäre zu speicheraufwen-
dig. So besteht die zweite Kategorie aus den restlichen Biblio-
theken, deren Funktionen nicht ohne weiteres verwendet werden

können.

Ob nun eine von Ihnen gewählte Betriebssystem-Funktion zur
ersten und benutzerfreundlichen oder zur zweiten, etwas auf-

wendigeren Kathegorie zählt, läßt sich leicht herausfinden. Sie
brauchen nämlich lediglich den korrekten Funktionsaufruf in ihr
Programmlisting einzufügen. So beispielsweise:

mem=al locmem(100, 2° 16)

Da GFA die Funktion AllocMem aus der Exec-Bibliothek kennt,

wandelt der Interpreter obige Zeile automatisch um in:

mem=Al locMem(100, 2° 16)

Damit ist dieser Funktionsaufruf akzeptiert. Handelt es sich aber

um eine unbekannte Funktion, so interpretiert GFA diese als

Variable und beläßt die Kleinschreibung. Solche Aufrufe sind
nicht erlaubt und müssen von Ihnen wieder gelöscht werden.

——— Das AmigaBASIC 73

Wollen Sie jedoch partout eine der weniger gebräuchlichen und
fir GFA unbekannten Routinen verwenden, so hilft Ihnen das

folgende Programm weiter. Es benötigt allerdings die von Com-
modore mitgelieferte Extras-Diskette, bzw. die auf ihr enthalte-
nen fd.-Dateien. Aus diesen Informationen entwickelt es ein
GFA-Makro der gewünschten Funktion. Zunächst das Listing:

' Betriebssystem-Bibl iotheksfunktionen untersuchen
' "Extras"-Diskette (bzw. fd.-Dateien) erforderlich
i

OPENW 0
bibl iotheken_holen
DO

SLEEP
LOOP

PROCEDURE bibliotheken_holen
count=2

volume$="Extras 1.3:"

inhal t$="*d1.3"

work$=vol ume$+inhal t$

CHDIR work$

DIR work$ TO "RAM:bibliotheken.user"

DIM biblio$(200)
DIM store$(200)

DIM func$(30)
OPEN "I" #1,"RAM: bibl iotheken.user"
WHILE NOT EOF(#1)

LINE INPUT #1, in$

in$=TRIM$Cin$)
IF RIGHTCIN, 7)="_Lib. fd"

INC count
biblLio$(Ccount)=LEFT$(Cin$,LENCiN$)-7)

ENDIF

WEND

CLOSE #1

bibli0$(0)="Bibliotheken"

bibl io$(1)="QUIT"

bibl i0$(2)="MAKE MAKRO"

bibl io$(count+1)=""

bibl io$(count+2)=""

count=count+1

MENU biblio$()

ON MENU GOSUB auswertung

KILL "RAM:bibliotheken.user"

PRINT "Programm initialisiert. Das Menue steht Ihnen";

PRINT " jetzt zur Verfuegung."

RETURN

74 Amiga Tips & Tricks

PROCEDURE auswertung

eintrag=MENU(0)

IF eintrag<19

IF eintrag=1

END
ELSE IF eintrag=2

make_makro
ELSE
bibl iothek1$=bibl io$(eintrag)

CLS
PRINT "Lade die Funktionsdefinitionen der Bibliothek ";bibliothek1$
PRINT
bibl iothek$=bibl iothek1$+"_Lib. fd"
OPEN "I" #1, bibl iothek$
fix=25
fax=fix+1

offset=fix

position=0
faktor=-1

WHILE NOT EOF(#1)
LINE INPUT #1, in$
PRINT in$
IF LEFTSCin$,1)<>"*" AND LEFT$Cin$,1)<>"#"

INC offset

INC position
IF offset>fix

INC faktor

offset=2

bibl io$(count+faktor* fax+0)=""

bibl io$(count+faktor* fax+1)="Funktionen "

ENDIF

finder=INSTR(in$,"(")

biblio$(count+offset+fax*faktor)=LEFTCin, finder-1)
store$(position)=in$

ELSE
temp=INSTRCin$, base")
IF temp>0
basis$=MID$(in$, temp+5 ,4)+"Base"

ENDIF
ENDIF

WEND
CLOSE #1

PRINT "Ladevorgang beendet."

bibl io$(count+of fset+fax* faktor+1)=""
bibl io$(count+tof fset+fax* faktor+2)=""
MENU bibl io$()

ENDIF
ELSE

feld$=bibl io$(eintrag)
f ound$= 0088

FOR loop=1 TO position
IF INSTR(store$(loop), feld$)=1
found$=store$(loop)

——— Das AmigaBASIC 75

lib_offset=24+6* loop
loop=position

ENDIF

NEXT loop
CLS

PRINT "Name der Routine: ";feld$

PRINT

PRINT "Basis = ";basis$
PRINT “Offset = -";lib offset

PRINT "Template: ";
check(found$)
func=VAL (func$(1))
PRINT func$(0);'" (">

IF func>0
FOR loop=1 TO func

PRINT func$(1+loop);
IF loop<func

PRINT ", ">
ELSE

PRINT ")"

ENDIF

NEXT loop
PRINT

PRINT

PRINT "Registerzuordnung:"

PRINT
FOR loop=1 TO func

PRINT func$(1+funct+loop);" = ";func$(1+loop)
NEXT loop

ELSE
PRINT ")"

ENDIF
ENDIF

RETURN
PROCEDURE make_makro

IF feld$<>""
date i$="RAM:"+UPPERS$(feld$)+".LST"

OPEN "ON" #1,datei$
PRINT #1,"DIM regX(16)"

IF basis$<>" SysBase" AND basis$<>"_IntBase" AND basis$<>"_GfxBase"
bas 1s$=RIGHT$(basis$, LEN(basis$)-1)
PRINT #1,"bibl iothek$="+CHR$(34);bibl iothek1$:". Library":
PRINT #1,CHR$(34):"+chr$(0)"

PRINT #1,basis$;"=OpenL ibrary(VARPTR(bibl iothek$),0)"
PRINT #1,"IF ":basis$;"=0"

PRINT #1," PRINT "+CHR$(34);bibliothek1$;
PRINT #1," konnte nicht geoeffnet werden."
PRINT #1," PRINT "+CHRS(34):"Ist ";bibliothek1$;

PRINT #1," vielleicht ein Device?"
PRINT #1,"ENDIF"

ENDIF
PRINT #1,"FUNCTION ";feld$;

IF func>0

76 Amiga Tips & Tricks

IF func>0
PRINT #1,"C";

FOR loop=1 TO func
PRINT #1, func$(1+loop) ;"%";
IF loop<func

PRINT #1,",";
ELSE

PRINT #1, "7"
ENDIF

NEXT Loop
FOR loop=1 TO func

IF UPPERS(LEFTS(func$(1+func+loop), 1))="A"

adder=8
ELSE

adder=0
ENDIF
reg=VAL (RIGHTS(func$(1+func+loop), 1))
reg=regtadder

PRINT #1," regX(l";reg;") = "2: func$(1+loop) ; "4"
NEXT loop

ELSE
PRINT #1," "

ENDIF
IF basis$=""SysBase"
basis$="LPEEK(4)"

ENDIF
PRINT #1," reg%(14)=";basis$
PRINT #1," RCALL ";basis$;"-";Lib_offset;",reg%C)"
PRINT #1," RETURN reg%(0)"
PRINT #1,"ENDFUNC"™

CLOSE #1
PRINT "MACRO DONE."

ELSE
PRINT "MACRO FAILED - CHOOSE FUNCTION FIRST."

ENDIF

RETURN

> PROCEDURE check(k$)
f lag=0
index=0
ERASE func$()

DIM func$(30)
FOR loop=1 TO LEN(k$)
c$=MID$(k$, loop, 1)
IF flag=2

IF c$<>"("" AND c$<>")"
IF c$=" AU OR c$=" "

INC index
ELSE

func$(index)=func$(index)+c$
ENDIF

ENDIF
ELSE IF flag=1

IF c$<>")"

——— Das AmigaBASIC 77

IF c$=" 0

INC index

ELSE
func$(index)=func$(index)+c$

ENDIF

ELSE

f lag=2

func$(1)=STR$(index- 1)

INC index

ENDIF

ELSE IF flag=0

IF c$<>"¢"

func$(index)=func$(index)+c$

ELSE

f lag=1

INC index

INC index

ENDIF

ENDIF

NEXT loop
IF func$(2)=""

func$(1)=""0"

ENDIF

RETURN

Nun zur Anwendung des "Makro-Makers". Tippen Sie das Pro-

gramm ab. Nachdem Sie das Listing sicherheitshalber auf Dis-
kette abgespeichert haben, können Sie es starten. Falls Sie noch

nicht die Extras-Diskette eingelegt haben, werden Sie hierzu
aufgefordert. Wie aus dem Listing unschwer zu entnehmen ist
(zweite Zeile der Prozedur "bibliotheken holen"), verlangt das
Programm die Extras-Diskette "Extras 1.3". Sollten Sie Ihre Ex-
tras-Diskette umbenannt haben oder es sich um die Version 1.2

handeln, ist es ein leichtes Unterfangen, diese Zeile Ihrem Dis-

kettennamen anzupassen.

Anschließend lädt das Programm alle auf dieser Diskette im
Directory "fd1.3" gespeicherten Bibliotheksnamen ein. Auch hier
müssen Sie das "fd1.3" in "fd" oder "fd1.2" ändern, wenn Sie eine

ältere Extras-Diskette besitzen, da das Programm das gesuchte

Verzeichnis sonst natürlich nicht finden kann.

Sobald der Ladevorgang abgeschlossen ist, steht Ihnen ein Menü
zur Verfügung. Es besitzt den Punkt "Bibliotheken". Wählen Sie
ihn einfach einmal an. Neben den Funktionen "QUIT" und

78 Amiga Tips & Tricks

"MACRO" finden Sie dort alle zur Verfügung stehenden Biblio-
theken. Sie können nun eine beliebige davon anklicken.

Auf dem Bildschirm werden die jetzt eingelesenen Daten sicht-
bar dargestellt. Ist der Lesevorgang abgeschlossen, finden Sie die

erweiterten Menü-Punkte "Funktionen". Sie enthalten alle Routi-
nen der zuvor angeklickten Bibliothek. Nun können Sie sich eine
beliebige Routine herauswählen, indem Sie sie anklicken. Prompt
wird der korrekte Routinenname, der Aufruf, die Bibliothek

und das Template sowie die verwendeten Eingaberegister auf
dem Bildschirm ausgegeben. Dies soll nur Ihrer Information die-
nen. Sie können nun jedoch auch den unter "Bibliotheken" zu
findenden Menüpunkt "MACRO" anwählen. In Sekundenschnelle

erstellt das Programm ein GFA-Makro, das den Aufruf dieser
Routine ermöglicht. Auf diese Weise können Sie beliebig viele
Routinen aus beliebigen Bibliotheken in Makros umwandeln.

Sobald Sie genügend Routinen in Makros verwandelt haben,

können Sie das Programm über den Menüpunkt "QUIT" verlas-
sen. Geben Sie jetzt "NEW" ein, um den GFA-Programmspeicher

zu löschen. Die Makros befinden sich nun in der RAM-Disk als

ASCII-Dateien. Wählen Sie den GFA-Menüpunkt "MERGE" an,

anschließend das Laufwerk "RAM:". Jetzt können Sie alle ge-

wünschten Makros miteinander kombinieren, indem Sie sie

nacheinander mittels MERGE einladen.

Da die Makros als Funktionen deklariert sind, erfolgt ihr Aufruf
so:

ruckwert=aFunkt ionsname(parameter1,...,parameterx)

bzw. am Beispiel der AllocMem-Routine:

mem=aal locmem(100, 27 16)

Ist Ihnen der Rückwert egal, so besteht alternativ die Möglich-
keit:

VOID Funktion(parameter1,...,parameterx)
bzw.
~ Funktion(s.o.)

——- Das AmigaBASIC | 79

Anmerkung: Wenn Ihr Makro keine Bibliothek öffnet (einige
Zeilen vor dem Makro), so steht Ihnen dieselbe
Funktion auch ohne Makro zur Verfügung.

3.1.2 Umwandlung GFA-AmigaBASIC

Beim Aufruf von internen Routinen des Betriebssystems werden
oft Standardparameter benötigt, die je nach BASIC-Dialekt auf

unterschiedliche Weise ermittelt werden können.

Die Grafikbibliothek verwendet bei fast jedem Aufruf den Pa-
rameter "Rastport". AmigaBASIC liefert den Rastport des aktu-

ellen Fensters immer in der Variablen WINDOW(8). GFA-BASIC
liefert diesen Wert nur indirekt auf folgende Weise:

OPENW 0

rastport=LPEEK(WINDOW(0)+50)

Wurde ein anderes Fenster als Nr. 0 geöffnet, ändert sich die

Zahl in der zweiten Zeile entsprechend.

Ein in der Intuition-Bibliothek häufig gebrauchter Wert ist der
Zeiger auf die aktuelle Fensterstruktur. Dieser Zeiger liegt beı

AmigaBASIC in der Variablen WINDOW(7). GFA liefert densel-

ben Wert in der Variablen WINDOW(x), wobei x die Nummer
des gewünschten und zuvor mittels OPENW x geöffneten Fen-

sters ist.

Oftmals ist es bei einem Systemaufruf nötig, Textstrings zu
übergeben. Hierzu übergibt man lediglich die Anfangsadresse
der Speicherstelle, ab der der Text hinterlegt ist. Als Textende-

Kennzeichen dient hierbei ein CHR$(0) am Ende des Textes.

AmigaBASIC liefert die Anfangsadresse eines einfachen Strings
mit Hilfe der Funktion SADD:

Anfangsadresse=SADD (a$)

80 Amiga Tips & Tricks ———

Anders bei GFA. Hier leistet die Funktion VARPTR dieselbe

Aufgabe:

Anfangsadresse=VARPTR(a$)

oder:

Anfangsadresse=LPEEK(*a$)

Der Ausgleich dieser wenigen Unterschiede reicht in den
meisten Fällen aus, unter AmigaBASIC verwendete Systemauf-
rufe in GFA zu verwenden (und umgekehrt).

3.2 AmigaBASIC-Grafik

Sicherlich werden Sie an dieser Stelle keine ausführliche Ein-
führung in das Grafiksystem des Amiga finden, denn dazu ist
dieser Spezialbereich viel zu komplex und umfangreich (schauen

Sie doch einmal in das Amiga Supergrafikbuch von DATA
BECKER, wenn Sie dieses Thema ganz besonders reizt!). Viel-
mehr möchten wir Ihnen kleine Tips und Tricks vorstellen, mit

denen Sie eigene Programme schneller, professioneller und oft-
mals wesentlich vielseitiger gestalten können. Sehen Sie selbst:

3.2.1 Zeichenmodi verändern

Ob Sie es bemerkt haben oder nicht: Ihr Amiga verfügt über
insgesamt vier verschiedene Zeichenmodi. Jeder Zeichenmodus
stellt Grafiken auf seine ganz spezielle Art auf dem Bildschirm
dar. Dies sind die Darstellungsarten:

JAM 1: Nur die eigentliche Zeichenfarbe wird auf
den Bildschirm gebracht. Der Hintergrund
bleibt unbeschädigt.

—— Das AmigaBASIC 81

JAM 2: Wie JAM 1, jedoch werden alle ungesetzten
Punkte im Zielgebiet mit der Hintergrund-
farbe gezeichnet. Der Hintergrund wird also
gelöscht.

INVERSEVID: Wie JAM 2, jedoch werden Hinter- und
Vordergrund vertauscht. Die Zeichnung er-
scheint invers.

COMPLEMENT: Wie JAM 1, jedoch wird die neue Zeich-
nung mit dem Hintergrund Punkt für Punkt
verknüpft. Ein gesetzter Punkt wird ge-
löscht, ein gelöschter gesetzt.

Diese vier Modi lassen sich außerdem untereinander mischen,

wobei neun Kombinationsmöglichkeiten entstehen. Leider kennt
AmigaBASIC keinen Befehl, um diese Zeichenmodi willkürlich
zu verändern. Deshalb muß der entsprechende Befehl aus der

internen Grafik-Bibliothek aktiviert werden. Er hat das Format:

SetDrMd (rastport, modus)

Die Adresse des Rastports ist für das aktuelle Ausgabefenster

immer in der Variablen WINDOW(8) gespeichert. Für BASIC
sieht das Format also so aus:

SetDrMd (WINDOW(8), modus)

Hier nun eine Sammlung kleiner Routinen, die die Verwendung
des SetDrMd()-Befehls veranschaulichen:

~

"“TEHHHHHAHH HHA AHHHH RAB AHA
'#

'# Programm: Zeichenmodi

'# Autor: tob

'# Datum: 3.8.87

'# Version: 1.0

'# Re

R
H

H
H

ER

LIBRARY "graphics.Library"
Schatten "Guten Abend, liebe Leute!", 11
LOCATE 4,8

Outline "OUTLINE: Zum Hervorheben gut geeignet.", 10

82 Amiga Tips & Tricks

LIBRARY CLOSE

END

SUB Schatten (text$, space%) STATIC
cX% = POS(0)*8

cY% = (CSRLIN - 1)*8

IF cY% < 8 THEN cY% = 8
CALL SetDrMd(WINDOW(8),0) 'JAM1
FOR loop% = 1 TO LEN(text$)

in$ = MID$(text$, loop%, 1)
CALL Move(WINDOW(8), cX%+1, cY%+1)

COLOR 2, 0
PRINT in$;
CALL Move(WINDOW(8), cX%, cY%)

COLOR 1, 0
PRINT in$;
CX% = cX% + spacer

NEXT loop%
CALL SetDrMd(WINDOW(8),1) 'JAM2

PRINT

END SUB

SUB Outline (text$, space%) STATIC
cX% = POS(0)*8

cY% = (CSRLIN - 1)*8

IF cY% < 8 THEN cY% = 8

FOR loop% = 1 TO LEN(text$)

in$ = MID$(text$, loop%, 1)
CALL SetDrMd(WINDOW(8),0) 'JAMI

FOR loop1% = -1 TO 1
FOR loop2% = -1 TO 1

CALL Move(WINDOW(8),cX% + loop2%, cY% + loop1%)
PRINT in$;

NEXT loop2%
NEXT loopt%
CALL SetDrMd(WINDOW(8),2) ‘COMPLEMENT
CALL Move(WINDOW(8), cX%, cY%)

PRINT ins;
cX% = cX% + space%

NEXT loop%
CALL SetDrMd(WINDOW(8),1) 'JAM2

PRINT

END SUB

Eine weitere Anwendung demonstriert noch einmal den
COMPLEMENT-Modus: Das Rubberbanding. Was, Sie wissen

nicht, was das ist? Dabei arbeiten Sie damit sicherlich täglich:
Jedesmal, wenn Sie die Größe eines Windows verändern, er-

scheint dieses erfrischend orange Gummiband, mit dessen Hilfe
Sie eine passende Größe finden können.

—— Das AmigaBASIC 83

Dieses Gummiband wird normalerweise von Intuition verwaltet.
Die Technik ist recht einfach: Um zu verhindern, daß durch das

Gummiband der Bildhintergrund verändert wird, friert Intuition
zunächst alle Bildaktivitäten ein (Dies ist der Grund, warum ein

Malprogramm zum Beispiel die Arbeit unterbricht, wenn Sie ein
Window vergrößern oder verkleinern). Das Gummiband wird
anschließend im Zeichen-Modus COMPLEMENT auf den Bild-
schirm gezeichnet. So kann es durch einfaches Überschreiben
problemlos wieder gelöscht werden, ohne den Bildhintergrund zu

verändern.

Dieser Effekt läßt sich auch von BASIC aus recht einfach pro-

grammieren. Das folgende Programm ermöglicht einen Einblick
und benutzt auch gleich noch ein paar andere interessante Ami-

gaBASIC-Befehle. Professionelles "Rubberbanding" ist kein Pro-
blem mehr:

 HHEHHHHHHHAH HHA AHA RAHA
'#

'# Programm: Rubberbanding

'# Autor: tob

'# Datum: 3.8.87

'# Version: 2.0
'#
!

LIBRARY “graphics.library"
main: '* Demonstriert Rubberbanding

CLS

'* Rechteck

PRINT "a) Zeichnen Sie ein Rechteck!"

Rubberband

LINE (m.x, m.y) - (m.s, m.t),,b
'* Linie

LOCATE 1,1
PRINT "b) ...und nun eine Linie! "

Rubberband

LINE (m.x, m.y) - (m.s, m.t)

'* Flaeche bestimmen

LOCATE 1,1

PRINT "c) Nun wird eine Flaeche bestimmt..."

Rubberband

x = ABS(m.x - m.s)

y = ABS(m.y - m.t)
PRINT "Breite (x)

PRINT "Hoehe (y)

PRINT "Inhalt

LIBRARY CLOSE

r
e
n

n
o
u

on

<

"ex*y; " Punkte."

84 Amiga Tips & Tricks

END

SUB Rubberband STATIC

SHARED m.x, m.y, m.s, m.t

CALL SetDrMd(WINDOW(8),2) 'COMPLEMENT

WHILE MOUSE(O) = 0

maus = MOUSE(0)

WEND
m.x = MOUSE(1)

m.y = MOUSE(2)
m.S = m.x

m.t = m.y

WHILE maus < 1

m.a = m.s

m.b = m.t

m.s = MOUSE (1)

m.t = MOUSE(2)
IF m.a <> m.s OR m.b <> m.t THEN

LINE (m.x, m.y) - (m.a, m.b),,b
LINE (m.x, m.y) - (m.s, m.t),,b

END IF

maus = MOUSE (0)

WEND
LINE (m.x, m.y) - (m.s, m.t),,b

PSET (m.x, m.y)

CALL SetDrMd(WINDOW(8), 1)

END SUB

3.2.2 Veranderter Text-Stil

Der Amiga ist in der Lage, Schrift durch Rechenoperationen zu
verändern. Einfache Algorithmen (Rechenvorschriften) können
so die Schriftarten "Unterstreichen", "Fettdruck" und "Kursiv-

druck" erzeugen. Vor allem in Textverarbeitungen, aber auch zur
besseren Aufgliederung jeglichen Textes sind diese Modi außer-
ordentlich nützlich. Leider unterstützt BASIC die Schriftverfor-
mung von Hause aus nicht. Wieder ist eine Systemfunktion aus
der Grafik-Bibliothek der Retter in der Not:

SetSoftStyle (WINDOW(8), stil, enable)

stil: |

0 normal (reset)
| unterstrichen

2 fett

3 unterstrichen + fett

——— Das AmigaBASIC 85

kursiv

unterstrichen + kursiv

fett + kursiv

unterstrichen, fett + kursiv N
N
W

M
H
A

Das folgende Programm demonstriert die Möglichkeiten:

'#

'# Programm: Text-Stil
'# Autor: tob
'# Datum: 12.8.87

'# Version: 1.0
'#
Dc ee oO eo FO OO SO SIe OO SSO E ee engere ee nee

DECLARE FUNCTION AskSoftStyle% LIBRARY

DECLARE FUNCTION SetSoftStyle% LIBRARY

LIBRARY "graphics. library"

var: '* Die Modi (die Zahlenwerte koennen auch

'* direkt verwendet werden)

normal’

unterstr‘

fett%

kursiv’

demo: '* Beispiel
CLS

Stil unterstr% + kursiv’

PRINT TAB(20); "Die verschiedenen Schriftarten!
LOCATE 5,1
Stil normal%

PRINT "Ihr Amiga ist in der Lage, vier verschiedene Schriftarten"

PRINT "darzustellen. Das sind:"

PRINT

PRINT "a) NORMALnormal"

Stil unterstr%

PRINT "b) UNTERSTRICHENunterstrichen"

Stil fett%

PRINT "c) FETTfett"

Stil kursiv%

PRINT "d) KURSIVkursiv"

PRINT

Stil normal% |
PRINT "Hier alle Formen, inkl. Mischformen:
FOR loop% = 0 TO 7 -

Stil loop%
PRINT "Mischform Nr. ";1oop%

NEXT Loop%
* ...und mit "Normal" beenden...

Stil normal%

LIBRARY CLOSE

r
n
.
.
.

u
|

u
u

|

&

N
o

86 Amiga Tips & Tricks ————

END

SUB Stil (nr%) STATIC

bits% = AskSoftStyle%(WINDOW(8))
news% = SetSoftStyle%X(WINDOW(8), nr%, bits%)
IF (nr% AND 4) = 4 THEN

CALL SetDrMd(WINDOW(8) ,0)

ELSE

CALL SetDrMd(WINDOW(8), 1)
END IF

END SUB

Variablen

b1its% diejenigen Stil-Bits, die mit diesem Zeichensatz

möglich sind

news% neu gesetzte Stil-Bits

nr% eingegebene Stil-Bits

Programmbeschreibung

Denkbar einfach: Sie übergeben an das SUB "Stil" die Bitkombi-
nationen des Stils (siehe oben). Intern wird die AskSoftStyle()-

Routine aufgerufen, die die möglichen Bits für den augenblick-
lichen Zeichensatz zurückgibt. Diese Bits werden zusammen mit
den neu zu setzenden Bits an SetSoftStyle() übergeben. Diese
Funktion setzt den neuen Stil, wenn die entsprechenden Mas-

kenbits in bits% vorhanden sind. Ansonsten werden die Bits
nicht gesetzt.

Ist in irgendeiner Kombination der Stil "Kursiv" (nr% and 4 = 4)
gewählt worden, dann wird der Zeichenmodus "JAMI" einge-
schaltet (siehe Kapitel 3.2.1). Nur so wird kursiver Text ein-

wandfrei ausgegeben, weil im normalen Modus JAM2 jeweils
der rechte, in das Feld des nächsten Buchstabens hinein-

reichende Teil des Zeichens beschädigt (abgehackt) wird. Wurde
der Punkt "Kursiv" nicht benutzt, setzt SetDrMd() den Nor-
malmodus "JAM2". j

——— Das AmigaBASIC 87

3.2.3 Move - Kontrolle über den AmigaBASIC-Cursor

In einigen der vorangegangenen Befehle haben wir ihn schon
benutzt, den "graphics.library"-Befehl Move. Kennt Amiga-
BASIC nur die Möglichkeit, die Cursorposition zeichenweise
(LOCATE-Befehl) oder pixelweise in x-Richtung (durch PTAB)
zu verändern, so läßt sich die Cursorposition mit Hilfe des

Move-Befehls problemlos pixelweise sowohl in x- als auch y-
Richtung verschieben. Der Aufruf des Befehls in BASIC muß
folgendermaßen erfolgen:

Move& (WINDOW(8) ,x%, y%)

Um die Sache zu vereinfachen, haben wir wieder einen kleinen

Befehl geschrieben, der in den verschiedensten Situationen
äußerst praktisch sein kann:

xyPTAB x%,y%

Programm-Größe: 455 Bytes
Bemerkung: "graphics.bmap" muß sich auf Disk befinden.

DECLARE FUNCTION Move& LIBRARY

LIBRARY "graphics.library"
var:
text$="Es geht bergab..."

text$S="""+text$+" "

empt y$=SPACES(LEN(text$))
fontheight%=8

main:
FOR y%=6 TO 100
..XyPTAB x%,Yy%

PRINT text$

xyPTAB x%,y%-fontheight%
PRINT empty$
x%=X%+1

NEXT y%
LIBRARY CLOSE

END

SUB xyPTAB(x%,y%) STATIC
e&=Move&(WINDOW(8) ,x%, ya)

END SUB

88 Amiga Tips & Tricks

Fehlerquellen: Kaum möglich

Variablen

text$ Demo-Text

empty$ Leerstring, der für ein restloses Verschwinden beim

y-Verschieben sorgt

fontheight% Höhe des Font
x%, Y% Bildschirm-Koordinaten

e& Error-Meldung des Move&-Befehls

Programmbeschreibung

Der Move&-Befehl wird als Funktion deklariert, und die ein-

schlägige Library wird geöffnet. Der Demo-Text huscht im
SoftScroll-Mode über den Bildschirm, die Library wird wieder
dichtgemacht, und das Programm endet. Die eigentliche SUB-
Routine ist denkbar einfach, denn im Prinzip werden die nöti-
gen Koordinaten nur dem Move-Befehl übergeben.

So simpel diese Routine aussieht, so leistungsfähig ist sie. Mit

ihrer Hilfe kann Text, wie im Beispiel, pixelweise in sämtliche
Himmelsrichtungen verschoben werden. Entweder im Smear-
Effekt (SetDrMd mode%=JAMI) oder als SoftScrolling (SetDrMd
mode%=JAM2).

3.2.4 Schnelleres Grafikformat <-> IFF

Das Schéne am IFF-ILBM-Dateiformat ist zweifellos die Tat-
sache, daß es sich schnell als Standard durchgesetzt hat. Die

Konzeption von IFF ist geradezu einzigartig. Sie läßt neben den
wenigen allgemeinverständlichen Dateiteilen auch jede Erweite-
rung von Programmen in Form weiterer Dateiteile zu. Die ein-
zelnen Dateiblöcke nennt man Chunks. Ze

Sicherlich haben Sie bereits viele Ladeprogramme für ILBM-
Bilder in Zeitschriften gesehen, oder gar den Schnellader für
IFF-Grafiken im DATA-BECKER-Buch "Supergrafik Amiga",

der von Tobias Weltner stammt. Wenn Sie sich aber - bei den
Grafikfähigkeiten des Amiga - einmal damit befaßt haben, für

——— Das AmigaBASIC 89

ein eigenes Programm ein Titelbild zu laden, kann ich mir gut
vorstellen, daß Ihnen die User schon während der langen Lade-
zeit davongelaufen sind, richtig?

Wir sollten uns daher ernsthafte Gedanken darüber machen,

warum das so sein muß. IFF-ILBM-Grafiken haben entschei-
dende Nachteile, wenn es darum geht, sie schnell zu laden. Der

erste Punkt ist der, daß sehr viel Zeit damit verloren geht, die
verschiedenen Chunks zu identifizieren und unwichtige zu
überlesen. Der zweite Punkt sind die verschiedenen Methoden,
wie ein Bild schließlich gespeichert wurde, also das ILBM-For-
mat. Hierbei wird beispielsweise bei einem Bild mit fünf Bit-

planes zunächst Zeile 1 der ersten Bitplane gespeichert, dann

folgt Zeile 1 der zweiten Bitplane und so weiter, bis schließlich

Zeile 1 der fünften Bitplane an die Reihe kommt. Wenn Sie

dazu noch wissen, daß eine Bitplane immer in einem Stück im

Speicher liegt, können Sie sich wohl nur wenige Anwendungen
vorstellen, bei denen eine derartige Umständlichkeit von Nutzen
sein kann. Der dritte Punkt kommt beispielsweise bei Deluxe-
Paint II dazu. Hier wird zusätzlich jede Zeile einer Bitplane ge-

packt und muß daher beim Laden wieder decodiert werden.

Aus diesen Gründen werden Sie bei keinem Profi-Programm,
welches nicht IFF-Files laden können soll, ein derartiges Datei-
format vorfinden. Ein Profi will ja zum einen nicht, daß seine
Bilder (z.B.: Defender of the Crown) zu anderen Programmen
kompatibel sind, zum anderen legt er äußersten Wert darauf,

seine Bilder schnell in den Speicher zu bekommen. Selbst ein
Malprogramm muß seine Bilder nicht im langsamen Standard-

format speichern und laden, obwohl hier die Möglichkeit dazu
vorhanden sein sollte.

Da man als Programmierer seinen Programmen, auch wenn sie in

AmigaBASIC geschrieben wurden, einen professionellen Touch

mitgeben möchte, schrieb ich folgendes Programm. Dieses Pro-
gramm liest zunächst eine IFF-ILBM-Grafik ein (Wer will
schließlich auf DPaint als Malprogramm verzichten?) und
speichert sie danach in folgendem Format ab:

90 Amiga Tips & Tricks

Bitplane 1 (in einem Stück)
Bitplane 2 ...

. letzte Bitplane
Hardware-Farbregister-Inhalt

Dazu wird ein AmigaBASIC-Ladeprogramm generiert, welches
dieses Bild lädt und anzeigt (bis zum Maus-Klick). Das Amiga-
BASIC-Programm ist natürlich ein ASCII-File, das sich sowohl
mit MERGE oder CHAIN mit anderen Programmen verknüpfen

läßt, als auch durch ein Anklicken des Icons von der Workbench

aus startbar ist.

In dem folgenden Listing ist ein Schnellader für IFF-ILBM-
Grafiken eingebaut. Vergleichen Sie einmal! Bei eigenen Tests
des neuen Formates ergab sich unter Verwendung eines Bildes
ım Format 320 mal 200 mal 5 eine reine Ladegeschwindigkeit
von MEHR ALS 41000 BYTE PRO SEKUNDE !

Zu gut deutsch: Das Bild war nach einer LADEZEIT VON
UNTER EINER SEKUNDE im Speicher. Im Gegensatz dazu
brauchte das Laden des IFF-Files etwa 100mal solange! Hier nun
das Listing:

HHHHHHHHHHHHHHAHHEHAHAHHRRA
load pictures like a prof with #
fa == = oo nnn nee eee eee #

a= = = nn ene eee eee eee eee #
(W) 1987 by Stefan Maelger #

FREE

+

“
7

>

”

|
 ' o

nm

>

>
 3 a
 © +

DECLARE FUNCTION xOpen& LIBRARY

DECLARE FUNCTION xRead& LIBRARY

DECLARE FUNCTION xWrite& LIBRARY

DECLARE FUNCTION Seek& LIBRARY

DECLARE FUNCTION Al locMem& LIBRARY

DECLARE FUNCTION AllocRaster& LIBRARY

REM **** LIBRARYS OEFFNEN KERREKREKRERRERERERRRKRES

LIBRARY "dos. library"

LIBRARY "exec. library"

LIBRARY "graphics. library"

REM **** FEHLERVERZWEIGUNG EINRICHTEN ***%xiedda

ON ERROR GOTO errorcheck

——— Das AmigaBASIC

REM **** EINGABE DER DATEINAMEN Tree

eingabe:

REM **** SPEICHERPLATZ VOM BASIC-WINDOW kt
REM **** FREIGEBEN UND MINISCREEN OEFFNEN *******

WINDOW CLOSE WINDOW(O)
SCREEN 1,320,31,1,1
WINDOW 1,"FAST-GFX-CONVERTER", ,0, 1
PALETTE 0,0,0,0
PALETTE 1,1,0,0
FOR i=1 TO 4

MENU i,0,0,""
NEXT
PRINT "IFF-ILBM-Bild:"

LINE INPUT filename$

PRINT "Fast-GFX-Bild:"

LINE INPUT target$

PRINT "Name des Loaders:"

LINE INPUT loader$

CHDIR "df0:"

REM kkkk IFF-DATEI OEFFNEN KKK

file$=filename$+CHR$(0)

handle&=xOpen&(SADD(file$), 1005)

IF handle&=0 THEN ERROR 255

REM **** EINGABE-BUFFER SCHAFFEN KW

buf fer&=Al locMem&(160, 65537&)

IF buffer&=0 THEN ERROR 254

farbbuffer&=buffer&+96

REM **** FORM-CHUNK LESEN, BZW. PRUEFEN Frhr

r&=xRead&(handle&,buffer&, 12)
IF PEEKL(buffer&)<>1179603533& THEN ERROR 253

IF PEEKLCbuffer&+8)<>1229734477& THEN ERROR 252
bmhdf lag%=0

flag%=0

REM **** LESE CHUNKNAME + CHUNKLAENGE ***#**##a#a%
WHILE flag%<>1

r&=xRead&(handle&, buf fer&, 8)
IF r&<8 THEN flag%=1:GOTO whileend

lLang&=PEEKL (buf fer&+4)

REM **** BMHD-CHUNK? (CVL("BMHD!"!)) *** eddie ak eded

IF PEEKL(buffer&)=1112361028% THEN

r&=xRead&(handle&, buf fer&, lang&)

breite%=PEEKW(buffer&) :REM * BILDBREITE

hoehe%=PEEKW(buffer&+2) :REM * BILDHOEHE

tiefe%=PEEK(buffer&+8) :REM * BILDTIEFE

91

92 Amiga Tips & Tricks

gepackt%=PEEK(buffer&+10) :REM * PACK-STATUS
sbreiteX=PEEKW(buffer&+16) :REM * SCREENBREITE
shoehe%=PEEKW(buffer&+t18) :REM * SCREENHOEHE

bytes%=(breite%-1)\8+1

sbytes%=(sbreite%-1)\8+1
colmax%=2"tiefe%

IF colmax%>32 THEN colmax%=32
IF breite%<321 THEN modeX=1 ELSE mode%=2

IF hoehe%>256 THEN mode%=mode%+2
IF tiefex=6 THEN planedazu%=1 ELSE planedazu%=0

REM **** NEUEN SCREEN HOCHFAHREN Pre
WINDOW CLOSE 1
SCREEN CLOSE 1
SCREEN 1,breite%,hoehe%, tiefe%-planedazu%, mode%

WINDOW 1,,,0,1

REM **** SCREEN-DATEN ERMITTELN Pre

picscreen&=PEEKL (WINDOW(7)+46)
viewport&=picscreen&+44
rastport&=picscreen&+84
colormap&=PEEKL(viewport&+4)
colors&=PEEKL(colormap&+4)
bmap&=PEEKL(rastport&+4)

REM **** HALFBRIGHT ODER HOLD-AND-MODIFY ? ******

IF planedazu%=1 THEN

REM **** DANN 6. BITPLANE ERSTELLEN LASSEN ******

plane6&=Al LocRaster&(sbreite%, shoehe%)
IF plane6&=0 THEN ERROR 251

REM **** UND IN DIE DATENSTRUKTUR EINBINDEN *****

POKE bmap&+5,6
POKEL bmap&+28, pl ane6&

END IF

bmhdflag%=1

REM **** CMAP-CHUNK (FARBEN, JE FARBE: R,G,B) ***

ELSEIF PEEKL(buffer&)=1129136464& THEN

IF (lang& OR 1)=1 THEN lang&=lang&+1

r&=xRead&(handl e&, buf fer&, Lang&)

FOR i%=0 TO colmax%-1

REM **** UMRECHNEN IN DIE FORM, IN DER SIE IN ***

REM **** DEN HARDWARE-REGISTERN LIEGEN Wr

POKE farbbuffer&+i%*2,PEEKCbuffer&+i%*3)/16
gruenbl au%=PEEK(buffer&+i%*3+1)

——— Das AmigaBASIC

gruenbl au%=gruenbl au%+PEEK (buf fer&+ix*3+2)/16
POKE farbbuffer&+i%*2+1 , gruenbl au%

NEXT

REM **** CAMG-CHUNK = VIEWMODE (Z.B. HAM,LACE ***
ELSEIF PEEKL(buf fer&)=1128353095& THEN

r&=xRead& (hand e&, buf fer&, lang&)

viewmode&=PEEKL (buf fer&)
REM **** BODY-CHUNK = BITMAPS, ZEILE FUER ZEILE *

ELSEIF PEEKL(buffer&)=1112491097& THEN

REM **** EXISTIERT DIE SCREEN UEBERHAUPT ? ******
IF bmhdflag%=0 THEN ERROR 250

REM **** SIND DIE EINZELNEN ZEILEN ETWA ******%%%
REM **** AUCH NOCH CODIERT ? HEEKKHREK

IF gepackt%=1 THEN

REM **** DANN HILFT NUR NOCH POKEN ! 1! ****#eeexx

FOR y%=0 TO hoehe%-1
FOR z%=0 TO tiefex-1

ad&=PEEKL (bmap&+8+4*z%)+y%*sbytes%
count%=0

WHILE count%<bytes%
r&=xRead&(handle&, buffer&, 1)
code%=PEEK (buf fer&)
IF code%>128 THEN
r&=xRead&(handle&, buf fer&, 1)
wer t4=PEEK (buf fer&)
endbyte%=count%+257-code%
FOR x%=countX% TO endbyte%

POKE ad&+x%,wert%

NEXT

countZ%=endbytex%

ELSEIF code%<128 THEN
r&=xRead&(handl e&, ad&+count%, code%+1)
count%=count%+code%+1

END IF

WEND
NEXT 2%, y%

REM **** ODER ETWA NICHT GEPACKT ? - WIE SCHOEN *
ELSEIF gepackt%=0 THEN

REM **** DER DOS-BEFEHL READ FUELLT DIE BITMAPS *
FOR y%=0 TO hoehe%- 1

FOR z%=0 TO tiefe%-1
ad&=PEEKL (bmap&+8+4*z%)+yx*sbytes%
r&=xRead&(handl e&, ad&, bytes%)

NEXT z%,y%

93

94 Amiga Tips & Tricks

REM **** NANU? CODIERUNGS-METHODE UNBEKANNT? ****

ELSE

ERROR 249

END IF

ELSE

REM **** CHUNK KOENNEN WIR NICHT BRAUCHEN. ******

REM **** LESEZEIGER IN DATEI VERSCHIEBEN RAKE

IF (lang& OR 1)=1 THEN lang&=lang&+1

now&=Seek& (handle&, lang&, 0)

END IF

REM kkkek ENDE DER LESEROUTINE a4. 2 2 3 5 5 2 2 2 5 2 2 2 2 2 2 2 5

whileend:

WEND

REM **** FARBEN EINLADEN UND FILE SCHLIESSEN ****

IF bmhdflag%=0 THEN ERROR 248

CALL LoadRGB4(viewporté&, farbbuffer&,colmax%)
CALL xCloseChandle&)

REM **** VIEWMODE GELESEN? DANN AUCH EINSTELLEN *
IF viewmode&<>0 THEN

POKEW viewport&+32, vi ewmode&
END IF

REM kkekk ZIELDATEI OEFFNEN a 2 2 2 2 3 2 2 2 2 2 2 2 2 5 2 2 2 2 2 20

file$=target$+CHR$(0)

handle&=xOpen&(SADD(file$), 1005)
IF handle&=0 THEN

handle&=xOpen&(SADD(file$), 1006)
END IF

REM a 2 2.808 3 2 2020 2 202 5 2 2 2 202 2 2 502 2 205 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 20

REM **** SO KOENNEN SIE IN SEKUNDENSCHNELLE *****
REM **** GRAFIKEN ABSPEICHERN RRRKK

bitmap&=sbytes%*hoehe% :REM GROESSE EINER BITPLANE

FOR i%=0 TO tiefe%-1
ad&=PEEKL(PEEKL(WINDOW(8)+4)+8+4*1%)
we=xWr i te&(handl e&, ad&, bi tmap&)

NEXT

w&=xWri te&(handle&, farbbuf fer&, 64)

REM **** DATEI SCHLIESSEN, BUFFER FREIGEBEN *****
CALL xClose(handle&)

—— Das AmigaBASIC 95

CALL FreeMem(buffer&, 160)

REM KRARAKAARKRRKEKEKAREKRERERREREEEEEERKEEREERRREREEE

REM **** BASIC-PROGRAMM ERZEUGEN (ASCII-FORMAT) *
OPEN loader$ FOR OUTPUT AS 1

PRINT#1,"" HHHHHHHHHHHHEIHIHIHFIER ; CHRSC 10) ;
PRINT#1,"! # Fast-Gfx Loader #";CHR$C10);
PRINT#H1,"! #----------------- #"*- CHRS$(10);
PRINT#1,"" # ":CHRS(169):"'87 S. Maelger #";CHR$(C10);
PRINT#1 ,"" 3BBRHHHAAERAAHEER" : CHRSC 10) ;
PRINT#1,CHR$C10);

REM **** BETRIEBSSYSTEM-ROUTINEN ZUM LADEN ******
PRINT#1,"DECLARE FUNCTION xOpen& LIBRARY";CHR$(C10);
PRINT#1,"DECLARE FUNCTION xRead& LIBRARY";CHR$(C10);
PRINT#1,"DECLARE FUNCTION AllocMem& LIBRARY";CHR$C10);

REM **** IM FALLE VON H.A.M. ODER HALFBRIGHT ****

IF tiefe%=6 THEN

PRINT#1, "DECLARE FUNCTION AllocRaster& LIBRARY";
PRINT#1, CHRS(10);

END IF

REM kktieck BENOETIGTE LIBRARIES KKeKRKRKRKKKKKRRKKKKKKK

PRINT#1, CHRS(10);
PRINT#H1, "LIBRARY "+CHR$(34);"dos. Library" ;CHR$(34);

PRINT#1, CHRS(10);
PRINT#H1, "LIBRARY "'sCHR$(34); "exec. Library"; CHR$(34);

PRINT#1, CHR$(10);
PRINT#1, "LIBRARY ";CHR$(34);"graphics. Library";CHR$(34);

PRINT#1, CHR$(10);
PRINT#1, CHR$(10);

REM **** SPEICHER FUER PALETTE RESERVIEREN ******
PRINT#1, "b&=Al LocMem& (64,655378&)";CHR$(10);
PRINT#1,"IF b&=0 THEN ERROR 7";CHRS$(10);

REM kkkk BILD-DATEI OEFFNEN REE

PRINT#1,"file$=";CHR$(34); target$; CHR$(34) ;"+CHR$CO)";
PRINT#1 ,CHR$C10);

PRINT#1, "h&=xOpen&(SADD (fi le$), 1005)"; CHR$(10);
REM kkk SCREEN ERSTELLEN KEKE

PRINT#1,"WINDOW CLOSE WINDOW(O)";CHR$CIO);

PRINT#1, "SCREEN 1,":MIDS(STR$(sbreite%),2);", "5
PRINT#1 , MIDS(STR$(hoehe%) ‚2);",";
PRINT#1 ,MID$SCSTR$SCtIiefe%-planedazuX) ,2);",";
PRINT#1 ,MIDS(STRS(mode%) ,2);CHR$C10);

PRINT#1, "WINDOW 1, ,, „0, 1";CHR$C10);
PRINT#1,"vienport&=PEEKL(WINDOWCT)+46)+44";CHR$C10);

REM **** ALLE FARBEN AUF NULL SETZEN *****#exxxex

96 Amiga Tips & Tricks —

Lcm$="CALL LoadRGB4(viewport&, b&,"
Lom$=lcm$+MIDSCSTR$(colmax%) ,2)+")"+CHRS(10)
PRINT#1, lcm$;

REM **** BEI HAM ODER HALFBRIGHT 6.PLANE ********
IF tiefeX=6 THEN

PRINT#1, "n&=Al LocRaster&(";
PRINT#1 ,MIDS(STR$(sbreite%),2):","5
PRINT#1 ,MID$CSTR$Choehe%) ‚2);")":CHR$C10);

PRINT#1,"IF n&=0 THEN ERROR 7":CHR$(10);
PRINT#1, "bmap&=PEEKL (PEEKL (WINDOW(7)+46)+88)"; CHRS(10);
PRINT#1,"POKE bmap&+5, 6"'s CHR$(10);
PRINT#1,"POKEL bmap&+28,n&''sCHR$(10);
PRINT#1,"POKEL viewport&+32,PEEKL(viewport&+32)OR 2°";

REM **** UND VIEWMODE EINSTELLEN *****#eekeeekeee

IF (viewmode& OR 2°7)=2°7 THEN

REM **** HALFBRIGHT-BIT SETZEN Henn
PRINT#1,"7";

ELSE

REM **** HOLD-AND-MODIFY - BIT SETZEN *rkkkkikkee
PRINTH1, "11"

END IF

PRINT#1, CHRS$(10);

END IF

REM **** UND NUN DIE LADEROUTINE Kirk

PRINT#1,"FOR i%=0 TO";STR$CtiefeX-1);CHR$SCIO);
PRINT#1," ad&=PEEKL(PEEKL(WINDOW(8)+4)+8+4* 1%) ";CHR$C1O0);

PRINT#1," r&=xRead&Ch&, ad&,";

PRINT#1,MIDSCSTR$CbI tmap&) ‚,2);"&)";CHR$C10);
PRINT#1,"NEXT";CHR$(C10);

REM **** PALETTE LESEN (GLEICH IN RICHTIGER FORM)
PRINT#1, "r&=xRead&(h&, b&,64)":CHR$(C10):

REM **** FILE WIEDER SCHLIESSEN Henne
PRINT#1, "CALL xClose(h&)";CHR$(10);

REM **** FARBTABELLE SETZEN LASSEN Krk
PRINT#1, lcm$;

REM **** BUFFER FUER FARBEN WIEDER FREIGEBEN ****

PRINT#1,"CALL FreeMem(b&,64)";CHR$(10);

REM **** LIBRARIES WIEDER SCHLIESSEN ***#*#si ei #x

Das AmigaBASIC

PRINT#1,"LIBRARY CLOSE"; CHR$(10);

REM **** WARTEN AUF MOUSE-CLICK He
PRINT#1, "WHILE MOUSE (0)<>O:WEND"; CHRS(10);
PRINT#1,"WHILE MOUSE (0)=0:WEND"; CHRS$(10);

REM **** SCREEN SCHLIESSEN UND BASIC-WINDOW *****
REM **** WIEDER AUF WORKBENCH-SCREEN HOLEN *****

PRINT#1, "WINDOW CLOSE 1";CHR$(C10);
PRINT#1,"SCREEN CLOSE 1";CHR$(10);
PRINT#H1, "WINDOW 1,"">CHRS(34);"OK">CHRS(34);

PRINT#1,",(0,11)-(310,185),0,-1";
PRINT#1 „CHRSC1O);CHRSC1O);

CLOSE 1

REM **** ZURUECK ZUR WORKBENCH ****eexekkeaeekeee

WINDOW CLOSE 1

SCREEN CLOSE 1
WINDOW 1,,,0,-1
PRINT "Creating Loader-Icon"

REM **** DATEN FUER SPEZIAL-ICON EINLESEN *******

RESTORE icondatas

fi le$=loader$+". info'+CHR$ (0)

3$= sum

FOR i%=1 TO 486
READ b$
a$=a$+CHRS(VAL ("&H"+b$))

NEXT

REM **** UND PER WRITE UEBER DAS DATEN-FILE- ****

REM **** ICON SCHREIBEN (MODE=OLDFILE) WERK

h&=xOpen&(SADD(file$), 1005)
w&=xWr i te&(h&, SADD(a$) , 498)

CALL xClosech&)

LIBRARY CLOSE

MENU RESET

END

REM kkkek FEHLER-ABFANGEN KkkKkKKkKKKKKKRK KKK

errorcheck:

n%=ERR

IF n%=255 THEN

PRINT "Bild nicht gefunden"

GOTO goon

ELSEIF n%=254 THEN

97

98 Amiga Tips & Tricks

PRINT "Nicht genug Speicher!"
GOTO goon

ELSEIF n%=253 OR n%=252 THEN

PRINT "Kein IFF-ILBM-Bild!"

GOTO goon

ELSEIF n%=251 THEN

PRINT "Kann keine 6.Plane hochziehen."

GOTO goon

ELSEIF n%=250 THEN

PRINT "Kein BMHD-Chunk vorm BODY!"

GOTO goon

ELSEIF n%=249 THEN

PRINT "Crunch-Algorythmus unbekannt"
GOTO goon

ELSEIF n%=248 THEN

PRINT "Ich blicke nicht mehr durch"

GOTO goon

ELSE

CLOSE

CALL xClose(handl e&)

CALL FreeMem(buffer&, 160)
LIBRARY CLOSE

MENU RESET

ON ERROR GOTO 0

ERROR n%

STOP

END IF

STOP

goon:

IF n%<>255 THEN
CALL xClose(handle&)

IF n&<>254 THEN CALL FreeMem(buffer&, 160)
END IF

BEEP

LIBRARY CLOSE

RUN

icondatas:

DATA E3,10,0,1,0,0,0,0,0,0,0,0,0,2E,0,1F,0,5,0,3,0,1

DATA 0,1,BD,A0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

DATA 0,0,0,4,0,0,0,F2,98,0,0,0,0,80,0,0,0,80,0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,2E,0,1F,0,2,0

DATA 2,B1,E0,3,0,0,0,0,0,0,0,0,0,0,0,3,FF,FF,FF,FF,O

DATA 3,0,0,0,3,0,2,0,0,0,1,0,2,0,0,0,1,0,2,7,80,0,1

DATA 0,2,1,F8,0,1,0,2,0,3F,C0,1,0,2,3,FC,0,1,0,2,0

DATA 1F,C0,1,0,2,0,1,FE,1,0,2,0,0,1F,F1,0,2,0,0,FF,1

DATA 0,3,0,1F,FE,3,0,3,FF,FF,FF,FF,0,0,0,6A,BF,FO,O

——— Das AmigaBASIC | 99

DATA 0,0,0,7,FE,0,0,0,0,0, FF,80, 7F,EF,FF,FD,FF,F8, 7F
DATA EF,FF,FD,EO, 38, 7F,EF, FF, FD, FF,F8,0,0,0,0,0,0,0
DATA 0,0,0,0,0,0,0,0,0,0,0,0, 3E, 7C, F9,B0,0,0,20,40
DATA 80,A0,0,0,3C,4C,F0,40,0,0,20,44,80,A0,0,0,20, 7C
DATA 81,B0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,FF,FF,FF,FF,0
DATA 4,0,0,0,0,80,4, FF, FF,FF,FC,80,5,FF,FF,FF,FE,80
DATA 5,FF,FF,FF,FE,80,5,FF,FF,FF,FE,80,5,FF,FF,FF,FE
DATA 80,5,FF,FF,FF,FE,80,5,FF,FF,FF,FE,80,5,FF,FF,FF
DATA FE,80,5,FF,FF,FF,FE,80,5, FF, FF,FF,FE,80,5, FF, FF
DATA FF,FE,80,4,FF,FF,FF,FC,80,4,0,3,FF,80,80,7,FF
DATA 95,7F,FF,80,1,FF,FF,FF,FE,O, 7F,FF,FF,FF,FF,F8
DATA 80,10,0,2,FF,84,80, 10,0,2,7F,C4,B0,10,0,2,0,4
DATA 7F,FF,FF,FF,FF,FC,38,0,0,0,0,38,30,0,0,0,0, 18,0
DATA 0,0
DATA 0,C,3A,41
DATA 60,69,67,61,42,41,53,49,43,0

3.2.5 IFF-Brushes werden Objects

Sie besitzen ein Super-Malprogramm wie DeLuxe Paint? Was
liegt denn dann näher, als es zum Erstellen von Sprites,

VSprites, BOb’s, AnimOb’s oder was der Dinge mehr sind zu
verwenden? Dazu müssen wir jedoch vorher eine Formatwand-

lung vornehmen. Dazu habe ich das folgende Programm ge-
schrieben. Es wandelt jedes IFF-Bild in ein Object-File um.
Voraussetzung hierfür ist jedoch, daß das Bild nicht zu groß für
einen Object-String ist.

Danach wird dieses Object aktiviert und kurz bewegt. Da dabei
keine speziellen Techniken der Speicherung des Hintergrundes

verwendet werden, kann es bei zu vielen Bitplanes zu einem
leichten Flimmereffekt kommen.

Nun aber zunächst das Programm:

Use DPaint as Object-Editor with #

#BRUSH- TRANSFORMER#

(W) 1987 by Stefan Maelger #
FEE EEE EEE EEE

3
 f}

»

t 8 ' t iy a ‘ [| ‘a i] ‘ i] | ‘ i] 0 6 ‘ 0 0 e (] t t 6 t t t t t ‘ ‘ t t I 3

CLEAR ‚300008
DIM r(31),9(31),b(31)

100 Amiga Tips & Tricks ——

eingabe:

PRINT "Brush-Name (+Pfad): ";
LINE INPUT brush$

PRINT

PRINT "Object-Datei (+Pfad): ";

LINE INPUT objectfile$

PRINT

PRINT "Farbdatei anlegen? (J/N) ";
warte:

a$=LEFTSCUCASESCINKEYS+CHR$CO)), 1)
IF a$="N" THEN

PRINT "NEIN!"

ELSEIF a$="J" THEN

PRINT "Na klar."

colorflag%=1

PRINT

PRINT "Farbdatei-Name (+Pfad): ";

LINE INPUT colorfile$

ELSE

GOTO warte

END IF

PRINT

OPEN brush$ FOR INPUT AS 1

a$=INPUT$(4,1)

IF a$<>"FORM" THEN CLOSE 1:RUN

a$=INPUT$(4,1)

a$=INPUT$(4, 1)

IF a$<>"ILBM" THEN CLOSE 1:RUN

lesechunk:

a$=INPUT$(4, 1)

IF a$="BMHD" THEN

PRINT "BMHD-Chunk gefunden."

PRINT

a$=INPUT$(4,1)
breiteX=ASC(INPUT$(1, 1)+CHR$(0))*256
breiteX=brei te%+ASC(INPUT$(1, 1)+CHR$(0))
PRINT "Bildbreite:";breite%;'" Pixel"
IF breiteX>320 THEN

PRINT "Ist mir zu breit."
BEEP
CLOSE 1
RUN

END IF

hoeheX=ASC(INPUT$(1, 1)+CHR$(0))*256
hoehe%=hoeheX%+ASC(INPUT$(1, 1)+CHR$(0))

PRINT "Bildhöhe :";hoehe%;" Pixel"
IF hoehe%>200 THEN

PRINT "Ist mir zu hoch."

—— Das AmigaBASIC 101

BEEP

CLOSE 1

RUN

END IF

a$=INPUT$(4, 1)
planes%=ASC(INPUT$(1,1))
PRINT "Bildtiefe :";planes%;'" Planes"
IF planes%>5 THEN

PRINT "Zu viele Planes!"
BEEP
CLOSE 1
RUN

ELSEIF planes%*((breite%-1)\16+1)*2*hoehe%X>32000 THEN
PRINT "Hey! Zu viele Bytes fuer einen Object-String!"
BEEP

CLOSE 1

RUN
END IF

. aS=INPUT$(1, 1)
gepacktZ=ASC(INPUT$(1, 1)+CHRS(0))

IF gepackt%=0 THEN
PRINT "Packstatus: NICHT gepackt."

ELSEIF gepackt%=1 THEN

PRINT "Packstatus: ByteRun1-Algorythmus."
ELSE |

PRINT "Packstatus: unbekannt"
BEEP

CLOSE 1
RUN

END IF
a$=INPUT$(9 1)
Status%=Status%+1
PRINT
PRINT

ELSEIF a$="CMAP" THEN

PRINT "CMAP-Chunk gefunden."

a$=INPUT$(3,1)
\%=ASC(INPUT$(1,1))
farben%=1%\3

PRINT farben%; "Farben gefunden"

FOR i%=0 TO farben%- 1

r(14)=ASCC INPUTS(1, 1)+CHR$CO))/255

g(1%)=ASC(INPUT$(1, 1)+CHR$CO))/255

b(1%)=ASC(INPUT$(1, 1)+CHR$(0))/255

NEXT

Status%=Status%+2

PRINT

PRINT

102 Amiga Tips & Tricks ——

ELSEIF a$="BODY" THEN
PRINT "BODY-Chunk gefunden."

PRINT
a$=INPUT$(4, 1)
bytes%=(breite%-1)\8+1

bmap%=bytes%*hoeheX%
obj$=STRING$Cbytes%*hoehe%*planes%, 0)
FOR i%=0 TO hoehe%-1

PRINT "Ich lese Zeile";i%+1
FOR j%=0 TO planes%-1

IF gepackt%=0 THEN

FOR k%=1 TO bytes%
aS=LEFTS(INPUT$(1, 1)+CHRS$(0), 1)
MIDSCobj$, j%*bmap%+ i A* bytesXt+kZ, 1)=a$

NEXT

ELSE
pointer%=1
WHILE pointerX%<bytes%+1

a%=ASCCINPUT$(C1,1)+CHR$(O))

IF a%<128 THEN

FOR k%=pointer% TO pointer%+a%
a$=LEFTSCINPUTSCI, 1)+CHR$(0), 1)

MIDS(obj$, j%*bmap%+ i%*bytes%+k%, 1)=a$
NEXT

pointer%=pointer%+a%+1
ELSEIF a%>128 THEN

a$=LEFTSCINPUTSCI, 1)+CHR$(0),1)
FOR k%=pointer% TO pointer%+257-a%

MID$(obj$, j%*bmap%+i%*bytes%+k%, 1)=a$
NEXT
pointer%=pointer%+256-a%

END IF
WEND

END IF

NEXT
NEXT

Status%=Statusk+t4

ELSE

PRINT a$;'" gefunden."

a=CVLCINPUT$(4,1))/4

FOR i%=1 TO a

a$S=INPUT$(4, 1)

NEXT

GOTO lesechunk

END IF

checkstatus:

IF Status%<7 GOTO lesechunk

CLOSE 1

PRINT

—— Das AmigaBASIC : 103

PRINT "OK, baue Object auf."
ob$=" a

FOR i%=0 TO 10
ob$=0b$+CHR$(0)

NEXT
ob$=0b$+CHR$(planes%)+CHR$CO)+CHRECO)
ob$=ob$+MKI$(brei te%)+CHR$(0)+CHRS$(0)
ob$=ob$+MK1I$(hoehe%)+CHRS$(0)+CHRS(24)
ob$=ob$+CHRS(0)+CHRS(3)+CHRS(0)+CHRS(0)
ob$=0b$+0bj$

PRINT

PRINT "Speichere Object als ";CHR$(34);
PRINT objectfile$;CHR$(34)
PRINT

OPEN objectfile$ FOR OUTPUT AS 2

PRINT#2,0b$;

CLOSE 2

PRINT "Object gespeichert."

IF colorflag%=1 THEN .

PRINT
PRINT "Speichere Farbdatei:"
OPEN colorfile$ FOR OUTPUT AS 3

PRINT#3,CHR$(planes%);
PRINT " 1.Byte = Anzahl der Bitplanes"
FOR i%=0 TO 2’planes%-1

PRINT i%*3+2;".Byte = rot ("; 1%; ")*255"
PRINT#3,CHR$(Cr(1%)*255);
PRINT i%*3+3;".Byte = gruen("; 1%; ')*255"
PRINT#3,CHR$(g(i%)*255);

PRINT 1%*3+4;".Byte = blau ("; 1%; ")*255'"'
PRINT#3 ,CHR$Cb(i%)*255);

NEXT

CLOSE 3
END IF

SCREEN 1,320,200, planes%, 1
WINDOW 2,,,0,1
FOR i%=0 TO 2”planes%-1

PALETTE i%,r(i%),9Ci%),bCi%)
NEXT

OBJECT.SHAPE 1,0b$
OBJECT.PLANES 1,2”planes%-1,0

FOR i=0 TO 300 step .1
OBJECT.X 1,1
OBJECT.Y 1,(€1\2)

OBJECT.ON

NEXT

104 Amiga Tips & Tricks

WINDOW CLOSE 2

SCREEN CLOSE 1

RUN

Variablen-Liste:

Status gibt Aufschluß über gelesene Chunks

a Hilfsvariable

b Feld, Blauanteil einer Farbe

bmap Größe einer Bitplane des BOB in Byte

breite Breite des BOB in Pixel

brush Name des IFF-ILBM-Files

bytes Breite des BOB in Bytes

colorfile Name der Farbdatei

colorflag Flag, Abspeichern der Farbdatei ja/nein

farben Anzahl im IFF-File gespeicherter Farben

g Feld, Grünanteil einer Farbe

gepackt Packstatus: O=nicht gepackt 1=ByteRun1

hoehe Hohe des BOB in Pixel

j Schleifenvariable

j Schleifenvariable

k Schleifenvariable

/ Chunklange

ob Object-String

obj Image-String

objectfile Datei, in die ob$ abgespeichert wird

planes Anzahl der Bitplanes des BOB (Tiefe)

pointer Zählvariabie für gelesene Byte einer Zeile

r Feld, Rotanteil einer Farbe

So, soweit das Programm. In der optionalen Farbdatei liegen die
Daten wie folgt:

1.Byte = Anzahl der Bitplanes des Objects

Jetzt folgen 2“(Bytel) Farbwerte, also bei einer Plane:

2.Byte

3.Byte
4.Byte

Rot-Anteil der Hintergrundfarbe * 255

Grün-Anteil der Hintergrundfarbe * 255

Blau-Anteil der Hintergrundfarbe * 255

——— Das AmigaBASIC 105

5.Byte

6.Byte

7.Byte

Rot-Anteil der 1. Farbe * 255

Grün-Anteil der 1. Farbe * 255

Blau-Anteil der 1. Farbe * 255

Noch schnell ein paar Worte zum IFF-ILBM-Format:

Ein derartiges File setzt sich aus mehreren hintereinander abge-
speicherten Dateien zusammen, die man Chunks nennt. Jeder

Chunk ist dabei gleich aufgebaut:

1. Chunk-Name

2. Chunk-Länge

3. Chunk-Daten

4 Byte langer String, z.B.: "BODY"

4-Byte-Integer, also LONG-Format

#Chunk-Länge Bytes

Der Aufbau des Headerchunk, mit dem jedes IFF-File beginnt,
ist zwar ähnlich, nicht aber genauso aufgebaut:

1. File-Art = "FORM", der Header von IFF-Files
2. File-Länge = Long-Wert

3. Daten-Typ = in diesem Falle "ILBM" (interleaved bitmaps)

Die wichtigsten Chunks in Kurzform:

Der BMHD-Chunk:

Long

Long

Word

Word

Word

Word

Byte

. Byte

. Byte

10. Byte

11. Word

12. Byte

13. Byte
14. Word

15. Word

O
O
N

A

U
B
W
N

—
 "BMHD" (Bi tmapHeader - Chunk)

Chunkl ange

Breite der Grafik in Pixel

Hohe der Grafik in Pixel

X-Position der Grafik

Y-Position der Grafik

Anzahl der BitPlanes des Screens

Maskierung

Crunch-Art

2?

transparente Farbe
X-Aspect

Y-Aspect

Breite des Screens in Pixel

Höhe des Screens in Pixel

Der CMAP-Chunk:

1. Long
2. Long

3. Byte
4. Byte

"CMAP" (ColorMap)
Chunk länge

Farbe 0 Rotwert *255

Farbe 0 Grünwert *255

106 Amiga Tips & Tricks —

5. Byte = Farbe 0 Blauwert *255

6. Byte = Farbe 1 Rotwert *255
T. 2...

Der CRNG-Chunk von DeLuxe Paint:

1. Long = "CRNG" (ColorCycle-Chunk von DPaint - 4 mal)
2. Long = Chunklänge

3. Word = bisher immer 0

4. Word = Geschwindigkeit

5. Word = Aktiviert oder nicht
6. Byte = untere Farbe
7. Byte = obere Farbe

Der CCRT-Chunk:

1. Long = "CCRT" (ColorCycle-Chunk von Graphicraft)
2. Long = Chunklänge

3. Word = Richtung

4. Byte = Startfarbe
5. Byte = Endfarbe

6. Long = Sekunden

7. Long = micro-Sekunden

Der wichtigste, der BODY-Chunk:

1. Long = "BODY" (BitMaps)

2. Long = Chunklänge

3. = 1. Zeile der 1. Bitplane (eventuell gepackt - s. BMHD)

= 1. Zeile der 2. Bitplane (sofern vorhanden)

= 1. Zeile der letzten Bitplane
4. = 2. Zeile...

Noch ein paar Zeilen zum ByteRun1-Crunch-Algorythmus:

Es wird niemals mehr als eine Zeile einer Bitplane auf einmal

gepackt. Daher kann das Entpacken auch zeilenweise geschehen.

Die Kodierung besteht zunächst aus einem CodeByte. Ist dieses
Byte größer als der Wert 128, wird das nächste Byte 258-Code-

Byte Mal wiederholt, also mindestens dreimal. Da in FOR-
NEXT-Schleifen jedoch auch der Startwert der Schleifenvariable
mitdurchlaufen wird, müssen wir bei solchen Konstruktionen

noch den Wert 1 abziehenm, also eigentlich folgendes erhalten:
FOR isstartwert TO startwert+258-Codebyte-1. Daher schrieb
ich oben gleich 257-Codebyte. Die zweite Codierung gilt für

——— Das AmigaBASIC 107

Code-Bytes, die kleiner als 128 sind. Hier werden die nächsten
CodeByte+l Bytes nicht codiert übernommen. Der Code-Wert

128 selbst wird hierbei überlesen. Zusammenfassend können wir
sagen, daß sowohl bei der ersten, wie auch bei der zweiten Co-

dierungsart maximal 128 Byte auf einmal codiert sein können.
Da die Breite eines 640*x - Screens jedoch nur 80 Byte beträgt,
kann so durchaus eine Zeile einer Bitplane auf einen Schlag co-
diert werden.

3.2.6 Floodfill einmal anders

Wie Sie sicherlich wissen, hat der Amiga die Möglichkeit, mit
einer Geschwindigkeit von einer Million Pixel pro Sekunde so
komplizierte Vorgänge wie das Ausfüllen von Flächen in

irgendeiner Farbe durchzuführen. Das geschieht von Amiga-
BASIC aus zumeist mit dem Befehl PAINT. Dieser Befehl hat
nun aber einen entscheidenden Nachteil. Er füllt ab den ange-

gebenen Koordinaten den Bildschirm nur bis zu einer bestimm-

ten Farbe. Dadurch wird seine Anwendung zum Beispiel in
einem selbstgeschriebenen Malprogramm stark eingeschränkt.

Besser wäre es gewesen, die AmigaBASIC-Entwickler hätten die
Möglichkeit eingeräumt, durch einen bestimmten Parameter den
PAINT-Befehl mit dem Füllen bis zu irgendeiner anderen Farbe
zu beauftragen. Besonders verwunderlich ist, daß es eine

Betriebssystem-Routine gibt, die dieses leistet. Zudem handelt es
sich um eine Routine der graphics-library, deren Programme
bekanntlich immer im Speicher sind und daher nicht einmal von

der Workbench nachgebootet werden müßte.

Die Routine heißt Flood und kann von AmigaBASIC aus folgen-
dermaßen aufgerufen werden:

CALL Flood&(Rastport,Modus, x,y)

Hier also eine S U B-Routine, die Flood nutzt:

108 Amiga Tips & Tricks

REM 33ARAAHEAHA 2,927 070727077703
REM# FLOODFILL Amiga #
REM #------------- ou r renee #
REM # PAINT bis zu irgendeiner #

REM # anderen Farbe... #

REM #--------- nen enn een enn nee #
REM # (W) 1987 by Stefan Maelger #
REM LOO OHO SOO OOOO IOS IOI OEE SIO OBITS Oe EIB?

LIBRARY "graphics. library"

SCREEN 1,640,255,2,2
WINDOW 2,"FLOODFILL", ,0,1

LOCATE 2,2
PRINT "Floodfill-Demo"

CIRCLE (200,80), 150,2
CIRCLE (400,80), 150,3

FLOODFILL 200,80,1
FLOODFILL 300,80,1
FLODDFILL 400,80,1

LIBRARY CLOSE

LOCATE 4,2
PRINT "PRESS ANY KEY"

WHILE INKEY$=""

WEND

STOP

SUB FLOODFILL(x%, y%, farbe%) STATIC —
PSET (0,0),0
PAINT (0,0),0
COLOR farbe%

rastport&=WINDOW(8)
ToAnyColorMode%=1
CALL Flood&Crastport&,ToAnyColorMode%,xX%,y%)

END SUB

Der Einfachheit halber initialisieren wir die Routine mit einem
einfachen PAINT, das nichts weiter bewirkt - außer daß der

AmigaBASIC-Interpreter vorher schon einmal eine Bitplane ein-
richten muß, die der Flood-Befehl für seine Arbeit benötigt.

-——— Das AmigaBASIC 109

3.2.7 Windows manipulieren

Daß sich mit Windows eine ganze Menge anstellen läßt, sollte
Ihnen spätestens seit dem DB-Buch Supergrafik bekannt sein.
Daß man auch ausgefallenere, nichtsdestoweniger aber eminent
effiziente Dinge mit BASIC-Windows tun kann, darüber soll
Ihnen dieses Kapitel einen kleinen Einblick vermitteln, der

sicherlich nicht der Weisheit letzter Schluß ist, Ihnen aber Anlaß

genug sein sollte, kräftig drauflos zu experimentieren.

3.2.7.1. Borderless: BASIC-Windows, die aus dem

Rahmen fallen

Nachdem ich in einer bekannten Zeitschrift das Superlisting
eines "AmigaBASIC-Profis" sah, in dem er mühsam minutenlang

die Adressen in den Bitmaps ausfindig machte, um schließlich
den Border (=den Rahmen) des Windows Byte für Byte wegzu-
poken, entschloß ich mich, Ihnen diese Routine vorzustellen:

' BHEREEHHHREAHHHHRAHRHHHHHEAHHHRHR
' # BORDERLESS fuer AmigaBASIC-Windows #

BO fhe wm nnn rtm nner nce ccc c cece cennnnnn #
'# (W) 1987 by Stefan Maelger #

" FREHHHHHHEEHARAHAHH at
i]

LIBRARY "intuition. library"

CLS

PRINT "Wie gefällt Ihnen denn dieses Fenster?"

PRINT

warte 2 |

PRINT "Und ohne Border (Rahmen) ?"

PRINT

killborder

wartetaste

remake

LIBRARY CLOSE

end

SUB remake STATIC

WINDOW CLOSE 1

WINDOW 1

110 Amiga Tips & Tricks ———

END SUB

SUB warte(sekunden%) STATIC

t=TIMER+sekunden%

WHILE t>TIMER

WEND

END SUB

SUB wartetaste STATIC

WHILE INKEY$="""'

WEND

END SUB

SUB killborder STATIC

borderless& =2°11

gimmezerozero&=2° 10

window. base&=WINDOW(7)

window.modi&=window.base&+24

Modus&=PEEKL(window.modi&)

Modus&=Modus& AND(2°26-1-gimmezerozero&)

Modus&=Modus& OR borderless&
POKEL window.modi&,Modus&
CALL RefreshWindowF rame(window.base&)

END SUB

3.2.7.2 Gadgets an und ausschalten

Hat es Ihnen gefallen? Nein? Wieso, haben Sie etwa die Gadgets
gestört? Dann nichts wie weg mit ihnen! Wie? Tja...

FARR
GADGETon/off in AmigaBASIC-Windows #

|

1

|

'# (W) 1987 by Stefan Maelger #

| FHAHHHHHHAHHHA HAA
4

LIBRARY “intuition. library"

PRINT "Lassen wir die Gadgets verschwinden!"

SaveGadgetPointer Gaddy&

warte 5

Unl inkGadgets

warte 10

PRINT "Und nun holen wir sie uns wieder."
warte 5

SetGadgets Gaddy&

LIBRARY CLOSE

WINDOW CLOSE 1

-——— Das AmigaBASIC 111

WINDOW 1
END

SUB warte(sekunden%) STATIC

t=TIMER+sekunden%

WHILE t>TIMER

WEND

END SUB

SUB SaveGadgetPointer(Pointer&) STATIC

window.base& =WINDOW(7)

gadget . pointer&=window. base&+62

Pointer&=PEEKL (gadget .pointer&)

END SUB

SUB UnlinkGadgets STATIC

window.base& =WINDOW(7)

gadget .pointer&=window.base&+62

POKEL gadget.pointer&,0

CALL RefreshWindowF rame(window. base&)

END SUB

SUB SetGadgets(Pointer&) STATIC

window.base& =WINDOW(7)

gadget.pointer&=window.base&+62

POKEL gadget .pointer&, Pointeré&
CALL RefreshWindowFrame(window.base&)

END SUB

3.2.7.3 BorderDraw, der Formen-Zauberer

Jetzt wollen wir einmal von Intuition einen lustig bunten Border
zeichnen lassen. Dazu miissen wir jedoch wissen, wie die Bor-
der-Struktur aussieht, deren Adresse wir mit der DrawBorder-

Routine übergeben müssen. Eigentlich recht simpel:

1. Word horizontaler Abstand von der im Aufruf der Routine angegebenen X-

Koordinate (so eine Art erweitertes STEP - man braucht nur einmal

eine Form zu definieren und kann sie dann in einem beliebigen

Abstand noch einmal zeichnen)

2. Word vertikaler Abstand der Y-Koordinaten

3. Byte Zeichenfarbe (die von BASIC bekannten Nummern)

4. Byte Hintergrundfarbe

5. Byte Zeichenmodus (JAM1=0)

6. Byte Anzahl der X-Y-Koordinatenpaare

7. Long Adresse der Koordinaten-Tabelle

8. Long Adresse der nächsten Struktur oder der Wert 0

112 Amiga Tips & Tricks

Spätestens bei Punkt 7 werden Sie bemerkt haben, daß wir noch

eine Koordinatentabelle benötigen. Diese ist ganz einfach aufge-
baut:

Die Tabelle besteht nur aus Words. Dabei kommt immer zuerst

die X-Koordinate, dann die Y-Koordinate eines Punktes. Da-

durch benötigt also ein Punkt vier Bytes oder zwei Words. Das
wars auch schon, sıe sehen, ich hatte Recht mit meiner Be-

hauptung, alles wäre ganz einfach.

Eines noch: Wenn Sie beim Aufruf der Routine anstelle des
Rahmen-Rastports den Window-Rastport einsetzen

(WINDOW(8)), können Sie auch beliebig komplizierte Strukturen
im BASIC-Window zeichnen lassen. Dabei gibt es nur eine
Schwierigkeit: Der Zeichen-Cursor des Windows steht hinterher

auf dem letzten Punkt der letzten Struktur. Ein nachfolgender

PRINT-Befehl würde an dieser Position mit der Ausgabe begin-
nen! Erst NACH einem PRINT aktualisiert AmigaBASIC die
Cursor-Position! Schieben Sie bei einem solchen Akt also ein
PRINT hinter den Aufruf von DrawBorder. Dann funktioniert’s
nämlich wieder.

HHHTHHEHHHHHHHHHHAHHHHHAAAE

DRAWBORDER - der Formenzeichner #

L

a

U

'# (W) 1987 by Stefan Maelger #
Rn 20 0 0 0002202 EEE
t

LIBRARY “intuition. library"

PRINT "Ich setze den Koordinaten-String zusammen"

breite%=PEEKW(WINDOW(7)+8)- 1
hoehe%=PEEKW(WINDOW(7)+10)-1
xlinks%=0

yoben%=0

xy$=MK1I$(xl inks%)+MKI$(yoben%)

xy$=xy$+MK1$(xl inks%)+MKI$Choehe%)
xy$=xy$+MKI$(breiteX)+MKI$(hoehex)
xy$=xy$+MK1$(breiteX)+MKI$(yoben%)
Paare%=4

xOf fsetX=0

yOf fsetX%=0
farbe%=0

——— Das AmigaBASIC 113

PRINT "Ich zeichne den Border"

Setborder xy$,Paare%, farbe%, xOf fset%, yOffset%

FOR 1%=3 to 1 STEP -1

PRINT "Ich warte ein wenig!"

t=TIMER+10:WHILE t>TIMER:WEND

PRINT "Ich zeichne in Farbe";i%

Setborder xy$,Paare%, i%,xOffset%,yOffset%

NEXT

LIBRARY CLOSE

END

SUB Setborder(xy$,anzahl%, farbeX,x%,y%) STATIC
window. base&=WINDOW(7)
borderrastpor t&=PEEKL (window. base&+58)
IF borderrastport&=0 THEN EXIT SUB
a$=MKI$(0) ıhorizontaler Abstand

a$=a$+MK1$(0) 'vertikaler Abstand

a$=a$+CHR$(C farbe) 'Zeichenfarbe

a$=a$+CHR$(0) 'Hintergrund (unbenutzt)

a$=a$+CHRS$(0) 'Modus: JAM1

a$=a$+CHR$(anzahl%) "Anzahl x-y-Paare
a$=a$+MKL$(SADD(xy$)) "Zeiger auf Koordinaten
a$=a$+MKL$(0) 'Zeiger auf nächste Struktur

CALL DrawBorder(borderrastport&,SADD(a$) , x%, y%)

Immun letzte Parameter: relative X- und Y-Koordinate

END SUB

Sie werden sicherlich die tollsten Anwendungen für diese Rou-
tine finden, auch wenn das Programm sehr einfach aussieht.

3.2.7.4 ChangeBorderColor -jetzt wird’s bunt

Kommen wir zu einem recht wertvollen optischen Schmankerl.

Sie werden mit der nächsten Routine die Farben des Rahmens
(inklusive der Titelleiste) verändern können. Ach, das können
Sie auch? Sie meinen, man bräuchte ja lediglich mit dem
PALETTE-Befehl die Farben 0 und | zu ändern? Das stimmt,

zugegeben, aber ich werde Ihnen jetzt zeigen, was Sie tun müs-

114 Amiga Tips & Tricks

sen, um dabei die Hintergrund- und Zeichenfarbe des Windows
nicht mit zu verändern! Natürlich das Ganze wie gewohnt in
Form eines SUB-Befehls:

CHANGE BORDERCOLOR #

LIBRARY “intuition. library"

PRINT "Hat es Sie schon einmal gestört, daß"

PRINT "die Zeichenfarbe des Borders immer aus"

PRINT "Farbregister 0 und der Hintergrund immer"

PRINT "aus Register 1 gezeichnet wird ?"

PRINT

PRINT "Das können wir nämlich im Gegensatz zu dem"
PRINT "Window-Befehl selbst bestimmen!!!

LOCATE 10,1:PRINT "Vordergrund: "
LOCATE 13,1:PRINT "Hintergrund: "
t=TIMER+15:WHILE t>TIMER:WEND

FOR i=0 TO 3 Ä
LINE (i*30,136)-STEP(30,20),i,bf
LINE (i*30,136)-STEP(30,20),1,b

NEXT

FOR h%=0 TO 3
FOR v%=0 TO 3

ChangeBorderColor v%,h%
LOCATE 10,14:PRINT vA

LOCATE 13,14:PRINT h%
t=TIMER+5

WHILE t>TIMER
WEND

NEXT v%,h%

ChangeBorderColor 1,0

LIBRARY CLOSE
END

SUB ChangeBorderColor(DetailPen%,BlockPen%) STATIC

window. base&=WINDOW(7)

Detail .Pen& =window.base&+98

Block.Pen& =window.base&+99

POKE Detail .Pen&,DetailPen%

——— Das AmigaBASIC 115

POKE Block.Pen&,BlockPen%

CALL RefreshWindowFrame(window.base&)

END SUB

3.2.7.5 Monocolor-Workbench

Nun kommen wir zu einem wirklich nützlichen Programm. Sie
hätten gern 16 KByte Speicher mehr (ohne etwas dafür bezahlen
zu müssen)? Sie möchten beim editieren von BASIC-Program-
men, daß endlich einmal das Listing in angemessener Geschwin-

digkeit über den Bildschirm jagt, anstatt endlos langsam dahin-
zukriechen? Sie möchten, daß überhaupt fast alles doppelt so

schnell geht wie bisher? Okay, nehmen wir der Workbench eine
Bitplane und Sie haben erreicht, was Sie wollen:

(W) 1987 by Stefan Maelger #
FBR

LIBRARY "intuition. library"
LIBRARY "graphics. library"

Setplanes 1

LIBRARY CLOSE

SYSTEM

SUB Setplanes(planes%) STATIC
IF planes%<1 OR planes%>6 THEN EXIT SUB
rastport& =WINDOW(8)
bitmaps& =PEEKL(rastport&+4)
current.planes%=PEEK(bitmaps&+5)
window.base& =WINDOW(7)
screen.base& =PEEKL(window.base&+46)
screen.breite% =PEEKW(screen.base&+12)
screen.hoehe% =PEEKW(screen.base&+14)
IF current.planes%>planes% THEN
POKE bitmaps&+5, planes%
FOR kill.plane%=current.planes% TO planes%+1 STEP -1
plane.ad&=PEEKL (bi tmaps&+4+4*kill.planex)
CALL FreeRaster(plane.ad&,screen.breitexz, screen. hoehe%)

CALL RemakeDisplay
CALL RefreshWindowF rame(WINDOW(7))

116 Amiga Tips & Tricks ——_

CLS
NEXT

END IF
END SUB

3.2.7.6 Neuer SCREEN-Befehl fur alle Grafikmodi

Wie Sie gesehen haben, gibt FreeRaster den Speicherbereich frei,
den die zweite Plane belegte. Da wir jetzt auch wissen, wo die
Adressen und wo die Anzahl der Bitplanes liegen, sollte es uns

auch nicht schwerfallen, weitere Planes hinzuzufügen.

Wie Sie wissen, haben die Programmierer von AmigaBASIC die
Modi Hold-And-Modify (4096 Farben gleichzeitig) und Half-
bright (Slang: Halfbrite = 64 Farben gleichzeitig) völlig links lie-
genlassen. Diese benötigen sechs Bitplanes, und die können be-
kanntlich mit AmigaBASIC-Befehlen nicht so einfach erzeugt
werden - nimmt man einmal den LIBRARY-Befehl heraus. Eine
Einbindung des Bildschirmrandes in die Zeichenfläche, somit die

Erzeugung von Screens höherer Auflösung (OVERSCAN-Modus
z.B. 704 mal 576 Pixel) ıst ebenso nicht vorgesehen. Wer seinem
Amiga tolle Grafikeffekte entlocken will braucht dringend Ab-
hilfe. Deshalb schrieb ich eine SUB-Routine, die den SCREEN-

Befehl etwas erweitert und Ihnen HAM, Halfbright und Over-
Scan bietet:

"EAE EE 4

'# Neuer SCREEN-Befehl (w)'88 by SMmagic #

'# OVERSCAN HOLD-AND-MODIFY HALFBRIGHT #
 HHHHHAHHHHHHHAH HAHAHAHA ARATE

Demo: .

DEFLNG a-z ‘alle Variablen sind Longs

DECLARE FUNCTION AllocMem LIBRARY

LIBRARY"exec. library"
DECLARE FUNCTION ViewAddress LIBRARY

LIBRARY" intuition. library"

newSCREEN 2,320,256,6,5 'Screen im HAM-Modus
WINDOW 2,"HoldAndModify",, ‚2
FOR 9%=0 TO 15 "Alle 4096 Farben zeigen

r%=0

——— Das AmigaBASIC

b%=0
LINE(O, g%*10)-STEP(0,9),0
LINE(1,9%*10)-STEP(0,9) , 9%+48
FOR x%=0 TO 7
FOR r%=1 TO 15
LINE (x%*32+r%+1, g%*10)-STEP(0,9) , r%+32

NEXT
bX%=b%+1
LINE(x%*32+17, 9%* 10) -STEP(0,9) ,b%+16
FOR r%=14 TO 0 STEP -1
LINE (x%*32+17+15-r%,9%*10)-STEP(0,9) ,r%+32

NEXT
bX=b%+1
IF b%<16 THEN LINE(x%*32+33, 9%*10)-STEP(0,9) , b%+16

NEXT
NEXT

t=TIMER+10

WHILE t>TIMER

WEND

WINDOW CLOSE 2
newSCREEN.CLOSE 2

newSCREEN 3,320,256,6,7 ‘Screen im Hal fbright-Modus
WINDOW 3,"Halfbrite",,,3
FOR i%=0 TO 63 ‘alle 64 Farben zeigen

LINE(14*4+1 ,0)-(14*4+3, 240), 1%, bf
NEXT

t=TIMER+10
WHILE t>TIMER
WEND

WINDOW CLOSE 3

newSCREEN.CLOSE 3

newSCREEN 4,352,288,2,9 ‘Screen im OverScan-Modus
WINDOW 4,"OverScan",, ,4 |

FOR i%=0 TO 350 STEP 16 "Bis in den Rand malen

FOR j%=0 TO 3

LINE (1%+j%*4,0)-(1%+j%*4,270),j%

NEXT

IF 1%<280 THEN

FOR j%=0 TO 3

LINECO, 1%+)%*4)- (350, 1%+j%*4), j%

NEXT

END IF

NEXT

t=TIMER+10
WHILE t>TIMER

117

118 Amiga Tips & Tricks ————

WEND

WINDOW CLOSE 4

newSCREEN.CLOSE 4

LIBRARY CLOSE

STOP

SUB newSCREEN(n%,b%,h%, t%,m%)STATIC
SHARED overscan.x%,overscan.y%

IF m%>16 OR m%<1 THEN ERROR 5

IF t%>6 OR t%<1 THEN ERROR 5

IF h%>1024 OR h%<1 THEN ERROR 5

IF b%>1024 OR b%<1 THEN ERROR 5

t2%=t%+(t%=6)
mm%=m%+8* (m%>8)
mx%=1- (mm%=2) - (mm%=4)
m2%=mx% - 2% ((mm%=3) + (mm%=4) + (mm%=6)+(mm%=8))

IF m&>8 AND overscan.x%=0 THEN
overscan.x%=mx%*16
overscan. y4=(1-(m24>2))*16
prefs=AllocMem(120,2)
IF prefs=0 THEN ERROR 7
GetPrefs prefs, 120
POKE prefs+118, (PEEK(prefs+118)-overscan.x%)AND 255
POKE prefs+119, (PEEK(prefst+119)-overscan.y%)AND 255
SetPrefs prefs, 120, -1
FreeMem prefs, 120

END IF

SCREEN n%,b%,h%, t2%,m2%
IF t%>5 THEN

view=ViewAddress
Vp=PEEKL (view)
bi tmap=PEEKL (vp+44)
plsz=PEEKW(bi tmap)*PEEKW(bi tmap+2)
plane=Al LocMem(plsz, 655388)
IF plane=0 THEN ERROR 7
POKEL bitmapt+28, plane
POKE bitmapt5,6
IF mm&=5 OR mm%=6 THEN POKEW vpt32,2°11
IF mm4=7 OR mm%=8 THEN POKEW vpt32,2°7

RemakeD isplay
END IF

END SUB

SUB newSCREEN.CLOSE(NZ)STATIC INUR BEI OVERSCAN

SHARED overscan.x%,overscan.y4 "ERFORDERLICH!!!
IF overscan.x%<>0 THEN
prefs=AllocMem(120,2)
IF prefs=0 THEN ERROR 7

GetPrefs prefs, 120
POKE prefs+118,(PEEK(prefs+118)+overscan.x%)AND 255

——— Das AmigaBASIC 119

POKE prefs+119, (PEEK(prefs+119)+overscan.y4)AND 255
SetPrefs prefs,120,-1
FreeMem prefs, 120

END IF

SCREEN CLOSE n%

END SUB

Na, ist Ihnen etwas aufgefallen? Wir malen mit den Farben 0 bis
63! Von wegen AmigaBASIC unterstützt diese Modi nicht!
AmigaBASIC unterstützt lediglich das Errichten der Screens
nicht. Sollten Sie einmal in diesen Modi arbeiten wollen, so
müssen Sie noch einiges wissen. Zuvor aber zu den Parametern
des neuen SCREEN-Befehls. Diese habe ıch weitgehend den

Original-Parametern angepaßt, so daß Ihnen die Umstellung
nicht allzu schwer werden wird: Ä

Neuer SCREEN-Befehl, Bedeutung der Parameter:

SCREEN n,Breite,Höhe,Tiefe,Modus
Neu: Tiefe - jetzt auch 6 Planes möglich

Neu: Modus - 1 = 320 mal 256 Normale Modi

2 = 640 mal 256 High Resolution

3 = 320 mal 512 Interlace

4 = 640 mal 512 Interlace + HiRes

5 = 320 mal 256 HoldAndModi fy

6 = 320 mal 512 HoldAndModify + Interlace

7 = 320 mal 256 Halfbrite

8 = 320 mal 512 Halfbrite + Interlace

9 = 352 mal 288 OverScan

10 = 704 mal 288 OverScan + HiRes

11 = 352 mal 576 OverScan + Interlace

12 = 704 mal 576 OverScan + HiRes + Interlace

13 = 352 mal 288 HoldAndModify + OverScan
14 = 352 mal 576 HoldAndModi fy+Interlace+OverScan
15 = 352 mal 288 Halfbrite + OverScan

16 = 352 mal 576 Halfbrite + OverScan + Interlace

Alle anderen Parameter entsprechen denen des normalen

SCREEN-Befehls. Sollten Sie nicht mit OverScan arbeiten, ge-
nügt der Befehl SCREEN CLOSE. Bei OverScan muß new-

SCREEN.CLOSE aufgerufen werden, damit das Display wieder
an die alte Stelle gerückt wird. Der Parameter ist die Screen-
Nummer, ebenso wie bei SCREEN CLOSE.

120 Ä Amiga Tips & Tricks ——

Der OverScan-Modus

Dieser Modus unterscheidet sich von den bekannten Grafik-

Modi nicht sonderlich. Die einzige Änderung besteht darin, daß
alle Koordinaten nach links oben verschoben sind und der sicht-

bare Bereich um etliche Pixel größer geworden ist.

Der Halfbright-Modus

"Half? heißt auf deutsch ’halb’, ’bright’ soviel wie ’hell’. Eine
sehr treffende Bezeichnung, wie ich meine, denn hier sind die
Farben 0 bis 31 genau die 32 Farben, die es auch bei 5 Bitplanes
sind, wahrend die Farben 32 bis 63 die halben Helligkeitswerte
der unteren Farben haben. Die neu hinzugekommenen Farben
sind direkt abhängig von den ’normalen’ Farben. Ist beispiels-
weise die Farbe 1 ein helles Rot, ist die Farbe 33 ein dunkles

Rot (halb so hell wie Farbe 1). Um die zu einer normalen Farbe
gehörige Halfbright-Farbe zu ermitteln, muß lediglich der Wert
32 zur Registernummer addiert werden:

zugehörige Halfbright-Farb-Nummer = Farb-Nummer + 32

Man beachte, daß es nur möglich ist, 16 verschiedene Farbab-

stufungen pro Farbanteil (Rot/Grün/Blau) einzustellen. Da auch
die Halfbright-Farben nur diese Farbstufen annehmen können,
kann es für mehrere verschiedene ’Normal’-Farben die gleiche
Halfbright-Farbe geben:

Normalfarbe Halfbright-Farbe

PALETTE x, 15/15, 13/15, 9/15 x+32 = 7/15, 6/15, 4/15

14/15, 13/15, 9/15 7/15, 6/15, 4/15

15/15, 12/15, 9/15 7/15, 6/15, 4/15

14/15, 12/15, 9/15 — 7/15, 6/15, 4/15

15/15, 13/15, 8/15 7/15, 6/15, 4/15

14/15, 13/15, 8/15 7/15, 6/15, 4/15

15/15, 12/15, 8/15 7/15, 6/15, 4/15

14/15, 12/15, 8/15 7/15, 6/15, 4/15

FarbanteilHB = INT (Farbanteil * 15 / 2) / 15

——— Das AmigaBASIC 121

Hier kann man gut sehen, daß jeweils acht verschiedene Farb-
werte die gleiche Halfbright-Farbe ergeben. Um es noch einmal
zu betonen: Der PALETTE-Befehl kann nur die unteren 32 Far-
ben einstellen. Die einzustellenden Farben sollten Sie immer so
wählen, daß verschiedene Halfbright-Farben dabei herauskom-
men.

Der Hold’n’Modify-Modus

Bei HAM wird es schwierig. Hier sind nur die Farben 0-15 fest
einstellbar. Malt man einen Punkt in einer dieser Farben, so er-

scheint er auch immer in der mit PALETTE eingestellten Farbe:

Farben 0 - 15 sind normal mit PALETTE bestimmbar

Bei den Farben 16-31 ist es schon etwas anders. Hier werden

zunächst die RGB-Werte des Pixels links neben dem zu malen-

den Pixel übernommen (Hold), und dann der Blauanteil geändert
(Modify). Der neue Blauanteil ergibt sich dann so:

Blauanteil = (Farbnummer - 16) / 15

Die Farben 32-47 verändern nur den Rotanteil:

Rotanteil = (Farbnummer - 32) / 15

Mit den Farben 48-63 läßt sich schließlich der Grünanteil

modifizieren:

Grünanteil = (Farbnummer - 48) / 15

Auf diese Weise kommt man nach spätestens 3 Pixeln auf die

gewünschte Farbe.

Um den Grünanteil eines Pixel auf den Wert 13/15 zu bringen,
muß man mit der Farbe 13+48=61 malen, bei einer Anderung
des Rotanteils auf 7/15 mit der Farbe 7+32=39.

122 Amiga Tips & Tricks ——

3.2.7.7 Das Koordinatenproblem

Wie Sie ja wissen, ist der Punkt mit den Koordinaten (0,0) nicht
etwa in der linken oberen Ecke des Screens zu finden, sondern

liegt unterhalb des Titel-Borders und rechts neben dem linken

Teil des Borders. Etwas ganz merkwürdiges geschieht nun, wol-
len Sie ein Window ohne Titel direkt über die Titelleiste eines
Windows mit Titel, zum Beispiel das BASIC-Standard-Ausgabe-
fenster, plazieren.

Nehmen wir einmal an, wir wünschen uns ein Window, das ge-

nau acht Pixel hoch sein soll. Nun müssen wir den Befehl ein-
geben:

WINDOW 2,,(0,0)-(311,-2), 16, -1

Ist Innen etwas aufgefallen? Die Y-Koordinaten gehen von 0 bis

-2. Hier liegt nämlich wieder einmal ein Fehler im System vor.
Das erste Koordinatenpaar (0,0) wird tatsächlich richtig inter-
pretiert, das zweite Koordinatenpaar jedoch zumindest beim Y-

Wert falsch, da sich nur ın diesem Falle der Interpreter auf die

relativen Koordinaten des darunterliegenden BASIC-Standard-

Fensters bezieht. Fordern Sie also ein Window mit dem Befehl:

WINDOW 2,,(0,0)-(311,8),16,-1

so erhalten Sie ein Fenster, das 18 Pixel hoch ist! Wir müssen in
einem solchen Fall also zunächst die Höhe des Titel-Borders (10

Pixel) abziehen, um an das Screen-Koordinatensystem anzu-
gleichen (8 - 10 = -2).

Soll ein Window nur die Titelleiste des Standard-Fensters be-

decken, ergeben sich die Koordinaten wie folgt:

y2=10 (Höhe unseres neuen Windows)

y2=y2-10 (Höhe der Titelleiste abziehen zum Angleichen der Koordi-

naten)

y2=y2-4 (Höhe des oberen und unteren Borders des neuen Windows

abziehen)

——— Das AmigaBASIC 123

also:

WINDOW 2,,(0,0)-(311,-4), 16, -1

3.2.8 Intuition macht das Leben leicht - mit
HoldAndModify, Halfbrite und OverScan

Wer nur mit Betriebssystem-Routinen auf sein Display zugreifen

möchte, was schließlich etwa zehnmal so schnell geht wie mit
BASIC-Befehlen, beim PRINT-Befehl sogar 1000mal so schnell,

der kann sich auch von Intuition einen Screen oder ein Window
öffnen lassen. Dazu legen wir im folgenden Programm eine so-
genannte NewScreen-Struktur an, in der Intuition die nötigen
Daten übergeben werden. Ein besonderer Punkt ist noch anzu-

merken: Der letzte Screen wird im OVERSCAN-Modus betrie-

ben, d.h. daß der Bildschirm-Rand mit zur Zeichenfläche ge-

hört.

Ermöglicht wird dies durch eine Manipulation der sogenannten
View-Struktur, die angıbt, wo die Zeichenfläche beginnt. Zu

diesem Zweck laden wir einen Teil der Preferences-Struktur,

der gerade noch die in Preferences einstellbaren ViewOffsets

(+118 und +119) enthält. Diese Offsets lesen wir aus, um später
das Original-Display wiederherzustellen und ziehen von x- und
y-Koordinate einen Wert ab, der den Zeichenflächen-Anfang
garantiert außerhalb Ihres Monitors positioniert (linke obere

Ecke). Die neuen Werte werden dann in der Preferences-Struk-

tur abgelegt und mit SetPrefs gesetzt. Die Screengröße muß na-
tirlich entsprechend vergrößert werden. Zu Demonstrations-
zwecken zeichnen wir nun etliche Linien, damit Sıe sehen, daß

wirklich jeder Millimeter des Bildschirmrandes zur Verfügung
steht.

Den Effekt des OVERSCAN haben Sie mit Sicherheit bereits in
vielen Demos oder Intros zu sehen bekommen, meist in Verbin-

dung mit scrollenden Schriften, die Sie natürlich auch einbauen

können. OverScan funktioniert auch mit jedem anderen Screen
oder Window - Voraussetzung ist jedoch immer entweder die

124 Amiga Tips & Tricks

GetPrefs/SetPrefs-Anwendung oder die direkte Manipulation
der Copper-Liste, deren Anfangsadresse in dem Offset +56 von

der Basisadresse der Graphics.Library zu finden ist. Hier das
Programm, das auch unter V1.3 seinen Dienst tut:

DEFLNG a-z
DECLARE FUNCTION AllocMem LIBRARY

LIBRARY" :bmaps/exec.Library"
DECLARE FUNCTION OpenScreen LIBRARY

LIBRARY" :bmaps/intuition.Library"
LIBRARY": bmaps/graphics. library"

Graf ikDemo:

WINDOW CLOSE 1
NewScreenSize%=32
PreferencesSize%=120

MemorySize%=NewScreenSize%+PreferencesSize%

MEMF.CHIP=2
MEMF.CLEAR=65536&
MEMF=MEMF.CHIP+MEMF.CLEAR

NewScreen=Al locMem(MemorySize%, MEMF)
IF NewScreen=0 GOTO failed

x$1ze%=320
ySize%=256

zSize%=5

ScreenQuiet%=256

CustomScreen%=15

ViewMode%=0

ScreenType%=ScreenQuiet%+CustomScreen%
POKEW NewScreent4, xSize%
POKEW NewScreenté, ySize%

POKEW NewScreen+8, zSize%
POKEW NewScreen+14,ScreenType%

Preferences=NewScreentNewScreenSize%

GetPrefs Preferences,PreferencesSize%
Viewx%=118

ViewY%=119

OldX%=PEEK(Preferences+V i ewX%)

OldY%=PEEK(Preferences+ViewY%)
OverScanz=0

Demo:

ScreenBase=OpenScreen(NewScreen)

IF ScreenBase=0 GOTO failed

RastPort=ScreenBase+84

ViewPort=ScreenBase+44

IF OverScan%>0 GOTO NewPrefs

SetRGB4 ViewPort,0,0,0,0
SetRGB4 ViewPort,1,15,15,15
IF ViewMode%=0 THEN

yStep%=8
GOSUB ShowColors

GOSUB ShowSData

Das AmigaBASIC 125

ELSEIF ViewMode%=128 THEN
yStepx=4
GOSUB ShowColors
GOSUB ShowSData

ELSEIF ViewMode%=2048 THEN
GOSUB ShowHAM

END IF
warte:

zeit!=TIMER+7
WHILE zeit!>TIMER
WEND
READ ViewMode%

IF ViewMode%>-1 THEN
READ OverScan%

x$1ze%=320+0verScank
yS1ze%=256+0verScan%
POKEW NewScreent4, xSi1ze%
POKEW NewScreent+t6, ySize%
READ zSize%

POKEW NewScreen+8, zSize%
POKEW NewScreent12, ViewMode%
CloseScreen ScreenBase
GOTO Demo

END IF
POKE Preferences+ViewX%, OLdX%
POKE Preferences+ViewY4%, OldY%
SetPrefs Preferences, 120, -1
CloseScreen ScreenBase
FreeMem NewScreen MemorySize%

LIBRARY CLOSE
WINDOW 1,,,,-1
END

NewPrefs:

POKE Preferences+ViewX%, OLdX%- 16

POKE PreferencestViewY%, OLdY%- 16
SetPrefs Preferences, 120, -1
SetAPen RastPort, 1

FOR i%=1 TO 11
Move RastPort,0,0

Draw RastPort, 1%*32, 287

Move RastPort,0,287
Draw RastPort, 14*32,0
Move RastPort,351,0
Draw RastPort, 14*32, 287
Move RastPort,351,287
Draw RastPort, 14*32,0

NEXT

SetDrMd RastPort,0

SetAPen RastPort,2
READ a$
Move RastPort, 144, 146
Text RastPort,SADD(a$),LEN(a$)

GOTO warte

126 Amiga Tips & Tricks

ShowColors:

FOR i%=0 TO 2°zSize%-1
SetAPen RastPort, ix
RectFill RastPort,0, i%*yStep%,xSize%-1,(1%+1)*yStep%- 1

NEXT
RETURN

ShowSData:
READ a$
colx=2° zSizex- 1
SetAPen RastPort,col%

SetBPen RastPort,0

SetDrMd RastPort, 1

Move RastPort,0,6

Text RastPort, SADD(a$), LEN(a$)

RETURN

ShowHAM:

SetDrMd RastPort, 1

FOR 9%=0 TO 15
b%=0
Move RastPort,0,9g%*10

SetAPen RastPort,0

Draw RastPort,0,9%*10+9
Move RastPort,1,9%*10

SetAPen RastPort,g%+48
Draw RastPort,1,9%*10+9
FOR x%=0 TO 7

FOR r%=1 TO 15

SetAPen RastPort ,r%+32
Move RastPort ‚x%*32+r%+1,9%*10
Draw RastPort ‚x%*32+r%+1,9%*10+9

NEXT

b%=b%+1
Move RastPort ‚x%*32+17,9%*10

SetAPen RastPort,b%+16 ;
Draw RastPort, x4*32+17, gX%*10+9
FOR r%=14 TO O STEP -1

SetAPen RastPort, r4+32
Move RastPort ‚x%*32+32-r%,9%*10
Draw RastPort ‚x%*32+32-r%,9%*10+9

NEXT
b%=b%+1
IF b%<16 THEN

SetAPen RastPort ,b%+16
Move RastPort, x%*32+33, gx*10
Draw RastPort , x4*32+33, g%*10+9

END IF
NEXT

NEXT
READ a$

Move RastPort,0, 180
SetAPen RastPort, 1
SetBPen RastPort,0
Text RastPort, SADD(a$), LEN(a$)

——— Das AmigaBASIC 127

GOTO warte

DATA "Farben: 32 Modus: Normal"

DATA 128,0,6

DATA "Farben: 64 Modus: Halfbright"

DATA 2048,0,6

DATA "Farben: 4096 Modus: HoldAndModi fy"
DATA 0,32,2,"0VERSCAN", -1

3.3 Fading (Ein- und Ausblenden von Grafiken)

Hiermit können Sie viele interessante Effekte erzielen. Zum

Beispiel werden so Texte ein- oder ausgeblendet, oder manche

Grafiken verändern kontinuierlich ihre Farbe (das heißt "cycle").
Alles wunderbare Fähigkeiten, die ein Programm erst an-
sprechend machen.

Wie vielleicht einige unter Ihnen, die den Begriff "Fading" noch
nicht gehört haben, möchte ich ıhn kurz erläutern. "Fading" ist
das englische Wort für "Blenden" und wird im Zusammenhang
mit dem Ein- oder Ausblenden benutzt. Eigentlich wird der Be-
griff in der Musik verwendet, viele moderne Lieder werden zum ©
Schluß ausgeblendet. Im Englischen nennt man dies "Fade-Out".
Das Gegenstück dazu wäre das "Fade-In". Nun kann man natür-

lich auch die beiden Ausdrücke auf die Optik beziehen. Ich

denke dabei z.B. an das Ein- und Ausblenden von Bildern oder
Schriftzügen. Genau dies soll jetzt beschrieben werden.

3.3.1 Fading - die Grundidee

Wie alle weiteren Programme dienen die nun folgenden natürlich

nur als Beispiel. Sie können dann die Routinen ausbauen und in

eigene Werke einsetzen. Das erste Programm zeigt die Grund-
idee. Es bietet die Möglichkeit, jede beliebige Farbe der Palette
vom Schwarz ausgehend aufzublenden und diese dann wieder
verdunkeln zu lassen. Damit wäre eigentlich schon die gesamte
Programmleistung beschrieben. Sehen Sie sich einmal das dazu-
gehörige Listing an:

128 Amiga Tips & Tricks

URNRRRRERRRRKERREKRERERERERREERRERRREKKE

1% *

'* Farbflächen ein- oder ausblenden *
IK on nun nur nen nn nun en nun unenn nn *

ı% *

'* Autor : Wolf-Gideon Bleek *
'* Datum : Juni '87 *
* Mai '88 *
'* Grueße : Schulze *
'* Version: 1.0 *
'* Betriebssystem: V1.2 & V1.3 *
ı% *

UCRRRKERERERRREEREKEEKREEREREEEEEREREKKKER

Variablen:
DEFINT a-z
In =1 'Modus-Def inition
Out =-1
Anzahl=7
DIM SHARED Rot! (Anzahl),Grn! (Anzahl) ‚Bla! (Anzahl)
HauptProgramm:

GOSUB BildschirmAufbauen ;
Blenden:
GOSUB FarbenFestlegen

CALL Fade (0,7,16,In)

CALL Fade (0,7,16,Out)

GOTO Blenden

END

FarbenFestlegen:

FOR 1=1 TO Anzahl

Rot! (1)=RND

Grn! (1)=RND

Bla! (1)=RND

NEXT 7

RETURN

BildschirmAufbauen:

SCREEN 2,640,256,3,2
WINDOW 1,"Farbtest", (0,0)-(623,200),0,2
FOR 1=0 TO Anzahl

PALETTE i,0,0,0
NEXT 1

Breite=640/Anzahl

FOR j=0 TO 20

FOR i=1 TO Anzahl

x=RND*600

y=RND*150
LINE (x,y)-(x+Breite,y+Breite/2),i,bf

NEXT i

NEXT j

RETURN

SUB Fade (Start,Anzahl,Schritte,Modus) STATIC
Anf=0 : Ende=Schritte

IF Modus=-1 THEN

Anf=Schritte : Ende=0

—— Das AmigaBASIC 129

END IF
FOR j=Anf TO Ende STEP Modus

Faktor!=j/Schritte

FOR i=Start TO Start+Anzahl

PALETTE i,Rot!(i)*Faktor! ,Grn!(i)*Faktor! ,Bla!(i)*Faktor!
NEXT i

NEXT j

END SUB

Variablenfelder

Bla() Feld für Blauwerte

Gm(Feld für Grünwerte

Rot() Feld fur Rotwerte

Variablen

Anf Anfangsstadium der Farben

Anzahl Anzahl der Farben

Im SUB: Anzahl der zu blendenden Farben

Breite Ausdehnung der Beispielflachen

Ende Endstadium der Farben

Faktor Farbanteil zum jetzigen Zeitpunkt

In Pointer fur das Aufblenden

Modus Modusangabe: Ein- oder Ausblenden

Out Pointer für das Ausblenden

Schritte Anzahl der Schritte für den Vorgang

Start Erste Farbnummer

i, j Laufvariablen

x, Y Koordinaten der Beispielfelder

Programmbeschreibung

Die oben gegebenen Anmerkungen reichen nicht unbedingt aus,
um alles zu verstehen. Hier folgen die genaueren Angaben. Das
Programm definiert eine Funktion, die jede beliebige Farbe der
Palette ein- oder ausblendet. Auch zusammenhängende Farb-
gruppen können gemeinsam ’geblendet’ werden. Zuerst werden

zwei Variablen für die Art des Fading mit Werten belegt. Somit
brauchen Sie sich nicht die Zahlen zu merken, sondern Sie kön-

nen einfach den Namen benutzen. Als nächstes legen wir die

Auflösung mit sieben Farben fest (zuzüglich dem Hintergrund).

130 Amiga Tips & Tricks ———

Dann wird für jede Farbe ein Feld definiert, auf das auch die
SUB-Routine zugreifen kann. In diesem Feld werden die Farb-
werte gespeichert, die beim Fading erreicht werden sollen.

Zur Demonstration wird daraufhin im Unterprogramm "Bild-
schirmaufbauen" ein neuer Screen geöffnet - mit der vorher ein-
gestellten Farbtiefe. Auf ihm wird das Ausgabe-Window mit al-
lerhand bunten Rechtecken vollgezeichnet.

Nun zum Hauptteil, der dann vom Programm abgearbeitet wird.

Es wird ein Unterprogramm angesprungen, das die Farbfelder
mit "zufälligen" Werten versorgt. Danach wird die wichtigste
SUB-Routine gleich zweimal hintereinander aufgerufen. Als
Parameter werden ihr die Nummer der ersten Farbe und deren
Anzahl, die Abstufung und der Pointer übergeben. Letztes sagt

aus, ob von Schwarz zur gewünschten Farbe (=einblenden) oder
ausgeblendet werden soll. Die Abstufung bestimmt, in wie vielen
Einzelschritten das geschehen soll, und die ersten beiden Werte
dürften wohl klar sein.

Kommen wir nun zur Besprechung der eigentlichen Routine.
Der Anfangswert wird ın Abhängigkeit zum Pointer gesetzt,
entweder QO für Schwarz oder der Wert von "Schritte" für "voll-

ständig" dargestellt. Auch das Ende wird dadurch bestimmt. Die
Schleife, in der die Farbwerte ın Teilschritten ausgegeben wer-
den, berechnet für jede Abstufung einen Faktor und weist dann

in einer inneren Schleife mit der PALETTE-Anweisung die

neuen Farben zu. Dies wird so lange wiederholt, bis entweder

die gewollte Farbe erreicht ist oder alles auf Schwarz abgedun-
kelt wurde.

3.3.2 Fade-Over

Dies ist eine Variante des obigen Programms. Hier wird nicht
immer stur von Schwarz zur Farbe und dann wieder zum
Schwarz geblendet, sondern man legt die Ausgangs- und End-
farbe frei fest. Sie können so jeden Übergang simulieren. Die
Farben des Regenbogens dürften nun kein Problem mehr sein.

—— Das AmigaBASIC 131

ERRAARRARKEERERERREEKREREEREREREEREEEREE

ı% ®

'* Farbflächen umblenden *
1K —_ ns www ewww ew ee nw wwe ween *

ı 8 *

'* Autor : Wolf-Gideon Bleek *

'* Datum : Juni '87 *
ix Mai 188 *

'* GrueBe : Herrchen & Frauchen *

ı* Version: 1.0 *

'* Betriebssystem: V1.2 & V1.3 *
1% AR

VERKEHRT HT TI TE

Variablen:
DEFINT a-z
Anzahl=7
DIM SHARED Rot! (Anzahl,1),Grn! (Anzahl,1),Bla! (Anzahl, 1)
HauptProgramm:

GOSUB BildschirmAufbauen |

Blenden:

GOSUB FarbenFestlegen

CALL Fade (0,7,8)

GOTO Blenden

END

FarbenFest legen:

FOR i=1 TO Anzahl

Rot!Ci,0)=Rot!(i,1)
Grn!(i,0)=Grn!(i,1)
Bla!(i,0)=Blal(i,1)

Rot!(i,1)=RND
Grn!(i,1)=RND
Bla!(i,1)=RND

NEXT i

RETURN

BildschirmAufbauen:

SCREEN 2,640,256,3,2

WINDOW 1,"Farbtest",(0,0)-(623,200),0,2
FOR 1=0 TO Anzahl

PALETTE i,0,0,0

NEXT i

Breite=640/Anzahl
FOR j=0 TO 20

FOR i=1 TO Anzahl

x=RND*600

y=RND* 150

LINE (x,y)-(x+Breite,y+Breite/2),i,bf
NEXT i

NEXT j

RETURN |
SUB Fade (Start,Anzahl,Schritte) STATIC
FOR j=0 TO Schritte

FOR i=Start TO Start+Anzahl

Rdiff!=(Rot!Ci,1)-Rot!(i,0))/Schritte*j

132 Amiga Tips & Tricks

Gdiff!=(Grn!(i,1)-Grn!(i,0))/Schritte*j
Bdiff!=(Bla!(i,1)-Bla!(i,0))/Schritte*j
PALETTE i1,Rot!(i1,0)+Rdiff!,Grn!(i,0)+Gdiff! ,Bla!(i1,0)+Bdiff!

NEXT i
NEXT j
END SUB

Programmbeschreibung

Die Grundstruktur des Programms ist eigentlich gleich geblie-
ben. Jedoch sind kleine, aber feine Anderungen gemacht wor-
den. Bei der Variablendefinition fallt auf, daB die beiden Poin-

ter In und Out nicht mehr benötigt werden. Das ist klar, denn es

wird immer zur neuen Farbe geblendet. Deswegen ist auch im
Hauptprogramm ein Aufruf der Fade-Routine weggelassen wor-
den. Es werden nur immer neue Farben ausgesucht und zu die-
sen wird dann tiberblendet.

Weil die Farbfelder jetzt eine weitere Dimension bekommen ha-
ben, mit der gekennzeichnet wird, ob es die Ausgangsfarbe (0)
oder die Zielfarbe (1) ist, wird beim Festlegen der neuen Farb-
werte der letzte neue Wert in das Register fiir den Ausgangswert

kopiert, und die Zielwerte werden dann neu definiert. So kann

das Programm immer auf den momentanen Zustand zugreifen,

denn eine Abfragefunktion existiert nicht.

Die Fading-SUB-Routine geht nun in beliebig großen Schritten
von der einen Farbe zur anderen. Dafiir wird die Differenz

durch die Schritte geteilt und mit der Zahl der schon vollzoge-
nen Schritte multipliziert. Das Ergebnis jeder einzelnen RGB-
Farbe wird zum entsprechenden Wert addiert. Wenn die äußerste

Schleife durchlaufen ist, sind die neuen Farben erreicht.

3.3.3 Fading für jeden RGB-Anteil

Die letzte Fading-Möglichkeit ist eigentlich aus der ersten ent-
standen. Warum muß denn die Farbe gleich vollständig einge-
blendet werden? Durch den PALETTE-Befehl haben wir auch
die Möglichkeit, jede der RGB-Farben einzeln aufzublenden.

——— Das AmigaBASIC 133

Deshalb erscheinen die Farben hier erst rot, dann wird Grün

dazugemischt, und erst zum Schluß wird auch Blau hinzuge-
geben.

ERARAAEKREEAREEREEKREEEREEEERREREEEEKRKRE

t*® *

'* Farbflächen über RGB umblenden

* ' ’ ' ' ‘) ‘ ' ' ' ‘ 1 ' ' ' ' ' 0 ' ' ' ' ‘ ' i N ı ' ’ ' +
%

t* *

'* Autor : Wolf-Gideon Bleek *
'* Datum : Juni '87 *
ix Mai 188 *

'* Grueße : Jana & Svolli *
'* Version: 1.0 *
'* Betriebssystem: V1.2 & V1.3 *
ı* *

Rd 3 5 0 2 0 5 5 3 2 2 2 5 2 2 2 2 0 2 0 5 2 3 2 0 2 2 2 2 2 2 2 3

Variablen:
DEFINT a-z

In =1 'Modus-Definitoin
Out =-1
Anzahl=7
DIM SHARED Rot! (Anzahl),Grn! (Anzahl),Bla! (Anzahl)

HauptProgramm: .

GOSUB BildschirmAufbauen
Blenden:
GOSUB FarbenFestlegen

CALL Fade (0,7,16,In)
CALL Fade (0,7,16,0ut)

GOTO Blenden

END

FarbenFestlegen:

FOR i=1 TO Anzahl

Rot!(i)=RND
Grn! (1)=RND

Bla! (1)=RND

NEXT i

RETURN

BildschirmAufbauen:

SCREEN 2,640,256,3,2

WINDOW 1,"Farbtest", (0,0)-(623,200),0,2

FOR i=0 TO Anzahl

PALETTE i,0,0,0

NEXT i

Breite=640/Anzahl

FOR j=0 TO 20

FOR i=1 TO Anzahl

x=RND*600

y=RND* 150

LINE (x,y)-(x+Breite,y+Breite/2),i,bf
NEXT i

134 Amiga Tips & Tricks ——

NEXT j

RETURN

SUB Fade (Start, Anzahl ,Schritte,Modus) STATIC
Schritte=Schritte/2

Anf=0 : Ende=Schritte

IF Modus=-1 THEN

Anf=Schritte : Ende=0

END IF

AnfZu=Anf/Schritte

EndZu=Ende/Schritte

FOR j=Anf TO Ende STEP Modus

Faktor!=j/Schritte

FOR i=Start TO Start+Anzahl

PALETTE i,Rot!(i)*Faktor! ‚Grn!(i)*AnfZu,Bla!(i)*AnfZu
NEXT i

NEXT j

FOR j=Anf TO Ende STEP Modus

Faktor!=j/Schritte

FOR i=Start TO Start+Anzahl
PALETTE i,Rot!(i)*EndZu,Grn!(i)*Faktor! ‚Bla! (i)*AnfZu

NEXT i

NEXT j

FOR j=Anf TO Ende STEP Modus

Faktor!=j/Schritte

FOR i=Start TO Start+Anzahl

PALETTE 1,Rot!(i)*End2u, Grn! (i)*EndZu, Bla! (i1)*Faktor!

NEXT i

NEXT j

END SUB

Programmbeschreibung

Bis auf die SUB-Routine gleicht das Listing dem ersten dieses
Abschnittes. Ich empfehle deswegen, diesen Teil zu kopieren. Sie

ersparen sich viel Tipparbeit. Als erstes kiirzt die Routine die

angegebene Schrittezahl um die Hälfte. Dies wurde deshalb ge-

macht, damit Sie bei allen Programmen etwa gleiche "Geschwin-
digkeitseinstellungen" machen können. Denn hier wird die glei-
che Schleife dreimal durchlaufen. Es dauert so fast dreimal so-
lange! Zu Beginn wird wieder der Startwert für die Blend-
schleife gesucht. Entweder wird mit dem Schwarzwert begonnen
oder aber mit der Farbe, das stellen Sie mit dem Modus-Pointer

ein.

Weil die PALETTE-Anweisung immer alle Farbwerte braucht,
muß z.B. in der ersten Schleife, die nur den Rotwert beeinflußt,

bei den beiden anderen Werten der Anfangszustand gesetzt wer-

— Das AmigaBASIC 135

den. In den anderen Schleifen braucht das Programm aber die
Endwerte, da der Rotwert schon abgehandelt wurde. Dafiir be-
rechnet das Unterprogramm am Anfang zwei Faktoren (AnfZu,
EndZu). Sonst aber läuft hier alles genau wie im ersten Pro-
gramm ab.

3.4 Schnelle Vektorgrafik

Bei der Vektorgrafik werden alle Objekte nicht vollständig
durch ihre Flächen dargestellt, sondern nur ihre Kanten, die
Vektoren. Dadurch wird eine schnelle Darstellung ermöglicht,
denn die aufwendige Zeichenarbeit für die großen Oberflächen
entfällt ganz und ist nur auf die Eckpunkte und die dadurch
resultierenden Kanten beschränkt.

3.4.1 Gittermodelle darstellen

Für die Verarbeitung eines 3D-Körpers speichern wir seine
Eckpunkte als dreidimensionale Koordinaten. Zusätzlich wird

noch eine Verbindungsvorschrift aufgestellt, nach der alle Koor-
dinaten-Tripel verbunden werden. Hat man alle diese Daten, so

müssen sie vom Raum auf die Bildschirmfläche projiziert wer-
den, denn die Darstellung erfolgt auf einer Fläche. In dem fol-

genden Programm wurde eine zentrische Abbildung auf der
Bildschirmebene gewählt. Als Information für die Künstler und
Zeichner unter Ihnen: Alle Objekte werden durch eine Ein-
Fluchtpunkt-Perspektive abgebildet.

Da die Ebene, unser Bildschirm, durch ihre z-Koordinate ein-

deutig festgelegt ist, wird dieser Wert bei allen Punkten unin-
teressant. Darauf baut nun die Überlegung auf, das Gitternetz
abzubilden. Um die x- und y-Koordinaten auf dem Bildschirm
zu finden, stellen wir uns einen Raum vor, in dem sich der

Körper befindet. Weiterhin denken wir uns irgendwo im Raum
einen Punkt, er wird im folgenden "Fluchtpunkt" genannt.

136 Amiga Tips & Tricks ———

Zwischen dem Körper und dem Fluchtpunkt liegt unser Bild-

schirm als Ebene, die durch ihren z-Wert bekannt ist. Jetzt zie-

hen wir von jedem Eckpunkt unseres Körpers eine Strecke zum
Fluchtpunkt. Da, wo sich diese Strecke mit der Bildschirmebene
schneidet, finden wir die gesuchten x- und y-Werte für diesen
Eckpunkt und damit seine Lage auf dem Bildschirm!

Wie soll nun ein Programm aufgebaut sein, das diese Abbildung
vornimmt? Am wichtigsten sind sicherlich die Daten der Eck-
punkte. Damit wir erst einmal damit arbeiten können und nicht

zuviel Aufwand und Umstand betreiben, habe ich sie in DATA-
Zeilen abgelegt. Zusätzlich zu den Eckpunktkoordinaten müssen
noch die Verbindungsvorschriften vorhanden sein, auch diese le-

gen wir in DATA-Zeilen ab. In späteren Versionen des Pro-
gramms können Sie zusätzlich von Speicherroutinen einbauen,

um mit verschiedenen Körpern und verschiedenen Bewegungen
zu arbeiten.

VA

Fluchtpunkt Objekt

Bildschirmebene

in.
Lal

2

Abb. 1 Fluchtpunktperspektive

——— Das AmigaBASIC 137

Wenn das Programm alle Raumkoordinaten kennt, kann es mit

der Berechnung der Bildschirmkoordinaten beginnen. Dazu ver-
wendet es die Streckenformel im dreidimensionalen Raum:

3D Sreckenformel

px dx

=[py | +1x= [dy

pz dz N
E

%

Abb. 2 3D-Streckenformel

Um die Formel benutzen zu können, müssen Sie folgendes wis-
sen: Die gesuchten Bildschirmkoordinaten heißen x und y. Der
z-Wert ist uns bekannt, weil wir ihn festlegen. Die p-Koordina-
ten wissen Sie, weil sie zu dem Punkt gehören, mit dem wir die
Berechnung durchführen wollen. Bleiben nur noch die d-Werte.
Es sind die Differenzen der einzelnen Koordinaten des Punktes
und des Fluchtpunktes (px-fx, py-fy, pz-fz). Die kennen Sie

auch, wenn Sie sie berechnet haben!

IRRE TEN KT KK ET N

'* 3D - Netzgrafik *

'* Autor : Wolf-Gideon Bleek *

'* Datum : 8. Mai 1987 *

* 14. Mai 1988 *

'* GrueBe : Franky *

'* Version: 1.0 *

'* Betriebssystem: V1.2 & V1.3 *
CHEKKKKREKEKRKKKEKKKKKKKKKKKKKRKKKK

Variablen:
RESTORE WuerfelDaten

DEFINT B, V

Punkte = 25 ' Anzahl der Objektpunkte
ZEbene =-25 ' Bildschirmebene

PktAnz = 0 ' Anzahl der Objektpunkte
Verbind = 0 ' Anzahl der Verbindungen

OPTION BASE 1

DIM P(Punkte, 3) Raumkoordinaten
DIM B(Punkte, 2) Bildkoordinaten
DIM V(Punkte*1.8,2) ' Verbindungsvorschrift

DIM F(3) Fluchtpunkt (x,y,z)

|

i]

8

DIM D(3) ' Differenz
|

F(1)=-70 ' Fluchtpunkt x

138 Amiga Tips & Tricks

F(2)=-50 ty
F(3)=240 '2

Hauptprogramm:
PRINT "Fluchtpunkt (x,y,z) ? "sF(1)","F(2)", "F(3)
PunkteLesen:
Grund=PktAnz ' Basis fr Verbindungen

Loop:

READ px,py,pz
IF px<>255 THEN

PktAnz=PktAnz+1
P(PktAnz, 1)=px
P(PktAnz, 2)=py*- 1
P(PktAnz,3)=pz
GOTO Loop

END IF

VerbindLesen:

READ vi,v2
IF vi<>255 THEN

Verbind=Verbind+1

V(Verbind, 1)=Grund+v1

V(Verbind, 2)=Grund+v2

GOTO VerbindLesen

END IF

READ Ende

IF Ende<>0 THEN GOTO PunkteLesen

BildBerechnen:

FOR i=1 TO PktAnz

FOR j=1 TO 3

DC j)=FCJ)-PCI, 5)
NEXT j

Lambda=(ZEbene-P(i,3))/D(3)
B(i,1)=P(i,1)+lambda*D(1)

B(i,2)=P(i,2)+lambda*D (2)

NEXT i

BildAusgeben:

FOR i=1 TO Verbind

x1=B(V(i,1),1)+50

x2=B(V(1,2), 1)+50

y1=B(V(1,1),2)+100

y2=B(V(i,2),2)+100

LINE (x1,y1)-(x2,y2)

NEXT i

END

WuerfelDaten:

REM x,y,z

DATA 32, 20, 20

DATA -32, 20, 20

DATA -32,-20, 20

DATA 32,-20, 20

DATA 32, 20,-20

DATA -32, 20,-20

DATA -32,-20,-20

——— Das AmigaBASIC

DATA

DATA

REM

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

32, -20, -20
255,0,0

Y
o
’
 R

=
=

=
=

=

N
N
W
R
E
O
N

D
U
S

W
D

n
m
.

V
A
N

OO

V
U
I
O
O
N

OQ

U
l

W
s

W
s

~~
» ©

~ —

PyramidenDaten:
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

Variablenfelder

-32, 25,-20
32, 25,-20
32, 25, 20

-32, 25, 20
0,65, 0
‚0,0 un

=

=
=

baa
d

=
=

=
N

U
U

U
U

W
N

=)

NO

V
E

W
N

a
=

&
W
P

u

w
i
e

- oO

= oO

N

PO
BO
DO
FÜ
v0

Raumkoordinaten

int, Bildkoordinaten

Differenzen der Abbildung

Fluchtpunktkoordinaten

int, Verbindungsvorschrift für alle Objekte

Variablen

Ende

Grund Bezug für die Verbindungen eines Objektes

PktAnz Anzahl aller abzubildenden Punkte

Punkte maximale Anzahl der Objektpunkte

Verbind Anzahl der Verbindungen

gelesener Wert, der bei Ende = O ist

139

140 Amiga Tips & Tricks ———

ZEbene z-Koordinate der Bildschirmebene

i,j Laufvariablen

lambda Faktor der Koordinatenumrechnung

PX, py, pz Koordinaten eines Punktes im Raum

vi erster Punkt einer Verbindung

v2 zweiter Punkt einer Verbindung

x1, y1 Bildkoordinaten fur die Ausgabe (1. Punkt)

x2, y2 Bildkoordinaten fur die Verbindung (2. Punkt)

Programmbeschreibung

Zuerst, bei der Variablendefinition, wird der DATA-Pointer auf
den Anfang der Punktdaten gesetzt. In diesem Fall sind es die
Koordinaten eines Wirfels. Dann werden alle Variablen, die mit

einem B oder V anfangen, als Integer eingestuft. Sie werden
gleich sehen, warum. Damit später die Felder für die Punkte
dimensioniert werden können, hält das Programm in der Vari-
ablen "Punkte" fest, wie viele Punkte maximal gespeichert wer-

den sollen. Außerdem wird die Lage der Bildschirmebene im
Raum durch die z-Koordinate eingestellt. Dann wird die Anzahl
der gelesenen Punkte und Verbindungen erst einmal auf Null
gesetzt.

Nun folgt die Dimensionierung der benötigten Variablenfelder.
Es sind dies einmal das Feld P, in dem die Punktkoordinaten

gespeichert werden (deswegen mit dem Index 3), dann das Feld
B (Integer), in dem die späteren Bildschirmkoordinaten zu jedem
Raumpunkt abgelegt werden. Außerdem das Feld V (auch inte-

ger), das immer zwei Punktnummern enthält, die angeben, wel-
che Punkte miteinander verbunden werden sollen. Und als letz-
tes das Feld D mit drei Elementen, das für die Differenzen bei

der Punktberechnung gebraucht wird. Auch die Position des
Fluchtpunktes wird in einem Feld F abgelegt, anstatt mit einem
Buchstaben als Index (FPx, FPy, FPz), weil somit die Berech-
nungen automatisiert werden können. Sehen wir uns nun das

Hauptprogramm an:

Um die Grafik später besser beurteilen zu können, werden in
der nächsten Zeile die Fluchtpunkt-Koordinaten ausgegeben.
Dann folgt die Punktlese-Routine. In ihr wird zuerst der Pointer
"Grund" auf die erste Nummer des zu lesenden Punktes gesetzt.

——— Das AmigaBASIC 141

Er dient zur Verarbeitung von mehreren Objekten, so brauchen
Sie später nicht auszuzählen, welche Nummer der erste Punkt im

siebten Objekt hat, Sie schreiben einfach eine Eins. In der
Schleife werden Raumkoordinaten gelesen und es wird über-
prift, ob der px-Wert gleich 255 ist. Dies ist die Kennung da-

fiir, daB alle Punkte eines Objektes gelesen sind und nun die

Verbindungsvorschriften folgen. Sonst wird der neue Punkt in
die Tabelle eingetragen, und von neuem werden Koordinaten
gelesen.

Die Schleife zum Lesen der Verbindung arbeitet eigentlich nach
dem gleichen Prinzip. Zuerst werden die Nummern der beiden
Punkte gelesen, die verbunden werden sollen. Entsprechen sie

der Endkennung, so wird die Schleife verlassen, andernfalls
werden die beiden Zahlen in das Feld eingetragen, und alles

fangt von vorne an. Als letztes wird eine Zahl aus den Daten
gelesen, die Auskunft darüber gibt, ob noch ein weiterer Körper

folgt. Dieser Fall ist gegeben, wenn der Wert ungleich null war.

Sind beide Schleifen endgültig abgeschlossen, werden die Bild-
schirmpunkte des Objektes berechnet. Dies geschieht in einer
Schleife, die einfach die Liste Punkt für Punkt durchgeht und
für jeden die Bildschirmwerte ausrechnet. Das Verfahren ist
oben schon beschrieben, trotzdem möchte ich noch einmal dar-

auf eingehen. Nachdem die Differenzen der Fluchtpunktwerte
und des aktuellen Punktes in dem Feld D abgelegt worden sind,
wird der Lambda-Faktor berechnet. Darauf setzt das Programm
den gewonnenen Wert in die Gleichungen für die x- und y-
Werte ein. Fertig!

Zum Schluß folgt noch die Ausgabe des Gitternetzes. Hierfür
durchläuft eine Schleife alle Verbindungen und sucht sich für
jede die benötigten Punktkoordinaten heraus. Dabei kann es
durchaus vorkommen, daß ein vorher berechneter Punkt gar
nicht gebraucht wird, weil er in keiner Verbindung auftaucht.
Da das Objekt in der Nähe des Nullpunktes definiert wurde,
muß es jetzt noch, um es sichtbar darzustellen, ın die Bild-
schirmmitte verschoben werden. Dann wird Linie für Linie ge-
zeichnet.

142 Amiga Tips & Tricks ———

3.4.2 _ Gittermodelle bewegen

Die Bewegung ist grundsätzlich nur eine Aneinanderreihung von
stehenden Bildern. Deshalb können wir aufbauend auf die Dar-
stellung programmieren und nur die Raumkoordinaten für jedes
Bild leicht beeinflussen. Leider stellte sich aber heraus, daß es

damit nicht getan ist, denn die Bewegung wird dann viel zu
langsam.

Für eine flüssige Bewegung auf dem Bildschirm darf während
der Ausgabe zuerst einmal nicht gerechnet werden, alle Werte

müssen schon vorher feststehen. Außerdem reicht die einfache
Art mit vielen LINE-Befehlen nicht aus. Da es eine Betriebssy-
stemroutine gibt, die für die Ausgabe zusammengehöriger Linien
zuständig ist, wollen wir diese verwenden.

3.4.3 _ Beschleunigung durch Betriebssystem-
Routinen

Die Entwickler des Amiga-Betriebssystems haben sich viele Ge-
danken über die Anwendungen gemacht, die später auf dem Su-

percomputer laufen werden. Sicherlich kannten sie auch die

Netzgrafik. Denn nur mit ihr ist eine Echtzeitbetrachtung unter
abgespeckten Bedingungen möglich. Deshalb schufen sie eine
Grafikroutine, die alle Punkte einer Liste nacheinander verbin-

det. Genau diese Routine ist die letzte Möglichkeit für uns, noch

eine schnellere Darstellung zu bekommen. Durch sie lassen wir
unser Gitternetz zeichnen. Dafür legen wir wie immer zuerst die
Eckpunkte durch ihre Raumkoordinaten ab, die später auf den
Bildschirm projiziert werden. Die Eckpunkte werden für die
Bewegung im Raum bewegt, auch dies bleibt beim alten. Damit
wir die durch die schnelle Routine gewonnene Zeit nicht wieder
verlieren, berechnet das Programm vor der Ausgabe alle Szenen

und legt diese in ein Feld ab.

Nun kommt aber das erste Problem! Die Routine erwartet eine
Liste der Bildschirmkoordinaten, die in ihrer angegebenen Rei-
henfolge auch verbunden werden. Dies ist ein großer Nachteil

——— Das AmigaBASIC 143

und zugleich ein Vorteil. Einmal brauchen nicht immer Koordi-
natenpaare gespeichert zu werden, zum anderen muß aber die

Figur so aufgebaut sein, daß sie mit einer durchgehenden Linie
gezeichnet werden kann. Wenn nicht, so werden manche Kanten
mehrmals abgeschritten, was eigentlich unnötig ıst. Aber es gibt
eben Objekte, bei denen sich mit nur einer Endloslinie nichts
machen läßt.

Wegen dieser Vorschrift des Betriebssystems müssen Sie die
Verbindungsvorschrift ändern. Sie geben jetzt nicht mehr Koor-
dinatenpaare ein, sondern Sie müssen auf den Kanten des Ob-

jektes entlangwandern (keine vergessen!) und tragen nacheinan-
der die Nummern der Eckpunkte ein, die Sie in Gedanken

überschritten haben.

Wenn das Programm diese Daten hat, kann es mit den Berech-
nungen beginnen. Zuerst erfolgt das Verschieben des Körpers im

Raum mit dem Ablegen der Bildschirmkoordinaten, dann der
neue Grafiktransfer. In diesem Teil werden die vorhandenen
Bildschirmwerte in eine lange Liste eingetragen, die später der
Betriebssystemroutine ın Teilabschnitten übergeben wird.

Ist die Liste vollständig erstellt, geht es in der Ausgabeschleife
weiter. Hier werden wieder alle Szenen durchlaufen, und ein

entsprechender Pointer zeigt ın der Liste auf die Daten für die
aktuelle Szene. Dann werden die Werte an die Routine überge-

ben, die diese Ausgabe übernimmt. Um auch gleich wieder das
Bild zu löschen, wird die Farbe auf Hintergrund gesetzt und das
Objekt wird von neuem gezeichnet. Wenn alle Bilder ausgegeben
worden sind, springt das Programm zum Anfang der Ausgabe
und alles startet wieder.

Bd 2 2 2.208 2.2 2 2 0 2 2 2 2 2 2 202 2 2 2 2 2 2 2 2 2 2 2 2

'* 3D - Netzgrafik

'* Autor : Wolf-Gideon Bleek

'* Datum : Juni 1987

ad 14. Mai 1988

'* Version: 1.5

'* Betriebssystem: V1.2 & V1.3
IE 2 5 2 5 2 2 202 5 2 5 2 205 2 202 2 2 5 2 2 2 272 5 2 2 2 202 7

LIBRARY ":bmaps/graphics. library"

RESTORE

+
+

©
&

&
%*

144 Amiga Tips & Tricks

OPTION BASE 1
Variablen:

DEFINT B,V,G

READ Punkte ' Anzahl der Objektpunkte
READ Verbind ı Zähler der Verbindungen

ZEbene=25 ı Bildschirm Ebene

Szenen=50 ' Anzahl der Szenen
|

t

Raumkoordinaten

Bi ldkoordinaten

DIM P(Punkte, 3)

DIM B(Szenen, Punkte, 2)
DIM G(Verbind*2*Szenen)

DIM V(Verbind) ' Verbindungsvorschrift

DIM D(3) ' Differenz

DIM F(3) ' Fluchtpunkt (x,y,Z)
F(1)=-70 ' Fluchtpunkt x
F(2)=-50 ' y (neg. wg. nichtkathes. Koord.Sys.)
F(3)=180 '2

PRINT "Fluchtpunkt (x,y,2) : “;FC1)","FC2)","F(3)
PunkteLesen:
RESTORE PyramidenDaten ' Objekt

FOR i=1 TO Punkte

READ px, py,pz
P(i, 1)=px
P(i,2)=py*-1 ' Transfer in anderes Koordinatensystem
P(i,3)=pz

NEXT i

Verbindlesen:

FOR i=1 TO Verbind

READ V(1)
NEXT i

BildVorausBerechnen:

FOR sz=1 TO Szenen

FOR i=1 TO Punkte

FOR j=1 TO 3

DC J)=FCJ)-PCI, 5)
NEXT j

P(i,3)=P(1,3)+3

P(1,2)=P(1,2)-2

P(i,1)=PCi,1)+2

Lambda=(ZEbene-P(i,3))/D(3)
B(sz,i,1)=P(Ci,1)+Lambda*D(1)+200

B(sz,1,2)=P(1,2)+Lambda*D(2)+200

NEXT 1
NEXT sz

GraphikTransfer:
FOR j=0 TO Szenen-1

FOR i=1 TO Verbind*2 STEP 2

GC i+j*Verbind*2)=B(j+1,V(i/2+.5),1)

G(i+1+j*Verbind*2)=B(j+1,V(i/2+.5),2)

NEXT 1

NEXT j

Bi ldAusgeben:

——— Das AmigaBASIC

FOR i=0 TO Szenen- 1
Pointer=Verbind*2*i
FOR j=1 TO O STEP-1

COLOR j
CALL Move(WINDOW(8) ,G(1+Pointer) ,G(2+Pointer))
CALL PolyDraw(WINDOW(8),Verbind-1, VARPTR(G(3+Pointer)))

NEXT j

NEXT iq
GOTO BildAusgeben

GraphikDaten:
DATA 5,10

' Punkte, Verbindungen

PyramidenDaten:

DATA -32, 25,-20
DATA 32, 25,-20
DATA 32, 25, 20
DATA -32, 25, 20
DATA 0,65, O

Verbindungen:

DATA 2,1,5,4,3,59,2,3,4, 1
DATA 4,1

Variablenfelder

BO Bildschirmkoordinaten

DO Differenz der Koordinatenumrechnung

FÜ Fluchtpunktkoordinaten

GO Zusammenfassung: Koordinaten aller Szenen

PO Raumkoordinaten aller Punkte

vo Verbindungsvorschrift

Variablen-Liste

Lambda Faktor der Koordinatenberechnung

Pointer Zeiger auf die Koordinatenliste einer Szene

Punkte Anzahl aller Objektpunkte

Szenen Anzahl der zu berechnenden Szenen

Verbind Anzahl der Verbindungselemente

ZEbene z-Position der Ebene, auf die abgebildet wird

i,j Laufvariablen

PX, Py, PZ Raumkoordinaten eines Eckpunktes

Sz Schleifenzahler fur die Szenen

145

146 Amiga Tips & Tricks

Programmbeschreibung

Bevor die Variablen definiert werden, öffnet das Programm die

graphics-Library. Hierdurch können Sie die Grafikroutinen an-
sprechen, die für die Gitternetzausgabe gebraucht werden. Dann
werden alle Variablen, die mit B, V oder G beginnen, als Inte-
ger deklariert. Dies erspart das ständige Anhängen von Typen-
zeichen. Für die Gitternetzausgabe ist das neue Feld G hinzuge-
kommen, in ihm werden alle Koordinaten in ihrer Verbin-

dungsreihenfolge abgelegt. Und zwar immer ein 2-Byte-Inte-
gerwert für die x-Koordinate und ein 2-Byte-Integerwert für
die y-Koordinate.

Neu im Programm ist die Punkt- und Verbindungsleseschleife.
Sie gehen jetzt von festen Werten aus, die am Anfang des Pro-
gramms am Kopf der DATA-Zeilen gelesen werden. Somit er-

sparen Sie sich die Endkennung, und das Programm wird etwas
schneller. Das Verbindungsfeld ist nur noch mit einer Dimension
definiert, da es keine Paare, sondern die Kette der zu verbin-

denden Punkte speichert.

Nach der Berechnung müssen die so gewonnenen Daten in ein
Format gebracht werden, das die Betriebssystemroutine verar-
beiten kann. Die Routine mit dem Namen PolyDraw braucht
einmal eine Tabelle, in der nacheinander die x- und y-Werte als
kurze Integer-Zahlen stehen. Andererseits muß sie auch wissen,
wie viele Elemente sie davon verwenden soll. Die Tabelle kann
also ruhig sehr lang sein, es werden nur so viele Daten gelesen,
wie vorgeschrieben. Damit wird ein Pointer für das Ende ge-
spart. Wir legen die Grafikdaten für alle Szenen in das eine Feld

und übergeben der Routine immer die Adresse des ersten Ele- |
ments für die nächste Szene, außerdem geben wir ihr noch die
Zahl der Eckpunkte mit auf den Weg. Alles andere erledigt Po-
lyDraw von selbst.

Die Ausgabe erfolgt in einer neuen Schleife. Sie wird entspre-
chend der Anzahl der Szenen durchlaufen. In ihr wird erst ein
Zeiger berechnet, der auf das erste Element für die Ausgabe des

Gitternetzes zeigt. Dann folgt eine zweite Schleife, die zweimal

—— Das AmigaBASIC 147

durchlaufen wird. Zuerst zeichnet sie das Netz, indem der Gra-

fik-Cursor auf den Anfangspunkt gesetzt wird und die Poly-
Draw-Routine ihre Aufgabe erledigt.

Beim zweiten Durchlauf ist der Wert der Laufvariablen von Eins
auf Null gesetzt, und somit schaltet der COLOR-Befehl von der
ersten Zeichenfarbe auf die Hintergrundfarbe. Obwohl jetzt
wieder das Gitternetz gezeichnet wird, wird es für den Betrach-
ter effektiv gelöscht. Dieser Vorgang wiederholt sich solange, bis
alle Szenen geplottet worden sınd. Dann fängt die Ausgabe-
schleife wieder von vorne an.

3.4.4 _3D-Bilder für die Rot-Grün-Brille

Beim Experimentieren mit Mehrfluchtpunktsystemen und dem

zufälligen Betrachten eines 3D-Bildes kam mir die Idee, eine

Rot-Grün-Brille einzusetzen. Zuerst soll das Prinzip erklärt

werde, nach dem die 3D-Brille funktioniert.

Da der Mensch zwei Augen hat, sieht er auch zwei verschiedene
Bilder. Aus diesen Bildern "errechnet" das Gehirn die unter-
schiedlichen Raumlagen aller Gegenstände. Wie soll man nun mit
‘einem Bild die beiden Informationen für das Gehirn bereithal-
ten? Da tritt die Brille in Aktion! Die farbigen Folien der 3D-
Brille (meist sind es rote und grüne) filtern aus dem Bild die
beiden Einzelbilder heraus.

. Durch das rote Glas kann man nur das rote Licht sehen. Versu-
chen Sie es! Und dementsprechend können Sie durch das grüne

Glas nur alles Grüne sehen. Das Problem, daß an manchen Stel-

len beide Farben vorhanden sein können, hat man durch konse-

quentes Mischen beider Farben gelöst. Denn sie werden durch
die Farbfilter wieder getrennt. So kann man zwar nur einfarbige
Bilder darstellen, aber der Effekt ist großartig.

Wie wurde diese Möglichkeit in ein Programm umgesetzt? Die
dargestellten 3D-Bilder sind natürlich wieder Gitternetze, wie
auch in den vorigen Programmen. Das Programmierprinzip be-

148 Amiga Tips & Tricks ———

ruht nun auf der Tatsache, daß jedes Auge einen eigenen
Fluchtpunkt für sein Bild haben muß. Weil beide Augen etwas.
auseinander liegen, müssen folglich auch die Fluchtpunkte etwas
versetzt sein. Im Programm wird jetzt nicht mehr ein Gitternetz
berechnet und gezeichnet, sondern zwei Bilder mit auf der Ho-
rizontalen verschobenen Fluchtpunkten. Wie besprochen wird ein

Bild in Rot und das andere in Grün geplottet. Alle Stellen, an

denen sich beide Farben überlagern, werden in Braun, der addi-
tiven Mischfarbe, dargestellt.

Damit die Bedienung auch richtig komfortabel gestaltet ist, habe
ich Schieberegler für die Farbeinstellung gewählt. So können Sie
die Farbintensität von Rot, Grün und Braun selber einstellen

(für verwöhnte Augen!). Außerdem können Sie die Lage der
Fluchtpunkte verändern, um einen optimalen 3D-Effekt zu er-

zielen. Wenn Sie alles nach Ihren Wünschen eingestellt haben,
drücken Sie eine Taste, und das Programm gibt Ihnen alle Werte
aus. Somit können Sie die Werte fest einbauen oder für eigene
3D-Programme nutzen.

IE 2;

ı% *

'* 3D - Netzgrafik *

* t [ı [| i] i] ‘ ‘ t t Li Li i] i] i] ' i] t Li 4 [| ‘ t t i] i] ‘ ‘ +

ı%*

'* Autor : Wolf-Gideon Bleek

'* Datum : 24. Mai 1987

i* 14. Mai 1988

'* Grueße : Lars

'* Version: 2.0

'* Betriebssystem: V1.2 & V1.3
ı%

PHRAEKKKKKEKRKEKEEKKEEEKKKKKKKKKKKKK

LIBRARY ":bmaps/graphics. library"
RESTORE WuerfelDaten

+
+

¢
+

&€
+

HF
+

DEFINT B,V
OPTION BASE 1

Variablen:

Punkte = 25 ' Anzahl der Objektpunkte
ZEbene =-25 ' Bildschirmebene

PktAnz = 0 ' Anzahl der Objektpunkte
Verbind = 0 ' Anzahl der Verbindungen

ClickAnz=0

clickmoeg=20 |

DIM SHARED ClickTab(cl ickmoeg,4)

DIM SHARED ClickWrt(clickmoeg)

——— Das AmigaBASIC

DIM SHARED ClickArt(clickmoeg)

DIM P(Punkte, 3)
DIM B(2,Punkte,2) '
DIM V(Punkte*1.8,2) '
DIM D(3) '
DIM F(2,3) '
F(1,1)=-40 '
F(1,2)=-50 !
F(1,3)=240 '
F(2,1)=-80 '
F(2,2)=-50 '
F(2,3)=240 '
TextAusgabe:

CLS

LOCATE 1,40
PRINT "Fluchtpunkt 1 (x,
LOCATE 2,40
PRINT "Fluchtpunkt 2 (x
GOSUB KoordinatenAusg

Farbeinstellungen:

PALETTE 0,.6,.55,.4 !
PALETTE 1,.4,.35,0 '

PALETTE 2,.7,0,0 ' Rot 70%
PALETTE 3,0, .65,0 ' Grn 65%
Schieberegler:

Text$="Rot"

DefMove 40!,8!,100!,70!,2!
TextS="Grun"

DefMove 45!,8!, 100! ,65! ,2!
Text$="Braun"

DefMove 50! ,8!,100! ,40!,2!

Text$="Fpkt1"

DefMove 60! ‚81,100! ,40!,2!

TextS="FPkt2"

DefMove 65!,8!,100! ,80!,2!

PunkteLesen:

Grund=PktAnz ' Basis für Verbindungen
Loop:

READ px,py,pz
IF px<>255 THEN
PktAnz=PktAnz+1
P(PktAnz, 1)=px
P(PktAnz,2)=py*-1
P(PktAnz,3)=pz
GOTO Loop

END IF

VerbindLesen:

READ v1,v2

IF v1<>255 THEN

Verbind=Verbind+1

V(Verbind, 1)=Grund+v1
V(Verbind, 2)=Grund+v2

' Raumkoordinaten

Bi ldkoordinaten

Verbindungsvorschrift

Differenz

Fluchtpunkt (x,y,Z)

1. Fluchtpunkt x

Fluchtpunkt x
N
<

D
N
A

y,z) :"

Yız) 2"

Hintergrund = hell-beige

Neutrale Farbe = dunkel Braun

149

150 Amiga Tips & Tricks

GOTO VerbindLesen

END IF

READ Ende

IF Ende<>0Q THEN GOTO PunkteLesen

BildBerechnen:

FOR k=1 TO 2 ' 2 Fluchtpunkte
FOR i=1 TO PktAnz ' Alle Punkte

FOR j=1 TO 3 ' Diff von x,y,z
D(C J)=F(k, j)-PCi, J)

NEXT j
lambda=(ZEbene-P(i,3))/D(3)
B(k,i,1)=PCi,1)+lambda*D(1)

B(k,1,2)=P(1,2)+lambda*D(2)

NEXT i

NEXT k

Bi ldAusgeben:

LINE (0,0)-(300,200),0,bf ' Fläche löschen
FOR j=1 TO 2

COLOR 1+j

IF j=2 THEN CALL SetDrMd&(WINDOW(8), 7)

FOR i=1 TO Verbind

x1=B(j,V(i,1),1)+100
x2=B(j,VCi1,2),1)+100

y1=B(j,V(i,1),2)+70

y2=B(j,V(i,2),2)+70

LINE (x1,y1)-(x2,y2)
NEXT 1

NEXT j

CALL SetDrMd&(WINDOW(8),1)

COLOR 1

Interrupt:

ON MOUSE GOSUB CheckTab

ON TIMER (.5) GOSUB ColorSet

TIMER ON

MOUSE ON

Warten:

IF ClickWrt(4)*-1<>F(1,1) THEN

F(1,1)=ClickWrt(4)*-1

NeuZeichnen:

GOSUB KoordinatenAusg

GOTO BildBerechnen

END IF

IF ClickWrt(5)*-1<>F(2,1) THEN
F(2,1)=ClickWrt(5)*-1

GOTO NeuZeichnen

END IF

IF INKEY$="" THEN GOTO Warten

OBJECT .OFF

TIMER OFF

MOUSE OFF

LOCATE 15,1

PRINT "Rotwert :":ClickWrt (1) :"4"

PRINT "Grünwert:";ClickWrt(2);"%"

——— Das AmigaBASIC

PRINT
PRINT
PRINT
PRINT
END

"Braunwert aus :"
ClickWrt(3);"% Rot und "ClickWrt(3)*.875;"% Grün"
"Fluchtpunktwerte der X-Koordinaten:"
MFT "eClickWrt(4)*-1:" und F2 ":ClickWrt(5)*-1

KoordinatenAusg:

LOCATE 1,63

PRINT FC1,1)","FC1,2)","F(1,3)
LOCATE 2,63
PRINT

RETURN
F(2,1)","F(2,2)","F(2,3)

CheckTab:

IF ClickAnz=0 THEN RETURN

FOR i=1 TO ClickAnz

ms tat=MOUSE (0)

mx=MOUSE(1)-6 _

my=MOUSE (2)
IF mx>=ClickTab(i,1) THEN

IF my>=ClickTab(i,2) THEN
IF mx<=ClickTab(i,3) THEN

IF my<=ClickTab(i,4) THEN

ClickWrt(i)=(my-ClickTab(i,2))
OBJECT.Y 1,ClickTab(i,2)+ClickWrt¢i)+12

END IF
END IF

END IF
END

NEXT 1
IF

IF MOUSE(0)=-1 THEN CheckTab
RETURN

ColorSet:

Rot=ClickWrt(1)/100
Gruen=ClickWrt(2)/100
Zeichen=ClickWrt(3)/100

PALETTE 2,Rot,0,0
PALETTE 3,0,Gruen,0

PALETTE 1,Zeichen, (Zeichen*.875) ,0

RETURN
SUB DefMove (sx,sy,yd,po,mo) STATIC

SHARED ClickAnz

X=Sx*8

— y=sy*8

'Koordinaten fuer Line *10 bei 60 Zeichen

LINE (x,y)-(x+20, y+8+yd), ,B

"Extras erwuenscht?

IF mo AND 1 THEN ' Skalierung

FOR sk=y TO y+yd+8 STEP (yd+8)/16 '16 Einheiten
LINE (x,sk)-(x+2,sk)

LINE (x+20,sk)-(x+18,sk)

NEXT sk

END IF

151

152 Amiga Tips & Tricks

IF mo AND 2 THEN ' Text

SHARED Text$

sy=sy-LEN(Text$)
FOR txt=1 TO LEN(Text$)

LOCATE sy+txt,sx+2

PRINT MIDS(Text$, txt, 1)

NEXT txt

END IF

'Clickwerte in Tabelle eintragen

ClickAnz=Cl ickAnz+1
ClickTab(ClickAnz,1)=x
ClickTab(ClickAnz,2)=y
ClickTab(ClickAnz,3)=x+20

ClickTab(ClickAnz,4)=y+yd
ClickArt(ClickAnz)=1 '1 steht fuer Schieber
ClickWrt(ClickAnz)=po 'vom Benutzer gewaehlter Anfangswert
' Als Schieber sollte ein Sprite in Kreisform definiert werden!
OPEN "Schieber" FOR INPUT AS ClickAnz

OBJECT.SHAPE ClickAnz, INPUT$(LOF(ClickAnz),ClickAnz)
CLOSE ClickAnz

OBJECT.X ClickAnz,x-1

OBJECT.Y ClickAnz, ,ClickTab(ClickAnz,2)+ClickWrt(ClickAnz)+12

OBJECT.ON ClickAnz

END SUB

WuerfelDaten:

REM X,y,2Z
DATA 32, 20, 20
DATA -32, 20, 20
DATA -32,-20, 20
DATA 32,-20, 20
DATA 32, 20,-20
DATA -32, 20,-20
DATA -32,-20,-20
DATA 32,-20,-20
DATA 255,0,0
REM p
DATA 1

DATA 2

DATA 3
DATA 4

DATA 1

DATA 5

DATA 6

DATA 7

DATA 8

DATA 4

DATA 3,
DATA 2,

DATA 255,0,1

PyramidenDaten:

DATA -32, 25,-20
DATA 32, 25,-20
DATA 32, 25, 20

—— Das AmigaBASIC

DATA -32, 25, 20
DATA 0,65, 0
DATA 255,0,0
DATA 1,2
DATA 2,3
DATA 3,4
DATA 4,1

DATA 5,1
DATA 5,2

DATA 5,3

DATA 5,4

DATA 255,0,0

Variablenfelder

B Bildschirmkoordinaten

D Differenzen der Koordinatenumrechnung

F Koordinaten der beiden Fluchtpunkte

ClickArt Kennung, hier Schieberegler

ClickTab Koordinaten der Schieberegler

ClickWrt Wert eines Reglers

P Raumkoordinaten der Punkte

V Verbindungsvorschrift

Variablen

ClickAnz Anzahl der definierten Klickfelder

Ende DATA-Endkennung fur "keine Daten mehr"

Gruen Farbgrünwert

Grund Basis für Verbindungen bei mehreren Objekten

PktAnz Tatsächliche Anzahl der Punkte

Punkte Maximale Anzahl der Punkte

Rot Farbrotwert

Text Textausgabe bei Schiebereglerdefinition

Verbind Anzahl der Verbindungen

ZEbene z-Koordinate der Bildschirmebene

Zeichen Zeichenfarbe für "Braun"

clickmoeg Maximale Anzahl der Clickfelder

i, j, k Laufvariablen

lambda Faktor fur die Koordinatenumrechnung

mo Modusangabe für Extras beim Schieberegler

mstat Mausstatus

mx, my Mauskoordinaten

po Startposition des Schiebereglers

PX, PY, PZ Punktkoordinaten

Sk Laufvariable Skalierung

153

154 Amiga Tips & Tricks

Sx, Sy Koordinaten Textausgabe

txt Laufvariable Textausgabe

v1, v2 Verbindungspunkte

x%,y Position des Schiebereglers

x1,y1 Koordinaten mit einem Fluchtpunkt

x2, y2 Koordinaten zum anderen Fluchtpunkt

yd Ausdehnung des Schiebereglers

Programmbeschreibung

Zuerst wird die graphics-Library geöffnet, denn in ihr befinden
sich die Einsprünge für wichtige Grafikroutinen! Dann wird der
DATA-Zeiger auf die Würfeldaten gerichtet, und nachdem die
Felder, die mit B oder V beginnen, als Integer definiert wurden,
wird das Minimum für die Feldindizes auf 1 gesetzt. Die be-
nutzten Variablen entsprechen den bisher verwendeten, aller-

dings sind die der Schieberegler hinzugekommen (siehe dort).
Bei den Feldern sind natürlich die Schiebereglervariablen neu
dabei, aber auch die bekannten Variablen haben sich etwas ge-
ändert.

Das Feld, in dem der Fluchtpunkt abgelegt war, ist jetzt mit ei-
nem zusätzlichen Index versehen. Er entspricht der Nummer des
Fluchtpunktes und macht die spätere Verarbeitung wesentlich

einfacher. Wie Sie sehen, liegen die beiden Punkte 40 Einheiten
auseinander. Dieser Wert hat sich bei den gegebenen Entfernun-
gen zwischen Fluchtpunkt und Projektionsfläche als ideal er-
wiesen. Aber Sie können natürlich noch alles verändern!

Bei der Ausgabe des Fluchtpunktes mußte ein neuer Weg be-
schritten werden. Einmal ist ein weiterer hinzugekommen, der
berücksichtigt werden will. Außerdem müssen später noch, falls

eine Veränderung erfolgt, die neuen Werte ausgegeben werden.
Deshalb wurden diese in ein Unterprogramm gelegt. Neu sind
auch die Farbeinstellungen. Alle vier Farben werden gebraucht.
Der Hintergrund kann bei einer zu krassen Einstellung den 3D-
Effekt behindern, deshalb wurde auch er berücksichtigt. Die an-
deren drei Farben sind vorher schon erklärt worden.

——— Das AmigaBASIC 155

Als nächstes folgen die Definitionen der Schieberegler. Die
Werte der ersten drei Regler stehen für die Farben, die beiden
anderen Schieber ermöglichen in einem kleinen Bereich das
Einstellen der Fluchtpunkte auf ihrer Horizontalen. Danach ar-

beiten die alten Punkt- und Verbindungsleseroutinen wieder
ganz normal. Nur beim Berechnen des Bildes hat sich wieder

etwas verändert. Die Schleife wird von einer weiteren umklam-
mert, die beide Fluchtpunkte durchzählt. Dieser Zähler ist auch

bei den Bildschirmkoordinaten als Index hinzugekommen.

Vor der Bildschirmausgabe wird erst der Bereich gelöscht, in
dem das Objekt erscheinen könnte. Dann werden für beide
Fluchtpunkte die Bilder in den entsprechenden Farben ausgege-
ben. Wenn das Gitternetz des zweiten Punktes gezeichnet wird,
setzt das Programm zusätzlich noch einen neuen Zeichenmodus.
Aus der Tabelle im Kapitel 4 können Sie ersehen, daß damit alle

Modi gleichzeitig aktiviert werden. So wird beim Zeichnen mit
der zweiten Farbe die rote Linie jetzt mit brauner Farbe über-
schrieben. Am Ende der Schleife wird der Zeichenmodus wieder

auf den Normalzustand gesetzt und die Zeichenfarbe wird auf |
eingestellt.

Dann wird ein Mouse- und ein Timer-Interrupt eingeschaltet.
Der erste dient zur Abfrage der Schieberegler, der zweite setzt
die Farben neu, wenn sie verändert wurden. In der Warteschleife

überprüft das Programm, ob jemand den Fluchtpunkt eins oder

zwei verändert hat. Wenn ja, so wird der Wert übertragen, und

das Bild wird neu berechnet. Ansonsten wird auf einen Tasten-
druck gewartet. Ist dieser erfolgt, schaltet das Programm alle
Objekte, Schieberegler, die Maus- und die Timer-Abfrage aus
und gibt dann alle eingestellten Werte auf dem Bildschirm aus.

3.5 Die Zeichensätze des Amiga

Erwähnt haben wir sie schon, diese Zeichensätze, und damit

vielleicht einigen Lesern bereits den Mund wässrig gemacht. Ja,
es funktioniert. Auch in AmigaBASIC-Programmen können ver-

156 Amiga Tips & Tricks ———

schiedene Zeichensätze gleichzeitig miteinander verwendet wer-
den. Normalerweise stehen dazu zwei Quellen zur Verfügung:

l. Die ROM-Zeichensätze, die von Anfang an im Amiga re-
sidieren.

2. Die Diskettenzeichensätze, die im Verzeichnis "Fonts" (engl.
= Zeichensätze) auf der Workbench-Diskette gelagert sind.

Das folgende Programm "beschert" Ihnen den neuen SUB-Befehl
"Zeichensatz", mit dem Sie sowohl auf die ROM- als auch auf
die RAM-Zeichensätze zugreifen können. Sein Aufruf sieht so
aus:

Zeichensatz "Name", höhe%

Um zu erfahren, welche Zeichensätze unter welchen Namen auf

der Workbench-Diskette gespeichert sind, empfehlt sich ein de-

zentes Nachschauen, zum Beispiel so:

FILES "SYS: fonts"

Neben diesen Zeichensätzen können Sie den ROM-Zeichensatz

"topaz" ın den Höhen 8 und 9 benutzen. Wenn Sıe mit dem

ROM-Zeichensatz arbeiten wollen, ist es von größter Wichtig-
keit, den Namen topaz in Kleinbuchstaben anzugeben, denn die

Funktion OpenFont() ist bezüglich Groß-/Kleinschreibung sehr
pingelig und würde unter dem Namen "Topaz" oder "TOPAZ"
nicht den ROM-Zeichensatz, sondern allenfalls den 11 Punkt

hohen Disk-Zeichensatz "Topaz" laden. Hier das Listing:

' HHHHHHHHHHAHAAH AAA
t #

'# Programm: Zeichensaetze

'# Autor: tob

'# Datum: 12.8.87

'# Version: 1.0

'#

"PRHHHRRAHHE HE

DECLARE FUNCTION OpenDiskFont& LIBRARY

DECLARE FUNCTION OpenFont& LIBRARY

LIBRARY "diskfont. library"
LIBRARY "graphics. library"
demo: '* demonstriert einige Zeichensaetze

H
R

R
A

HR

— Das AmigaBASIC 157

LOCATE 4,1
Zeichensatz "Sapphire", 19
PRINT "Dies ist Sapphire 19 Punkt!"
Zeichensatz "Diamond", 20
PRINT "...ein anderer Zeichensatz..."
Zeichensatz "Garnet", 16
PRINT "...und wieder einer! Amiga kennt noch mehr!"

Zeichensatz "ruby", 12
PRINT "Aber dies soll erst einmal genuegen!"

Zeichensatz "topaz", 8
LIBRARY CLOSE

END

SUB Zeichensatz (welcher$, hoehe%) STATIC
f .old& = PEEKL(WINDOW(8)) + 52

f.pref% = 0
welcher0$ = welcher$ + ". font" + CHR$(O)

tAttr&(0) = SADD(welcher0$)

tAttr&(1) = hoehex*2°16 + f.pref%
f .neu& = OpenFont&(VARPTR (tAttr&(0)))
f.check% = PEEKW (WINDOW(8) + 60)
IF f.neu& = 0 THEN

f.neu& = OpenDiskFont&(VARPTR (tAttr&(0)))
ELSEIF f.check% <> hoehe% THEN

CALL CloseFont(f.neu&)

f.neu& = OpenDiskFont&(VARPTR (tAttr&(0)))
END IF

IF f.neu& <> 0 THEN

CALL CloseFont(f.old&)

CALL SetFont(WINDOW(8), f.neu&)
ELSEIF UCASE$(welcher$) = "UNDO" THEN

CALL CloseFont(f.old&)

CALL SetFont(original&)

ELSE

BEEP
END IF

END SUB

Variablen

weicher$ Name des Zeichensatzes

weicher0$ wie welcher$, jedoch mit CHR$(0) abgeschlossen

hoehe% Hohe des Zeichensatzes in Punkten

f.old& Adresse des bisher aktiven Zeichensatzes

f.pref% Preference-Bits; hier=0

tAttr&() TextAttr-Struktur; Variablenfeld wird als Speicher verwendet

f.neu& Adresse des neu geöffneten Zeichensatzes

f.check% tatsächliche Höhe des neuen Zeichensatzes

158 | Amiga Tips & Tricks ————

Programmbeschreibung

Um einen Zeichensatz öffnen zu können, muß zunächst eine

TextAttr-Struktur ausgefüllt werden. Diese ist in dem Vari-
ablenfeld tAttr& gespeichert. Mit der Adresse auf den Anfang
dieses Feldes (VARPTR) wird die Grafik-Routine OpenFont()
aufgerufen. Diese versucht, einen Zeichensatz zu finden, der

den Angaben in der TextAttr-Struktur am nächsten kommt.

Normalerweise gibt es im ROM lediglich den Zeichensatz "topaz"
in den Höhen 8 und 9, aber wenn andere Zeichensätze noch

nicht geschlossen worden sind, können auch diese mittels Open-
Font() aktiviert werden.

Da OpenFont() flexibel genug ist, einen den Angaben ähnlichen
Zeichensatz zu laden, wenn der gewünschte nicht zu finden ist,

kann nicht immer davon ausgegangen werden, daß der von
OpenFont() gefundene Zeichensatz auch wirklich der richtige ist.
Deshalb wird in check% die Höhe des gefundenen Zeichensatzes
mit der geforderten Höhe in hoehe% verglichen. Sind die Werte
ungleich, wird der fälschlicherweise geöffnete Zeichensatz ge-
schlossen, und OpenDiskFont() startet eine zweite Suchaktion,

diesmal auf der Diskette.

Ist auf dem einen oder anderen Wege ein Zeichensatz gefunden
worden (f.old& <> 0), wird mittels CloseFont() der bisher aktive
Zeichensatz geschlossen und der neu geöffnete via SetFont() ak-
tiviert. Andernfalls ertönt ein kurzer Warnton, und der alte

Zeichensatz bleibt aktiviert.

Weitergehende Informationen zum Thema "Zeichensätze", insbe-

sondere die Programmierung gänzlich eigener Zeichen, würde
den Rahmen dieses auf kurze Tips und Tricks ausgelegten Bu-
ches sprengen. Weitere Informationen können Sie aber ein-

schlägiger Spezialliteratur entnehmen. Zum Beispiel geht das im
DATA BECKER Verlag erschienene Buch "Amiga Supergrafik"
gerade auf diese Problematik ein und bietet sowohl BASIC- als
auch "C"-Programme hierzu.

—— Das AmigaBASIC 159

3.6 SuperPrint - schneller und komfortabler

Der wohl schwächste Befehl des AmigaBASIC heißt "PRINT".
Seine Ausführung ist unendlich langsam, Text kann bei langen
Sätzen das Fenster verlassen, und es gibt keine Editorbefehle.

Gehen wir die Mängelliste der Reihe nach durch. Die Ausfüh-
rung eines durchschnittlichen PRINT-Befehls geht so langsam,
daß der Anwender ihm dabei zusehen kann. Wird eine ganze
Bildschirmseite voller Text ausgegeben, kann das bereits einige
Sekunden dauern.

PRINT bemerkt nicht, wenn das Ende einer Bildschirmzeile er-

reicht ist. Lange Textstrings werden in diesen Fällen nicht in der
folgenden Bildschirmzeile fortgesetzt, sondern verlassen einfach

das Fenster; dem Anwender fehlt ein Stück Information. Gerade

bei Fenstern mit varıabler Größe ist dies ärgerlich, weil das
Fenster während des Programmablaufs verkleinert werden kann.

Selbst in der Länge abgestimmte Textausgaben funktionieren
dann nicht mehr.

Schließlich ist PRINT nur in der Lage, Text auszugeben. PRINT
kann keine Editorbefehle ausführen, wie zum Beispiel "Bild-
schirm löschen", "Cursor hoch", "Insert Zeile" etc. Da PRINT ei-

ner der meistgenutzten Befehle des AmigaBASIC ist, wollen wir
Ihnen nun eine Lösung all dieser Probleme präsentieren. Die
Lösung ist überraschend simpel: Wir aktivieren das systeminterne
"Console Device". Diese Systemkomponente dient der Ein- und
Ausgabe von Text. Einmal aktiviert, übernimmt das Console De-
vice selbständig all die Aufgaben, die BASICs PRINT nicht
schafft: Text wird blitzschnell ausgegeben, an die jeweilige
Breite des Fensters angepaßt, und als Clou können sogar eine

Vielzahl von Editor-Kommandos in den Text integriert werden!

Leider ist es nicht ganz so leicht, das Console Device für eigene
Zwecke einzusetzen, denn dazu muß es wie ein I/O-Gerat be-

handelt werden. Eine Vielzahl von Exec-Funktionen sind dazu
nötig. Wenn diese Arbeit aber erst einmal erledigt ist, steht Ih-
nen ein PRINT-Befehl einer höheren Dimension zur Verfügung.

160 Amiga Tips & Tricks

Mit seiner Hilfe werden Ihre Programme nicht nur schneller,
viele Anwendungen werden sich mit den neuen Editor-Sequen-
zen wesentlich leichter programmieren lassen. Das folgende Pro-
gramm besteht im Wesentlichen aus den SUBs "CreatePort",
"RemovePort", "CreateStdIO", "RemoveStdIO", "OpenConsole",

"CloseConsole", "SystemEin", "SystemAus" sowie "ConPrint".
Glücklicherweise brauchen Sie sich nur mit "ConPrint" auseinan-
derzusetzen. Hier zunächst das Programm:

u... Gl, > de dd A A da dad ome

'# Programm: Console Device #

'# Autor: tob #

'# Datum: 4. 8. 87 #
'# Version: 1.0 #
'# #
1 cc ere OOo OO ae CLO STO I EIS Ge O18 8 oe A ete oO ee:

DECLARE FUNCTION OpenDevice% LIBRARY

DECLARE FUNCTION AllocMem& LIBRARY

DECLARE FUNCTION AllocSignal% LIBRARY

DECLARE FUNCTION FindTask& LIBRARY

DECLARE FUNCTION DoIO& LIBRARY

LIBRARY "exec. library"

init: '* Kontroll-Sequenzen definieren
C1i$ = CHR$(155) "Control Sequence Introducer
C2$ = CHR$(8) "Backspace
C3$ = CHR$(10) ‘Line Feed
C4$ = CHR$(11) 'VTab

C5$ = CHR$(12) ‘Form Feed
C6$ = CHR$(13) 'CR

C7$ = CHR$(14) 'SHIFT IN
C8$ = CHR$(15) ‘SHIFT OUT
C9$ = CHR$(155) + "1E" "RETURN

demo: '* Demonstration

ConPrint C1$+"20CGuten Morgen! "+C9$

ConPrint "Es war einmal ein ganz normaler Tag,";

ConPrint " an dem wir uns auf den Weg zur Scheune begaben",

ConPrint " und daraufhin einen grossen Baer sahen!"
SystemAus

SUB ConPrint (text$) STATIC

SHARED c.io&

IF c.io& = 0 THEN : SystemEin
POKEL c.io& + 36, LEN(text$)
POKEL c.io& + 40, SADD(text$)
e& = Dol0&(c.108&)

END SUB

SUB SystemAus STATIC
SHARED c.i0&

CloseConsole c.io&

—— Das AmigaBASIC 161

END SUB

SUB SystemEin STATIC

SHARED c.io&, c.c$

OpenConsole c.10&
POKEW c.io& + 28, 3

END SUB

SUB OpenConsole (result&) STATIC
CreatePort "basic.con", 0, c.port&
IF c.port& = O0 THEN ERROR 255
CreateStdIO c.port&, c.io&
POKEL c.10& + 36, 124
POKEL c.io& + 40, WINDOW(7)
dev$ = "console.device" + CHR$(0)
c.error% = OpenDevice%(SADD(dev$), 0, c.io&, 0)
IF c.error’ <> 0 THEN ERROR 255
result& = c.io&

END SUB

SUB CloseConsole (10&) STATIC

port& = PEEKL (io& + 14)
CALL CloseDevice(io&)
RemovePort port&

RemoveStdIO io&
END SUB
SUB CreateStdiO (port&, result&) STATIC

opt& = 2°16
result& = AllocMem&(48, opt&)
IF result& = 0 THEN ERROR 7

POKE result& + 8, 5

POKEL result& + 14, port&
POKEW result& + 18, 50

END SUB
SUB RemoveStdIO (108) STATIC

IF io& <> O THEN
CALL FreeMem(io&, 48)

ELSE
ERROR 255

END IF
END SUB
SUB CreatePort (port$, pri%, result&) STATIC

opt& = 2°16
byte& = 38 + LEN(port$)
port& = AllocMem&(byte&, opt&)
IF port& = 0 THEN ERROR 7
POKEW port&, byte&
port& = port& + 2
sigBit% = AllocSignal%(-1)

IF sigBit% = -1 THEN
CALL FreeMem(port&,byte&)
ERROR 7

END IF
sigTask& = FindTask&(0)

POKE port& +8, 4
POKE port& + 9 „ pri%

162 Amiga Tips & Tricks

POKEL port& + 10, port& + 34
POKE port& + 15, sigBit%
POKEL port& + 16, sigTask&
POKEL port& + 20, port& + 24
POKEL port& + 28, port& + 20
FOR loop% = 1 TO LEN(port$)

char%& = ASC(MID$(Cport$, loop%, 1))
POKE port& + 33 + loop%, char‘

NEXT loop%
CALL AddPort(port&)
result& = port&

END SUB
SUB RemovePort (port&) STATIC

byte& = PEEKW(port& - 2) _
sigBit% = PEEK (port& + 15)
CALL RemPort(porté&)

CALL FreeSignal(sigBit%)

CALL FreeMem(port&-2, byte&)
END SUB

Wie Sie sehen, funktioniert das neue ConPrint fast genauso wie

das herkömmliche PRINT:

ConPrint "auszugebender Text"

jedoch mit einem wesentlichen Geschwindigkeitsunterschied. Das
ist aber noch nicht alles: Lange Sätze werden bereits auf die

Breite des Fensters zugeschnitten. Sind Sie langer als das Fenster

breit ist, werden sie in der nächsten Zeile fortgesetzt. Außerdem
werden Ihnen sicherlich die Editorsequenzen C1$ bis C9$ auf-
gefallen sein:

C1$ CSI (Control Sequence Introducer)
C2$ Backspace, ein Zeichen nach links

C3$ Line Feed, eine Zeile nach unten

C4$ VTab, eine Zeile nach oben

C5$ Form Feed, Bildschirm löschen

C6$ CR, zurück an den Anfang der augenblicklichen Zeile

C7$ SHIFT IN, GroBschrift

C8$ SHIFT OUT, Normalschrift

c9$ RETURN, schließt eine Zeile ab

Dies sind die einfachen Editor-Sequenzen. Sie fügen sie in den
laufenden Text durch "+"-Zeichen ein. Zum Beispiel so:

ConPrint "Guten Tag, liebe Welt!!+Cc9$

——— Das AmigaBASIC 163

Das Console Device kann aber noch wesentlich mehr. Die fol-
genden Editor-Sequenzen beginnen immer mit dem Control Se-

quence Introducer (CSI), den Sie in C1$ finden. Hier diese Edi-
tor-Sequenzen:

C1$ + Bedeutung

"In]@* Füge [n] Zeichen in diese Zeile ein

"[n]A" Cursor [n] Zeilen hoch

"[n]B" Cursor [n] Zeilen runter |

"[njC* Cursor [n] Zeichen nach rechts

"[n]D" Cursor [n] Zeichen nach links

"[In]E" Cursor [n] Zeilen runter + an den Anfang

"[n]F” Cursor [n] Zeilen hoch + an den Anfang

"In];[{n]H" Cursor nach Zeile [n], Spalte [n]

"J" ab Cursor Bildschirm löschen

"K" ab Cursor Zeile löschen

"L" Fuge Zeile ein

"M" Lösche Zeile

"[n]P" Lösche Zeichen ab Cursor zur Rechten

"In]S" Scroll [n] Zeilen hoch

"[In]T" Scroll [n] Zeilen runter

"20h" Set Mode

"201" Reset Mode

"In];[{n];[n]m" Grafik-Modus

Stil:

O = normal

1 = fett

3 = kursiv

4 = unterstrichen

7 = invers

Vordergrundfarbe:

30 - 37

Hintergrundfarbe:

40-47

"[njt" Hohe des Fensters in Rasterzeilen

"In]u" Länge einer Zeile in Pixel

"In]x" [n] Zeichen einrücken

"[n]y" [n] Zeilen am oberen Rand freihalten

164 Amiga Tips & Tricks

3.6.1 Das Console Device unter GFA

Eine erfreuliche Nachricht fiir die Freunde des GFA-BASIC:
Das soeben mehr oder weniger komplex implementierte Console-
Device fiir das AmigaBASIC existiert bei GFA bereits, denn der
normale GFA-Befehl PRINT entspricht zu 100% dem neuen
AmigaBASIC-Befehl SuperPrint. Sämtliche Steuercodes lassen
sich also unter GFA in Zusammenhang mit ganz normalen
PRINT-Anweisungen umsetzen. Die Steuercodes finden sich auf
den vorangegangenen Seiten. Hier ein kleines Beispiel:

PRINT CHR$C155)+"3;4;31;42mkursiv, unterstrichen, farbig!"

Unter optimaler Ausnutzung aller vorhandenen Steuercodes las-

sen sich so komplexere Anwendungen wie Textverarbeitungen
oder individuelle Eingaberoutinen programmtechnisch leicht
umsetzen. Zu beachten ist, daß die genannten Steuercodes
selbstverständlich nur auf dem Bildschirm als Ausgabegerät die
gewünschte Wirkung zeigen und auf dem Drucker keine Wir-
kung haben.

—— Gestaltung eigener Anwenderprogramme 165

4. Professionelle Gestaltung eigener
Anwenderprogramme

In diesem Kapitel werden wir Ihnen zeigen, wie Sie als Pro-

grammierer alle Möglichkeiten ausnutzen können, um Ihre Pro-
gramme wesentlich anwenderfreundlicher zu gestalten. Die Ge-
staltung eines Anwenderprogramms ist für die spätere Bedienung
und besonders für den Bediener sehr wichtig. Gerade bei solch
einem Computer wie dem Amiga ist es wichtig, daß alle Einga-
ben, Auswahlen und Einstellungen besonders bedienungsfreund-
lich gestaltet sind.

Oft wird dies über Pıktogramme oder andere Bedienelemente
erledigt. Auf jeden Fall sollte die Bedienung größtenteils mit der
Maus möglich sein, schließlich ist sie nicht nur dazu da, das
Programm zu starten und dann in der Ecke zu liegen. Deshalb

sehen Sie jetzt, wie man diese Funktionen einfach programmiert
und auch in jedes eigene Programm einbauen kann.

4.1 Alternativen zu PullDown-Menüs

Weil mit den Menüs nicht alles zu machen ist, wird jetzt nach
Alternativen gesucht. Bloß: Was sind unsere Alternativen?

"Warum in die Ferne schweifen, siehe, das Gute liegt doch so

nahe." Legen Sie Ihre Workbench-Diskette in Ihr Laufwerk, und

öffnen Sie das Hauptinhaltsverzeichnis. Hier findet man im

Normalfall das Programm "Preferences", mit dem alle wichtigen
Voreinstellungen gemacht werden können. Wenn Sie das Pro-

gramm aktivieren, werden Sie alle Elemente einer benutzer-
freundlichen Bedienung vor sich sehen.

Da sind einmal die Schieberegler, mit denen die Farben und die
Zeit eines Doppelklicks eingestellt werden können. Außerdem

findet man Wahltabellen wie z.B. für die Einstellung der Zei-
chen pro Zeile. Auch im Teil "Change Printer" werden Tabellen

166 Amiga Tips & Tricks ——

en masse benutzt. Weiterhin findet man überall Kästen, die beim

Anklicken sofort eine Aktion auslösen, z.B. "Save", "Use" und

"Cancel" auf dem Hauptbildschirm.

Alle diese eben genannten Bedienelemente wollen wir im fol-
genden programmieren. Dazu benötigen wir eine Ausgabegrund-

lage auf dem Amiga. Dies ist im Normalfall ein Window, das
sich über BASIC sehr leicht öffnen läßt. Jedoch gehen wir einen
etwas anderen Weg, bei dem uns mehr Möglichkeiten offen-

stehen und über den wir keine Eingriffe in das AmigaBASIC
selbst machen müssen.

Hier ist deshalb das erste Programm, das nichts weiter tut, als

ein Window auf der Workbench-Screen zu öffnen. Dafür benutzt

es die Intuition.Library, die wir auch weiterhin für alle anderen
Modifikationen nutzen werden:

CWHKKKKKRKKEKKEKKEREREKKEKEKEEKKEEKKEKEK

ı% *

'* Window Uber Intuition öffnen *

+ i] i] i] t ‘ t 0 i] J (] i] (] | t i] (] i] i] | | t t i] i] i] i] [| ‘ *

1%

'* Autor : Wolf-Gideon Bleek

'* Datum : 22. Mai '88

'* Grueße : Denis "Angle"

'* Version: 1.1

'* Betriebssystem: V1.2 & V1.3 |
ı%

CHMEAEARKKKREKKKEKEKREKEKKEKEEKREEEEEKKEKE

OPTION BASE 1

DEFLNG a-z

+
x

3
4%

%

LIBRARY ":bmaps/exec. library"
DECLARE FUNCTION AllocMem LIBRARY

LIBRARY ":bmaps/intuition. library"
DECLARE FUNCTION OpenWindow LIBRARY

MList = 0&
HauptProgramm:

GOSUB OpenAll

' Hauptteil
FOR 1 = 1 TO 10000 : NEXT i

GOSUB CloseAll

END

——— Gestaltung eigener Anwenderprogramme

OpenAll:

Titel$ = "Mein erstes BASIC-Windon"!

167

WinDef NWindow, 100, 100, 460, 150, 32+64+512&, 15&+4096&, 0&, Titel$
WinBase = OpenWindow(NWindow) |
IF WinBase = O THEN ERROR 7 ae

RETURN ~ | °

CloseAll:

CloseWindow(WinBase)

CALL Undef

SUB DefChip(Buffer, Size) STATIC

SHARED MList

Size=-Size+ß

Buf fer=Al locMem(Si ze, 65538&)
IF Buffer>O THEN

POKEL Buffer,MList
POKEL Buffer+4,Size
MList=Buffer

Buffer=Buffer+8

‚ELSE

ERROR 7

END IF

END SUB

SUB UnDef STATIC

SHARED MList

undef. loop:
IF MList>O THEN

Adresse = PEEKL(MList)

Groesse = PEEKL(MList+4)

FreeMem MList, Groesse

MList = Adresse

GOTO undef. loop
END IF

END SUB

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, gad, T$) STATIC
Size = 48+LEN(TS)+1

DefChip bs,Size
POKEW bs ,x% ' LeftEdge
POKEW bs+ 2,y% ' TopEdge
POKEW bs+ 4,b% ' Width
POKEW bs+ 6,h% ' Height
POKEW bs+ 8,65535& ' Detail- BlockPen
POKEL bs+10,IDCMP ' IDCMPFlags
POKEL bs+14, f ' Flags

POKEL bs+18, gad ' FirstGadget

POKEL bs+26,bs+48 ' Title

168 Amiga Tips & Tricks

POKEW bs+46, 1 ' ScreenType
FOR i%=1 TO LEN(T$)

POKE bs+47+1%,ASC(MID$(T$,i%,1))
NEXT

END SUB

Programmbeschreibung

Die wichtigsten Elemente des Programms finden wir am Ende.
Hier sind drei SUB-Routinen, die alle äußerst wichtige Aufga-
ben erfüllen. Mit DefChip() fordert man einen Speicherbereich

in der gewünschten Größe an. Die wird dann über AllocMem(),
die Betriebssystemfunktion der Exec.Library, besorgt. Gleichzei-
tig verwaltet die Routine in den ersten 8 Bytes zwei Werte, mit
deren Hilfe eine Speicherliste aufgebaut wird. Dadurch hat

UnDef() leichtere Arbeit beim Freigeben des Speichers. Dazu
geht es mit Hilfe des Zeigers MList alle Bereiche durch und gibt
sie nacheinander frei.

Die beiden Unterroutinen sind aber nur Hilfswerkzeug. Die ei-
gentlich wichtige finden wir erst danach. WinDef() erstellt unter
Hinzunahme alle geforderten Daten eine sog. NewWindow-

Struktur. Diese wird von Intuition benötigt, um ein neues Win-
dow zu öffnen. WinDef() legt die bekannten Daten aber nur in
einen neuen Speicherbereich. Alles weitere erledigt eine Teil-
routine des Hauptprogramms.

Nachdem wir jetzt die Aufgaben der Unterroutinen kennen,
wollen wir uns das Hauptprogramm ansehen. Hier werden zuerst
die beiden Libraries Intuition und Exec geöffnet. Aus beiden
benötigen wir einige Funktionen. Im Hauptteil wird dann das
Unterprogramm OpenAll angesprungen. Hier wird die Definition
einer NewWindow-Struktur über WinDef() aufgerufen und dann
wird diese gerade erstellte Struktur mittels OpenWindow() an

Intuition weitergeleitet. Wenn ein neues Window geöffnet wer-
den konnte, erhält man von dieser Funktion einen Zeiger auf
die Window-Struktur zurück. Diese neue Struktur enthält alle le-
bensnotwendigen Daten für ein Window.

Nach der Rückkehr in die Hauptschleife wird erst einmal in der

leeren FOR-TO-NEXT-Schleife einige Zeit gewartet, damit Sie

——— Gestaltung eigener Anwenderprogramme 169

beim Testen auch das Window einen Augenblick betrachten

können. Dann springt der Interpreter in ein weiteres Unterpro-

gramm. Es trägt den bezeichnenden Titel CloseAll und schließt
alles bisher Geöffnete. Es erledigt sozusagen die Aufräumarbei-
ten. Bei genauerer Betrachtung finden wir dort wirklich nur den
Aufruf zum Schließen des Windows und zur Freigabe des be-
legten Speichers.

Damit haben wir die Grundlage für unser professionell zu ge-
staltendes Programm. In dieses Window können wir jetzt nach
und nach die bedienfreundlichen Elemente, wie in einem Bau-

kastensystem einsetzen.

4.1.1 Die erste Select-Box

Das erste bedienfreundliche Element, das wir bei Preferences

feststellen, sind die Klick-Felder. Mit einem Druck auf die

linke Maustaste kann man bestätigen, daß die Einstellungen so
richtig sind (OK, Use), oder man hat es sich doch anders über-
legt und möchte alles wieder rückgängig machen. Dazu betätigt

man einfach "Cancel". |

Alles dies sind grafisch klar erkennbare Felder mit einer ein-
deutig definierten Position - somit haben sie einen hohen Wie-
dererkennungswert - die durch einen Klick sofort eine Aktion
auslösen. Dies können wir auch in BASIC programmieren. Dazu

nutzen wir die Anwendung von Gadgets über Intuition, die wir
ganz leicht in unser Window einbinden können. Mit der folgen-
den SUB-Routine ist sofort ein neues Klickfeld definiert:

SUB GadgetDef(bs, nx, x%, ys, b%, h%, f%, ak, TH, 1, txt, si, n%) STATIC
DefChip bs, 44& ' Gadget-Struktur Länge
POKEL bs ,nx '*NextGadget
POKEW bs+ 4,x% LeftEdge
POKEW bs+ 6,y% TopEdge

POKEW bs+ 8,b% Width

8

8

i]

POKEW bs+10,h% ' Height
L]

i

i]

6

POKEW bs+12, f% Flags
POKEW bs+14,a% Activation
POKEW bs+16,T% Gadget Type

GadgetRender POKEL bs+18, i

170 Amiga Tips & Tricks

POKEL bs+26, txt '*GadgetText

POKEL bs+34,si ' SpecialInfo
POKEW bs+38,n% ' Gadget ID

END SUB

Die Routine tragt wieder eine Reihe von Werten in einen
Speicherbereich ein. Diesen Vorgang wollen wir uns genauer
ansehen. In bs finden wir die Basisadresse unseres Speicherbe-
reichs, es handelt sich hier um den Riickgabewert der Spei-
cherallozierungsroutine. Nx bezeichnet die Startadresse des
nächsten Klickbereiches und dient der Verkettung mehrerer. Wir
brauchen diesen Wert später für mehrere Klickbereiche. Mit x%,
y%, b% und h% definieren wir die Ausmaße des Gadgets. Posi-

tion und Ausdehnung in Breite und Höhe können bestimmt wer-
den. |

Mit f% und a% werden zwei Flags definiert, auf die wir später
noch zurückkommen werden. T% kennzeichnet den Typ, der bei

unserem ersten Beispiel auf 1 gesetzt wird. Im weiteren Verlauf

werden wir einen anderen Typ kennenlernen. Mit i und txt wer-

den zusätzliche grafische Informationen untergebracht. So kann

man unter ı ein Bild oder einen Rand definieren, der zusätzlich

gezeichnet wird, und unter txt einen beschreibenden Text. Sı

wird bei anderen Gadget-Typen benutzt, die mit den Informa-
tionen dieser Struktur nicht auskommen. Als letztes legen wir
einen Identifikationswert in n%. Es handelt sich hierbei um eine
Nummer, mit deren Hilfe wir später bei mehreren Gadgets eine
Unterscheidung treffen können.

Nach dieser ausführlichen Beschreibung alle Werte kommen wir
zu unserem ersten Beispiel. Setzen Sie dazu diese Sub-Routine in

das Beispielprogramm vom Anfang ein, und ergänzen Sie in dem
OpenAll-Unterprogramm folgende Zeile:

GadgetDef Gadget, 0&, 50, 50, 20, 10, 0, 1, 1, 0&, 0&, 0&, 1

Damit beauftragen wir GadgetDef mit der Definition eines
neuen Gadgets. Dieses hat die folgenden Eigenschaften:

- Die Adresse der Gadget-Struktur werden wir nach Abschluß
der Routine in Gadget finden. |

——— Gestaltung eigener Anwenderprogramme 171

- Es werden keine weiteren Gadgets eingebunden.

- Die Position liegt bei 50,50.

- Das Gadget ist 20 Pixel breit und 10 Pixel hoch.

- Es handelt sich um ein Gadget, das beim Anklicken erst rea-
giert, wenn auch im Klickbereich losgelassen wird.

- Das Gadget ist vom Typ Boolean und kann nur aktiviert wer-
den.

- Es gibt keine Grafik und keinen Text.

- Es wird keine Zusatz-Struktur benötigt.

- Das Probe-Gadget hat die Nummer 1.

Diese gerade definierte Gadget-Struktur binden wir in das neue
Window ein:

WinDef NWindow, 100, 100, 460, 150, 32+64+512&, 15&+4096&, Gadget, Titel$.

So! Nun könnten Sie zwar das Programm starten, doch gebrau-

chen können wir es noch nicht. Das Programm ist nämlich noch
nicht in der Lage, die Aktivierung des Gadgets abzufragen.
Wenn Sie jetzt RUN eingeben, wird zwar das Fenster erscheinen
und nach einigem Herumklicken findet man auch den Bereich,
in dem das Gadget definiert ist, doch bisher können wir keine
Reaktion erwarten. Dazu müssen wir erst noch eine weitere

Unterroutine schreiben, die vom Hauptprogramm angesprungen

wird, wenn eine Nachricht vorliegt.

Hier ist deshalb zuerst die neue Hauptprogrammabfrage, die

darauf wartet, daß am Nachrichtenkanal des neuen Windows
eine neue Nachricht anliegt. Dann verzweigt sie in ein ebenfalls
neues Unterprogramm zur Auswertung:

Lauf = 1

HauptProgramm:

GOSUB OpenAll
' Hauptteil
MainLoop:

IF Lauf = 1 THEN

IntuiMsg = GetMsg(UserPort)

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg

172 Amiga Tips & Tricks

GOTO MainLoop
END IF

GOSUB CloseAll

END

Mit der Funktion GetMsg() aus der Exec.Library ist es möglich,
den MessagePort eines Windows auf eine Nachricht hin zu te-
sten. Dieser MessagePort liegt in der Window-Struktur, die wir
von OpenWindow() zurückgegeben bekommen haben. Dort muß

die neue Variable initialisiert werden:

UserPort = PEEKL(WinBase+86)

Nun können wir uns endlich die Unterroutine ansehen, die die
Auswertung einer ankommenden Nachricht übernimmt. Sie un-
terscheidet zuerst den Typ der Nachricht, da wir hier verschie-

dene Auswertungsverfahren anwenden müssen. Die erste Nach-

richt, die wir dann wirklich auswerten können, ist die
CLOSEWINDOW-Message. Bei der Betätigung eines Gadgets
können wir jetzt nur die Nummer ausgeben, die wir ja in die
Struktur geschrieben haben.

IntuitionMsg:

MsgTyp = PEEKL(IntuiMsg+20)

Item = PEEKL(IntuiMsg+28)

GadgetNr% = PEEK(Item+39)

CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN

ısofortige Aktivierung

PRINT "DOWN Gadget-Nr.:";GadgetNr%

END IF

IF (MsgTyp = GADGETUP) THEN
'relverify Modus
PRINT "UP Gadget-Nr.:":GadgetNr%

END IF

IF (MsgTyp = CLOSEW) THEN
'System-Gadget Window schließen

PRINT "CLOSEWINDOW"

Lauf = 0

END IF

RETURN

—— Gestaltung eigener Anwenderprogramme 173

Wenn Sie aus den bisherigen Programmteilen das Programm zu-
sammensetzen, müßte nach dem Start wieder das Window er-

scheinen. Nun kommt unser erster Test. Klicken Sie dazu zuerst

im linken oberen Viertel des Windows. Irgendwo wird das neue
Gadget erkennbar sein. Nach jedem Loslassen erscheint in dem
Ausgabe-Window des AmigaBASIC die Gadget-Nummer. Hof-
fentlich!

Beim zweiten Test klicken Sie bitte das Close-Gadget des Win-
dows an. Zuerst erscheint der Text im Ausgabe-Window, dann

wird das Window geschlossen. Damit haben wir die Vorarbeit
geleistet!

4.1.2 Grafik bringt die Erkenntnis

Eine sehr wichtige Eigenschaft fehlt unserem Gadget bisher
noch: Kein Mensch kann es erkennen! Diesen kleinen Mißstand
wollen wir deshalb sofort beheben. Bei der Besprechung der
SUB-Routine GadgetDef haben wir schon die Variablen txt und
ı kennengelernt. Dabei handelt es sich um die elementaren
Grafikelemente Intuitions. Mit txt können wir eine IntuiText-
Struktur in das Gadget einbinden und mit i eine Grafik oder
Linien. Alle drei Möglichkeiten haben ihre Bedeutung und sollen
deshalb genutzt werden.

Sehen wir uns dazu zuerst den Text an, mit dem die meisten

Aufgaben am einfachsten gelöst werden können. Dazu benötigen
wir eine eigens von Intuition benutzte IntuiText-Struktur. Sie
enthält Einstellungen zu Position, Farbe, Zeichensatz und -art.

Und natürlich auch den Text. Hier ist das SUB-Programm, das

einen Speicherbereich mit den geforderten Daten initialisiert:

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC
Size=20+LEN(T$)+1 ı Strukturlänge + Textlänge + Nullbyte

DefChip bs,Size
POKE bs ,ci% ' FrontPen
POKE bs+ 2,1 ' DrawMode
POKEW bs+ 4,x% ' LeftEdge
POKEW bs+ 6,y% ı TopEdge
POKEL bs+12,bst20 ' IText

174 — Amiga Tips & Tricks

POKEL bs+16,nx ' NextText

FOR i%=1 TO LEN(T$)
POKE bs+19+1%,ASC(MID$(T$, 1%, 1))

NEXT
END SUB

Um die Angelegenheit nicht zu kompliziert zu machen, wurden
die Parameter wieder auf das Nötige gekürzt. Nach der obliga-
torischen Startadresse der Struktur stellen wir die Zeichenfarbe
des Textes und die Position in Pixel ein. Des weiteren tibergeben
wir natürlich den Text selbst. Da auch hier wieder das Linken
mehrerer Texte zugelassen ist, kann man als letzten Wert einen

Zeiger auf eine weitere IntuiText-Struktur übergeben.

Die Routine setzt selbständig den Zeichenmodus auf JAM2. Da-
mit ist garantiert, daß auch der Hintergrund überschrieben wird.
Sıe können also sicher sein, daß man den Text später lesen kann.

Möchten Sie trotzdem auch die zweite Farbe beeinflussen kön-
nen, ergänzen Sie ganz einfach einen Wert in der Parameterliste

und POKEn sie den neuen Farbwert in bs+1! Um jetzt z.B. das
Gadget mit einem Text zu versehen, kann man zuerst einen Text
über das neue Unterprogramm erstellen und diesen dann in die

Gadget-Definition einbinden:

TestTxt$ = "Test-Text"

IntuiText Text, 2, 10, 2, TestTxt$, 0&
GadgetDef Gadget, 0&, 50, 50, 90, 15, 1, 1, 1, 0&, Text, 0&, 1

Als nächstes wollen wir uns mit den Linien beschäftigen. Sie
dienen hauptsächlich der Abgrenzung von Klickflächen und zur
Unterteilung. Da auch die Ränder mit in die Gadget-Struktur

eingebunden werden, brauchen wir dazu eine eigene Struktur. Es
handelt sich hierbei um die Border-Struktur, die neben der
Farbe und der Position auch eine Koordinatentabelle benötigt.

Diese Koordinaten selbst werden im Speicher nach der Struktur
abgelegt.

Für diese Border-Struktur haben wir ein etwas anderes SUB-
Programm entwickelt. Es setzt nicht nur die Werte in den
Speicherbereich ein, sondern es berechnet auch anhand der

—- Gestaltung eigener Anwenderprogramme 175

Werte die Koordinaten für die Tabelle. Somit wird es ganz ein-
fach, einen Kasten um ein Gadget zu definieren. Sehen Sie dazu
hier die Funktion:

SUB Border(bs, x%, y%, c%, b%, h%) STATIC
DefChip bs,48& Strukturlänge + Koordinatentabelle |

POKEW bs ,Xx% ' LeftEdge

POKEW bs+2,y% ' TopEdge
POKE bst4,c% ' FrontPen
POKE bs+7,8 ' Count
POKEL bs+8,bs+16 '*XY
FOR i%=0 TO 1

POKEW bs+22+1%*4 ,h%-1
POKEW bs+24+1%*4 ,b%- 1
POKEW bs+32+1%*4,, 1
POKEW bs+38+1%*4,h%- 1
POKEW bs+40+1%*4, b%-2

NEXT

END SUB

Wenn wir jetzt die Routine mit den entsprechenden Werten
aufrufen und die Basisadresse der Struktur wie auch bei der In-
tuiText-Struktur in die Definition des Gadgets einsetzen, dann

wird auch der Rand mit dem Gadget kombiniert. Auch dazu
möchte ich ein Beispiel geben:

Border Rand, 0, 0, 3, 90, 15 .
GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Rand, Text, 0&, 1

Das Gadget nutzt gleichzeitig zum Rand auch noch den vorher
schon bestimmten Text. Diesen können Sie natürlich auch noch
ergänzen. Abschließend möchte ich noch einmal das gesamte Li-
sting zeigen, das jetzt alle bisher besprochenen Unterprogramme
und die gezeigten Definitionen enthält. Sie können daran noch

Fehler erkennen, die Sie vielleicht beim Zusammensetzen der

Module gemacht haben. |

IR ad 2 2 2 2 2 2 2 2 2 2 0 2 0 2 2 202 2 202 2 2 2 202 202 2 2 002 7

ı%* *

'* Boolean-Gadgets Uber Intuition *

+ i] i] 0 i] 0 i] i] 0 a i] 0 i] 0 | 0 (] [| i] 0 0 i] | ‘ i] 0 i] t ‘ 0 i] *

ı*

ı* Autor : Wolf-Gideon Bleek
'* Datum : 23. Mai '88

ı* Grueße : Uuuuwe

'* Version: 1.2 ¢
+
3
%

+

176 Amiga Tips & Tricks

'* Betriebssystem: V1.2 & V1.3 *
i* *

[Eid 2 202 2 202 2 2 2 2 20202 8 2 202 202 2 2.2 2 2 20808 2 2 202

OPTION BASE 1

DEFLNG a-z

LIBRARY ":bmaps/exec.library"
DECLARE FUNCTION AllocMem LIBRARY
DECLARE FUNCTION GetMsg LIBRARY
LIBRARY ":bmaps/intuition. library"
DECLARE FUNCTION OpenWindow LIBRARY

GADGETDOWN

GADGETUP

CLOSEW

328
648
512&

MList

Lauf

0&
1

HauptProgramm:

GOSUB OpenAll
' Hauptteil
MainLoop:

IF Lauf = 1 THEN
IntuiMsg = GetMsg(UserPort)

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg

GOTO MainLoop
END IF

GOSUB CloseAll

END

OpenAll:
Border Rand, 0, 0, 3, 90, 15
TestTxt$ = "Test-Text"
IntuiText Text, 2, 10, 2, TestTxt$, 0&
GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Rand, Text, 0&, 1
Titel$ = "Mein erstes BASIC-Window"
WinDef NWindow, 100,100,460, 150, 32+64+5128, 15&+40968&, Gadget, Titel$
WinBase = OpenWindow(NWindow)
IF WinBase = 0 THEN ERROR 7
RastPort = PEEKL(WinBase+50)
UserPort = PEEKL(WinBase+86)

RETURN

CloseAll:

CALL CloseWindow(WinBase)

CALL Undef
RETURN

IntuitionMsg:

MsgTyp = PEEKL(IntuiMsa+20)

Gestaltung eigener Anwenderprogramme

Item = PEEKL(IntuiMsg+28)

GadgetNr% = PEEK(Item+39)

CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN

'sofortige Aktivierung

PRINT "DOWN Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN

'relverify Modus

PRINT "UP Gadget-Nr.:":GadgetNr%

END IF

IF (MsgTyp = CLOSEW) THEN

'System-Gadget Window schliefen

PRINT "CLOSEWINDOW"

Lauf = 0

END IF

RETURN

SUB DefChip(Buffer,Size)STATIC
SHARED MList |

$ize=Sizet8
Buffer=AllocMem(Size,65538&)
IF Buffer>O THEN

POKEL Buffer ,MList
POKEL Buffer+4,Size

MList=Buffer

Buffer=Buffer+8

ELSE
ERROR 7

END IF

END SUB

SUB UnDef STATIC

SHARED MList

undef. loop:
IF MList>0O THEN

Adresse = PEEKL(MList)
Groesse = PEEKL(MList+4)
FreeMem MList, Groesse
MList = Adresse
GOTO undef. loop

END IF

END SUB

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, gad, T$) STATIC
Size = 48+LEN(T$)+1
DefChip bs,Size
POKEW bs ,x% ' LeftEdge

POKEW bs+ 2,y% ' TopEdge
POKEW bs+ 4,b% ' Width
POKEW bs+ 6,h% ' Height

177

178 Amiga Tips & Tricks

POKEW bs+ 8,65535& ' Detail- BlockPen
POKEL bs+10, IDCMP ' IDCMPFlags

POKEL bs+14, f ' Flags
POKEL bs+18,gad ' FirstGadget

POKEL bs+26,bs+48 ' Title
POKEW bs+46, 1 ' ScreenType
FOR i%=1 TO LEN(T$)

POKE bs+47+1%,ASC(MID$(T$,i%,1))
NEXT

END SUB

SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, aX, T%, 1, txt, si, n%) STATIC

DefChip bs ,44& ' Gadget-Struktur Länge

POKEL bs ,‚nx '*NextGadget

POKEW bs+ 4,x% ' LeftEdge
POKEW bs+ 6,y% ' TopEdge

POKEW bs+ 8,b% ' Width
POKEW bs+10,h% ' Height
POKEW bs+12, f% ' Flags
POKEW bs+14,a% ' Activation
POKEW bs+16,T% ' GadgetType

POKEL bs+18,1 ' GadgetRender

POKEL bs+26,txt '*GadgetText

POKEL bs+34,s1 ' Speciallnfo
POKEW bs+38,n% ' GadgetID

END SUB

SUB IntuiText(bs, c1%, x%, ys, T$, nx) STATIC

Size=20+LEN(T$)+1 ı Strukturlänge + Textlänge + Nullbyte
DefChip bs,Size
POKE bs ,c1% ' FrontPen

POKE bs+ 2,1 ' DrawMode

POKEW bs+ 4,x% ' LeftEdge

POKEW bs+ 6,y% ' TopEdge

POKEL bs+12,bs+20 ' IText

POKEL bs+16,nx ' NextText

FOR i%=1 TO LEN(T$)
POKE bs+19+1%,ASC(MID$(T$,1%,1))

NEXT

END SUB

SUB Border(bs, x4, ys’, c%, b%, h%) STATIC
DefChip bs, 48& ' Strukturlänge + Koordinatentabelle
POKEW bs ,x% ' LeftEdge
POKEW bs+2,y% ' TopEdge

POKE bs+4,c% ' FrontPen

POKE bs+7,8 ı Count
POKEL bs+8,bs+16 t*Xy

FOR i%=0 TO 1

POKEW bs+22+i1%*4 ,h%- 1
POKEW bs+24+1%*4 ,b%- 1

—— Gestaltung eigener Anwenderprogramme 179

POKEW bs+32+1%*4, 1
POKEW bs+38+1%*4, h%- 1
POKEW bs+40+1%*4 ,b%-2

NEXT
END SUB

Nachfolgend finden Sie noch vier Gadgets, die man immer in
einem Window für Einstellungen gebrauchen kann. Zu OK oder
Cancel, die die Funktion entweder bestätigen oder abbrechen,

sind noch Reset, alle Werte werden auf den Ausgangszustand

gesetzt, und Undo gekommen. Mit Undo wird der letzte verän-
derte Wert wieder zurückgesetzt.

Dies ist eine sehr bedienfreundliche Funktion, die es besonders

Unentschlossenen einfacher macht: Man hat schon alles einge-

stellt und möchte nur noch eine Veränderung rückgängig ma-

chen, weiß aber nicht, wie es eingestellt war. Dann hilft Undo!

Sehen Sie dazu die Gadget-, Text- und Rand-Definitionen und
im zweiten Teil die Abfrageroutinen mit den Verzweigungen fiir

die vier Gadgets.

Die Gadget-Definitionen:

Border Rand, -1, -1, 1, 67, 14
IntuiText OKTxt, 1, 26, 2, "OK", 0&
IntuiText CancelTxt, 1, 10, 2, "Cancel", 0&
IntuiText ResetTxt, 1, 14, 2, "Reset", 0&
IntuiText UndoTxt, 1, 20, 2, "Undo", 0&
GadgetDef UndoGad, 0&, 380, 52, 65, 12, 0, 1, 1, Rand, UndoTxt, 0&, 1
GadgetDef ResetGad,UndoGad, 380,68,65,12,0,1,1,Rand,ResetTxt, 0&, 2
GadgetDef OKGad, ResetGad, 380, 84, 65, 12, 0, 1, 1, Rand, OKTxt, 0&, 3
GadgetDef CancGad, OKGad, 380, 100,65,12,0,1,1,Rand,CancelTxt,0&,4

Titel$ = "Ein Beispiel für bedienfreundliche Gadgets"
WinDef NWindow, 100,100,460,150,32+64+512&, 15&+4096& ,CancGad,Titel$

Die Abfrage-Routinen:

IF (MsgTyp = GADGETDOWN) THEN
ısofortige Aktivierung

PRINT "DOWN Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN

180 Amiga Tips & Tricks ————

'relverify Modus

PRINT "UP Gadget-Nr.:";GadgetNr%

IF GadgetNr% = 1 THEN

GOSUB UNDO "' alten Wert eintragen

END IF

IF GadgetNr% = 2 THEN

gsoub RESET ' alle Werte wieder auf Urzustand

END IF

IF GadgetNr% = 3 THEN

GOSUB OK ' Werteeingabe beendet

END IF
IF GadgetNr% = 4 THEN

GOSUB CANCEL ' Werteeingabe abgebrochen

END IF

END IF

IF (MsgTyp = CLOSEW) THEN

'System-Gadget Window schließen

PRINT "CLOSEWINDOW"

Lauf = 0

END IF

4.1.3 Wahlitabellen

Bei der Gestaltung eines Windows mit Auswahl-Gadgets ist es
nicht empfehlenswert, immer nur einzelne Gadgets zu verwen-
den. Man sollte vielmehr darauf achten, Gruppen zu bilden, die
alle eine Auswahl aus einem bestimmten Themenkreis darstellen.
Meist ist es dann so, daß nur eines der Gadget-Gruppe ausge-

wählt werden kann. Als Beispiel könnte die Auswahl des Zei-

chensatzes dienen. Nur ein Zeichensatz kann zur Zeit aktiv sein.
In einer Wahltabelle wählt man den entsprechenden aus, und der

vorher gewählte Zeichensatz wird inaktiv.

Vollständige Tabellen

Die Programmierung läuft nun etwas anders ab als bei den bis-
her gesehenen Gadgets. Zwar erstellt man die Strukturen, Grafi-
ken und Texte genauso, wie wir es gewohnt sind, jedoch muß

bei der Auswahl einiges beachtet werden! So müssen wir nach
der Aktivierung des Gadgets dieses auch aktiviert lassen. Intui-
tion hebt den Status gleich wieder auf, deshalb invertieren wir
den Bereich erneut. Dann aber dauerhaft. Dazu nutzen wir die
Graphics.Library, die uns mit zwei Befehlen zur Hilfe steht.

— Gestaltung eigener Anwenderprogramme 181

Außerdem muß unsere Auswertungsroutine in der Lage sein, ein
zuvor ausgewähltes Gadget wieder auszuschalten. Alles dies wer-
den wir uns jetzt ansehen. Dazu nehmen wir zuvor einige Gad-
gets als Grundlage:

Border Rand, -1, -1, 1, 100, 14
IntuiText To60, 1, 10, 2, "Topaz 60", 0&
IntuiText To80, 1, 10, 2, "Topaz 80", 0&
IntuiText PC60, 1, 26, 2, "PC 60", 0&
IntuiText PC80, 1, 26, 2, "PC 80", 0& |
GadgetDef To60Gad, 0&, 80, 61, 98, 12, 0, 1, 1, Rand, To60, 0&, 1
GadgetDef To80Gad, To60Gad, 80, 74, 98, 12, 0, 1, 1, Rand, To80, 0&, 2

GadgetDef PC60Gad, To80Gad, 80, 87, 98, 12, 0, 1, 1, Rand, PC60, 0&, 3
GadgetDef PC80Gad, PC60Gad, 80, 100, 98, 12, 0, 1, 1, Rand, PC80, 0&, 4
Titel$ = "Font-Auswahl"

WinDef NWindow, 100, 100,460, 150, 32+64+512&, 15&+4096& , PC80Gad, Titel$

Alle Gadgets benutzen eine Border-Struktur, die die Tabellen-
gliederung später erreicht. Weiterhin haben wir vier Texte, die
jeden einzelnen Zeichensatz kennzeichnen. Uber Pointer haben

wir alle Gadgets in einer Liste verbunden. Diese Liste wird mit
ihrem Kopf in das Window eingepaBt.

Nach dem Programmstart haben wir eine Tabellengrafik im
Window, aus der man seinen gewünschten Zeichensatz auswählen
kann. Zur Kennzeichnung des gerade aktiven Zeichensatzes in-
vertieren wir einfach den Kasten. Sehen Sie dazu die Abfrage-
routine der Gadget-Nachrichten:

IF (MsgTyp = GADGETUP) THEN
'relverify Modus
PRINT "UP Gadget-Nr. :";GadgetNr%

IF aktiv THEN
SetDrMd RastPort, 2
RectFill RastPort, 80&, 13*aktiv+48&, 177&, 13*aktiv+59&
SetDrMd RastPort, 1

END IF

aktiv = GadgetNr%

SetDrMd RastPort, 2
RectFill RastPort, 80&, 13*aktiv+48&, 177&, 13*aktiv+59&
SetDrMd RastPort, 1 |

END IF

182 Amiga Tips & Tricks ———

Die Abfrage geht davon aus, daß dem Programm über die Va-

rıablen bekannt ist, welcher der Zeichensätze gewählt wurde.

Dann wird bei einer erneuten Wahl der Textkasten über die
Grafikbefehle wieder in den Normalzustand gebracht.

Als nächstes wird ausgewertet, welcher neue Zeichensatz vom

Benutzer ausgewählt wurde. Die Koordinaten des Kastens wer-

den berechnet, und er wird grafisch hervorgehoben. Dann kehrt
die Auswertung wieder zum Hauptprogramm zurück.

Auf diese sehr einfache Art lassen sich Tabellen für alle gangi-
gen Zwecke errichten. Der Programmierer muß dafür nur die
entsprechende Anzahl von Gadgets bereitstellen und die Berech-
nungen für die Invertierung der Grafik anpassen. Dies sollte
aber keine Schwierigkeit darstellen, da bei einer Tabelle alle
Abstände gleichmäßig sind und sich somit auch einfach berech-
nen lassen.

Scroll-Tabellen

Problematisch wird die Tabellenform bei sehr vielen Punkten

oder einer vorher nicht definierten Anzahl von Elementen.

Hierfür empfehlen sich sog. Scroll-Tabellen, bei denen man nur
eine kleine Auswahl der Elemente sieht, diese aber hoch- oder

runterschieben kann.

Ein gutes Beispiel dafiir ist die Scroll-Tabelle aus den Prefe-

rences fiir die Druckertreiberauswahl. Hierbei ist vorher nicht

bekannt, wie viele Druckertreiber auf der Diskette zu finden

sein werden. Man regelt ganz einfach den Ausschnitt über zwei
Pfeile, die beim Anklicken den Ausschnitt verschieben.

Und genau da setzt unsere Arbeit ein. Wir entwerfen eine Gra-
fik, in die über eine Ausgaberoutine der Ausschnitt der Tabelle
geschrieben wird. Weiterhin fügen wir zwei Gadgets ein, jeweils
eins für einen Pfeil. Bei Betätigung der Gadgets verschiebt die
Auswertungsroutine den Ausschnitt entsprechend und gibt er-
neut die Tabelle aus. Als ausgewählt betrachtet man immer das

Gestaltung eigener Anwenderprogramme 183

mittlere von drei Elementen. Hier sehen Sie zuerst die beiden
Pfeil-Gadgets ohne Grafiken. Der Aufbau der Grafik wird über
extra darauf folgende Ausgabebefehle erledigt:

Border Rand, -1, -1, 1, 200, 14
Border Kasten, 0, -1, 1, 50, 21
GadgetDef Hoch, 0&, 51, 60, 48, 18, 0, 1, 1, 0&, O&, 0&, 1
GadgetDef Runter, Hoch, 51, 80, 48, 18, 0, 1, 1, O&, 0&, 0&, 2
Titel$ = "Scroll-Tabelle"
WinDef NWindow, 100, 100,460, 150, 32+64+512&, 15&+4096&, Runter, Titel$
WinBase = OpenWindow(NWindow)
IF WinBase = 0 THEN ERROR 7
RastPort = PEEKL(WinBase+50)
UserPort = PEEKL(WinBase+86)
DrawBorder RastPort, Rand, 100&, 60&
DrawBorder RastPort, Rand, 100&, 73&
DrawBorder RastPort, Rand, 100&, 86&
DrawBorder RastPort, Kasten, 50&, 60&
DrawBorder RastPort, Kasten, 50&, 79%

x = 50 : y = 60

'x- y- Werte

x(1) =17+x : x(2) =16+y
x(3) =34+x : x(4) =16+y
x(5) =34+x : x(6) =10+y
x(7) =40+x : x(8) =10+y
x(9) =25+x : x(10)=2+y
x(11)=10+x : x(12)=10+y
x(13)=17+x : x(14)=10t+y
x(15)=17+x : x(16)=16t+y

Move RastPort, 17+50&, 16+60&
PolyDraw RastPort, 8&, VARPTR(x(1))

y = 62
ty- Werte

x(2) =20+y
x(4) =20+y
x(6) =26+y

x(8) =26+y
x(10)=34+y
x(12)=26t+y
x(14)=26+y
x(16)=20+y

Move RastPort, 17+50&, 20+62&
PolyDraw RastPort, 8&, VARPTR(x(1))

184 | Amiga Tips & Tricks ——

FOR i = 1705

READ Tabelle$(i)

IntuiText ITxt(i), 1, 0, 0, Tabelle$(i), 0&
NEXT 1

TabOut Aktiv

Nachdem über DrawBorder() die Ausgabe der Border-Strukturen
direkt abgewickelt wurde, tritt PolyDraw() aus der

Graphics.Library in Aktion. Diese Funktion erlaubt es, Koordi-
natentabellen über verbundene Linien auszugeben. Ein Beispiel,

die 3D-Netzgrafik, finden Sie im Kapitel 3 AmigaBASIC. Hier

verwenden wir die Routine nur, um die Pfeilgrafik auszugeben.

Danach liest OpenAll aus DATA-Zeilen 5 Texte ein, die später

in unserer Tabelle stehen werden. Die Ausgabe erledigt die
SUB-Routine TabOut. Sehen Sie hier deshalb noch einmal das

ganze Programm mit dieser neuen Ausgaberoutine und den
DATA-Zeilen:

IRKRRKRRKKKTKCTCTCT CT TC TC TI I N N I A I N

ı%

'* Scroll-Tabellen-Gadgets

i*

'* Autor : Wolf-Gideon Bleek

'* Datum : 31. Mai '88

'* Grueße : Myrna
'* Version: 1.2

'* Betriebssystem: V1.2 & V1.3
ı%

ERKRATH a

OPTION BASE 1

DEFLNG a-w

DEFINT x
LIBRARY ":bmaps/exec. library"
DECLARE FUNCTION Al locMem LIBRARY

DECLARE FUNCTION GetMsg LIBRARY

LIBRARY ":bmaps/intuition. library"
DECLARE FUNCTION OpenWindow LIBRARY

LIBRARY ":bmaps/graphics.Library"

x
+

+
3

4
H

*

GADGETDOWN = 32&

GADGETUP = 648

CLOSEW = 5128

MList = 0&

Lauf = 1

Aktiv =2

—— Gestaltung eigener Anwenderprogramme 185

DIM x(16)

DIM SHARED Tabelle$(5), ITxt(5)

HauptProgramm:

GOSUB OpenAll
' Hauptteil
MainLoop:

IF Lauf = 1 THEN
IntuiMsg = GetMsg(UserPort)

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg

GOTO MainLoop
END IF

GOSUB CloseAll

END
OpenAll:

Border Rand, -1, -1, 1, 200, 14
Border Kasten, 0, -1, 1, 50, 21
GadgetDef Hoch, 0&, 51, 60, 48, 18, 0, 1, 1, 0&, O&, O&, 1
GadgetDef Runter, Hoch, 51, 80, 48, 18, 0, 1, 1, 0&, 0&, 0&, 2
Titel$ = "Scroll-Tabelle"
Windef NWindow, 100,100,460, 150, 32+644+5128&, 15&+4096& ‚Runter ,‚Titel$
WinBase = OpenWindow(NWindow)
IF WinBase = 0 THEN ERROR 7
RastPort = PEEKL(WinBase+50)

UserPort = PEEKL(WinBase+86)

DrawBorder RastPort, Rand, 100&, 60&
DrawBorder RastPort, Rand, 100&, 73&
DrawBorder RastPort, Rand, 100&, 86&
DrawBorder RastPort, Kasten, 50&, 60&
DrawBorder RastPort, Kasten, 50&, 79%

x = 50 : y = 60
'x- y- Werte

x(1) =17+x : x(2) =16+y
x(3) =34+x : x(4) =16+y
x(5) =34+x : x(6) =10+y

x(7) =40+x : x(8) =10+y
x(9) =25+x : x(10)=2+y
x(11)=104+x : x(12)=10+y
x(13)=17+x : x(14)=10+y
X(15)=17+x : x(16)=16+y

Move RastPort, 17+50&, 16+60&
PolyDraw RastPort, 8&, VARPTR(x(1))

y = 62

'y- Werte

x(2) =20+y

x(4) =20+y

186 Amiga Tips & Tricks

x(6) =26+y

x(8) =26+y

x(10)=34+y
x(12)=26+y
x(14)=26+y
x(16)=20+y

Move RastPort, 17+50&, 20+62&
PolyDraw RastPort, 8&, VARPTR(x(1))

FOR i = 1705
READ Tabel le$(i)
IntuiText ITxtci), 1, 0, 0, Tabelle$(i), 0&

NEXT i

TabOut Aktiv
RETURN

CloseAll:

CALL CloseWindow(WinBase)

CALL UnDef

RETURN

IntuitionMsg:

MsgTyp PEEKL(IntuiMsg+20)

Item PEEKL(IntuiMsg+28)

GadgetNr% = PEEK(Itemr39)

CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN
ısofortige Aktivierung

PRINT "DOWN Gadget -Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN

!relverify Modus

PRINT "UP Gadget-Nr.:";GadgetNr%

IF GadgetNr% = 1 AND Aktiv<>4 THEN Aktiv=Aktiv+1

IF GadgetNr% = 2 AND Aktiv<>1 THEN Aktiv=Aktiv-1

END IF

IF (MsgTyp = CLOSEW) THEN
'System-Gadget Window schließen

PRINT "CLOSEWINDOW"*

Lauf = 0

END IF

SUB DefChip(Buffer,Size)STATIC
SHARED MList

$1ze=Size+8
Buf fer=Al locMem(Size, 65538&)
IF Buffer>O THEN

POKEL Buffer,MList

: TabOut(Aktiv)

: TabOut(Aktiv)

—— Gestaltung eigener Anwenderprogramme

POKEL Buffer+4,Size

MList=Buffer

Buf fer=Buf fer+8

ELSE

ERROR 7

END IF

END SUB

SUB UnDef STATIC

SHARED MList

undef. loop:
IF MList>O THEN

Adresse = PEEKL(MList)

Groesse = PEEKL(MList+4)

FreeMem MList, Groesse

MList = Adresse

GOTO undef. loop
END IF

END SUB

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, Gad, T$) STATIC
Size = 48+LEN(T$)+1

DefChip bs,Size
POKEW bs ,x%

POKEW bs+ 2,y%
POKEW bs+ 4,b%
POKEW bs+ 6,h%
POKEW bs+ 8,65535&
POKEL bs+10, IDCMP
POKEL bs+14, f
POKEL bs+18,Gad
POKEL bs+26,bs+48

POKEW bs+46, 1
FOR i%=1 TO LEN(CT$)

' LeftEdge

' TopEdge

' Width

' Height

' Detail- BlockPen

' IDCMPFlags

' Flags

' FirstGadget

' Title

' ScreenType

POKE bs+47+i%, ASC(MID$(T$, 1%, 1))
NEXT

END SUB

187

SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si, n%) STATIC
DefChip bs ,44&
POKEL bs ,nx

POKEW bs+ 4,x%

POKEW bs+ 6,y%
POKEW bs+ 8,b%
POKEW bs+10,h%
POKEW bs+12, f%
POKEW bs+14,a%
POKEW bs+16,T%
POKEL bs+18,i
POKEL bs+26,txt
POKEL bs+34,s1

POKEW bs+38,n%
END SUB

' Gadget-Struktur Lange

'*NextGadget

LeftEdge

TopEdge

Width

Height

Flags

Activation

GadgetType
' GadgetRender

'*GadgetText

' Speciallnfo
' Gadget ID

188 Amiga Tips & Tricks

SUB IntuiText(bs, c1%, x%, ys, T$, nx) STATIC
Size=20+LEN(T$)+1 ' Strukturlänge + Textlänge + Nullbyte

DefChip bs,Size
POKE bs ,c1% ' FrontPen

POKE bs+ 2,1 ' DrawMode

POKEW bs+ 4,x% ' LeftEdge

POKEW bs+ 6,y% ' TopEdge

POKEL bs+12,bs+20 ' IText
POKEL bs+16,nx ' NextText

FOR i%=1 TO LEN(T$)
POKE bs+19+i%, ASC(MIDS(TS, i%, 1))

NEXT
END SUB

SUB Border(bs, x4, y%, C%, bz, h%) STATIC

DefChip bs, 48& ' Strukturlänge + Koordinatentabelle
POKEW bs ,x% ' LeftEdge
POKEW bs+2,y% ' TopEdge

POKE bs+4,C% ' FrontPen

POKE bs+7,8 ' Count

POKEL bs+8,bs+16 IRXY
FOR i%=0 TO 1

POKEW bs+22+1%*4,h%-
POKEW bs+24+1%*4,b%-
POKEW bs+32+i%*4, 1
POKEW bs+38+i%*4, h&Z- 1
POKEW bs+40+1%*4,b%-2

NEXT

END SUB

1
1

"austauschen gegen ein PropInfo

SUB STRINGINFO(bs,max%, buf f$) STATIC

IF LENCbuff$)>max% THEN

nmax%=LEN (buf f$)

ELSE

nmax%=max%

END IF

IF (nmax% AND 1) THEN nmax%=nmax%+1

Size=36+2*(nmax%+4)

DefChip bs,Size
POKEL bs, bs+36

POKEL bs+4,bs+40+nmax%

POKEW bs+10 ,max%+1

IF buff$<>"H"THEN

FOR i%=1 TO LENCbuff$)
POKE bs+35+1%, ASC(MIDS(buf f$,1%,1))

NEXT

END IF

END SUB

SUB TabOut(Aktiv) STATIC

SHARED RastPort

——— Gestaltung eigener Anwenderprogramme 189

COLOR 0,0
FOR 1 = 0 T0 2

SetAPen RastPort, 0

RectFill RastPort, 101&, 13*i+60&, 296&, 13*1+71&
NEXT i

COLOR 1,0
FOR i = Aktiv-1 TO Aktiv+1

IF i>0 AND i<5 THEN
POKEW ITxt(i)+6, 62+Ci-Aktiv+1)*13

PrintIText RastPort, ITxt(i), 110&, 0&

END IF

NEXT i

SetDrMd RastPort, 2
RectFill RastPort, 101&, 73&, 296&, 84%
SetDrMd RastPort, 1

END SUB

DATA Scroll-Tabelle

DATA Schieberegler

DATA Tabelle

DATA Gadget

DATA Systemgadgets

4.1.4 Schieberegler

Wie schon oben erwähnt, sind Schieberegler eines von vielen
Bedienelementen. Sie eignen sich ganz besonders, um Werte
einzustellen, die in einem bestimmten Bereich liegen, oder Ob-

jekte zu positionieren. Als bekanntestes Beispiel gilt hier sicher-

lich die Farbeinstellung. Jeder Regler kann einen Wert zwischen
0 und 15 annehmen, der die Intensität eines Farbwertes darstellt.

Natürlich könnte man auch drei INPUT-Befehle schreiben, die

jeweils auf den Wertebreich überprüft werden. Aber mit den

Schiebereglern ist die Einstellung doch viel bequemer. Sıe kön-
nen sogar durch leichte Rechts- und Linksbewegung die Rot-,
Grün- und Blauwerte stufenlos einstellen.

Auch hierzu bietet die Intuition.Library wieder Unterstützung.
Es handelt sich hierbei um erweiterte Gadgets! Der Klickbereich
ist bei Schiebereglern der Bereich, in dem man den Schieber hin
oder her bewegen kann. Dies kann sowohl horizontal, vertikal
als auch in beide Richtungen gleichzeitig sein. Die Grafik, die
den Schieberegler an sich verkörpert, wird über die Gadget-
Grafik organisiert oder aber von Intuition als Standard vorgege-

190 Amiga Tips & Tricks ———

ben. Zur Kenntlichmachung ist es üblich, daß von Intuition der
Schiebebereich mit einem Kasten umrandet wird. Wie bei allem,
so können wir auch hier diese Funktion evtl. abstellen.

Für die oben angesprochene Erweiterung der Gadget-Struktur
brauchen wir eine sog. PropInfo-Struktur, die in den Zeiger

Speciallnfo eingebunden wird. Hierfür habe ich wieder eine

SUB-Routine, die die Speicher- und Parameterarbeit übernimmt:

SUB PropInfo(bs, Flags%, HPot%, VPot%, HBody%, VBody%) STATIC
DefChip bs, 22&
POKEW bs „Flags%
POKEW bs+ 2,HPot%
POKEW bs+ 4,VPot%

POKEW bs+ 6,HBody%
POKEW bs+ 8,VBody%

END SUB

Wir tragen in die Info-Struktur mehrere Werte ein, die wir zu-
erst besprechen sollten. Mit Flags kénnen wir einstellen, ob sich

der Schieber horizontal (2) oder vertikal (4) bewegen lassen soll.

Weiterhin weisen wir Intuition mit autoknob (1) an, daß keine
eigene Grafik für den Schieber vorhanden ist, sondern daß In-

tuition eine eigene zu zeichnen hat. H- und VPot bezeichnen
jeweils die Ausgangsposition des Schiebers. Mit 0 befindet er
sich rechts bzw. unten, und mit &HFFFF befindet er sich links

bzw. oben. Nach einer Verschiebung durch den Benutzer können

wir hier auch die neue Position auslesen. In H- und VBody gibt
man die Schrittweite des Schiebers an, mit der er bei einem

Klick in die Box springen soll. Beide Werte werden als Teile
vom Ganzen (&HFFFF) gerechnet! Alle weiteren Werte, die
noch in der Struktur zu finden sind, stellt Intuition ein und sol-
len uns hier nicht weiter kümmern.

Fir die Verwendung eines AutoKnobs, den von Intuition gra-

fisch unterstützten Schieber, benötigen wir weiterhin noch einen
8 Byte langen Speicherbereich, der die Position (x- und y-Ko-
ordinaten) und die Breite enthält. Werden alle vier Werte nicht
gesetzt, so macht dies die Initialisierungsroutine. Für ein Gadget
brauchen wir jetzt also zwei weitere Strukturen:

—— Gestaltung eigener Anwenderprogramme 191

"PropInfo Propl, 1+2, 0, O0, &HFFF, 0
IntuiText Text, 2, -80, 2, "Schieber:", 0&
DefChip Buffer, 8&
GadgetDef Gadget, 0&, 150, 30, 100, 10, 0, 1+2, 3, Buffer, Text, Propl,1

Aus diesen neuen und allen bekannten Möglichkeiten lassen sich
jetzt auch mehrere Proportional-Gadgets zusammenbauen. Als

Beispiel habe ich hier ein Listing, das drei solcher Gadgets in

das Window einbindet und die Abfrage dahingehend auswertet,
daß es nach dem Loslassen des Schiebers die Werte entsprechend

in ein Farbregister einträgt. Somit können Sie gleich das Ergeb-
nis der Einstellung betrachten.

IRRRKKRKRKRKTTTT TTS

ı%

'* Proportional-Gadgets

ı*k

'* Autor : Wolf-Gideon Bleek

1% Datum 23. Mai '88

ı* Grueße : Daniel & Nils

'* Version: 1.2

'* Betriebssystem: V1.2 & V1.3
ix

IE 2 2 3 2 2 2 2 202 2 5 2 20% 2 2 2 2 2 2 2 2 202 202 2 2 2 2 2 20272;

OPTION BASE 1
DEFLNG a-z

+
3

3
r
s

4
*

%

LIBRARY ":bmaps/exec. library"
DECLARE FUNCTION AllocMem LIBRARY

DECLARE FUNCTION GetMsg LIBRARY

LIBRARY ":bmaps/intuition. library"
DECLARE FUNCTION OpenWindow LIBRARY

GADGETDOWN = 32&

GADGETUP 648

CLOSEW 512&

MList

Lauf

0&
1

HauptProgramm:

GOSUB OpenAL lL
' Hauptteil
MainLoop:

IF Lauf = 1 THEN

IntuiMsg = GetMsg(UserPort)

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg

GOTO MainLoop
END IF

GOSUB CloseAll

192 Amiga Tips & Tricks ——

END

OpenAll:
IntuiText RotTxt, 2, -80, 2, "Rot", 0&
IntuiText GrnTxt, 2, -80, 2, "Grin", 0&
IntuiText BlaTxt, 2, -80, 2, "Blau", 0&
PropInfo Propil, 1+2, 0, 0, &HFFF, 0
PropInfo Prop2, 1+2, 0, 0, &HFFF, 0
PropInfo Prop3, 1+2, 0, 0, &HFFF, 0
DefChip Puffer(1), 8&
DefChip Puffer(2), 8&
DefChip Puffer(3), 8&
GadgetDef RotGad,0&,150,30,114,10,0,1+2,3,Puffer(1),RotTxt,Prop1, 1

GadgetDef GrnGad,RotGad, 150,45,114,10,0,1+2,3,Puffer(2),GrnTxt,Prop2,2
GadgetDef BlaGad, GrnGad, 150,60,114,10,0,1+2,3,Puffer(3) ,BlaTxt,Prop3,3

Titel$ = "Farbeinstellungen"

WinDef NWindow, 100,100,460, 150 ,32+64+512&, 15&+4096& ‚BlaGad,Titel$
WinBase = OpenWindow(NWindow)
IF WinBase = 0 THEN ERROR 7
RastPort = PEEKL(WinBase+50)

UserPort = PEEKL(WinBase+86)

RETURN '

CloseAll:

CALL CloseWindow(WinBase)

CALL UnDef

RETURN

IntuitionMsg:

MsgTyp = PEEKL(IntuiMsg+20)

Item = PEEKL(IntuiMsg+28)

GadgetNr% = PEEK(I tem+39)
CALL ReplyMsg(IntuiMsg)

IF (MsgTyp = GADGETDOWN) THEN

ısofortige Aktivierung

PRINT "DOWN Gadget-Nr.:";GadgetNr%
END IF

IF (MsgTyp = GADGETUP) THEN

'relverify Modus
PRINT "UP Gadget-Nr.:";GadgetNr%;

PRINT " Pos:"';PEEKW(Puffer(GadgetNr%))

Rot = PEEKW(Puffer(1))

Grn = PEEKW(Puffer(2))

Bla = PEEKW(Puffer(3))

——— Gestaltung eigener Anwenderprogramme

PALETTE 1, Rot/100, Grn/100, Bla/100
END IF

IF (MsgTyp = CLOSEW) THEN

'System-Gadget Window schließen

PRINT "CLOSEWINDOW"

Lauf = 0

END IF

SUB DefChip(Buf fer ,Size)STATIC
SHARED MList
Size=-Size+8
Buffer=AllocMem(Size,65538&)
IF Buffer>O THEN

POKEL Buffer ,MList
POKEL Buffer+4,Size
MList=Buffer

Buf fer=Buf fer+8

ELSE

ERROR 7

END IF

END SUB

SUB UnDef STATIC

SHARED MList

undef . loop:
IF MList>O THEN

Adresse = PEEKL(MList)
Groesse = PEEKL(MList+4)
FreeMem MList, Groesse
MList = Adresse

GOTO undef. loop
END IF

END SUB

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, Gad, T$) STATIC
Size = 48+LEN(T$)+1
DefChip bs,Size
POKEW bs ,x% LeftEdge

POKEW bs+ 2,y% TopEdge

POKEW bs+ 4,b% Width

POKEW bs+ 6,h% Height

ı

i]

i]

|

POKEW bs+ 8,65535& ' Detail- BlockPen
POKEL bs+10,IDCMP ' IDCMPFlags

t

t

i]

ı

POKEL bs+14, f Flags

POKEL bs+18,Gad FirstGadget

POKEL bs+26,bs+48 Title
POKEW bs+46, 1 ScreenType
FOR 14=1 TO LEN(T$)

POKE bs+47+1%,ASC(MIDS(T$, 1%,1))
NEXT

END SUB

193

194

SUB GadgetDef(bs, nx,

DefChip bs,44&
POKEL bs _,nx
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEW bs+ 8,b%
POKEW bs+10,h%
POKEW bs+12, f%
POKEW bs+14,a%

POKEW bs+16,T%
POKEL bs+18,i
POKEL bs+26, Txt
POKEL bs+34,si

POKEW bs+38,n%
END SUB

SUB IntuiText(bs, c1%,
Size=20+LEN(T$)+1

DefChip bs,Size
POKE bs ,„c1%
POKE bs+ 2,1
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEL bs+12,bs+20
POKEL bs+16,nx
FOR i%=1 TO LEN(T$)

Amiga Tips & Tricks

xh, Ys, b%, h%, f%, a%, T%, 1, Txt, si, n%) STATIC
' Gadget-Struktur Länge

'*NextGadget

LeftEdge

TopEdge

Width

Height

Flags

Activation

GadgetType
GadgetRender

'*GadgetText

' SpecialInfo
' Gadget ID

x%, ys, TS, nx) STATIC

' IntuiText-Struktur Länge + Textlänge + Nullbyte

' FrontPen

' DrawMode

' LeftEdge

' TopEdge
' Text

' NextText

POKE bs+19+i%,ASC(MID$(T$, 1%, 1))
NEXT

END SUB

SUB Border(bs, x%, ys, C%, b%, h%) STATIC

DefChip bs ,48&
POKEW bs ,‚x%
POKEW bs+2,y%
POKE bs+4,c%
POKE bs+/,8
POKEL bs+8,bs+16
FOR i%=0 TO 1

' Border-Struktur Länge + Koordinatentabelle

' LeftEdge

' TopEdge

ı FrontPen

' Count
i*xyy

POKEW bs+22+1%*4,h%- 1

POKEW bs+24+i%*4, b%-1

POKEW bs+32+1%%4 , 1

POKEW bs+38+1%*4,h%- 1

POKEW bs+40+1%*4 ,b%-2

NEXT

END SUB

SUB PropInfo(bs, Flags%, HPot%, VPot%, NBody’, VBody%) STATIC
DefChip bs, 22&
POKEW bs ‚Flags%

POKEW bs+ 2,HPot%

——— Gestaltung eigener Anwenderprogramme 195

POKEW bs+ 4,VPot%
POKEW bs+ 6,HBody%
POKEW bs+ 8, VBody%

END SUB

Ausblicke

Aus all den in diesem Kapitel gegebenen Informationen können

Sie nun einiges machen. Wir haben versucht, ein Schema zu
entwickeln, das sich gut ın das des Betriebssystems, speziell von

Intuition, einpaßt. Alle hier vorgestellten Programme sınd
modular aufgebaut und ermöglichen es so auf einfachste Weise,
in eigene und neue Programme aufgenommen zu werden. Dafür
gehen Sie folgenden Weg:

Schreiben Sie jede SUB-Routine in ein neues Verzeichnis in ein
extra ASCII-Programm-File. Setzen Sie am besten vor jede
Routine eine Kommentarliste, die Informationen zu jedem Pa-
rameter enthält. Benötigen Sie jetzt einen Intuition-Aufruf, dann
laden Sie das SUB-File über MERGE hinzu und ergänzen in
dem OpenAll-Unterprogramm einfach den Aufruf. Am besten

spielen wir dies an einem konkreten Fall durch!

Als Abschluß dieses Kapitels folgt eine vollständige Beschrei-

bung für ein Programm, mit dem es möglich ist, alle vier Stan-
dard-Farbregister zu modifizieren. Dazu brauchen wir alle bis-
her besprochenen Unterroutinen. Das Programm ruft dann fol-

gende Gadgets ins Leben. Wir benötigen die vier Grund-Gadgets
für die Rücksetzung der Einstellungen oder zur Korrektur.

Die drei Proportional-Gadgets werden für die Rot-, Grün- und
Blauwert-Einstellungen gebraucht und sind auch unabkémmlich.
Außerdem müssen noch vier neue Gadgets entworfen werden,
die zu einer Tabelle zusammenzufügen sind, über die man die
gerade einzustellende Farbe selektieren kann. Sind alle Gadgets

in das Window eingebunden, mit den richtigen Unterstützungs-
strukturen ausgestattet und im Window mit ausreichender Glie-
derung positioniert, so kann die Abfrageroutine entwickelt wer-

den.

196 Amiga Tips & Tricks

Die Abfrage muß zuerst einmal über die Farbtabelle in einer
Variablen speichern, welche Farbe gerade beeinflußt oder ge-

löscht werden kann. Auf diese Variable werden alle weiteren
Gadgets zurückgreifen. Mit den vier Grund-Gadgets erreicht
man einerseits die Abbruch- oder Bestätigungsfunktion. Ande-
rerseits kann man alle Farben auf ihren Ursprungswert oder nur
eine darauf setzen. Dafür ist die Farbnummer entscheidend!

Als letztes kommen die elementaren Proportional-Gadgets, ohne

deren Hilfe eine Farbveränderung natürlich nicht zustande
käme. Die Veränderungen der Regler werden von der Abfrage-
routine an die Farbwerte der einzelnen Farben entsprechend der

Farbnummer weitergeleitet. Die Farben müssen dann über Pa-
lette gleich umgesetzt werden, damit der Benutzer sofort einen
Überblick über die Veränderung hat.

Wenn Sie unter Berücksichtigung aller Grundregeln, die auf den
vorhergehenden Seiten genannt wurden, so eine Farbpalette zu-

sammenbauen, haben Sie sicherlich die Kenntnis erworben, wie

man professionell programmiert und sein Programm gestaltet.

4.2 Rubberbanding

Im bisherigen Verlauf dieses Kapitels haben Sie erfahren, wie
man die wichtigsten Elemente einer professionellen Programm-
gestaltung programmiert. Sie sollten sich aber nicht davon ab-

halten lassen, neue Wege zu suchen. Jedes neue Problem erfor-

dert eine speziell abgestimmte Lösung!

In diesem Teil möchte ich noch auf eine Funktion eingehen, die
Sie sicher ständig benutzen. Gemeint ist das Rubberbanding, was
zu deutsch etwa "Gummibanderln" heißt. Sie können damit ganz
einfach durch Ziehen oder Drücken an einem Band, welches be-

liebig dehnbar ist (daher Gummiband), die Größe von Windows
einstellen. Intuition versieht das entsprechende Window dann mit
einem Sizing-Gadget. Aber uns interessiert die Programmierung
und damit die Anwendung in BASIC.

——— Gestaltung eigener Anwenderprogramme 197

Der Trick besteht darin, daß die zu verschiebende Linie nicht

einfach gezeichnet wird, sondern im "complement"-Modus gezo-

gen wird. Somit erreicht man durch nochmaliges Zeichnen, daß

der Hintergrund wieder vollständig hergestellt ist. Man erspart

dem Programmierer und dem Programm so eine aufwendige

Speicherung des Hintergrundes und die Restauration. Gewöhn-
lich verwendet man das Rubberbanding für die Einstellung von
Arbeitsbereichen (siehe Windows). Aber auch das Ziehen von
Rechtecken in Grafikprogrammen läßt sich so sehr komfortabel
gestalten.

4.2.1 Flächenbestimmung von Rechtecken

Das Ihnen hier vorliegende Programm ist nur als Mittel zum
Zweck geschrieben, denn es erfüllt keinen Sinn. Es soll Ihnen

nur zeigen, wie man diese Funktion programmiert. Sie können

dann die Mausabfrage in eigene Anwendungen übernehmen.
Wenn Sie es starten, so wird ein leeres Window mit dem

Mauscursor vor Ihnen liegen. Drücken Sie nun an einer beliebi-
gen Position im Window die linke Taste, und bewegen Sie bei
gedrückter Taste die Maus, so sehen Sie das noch frei verstell-

bare Rechteck. Erst wenn Sie die Taste wieder loslassen, wird

das Rechteck mit der Zeichenfarbe 1 auf den Bildschirm ge-
bracht.

IRRKKRKKTKTTT CT TC TH TI I HA KH N

1% *

'* Großziehen mit Rubbers

+ t t ' ' ‘ ' ' ‘ t ' ' ' ' t ‘ ' ’ ' ' ' ‘ ' ' ‘ ') ’ ‘ +
%

ix

'* Autor : Wolf-Gideon Bleek

'* Datum : Juni '87

'* Version: 1.0

'* Betriebssystem: V1.2 & V1.3
ı%

SHRAKKAKEKKEKKKKEREKEKEKEEKKEEEKKKKKK

LIBRARY ":graphics. library"
ON MOUSE GOSUB SetPoint

MOUSE ON
WHILE INKEY$<>" ©

SLEEP
WEND

MOUSE OFF

+
x
+

+

+
+

198 Amiga Tips & Tricks ———

END |

SetPoint:

MStat=MOUSE (0)
IF MStat<>-1 THEN RETURN

xStart=MOUSE (3)

yStart=MOUSE(4)

CALL SetDrMd&(WINDOW(8),2)

NewPosition:

mx=MOUSE (1)
my=MOUSE (2)

LINE (xStart,yStart)-(mx,my),,b

WHILE MOUSE(0)=-1
IF mx<>MOUSE(1) OR my<>MOUSE(2) THEN

LINE (xStart,yStart)-(mx,my),,b

GOTO NewPosition

END IF
WEND

CALL SetDrMd&(WINDOW(8),1)
LINE (xStart,yStart)-(mx,my),,b

RETURN

Variablen

MStat Mausstatus

mx, my Mauskoordinaten

xStart x-Anfangsposition des Rechtecks

yStart y-Anfangsposition des Rechtecks

Programmbeschreibung

Weil die Führungslinien im Zeichenmodus "complement" geplot-
tet werden, muß die "graphics"-Library geöffnet werden. Sie
enthält die Aufrufsequenz. Zu Anfang wird die Mausabfrage auf
die Unterroutine "SetPoint" gesetzt. Dann wartet das Programm
auf einen Tastendruck. Hat es diesen erhalten, so schaltet es die

Mausabfrage wieder ab und beendet sich selbst.

Die Mausabfrage ist der Kern dieses Programms. Sehen wir uns
diese Programmzeilen etwas genauer an. Der Mausstatus wird in

einer Variablen gesichert. Wenn er kennzeichnet, daß der An-
wender die linke Maustaste nicht gedrückt hält, wird aus dem

Unterprogramm wieder zurückgesprungen. Ansonsten merkt sich

—— Gestaltung eigener Anwenderprogramme 199

das Programm die Position als Startwert, und der Zeichenmodus
wird auf "complement" gesetzt. Dann zeichnet die Routine das
Rechteck und wartet auf eine Mausbewegung.

Erfolgt diese, so wird das Rechteck gelöscht, indem es nochmal

gezeichnet wird, und mit der neuen Mausposition wird wieder

von vorne begonnen. Erst wenn der Benutzer die Maustaste los-
läßt, wird die Schleife verlassen. Dann schaltet das Programm
wieder den normalen Zeichenmodus ein, und das Rechteck wird

endgültig ausgegeben.

4.2.2 Punkte verbinden (Formenbestimmung)

Nicht nur die Möglichkeit, mit dem Rubberbanding Flächen-
größen zu bestimmen, bleibt dem Programmierer offen. Sie kön-
nen noch ganz andere Dinge damit anstellen. Denken Sie sich
zum Beispiel eine mathematische Funktion, von der ein beliebi-
ger Punkt ausgewählt werden soll. Das Programm zeichnet die

Funktion, und Sie sollen den gewünschten Punkt markieren, da-
mit von zwei weiteren Eckpunkten Verbindungen gezogen wer-
den können (zu welchem Zweck, ist ja nicht so wichtig). Auch
hier kann man eine Abwandlung des Rubberbanding anwenden.
Sehen Sie sich dazu einmal das folgende Programm an:

EXKEKEAEKKEEEREEKEREEEKEEEEREEEKE

'* Verbinden mit Rubbers *

'* Autor : Wolf-Gideon Bleek *

'* Datum : Juni '87 *
'* Version: 1.0 *

'* Betriebssystem: V1.2 & V1.3 *
IR 2 5 5 02 202 2 2 2 2 2 2 202 5 2 2 2 5 2 52 2 5 2 5 2 2 2 2 2 2 07

LIBRARY ":graphics. library"
BasisGrafik:

LINE (100, 180)-(540, 180)

FOR i=100 TO 540
x=(1-100)/2.444444
y=SIN(x*3.1415/180)*100
LINE -(i1,180-y)

NEXT 1

ON MOUSE GOSUB SetPoint

MOUSE ON

WHILE INKEY$<>" "

200 Amiga Tips & Tricks

SLEEP

WEND

MOUSE OFF

END

SetPoint:

MStat=MOUSE (0)

IF MStat<>-1 THEN RETURN

CALL SetDrMd&(WINDOW(8) , 2)
NewPosition:

mx=MOUSE (1)
CALL Connect (mx)

WHILE MOUSE(0)=-1

IF mx<>MOUSE(1) THEN

CALL Connect (mx)

GOTO NewPosition

END IF

WEND

CALL SetDrMd&(WINDOW(8),1)

CALL Connect (mx)
RETURN

SUB Connect (x) STATIC

IF x<100 THEN x=100

IF x>540 THEN x=540

xw=(x- 100)/2.444444

yw=SIN(xw*3.1415/180)*100

LINE (100,180)-(x,180-yw)

LINE -(540,180)

PSET (x, 180-yw)
END SUB

Variablen

MStat Mausstatus

i Laufvariable

mx Mausposition

x,y Grafikkoordinaten

xw, yw Koordinaten im Sub-Programm

Wenn Sie das Programm starten und dann die linke Maustaste
driicken, so sehen Sie, wie auf diesem Bogen ein Punkt wandert,

mit dem die Bogenendpunkte verbunden werden. Eine Ab-
wandlung des Thaleskreises! Wie programmiert man dies nun?

Programmbeschreibung

Der Aufbau gleicht eigentlich dem ersten Listing. Hinzugekom-
men ist noch die Ausgabe des Bogens, der über eine kleine Si-

nus-Spielerei errechnet wird. Dann sehen Sie aber die gleiche

—— Gestaltung eigener Anwenderprogramme 201

Warteschleife. Größere Änderungen sind aber im Unterpro-
gramm geschehen: Nach dem Kontrollieren des Mausstatus wird

nur noch die x-Position des Cursors überprüft. Von ihr abhängig
wird eine SUB-Routine aufgerufen. Sie zeichnet die beiden Ver-
bindungslinien. Auch das Warten beschränkt sich auf die Ab-

frage einer x-Verschiebung. Dann wird, wie beim ersten Pro-
gramm, das Gezeichnete gelöscht und mit einer neuen Position
geplottet.

Sehen Sie sich ruhig mal die Verbindungsroutine an. Zuerst
werden die x-Werte in einen bestimmten Bereich gebracht, denn

nicht für jede x-Position existiert ein grafischer Funktionswert.
Danach berechnet das Programm anhand ."sehr komplizierter
Formeln" die Punktkoordinaten und zeichnet die Linien. Fertig!

\

4.2.3 Positionierung von Objekten

Diese letzte Variante entstand aus der Idee, ein Zeichenpro-

gramm für zweidimensionale Netzgrafik zu schreiben. Wenn Sie
in so einem Programm mehrere Objekte gezeichnet haben, kann

es leicht vorkommen, daß Ihnen die Lage von einigen nicht

mehr gefällt. Am einfachsten wäre es nun, wenn man mit der

Maus in das Objekt fährt, die Maustaste gedrückt hält und es
solange frei bewegen kann. Ähnliches macht nun das folgende

Programm. |

Zuerst errechnet es die Eckpunkte eines Kreises. Eigentlich hat
ein Kreis keine Ecken, aber er soll doch nur vereinfacht darge-
stellt werden und, dafür müssen 11 Punkte eben reichen. Viel-

leicht schreiben Sıe das 2D-Netzgrafikprogramm und bauen
diese kleine Routine ein? Den Kreis können Sie nach Drücken
der linken Taste solange bewegen, bis Sie die Taste wieder los-
lassen. Dann ist er fixiert.

202

EREKEKRKRERKKREREEKEKERRERRERREREEKE

i* *

'* Objekte mit Rubbers *
IE wm mmm nner tecaoauaa *

t* *

ı* Autor : Wolf-Gideon Bleek *

'* Datum : Juni '87 *

ı* Version: 1.0 *

'* Betriebssystem: V1.2 & V1.3 *
ı 8 *

CHRRKRKKRKREERKRKRRKERRRRERREEEEREEEER

LIBRARY ":graphics. library"
ObjektDefinieren:
DIM SHARED 0b4(10,1)
Pi=3.141593
FOR i=0 TO 360 STEP 36

x=C0S(i*Pi/180)*30
y=SINCi*Pi/180)*15
0b%(i/36,0)=x
Ob%(1/36, 1)=y

NEXT i

ON MOUSE GOSUB SetObjekt
MOUSE ON

WHILE INKEY$<>" "
SLEEP

WEND

MOUSE OFF

END

SetObjekt:
MStat=MOUSE (0)
IF MStat<>-1 THEN RETURN

CALL SetDrMd&(WINDOW(8),2)
NewPosition:
mx=MOUSE (1)
my=MOUSE (2)
CALL DrawO0bjekt(mx,my)
WHILE MOUSE(0)=-1

IF mx<>MOUSE(1) OR my<>MOUSE(2) THEN
CALL DrawObjekt(mx,my)
GOTO NewPosition

END IF

WEND
CALL SetDrMd&(WINDOW(8), 1)
CALL Drawöbjekt(mx,my)

RETURN

SUB DrawObjekt(x,y) STATIC
PSET (O0b%(0,0)+x,0b%(0, 1) +y)
FOR i=1 TO 10

Amiga Tips & Tricks

——— Gestaltung eigener Anwenderprogramme 203

LINE -(Ob%(1 ,0)+x,Ob%(1, 1) +y)
NEXT 1

LINE -(0b%4(10,0)+x,0b4(10, 1) +y)
END SUB

Variablenfelder

Ob Feld für die Kreispunkte

Variablen

MStat Mausstatus

Pi 3.141593

i Laufvariable

mx, my Mauskoordinaten

xy Koordinaten des Kreises

Programmbeschreibung

Nach dem Öffnen der "graphics"-Library werden in das Feld
Ob% die x- und y-Werte eingelesen. Sie werden über eine

Schleife errechnet, die für 11 Punkte auf dem Kreisrand die

Koordinaten "raussucht". Der Rest des Hauptprogramms ist wie

bekannt gestaltet.

Wichtige Änderungen sind erst bei der Mausabfrage zu finden.
Zuerst wird wieder nachgesehen, ob die linke Maustaste ge-

drückt wird, denn sonst springt BASIC gleich wieder ins Haupt-

programm. Ist sie noch gedrückt, so wird der Zeichenmodus ge-

setzt, und an der momentanen Position wird das Objekt gezeich-
net. Dafiir tragt die neue SUB-Routine Sorge, die ich gleich
noch näher beschreibe. Danach arbeitet das Programm in der

Warteschleife weiter, die wie immer erst verlassen wird, wenn

Sie die Maustaste loslassen. Allerdings springt das Programm

noch einmal vor die Schleife, wenn Sie die Position der Maus

verändern, denn dann muß das alte Gitternetz gelöscht werden,

damit es am neuen Ort wieder gezeichnet werden kann.

Die SUB-Routine zum Zeichnen des Objektes ist darauf einge-
stellt, daß im Feld Ob% 11 Koordinatenpaare gespeichert sind.

Zuerst zeichnet es den ersten Punkt und verbindet dann alle

204 Amiga Tips & Tricks

weiteren mit dem LINE-Befehl in ihrer Reihenfolge. Vom letz-
ten wird dann noch zum allerersten eine Linie gezogen. Somit
sind alle Punkte zu einem Kreis verbunden.

4.3 Intuition-Programmierung unter GFA-BASIC

Auch das neue GFA-BASIC, das wesentlich schneller und kom-

fortabler in Programmierung und Anwendung ist als das Amiga-
BASIC, bietet die Möglichkeit, Vorteile und Bedienkomfort von

Intuition zu nutzen.

Dazu stehen neben schon vorgefertigten Befehlen auch die vom
Amiga her bekannten Libraries jedem Programmierer offen. Al-
lerdings werden sie auf eine etwas andere Weise als beim
AmigaBASIC zugänglich gemacht. Die vier wichtigsten stehen
dem Programmierer schon ohne Vorarbeit zur Verfügung. Als

Grundlage dienen die FD-Files, wie wir es schon am Anfang
des AmigaBASIC-Kapitels erklärt haben. Auch hier müssen

diese von Commodore vorgefertigten Files erst mit Hilfe eines
Umsetzungs-Programms in die für GFA-BASIC nötige Form ge-
bracht werden.

Sehen Sıe hier das Listing des im GFA-Handbuch abgedruckten
Umsetzungs-Programms in einer modifizierten Form. Es wurde

erweitert und funktioniert nun für alle Libraries, die von GFA-
BASIC unterstützt werden.

' Programm zur Konvertierung von FD-Files

' in GFA-BASIC Format
|

' (mod) by Wolf-Gideon Bleek

DIM a$(15) ! Register-Variable definieren

INPUT "Welche Library": lib$ I Eingabe des Library-Namens

IF Libs="" I Abbruch-Möglichkeit für die Eingabe
END

ENDIF

OPEN "i", #1,"df0:fd1.3/"+lib$+" lib.fd" 1 FD-File zum Lesen öffnen
OPEN "o",#2,"df1:"+lib$+" Lib.GFA" ! MERGE-File auf Diskette erzeugen

DO UNTIL EOF(#1) | I HAUPTSCHLEI FE

LINE INPUT #1,a% I 1 Befehlszeile einlesen
IF LEFT$(a$)="#" I auf internen Befehl überprüfen

IF LEFTS(a$)="#"
SELECT CVL(MID$(a$,3))
CASE "base"

SELECT UPPER$(CMID$(Ca$,8))

CASE "_DOS"

\$="" DosBase"
CASE “ LAY"

L$="_LayersBase"
CASE "_INT"

L$=" IntBase"
CASE " GFX"

\$="_GfxBase"
CASE " SYS"

(S$="¢4)"

DEFAULT
LS=MIDS(a$,9)+"2"

ENDSELECT
CASE "bias"

0%=VAL(MID$(a$,8))
CASE "publ"
CASE "priv"
ENDSELECT

ELSE IF LEFTS$(a$)<>"*"

PRINT #2,"PROCEDURE ";

n$s=LEFT$Ca$, INSTR(a$,")"))

ni$=LEFT$CN$, INSTRCaS, "(")-1)

PRINT #2,nl$;
nr$=MID$(n$, LEN(nL$)+2)

1%=0
WHILE LEN(nr$)>1

a%=1NSTR(nr$,",")

IF a%=0
a%=LEN(nr$)

ENDIF

a$(i%)=LEFT$(nr$,a%-1)

INC 1%

nr$=MID$(nr$, a%+1)

WEND

IF i%

a%=1

WHILE a%<i%
b%=0
WHILE b%<a%

IF a$(a%)=a$(bz)

a$(a%)=a$(a%)+STRS(a%)

a$(b%)=a$(bX)+STR$CD%)

ENDIF

INC b%

WEND

INC a%

WEND

PRINT #2,"(";

J%=0

Gestaltung eigener Anwenderprogramme

v
o

auf internen Befehl überprüfen

Basis-Identifikation

DOS-Library

Layers-Library

Intuition-Library

Graphics-Library

Exec-Library

Basis-Adresse

ungleich Kommentar

205

Funktion: neue Prozedur beginnen

Name der Prozedur als Funktion

I wenn mit Parametern

I Klammer auf für Parameter

206 Amiga Tips & Tricks —

WHILE j%<i%-1
PRINT #2,3$(3%) ;"%,"; I Parametername

INC j% |
WEND.
PRINT #2,3%(j%) ;"%)"; I letzter Parameter

ENDIF
PRINT #2
r$=MID$(a$,LEN(n$)+2)

1%=0
WHILE LEN(r$)

SELECT ASC(r$)
CASE "Dp" ! Datenregister

PRINT #2,"m68A(":MIDS(r$,2,1)2")="2aSC 14) "4"

CASE "A" ! Adressregister

PRINT #2, "m68%("=>VAL(MID$S(r$,2,1))+8;")="2 aSC 1%) ; 1%
ENDSELECT

INC 1%

 r$=MID$(r$,4)

WEND

PRINT #2,'"m68%(14)=";1$ I Prozessorvariablen

PRINT #2,"RCALL ";1$;"-1,0%;" m684()" ! Routine aufrufen

ADD 0%,6

PRINT #2,"RETURN" | I Prozedur verlassen

ENDIF Oo

LOOP 7
CLOSE #2 I Files wieder schließen
CLOSE #1 | |

Listing FD_Konvert (GFA-BASIC)

Programmbeschreibung

Nun ist es uns möglich, auf fast die gleiche Weise, wie wir es

schon am Anfang des Kapitels getan haben, Intuition tiber

BASIC zu Programmieren. Hinzugekommen ist aber die Bedien-
freundlichkeit und die Geschwindigkeit des GFA-BASIC.

4.3.1 Die fertigen Bedien-Elemente

Sicherlich ist es ein beruhigendes Gefühl, wenn man weiß, daß
auch in GFA-BASIC alle Programmiersaiten gezupft werden
können, doch manchmal ist man froh, wenn die aufwendigen

Betriebssystem-Eingriffe erspart bleiben und mit weniger Auf-

wand das gleiche Ziel erreicht werden kann.

—— Gestaltung eigener Anwenderprogramme 207

Deshalb bietet GFA-BASIC neben der freien Betriebssystem-

Programmierung auch zwei sehr wichtige und komplexe BASIC-
Befehle. Der erste heißt ALERT und ähnelt sehr stark dem

System-Requester, der hier aber mit drei Auswahlmöglichkeiten

eine erweiterte Version darstellt, somit also noch individueller
gestaltet werden kann. Lassen Sie sich aber nicht durch den

Namen irritieren! Alert wurde vom Atari ST übernommen und

hat nichts mit der Guru-Meditation zu tun.

Mit dem zweiten Befehl wird endlich das große Problem der
File-Auswahl behoben, das jedem Programmierer ein Dorn im
Auge war. Mit einem einzigen Aufruf wird eine äußerst kom-
fortable File-Auswahl ermöglicht, die dem Programm zum
Schluß nur noch den vom Benutzer ausgewählten File-Namen

übergibt.

Die Programmierung der File-Select-Box stellt kein großes Pro-
blem dar. Sie wird mit nur wenigen Parametern - einer Über-
schrift, dem Text für das OK-Feld und der Rückgabevariablen
- aufgerufen, leistet dafür aber hervorragende Arbeit. Sehen Sie
am besten das Beispielprogramm, anhand dessen sich die Funk-

tion viel leichter erklären läßt:

WRUKRKKKRKKKKH HH TI TI TI I T TC IH TH TI N I NH

File - Select - Test *

*

Demonstration zum Aufruf

einer File-Select-Box

+
+

4
3
%

+

* Flr Amiga Tips & Tricks DB
* (p) im März 1989 by Wgb
* Version: 1.2/1.3
* GFA: 3.0
*

KEKKKKEKEKKREREKREEKKEEREEKKKEKK

+
+

+
+

©
4

Zu
r

Zu.

FILESELECT "Bitte wählen Sie ein File","Bestatige","RAM:", pfad$

IF pfad$="" I Keine Auswahl erfolgt
PRINT "Abbruch"

ELSE I Auswahl auswerten
|

zeigerd=1

WHILE MID$(pfad$,zeigerd,1)<>'"':" AND zeigerd<=LEN(pfad$)

208 Amiga Tips & Tricks

zeigerd=zeigerd+1

WEND
device$=LEFT$(pfad$, zeigerd)

i]

IF LENCdevice$)=LEN(pfad$)

fi le$=device$

device$="""

ELSE

zeigerf=LEN(pfad$)
WHILE MID$(pfad$,zeigerf,1)<>"/" AND MID$(pfad$, zeigerf,1)<>":" AND
zeigerf>=1

zeigerf=zeigerf-1

WEND

file$=MID$(pfad$,zeigerf+1)
verzeichnis$=MID$(pfad$, zeigerd+i,zeigerf-zeigerd)

ENDIF
PRINT "Device : "sdevice$

PRINT "Verzeichnis: ";verzeichnis$

PRINT "File-Name : ";file$
ENDIF

Listing: GFA File-Select-Box

Programmbeschreibung

Mit dem ersten Befehl wird die File-Select-Box aufgerufen. Wir
übergeben die Überschrift der Box ("Bitte wählen Sie ein File"),

den Text ("Bestätige"), den Pfad, von dem zuerst das Verzeichnis

geladen werden soll ("RAM", damit’s schneller geht), und die

Variable, in der wir später unser Ergebnis erhalten. Danach
erfolgt die Auswertung:

1. Ist die Variable leer, so hat der Benutzer das Abbruch-

Gadget betätigt, die File-Auswahl wurde verweigert.

2. Ist ein Inhalt in der Variablen, dann wird dieser auf Device,

Verzeichnis- und File-Angabe hin untersucht. Das Pro-
gramm liefert zum Schluß die Ausgabe jedes einzelnen der
drei Bestandteile. Dies erleichtert später die Bearbeitung von
Verzeichnis- oder Diskettenwechseln oder die Änderung des

Suffixes am File-Namen. |

—— Gestaltung eigener Anwenderprogramme 209

Trashcan

ERT-BOX.GFA

isk.info

DCON-NEUW, BAK
DCON-NEU. GFA
DCON-NEU, LST
ILE-SELECT . BAK
ILE-SELECT . GFA
ILE-SELECT LST -
UNKTION .LST

Abb. 3: File-Select-Box

Als nachstes soll die Alert-Box betrachtet werden, die vom Atari
ST mit GFA-BASIC übernommen wurde. Der vom Amiga be-
kannte System-Requester bietet zwei Gadgets zur Auswahl. Da
es oftmals drei Antworte-Möglichkeiten auf eine Frage gibt,
stellt dieser Alert auch drei Gadgets zur Verfügung. Das fol-
gende Listing verwendet auch diesen Befehl zur Demonstration:

KERKRRRRKHCHHT TC NT TI N U N

KREREKKRERKEAEEKEEKEREREREREEKREREE

t

'* Alert-Box Testprogramm *
I KO iin nn nn un nn nn nn *

ı %* *

' * Fur Amiga Tips & Tricks DB *
' * (p) im März 1989 by Wgb *
' * Version: 1.2/1.3 *
' * GFA: 3.0 *
ı * *

i

i

210 Amiga Tips & Tricks ————

ALERT O0,ERR$C100),1,"0K" var
ALERT 0,"Wie geht es Ihnen|Lieber Amiga
User", 1, "Gut |Mittel |Schlecht", var |

IF var=1 |

PRINT "Das freut micht, denn mir geht es ja auch immer gut!"

ELSE IF var=2

PRINT "Man kann sich als Mensch ja nicht jeden Tag gut fühlen."

ELSE IF var=3
PRINT "Das ist schade, ich hoffe, ich kann Ihnen helfen!"

ENDIF

Listing: GFA Alert-Box

Programmbeschreibung

Der Befehl ALERT ist sehr einfach aufzurufen. Im Ganzen
werden fünf Parameter übergeben. Der erste steht für ein
Symbol, das in dem Alert-Fenster erscheinen soll. Das war beim

Atarı ST so üblich. Doch weil der Amiga diese Symbole nicht
kennt, hat die dort stehende Zahl keine Bedeutung. Wählen Sie
einfach immer 0, damit später bei einer Implementierung keine

Probleme auftreten.

Als nächstes folgt der Erläuterungs-Text, der aus fünf Zeilen ä
40 Zeichen bestehen kann. Jede Zeile wird mit einem "|"-Strich
von der folgenden getrennt. Überstehende Zeichen oder Zeilen
werden einfach abgetrennt, weil sie nicht dargestellt werden
können.

Für die maximal drei Antwort-Gadgets wird wieder eine String-
Variable definiert, in der entsprechend den Gadgets bis zu drei
Texte getrennt durch das oben verwendete Zeichen angegeben
werden müssen. Vor dieser Variablen wird noch die Nummer
des Gadgets angegeben, bei dem die Bestätigung noch zusätzlich
über die RETURN-Taste geschehen kann. |

Nun fehlt nur noch die Angabe der Variablen, in der die Num-
mer des ausgewählten Gadgets übertragen werden soll. Fertig ist
dieser Befehl!

Im Programm selbst rufen wir zuerst den Befehl mit der Funk-
tion ERR$() auf, da diese je nach Wahl der Nummer einen

——— Gestaltung eigener Anwenderprogramme 211

Fehlertext liefert, der fiir die Alert-Box vorbereitet ist. Unter

der Nummer 100 findet man die System-Meldung von GFA-
BASIC. Als zweites Beispiel ist nach dem Aufruf der Alert-Box

eine Auswertung programmiert, die Sie angepaßt in eigene Pro-

gramme übernehmen können.

212 Amiga Tips & Tricks ———

—— AmigaBASIC Intern 213

5. AmigaBASIC Intern

AmigaBASIC, das sich auf jeder Extras-Disk befinden sollte,
zeichnet sich bekanntlich nicht nur durch einen sehr mächtigen
Befehlssatz aus, sondern auch durch eine recht dürftige Doku-

mentation, die sich im wesentlichen auf eine zumeist unvollstän-
dige Beschreibung der Befehle beschränkt. Wer vor der Be-
kanntschaft mit seinem Amiga bereits einen C64 hatte, wird sich
sicherlich an die vielen kleinen Utilities erinnern, mit deren
Hilfe man Programme verändern, Programme erzeugen oder nur
aus ihnen Daten herauslesen konnte. Unmöglich auf dem Amiga,
werden Sie jetzt sagen, schließlich wird jedes Programm an eine
andere Adresse geladen usw.

Sie haben durchaus recht, wenn Sie denken, daß eine Manipula-

tion im Speicher derart kompliziert ist, daß ein solches Manipu-

lationsprogramm ungeahnte Ausmaße annehmen müßte. Glück-

licherweise verfügen wir aber über Hilfsmittel, die Programm-
Veränderungen zulassen. Ich meine die Laufwerke wie das ein-
gebaute Diskettenlaufwerk df0:, die allseits beliebten RAM--
Disks ram: und RAD: und eventuell angeschlossene Zusatzlauf-
werke. Schließlich werden Programme auf Disketten abgespei-
chert. Die Möglichkeiten, die uns diese Laufwerke eröffnen, ge-
hen sogar so weit, daß es machbar ist, laufende Programme sich

selbst verändern zu lassen und sie in dieser geänderten Form

weiterlaufen zu lassen, doch dazu später mehr.

Man kann AmigaBASIC-Programme auf drei verschiedene Arten
abspeichern. Dieses macht unsere folgenden Exkursionen etwas
komplizierter, die Anwendungen, die noch folgen, jedoch um so

leichter. Bevor ich allerdings die Programmierung der Utilities
beschreibe, möchte ich, daß Sie die dazu notwendigen Kennt-
nisse über den Aufbau der drei verschiedenen File-Typen erlan-

gen, damit es Ihnen möglich ist, die Utilities für Ihren persön-
lichen Bedarf umzuschreiben bzw. eigene zu entwickeln. Durch
die zugegebenermaßen große Menge Theorie, die jetzt folgen
wird, werden wir uns also durchbeißen müssen. |

214 Amiga Tips & Tricks

5.1 FileMonitor der Superlative

Zunächst möchte ich Ihnen einen File-Monitor vorstellen, der es

Ihnen gestatten wird, jedes beliebige Programm hexadezimal und
als ASCII-Text anzuschauen und zu verändern. Diesen oder

einen beliebigen anderen FileMonitor werden Sie ın den nach-

folgenden Kapiteln häufig brauchen, um die entsprechenden

Manipulationen durchführen zu können und die beschriebenen

Punkte zu verdeutlichen. Hier das Programm:

OPTION BASE 1

DEFLNG a-z
ON ERROR GOTO FAILED
DECLARE FUNCTION ALLOCMEM LIBRARY
DECLARE FUNCTION GETMSG LIBRARY

LIBRARY": bmaps/exec. library"
LIBRARY": bmaps/graphics. library"

DECLARE FUNCTION OPENSCREEN LIBRARY

DECLARE FUNCTION OPENWINDOW LIBRARY

LIBRARY": bmaps/intuition. library"
DECLARE FUNCTION LOCK LIBRARY

DECLARE FUNCTION EXAMINE LIBRARY

DECLARE FUNCTION EXNEXT LIBRARY

DECLARE FUNCTION IOERR LIBRARY

DECLARE FUNCTION XOPEN LIBRARY

DECLARE FUNCTION XREAD LIBRARY

DECLARE FUNCTION XWRITE LIBRARY

DECLARE FUNCTION SEEK LIBRARY

LIBRARY": bmaps/dos. library"
LPRINT
PRINT"---------- FILEMONITOR-V1.0---------- "
PRINT"- '88 by DATA BECKER (w)'88 by S. M."
PRINT
PRINT"Program starts in a few seconds."

PRINT"Please stand by...(no Multitasking"
PRINT"during initialization!)"

DIM SHARED borders(14),itxt(25) gadgets(24),sinfo(2)
bfec01=12577793&
clearentry$=SPACE$(30)

clearstring$=STRING$(80,0)

INITIALIZE
DIRECTORY

start%=-1
gesperrtX%=0
WHILE (-1)

qualifier%=PEEK(bfec01)
IF (qualifier%>&H60)AND (qual i f ier%<&H68) THEN

IF qualifierXAND 1 THEN GOSUB tastendruck
END IF Ä

AmigaBASIC Intern 215

intuimsg=GETMSG(userport) -
IF intuimsg>0 THEN GOSUB IntuitionMsg

WEND

IntuitionMsg:

MsgTyp=PEEKL(intuimsg+20)

IF MsgTyp=2097152& THEN
IF start% THEN RETURN

ascii. 14=PEEKW(intuimsg+24)

IF ascii.i%>0 GOTO: tastendruck

END IF

I tem=PEEKL (intuimsg+28)

GadgetNr%=PEEK(I tem+39)

IF MsgTyp=32 THEN

1 F (GadgetNr%=10)0R(GadgetNr%=14) THEN gesperrtk=- 1
RETURN

END IF

IF MsgTyp<>64 THEN RETURN

gesperrtX=0
IF GadgetNr%<0 THEN ERROR 255

IF GadgetNr%<5 THEN

COPYMEM SADD(clearstring$),sinfo(1)+36,80

POKEL sinfo(1)+36, CVL END EM*CHRS(47+GadgetNra)+":")

lasttype%=0
DIRECTORY

ELSEIF GadgetNr%<10 THEN

SETFILEACTDIR

IF lasttype%=1 THEN
STATUS "Loading Block"

OPENFILE

IF oldhandle>O THEN :STATUS "Edit"

RETURN

END IF

DIRECTORY

ELSEIF GadgetNr%=10 THEN

gesperrt%=0
DIRECTORY

RETURN

ELSEIF GadgetNr%=11 THEN

IF dirstart%>4 THEN dirstart%=dirstart%-5:DISPLAYDIR

ELSEIF GadgetNr%=12 THEN

IF anzahl%>dirstart%+5 THEN

dirstart%=dirstart%+5

DISPLAYDIR

END IF

ELSEIF GadgetNr%=13 THEN

DIRECTORY

ELSEIF GadgetNr%=14 THEN

gesperrt%=0
newof fset=PEEKL (sinfo(2)+28)*488

IF (newof fset>=newf len)OR(newoffset<0) THEN
POKEL sinfo(2)+36,CVL("0"+MKI$(0)+CHRS$(0))

STATUS "illegal Input"

DISPLAYBEEP scrbase

216 Amiga Tips & Tricks

RETURN

END IF

oldpos=SEEK(oldhandle,newoffset, -1)
currentoffset=newoffset

STATUS "reading Block"

READBLOCK

RETURN

ELSEIF oldhandle=0 THEN

POKEL sinfo(2)+36,CVL("0"+MKI$(0)+CHRS$(0))
STATUS "no File selected"

DISPLAYBEEP scrbase

RETURN

ELSEIF GadgetNr%=15 THEN

COPYMEM fundo, fbuffer ,488
DISPLAYBUFFER

ELSEIF GadgetNr%=16 THEN
STATUS "reading again"

oldpos=SEEK(oldhandle, -gelesen,0)
READBLOCK

ELSEIF GadgetNr%=17 THEN

IF currentoffset<newflen-488 THEN

STATUS "reading next Sec"

currentoffset=currentoffset+488

READBLOCK

END IF

ELSEIF GadgetNr%=18 THEN

IF currentoffset>487 THEN

STATUS "reading last Sec"

currentoffset=currentoffset-488

oldpos=SEEK(oldhandle, -gelesen-488,0)
READBLOCK

END IF

ELSEIF GadgetNr%=19 THEN

STATUS "writing Buffer"

oldpos=SEEK(oldhandle, -gelesen,0)
wr=XWRITEColdhandle, fbuf fer, gelesen)

ELSEIF GadgetNr%=20 THEN

DUMPFILE

ELSEIF GadgetNr%=21 THEN

DUMPBUF FER

ELSEIF GadgetNr%=22 THEN

edmode%=0

STATUS "switched to HEX"

ELSEIF GadgetNr%=23 THEN

edmode%=1 |

STATUS "switched to ASCII"

ELSEIF GadgetNr%=24 THEN

STATUS "ARE YOU SURE? Y/N"

t%=0

WHILE (t%<>&H9D)AND(t%<>&H93)
t%=PEEK(bfec01)

WEND

‘IF t%=&H9D THEN

——— AmigaBASIC Intern

STATUS "You ARE sure! BYE"

GOTO FAILED

END IF

END IF

STATUS "OKAY"

RETURN —

tastendruck:

ascii $=UCASES(CHRS(ascii.i%))

IF edmode%=1 GOTO ASCI Imode

wert%=INSTR("0123456/789ABCDEF", ascii$)-1
IF qualifier%=&H67 THEN

of fsetX=of fset%-24

IF of fset%<0 THEN offset%=gelesen-1:nibble%=1

CURSORAUS

CURSORAN

RETURN .

ELSEIF qualifier%=&H65 THEN
of fsetX=of fset%+24

IF offset%>=gelesen THEN of fset%=0:nibblex=0

CURSORAUS

CURSORAN

RETURN

ELSEIF qualifier%=&H63 THEN

IF nibble%=0 THEN
nibble%=1

ELSE

nibble%=0

of fset%=of fset%+1
IF offset%>=gelesen THEN of fset%=0

END IF

CURSORAUS

CURSORAN

RETURN

ELSEIF qualifier%=&H61 THEN
IF nibble%=1 THEN

nibble%=0

ELSE

nibble%=1

offset%=offset%-1

IF offset%<O THEN offset%=gelesen-1

END IF

CURSORAUS

CURSORAN

RETURN

END IF

IF wert%>=0 THEN

IF nibble%=0 THEN andi%=15:muls%=16:GOTO mk

andi%=240

mul s%=1

mk: a%=(PEEK(fbuffer+offset%) AND andi%)+wert%*muls%

POKE fbuffer+offset%,a%

CURSORAUS

MOVE rastport,0.xX%,0.y%+6

217

218 Amiga Tips & Tricks

SETAPEN rastport, 1
SETBPEN rastport,0
TEXT rastport ,SADD("0123456789ABCDEF")+wert%, 1
MOVE rastport, (0.b%+54)*8,0.yX+6
SETAPEN rastport,0
SETBPEN rastport, 1
TEXT rastport, fbuffer+offset%, 1
IF nibble%=0 THEN nibbleX=1:GOTO mk2
nibble%=0
offsetX=offset%+1
IF offset%>=gelesen THEN offset%=0

mk2:

CURSORAN

RETURN
END IF

RETURN

ASCI Imode:

IF qualifier%=&H67 THEN
offset%=offset%-24
IF offset%<0 THEN offset%=gelesen-1:nibble%=1

CURSORAUS
CURSORAN

RETURN
ELSEIF qualifier4=&H65 THEN

offsetX%=offset%+24
IF offset%>=gelesen THEN offset%=0:nibble%=0

CURSORAUS

CURSORAN

RETURN
ELSEIF qualifier%=&H63 THEN

offset%=offset%+1:IF of fset%>=gelesen THEN of fset%=0
CURSORAUS

CURSORAN

RETURN

ELSEIF qualifier%=&H61 THEN
offset%=offset%-1
IF offset%<0 THEN offset%=gelesen-1
CURSORAUS

CURSORAN

RETURN

END IF
IF ascii$<>CHR$(0) THEN
wert%=ascii.iX
POKE fbuffer+toffset% wert%

CURSORAUS

MOVE rastport,0.x%+(0.m%=0)*nibble%,0.y%+6
SETAPEN rastport, 1
SETBPEN rastport,0
TEXT rastport, SADD(RIGHTS("0"+HEXS$(wert%),2)),2
SETAPEN rastport,0
SETBPEN rastport,1
MOVE rastport,(0.b%+54)*8,0.y%+6
TEXT rastport, fbuffer+offset%, 1

——— AmigaBASIC Intern | 219

offset%=offset%+1

IF offset%>=gelesen THEN offset%=0

CURSORAN
RETURN

END IF
RETURN

FAILED:
UNDEF
IF scrbase>0 THEN

IF winbase>0O THEN
CLOSEWINDOW winbase
IF oldhandle>0 THEN :XCLOSE oldhandle

END IF
CLOSESCREEN scrbase

END IF
LIBRARY CLOSE
SYSTEM

SUB DUMPBUFFER STATIC
SHARED fbuffer, HEXBUFF,currentlongs,currentoffset

ausgabe$=SPACE$(1134)

HEXBUFF currentlongs-1, fouf fer, SADD(ausgabe$)

STATUS "printing"
FOR i%=0 TO 20

LPRINT RIGHTS(" N+STR$Ccurrentoffset+i%*20) ,8);": ";

LPRINT MID$(ausgabe$, 1%*54+1,54)
NEXT
LPRINT

END SUB

SUB DUMPFILE STATIC

SHARED gelesen, oldhandle,currentoffset

savedoffset=currentoffset

oldpos=SEEK(oldhandle,0,-1)
currentoffset=0

df.loop:
READBLOCK

DUMPBUFFER

currentoffset=currentoffset+488

IF gelesen=488 GOTO df.loop
currentoffset=savedoffset

oldpos=SEEK(oldhandle,currentoffset, -1)
READBLOCK

END SUB

SUB CURSORAN STATIC

SHARED 0.x%,0.y%, edmode%,o.m%, rastport,offset%,nibble%

SHARED 0.b%

Z%=INT(Coffset%/24)

0.b%=0ffset%- z%*24

I%=INT(0.b%/4)

0.X%=(0.b%*2+1%- (edmode%=0)*nibbleX%)*8

0. Yh=Z4*8+2

SETAPEN rastport,3
SETDRMD rastport,3
RECTFILL rastport,0.x%,0. Y%,0. x%+7- (edmode%=1)*8,0. ya?

220 Amiga Tips & Tricks

RECTFILL rastport, (0.b%+54)*8,0.y%,(0.b%+54)*8+7,0.y%+7

SETDRMD rastport, 1
o.m%=edmode%

END SUB

SUB CURSORAUS STATIC

SHARED 0.xX%,0.y%,0.m%,0.b%, rastport

SETAPEN rastport,3
SETDRMD rastport,3
RECTFILL rastport,0.x%,0.y%,0.x%+7-(0.m%=1)*8,0.y%t7
RECTFILL rastport, (0.b%+54)*8,0.y%, (0.b%+54)*8+7,0.y%+7
SETDRMD rastport, 1

END SUB
SUB OPENFILE STATIC

SHARED oldhandle,scrbase,currentoffset,actdir,newflen
SHARED numblocks

IF oldhandle>0 THEN :XCLOSE oldhandle

oldhandl e=XOPEN(actdir, 1005)
IF oldhandle=0 THEN

STATUS "File Open Error"
DISPLAYBEEP scrbase

EXIT SUB

END IF

numbl ocks=newf len/488
W=CVLC(RIGHTS(" "+STRS(numblocks),4))

POKEL 1txt(12)+20,w

currentoffset=0
READBLOCK

END SUB

SUB READBLOCK STATIC

SHARED oldhandle, fbuffer, fundo, gelesen, currentlongs
SHARED currentoffset
gelesen=XREAD(oldhandle, fbuf fer , 488)

IF gelesen<488 THEN

v$=STRING$(488- gelesen, 0)

COPYMEM SADD(v$), fbuffer+gelesen,LEN(v$)
END IF

x=currentof fset/488

w=CVL(CLEFTSCMIDSCSTRECK) ,2)+MKL$CO),4))
POKEL sinfo(2)+36,w
current longs=(gelesent3)/4

COPYMEM fbuffer, fundo, 488
DISPLAYBUFFER

END SUB
SUB DISPLAYBUFFER STATIC

SHARED HEXBUFF,currentlongs, fbuffer, rastport, gelesen

SHARED start%, of fset%,nibblex
ASCI I buf fer$=SPACES(1134)
HEXBUFF currentlongs-1, fouffer, SADD(ASCI I buf fer$)
SETAPEN rastport,0
RECTFILL rastport,0,0,639, 190

SETAPEN rastport, 1
SETBPEN rastport,0
FOR i%=0 TO 20

——— AmigaBASIC Intern 221

MOVE rastport,0, i%*8+8
TEXT rastport, SADD(ASCI Ibuf fer$)+i%*54, 54

NEXT

SETAPEN rastport,0
SETBPEN rastport,1
1%=24
FOR i%=0 TO 20

MOVE rastport, 432, 14*8+8
IF 1%=20 THEN L%=8
TEXT rastport, fbuffer+i%*24,1%

NEXT
start%=0
of fset%=0
nibble%=0

CURSORAN
END SUB

SUB SETFILEACTDIR STATIC

SHARED GadgetNr%,actdir,scrbase,clearstring$,newflen
SHARED dirstart%,dirbuff, lasttype%

vergl 1$=STRINGS$(31,0)

vergl2$=STRING$(80,0)
COPYMEM actdir,SADD(vergl2$), 79
COPYMEM itxt(GadgetNr%)+20,SADD(vergl1$),30

L2%X=INSTR(vergl2$,CHR$(0))-1
L1%=INSTR(vergl1$,CHR$(O))-1

IF lasttype%=1 THEN
L2%=1INSTR(vergl2$,":")

sfad. loop:
L3%Z=INSTRC(L24+1, vergl2$, "/")
IF 13%>12% THEN 12%=13%:G0T0 sfad. loop

END IF

IFCL1%+12%)>78 THEN
STATUS "FileName Too Long"

DISPLAYBEEP scrbase

EXIT SUB

END IF
v$=LEFT$(vergl2$, (2%)

IF(lasttype%>1)ANDCRIGHTS(v$,1)<>":")THEN vS=vSt"7"

last type%=PEEK(dirbuf f+(dirstart%+GadgetNr%-5)*36+31)
v$=LEFT$(v$+vergl1$+clearstring$, 79)

COPYMEM SADD(v$),actdir, 79
newf len=PEEKL(dirbuf f+(dirstart%+GadgetNr%-5)*36+32)

END SUB

SUB DISPLAYDIR STATIC
SHARED dirstart%, anzahl4,clearentry$,dirbuff,winbase
FOR i4=5 TO 9

COPYMEM SADD(clearentry$), itxt(i%)+20,30
NEXT

1%=0
IF anzahl%<=dirstart% GOTO displaydir. show
REFRESHGADGETS gadgets(23),winbase,0

displaydir. loop:
a=dirbuff+(i%+dirstart%)*36

222 Amiga Tips & Tricks

COPYMEM a, itxt(i%+5)+20,30

POKE itxt(i%+5),PEEK(a+31)

1%=1%+1
IF (1%<5)AND(anzahl%>(dirstart%+i%))GOTO displaydir.loop

displaydir.show:
REFRESHGADGETS gadgets(23),winbase,0

END SUB
SUB DIRECTORY STATIC
SHARED anzahl%,dirstart%, actdir, lasttype%
SHARED fileinfo,clearentry$,dirbuff,newflen

STATUS "Examining Entry"

dirlock=LOCK(actdir, -2)
IF dirlock=0 THEN

STATUS "File not found"

EXIT SUB

END IF
e=EXAMINE(dirlock, fileinfo)

IF e=0 THEN

UNLOCK dirlock
STATUS "Examine Error"

EXIT SUB
END IF

IF PEEKL(fileinfot120)<0 THEN

newf len=PEEKL (fi leinfo+124)
UNLOCK dirlock

OPENFILE

lasttype%=1
EXIT SUB

END IF

lasttype%=3
anzahl%=0

dirstart%=0

FOR i%=5 TO 9
COPYMEM SADD(clearentry$), itxt(i%)+20,30

NEXT
STATUS "reading Directory"

directory.loop:
e=EXNEXT(dirlock, fileinfo)

IF e=0 THEN

e=IOERR

IF e<>232 THEN
STATUS "Directory invalid"
anzahl%=0

ELSE
STATUS "Okay"

END IF

UNLOCK dirlock

DISPLAYDIR

EXIT SUB

END IF |
a=di rbuf f+anzahl%*36
COPYMEM fileinfot8,a, 30
IF PEEKL(fileinfo+120)<0 THEN c%=1 ELSE c%=3

—— AmigaBASIC Intern 223

POKE a+31,c%
POKEL a+32,PEEKL(fileinfo+124)
anzahl%=anzahl%+1
IF anzahl%<72 GOTO directory. loop
UNLOCK dirlock
STATUS "Okay"
DISPLAYDIR

END SUB
SUB INITIALIZE STATIC
SHARED HEXBUFF, fbuffer, fundo,nscreen,dirbuff, fileinfo
SHARED actdir,scrbase,winbase, viewport, rastport
SHARED userport

FORBID

DEFCHIP HEXBUFF ,608&
DEFCHIP fbuffer , 488&
DEFCHIP fundo, 4888
DEFCHIP nscreen, 88&
DEFCHIP dirbuff,2592&
DEFCHIP fileinfo, 252&
DEFCHIP darts, 68&
borders(13)=darts+28
borders(14)=darts+48

FOR i%=0 TO 14
READ 1$

POKEW HEXBUFF+14*4, VAL("&H"+LEFT$(1$,4))
POKEW HEXBUFF+1%*4+2, VAL ("&H"+RIGHTS(1$,4))

NEXT

FOR 1%=0 TO 6
READ i$

POKEW darts+i%*4, VAL("&H"+LEFT$(i$,4))
POKEW darts+i%*4+2 ,VALC"&H"+RIGHTCI,4))

NEXT
POKE darts+29, 10

POKE darts+31,3
POKE darts+33,7
POKE darts+35,7

POKE darts+37, 1

POKEW darts+42,256
COPYMEM darts+28,darts+48,20
FOR i%=0 TO 1

POKEL darts+i%*20+38,darts+i%*14
NEXT

FOR i%=1 TO 12

READ a%,b%,c%,d%,e%, f%
BORDER borders(i%),a%,b%,c%,d%,e% .
IF f%>0 THEN POKEL borders(i%)+12,borders(f%)

NEXT

FOR i%=1 TO 4
INTUITEXT itxtCi%),1,6,3,"DF"+CHRSCA7+1%) +": 0&

NEXT

FOR i%=5 TO 9

INTUITEXT itxt(i%),1,8,0,SPACE$(30),0&
NEXT

224 Amiga Tips & Tricks ———

FOR i%=10 TO 25
READ 3a%,b%,c%,d$,e%

IF e%>0 THEN f=itxt(e%) ELSE f=0

INTUITEXT itxt(i%),a%,b%,c%,d$, f
NEXT

STRINGINFO sinfo(1),79,"DFO:"
STRINGINFO sinfo(2),4,"0"+STRINGS(15,0)
actdir=sinfo(1)+36
d=0
FOR i%=1 TO 24

READ e%,f%,G%,h%, j%,k%,1%,m%,n%,0%
IF of 0 THEN a=sinfo(0%) ELSE a=0
IF n%>0 THEN b=itxt(n%) ELSE b=0

IF m%>O THEN c=borders(m%) ELSE c=0
GADGET gadgets(i%),d,e%, £%,G%,h%, J%,k%, |4,c,b,a, 14
d=gadgets(1%)

NEXT

POKEL nscreent4 , 41943296&
POKE nscreen9, 2

POKE nscreent+12, 192

POKEW nscreen+14, &H10F
nwindow=nscreent+32
POKEL nwindow+4 , 419432968
POKEW nwindow+8, 259

POKE nwindow+11,32
POKE nwindow+13,96

POKE nwindow+15, 1

POKE nwindow+16, 24

POKEL nwindow+18,d
POKE nwindow+47, 15
POKEW nscreent+82, &HFFF
POKE nscreent84, 15
POKEW nscreen+86, &HFDO

PERMIT

scrbase=OPENSCREEN(nscreen)

IF scrbase=0 THEN ERROR 7
POKEL nwindow+30,scrbase

winbase=OPENWI NDOW(nwindow)

IF winbase=0 THEN ERROR 7
rastport=PEEKL(winbase+50)
viewport=scrbase+44
userport=PEEKL(winbase+86)
LOADRGB4 viewport,nscreent80,4

END SUB
SUB STATUS(tS$)STATIC

SHARED winbase

t$=LEFT$(t$+SPACE$(17),17)
COPYMEM SADD(t$), itxt(22)+20, 17
REFRESHGADGETS gadgets(23),winbase,0

END SUB

SUB DEFCHIP(Buffer,size)STATIC

SHARED MList

size=size+ß

AmigaBASIC Intern

Buf fer=ALLOCMEM(si ze, 65538&)
IF Buffer>O THEN

POKEL Buffer,MList

POKEL Buffer+4,size

MList=Buffer
Buf fer=Buf fer+8

ELSE
ERROR 7

END IF
END SUB
SUB UNDEF STATIC

SHARED MList
undef . loop:

IF MList>O THEN

Buf fer=PEEKL(MList)

$1ze=PEEKL(MList+4)
FREEMEM MList,size
MList=Buf fer

GOTO undef. loop

END IF
END SUB

SUB GADGET(bs ,nx,x%, y%,b%,h%, f%,a%, t%,1,txt,si,n%)STATIC

DEFCHIP bs,44&
POKEL bs,nx

POKEW bs+4,x%

POKEW bs+6, y%
POKEW bs+8, b%
POKEW bs+10,h%
POKEW bs+12, f%
POKEW bs+14,a%

POKEW bs+16, t%
POKEL bs+18,i
POKEL bs+26, txt
POKEL bs+34,si
POKEW bs+38,n%

END SUB

SUB INTUITEXT(bs,c1%,x%, y4, t$, nx STATIC

$1ze=20+LEN(t$)+1

DEFCHIP bs,size

POKE bs,c1%

POKE bs+2, 1

POKEW bs+4, x%

POKEW bs+6, y%

POKEL bs+12,bs+20

POKEL bs+16,nx

COPYMEM SADD(t$),bs+20, LEN(t$)
END SUB

SUB BORDER(bs, x%, y%, €%, b%, h%) STATIC
DEFCHIP bs, 48&
POKEW bs, x%
POKEW bs+2, y%
POKE bs+4,c%
POKE bs+7,8

225

226 Amiga Tips & Tricks

POKEL bs+8,bs+16
FOR i%=0 TO 1

POKEW bs+22+1%*4 ,h%-1
POKEW bs+24+1%*4 ,b%- 1
POKEW bs+32+1%*4, 1
POKEW bs+38+1%*4 ,h%-1
POKEW bs+40+1%*4 ,b%-2

NEXT

END SUB

SUB STRINGINFO(bs,max%, buf f$)STATIC

IF LENCbuff$)>max% THEN nmaxX%=LEN(buff$) ELSE nmax%=max%

IF(nmaxZAND 1) THEN nmax%=nmax%+1
size=36+2*(nmax%+4)
DEFCHIP bs,size
POKEL bs, bs+36
POKEL bs+4,bs+40+nmax%
POKEW bs+10 ‚max%+1

IF buff$<>""THEN
COPYMEM SADD(buff$),bs+36,LENCbuff$)

END IF

END SUB

DATA 48E7FOCO ,4CEFO308,001C5303 ,22187407 ,E9991001 , O200000F
DATA 06000030, 0CO0003A, 65040600 , 000712C0,51CAFFE6, 12FC0020
DATA 51CBFFDA, 4CDFO30F , 4E 750000, 10003800, 7COOFEOO, 38003800
DATA 38003800 , 38003800, FE007COO, 38001000
DATA 0,0,2,43,13,0,-6,-3,2,268,45,0,-6,-3,3,268, 13,0
DATA 0,0,2,28,13,0,0,-45,2,28,13,4,0,-15,2,28,13,5
DATA -62,-3,2,172,13,0,0,0,2,65,13,0,0,0,2,109,13,0
DATA 0,15,2,218,13,9,0,0,2,60,13,0,0,0,2,43,28,0
DATA 3,-56,0,"Block:",0,3,40,0,"of:",10,1,72,0," O",11
DATA 3,6,3,"0K",0,1,6,3,"UNDO",0,1,6,3,"PRINT BUFFER",0
DATA 1,6,3," PRINT FILE",0,1,17,3,"READ",0,1,17,3,"NEXT",O
DATA 1,17,3,"BACK",0,1,13,3, "WRITE" ,0,3,6,18,"Status:", 15
DATA 1,70,18,"reading Directory",21,1,9,3,"ASCII",0
DATA 1,9,3," HEX",0,1,6,10, "QUIT", 0
DATA 0, 198,43, 13,0,3,1,1,1,0,0,213,43, 13,0,3,1,1,2,0
DATA 0,228,43,13,0,3,1,1,3,0,0,243,43,13,0,3,1,1,4,0
DATA 52,201, 256,8,0,3,1,2,5,0,52, 209, 256,8,0,3,1,0,6,0
DATA 52,217,256,8,0,3,1,0,7,0,52,225,256,8,0,3,1,0,8,0
DATA 52,233,256,8,0,3,1,0,9,0,52, 246, 256,8,0,3,4,3,0,1
DATA 317, 198, 28, 13,4,3,1,13,0,0,317, 228, 28, 13,4,3,1,14,0,0
DATA 317,243, 28, 13,0,3,1,6, 13,0
DATA 416,201,40,8,0,2051,4,7,12,2
DATA 529, 198,43, 13,1,3,1,1,14,0
DATA 575, 198,65, 13,0,3,1,8, 17,0,575, 213,65, 13,0,3, 1,8, 18,0
DATA 575, 228,65, 13,0,3, 1,8, 19,0,575, 243,65, 13,0,3,1,8,20,0
DATA 354,213, 109, 13,0,3,1,9, 16,0
DATA 354,228, 109,13,0,3,1, 10,22, 0
DATA 466,213, 60, 13,0,3,1,11,24,0
DATA 466,228, 60,13,0,3,1,11,23,0
DATA 529,213,43, 28, 128,3,1,12,25,0

——— AmigaBASIC Intern 3 | 227

5.1.1 Arbeiten mit dem FileMonitor

Zunächst muß darauf aufmerksam gemacht werden, daß dieser

Monitor sehr viel Chip-RAM benötigt - andere Programme
sollten daher nicht gleichzeitig betrieben werden. Des weiteren
wird gleich zu Anfang des Programms der eingestellte Drucker-

treiber geladen. Verfügen Sie noch nicht über einen solchen, ist

das erste LPRINT wegzulassen. Ä

Voreinstellungen: Für die integrierte Directory-Routine sind
unter anderem vier Gadgets vorhanden, mit denen die am
häufigsten benutzten Laufwerke per Anklicken eingestellt wer-

den können. In diesem Falle handelt es sich um die Drives DFO

bis DF3. Sollten Sie andere Laufwerke in die Schnell-selektier-

Gadgets eintragen wollen, ändern Sie in den DATA-Zeilen die
entsprechenden Namen ab, wobei darauf zu achten ist, daß der

Name inklusive des Doppelpunktes nicht länger als 4 Zeichen

ist. Sie können auch vor dem Laden dieses Monitors mit

ASSIGN den gewünschten Laufwerken (Beispiel: RAD) die

Laufwerksbezeichnungen DFO bis DF3 zuweisen.

Funktionen der Gadgets

Die vier Gadgets am linken Rand dienen dem schnellen An-

wählen des Hauptverzeichnisses eines Laufwerkes. So genügt das

Anklicken von "DF0:", um das aktuelle Directory auf das interne
Laufwerk umzulegen, dieses einzulesen und zur Anzeige zu
bringen.

Der große Kasten ist zur Anzeige von jeweils fünf Directory-
Einträgen bestimmt. Hier werden Dateien und Programme in

weiß und Directories in gelb angezeigt. Das Anklicken eines
Directories führt zum sofortigen Auslesen des Directories und
dessen Anzeige. Klickt man ein File an, wird der erste Daten-

block der gewünschte Dateien zur Anzeige gebracht und kann

editiert werden.

Das längliche Gadget unter dem großen Kasten ist ein String-
Gadget, das der Anzeige des aktuellen Directories und des
eventuell selektierten Files dient. Klickt man es an, erscheint ein

228 Amiga Tips & Tricks

Cursor, mit dessen Hilfe man von Hand Pfade und Dateinamen

angeben kann. Dies ist besonders empfehlenswert, wenn es sich
um lange Pfade handelt oder auf ein nicht in den vier linken
Gadgets angegebenes Laufwerk zugegriffen werden soll. Einge-
gebene Directories und Files werden ebenso schnell behandelt,

wie das beim Anklicken eines Eintrages im großen Kasten der
Fall ist.

Die Pfeile rechts neben dem großen Kasten sind für das Scrollen
des Directories gedacht. Hier wird das angezeigte Directory um
jeweils fünf Einträge gescrollt. Das OK-Feld hat die gleiche
Funktion wie das Aktivieren und anschließende Desaktivieren
des String-Gadgets: Der angegebene Eintrag wird entsprechend
behandelt.

Die Anzeige "Block: #### of: ####" zeigt Ihnen bei einer an-
gewählten Datei die aktuelle Datenblocknummer des angezeigten
Blocks und die letzte Datenblocknummer der Datei an. Bei der
ersten Zahl handelt es sich um ein Integer-Gadget, in das Sie
nach dem Aktivieren durch Anklicken die gewünschte Daten-
blocknummer eingeben können, die zur sofortigen Anzeige des
gewünschten Blockes führt.

Mit den beiden PRINT-Gadgets läßt sich entweder der Editor-
puffer oder das gesamte File hexadezimal auf dem Drucker aus-
geben. Danach wird automatisch der zuletzt editierte Block wie-
der zur Anzeige gebracht. Die Status-Anzeige zeigt alle Fehler
und aktuellen Operationen an.

Mit den Gadgets "ASCII" und "HEX" können Sie den Editor von

der hexadezimalen Anzeige auf die ASCII-Anzeige umschalten,

was gerade beim Ändern von Texten, wie z.B. beim Eindeut-
schen der Menüs von AmigaBASIC eine sinnvolle Option ist.
Das Quit-Gadget beendet, verbunden mit einer Sicherheitsab-

frage, die über direkten Hardware-Zugriff gelöst wurde, dieses

Programm.

Die Gadgets "READ", "NEXT" und "BACK" dienen dem noch-
maligen Einlesen des aktuellen Blocks, dem Einlesen des näch-

——— AmigaBASIC Intern 229

sten und des vorhergehenden Datenblocks. Das WRITE-Gadget

schreibt den Editor-Buffer auf die Diskette zurück. Hierbei
wird aus Geschwindigkeitsgründen keine Sicherheitsabfrage ge-
macht. Sollte es einmal zu einem versehentlichen Abspeichern

kommen, wählen Sie zunächst die UNDO-Funktion an und da- |
nach erneut das WRITE-Gadget.

Die UNDO-Funktion versetzt den Editor-Puffer (das sind die

Daten, die angezeigt und editiert werden können) zurück in den
Zustand, in dem sich der Editor-Puffer genau nach dem Ein-
lesen des aktuellen Blocks befand. Im Klartext heißt das für Sie:
Sobald Sie einen Block einlesen, wird dessen Inhalt in einen
Undo-Puffer kopiert.

Der Editor akzeptiert neben allen Zeichen, die auf der Tastatur

eingegeben werden können, auch die Cursor-Tasten. Grundsätz-

lich sind zwei Cursors zu sehen, einer im hexadezimalen und ei-

ner im ASCII-Anzeigefeld. Dies ist sinnvoll, da man dadurch
immer genau weiß, welcher Hex-Code zu welchem angezeigten

Zeichen gehört. Den aktuellen Editor-Modus erkennt man an
der Breite des Cursors im Hex-Display: Ist dieser einen Nibble

breit (ein Hex-Zeichen), befindet der Editor sich im Hexadezi-
mal-Modus, bei doppelter Cursor-Breite im ASCII-Modus.

Das Programm ist Multitasking-fähig. Mit den bekannten Ta-
stenkombinationen (linke Sondertaste + M oder +N) kann zwi-
schen Monitor und Workbench umgeschaltet werden. Letzte
Anmerkung: Es können jeweils nur 72 Einträge eines Directories
eingelesen werden. Sollten Sie mehr wünschen, muß der Direc-

tory-Puffer entsprechend größer dimensioniert und die Abfrage
im DIRECTORY-SUB angepaßt werden. Ansonsten kommen Sie
auch durch direkte Eingabe an jedes File heran.

5.1.2 Patching, arbeiten mit dem FileMonitor

Unter Patching versteht man das Ändern vorhandener Pro-
gramme durch das Manipulieren bestimmter Bytes eines abge-
speicherten Files. So ist es möglich, jedes erreichbare Programm

230 Amiga Tips & Tricks ——

seinen Wünschen entsprechend anzupassen. Eines sollten Sie da-

bei allerdings berücksichtigen: Das Ändern von Copyrights oder
die Weitergabe gepatchter Programme verstößt gegen eine ganze
Reihe von Gesetzen. Um sich nicht strafbar zu machen, sollten

Sie daher nur für den eigenen Gebrauch patchen.

5.1.3 AmigaBASIC eindeutschen

Wie wäre es denn mit einem BASIC-Interpreter, der mit deut-

schen Menüs und deutschen Fehlermeldungen aufwarten kann?
Zu diesem Zweck laden Sie den FileMonitor und klicken in dem
großen Kasten AmigaBASIC an. Suchen Sie nun durch An-
klicken des NEXT-Gadgets solange, bıs Sıe englische Texte oder
gar die Menü-Texte gefunden haben. Fahren Sie mit dem Cursor
auf den ersten Buchstaben des Textes.

Vorsicht: Um keine Programm-Daten zu zerstören, dürfen Sie

die vorhandene Text-Länge nicht überschreiten. Zeichen, die
zwischen zwei Wörtern stehen, dürfen nur dann überschrieben

werden, wenn sie im Hex-Display mit dem Code 20 (=dezimal
32 =SPACE) angezeigt werden. Da die Übersetzung der Menüs
unter Berücksichtigung der maximal möglichen Zeichen nicht
gerade einfach ist, hier das deutsche Menü meines BASIC-Inter-

preters:

"Projekt" "Edit " "Los" "Fenster"

"Neu "Raus " "Start “ "Listing "

"öffnen " "Kopie!" "Stop " "Ausgabe "
"Sichern" "Rein " "Weiter "

" als" "Abbruch *

"Ende " "Trace an "

"Trace aus"

"Schritt "

5.1.4 Andere Programme patchen

Die Anwendungsmöglichkeiten des Patching sind nahezu unbe-
schränkt. So können Sie beispielsweise das ED-Fenster auf volle

PAL-Größe bringen, indem Sie die entsprechenden Größenan-

——— AmigaBASIC Intern 231

gaben im Programm ändern. Bevor Sie sich allerdings an die
Veränderung von Programmen machen, sollten Sie sich genau

informieren, ob es nicht einen einfacheren Weg gibt. Gerade die

Betriebssystemversionen des Amiga und die Funktionen der
einzelnen Tools machen uns deutlich, wie stark auf volle Kom-

patibilität zu vorhergehenden Versionen Wert gelegt wird.

So ist es schon vorgekommen, daß ein Programm als Utility zu
einem anderen Programm (DPaint) herauskam, das mit einer ge-
patchten Version nicht mehr lauffähig war. Ein sehr schönes
Beispiel dafür, wie es auch anders geht, ist das Shell-Icon der

neuen Workbench V1.3. Wählen Sie hier im WB-Menü den

Punkt Info an, sehen Sie ganz unten die Maßangaben für das zu
öffnende Fenster, die Sie nun einfach Ihren Wünschen entspre-

chend ändern können.

5.2 Aufbau der AmigaBASIC-Files

Wie Sie sicherlich aus dem AmigaBASIC-Handbuch wissen, kann
man hinter dem SAVE-Befehl angeben, wie man ein Programm
abspeichern möchte. Es gibt drei verschiedene Möglichkeiten:

SAVE "Test",a

speichert das Programm als ASCII-File.

SAVE "Test!",b

speichert das Programm normal ab.

SAVE "Test"',p speichert das Programm geschützt ab.

Bevor Sie ein Programm abspeichern, sollten Sie sich darüber im
klaren sein, was Sie später mit diesem File vorhaben. Dazu.
müssen Sie natürlich wissen, wozu man in dieser oder jener Si-
tuation eine bestimmte Art eines Files braucht.

Beginnen wir mit dem ASCII-File. Sie benötigen ASCII-Files,
um zwei Programme durch den Befehl MERGE oder CHAIN

232 Amiga Tips & Tricks ———

MERGE zu verbinden. Wenn Sie ein Programm als ASCII-File
gespeichert haben, können Sie es später (z.B. nach erneutem La-
den) immer wieder als ASCII-, Binär- oder Protected-File
speichern.

Der Nachteil von ASCII-Files (und von modularem Program-
mieren überhaupt) ıst der große Speicherplatzbedarf. Das tritt

besonders bei sehr langen und häufig verwendeten Variablenna-
men auf. Doch dazu später mehr. Das Binär-File ist kurz, Be-

fehle und Variablen sind in Token übersetzt. Auch ein binäres
File kann jederzeit als ASCII-, Binär- oder Protected-File ge-
speichert werden. |

Sollten Sie einmal ein Programm "protected" gespeichert haben,

entdeckten dann eine Kleinigkeit, die Sie schnell noch korrigie-

ren wollten, so haben Sie sich wahrscheinlich erstmal tüchtig die

Haare gerauft. Im Gegensatz zu anderen Computern hält das

Wort protected beim Amiga, was es verspricht: Was man einmal

geschützt gespeichert hat, sieht man garantiert nicht wieder.

Deshalb empfiehlt es sich, vorher eine Sicherheitskopie des Pro-

gramms anzufertigen.

5.2.1 Typ feststellen

Erinnern wir uns daran, was wir eigentlich vorhaben. Wir wollen
AmigaBASIC-Programme manipulieren, ob sie bereits auf Dis-
kette vorliegen und ob es sich um ein BASIC-Programm han-
delt.oder Zwischenspeicherung auf sich selbst einwirken sollen.
Sobald Sie den Aufbau von AmigaBASIC-Files kennen, sollte
das auch keine allzugroßen Schwierigkeiten mehr bereiten.

Ein Problem stellt sich aber: Stellen Sie sich einmal vor, Sie ha-

ben ein Programm geschrieben, das ın der Lage ist, aus einem

diskettenresidenten Programm ein neues AmigaBASIC-Programm
zu generieren. Dieses Programm erwartet eine Auswahl der
User, welches Programm sie modifizieren möchten. Nachdem
wir nun festgestellt haben, daß das Programm tatsächlich auf der

——— AmigaBASIC Intern Ä 233

eingelegten Diskette vorhanden ist, muß sich dem Programmie-

rer geradezu die Frage aufdrängen: Ist das denn tatsächlich ein
AmigaBASIC-File?

5.2.1.1 BASIC-Check

Um Sie nicht völlig im Dunkeln tappen zu lassen, hier eine

Routine, die das nachprüft:

REM #
REM

REM
REM # (W) 1987 by Stefan Maelger #

REM #HARHHHHHHHHHHHAHAHHHHHHHHH 02
REM SUB-Routine zum Prüfen, ob ein File

REM ein AmigaBASIC-Programm ist

start:

DECLARE FUNCTION xOpen& LIBRARY

DECLARE FUNCTION xRead% LIBRARY

DECLARE FUNCTION Seek% LIBRARY
LIBRARY "dos. library"

main:

CLS

LOCATE 2,2

PRINT "Name des AmigaBASIC-Programms:"

LOCATE 4,1.
PRINT ">"-:LINE INPUT Filename$

BASICcheck Filename$, Flag%
LOCATE 6,2
IF Flag% THEN

PRINT "TATSACHE! Ein AmigaBASIC-Programm"

ELSE
PRINT “Leider kein AmigaBASIC-Programm..."

END IF

LIBRARY CLOSE

END

SUB BASICcheck (Filename$,ok%) STATIC
File$ = Filename$+". info"+CHR$(0)

Default.Tool$ = SPACE$(12)
OpenOldFile% = 1005
OffsetEOF% = 1

Offset% = -12
Openfile: |

File.handle& = xOpen&(SADD(File$) ‚OpenOldFile%)
IF File.handle& = 0 THEN

CLS

LOCATE 2,2

234 Amiga Tips & Tricks

PRINT "Ich finde ";Filename$;" nicht!"
BEEP
EXIT SUB

ELSE
OldPosition%=Seek%(File.handle&,Offset%,OffsetEOF%)
GotThem%=xReadX(File.handle&,SADD(Default.Tool$),12)
IF GotThem%<12 THEN

CLS

LOCATE 2,2
PRINT "READ-ERROR"

BEEP

EXIT SUB

ELSE
IF INSTR(Default.Tool$,":AmigaBASIC")>0 THEN

ok%=-1
ELSE

ok%=0
END IF

END IF

CALL xClose(File.handle&)
END IF

END SUB

Variablen

Filename$ Name des vermeintlichen AmigaBASIC-Programms.

Flag% =-1: Das File ist ein AmigaBASIC-Programm.

ok% Bezeichnung der SUB-Variablen von Flag%

File$ Name des ".info"-Files von Filename$ +CHR$(0)

Defautt. Tool$ 12-Byte-String, der die letzten 12 Byte von File$ aufnimmt.
OpenOldFile% Angabe darüber, daß ein vorhandenes File geöffnet werden soll

(1006 = neues File öffnen).

OffsetEOF% Cursor der File-Leseroutine auf das Ende des Files setzen

(-1=Anfang, 0=derzeitige Position).

Offset% Wert, um den der File-Cursor von OffsetEOF% an verschoben

wird.

File.handle& Adresse des File-Handlers (O=File wurde nicht geöffnet).

OldPosition% Alter Offset des File-Cursors.

GotThem% Anzahl tatsachlich gelesener Bytes.

Zum Programm

Haben Sie schon einmal im Workbench-Menii den Punkt Info
angewählt? Wenn ja, dann fiel Ihnen sicherlich der Punkt De-
fault-Tool auf. Das Default-Tool ist das Programm, das beim
Anklicken eines Icons als erstes gestartet wird. So ist es dann

auch nicht weiter verwunderlich, daß bei AmigaBASIC-Pro-

—— AmigaBASIC Intern 235

grammen dort der Eintrag ":AmigaBASIC" zu finden ist. Fraglich
ist nun natürlich, woher diese Information kommt. Zu jedem
Programm (zumindest zu jedem AmigaBASIC-Programm) exi-
stiert ein File, das den gleichen Namen wie das Programm selbst
trägt, allerdings mit dem Zusatz .info. Im wesentlichen besteht
ein solches .info-File aus der Bitmap für das Icon und am Ende

dem Default-Tool.

Da wir nun wissen, wo sich die Information versteckt hält, ob es

sich um ein AmigaBASIC-Programm handelt oder nicht, brau-

chen wir natürlich nur noch das zugehörige .info-File zu öffnen,
den Lese-Cursor auf das File-Ende zu setzen und mit einem
Offset von -12 Bytes ab dieser Position die 12 Byte des Default-
Tools einzulesen. Warum 12 Byte? Nun, der Eintrag selbst

scheint zwar nur 11 Byte zu haben, doch muß man wissen, daß
das AmigaDOS nur Namen akzeptiert, die mit CHR$(0) ab-

geschlossen sind. Daher das 12. Byte.

Kleiner Tip am Rande: Einige Programme, die Icons manipulie-
ren oder neue Icons schaffen, sind nicht ganz korrekt program-
miert. Dieser kleine Programmierfehler kann dazu führen, daß
unser "hochgeschätztes" Default-Tool verschoben wird. Im

Ernstfall können Sie diesen Fehler ausschalten, indem Sie ein-

fach die Anzahl der einzulesenden Bytes erhöhen (auch vom
String!).

5.2.1.2 HeaderCheck - Wie wurde das Programm
gespeichert?

Jetzt wissen wir also, wie wir feststellen können, ob es sich bei

einem File um ein AmigaBASIC-Programm handelt oder nicht.
Eine solche Routine sollte nie in einem Programm fehlen, das

ein anderes AmigaBASIC-Programm verändern kann. Als näch-
stes sollten wir feststellen, um was für einen Programm-Typ es
sich bei dem angepeilten Programm handelt. Um das erkennen
zu können, ist es wichtig zu wissen, wie der AmigaBASIC-In-
terpreter die verschiedenen Programme unterscheidet.

236 Amiga Tips & Tricks ———

Wir kommen dabei bereits zum ersten Byte eines AmigaBASIC-
Programms, dem Header-Byte. Das Header-Byte zeigt dem Ami-

gaBASIC-Interpreter, um was fiir ein Programm es sich handelt.

Und das geht folgendermaßen. Bei binär gespeicherten Pro-
grammen, und dazu zählt auch ein protected gespeichertes Pro-

gramm, ist ein Byte vor das File gehängt worden, das sogen-
nannte Header-Byte. Sicherlich werden Sie jetzt nach den
ASCII-Files fragen. Tatsächlich ist bei ASCII-Files kein Header-
Byte vorhanden! Beachten Sie das bitte beim Programmieren.
Wieso das so ist? Nun, bei ASCII-Files ist kein Header-Byte nö-
tig. Warum das so ist, werden Sie spätestens dann merken, wenn

Sie den Aufbau von ASCII-Files kennen. Es ist nämlich kaum
möglich, daß ausgerechnet die Werte der Header-Bytes für
binäre Programme am File-Anfang auftreten. Merken Sie sich
am besten folgendes:

- Liegt am File-Anfang das Byte $F5 (=245 dezimal), handelt
es sich um ein normal gespeichertes Programm, ein Binär-

Programm.

- Finden Sıe dagegen das Byte $F4 (=244 dezimal), ist es ein
protected gespeichertes Binär-Programm.

- Liegt am File-Anfang weder $F5 noch $ F4 vor, so handelt
es sich um ein Binär-Files.

Wie immer, haben wir auch hier eine kleine Routine, die Ihnen
die Überprüfung abnimmt. Da Manipulationsprogramme wohl
kaum ohne die dos.library-Routinen xRead und xWrite auskom-
men werden, wurden diese Routinen verwendet. Beachten Sie

jedoch, daß die folgende Routine nur dann funktionieren kann,

wenn ein AmigaBASIC-Programm vorliegt.

GOTO start

FER

H E AOD ER-CH E C K #

(W) 1987 by Stefan Maelger #
FARR

SUB-Routine zum Auslesen des File-

Headers eines AmigaBASIC-Programms, um

t

t

s

t

8

L

8

i]

* den File-Typ zu bestimmen.

——— AmigaBASIC Intern

start:

DECLARE FUNCTION xOpen& LIBRARY
DECLARE FUNCTION xRead% LIBRARY
LIBRARY "dos. library"

main:

ProgrammTyp$(0)="ASCII-File"
Programm yp$(1)="Binar-File"™
ProgrammTyp$(2)="Protected-Binär-File"
LINE INPUT "Filename: >";Filename$
HeaderCheck Filename$,Ergebnis%

LOCATE 10,1
PRINT "Das Programm ";CHR$(C34);

PRINT Filename$;CHR$(34);
PRINT * ist ein ";ProgrammTyp$(Ergebnis%)

LOCATE 15,1

LIBRARY CLOSE

END

SUB HeaderCheck(Filename$,Ergebnis%) STATIC

File$=Filename$+CHR$(0)

OpenOldFile%=1005

handle&=x0Open&(SADD(File$) , OpenOl dF i lex)
IF handle&=0 THEN ERROR 53
s$=" u

Byte&=1

gelesen&=xRead%(handle&,SADD(s$),Byte&)
CALL xClose(handle&)

Ergebnis%=0

d%=ASC(s$)
IF d%=&HF5 THEN

Ergebnis%=1

ELSEIF d%=&HF4 THEN

Ergebnis%=2

END IF
END SUB

Variablen

ProgrammTyp$() | die Programmarten im Klartext

Filename$ Name des zu prüfenden AmigaBASIC-Programms

Ergebnis% 0=ASCIl; 1=binär; 2= protected

File$ Filename$ + abschließendes CHR$(0) fur DOS

OpenOldFile% ein bereits existierendes File öffnen

handle& Adresse des File-Handlers

s$ String, in den das erste Byte gelesen wird

Byte& Anzahl einzulesender Bytes

gelesen& Anzahl tatsachlich gelesener Bytes

d% ASCII-Wert von s$

237

238 Amiga Tips & Tricks ———

5.2.2 ASCII-Files

Der Aufbau von ASCII-Files ist denkbar einfach. Nehmen Sie
sich einmal die Zeit, ein eingegebenes Programm mit der fol-
genden Zeile abzuspeichern:

SAVE "Test", A

Beispielprogramm:

a=1

PRINT a

Laden Sie nun den File-Monitor, der in Kapitel 5.1 beschrieben
wurde, oder einen beliebigen anderen File-Monitor. Laden Sie
dieses ASCII-File und sehen Sie sich die Daten an. Wenn man
die rechte Seite der Ausgabe betrachtet, so sieht man das Pro-

gramm im Klartext. So würde dort beispielsweise stehen:

a=1.PRINT a..

und als Hex-Dump:

61 3D 31 OA 50 52 49 4E 54 20 61 OA OA (hexadezimal)

Rechnen wir diese hexadezimalen Zahlen um, erhalten wir:

97 61 49 10 80 82 73 78 84 32 97 10 10 (dezimal)

Schlagen Sie nun im AmigaBASIC-Handbuch die ASCII-Zei-
chencode-Tabellen auf. Sie sehen, das Programm wurde im
Klartext gespeichert. LF (10) heißt im übrigen LINE FEED, also

auf gut deutsch: nächste Zeile. Wollen Sie von einem Programm

aus ein ASCII-File ausdrucken, genügen daher folgende Zeilen:

LINE INPUT files
OPEN file$ FOR INPUT AS 1

WHILE NOT EOF(1)
PRINT INPUTS(1,1);

WEND
CLOSE 1

——— AmigaBASIC Intern 239

Toll, nicht wahr? Nehmen Sie sich jetzt die Workbench zur
Hand, laden Sie das Shell, sofern Sie Version 1.3 besitzen, oder

das CLI (System-Schublade). Nun geben Sie ein:

ed Diskname:Test

Für "Diskname" geben Sie den Namen der Diskette ein, auf der

sich das Testprogramm befindet. Jetzt sollte das Programm auf

dem Bildschirm erscheinen. Man kann also den komfortablen

ED-Editor zum Editieren von ASCII-Programmen verwenden.
Der einzige Nachteil dabei ist, daß man die Programme nicht

gleich austesten kann. Da man sie vorher jedoch in jedem Fall

speichern sollte - und schließlich einen Multitasking-Computer

besitzt - hat man eine wirklich gute Möglichkeit, an einen
neuen Programm-Editor zu kommen. Doch das nur am Rande.

Sollten Sie jetzt auf die Idee kommen, einfach per OPEN-FOR-

OUTPUT-Anweisung ein neues Programm zu erzeugen, so ist
das sicherlich kein schlechter Einfall. Die Tücke des Objektes ist
hierbei jedoch, daß Sie Schwierigkeiten haben können, wenn Sie
Ihr neues Programm später per Anklicken aus dem Directory la-

den wollen. Das File Name.info hat schließlich nicht ":Amiga-
BASIC" als Default-Tool. Um auf jeden Fall vorbereitet zu sein,
sollte man einfach ein neues .info-File erzeugen: |

SAVE "Dummy": KILL file$+". info"
NAME "Dummy.info'" AS file$+". info"

KILL "Dummy"

Anwendungen zum Thema ASCII-Files finden Sie unter Kapitel

5.3.

5.2.3 Binar-Files

Wir werden jetzt ausführlich den Aufbau von binär gespeicher-
ten Programmen beschreiben. Der Aufbau dieser Files ist beson-
ders wichtig, da er die einzige Form des Programmaufbaus dar-
stellt, die der AmigaBASIC-Interpreter direkt abarbeiten kann.
Alle anderen File-Arten müssen also zunächst in das binäre

240 Amiga Tips & Tricks

Format überführt werden, bevor sie ausgeführt werden können.
Die Bedeutung des ersten Bytes eines binären Programms kennen

Sie bereits: das Header-Byte ($F5 für Binär-Files).

5.2.3.1 Aufbau einer AmigaBASIC-Zeile

Mit dem zweiten Byte des Programms beginnt bereits die erste
Programmzeile. Wir sollten daher den Aufbau einer Zeile be-
trachten. Das erste Byte einer Zeile ist der Zeilen-Header. Die-
ses Byte kann zwei Werte haben, den Wert Null oder den Wert
128 ($80). Beginnt eine Zeile mit dem Wert 0, handelt es sich
um eine Zeile ohne Zeilennummer, beginnt sie mit dem Wert
128, ist es eine Zeile mit Zeilennummer. Label sind in diesem

Zusammenhang nicht von Bedeutung. Wir werden sıe später be-
handeln.

Das zweite Byte einer Zeile ist der Offset zur nächsten Zeile. Da
ein AmigaBASIC-Programm nach jedem Laden an einer anderen

Speicherstelle beginnen kann, wäre es etwas zu aufwendig,

würde man mit Pointern auf die nächste Zeile arbeiten. Es
reicht doch völlig aus, wenn an einer festgelegten Stelle einer

Zeile die Gesamtlänge derselben angegeben ist. Der Interpreter

braucht sich nur die Adresse zu merken, an der die Zeile be-
ginnt, und dazu die Nummer des gerade bearbeiteten Bytes.
Muß sich - beispielsweise durch einen Sprungbefehl - der Inter-
preter viele Zeilen vorwärts bewegen, wird jedesmal nur die
Zeilenlänge der aktuellen Zeile zu der Anfangsadresse derselben
addiert.

Hier wird auch ersichtlich, weshalb eine Programmzeile nicht
länger als 255 Byte sein kann. Schließlich steht nur ein Byte für

die Zeilenlänge zur Verfügung. Sie werden sicherlich Ihre eige-
nen Programme sehr übersichtlich eingeben, was eine eventuelle

——— AmigaBASIC Intern 241

Fehlersuche oder das Verständnis des Programmablaufs positiv
unterstützt. Dann sehen Ihre Programme wahrscheinlich ähnlich
aus wie dieses:

Viele.FOR.NEXT.Schleifen:

FOR ersteSchleife=1 TO 100

FOR zweiteSchleife=1 TO 10

FOR dritteSchleife=1 TO 50

LPRINT FNstefan (x,y,Z)

NEXT dritteSchlei fe, zweiteSchleife,ersteSchleife N
O
A
A

E
N

CO

©

Die Zahlen auf der rechten Seite gehören nicht zum Programm.
Ich habe mit diesen Zahlen den Wert angegeben, den das dritte
Byte der jeweiligen Programmzeile annimmt. Prüfen Sie dieses

_ ruhig mit einem File-Monitor nach. Das dritte Byte wird nur
für den Befehl LIST und für Editierzwecke benötigt. Es gibt
den Abstand des ersten Befehls zum linken Rand an. Damit ist
jetzt die Frage geklärt, ob es die Programmlänge oder die Pro-
gramm-Ablaufgeschwindigkeit beeinflußt, wenn man wie oben
die Programmzeilen bei Verschachtelungen einrückt. Sie sehen:
Die einzige Veränderung ist der Wert des dritten Byte. Pro-
grammieren Sie also ruhig weiter übersichtlich.

Bis zu dieser Stelle ist der Aufbau einer Zeile mit Zeilennummer

genauso wıe der Aufbau einer Zeile ohne Zeilennummer. An

dieser Stelle haben wir den Kopf einer Zeile ohne Zeilennum-
mer bereits vollständig behandelt. Daher noch einmal zur Über-
sicht:

Kopf einer Zeile ohne Zeilennummer:

Byte-Nr. Wert Bedeutung

1 00 Es folgt eine Zeile ohne Zeilennummer.

2 XX Lange der Zeile in Byte (mit Kopf und Ende).

3 XX Abstand des ersten Befehls vom linken Rand

(nur für LISTen des Programms).

Bei Zeilen mit Zeilennummer folgen nun weitere zwei Bytes.
Der Zeilenkopf einer solchen Zeile ist also fünf Byte lang. Jetzt
folgt noch die Zeilennummer. Sie wird im High-Low-Format

242 Amiga Tips & Tricks

angegeben. Ist die Zeilennummer beispielsweise 10000, so folgen
nun die Bytes $27 und $10 (39 und 16 dezimal, also 39*256 + 16
= Zeilennummer). Auch hier noch einmal eine Übersicht:

Kopf einer Zeile mit Zeilennummer:

Byte-Nr. Wert Bedeutung

1 128 Es folgt eine Zeile mit Zeilennummer.

2 XX Lange der Zeile in Byte (mit Kopf und Ende).

3 XX Abstand des ersten Befehls vom linken Rand.

4 XX High-Byte der Zeilennummer.

5 XX Low-Byte der Zeilennummer.

Jetzt ist der Aufbau der Zeile wieder bei beiden Zeilentypen
gleich. Es folgen die Token, das heißt, die zu ein oder zwei Byte
kodierten Befehle. Was mit den Labeln ist? Geduld, Geduld,

deren Kodierung kommt noch. Abgeschlossen wird jede BASIC-
Zeile mit dem Wert Null, also mit einem weiteren Byte. Zusam-
menfassend können wir also feststellen: Eine Programmzeile be-
Steht aus:

- Zeilenkopf mit oder ohne Zeilennummer

- Token (Befehle, Label, Variablen und Werte)
- Ende-Byte mit dem Wert 0

5.2.3.2 Leerzeilen

Mit dem Wissen, das Sie jetzt haben, können Sie bereits ange-
ben, wie Leerzeilen gespeichert sind. Unter Leerzeilen verstehe

ich Zeilen, in denen weder ein Befehl noch eine Zeilennummer

auftritt. Sehen wir uns das Problem gemeinsam an:

- Das erste Byte, also das Zeilentyp-Byte, muß den Wert Null

haben, da keine Zeilennummer folgt.

- Das dritte Byte, also der Abstand vom linken Rand, ist meist
auch Null.

- Mit dem vierten Byte müßten die Token folgen. Da diese
Zeile jedoch leer ist, folgt nun der Zeilenende-Code, nämlich
ein Null-Byte.

—— AmigaBASIC Intern 243

Damit wäre unsere Zeile abgeschlossen, und wir können in dem
zweiten Byte die Zeilenlänge mit vier Byte angeben. Eine Leer-

zeile sieht also folgendermaßen aus:

$00 - $04 - $xx - $00

Wie hieraus ersichtlich ist, verlängert jede leere Zeile nicht nur
das Programm um vier Byte, sondern beeinflußt auch die Ab-

laufgeschwindigkeit des Programms nachteilig, da der Interpreter
jedesmal diese Zeile nach Befehlen absuchen und den Anfang
der nächsten Zeile errechnen muß. Sie sollten daher Leerzeilen
aus Ihren Programmen entfernen, auch wenn dadurch die Lauf-

geschindigkeit nur unerheblich erhöht wird. Denn wie der Bauer
schon sagt: Kleinvieh macht auch Mist. Ein Programm, das diese
Arbeit für Sie erledigt, finden Sie im Kapitel 5.3.

5.2.3.3 Die letzte Zeile

Da jedes Programm einmal ein Ende haben muß, folgt auf die
letzte Zeile des Programms zunächst ein Null-Byte zur Anzeige,

daß keine Zeilennummer folgt. Darauf folgt das Zeilenlänge-

Byte, das ebenfalls auf Null gesetzt ist, des weiteren ein Zei-
lenende-Code, also noch eine Null. Es kommt vor, daß weitere

Bytes folgen, je nachdem, wie das Programm editiert wurde.
Diese Bytes können die "wildesten" Werte annehmen (!). Vorsicht
ist also geboten, wollen Sie die Variablentabelle einlesen.

5.2.3.4 Die Variablentabelle

Variablen-Namen können in AmigaBASIC sehr lang sein, z.B.:

Anzahl .der.eingelesenen.Bytes%

Es wäre geradezu haarsträubend, würde man bei jedem Auf-
tauchen einer Variablen ihren vollen Namen abspeichern. Um
derartig lange Variablen-Namen verwalten zu können, ohne die

244 Amiga Tips & Tricks

Ablaufgeschwindigkeit von AmigaBASIC unendlich träge werden
zu lassen, mußten sich die Programmierer dieses BASIC-Dialek-
tes also etwas einfallen lassen:

Tritt in einem Programm eine Variable auf, so erkennt der In-
terpreter das an einem speziellen Token. Dieses Token hat ım-

mer den Wert $01. Auf dieses Token folgt eine Nummer im alt-
bekannten High-Low-Format. Richtig, Sie haben es erraten. Der
Interpreter numeriert einfach alle Variablen der Reihe nach

durch und benutzt beim Programm-Ablauf folglich nur noch
Variablennummern. Um beim Auflisten des Programms wieder
die vollen Variablennamen ausgeben zu können, müssen diese

natürlich irgendwo gespeichert werden. Das geschieht am Pro-
gramm-Ende in Form einer Variablentabelle. Ein Eintrag in
dieser Tabelle hat folgendes Format:

1. Byte: Lange des Variablen-Namen in Byte.
folgende Bytes: Variablen-Name in ASCII-Code.

Verwenden Sie zum Beispiel in Ihrem Programm die Variablen
a%, Zeichenkette$ und Adresse&, so würde die Variablentabelle
folgendermaßen aussehen:

Hexadezimal ASCII

01 61 .a

Oc 5A 65 69 63 68 65 6E 6B 65 74 74 65 .Zeichenkette

07 41 64 72 65 73 73 65 .Adresse

Hiermit würde das letzte Byte Ihres Programms das Byte $65
sein. Wie Sie aber auch bemerkt haben dürften, steht in der Va-
riablentabelle nicht, ob es sich bei der Variablen um eine
String-Variable, eine der Floating-Point-Variablen oder eine der
Integer-Variablen handelt. Diese Angabe finden Sie - sofern sie
ım Listing aufgeführt wird - hinter der Variablen-Nummer, die
dem Token $01 folgt. Bleiben wir bei dem obigen Beispiel, so
würde die Variable a% in folgender Form im Programm stehen:

——— AmigaBASIC Intern 245

Byte-Nr. Wert Bedeutung

1 1: Variablennummer folgt

2 0 High-Byte der Variablennummer

3 0 Low-Byte der Variablennummer

4 37 ASCIl-Code des Zeichens "%"

Sie sehen des weiteren an dieser Tabelle, daß die erste vorkom-

mende Variable die Nummer Null bekommt. Leider haben die
Programmierer von AmigaBASIC die Geschichte mit den Vari-
ablen noch etwas kompliziert. So ist es zwar richtig, wenn ich
oben gesagt habe, daß die Variablen der Reihe nach durchnu-
meriert werden, ich habe Ihnen allerdings verschwiegen, daß mit

der "Reihe" die Reihenfolge gemeint ist, in der Sie die Variablen
beim Eintippen des Programms eingeben! Wenn Ihnen jetzt Bö-

ses "schwant", haben Sie damit leider recht. Damit Sie das ganz
große Problem beziehungsweise den großen "Bug" erkennen, ge-
hen Sie bitte wie folgt vor: |

1. Laden Sie AmigaBASIC.

2. Geben Sie folgendes ein:

Der.grosse.Fehler%=0

Blablabla%=Der.Fehler%

Hal lo%=0

3. Ändern Sie die Zeile Blablabla%=... in:

Blablabla%=Der.grosse.Fehler%

4. Speichern Sie das Programm binär ab, und sehen Sie es sich
mit einem File-Monitor an.

Im Programm taucht die Variable Der.Fehler% überhaupt nicht
mehr auf. In der Variablentabelle wird sie aber aufgeführt und
auch abgespeichert! Sollten Sie einmal ein langes Programm
schreiben, das Sie bei der folgenden Fehlersuche häufig ändern
müssen, oder haben Sie etwa einen Tippfehler bei einem BA-
SIC-Befehl gemacht (dann wird er auch sofort in die Variablen-
tabelle übernommen), kann es durchaus sein, daß Ihr Programm

infolge von Variablenmüll gleich etliche KByte länger ist. Über
die Herabsetzung der Ablaufgeschwindigkeit wollen wir hier gar
nicht erst reden...

246 Amiga Tips & Tricks ————

Wie Sie diesen Fehler ausmerzen können, sehen Sie in dem Ka-

pitel 5.3.6. Eine weitere Tiicke, die die Programmierer von
AmigaBASIC eingebaut haben, ist die Tatsache, daß alle Sub-
programm-Namen, ihre Aufrufe und auch alle Betriebssystem-
routinen, die Sie mit LIBRARY und/oder DECLARE FUNC-
TION eingebunden haben, als Variablen abgelegt werden -
ebenso in der Tabelle wie im Programm-Text selbst.

AmigaBASIC kann diese Namen nur nach einer vollständigen
Syntax-Überprüfung als Funktionen oder SUB-Erweiterungen

erkennen! Das macht dem BASIC-Interpreter nicht viel aus, da

er nach dem Laden des Programms sowieso zuallererst eine voll-
ständige Prüfung des Programms vornimmt und daher diese Ar-
beit gleich mit erledigen kann. Deshalb dauert es auch immer
erst ein wenig, bis ein geladenes Programm endlich startet.

5.2.3.5 Labelhandling

Bis jetzt war alles schön und gut, doch wo bleiben die Label,
werden Sie sich fragen. Nun, Label werden ganz 4hnlich ver-
waltet wie Variablen. Auch hier ergab sich fiir die Entwickler
von AmigaBASIC das Problem mit den langen Namen, die Label
annehmen können. Die Lösung, die sie fanden, sieht folgender-
maßen aus: Label sind spezielle Variablen, die sich nur dadurch

von anderen Variablen unterscheiden, daß sie angesprungen
werden können.

Das bedeutet nun, daß ein im Programm auftauchendes Label
ebenso in die Variablentabelle einsortiert wird wie eine normale

Variable. Nun muß der BASIC-Interpreter nur noch erkennen

können, daß es sich bei einer solchen Variablen um ein Label

handelt, für das kein Speicherplatz angelegt werden muß. Dies
wird ganz einfach durch ein anderes Spezial-Token gelöst, durch

Verwendung von $02 anstelle von $01 im Programm. Trifft der
Interpreter also auf das Token $02, so ist die folgende Nummer

im High-Low-Format die Nummer eines Labels. Ein Beispiel:

——— AmigaBASIC Intern 247

Byte-Nr. Wert Bedeutung

1 2 Label-Nummer folgt

2 XX High-Byte der Label-Nummer

3 XX Low-Byte der Label-Nummer

Fände der Interpreter $02 $00 $09 im Programm, so wüßte er,
daB es sich um ein Label handelt, dessen Name an zehnter Stelle

in der Variablentabelle zu finden ist (Sie erinnern sich: Vari-
ablen werden von Null an durchnumeriert).

5.2.3.6 Label anspringen

Jetzt soll so ein Label natirlich irgendwie angesprungen werden

können, ansonsten wäre es ebenso überflüssig wie ein REMark.

Ich werde Ihnen das Verfahren anhand des BASIC-Befehls

GOTO erklären, obwohl es selbstverständlich ebenso für GOSUB

gilt. Beispiel:

GOTO division

Nehmen wir an, daß "division" an 3. Stelle in der Variablenta-

belle steht, so fände der Interpreter im Programm folgendes vor:

Byte-Nr. Wert Bedeutung

1 151 Token für GOTO (siehe Anhang

2 32 Space (wird mit abgespeichert!)

3 3 Token = ein Label soll angesprungen werden

4 0 immer Null

5 0 High-Byte der Nummer in der Variablentabelle

6 2 Low-Byte der Nummer

Sie sehen, wir haben ein neues Token kennengelernt - $03. Der
Interpreter braucht sich nun nur noch ein passendes $02-$00-

$02 zu suchen und an dieser Stelle mit der Programm-Abarbei-
tung fortfahren.

248 Amiga Tips & Tricks ———

5.2.3.7 Zeilennummern anspringen

Das eben gezeigte Verfahren läßt sich natürlich nicht auf Zei-
lennummern anwenden, da diese nicht in der Variablentabelle

stehen. Ein neues Token muß also her. Beispiel:

GOTO 10000

Byte-Nr. Wert Bedeutung

1 151 Token von GOTO (siehe Anhang)

2 32 Space

3 14 Token = springe zu folgender Zeilennummer

4 0 immer Null

5 39 High-Byte der Zeilennummer (39*256)

6 16 Low-Byte der Zeilennummer (+16 = 10000)

Das Token $0E besagt also, daß in allen Zeilen, deren Header-

Byte $80 ist, die Bytes 4 und 5 mit den obigen Bytes 5 und 6
verglichen werden müssen, um das Sprungziel zu finden.

5.2.3.8 Werte in AmigaBASIC-Programmen

Wir kommen nun zu der Ablage von Werten in AmigaBASIC-
Programmen. Sie geben beispielsweise ein:

Amiga=1

Uns soll an dieser Stelle interessieren, in welcher Form die "1"

im Programm gespeichert wird. Entgegen der Methode anderer

BASIC-Dialekte, in denen Zahlen ganz einfach durch ihren

ASCH-Code vertreten sind, und weil während des Programmab-

laufs eine ständige Umrechnerei Zeit kostet, wird bei Amiga-
BASIC die Zahl bzw. der Wert gleich in dem wahrscheinlich
benötigten Format abgelegt. Für jedes Format, beispielsweise
Floating-Point- oder Oktal-Zahlen, muß nun natürlich ein neues
Token her. Keine Angst, wir werden uns das ganze Verfahren
Schritt für Schritt ansehen.

——— AmigaBASIC Intern 249

Dummerweise ist der Entscheidungsprozeß, ob dieses oder jenes

Format gewählt wird, nicht davon abhängig, was für ein Format
die Variable, der der Wert zugewiesen werden soll, schlußend-

lich benötigt. Aber warum sollte man BASIC-Programme auch
beschleunigen?!?

Sehen wir uns obiges Beispiel noch einmal an. Bei der Zahl 1

handelt es sich unzweifelhaft um eine Integer-Zahl. Der nächste
wichtige Punkt ist der, daß es ein einstelliger Wert ist. Wenn
jetzt noch dazukommt, daß der Wert positiv ist, erfährt er eine
Sonderbehandlung:

Ganzzahlige positive Werte im Bereich von 0 bis 9 werden ohne

Token im Programm gespeichert. Dabei wird nicht der ASCII-
Code verwendet! Auch ein direktes Speichern des Wertes kommt

nicht in Frage (da "0" beispielsweise "Zeilenende" bedeutet und

"1" "Variablennummer folgt" etc.). Vielmehr werden die Werte
wie folgt kodiert:

Hex. dez. | Wert (dez.)

$11 17 0

$12 18 1

$13 19 2

$19 25 8

$1A 26 9

Findet der Interpreter folglich ein Byte zwischen 17 und 26, so
zieht er lediglich den Wert 17 ab und erhält so den richtigen
Wert. Bleiben wir zunächst bei positiven Integer-Werten. Liegen
diese im Bereich zwischen 10 und 255, so genügt ein Byte für
das Abspeichern. Hier benötigen wir wieder ein Token, an dem
der Interpreter erkennt, daß das folgende Byte nicht etwa ein
Befehls-Token oder ein anderes Token ist. Das Format ist:

Byte-Nr. Wert Bedeutung

1 15 Es folgt ein positiver Int-Wert zwischen 10 und 255.

2 XX Wert zwischen 10 und 255.

250 Amiga Tips & Tricks ———

Integer-Werte können nun natürlich noch größer werden oder

vorzeichenbehaftet sein. Dann wird dieses Format benutzt:

Byte-Nr. Wert Bedeutung

1 28 Es folgt ein vorzeichenbehafteter 2-Byte-Integerwert.

2 xX High-Byte (Bit 7 = Vorzeichenbit)

3 XX Low-Byte

Integer-Werte, die sich hiermit nicht mehr darstellen lassen, z.B.:

Werte größer als 32767, werden im Long-Integer-Format darge-
stellt:

Byte-Nr. Wert Bedeutung

1 30 Token: vorzeichenbehafteter 4-Byte-Integer-Wert folgt.

2-5 XX 4-Byte-Integer-Zahl, Bit 7 in Byte 2 ist das Vorzeichen-

Bit.

Sollte es sich bei dem Wert um eine Fließkommazahl handeln,

wird folgendes Format verwendet:

Byte-Nr. Wert Bedeutung

1 29 Token: 4-Byte-Fließkommazahl folgt.

2-5 XX 4-Byte-Float (Genauigkeit = 7 Stellen).

Nun das Ganze mit doppeltgenauen Fließkommazahlen:

Byte-Nr. Wert Bedeutung

1 31 Token: 8-Byte-Floating-Point folgt.

2-9 xx 8-Byte-Float (Genauigkeit = 16 Stellen).

Sollten Sie der Auffassung sein, daß das alles war, haben Sie

sich getäuscht. Geben Sie doch einmal in einem Programm ein:

a=&h f f

Nach dem Verlassen dieser Zeile korrigiert der Amiga gleich:

a=&HFF

——— AmigaBASIC Intern

Daran können wir schon sehen, daß der Amiga auch diese Werte

erkennen muß. Aber sehen Sie selbst:

Byte-Nr. Wert Bedeutung

1 12 Token: Hexadezimalzahl folgt

2 XX High-Byte

3 XX Low-Byte

Dann sind da noch die Oktalzahlen wie &O123456. Sie werden
zunächst ins 2-Byte-Format umgerechnet und treten dann so
auf:

Byte-Nr. Wert Bedeutung

1 11 Token: Oktalzahl folgt

2+3 XX Oktalzahl (6 Stellen genau)

In Zusammenhang mit Werten über Strings zu reden erscheint
vielleicht etwas merkwürdig, trotzdem an dieser Stelle eine Be-

merkung darüber: Strings werden im ASCII-Klartext gespeichert.
Um Speicherplatz zu sparen, wird bei einer direkten Wertzu-

weisung kein neuer Speicherplatz reserviert, in die dann der
String aus dem Programm übertragen wird, sondern es werden

einfach die Zeiger, die auf die Anfangsadresse der Strings wei-
sen, auf den Klartext im Programm gesetzt. Das läßt sich sofort
beweisen:

a$=! nn nn nn nn m ns nun m nn nn u

b$="He, ich habe mich verändert!"
FOR i=1 TO LEN(b$)

POKE SADD(a$)+i-1,ASC(MID$(b$,i,1))
NEXT

LIST

Sollten Sie das Programm nicht ganz verstanden haben, empfehle
ich Ihnen, die Beschreibung des Befehles SADD in Ihrem Ami-
gaBASIC-Handbuch einmal durchzulesen. Lassen Sie das Pro-
gramm laufen und vergleichen Sie anschließend das Listing mit
dem, was Sie eingegeben haben. Sie werden vorfinden:

a$="He, ich habe mich verändert!"
b$="He, ich habe mich verändert!"
FOR i=1 TO LEN(bS)

252 Amiga Tips & Tricks 9————

Zum einen sehen Sie, wie gefährlich es sein kann, ein Programm
zu starten, ohne daß es vorher abgespeichert wurde, zum ande-

ren haben Sie die erste Möglichkeit eines selbstmodifizierenden
Programms: In a$ könnte doch zum Beispiel der Name eines
Windows stehen. Der Programmbenutzer könnte nun nach Pre-
ferences-Voreinsteller-Manier während des Programmlaufes den
neuen Namen eingeben, der gepoket wird, und wenn das Pro-
gramm sich dann mittels SAVE selbst abspeichert, liegt es in

veränderter Form auf Disk vor. Hierbei sind Ihrer Kreativität
kaum Grenzen gesetzt.

5.2.3.9 Besondere Token

Bei den Befehls-Token (größer als 127) treten einige Besonder-
heiten auf, die Sie unbedingt beachten sollten. $8E (ELSE) tritt
ım Programm niemals alleine auf. Der Interpreter kann das Ende
eines Befehles nur dann feststellen, wenn entweder der Code $00
für Zeilenende oder der Code $3A, der Doppelpunkt, erreicht

wird. Da nach einem IF ... THEN ... nicht unbedingt ein ELSE

folgen muß, wird IF-THEN vom Interpreter als ein Befehl ab-
gehandelt.

Folgt nun ein ELSE, so werden Sie mit einem File-Monitor
feststellen können, daß der BASIC-Interpreter einen Doppel-

punkt vor $8E gehängt hat, der beim Listen des Programms nie

auftaucht. Wer also bisher vor jedes ELSE einen Doppelpunkt

gesetzt hat, wird mit einem File-Monitor erkennen, daß vor $8E
zwei Doppelpunkte stehen, von denen nur einer benötigt wird,

der beim Listen nicht sichtbare nämlich.

Ein ähnliches Phänomen tritt bei REMarks auf. Auch hier stellt

der Interpreter immer einen Doppelpunkt davor. Merkwürdiger-

weise tut er das auch, wenn vor dem REMark kein anderer Be-

fehl steht. So kann eine Zeile derartig aussehen:

ı* 1, %

00 OE O0|3A|AF E8|20 2A 20 31 2E 20 2A/00

Kopf * 1. * | Ende

—— AmigaBASIC Intern 253

Eine weitere Merkwürdigkeit tritt auf, wenn Sie ein Programm
erzeugen und dabei den Befehl WHILE beziehungsweise sein
Token $BE verwenden. Belassen Sie es dabei, meldet der Amiga
beim Programmablauf einen ERROR 22 (Missing operand). Er-
stellt man mit AmigaBASIC ein Programm, so hängt der Inter-
preter grundsätzlich ein $EC hinter den scheinbaren Ein-Byte-
Token $BE. Sie sollten das auch immer tun - dann funktioniert
es nämlich. Also immer $BE+$EC verwenden.

Was noch sehr wichtig ist

Es existiert ein merkwürdiges Token, das niemals gelistet wer-
den kann - und kaum jemand benutzt es nicht. Sie wissen si-

cherlich, daß das Aufrufen von SUB-Routinen nur direkt nach
THEN oder ELSE mit dem Befehl CALL durchgeführt werden
muß. Ansonsten kann man den Namen des SUB-Programms an-

stelle eines BASIC-Befehls verwenden. Schließlich haben die
SUB-Programme nur einen Sinn: Sie ermöglichen das Program-
mieren von Befehlserweiterungen in BASIC. Wer um diesen
Umstand weiß, verwendet - außer zum Aufruf von Betriebssy-
stem-Routinen - nie den Befehl CALL, dafür aber (oft ohne es
zu wissen) dieses merkwürdige Token. Im Gegensatz zu CALL
steht es hinter den Zeigern auf die Variablentabelle. Es handelt
sich hierbei um das Doppel-Token $F8-$D1.

Außerdem wäre noch etwas zu dem Befehl DATA zu sagen. Auf
ein DATA folgt grundsätzlich alles im (ASCII-)Klartext, ebenso
wie nach einem REM, da der Interpreter nunmal keine hellse-

herischen Fähigkeiten besitzt und daher nicht wissen kann, ob

Sie zum Beispiel aus folgender Zeile in Variablen einlesen wol-
len, wie Float oder Integer, oder ob dies die Zeichenketten für
eine Stringvariable sind:

DATA &hffe2, 123, &06666

5.2.3.10 Subprogramme

Wie kam es überhaupt dazu, daß Subprogramme in AmigaBASIC
implementiert wurden? Dazu wird jeder ehemals stolze Besitzer

254 Amiga Tips & Tricks ———— |

eines C64 oder ähnlichen Computers ein Lied singen können.

Etwa nicht? Dann möchte ich an dieser Stelle noch einmal daran
erinnern. Der erste Punkt ist sicherlich der, daß damit modulares

Programmieren erst möglich wird. Sicherlich trägt zwar auch der
Befehl MERGE oder CHAIN dazu bei, jedoch müssen bei deren
Methoden die Variablennamen immer gleich sein, sofern sie
übergeben werden sollen.

Des weiteren muß auch der Name des nächsten Programmteils

feststehen, es sei denn, man lädt das nächste Programm als Va-

riable nach, die dann aber leider auch feststehen muß. An SUB-

Routinen können jedoch beliebige Variablen(namen) übergeben
werden, da in der Klammer vor dem STATIC Platzhalter defi-

niert werden, in die die übergebenen Werte übertragen werden.

Es ist daher ratsam, jedes Subprogramm einzeln zu editieren und

als ASCII-File abzuspeichern, um es bei Bedarf nach dem Edi-

tieren eines Programms mittels MERGE im Direktmodus oder
im Programm (was unglaublich viel Zeit kostet, von wegen der

‘ Syntax-Prüfung und so...) einfach an das speicherresidente
BASIC-File anzuhängen. Die Aufrufkonventionen (z.B.: welche

Betriebssystemroutinen vorher als Funktion deklariert werden
müssen etc.) sollten Sie sich allerdings aufschreiben beziehungs-

weise mit einer Dateiverwaltung archivieren.

Der zweite Punkt war wohl der, daß bei den bisher erhältlichen

Computern ständig jemand beklagte, wie unvollständig doch der
Befehlssatz sei und wie schwer es doch für einen BASIC-Pro-

grammierer wäre, den Befehlssatz zu erweitern. Nun, Befehlser-

weiterungen lassen sich auf dem Amiga nicht nur in Maschi-
nensprache oder C programmieren (eigene Libraries), sondern

mit SUB-Programmen auch in BASIC. Beispielsweise:

PRINTAT 10,20,"Blabla"

SUB PRINTAT (x,y,Text$) STATIC

LOCATE y,x

PRINT Text$

END SUB

Der dritte Punkt ist ein Anschlag auf Programmierer in anderen
Sprachen wie Pascal oder ähnlichen. Wozu komplizierte Sprachen

— AmigaBASIC Intern 255

erlernen, wenn BASIC das auch kann - und auf dem Amiga
nicht gerade langsam. Jetzt sagen natürlich schon wieder einige,

das wäre mit Pascal nicht zu vergleichen, da sich die SUB-Pro-
gramme nicht aufrufen können. Das ist nur insofern richtig, als
Variablen nicht wieder in Platzhaltervarıablen überführt werden

(was sich programmiertechnisch allerdings auch lösen läßt).

Geht es nur darum, daß ein Befehl sich selbst bis zu einem ge-
wissen Punkt immer wieder selbst durchläuft, mehrere Iteratio-

nen also durchgeführt werden, so hilft ein einfaches Label am

Anfang der Routine, zu der dann innerhalb des SUBs dauernd
verzweigt werden kann. Programmintern werden SUB-Routinen
wie Variablen behandelt. Nur aus dem Zusammenhang heraus

kann der Amiga sie als Unterroutinen erkennen.

Wichtige Besonderheiten

Was macht Ihr Manipulationsprogramm, wenn es auf die Code-

folge $20-$F8-$8F-$20 trıfft? Blättern Sie einmal in der Token-
Liste im Anhang nach. Unzweifelbar handelt es sich hier um das
$F8-Doppel-Token END, eingeschlossen von zwei Spaces. Ist das

Programm hier zu Ende? Was, wenn jetzt die Codes $F8-$BE
folgen? Richtig, das ist der Code für SUB! Und von dieser Art
gibt es noch genügend Beispiele (INPUT in "OPEN x$ FOR
INPUT...").

Sie sehen, ein Token gibt nicht allein Aufschluß über das, was

tatsächlich geschieht. Erst der Zusammenhang, in dem das To-

ken zu anderen Token steht, macht die Art der Ausführung aus
(hatten wir das nicht auch bei der Verwaltung der Namen von
SUB-Programmen?). Das gilt übrigens auch für PRINT# und?#

- die Token sınd gleich!

5.2.3.11 Andere Token

Was, noch mehr? Ja, leider. Wenn Sie fleißig mitnotiert haben,
werden Sie gewisse Löcher in der Token-Reihenfolge mit Wer-
ten unter 128 festgestellt haben. Nicht, daß diese Token unge-

256 Amiga Tips & Tricks ——

nutzt sind, beileibe nicht! Sollten Sie Ihr gerade editiertes Pro-
gramm nicht mit dem ersten Befehl im Direkt-Modus sichern,
hat sich Ihr Programm auch schon verändert. Ihnen ist sicher
schon aufgefallen, daß der Interpreter bereits bei der Eingabe

einige schwerwiegende Fehler entdeckt, und zwar in dem Mo-
ment, in dem Sie einen Direkt-Modus-Befehl eingeben, anstelle
dessen Ausführung dann der Fehler-Requester erscheint.

Ausgenommen hiervon ist aus Sicherheitsgründen der SAVE-
Befehl. Mir ist es schon passiert, daß sich AmigaBASIC in der
Fehler-Anzeige-Routine aufgehängt hat und nur noch den glei-
chen Fehler anzeigte, ohne wieder Befehle anzunehmen (keine
Angst, ich habe 20mal auf OK geklickt).

Es wird also eine einfache Programmüberprüfung eingeleitet, bei
der das Programm bereits geändert wird. Und zwar handelt es
sich bei den "Loch-Token" um Token, die der Programmablauf-
steuerung dienen. So ist beispielsweise $8 zuständig für die Auf-
nahme von Sprungoffsets bei IF-THEN-Verzweigungen, die
aber nicht unbedingt gleich in Programme eingebaut werden.

Um für Manipulationsprogramme die Aufgabe nicht unnötig zu

erschweren - es gibt eine ganze Reihe Sonderformen - treffen
wir folgende Vereinbarung:

1. Bei Manipulationsprogrammen oder Programmen zum

Auslesen von Daten aus anderen Programmen, die ein
binäres File-Format benötigen, ist folgendermaßen vorzu-
gehen:

- Speichern des zu bearbeitenden Files als ASCII-Datei.

- Laden und mit dem ersten weiteren Befehl gleich wie-
der als Binär-File speichern.

2. Bei ASCII-Files ist keine Sonderbehandlung nötig, da mit
dem Abspeichern die Programmsteuerungscodes nicht ab-

gespeichert werden.

———— AmigaBASIC Intern 257

5.3 Nützliche Programme zur Manipulation von

AmigaBASIC

Die nachfolgenden Unterkapitel stellen Ihnen einige Programme

zur Verfügung, mit denen Sie Ihre BASIC-Programme bearbei-
ten können.

5.3.1 DATA-Generator

Dieses Programm demonstriert, wie man von einem Programm
aus ein AmigaBASIC-ASCI-Programm erzeugen kann. Nun ist
es zwar eleganter, Daten in einem File auf Diskette abzuspei-

chern und dann jedesmal wieder zu laden, dennoch gibt es Pro-

jekte, bei denen man ohne DATA-Zeilen nicht mehr auskommt.

So gibt es bei einem guten Programm immer die Möglichkeit, es
einmal in einer Zeitschrift abdrucken zu lassen und dafür natür-
lich auch etwas Geld (für Erweiterungen natürlich!) zu bekom-
men.

Was aber, wenn das Programm nicht ohne Sprites, BOBs, Ma-

schinenspracheroutinen oder ähnlichem auskommt? Da gibt es

gar keine Frage: DATA-Zeilen müssen her. Nun, das vorlie-
gende Programm erzeugt DATA-Zeilen von jedem beliebigen
File. Für andere Anwendungszwecke steht es Ihnen natürlıch
frei, das Programm nach eigenen Wünschen umzuschreiben.

Das erzeugte ASCII-File läßt sich ganz einfach an das Pro-

gramm, das die DATAs benötigt, durch MERGE anhängen. Um

die DATA-Zeilen nicht unnötig lang zu machen, werden die
Werte als Hexadezimalzahlen ausgegeben. Eine Leseroutine für
die DATAs wird mit abgespeichert. Ungewöhnlich an der Ein-
leseroutine ist für eifrige Leser des AmigaBASIC-Handbuches
sicherlich die Umwandlung von Hexadezimalzahlen ın Dezimal-

zahlen.

Hier ist das BASIC-Handbuch schlichtweg falsch! Natürlich ist
es für den Interpreter völlig egal, ob Sie a%=255 oder a%=&HFF
schreiben. Ebenso funktioniert das selbstverstandlich auch bei

258 Amiga Tips & Tricks

VAL und ähnlichen Funktionen! Die umständlichen Umrechen-
routinen - in 64er BASIC gehalten - die man immer wieder in
Amiga-Listings findet, entsprechen keinesfalls dem Standard von
AmigaBASIC. Sie können daher ohne weiteres schreiben:

daten: DATA ff,ec,0,1,f
RESTORE daten:FOR i=1 TO 5:READ a$:x(Ci)=VAL("&H'"+a$) :NEXT

Man bemerke: Nur ein Befehl anstelle eines ganzen Subpro-
gramms! Nun aber zum Listing:

GOTO start

#DATA-GENERATOR Amiga #

(W) 1987 by Stefan Maelger #

"dos.bmap" und "exec.bmap" muessen auf
Disk vorhanden sein!

' Betriebssystemroutinen als Funktionen

' deklarieren
|

start:

DECLARE FUNCTION xOpen& LIBRARY
DECLARE FUNCTION xRead% LIBRARY
DECLARE FUNCTION Al locMem& LIBRARY

DECLARE FUNCTION Examine& LIBRARY

DECLARE FUNCTION Lock& LIBRARY

a
-

' Bibliotheken öffnen

LIBRARY “exec. library"

LIBRARY "dos. library"

' Eingaben
I

sourcefile:

CLS
LINE INPUT "Name des Source-Files: ";source$
PRINT

PRINT "Diskette einlegen (RETURN)!

WHILE A$<>CHR$C13)
AS=INKEYS

WEND

LOCATE 3,1:PRINT "Checking File... "
CHDIR "dfO:"

CheckFile source$,Bytes&
IF Bytes&=0 THEN

AmigaBASIC Intern 259

LOCATE 3,1:PRINT "File not found...":BEEP
A=TIMER+3 :WHILE A>TIMER:WEND

GOTO sourcefile
ELSEIF Bytes&=-1 THEN

LOCATE 3,1:PRINT "Directories kann ich nicht..."
BEEP :A=TIMER+3:WHILE A>TIMER:WEND

GOTO sourcefile

END IF
LOCATE 3,1:PRINT "File gefunden. Lange=";Bytes&;" Byte!

Buffer einrichten

Publ 1 CRAM&=65537&
Buf fer&=Al locMem&(Bytes&, Publ icRAM&)
IF Buffer&=0 THEN

LOCATE 5,1:PRINT "Nicht genug Speicher vorhanden."
LOCATE 7,1
PRINT "Programm kann mit RUN wieder gestartet werden."

BEEP :END

END IF

' File in Buffer laden

source$=source$+CHR$(0)

Opened&=xOpen& (SADD (source$), 1005)
IF Opened&=0 THEN

LOCATE 5,1:PRINT "Ich kann das File nicht öffnen!"
BEEP :A=TIMER+3:WHILE A>TIMER:WEND

GOTO sourcefile

END IF

gel esenz=xReadz(Openedé&, Buf fer&, Bytes&)
CALL xClose(Openedé&)

' Eingabe Target-File
|

targetfile:

LOCATE 9,1:PRINT "Name des BASIC-ASCII-Files,"
FOR i=11 TO 17 STEP 2

LOCATE i,1:PRINT SPACE$(80)
NEXT

LOCATE 11,1:LINE INPUT "das erzeugt werden soll: ";target$

LOCATE 13,1:PRINT "Target-Disk einlegen (RETURN)!

AS="" SWHILE AS<>CHR$(13):AS=INKEY$S:WEND

CHDIR "df0:"

LOCATE 15,1:PRINT "Checking Disk..."
CheckFile target$, vorhanden&

IF vorhanden&=-1 THEN
LOCATE 15,1:PRINT "Das ist der Name eines Directory!"
BEEP :A=TIMER+3:WHILE A>TIMER:WEND

GOTO targetfile

ELSEIF vorhanden&<>0 THEN
LOCATE 15,1:PRINT "Es ist bereits ein File mit diesem"
LOCATE 17,1:PRINT "Namen vorhanden. File löschen? (J/N)"

260 Amiga Tips & Tricks

warte:

AS=INKEY$:IF A$<>"" THEN AS=UCASES(AS$)

IF A$="J" GOTO weiter

IF A$<>"N" GOTO warte

GOTO targetfile
END IF

weiter:

' DATA-ASCII-File erzeugen
|

LOCATE 19,1:PRINT "ASCII-File wird erzeugt."
LOCATE 21,1:PRINT "Bitte etwas Geduld..."
OPEN target$ FOR OUTPUT AS 1

anzahl&=0
PRINT#1,"RESTORE datas";CHR$(10);

PRINT#1, "datastr ing$=""; CHRS(34) > CHR$(34) CHRS(10);
PRINT#1,"FOR i=1 TO ";STR$(Bytes&);CHR$C10);
PRINT#1,"READ a$";CHR$C10);
PRINT#1, "aS=""s CHRS(34) ; "&H"" = CHRS(34): "+a$"> CHRS(10);

PRINT#1, “datastr ing$=datastr ing$+CHRS(VAL(a$))":

PRINT#1,CHRS(10);
PRINT#1, "NEXT": CHR$(10);

PRINT#1,"datas:";CHR$C10);
Zeile:

PRINT#1,"DATA ">

zahl=0
Wert:

PRINT#1 , HEXS(PEEK (Buf fer&+anzahl&));
zahl=zahl+1 :anzahl&=anzahl&+1
IF anzahl&<Bytes& THEN

IF zahl<20 THEN
PRINT#1,",">
GOTO Wert

ELSE

PRINT#1, CHR$(10);
GOTO Zeile

END IF

END IF

PRINT#1,CHR$C10);CHR$C10);
CLOSE 1

.info-file ändern

SAVE "DATA-GENINFO"

weg$=target$+". info"

KILL weg$-

NAME "DATA-GENINFO. info" AS target$+". info!

KILL "DATA-GENINFO"

CLS
PRINT "fertig."

CALL FreeMem(Buffer&,Bytes&)
END

—— AmigaBASIC Intern 261

' SUBROUTINE

SUB CheckFile(Filename$,Length&) STATIC

Chi pRAM&=655388 _
InfoBytes&=252 .

Info&=Al locMem&(InfoBytes&, Chi pRAM&)

IF Info&=0 THEN ERROR 7

File$=Filename$+CHR$(0)
DosLock&=Lock&(SADD(File$), -2)

IF DosLock&=0 THEN
Length&=0

ELSE Ä

Dummy&=Examine&(DosLock&, Info&)

Length&=PEEKL(Info&+4) 0

IF Length&>0 THEN ©

Length&=- 1

ELSE

Length&=PEEKL(Info&+124)

END IF |

END IF

CALL UnLock(DosLock&)
CALL FreeMem(Info&, InfoBytes&)

END SUB

Variablen

A String, Hilfsvariable

AllocMem EXEC-Routine, Speicher reservieren

Buffer Adresse des reservierten Speichers

Bytes Lange der zu bearbeitenden Datei

CheckfFile SUB-Routine, prüft, ob File vorhanden, wenn ja, ob Directory,

wenn nicht, Länge holen

ChipRAM Option fur AllocMem: 2°16 (65536) = Bereich löschen, 21

(2)=Chip-RAM-Bereich

DosLock File-Handle der Checkfile-Routine

Dummy nicht genutzte Variable

Examine DOS-Routine, untersucht File

File Filename mit abschlieBender Null fiir DOS

Filename Name der zu bearbeitenden Datei

FreeMem EXEC-Routine, gibt Speicherbereich frei

Info Adresse der File-Info-Struktur

InfoBytes Lange der File-Info-Struktur

Length Lange des Files
Lock DOS-Routine, sperrt File gegen Zugriffe von anderen Programmen

und besorgt Handle

| Opened Adresse des File-Handlers der Source-Datei
PublicRAM Option für AllocMem: 2°16 (65536) = Bereich löschen, 20

(1) =Public-Bereich

262 Amiga Tips & Tricks ———

UnLock DOS-Routine, hebt Lock auf

anzahl _ Zähler für geschriebene DATA-Werte

gelesen Anzahl tatsächlich gelesener Bytes

i Schleifenvariable

source | Ausgangsdatei

target Zieldatei im ASClIi-Format für DATAs

vorhanden Flag: | existiert File?

weg Hilfsvariable

xClose DOS-Routine, schließt File

xOpen DOS-Routine, öffnet File

xRead DOS-Routine, liest aus File

zahl Zähler für Bytes in einer DATA-Zeile

5.3.2 Cross-Reference-Liste

Dieses Programm demonstriert das Auslesen von Werten aus bi-

när gespeicherten AmigaBASIC-Programmen. Um den Rahmen
dieses Buches nicht zu sprengen, wird keine vollständige Syntax-
Prüfung des Programms vorgenommen. Dadurch ergibt sich, daß
eventuell vom Interpreter eingebaute Programmablaufsteue-

rungsmarken sowie Speichermüll zwischen dem Programmrumpf
und der Variablentabelle vor dem Einsatz dieses Programms aus

dem zu bearbeitenden File entfernt werden müssen. Um das zu
erreichen, gehen Sie folgendermaßen vor:

Laden des zu bearbeitenden Files
SAVE "filename",A

AmigaBASIC beenden

AmigaBASIC neu laden
LOAD "filename"

SAVE "filename",B N
W
B
W
N
S

Haben Sie dies getan, so können Sie sich mit folgendem Pro-
gramm eine Kreuzverweis-Liste auf dem Drucker ausgeben las-
sen. Dabei werden sowohl Label als auch Zeilennummern in der
Reihenfolge, in der sie im Programm auftauchen, ausgegeben.
Zu diesen Sprungmarken wird durch "<--" markiert angegeben,
von welchen Labeln oder Zeilennummern aus diese Sprungmarke
angesprungen wird.

——— AmigaBASIC Intern 263

Erfolgt der Ansprung von einer Stelle im Programm, an der
noch keine Sprungmarke definiert ist, zum Beispiel von der er-

sten Programmzeile aus, so wird dies mit dem geklammerten
Pseudo-Label "(Programm-Anfang)" kenntlich gemacht. Dann
folgen noch durch "-->" gekennzeichnet die Sprungmarken, die
von dieser Sprungmarke aus angesprungen werden. Zu beachten

ist hierbei, daß weder Betriebssystemaufrufe noch SUB-Routi-
nen berücksichtigt werden, da diese von dem AmigaBASIC-In-
terpreter wie Variablen abgelegt werden. Trotzdem haben Sie
hiermit ein wunderbares Werkzeug, um Ihre Programme zu do-
kumentieren.

EL ILITILELT « ILL er ar ar ee itt . |... in...

#CrossReference Amiga #

(W) 1987 by Stefan Maelger #

HHHHHHRHHHHHHHHHHHEHRHRAA RA

Dieses Programm erstellt auf Ihrem

Printer eine Kreuzverweis-Liste

(Cross-Reference-Chart), die es
Ihnen erlaubt, jedes BINÄR gespeicherte
AmigaBASIC-Programm zu dokumentieren.

U ou en nn mn nn nn nn nn ns nn nm m nn

' Da SUB-Routinen vom Interpreter wie in -
' AmigaBASIC programmierte AmigaBASIC-

' Befehls-Erweiterungen gehandhabt werden,
| bleiben deren Aufrufe unberuecksichtigt.
Du a nn a nn nn nn nn a m m us

'----Speicher reservieren, Druckertreiber ----
'----laden, Bibliothek öffnen und Variablen----

CLEAR ‚450008
LPRINT

DECLARE FUNCTION xOpen& LIBRARY

DECLARE FUNCTION xRead% LIBRARY

DECLARE FUNCTION Seek% LIBRARY

LIBRARY ":dos. library"
DIM Cross$(5000) , names$(1000)

LOCATE 2,2
PRINT CHR$(187);" Cross Reference Amiga ";CHR$(171)
LOCATE 5,2
PRINT "Name des binären AmigaBASIC-Programms:"

LOCATE 7,2
LINE INPUT Filename$
CHDIR “df0:"

BASICcheck Filename$,Result%
LOCATE 10,2
IF Result%=-1 THEN

264 Amiga Tips & Tricks

PRINT "Ich kann kein Info-File finden."
ELSEIF Result%=0 THEN

PRINT "Lese-Fehler!"
ELSEIF Result%=1 THEN

PRINT "Das ist kein AmigaBASIC-Programn."
END IF
IF Result%<>2 THEN

BEEP

WHILE INKEYS=""

WEND

RUN

END IF

PRINT CHRS$(34);Filename$;". info": CHR$(34)

PRINT

PRINT " weist dieses Prg als AmigaBASIC-File aus."

OpenFile Filename$,handle&
LOCATE 14,2

IF handle&=0 THEN

PRINT “AAAaargh! Ich finde ";CHR$(34);
PRINT Filename$;CHR$(34);" nicht!!!"
BEEP

WHILE INKEY$="":WEND RUN

ELSE

PRINT "File geöffnet."

END IF

LOCATE 16,2
HeaderCheck handle&,Header$
IF ASC(Header$)<>&HF5 THEN

PRINT "Sorry, ich kann nur binär-Files"
BEEP
WHILE INKEY$="":WEND:RUN

ELSE
PRINT "File hat binäres Format" |
PRINT :PRINT "Bitte etwas Geduld. ";
PRINT "Ich melde mich wieder..."

END IF
pointer%=-1

main:

GetLine handle&,Current$

IF LENCCurrent$)<4 THEN
PRINT

PRINT " Ende des Binär-Codes erreicht"
PRINT :PRINT " Lese Variablentabelle."

GOTO Vartab

END IF

IF ASC(Current$)=128 THEN
pointer%=pointer%+1
Cross$(pointer%)=CHR$(128)+MID$(Current$,4,2)
Current$=MID$(Current$,6)

ELSE
Current$=MID$(Current$,4)

END IF
GetToken:

——— AmigaBASIC Intern 265

Token%=ASC(Current$+CHR$(0))
IF TokenX=0 GOTO main
'----BefehlsToken?----
IF Token%>127 THEN

IF Token%=175 OR Token%=141 GOTO main

IF TokenX=190 OR Token%>247 THEN
Current$=M1D$(Current$,3)

ELSE

Current$=M1D$(Current$, 2)

END IF

GOTO GetToken
END IF
I----String?----

IF Token%=34 THEN

ByteX=INSTR(2, Current$, CHR$(34))

IF ByteX=0 GOTO main

Current$=M1D$(Current$, ByteX+1)

GOTO GetToken

END IF

'----Folgt 2-Byte-Wert?----

IF Token%=1 OR Token%=11 OR Token%=12 OR Token%=28 THEN
Current$=MID$(Current$,4)
GOTO GetToken

END IF

'----Folgt 1-Byte-Wert?----

IF Token%=15 THEN Current$=MID$(Current$,3):GOTO GetToken
'----Folgt 4-Byte-Wert?----

IF Token%=29 OR Token%=30 THEN

Current$=MID$(Current$,6)
GOTO GetToken

END IF

'----Folgt 8-Byte-Wert?----

IF Token%=31 THEN Current$=MID$(Current$,10):GOTO GetToken

'----Ist es ein Label?----

IF Token%=2 THEN

pointer%=pointer%+1
Cross$(pointer%)=LEFT$(Current$, 3)
Current$=MID$(Current$,4)
GOTO GetToken

END IF

'----Ist es ein Sprungziel?----
IF Token%=3 OR Token%=14 THEN

pointer%=pointer%t+1
Cross$(pointer%)=CHR$(Token%)+MID$(Current$,3,2)

Current$=MID$(Current$,5)

GOTO GetToken

END IF

Current$=MID$(Current$,2)
GOTO GetToken

Vartab:

p2%=-1
notforever:

GetLength handle&,bytes%

266 Amiga Tips & Tricks

IF bytes%=0 GOTO goon
GetName handle&,Current$,bytes%
p2%=p2%+1
names$(p2%)=Current$
GOTO notforever

goon:
IF pointer%=-1 THEN
PRINT
PRINT
PRINT
PRINT
BEEP
WHILE

PRINT

PRINT

BEEP

WHILE

ELSE

PRINT

END IF

LPRINT

LPRINT

LPRINT

LPRINT

"Ich habe kein Label und keine Zeilennummer"

entdecken können!"

INKEY$="" :WEND : RUN
ELSEIF p2%=-1 THEN

a Hmm - keine Variablentabel le"

INKEY$="":WEND : RUN

:PRINT " Gebe Daten aus."

">>> CrossReference Amiga <<<"

"Prog ramm: ":Filename$

FOR 1=0 TO pointer%
asci1%=ASC(Cross$(i))

IF ascii%=2 THEN

LPRINT names$(CVI (MID$(Cross$(i),2)));":"

FOR j=0 TO pointer%
IF ASC(Cross$(j))=3 THEN

IF CVICMID$(Cross$(j),2))=CVI(MID$(Cross$(i),2)) THEN
k=j

WHILE k>-1

k=k-1

IF k>- 1 THEN

IF ASC(Cross$(k))=2 THEN

LPRI NT u -.- We
< g

LPRINT names$(CVI (MID$(Cross$(k),2)))
k=-2

ELSE]
LPRINT "

k=-2
END I

END IF

WEND

IF k=-1 THEN LPRINT "

F ASC(Cross$(k))=128 THEN

<-- "CVI (MID$(Cross$(k),2))

F

<--(Programm-Anfang)"
END IF

END IF

NEXT j

ELSEIF ascii%=3 THEN

LPRINT "

ELSEIF asci1%=14 THEN

--> "snames$(CVI (MID$(Cross$(i),2)))

——— AmigaBASIC Intern 267

LPRINT " --> ">CVICMID$(CCross$(i),2))
ELSEIF ascii%=128 THEN
LPRINT CVI(MID$(Cross$(1),2))
FOR j=0 TO pointer‘
IF ASC(Cross$(j))=14 THEN
IF CVI(MID$(Cross$(j),2))=CVI(MID$(Cross$(i),2)) THEN
k=j
WHILE k>-1
k=k-1
IF k>-1 THEN

IF ASC(Cross$(k))=2 THEN
LPRINT " <-- "-
LPRINT names$(CVI (MID$(Cross$(k),2)))

k=-2
ELSEIF ASC(Cross$(k))=128 THEN

LPRINT " <-- ":CVI(MID$(Cross$(k),2))

k=-2
END IF

END IF

WEND

IF k=-1 THEN LPRINT " <--(Programm-Anfang)"

END IF

END IF

NEXT j
END IF

NEXT i

PRINT :PRINT "Fertig."
BEEP

WHILE INKEY$="":WEND :RUN

SUB GetName(handle&,Current$,bytes%) STATIC

Current$=SPACE$(bytes%)

Length%=xRead%(handle&,SADD(Current$) ,bytes%)
END SUB

SUB GetLength(handle&,bytes%) STATIC
Current$=CHR$(0)

readit:
Lengthz=xRead%(handle&, SADD(Current$),1)
IF Length%=0 THEN

CALL xClose(handle&)

bytes%=0

EXIT SUB

END IF

bytes%=ASC(Current$)
IF bytes%=0 THEN readit
IF bytes%>60 THEN readit

END SUB

SUB GetLine(handle&,Current$) STATIC
Current$=STRING$(3,0)
Length%=xRead%(handle&,SADD(Current$), 3)
OldPos%=Seek%(Chandle&, -3,0)

268 Amiga Tips & Tricks

LoL%=ASC(MID$(Current$,2,1))
IF LoL%=0 THEN

EXIT SUB
ELSE

Current$=STRINGS$(LoL%, 0)

Length%=xRead&(handl e&, SADD (Current$), LoL’)
END IF |

END SUB

SUB HeaderCheck(handle&,Header$) STATIC

Header$="|
OldPos%=-Seek%(handle&,0,-1)

gotit%=xRead%Chandle&,SADD(Header$),1)
END SUB

SUB OpenFile(Filename$,handle&) STATIC
file$=Filename$+CHR$(0)
handle&=xOpen&(SADD(file$), 1005)

END SUB

SUB BASICcheck(Filename$,Result%) STATIC

fi le$=Filename$+". info"+CHRS$(0)

Default .Tool$=SPACE$(20)

handle&=xOpen&(SADD(file$), 1005)
IF handle&=0 THEN

Resul tX=- 1

ELSE
OldPos%=Seek%Chandle&, -20, 1)
got i tX=xRead%(handle&, SADD (Default. Tool$), 20)
IF gotit%<20 THEN

Resul t%=0
ELSE

IF INSTR(Default.Tool$,"AmigaBASIC")>0 THEN
Resul t%=2

ELSE

Resul t%=1

END IF

END IF

CALL xClose(handle&)
END IF

END SUB

Variablen

BASICcheck SUB-Routine zum Prüfen des Default-Tools

Byte Pointer auf Byte im String

Bytes Hilfsvariable, z.B. Stringlänge

Cross Stringfeld zur Zwischenspeicherung der Sprungmarken und

Sprünge

Current String, eingelesene BASIC-Zeile

Default.Tool String, in den das Default-Tool gelesen wird

——— AmigaBASIC Intern 269

Filename

GetLength

GetLine

GetName

Header

HeaderCheck

Length

LoL

OldPos

OpenFile

Result

Seek

Token

ascii

file

gotit

handle

i

j
k

names

p2

pointer

xClose

xOpen

xRead

String, Name des zu bearbeitenden Files

SUB-Routine, holt die Label-Lange

SUB-Routine, liest Zeile ein

SUB-Routine, liest Label-Name ein

String, File-Header-Byte

SUB-Routine, die die Abspeicherart prüft

Anzahl tatsächlich gelesener Bytes

Zeilenlänge

alte Pointer-Position im File

SUB-Routine, öffnet File

Flag, Ergebnis der Untersuchung

DOS-Routine, verschiebt Schreib-Lese-Zeiger im File

ASCII-Wert des nächsten Bytes einer Zeile

Wert des Codes in Cross$ |
String, Filename mit Null abgeschlossen für DOS-Routinen

tatsächlich gelesene Bytes

Adresse auf den File-Handler

Schleifenvariable

Schleifenvariable

Schleifenvariable

Stringfeld, Namen der Sprungmarken

Hilfsvariable

Hilfsvariable

DOS-Routine, schließt File

DOS-Routine, öffnet File

DOS-Routine, liest aus File an Speicheradresse

5.3.3 Leerzeilen-Killer

Da wir wissen, wie Leerzeilen aufgebaut sind, sollte es uns nun
leichtfallen, diese zu entfernen. Das folgende Programm erledigt

diese Arbeit für uns. Vorher muß jedoch jeglicher Speichermüll
beseitigt werden. Wie das vor sich geht, sehen Sie im Text zur

Cross-Reference-Liste.

Wichtig: Wenn Sie das Programm abtippen, könnte Ihnen ein

winziger Fehler unterlaufen, der Ihr Originalpro-
gramm zerstören würde. Verwenden Sıe daher nur

Kopien Ihrer Originale, und prüfen Sie nach der
Bearbeitung die Lauffähigkeit. Das vorliegende Pro-
gramm ändert das Ausgangsfile ab. Des weiteren

270 Amiga Tips & Tricks

wird aus Gründen der Speicher-Ersparnis während

der Bearbeitung das gerade aktuelle Fenster ge-
schlossen. Sollte noch ein kleiner Fehler im Pro-
gramm sein, wie beispielsweise eine Endlosschleife,
kommen Sie daher nicht mehr an Ihr Programm
heran. Ausweg: Solange das Programm noch nicht
einwandfrei läuft, lassen Sie das List-Fenster offen -

aber nicht aktiviert! Es ist jedoch ganz normal, wenn
sich das Programm eine ganze Zeit lang nicht zu-
rückmeldet - je nach Länge des zu bearbeitenden
Files. .

(W) 1987 by Stefan Maelger #

"dos.bmap" und "exec.bmap!' muessen auf
Disk vorhanden sein

DECLARE FUNCTION AllocMem& LIBRARY
DECLARE FUNCTION Lock& LIBRARY
DECLARE FUNCTION Examine& LIBRARY
DECLARE FUNCTION xOpen& LIBRARY
DECLARE FUNCTION xRead& LIBRARY
DECLARE FUNCTION xWrite& LIBRARY

LIBRARY "“:exec. library"

LIBRARY ":dos. library"

WINDOW CLOSE WINDOW(O)
WINDOW 1,"Leerzeilen-Killer",(0,0)-(250,50),16

Allocation.1:

COLOR 3, 1:CLS

info&=AllocMem& (2528 ,65538&)
IF info&=0 THEN

ALLOCERR

GOTO Allocation.1

END IF

source:

REQUEST "SOURCE"

SELECT box%

IF box% THEN CALL FreeMem(info&,252):SYSTEM

CHDIR "df0:"

GetFilename:

LINPUT Filename$

GETINFO Filename$, info&,Length&

IF Length&<1 THEN

IF Length&=-1 THEN

-——— AmigaBASIC Intern 271

DIRERR
ELSEIF Length&=0 THEN

FILEERR
END IF
GOTO GetFilename

END IF
Allocation.2:

COLOR 3,1:CLS
buf fer&=Al locMem&(Length&, 65537&)
IF buffer&=0 THEN
ALLOCERR
GOTO Allocation.2

END IF

LOADFILE Filename$, buf fer&,Lengthé&
IF Filename$="" THEN

CALL FreeMem(buffer&,Length&)

LOADERR

GOTO GetFilename

END IF

IF PEEK (buf fer&)<>&HF5 THEN

CALL FreeMem(buffer&,Length&)
FORMERR

GOTO GetFilename

END IF

NEWFILE FilenameS,handle&
IF handle&=0 THEN

CALL FreeMem(buffer&, Length&)

CALL FreeMem(info&, 252&)
OPENERR

SYSTEM

END IF

Bytes&=1

DWRITE handle&, buf fer&, Bytes&
IF Bytes&=0 THEN

CALL xClose(handle&)

CALL FreeMem(buffer&,Length&)
CALL FreeMem(info&,252&)
WRITEERR

SYSTEM

END IF

pointer&=buf fer&+1
GetLength:

Bytes&=PEEK(pointer&+1)
IF Bytes&=4 THEN

pointer&=pointer&+4
GOTO GetLength

ELSEIF Bytes&>4 THEN
DWRITE handle&, pointer&, Bytes&
IF Bytes&=0 THEN

CALL xClose(handle&)

CALL FreeMem(buffer&, Length&)
CALL FreeMem(info&, 252&)
WRITEERR

272 Amiga Tips & Tricks

SYSTEM

END IF

pointer&=pointer&+Bytes&
GOTO GetLength

ELSE
Bytes&=Length&- (pointer&- buf fer&+1)
DWRITE handle&, pointer&, Bytes&

IF Bytes&=0 THEN

CALL xClose(handle&)
CALL FreeMem(buf fer&,Length&)

CALL FreeMem(info&, 252&)
WRITEERR

SYSTEM

END IF

END IF

CALL xClose(handle&)
CALL FreeMem(buffer&,Length&)
CALL FreeMem(info&,252&)
LIBRARY CLOSE

COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."
WHILE INKEYS=""":WEND

SYSTEM

SUB WRITEERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error."

ShowCont

END SUB

SUB DWRITEChandle&,adr&,Length&) STATIC

written&=xWrite&(handle&, adr&, Length&)

IF written&<>Length& THEN Length&=0

END SUB

SUB OPENERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open File."

ShowCont

END SUB

SUB NEWFILE(Filename$,handle&) STATIC
File$=Filename$+CHR$(0)

handle&=xOpen&(SADD(File$), 1005)
END SUB

SUB FORMERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary File."

ShowCont |

END SUB

SUB LOADERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Load-error."

ShowCont Ä

END SUB

SUB LOADFILE(Filename$,buffer&,Length&) STATIC
File$=Filename$+CHR$(0) :handle&=xOpen&(SADD(File$), 1005)
IF handle&=0 THEN

Fi lename$="""

ELSE |
inBuf fer&=xRead& (handl e&, buf fer&, Length&)
CALL xClose(handle&)

AmigaBASIC Intern 273

IF inBuffer&<>Length& THEN Filename$=""

END IF

END SUB

SUB FILEERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: File not found."

ShowCont

END SUB

SUB DIRERR STATIC

COLOR 1,3:CLS:LOCATE 2,2

PRINT "ERROR: File is a Directory."

ShowCont
END SUB

SUB GETINFOCFilename$, info&,Length&) STATIC
File$=Filename$+CHR$(0) :DosLock&=Lock&(SADD(File$),-2)
IF DosLock&=0 THEN

Length&=0

ELSE
Dummy&=Examine&(DosLock&, info&)
IF PEEKLCinfo&+4)>0 THEN

Length&=- 1

ELSE
Length&=PEEKL(info&+124)

END IF

END IF

CALL UnLock(DosLock&)
END SUB

SUB LINPUT(Filename$) STATIC

COLOR 3,1:CLS:WINDOW 2,"Filename:",(0,0)-(250,10),0

WINDOW OUTPUT 1:LOCATE 5,2

PRINT "Name of a binary saved File";
LINE INPUT Filename$:WINDOW CLOSE 2

END SUB

SUB SELECT(box%) STATIC
Check:

WHILE MOUSE(0)=0:WEND : x=MOUSE (1) :y=MOUSE (2)
IF y>27 AND y<43 THEN

IF x>9 AND x<38 THEN box%=0:EXIT SUB
IF x>177 AND x<238 THEN box%=-1:EXIT SUB

END IF
GOTO Check

END SUB

SUB ALLOCERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Allocation denied."

ShowCont

END SUB

SUB ShowCont STATIC

LOCATE 4,2:PRINT "Press SPACE to continue,"
LOCATE 5,7:PRINT "ESCAPE to exit.":

WHILE a$<>CHR$(32) AND a$<>CHR$(27)
a$=INKEYS

WEND
IF a$=CHR$(27) THEN SYSTEM

END SUB

274

SUB REQUEST(disk$) STATIC
COLOR 3,1:CLS
LOCATE 2,2:PRINT "INSERT ";disk$;" DISK INTO DRIVE"
LOCATE 3,14:PRINT "DFO:":LOCATE 5,3:PRINT "OK";
LOCATE 5,24:PRINT "CANCEL": :LINE(10,28)-(37,42),3,b
LINE(178, 28)-(237,42),3,b

Amiga Tips & Tricks

END SUB

Variablen

ALLOCERR SUB: Fehler beim Reservieren von Speicher

AllocMem EXEC-Routine: reserviert Speicherplatz

Bytes Lange

DIRERR SUB: Fehler - keine Datei

DWRITE SUB: schreibe in File

DosLock Handle von Lock

Dummy nicht benötigt

Examine DOS-Routine: untersucht File

FILEERR SUB: Fehler s.o.

FORMERR SUB: Fehler s.o.

File Filename + Null für DOS-Routinen

Filename Programm

FreeMem EXEC-Routine: Speicher freigeben

GETINFO SUB: File-check

LINPUT SUB: Eingabe

LOADERR SUB: Fehler s.o.

LOADFILE SUB: lädt Programm

Length Länge des Programms

Lock DOS-Routine: "saugt" sich am File fest

NEWFILE SUB: erstellt neues File

OPENERR SUB: Fehler s.o.

REQUEST SUB: Zeichne primitiven Requester

SELECT SUB: Auswahl per Mausklick

ShowCont SUB: zeige Möglichkeiten

UnLock DOS-Routine: löst Saugfuß

WRITEERR SUB: Fehler

a Hilfsvariable

adr Adresse

b Hilfsvariable

box Hilfsvariable

buffer Adresse des reservierten Speichers

disk Diskette

handle Adresse des File-Handlers

inBuffer gelesene Bytes

info Adresse der File-Info-Struktur

pointer Hilfsvariable

AmigaBASIC Intern

written

X

xClose

xOpen

xRead

xWrite

y

geschriebene Bytes

Hilfsvariable

DOS-Routine: schließt File

DOS-Routine: öffnet File

DOS-Routine: liest aus File
DOS-Routine: schreibt in File

Hilfsvariable

5.3.4 REMarks entfernen

Für dieses Programm gilt das gleiche wie für den Leerzeilen-
Killer! Beachten Sie bitte den dortigen Text.

HEHHHHHHHHHH AHA AHA AAA
Ki Il-Remark Amiga #

(W) 1987 by Stefan Maelger #

HHAHHHHHHHHHHAAHHHHHHHHRHHHHHR HR

"dos.bmap" und "exec.bmap" muessen auf
Disk vorhanden sein

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

LIBRARY

LIBRARY

FUNCTION AllocMem& LIBRARY

FUNCTION Lock& LIBRARY

FUNCTION Examine& LIBRARY

FUNCTION xOpen& LIBRARY

FUNCTION xReadk LIBRARY

Nrexec.Library"
":dos.Library"

WINDOW CLOSE WINDOW(O)

WINDOW 1,"Kill-Remark", (0,0)-(250,50),16

Allocation.1:

COLOR 3 , 1:CLS

Info&=Al LocMem&(2528 ,65538&)

IF info&=0 THEN

ALLOCERR

GOTO Allocation.1

END IF

Source:

REQUEST "SOURCE"

SELECT box%

IF box% THEN CALL FreeMem(info&,252):SYSTEM

CHDIR "dfO:"

GetFilename:

LINPUT filename$

GETINFO filename$, info&,Length&
IF Length&<1 THEN

IF Length&=-1 THEN

DIRERR

275

276 Amiga Tips & Tricks

ELSEIF Length&=0 THEN
FILEERR

END IF

GOTO GetFilename

END IF
Allocation.2:

COLOR 3,1:CLS
buf fer&=Al locMem&(Length&, 65537&)
IF buffer&=0 THEN
ALLOCERR

GOTO Allocation.2
END IF
LOADFILE filename$, buf fer&,Length&
IF filename$="" THEN

CALL FreeMem(buf fer&, Length&)
LOADERR

GOTO GetFilename

END IF
IF PEEK(buffer&)<>&HF5 THEN

CALL FreeMem(buf fer&, Length&)
FORMERR

GOTO GetFilename
END IF

NEWFILE filename$

Bytes&=1

DWRITE buffer&,Bytes&

pointer&=buf fer&+1
GetLength:

Bytes&=PEEK(pointer&+1)
IF Bytes&=4 THEN

pointer&=pointer&+4
GOTO GetLength

ELSEIF Bytes&>4 THEN

IF PEEK(pointer&)=128 THEN offs&=6 ELSE of fs&=4

IF PEEK(pointer&+offs&)<>175 THEN

DWRITE pointer&,Bytes&

END IF

pointer&=pointer&+Bytes&
GOTO GetLength

ELSE

IF (Cpointer&-buffer&+1)MOD 2)=1 THEN
pointer&=pointer&-1

END IF
Bytes&=Length&- (pointer&- buf fer&+1)+1
DWRITE pointer&,Bytes&

END IF

CLOSE 1
OPEN filename$S+"-RL. info" FOR OUTPUT AS 1

OPEN filename$+".info' FOR INPUT AS 2
PRINT#1, INPUTS(LOF(2),2);

CLOSE 2,1
KILL filename$+"-RL. info. info"

AmigaBASIC Intern : 277

CALL FreeMem(buffer&, Length&)
CALL FreeMem(info&, 252&)
LIBRARY CLOSE
COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."
WHILE INKEYS="":WEND
SYSTEM

SUB WRITEERR STATIC
COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error."
ShowCont

END SUB

SUB DWRITECadr&,Length&) STATIC
FOR i&=1 TO Length&

PRINT#1, CHRS(PEEK(adr&-1+1&));
NEXT

END SUB
SUB OPENERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open File."
_ ShowCont
END SUB
SUB NEWFILE(Cfilename$) STATIC

Fi le$=f i lename$+"-RL"

OPEN File$ FOR OUTPUT AS 1

END SUB
SUB FORMERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary File."

ShowCont

END SUB
SUB LOADERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Load-error."

ShowCont

END SUB

SUB LOADFILE(filename$,buffer&,Length&) STATIC
File$=filename$+CHR$(0) :handle&=xOpen&(SADD(File$), 1005)
IF handle&=0 THEN

filename$=""

ELSE
inBuffer&=xRead&(handle&,buffer&,Length&)

CALL xClose(handle&)

IF inBuffer&<>Length& THEN filenameS="""

END IF
END SUB

SUB FILEERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: File not found."
ShowCont

END SUB

SUB DIRERR STATIC

COLOR 1,3:CLS:LOCATE 2,2
PRINT "ERROR: File is a Directory."

ShowCont

END SUB

SUB GETINFOC fi lename$, info&,Length&) STATIC

File$=filename$+CHR$(0) :DosLock&=Lock&(SADD(File$),-2)

IF DosLock&=0 THEN

278 Amiga Tips & Tricks

Length&=0

ELSE

Dummy&=Examine&(DosLock&, info&)
IF PEEKLCinfo&+4)>0 THEN

Length&=- 1

ELSE

Length&=PEEKL(info&+124)
END IF

END IF

CALL UnLock(DosLock&)

END SUB

SUB LINPUT(filename$) STATIC

COLOR 3,1:CLS:WINDOW 2,"Filename:",(0,0)-(250,10),0
WINDOW OUTPUT 1:LOCATE 5,2

PRINT "Name of a binary saved File";
LINE INPUT filename$:WINDOW CLOSE 2

END SUB

SUB SELECT(box%) STATIC

Check:

WHILE MOUSE (O)=0:WEND :x=MOUSE (1) :y=MOUSE (2)

IF y>27 AND y<43 THEN
IF x>9 AND x<38 THEN box%=0:EXIT SUB

IF x>177 AND x<238 THEN box%=-1:EXIT SUB

END IF

GOTO Check

END SUB

SUB ALLOCERR STATIC

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Allocation denied."

ShowCont

END SUB

SUB ShowCont STATIC

LOCATE 4,2:PRINT "Press SPACE to continue,"
LOCATE 5,7:PRINT “ESCAPE to exit.";

WHILE a$<>CHR$(32) AND a$<>CHR$(27)

a$=INKEY$

WEND

IF a$=CHR$(27) THEN SYSTEM
END SUB

SUB REQUEST(disk$) STATIC

COLOR 3,1:CLS

LOCATE 2,2:PRINT "INSERT "sdisk$;" DISK INTO DRIVE"

LOCATE 3,14:PRINT "DFO:":LOCATE 5,3:PRINT "OK":

LOCATE 5,24:PRINT "CANCEL": :LINE(10,28)-(37,42),3,b

LINE(178,28)-(237,42),3,b

END SUB

——— AmigaBASIC Intern

Variablen

ALLOCERR Fehler-SUB

AllocMem exec, reserviert Speicher

Bytes Lange

DIRERR Fehler-SUB

DWRITE Fehler-SUB

DosLock Handle von Lock

Dummy nicht benötigter Wert

Examine DOS, untersucht File

FILEERR Fehler-SUB

FORMERR Fehler-SUB

File Filename + 0 für DOS

FreeMem exec, gibt Speicher frei

GETINFO File-Analyse-SUB

LINPUT Eingabe-SUB

LOADERR Fehler-SUB

LOADFILE SUB, lädt File in Puffer

Length File-Länge

Lock DOS, Saugfuß auf File

NEWFILE SUB, Ziel-File öffnen

OPENERR Fehler-SUB

REQUEST Rückfrage bei Fehler, SUB

SELECT Auswahl-SUB

ShowCont Menu-SUB

UnLock DOS, Saugfuß lösen

WRITEERR Fehler-SUB

a Hilfsvariable

adr Adresse

b Hilfsvariable

box Hilfsvariable

buffer Adresse des File-Buffers

disk Diskette

filename Programmname

handle Adresse des File-Handlers

i Hilfsvariable

inBuffer tatsachlich gelesene Bytes

info Adresse der File-Info-Struktur

offs Offset

pointer Hilfsvariable

x dito

xClose DOS, schlieBt File

xOpen DOS, öffnet File

xRead DOS, liest File

y Hilfsvariable

279

280 Amiga Tips & Tricks ——

5.3.5 Variablen auflisten

Kennen Sie das: Sie sehen sich das Listing eines älteren BASIC-
Programms an, weil Sie gern wüßten, wie Sıe damals dieses oder

jenes Problem gelöst haben. Da es in der menschlichen Natur

liegt, nicht mehr zu arbeiten als nötig, haben Sie entweder auf
eine ausführliche Dokumentation verzichtet, oder Sie finden

diese unter meterdicken Stapeln von Programmausdrucken nicht
mehr wieder.

Gerade beim modularen Programmieren, bei dem Sie viele
Kurzroutinen auf einer Diskette gesammelt haben, um sie nun in
Ihr Hauptprogramm einzubinden, ist eine Dokumentation dieser

Kurzroutinen unerläßlich. Auch verlangen viele Zeitschriften, in
denen Sie Ihre Listings abdrucken lassen möchten, ausführliche
Dokumentationen. An dieser Stelle fällt natürlich viel Arbeit für
den Programmierer an. Nun, wir Programmierer wären keine
solchen, würden wir nicht einfach ein Programm schreiben, das
uns den Großteil dieser Arbeit abnimmt.

Das vorliegende Programm ist daher nicht nur als Beispiel an-
zusehen, wie man die Variablenliste ausliest und dabeı Label-

Namen ausschließt, sondern im Gegenteil äußerst brauchbar für
Dokumentationszwecke. So ist es beispielsweise vorstellbar, ein

mit diesem Programm erzeugtes ASCII-File einfach an das be-
treffende Programm anzuhängen (MERGE) und so die Zettel-
wirtschaft abzubauen bzw. das lästige Eingeben in eine, Datei-
verwaltung zu vermeiden.

Dazu muß allerdings an dieser Stelle gesagt werden, daß von
dem Variablen-List-Programm weder angegeben wird, ob es sich
bei einem Variablennamen um ein SUB-Programm der eine Be-
triebssystemroutine handelt, noch wird angegeben, um welchen

Variablentyp es sich handelt. Es gibt da so viele Möglichkeiten,

allein schon mit den Befehlen DEFxxx, z.B. DEFINT a-c. So

verwenden Sie im Programm beispielsweise die Variable Anton$,

die dann in der Liste unter Anton steht. Sollten Sie sich daran

—— AmigaBASIC Intern 281

stören, daß das Programm beim Sortieren nicht zwischen Groß-

und Kleinschreibung unterscheidet, entfernen Sie die vier
UCASE$() nach dem Label "ausgabe:".

Wichtig: Beachten Sie die Konventionen für binär gespei-
cherte Programme, die in den vorigen Kapiteln dar-

gestellt wurden!

"dos.bmap" und "exec.bmap" muessen auf
Disk vorhanden sein

CLEAR ,500008
DECLARE FUNCTION AllocMem& LIBRARY

DECLARE FUNCTION Lock& LIBRARY

DECLARE FUNCTION Examine& LIBRARY

DECLARE FUNCTION xOpen& LIBRARY

DECLARE FUNCTION xReadk LIBRARY

LIBRARY ":exec. library"
LIBRARY ":dos. library"
WINDOW CLOSE WINDOW(O)
DIM varname$(2000), var%(2000), fehler$(5)

FOR i=0 TO 5:READ fehler$(i):NEXT

DATA "File contains no binary."
DATA "Read-Error.","File open error."
DATA "File is a directory.","File not found."
DATA “Allocation denied."

nextTry:

REQUEST "Plug Disk into Drive df0.",1,"0K", "um flag%

WINPUT filename$
CHECKFILE filename$,buffer&

IF buffer&<O THEN
e%=6+buffer®
REQUEST fehler$(e%) ,2,"CANCEL", "QUIT", flag%

IF flag%=2 THEN LIBRARY CLOSE:SYSTEM
GOTO nextTry

END IF

pointer&=buf fer&+1
ReadL ine:

SETPOINTER pointeré&, flag%
IF flag%=1 GOTO ReadNames

ReadToken:
CHECKTOKEN pointer&,number%
IF number%<0 GOTO ReadLine

282 Amiga Tips & Tricks

var%(number%)=1:G0T0 ReadToken

ReadNames:

current%=0

searching: |

IF PEEK(pointer&)=0 OR PEEK(pointer&)>&H60 THEN
pointer&=pointer&+1:GOTO searching

END IF

getlength:

length%=PEEK(pointer&)
IF length%=0 GOTO ausgabe

FOR i%=1 TO length%
pointer&=pointer&+1

varname$(current%’)=varname$(current%)+CHR$(PEEK(pointer&))
NEXT
current%=current%+1

pointer&=pointer&+1:GOTO getlength

ausgabe:

flag%=1:begi%=0:ende%=current%-2

WHILE flag%=1

flag%=0

FOR i%=begi% TO ende%

IF UCASE$(varname$(i%))>UCASES(varname$(i%+1)) THEN

SWAP varname$(i%), varname$(14+1)
SWAP var%(i%), var%(i%+1)
flag%=1

END IF

NEXT
begi%=begi%+1:flag%=0

FOR i%=ende% TO begi% STEP -1

IF UCASES(varnameS$(1%))<UCASES(varname$(1%-1)) THEN
SWAP varname$(1%), varname$(1%- 1)
SWAP var%(i%),var%(i%-1)
flag%=1

END IF

NEXT

ende%=ende%- 1

WEND

ausgabe2:

BEEP
REQUEST "List to Screen?" ,2,"YES" "NO" sflag%
REQUEST "List to Printer?",2, "YES" "NO", pflag%
REQUEST "Save as ASCII-File?",2,"YES" "No", fflag%

IF sflag%=2 AND pflag%=2 AND fflag%=2 GOTO ausgabe2

IF sflag%=1 THEN WINDOW 2,"Variables:",(0,0)-(240,180),31
IF fflag%=1 THEN |

OPEN filename$+".V" FOR OUTPUT AS 1

PRINT#1,CHR$C10);"Variablen-Liste:";
PRINT#1,CHRSC1O);"---------------- =» CHRS(10); CHR$(10);

END IF

IF pflag%=1 THEN
LPRINT "Variablen-Liste von:"

LPRINT filename$:LPRINT
END IF

——— AmigaBASIC Intern 283

FOR i%=0 TO currentz-1
IF var%(i%)=1 THEN

IF sflag%=1 THEN PRINT varname$(i%)

IF pflag%=1 THEN LPRINT varname$(1%)
IF fflag%=1 THEN PRINT#1, varname$(i%);CHR$C10);

END IF

NEXT
IF fflag%=1 THEN CLOSE 1
REQUEST "Ready.",1,"0K","" flag%
LIBRARY CLOSE

SYSTEM

SUB CHECKTOKEN(a&,n%) STATIC

PeekToken:

t%=PEEK(a&) : a&=a&+1

IF t%=0 THEN strflag%=0:nk=-1:EXIT SUB

IF strflag%=1 AND t%<>34 GOTO PeekToken

IF t%>127 THEN

IF t%>247 THEN a&=a&+1

GOTO PeekToken

ELSEIF t%=1 THEN

n&=CVI (CHRS(PEEK(a&))+CHRS(PEEK(a&+1))): a&=a&+2:EXIT SUB

ELSEIF t%=2 OR t%=11 OR t%=12 OR t%=28 THEN

a&=a&+2:GOTO PeekToken

ELSEIF t%=15 THEN

a&=a&+1:GOTO PeekToken

ELSEIF t%=29 OR t%=30 THEN

a&=a&+4:GOTO PeekToken

ELSEIF t%=31 THEN

a&=a&+8:GOTO PeekToken

ELSEIF t%=3 OR t%=14 THEN

a&=a&+3:GOTO PeekToken

ELSEIF t%=34 THEN

IF strflag%=1 THEN strflag%=0 ELSE strflag%=1

GOTO PeekToken

ELSE

GOTO PeekToken

END IF

END SUB

SUB SETPOINTER(a&, f%) STATIC

IF PEEKCa&+1)=0 THEN f%=1 ELSE f%=0 |

IF PEEK(a&)=0 THEN a&=a&+3 ELSE a&=a&+5
END SUB

SUB CHECKFILE(Ca$, f&) STATIC

1&=Al locMem&(2528&,65538&)
IF 1&=0 THEN

f&=-1:EXIT SUB

ELSE

bS=a$+CHR$(0): L&=Lock&(SADD(b$),-2) -

IF 1&=0 THEN

f&=-2:EXIT SUB

284 Amiga Tips & Tricks

ELSE

s&=Examine&(1&, 1&)
IF PEEKL(i&+4)>0 THEN

f&=-3:CALL UnLock(l&):EXIT SUB

ELSE
f&=PEEKL(I&+124):CALL UnLock(l&)
CALL FreeMem(1&,252&) : v&=f&+3

c&=Al locMem&(v&,65537&)
IF c&=0 THEN

f&=-1:EXIT SUB
ELSE

h&=xOpen&(SADD(b$) , 1005)
IF h&=0 THEN

f&=-4:EXIT SUB

ELSE

r&=xRead&(h&,c&, f&): CALL xClose(hé&)
IF r&<>f& THEN

f&=-5:EXIT SUB

ELSE

f&=c&
IF PEEKCf&)<>&HF5 THEN f&=-6:EXIT SUB

END IF

END IF
END IF

END IF
END IF

END IF
END SUB
SUB WINPUT (a$) STATIC

WINDOW 1,"Input: Filename", (0,0)-(240,8),0
LINE INPUT a$
WINDOW CLOSE 1

END SUB

SUB REQUEST(a$,m%,b$,c$,b%) STATIC
WINDOW 1,"System Request",(0,0)-(240,40),22
COLOR 0,1:CLS:LOCATE 2,(30-LEN(a$))\2:PRINT a$;:COLOR 1,0

IF m%=1 THEN

LZ=LEN(b$)/2:LOCATE 4,15-1%:PRINT " "sb$-" 0,

ELSEIF m%=2 THEN

LOCATE 4,2:PRINT " ":b$:" "::sLOCATE 4,27-LEN(cS$)
PRINT " n.c$;N ur

END IF

maus:
WHILE MOUSE (O)<>0O:WEND

WHILE MOUSE(0)=0:WEND

x%= (MOUSE (1)+8)\8: y4=(MOUSE (2)+8)\8:b%=0
IF y%=4 THEN

IF m%=1 THEN |
IF x%>14-1% AND x%<17+1% THEN b%=1

ELSEIF m&=2 THEN
IF x%>1 AND x%<LEN(b$)+4 THEN b%=1
IF x%>26-LEN(c$) AND x%<30 THEN b%=2

END IF

——— AmigaBASIC Intern 285

END IF

IF b%>0 THEN

WINDOW CLOSE 1

EXIT SUB

END IF

GOTO maus

END SUB

Eine Variablenliste dürfte sich hier wohl erübrigen. Mittels die-
ses Programms wurden übrigens die Variablen-Listen einiger
Programme in diesem Buch erstellt. Sie sehen, wie praktisch es

ist, sich eine solche Liste an Ihr Programm anzufügen.

5.3.6 Variablenmüll beseitigen

Haben Sie sich manchmal gefragt, weshalb ein binär abgespei-
chertes BASIC-Programm, das Sie geladen und etwas verkürzt
haben, nach einem erneuten Abspeichern meist noch länger ist

als vorher, nie aber kürzer? Traten beim Programmlauf eines
BASIC-Programms schon einmal Fehler auf, bei denen im List-
Fenster um ein paar Leerzeichen ein orangefarbenes Kästchen

gemalt wurde und der Interpreter auch noch von Ihnen ver-

langte, daß Sie einen Syntax-Error bestätigen? Ärgern Sie sich
auch, wenn Sie sich mit einem File-Monitor ein binäres Pro-

gramm anschauen und vor lauter Müll, der da im Programm ab-
gespeichert ist, kaum noch etwas erkennen können? Wird viel-

leicht Ihr Superprogramm nach jedem Editieren, das dem
Zwecke der Programmbeschleunigung dient, immer langsamer?
Oder treten ständig Internal-Errors bei dem Versuch auf, ein
binäres Programm zu manipulieren?

Sollte eines dieser Problemchen auf Sie zutreffen, dann habe ich

eine Lösung parat. In der Tat verpfuscht der AmigaBASIC-In-
terpreter von Abspeichern zu Abspeichern das binäre Programm

mehr und mehr. Ständig fügt er weiteren Müll dazu - und das
an Stellen im Programm, die Sie kaum für möglich halten. Das
alles liegt daran, daß der gesamte Speicherbereich, der für das
Programm inklusive Variablentabelle vorgesehen ist, einfach so,
wie er ist, abgespeichert wird, ohne vorher zu überprüfen, ob
tatsächlich alles, was in diesem Bereich liegt, zu dem Programm

286 | Amiga Tips & Tricks

gehört. Meist ıst das nicht der Fall, da vergessen wurde, wich-

tige Pointer des Interpreters hin und wieder einmal zu aktuali-

sieren - und das nicht einmal vor dem Abspeichern (oder Neu-
laden) eines Programms.

Es gibt da aber wie immer ein Hintertürchen: Wenn Sie ein Pro-
gramm als ASCII-File abspeichern, so wird einfach genau das in

dieses File geschrieben, was auch im List-Fenster zu sehen ist,

zu gut deutsch: alles im (ASCII-)Klartext, nur getrennt durch
Line-Feed (CHR$(10)=nächste Zeile). Speichern Sie daher Ihr
Programm einfach mit dem Zusatz ",A" ab. Nun dürfen Sie es
aber nicht gleich wieder laden! Der ganze Interpreter-Müll ist
schließlich noch im Speicher, und selbst ein NEW kann hier
nichts retten, da dıe Pointer nicht aktualisiert werden. Es bleibt

also nur eines: Quit anwählen und sich damit abfinden, den In-
terpreter-Block noch einmal zu laden. Danach aber sofort das

Programm laden und auch sofort wieder speichern. Den Zusatz

",b" dürfen Sie allerdings nicht vergessen, da Sie mit dem Laden
eines ASCII-Files die Voreinstellung der SAVE-Routine geän-
dert haben. Das auf diese Weise entstandene Binärprogramm ist
jetzt absolut sauber.

Merken Sie sich!

1. Am besten ist es, wenn Sie unfertige Programme immer
| zunächst als ASCII-Files abspeichern. Erst nach der Fer-

tigstellung den Interpreter neu laden und das Programm

nach dem Laden als erstes gleich als binäres File wieder
abspeichern.

2. Treten mit einem Programm Probleme auf, die logisch nicht
mehr erklärbar sind, ist zur Rettung des Programms
denkbar, es zunächst als ASCII-File zu speichern, danach

wie unter Punkt 1 zu verfahren. Klappt dies nicht mehr...

(verfahren Sie also lieber nach 1).

3. Das Schlimmste, was Sie tun können, ist das binäre Spei-

chern eines Programms, das bereits einen Testlauf hinter
sich hatte und dabei mit einer Fehlermeldung ausgestiegen
ist (und möglichst vorher noch Betriebssystemroutinen
nutzte). Dann fabriziert der Interpreter den meisten Müll.

——— AmigaBASIC Intern 287

4, Läuft Ihr Programm nicht, liegt es häufig nicht an Pro-
grammier- oder Denkfehlern Ihrerseits, sondern an den

Entwicklern von AmigaBASIC.

5.3.7 Selbstmodifizierende Programme

Wir wollen jetzt daran gehen, Programme sich während des Pro-
gramm-Ablaufes selbst verändern zu lassen. Zu diesem Zweck
kann ich hier zwei Möglichkeiten aufzeigen, dies zu bewerkstel-
ligen. Die erste Möglichkeit ist das direkte Verändern des Pro-
gramms im Speicher durch POKEn. Wenn Sie nicht nur Strings
ändern wollen, dann gehört dazu eine sehr gute Kenntnis von

binären Programmen.

Das Prinzip ist relativ einfach: An irgendeiner Stelle im Pro-
gramm weisen Sie einer Stringvariablen eine Zeichenkette zu.
Wichtig ist, daß diese Stringvariable vor dem Eingriff keinerlei
Veränderungen unterworfen wurde, wie A$=A$+CHR$(0). So-
lange das nicht der Fall war, werden die Variablen-Pointer di-
rekt auf die Zeichenkette ın Ihrem Programm gelenkt. Hier
zunächst das Beispiel für die Änderung eines Strings im Pro-
gramm. In dieser Routine wird ein Fenster geöffnet, das die ge-
nannte Zeichenkette als Titelleiste trägt. Durch Anwahl des
Menüpunktes "Ändern" kann ein neuer Window-Titel eingegeben
werden, der dann nach einem erneuten Laden bzw. Starten des

Programms sofort erscheint. Eine Art von Preferences für Win-
dow-Titel also.

REM

REM # Selbstmodifizierung |] #

Titel$="Selbstmodifizierung I"

SCREEN 1,320,20C,2,1
WINDOW 2,Titel$,,16,1
MENU 1,0,1,"ÄNDERN"

MENU 1,1,1, "TITEL"
ON MENU GOSUB checkmenu

MENU ON

WHILE Maelger=0

288 | Amiga Tips & Tricks ——

SLEEP

WEND

WINDOW CLOSE 2

SCREEN CLOSE 1

END

checkmenu:

IF MENUC1)=1 AND MENU(O)=1 GOTO neuertitel

RETURN

neuertitel:

PRINT "Bitte neuen Titel eingeben!"

PRINT LEN(Titel$);"Zeichen.

LINE INPUT neu$

neu$=LEFT$(neu$+SPACES(LEN(Titel$)),LEN(Titel$))
REM * Hier wird der String geändert:

FOR i=1 TO LEN(neu$)

POKE SADD(Titel$)+i-1,ASC(MID$(neu$,i,1))

NEXT

REM * Programm wieder abspeichern (den neuen Titel)
PRINT "Voreinstellung wird gesichert."

SAVE "Programmname"!"

PRINT "Voreinstellung ist gesichert."

PRINT "Laden oder starten Sie dieses!

PRINT "Programm nun erneut."

t=TIMER+15:WHILE t>TIMER:WEND

Maelger=1

RETURN

Sie sehen, wie einfach das geht. Anstelle von "Programmname"
speichern Sie natürlich das Programm unter dem Namen, den es

zuvor hatte. Bei dieser Methode läßt sich natürlich auch ein
Befehl ändern, dazu muß man jedoch ganz genau über binäre

Programme Bescheid wissen, denn jedes Programm liegt binar

im Speicher! Da das so ist, funktioniert die obige Methode na-
türlich auch bei protected gespeicherten Files. Hierbei müssen

Sie es dann nur wieder als "‚p"-Programm speichern.

Wir kommen nun zu der zweiten Methode, der ASCII-File-Me-

thode. Auch hier wird ein. Programm völlig verändert. Der Clou
bei dieser Geschichte ist, daß es völlig problemlos ist, ganze

Programmteile zu ändern. In einem Programm, das in binärem
Format vorliegt, kann das POKEn natürlich böse Folgen haben,

zumal es nicht so leicht ist, Befehle zu ersetzen. Wir gehen daher
den Umweg über ASCII-Files, die sich ganz einfach erzeugen
lassen. Zunächst wieder das Prinzip.

——— AmigaBASIC Intern 289

Erst wird festgelegt, wie der zu ersetzende Programmteil später
aussehen soll. Bei Benutzereingaben sollten Sie eine eingehende
Syntaxprüfung vornehmen. Im laufenden Programm werden nun
die zu ändernden Programmzeilen gelöscht (DELETE von - bis).
Dann wird das Programm als ASCII-File auf einer Diskette ab-
gelegt, wenn die Veränderung bleibend sein soll, natürlich unter
seinem eigentlichen Namen, ansonsten bietet sich aus Geschwin-
digkeitsgründen die RAM-Disk an. Nun öffnen wir das gerade
gespeicherte Programm zum Anfügen (OPEN x$ FOR APPEND
AS y) und verfahren wie bei dem DATA-Generator mit der
Erzeugung des neuen Programmteils.

Um dieses Programm nun aber auch im Speicher zu haben, ge-
nügt ein "RUN filename$" oder ein "LOAD filename$,r". Dum-
merweise jedoch startet damit das Programm völlig neu, so daß

es je nach Anwendung günstiger sein kann, den neuen Pro-
grammteil als ASCII-File in der RAM-Disk zu erzeugen und ihn

mit CHAIN MERGE anzuhängen. Man kann aber auch wie oben
beschrieben verfahren und damit die Variablenwerte erhalten.
Dann kann man das Startlabel bestimmen und das geänderte
Programm mittels "CHAIN blabla,Zeile,ALL" neu starten. Hier

wieder ein kleines Beispiel:

REM * Auflösung des Screens holen

GOSUB variablesLabel

SCREEN 1,breite%,hoehe%, tiefex,modus%

WINDOW 2,"Hallo!", ‚0,1
PRINT "Breite in Pixel:";breite%
PRINT "Höhe in Pixel:";hoehe%
PRINT "Tiefe in Planes:";tiefe%
PRINT

PRINT "Bitte geben Sie die neue"

PRINT "Breite ein:";
INPUT breiteneu%

IF breiteneu%<20 OR breiteneu%>640 THEN
breiteneu%=breite%

END IF

INPUT "Neue Höhe :";hoeheneu%
IF hoeheneu%<10 OR hoeheneu%>512 THEN

hoeheneu%=hoehe%

290 Amiga Tips & Tricks ———

END IF

INPUT "Neue Tiefe:":tiefeneur
IF tiefeneu%<1 OR tiefeneu%>5 THEN

tiefeneuf=stiefe%

END IF

PRINT

modus%=1

IF breiteneu%>320 THEN modus%=2

IF hoeheneuX%>256 THEN modus%=modus%+2
IF modus%=4 AND tiefeneuX>2 THEN

tiefeneu%=2

ELSEIF modus%>1 AND tiefeneuf>4 THEN

tiefeneuX=4

END IF

DELETE variablesLabel-variablesLabelende

SAVE "Programmname",A

OPEN “Programmname" FOR APPEND AS 1

PRINT#1,"variablesLabel :";CHR$(10);
PRINT#1,"breiteX="";STR$(brei teneu%) ; CHRS(10);
PRINT#1 ,"hoehe%=";STR$Choeheneu%) ; CHR$(10);

PRINT#1 ,"tiefe%=";STR$Ctiefeneu%);CHR$C10);

PRINT#1 ,"modus%="; STR$(modus%) ; CHR$C10);

PRINT#1,, "RETURN" ;CHR$C10);
PRINT#1 ,"variablesLabelende:";CHR$(10);
CLOSE 1

WINDOW CLOSE 2

SCREEN CLOSE 1

LOAD "Programmname",R

END

variablesLabel :

breite%= 320

hoehe%= 200

tiefe%= 2

modus%= 1

RETURN

variablesLabel ende:

Wunderbar, nicht wahr? Besonders geeignet ist dieses Verfahren
wohl fiir jede Art von Grafikprogrammen, z.B. die Eingabe von

benutzerdefinierten Funktionen bei einem Funktionsplot, den

Palette-Werten bei einem Malprogramm usw.

Lassen Sie Ihrer Phantasie ruhig freien Lauf. Und tiberlegen Sie
sich einmal, wenn Sie ein Programm schreiben, wie angenehm es

sein kann, wenn es nach dem Laden gleich auf die individuellen
Wünsche des Benutzers eingestellt ist. Das erspart Zeit und Är-
ger, und Ihr Programm wird sicherlich dadurch aufgewertet.
Zumal Superprogramme wie Deluxe Paint II nicht einmal diesen

——— AmigaBASIC Intern 291

Luxus bieten (!). Und seien wir ehrlich: Wenn man für einige
wenige Funktionen von DPaint Maschinenspracheroutinen ein-
baut, sollte es keine Schwierigkeit bedeuten, dieses Programm
von BASIC aus zu übertreffen.

Wer mehr über die Grafikmöglichkeiten von AmigaBASIC ım
Zusammenhang mit Betriebssystemroutinen wissen möchte, dem
sei hier wärmstens das DATA BECKER Buch "Amiga Supergra-
fik" empfohlen.

292 Amiga Tips & Tricks

—— Die Workbench 293

6. Die Workbench

6.1 Arbeiten mit der Workbench

Die Benutzeroberfläche des Amiga läßt in der Bedienung eigent-
lich keine Wünsche offen. Alle wichtigen Operationen lassen
sich durch Icons realisieren. Diese bildlichen Aktionen machen
Texteingaben größtenteils unnötig. Deshalb ist dem Verständnis
keine Barriere gesetzt, wie es ja oft bei Sprachen vorkommt.

Allerdings gibt es einige Funktionen, die nicht oft gebraucht
werden. Sie geraten in Vergessenheit, obwohl damit manches
Problem viel einfacher hätte gelöst werden können! In diesem
Abschnitt wird deshalb gezeigt, wie man effektiv alle Möglich-
keiten ausnutzen kann und somit nicht selten Zeit und umständ-
liche Wege spart.

6.1.1 Tastaturtricks

Die Bedienung von String-Gadgets

Man merkt oft gar nicht, wie oft man mit den Mitteln Intuitions
in Berührung kommt. Doch viel zu häufig weiß man diese Mittel
gar nicht richtig auszunutzen und macht sich somit Umstände,
die nicht nötig wären. Auf der Workbench kommt man nur bei
einer Gelegenheit mit den String-Gadgets in Konflikt. Das ist
der Moment, wenn man einem File oder einer Diskette einen

neuen Namen geben möchte. Nach dem Aufrufen der Rename-

Funktion erscheint der waagerechte Kasten, in dem schon der

alte Name steht. Nun können wir einen neuen eingeben, und
dabei helfen uns folgende Tasten:

Für ganz Hartnäckige, denen der ganze Name nicht mehr gefällt,
ist eine Tastenkombination vorgesehen, die einen davor bewahrt,
jedes Zeichen einzeln mit DEL zu löschen. Es handelt sich dabei

um die Kombination Amiga-X (Delete). Probieren Sie es ruhig
einmal aus! Sofort ist das Eingabefeld gelöscht, und neuer Text

294 Amiga Tips & Tricks ———

kann eingegeben werden. Nun gibt es Leute, denen fällt erst ein,
daß sıe doch ein ganz anderes Programm umbenennen wollten,
nachdem sie den ganzen Text gelöscht haben. Das ist Pech! Aber

auch an jene wurde gedacht. Mit einem kurzen Druck auf
Amiga-Q ruft man nämlich den Inhalt eines Zwischenspeichers
ab, in dem der ursprüngliche Name gesichert ist. Diese Funktion

nennt man Undo.

Für alle mit einem Hang zu langen File-Namen wurden auch
zwei Tastenkombinationen eingeführt. Die eine, SHIFT + Cursor

rechts, setzt den Cursor an das Ende des Textes. Umgekehrt

verfährt SHIFT + Cursor links. Dann befindet sich unser Schrei-

berling wieder am Anfang der Zeile.

Auto-Requester mit der Tastatur beantworten

Auch die Auto-Requester der Workbench, sıe werden als Sy-

stem-Requester bezeichnet, können mittels der Tastatur beant-

wortet werden. Und zwar wurde jedem der beiden Gadgets eine
Tastenkombination zugeteilt. Mit Amiga-B wählt man das Can-
cel-Gadget an und mit Amiga-V das Retry-Gadget. Somit kön-

nen Sie ganz einfach mit der linken Hand den Requester beant-
worten.

Die Entwicklung des Amiga

Jeder, der etwas geschaffen hat, möchte dafür gerühmt werden.

Das ist auch ein Grund, warum z.B. auf dem Buch-Cover unsere

Namen vermerkt sind. Genauso ging es natürlich auch den Ent-
wicklern des Amiga. Viele haben mitgeholfen und wollen des-
halb auch erwähnt werden.

Es haben sich deshalb alle, wie man so schön sagt, verewigt. Wie
kommen wir an diese Verewigung heran? Nun, dazu gibt es eine

Tastenkombination, die man gedrückt halten muß, während die

Workbench aktiv ist. Und zwar müssen beide ALT- und beide
SHIFT-Tasten gedrückt werden. Nachdem Sie dieses Kunststück
geschafft haben, müssen Sie mit einem der noch freien Finger in
Richtung der Funktionstasten langen. Alle 10 sind mit neuen
Texten belegt!

—— Die Workbench 295

Hier ist eine Aufstellung der Texte, die wir bisher herausgefun-
den haben (Wenn es verschiedene Texte auf verschiedenen

Amiga-Modellen gab, so sind diese bei der gleichen Funktions-
taste zu finden):

FY: "System Software: Carl, Neil & Kodiak"

F2: "Graphics Software: Dale, Bart, Jim & RJ"

"Graphics Software: Dale, Bart, Jim & =RJ="
F3: "QA: Jon, Bruce, Stan, Kim & Jerry"

F4: "LG Support: Karen, Dave, Cheryl & Nancy"

"LG Support: Caryn, Dave, Victor, Terry, Cheryl & Nancy"

F5: "CBM Software: Andy, Barry & Eric"

"CBM Software: Andy, Barry, Dave & Eric”

F6: "Pics: Sheryl & Jack"

F7: "Docs: Rick, Mitch, Peggy & Rob”

F8: "Chips: Jay, Akio, Glenn, Edwin, Marc & Dave"

F9: "HW: Dave, Bill, ChrisR & Josh"

F10: "Moral Support: Joe Pillow & The Dancing Fools"

6.1.2 Der Mulleimer

Beim Arbeiten wird - wie überall - nicht nur Brauchbares pro-

duziert! Daran haben natirlich auch die Entwickler des Be-
triebssystems gedacht, haben einen Mülleimer (Trashcan) ge-

schaffen. Doch finden Sie diesen Weg nicht auch etwas um-
ständlich?! Erst das Icon anklicken, dann auf den Mülleimer be-
wegen. Aber damit ist die Prozedur noch nicht ausgestanden!
Denn der Speicher auf der Diskette ist ja noch lange nicht frei-
gegeben. Erst durch das Auswählen des Menüs "Disk" kann mit
"Empty Trash" - welch liebevolle Bezeichnung - endlich der
Platz frei gemacht werden.

Es geht aber auch wesentlich einfacher! Doch der oben be-
schriebene Weg wurde aus verständlichen Gründen gewählt.
Durch die vielen Schritte, die gegangen werden müssen, ist es so

gut wie ausgeschlossen, daß durch Unachtsamkeit etwas gelöscht
wird, das nicht gelöscht werden soll. Außerdem glaubte man,

daß 880 KByte Diskettenkapazität es erlauben, auch nicht benö-

296 Amiga Tips & Tricks

tigte Daten noch eine Weile zu speichern. Doch nach der An-
schaffung des Amiga ist oft nicht viel Geld für Qualitätsdisket-
ten übriggeblieben. Diskettenspeicherplatz wird dadurch kostbar!

Nun aber endlich zum einfacheren Weg. Erinnern Sie sich noch
an den Punkt "Discard" im Workbench-Menü? Hier liegt die
schnellere Version der Löschfunktion "begraben"! Man markiert
einfach die zu löschenden Files mit einem Mausklick und wählt
dann "Discard". Man wird noch einmal durch einen System-Re-
quester darauf hingewiesen, daß diese Funktion endgültig ist,

doch dann geht’s rund. Diskette frei! File weg! Einfacher und
schneller. |

6.1.3 Mehrfachaktivierung

Sicherlich bekommt jeder Besitzer des Amiga einmal die Idee,
bei jedem Window auf akkurat geordnete Icons zu achten. Legen
Sie dazu Ihre BASIC-Diskette ins Laufwerk. In der Schublade
BASICDEMOS liegen ca. 25 Icons, deren Namen leider so un-
glücklich lang sind, daß mit CleanUp nichts mehr zu erkennen
ist.

Nun hat man einiges an Arbeit vor sich! Nach dem Ordnen in
einer Tabelle muß jedes Icon einzeln angeklickt werden und

dann noch der Punkt "Snapshot" aus dem "Special-Menü" ausge-

führt werden. Nach vorsichtigen Hochrechnungen sitzen Sie sehr
lange daran! Auch hier gibt es natürlich einen viel einfacheren
Weg, doch diesen überliest man sehr leicht im Anwender-Hand-

buch! Deshalb soll diese arbeitserleichternde Funktion auf kei-
nen Fall vergessen werden.

Wenn beim Anklicken gleichzeitig auf die Shift-Taste gedrückt
wird, so ist nıcht nur das neue Icon aktiv, sondern auch das alte

Objekt bleibt gewählt. Praktisch können so alle erreichbaren
Icons gleichzeitig aktiviert werden. Man muß nur darauf achten,
daß auf alle die gleiche Funktion ausgeübt werden kann. Eine

— Die Workbench 297

Löschfunktion kann z.B. nicht durchgeführt werden, wenn sich
unter den Icons ein Symbol fiir eine Diskette befindet. Doch um

das obige Beispiel nicht aus den Augen zu verlieren:

Nach dem richtigen Positionieren aller BASIC-Icons wählt man
diese nacheinander mit der Mehrfachaktivierung an. Darauf
wird der Menüpunkt "Snapshot" ausgewählt, und für jedes Icon

speichert die Workbench die Position ab. Dies dauert zwar et-

was, ist aber einfacher, als diese Operation an jedem Symbol
einzeln durchzuführen.

Will man mehrere Programme kopieren, hilft diese Möglichkeit
der Mehrfachaktivierung auch weiter. Denn man kann so alle
Icons gleichzeitig über die Screen und damit auch in Windows
anderer Disketten bewegen! Einziger Nachteil, der nicht ver-
schwiegen werden soll, ist, daß der Diskettenwechsel für jedes
Programm einzeln durchgeführt werden muß.

Wollen Sie auch noch den häufigen Diskettenwechsel bei einem
Laufwerk umgehen, so empfehle ich folgende Methode: Kopie-

ren Sie zuerst die "Empty"-Schublade der Workbench auf die
Quelldiskette. Das sollten Sie bei jeder Diskette gleich nach dem
Formatieren machen! Dann bewegen Sie alle Icons, die kopiert
werden sollen, in diese Schublade. Auch hierfür empfehle ich

die Mehrfachaktivierung, wenn es viele sind.

Beachten Sie nur, daß die Position Ihres Mauscursors entschei-

dend ist für das Ziel. Der Rest der Icons kann überall hin ver-

schoben werden: außerhalb des Windows oder sogar außerhalb

des Screens. Wichtig ist nur die Stelle, an der der Pfeil steht.
Sind alle Programme in der Schublade verstaut, so bewegen Sie
diese ganz einfach auf oder in die Zieldiskette. Dafür brauchen
Sie nur noch einen Kopierdurchgang.

6.1.4 Infos

Die Info-Funktion im Workbench-Menü soll Auskünfte über
Programme und Daten-Files geben. Doch weiche Informationen

298 Amiga Tips & Tricks

kann man ihr überhaupt entnehmen? Wozu kann man diese In-
formationen ändern? Dies sind einige Fragen, auf die das An-
wender-Handbuch keine Antwort gibt! Ein Grund mehr, hier
darüber ausführlich zu berichten:

6.1.4.1 Das Info-Feld

Der Aufruf erfolgt durch das Anklicken eines Icons irgendeiner
Art - die verschiedenen Arten werden später noch beschrieben -
woraufhin der Menüpunkt "Info" angewählt wird. Nachdem von
der Workbench-Diskette nachgeladen wurde, gibt der Amiga ein
Fenster mit allen notierten Informationen aus. Ist einmal "Info"
aufgerufen, so muß später die Workbench-Diskette nicht wieder

eingelegt werden.

Das Info-Feld ist in mehrere Bereiche aufgeteilt. Links oben
findet man allgemeine Angaben zum File bzw. zur Diskette: der
Name, der Typ und die Größe in zwei verschiedenen Einheiten.

Unter Stack ist vermerkt, wieviel Bytes das File für sich als Ar-

beits- oder Datenspeicher beansprucht. Der Typ ist entscheidend

für die Eigenschaften des Icons, was gleichzusetzen ist mit
denen des Files/der Diskette. Möglich ist hier Disk, Drawer,

Tool, Project oder Garbage.

Disk steht für die Disketten-Icons, die als einzige nicht in Di-
rectory-Windows bewegt werden dürfen. Interessant ist nur die
Tatsache, daß auch dieses Icon wie jedes andere grafisch neu
definiert werden kann! Nostalgiefreaks könnten doch mal die
gute alte 54-Zoll-Diskette zeichnen.

Drawer repräsentiert Schubladen oder Unter-Directories. Auf

Drawer bewegte Programme werden so ganz einfach in ein an-
deres Inhaltsverzeichnis gelegt, wenn sie sich auf der gleichen
Diskette befanden. Diese Operation dauert aber sehr lange! Des-

halb mein Tip: Besser ist es, den Rename-Befehl des AmigaDOS

zu verwenden. Geben Sie den ersten Namen mit voller Pfadbe-

zeichnung ein, und geben Sie beim neuen Namen eine andere

—— Die Workbench 299

Pfadfolge an, so finden Sie das Programm ab jetzt dort. Verges-
sen Sie aber nicht, das Icon auch mit dem neuen Pfad zu verse-

hen. |

Als Tool wird jedes Programm bezeichnet. Programme können
ebenso wie Schubladen sowohl in Windows als auch auf dem
Arbeitstisch liegen. Tools sind die einzigen Icons, die durch An-
klicken ausgeführt werden!

Unter Project versteht der Amiga jedes File, das Daten enthält,
die von einem Programm abgespeichert wurden. Als Beispiel
kann hier ein Text des Notepads oder einer anderen Textverar-

beitung angeführt werden. Aber auch BASIC-Programme oder
die .bmap-Files gelten als Projekte!

Der letzte File-Typ ist Garbage. Dies ist eine besondere Art von

Schublade. Denn normalerweise können alle Schubladen auch in
andere gelegt werden. Doch ein Garbage - das entspricht dem

Mülleimer - kann nur im Haupt-Directory stehen. Auch kann es
nicht auf den Arbeitstisch bewegt werden! Damit soll verhindert
werden, daß der Anwender lange nach dem Mülleimer sucht,

denn im Haupt-Directory ist er ja immer schnell gefunden.

Auf der rechten Seite findet man oben einen Kasten, der über

den Status des Files Auskunft gibt. Hiermit sind die Zugriffs-
möglichkeiten des Benutzers gemeint (s.a. AmigaDOS-Handbuch
2-43/List). Da in der Version 1.2 nur der Löschschutz gesetzt
werden kann, ist ein Verändern der Lese-, Schreib- und Aus-

führmöglichkeit nicht vorgesehen. Platz dafür ist allerdings
reichlich vorhanden! Wenn man sich Informationen zu einer
Diskette holt, ist hier angezeigt, ob sie mit dem Schieber

schreibgeschützt wurde. Durch Anklicken kann dieser Zustand

aber nicht verändert werden. Hier muß schon die Mechanik be-

wegt werden.

Für alle stolzen Amiga-Besitzer, die schon die Kickstart- und
Workbench-Version 1.3 haben, möchte ich an dieser Stelle noch
die neuen Flags erklären. Zuerst einmal sind jetzt das Read-
und Write-Flag mit übernommen worden. Man kann also jetzt

300 Amiga Tips & Tricks

einstellen, ob ein File weiterhin gelesen oder beschrieben werden
darf. Allerdings wird diese Funktion nur mit dem neuen Kick-
start abgefragt. Deshalb können 500er- oder 2000er-Eigentümer
dies nicht ohne neues Kickstart-ROM nutzen, auch wenn es sich
über die Workbench einstellen läßt.

Ganz neu ist hingegen das Archive-Flag. Es gibt den Weg frei
für ein neues, wesentlich benutzerfreundlicheres Backup. Dazu

wird bei jedem Schreibzugriff auf ein File das Archive-Flag
gelöscht. Benutzt man dann ein Backup-Programm, das Sicher-
heitskopien von einige Files macht, so wird bei allen kopierten

Files dieses Flag gesetzt. Rufen Sie dann erneut das Backup- -
Programm auf, so kopiert es nur die Files, bei denen das Flag

wieder gelöscht wurde. Damit ist das Kopieren von schon gesi-
cherten Files ausgeschlossen! Eine große Zeitersparnis.

Unter den Status-Flags wird in einer Zeile der Kommentar des

Benutzers zu diesem File angezeigt. Unter AmigaDOS kann mit
FileNote ein bis zu 80 Zeichen langer Text angefügt werden.

Diese Funktion wird bei Disketten unterdrückt, da sie nicht mit

einem Kommentar versehen werden können.

Das Info-Feld gibt nicht nur zu Programmen oder Disketten
Informationen aus. Auch Text- oder Daten-Files können hiermit
detaillierter betrachtet werden. Dem Anwender wird mit "De-
fault Tool" angezeigt, welches Programm dieses File erstellt hat
oder womit die Diskette kopiert wurde. Außerdem weiß so die

Workbench gleich, welches Programm vorher geladen werden
muß, wenn das File aufgerufen wird.

In der letzten Zeile stehen die "Tool Types". Damit sind Infor-
mationen gemeint, die dem Hauptprogramm übergeben werden.
Das Notepad braucht z.B. Angaben darüber, welche Zeichensätze

verwendet wurden und welche Größe das Fenster beim Schrei-
ben hatte. Dies wird gespeichert, damit der Anwender später al-
les genau so wieder vorfindet, wie er es auf Diskette geschrieben
hat. |

——— Die Workbench 301

6.1.4.2 Praktische Beispiele zum Info-Feld

Wenn Sie wollen, können Sie gerne einmal die vorhandenen In-

formationen ändern. Am besten ist es, wenn Sie dazu mit dem

Notepad einen Text schreiben und abspeichern. Was Sie unter

Comment eingeben, ist ziemlich egal, es ist nur ein Kommentar.

Viel wichtiger ist z.B. Default Tool:

Wie oben schon erwähnt, findet man hier den Namen des Pro-

gramms, mit dem das Daten-File erstellt wurde und das bei ei-.

nem Aufruf nachgeladen werden soll. Gerade hier liegt die
Tücke ım Detail! Ein Beispiel: Ich habe zum Arbeiten eine

Workbench-Diskette names "User" und eine namens "CLI" ange-
legt. Die erste entspricht fast der normalen Workbench.

Die zweite habe ıch so modifiziert, daß nach dem Start alle

wichtigen CLI-Befehle ins RAM kopiert werden und das DOS-
Window nicht automatisch verlassen wird. Auf beiden Disketten

befindet sich aber das Notepad. Habe ich nun mit der User-Disk

einen Text geschrieben, so steht unter Default Tool:

"Workbench User :Utilities/Notepad"

Will ich den Text also laden, so muß ich die User-Disk einlegen,

auch wenn ich gerade mit der CLI-Disk arbeite, die auch das

Notepad enthält. Um diesen Mifstand zu beheben, könnte ich

nun ganz einfach den Text "Workbench User:" ın "SYS:" umwan-
deln. Schon wird beim Anklicken die aktuelle Workbench an-
gefordert. Denn SYS: ist die allgemeine Bezeichnung für die
Diskette, von der das System gebootet wurde. Gleiches gilt für
Tool Types. Dort stehen alle Informationen, die das Programm

benötigt. Auch diese können Sie nach Belieben ändern. Zuerst

einmal die Bedeutungen:

Name Beispiel Bedeutung

FILETYPE notepad Zeigt an, daß es ein Text ist.

FONT topaz. 8 Gibt den Global-Font an.

WINDOW 0,0,50,50 Gibt die Window-Koordinaten an.

FLAGS NOGLOBAL Gibt einige Flags an.

302 Amiga Tips & Tricks ———

Die Zeile FILETYPE muß immer so aussehen, damit das Pro-

gramm sein File identifiziert. Mit FONT geben Sıe den Namen
des Global-Fonts an, hier können Sıe jeden wählen, der auf der

Workbench-Diskette zu finden ist. Geben Sie nach dem Punkt
die Höhe an. Nach Window folgen die X- und Y-Koordinaten
des Eingabefensters, danach wird die Ausdehnung angegeben.
Schreiben Sie hier andere Werte, wenn erwünscht. Der Punkt

FLAGS wird sicher neu für Sie sein, denn beim normalen Ab-

speichern ist dieser nicht zu finden. Hinter diesem Wort können

einige Einstellungen gemacht werden, die sonst üblicherweise
nach dem Laden getätigt werden. Die möglichen Parameter sind:

Parameter Bedeutung

NOGLOBAL Schaltet Global-Font-Funktion aus.

GLOBAL Schaltet Global-Font-Funktion ein.

NOWRAP Schaltet Wordwrapping aus.

WRAP Schaltet Wordwrapping ein.
NOFONTS Die Font-Tabelle wird nicht erstellt.

FORMFEED Schaltet Formfeed bei Druckereinstellungen ein.

DRAFT Stellt auf Normaldruck.

Setzen Sie nach Herzenslust ein, was Ihnen gerade gefällt. Sı-

cherlich gibt es die eine oder andere interessante Möglichkeit
für Ihre Anwendung. Man findet diese Einstellungen übrigens
nicht nur beim Notepad. Auch andere Programme, die Daten in
Files ablegen, benutzen dieses Verfahren. Wie Sie selber mit Ih-
ren Programmen diese Parameter auf Diskette abspeichern und
noch vieles mehr machen können, lesen Sie bitte ım Kapitel

über Icons nach.

6.1.5 Viele Wege führen nach ...

Rom! So heißt zwar der Spruch, und auf dem Amiga gelten fast

die gleichen Gesetze. Das heißt, viele Wege führen zum Ziel,
und so ist es dann auch. Möchten Sie eine Diskette kopieren, so
gibt es drei Wege, dies zu tun:

l. Sie bewegen das Icon der Originaldiskette auf das der Ko-
piediskette, dann wird das bei der Quelldiskette unter De-

—— Die Workbench 303

faultTool eingetragene Programm geladen und ausgeführt.

Dies ist in den allermeisten Fällen natürlich DiskCopy, und

wir bekommen eine Kopie der Diskette. Bei diesem Weg ist
es allerdings nötig, daß Sie schon die Zieldiskette kennen,
denn ohne diese können wir ja schlecht die Quelldiskette
darauf bewegen. Ein etwas umständlicher Vorgang!

2. Sie klicken das Icon der zu kopierenden Diskette an und
wählen dann im Menü Duplicate aus. Auch hier wird das

Programm DiskCopy geladen und es führt den Kopiervor-

gang aus. Der Nachteil hierbei ist, daß man in jedem Fall
die Diskette wechseln muß, denn DiskCopy arbeitet in
diesem Zustand nicht mit zwei Laufwerken!

3. Dieser dritte Weg ist den meisten unbekannt. Dazu klicken
Sie wieder das Icon der Quelldiskette an, und nun halten Sie
Shift gedrückt und klicken doppelt auf das Icon von Disk-

Copy. Auch so lassen sich Kopien erstellen!

Hinweis: Wenn Sıe versuchen sollten, die RAM-Disk mit

DiskCopy zu kopieren, werden Sie vom Programm

mit der Begründung ’rausgeschmissen’, daß es sich
gar nicht um eine Diskette handelt. Anders ist dies
bei der resetfesten RAM-Disk RAD:! Sie wird an-

standslos kopiert, mit dem kleinen Nachteil, daß

dieser Kopiervorgang nur über das Laufwerk RAD:
abgewickelt werden kann, was bedeutet, daß wir

RAD: auf sıch selbst kopieren. Außerdem stürzt die

Workbench nach dem Vorgang ab, mit dem Guru-
Eintrag, daß eine Speicherliste fehlerhaft sei.

Formatieren leichtgemacht

Einige Gedanken zum Format-Befehl und seiner Wirkung. Das
Formatieren von Disketten kennt jeder Anwender. Einige wissen
vielleicht nicht, daß man diesen Formatierungsvorgang auch
über den bei DiskCopy beschriebenen Weg der Mehrfachakti-
vierung erreichen kann, doch dies ist nur nebensächlich. Haben
Sie sich schon einmal Gedanken darüber gemacht, was passiert,

wenn wir die RAM-Disk formatieren? Nun, zunächst einmal

wird wie üblich das Formatierungsprogramm geladen. Dieses

304 Amiga Tips & Tricks

wartet auf eine Bestätigung und stellt erst dann fest, daß die
RAM-Disk gar nicht formatiert werden kann. Welch schwaches
Bild! Nur bei Mehrfachaktivierung wird gleich erkannt, daß die
RAM-Disk gar keine richtige Diskette ist.

Anders verhält sich das bei der resetfesten RAM-Disk, denn

diese ist ja als richtige Diskette konzipiert. Sie hat Zylinder und
Blöcke und belegt deswegen auch ständig den Speicher in vollem

Maße. Hier ist eine Formatierung möglich! Wählen wir den
Punkt aus, so wird blitzschnell die Diskette gelöscht und verifi-
ziert. Doch von diesem schönen Vorgang bleibt ein Directory-
Window unberührt. Es zeigt noch immer den Inhalt an. Erst
wenn wir dieses schließen, bemerkt der Amiga den neuen Zu-
stand, doch dann verschwindet auch das Disketten-Icon!

Wir kommen an die resetfeste RAM-Disk über die Workbench
nicht mehr heran. Hier hilft uns nur noch der Weg über das

CLI. Entweder wir geben DiskChange ein, oder aber wir forma-
tieren über das DOS. Dann wird die Diskette wieder über ein
Symbol dargestellt, und die normale Arbeit ist wieder möglich.
Dieses Problem trat übrigens beim zweiten Versuch nicht mehr
auf! Man sieht, daß sich das Betriebssystem noch nicht ganz ei-
nig ist.

Neuerungen auf der Workbench

Mit der neuesten Version der Workbench ist es nun auch mög-
lich, die Namen der beiden RAM-Disks zu verändern. Sie kön-
nen jetzt nach Herzenslust den Namen von RAM-Disk auf z.B.
WGB ändern. Gleiches gilt auch für die resetfeste Variante. Es
ist dann für einen Außenstehenden nicht mehr ersichtlich, auf

welches Speichermedium nun zugegriffen wird. Allerdings macht
das System diesen Namenswechsel nur mit, wenn Sie ihn über

die Workbench tätigen. Wird er aus dem CLI gestartet, dann be-
halten die Diskettensymbole auf der Workbench ihren Namen,

und beim Öffnen wird man gebeten, die entsprechende Diskette
einzulegen, da sie nirgendwo vorhanden ist. Unter diesen Um-

——— Die Workbench 305

standen kommt man dann nicht mehr an die RAM-Disks heran.

Sie sollten sich also hüten, die RAM-Disks über Relable mit ei-

nem neuen Namen zu versehen, es sei denn, Sie wollten jeman-

den ärgern.

6.1.6 Arbeitserleichterung

Wenn man noch nicht im Besitz einer Festplatte ist, kann es

schon einmal vorkommen, daß die Ladezeiten bei einem Disket-

tenlaufwerk die Geduld eines jeden Benutzers herausfordern.
Deshalb überlegt man sich bei Zeiten, ob es Möglichkeiten gibt
die Ladezeiten zu verkürzen.

Die Lösung setzt bei dem Umstand an, daß ein Verzeichnis-

Aufbau genau dann besonders lange auf der Workbench dauert,

wenn sich viele Files darin befinden. Noch zusätzlich wird die
Wartezeit verlängert, wenn es in dem Verzeichnis Files gibt, die

gar nicht mit einem Icon versehen sind. Deshalb muß man diese
Situation umgehen. Als Beispiel soll ein professionelles Pro-

gramm dienen, das nicht über die Startup-Sequence aufgerufen

wird (also mit einem Auto-Boot), sondern über einen Work-

bench-Klick.

Dazu muß man zuerst das Disketten-Icon der Diskette öffnen.
Und hier beginnt schon unser Problem. Neben dem sehnlichst

gesuchten befinden sich noch viele andere Icons im Verzeichnis,

deren Ladevorgang kostbare Zeit in Anspruch nimmt. Wie um-

geht man diese Situation? Man muß dazu schon am Kern des
Problems ansetzen und den Programm-Aufruf verlagern. Dazu
reicht ein einfaches Project-Icon, bei der Programm-Aufruf
eingetragen ıst. Aber nun der Reıhe nach:

1. Möglichkeit

Damit Sie das Verzeichnis irgendeiner Programm-Diskette nicht
öffnen müssen, erstellen Sie sich auf Ihrer Workbench- oder Ar-

beits-Diskette ein Verzeichnis, das alleine Project-Icons enthält.
Mit diesen Project-Icons wird über das Default-Tool der CLI-

306 Amiga Tips & Tricks

Befehl IconX aufgerufen, der es ermöglicht, CLI-Befehle über
die Workbench aufzurufen. Mit den Tool-Types kann dann das
Window angegeben werden, in dem die Ausgabe der CLI-Be-
fehle erfolgt. (Dieses können wir später wieder schließen.)

Nun sehen Sie hier noch ein konkretes Beispiel, bei dem

BECKERtext ohne Offnen des Verzeichnisses der Programm-
Diskette gestartet werden kann:

1. Kopieren Sie mit

copy sys:prefs/printer.info sys:BECKERtext.info

das Project-Icon vom Preferences-Unterpunkt "Printer" in das

Hauptverzeichnis unter dem Namen "BeckerText" und tragen Sie
bei Default-Tool dieses neuen Icons

C:Iconx

und bei Tool-Types

WINDOW=CON :0/0/150/50/BeckerText

ein. Jetzt erscheint im Workbench-Hauptverzeichnis dieses Icon,

das Sie noch geeignet positionieren können.

2. Wir erstellen über den CLI-Befehl

1> ed sys:BECKERtext

eine CLI-Sequenz mit den nötigen Befehlen zum Aufruf des
Programms Beckertext:

CD DF1:
RUN DF1:BECKERtext ; Programm starten

WAIT 40 SECS ; warten bis Installation abgeschlossen
RUN SYS:Clock analog=535,0,105,65 24HOUR SECONDS DATE
CD SYS:

Hier wird neben dem Aufruf des Programms selbst noch ein
Komfort-Element ergänzt. Sicherlich ist die Anzeige einer Uhr
von Interesse und hiermit für den Anwender ohne zusätzlichen

— Die Workbench 307

Aufruf gegeben. Die Warte-Funktion ist nötig, weil das Pro-
gramm aus dem Standard-Device die Default-Einstellungen liest.
Die Zeit von 40 Sekunden entspricht etwa der Dauer des Pro-

gramm-Aufrufs von Diskette.

2. Möglichkeit

Mit dieser Methode können Sie es sich natürlich auch ersparen,

tiefer in die Verzeichnisse einer Diskette zu wandern. Sie ko-
pieren einfach in das Haupt-Verzeichnis wiederum ein Projekt-
Icon und tragen als Default-Tool das Programm ein. Somit wird
viel Wartezeit mit wenig Struktur-Arbeit ersetzt. Diese Methode
arbeitet nach dem ähnlichen Verfahren, bei dem z.B. über ein
Text-File die Textverarbeitung aufgerufen wird, nur daß wir
hier keinen Text haben. Das sollte Ihr Programm aber nicht un-
bedingt stören.

3. Möglichkeit

Ein anderer Trick zum Aufräumen der Workbench ist schnell

über das CLI durchgeführt. Hat man besonders viele Icons aus
Verzeichnis-Fenstern herausgenommen und diese wieder ge-
schlossen, so fällt es später schwer, diese wieder richtig einzu-

ordnen. Meist bleiben dann bis zum Ausschalten oder einem

Reset alle Icons mit den Disketten auf der Workbench und

schlucken viel Speicher und Rechenzeit. Dies laBt sich aber än-

dern, indem Sie einfach im CLI

1> loadwb

eingeben. Alle einzelnen Icons aus Verzeichnissen werden sofort
entfernt und nur die Windows bleiben bestehen. Gleichzeitig
werden alle erreichbaren Disketten sortiert und rechts geordnet
abgebildet.

Da die Icons verschwinden, die auf der Screen lagen und nicht

in irgendeinem Verzeichnis aufbewart sind, müssen Sie zuvor
Verzeichnis-Fenster schließen, aus denen Icons entfernt wurden,

wenn Sie diese dort wiederhaben möchten!

308

6.2

Amiga Tips & Tricks

Systemdaten selbst einstellen

struct Preferences <intuition/intuition.h>

{
0x00

0x01

0x02

0x04

0x0C

0x14

Ox1C

0x64

0x65

0x66

0x68

Ox6A

Ox6C

Ox6E

0x70

0x72

0x74

0x76

0x77

0x78

Ox7A

0x7C

Ox7E

0x80

Ox9E

OxAO

OxA2

OxA4

OxA6

OxA8

OxAA

OxAC

OxAE

OxBO

OxB2

OxB4

OxB6

0xB7

0xB8

0xB9

00
01
02
04
12

20

<intuition/preferences.h> /* Ab Version 1.3 */

BYTE FontHeight; /* Zeichensatz: 60 oder 80 Zeichen */
UBYTE PrinterPort; /* PrinterPort: seriell oder parallel */
USHORT BaudRate; /* BaudRate: zwischen 110 und 19200 */
struct timeval KeyRptSpeed; /* Tastaturwiederholungsrate */

struct timeval KeyRptDelay; /* Verzögerungszeit bis zu einer
Wiederholung */

struct timeval DoubleClick; /* Lange des Zeitintervalls

Doppelklick */
USHORT PointerMatrix[36L]; /* Daten für Mauszeiger-Grafik */

BYTE XOffset; /* Offset des HotSpot */
BYTE YOffset;
USHORT color17; /* Farben des Mauszeigers */

USHORT color18;
USHORT color19;

USHORT PointerTicks; /* Ubersetzung der Mausbewegung */

USHORT colorO; /* Farben der Workbench */

USHORT color];
USHORT colore;

USHORT colors;
BYTE ViewXOffset; /* Relative Position der Workbench-

Screen zum View */
BYTE ViewYOffset;

WORD ViewInitX; /* Initialisierungswerte für View */

WORD ViewInitY;
BOOL EnableCLI; /* CLI ein- oder ausgeschaltet */
USHORT PrinterType; /* PrinterTyp */
UBYTE PrinterFilename[30L]; /* Name des Printers bei CUSTOM */
USHORT PrintPitch; /* Schriftart: Pica, Elite, Fine */
USHORT PrintQuality; /* Druckqualität: Draft, NLQ */
USHORT PrintSpacing; /* Druckabstand: 6 LPI oder 8 LPI */
UWORD PrintLeftMargin; /* Linker und rechter Druckrand */
UWORD PrintRightMargin;
USHORT PrintImage; /* Positive oder negative Darstellung

der Grafik */
USHORT PrintAspect; /* Druckaspekt: horizontal, vertikal */

USHORT PrintShade; — /* Druckart: schwarz/weiß, Graustufen,

Farbe */
WORD PrintThreshold; /* Graustufe */
USHORT PaperSize; /* Papiergröße: Flaggen */

UWORD PaperLength; /* Papierlänge in Zeilen */
USHORT PaperType; /* Papiertyp: endlos, Einzelblatt */
UBYTE SerRWBits; /* Serielle Einstellungen:

Read-/Write-Bits */
UBYTE SerStopBuf; /* Anzahl Stop-Bits, Puffergröße */
UBYTE SerParShk; /* Paritat und Shake */
UBYTE LaceWB; /* Workbench im Interlace-Modus:

ein, aus */

— Die Workbench

OxBA 186 UBYTE WorkName[30L];

OxD8 216 BYTE RowSizeChange;

/*

0xD9 217 BYTE ColumnSizeChange; /*

OxDA 218 UWORD PrintFlags;

OxDC 220 UWORD PrintMaxWidth;

OxDE 222 UWORD PrintMaxHeight;

OxEO 224 UBYTE PrintDensity;
OxE1 225 UBYTE PrintXOffset;
OxE2 226 UWORD wb Width;
OxE4 228 UWORD wb Height;
OxE6 230 UBYTE wb Depth;
OxE7 231 UBYTE ext_size;

OxE8 232

>;

Preferences _FontHeight

TOPAZ_EIGHTY 8L

TOPAZ_SIXTY 9L

Preferences LaceWB

LACEWB OxO1L

Preferences_PrinterPort

PARALLEL _PRINTER Ox00L

SERIAL_PRINTER OxO1L

Preferences _BaudRate

BAUD_110 Ox00L
BAUD 300 Ox01L
BAUD_ 1200 Ox02L
BAUD 2400 Ox03L
BAUD 4800 Ox04L
BAUD_9600 Ox05L
BAUD_ 19200 Ox06L
BAUD_MIDI Ox07L

Preferences PaperType

FANFOLD Ox00L

SINGLE Ox80L

/*

/*

/*

/*

309

Zwischenspeicherung des
Druckernamens */

Ende Version 1.2 */
Neue Grafik-Einstellungen */

Breite, Höhe, Tiefe der Workbench */

Version 1.3 */

Länge einer eingebundenen

Erweiterung */

310 Amiga Tips & Tricks

Preferences _PrintPitch

PICA 0x000L

ELITE 0x400L

FINE Ox800L

Preferences PrintQuality

DRAFT Ox000L
LETTER 0x 100L

Preferences_PrintSpacing

SIX_LPI 0x000L
EIGHT_LPI 0x200L

Preferences _PrintImage

IMAGE_POSITIVE OxDOL

IMAGE_NEGATIVE Ox01L

Preferences _Print Aspect

ASPECT_HORIZ Ox0OL

ASPECT_VERT OxO1L

Pref erences PrintShad e

SHADE_BW Ox00L
SHADE_GREYSCALE 0x01L
SHADE_COLOR Ox02L

Preferences PaperSize

US LETTER Ox00L
US LEGAL 0x10L
N_ TRACTOR Ox20L
W_TRACTOR Ox30L
CUSTOM Ox40L

Preferences _PrinterT ype

CUSTOM_NAME Ox00L
ALPHA_P_101 Ox01L
BROTHER 15XL Ox02L
CBM_MPS1000 Ox03L
DIAB 630 Ox04L

——— Die Workbench 311

DIAB_ADV_D25 Ox05L
DIAB_C_150 Ox06L
EPSON 0x07L
EPSON_JX_80 Ox08L
OKIMATE_20 Ox09L
QUME_LP_20 OxOAL
HP_LASERJET OxOBL
HP_LASERJET PLUS OXOCL

Preferences SerialBuf fer

SBUF_512 Ox00L
SBUF_1024 Ox01L
SBUF_2048 0x02L
SBUF_4096 Ox03L
SBUF_8000 0x04L
SBUF_16000 0x05L

Preferences SerRWBits

SREAD_BITS OxFOL
SWRITE_BITS OxOFL

Preferences _SerStopBuf

SSTOP_BITS OxFOL

SBUFSIZE_BITS OxOFL

Preferences _SerParShk

SPARITY_BITS OxFOL
SPARITY_NONE OL
SPARITY_EVEN 1L
SPARITY_ODD 2L
SHSHAKE_XON OL
SHSHAKE_RTS 1L
SHSHAKE_NONE 2L

6.3 Betriebssystem-Editor

Seit der totalen Umstellung Commodores auf die Betriebssystem-
Version 1.3 erfreuen sich die Kickstart-Umschalte-Platinen
wachsender Beliebtheit. Alle Amigas werden jetzt mit dem
neuen Betriebssystem ausgeliefert, was zur Folge hat, daß sich
die Programmentwickler auf die neuen Möglichkeiten ein-

312 Amiga Tips & Tricks ——

schießen. Da zwar 1.2-Programme auch auf V1.3 laufen, V1.3-
Programme manchmal jedoch nicht auf 1.2-Amigas, möchte
natürlich jeder Amiga-Besitzer das neue Betriebssystem besitzen. -
Wer mit dem Gedanken gespielt hat, sich lediglich die (irgend-
wann erscheinenden) Update-Sets von Commodore zu kaufen,

ist spätestens seit der Ankündigung von Kickstart 1.4 verun-
sichert. Freuen können sich eigentlich nur die Amiga-1000-Be-
sitzer, die jedes Betriebssystem laden können. Um dies auch den
anderen Amiga-Besitzern zu ermöglichen, gibt es jetzt von einer
bekannten Hard- und Software-Firma ein sogenanntes Boot-

modul, mit dem jederzeit ein anderes Betriebssystem geladen
werden kann, sofern dies in Form einer Kickstart-Diskette vor-

liegt.

Gründe genug, ein Programm zu schreiben, das die Möglichkeit
bietet, solche Kickstart-Disketten herzustellen. Darüber hinaus

gibt es jedoch noch einige Kleinigkeiten, die an den existieren-
den Betriebssystemversionen auszusetzen sind. Zum einen ist da
sicherlich die ständig als Damokles-Schwert über dem User
schwebende Virengefahr, das zwangsläufige Ausführen des
Bootblock-Programms nach einem Reset. Dies ließe sich durch
eine Änderung des Betriebssystems abschaffen, ohne auf Pro-
gramme mit Bootblock-Loader verzichten zu müssen. Zum an-

deren haben wir da die manchmal fehlerhaft arbeitende PAL-

Test-Routine, das viel zu langsame Zugreifen auf Disketten-
laufwerke, das immer noch nicht auf PAL-Format vergrößerte

CLI-Window und diverse Betriebssystem-Routinen, deren Auf-

ruf fast zwangsläufig zur Guru Meditation führt. Wer sich gut
im Betriebssystem auskennt, wird erkannt haben, daß es noch
viel zu tun gibt, um ein nahezu perfektes Betriebssystem zu er-

halten. Um diese Änderungen vornehmen zu können, habe ich
Ihnen einen Betriebssystem-Editor in Assembler geschrieben, der

hier aufgrund seiner erheblichen Länge in total gepackter Form
als DATA-Loader abgedruckt ist:

OPEN "KICKSTART-EDITOR V1.5" FOR OUTPUT AS 1

zeile%=0

checksum%=0

zloop:
zeile%=zeile%+1

wort%=0

—— Die Workbench

Strout$=""

1 loop:
wort%=wort%+1

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

READ a$

IF a$<>"x" THEN

wert%=VAL("&H"+a$)

checksum%=(checksum% XOR wert%)
checksum%=(checksum% XOR wort%)
Strout$=StrOut$+MKI$(wert%)

ELSE

wort%=10

END IF

IF wort%<10 GOTO iloop
READ b$

wert%=VAL ("&H"+b$)

IF wert%=checksum% THEN

LOCATE 1,1 :

PRINT "Zeile";zeile%;" - Checksumme okay"
PRINT #1,StrOut$;
IF a$<>"x" GOTO zloop
CLOSE 1

PRINT

PRINT "Fertig."

PRINT

END

ELSE

PRINT

PRINT "Checksummen-Fehler in DATA-Zeile";zeile%
PRINT

BEEP
CLOSE 1

KILL "KICKSTART-EDITOR V1.5"

END

END IF

0000 , 03F3, 0000, 0000, 0000, 0003, 0000 , 0000, 0000, 0002, 03F9
0000 , 009B, 0000 , 0588, 0000, 0735 , 0000, 03E9, 0000, 009B, 02A6
6106, 4EF9, 0000, 0000, 48E7, FFFE, 2C78, 0004, 4BFA, 019A, FC57
41FA, FFE6,2050,D1C8,D1C8, 2250, D3C9,D3C9, 5888, 5889, 4041
48E7 ,00C0,6100,0192,4CDF , 0300, 2F09, 5188, 2248, 2011, 5BF8
GEAE , FF2E,2657,508B, 201B, 2E00, E788, 223C, 0001, 0000,5701
4EAE , FF3A, 2840, O00C, 5088, 2007, 5380, 226D , O00C, 221B, EEA4
5889 5481, 22C1,51C8, FFF6, 2FOB, 2C07, 5386, 2660 , O00C, 18B3
284B , GA9B, 223C, 0001 , 0000, 2018, 588B, 0800, 001E ,6704,4FDF
08C1,0001, E588, 4EAE, FF3A, 28C0, 588C,51CE, FFEO, 265F, EB35
4286, 4285 , OC6B , 03E9, 0002, 6700, 0090, 0C6B , O3EA, 0002, 8CAE
6700, 0086, OC6B , O3EB , 0002, 6700, 009E ‚OC6B , 03EC, 0002, 8CBA
6700, 00A6, OC6B , 03F2, 0002, 4E71,4A9B, 4285 , 5286, BE86, GEES
6EC6, 225F 5189, 2011, 4EAE, FF2E,43FA, FF12, 206D, OOOC, SEEO
2010, 5880, E488, 2280, 5287, 5387, 671A, 2250, 2028, 0004, 8415
E588, 2280, 2028, 0008, 5880, E488, 2340, 0004, 5088,60E2,CC10
42A9, 0004, 43FA, FEE6, 206D , 000C, 2050, 5088, 2288, 226D ,63F6
000C, 2007, £788, 46EAE, FF2E, 4CDF, 7FFF,4E75,6128,4A9B, 4318

313

314 Amiga Tips & Tricks

DATA 201B,E588, 2048 ,D7CO, 226D ‚000C ‚2206,E789 ,2271,1800 ,AC94
DATA 5089, 4EAE, FD90, 6000, FF48,6106,508B,6000, FF40,4A85, 3428
DATA 6702,5286, 7A01,4E75 , 4A9B, 206D , O00C, 2006, E788, 2270, BAD7
DATA 0800,5089, 201B, 6724, 221B, E789, 206D , O00C, 2870, 1800, 70E9
DATA 508C, 5380, 204C, 2449, 221B,D5C1, 2212,D1C1, 2488, 51C8, 06A2
DATA FFFO,60D8, 6000, FEFA,0000, 1620, 0000, 1CD4 , 0000, 0000, OD8F
DATA 0000, 0000, 0000, 0000,D1D5, 2848, 0010, 2460 , 0004 ,D5C9, 06A9
DATA 2020,E288, 6602, 616E ,6532, 7208, 7601, E288, 6602,6162,47B5
DATA 654C, 7203, 4244, 6164, 3602,D644, 7207, E288, 6602, 614E , 0454
DATA £392,51C9, FFF6, 1502, 51CB, FFEE, 6038, 7208, 7808, 60DE , F833
DATA 7202,6140,0C02, 0002, 6012, 0C02,0003,67EA, 7208, 6130, F2BB
DATA 3602,323C, 0008, 600A, 323C, 0009,D242,5442, 3602, 611C, 75A7
DATA 534A, 1482,2000,51CB, FFF8,B3CA,6D00, FF90, 4E75 , 2020, F368
DATA 44FC,0010,E290 ,4E75 ,5341,4242, 33C8, OODF, F180, £288, 2A76
DATA 6608, 2020, 44FC,0010,£290,£392,51C9, FFEA,4E75, FFFF, 3612
DATA 0000, 03EA, 0000, 0588, 181C, F008, 3038, 0040, 0831,0120,E106
DATA B025 ‚E035 ‚3001 ,B955 , OF86, 5040, 4340, 103D, E008, 1490, CO6A
DATA 0408, 7802, 0490, 0103,9E00,8141, 0040, 9880, 204A, 30A0, 2093
DATA 7557,81CA, 584E , 8130, 8BF3, 0008, 1010, 70AA, 0009 ,D818, 332B
DATA 6CBF,D720,5025, 000A, 207B,605C, 10A6, 0014, 1448, 0010, 9C5D
DATA 2010,8004, 0982, 2011, 100C, 14F8, 01F8, 0730, 82C4, 6029, F500
DATA 1F88,021E,0010,539A, 72AF ,D460,B822, A048, 179E , 6834, 7A18
DATA 0D82,BC1A, 05A2,097F,80DC, 8494, C3F4, OSAF, F096, 610E , 94DD
DATA 25F7, OB4E, 0F53,0000,8058, 6014, CFF3, 1041, 6006,A614,41D0
DATA 5856, E3E1, 7820, 8601, A03C, 2180, 7215,D04B, 6FF1, 1727, 5F79
DATA 57F3, 1520, 166C, 0EB1, 26A9, SASF, 9AB3, 1B84, 4E00, 7E9B, CBF6
DATA C008,507E,41E6, 0780, 80C3, 0042, 8050, 8080, £373, 4082, 3D4D
DATA 2503, 00D3, 7305, 1863, 42E6, 6623, 4297, 0370, 2DB0, 148A, 2FE8
DATA 6C06,4A06, A458, 0028, 2928, 3888, 22D9, A505, 0264, 9C3E, A5B5
DATA 8321,4A20, 8197, 0300, 0340, AE81,E280, 2881, 9145, 881F, 90B2
DATA FO1C, 2760, 390B , 4224, 0528, 1881 ,036F ,00B7,83FF, 3281, 93D5
DATA 4080, 2708, 21C2, E860, 6042, 6080, 0440, 4A0E, 1880, C4D0, AF28
DATA ED00,4113, 0300, 8368,03D1,46A5,812B, 0177,0358, 1153, 54AB
DATA 0B54, 060F, 880A, 8420, 0882, BA0S , 42A5, 01E8, BB13, 880E , 9706
DATA 941E, 07F8, 7BB6, OEA2, 7022, 08C8, 070B, 01FD ,0249, 6081, 6D2B
DATA A8EA,0120,BA04, 2061, 0008, 123E, 6504, 040B, 7214, 1823, 4781
DATA 29C8, 0A02, 67CC, 3085 ,4166,0265,83CA, 0124, 660C, 1883, 8C6B
DATA C8FC,C026,D4FC, 2281 ,C361,045B,41E2, 1103, CO9E, 0100, 2442
DATA 81F8, OF99, AISA, 8F89, B308, 6A1F , 2078, O8EA, 1F23,8320,E17D
DATA 8D80,805E,0001,5400, 1A70,3D10, 70A0, 61B3, 801F ,A6FO, ASE5
DATA 0C56,9FC2,A191,E12B, 9EFO, BB3B, 8300, 3F93, 2201, 2076, EOEF
DATA 0128, 02C4, C023, 006A, 9804, E07C,B752, 588E, 1354, E4EA, 435B
DATA FEC2,0847, 28F4, 0A02, 0805, 0206,D605, 0110, 0281, 0303, 4BB7
DATA 0280, 9003, 0250, 801D,60A0, 5400, 2815, C40A, 0580, 00E6, 86AB
DATA 0080, 3030, 01E4,048D , 280B , 3985 ,B000, BOF8, EB37,0A23,431B
DATA BOEO, 04E0, OOCA, 1041, A996, 83E9, A414, 10B4, 0050, 2266, 5B72
DATA 1040, 1C64,4410, 3679, 2979, 2238, 5A93, 8096, 81C2, 8018, F5AA
DATA B668, 2002, 8004 ,D600,E213, 2980, 1007, F3B5, 1627, 9678, 90B1
DATA 1C08,32C3, 3890, 09F8, 0485, 3894, 0708, 8480, 8C10, F108, 4098
DATA 1B40,D221, F400,4710, 4100, F480, O0E7, 0219, A9F4, 83C8, ATAO
DATA 13E2,0B02, 4621, 001, 1286, 2808, 0042, 0553, B094, 0040, 7820
DATA 4690, A049, 1814, 2B50, F910, 0369, 1A80,D048, 9320, F420, FAO7
DATA 96C7,E82E, 9AA3, 3880, 3171, 2212, 0898, 32E1, 4046, 12FA, 553

——— Die Workbench

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

80CB, 7542, 6C60, 6007, 3084, 569F, F8F9, 874C, 1183, 0C04, AOSF
OCSE,C817,580A,56A3,E47C,CA10, 1D40,43C0,6040,DC10, A6C8
1000, 3C25, F408, 7002, 1041, 9002, 2058, 3904 , 5029, 01EB, C631
2116, 0305, F8E8, 65A0, F8E9, 8017, FFFC, O71E, 15B0, 6548, 8955
0040, 1F14,E24C, F248, 1050, 1EEA, 825F ,0030,C104, 2102, EADD
0704, 0039, 0500, 804A, 0040, 2700, 2011, 4010, 0884 , 4109, 668D
0080, 4A80 , 4024, C020, 1110, 1044, OFBO, 2017, 4010, 0A10, C871
082A, 04A8, 104C, 0480, 2014, C010, 0850, 0804 ,B801,9700, 1F55
1COC , 2607, 8818, 0B70 , 0223, F768, 040A, 7802, 0558, 0102, 2B24
8C02, 4B00, 6E04, 828E ,0241,5A01, 20A5,414F, A3E2, 5091, CATE
0059, 0402, 415A, 2000, B4E4, EB7E ‚A386 ,C135 ‚0180 ,BE80 ,2D5D
CO5B, 0060, 2E80, 5415, FO2A, OAAO, 1523, F448, 300B, C817, 7405
8B10, 2D00,4298,04C0, 10AC, CF70, 2628, 7480 ,DD04, 2126, E510
0360, 8001, 0847,C12D, 8FCA, 010F, F4A4, BOBS , 839F , 9086, 76DC
6284, FFCF, F085, C000, 90A2, 4380, 110F ,0000, 1A39,9416,971B
324C, 8094, 0315, 27CA, 2988, 0511, 0A45, OF 02, 60AF ,01C0,49A6
50C0, E02F ‚A070, 1600, 6304, 3808, E804 , 0434, 0442, 2A06,D59A
0124, 6677, 4030, 8E33, OBAD, 4208, 0981 ‚4094 ‚80C0 ‚4485 ‚B809
0F91,003F ,E008, 2067,8008, 1010, 0809, 6215, A8F8, 9904, BC3B
2483, 480B , 5BE1,D074,9C15, 0C00, 9000, 28A8, 24C0, 3420, 6370
6C02, 207E , 4879, 8B2B, 02DE, 0C82, 8E04, C606, 2ACC,E184,6143
BF40,E8C4,CA21, 0B98, 037D, 7018, 4F81,840C, 0006, 0300, 4C9B
0302,B214,B801, BBFF, 0A82, 3453, FD40, 242A, 4CCO, 0C28, 5928
4003, 053C, 0182, 3604, 2006,5482,DC81, 802E ,0754, 06E1, OFO7
2220, 681C,C61C, 4BFA, 0810, C019, 0860, D81E,D215, 00E1, 0255
4C02, 7444, BOB4 ,B998, 0305, 4010, 019F ,683B, 7703, 24B4, 4AD2
83C4,DC21, OOEE , 0640, 02AB, 8210, 0264, E03E, 1083, 31E8, 5018
25B1,F940,20C0, 0714, 606E , A014, 606C, A480, 0536, A7E2, OD74
0C81, 1CC7, 2218, 001F, OCCD , 2DB2, 1070, 5D82, 42F0, 7020, 6C63
27E0, B2AD ,984C, 0071,417F, FFBB, OO7F , BF6A, 2170, 4240, O3F9
B500,E0C3,447E,61A9, 8582, 89E1,41B5, 81E0, A1B6, A3E4, BD82
BCC2, 1C4B,EA12,B01C,62C8, 1881, 8087, A25A, OF8A, B93A, AZA
FF9D , 9A5B, 2075 E818, 1CD3,4C30, 0181, 9980, 1200, 0730, D958
O2FA, 4412, FAQ2, 9070, 0287, 0815, 7030, 0827, 337A, 1404, A032
9198, 8120, 6399, 718C, 0219, 6C56, 8301, 9C02, 4103, 0C06, 9EDD
4443, 00C1,5B41, 1260, 989D , 9810, 903D ,80C1 , 0860, 186B, 930F
60D3, 0C30, 4CCE, CAA4, 1000, 1052, £220, 3000, C864, 1C40,72DB ~
4FCO, 002D , 8648, EO5E, 0908, 2501, 0C03, FEOA, 8804, 0205, OFFA
F660, 043C, OOFF, 7FOE,09B5, 8066, 96A0, 1410, 8583, 520F , 5E33
02B9, 1008, 9808, 04CD , OAD4, 7C8C, 8402, 4A07, A174, 0600, CF65
9F4E , 2127, 0314, 206B, 9CC1, E844, 8C1F ,5990, 88C0, C18D, BASF
F504, BOE1, 0311, 8220, 6851, 0041,087A,5A21,920A, 8C05 ‚5AA4
2300, 4010, 5889, 144C, 1C19, 8583, 98E1,D041,EE04,53EA, 197E
5388, 0180, 838F , 4060, 3A86, 5808, 8A20, 8423, 2FB8, 0CO0, C7A7
66B1, AF 1D, 4FAC, OEOD, 2E58, 0690, 0611, 0062, 1416, 5A04, 2F08
A600, 4800, 140C, 16F0, 1708, 4070, 0064, E10C, 2101, 7E66, 2A88
7220, 1600, 1E0B, 4000, 1048, 3C86, 1206, 1366, 3992, 3280, 3614
5987, D03B,A480,8107,4173, £680, E4C6, 0C86,4924,A411, 38A2
CCC1,5A21, CC3E, 0C36,8920,8102,01C1, FE7F,A904, 7E60, GEB9
25CE ‚0204 ,D1D2,05CF ‚097E ,0304,42E0, OBCC,61E5,EE00, 71D6
21C6,4BC1,4818,007D ,C4CB, ED02, 0018, 554A,D683,B05C, 49FB
CE08 , 96C7, E500, 879C, 2E94, 001C, 9D7F ,DD20, 9861, 0480, 8195
8288, 1580, 80AC, 0040, 43C0, 2025, 8010, 1370, 0809, A615, C8E3

315

316

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

BFF8,B908, 0492, 1801, 20F9, CAE9, CAB8, 03A4, 1600, 3C02, DB85
AFOC, 8369, 8224, 8000 ,DOEO, C309, 0711, 4302, 4086, 2820, CA93
C007, £131, 0000, A060, 0010, 5052, 2188, 0D80, 4061, 2381 ,5464
881F , C082, 9032, 8100, DEO2, OOF9, COSE , 320B , 6404 , 024A, 4710
0301, 9501, 4303, 7501, OO8E , 8080, 60C0, 603C, 6038, A071, A7A2
1170, 2011,B010, 0938, 0805 ,DC04, 1440, 0585, 2382, 0514, CCB2
0D20, A204, 03B0,0201,8C01, 0491, C508, 0106,2162, 0041, 0F91
81C9, 0041, 81E7,0021,81C0, 5031, 0820, 580B, A071, 028A, 2CF5
0660, ED02,01F1,0100, BA80, 987C, C008 , DOCB, 4040, 3A60, 8F72
3818, 7008 , 3039, F008, 3033, FOOC, 3036, 8010, 09A0, 0805 , 76E4
0804, 022C, 020A, COC6, 020C, 0E94,050C, 0ED4 ,070C, OCBC, B2FB
038B , OFC8, 020C , ODDS, 028C, 0F38, 068C, OF2A, 20AC, 8041, 1598
1844 ,4022, 81D8, 1043, 0201, 0500 ,D848, 40C2,81E8, 32C0, FOCD
82D0, B380, 8303, B704, 0103, 0030, 5F44, 00E2, 503E, 4307, B83D
6920, FA80, 116E,5D51, A083, 36D0, 7481 , OF2A,BA01, 4200, 7250
2502, 2882, 9E29, A103 ,DEB7, 069A, 3499, ABAO, 4572, 4E80, 0C17
1E5A,D0D3,C014, 5C9A, 8BBD , 9380, 3489, F16B, O3EA, 864E , 0660
8334, 450D ,01AA,581B, OZEC, OF46, 070C, 8007, 0968, 0490, 13BA
1471, 337B, 1B22,E25C, 0082, 3636, 2325, 44EC, 4C83, AASB, 7A63
3AD2, 0899 , 3A86, 9670, 3805, 781D, 1765, 1538, 45CB, C5C8, 2693
5E86, A002, 6964, 044A,D4D0, 8AA5, 8DA1, F93B, 13E3, 0B62, 875C
9218, 9280, DD4B, 1353, 2132, B4CA, 2E4E , AED6, ZEAE, 4E00, 3C19
F35A, OF4A,5A1B,825C, OBAS, BAD2, 1742, OF82, 0426, B6CE ‚3317
0426,£515,2703,B04C,A1AB, 99BB, 8985, 6800, F262, 0C87, 6120
C50D, 20F0, 85A9,B 185, B3AB, ADAD , 803F ‚85ED ‚2841 ,DODF ‚5380
65CE ‚8006 ,54DC, 3CB5, 0819, A54C, 0062, A448, C8D0, C908, DB5D
BC8B , 3818, 0214, 1C2B, 604A, 2479, 5292, 609A, 54D2,DOEC, B3FF
9381, 11BD, BD89, F513, 8B4B, 7361, 6200 ,D292, C2D2, CA2A, 3912
824A, 2AB4, 2296, CED6, A62E, 10F7, 1027, 743E, 2F01, 0486, 84E0
8725 , 4C00 , DC82, C858, 1851, 3010, 2601 , 2286, 2E43, 8408, DD99
7FOD , 21CE , 02C4, 9C04, 22BB , 02B2, EA96, 3636, C714, 0845, 2E69
5€85, 889A, 1BEC, 1319, 8208, CD08, 28B8, 0600 ‚,B275 , 37E0, 1675
0111,AB4B, 5802, 06C2, ECED , 0801, 044E,E1CE, F684, 04E8, 1134
01E5,ADOD, 3C00,652D , 4C8C, 81C6, A047, 6830, 42C5, CO1A, 6318
5876, 2974, 3271, 75A5, 1134,B177,B407,A29A, A31D, 2B00, 6806
0901, 90ED, 00A5 , 7701, 4981, B77B, 4382, CAZE , A666, 8623 ,D256
B5C9, 9565, 6D0D , CD49, 4B90, 12CA, 1A98, DA87, 5270, 0331, 9AB1
FA70, 253E , A889, OABA, 0583, C905, 6020 ,CC42, C8AA, 5839, 1ABD
OED3, 2021,5276, 3DAD , 6CEE ‚4455 , 4298, D280, 9193, 8393, F13C
8080, 1C70, A450, 4550, 4088, 5458, 5A54, 4948, 1FC2, F281, 6648
1DA9, A9B1 , E543, 0152, AEZE , 0082, C3A5,4C08, 46ED ‚8309 ‚D2AF
3AB9, D90B, 1345, DCOB, O8FA, 7603, 645D , 534B, 0237, 5327, E6A7.
1B7B,2700, 7608, 139A, 985A, 989D ,9007,54B1,B1B1,05A0,CF25
422A, E042, 686C, E04E , E964, ED6C, 0E91,630B, 7E00, 2941, DBB7
0039 ,5149,3900, 137B,507C,4907,5D17,5740, 8A96, F676, CF7B
4440, 83E6, 0684, 1C2D ,064B,39D0,DA59, 193A, 9894 , F000 , 8613
6462 ,6661 ,6563,6760,E4E4, 1216, 1115, 1087, 8C91,B1A0,4C49
1033, 02A2, 0802, 9645 ,95D4, 29C0, 3CA8, 818), 177B, 2722, FC2C
A280 ,0018,4403 , 8384 ,0080, 4400, 437A, 2E54,B733,B630,B175
A469 ,62E0 , 4664, EA68,4F5F,ODEB,E1BD,503D , 2867,6450,64F8
9316,C464, 2ECO, F812, 29BD , 9999 ,0E13,B03E , 8538, FF1B,5179
5B14, 1694, EC05, OACA, 1AB9, 1814, 3674,35A0,45EA,E455, 5AFB
42DC ,0C98, 1796, 0F38,0001,8A18, BA9D ,55C0,B153,40DA, 98D7

Amiga Tips & Tricks

—— Die Workbench

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

6897 ,011C, 90E0, 2E97, 3029, 2AEE ‚682E ,41C0, 9087, 855A, 6904
664E , A696, 8400, 2266, AS9C, 04E1, ECEO, 6088 ,D028, 9BCB , 6997
A5B9, 8881 , 132B, 1834, 90A7, BO3C, 148, 0885, 4D8C, 8A06, B4C7
2820, CD80, 5C38, 1130, 2A04, 293B ,DB99, 3A1A,DADA, 98D0, BCD2
033B, 03E2, 46C0, EOBE, C1FO, COF5, 27CB, FOSD , 808, 3095, 7190
73B1 , 3023, 713D, 2CEA, E838, 4150, 2654, B232, AA6C, E81E, 10A2
SECO, 3C81, 29A1,455B, OOA2, 7400 ,DA42, 1083, BAO2, F4C5 ‚EEB6
0D01, CB80, 4100, 7D1F ,4E12,£026,9433,B3B0, 2197, 2126, 9025
6EE8, 3B5A,9113, 1060, 2384, B53B, 0411, BD99, 9908, 8253, 7063
D465, 2CEC, 8529, 50C1, AD57, 271F , E36B, 022F ,575B, 0251, 6EOF
134B, 177B, 707F , 2A00, A743, 8C2D ,0501, F410, 6097, 8081 , OA22
49DE ,DCC9, DODS , D6C8, 1EC2, 26A6, 8430, EB59, 9170, 1A27, 457A
6848, 7C50, 3808, 09C1,B100, 0A86, 0700 , 8231, 530B, 1812, 150E
A25C,, 0235, OCED, OAOB, 5816, 93B0, 2255 , 3475, 7533, 3607, 2038
EAEA, 9676, 26F6, EE04, 6F66, 6676, A676, 20E8, 990C ,D814 ,57CB
C40E ,5816, 1023,9551,9191, 1BAD , AB28, 7357, 0281, 535D, 405
422A, 2203, 054D, 2C08, 8A69, 8276, 0304, 2C00, 6848, 0706, 4FET
B671, 7432, 7175, A316,981B, 101A, AB68, 62E5 , CC58, 1518, C700
1113, 4A4B, 0849, 138B, 1581, 0382, 2685, 259C, 0C88, 0098, 9098
19D0 ,D810, C890 ,D803, 9440, 8090, 4A8C, 81F1,5302,5216, 9274
3683, 2409, ODOF ‚8898, 1812, 7531, 7533,B127, 29A8, 5A18,DCE5
D917, 9345, E14E,503B,442A, E666, 622C, 0827, 7572, 7630, ECCC
A04B, 66FE , 6362, 6D10, 3EE0, 1558, 42BC, 04A8, C26F ‚0185 , 8A46
0801, 0949, 0608, 042A, 0608,D518, £958, 0014, SED, CD01 , E397
C7AB, 6860, 092C, 4B5E,C014,9D80,3100,6943,62D6, CEZE, A40A
864E , 2EAG, 8525, 130F , 9594, 2008, 1A85,941D, OB4B, 185A, BFD4
9939 ,D898,5134,B177, B270, 0416,5614, 9492, 0750, 6062, ODEF
5443, 4842, 2076, 9194, 342B, 2042, 2864, 1B52, C070, E06D ‚A745
D40C, A181, C102, 8A86, 76E6, 4474, 3C5C, 9D0D ,9C01,44C1 ,D244
9C9A, 0219, 94B3, B6B6, 1A2C, 4E07, 680A, 4207, 9165, 5743, DOC9
8041, 16A0, 2063, 0B42, C266, 0754, 5100, 2543, 8296, 0240, 57A5
9701, A204, B2F6, 26AE , 3604, E6A6, 66AE , 4OFD, 1530, 3CAB, 2999
4899 ,3A10,D670, 0284, 2181 ,D13B,4392,D696,0E43, 8449, 605B
4818 , D86C, 3C00, C46D, ODCD , 9081 ,D30B, E858, 2AE2, EF6C, 6608
3B 14,0308 ,D903, 1354,5917, 006B, 223A, 7605, C4D4, 076B ,5A67
3806 , 93B0, 032C, C006, 0954, F072, 0306, 3200, 22A6, 6E96 ,B6EO
2480, A553, 677B, 5727, 6353,0019, 4823, 6074, £938, 1790,B1D1
5030, 2F60, 2045, C4F0, 649, OBOD ,8980, 1CA1, ADA9, 803F, F12C
8489, 499C, 8988, 888B, 2A1E,54B3,B732, 2C04, 1€93,B412, 702B
2449, 6281, 8079, 6B43,4F00, 7553,4B17,5327,0267,5763, AAB5
0853, 3800, 1218, 7E09, BO1C, 12E0, 1812, 1020, 60E1, BOFO, 8123
2001, 7274, 3636, B134,B676,B3A1, 3533, 74B6, 3530, 0787, 22BA
3020, 6320, 3020, 6000, 3020, 7A20, 3028, 3286, 221C, 200D , 662E
05E4, 1809, 480C, 0498, 20FC,02F0,9410, 863C, 0820, 0528, 0A77
0108, 7006, 2665, 0E25, F3F7,B1AF, 1060,0A01,F140,2043,DA0B
6006 ,A9OE , E026, 2A40, 3CC5, E880, 5E92, 8005, OEE, AFEC, 721E
2C1D , 6210, 2800, 1730,8180, OD3F, 2400, 0661, BF40, 0043, 12F5
2E0B, 4C02, 809F, 1870, B097, EBD6, 03B9, 10A6, 6284, FFCF, 3D0D
FO3A,64C5, 17A8, A25B, 7F84, 861E, OOOF ,4071,0120, 0C01, ASCF
0E06 , 0896, 6045, 1804, 0081, 860A, 001A, 1104, 6418, 2A80,0C18
2650, 8070, 1105 ,5868,4E55, C25C, F060, 3A8C, 262A ,D1F8, 5269
COAO, 9615, 1422, A44E, 1414, OFEO, OAOS, E805 0270, 0281, 4DBE
3044, 3500, 6020, 4303, 4E00, 4082, 004A,8014,8090, EE00, 879E

317

318

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA

DATA

DATA

DATA

4858, 4024, 2480 , 06A0, 6003, C006, 8124, A068, A008, 2994, A81C
1108 ,0022, £094, 3984, 310F , 88E0, 3AA0, 040A, 5878, 9400, 2B10
78C0 ‚EB40 ,3020 ,E018, 1980, OCOA, 1806, 0451, F801, 0D43, 943C
A005 , A206, 2600, 29FD ,C200, 42D6, 0021, 3403, 8172, 29A0, 85EF
E038, 0070, 1071, 6070, 1100, 3808, 31B3, 083C 5200, 060C,5126
CCO8, 87AC, A092, 21E0, B022, 2058, 1F70, 2047, E5F0, 5810, 8556
C783, 400B ‚012E ,112E ‚344E ‚140E , 502E, C028, 1270, 1408, A4EB
800A, 0480, 0502, £002, 815A, 0140, ED80, A04D , 8050, 2380, ABSD
2814,8014,0B14, 12FD, F8DF, 15BD, F80E, A691, F9E2, 21A8, 7108
0340,8776, 14C0, 1808, 100C,081C, 21F9, 120C 0448, OEC2,D892
0190, C87E , 6443, ASFC, 2B0A ,DCFC, 628A,5401,57A0, 1000,5B15
850A, 280C, 152E,0C24,425C,£042,544B, E006, OE4E, B7ED , 40E2
E65F ‚6908, 1C1D, 8268, 0342, C8C2, 2460, 14A4, ZECC, AOES, 74AB
20F7, O2FA, 2B81, COAE ,6702,A012,A113, OO1E, 2916, D89C, 2A15
3801, 4806, 8344, 0C4C, 0483, A001,A706, 40A1,014A,0612,916C
0D02, O9AC , 0082, 4402, CA06, F8CO, C30A, 1000, C206 , 400A, BC89
0830, 8188 ,0030,5D40, 602A, A00C, 5061, COOC, 1400, 0648, 2AGA
56BF ,E07A,96C7,E51F,E7BA,881C, 1200, 4000, FF1D , 2080, 0D67
8E73, 4082, 7E01, 80AF , 3A1E, A202 , 0003, 82C1, 0302, 02C0, 262F
B801,6210, 158F, 4B4F, F2D2, 0809, D027, C205 , 2388, 0192, 6816
0943, £004, A818, 9EOD ,440C ,921C, 0120, 9800, 9075 , C048, A842
2E88, 8001 ,DFE4, 2890 , 2825, F3F8, BOEO, 0A16, 1538, 01C9, 8463
D5FC, 8A81, 0231, C4BF, 3F64,45C1 , 50F2, F700, 1052, 00E6, D078
2000, E412, B8CO, 3004, 7B8B, 9576, E1F0, 0487, F86A, 15AF, 7ZAEA
F8EC, 32AE, 15BF, F94B, 93BB, FBE4, 95BD, F8A9, 2493, F003, 8D8C
7120, 22D3 , 0614, 275C, 9604, 2DF4, 00D9, 01E0, 0149, 2598, 6124
DC93, 8069, 0390 , 4BD0, COFB, 0012, 6A1B, C3F6,4DA4, 4021, 1119
7034 ,E247,4040, 1D12,818E ,018E, 31E0, 9044, C009, 3031, O3AF
0028, 2944, F330, 4A19,4072, 2818, AC6A, 4490, CA85, 110C, C8F8
1262,0C12, 0404, 0000, A106, AA00, 0344, 10A4,DA11,CA24,DA54
4712,B801,4227,D021,0720,8240, 2026, EE4E, AFE4 ‚A696 F530
DFE7,EA40,081D ,627E , 0080,8155, £004, B8B0, 2059, 7808, 2BCF
7F27,89C0, OFD1, 7807, 2AEC, OECO, 40D1,83B0, 10C5, 400, 1D73
4148, A880, 1012, 1300, 33F0, 0482, 3140, 0244,9008, 0464, 67B8
B025 ,D482, D048, 3056, 6200, B424,4468, 105E,01E8, F24C ‚92BC
3499, 201E, 905E ,B054, AD47, C4F9, 8818, 10A8, 3AD4, 25CF , 482F
OF 29,6041, CCBE ,D048, 3683, £668, 0040, 1E1C,E24C, 0050, 1711
0204, 800F ,4842, 1DC0,58C0, CD03, 0042, 6FOE, 1841, C434, E6A9
2A00,9F11,427F, EDEE , 55C0, 96C7, E618,541D, 5218, A281, 7DB9
6440, 85CB, E801, 2E23, 1607, £824, 81C8, 0428, 0413, 0090, 255B
0082, 6011, 0010,5882, C006, 0001, 116C, 7484, 1104, 6097, C92D
F7C8, 2897, COOC, B8A5 , COOA, 1839, 357E , DE89, DICF, 2547, A99C
09D2, 060C , 02BA, 0142, 066C , 0382, 063D , O56E, 7E68, 1D68, COOC
C301, 4944, F804, C061,4580, C023, 2004, 9805 , 483A, 021B, 05A4
0213 ,5027,D070, 4035, 3A24, E680, 3412, 4830, £002, E006,675C
E001, 4630, 0C07, 3AA1, £620, 200E, 3824, 0970, 1202, 1898, 0920
1202, 1AA8, 1202, 1928, 123C, 18FB, CC12, 2C19, 4091 , 80A0, 2356
418B ,A241,4231, 3A82,4385, FE11,070A, 0620, 26EE, 4EAF , 6CDB
E3E6, 96DF ,E7EO, 1CFA, 92B7, 1FOB, A25F, OF4E, 7E00, 80E4, 3CBA
1321, 8822, 1D04, 738E , 0693,A103, 1603, A503, 2011, 01C8, FF71
OE0B, E411, 0A09, 8308, 1307, 1001, C1F4,0221, 8A21,9107,4744
3490, 8E87, 18C1, 16A1, 9931, 2E25, 0073, 890E,01B1, C044, 0CA4
0012, 90E0, 2512, 865F ,E1E2, 87EC, OAAO, AS23, 784C, 4282, C053

Amiga Tips & Tricks

———— Die Workbench

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Was

6346, 2COC, 400A, 1C60, 1631,A515, 2496, 6496, 1D42,53C0, 6EDE
08A4 , 9720, ADCF ,C613,8103,8011,04A4,97CB, CASF, A512, 67BD
OEE2, BCCC, 39E4 , 5879, 0004 , 4924, 5522,9107,01D1, 0A91, 3240
B7CC, 4134, 840C, 3F50, 8501, DC20, 7522, 8414, 2985, 2CBE , D2F3
600E , E509, 501F, FFEO,C56C, 100C, 429A, 1818, 281A, OADC, 5527
5520, 9E67, 0040, AA38, 3031 ,D038, 5031, 0137, 01E5, FE58, 7AA1
6885 , 88FC , 0554, 303E, 216E , 6524, 2014, B048, 0059, 6401, 12F7
0078, 625B, 7F8F, F2F2,3012,8018, 1031, 8028, 5892,5010,D533
9825 ,6101,0014, 001C, 6150, 5E60, AOAS, 2082, 5391, 050A, C995
8000, 4310, 4801, C330, F802, 0391, 4900 , 6094, 8099, 3A08, E929
400F , ACBE , 6304, 0408, 6E15, BFF9, 1906, 0464, 0302, 2115, 8C06
4DA6, 10F8, BFCO, 6129, 44F3, 3022, 4551, 1851, 8001, 304B, 96F 1
55F8,D870, 0032, 0250, 1290, 6407, 0899, 8089, 0955, C683, 2841
C88E, 1820, 43C4, 2150, 1968, 40B1, 4274, 20B5, 1CBF, CFC5, 7192
1DA0, 0A35, OCBF ‚C7D4 8040, 0D59, 8A24, 3883, 0301, 8280, 1E58
2474, EGEA, FE63, A804, C609, CABB, 1203, FCBF , 987D , 2902, DBD8
0391, 1009, CODD, FD86, 4390, 5806, F020, 1E60, 4010, 3208, 7BDE
8004 , 0220, 0201, 3001 , 0084 , 0080, 4A00 , 4023, 0020, 1380 ,D276
1008, 2008, 0490, 0402, 2802, 0134, 0100, 8600, 804B ,0040 ,CCD2
2380, 2013, C010, 0810, 0822, 0228, 1054, 04D0, 20B8, 0044 ‚3938
2205, 3020, 12C1, 1018, 8104, 2001 ,C29C, 8080, 4140,4024, CBB1
A020, 1350, 1008, 6808, 04B4 , 0402, 3A02, 0103, 0100, 9180, ABFD
8044, C040, 2660, 2010, B010, 0958, 0804, EC04, 020E , 0201, B0C5
2701, 0088, 8080, 4BC0, 4148, 1FC0, 8048, 0040, 2600, 2012, 8496
8010 , 09CO , 0804 , 9004 , 0228, 0201, 3401, 0086, 0080, 4700, E663
4020, 4020, 1120, 1009, 9008, 0428, 0402, 3402, 0106, 0100, 4367
900A, 800E , 8540, 3A04,, 0234, 2A00, 1A15, 0000, OA80, 8C08, 5588
0468, 540A, 6040, 2720, 2012,5010, 09A8, 0804, B404,027A, 8551
0201, 2301, 0089, 8080, 4CC0, 4025, 42A0, 7702, 0127, 0100, 1033
8B80 , 804C, 8540, 7E04, 022C, 0201, 3601, 0082, 0E40, F408, 2156
0404 , 0402, 4202, 0820, 2604 ,0230,0201,6401,00B3, 0080, 2A7E
4880 ,4028,C020, 1510, 1008, C808, 058C , 0402, 5602, 0147, 7A25
0104,501F,0201, 2A01,0550,0D02,0150,0104,D0B9, 020A ,D980
6116, 1004, 0C82,4F00, 2018, 09E4, 0000 , 03EB, 0000, 0735, C639
0000, 03F2,x,C5C8

319

| noch fehlt, ist ein passendes Icon. Am besten kopieren Sie

sich ım Shell mit

COPY AmigaBASIC.info TO "KICKSTART-EDITOR V1.5. info"

ein passendes Icon dazu.

320 Amiga Tips & Tricks ———

6.3.1 Die Bedienung des Programms und

besondere Features

Das Programm ist voll menügesteuert. Mit der Tastatur können
DIREKT Änderungen im Kickstart durchgeführt werden. Der
Editor akzeptiert im Hexadezimal-Modus die Tasten 0-9 und a-f

sowie die Cursor-Tasten. Im ASCII-Modus wird jeder Tasten-
druck (mit Ausnahme der Cursor-Tasten) als eingegebener Wert

interpretiert. In beiden Modi kann mit den Cursor-Tasten ım

Betriebssystem herumgefahren werden. Um den Cursor an eine
beliebige Stelle zu bringen, kann diese sowohl im ASCII-, als
auch im HEX-Feld mit der Maus angeklickt werden.

Die Menüs im einzelnen:

"Programm"

"Info" Autor, (c)-Inhaber und Version werden angezeigt

"Ende" Entspricht der Betätigung des Schließknopfes vom Editor-

Fenster und führt nach einer Sicherheitsabfrage zum

Programmende.

"Kickstart"

"Lese ROM" Das aktuelle Betriebssystem wird nach einer Sicherheitsab-

frage in den Editor-Buffer kopiert und steht damit zur Bear-

beitung zur Verfügung.

"Laden" Ein Betriebssystem wird von einer Kickstart-Diskette in den

Editor-Buffer geladen. | |

"Speichern" Die Checksumme des Betriebssystems wird berechnet und

eine Diskette als bootfähige Kickstart-Disk formatiert.

"Editor"

"ASCII" Umschaltung auf Eingabe von Text. Der Cursor im HEX-Feld

_ wird zwei Zeichen breit (1Byte).

"HEX-Modus" Umschaltung auf Eingabe hexadezimaler Zahlen. Der Cursor

im HEX-Feld wird auf Nibble-Breite verkleinert.

"Lade Datei" Lädt ein mit einem beliebigen Assembler geschriebenes Pro-

gramm an eine beliebige Stelle des Betriebssystems. Dabei

werden die vorher in diesem Bereich liegenden Daten über-

schrieben. Ein solches Programm muß mit folgenden Daten

beginnen:

1. DC.B "KICK" © Anfangs-Kennung für Editor

2. DC.L Adresse Wert > = $FC0000 (wohin)

3. DC.L Länge Anzahl folgender Bytes

4. Routine Ihr Programm

——— Die Workbench 321

_ "Zeige Adr." Das Betriebssystem wird ab der einzugebenden Adresse

angezeigt.

"Z. Anfang" Das Betriebssystem wird ab $FC0000 angezeigt

"Extras"

"Zeige RES" Es werden nacheinander alle Betriebssystem-Module mit

sämtlichen Daten in einem Requester angezeigt. Die Anwahl

von "Okay" führt zur Anzeige ab der gewählten Residentstruk-

tur im Editor-Fenster. |

"Linke RES" Automatische Beschleunigung der Reset-Routine durch

Verketten der Resident-Module.

"Suche Z." Byteweises Suchen nach einer anzugebenden Zeichenfolge.

Wenn gefunden, Okay anklicken, um den Bereich anzu-

zeigen.

Verändern der Größe und Position des CLI-Einschalt-Windows
Wählen Sie im "Extras"-Menü den Punkt "Suche: Zeichenfolge".
In dem erscheinenden Requester geben Sie ein:

CON :0/0/

Der Editor meldet sich mit einem Requester und der Anzeige
von "CON:0/0/640/200/AmigaDOS" im ASCII-Feld. Bestätigen

Sie mit "Okay", schalten Sie den Editor auf ASCII-Modus um
und ändern Sie die Angabe nach Ihren Wünschen (beispielsweise
vergrößert "CON:0/0/640/256/SMmagic!" das Einschaltfenster

auf volle PAL-Größe nebst Titeländerung). Ein Stück weiter
unten sehen Sie die Einschaltmeldung. In diese lassen sich auch
Steuercodes einbetten, die etwa Schriftart oder Aussehen des

Windows bestimmen, s. MACROs mit ALIAS.

6.3.2 Ersetzen der fehlerhaften PAL-Test-Routine

Die PAL-Test-Routine hat die Aufgabe, festzustellen, ob 200

(NTSC-Norm) oder 256 Zeilen (PAL-Norm) dargestellt werden
können, um welche eingebauten Video-Chips es sich bei Ihrem

Gerät handelt. Hier haben die Betriebssystem-Entwickler einen
schwerwiegenden Fehler eingebaut. So kommt es auf die Position
des Elektronenstrahls an, ob die Routine funktioniert oder nicht.

Handelt es sich um ein PAL-Gerät, so soll diese Routine im Re-

gister DO den Wert 4 zurückliefern, anderenfalls den Wert 1. Zu

322 Amiga Tips & Tricks

finden ist die recht lange Routine bei Kickstart 1.3 ım Bereich
$FCBOOC bis exklusive $FCBO4C (Kick 1.2: $FCBOS8 bis excl.
$FCB096). Da es fiir einzubauende Erweiterungen sinnvoll ist, so
viel Platz wie möglich zu sparen, ersetzen wir die ganze Routine
einfach durch 4 Byte:

(4B49434B00FCB00C00000004) DC.L "KICK",SFCBOOC,Ende-Start

Start:

7004 MOVEQ #4,D0

4E75 RTS

Ende:

Sie können die Codes auch direkt im Hex-Modus eingeben (nur
nicht die in Klammern stehenden!). Wir erhalten hiermit ab der
Adresse $FCBO010 einen verfügbaren ROM-Bereich von 60 Bytes
und immer einen Bildschirm in voller PAL-Auflösung.

6.4 Virus-festes Betriebssystem

Das Problem bei der Erkennung von Boot-Disks ist der Ein-
sprung in das im Bootblock liegende Programm (die DOS-Initia-
lisierungs-Routine). Auf diesem Weg gelangen die meisten Viren
in den Computer und richten mehr oder weniger viel Schaden

an. Leider verwenden heute viele Programme einen sogenannten
Bootblock-Loader, durch den das Programm (nur über den
Einsprung in diesen Loader) geladen und gestartet wird. Wir
können daher nicht einfach diesen Einsprung abschalten, son-

dern müssen dem Benutzer die Entscheidung überlassen, ob das

im Bootblock liegende Programm gestartet werden soll. Im

Regelfall heißt das, daß das DOS zunächst ohne Einsprung
initialisiert wird. Kann ein Programm ohne den Bootblock nicht
gestartet werden, führt man einen Reset durch und läßt den

Bootblock anspringen. Programmiert wird so eine Routine fol-
gendermaßen:

1. Nach der Testroutine "Handelt es sich um eine Bootdisk?"

wird in eine eigene Routine eingesprungen.

— Die Workbench 323

2. Abfrage beim User (am einfachsten über die Maustasten).

3. Einsprung in Bootblock oder Vortäuschen eines normalen

Bootblocks (wie von INSTALL).

Wir müssen daher zunächst die Strap-Routine umleiten. Fir
unsere neue Routine benötigen wir einige Bytes, die wir durch
die neue PAL-Test-Routine gewonnen haben. Auf diese Adresse
lenken wir den Strap um:

(4B49434B00FE85C200000006) DC.L "KICK",$FE85C6,Ende-Start

Start:

4EFS00FCB010 JMP $FCB010

Ende:

Auch hier lassen sich die Anderungen leicht von Hand vorneh-
men (bei Kickstart 1.2 sind die Adressen $FE8A2C und
$FCBO58). Uberschrieben wurde der Einsprung in den Bootblock
(JSR 12(A4)) und der anschließende Test (TST.L DO).

Fehlt unsere Routine:

CODE Programm

(4B49434BOOFCBO100000003A) DC.L "KICK",$FCBO10,Ende-Start

Start:

0839000600BFE001 BTST #6,$BFE001 ;Maustaste?

671C BEQ.S Einsprung ;JA--->
43F900FC52E4 LEA $FC52E4 ,Al ;V1.2: $FC5278

4EAEFFAO JSR -96(A6) ;FindResident

4A80 TST.L DO

670A BEQ.S NixDOS

2040 MOVEA.L DO,AO

20680016 MOVEA.L 22(A0),A0

7000 MOVEQ #0,D0 Ä
6008 BRA.S Verzweige

NixDOS:

TOFF § MOVEQ #-1,D0
6004 BRA.S Verzweige

Einsprung:
4EACOOOC JSR 12(A4)

Verzweige:

324 Amiga Tips & Tricks

4A80 TST.L DO
6706 BEQ.S Al lesOkay

4EF9YOOFEBSCE JMP SFE85CE 2V1.2: $FE8A34
AllesOkay:

4EF9YOOFEBSFO JMP $FE85F0 *V1.2: $SFE8A56
Ende:

Bei Betriebssystem V1.2 bitte die Adressen angleichen (s.
Remarks). Haben Sie Ihr Betriebssystem derart ausgestattet, ist
es nicht mehr möglich, einen Boot-Virus in Ihrem Amiga zu
finden (es sei denn, Sie halten standig beim Reset die linke

Maustaste gedrückt. Dann nämlich wird das im Bootblock be-

findliche Programm ausgeführt).

6.5 Betriebssystem-Version patchen

Nun haben Sie so wunderschöne Änderungen vorgenommen, und

äußerlich hat sich nicht viel getan. Wie wäre es daher mit einer
eigenen Betriebssystem-Nummer? Zunächst die Änderung der
Hand, die Sie zum Einlegen der Workbench auffordert (bewußt
binär):

DC.L "KICK"

DC.L $FE8C5E

DC.L 60 ;toll, näh, rechnen kann ich auch
DC.W %0000111110011111,%1100000111000000,%0011111111110000
DC.W %0000011100000111,%0000001111000000,%0011111111110000
DC.W %0000011100001110,%0000011111000000, %001 1100000000000
DC.W %0000011100011100,%00000001 11000000 , %001 1100000000000
DC.W %0000011100111000,%00000001 11000000, %0011111110000000
DC.W %0000011101110000,%00000001 11000000, 40011111111100000
DC.W %0000011111100000,%00000001 11000000, %000000001 1110000
DC.W %0000011111000000,%00000001 11000000, %000000001 1110000
DC.W %0000011110000000,%0000011111110011,%0011111111100000

W %000001 1100000000, %0000011111110011,%0011111110000000

Für alle, die PROFIMAT noch nicht besitzen. Ab Adresse

$FESC5E eingeben:

OF9F CICO 3FFO 0707 03C0 3FFO O70E 07CO 3800 071C OiCO 3800
0738 01CO 3F80 0770 01CO 3FEO O7EO 01CO OOFO 07CO 01CO OOFO
0780 07F3 3FEO 0700 07F3 3F80

——— Die Workbench 325

Aber auch die Titelleiste der Workbench muß noch geändert
werden. Wählen Sie den Punkt "Suche Zeichenfolge" und tippen

Sie:

Workbench release

Der Editor zeigt Ihnen ab Adresse $FECD4A:

Workbench release 1.2. %ld free memory

Ändern Sie es im ASCII-Modus so, wie Sie wollen. Möchten Sie
auch weiterhin die Anzahl freier Bytes gezeigt bekommen,
müssen Sie die Angabe %ld in dieser Zeichenkette haben. Diese
Angabe ist ein Code für die Exec-Function RAWDOFMT, die
anstelle des %ld ein Langwort (l) dezimal (d) ausgibt. Als
Assembler-Freak hätten Sie es lieber Hexadezimal? Dann geben
Sie ein: ’$%lx’. Sollen auch die führenden Nullen angezeigt wer-
den und acht Stellen ausgegeben werden, schreiben Sie:

SMmagic Workbench 1.5 $08lx Byte free

326 Amiga Tips & Tricks

——— Icons 327

T. Icons

Die gesamte grafisch gestaltete Benutzeroberfläche, die Work-
bench des Amiga, benötigt Symbole für die Darstellung von
Programmen, Datenfiles, Inhaltsverzeichnissen und Disketten.

Sogar die Fenster sind im eigentlichen Sinne Symbole. Wir wol-
len uns hier aber nur mit den Icons beschäftigen. Diese Icons
stellen durch ihre Bilder Objekte dar, mit denen der Benutzer
arbeiten kann. Zur Vereinfachung braucht er nicht mehr den
Namen eines Programms, das gestartet werden soll, einzugeben,

sondern nur das dazugehörige Icon anzuklicken. So erspart man

sich besonders bei Files, die in sehr verschachtelten Directories

liegen, die Eingabe des gesamten Pfadnamens, wie es ja ım CLI
mehr oder weniger immer nötig ist.

7.1 Die verschiedenen Icon-Typen

Nun ergibt sich aber ein Problem: Alle Symbole können für
verschiedene Objekte stehen. Hierbei ist nicht nur der Unter-
schied zwischen den einzelnen Programmen gemeint, sondern
man hat ja auch zwischen Directories und Disketten zu unter-
scheiden. Deshalb möchten wir folgendes anmerken: Das Symbol,

das der Benutzer für eine Sache definiert, sollte mit dem Zweck

übereinstimmen, muß es aber nicht! Sie sind also nicht gezwun-

gen, für Unterverzeichnisse immer ein Schubladen-Icon zu

zeichnen. |

Im Gegenteil! Sie können sogar, aus welchem Grund auch im-
mer, ein Directory mit einem Programmsymbol belegen. So ver-
wirren Sie zwar den Benutzer, die Verwaltung läuft aber immer
noch korrekt. Aus diesem Grund sollten wir uns darauf einigen,
daß eine Diskette mit einem diskettenähnlichen Objekt, also ei-
nem Diskettensymbol belegt wird usw. Unter dieser Vorausset-
zung können die einzelnen Typen genauer besprochen werden.
Wie Sie aus dem Kapitel über die Info-Funktion der Work-
bench-Diskette wissen, gibt es folgende Icon-Typen:

328 Amiga Tips & Tricks ———

Die Icon-Typen

Name Bezeichnung Objekt Nummer

Disketten-Icon WBDISK Grundstock der Diskette 1

Verzeichnis-Icon | WBDRAWER inhaltsverzeichnis 2

Programm-Icon | WBTOOL Startbares Programm 3

Datei-Icon WBPROJECT Daten zu einem Programm 4

Mülleimer-Icon WBGARBAGE Das Müllverzeichnis 5

Device-Icon WBDEVICE Icon für allgemeines Gerät 6
Kickstart-Icon WBKICK Die Kickstart Diskette 7

Dabei hat die Workbench für nicht grafisch definierte Icons
noch eine Sondereinlage bereit. Diese Icons stellen bestimmte
Zustände von Laufwerken dar. Es gibt hier folgende Typen:

Modus Beschreibung

DFO:NDOS Es handelt sich um eine formatierte Diskette, die aber nicht

das DOS-Format besitzt.

DFO:BAD Die Diskette ist nicht formatiert.

DFO:COPY Es handelt sich um eine angefangene Kopie.

DFO:BUSY Das Laufwerk ist beschäftigt und kann nicht angesteuert werden.

Da es verschiedene Icon-Typen gibt, kann man folgern, daß die

Workbench noch einige zusätzliche Informationen verwaltet. Se-
hen Sie dazu folgendes:

- Die Informationen eines Disketten-Icons entsprechen denen

eines Schubladen-Icons. Das Schubladen-Icon speichert zu-

sätzlich zum Bild, das ja alle Icons zwangsläufig haben müs-
sen, noch Daten zu dem Fenster, das bei einem Doppelklick

geöffnet wird.

- Die Datei-Icons gleichen eigentlich den Programm-Icons, nur
wird bei ihnen auch noch das Programm, mit dem sie erstellt
wurden, namentlich festgehalten. Dies dient dazu, daß man

durch einfaches Doppelklicken auf das Dateisymbol der

Workbench mitteilt, daß zuerst das Hauptprogramm geladen

werden soll und diesem dann anschließend der Inhalt der

Datei übergeben wird.

——— Icons 329

- Der Mülleimer ist eigentlich nur eine Sonderform der
Schublade. Ihn kann man im Gegensatz dazu jedoch nicht
von einem Inhaltsverzeichnis zum anderen bewegen und auch
nicht auf der Workbench ablegen.

7.2 Der Aufbau eines Icons

Kommen wir zu den Strukturen, nach denen Sie dann Ihre eige-
nen Icons herstellen können. Die Icon-Daten findet man, indem

man sich ein Inhaltsverzeichnis mit dem CLI genauer ansieht.
Dort ist zu jedem File, zu dem auch ein Icon existiert, noch ein
weiteres File gleichen Namens vorhanden, dem das Suffix ".info"
anhängt. Dieses File enthält alles, was die Workbench an Infor-

‚mationen braucht. Sehen wir uns den Inhalt deshalb genauer an.

7.2.1 Die DiskObject-Struktur

Zuerst beginnt jedes Iconfile, egal, um welchen Typ es sıch

handelt, mit einer sog. DiskObjekt-Struktur. Hier findet man
allgemeine Informationen. Dazu diese Tabelle:

DiskObject-Struktur

Bezeichnung Parameter Bytes Offset

do Magic magische Zahl 2 0

do Version Versionsnummer 2 2
do Gadget Klickstruktur 4 4
gg_LeftEdge Klickber. links 2 8

gg TopEdge Klickber. oben 2 10

gg Width Klickber. Breite 2 12
gg_Height Klickber. Höhe 2 14

gg_Flags Invert-Flag 2 16

gg_Activation $0003 2 18
gg Type $0001 2 20

gg GadgetRender Zeiger1 Bilddaten 4 22

gg_SelectRender Zeiger2 Bilddaten 4 26

gg_IntuiText “not used??" 4 30
gg MutualExciude "not useable!" 4 34

gg_Specialinfo “not useable!" 4 38

330 Amiga Tips & Tricks

gg_GadgetiD "for own use!" 2 42

99_UserData "your Pointer!" 4 44

do Type Icon-Typ 1 48

do_DefaultTool Text-Struktur 4 50
do ToolTypes Text-Struktur 4 54

do CurrentX aktuelle x-Position 4 58
do CurrentY aktuelle y-Position 4 62
do DrawerData WindowStruktur 4 66
do_ToolWindow Eigenes Programm-Window 4 70

do_StackSize Speicherplatzreservierung 4 74

Zu Anfang muß die "magic number" $E310 stehen! Sie teilt dem
System mit, daß es sich um ein Icon handelt. Danach folgt die
Versionsnummer, die bisher immer $0001 beträgt. Sie finden in
der obigen Tabelle übrigens zu jedem Eintrag noch eine weitere
Zahl, die angibt, in wieviel Bytes der Wert angegeben werden
muß. Das ist einerseits wichtig zum Auslesen, andererseits
brauchen Sie den Wert, um den Variablentyp zu bestimmen,

wenn Sie nicht in C programmieren.

Nach den ersten beiden Daten folgen vier unbenutzte Bytes, die
normalerweise für eine weitere Gadget-Klickstruktur verwendet
werden. Und nun wird es schon etwas komplizierter: Das eigent-

liche Symbol wird noch in zwei zu unterscheidende Bereiche
unterteilt. Da gibt es einmal den gesamten Grafikbereich. Zum

anderen muß man aber noch extra angeben, in welchem Teil

überhaupt auf das Anklicken reagiert werden soll. Dazu folgen
die x- und y-Offsets zur eigentlichen Position, die die linke
obere Ecke des Klickfeldes bestimmen. Danach stehen die Breite
und die Höhe. |

Wichtig ist auch zu wissen, daß unter dem Klickbereich der
Text gedruckt wird, der jeweils unter einem Icon steht. Zieht
man nämlich den Klickbereich höher, so wird der Text vielleicht

sogar in die Grafik geschrieben. Jetzt wird es wieder einmal
ganz wichtig. Wir befinden uns in einer Gadget-Struktur. Mit
dem nächsten Wert geben wir an, in welcher Weise sich das Bild
verändern soll, wenn es durch einen Klick aktiviert wurde. Es

stehen drei Möglichkeiten zur Auswahl:

—— cons 331

1. Als erstes können Sie wählen, daß das gesamte rechteckige
Feld, in dem sich das Bild befindet, einfach invertiert wird.

Diese Möglichkeit ist zwar einfach, aber nicht gerade genial.

Hierfür schreiben Sie eine 4 in das Flag.

2. Nicht alles, sondern nur das Gezeichnete wird invertiert.

Das wirkt schon etwas besser und macht nicht so einen

klobigen Eindruck. Das Nonplusultra ist es aber auch nicht.

Für diesen Modus steht eine 5.

3. Erst die letzte Version gibt Hoffnung auf eine ausgefeilte
grafische Gestaltung. Wählen Sıe diesen Typ, so wird anstatt

des ersten Symbols ein vollständig neues Bild dargestellt.
Somit können Sie jede beliebige Änderung vornehmen, was
Sie mit einer 6 in dem Flag anzeigen.

Als nächstes folgen in unserer DiskObject-Struktur zwei kon-
stante Zahlenwerte $0003 und $0001. Der erste steht für die
Aktivierungsart, im zweiten wird ein Boolean-Gadget markiert.
Danach folgen die Zeiger auf die Icon-Grafikdaten. Je nachdem,
ob Sie das Umschalten zwischen zwei Grafiken gewählt haben,
‘muß auch der zweite Zeiger initialisiert werden.

Darauf folgen 18 Bytes, die das System für normale Gadgets
benötigt. Allerdings wäre die Benutzung hier ziemlich sinnlos.
Am besten ist es, wenn Sie diese mit Nullen auffüllen. Wichtig
wird es bei dem nächsten Parameter. Er entscheidet, welcher
Icon-Typ dem Benutzer zur Verfügung steht. Setzen Sıe deshalb
die Nummern ein, die Sie der oben aufgelisteten Tabelle ent-

nehmen. Weil dies aber in einem Byte angegeben werden soll

und der Prozessor nur gerade Adressen adressieren kann, steht

gleich danach ein Füllbyte.

Je nachdem, welcher Typ gewählt wurde, müssen nun die ein-

zelnen Zeiger gesetzt werden. Zunächst gilt das für den Zeiger
auf die DefaultTool-Struktur. Wie diese aufgebaut sein muß, se-

hen Sie später. Dann der Zeiger auf die ToolTypes-Struktur.
Auch dazu später mehr.

332 Amiga Tips & Tricks

Für die Positionierung wird in der DiskObject-Struktur als wei-
teres die aktuelle x- und y-Position gespeichert. Man hat aber
auch die Möglichkeit, durch die Koordinatenangaben von
$80000000, $80000000 der Workbench mitzuteilen, daß sie nach
einer geeigneten Position suchen soll. Dieser Wert wird
NO_ICON_ POSITION genannt. Somit verdeckt ein selbst er-
zeugtes Icon nicht irgendwelche anderen, die sich an der glei-
chen Stelle befinden. Es folgt ein Zeiger auf die Fensterdaten,
falls diese erforderlich sind, und ein Zeiger auf die ToolWin-
dow-Struktur. |

Zum Schluß kommt noch die Stack-Tiefe, damit die Workbench

weiß, wieviel Speicher für dieses Programm oder diese Daten

reserviert werden muß. Dabei hat der Wert eines Datenfiles eine
höhere Priorität als der eines Hauptprogramms. Damit wird be-

zweckt, daß man z.B. für besonders große Datenfelder das File
gleich entsprechend reservieren kann.

7.2.2 Die Drawer-Struktur

Nachdem Sie nun über den Aufbau der allgemeinen DiskObject-
Struktur informiert sind, beschäftigen wir uns mit den einzelnen
Typen. Behandelt wird zuerst die Drawer-Struktur, die der einer

Diskette gleich ist. Aber auch die Inhaltsverzeichnisse und der
Mülleimer benutzen diese Struktur. Sie enthält alle nötigen Da-
ten zum Öffnen eines neuen Directory-Fensters. Dazu folgende

Tabelle:

DrawerData-Struktur

Bezeichnung Parameter Bytes Offset

wi _LeftEdge Linke Ecke 2 0
wi TopEdge Obere Ecke 2 2
wi_ Width Breite 2 4
wi_ Height Hoehe 2 6

wi_DetailPen Zeichenfarbe 1 1 8
wi BlockPen Zeichenfarbe 2 1 9
wi _IDCMPFlags Gadget-Flags 4 10

wi Flags Window-Flags 4 14

—— Icons 333

wi_FirstGadget Gadget-Struktur 4 18

wi_CheckMark Abhaken 4 22
wi_ Title Titeltext 4 26
wi_ Screen Screenpointer 4 30
wi _BitMap Window-Bitmap 4 34

wi _MinWidth min. Breite 2 38
wi _MinHeight min. Hoehe 2 40
wi_MaxWidht max. Breite 2 42
wi_MaxHeight max. Hoehe 2 44

wi_ Type $0001 2 46
actx-pos aktuelle x-Position 4 48

acty-pos aktuelle y-Position 4 52

Wie Sie vielleicht schon erkannt haben, handelt es sich um eine

vollständige NewWindow-Struktur, die um die Koordinaten für
die aktuelle Position erweitert wurde. Für diejenigen, denen
diese noch nicht so bekannt ist, hier die Erläuterungen:

Am Anfang stehen die Koordinaten der linken oberen Ecke und
die Ausdehnung. Wurde das Window vom Benutzer verschoben

und danach geschlossen, die Diskette aber nicht aus dem System

entfernt, so wird das Directory-Window nicht an der angegebe-

nen Position geöffnet, sondern an der, die die aktuellen Koordi-

naten angeben.

Des weiteren folgen Angaben zur farblichen Gestaltung. Mit den

Werten legt man fest, in welcher Farbe die Linien und Blöcke
eines Windows gezeichnet werden. Hier stehen im Normalfall

jeweils $FF für -1, was bedeutet, daß die Farben denen der
Screen angepaßt werden sollen. Somit ist eine durchgehend
gleiche Gestaltung gewährleistet.

Die nächsten Bytes beinhalten einige Zeiger und Flags, die ei-
gentlich systemintern verwaltet werden. Zuerst die IDCMP-

Flags. Mit ihnen wird die Reaktion auf irgendwelche Aktionen
am Window festgelegt. Über die Window-Flags bestimmt man
die Eigenschaften des Directory-Fensters. Darauf folgen fünf

Zeiger auf Strukturen oder Speicherbereiche, deren Veränderung

wesentliche Kenntnisse des Betriebssystems voraussetzt.

334 Amiga Tips & Tricks

Da sich alle Windows in ihrer Größe beliebig einstellen lassen,
müssen dementsprechend auch die Minimum- und Maximum-

werte feststehen. Diese werden mit MinWidth, MinHeight,
MaxWidth und MaxHeight eingestellt. Als letztes Datum der
Window-Struktur geben wir an, daß dieses Window .auf der
Workbench erscheinen soll. Wie oben schon erwähnt, wird die
Struktur mit den aktuellen Koordinaten des Fensters abge-
schlossen. So kann man sich für das momentane Arbeiten mit
bestimmten Inhaltsverzeichnissen eigene Positionen einrichten,
die wichtige Arbeitsflächen nicht verdecken.

7.2.3 Die Image-Struktur

Die Image-Struktur wird bei jedem Icon benötigt. Sie enthält die
gesamte Grafik und kommt, wenn es angefordert wird, sogar

zweimal in einem File vor.Image

Bezeichnung Parameter Bytes Offset

im_LeftEdge Linke Ecke 2 0
im_TopEdge Obere Ecke 2 2

im_Width Breite 2 4
im_ Height Hoehe 2 6
im_ Depth Tiefe 2 8
im_ImageData Bitplanes-Zeiger 4 10

im_PlanePick Bild-Daten 1 14
im_PlaneOnOff Verwendung 1 15
im_Nextimage Nachstes Bild 4 16

Der Aufbau ist denkbar einfach: Nach ein paar Informationen

zur Größe und Lage folgen mehrere Bitmaps, die die eigentli-
chen Bilder enthalten. Die Anzahl der Bitmaps hängt von der
Tiefe des Screens ab. Normalerweise hat die Workbench eine
Tiefe von zwei Bitmaps, entsprechend sollte auch das Image

aufgebaut sein. |

Obwohl die Position des Icons schon angegeben worden ist, und
zwar in der DiskObject-Struktur, wird diese Angabe beim Image

noch einmal wiederholt. Die Position ist nun aber ein Offset zu

——— Icons 335

dieser Angabe. Über die Breite, Höhe und Anzahl der Bitplanes
brauchen wohl keine Worte mehr verloren zu werden, da es sich

hier genau wie bei den anderen Strukturen verhält.

Die nächsten vier Bytes sind ein Zeiger auf die tatsächlichen
Grafikdaten. Dabei können durch die beiden weiteren Parameter
noch einige Veränderungen vorgenommen werden. So gibt man
unter PlanePick an, welche der vorhandenen Bitplanes überhaupt

verwendet werden sollen, um das Bild darzustellen. Und mit

PlaneOnOff entscheidet man, was mit den Bitplanes geschehen

soll, die nicht zur Darstellung benutzt werden. Der letzte Para-
meter ist ein Zeiger auf eine andere Image-Struktur. So hat man
die Möglichkeit, mehrere Objekte zu einem Gefüge zusammen-
zubinden. Diese Funktion wird aber auf der Workbench nicht
unterstützt.

Auf die Image-Struktur folgen die Bytes der einzelnen Bitplanes.
Zuerst Bitplane 1, dann Bitplane 2 und, wenn noch mehr Bitpla-

nes erforderlich, auch noch Bitplane 3 usw. Die Anzahl der By-

tes errechnet sich aus der angegebenen Breite, aufgerundet auf
das nächste Vielfache von 16, durch 8 mal Pixel-Anzahl der

Höhe. Diese Bytes benötigt man, um eine Bitplane abzubilden.
Für jede weitere werden natürlich genauso viele gebraucht.

7.2.4 Der DefaultTool-Text

Im Gegensatz zu der Image-Struktur, die bei jedem Icon ge-

braucht wird, benötigt man den DefaultTool-Text nur bei den
Disketten und den Datenfiles, da hier angegeben wird, mit
welchem Programm das Objekt erstellt wurde und welches Pro-
gramm für die Bearbeitung oder Verarbeitung gebraucht wird.
Deshalb steht bei Disketten immer der Text "SYS:System/
DiskCopy", weil beim Übereinanderlegen zweier Disketten dieses

Systemprogramm aufgerufen werden muß, damit die eine auf
die andere kopiert werden kann. Wenn Sie diesen Text entfer-

336 ‚Amiga Tips & Tricks

nen, kann man die Diskette nicht mehr über diese Funktion ko-

pieren. Aber damit sind wir schon bei der Anwendung. Zuerst

sollten wir uns mit dem Aufbau beschäftigen. Dazu hier die
Parameter:

DefaultTool

Bezeichnung Parameter Bytes

char num Zeichenzahl 4
chars Zeichen x

char _end Null-Byte 1

Wie Sie sicherlich gleich erkannt haben werden, besteht diese
Liste nur aus einem wirklich festen Datum, der Anzahl der

Zeichen. Alles andere ist davon abhängig. Es bleibt nur noch zu
erwähnen, daß der Text mit einem Nullbyte abgeschlossen wer-

den muß, damit das Ende eindeutig identifiziert werden kann.

7.2.5 Der ToolTypes-Text

Wie schon bei der Besprechung der Info-Funktion der Work-
bench angeschnitten, bietet die Texteingabe unter Tool Types
eine wunderbare Möglichkeit, dem Hauptprogramm zusätzliche
Informationen zu übergeben. So kann es sich z.B. bei einem Text
um das IFF-Format handeln. Das Programm benötigt aber noch
weitere Informationen, die in dem IFF-Format nicht berück-

sichtigt werden. Diese kann man dann einfach hier hinein-
packen, und das File kann gleichzeitig noch von allen anderen

Programmen, die das IFF-Format voraussetzen, benutzt werden.

ToolTypes

Bezeichnung Parameter Bytes

string num Textanzahl — 4

Genau wie der DefaultTool-Text ist auch die Größe des Tool-
Types-Feldes ziemlich schwer abzuschätzen. Damit eine Aus-
wertung aber auch nicht ins Leere greift, steht am Anfang die
Anzahl der Zeichenketten. Für die Berechnung muß man erst

——— Icons 337

die tatsächliche Zahl um eins erhöhen und dann mit vier multi-

plizieren. Diese Zahl findet man also, wenn man das File liest.

Will man die Daten auswerten, muß man entsprechend umge-

kehrt verfahren.

Danach folgt ein Feld mit Zeichenketten, die genau wie unter
DefaultTool mit der Länge beginnen und mit einem Nullbyte
enden. Wie viele Zeichenketten es sind, haben Sie ja vorher aus
der verschlüsselten Zahl berechnet.

7.2.6 Der Icon-Analyzer

Bisher haben Sie zwar einiges über die Strukturen kennenge-
lernt, aus denen sich ein Icon zusammensetzt. Trotzdem können

Sie dies nicht praktisch erfahren, indem Sie z.B. ein .info-File
näher untersuchen. Dafür habe ich nun folgendes Programm in
BASIC geschrieben. Es liest nach Angabe des Namens das File

ein und zeigt nacheinander die Parameternamen mit den ent-
sprechenden Werten dieses Files. Am einfachsten ist eine Ana-

lyse, wenn Sie sich die Liste auf dem Drucker ausgeben lassen.
Sie brauchen es aber nicht.

Icon - Analyser V 1.3

(p) by Wgb im Mai 1988
(c) by DATA BECKER

|

i

8

t

; |

' Autor : Wolf-Gideon Bleek

' Grüße : a-ha "there's never a forever thing"

' Version: 2.0

' Kickstart 1.2/1.3

DEFLNG a-z

DIM Groesse(200,2)

LIBRARY ":bmaps/icon. library"
DECLARE FUNCTION GetDiskObject LIBRARY

DECLARE FUNCTION PutDiskObject LIBRARY

RESTORE DiskObjekt
INPUT "Bitte geben Sie den Namen des Icon-Files ein"; File$
IF File$ = "" THEN END

Adresse = GetDiskObject(SADD(File$))
IF Adresse = 0 THEN END

338 Amiga Tips & Tricks

PRINT "Das Icon '";File$;".info' liegt ab";Adresse

WBObjektOut(Adresse)

IF Groesse(10,0) THEN WBImageOut(Groesse(10,0))
IF Groesse(11,0) THEN WBImageOut(Groesse(12,0))
IF Groesse(22,0) THEN WBDrawerOut(Groesse(22,0))
FreeDiskObject(Adresse)

END

SUB WBDrawerOut (Adresse) STATIC

PRINT
PRINT "DrawerData - Struktur:"

RESTORE DrawerData

CALL DataOut(Adresse, 20)
END SUB

SUB WBImageOut(Adresse) STATIC

PRINT

PRINT "Image - Struktur:"

RESTORE Image

CALL DataOut(Adresse, 9)

END SUB

SUB WBObjektOut(Adresse) STATIC

PRINT

PRINT "DiskObject - Struktur:"

RESTORE DiskObjekt

CALL DataOut(Adresse, 25)
END SUB

SUB DataOut(Adresse, Daten%) STATIC

SHARED Zaehler, Groesse()
Start = Adresse
FOR i = 1 TO Daten%

READ Text$, Erkl$, Bytes
Groesse(Zaehler,1) = Start
Groesse(Zaehler,2) = Bytes
IF Bytes = 1 THEN

Wert = PEEK(Start)

Start = Start + 1
ELSEIF Bytes = 2 THEN

Wert = PEEKW(Start)

- Start = Start + 2
ELSEIF Bytes = 4 THEN

Wert = PEEKL(Start)

Start = Start + 4

Icons 339

END IF

PRINT LEFT$(Text$,15);TAB(20); LEFTSCEKIS, 25); TAB(50);

PRINT "$"-RIGHT$("0000000"+HEX$(Wert), Bytes*2);

PRINT TAB(60); Start-Adresse-Bytes; TAB(65); Zaehler
Groesse(Zaehler, 0) = Wert

Zaehler = Zaehler +1

NEXT i

END SUB

DiskObjekt:
DATA do_Magic,magische Zahl,2
DATA do_Version, Versionsnummer ‚2
DATA do_Gadget ‚weitere Klickstruktur,4
DATA gg_LeftEdge,Klickbereich links,2

DATA gg_TopEdge,Klickbereich oben, 2

DATA gg_Width,Klickbereich Breite,2
DATA gg_Height,Klickbereich Höhe, 2

DATA gg Flags, Invert-Flagge,2

DATA gg Activation, festgelegt $0003,2

DATA gg_Type, festgelegt $0001,2

DATA gg _GadgetRender ‚Zeiger auf 1. Bilddaten, 4

DATA gg SelectRender, Zeiger auf 2. Bilddaten, 4

DATA gg_IntuiText, unbenutzt,,4

DATA gg MutualExclude, unbenutzt,4

DATA gg_Speciallnfo,unbenutzt,4

DATA gg GadgetID,unbenutzte Gadget-ID,2

DATA gg UserData,unbenutzter Gadget-Pointer,4

DATA do_Type,Icontyp,2

DATA do DefaultTool,Text-Struktur,4
DATA do ToolTypes, Text-Struktur,4
DATA do_CurrentX,aktuelle x-Position,4
DATA do_CurrentY ‚aktuelle y-Position,4

DATA do_DrawerData,Window-Struktur,4
DATA do_ToolWindow,Eigenes Programm-Window, 4
DATA do StackSize,Speicherplatzreservierung,4

DrawerData:

DATA wi_LeftEdge,Linke_Ecke,2
DATA wi_TopEdge, Obere_Ecke,2
DATA wi_Width,Breite,2
DATA wi_Height, Hoehe, 2
DATA wi_DetailPen, Zeichenfarbe_1,1
DATA wi_BlockPen,Zeichenfarbe_2, 1
DATA wi_IDCMPFlags,Gadget_Flaggen,4

DATA wi_Flags,Window_Flaggen, 4

DATA wi_FirstGadget,Gadget_Struktur,4
DATA wi_CheckMark ‚Abhaken, 4
DATA wi_Title,Titeltext,4
DATA wi_Screen,Screenpointer,4
DATA wi_BitMap,Window_BitMap,4

- DATA wi_MinWidth,min. Breite,2
DATA wi_MinHeight,min._Hoehe, 2

340 Amiga Tips & Tricks ———

DATA wi_MaxWidht,max._Breite,2
DATA wi_MaxHeight ,max._Hoehe, 2
DATA wi_Type,$0001,2
DATA actx-pos aktuelle _x-Position,4
DATA acty-pos,aktuelle_y-Position,4
Image:

DATA im LeftEdge,Linke_Ecke,2
DATA im_TopEdge,Obere Ecke,2
DATA im_Width,Breite,2
DATA im_Height,Hoehe,2
DATA im Depth, Tiefe,2
DATA im_ImageData,BitPlanes Zeiger ,4
DATA im_PlanePick,Bild_ Daten, 1
DATA im _PlaneOnOff, Verwendung, 1

DATA im_NextImage,Nachtes_ Bild,4
DefaultTool:
DATA char_num,Zeichenzahl ,4

ToolTypes:

DATA string_num, Textanzahl ,4

Programmbeschreibung

Der Icon-Analyzer nutzt fiir seine Arbeit die Betriebssystemrou-
tinen, die wir in der Icon.Library finden. Dort sind mehrere
Funktionen zum Laden, Speichern und Löschen von Icons. Wir
nutzen diese drei. Die dann angesteuerten Unterprogramme
werten die Datenfelder aus und geben die Werte in einer Tabelle
auf den Bildschirm aus. Dazu gibt es die allgemeine Routine
DataOut(), die über die Startadresse und die DATA-Zeilen alles

erledigt. Diese Routine wird aber nicht direkt angesprungen,
sondern von den leichter verständlichen Programmteilen zur
Ausgabe der Drawer-, Image- oder WBObjekt-Struktur.

7.3 Eigene Icons erstellen

Nachdem Sie nun ausführlich über die Strukturen informiert
sind, aus denen ein Icon besteht, sollten wir daran gehen, dies

auch zu nutzen und Icons nach eigenen Bedürfnissen zu schrei-
ben. Es ıst allerdings einfacher, ein bereits bestehendes Icon
nach seinen Wünschen umzuändern, als ein vollkommen neues

herzustellen. Aber diese Methode wird ja z.B. auch beim Icon-
Editor der Workbench verwendet.

—— Icons 341

7.3.1 zwei Bilder für ein Icon

Hier werden Sie kennenlernen, wie man über die Alternate-
Image-Funktion in der Lage ist, beim Anklicken nicht nur das
Bild zu invertieren, sondern sogar ein neues Bild darzustellen.

Dies ist eine allgemeine Methode, die Sie auf jeden Icon-Typ
anwenden können. Später werden Sie dann noch andere Mög-
lichkeiten kennenlernen, die sich z.B. nur auf Schubladen be-

ziehen.

Die Änderung geht davon aus, daß nur der Pointer auf die
zweite Image-Struktur gesetzt werden muß und auch noch die
entsprechenden Daten angefügt werden. Dieses Problem läßt sich
einfacher lösen als man denkt, denn auf der neuen Extras-Dis-

kette befindet sich ein solches Programm. Es erledigt die Arbeit
des Zusammenbindens. Wir müssen mit einem Programm, z.B.
dem Icon-Editor, zwei Icons erstellen. Wichtig ist nur, daß sie

beide die gleiche Größe haben. Nach Angabe des Namens wer-
den sie dann zu einem verschweißt.

Damit können Sie die witzigsten Effekte erzielen: z.B. einen
Mülleimer, aus dem schon der Abfall quillt, wenn man ihn an-

klickt, oder lassen Sie irgend etwas Unerwartetes passieren.
Schon eine Schublade, die scheinbar geöffnet wird, sobald sie

angeklickt wird, ist bestimmt schöner als die langweiligen auf
der Workbench.

Mit IconMerge zum Ziel

IconMerge ist ein Utility, das es uns erlaubt, die Grafiken
zweier Icons zu einem neuen zu verschmelzen. Dabei wird die
des ersten beibehalten, jedoch beim Anklicken nicht mehr in-
vertiert, sondern die des zweiten gezeigt. Hierfür ruft man ganz
einfach IconMerge mit folgenden Parametern über das CLI auf:

IconMerge File1 File2 ZielFile

Sie brauchen bei den Filenamen nicht das Suffix .info anzuhän-
gen. Dies erledigt IconMerge selbständig. Beim Arbeiten mit
IconMerge ist darauf zu achten, daß die beiden Grafiken in

342 Amiga Tips & Tricks

etwa die gleiche Größe haben, denn sonst wird die eine nicht

durch die andere vollkommen überdeckt, und dann kann es zu

Schwierigkeiten in der Darstellung kommen, die sich in einem
Kuddelmuddel äußern. Achten Sie also besonders auf einheitli-

che Größe.

Wollen Sie ein Icon aus zwei Bildern wieder in ein einzelnes
verwandeln, dann hängen Sie noch die Option -s für Split hinten
ran. Sie erhalten dann aus einem File zwei neue Icons. Somit ist

es auch möglich, das zweite Bild für ein eigenständiges Icon zu
nutzen oder einfach nur die Reihenfolge zu tauschen:

IconMerge QuellFile Filei File2 -s

7.3.2 Textim Bild

Eine weitere Möglichkeit, etwas anders zu machen, ist das
Hochziehen des Bildtextes. Wie Sie aus der DiskObjekt-Struktur
schon kennen, wird außer dem eigentlichen Grafikbereich des
Icons noch der Klickbereich unterschieden. Dieser Klickbereich
wird ganz zu Anfang in der DiskObjekt-Struktur in den Para-
metern 4-7 angegeben. Und als erwähnenswerte Eigenschaft ist
zu erkennen, daß genau unter dem Klickbereich die Icon-Un-
terschrift gedruckt wird. Verkürzt man nun die Höhe des Klick-
bereiches, so zieht man gleichzeitig auch den Text hoch. So kön-

nen Sie bei geschickter Bildgestaltung den Text mit in die Gra-
fik einbauen und haben nicht wie sonst den Titel darunter

stehen.

7.3.3 Der Icon-Editor

Für diese Änderungen, die ja nur einige Bytes des .info-Files
betreffen, benötigen wir ein Programm, das es erlaubt, be-

stimmte Bytes anzusprechen und diese zu verändern. Außerdem

muß man das Geänderte wieder abspeichern können.

— Icons 343

Dafür verwenden wir größtenteils das oben beschriebene Ana-
lyzer-Programm. Als Ergänzungen werden einige Zeilen einge-
fügt. Hier sehen Sie noch einmal das ganze Listing. Um Tippar-
beit zu ersparen, empfiehlt es sich, die neuen Zeilen in das

Analyzer-Listing einzufügen und es unter dem Namen "Icon-
Editor" abzuspeichern.

DIM DiskObject$(26,3) DiskObject(26)

DIM DrawerData$(20,3) ,DrawerData(20)
DIM Image$(2,9,3), Image(2,9)
DIM DefaultTool$(2,3),DefaultTool (2)
DIM Adresse(100,3)
ON TIMER(.5) GOSUB KeyTest
TIMER ON

DEF FNSize%CIm)=Image(Im, 4)*2* INTC (Image(Im,3)+15)/16)
WIDTH 75 : Adr=1 : Adrnr=1
INPUT "Pfadname: ";Pfad$

INPUT "Filename:";File$
OPEN Pfad$+File$+". info" FOR INPUT AS 1

summary$=INPUT$CLOF(1),1)

CLOSE 1

summary$=summary$+STRING$(40,0)
LstBytes:

nr=0 : lst=0

GOSUB LoadHeader

IF DiskObject(18)=1 THEN

GOSUB LoadDrawer

GOSUB LoadImage

GOSUB LoaddefaultTool

GOSUB LoadTool Types

END IF

IF DiskObject(18)=2 OR DiskObject(18)=5 THEN

GOSUB LoadDrawer

GOSUB LoadImage

GOSUB LoadTool Types
END IF

IF DiskObject(18)=3 THEN

GOSUB LoadImage

GOSUB LoadTool Types
END IF

IF DiskObject(18)=4 THEN

GOSUB LoadImage

GOSUB Load@efaultTool

GOSUB LoadTool Type
END IF

PRINT

PRINT "End of File!"

WHILE ende=0

SLEEP

344 Amiga Tips & Tricks

IF lst=1 THEN GOTO LstBytes

WEND

END

KeyTest:

IF INKEY$<>" " THEN RETURN

WINDOW 2,"Eingabe", (0,0)-(631,53),6
Start:

PRINT "Adresse:"Adr ,Adresse(Adrnr,3)
INPUT "Befehl: ",Befehl$

ComKey$=LEFT$(Befehl$, 1)

ComTxt$=MID$(Befehl$,2)
ComWrt#=VAL(ComTxt$)
IF ComKey$="#'' THEN

FOR TestI=1 TO nr

IF Adresse(Test!I,1)=ComWrt# THEN Adr=ComWrt# : Adrnr=Test!
NEXT Testl
GOTO Start

END IF

IF ComKey$="e" THEN ende=1

IF ComKey$=""s" THEN
IF LENCComTxt$)>0 THEN File$=ComTxt$

OPEN ":mod. Icons/"+File$+". info" FOR OUTPUT AS 1

PRINT#1, summary$

CLOSE 1

KILL "smod. Icons/"+File$+". info. info"
GOTO Start

END IF

IF ComKey$="a" THEN

bytes$="" : Wert#=ComWrt#

FOR Keyl=Adresse(Adrnr ,2)-1 TO 1 STEP -1
a=INT(Wert#/256 Keyl)
Wert#=Wer t#-a*256 Keyl

bytes$=bytes$+CHR$(a)

NEXT Keyl

bytes$=bytes$+CHR$(Wert#)

MID$(summary$,Adr ‚Adresse(Adrnr ‚2))=bytes$
Adresse(Adrnr ‚3)=ComWrt#

GOTO Start

END IF

IF ComKey$="l" THEN lst=1

WINDOW CLOSE 2

RETURN

LoadHeader :

RESTORE DiskObject

po=1 : PRINT
PRINT “struct DiskObject" : PRINT

FOR I=1 TO 26

GetBytes

DiskObject$(1,1),DiskObject$(1,2),DiskObject$(1,3),DiskObj6ect(1)
NEXT I

RETURN
LoadDrawer:

RESTORE DrawerData

——— Icons 345

PRINT
PRINT "struct DrawerData" : PRINT
FOR I=1 TO 20

GetBytes

DrawerData$(1,1),DrawerData$(1,2),DrawerData$(1,3),DrawerD6ata(l)

NEXT I
RETURN
LoadImage:

Im=1

GOSUB GetImage

IF DiskObject(12)<>0 THEN Im=2 : GOSUB GetImage
RETURN

GetImage:

RESTORE Image

PRINT

PRINT "struct Image" : PRINT

FOR I=1 TO 9

GetBytes Image$(Im,I,1), Image$(Im,1,2), Image$(Im,1,3), Image(Im, I)
NEXT I

bytes=FNSizeX(Im) -

PRINT

PRINT "BitPlanes" : PRINT

WIDTH 60

FOR j=1 TO Image(Im,5)

PRINT

PRINT "Bitplane";j
FOR I=1 TO bytes

a$=HEX$(ASC(MID$(summary$,po,1)))
IF LENCa$)<2 THEN a$="0"'+a$
PRINT a$;

IF 1/2=INTC1/2) THEN PRINT " ">

po=pot+1
NEXT I
PRINT

NEXT j
WIDTH 75

RETURN

LoadDefaultTool:

RESTORE DefaultTool

PRINT

PRINT "DefaultTool" : PRINT

GetBytes DefaulTool$(1,1),DefaultTool$(1,2),DefaultTool$(1,3),
DefaultTool(1)

IF DefaultTool(1)>80 THEN DefaultTool(1)=DefaultTool(1)/16

GetString DefaultTool(1)/16

RETURN
LoadToolTypes:

RESTORE ToolTypes
PRINT
PRINT "ToolTypes" : PRINT
IF po>LEN(summary$) THEN RETURN

GetBytes ToolTypes$(1,1), Tool Types$(1,2), Tool Types$(1,3), Tool Types(1)
FOR I=1 TO ToolTypes(1)/4-1

346 Amiga Tips & Tricks

RESTORE DefaultTool
ToolTypes$(2,3)=""
GetBytes

ToolTypes$(2,1), ToolTypes$(2,2), Tool Types$(2,3), Tool Types(62)
IF ToolTypes(2)>80 THEN ToolTypes(2)=ToolTypes(2)/16

GetString ToolTypes(2)

NEXT I
RETURN

SUB GetString (length) STATIC

SHARED po, summary
ts=po : a=1
IF length=0 THEN EXIT SUB

WHILE a<>0

a=ASC(MID$(summary$,po,1))

a$=HEX$(a)
IF LENCa$)<2 THEN a$="0"+a$

PRINT a$;" ";

po=po+1
WEND

PRINT

PRINT MID$(summary$, ts, po-ts-1)

END SUB

SUB Decimal (he$,Dec) STATIC
Dec=0
FOR I=1 TO LENChe$)

a=ASC(MID$(he$, LEN(he$)+1-1,1))-48
IF a>9 THEN a=a-7

Dec=Dec+16° (1-1)*a

NEXT I
END SUB

SUB GetBytes (eng$,deu$,Wert$,Dec) STATIC
SHARED po, summary$,Adresse(),nr

READ eng$,deu$, bytes

PRINT eng$; TAB(20);deu$; TAB(47);
a$=MID$(summary$,po,bytes)

IF bytes=1 THEN Wert=ASC(a$)
IF bytes=2 THEN Wert=CVI(a$)
IF bytes=4 THEN

Wert$=!!

FOR j=1 TO 4
a=ASC(MID$(a$, j,1))
h$=HEX$(a)
IF LENCh$)<2 THEN h$=h$+"'0"

Wert$=Wert$+h$

NEXT j

ELSE

Wert$=HEX$(Wert)

END IF

PRINT "$";Wert$;TAB(57);
Decimal Wert$,Dec
PRINT Dec; TAB(71);po
nr=nr+1

Icons

Adresse(nr,1)=po : Adresse(nr,2)=bytes :
po=po+bytes

END SUB

DiskObject:

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

do_Magic,magische_Zahl,2
do_Version,Versionsnummer ‚2
do Gadget ,Klickstruktur,4

gg_LeftEdge,Klickber. links,2
gg_TopEdge,Klickber. oben,2
gg Width,Klickber. Breite,2
gg_Height,Klickber._Höhe, 2

gg_Flags, InvertFlagge,2

gg_Activation,$0003,2
gg_Type,$0001,2

gg_GadgetRender, Zeiger1 Bilddaten,4

gg_SelectRender ‚Zeiger2_Bilddaten, 4

gg_IntuiText,"not used??",4

gg_MutualExclude, "not useable!",4

gg_SpecialInfo,"not useable!",4

gg GadgetID,"for own use!",2

gg UserData,"your Pointer!",4

do_Type, Icontyp, 1

nothing, Fuel lbyte, 1

do DefaultTool, TextStruktur,4
do_ToolTypes, TextStruktur,4
do_CurrentX,aktuelle x-Position,4
do_CurrentY ‚aktuelle y-Position,4
do_DrawerData,WindowStruktur, 4
do_ToolWindow,Eigenes_Programmwindow, 4
do_StackSize,Speicherplatzreservierung, 4

DrawerData:

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

wi _LeftEdge,Linke_Ecke,2
wi_TopEdge,Obere_Ecke,2
wi Width,Breite,2

wi Height, Hoehe, 2

wi DetailPen, Zeichenfarbe_ 1,1

wi_BlockPen, Zeichenfarbe_ 2,1
wi_IDCMPFlags,GadGet_Flaggen,4

wi_Flags,Window_Flaggen, 4

wi_FirstGadget, Gadget_Struktur,4
wi_CheckMark, Abhaken,4
wi Title,Titeltext,4

wi_ Screen, Screenpointer ,4
wi_BitMap,Window_BitMap,4
wi_MinWidth,min. Breite,2
wi_MinHeight,min. Hoehe,2

wi_MaxWidht,max. Breite,2
wi_MaxHeight,max. Hoehe, 2
wi_Type,$0001,2

actx-pos,aktuelle_x-Position,4
acty-pos,aktuelle_y-Position,4

Adresse(nr,3)=Dec

347

348 Amiga Tips & Tricks ———_

Image:

DATA im LeftEdge,Linke_Ecke,2
DATA im_TopEdge, Obere_Ecke,2
DATA im Width,Breite,2
DATA im_Height,Hoehe,2

DATA im Depth, Tiefe,2
DATA im_ImageData,BitPlanes_ Zeiger ,4
DATA im_PlanePick,Bild_Daten, 1
DATA im PlaneOnOf f, Verwendung, 1
DATA im Nextimage,Nächtes_Bild,4
DefaultTool:
DATA char_num,Zeichenzahl ‚4

ToolTypes:
DATA string_num, Textanzahl ‚4

Programmbeschreibung

Das Programm besteht in den wesentlichen Teilen aus Unterpro-

grammen zur Auswertung der Icon-Daten, wie auch der Icon-

Analyzer über die Betriebssystemroutinen. Allerdings gehen wir
hier den Weg über BASIC, damit die Modifikation einfacher
wird. Hinzugekommen ist die Angabe der Bytenummer hinter
allen veränderbaren Parametern. Zusätzlich erscheint ein Fenster,

wenn Sie die Space-Taste betätigen. In diesem Editor haben Sie
mit einfachen Befehlen die Möglichkeit, das File datenweise zu
verändern. Ihnen stehen folgende Befehle zur Verfügung:

#num Geben Sie für "num" die Adresse ein, an der Sie Än-
derungen vornehmen möchten. Somit wählen Sie die

Position, an der eigene Bytes eingesetzt werden sollen.

azahl Setzt an die aktuelle Adresse den unter "zahl" ange-
gebenen Wert ein. Je nachdem, welches Byteformat er-
wartet wird, wandelt die Routine die angegebene Zahl
um.

snam Speichert die Bytes des .info-Files im Verzeichnis
"mod. Icons" ab. Das Verzeichnis sollte vorher angelegt
werden. Gibt man hinter s keinen Namen an, so wird

der Name verwendet, der beim Laden angegeben

wurde, ansonsten verwendet das Programm den neuen.

—— Icons 349

Sind alle Strukturen aufgelistet und hat man einige Än-
derungen durchgeführt, so trägt man dem Programm
mit diesem Befehl auf, die Listen ein weiteres Mal

durchzugehen und alle Werte aufzuzeigen.

e Hiermit wird das Programm beendet. Der Befehl "e"
muß eingegeben werden, da sich das Programm auch

nach Ausgabe aller Strukturen in einer Warteschleife
befindet. Wenn Sie den Editor verlassen wollen, so ge-
ben Sie einfach auf die Frage nach dem Befehl nichts
ein und betätigen RETURN.

Ich möchte an dieser Stelle noch erwähnen, daß der Editor si-

cherlich nicht einer der komfortabelsten ist. Leider würde ein
bequemerer Editor wesentlich mehr Platz einnehmen, der nicht

unbedingt frei ist, und hiermit lassen sich auch alle Ergebnisse
erzielen.

7.3.4 Farbliche Veränderung

Vielleicht wissen Sie schon, daß jedes Fenster, das geöffnet wird
(oder auch die Workbench) in allen seinen Farben bestimmt
werden kann. Nun ist man bei der Programmierung der Work-
bench etwas abgestumpft und verwendet dort nur die Farben
Schwarz, Weiß, Orange und Blau, was zwar ein einheitliches Bild

verursacht, aber nicht gerade interessant aussieht.

Um dem entgegenzuwirken, müssen wir vor dem Öffnen eines

Fensters eingreifen und die Daten, besonders die der Farben,
verändern. Wie Sie sicherlich schon erkannt haben, läuft das auf

eine Veränderung der Drawer-Struktur des Icons hinaus, denn
diese stimmt fast genau mit der eines normalen Fensters überein.

Sie können nun unter dem Punkt "Zeichenfarbe 1/2" beim Auf-
listen mit dem Icon-Editor jeweils den Wert $FF oder 255 er-
kennen. Ich hatte oben schon erwähnt, daß dieser für eine An-

350 Amiga Tips & Tricks

passung an die Screen-Farben steht, was wir ja gerade ändern
wollen. Schreiben Sie dafür einen Wert zwischen 0 und 3 in das
entsprechende Byte.

Am besten ist es, Sie probieren einmal jede Möglichkeit aus.
Wundern Sie sich aber nicht, wenn Sie die gespeicherten .info-

Files öffnen wollen. Nachdem das Window für kurze Zeit er-

schienen ist, verschwindet es sofort wıeder! Das liegt daran, daß

mit dem Window kein Unterverzeichnis erstellt wurde, das aber

für ein Schubladen-Icon ziemlich wichtig ist. Wechseln Sie des-
halb in CLI, und erstellen Sie mit MAKEDIR für jedes .info-
File auch ein Verzeichnis.

Danach können Sie sich alle neuen Fensterfarben genau ansehen.
Wie Sie sicherlich gleich erkennen werden, sind manche Kombi-
nationen nicht sehr hilfreich, da die Farben z.B. wichtige Texte
unkenntlich machen können. Allerdings erhöhen manche Ver-
bindungen sichtlich den Kontrast, und einige heben sich beson-

ders gut von all den anderen ab. So kann man leicht optische

Prioritäten setzen.

——— Kontrollierte Fehlerbehandlung 351

8. Kontrollierte Fehlerbehandlung

Fir groBe Programme ist die "kontrollierte Fehlerbehandlung"
unumgänglich. Doch zuerst müssen Sie natürlich wissen, wie
man überhaupt Fehler "behandeln" kann, und noch wichtiger ist

es zu wissen, an welcher Stelle im Programm die Fehler über-

haupt auftreten. Das letztere kann man eigentlich gar nicht

herausfinden, doch es gibt ein paar Regeln, die man beachten
muß, damit ein Programm fehlerfrei abläuft.

8.1 Wann treten im Programm Fehler auf?

Eigentlich sollten im Programm gar keine Fehler auftreten, doch
wie Sie sicher schon beim Arbeiten mit eigenen oder gekauften
Programmen gemerkt haben, entsprechen einige Programme

nicht unbedingt diesem Grundsatz. Damit wir uns allmählich an
unser Problem "ranpirschen", wollen wir die Fehler in zwei

Gruppen unterteilen.

Einmal sind dies die Fehler, die der Programmierer verursacht
hat. Da gibt es z.B. Zeilen, in denen ein Syntax-Error auftritt,

weil man vergessen hat, eine Klammer im Rechenausdruck zu

schließen. Dieser Fehlertyp tritt oft auf, wenn man vor dem Be-
nutzen noch mal ganz schnell eine Veränderung vornimmt. Der
Flüchtigkeitsfehler wird meist nicht sofort entdeckt und tritt ir-

gendwann bei der Arbeit auf. Um dies zu vermeiden, empfiehlt

sich ein genaues Testen des Programms. Wie geht man dabei
vor?

Schreiben Sie zuerst eine Liste der Programmteile, die benutzt

werden müssen. Achten Sie besonders auf Programmzeilen, die

nur unter bestimmten Bedingungen durchlaufen werden. Hier
gilt besondere Aufmerksamkeit, denn ein dort versteckter Fehler

kann nur gefunden werden, wenn Sie sorgfältig arbeiten oder
den Zustand herstellen, unter dem die Zeilen abgearbeitet wer-

den. Wenn Sie das Programm also testen, haken Sie jeden Teil

352 Ä Amiga Tips & Tricks ——

ab, den Sie durch Aufrufen abgearbeitet haben. Sind alle Pro-
grammteile "abgehakt", so können Sie davon ausgehen, daß keine
Syntax-Errors vorliegen.

Doch es gibt noch mehr Fehlerquellen! Ein häufiger Fehler ist
z.B. das Auftreten eines "Subscript out of Range"-Errors. Er fällt

beim Arbeiten mit bis zu 10 Elementen des Feldes gar nicht auf,
doch dann hat er verheerende Folgen! Um auch dieses auszu-

schließen, sollten Sie eine Liste der verwendeten Arrays erstellen
und darauf achten, daß alle in der richtigen Größe definiert
sind. Wenn Sie OPTION BASE verwenden, ist besondere Auf-
merksamkeit vonnöten. Um die Kontrolle einfacher zu gestalten,

empfiehlt es sich, die Dimensionierung am Anfang oder in ei-
nem bestimmten Teil des Programms vorzunehmen. Sie ersparen

sich damit langes Suchen der Definitionszeilen.

Eine weitere Fehlerquelle sind die Rechenfehler. Bei fast jeder
Berechnung in Ihrem Programm kann ein Fehler entstehen.
Nehmen wir an, in Ihrem Programm kommen Funktionen vor -
seien es nun selbst definierte oder von der Programmiersprache
vorgegebene - dann kann es immer passieren, daß Sie durch ir-
gendeinen mißlichen Umstand den Wertebereich nicht einhalten,

und so wird ein Overflow- oder ähnlicher Error ausgegeben. Das

Programm stürzt ab! Außerdem sollten Sie sich hüten, durch
Null zu teilen. Deshalb empfiehlt es sich, vor jeder Division zu
überprüfen, ob der Divisor ungleich Null ist, sonst erleben Sie

böse Überaschungen! Allgemein gesagt, sollten Sie immer beim

Dividieren, Potenzieren oder bei Funktionsaufrufen mißtrauisch

sein und gegebenenfalls lieber die Werte über IF-Zeilen (in

denen natürlich wieder ganz andere Fehler auftreten können!)
überprüfen.

8.1.1 Fehler beim Diskettenzugriff

Wer kennt das nicht: Sie schreiben die perfekte Daten- und

Adreßverwaltung, der Benutzer gibt den Namen seiner Datei
ein, dıe geladen werden soll, - hat dabei aber noch die Pro-

grammdiskette im Laufwerk liegen - und beim Lesen: ein "File

——— Kontrollierte Fehlerbehandlung 353

Not Found Error"! Im Gegensatz zur Workbench, die durch
einen Requester auffordert, die richtige Diskette einzulegen,

meldet sich das AmigaBASIC mit einem Error.

Aber es kann Ihnen auch durchaus passieren, daß ein File mit
dem angegebenen Namen existiert. Nur leider wurde es von ei-
nem anderen Programm erstellt und hat deswegen ein ganz an-

deres Format. Das beste, was Ihnen hier noch passieren kann,

ist, daß die Datenwerte konfus eingelesen werden, das Pro-

gramm aber weiterarbeitet. In den meisten Fällen gibt es aber
einen "Type Mismatch"-Error oder ähnliches als Strafe.

Viel ärgerlicher ist es, wenn zwar die richtige Diskette eingelegt
ist, das gesuchte File sich aber in einem ganz anderen Directory
befindet. Auch hier tritt ein "File Not Found"-Error auf!

8.1.2 Fehler bei Benutzereingaben

In der von mir als Beispiel herangezogenen Datenverwaltung

müssen sicherlich einmal Werte eingegeben werden. Doch für
jeden Wert gibt es Einschränkungen! Zahlen sollen in einem be-
stimmten Bereich liegen oder keine Nachkommastellen aufwei-
sen, Texte dürfen nur eine bestimmte Länge haben oder nur aus
bestimmten Zeichen bestehen. All diese Bedingungen werden
von dem normalen INPUT-Befehl nicht berücksichtigt. Er

nimmt bei Zahlenangaben auch Text an, und das führt meist zu
dem bekannten "Redo From Start", was manchmal den ganzen

Bildschirm durch Scrolling durcheinanderbringt oder wichtige
Texte überschreibt.

Aber auch die Möglichkeit, bei der Texteingabe nur bestimmte
Zeichen zuzulassen, wird nicht unterstützt. Überschreitet der
Anwender z.B. die Länge einer Texteingabe, so wird diese viel-
leicht vom Programm später abgeschnitten, doch man selber ıst
noch ın dem Glauben, daß die Daten gesichert wurden. So kön-
nen wichtige Informationen verlorengehen!

354 Amiga Tips & Tricks

8.1.3 Fehler durch oder bei der Menüauswahl

Hierbei wird die Fehlersuche schon schwieriger. Bei den Benut-
zermenüs legen Sie als Programmierer sämtliche Unterpro-
gramme und Funktionen fest. Der Programmbenutzer wählt aus
diesen aus, und das Programm reagiert darauf. Aber gerade da

liegt die Anfälligkeit der Menüs!

Es kann durchaus vorkommen, daß ein oder mehrere Punkte der
Menüs gerade unter den herrschenden Umständen vollkommen

unsinnig sind. Eine Ausführung dieser Funktionen wäre gleich-
zusetzen mit dem mutwilligen Provozieren eines Absturzes.

Ein harmloses Beispiel wäre die Abspeicherfunktion bei unserer

fiktiven Datenbank, wenn man noch keine Daten eingegeben
hat. Das hätte zwar keinen Absturz zur Folge, trotzdem hätten
Sie dann unter Umständen einen leeren Datensatz in Ihrer Datei,

den man meist nur schwer wieder löschen kann!

8.2 Von der Möglichkeit, einen Fehler aufzufangen

Sie haben vielleicht schon davon gehört, daß es die Möglichkeit
geben soll, einem Fehler und somit einem Absturz nicht tatenlos
zuzusehen, sondern diesen sogar beheben zu können! Gehen wir

also daran, für die oben beschriebenen Probleme Lösungen zu

finden, die nicht nur einen Fehler beseitigen, sondern ihn sogar

verhindern! Denn man sollte nie nach der Beseitigung eines vor-
handenen Problems trachten, die Devise lautet: vorbeugen.

Wie schon erwähnt, können Sie bei "einfachen" Fehlern wie z.B.

einem "Division By Zero"-Error durch eine Abfrage diesen
Fehler unterbinden. Denn wenn Sie selber durch das Programm
den Fehler liefern, ist das wesentlich benutzerfreundlicher als

eine Unterbrechung, wobei der Anwender vor dem neuen Pro-
blem steht, selbst programmieren zu müssen. In Ihrer Fehlerab-
frage können Sie einen Text ausgeben lassen, der darauf hin-
weist. Entweder Sie geben die Möglichkeit vor, die Daten dafür

——— Kontrollierte Fehlerbehandlung 355

neu einzugeben, oder Sie springen schlimmstenfalls an den An-

fang des Programms. Auf jeden Fall ist dadurch der Abbruch
umgangen.

“ Bei dieser rüden Methode, einfach wieder von vorne anzufan-

gen, können Sie aber auch die Error-Abfrage des BASIC ver-

wenden. Mit ON ERROR GOTO springt das System immer an
die angegebene Stelle, wenn ein Fehler auftritt. Es liegt dann an

Ihnen, das Programm verzweigen zu lassen, damit die Ursachen

genauer aufgeschlüsselt und vielleicht nach einer möglichen Be-
hebung wieder hinter die fehlerhafte Stelle gesprungen werden
kann.

Die Betriebssystem-Requester sind eine andere sehr komfortable
Lösung der Fehlerbehebung. Sie kennen das ja: Eınmal die
falsche Diskette im Laufwerk, und schon erscheint das Window

in der oberen Ecke. "Bitte richtige Diskette einlegen!", fordert

der Computer Sie auf. Wenn Sie nicht gewillt sind und "Cancel"

anwählen, "spuckt" er die entsprechende Fehlermeldung aus. Ein

Requester (deutsch: Frager) ıst also nur die letzte Chance, etwas
gegen die Fehlermeldung zu unternehmen, andernfalls erfolgt sie

doch. Aber damit wird dem nicht immer perfekten Menschen

wenigstens die Möglichkeit zugestanden, sich einen Fehler zu
erlauben. Manchmal - bei nur einem Diskettenlaufwerk - ist es
gar nicht anders zu bewerkstelligen, als diese Prozedur über sich

ergehen zu lassen.

Aber nicht nur der erneute Versuch, den Fehler zu beheben

oder den fehlerhaften Teil zu umgehen, kann alleiniger Ausweg

sein. Ich sagte vorhin, daß es am wichtigsten sei, einen Fehler
gar nicht erst entstehen zu lassen, deshalb gibt es auch eine

Möglichkeit, bei der das Programm es einfach nicht zuläßt,
überhaupt einen Fehler zu erzeugen. So kann man beispielsweise
eine Routine, die Fehler erzeugen könnte, nur unter Bedingun-

gen anspringen lassen, die die Fehler nicht gestatten.

356 Amiga Tips & Tricks

8.2.1 Freundliche Aufforderung an den Benutzer

Lassen Sie uns aber nach der vielen grauen Theorie endlich mal

an die Programmierung gehen! Wenn ein Fehler auftritt, so ist
der Anwender ziemlich verschreckt und ärgert sich natürlich
über die Unterbrechung. Immerhin sind die meisten Anwender
keine Programmierprofis oder sie kennen sich kaum ın der
Materie aus. Deshalb müssen wir behutsam mit unserem Benut-
zer umgehen. Er soll schonend auf seinen Fehler vorbereitet
werden. Erst dann fordert das Programm ihn auf, das zu tun,

was den Fehler korrigieren könnte.

Solch eine freundliche Aufforderung kennen Sie schon. Wenn
Sie mit der Workbench arbeiten, erscheint bei einer Fehlbedie-

nung des Diskettenlaufwerks (falsche Diskette) ein Requester.
Dieser Requester fragt meist freundlich nach, ob Sie nicht die

falsche Diskette eingelegt haben, und fordert Sie auf, jetzt bitte

die richtige einzulegen.

Diese Art der Aufforderung können wir auch selbst program-
mieren! Sie werden sicherlich sagen: Gut, dann öffne ich ein
Fenster, schreibe den Text hinein und frage die Maustasten ab.
Aber das ist viel zu umstandlich! Wir kénnen einfach dem Be-

triebssystem mitteilen, daß wir auch einen Requester haben

möchten, und dann macht es uns einen. Allerdings braucht es

dazu Informationen, doch dazu komme ich später noch.

Bevor wir den Requester programmieren, muß erst geklärt sein,

wann wir ihn tiberhaupt brauchen. Es bietet sich geradezu an,

ihn bei den gleichen Anlässen zu benutzen, bei denen es auch
die Workbench tut. Da wire als erstes ein nicht gefundenes File
zu nennen. Doch dabei gibt unser BASIC eine Fehlermeldung
aus! Sie müssen also zuerst die Fehlermeldung verhindern und
dann Ihren Requester in Aktion treten lassen, der noch einmal

alles zum Guten wenden kann. Befassen wir uns erst mit dem
Fehler, der auftritt, wenn das File nıcht gefunden wird.

Da das Öffnen des Files immer gleich die Fehlermeldung "File
Not Found” ausgibt, wenn das File nicht auf der Diskette oder

——— Kontrollierte Fehlerbehandlung 357

im Inhaltsverzeichnis ist, ist ein einfaches Lesen durch OPEN

nicht möglich. Bei einer sequentiellen Datei gibt es aber einen

Ausweg. Wir können das File mit der Option APPEND öffnen.
Entweder das File existierte, dann wird ein Zeiger definiert, der
das Anhängen von Daten erlaubt, oder das File existiert nicht,

und die Datei wird neu geöffnet.

In jedem Fall gibt es aber nun die neue Datei. Durch die Funk-
tion LOF (Length of File) können Sie nun abfragen, ob das File
vorher existierte. Denn dann hat es mindestens die Länge von

einem Zeichen (wenn nicht mehr), sonst aber ist die Länge
gleich null. In diesem Fall sollten Sie das neu geöffnete File
wieder löschen, weil es nicht gebraucht wird. Sehen Sie sich
einmal das oben beschriebene Verfahren in einem Programm an:

' Test, ob sich ein File auf der Diskette

' befindet

' « by Wgb im August '87
|

FileName$=":AmigaBASIC2"

Hauptprogramm:

Again:

PRINT "Gesuchtes File: ";
WRITE FileName$

CALL CheckFile (FileName$)

IF exist=1 THEN

PRINT "File existiert!"

PRINT "File Header beginnt ab Block";bik&;"auf Disk."
ELSE

PRINT "File nicht gefunden!"

END IF

SUB CheckFile (File$) STATIC

SHARED exist

OPEN File$ FOR APPEND AS 255

exist=(LOF(255)>1)

CLOSE 255

IF exist=0 THEN KILL File$

END SUB

Um festzustellen, ob sich eine Datei auf der Diskette befindet,
gibt es aber auch noch eine andere Methode! Sie ist gleichzeitig

358 Amiga Tips & Tricks ———

eleganter und komplizierter. Weil sie aber Aufschluß über das
Betriebssystem gibt, möchte ich sie Ihnen nicht vorenthalten.

Auch hierfür können wir ein Unterprogramm anlegen, das einen

entsprechenden Wert zurückliefert. Entweder 1, dann existiert

das File, oder 0 für "nicht gefunden".

Die Funktion "Lock" selbst muß im Programm als Funktion de-
finiert werden. Dann wird ihr die Speicheradresse des Namens

übergeben, der mit einem Nullbyte endet. Zusätzlich braucht die
Routine noch die Information, wie sie auf das File zugreifen

soll. Da wir es mit einem Multitasking-Computer zu tun haben,
können wir wählen, ob der Zugriff alleine uns vorbehalten ist
(Acces Mode = Exclusive Write (-1)), oder ob Sie auch anderen
das Lesen gestatten wollen (Acces Mode = Shared Acces (-2)).

Die erste Möglichkeit ist dafür gedacht, daß beim Schreiben von
Daten natürlich nur einer mit dem File arbeiten kann. Wogegen

die zweite es erlaubt, daß die Daten von mehreren Programmen
gleichzeitig gelesen werden können.

Unsere neue Routine braucht nur den Shared Access, deswegen

übergeben wir den Wert -2. Der von der Funktion zurückgelie-
ferte Wert ist gleich null, wenn sie kein File gefunden hat, an-
dernfalls war etwas auf der Diskette. Den Wert müssen wir uns
merken, denn nur mit ihm können wir den Zugriff auf die Da-
ten wieder aufgeben.

Den Zugriff, den Sie sich mit dieser Routine verschafft haben,
sollten Sie aber nach der Feststellung wieder aus der Liste
streichen. Denn immerhin nimmt er Speicherplatz und Zeit in

Anspruch. Sie erreichen dies mit der "UnLock"-Funktion. Ihr

wird nur der Wert übergeben, den "Lock" zurückliefert.

' Test, ob sich ein File auf der Diskette
' befindet |
|

' « by Wgb im August '87
|

DECLARE FUNCTION DosLock& LIBRARY

LIBRARY ":dos. library"
FileName$=":AmigaBASIC2"

Hauptprogramm:

Again:

——— Kontrollierte Fehlerbehandlung 359

PRINT "Gesuchtes File: ";
WRITE FileName$

CALL CheckFile (FileName$)
IF exist=1 THEN

PRINT "File existiert!"

PRINT "File Header beginnt ab Block";blk&;"auf Disk."
ELSE

PRINT "File nicht gefunden!"

END IF

LIBRARY CLOSE
END

SUB CheckFile (File$) STATIC

SHARED exist,bik&

File$=File$+CHR$(0)

accessRead%=-2

Lock&=DosLock&(SADD(File$) accessRead%)
IF lock&=0 THEN

exist=0

ELSE

exist=1

bIkK&=PEEKL(lock&*4+4)

END IF

CALL DosUnLock(lock&)

END SUB

Nachdem nun geklärt ist, wie man feststellt, ob sich eine Dateı

auf der Diskette oder in dem aktuellen Inhaltsverzeichnis befin-
det, können wir zu der Besprechung übergehen, wie man in
BASIC einen Requester schreibt. Ich hatte oben schon erwähnt,

daß das Ganze natürlich auch über BASIC-Befehle möglich ist.

Ich möchte dies allerdings nicht in Betracht ziehen. Sie werden
mit etwas Ehrgeiz ein entsprechendes Unterprogramm schreiben

können. Ich möchte Ihnen jetzt erklären, wie Sie die schon vor-
handene Betriebssystemroutine verwenden. Dort steht ein Modul,
das alle Aufgaben für einen Requester erledigt.

Es ist die sogenannte AutoRequest-Funktion. Ihr übergeben wir
den Text, die Antwortmöglichkeiten, und schon erledigt sıe den

Rest. Auch hierfür schreiben wir ein Unterprogramm, das alle
anfallenden Arbeiten erledigt. Dieses Unterprogramm gibt uns
nach seinem Aufruf einen Wert zurück, von dem das Hauptpro-

gramm Verzweigungen abhängig machen kann.

360 Amiga Tips & Tricks

Test, ob sich ein File auf der Diskette

befindet

« by Wgb im Juni '87

DECLARE FUNCTION AllocRemember& LIBRARY
DECLARE FUNCTION AutoRequest& LIBRARY
DECLARE FUNCTION DosLock& LIBRARY
LIBRARY ":intuition. Library"

LIBRARY ":dos. library"

Fi LeName$=": Ami gaBASIC2"

Hauptprogramm:

Again:

PRINT "Gesuchtes File: ";
WRITE FileName$
CheckFile FileName$

IF exist=1 THEN
PRINT "File existiert!"
PRINT "File Header beginnt ab Block";bik&;"auf Disk."

ELSE
Request FileName$
IF res&=1 THEN GOTO Again

PRINT "File nicht gefunden!"

END IF

LIBRARY CLOSE

SUB CheckFile (File$) STATIC

SHARED exist, blk&
TestFile$=File$+CHR$(0)

accessRead%=-2

Lock&=DosLock&(SADD(TestFile$) ,accessRead%)

IF lock&=0 THEN

exist=0

ELSE

exist=1

bLk&=PEEKL(Lock&*4+4)

END IF

CALL DosUnLock(lock&)

SUB Request (FileName$) STATIC
SHARED add&,st$,res&,offs%
Quest$(0)="Please insert volume containing"

Quest$(1)="File "+FileName$

Quest$(2)="It's not found!"

yes$="Retry" |

no$=""Cancel"

bt%=2

wid%=8*38

hi%=8*9

offs%=0

——— Kontrollierte Fehlerbehandlung 361

opt&=2°0+2°16
req&=Al locRemember&(0,400, opt&)
IF req&=0 THEN ERROR 7

add&=r eq&
t 1&add&
FOR loop2=0 TO bt%-1

st$=Quest$(loop2)
MakeHeader add&,st$,1,5,offs%+3
of fsk=of fsX+8

NEXT loop2
st$=Quest$(bt%)
MakeHeader add&,st$,0,5,offs%+3

st$=yes$
t2&=add&
MakeHeader add&,st$,0,5,3

st$=no$

t3&=add&
MakeHeader add&,st$,0,5,3
res&=AutoRequest&(WINDOW(7),t1&,t2&,t3&,0,0,wid%,hi%)
CALL FreeRemember(0,-1)

END SUB

SUB MakeHeader (ptr&,Text$,md%,le%,te%) STATIC
SHARED add&

Text$=Text$+CHR$(0)

POKE ptr&, 1
POKE ptr&+1,0
POKE ptr&+2,2
POKEW ptr&t+4, lex
POKEW ptr&+6, tex
POKEL ptr&+8,0
POKEL ptr&+12,SADD(Text$)
IF md%=0 THEN

POKEL ptr&+16,0
ELSE

POKEL ptr&+16, ptr&+20
END IF

add&=pt r&+20
END SUB

Programmbeschreibung

Zuerst muß die Unterroutine "wissen", welche Texte sie ausge-
ben soll. Da gibt es einmal den allgemeinen Text, der auf die
Sachlage hinweist, und auBerdem folgen zwei weitere Texte, die
anwählbar sind. Die letzten beiden Texte werden in einer Zeile
ausgegeben und auch umrahmt. Daß man sie auch anklicken

kann, ist wohl selbstverständlich. Unter Berücksichtigung der
Texte, die Sie ausgeben lassen wollen, müssen Sie die Größe des

362 Amiga Tips & Tricks —

Fensters berechnen. Ist das Fenster nicht groß genug, so werden

die Texte einfach "verschluckt" oder überschrieben, was nicht

gerade gut aussieht.

Es muß nun für die Texte, die im Speicher in einer bestimmten
"Struktur" abgelegt werden müssen, ein Speicherbereich reser-

viert werden. Dafür benutzen wir die Betriebssystemfunktion
AllocRemember. Es besteht die Möglichkeit, den Speicherbe-

reich nach bestimmten Kriterien zu wählen.

PUBLIC 20
CHIP 21
FAST 22
CLEAR 216

Die Speicherart, die wir benötigen, ist beliebig, nur sollte sie

vorher gelöscht werden. Falls kein Speicher gefunden wurde, so
wird vorsichtshalber eine Fehlermeldung ausgegeben. Nehmen
wir nun an, daß genügend Speicher gefunden wurde. Dann kön-
nen wir endlich die Texte in den reservierten Teil schreiben.
Und zwar muß dies in einem Format geschehen, das leider nur
für C-Programmierer einfach ist. In BASIC erfordert es ein we-
nig "POKErei". Ich möchte dieses Verfahren nicht vollständig
erläutern. Wichtig für Sie ist nur die Benutzung und das Ein-
bauen in eigene Programme.

Die erste Schleife bringt den Informationstext, der über den
Anwählfeldern steht, in unseren Speicherbereich. Dann werden
die beiden Antwortfelder im gleichen Format in unser RAM
geschrieben. Ist alles gelaufen, so kann die AutoRequest-Funk-

tion gestartet werden. Dafür übergeben wir ihr die Adresse des
ersten Textes, des Textes der beiden Antwortfelder und die
MaBe unseres Requesters. Sie liefert einen Wert zuriick, und

zwar das Resultat 1, wenn das erste Feld angewählt wurde.

Mit diesem Wert können nun im Hauptprogramm Verzweigugen
erfolgen. Entweder wird das Laden noch einmal versucht, weil

z.B. der Benutzer inzwischen die Diskette gewechselt hat, oder

er bricht das Laden ab, weil z.B. der Dateiname falsch eingege-
ben wurde, und verzweigt deshalb wieder ins Hauptprogramm.

——— Kontrollierte Fehlerbehandlung 363

8.2.2 Fehler vermeiden durch Abfrage während der

Benutzereingabe

Nachdem Sie nun bei Diskettenfehlern einen Weg kennen, mit
dem Sie den Programmabbruch verhindern können, wenden wir
uns einem anderen Thema zu. Ihre Programme werden sicherlich
nicht nur auf die Diskette zugreifen und ab und zu einen Re-
quester ausgeben. Viel wichtiger sind die Eingaben vom Anwen-
der. Aber gerade hier treten möglicherweise viele Fehler und
Probleme auf.

Die einfachste und beste Lösung ist es nun, eine eigene

Eingaberoutine zu schreiben, die die gewünschten Daten einliest,
nur bestimme Zeichen annimmt und keine Fehler "ausspuckt".

Damit die Routine auch "weiß", welche Zeichen sie zulassen soll

und welche nicht, wird ihr beim Aufruf ein String übergeben,

der alle erlaubten Zeichen enthält. Auch die Anzahl der ein-

zugebenden Zeichen wird mitgeliefert. Den Rest erledigt dann
das Unterprogramm. Erst wenn die Return-Taste gedrückt wird,
wird das Unterprogramm verlassen.

Da die meisten Eingaben an einer bestimmten Position im Win-
dow gemacht werden sollen, ist vorgesehen, die Koordinaten

anzugeben. So ersparen Sie sich den LOCATE-Befehl. Außer-

dem können Sie wie bei jedem INPUT-Kommando einen Text

vorher ausgeben. Das alles erledigt die Eingaberoutine.

' Input Routine

' « by Wgb Mai '87
)

Hauptprogramm:

DEFINT a-z

KAlpha$="abcdefghi jklmnopqrstuvwxyzßöäü"
GAl pha$S=""ABCDEFGHI JKLMNOPQRSTUVWXYZBOAU"

NAl pha$=""01234567890+-*/. , ="
ZAlpha$=" „.?1-/;:14 |
Moegl$=KAlpha$+GAlpha$+ZAlpha$
GetInput "Nachname: ",NName$,Moegl$,10,10,20,0
GetInput "Vorname : ",VName$,Moegl$,10,12,20,0
WRITE NName$, VName$
END

364

SUBRoutinen:

Amiga Tips & Tricks

SUB GetInput (Text$, In$,Moegl$,x,y,Zeichen,Pointer) STATIC

Xold=POS(0)
Yold=CSRLIN
Laenge=0

LOCATE y,x

PRINT Text$;

X=X+LEN(Text$)
Lesen:

Cursor x+Laenge,y

GetInkey i$
IF 1$=CHR$(13) THEN GOTO Ende
IF i$=CHR$(8) THEN GOTO RubOut
IF Zeichen=Laenge THEN GOTO Lesen

f=INSTR(Moegl$, i$)

IF f=0 THEN

BEEP

GOTO Lesen

END IF

PRINT i$;
In$=In$+i$: Laenge=Laenge+1

GOTO Lesen

RubOut:

IF Laenge=0 THEN GOTO Lesen

Laenge=Laenge- 1

PRINT " "-

In$=LEFT$(In$,Laenge)

GOTO Lesen

Ende:

PRINT " ".

LOCATE Yold,Xold

IF Pointer AND 1 = 1 THEN

L=LENCIn$)
In$=In$+SPACE$(Zeichen- Ll)

END IF

END SUB

SUB Cursor (x,y) STATIC

COLOR 3

LOCATE y,x

PRINT "_";

LOCATE y,x

COLOR 1

END SUB

SUB GetInkey (Key$) STATIC

KeyRead:

Key$=INKEY$
IF Key$="" THEN GOTO KeyRead

END SUB

—— Kontrollierte Fehlerbehandlung 365

Programmbeschreibung

Sie sollten beim Gebrauch dieser neuen Eingaberoutine vor dem
Hauptprogramm einige Strings definieren, in denen Gruppen

von Zeichen liegen. Zum Beispiel einen String mit kleinen,
einen anderen mit großen Buchstaben, den nächsten mit Zahlen
und einen letzten mit Sonderzeichen. Mit diesen Strings können
Sie später einfacher angeben, welche Zeichen zugelassen sind. Es
bleibt natürlich Ihnen überlassen, ob Sie so verfahren. Es ist
durchaus möglich, beim neuen INPUT-Befehl eine Konstante zu
verwenden.

Dem GetInput-Befehl selbst werden der Text, die Variable, in
der der Text abgelegt werden soll, dann eine Zeichenkette mit
allen erlaubten Zeichen, die Position, die Anzahl der erlaubten

Zeichen und als letztes ein Pointer übergeben. Dieser Pointer
legt fest, ob der Eingabetext unter Umständen mit Leerzeichen

aufgefüllt werden soll, wenn nicht genügend Zeichen eingegeben
wurden. Dafür muß er auf 1 gesetzt werden. Es ist leider nicht
möglich, Zahlen zu verarbeiten. Aber dies können Sie mit einer

einfachen Kombination erreichen:

GetInput "Zahl: ",Zahl$,NumChar$,10,10,8
Zahl=VAL(Zahl$)

Wenn im String NumChar$ nur Ziffern waren, können Sie sicher

sein, daß kein Nullwert in "Zahl" steht, solange es nicht ge-
wünscht ist. Außerdem kann auf keinen Fall ein "Redo from
Start"-Error auftreten!

Die SUB-Routine speichert am Anfang die momentane Cursor-
position. Weil diese Position beim Verlassen wiederhergestellt

wird, ist gewährleistet, daß keine Ausgaben beeinflußt werden.
Dann wird der Text an der bestimmten Position ausgegeben und
die Anfangsposition für die Eingabe berechnet. Die Länge des
eingegebenen Textes ist noch auf Null gesetzt.

In der Leseschleife wird an der aktuellen Eingabeposition der
Cursor ausgegeben, und die Routine wartet auf einen Tasten-
druck. Ein erhaltenes Zeichen wird auf Steuerfunktionen unter-

sucht. Ist es z.B. die Backspace-Taste, so wird - wenn möglich -

366 Amiga Tips & Tricks ——

das letzte eingegebene Zeichen entfernt. Ein Druck auf die Re-

turn-Taste wird auch erkannt, und sofort wird zum Ende der
Routine gesprungen.

Ansonsten wird geprüft, ob überhaupt ein weiteres Zeichen er-

laubt ist. Nur wenn dies der Fall ist, sieht die Routine im Vor-

gabestring nach, ob das Zeichen zu finden ist. Wenn nicht, so
wird ein Warnsignal durch BEEP ausgegeben und an den Anfang
der Leseschleife gesprungen. Ist es zugelassen, wird es ausgege-

ben und zum Eingabestring addiert. Anschließend wartet die
Routine auf die Eingabe eines weiteren Zeichens.

Sie können diese Routine natürlich nach Belieben erweitern. Es
ist zum Beispiel noch nicht möglich, mit dem Cursor im Text zu
"wandern". Jetzt kann man nur das letzte Zeichen löschen und

ggf. neue Zeichen anfügen. Es wäre aber durchaus interessant,
Zeichen in der Mitte einzufügen oder zu löschen!

Auch können noch keine Eingaben vorgegeben werden. Dies
wäre praktisch, wenn ein Wert sehr oft vorkommt und nur selten

geändert wird. Diese Berücksichtigung müßten Sie dann in den
Kopf der SUB-Routine einbauen, denn die Länge der Vorgabe

muß festgestellt werden, und sie muß auch auf dem Bildschirm |

ausgegeben werden.

Bisher hatte man die Möglichkeit, eine Abfrage ohne Eingabe
abzuschließen, indem man nur Return drückte. Sie könnten aber

auch den Pointer so erweitern, daß z.B. wenn das 2. Bit gesetzt

ist, nur mit mindestens einem eingegebenen Zeichen abge-
schlossen werden kann. Alles das sind Funktionen, die man ir-
gendwann gebrauchen könnte. Sie müssen abwägen, wann wel-

che nötig ist. Ich wünsche Ihnen viel Spaß beim Erweitern.

8.3 Fehler beheben durch Korrektur falsch

ausgewählter Funktionen

Dieser Teil soll sich mit der Korrektur beschäftigen. Vorher
möchte ich aber grundsätzlich feststellen, daß die Korrektur

——— Kontrollierte Fehlerbehandlung 367

immer nur die letzte Möglichkeit ist, eine fehlerhafte Eingabe
zu berichtigen. Manchmal läßt sich dieser Weg nicht umgehen,
da in einigen Fällen eine Echtzeitüberprüfung in BASIC einfach
zu langsam wäre. Auf die selbstgeschriebene Eingaberoutine
bezogen, würde das bedeuten, daß nach jedem Zeichen vielleicht
drei Sekunden gerechnet wird, um festzustellen, ob es erlaubt

war, dieses Zeichen einzugeben. Damit wäre keinem geholfen.

Angenommen, es sei nur erlaubt, eins von hundert möglichen
Wörtern einzugeben. Dann wäre es unklug, bei jedem neuen
Zeichen zu überprüfen, ob dieses in der Kombination zugelassen

ist. Erst wenn die Eingabe abgeschlossen wurde, wird mit allen
Wörtern verglichen, und man kann, wenn nötig, eine Fehlermel-

dung ausgeben lassen und wieder zur Eingabe verzweigen.

Manchmal werden z.B. Einstellungen vorgenommen, bei denen

man nicht sagen kann, ob sie zusammenpassen, wenn noch nicht

alle Werte bekannt sind. Auch hier ist die Überprüfung nur am
Schluß möglich. Stellt das Programm dann fest, daß ein Wert

nicht hineinpaßt, so wird dieser korrigiert. Danach sollte das
Programm nicht direkt fortfahren. Es muß den Benutzer wieder
in die Korrektur einschalten, denn es kann sein, daß sein

Wunsch vollkommen verfehlt wurde.

Sie sehen schon, daß wir es hier mit einem sehr komplexen

Thema zu tun haben. Besonders schwierig wird die ganze Ange-
legenheit dadurch, daß man leider kein Patentrezept anbieten

kann, nach dem die Benutzereingaben ohne Fehler abgewickelt
werden könnten. Jedes Programm bietet andere Möglichkeiten
und dadurch andere Fehlerquellen. Als Programmierer müssen
Sie deshalb besonders darauf achten, daß alle Stellen, an denen

Fehler auftreten könnten, gut gesichert sind. Das heißt, daß dort
Überprüfungen stattfinden. Schlimmstenfalls sollte besser die
Funktion abbrechen, als daß später das Programm abbricht.

368 | Amiga Tips & Tricks

8.3.1 Auswahl unmöglicher Kombinationen
grafisch ausschließen

Hinter dieser pompösen Überschrift steht die ganz einfache

Möglichkeit, bei PullDown-Menüs einige Punkte, die im Mo-
ment nicht ausgewählt werden sollen, in Schattenschrift darzu-
stellen. Programmiertechnisch ist das doch ganz einfach, denn

der MENU Befehl bietet doch alle Möglichkeiten, sagen Sie be-
stimmt. Da haben Sie zwar recht, doch kann man dies noch

einfacher programmieren.

Wußten Sie z.B., daß bei einer Desaktivierung des Menünamens,

sprich Überschrift, das ganze Menü nicht mehr aktiv ist? Damit
können Sie sich bei langen Menüs viel Arbeit sparen, alle

Punkte mit "MENU Nr.,Pkt.,0" zu desaktivieren. Aber es kann

durchaus vorkommen, daß Sie zwar viele Punkte in einem Menü

inaktiv machen müssen, aber eben nicht alle davon betroffen
sind. Da hilft nun folgendes Programm!

Es ist eine SUB-Routine mit dem Namen "Able", die in einem

bestimmten Menü ab dem angegebenen Punkt eine bestimmte
Anzahl von Punkten mit der gewünschten Funktion versieht. Sie
können also damit einen ganzen Block desaktivieren, aktivieren
oder mit dem Haken versehen. Die Funktion ist praktisch ein

Ersatz für den MENU-Befehl.

' Menu-Punkte streichen
|

' «by Wgb im Juni '87
|

DEFINT a-z

Hauptprogramm:

GOSUB MenuDdefinieren

PRINT "Alle Menues aktivi" :

Warten 5

PRINT "Disk-Menue inaktiv."

Able 1,0,0,0

Warten 5

PRINT "Zeichenart gesetzt."
Able 2,4,0,2

Warten 5

PRINT "Nur einfarbig Zeichnen."
Able 3,1,5,0

Kontrollierte Fehlerbehandlung 369

Able 3,1,0,1

Warten 5

PRINT "Nur Pinsel aus der Grafik."

PRINT "Sonst aber wieder alles."

Able 4,1,4,0

Able 1,0,0,1

Able 3,1,5,1

Warten 5

PRINT "Programm kann nur noch beendet werden."

Able 1,0,0,0

Able 2,0,0,0

Able 3,0,0,0

Able 4,0,0,0

Able 5,1,2,0

WHILE INKEY$=""

SLEEP

WEND

MENU RESET

END

MenuDef inieren:

RESTORE MenuDaten

READ Anzahl

FOR i=1 TO Anzahl

READ Punkte,Laenge
FOR j=0 TO Punkte

READ Punkt$

IF j>O THEN

Punkt$=LEFT$(Punkt$+SPACE$(Laenge) , Laenge)

IF i=2 OR i=3 THEN

Punkt$=" "+Punkt$

END IF

END IF

MENU 1, },1,Punkt$

NEXT j

NEXT i

RETURN

SUB Able (MenuNr,Punkt,Anzahl,Art) STATIC

FOR i=Punkt TO Punkt+Anzahl

MENU MenuNr,1,Art

NEXT i

END SUB

SUB Warten (Sekunden) STATIC

Zeit&=TIMER+Sekunden

WHILE TIMER<Zeit&
WEND

PRINT

=ND SUB

fenuwWaten:

DATA 5

DATA 7,15,Disk
DATA Neu,Laden,Laden unter
DATA Speichern, Speichern unter
DATA DiskKommando, Inhalt

370 Amiga Tips & Tricks ————

DATA 7,9,Zeichnen
DATA Freihand,Linie,Linien
DATA Kreise ,Rechtecke, Pol ygome
DATA Fuellen

DATA 6,10,Farben
DATA Einfarbig,Mehrfarbig,Palette

DATA Schatten, Wischen, Transparent |
DATA 6,15,Pinsel

DATA Laden,Laden unter ‚Speichern
DATA Speichern unter, Löschen, Holen
DATA 4,11,Extras
DATA Workbench ‚Koordinaten

DATA Ausblenden, Ende

add&=ptr&+20

Programmbeschreibung

Zuerst werden alle Variablen als Integer definiert. Sie werden
natürlich sofort einwenden: "Hier sind doch nur ganz wenige
Variablen verwendet, was soll dann diese Deklaration?" Ich muß

gestehen, daß es mir so in Fleisch und Blut übergegangen ist,
diese Zeile zu Anfang zu schreiben, daß es manchmal vor-
kommen kann, daß sie eigentlich nicht so sinnvoll oder nötig ist.
Aber beachten sie folgendes: Durch die Definition erhöht sich
die Rechengeschwindigkeit, denn alle Operationen werden in

echter Integer-Arithmetik durchgeführt.

Außerdem gibt es keine Probleme mehr beim Aufrufen der
SUB-Routinen. Gibt man dort Konstanten an, die ganzzahlig
sind, so wird der Fehler "Type Mismatch" ausgegeben, da das
Unterprogramm Variablen vom Typ Real erwartet. Dann müssen
Sie entweder hinter die Konstante in der Aufrufzeile ein Ausru-
fungszeichen setzen oder den Variablentyp im Unterprogramm
anpassen. Nach der Variablendefinition springt das Hauptpro-

gramm in das Unterprogramm "MenuDefinieren", in dem aus

den DATA-Zeilen am Ende des Listings die Menütexte eingele-
sen werden. |

Betrachten wir dazu das Unterprogramm selbst. Nachdem der

Zeiger der DATA-Zeilen auf die Menüdaten gesetzt wurde,
wird die Anzahl der zu definierenden Menüs gelesen. Entspre-
chend der Anzahl wird die äußerste Schleife durchlaufen. In

——— Kontrollierte Fehlerbehandlung 371

dieser Schleife wird dann aus den Daten gelesen, wie viele
Menüpunkte jedes einzelne Menü hat und welche Längen für
die Texte genommen werden sollen.

Der letzte Wert ist wichtig, denn nach der Definition eines

Menüs kann man das entsprechende Feld öffnen. Es hat eine

maximale x-Ausdehnung, die dem längsten Text angepaßt ist.

Aktivieren kann man die einzelnen Punkte aber nur dort, wo
auch wirklich die Buchstaben stehen. Wird jede Zeile, in der
nicht die maximale Anzahl von Zeichen steht, mit Leerzeichen
aufgefüllt, so kann man auch am Ende jeden Menüpunkt an-
wählen, da Leerzeichen dann auch aktiviert werden können.

Damit Sie sich ein Bild davon machen können, fahren Sie doch

einmal die Menüpunkte nach dem Starten der jetzigen Version
ab, und setzen Sie dann vor die Zeile, in der Punkt$ mit
SPACES aufgefüllt wird, ein REM-Zeichen. Wenn Sie dann die
Menüpunkte anwählen, werden Sie ganz sicher den Unterschied

merken! |

Als letztes müssen wir uns noch die innere Schleife des Unter-
programms ansehen. Dort werden entsprechend der vorher gele-

senen Zahl die Menüpunkte aus den DATA-Zeilen geholt und
mit der MENU-Funktion definiert. Da bei den Menüs 2 und 3
noch Haken vor den Punkten erscheinen können, werden in ei-

ner Abfrage zwei Leerzeichen vor die Texte dieser Menüs ge-
setzt. Allerdings wird dies genauso wie das Anhängen von
Leerzeichen nur dann durchgeführt, wenn die Nummer des
Menüpunktes größer null ist, denn die Überschrift des Menüs

muß nicht korrigiert werden!

Kehren wir nun ins Hauptprogramm zurück. Dort wird der

Hinweistext ausgegeben, daß alle Menüs aktiv sind. Damit der

Benutzer dies auch überprüfen kann, wird in eine SUB-Routine

verzweigt, die die angegebenen Sekunden wartet. Erst dann
kehrt sie ins Hauptprogramm zurück.

Der Aufbau dieser Routine ist relativ einfach. Zuerst wird die
Zeitzahl berechnet, die nach der angegebenen Zahl von Sekun-

372 Amiga Tips & Tricks —

den erreicht sein muß. Dann wird in einer Schleife so lange ge-
wartet, wie die aktuelle Zeit noch vor der gesetzten ist. Fertig!

Im Hauptprogramm wird danach ein weiterer Text ausgegeben,
der mitteilt, daß nun das Disk-Menü inaktiv sei. Dafür ist dann

auch der Aufruf unserer wichtigen Unterroutine verantwortlich.
Die Parameter sagen aus, daß im ersten Menü der nullte Punkt
und null weitere auf Null gesetzt werden sollen. Im Klartext
heißt das, daß die Überschrift des ersten Menüs inaktiv gemacht
werden soll. Damit sind gleichzeitig alle anderen Punkte des
Menüs inaktiv (s.o.).

Die SUB-Routine, die dafür zuständig ist, ist sehr einfach ge-
staltet, aber trotzdem arbeitserleichternd aufgebaut. Ent-
sprechend der übergebenen Parameter wird die Schleife durch-

laufen, die im angegebenen Menü alle Punkte auf die spezifi-

zierte Art setzt. Das war alles!

Das Hauptprogramm wird dann weiter abgearbeitet. Es werden
verschiedene Möglichkeiten der Nutzung dieses Unterprogramms
gezeigt. Dafür ist es am einfachsten, wenn Sie das Programm

starten und sich zu den Texten die entsprechenden Menüs an-

sehen.

——— Maschinensprache 373

9. Maschinensprache

AmigaBASIC ist zwar eine wunderbare Programmiersprache, je-
doch nicht die schnellste. Sicher, das Programmieren in
Assembler ist nicht unbedingt leichter, mit einem sehr guten
Assembler ist es aber gerade auf dem Amiga unglaublich ein-
fach, die tollsten Dinge in Maschinensprache zu programmieren.

Der Grund hierfür liegt darin, daß zu allen BASIC-Befehlen
eine entsprechende Betriebssystemroutine existiert, die dann al-

lerdings mehr als tausendmal so schnell ausgeführt werden kann,

als dies in BASIC der Fall ist. Wesentlich vereinfacht ist die
Programmierung fast aller erdenklicher Features, die in BASIC
nicht so ohne weiteres möglich sind, da für beinahe jeden
Wunsch die richtige Systemroutine vorhanden ist.

Nun wird gerade heute ständig von der Programmiersprache C

gesprochen, die es zumindest auf ein Zehntel der Geschwindig-
keit von Assembler bringen kann. Leider muß hierzu bemerkt
werden, daß viele Dinge mit C überhaupt nicht oder nur durch
extrem zeitaufwendige Routinen möglich sind. Hinzu kommt,
daß das Hintergrundwissen, das man für C besitzen muß, nicht

weniger ist, als es in Assembler der Fall ist.

Ein erstklassiger Assembler wie "PROFIMAT Amiga", auf den
DATA BECKER wirklich stolz sein kann, schlägt mit seinen
vielen Möglichkeiten jeden C-Compiler um ein Vielfaches. Da-
bei sollte der Interessierte auch den Preisunterschied bedenken.
Ich kaufte mir einen C-Compiler für tausend D-Mark. Nachdem
ich für knapp hundert Mark den PROFIMAT erstand und mich

von seiner Leistungsfähigkeit überzeugen konnte, hatte ich
nichts Eiligeres zu tun, als den primitiven C-Compiler wieder zu

verkaufen. Da man auf dem PROFIMAT Programme erstellen

kann, die aufgrund ihrer MaKros und Sonderfunktionen kaum

noch von BASIC-Programmen unterschieden werden können,

mußte ich die Routinen der folgenden Kapitel in einfachem, auf
jeden Assembler übertragbaren Code schreiben.

374 Amiga Tips & Tricks

9.1 Super-Handler für Division-By-Zero

Eine leider allzuhäufige Ursache für eine Guru-Meditation ist
die Division durch den Wert Null. Dazu sollten wir uns zunächst
einmal ansehen, was in einem solchen Fall geschieht. Der Pro-
zessor selbst ist es, der eine Exception auslöst, eine Ausnahme-

behandlung also. Hierbei wird zunächst das Status-Register vom

68000 zwischengespeichert. Danach schaltet der Prozessor auto-

matisch in den Supervisor-Modus um. Dabei wird das Trace-Bit

gelöscht, um den Einzelschritt-Modus unmöglich zu machen.
Jetzt wird der Programmzähler (PC) auf den Supervisor-Stack
gelegt, danach folgt das Statusregister, das Instruction-Register
in dem Zustand, in dem es beim Fehler war, und zu guter Letzt

die Zugriffsadresse und das sogenannte Superstate-Word, in dem

der Prozessorzustand erklärt ist.

Um nach einer Exception-Routine mit dem Programm weiter-
zuarbeiten, das den Fehler auslöste, genügt der Befehl RTE

(ReTurn from Exception). Nun werden Fehler leider allzu häu-
fig von einigen übereifrigen Programmierern einfach dadurch
abgefangen, daß der jeweilige Exception-Vektor auf ein RTE
zeigt. Eine ebenso unsinnige Variante finden Sie in Form des
CLI-Befehls SetAlert, der nichts weiter tut, als auf das Setzen

des Fehler-Flags zu warten und danach je nach SuperState-Word

entscheidet, ob ein RTE erfolgt oder der böse Guru herbeige-
rufen wird.

Was ich hiermit klarmachen möchte, ist folgendes: Stellen Sie

sich ein Programm vor, in dem der Nenner so klein geworden

ist, daß er nicht mehr in einem Word dargestellt werden kann
(Die 68000-Befehle DIVU und DIVS verarbeiten nur Words),
der Nenner also Null ist. Hier tritt nun die Exception auf, da

der 68000 nicht durch 0 dividieren kann. Stellen wir uns weiter-

hin vor, daß bei der Exception einfach mit RTE in unser Pro-

gramm zurückgekehrt wird. Dieses Zurückkehren geschieht zu
der Adresse hinter dem Befehl, der den Fehler auslöste. Wun-

derbar? Mitnichten! Was passiert denn normalerweise, wenn man

durch einen sehr kleinen Wert teilt, beispielsweise durch 0,0001?

Das Ergebnis wird sehr sehr hoch werden.

———— Maschinensprache 375

Dummerweise enthält unser Register, in das das Ergebnis hätte
abgelegt werden müssen, nun aber einen sehr kleinen Wert. Die
Folge ist, daß sämtliche nachfolgenden Berechnungen auch
falsch sein müssen, womit bald die nächste Exception ausgelöst

wird (im günstigsten Fall nur bei einer Division). Das Programm
würde allerdings nur noch Blödsinn fabrizieren, womit dem
Anwender keinesfalls geholfen sein dürfte. All diese Fehler
wollen wir jedoch nicht machen. Nehmen wir an, der Nenner

wäre nicht Null, sondern nur unendlich klein (Sie kennen diese

mathematische Feinheit?). Damit ist die Division wieder zulässig.
Für "unendlich klein" können wir schreiben:

1
Nenner = unendlich groß

Bei der Division durch diesen Nenner hilft uns die Regel: Divi-
diere durch einen Bruch, indem Du mit dem Inversen multipli-
zierst:

zähler = x

Inverser Nenner = unendlich groß

Zähler * Inverser Nenner

x * unendlich groß

unendlich groß

Ergebnis

Setzen wir jetzt für "unendlich groß" den größten möglichen
Wert ein, den die Befehle DIVS und DIVU verarbeiten können,

muß folglich in das Ergebnisregister eben dieser Wert - und die
Rechnung ist trotz Exception richtig. Daher werden wir nun
eine Exception-Routine schreiben, die den richtigen Wert in das

entsprechende Register legt, bevor sie mit RTE zurückkehrt.

‘Zu diesem Zweck muß zunächst herausgefunden werden, wel-
cher Befehl die Exception auslöste, denn der höchstmögliche
Wert ist bei DIVU $FFFF und bei DIVS $7FFF. Weiterhin muß
ermittelt werden, in welches Datenregister dieser Wert überge-

ben werden muß. Die Nummer des Datenregisters finden wir
direkt im OpCode wieder, wie folgende Tabelle zeigt:

Amiga Tips & Tricks —— 376

Befehl Bits des Befehls-Codes

151413121110 9876543210

DIVU 1000xxx011yyyyyy

DIVS 1000xxxi1i11yyyyyy

Die Bits 9-11 (x) geben die Nummer des Datenregisters an, in
die das Ergebnis abgelegt wird. Die Bits 0-5 (y) geben die

Adressierungsart an, die uns hier (Gott sei Dank) nicht zu in-
teressieren

Zielcode Zei

1
2
3

2C780004 4
203C 5
00000030
7201 6
GEAEFF3A 7
23C0 8
00000036
6718 9
2240 10
41F9 11
0000003A
702F 12

13
1208 14
SIC8FFFC 15
21F9 16
00000036
0014

17
18

7000 19
82C0 20
4E75 21

22
23

00000000 24
25
26

4BETFFFE 27
206F003E 28
3028FFFE 29
223C 30
OOOOFFFF
08000008 31
6706 32
223C 33

braucht. Zunächst das Programm:

le Quelltext

‚Division by Zero - Handler; by SM'88

Init_Trap: Handler installieren
Move.l 4,A6 ‚ExecBase nach A6
Move.| #Div_End-Div,DO ;Handler-Länge nach DO

MoveQ #1,D1 ;MEMF_Public
Jsr -198(a6) :AllocMem aufrufen

Move. DO,New_Trap ‚Adresse retten

Beq.s Init_End ‚Ende, wenn Fehler

Move.l DO,A1 ‚Adresse nach A1

Lea Div,AO ;CodeStart-Adresse

MoveQ #(Div_End-Div)-1,D0 ;CodeLänge- 1
Copy_Code: ;Handler kopieren
Move.b (A0)+,(A1)+ ‚Byte kopieren

DBra DO,Copy_Code ‚Nächstes Byte

Move. New_Trap,20 ‚Neuer Trap-Vektor

Init_End: ‚Adieu
MoveQ #0,D0 ‚Nenner = 0 !!!
Divu DO,D1 ‚Go Ahead, Make My Day
rts ‚Ende

New_Trap: ‚Neuer Trap-Vektor
dce.l 0 71 LongWord

Div: ;DivisionByZeroHandler
MoveM.l DO-A6,-(sp) ;Alle Register (s.u.)
Move.l 62(sp),A0 ;PC vom Stack holen
Move.w -2(A0),D0 ‚Letzten Befehl holen
Move.l #$ffff,D1 ‚Größte Zahl für Divu

Btst #8,D0 ‚War es ein Divu-Befehl?
Beq.s GoOn ‚Dann weitermachen
Move. #%7fff,D1 ‚Sonst Divs-Wert

——— Maschinensprache 377

O0007FFF
34 GoOn: ‚Ermitteln des Datenregisters

EE48 35 Lsr.w #7,D0 ‚Befehl bitweise scrollen
0280 36 Andi.l #28,D0 ‚Register ausklammern
0000001C
2F810800 37 Move.l D1,0(sp,d0.l) ;Register auf Stack ändern
4CDF7FFF 38 MoveM.l (sp)+,D0-A6 ;Geänderte Register laden
4E73 39 Rte ‚Return from Exception

40 Div_End: ‚Label: Sizeof
41
42 End

Wenn Sie sich die ganze Zeit über gefragt haben, wie der neue
Ergebniswert in das Datenregister gelangt, so finden Sie hier die
Erklärung: Nach dem Ablegen sämtlicher Register auf dem
Stack, bei dem immer zuerst das höchste Adreßregister abgelegt
wird, dann die anderen Register in abfallender Reihenfolge,
wird in Zeile 37 ganz einfach die mit 4 multiplizierte Register-
nummer als Offset für den Zugriff auf den Stack verwendet.
Sollte im übrigen irgend etwas nicht geklappt haben, so folgt der

Guru auf dem Fuße.

Wir sind nämlich einfach so frech und lösen nach der Installa-

tion des neuen Trap-Vektors eine Division-By-Zero-Exception

aus (in Zeile 20 wird bewußt durch 0 dividiert!), daher am
Rande Clint Eastwoods Lieblingsspruch... Damit auch die BA-
SIC-Enthusiasten auf ihre Kosten kommen, hier eine Kurzrou-

tine, die das Programm als CLI-Befehl ablegt (sollte ja auch in
keiner Startup-Sequence fehlen):

OPEN "sys:c/DIVZERO" FOR OUTPUT AS 1

FOR i=1 TO 176

READ a$

aZ=VAL ("&H"+a$)

PRINT #1,CHR$(a%);
NEXT

CLOSE 1

KILL "sys:c/DIVZERO. info"

datas:

DATA 0,0,3,F3,0,0,0,0,0,0,0,1,

DATA 40,0,0,18,0,0,3,E9,0,0,0,

DATA 0,30, 72,1,4E,AE, FF,3A,23,C0,0,0,0,36,67,18,22,40,41, F9

DATA 0,0,0,3A,70,2F,12,08,51,C8, FF, FC,21,F9,0,0,0,36,0, 14

DATA 70,0,82,C0,4E,75,0,0,0,0,48,E7,FF,FE,20,6F ,0,3E,30,28

1,0,0,0,0,0,0,0,0
‚0,18,2C,78,0,4,20,3C,0,0
23,C
1

378 Amiga Tips & Tricks ———

DATA FF,FE,22,3C,0,0,FF,FF,8,0,0,8,67,6,22,3C,0,0,7F,FF
DATA EE,48,2,80,0,0,0,10,2F,81,8,0,4C,DF,7F,FF,4E,73,0,0
DATA 0,0,3,EC,0,0,0,3,0,0,0,0,0,0,0,12,0,0,0,1C
DATA 0,0,0,2A,0,0,0,0,0,0,3,F2,0,0,3,F2

9.2 Achtung: Viren-Alarm!

Computerviren verbreiten sich mit rasender Geschwindigkeit.
Die bekanntesten Vertreter dürften auf dem Amiga der SCA-
Virus und der BYTE-BANDIT-Virus sein. Früher konnte man

ganz einfach sagen: Verwende nur gekaufte Software, keine ge-
klaute, und Du bleibst von Viren verschont. Dem ist heute leider

nicht mehr so. Wir haben also ein Problem, das man nicht ernst

genug nehmen kann.

Die erste Frage, die sich bei diesem Thema stellt, ist die, wer

überhaupt auf die teuflische Idee kommen kann, anderen solche

Virus-Programme "unterzujubeln". Die Namen der Viren sagen
es aus: Sie kommen aus dem Bereich der "Cracker", dıe den lie-

ben langen Tag nichts anderes zu tun haben, als ehrliche Pro-

grammierer um ihr wohlverdientes Geld zu bringen. Mit Raub-
kopien, mit denen zumindest fast jeder Jugendliche irgendwann

einmal in Kontakt gekommen sein dürfte (traurig, traurig...)
verbreiteten sich die Viren immer weiter. So kam es dann auch,

wie es kommen mußte: Plötzlich wurden Originalspiele (!) mit
Viren ausgeliefert! Nachdem die Spiele-Firma, die ich hier nicht
nennen möchte, dieses mitgeteilt bekam, zog sie ihre Konse-

quenzen - die Viren sollen über Public-Domain-Programme ins
Werk gekommen sein.

Wie vermehrt sich ein Virus? Im allgemeinen befindet sich das
Killer-Programm im Bootblock einer Diskette. Wird von dieser
gebootet, lädt das Betriebssystem zunächst die beiden ersten
Sektoren einer Disk (Boot-Sektoren). Normalerweise befindet
sich hier die Initialisierungsroutine für die DOS-Library. Diese
Routine wird vom Befehl INSTALL auf die Disk geschrieben,
um sie bootfähig zu machen. Die Routine wird direkt ange-
sprungen, was genau der Umstand ist, den die Viren sich zu-
nutze machen.

——— Maschinensprache 379

Sie kopieren sich in irgendeinen Speicherbereich, verbiegen Sy-
stem-Vektoren auf sich und führen danach die DOS-Initialisie-
rung durch. Somit gelangen sie unbemerkt ins System. Legt man
jetzt eine Boot-Disk in ein Laufwerk, schreibt sich der eine
Virus bereits in den Bootblock, während der andere Typ dies

erst beim Reset tut. |

Leider starten inzwischen viele Programme über einen Loader
im Bootblock, der von den Viren einfach überschrieben wird,
was der Zerstörung der Disk gleichkommt. Zudem treten bei
verseuchten Computern diverse, von den Viren geschaffene

Störungen auf, die sich allerdings erst dann bemerkbar machen,

wenn das Virus der Meinung ist, genug Disketten verseucht zu
haben. { Ä

Der einzige Feind der Viren ist zur Zeit der INSTALL-Befehl,
der den verseuchten Bootblock einfach wieder überschreibt.
Heute bekannte Viren kennen jedoch ihren Feind - wird von
INSTALL auf den Bootblock geschrieben, klinken sie sich in
den Schreibvorgang mit ein und erneuern sich auf der Diskette.
Einem derart verseuchten System ist mit normalen Mitteln nicht
mehr zu helfen.

9.2.1 Der ultimative Virus-Killer

Das folgende Programm sollte in die Startup-Sequence jeder

Boot-Disk gelegt werden. Es überprüft die Systemvektoren, die

von den Viren im allgemeinen verwendet werden können, und
dreht ihnen durch das Löschen dieser Vektoren "den Saft ab".
War das System verseucht, erfolgt eine entsprechende Meldung.
In diesem Falle müssen Sie sämtliche Bootdisks sofort mit dem
INSTALL-Befehl reinigen. Durch das Abschalten der Virus-
Programme im Speicher können diese sich dann nicht nach je-
dem INSTALL gleich wieder auf Disk zurückschreiben.

380 Amiga Tips & Tricks

Zeile Quelltext

1

_

O
O
D
O

S
O
A
V
R
W
D
I
D

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51
52

:VIRUS-KILLER V1.0; by SM'87

start:
move.l 4,a6 sEXECBASE nach a6
moveq #0,d1 Flags: kein Virus vorhanden

tst.l 46(a6) ‚Test, ob Cool-Capture verbogen ist
beq.s noSCA sDer SCA-Virus war's nicht
clr.l 46(a6) ;Cool-Capture löschen
addq.b #1,d1 ‚Bit 0 setzen

noSCA:

cmpi.w #$FC,148(a6) ;Vertical Blank Interrupt normal?
beq.s novBI snein?
addq.b #2,d1 ‚Bit 1 setzen
bra.s ClearTag ;KickTag-Pointer löschen

noVBI:

tst.l 550(a6) sKickTag-Pointer verbogen?

beq.s GoOn ‚nein?
addq.b #4,d1 ‚Bit 2 setzen

ClearTag:

clr.t 550¢a6) ‚Pointer löschen

cir.| 554(a6) ‚Pointer löschen

GoOn:

move.b d1,Virusflag ;Flag retten
lea dosname ‚al ‚Adresse des Libnamen
moveq #0,d0 ‚Version ist egal
jsr -552(a6) :OpenL ibrary
move.| d0,dosbase ;Library-Basis retten
beq fehler :;Verzweigen wenn Fehler
move.| d0,a6 ‚DOSaufruf vorbereiten
jsr -60(a6) ;Output-Handle holen
move.| d0,Outputhandle ;und retten
beq fehler ;Verzweigen, wenn Fehler
move.l #title,d2 ;überschrift nach d2
move.| #titleend-title,d3 ;Text-Länge

jsr writeout ‚Text ausgeben

tst.b Virusflag :Virusflag testen
bne.s Virusfound ;Verzweigen bei Virus
move.l #clean,d2 ;Beruhigende Meldung
move.| #cleanend-clean,d3 ;Länge
jsr writeout ‚Text. ausgeben

bra fehler ;Programm beenden
Virusfound: ‚Virus war aktiv
btst #0,Virusflag ;Cool-Capture?

beq.s notsca ;Nee
move.l #scaV,d2 Meldung
move.| #scaVend-scaV,d3 ;Länge
jsr writeout ‚Text ausgeben

notsca:

btst #1,Virusflag ;VB-Interrupt?
beq.s notvbi ‚Nee
move.l| #bbVvbi,d2 ;Meldung
move. #bbVvbiend-bbVvbi,d3 ;Länge

——— Maschinensprache

jsr writeout ‚ausgeben

bra.s bbfound ‚nächste Meldung

notvbi:
btst #2,Virusflag ;Kicktag?
beq.s fehler ‚Nee
move.| #bbVtag,d2 ;Meldung
move.| #bbVtagend-bbVtag,d3 ;Länge
jsr writeout ‚ausgeben

bbfound:
move.| #bbv,d2 ‚Meldung
move.| #bbvend-bbv,d3 ;Länge
jsr writeout ‚ausgeben

fehler:
move.| 4,86

move. dosbase,dO
beq.s quit
move. dO,al
jsr -414(a6)

quit:
moveq #0,d0
rts

writeout:
move.l outputhandle,di
jmp -48(a6)

dosname:dc.b "dos. library",0

title:dce.b $c,$9b,"1;31;42m - Virus-Killer"

dc.b " V1.0 - ",10,13
dc.b "(w) 1988 by S. Maelger",10,13,10
dc.b $9b,"0:31;40m"

titleend:align

clean:dc.b "Keine Anzeichen für Virus"
dc.b "-Infektion gefunden !",10,13, 10

cleanend:align

scaV:dc.b "Reset-Vektor Cool -Capture wurde"
dc.b " benutzt !",10,13

dc.b "SCA-Virus wird vermutet !",10,13
dc.b "Virus im Speicher vernichtet.",10,13,10

scaVend:align

bbVvbi:dc.b "Vertical Blank Interrupt wurde "
dc.b "benutzt !",10,13

bbVvbiend: align

bbV:dc.b "Byte-Bandit-Virus wird vermutet !",10,13
dc.b "Virus im Speicher vernichtet.",10,13,10

bbVend:align

bbVtag:dc.b "KickTagPointer wies nicht mehr auf"

dc.b " Betriebssystem !",10,13
bbVtagend:align

dosbase:dc.l 0
outputhandle:dc.lt 0
Virusflag:dc.b 0

end

Wie schon zuvor nun der BASIC-Loader:

381

Amiga Tips & Tricks

ne)
N

M
N
n
W
e
-

N
K
R
M
N
O
M
S
F
T
R
R
A
G
N
.

mo
0
0
0

A
O
O
N
M
N
O

N
m
 Oö

Nm
s
h

N
n
K
R

"
A
U

=
=

8
n
m

=»
a

n
a

=
es

D
D

O
A

0

*§
2®©
O
e

a
l

wi
wo

x
<
<
q
n
o

+o
S
O
S
S
E

S
O
O
N

O
Y

o
m

w
w
M
S
A
M
N

N
O
R
 C
N

B
O
R
K

D
O
O
O

=
=
.

Q

»
=

a
s
f

(
N

&
R
n

=
w=

8
Q

S
D

&
n
n

2A
O
O
O

“
W
O
W

S
N
R
K
N
S
T
I
N
E

M
M
O

-
M
N
O
O

n
n
.

C
O
N
G
D
O
W
D

N
K
R

w
“
N
O
O
O

=
0
0
0

a

=
n
n

“
S
o
n
d
a
o
n
’

o
o
”

o
o

n
o
o
o

-

&
~

n
n

m

tr
o
a
d

M
P
N

O
R
M
B
M
R
N
K

E
N

D
M
O
O
O
U
O

=
=

=

n
o
n
s

s
v
k
w
o
n
n
e
n
e

nw
o
u
n

N
S
H

-
=

»
wm

De)
K
I
N

W
N

S
S
R
E
R
A
R

S
S
R

=
O

n
n
.

=
sm

©
a
D
)

O
D

*§
&

&®
&

&®
»®

®&
2
8
Q

&®&
©
O

~
O
O

OC
M
S
O

C
O
N
E

N
N
W

A
N
N
O

E
H
O
W

"
O
s

=O
“
O
O
M

O
N

S
O
O
M

W
M
O

M
N
O

A
N
M
O

S
O
A
S

=
&

e
e

s&s
&

©
&®

&
&

&
&

=»
v
u
"

n
n
.

O
w

Oo
eh

o
t

O
e
t
 Ost

“
—
M
i
N
®
G

0
0
0

~=O
0

0

ca
~
h

0
“
N
E

R
R

S
a
k

S

"
=
O

=
=

&
O
S

n
e

o
n

4

s
-
O
M
 Ww

eto
N
i
n

O
O

B
A
R
S

S
u
m

s
i
n
d

O0
<<

Ww
=
O

O
W
N

0

<
0

-
V
O
G
O
D
S
T

O
O

~
o
N

=
a

WJ
»
_
 &

&
‚
o
o
o
u

n
o
n

n
n
a
o
o
W
o
u
W
N
s
O
@
O
O
O
O

=

~
“
O
M

O
O

N
O
O
N
D

=»
R
N

n
m

S
g
ı
o
a
N

=
.
o
o
o
m

T
N
A

©

a
a
n

N
a
A
n
m
s
o

S
n

S
A
M

S
C
C
S
o

S
D

-
a

-
u
n

-
R
O
N

G
S
R
G

G
R

<
R
I
A
R
A
G
O
R

e
k
S
<
c

“
o
S

&

O
O

»
M
m
r
-
M
o
w
m
a
n
a
l

Oo
uw

©

-
o

<
a

o
e

S
R
R
G
S
S
S
U
S
S
E
N
S

Nose
e
e

P
r
o
n
e

M
N
O
M
N
S

A
D
T
O
O
O
S

n
M

N
O

~~
e
N
O

p
O

O
O
D

N
O
O
A

co
u
O

n
o

r
O
M
O

Y
R
L
S
R
T
L

G
I
R
L
S

hu

O
R
K
I
N
S
T

S
M
T
N
M
A
N
N

A
O
D

D
R
M

O
R

a
R

S
Y
I
N
A
R
S
B
Y
B
K
S
c
c
c

.

r
T
O
O
m
M
I
N
c

O
W

u
n

y
r

a
u

M
A
D

oO
«

M
N

N
M

O
O

=
O

0

m
n

Be
De

u
V
o

7

n
n

n
n
.

“
O
M
N
D
O
O

S
U
N
S

OU
O
O

O
I

U
S

E
DATA 58,

OPEN "sys:c/VIRUSCHECK" FOR OUTPUT AS 1

FOR i=1 TO 828
READ a$

KILL "SYS:C/VIRUSCHECK. INFO"

PRINT #1,CHR$(a%)

datas

382

a%=VAL("&H"+a$)

NEXT
CLOSE 1

DATA 0,
DATA 3
DATA 2

DATA 12,
DATA AE

DATA

w
e
e
s

S
W
O
W
N
M
A
S
O

S
o
g
a
r

-
-

p
o
r

N

S
L
S
R

Y
S
Y
R
R
E
N
G
R
c
c
c
o
m

nn
o
O

O
O

N

N
O

bes
©

=
O

»~=
s
O
0
Q
0
O
°
o

=»
=»

#&§&S

o
O

S
Z
T
S
A
K
S
K
H

R
E
S
I
R
V
S
S

J
o
o
o

-
-

SN
W
O
.

-

n
:
o
o
O
o
o
O
0
o
O

a
k

=
=

&
&

&
N

o
o
o
o
o

Na, war das ’ne Datenwüste

———— Maschinensprache 383

9.3 ASSEMBLER und BASIC

Um in BASIC Assembler-Routinen aufzurufen, muß einer

Long-Variablen die Anfangsadresse der Routine übergeben wer-
den. Wir demonstrieren dies gemeinerweise an der Reset-Rou-
tine des Betriebssystems, die bei $FC0000 beginnt. Leider gibt es
mit BASIC immer wieder Schwierigkeiten bei den Long-Vari-
ablen, die meist so aussehen, daß der BASIC-Interpreter fast

ausschließlich mit Fließkommavariablen rechnet und eine Zahl
erst später in Longs umwandelt.

Dabei tritt häufig der Fehler auf, daß die normalen Fließkom-
mavariablen nur über ein paar Stellen genau sind, so daß beim
Umrechnen in Longs das Ergebnis um Werte zwischen 1 und 5
zu niedrig ist. Wer dies umgehen möchte, muß entweder auf
Maschinensprache-Routinen ausweichen, die fehlerfreie und su-
perschnelle Long-Arithmetik garantieren, oder er geht den Weg
über Strings:

SMreset&=CVL(CCHR$SCO)+CHRSCKHFC)I+MKISCO))

Wesentlich eleganter ist es, bei häufiger Verwendung von Sy-

stemroutinen und Assembler-Programmen vorher mit DEFLNG
alle Variablen, die kein Kennzeichen tragen, als Long zu dekla-
rieren: |

DEFLNG a-z

SMreset=CVL(CCHR$COJ+CHRSCEHFC)I+MKISCO))
SMreset

Vorsicht! Wenn Sie obiges Beispiel eingeben und starten, springt
der BASIC-Interpreter die Reset-Routine an. Dies sollte nur als
Beispiel für das Anspringen einer Assembler-Routine sein. Wol-

len Sie tatsächlich in einem BASIC-Programm einen Reset aus-
lösen, gibt es eine viel bessere Methode, die sich zudem durch

eine größere Geschwindigkeit auszeichnet:

POKEL 32,CVL(CHRS(0)+CHRS(&HFC)+MKIS$(O))

Aber das nur am Rande, denn unser eigentliches Thema ist As-
sembler. Um den nächsten Schritt in Richtung BASIC-Erweite-

384 Amiga Tips & Tricks

rungen einzuschlagen, schreiben wir eine Kurzroutine, die die
Power-LED von hell auf dunkel umschaltet und umgekehrt. Ja-
gen Sie Ihren Bekannten damit ruhig einen gehörigen Schreck

ein:

Code Mnemonic

0879000100BFE001 BCHG #1,$BFE001 ;Helligkeit umschalten

4E75 RTS ‚Das war's schon

Jetzt ergibt sich für uns die Frage, wo wir den Code unterbrin-
gen können. Das ist gar nicht so leicht, wie es den Anschein hat,
denn die Adresse, an der der Code beginnt, muß in jedem Fall

gerade sein, da sonst ein Guru-#3 auftritt (Adressierungsfehler).
Der 68000-Prozessor kann nur Befehle an geraden Adressen ab-

arbeiten, folglich muß sich auch jeder Befehl an einer solchen
befinden. Dummerweise läßt BASIC hier nicht mit sıch reden
und legt seine Variablen byteweise dort ın den Variablen-Puf-
fer, wo gerade genug Platz vorhanden ist. Um daher absolut sı-
cher zu gehen, daß die Adresse gerade ist, sollten Sie Speicher-

platz vom System abzwacken. Das kann mit der Exec-Routine

AllocMem geschehen. Wir schreiben folglich:

DEFLNG a-z

DECLARE FUNCTION AllocMem LIBRARY
LIBRARY"exec. library"

SMmagic=AllocMem(10,1) '10 Byte, Speicherbereich Public-RAM
FOR i%=0 to 4
READ Power$

POKEW SMmagic+1%*2,VALC"&H"+Power$)
NEXT
DATA 879,1,BF,E001,4E75
PRINT "Oh, siehe da, die Power-LED flackert !"

FOR i%=1 TO 20 120 mal umschalten

al=TIMER+.5 'Verzogerung 0,5 Sekunden

WHILE a!>TIMER:WEND "Warten

SMmagic 'Assembler-Routine aufrufen
NEXT

FreeMem SMmagic,10 "Speicherplatz wieder freigeben
LIBRARY CLOSE ıSYS schließen

Bei derart einfachen Routinen, die noch dazu kein einziges Re-
gister verwenden, haben wir noch keine Probleme. Diese treten
vermehrt dann auf, wenn unser Programm bestimmte Zugriffe

——— Maschinensprache 385

durchführt. So akzeptiert jeder Assembler anstandslos folgendes
Beispiel:

MOVE.L DO ,DatenregisterO

Datenregister0:dc.l 0

Hier wird ein Label im Programm definiert, an welches das Da-
tenregister DO abgelegt werden soll. Würden Sie die entspre-
chenden Codes wie bei dem Power-LED-Programm in den
Speicher poken, führt es garantiert zum Herbeieilen des Guru.

Der Grund hierfür ist die Adressierungsart, die bei obigem
MOVE.L verwendet wird. Es wird nämlich absolut adressiert.
Die absolute Adressierung kann aber nicht verwendet werden,
weil wir nie im voraus wissen, wo das Programm schließlich
liegt.

Der Code müßte erst an die jeweilige Anfangsadresse angegli-

chen werden, was wir uns natürlich ersparen wollen. Folglich
muß bei einer Vorgehensweise wie im Power-LED-Programm
PC-relative Adressierung erfolgen. Ein guter Assembler hat eine
Einstellmöglichkeit für Programmzähler-relativen Code. In je-
dem Fall müßten Sie dann jedoch schreiben:

LEA Datenregister0(PC),A0

MOVE.L DO, (AQ)

Ihr Programm könnte also nicht alle Assembler-Befehle nutzen,
und die Programmierung wirde dadurch sehr aufwendig werden.
Es gibt zwar auch in den Listings, die in Amiga-Zeitschriften
abgedruckt werden, lediglich einige PC-relativ adressierte Pro-
gramme, doch wozu haben Sie sich Tips & Tricks gekauft? Ganz

einfach: Ich werde Ihnen jetzt eine Möglichkeit zeigen, wie Sie
erstens jeden Assembler-Befehl benutzen können, zweitens kei-

nen Speicherplatz von Hand belegen müssen, drittens keine auf-

wendigen Laderoutinen benötigen und viertens sogar C-Pro-
gramme aufrufen können (!):

386 Amiga Tips & Tricks

9.3.1 Assembler- und C-Programme von BASIC aus
nachladen und aufrufen

Um Sie nicht nur einfach mit der Tatsache zu konfrontieren,

daß das möglich ist, sehen wir uns einmal an, wie das Ganze bei

beliebigen (nicht BASIC-) Programmen ausschaut. Ob es sich um
Ihr Lieblingsspiel, eine Textverarbeitung oder den BASIC-Inter-
preter handelt, immer sind diese Programme absolut adressiert.

Denken wir etwas darüber nach, kommen wir zu dem Schluß,

daß die Adressen, die irgendwo in den Programmcode weisen,

vor dem Laden nur als Offsets vom Programmanfang aus vor-

handen sein können. Während beziehungsweise kurz nach dem
Laden muß das Betriebssystem die wirklichen Adressen berech-

nen und so das Programm geradezu selbständig umprogram-
mieren.

Um es vorwegzunehmen: Genau das ist auch der Fall. Damit das
Betriebssystem, genauer gesagt eine Routine der DOS-Library,
weiß, welche Befehle umcodiert werden müssen, wird von Ihrem
Assembler mindestens ein sogenanntes Linkmodul mit abge-

speichert, das diese Informationen enthält. Im Normalf all besteht

ein abgespeichertes Assembler-Programm aus einem Code-Seg-

ment (Ihr Programm), einem Data- -Segment/ und einem BSS-

Segment (direkt beim Laden für das Programm zu reservierender

freier Speicherplatz), sowie ein oder mehreren Link-Segmenten.

/
Was das Betriebssystem tut, müßten wir Auns allerdings auch zu-
nutze machen können. Selbständig gestartet werden soll unser
Programm allerdings nicht, lediglich die Laderoutine wollen wir
benutzen. Diese ist giinstigerweise in der DOS-Library enthalten
und kann problemlos von BASIC aus aufgerufen werden. Sie
heißt LoadSeg und benötigt lediglich den mit einem Null-Byte
abgeschlossenen Namen des Programms. Jede Speicherreservie-
rung und alle anderen anfallenden Arbeiten werden von LoadSeg
gleich mit erledigt. Die Syntax sieht so aus:

HauptSegment=LoadSeg (SADD("Filename" + CHR$(0)))

—_—— Maschinensprache 387

Um den reservierten Speicherplatz wieder freizugeben, benöti-

gen wir die Routine UnloadSeg, der der Rückgabewert von
LoadSeg übergeben werden muß:

UnloadSeg HauptSegment

Schwierigkeiten gibt es jedoch, wenn man sich den Wert ansieht,
den wir von LoadSeg übergeben bekamen. Da das DOS bekannt-

lich in BCPL geschrieben wurde (eine Compiler-Sprache), han-
delt es sich auch um einen BCPL-Wert. Dieser Wert würde in
der Sprache BCPL nun auf das Haupt- bzw. Code-Segment

weisen. Für unsere Anwendungen müssen wir ihn jedoch in eine
Adresse umformen. Das DOS tut so, als ob der Speicher nur aus

hintereinandergelegten Longs bestehen würde. Folglich handelt

es sich bei dem Rückgabewert um die Nummer des Longs vom
Speicheranfang aus.

Um eine richtige Adresse zu erhalten, muß dieser Wert mit 4 (4
Bytes pro Long) multipliziert werden. Diese Adresse zeigt jedoch
immer noch nicht genau auf unser Programm. Im ersten Long

des Hauptsegmentes ist der BCPL-Zeiger auf das nächste Seg-
ment abgelegt, welches wieder mit einem BCPL-Zeiger auf ein
weiteres Segment beginnt und so weiter. Hinter diesem Pointer
steht bereits unser Programm, so daß wir folgendes schreiben

müssen, um eine derart geladene Maschinenroutine aufzurufen:

DEFLNG a-z

DECLARE FUNCTION loadseg LIBRARY

LIBRARY"dos. library"

bcpl.segstart=loadseg(SADD("Prof imat :asm.prg"+CHRS$(0)))

Segment=bcpl .segstart*4

Rout ine=Segment+4

Routine

unloadseg bcpl.segstart
LIBRARY CLOSE

Um sich alle Startadressen der einzelnen Segmente ausgeben zu
lassen, fügen Sie vor dem Aufruf von "Routine" ein:

PRINT "Haupt-Programm beginnt bei Adresse";Routine

1%=1

WHILE Segment<>0

388 Amiga Tips & Tricks

PRINT i%;". Segment beginnt bei Adresse";Segment+4

Segment=PEEKL (Segment)*4

WEND

Kommen wir zur Parameter-Ubergabe. BASIC verfahrt dabei
mit Assembler-Routinen ebenso wie die Compilersprache C mit

Programmteilen. Die Parameter werden in Form von Longs auf
den Stack gelegt, wobei im folgenden Beispiel zuerst Parameter
P3 auf dem Stack landet, danach P2 und zum Schluß PI. So ist
der erste Parameter, der schließlich im aufgerufenen Programm
vom Stack geholt wird, Parameter Pl. Nach den Parametern

wird die Routine mit JSR (Jump to Sub-Routine) direkt ange-
sprungen, wodurch als letztes die Rücksprungadresse auf dem
Stack landet.

Routine P1,P2,P3

Auf dem Stack liegt die Rücksprungadresse der Routine:

Stackpointer + 12 = P3 (Long)
Stackpointer + 8 = P2 (Long)
Stackpointer + 4 = P1 (Long)
Stackpointer + 0 = Rücksprungadresse (durch JSR)

Wer mit obigem Programm eine C-Routine nachgeladen hat,
kann sie genauso aufrufen, wie dies bei einem Assembler-Pro-
gramm der Fall ist. Wenn Sie können, sollten Sie jedoch immer
auf Assembler zurückgreifen, da der von C generierte Maschi-
nencode ganz erheblich langsamer ist als ein reines Maschinen-
programm. Das geht sogar so weit, daß Compiler-BASIC-Dia-
lekte immer wesentlich schneller als C sind, da die Betriebssy-
stem-Routinen genau so aufgerufen werden, wie man BASIC-
Befehle schreibt, der Zugriff daher immer direkt erfolgt, und
nicht vorher gewaltige Speicherkopierereien stattfinden müssen.

Teile des Betriebssystems (es werden immer weniger) sind in C
programmiert, und gerade das ist es, was den Amiga so langsam
macht. Weiterhin ist der Speicherplatzbedarf von C-Programmen
sehr hoch. So sind nur wenige Prozente des Betriebssystems in C
geschrieben, machen jedoch den größten Teil des vom Betriebs-
system benötigten Speicherplatzes aus. Das erklärt auch, warum

———— Maschinensprache 389

das Betriebssystem trotz Beschleunigung und Verbesserung im-
mer kleiner wird (C-Routinen werden mehr und mehr durch
Assembler-Routinen ersetzt).

Im C-Programm stehen die Parameter in der Klammer in der

gleichen Reihenfolge, wie sie von BASIC aus übergeben wurden.
Wie kommt man nun von Assembler aus an sie heran? Dazu
muß vorher noch erwähnt werden, daß Sie nicht so ohne wei-

teres die Register ändern dürfen. Diese sollten Sie gleich am
Programmanfang irgendwo ablegen, wozu sich der Stack gera-
dezu aufdrängt:

START: MOVEM.L DO-A6,-(A7) ;Register retten: Damit befinden
sich 15 Register und die Rück-
‚sprungadresse auf dem Stack.
‚Der erste Parameter liegt somit
‚ab SP+(16*4) = 64(SP)

MOVEM.L 64(SP),DO-D2 ;Die drei Parameter holen.

ENDE: MOVEM.L (A7)+,DO-A6 ;Register vom Stack holen
RTS

Fragt sich natürlich, wie die Rückgabe von Werten an das BA-
SIC-Programm ablaufen muß. Zu diesem Zweck geben wir bei
wenigen Rückgabewerten mit der VARPTR- oder SADD-Funk-
tion die Adresse einer Variablen als Parameter an, holen im

Maschinenprogramm die Adresse vom Stack und schreiben den
Return-Wert hinein. Haben Sie viele Werte zurückzugeben,
reicht eine Adresse einer Feldvariablen (Vorsicht bei Strings -
dort erhält man höchstens die Adresse der Stringdeskriptoren,

die jeweils aus 5 Bytes bestehen).

9.3.2 BASIC-Erweiterung ColorCycle

Um die Parameter-Ubergabe an ein Maschinenprogramm zu
verdeutlichen, hier eine Erweiterung, mit der Sie wie in DPaint

die Farben rotieren können (sogar um ein Vielfaches schneller):

390 Amiga Tips & Tricks

; Syntax: AdresseRoutine WINDOW(7),von,bis ;
3; von=Startfarbe; bis=Endfarbe ;
; Farbverschiebung immer "von" --> "bis" ;
‚ von < bis: Rotation nach oben ;
; von > bis: Rotation nach unten ;

Cycle: MOVEM.L DO-A6,-(SP) ;Register auf Stack retten
MOVE.L 4,A6 sExecBase nach A6 holen
LEA GFXNAME,A1 ;Library-Name nach Al
MOVEQ #0,D0 ‚Version ist egal
JSR -552(A6) ‚OpenLibrary aufrufen
TST.L DO ;Test, ob Basis vorhanden
BEQ.S Exit ‚Wenn nicht, dann Ende
MOVE.L DO,A6 ‚GfxBase nach A6

MOVE.L 64(SP),A0 ;WindowBase besorgen
MOVE.L 46(A0),A0 ;ScreenBase ermitteln
ADD.L #44,A0 ;ViewPort des Screens in AO
MOVE.L 4(A0),A1 :ColorTable nach A1
MOVE.L 4(A1),A1 ;ColorMap ermitteln

LEA CTab,A2 ‚Unser Buffer nach A2
MOVEQ #15,D0 :15 Longs (32 Words)

CopyCT: MOVE.L (A1)+,(A2)+ ;ColorMap kopieren
DBRA DO,CopyCT (wegen nicht geänderter F.

MOVEM.L 68(SP),D0-D1 ;Start- und Endfarbe holen
ANDI.W #31,DO ‚darf nicht höher als 31 sein
ANDI.W #31,D1 ‚dito
LSL.B #1,D0 ‚*2 (als Offset verwenden)
LSL.B #1,D1 ‚dito
LEA CTab,A1 ‚Adresse unseres Buffers
MOVE.W (A1,D1.W),D2 ;letzte Farbe retten
CMP.B DO,D1 ‚Rotationsrichtung ermitteln
BEQ.S ClLib ‚beide Farben gleich ???
BGT.S Up ‚Farben nach oben rotieren?

Down: MOVE.W 2(A1,D1.W),(A1,D1.W) ;Farbe nach unten

ADDQ.B #2,01 ‚Offset erhöhen

CMP.B DO,D1 ‚Ende erreicht?

BNE.S Down ‚nein? Dann nächste Farbe

BRA.S SetLC »Schluß
Up: MOVE.W -2(A1,D1.W),(A1,D1.W) ;Farbe von unten

SUBQ.B #2,D1 ‚Offset erniedrigen
CMP.B DO,D1 unten angekommen?

BNE.S Up ‚nein? Dann nächste Farbe
SetLC: MOVE.W D2,(A1,D1.W) ;gerettete Farbe ablegen

MOVEQ #32,D0 ‚32 Farben setzen
JSR -192CA6) ;LoadRGB4 (a0=VP,a1=Ctab,d0)

ClLib: MOVE.L A6,A1 :GfxBase nach A1
MOVE.L 4,A6 sExecBase holen

JSR -414(A6) sLibrary schlieBen

——— Maschinensprache 391

Exit: MOVEM.L (SP)+,DO-A6 ;Register vom Stack holen
RTS ‚Feierabend

GFXNAME: DC.B "graphics.library",0,0O ;Library-Name
CTab: DS.W 32 332 Words Buffer

END ‚Bis hierher assemblieren

Der Code wurde so gehalten, daß Sie entweder PC-relativ oder
normal assemblieren können. Hier ein Demo-Programm in BA-
SIC, das unsere Routine benutzt. Dabei wird von normaler As-

semblierung ausgegangen (LoadSegment):

'!Erst einmal Routine laden:

DEFLNG a-z

DECLARE FUNCTION loadseg LIBRARY

LIBRARY": bmaps/dos. library"
a=loadseg(SADD("prof imat :ColorCycle"+CHR$(0)))
prg=a*4+4
Ein wenig Grafik

FOR i%=0 TO 3

LINE (0, i%*40)-STEP(80,40),i%,bf
NEXT

'Demo: Farben vorwärts und rückwärts rotieren

FOR i%=0 TO 50
t!=TIMER+.2
WHILE t!>TIMER

WEND
prg WINDOW(7),1,3

NEXT
FOR i%=0 TO 50

t!=TIMER+.2

WHILE t!>TIMER
WEND

prg WINDOW(7),3,1
NEXT

'Speicherplatz freigeben
unloadseg a

LIBRARY CLOSE

Hier nun der BASIC-Loader, der Ihnen dieses File auf Disk an-
legt:

OPEN "COLORCYCLE" FOR OUTPUT AS 1

FOR i=1 TO 300

READ a$

a$="&H"+a$

PRINT#1,CHRSCVAL(a$));
NEXT

CLOSE 1

DATA 0,0,3,F3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,3A,0,0

392 Amiga Tips & Tricks ——

DATA 3,E9,0,0,0,3A,48,E7,FF,FE,2C,78,0,4,43,F9,0,0,0,94,70,0
DATA 4E,AE,FD,D8,4A,80,67,76,2C,40,20,6F,0,40,20,68,0,2E ‚D1
DATA FC,0,0,0,2C, 22,68,0,4,22,69,0,4,45,F9,0,0,0,A6, 70,F, 24
DATA D9,51,C8, FF, FC,4C,EF,0,3,0,44,2,40,0,1F,2,41,0,1F,E3,8
DATA E3,9,43,F9,0,0,0,A6,34,31,10,0,B2,0,67,26,6E,E,33,B1, 10
DATA 2,10,0,54,1,B2,0,66,F4,60,C,33,B1, 10, FE, 10,0,55, 1,B2, 0
DATA 66,F4,33,82, 10,0, 70,20,4E,AE, FF,40,22,4E, 2C, 78,0,4,4E
DATA AE, FE,62,4C,DF, 7F, FF, 4E, 75,67, 72,61, 70,68, 69,63, 73, 2E
DATA 6C,69,62,72,61,72,79,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DATA 0,0
DATA 0,3,EC
DATA 0,0,0,3,0,0,0,0,0,0,0,A,0,0,0,32,0,0,0,52,0,0,0,0,0,0,3
DATA F2,0,0,3,F2
DATA BECKER

9.3.3. BASIC-Erweiterung Zzz

Wenn der Amiga irgendeine Diskettenoperation durchfihrt, bei
der er nicht gestört werden möchte, erscheint das berühmte
Wölkchen mit den "Z". Auch professionelle Programme haben
manchmal einen solchen veränderten Mauszeiger aufzuweisen,
der mal mehr, mal weniger gut gelungen ist. Auch wir wollen in
BASIC unsere Maus schlafen schicken, beispielsweise bei Dis-

kettenoperationen oder beim Einlesen von Daten. Dazu hier eine

Erweiterung, die uns die nötige Arbeit abnimmt:

"Syntax: Zzz WINDOW(7) , OnOf f ;
;Onoff gerade oder 0: Maus geht in Schlafstellung ;

:Onoff ungerade (1) : Maus wieder normal ;

222: MOVEM.L DO-A6,-(SP) ;Register retten
MOVE.L 4,A6 ;Basisadresse von Exec holen
LEA INTNAME,A1 ‚Adresse des Library-Namen
MOVEQ #0,D0 ‚Version ist egal

JSR -552(A6) ;OpenL ibrary
TST.L DO ‚Na, hat's geklappt?

BEQ.S ENDE ;Nicht? Dann Ende

MOVE.L DO,A6 ‚IntuitionBase laden
MOVE.L 64(SP),A0 ‚WindowBase holen
MOVE.L 68(SP),DO ;OnOff-Flag holen
BTST #0,D0 sBit 0 testen
BEQ.S SLEEP ;Gerade Zahl? Gute Nacht
JSR -60(A6) ;ClearPointer aufrufen
BRA.S EXIT ‚Und beenden

———— Maschinensprache

SLEEP: LEA MAUS,A1 ‚Adresse der Pointerdaten |
MOVEQ #22,D0 ‚Höhe nach dO
MOVEQ #16,D1 ‚Breite nach di
MOVEQ #0,D2 ‚xoffset löschen
MOVE.L D2,D3 syoffset löschen
JSR -270(A6) sSetPointer aufrufen

EXIT: MOVE.L A6,A1 ;IntuitionBase nach al
MOVE.L 4,A6 ‚ExecBase holen

JSR -414(A6) :CloseLibrary aufrufen
ENDE: MOVEM.L (SP)+,D0-A6 ;Register vom Stack holen

RTS ‚Zurück ins BASIC-Programm
INTNAME:DC.B "intuition.library",O ;Library-Name
MAUS: DC.L 0,%3000300,$7A007A0,$1FFO1FFO,$3FFO3FFO

DC.L $30F83FF8,$3DFC3FFC,$7BFC7FFC,$30FESFFE
DC.L $3F865FFE,S1FEFIFFF, SSFDESFFE,$1F861FFE

DC.L $FFCOFFC, $3F803F8, SEQ00E0 , $3800380 , $7E007E0
DC.L $3400340,0,$600060,$700070,$200020,0
END ‚Ende der Daten

Ein Aufruf könnte etwa so aussehen:

Z2Z WINDOW(7),0 'Wolkchen erscheint

ZZZ WINDOW(7),1 Zeiger wieder normal

Dazu auch gleich der BASIC-Generator:

OPEN "222" FOR OUTPUT AS 1

FOR i=1 TO 260

READ a$

aS="BH"+a$

PRINT#1, CHRS(VAL(a$))>

NEXT

CLOSE 1

DATA 0,0,3,F3,0,0,0,0, 0, 0,0,1,0,0,0,0,0,0,0,0,40,0,0,31,0,0,

DATA ES, 0, 0, 0, 31 ‚48, ET, FF, FE, 2c, 78, 0, i 43, F9, 0, 0,0,50,70,0,4

DATA AE, FD,D8,4A,80,67,32,2C,40,20,6F,0,40, 20, 2F,0,44,8, 0,0,

DATA 67,6,4E,AE,FF,C4,60,12,43,F9,0,0,0,62, 70,16, 72,10, 74,0

DATA 26,2,4E,AE,FE,F2,22,4E,2C, 78,0,4,4E, AE, FE,62,4C,DF, 7F, FF

DATA 4E,75,69,6E, 74, 75,69, 74,69, 6F, 6E, 2E,6C, 69,62, 72,61, 72,79
DATA 0,0,0,0,0,3,0,3,0,7,A0,7,A0, 1F, FO, 1F,FO,3F,FO,3F,FO, 30
DATA F8,3F,F8,3D,FC,3F,FC, 7B, FC, /7F, FC, 30, FE, 3F, FE, 3F, 86, 3F, FE
DATA 1F,EF,1F,FF,3F,DE, 3F, FE, 1F,86, 1F,FE,F,FC,F,FC,3,F8,3,F8

,60,0
2,0,0

DATA 0,EO,0,E0,3,80,3,80,7,E0,7,E0,3,40, ,0,0,0
DATA 60,0,70,0,70,0,20,0 ‚20,0,0,0,0,0,0,0, 0,3,EC,0
DATA O0, 0, 0, 0,0,A, 0, 0, 0,30,0,0,0,0,0,0,3,F 3,F
DATA BECKER

0

0,0,

Auch dieses File ist mit der Load-Segment-Routine zu laden.

©
m
W

393

394 Amiga Tips & Tricks

9.3.4 Neue BASIC-Erweiterungen

Die Basic-Erweiterung (folgendes Listing) wird mit der DOS-
Routine LoadSeg geladen:

DECLARE FUNCTION LOADSEG& LIBRARY
LIBRARY"dos. Library"
SEGLIST&=LOADSEG&(SADD ("BASICERW"+CHR$(CO)))
IF SEGLIST&>O THEN

RESULT& =SEGLIST&*4+4
ALLOCBUF FER&=RESULT&+4
FREEBUFFER& =RESULT&+8
FREEALL& =RESULT&+12
BUBBLESORT& =RESULT&+16
BLOAD& =RESULT&+20

BSAVE& =RESULT&+24

ELSE

ERROR 255

END IF

Entfernt wird sie mit:

UNLOADSEG SEGLIST&

Die ersten drei Funktionen bieten Ihnen eine komfortable
Speicherverwaltung. Für die erste Funktion benötigen Sie die
gleichen Parameter wie für die Betriebssystem-Routine Alloc-
Mem. Im Gegensatz zu dieser merkt sich unsere Funktion aller-
dings Adresse und Bereichslange. Um beispielsweise 1 KByte

Chip-Memory zu reservieren, schreiben Sie:

AllocBuffer& 10248, 655398

Adresse&=PEEKL (Resul t&)

Sie können beliebig viele Speicherbereiche reservieren. Freige-
geben werden diese durch den Aufruf von FreeAll:

FreeAll®

Nun sind manche Speicherreservierungen nur kurzzeitig nötig,
der belegte Speicher soll nach der Nutzung wieder ans System
zurückgegeben werden, um erneute Nutzung zu ermöglichen. In
diesem Fall können Sie einen Bereich gezielt wieder freigeben:

——— Maschinensprache 395

FreeBuffer& Adresse&

Die vierte Routine sortiert Ihnen ein eindimensionales String-
Feld bzw. einen Teil eines Stringfeldes. Dabei können Sie be-
stimmen, ab welchem Byte die Strings verglichen werden sollen
und ob zwischen Groß- und Kleinschreibung unterschieden
werden soll:

BubbleSort& VARPTR(a$(Anfang%)) , Anzahl&,Offset&, 0&

..sortiert Ihnen Anzahl& Feldelemente, beginnend mit dem Ele-
ment a$(Anfang%), wobei die Strings ab dem Byte Offset&
miteinander verglichen werden, und zwar ohne Unterschiede
zwischen Groß- und Kleinbuchstaben zu machen.

Die nächste Funktion lädt eine Datei oder einen Teil dieser

Datei an eine bestimmte Speicheradresse (s. Assembler- Listing):

BLOAD& SADD("Dateiname"+CHR$(0)),Adresse&, Lange

Geben Sie für Lang& den Wert 0 an, wird die gesamte Datei
geladen. Die Umkehrfunktion folgt gleich darauf:

BSAVE& SADD("Dateiname"+CHR$(0)),Adresse&, Lang&

Die angegebene Datei wird neu angelegt, etwa bereits vorhan-
dene Dateien gleichen Namens werden vorher gelöscht.

nn nn nn ee &

werden.

Result: DC.L 0

Funktionen: DC.L Al locBuf fer

DC.L FreeBuffer

DC.L FreeAll

DC.L BubbleSort

DC.L BLOAD

DC.L BSAVE

396 Amiga Tips & Tricks

; Input: Parm #1= Anzahl Bytes ;
: Parm #2= Speichertyp ;
; (Speichertypen: 1 = nicht verschiebbar :
; Chip-Memory [untere 512 KByte] ;
; Fast-Memory [nix Sound/Grafik] ;
; vorher löschen) :

n

n
u
n

u

: Output: Result = Speicheradresse (oder 0 bei Fehler)

= =

Al locBuf fer: MOVEM.L DO-A6, -(A7)
MOVEM.L 64(A7),D0/D1
MOVEA.L 4,A6

CLR.L Result
ADDI.L #12,D0
MOVE.L DO,-(A7)

JSR -198(A6)

MOVE.L (A7)+,D1
TST.L DO
BEQ.S \out_of_memory
MOVEA.L DO,A6
MOVE.L Memory_Liste, (A6)+
MOVE.L #Memory_Liste, (A6)+
MOVE.L D1, (A6)+
MOVE.L A6,Result

\out_of_memory: MOVEM.L (A7)+,D0-A6
RTS

: Bestimmten Speicherbereich wieder freigeben .

: Input: Parm #1= Speicheradresse :

FreeBuffer: MOVEM.L DO-A6, -(A7)

MOVEA.L 64(A6),A1

LEA -12CA1),A1
TST.L CA)
BEQ.S \nothing_next
MOVEA.L (A1),A6
MOVE.L 4(A1),4(A6)

\nothing_next: MOVEA.L 4(A1),A6
MOVE.L (A1),(A6)
MOVE.L 8(A1),DO
MOVEA.L 4,A6
JSR -210CA6)
MOVEM.L (A7)+,D0-A6
RTS

——— Maschinensprache

FreeAll:

\freemem_loop:

\check_list:

MOVEM.L DO-A6, -(A7)
LEA Memory_Liste,A1
MOVEA.L 4,A6
BRA.S \check_list
MOVEA.L (A1),A1
MOVE.L A1,-(A7)
MOVE.L 8(A1),DO
JSR -210(A6)
MOVEA.L (A7)+,A1
TST.L (A1)
BNE.S \freemem_loop
CLR.L Memory_Liste
MOVEM.L (A7)+,DO-A6
RTS

Adresse des String-Descriptors des
ersten Feldelements [VARPTR(a$(x%))]

Anzahl der Elemente, die sortiert

werden sollen

Byte, ab dem die Strings verglichen
werden sollen

Flag: 0 => UCASE,
<>0 => unterscheide Groß- und

Kleinschreibung

; Input: Parm #1=

: Parm #2=

; Parm #3=

; Parm #4=

BubbleSort:

\sort_loop:

\string_loop:

MOVEM.L DO-A6, -(A7)
MOVEA.L 64(A7),A0
MOVEM.L 68(A7),D0-D2
SUBQ.W #2,D0
BMI \no_sort

SUBQ.W #1,D1
BMI \no_Sort
LEA 0,A1
MOVEA.L A1,A2

MOVEM.L DO/AO,-(A7)
MOVEQ #0,D3
BSR.S \read_descriptor
CMP.W D1,D4
BLT.S \no_swap
MOVE.L D4,D5

MOVEA.L A4,A5

=

397

398 Amiga Tips & Tricks

ADDQ.L #5,A0
BSR.S \read_descriptor
CMP.W D1,D4
BLT.S \swap_descriptors
ADD.L 0D1,A4
ADD.L D1,A5
MOVE.L D4,D6
CMP.W D5,D6
BLE.S \flag_ check

MOVE.W D5,D6
\flag_check: TST.L 16CA7)

BEQ.S \ucase_compare
BRA.S \fast_compare

\fast_loop: CMPM.B (A4)+,(A5)+
BLT.S \no_swap
BGT.S \swap_descriptors

\fast_compare: DBRA D6,\fast_loop
BRA.S \len_check

\ucase_loop: EXG D1,A1
EXG D2,A2
MOVE.B (A4)+,D2
BSR.S \to_upper_case

MOVE.B D2,D1
MOVE.B (A5)+,D2
BSR.S \to_upper_case

EXG D1,A1
EXG D2,A2
CMPA.W A1,A2
BLT.S \no_swap
BGT.S \swap_descriptors

\ucase_compare: DBRA D6, \ucase_loop
\len_check: CMP.W D4,D5

BLE.S \no_swap
\swap_descriptors: MOVEQ #4,03
\swap_loop: MOVE.B (A0,D3.W),D6

MOVE.B -5(A0,D3.W), (AO,D3.W)
MOVE.B D6,-5(A0,D3.W)
DBRA D3, \swap_loop

\no_swap: DBRA DO,\string_loop
MOVEM.L (A7)+,D0/A0
TST.B D3
BEQ.S \no_sort
DBRA DO,\sort_loop _

\no_sort: MOVEM.L (A7)+,D0-A6
RTS

\read_descriptor: CLR.L = -(A7)
CLR.L -(A7)
MOVE.B (A0),2(A7)
MOVE.B 1(A0),3(A7)
MOVE.B 2(A0),5(A7)
MOVE.B 3(A0),6(A7)
MOVE.B 4(A0),7(A7)
MOVEM.L (A7)+,D4/A4

———— Maschinensprache

\to_upper_case:

\push_it_up:
\was_not_of_lcase:

Memory_Liste:

RTS
CMPI.W
BLT.S
CMPI.W
BLE.S
CMPI.W
BLT.S
CMPI.B
BEQ.S
SUBI .W
RTS

#97 ,D2
\was_not_of_lcase
#122,D2
\push_it_up
#224 ,D2
\was_not_of_lcase
#255,D2
\was_not_of_lcase
#32,D2

; Input: Parm #1=SADD(Dateiname$+CHR$(0))
a

: Parm #2=Adresse

Parm #3=Länge (O=ganze Datei)

\loadit:

MOVEM.L

MOVEA.L

LEA

MOVEQ

JSR

TST.L

BEQ.S

MOVEA.L

MOVE .L

MOVE .L

JSR

MOVE .L

BEQ.S

MOVE .L

MOVE.L

BNE.S

MOVEQ

MOVEQ

JSR

MOVE .L

MOVEQ

MOVEQ

JSR

MOVE .L

MOVE.L

MOVE .L

JSR

MOVE .L

DO-A6, -(A7)
4,A6
DOSname(PC),A1

#0 ,DO
-552(A6)
DO
\noload

D0,A6
64(A7),D1
#1005 ,D2
-30(A6)
DO,Result
\closeDOS

D0,D1
72(A7) ,D3
\loadit
#0 ,D2
#1 ,D3
-66(A6)
Result ,D1
#0 ,D2
#-1,D3
-66(A6)
DO,D3
Result ,D1
68(A7),D2
-42(A6)
Result ,D1

=

399

400 Amiga Tips & Tricks

MOVE.L DO,Result
JSR -36(A6)

\closeDOS: MOVEA.L A6,A1

MOVEA.L 4,A6
JSR -414(A6)

\noload: MOVEM.L (A7)+,D0-A6
RTS

. Speicherbereich auf Disk ablegen :

Input: Parm #1=SADD(Dateiname$+CHR$(0)) :

; Parm #2=Adresse ;
: Parm #3=Länge ;

Boa onm ma m m m m a m m m m nn m m m m En m m wm

MOVEM.L

MOVEA.L

LEA

MOVEQ

JSR

TST.L

BEQ.S

MOVEA.L

MOVE .L

MOVE .L

JSR

MOVE .L

BEQ.S

MOVE .L

MOVEM.L

JSR

MOVE .L

MOVE .L

JSR

MOVEA.L

MOVEA.L

JSR

MOVEM.L

RTS

\closeDOS:

\nosave:

DOSname: DC.B

-

DO-A6,-(A7)
4,A6
DOSname(PC),A1

#0,DO
-552(A6)
DO
\nosave
DO,A6
64(A7),D1
#1006 ,D2
-30(A6)
DO,Result
\closeDOS

DO,D1
68(A7) ,D2/D3
-48(A6)
Result,D1

DO,Result
-36(A6)
A6,A1
4,A6
-414(A6)
(A7)+,D0-A6

"dos. library",0

Hier das BASIC-Listing, das Ihnen obige Programmdatei gene-
riert:

OPEN "BASICerw'" FOR OUTPUT AS 1

zeile%=0

checksum%=0

——— Maschinensprache

zloop:
zeile%=-zeileXt1

wort%=0

Strout$=""

1 Loop:
wort%=wort%+1

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

READ a$

IF a$<>"x" THEN

wert%=VAL("&H"+a$)

checksum%=(checksum% XOR wert’)

checksum%=(checksum% XOR wort%)

Strout$=StrOut$+MKI$(wert%)

ELSE

wort%=10

END IF

IF wort%<10 GOTO iloop
READ b$

wert%=VAL("&H"+b$)

IF wert%=checksum% THEN

LOCATE 1,1
PRINT "Zeile";zeile%;'" - Checksumme okay"
PRINT #1,Strout$;
IF a$<>"x" GOTO zloop
CLOSE 1

PRINT

PRINT "Fertig."

PRINT

END

ELSE

PRINT

PRINT "Checksummen-Fehler in DATA-Zeile';zeile‘
PRINT

BEEP |

CLOSE 1

KILL "BASICerw"

END

END IF

0000, 03F3, 0000, 0000, 0000, 0001, 0000, 0000, 0000, 0000, 03F9
0000, 00A2, 0000, 03E9, 0000, 00A2, 0000, 0000, 0000,001C , 0007
0000,,005E , 0000, 008E , 0000, 008C , 0000 ,01A6, 0000 , 0222, 03E4
48E7, FFFE,4CEF ,0003,0040, 2C78, 0004 ,42B9, 0000, 0000, 969F
0680, 0000, 000C, 2F00, 4EAE, FF3A,221F,4A80,6716, 2040, 2D45
2CF9, 0000, 01A2, 2CFC, 0000, 01A2, 2CC1, 23CE, 0000, 0000, 2244
GCDF, 7FFF,4E75, 48E7, FFFE, 226E ,0040,43E9, FFF4,4A91,3CA1
6708, 2C51, 2069, 0004, 0004, 2C69, 0004, 2C91 , 2029, 0008, 7A47
2C78, 0004, 4EAE, FF2E,4CDF, 7FFF,4E75, 48E7, FFFE,43F9, 6E05
0000, 01A2,2C78, 0004, 600E , 2251, 2F09, 2029, 0008, 4EAE , 4009
FF2E,225F,4A91, 66EE , 42B9, 0000, 01A2,4CDF, 7FFF, 4E75, 8F42
48E7, FFFE,206F ,0040,4CEF ,0007,0044,5540, 6B00, 008A, 6A19
5341, 6B00 , 0084, 43F8, 0000, 2449, 48E7, 8080, FFFE, 226E, 2091
0040,43E9, FFF4,4A91,6708, 2C51, 2069, 0004, 0004, 2C69, 9COF
0004, 2C91, 2029, 0008, 2C78, 0004, 4EAE, FF2E,4CDF, 7FFF, 3E6C

401

402

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

4E75, 48E7, FFFE,43F9, 0000, 01A2, 2C78, 0004, 600E , 2251, EB73
2F09, 2029, 0008, 4EAE, FF2E, 225F, 4A91 , 66EE , 42B9, 0000, 1949
O1A2,4CDF, 7FFF,4E75,48E7, FFFE, 206F ‚0040 ,4CEF , 0007, BE6B
0044 ,5540, 6800, 008A, 5341, 6B00, 0084 ,43F8, 0000, 2449, DF9A
48E7 , 8080, 42A7, 1F50, 0002, 1F68, 0001 , 0003, 1F68, 0002, 4A03
0005, 1F68, 0003, 0006, 1F68, 0004, 0007, 4CDF, 1010, 4E75, 5881
0C42, 0061, 6D16,0C42, 007A, 6FOC, 0C42, 00E0, 6D0A, 0C02, 3711
OOFF 6704, 0442, 0020, 4E75, 0000, 0000, 48E7, FFFE, 2C78,8197
0004, 43FA, OOCC, 7000, GEAE, FDD8, 4A80, 6760, 2040, 222F , 2257
0040, 243C, 0000, O3ED, 4EAE, FFE2, 23C0, 0000, 0000, 673E, FO7F
2200, 262F ,0048,6618, 7400, 7601, GEAE, FFBE , 2239, 0000, 0323
0000, 7400, 76FF, 4EAE, FFBE, 2600, 2239, 0000, 0000, 242F ,90D1
0044, 4EAE , FFD6, 2239, 0000, 0000, 23C0, 0000, 0000, 4EAE ‚6EB1
FFDC, 224E, 2C78, 0004, 4EAE, FE62,4CDF, 7FFF,4E75,48E7, 1A2A
FFFE, 2C78, 0004, 43FA, 0050, 7000, 4EAE, FDD8, 4A80, 673E , 64C1
2040, 222F ,0040, 243C, 0000, O3EE, 4EAE, FFE2, 23C0, 0000, DFBB
0000, 671C, 2200, 4CEF, OO0C, 0044, GEAE, FFDO, 2239, 0000, 454C
0000, 23C0, 0000, 0000, 4EAE , FFDC, 224E, 2C78, 0004, 4EAE , 9769
FE62,4CDF, 7FFF,4E75 ,646F ‚732E , 6C69, 6272, 6172, 7900, 157D
0000, 03EC, 0000, 0014, 0000, 0000, 0000 , 0004, 0000, 0008, 1682
0000, 000C, 0000, 0010, 0000, 0014, 00000018, 0000, 002C, 1685
0000 , 0046, 0000 , 004C, 0000 , 0054, 0000 , 0094 , 0000, 00B2, 16C6
0000, 01CE, 0000, 01E6, 0000, 01F6, 0000, 0204, 0000,020A,171D
0000 , 024A, 0000 , 025E , 0000 , 0264 , 0000, 0000, 0000, 03F2, 1694
0000, 03F2, x, 1565

Amiga Tips & Tricks

——— |1/O- Kommunikation mit der Außenwelt 403

10. [/O - Kommunikation mit der Außenwelt

Unter I/O versteht man normalerweise den Kontakt zwischen

dem Amiga und seinen Peripheriegeräten. Zu diesen Geräten ge-
hören zum Beispiel Drucker, Joysticks und Diskettenlaufwerke.

Selbst das eingebaute Laufwerk wird wie ein externes Gerät an-
gesprochen, denn dem Amiga ist es natürlich ganz gleich, wo

sich diese Geräte befinden.

Für den fortgeschrittenen Anwender bleibt die Frage, wie seine

Programme direkt mit diesen Geräten Verbindung aufnehmen
können. Dazu gibt es im Amiga ein einheitliches 1/O-System.
Für jedes Gerät gibt es dazu ein Software-Modul, das für alle
Geräte einheitliche Steuercodes in die gerätetypischen Codes

übersetzt.

Diese Software-Module besitzen das einheitliche Suffix ".device".

Sie befinden sich zum Teil im schreibgeschützten Kickstart-
Speicher, zum Teil auf der Workbench-Diskette. Um I/O zu be-

treiben, ist es nötig, einen sogenannten I/O-Request-Block zu

schaffen. Dabei handelt es sich praktisch um ein beliebiges

Stück reservierten Speichers. Dieses Stück wird wie folgt defi-
niert:

add& = Anfangsadresse des Speichers

add&+ Typ | Bedeutung

0 L Zeiger auf vorangegangene Node

4 L Zeiger auf folgende Node

8 L Typ

9 B Prioritat

10 L Zeiger auf Namensstring

14 L Zeiger auf Message-Port

18 W Lange der Message in Bytes

20 L Zeiger auf Device-Block

24 L Zeiger auf Unit-Block

28 W | 1/O-Kommando

30 B Flags

31 B |/O-Error-Nummer

404 Amiga Tips & Tricks

32 L Actual-Feld

36 L Länge-Feld

40 L Data-Feld

44 L Offset-Feld

B=Byte, W=Word, L=Longword

Neben dieser Struktur, auf die wir gleich zu sprechen kommen,
muß ein sogenannter "Message-Port" eingerichtet werden. Dieser
ist sozusagen ein Stück Speicher. Den I/O-Request-Block kann
man sich als "Brief" vorstellen. Obwohl in einem Multitasking-
System wie dem Amiga scheinbar viele Programme gleichzeitig
ablaufen, kann der Prozessor in Wirklichkeit natürlich immer

nur ein einziges bearbeiten.

Möchte nun ein Programm eine Nachricht zu einem anderen,

"sleichzeitig" laufenden Programm senden, dann wird dies durch
"Messages", sogenannte Nachrichten, realisiert.

Unser I/O-Request-Block ist eine solche Nachricht. Unser Pro-
gramm, der BASIC-Interpreter AmigaBASIC, möchte schließlich

eine Nachricht an ein I/O-Gerät senden, das als eigenständiges

Programm parallel zu unserem Programm läuft. Dazu sendet es

diesen Message-Block an die Adresse des anderen Tasks. In

Wirklichkeit wird der Datenblock natürlich nicht im Speicher

bewegt, sondern bleibt an seinem festen Platz. Statt dessen be-

kommt der fremde Task ausschließliche Kontrolle über diesen
Speicher.

Sobald ein I/O-Request-Block an einen anderen Task verschickt

ist, darf unser eigenes Programm also nicht mehr auf diesen

Speicher zugreifen. Erst wenn der andere Task die Message

verarbeitet hat, wird er die Kontrolle über diesen Speicher wie-

der an unser eigenes Programm zurückgeben.

Wir wollen uns aber nicht weiter mit den technischen Hinter-
gründen aufhalten, denn eine genaue Beschreibung aller Abläufe
würde den Umfang dieses Buches sprengen. Sollten Sie sich für
dieses Spezialthema interessieren, empfehlen wir Ihnen weiter-

gehende Literatur auf dem Gebiet der Amiga-Systemprogram-

—— 1/0 - Kommunikation mit der Außenwelt 405

mierung. Auf den folgenden Seiten wollen wir Ihnen anhand ei-
niger Beispiele zeigen, wie Sie auch ohne große Programmier-
kenntnisse auf Diskettenlaufwerke und Drucker direkt zugreifen
können.

10.1 Das Trackdisk-Device: Direkter Zugriff auf

Disketten

Das "trackdisk.device" ist zuständig für ein jedes der bis zu vier
34+-Zoll-Diskettenlaufwerke. Mit seiner Hilfe können die Daten,
die auf Diskette gespeichert sind, direkt eingesehen und mani-
puliert werden.

Jedes dieser Diskettenlaufwerke besitzt zwei Schreib-/Leseköpfe
(für jede Seite einen). Die Diskette selbst wird pro Seite ın 80
"Zylinder" eingeteilt. Jeder Zylinder wiederum besteht aus 11
Sektoren. Jeder Sektor beinhaltet 512 nutzbare Datenbytes sowie

16 Sektor-Verwaltungsbytes. Damit stehen insgesamt

2 Köpfe *
80 Zylinder *
11 Sektoren *

512 Bytes =

901120 Bytes (880 KByte)

freier Datenspeicher sowie 28160 Bytes (28 KByte) für den Be-
nutzer nicht zur Verfügung stehender Speicher zur Verfügung.

Kommen wir zur Programmierung: Dazu stellt Ihnen das fol-
gende Programm sechs High-Level-SUBs sowie vier Sub-Level-

Routinen zur Verfügung. Normalerweise benötigen Sie aber nur
die sechs ersten SUBs.

OpenDrive öffnet ein beliebiges Diskettenlaufwerk für Sie. Als
Argument verlangt dieses SUB die Nummer des Laufwerks (0 =
internes, 1, 2, 3 = externe(s) Laufwerk(e)), mit dem Sie arbeiten
möchten. CreateBuffer ist eine Allzweckroutine zur Besorgung
von Speicherplatz. Als Argument verlangt diese Routine die Va-
riable, in der die Anfangsadresse des allokierten Speichers ab-

gelegt werden soll, sowie die Größe des gewünschten Buffers in

406 Amiga Tips & Tricks ——

Bytes. DiscardBuffer gibt den zuvor mit CreateBuffer reservier-
ten Speicher wieder frei. Einziges Argument: die Anfangsadresse

des Buffers. WorkDrive sendet einen I/O-Befehl an ein beliebi-

gen, zuvor geöffneten Drive. CloseDrive schließt ein Disketten-
laufwerk nach Gebrauch. MotorOff schaltet den Motor des Dis-

kettenlaufwerkes ab.

Mit dem folgenden Programm können Sie einen beliebigen Drive
öffnen und anschließend jeden der 1760 Sektoren untersuchen.
Die dort gefundenen Daten werden sowohl dezimal wie auch se-

dezimal (hex) dargestellt:

"EEE EEE EEE EPP
'#

'# Programm: Disk - Monitor

'# Autor: tob

'# Datum: 8. 8. 87

'# Version: 1.0

'#

 HHRHHHHHHHRHHHHHHHEHAHHHHH

H
R

H
H
H

HR

DECLARE FUNCTION OpenDevice% LIBRARY

DECLARE FUNCTION AllocMem& LIBRARY

DECLARE FUNCTION AllocSignal% LIBRARY

DECLARE FUNCTION FindTask& LIBRARY

DECLARE FUNCTION DoIO&% LIBRARY

LIBRARY "exec. library"
LIBRARY "graphics. library"

var: '* Variable

DIM SHARED reg&(3,1)

main: '* Demonstrationsprogramm

PRINT TAB(20);"DISK MONITOR"
PRINT

LINE INPUT "Zugriff auf welches Drive (0 - 3)?"; dr$
dr% = VAL(dr$)

OpenDrive dr%
CreateBuffer d0&, 512&

LINE INPUT "Welchen Sektor (0 - 1759)?";sec$
sec% = VAL(sec$)
WorkDrive dr%, 2, sec%, d0&
MotorOff dr%

WHILE sec$ <> "ende!

CLS

——— 1/0 - Kommunikation mit der Außenwelt

SUB OpenDri

PRINT "Sektor ";sec%

PRINT

cz = 3
FOR loop1% = 0 TO 512 - 1 STEP 25

FOR loop2% = 0 TO 24
check% = PEEK(d0& + loop1% + 100p2%)
h$ = HEX$Ccheck%)
IF LENCh$) = 1 THEN

h$ = "0" + h$
END IF

heS = he$ + h$
IF check% < 31 THEN

d$ = dé + "9"

ELSE
d$ = d$ + CHR$Ccheck%)

END IF

IF loop2% + loop1% = 512 - 1 THEN
loop2% = 24

END IF

NEXT loop2%
LOCATE c%, 1

Ch = cz’ + 1
out$ = heS +" " + d$
CALL Text(WINDOW(8), SADD(out$), LEN(out$))
hed = mu

d$ =u

NEXT Loop1%
LOCATE 1,20
LINE INPUT "Welchen Sektor (0 - 1759, ende)?..";sec$
sec% = VAL(sec$)

WorkDrive dr%, 2, sec%, d0&
MotorOff dr%

WEND

DiscardBuffer d0&

CloseDrive dr%

CLS

PRINT "ALL OK."

LIBRARY CLOSE
END

ve (nr%) STATIC

IF reg&(nr%, 0) = O0 THEN
Creat ePort "disk.io", 0, port&
IF port& = 0 THEN ERROR 255

Creat

dev$

er‘

eStdIO port&, i0&
= "trackdisk.device"™ + CHR$(O)
= OpenDevice% (SADD(dev$), nr%, 10&, 0)

IF er% <> 0 THEN
RemoveStdIO io&
RemovePort port&
10& = 0

407

408 Amiga Tips & Tricks ———

port& = 0
ERROR 255

ELSE
reg&(nr%, 0) = 10&

reg&(nr%, 1) = port&
END IF

ELSE
10& = reg&(nr%, 0)
port& = reg&(nr%, 1)

END IF

END SUB

SUB CloseDrive (nr%) STATIC
IF reg&(nr%, 0) <> O THEN

10& = reg&(nr%, 0)

port& = reg&(nr%, 1)
CALL CloseDevice(i0&)
RemoveStdIO io&
RemovePort port&
reg&(nr%, 0) = 0
reg&(nr%, 1) = 0

END IF

END SUB

SUB MotorOff (nr%) STATIC

10& = reg&(nr%, 0)

IF 10& <> Q THEN

POKEW io& + 28, 9

POKEL io& + 36, 0

e% = Dol0% Cio&)

ELSE

BEEP

END IF

END SUB

SUB CreateBuffer (add&, size&) STATIC
IF size& > O THEN

size& = size& + 4
opt& = 2°16
add& = AllocMem& (size&, opt&)
IF add& <> 0 THEN

add& = add& + 4

POKEL add& - 4, size&

END IF

ELSE

BEEP

END IF

END SUB

SUB DiscardBuffer (add&) STATIC

IF add& <> 0 THEN

size& = PEEKL (add& - 4)

add& add& - 4

——— NO - Kommunikation mit der Außenwelt 409

CALL FreeMem (add&, size&)

END IF

END SUB

SUB WorkDrive (nr%, command’, sector%, buffer&) STATIC

td.sector’ = 512
10& = reg&(nr%, 0)
td.offset& = sector%*td.sector%
IF io& <> O THEN

POKEW 10& + 28, command%
POKEL i0& + 36, td.sector%
POKEL io& + 40, buffer&
POKEL 10& + 44, td.offset&
er% = Dol0O% (io&)

ELSE

BEEP

END IF

END SUB

I--- sub level routines for advanced use only ---

SUB CreateStdIO (port&, result&) STATIC
opt& = 2°16

. result& = AllocMem&(62, opt&)
IF result& = 0 THEN ERROR 7
POKE result& + 8, 5

POKEL result& + 14, port&
POKEW result& + 18, 42

END SUB

SUB RemoveStdIO (io&) STATIC

IF io& <> 0 THEN

CALL FreeMem(i0&, 62)
ELSE

ERROR 255

END IF
END SUB

SUB CreatePort (port$, pri%, result&) STATIC
opt& = 2°16
byte& = 38 + LEN(port$)
port& = AllocMem&(byte&, opt&)
IF port& = 0 THEN ERROR 7
POKEW port&, byte&
port& = port& + 2
sigBit% = AllocSignal%(-1)

IF sigBit% = -1 THEN

CALL FreeMem(port&,byte&)
ERROR 7

END IF

SigTask& = FindTask&(0)

410

POKE
POKE
POKEL
POKE
POKEL
POKEL
POKEL

Amiga Tips & Tricks ————

port& +8,4
port& + 9 , priz
port& + 10, port& + 34
port& + 15, sigBit%

port& + 16, sigTask&
port& + 20, port& + 24
port& + 28, port& + 20

FOR loop% = 1 TO LEN(port$)
char% = ASC(MID$(port$, loop%, 1))
POKE port& + 33 + loop%, chara

NEXT loop
CALL AddPort(port&)
result& = port&

END SUB

SUB RemovePort (port&) STATIC
byte& = PEEKW(port& - 2)
sigBit% = PEEK (port& + 15)

CALL RemPort(port&)
CALL FreeSignal(sigBit%)

CALL FreeMem(port&-2, byte&)

END SUB

Variablen

reg&() Dieses Feld beinhaltet wichtige interne |/O-Adressen, wie z.B. I/O-

Request und -Port

dr% Nummer des Diskettenlaufwerks (0 - 3)

d0& 512 Bytes großer Zwischenbuffer

sec% Nummer des Sektors (0 - 1759)

loop1% - Schleife

loop2% dito

check% ausgelesenes Zeichen (dezimal)

h$ ausgelesenes Zeichen (sedezimal)

he$ ausgelesene Zeile (sedezimal)

d$ ausgelesene Zeile (dezimal)

c% aktuelle Bildschirmzeile

OpenDrive()

nr% Nummer des zu öffnenden Drives (0 - 3)

port& Adresse des Message Ports

io& Adresse des |/O-Blocks

dev$ "trackdisk.device", nullterminiert

ere |/O-Fehler; O = kein Fehler

—— 1/0 - Kommunikation mit der Außenwelt 411

CreateBuffer()

size& Größe des Buffers in Bytes

opt& Optionen; 216 = CLEAR MEMORY

add& Adresse des gefundenen Speichers

WorkDrive()

td.sector% = 512; Bytes pro Sektor

io& Adresse des |/O-Blocks

td.offset& Byte-Offset von Sektor 0; Vielfaches von 512

er% | |/O Error Code

CreatePort()

port$ _ Name des neuen Ports

pri% Priorität des neuen Ports (-128 bis 127)

result& Adresse des gefundenen Ports (Output)

opt& . Speicheroption; 216 = CLEAR MEMORY

byte& Größe des benötigten Speicherplatzes

sigBit% Signalbit

sigTask& Adresse auf AmigaBASIC-Task-Handler

char% ASCII-Code des gerade gelesenen Zeichens

Programmbeschreibung

Zunächst wird festgelegt, mit welchem Diskettenlaufwerk der
Benutzer arbeiten möchte. OpenDrive öffnet diesen Drive. Dabei
wird intern zunächst überprüft, ob dieser Drive schon geöffnet
ist, ob also in reg&() schon ein Eintrag vorliegt. Ist das nicht der
Fall, dann wird mittels CreatePort ein Message-Port namens
"disk.10" (der Name spielt keine Rolle) eingerichtet. Seine An-
fangsadresse liegt in port&. Konnte kein Port geschaffen werden

(port& = 0), dann kommt es zum Fehler, ansonsten wird ein

I/O-Block geschaffen.

Diese Aufgabe übernimmt CreateStdIO. Ihr wird der bereits
existierende Port (als Adresse) übergeben. In io& liegt an-
schließend die Anfangsadresse des I/O-Blocks. Nun wird der
Drive mittels der Exec-Funktion OpenDevice%() geöffnet. Lie-
fern diese Routinen einen Wert ungleich 0, dann konnte der
Drive nicht geöffnet werden. Mögliche Gründe: Ein anderer

412 Amiga Tips & Tricks

Task kontrolliert gerade der Drive, ein Open wurde noch nicht

durch Close aufgehoben, der Drive existiert nicht oder ist nicht
angeschlossen). In solch einem Fall werden Port und I/O-Block
wieder aufgelöst, die Variablen werden auf Null gesetzt und es
kommt zu einer Fehlermeldung. Ansonsten werden die Adressen

des neuen Ports und des neuen I/O-Blocks in reg&() hinterlegt.

Anschließend wird ein Buffer geschaffen, der groß genug ist,
die Daten eines Disk-Sektors aufzunehmen (Mindestgröße).
Dieser 512 Bytes große Speicher wird mittels CreateBuffer re-

serviert, seine Anfangsadresse steht in dO& zur Verfügung. Nun
wird der Benutzer gefragt, für welchen Sektor er sich interes-
siert (sec%). Das SUB WorkDrive liest diesen Sektor in den
Buffer dO& (CMD READ, das Lesekommando, ist =2). Intern

füllt dieses SUB den I/O-Requestblock mit den nötigen Werten
und ruft dann die Exec-Funktion DoIO%() auf, die den Be-
fehlsblock an den Diskdrive sendet.

Nachdem WorkDrive seine Arbeit erledigt hat, muß der Disket-
tenmotor ausgeschaltet werden. WorkDrive schaltet diesen Motor

zwar selbständig ein, jedoch nicht wieder aus. Grund: Folgen

mehrere Aufrufe des WorkDrive-Kommandos dicht aufeinander,
dann wäre es töricht, jedesmal den Disk-Motor ein- und wieder
auszuschalten. Das SUB MotorOff schaltet darum den Motor aus.
Dazu wird das Motor-Kommando (= 9) in den I/O-Block ge-
schrieben, der dann mittels DoIO%() abgesendet wird.

Jetzt liegen die Daten des gewünschten Sektors ab d0& im
Speicher. Zwei Schleifen lesen die Werte aus dem Buffer und

bringen sie in dezimaler und sedezimaler Darstellung auf den
Bildschirm. Anschließend wird nach einem weiteren Sektor ge-
fragt. Entweder gibt der Benutzer eine Zahl (0 - 1759) ein, oder
aber das Wort "ende" für Abbruch. Im ersten Fall wird wie oben
beschrieben wieder ein Sektor eingelesen, im zweiten Fall wird
zunächst der Buffer freigegeben, dann der Diskdrive mittels
CloseDrive geschlossen.

Dabei wird zunächst geprüft, ob der angegebene Drive über-
haupt offen war (Eintrag in reg&()). Falls ja, werden die

——— 1/0 - Kommunikation mit der Außenwelt 413

Adressen der I/O- und des Port-Blocks ausgelesen. Mit Hilfe
von RemoveStdIO und RemovePort werden diese Strukturen

freigegeben, nachdem der Drive durch die Exec-Funktion Clo-
seDevice() geschlossen wurde. Anschließend werden die Einträge

in reg&() ausgelöscht.

10.1.1 Die 1I/O-Kommandos des Trackdisk-Devices

Wollen Sie eigene Programme entwerfen, sollten Sie natürlich
alles aus dem WorkDrive-SUB herausholen, was es zu bieten hat.

Insgesamt stehen Ihnen diese Befehle zur Verfügung:

a) Lesen von Daten

Kommando: 2

Befehlsaufruf: WorkDrive nummer%, 2, sector%, buffer&

Ist Ihr Buffer größer als 512 Bytes, dann können Sie natürlich
auch mehr als einen Sektor gleichzeitig laden. Dazu muß
innerhalb des SUBs der Eintrag in I/O-Feld 36 geändert
werden: Statt td.sector% ein Vielfaches, z.B. 5 * td.sector%,

wenn Ihr Buffer soviel Daten fassen kann.

b) Schreiben von Daten

Kommando: 3

Befehlsaufruf: WorkDrive nummer%, 3, sector%, buffer&

Schreibt den Inhalt des Buffers in den angegebenen Sektor auf
Disk.

Achtung: Wenn Sie nicht genau über interne Disk-Organisation
Bescheid wissen, können Sie mit diesem Befehl leicht ganze

Disketten zerstören.

Wollen Sie nur einige Daten eines Sektors ändern, dann lesen
Sie zunächst den Sektor in den Buffer (Kommando 2),
verändern den Buffer Ihren Wünschen gemäß und schreiben
ihn dann zurück. Auch hier läßt sich mehr als ein Sektor
gleichzeitig ausschreiben (siehe: Schreiben von Daten).

414 Amiga Tips & Tricks

c) Motor ein- und ausschalten

Kommando: 9

Befehlsaufruf: WorkDrive nummer%, 9, 0, 0

Das I/O-Feld 36 muß dabei manipuliert werden: 0 = Motor
aus, | = Motor ein. IO_Actual liefert den vorherigen Zustand.

d) Diskette formatieren

Kommando: 11

Befehlsaufruf: WorkDrive nummer%, 11, track%, trackbuf&

Dieser Befehl schreibt immer nur einen gesamten Track auf
Diskette. Ein Track besteht aus 11 Sektoren. track% muß
demnach ein Vielfaches von 11 sein. Der Trackbuffer muß
sein für 11 Sektoren groß genug. Der Befehl ignoriert alle
zuvor auf diesem Track gespeicherten Daten und kann sogar

Harderrors überschreiben.

10.1.2 Simultanes Arbeiten mit mehreren Laufwerken

Auch das ıst gar kein Problem. Die SUBs des vorangegangenen
Programms sind so konzipiert, daß bis zu vier Diskettenlauf-
werke gleichzeitig angesprochen werden können. Dazu muß le-
diglich jeder Drive mit Hilfe des OpenDrive-Befehls geöffnet
und natürlich auch einzeln wieder geschlossen werden. Außer-
dem muß für jedes Laufwerk ein eigener Buffer eingerichtet
werden, es seı denn, Sie möchten Daten kopieren. Dann kann

natürlich ein einziger Buffer verwendet werden.

10.1.3 Der Aufbau der Sektoren

Sicherlich geben die bloßen Daten eines Sektors nur wenig
Aufschluß über den wahren Inhalt einer Diskette. Deshalb hier
der Aufbau der Sektoren (Die Zahlen links beziehen sich auf
Longwords, stehen also für Vier-Byte-Felder):

—— 1/0-Kommunikation mit der Außenwelt 415

Root-Block (Sektor 880)

0 Typ(=2)
10

2 0

3 Hashtable-GrdBe (512 - 224)

4 0

5 Checksumme

6 bis 77 Hashtable; Hier liegen die Sektornummern der im Haupt-Directory

liegenden Dateien oder Unter-Directories

78 = FFFFFFFF (-1), wenn Bitmap gültig

79 bis 104 Hier liegen die Sektornummern der Sektoren, die die Bitmap enthalten

(normalerweise ein Sektor). Jedes Bit der Bitmap entspricht einem

Sektor der Diskette und zeigt an, ob der Sektor frei ist (Bit gesetzt) oder

bereits belegt (Bit gelöscht).

105 Tag des Datums, an dem die Diskette zum letzten Mal verändert wurde

106 Minuten

107 Ticks (1/50 Sekunden)

108 bis 120 Name der Diskette; BCPL-String; erstesByte gibt an, wieviel Zeichen der

String enthält (max. 30)

121 Tage des Datums, an dem diese Diskette initialisiert wurde

122 Minuten

123 Ticks

124 0

125 0

126 0

127 Root-ID; = 1

User-Directory-Block

0 Typ (= 2)
1 Header-Key (Nummer dieses Sektors)

2 0

3 0

4 0

5 Checksumme

6bis77 Hashtable; Sektornummern der Dateien oder Unter-Directories in diesem

Directory (bzw. Sektornummern der entsprechenden Header)

78 reserviert

79 _Protection-Bits (EXEC, DEL, READ, WRITE)

80 0

81 bis 104 Kommentarstring, BCPL-String

105 Tag des Datums, an dem dieses Directory geschaffen wurde

106 Minuten

107 Ticks

416 Amiga Tips & Tricks ——

108 bis 123 Name dieses Directories; BCPL-String

124 Nächster Eintrag mit gleichem Hash-Wert

125 Sektornummer des Eltern-Directory
126 0

127__User-Directory (= 2)

File-Header-Block

0 Typ (= 2)
1 Sektornummer dieses Sektors

2 Gesamtanzahl der Datensektoren für diese Datei

3 Anzahl der benutzten Data Block Slots

4 _Sektornummer des ersten Datenblocks

5 Checksumme

6 bis 77 Sektornummern der Datenblöcke

78 unbenutzt

79 Protection-Bits

80 GesamtgrdBe der Datei in Bytes

81 bis 104 Kommentar als BCPL-String

105 Tag des Datums, an dem diese Datei geschaffen wurde

106 Minuten

107 Ticks (1/50 Sekunden)

108 bis 123 Name der Datei als BCPL-String

124 Nächster Eintrag mit gleichem Hash-Wert

125 Sektornummer des Eltern-Directories

126 Qoder Sektornummer des ersten Erweiterungsblocks (File List Blocks)

127 _ File Typ (= FFFFFFFD)

File-List-Block

0 Typ (= 1)
1 Sektornummer dieses Sektors

2 Anzahl der Datenblocke in der Liste

3 wie oben

4 erster Datenblock

5 Checksumme

6bis 77 Liste der Sektornummern der Datenblöcke

78 bis 123 unbenutzt

124 O

125 Sektornummer des Eltern-Directories

126 nächster Erweiterungsblock

127_ Typ: FFFFFFFD

—— 1/O- Kommunikation mit der Außenwelt 417

Datenblock

0 Typ: 8

1 Sektornummer des File Header Sektors

2 Sequenz dieses Datenblocks

3 Anzahl der Daten in Bytes

4 Sektornummer des nächsten Datenblocks

5 Checksumme

7 6 bis 12 Daten

10.2 Memory Handling

Das Speichersystem des Amiga ist ausgesprochen flexibel. Es

gibt so gut wie keine festen, unveränderlichen Adressen, son-

dern ein AdreBmanager weist Speicherplatz individuell je nach

Bedarf und Situation zu. Demnach gibt es beim Amiga nicht wie
bei älteren Commodore-Rechnern bestimmte Speicherbereiche,

die "immer" freigegeben sind für Benutzeranwendungen (der
Kassettenpuffer war oft solch ein beliebtes Plätzchen).

Solch eine Speicherorganisation wäre auch unsinnig, denn der
Amiga ist bekanntlich ein Multitasking-Computer, in dem sich
mehrere Programme den Speicher teilen müssen. Zwangsläufig
benötigt man dazu eine "Schalt- und Waltzentrale", die die

Speicheraufteilung kontrollierte. Möchte man nun selber, aus

welchem Grunde auch immer, ein Stück vom Speicherkuchen
haben, dann gibt es dazu viele verschiedene Methoden. Hier die
gebräuchlichsten:

10.2.1 Speicher durch Variablen reservieren

Jedesmal, wenn Sie einer Variablen einen Wert zuweisen, neh-

men Sie dazu ein Stück aus dem allgemeinen Speicher und reser-
vieren dieses Stück für diesen Wert. Es hängt nun davon ab,
welcher Art Ihre Variable ist, um zu bestimmen, wieviel Spei-

cherplatz benötigt wird. Eine lange Integer-Variable wie zum
Beispiel f& reserviert 4 Bytes. Nun können Sie diesen Speicher

418 Amiga Tips & Tricks

auch für andere Zwecke benutzen. Die Anfangsadresse erhalten
Sie durch den BASIC-Befehl VARPTR, in unserem Fall also
durch den Aufruf:

VARPTR (f&)

Benötigen Sie mehr als vier Bytes, dann können natürlich ganze

Variablenfelder (DIM f&(100) reserviert 400 Bytes) oder Strings
verwendet werden (a$ = SPACE$(100) reserviert 100 Bytes). Die
Anfangsadresse des Strings erhalten Sie durch den Aufruf:

SADD (a$)

Es ist hier jedoch anzumerken, daß die Anfangsadresse des
String-Speichers varıabel ist! Bei jeder neuen String-Definition

können alte Strings im Speicher verschoben werden. Deshalb ist
vor jedem Zugriff auf diesen Speicher die Anfangsadresse er-

neut festzustellen, und deshalb eignet sich dieser Speicher auch

nicht für feste Datenstrukturen, die man Maschinensprache-

Routinen zugänglich machen möchte. Für solche Zwecke ist die
folgende Methode wesentlich praktischer:

10.2.2 Speicher gezielt reservieren

Ein Exec-Befehl, AllocMem(), liefert Ihnen soviel Speicherplatz,

wie Sie brauchen, sofern die angeforderte Größe frei ist. Sie
können dabei zwischen folgenden Optionen wählen:

Public memory 2°
Chip memory 2! (für DMA und Special Purpose Chips)
Fast memory 2? (für alle anderen Anwendungen)
Clear memory 216 (löscht den Speicher automatisch)

Die folgenden beiden SUBs reduzieren die Arbeit bei der
Speicherreservierung auf ein Minimum. Hier das Listing:

——— 1/0 - Kommunikation mit der Außenwelt 419

"AHHH ATE TEE EE
'#
'# Programm: Memory Handler
'# Autor: tob
'# Datum: 12.8.87

'# Version: 2.0

'#

VRE

H
H

HU
H
H

FH

DECLARE FUNCTION Al locMem& LIBRARY

LIBRARY "exec. library"

demo: '* besorgt 4500 Bytes

PRINT "Speicher vor Festlegung der 4500 Bytes: ";

PRINT FRE(-1)

GetMemory mem&, 4500&

PRINT "Aktueller Speicherstand danach: ";
PRINT FREC-1)

FreeMemory mem&

PRINT "Endstand des Speichers: ";
PRINT FREC-1)

LIBRARY CLOSE

END

SUB GetMemory (add&, size&) STATIC
IF size& > 0 THEN

opt& = 2°16
size& = size& + 4
add& = AllocMem&(size&, opt&)
IF add& <> 0 THEN

POKEL add&, size&

add& = add& + 4
END IF

END IF

END SUB

SUB FreeMemory (add&) STATIC
IF add& > 0 THEN

add& = add& - 4
size& = PEEKL (add&)
CALL FreeMem(add&, size&)

END IF

END SUB

420 Amiga Tips & Tricks

Programmbeschreibung

Das Prinzip dürfte aus dem Beispiel hervorgehen: Sie benutzen
die GetMemory-Routine, um ein beliebig großes Speicherstück
für Ihre Zwecke zu reservieren. Dabei liefern Sie zwei Variablen
mit: erstens die Adreßvariable, in der Sie nach dem Aufruf die
Anfangsadresse auf das Speicherstück wiederfinden (bzw. 0,
wenn soviel Speicher nicht verfügbar war), und zweitens die

Größe des gewünschten Speichers. Für ein 1000 Byte großes
Stück geht das also so:

GetMemory myMem&, 1000&

Nach dem Aufruf finden Sie in der Variablen myMem& die
Anfangsadresse auf den Speicher:

PRINT myMem&

Wenn Sie, vermutlich am Programmende, den Speicher nicht

mehr brauchen, ist es Ihre Pflicht, ihn ans System zurückzu-
geben, damit er anderen Programmen oder dem System zur
Verfügung gestellt werden kann. Dazu dient dieser Aufruf:

FreeMemory myMem&

Sie brauchen hier die Größe Ihres Speicherstücks nicht mehr
anzugeben, denn GetMemory hat in Wirklichkeit ein um vier

Byte größeres Speicherstück reserviert und in den überzähligen
Byte die Größe abgelegt.

10.3 Das Printer.Device

Das Printer-Device bietet dem BASIC-Programmierer die Mög-
lichkeit, einfach und ohne großen eigenen Programmieraufwand
größtmöglichen Nutzen aus dem angeschlossenen Drucker zu
ziehen. Erwähnenswert ist hier die einfach zu bewerkstelligende
Ausführung einer Hardcopy-Routine, die den Inhalt eines Fen-
sters grafisch auf den Drucker ausgibt.

——— 1/0 - Kommunikation mit der Außenwelt 421

10.3.1 Auslesen der Druckparameter

Auf dem Markt streiten sich eine wahre Fülle verschiedenster
Drucker um die Gunst des Anwenders. Sie sind verschieden

teuer, verschieden gut, aber vor allen Dingen haben sie alle ihre

speziellen Stärken und Schwächen. So besticht der Typenrad-

drucker durch ein exzellentes Druckbild, ohne jedoch Grafiken
ausdrucken zu können, der Matrixdrucker hingegen durch seine
Farbgrafiken und der Laserdrucker schließlich durch Druckge-
schwindigkeit und Auflösung. |

Es ist sicherlich leicht einzusehen, daß alle diese Drucker auf

ihre ganz besondere Weise von einem Programm angesprochen
werden wollen. Diese Bürde nimmt Ihr Amiga Ihnen jedoch ab:
Nachdem Sie in den Preferences (auf der Workbench-Diskette)
denjenigen Drucker angegeben haben, den Sie zu benutzen ge-
denken, übernimmt der Amiga automatisch die Umwandlung der
allgemeinen Druckbefehle in die druckerspezifischen Steuerco-
des, so daß Ihre Programme völlig universell mit jedem beliebi-

gen Druckertyp lauffähig sind.

Welche Qualitäten der Drucker aufweist, der augenblicklich in
den Preferences spezifiziert ist, das läßt sich mit dem folgenden

Programm leicht feststellen, das auch gleich einen Einblick ge-
ben soll, wie der Drucker über das Printer-Device abgesprochen

wird:

Edi 2 2 8 5 2 2 2 2 d 2 2 5 5 2 2 502 2 2 02 2 5 2 2 2 2 2 2 2 2 2 2 2;

'* Programm: Drucker-Daten auslesen

'* Datum: 28. Mai 1988

ı* Autor: tob

'* Version: 1.3
ES Si 5 2 2 2 2 5 2 SS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 3

PRINT "Suche die .bmap-Dateien!"
"EXEC-LIBRARY
DECLARE FUNCTION Al locMem& LIBRARY

DECLARE FUNCTION DoIO& LIBRARY

DECLARE FUNCTION OpenDevice% LIBRARY

DECLARE FUNCTION AllocSignal% LIBRARY
DECLARE FUNCTION FindTask& LIBRARY

LIBRARY "exec. library"

init: '

GetPrinterData

422 Amiga Tips & Tricks

PRINT "Drucker-Name : 1: prt.name$
PRINT "Drucker-Typ : ": prt.typ$

PRINT "Farbtuechtigkeit : m. prt.farb$
PRINT "Zeichen pro Zeile : "; prt.columns%
PRINT "Anzahl Zeichensaetze: "; prt.charsets%
PRINT "Anzahl Rasterreihen : "; prt.rows&
PRINT "Max. Anz. Dots horiz: "; prt.xdots&
PRINT "Max. Anz. Dots vert.: "; prt.ydots&
PRINT "Dichte: Dots/Inch h.: "; prt.xdotspi&
PRINT "Dichte: Dots/Inch v.: "; prt.ydotspi&

END

SUB GetPrinterData STATIC
SHARED prt.DRPReq&

SHARED prt.typ$, prt.farb$, prt.name$
SHARED prt.colums%, prt.charsets%
SHARED prt.rows&, prt.xdots&, prt.ydots&
SHARED prt.xdotspi&, prt.ydotspi&

DIM prt.color$ (9)
DIM prt.printer$ (3)

"Schwarz-Weiss"

"Gelb-Magenta-Tuerkis"

"Gelb-Magenta-Tuerkis oder Schwarz-Weiss"

"Gelb-Magenta-Tuerkis-Schwarz"

"Blau-Gruen-Rot-Weiss"

"Schwarz-Weiss Invers"

"Bl au-Gruen-Rot"

"Blau-Gruen-Rot oder Schwarz-Weiss"

"Blau-Gruen-Rot-Weiss"

prt.color$ (1)
prt.color$ (2)
prt.color$ (3)
prt.color$ (4)
prt.color$ (5)
prt.color$ (6)
prt.color$ (7)
prt.color$ (8)
prt.color$ (9)

prt.printer$(0) = "s/w Textdruck"
prt.printer$(1) = "s/w Grafik"
prt.printer$(2) = "farbiger Textdruck"
prt.printer$(3) = "Farbgrafik"

OpenPrinter

prt.printerdata& = PEEKL (prt.DRPReq& + 20)
prt.extendeddata& = (PEEKL (prt.printerdata& + 92) + 12)
prt.name$ = uu
prt.name& = PEEKL (prt.extendeddata&)
prt.printer% = PEEK (prt.extendeddata& + 20)
prt.color% = PEEK (prt.extendeddata& + 21)
prt.colums% = PEEK (prt.extendeddata& + 22)
prt.charsets% = PEEK (prt.extendeddata& + 23)
prt.rows& = PEEKW (prt.extendeddata& + 24)
prt.xdots& = PEEKL (prt.extendeddata& + 26)
prt.ydots& = PEEKL (prt.extendeddata& + 30)
prt.xdotspi& PEEKW (prt.extendeddata& + 34)

—— 1/0 - Kommunikation mit der Außenwelt 423

prt.ydotspi& PEEKW (prt.extendeddata& + 36)

prt.typ$ = prt.printer$ (prt.printer‘)
prt.farb$ = prt.color$ (prt.color%)

count = NULL

char = PEEK (prt.name& + count)

WHILE char <> NULL

prt.name$ = prt.name$ + CHR$ (char)
count = count + 1
char = PEEK (prt.name& + count)

WEND

ClosePrinter
END SUB

SUB OpenPrinter STATIC
SHARED mem.chunk&
SHARED prt.DRPReq&

mem.clear& = 2°16 'Speicher vor Gebr. loesch.
mem.DRPReq% = 62 '62 Bytes fuer DRPStruktur
mem.port% = 37 ı37 Bytes fuer Port-Strukt.
mem.label% = 4 '4 Bytes fuer Organisation
mem.size% = mem.DRPReq% + mem.port% + mem. label%

mem.chunk& = AllocMem& (mem.size%, mem.clear&)
IF mem.chunk& = NULL THEN

ERROR 7 "OUT OF MEMORY ERROR

END IF

prt.label& = mem.chunk&
prt.DRPReq& = mem.chunk& + mem.label%
prt.port& = mem.chunk& + mem.label% + mem.DRPReq%
prt.name$ = "printer.device" + CHR$(O)

POKEL prt.label&, mem.size% 'Speichergroesse ablegen

status‘ = OpenDevice% (SADD(prt.name$), 0, prt.DRPReq&, 0)
IF status% <> NULL THEN

PRINT “Drucker ist nicht frei."
CALL FreeMem (mem.chunk&, mem.size%)
EXIT SUB

END IF

END SUB

SUB ClosePrinter STATIC

SHARED mem. chunk&

424 Amiga Tips & Tricks

mem.size% = PEEKL (mem.chunk&)
prt.DRPReq& = mem.chunk& + 4
CALL CloseDevice (prt.DRPReq&)
CALL FreeMem (mem.chunk&, mem.size%)

END SUB

Variablen

prt.DRPReg& /O DumpRastPort-Struktur

(Anfangsadresse darauf)

prt.typ$ Druckerkategorie

prt.farb$ Farbtüchtigkeit

prt.name$ Druckername

prt.columns% Zeichen pro Zeile

prt.charsets% Anzahl der verfügbaren Zeichensätze

prt.rows& Anzahl der Drucknadeln

prt.xdots& Max. Punkte in X-Richtung

prt.ydots& Max. Punkte in Y-Richtung

prt.xdotspi& Horiz. Auflösung in Punkten/Inch

prt.ydotspi& Vert. Auflösung in Punkten/inch

GetPrinterData():

prt.color$() Feld der versch. Farbtypen

prt.printer$() Feld der versch. Druckertypen

prt.printerdata& — Anfangsadresse der PrinterData-Struk.

prt.extendeddata&| Anfangsadresse der ExtendedData-Str.

prt.name& Anfangsadresse des Namensstrings

prt.printer% Code-Nr. des Druckertyps

prt.color% Code-Nr. des Farbtyps

count Zähler

char gerade ausgelesenes Zeichen

OpenPrinter():

mem.chunk& Anfangsadresse reserv. Speicher

mem.clear& = 2°16; Speicher vor Gebrauch auf 0

mem.DRPReg% = 62; 62 Bytes für Strukt. reserv.

mem.port% = 38; 38 Bytes für Strukt. reserv.

mem.label% = 4; 4 Bytes für Organisat. reserv.

mem.size% benötigte Speichergröße in Bytes

prt.label& Anfangsadr. Labelspeicher

prt.DRPReq& Anfangsadr. DumpRastport-Struktur

prt.port& Anfangsadr. Port-Struktur

prt.name$ Name des Devices

status% 0 = alles ok

——— 1/0 - Kommunikation mit der Außenwelt 425

Programmbeschreibung

Wenn Sie genau hinsehen, so werden Sie entdecken, daß das
vorliegende Programm aus insgesamt drei SUB-Routinen besteht:

GetPrinterData

OpenPrinter
ClosePrinter

Für den Anwender ist lediglich das SUB GetPrinterData inter-
essant. Es ruft intern die beiden anderen SUBs auf. Die benö-
tigten Informationen finden sich in einer Struktur namens Prin-
terExtendedData. Um an diese zu gelangen, ist es zunächst not-
wendig, den Drucker via Printer.Device zu öffnen. Dies ge-
schieht durch das SUB OpenPrinter.

Zunächst wird hierbei mittels der Exec-Funktion AllocMem()
Speicherplatz für zwei Strukturen reserviert: eine Port- und eine

DumpRastPort-Struktur. Außerdem werden vier Labelbytes

mitreserviert, in denen später die absolute Speichergröße für

FreeMem() abgelegt wird.

Ist dieses Vorhaben bewerkstelligt, wird der Drucker durch die
Exec-Funktion OpenDevice() geöffnet. Dieser Aufruf liefert
einen Statusreport zurück. Ist dieser Wert ungleich null, so
konnte der Drucker nicht geöffnet werden. Mögliche Gründe: Er
wurde von einem anderen Task benutzt oder nicht ordnungsge-

mäß geschlossen.

Ist der Drucker geöffnet, so findet sich in der DumpRastPort-
Struktur ein Zeiger auf eine Struktur namens PrinterData. In ihr
wiederum liegt der Zeiger auf die gesuchte PrinterExtended-
Data-Struktur, in der die benötigten Daten gespeichert sind.

Die Daten werden ausgelesen und in den einschlägigen Variablen

abgelegt. Anschließend kann der Drucker wieder geschlossen

werden. Dies geschieht mittels eines Aufrufs der ClosePrinter-
Routine und hat einen ernsten Hintergrund: Wird der Drucker
zwar geöffnet, nicht aber durch dasselbe Programm wieder ge-
schlossen, so bleibt er auf alle Ewigkeiten, mindestens jedoch
bis zum nächsten Reset, unansprechbar. _

426 Amiga Tips & Tricks

10.3.2 Grafik-Dumps mit dem Printer-Device

Selbstverstandlich war dies nur ein kleiner Vorgeschmack. Das
nun folgende Programm soll Sie in die Lage versetzen, den In-
halt Ihres augenblicklich aktuellen BASIC-Fensters als Grafik
auf einen Drucker auszugeben. Doch damit nicht genug: Alle
Möglichkeiten des Printer-Devices sind unterstützt, sämtliche

Spezial-Flags einschließlich der der neuen Betriebssystemversion

1.3 sind anwendbar. Damit können Sie Ihren Fensterinhalt belie-

big verkleinern, vergrößern, verzerren, zentrieren sowie vieles

mehr. Zunächst das Programm:

IE & 2 2 2 2 5 2 2 5 £ 2 2 2.2 2 2 2 0 2 2 205 2 0 2 2 202 20402 202 2 2 7 0;

'* Programm: Grafik-Dump
'* Datum: 28. Mai 1988
'* Autor: tob
'* Version: 1.3
EHRMARKEKREEKKKEEEEKEEREEEEEKKEKKKKRKE

PRINT "Suche die .bmap-Dateien!"
"EXEC-LIBRARY
DECLARE FUNCTION AllocMem& LIBRARY
DECLARE FUNCTION DoIO& LIBRARY

DECLARE FUNCTION OpenDevice% LIBRARY

DECLARE FUNCTION AllocSignal% LIBRARY

DECLARE FUNCTION FindTask& LIBRARY
LIBRARY "exec. library"
init: '
CIRCLE (100,100), 100
PRINT STRINGS (100, "U"')

special.nothing
special.milcols
special.milrows
special.fullcols
special.fullrows
special.fraccols
special.fracrows
special.center
special.aspect
special.density1
special.density2
special.density3
special.density4
special.density5

"keine Spezialeffekte
'X-Dimension in 1/1000 Inch

'Y-Dimension in 1/1000 Inch

‘Maximale X-Ausdehnung

'Maximale Y-Ausdehnung

16 'Bruchteil der max. X -Ausdehnung

32 'dito, jedoch Y-Ausdehnung

64 'Grafik wird zentriert ausgegeben

128 'korrigiert X-Y-Verhaeltnis

256 ‘Aufloesung 1 (gering)

512 'Aufloesung 2

768 'Aufloesung 3
1024 'Aufloesung 4

1280 'Aufloesung 5

special.density6 1536 'Aufloesung 6
special .density7 1792 'Aufloesung 7 (hoch)
special.noformfeed = 2048 ‘kein Papierausschubnach Dump
special.trustme 4096 'keinen Reset ausgeben
special.noprint 8096 'nur Kalkulation, kein Druck

o
r
N

=
o

——— 1/0 - Kommunikation mit der Außenwelt 427

Hardcopy (special.center + special.density4), 100&, 100&

'fiir SchwarzweiB-Drucker den Bildschirm auf s/w

PALETTE 0,1,1,1
PALETTE 1,0,0,0

Hardcopy (special.aspect + special.fullcols + special.fullrows), 0&, 0&

END

SUB Hardcopy (flags, x&, y&) STATIC
SHARED prt.DRPReq&

OpenPr inter

POKEL prt.DRPReq& + 52, x&
POKEL prt.DRPReq& + 56, y&
POKEW prt.DRPReq& + 60, flags
Ini tDRPReq

fehler% = DolO& (prt .DRPReq&)

fehler$ (0)
fehler$ (1)

fehler$ (2)

"KEIN FEHLER."
"DRUCK WURDE VOM BENUTZER ABGEBROCHEN."
"DRUCKER KANN KEINE GRAFIK AUSGEBEN."

fehler$ (3) "„/."

fehler$ (4) SDRUCKGROESSE UNMOEGLICH."

fehler$ (5) "_j/,"

fehler$ (6)

fehler$ (7)

"KEIN SPEICHERPLATZ FUER INTERNE VARIABLEN."

"KEIN SPEICHERPLATZ FUER DRUCKPUFFER."

resultat$ = fehler$ (fehler%)

PRINT resultat$

ClosePrinter

END SUB

SUB OpenPrinter STATIC
SHARED mem. chunké&

SHARED prt .DRPReq&

SHARED prt.port&

mem.clear& = 2°16 'Speicher vor Gebrauch loeschen
mem.DRPReq% = 62 '62 Bytes fuer DumpRastport-Struktur
mem.port% = 38 '38 Bytes fuer Port-Struktur
mem.labelX = 4 ı4 Bytes fuer Organisation
mem.size% = mem.DRPReq% + mem.port% + mem. label%

mem.chunk& = AllocMem& (mem.size%, mem.clear&)

428 Amiga Tips & Tricks

IF mem.chunk& = NULL THEN

ERROR 7 ‘OUT OF MEMORY ERROR

END IF

prt.label& = mem.chunk&
prt.DRPReq& = mem.chunk& + mem.label%
prt.port& = mem.chunk& + mem.label% + mem.DRPReqa%
prt.name$ = "printer.device" + CHRS$(0)

POKEL prt.label&, mem.size% 'Speichergroesse ablegen

status% = OpenDevice% (SADD(prt.name$), 0, prt.DRPReq&, 0)
IF status% <> NULL THEN

PRINT "Drucker ist nicht frei."
CALL FreeMem (mem.chunk&, mem.size%)
EXIT SUB

END IF
END SUB

SUB InitDRPReq STATIC

SHARED prt.DRPReq&
SHARED prt.port&
SHARED p.sigBit%

f.fenster& = WINDOW(7)
f.rastport& = PEEKL (f.fenster& + 50)
f.breite% = PEEKW (f.fenster& + 112)
f.hoeheX = PEEKW (f.fenster& + 114)

f.screen& = PEEKL (f.fenster& + 46)
f.viewport& = f.screen& + 44

f.colormap& = PEEKL (f.viewport& + 4)
f.vp.modi% = PEEKW (f.viewport& + 32)

p.sigBit% = AllocSignal%(-1)

IF p.sigBit% = -1 THEN

PRINT "Kein Signalbit frei!"

CALL FreeMem(p.io&,100)
EXIT SUB

END IF

p.sigTask& = FindTask&(0)

POKE prt.port&+8,4
POKEL prt.port&+10,prt.port&+34
POKE prt.port&+15,p.sigBit%
POKEL prt.port&+16,p.sigTask&
POKEL prt.port&+20, prt.port&+24
POKEL prt.port&+28, prt .port&+20
POKE prt.port&+34,ASC("P")
POKE prt.port&+35,ASC("R")
POKE prt.port&+36,ASC("T")

CALL AddPort(prt.port&)

POKE prt.DRPReq& + 8, 5

——— 1/0 - Kommunikation mit der Außenwelt

POKEL prt.DRPReq& + 14, prt.port&
POKEW prt.DRPReq& + 28, 11
POKEL prt.DRPReq& + 32, f.rastport&
POKEL prt.DRPReq& + 36, f.colormap&
POKEL prt.DRPReq& + 40, f.vp.modi%
POKEW prt.DRPReq& + 48, f.breite%
POKEW prt.DRPReq& + 50, f.hoehe%

IF PEEKL (prt.DRPReq& + 52) = 0 THEN

POKEL prt.DRPReq& + 52, breite‘
END IF

IF PEEKL (prt.DRPReq& + 56) = O0 THEN
POKEL prt.DRPReq& + 56, hoehe%
END IF

END SUB

SUB ClosePrinter STATIC

SHARED mem.chunké&

SHARED prt.port&
SHARED p.sigBit%

mem.sizex%

prt .DRPReq&
PEEKL (mem. chunk&)

mem.chunk& + 4

CALL CloseDevice (prt.DRPReq&)
CALL RemPort (prt.port&)
CALL FreeSignal (p.sigBit%)

CALL FreeMem (mem.chunk&, mem.size%)
END SUB

Variablen

(soweit nicht identisch mit Vorprogramm)

| fehler% Fehlernummer des |/O-Vorgangs

fehler$() Klartext-Fehlermeldungen

resultat$ Aktuelle Fehlermeldung

Programmbeschreibung

429

Wie Sie sicher sofort erkannt haben, beinhaltet auch dieses Pro-
gramm die SUBs OpenPrinter und ClosePrinter, die Sie ja be-
reits im vorangegangenen Programm kennengelernt haben. Neu

hinzugekommen sind die SUBs Hardcopy sowie InitDRPReq.

Für den Anwender spielt lediglich das SUB Hardcopy eine

Rolle. Es sorgt dafür, daß der Inhalt des augenblicklich aktuel-
len BASIC-Fensters als Grafik zum Drucker gesendet wird, und

430 Amiga Tips & Tricks

ruft dazu selbständig die anderen SUBs auf. Zum genauen Auf-
ruf-Format dieses SUBs kommen wir gleich.

Um eine Grafik ausdrucken zu können, muß zunächst der

Drucker geöffnet werden. Dies erledigt wie im vorangegangenen
Programm das SUB OpenPrinter. Anschließend werden Breite

und Höhe des auszudruckenden Bildes in die DumpRastPort-Re-

quest-Struktur eingepoked. Gleiches passiert mit den Spezialbits.

Nun wird InitDRPReq aufgerufen. Diese Routine füllt den Rest
der Struktur mit den Standardwerten und den Zeigern auf das

BASIC-Fenster.

Nun kann die Exec-Funktion DoIO& aufgerufen werden, die
den I/O-Request zum Drucker. sendet. Ist der Druck beendet

oder kann aus irgendeinem Grunde der Befehl nicht oder nur

teilweise ausgeführt werden, so liefert diese Funktion an die
Variable status% einen Fehlercode zurück. Dieser wird im fol-
genden in Klartext umgewandelt und auf den Bildschirm ausge-

geben. Schließlich wird der Drucker wieder via ClosePrinter ge-

schlossen, der Zugriff ist beendet.

Anwendung

Die Hardcopy-Funktion ist außerordentlich vielseitig und macht
Gebrauch von sämtlichen Möglichkeiten, die das Printer-Device
anzubieten hat. Der Aufruf des SUBs sieht folgendermaßen aus:

Hardcopy flags, Breite&, Höhe&
flags: Spezialflags

Höhe: Höhe des Ausdrucks

Breite: Breite des Ausdrucks

Flags

special.nothing

Der Druck wird ohne spezielle Verfremdungen oder Effekte
vorgenommen.

—— 1/0 - Kommunikation mit der Außenwelt 431

special.milcols

Die Druckbreite wird nicht - wie normalerweise - in Druck-

punkten angegeben, sondern in 1/1000 Inch (1 Inch entspricht

ca. 2,5 cm).

Hardcopy special.milcols, 9000, 400

Dieser Aufruf würde eine Grafik drucken, die eine Breite von

9,000 Inches (ca. 22,5 cm) und eine Höhe von 400 Druckpunk-

ten aufweisen würde.

special.milrows

Wie special.milcols, jedoch bezügl. Druckhöhe.

special.fullcols

Unabhängig vom angegebenen Wert wird der Druck so breit wie
hardwaremäßig möglich durchgeführt.

special.fullrows

Wie special.fullcols, jedoch bezügl. Druckhöhe.

special.fraccols

Die angegebene Breite wird als x/65535tel der Maximalbreite
interpretiert.

special.fracrows

Dito, jedoch Druckhöhe.

special.center

Die Grafik wird auf dem Drucker zentriert ausgegeben. Dies
geschieht unabhängig von den angegebenen Druckdimensionen.

432 Amiga Tips & Tricks

special.aspect

Jeweils durch Korrektur der Höhe oder Breite wird das Origi-
nalverhältnis zwischen Höhe und Breite gewahrt.

special.densityl-7 (V1.3)

Druckgenauigkeit; 1 = niedrig (Default), 7 = hoch

special.noformfeed (V1.3)

Unterbindet den Papierausschub speziell bei Laserdruckern, um

Text und Grafik mischen zu können.

special.trustme

Kein Reset an Drucker senden.

special.noprint (V1.3)

Alle Angaben werden verarbeitet und alle Druckdimensionen
errechnet, aber es kommt zu keinem Druck. Dient der vorheri-

gen Kontrolle der Parameter.

Hinweise zur Betriebssystemversion 1.3

Neben den gekennzeichneten zusätzlichen Befehlen besitzt das

V1.3-Betriebssystem zudem völlig überarbeitete Druckertreiber,
die gegenüber der Version 1.2 einen immensen Geschwindig-
keitsvorteil von bis zu 1000% aufweisen. Es lohnt sich also alle-
mal, eine Workbench-Version 1.3 zu beschaffen (die V1.3-
Druckertreiber laufen unabhängig von der Kickstartversion, also
auch mit Kickstart V1.2 auf Amiga 500 und 2000).

——— Hardware-Basteleien 433

11. Hardware-Basteleien

Warum soll man sich eigentlich immer nur äußerlich mit dem
Amiga beschäftigen? Nicht nur die Software, sondern auch die

Hardware hat es in sich! Denn unsere kleine Freundin steckt
voller Überraschungen, die einen sind praktisch, die anderen

unerwartet. Wir haben Ihnen gleich zu Anfang den Mund wäs-
serig gemacht, und Sie sitzen schon mit angeheiztem Lötkolben
neben dem Buch, trotzdem müssen ein paar Vorbemerkungen

fallen:

l. Sie sollten sich bewußt sein, daß jede noch so qualifizierte

Hardware-Änderung an Ihrem Gerät die Garantie verletzt
und somit bei einem unverschuldeten Defekt kein Händler

mehr kostenfrei repariert!

2. Alle Veränderungen, die hier beschrieben werden, sınd na-

türlich von uns ausgetestet, wie es auch auf einer der ersten
Seiten dieses Buches steht, doch ist es für einen Autor nicht
immer möglich, alle Platinenversionen eines Computers
aufzutreiben. Deshalb sei gleich gewarnt! Wenn nach theore-
tischem Durcharbeiten einer Schaltungsänderung Unstim-

migkeiten vorliegen, lassen Sie lieber die Hände davon! Wir

können nicht alle Gerätetypen kennen.

3. Bei jedem Eingriff sollten Sie eine gewisse Erfahrung von
Elektronik und von Löt- oder Bastelarbeiten haben. Dies ist
kein Grundkurs in Schaltungstechnik und will es auch nicht
sein. Es wird also stillschweigend vorausgesetzt, daß Sie

wissen, was Lötzinn ist, daß Sie auch mit einem Lötkolben
umgehen können und daß Sie eine Schraube von einem
Schraubenzieher unterscheiden können.

Nach dieser etwas harten Einleitung steigen wir gleich in die
wundersamen Innereien unseres Lieblingscomputers ein. Dazu
werden wir uns zuerst die Speicher-Erweiterungen ansehen und

mit einigen kleineren Änderungen dazu bringen, daß sie nicht
irgendwelche Programme stören, die sich damit nicht vertragen.
Im nächsten Teil geht es dann an die Floppies. Immerhin kann

434 | Amiga Tips & Tricks

man auch diese abschalten, und manchmal braucht man diese

Funktion ganz dringend. Als großes Bonbon rüsten wir so ganz

nebenbei unseren Amiga mit einem 68010 um! Für die Nach-
denklichen unter Ihnen gibt es einen HALT-Schalter und eine
Taktfrequenz-Bremse, mit der die Geschwindigkeit des Amiga
stufenlos herunterreguliert werden kann. Für die Kompatiblen
unter Ihnen gibt es eine Bauanleitung für eine Prozessorum-
schaltung zwischen 68000’er und 68010. Und die Kommunika-
tiven unter Ihnen finden hier die Bauanleitung für das serielle
Verbindungskabel zum Betrieb einer Null-Modem-Schaltung und
Datenkommunikation zwischen zwei Computern (das müssen

nicht unbedingt beides Amigas sein!).

Zum klareren Aufbau geben wir für jede Umbau-Anleitung
eine Liste mit den benötigten Teilen, eine Liste für evt. benö-

‚tigtes Handwerkszeug und eine circa-Preisangabe, damit Sie in

etwa über die anfallenden Kosten informiert sind.

11.1 Speichererweiterungen abschalten

Speichererweiterungen bieten nicht nur, wie man auf den ersten

Blick denken mag, Vorteile! Schon oft kam ich zu dem Punkt,

an dem ich meinen Amiga "verfluchte", weil durch diesen zu-
sätzlichen Speicher manche Programme nicht liefen. Im eigent-
lichen Sinne liegt das Problem auch nicht bei der Erweiterung,
sondern bei den Programmen, die einfach nicht qualifiziert an-
geben, welchen Speicher sie benötigen und so prompt den

falschen bekommen. Dann versucht z.B. der Sound-Chip auf

Daten zuzugreifen, die aber im FAST-RAM liegen, und schon

ist der Absturz perfekt.

Die nächsten beiden Hardware-Tricks beziehen sich auf diesen
Umstand. Es ist zwar in beiden Fällen eine Softwarelösung mög-
lich: Für das komplette Abschalten des FAST-RAMSs gibt es ein
Programm im AMIGA Intern von DATA BECKER. Doch oft-
mals hat man einfach nicht die Diskette zur Hand. Da ist es
dann einfacher, wenn man den Amiga ausschaltet, den Schalter
umlegt und einen geschröpften Amiga wieder einschaltet.

——— Hardware-Basteleien 435

11.1.1 Die 2000a-Platine

Haben Sie also einen Amiga 2000, so vergewissern Sie sich bitte
zuerst, ob Sie auch die A-Platine vor sich haben. Denn nur hier
kann eingegriffen werden. Dafiir suchen Sie auf der Expan-
sions-Platine nach einem PAL mit der Bezeichnung U3. Es gibt
daneben auch noch U1 und U6, doch die interessieren uns hier

nicht. Dieser PAL hat die ehrenvolle Aufgabe, die Freigabe
eines Speicherbereichs zu organisieren, und genau dabei setzt
unsere Lösung an: Wir werden diesem Chip einfach den Auftrag
geben, den erweiterten Speicher nicht freizugeben! Und zwar

läuft die Freigabe über zwei Pins ab, die sich -OVR und -
SELECT nennen. Der erste hat die Position 19 und der zweite
die Position 17. |

Für unser Unterfangen ist es nun nötig, daß beide Pins nicht
mehr mit der Platine verbunden sind, das heißt, es darf kein

Strom fließen. Dafür gibt es nun zwei Möglichkeiten. Die erste
und einfachste besteht darin, daß Sie die Leiterbahnen von die-

sen Pins mit einem gekonnten Schnitt durchtrennen. Dann be-
sorgen Sie sich einen 2poligen Schalter und lassen über diesen

die Verbindung laufen. Ist der Schalter geschlossen, so erkennt

das System ganz normal das RAM. Wird er jedoch geöffnet -

dafür muß der Computer ausgeschaltet sein und dies auch min-

destens 5-10 Sekunden bleiben - dann ist der Speicher nicht

vorhanden, und alle Programme laufen einwandfrei.

Die zweite Methode ist etwas eleganter, dafür aber auch auf-
wendiger. Besorgen Sie sich dafür noch einen Sockel (20 Pole
genau wie der Chip), in den unser PAL gesteckt wird. Die bei-

den Pins, die wir eben erst auf der Platine erreicht haben, wer-

den hier geschickt umgeknickt. Jetzt stecken Sie unseren Sockel
in die alte Fassung ein. Die Verbindung ist durchtrennt und mit
etwas Kabel und einem 2poligen Schalter läßt sich diese wieder
herstellen. So wird nichts zerstört, und das Abschalten ıst zu-
sätzlich erlaubt.

Den Schalter empfehle ich mit einem nicht zu langen Kabel an

das Gehäuse zu führen und dort durch ein Bohrloch zu stecken.

436 Amiga Tips & Tricks

So laufen keine Überlandleitungen auf dem Tisch entlang, die
zu Störungen führen könnten. Außerdem macht sich ein fest in-
stallierter Schalter besser als ein lose herumliegender!

Material:

- 1 Schalter 2 * AN
- ca. 30-40 cm zwei adrige Litze
- (1 Sockel 20 polig)
- Lötzinn

Werkzeug:

- Lötkolben

- scharfes Messer oder Schraubenzieher

- (evt. Zange)

Preis:

ca. DM 8,-

11.1.2 Die 500er-Platine

Ganz anders verläuft der Umbau beim Amiga 500. Hier bezie-
hen wir uns auf die 512-KByte-Karte, die man von Commodore
erhalten kann. Sie beinhaltet zusätzlich zu dem FAST-RAM
noch eine akkugepufferte Uhr. Diese Uhr bleibt vom Eingriff
natürlich unberührt. Zum Umbau schalten Sie bitte Ihren Amiga

aus und öffnen den Erweiterungsschacht. Nachdem Sie die Karte
herausgezogen haben - hier ist wie immer Vorsicht geboten -

legen Sie sie vor sich hin. Sie sehen jetzt auf die Lötseite der
Platine und haben oberhalb die Steckerleiste.

Für uns ist jetzt Pin 32 der Steckerleiste interessant. Verfolgen
Sie ihn bis auf die Platine. Dort, wo eine Leiterbahn von der
Lötstelle wegführt, setzt unsere Arbeit an. Irgendwo muß jetzt
diese Leiterbahn unterbrochen werden. Nehmen Sie dafür ein
scharfes Küchenmesser oder einen spitzen Schraubenzieher. An-

—— Hardware-Basteleien 437

schließend nehmen Sie zwei Stück Litze und löten an jedem
Schnittende je eine an. Die beiden anderen Enden werden dann

über den Schalter verbunden. Fertig!

Sie können jetzt zur Probe die Speicherkarte wieder einbauen
und die Workbench booten. Ist der Schalter in der AUS-Posi-
tion, werden Sie wieder in die alten Tage zurückversetzt, in
denen es noch keine Erweiterung gab. Schalten Sie aber den
Amiga wieder aus und legen den Schalter um, muß nach er-
neutem Booten wieder der alte Speicher vorhanden sein. Anson-

sten haben Sie etwas falsch gemacht. So werden z.B. sehr häufig
manche Lötstellen "kalt" gelötet, so daß sie nicht richtig Kontakt
geben. Dann empfiehlt es sich, diese noch einmal nachzulöten.
Andere Fehler könnten aber eigentlich nicht auftreten.

Material:

- 1 Schalter 1 * AN
- ca. 30-40 cm zweiadrige Litze
- Lötzinn

Werkzeug:

- Lötkolben

- scharfes Messer oder Schraubenzieher

Preis:

ca. DM 7,-

11.2 Floppylaufwerke abschalten

Nicht nur der Speicher bringt manche Programme zum Absturz,
auch ein zusätzlich angeschlossenes Laufwerk, das meistens au-
tokonfigurierend ist und dann seinen Arbeitsspeicher fordert,
bringt Probleme. Diese liegen meistens darin begründet, daß das
DOS alle File-Daten nur über Chip-RAM abwickeln kann. Des-
halb wird für jedes Laufwerk dort ein Pufferspeicher von etwa
30 KByte gebraucht.

438 Amiga Tips & Tricks

Dieser Speicher wird von manchen Programmen dringend benö-
tigt, steht dann aber nicht mehr zur Verfügung. Die Folge davon
ist, daß dieses Programm sich verabschiedet oder gar nicht ge-
startet werden kann. Als Lösung bietet es sich an, das störende

Laufwerk einfach abzuschalten. Dies wollen wir jetzt auch tun:

- Das externe Laufwerk wird abgeklemmt

Besitzt das externe Laufwerk von Haus aus noch keinen Schal-
ter, dann kann man diesen leicht einbauen. Mit Hilfe des Schal-

ters werden wir dann bei einem Reset des Computers die Lei-

tung unterbrechen, die dem Amiga meldet, daß ein weiteres
Laufwerk angeschlossen ist. Hierbei handelt es sich um die Lei-
tung am Pin 21 des Steckers.

Wird sie unterbrochen, mit der Litze an beiden Enden verlängert
und mit dem Schalter wieder verbunden, ist schon die ganze Ar-
beit getan. Es ist hierbei egal, ob Sie den Schalter am Stecker
oder am Gehäuse der Floppy unterbringen. Für die Montage am

Gehäuse müssen Sie aber erst die ankommende Leitung identifi-
zieren. Und dazu muß zuvor sowieso der Stecker geöffnet wer-
den.

Material:

- 1 Schalter 1 * AN
- ca. 10-20 cm einadrige Litze
- Lötzinn

Werkzeug:

- Lötkolben

- scharfes Messer

- Schraubenzieher

Preis:

ca. DM 7,-

—— NHardware-Basteleien 439

11.3 Umrüstung auf den MC 68010

War es nicht schon immer Ihr Wunsch, Ihren Amiga für wenig
Geld um einige Prozente schneller zu machen? Hiermit möchten

wir Ihnen diesen Wunsch erfüllen! Dazu rüsten wir Ihren Amiga
um! Der alte 68000er wird ausgetauscht und ersetzt durch einen
68010. Dieser neue Motorola-Chip ist 99.99% kompatibel zum
alten. Er hat nur eine Macke, auf die wir aber noch eingehen
und mit der man sehr gut leben kann.

Nun aber zu den Vorteilen! Der neue Prozessor kann durch ein-
faches Austauschen ersetzt werden. Das heißt, Sie brauchen we-
der lästige Lötarbeiten noch aufwendige Korrekturen durch-
zuführen. Weiterhin bietet der 68010 bei einigen Prozessorbe-
fehlen eine Geschwindigkeitssteigerung um bis zu 80%. Das
kann sich doch hören lassen. Wenn man dies auf die Allgemein-
heit umrechnet, denn die Programme nutzen ja nicht nur die
Befehle, die schneller geworden sind, sondern auch die, bei

denen sich nichts geändert hat, dann hat man immer noch einen
Zuwachs um glatte 16%. Auch diese Zahl kann sich hören las-
sen.

Weiterhin haben wir die Möglichkeit, mit einem Zusatzpro-

gramm, zu dem Sie am Ende dieser Umbauanleitung Informatio-
nen finden, den neuen Chip 100% kompatibel zu machen, womit

sich jedes Problem von selbst erledigt.

Nun aber endlich zum Einbau unseres neuen Prozessors. Dafür

müssen Sie sich ihn erst einmal besorgen. Das sollte aber kein
Problem darstellen. In vielen gewerblichen Kleinanzeigen von
bekannten Computerzeitschriften findet man immer wieder An-

gebote dieses Chips. Oder Sie kennen einen Elektronik-Shop in

Ihrer Nähe, der ihn sicherlich auch auf Lager hat. Er wird mo-

mentan zu einem Preis von ca. 40,- DM gehandelt, was ihn be-

sonders beliebt macht. Haben Sie sich den neuen Prozessor be-
sorgt, kann es an die Arbeit gehen.

Dafiir schrauben Sie zuerst Ihren Amiga auf. Je nachdem, wel-
ches Amiga-Modell Sie besitzen, ist dieser Vorgang mehr oder

440 Amiga Tips & Tricks ————

minder strapazıös. Sie sollten sich aber in jedem Fall genau die

Reihenfolge und die Verbindungen merken, damit nachher beim
Zusammenbau keine Gedächtnislücken entstehen und Ihr Amiga

nur noch offen in Betrieb genommen werden kann.

Wenn Sie sich nun zur Hauptplatine durchgewuselt haben, wird

es wohl kein Problem sein, den alten Hauptprozessor zu finden.

Es ist immerhin der größte und klotzigste. Er läßt sich ganz
einfach durch seine Aufschrift identifizieren. Immerhin steht
dort "68000" oder ein ähnlicher Text. Diesen Chip müssen wir

nun entfernen. |

Zum Ausbau des Hauptprozessors gibt es noch einige Worte zu

sagen. Zum ersten ist uns noch keine Amiga-Platine unter die

Augen gekommen, bei der der 68000er nicht gesockelt war.
Wenn Sie doch einen fest eingelöteten Prozessor vor sich haben,
können wir nur hoffen, daß Sie genügend Löterfahrung haben
oder aber einen Freund kennen, der diese hat. Denn bei einer

solchen Masse von Pıns kann man mit einfachem "Rumbraten"

nur Zerstörung anrichten. Am besten ist die Verwendung einer
extra dafür vorgesehenen Lötplatte, mit der man alle Pins

gleichzeitig heiß machen kann, so daß der Chip während des
Lötens herausgezogen werden kann.

Im folgenden wollen wir aber davon ausgehen, daß wir einen
gesockelten 68000er vor uns haben. Dieser muß zuerst aus sei-

nem Sockel entfernt werden. Dazu gibt es spezielle Zangen, die

an allen Beinen gleichzeitig greifen. So eine Anschaffung lohnt
aber nur, wenn Ihnen der Chip sehr am Herzen liegt oder Sie

keinen Mut haben, es auch anders zu versuchen. Der gleiche

Effekt läßt sich nämlich auch mit einem flachen Schrauben-
zieher erzielen.

Dazu setzen Sie ihn zuerst auf Schmalseite zwischen Sockel und

Unterseite und versuchen den Prozessor durch leichtes Drehen,

zu lockern. Gleiches wiederholen Sie auf der anderen Seite usw.

Auf diese Weise kann man am einfachsten Chips aller Art, die
mit besonders vielen Beinen gesegnet sind, aus der Fassung

bringen. Merken Sie sich vor dem Herausnehmen, in welche

—— Hardware-Basteleien 441

Richtung die Einkerbung an einem Ende des Chips zeigte. In die
gleiche Richtung muß auch die Einkerbung des neuen Prozessors
zeigen!

Als nächstes muß der neue 68010 eingesetzt werden. Bevor wir

uns damit beschäftigen, sollte noch eine Warnung ausgesprochen

werden. Diese Wunderwerke der Technik sind sehr empfindlich.

Auch nur der kleinste Spannungsunterschied versetzt ihnen den
Todesstoß. Deshalb haben Sie immer Verbindung zu einem geer-
deten Leiter. Dazu kann man z.B. mit einer Hand Kontakt mit

dem Chassis halten. Nehmen Sie nun den 68010 aus seinem
Schaumstoffkissen, und setzen Sie unseren in den Ruhestand ge-
tretenen 68000er dorthin. Beim Eindrücken aller Pins ist darauf
zu achten, daß keines auch nur einen halben Milimeter aus sei-

nem Loch heraussieht. Biegen Sie gegebenenfalls die ganze Pin-
seite durch leichtes Drücken auf das Schaumstoffkissen um.
Unser Mammutbeiner kann dann mit einem kräftigen Druck auf
beiden Enden gleichzeitig in die Fassung gepreßt werden. Fertig!

Jetzt können Sie den Amiga wieder zusammenbauen. Achten Sie
darauf, daß alle Verbindungen wieder richtig zusammengesetzt
werden und daß keine Schraube oder irgend etwas anderes fehlt!
Es soll schon Leute gegeben haben, die nach einem Umbau ein
ganzes Chip-Set übrig hatten! Nun kommt die Einschaltprobe.
Alles sollte sich wie normal verhalten, doch müßten Sie einen

Geschwindigkeitszuwachs bemerken. Wenn nicht alles zur Zu-
friedenheit verlaufen ist, kann dies aus zwei Gründen so sein:

Zuerst ist es immer mal möglich, daß Sie beim Zusammenbau
vielleicht irgendwelche Kabel nicht richtig oder gar nicht zu-
sammengesteckt haben. Dies sollten Sie als erstes kontrollieren.

Die zweite Möglichkeit ist nicht sehr angenehmen, kann aber
durchaus aufgetreten sein. Beim Tragen von Kleidung entsteht
schon durch die kleinste Reibung eine elektrische Ladung. Diese
Ladung vertragen unsere beiden Chips nicht. Haben Sie nun ein
Pin des Chips mit dem Finger angefaßt, so kann es angehen, daß

dabei eine zu hohe Ladung von Ihnen auf den Prozessor über-
tragen wurde. Diese Ladung zerstört in den meisten Fällen einen

442 Amiga Tips & Tricks

Mikrochip. Es hilft nichts, Sie müssen zum Test einen neuen

68010 kaufen. Durch das Einsetzen des alten 68000ers kann man

auch feststellen, ob nicht gar der ganze Amiga defekt ist!

Zum Abschluß hier die versprochenen Informationen zum Pro-

gramm, das nach dem Start jede Exception 4 abfängt, so daß der
68010 nicht abstürzt. Dieses Programm dürfen wir hier nicht ab-
drucken, da es sich um Public-Domain-Software handelt. Also

verweisen wir hier auf die Fish-Disk 18. Auf ihr befindet sıch
das Programm DeciGEL, das alle Ausgleicharbeiten übernimmt.
Die gleiche Aufgabe erledigt auch das Programm SetAlert, das
auf den neuen Workbench-Disketten V1.3 mitgeliefert und
schon in der Startup-Sequence gestartet wird. Außerdem ist dem

neuen Amiga Profimat von DATA BECKER auch so ein Pro-
gramm beigelegt.

Material:

- M68010-Prozessor 8 MHz

- (Sockel für den Prozessor, wenn noch nicht vorhanden)
- (Lötzinn)

Werkzeug:

- (Lötkolben)

- Schraubenzieher (zum Hebeln des alten Prozessors)

Preis:

ca. DM 45,- (50.-)

11.4 Laute Lüfter stören sehr!

Haben Sie auch einen Amiga 2000? Zu Anfang war ich richtig
stolz, daß dieses "PC-Geräusch" mein Zimmer erfüllte, doch

nach und nach wurde dieses Dröhnen, das dem eines Groß-
raumflugzeuges gleicht, ziemlich entnervend. Deshalb beschloß
ich, etwas dagegen zu unternehmen. Dafür standen mir zwei

Wege offen. Einmal wurde mir von meinem Vater, er ist Fern-

—— Hardware-Basteleien 443

sehtechnikermeister, geraten, einfach die Leistung des Ventila-

tors zu drosseln. Doch weil ich bei solchen guten Ratschlägen
immer etwas vorsichtig bin, habe ich eine elegantere Lösung
gewählt.

Bei dem eingebautem Ventilator handelt es sich um einen Papst

Multi-Fan 8312M. Das M am Ende der Nummer bedeutet so
viel wie mittel(mäßig laut). Nach Wälzen von Prospekten und
Händlerinformationen gelang es einem Bekannten von mir, ein
ähnliches Modell herauszufinden. Dieses hat die gleichen Daten,

mit dem Unterschied, daß die Geräuschentwicklung um fast 50%
gemindert ist. Welch ein Erfolg!

Wenn es Ihnen gelingt, dieses Modell aufzutreiben - und das ist
gar nicht so einfach - werden Sie keine Probleme beim Einvau

haben. Denn alle Schrauben und Anschlüsse liegen gleich. Einzi-

ger Nachteil der ganzen Aktion ist der Preis unseres Modells
Papst Multi-Fan 8312L. Denn für das gute Stück müssen Sie um

die 80,- DM zahlen!

Wenn Sie sich jetzt von Ihrem Schock erholt haben, sollten Sie
aber nicht vergessen, daß dadurch immerhin einige ruhige Stun-
den ermöglicht werden. Für die, denen das trotzdem zu teuer ist,

möchte ich noch kurz die Methode meines Vaters beschreiben.

Er hat mir geraten, ganz einfach die positive Leitung des Lüf-

ters durchzutrennen, damit ich einen Regelwiderstand von
500hm 5W einsetzen kann (der Regelbereich sollte so von 0 bis
100 Ohm liegen!). Dadurch wird nicht mehr so viel Strom
durchgelassen wie vorher, und der Lüfter kann auch nicht mehr
so schnell blasen. Mit Hilfe des Reglers ist es außerdem möglich,
den Widerstand ganz auszuschalten, was dem alten Zustand

gleicht. Dreht man ıhn weiter auf, wird der Lüfter langsamer
und somit auch leiser. Richten Sie dabei die Geschwindigkeit
nicht nach der Lautstärke, sondern nach der Wärmeentwicklung.

Diese steigt bei Erweiterungskarten an!

Zum Schluß sei noch eine Warnung mit auf den Weg gegeben:
Der Lüfter des Amiga ist ja nur deswegen so laut, weil er so

444 Amiga Tips & Tricks

viel Leistung aufbringen muß. Immerhin rechnet man damit,
daß Sie alle freien Slots mit Steckkarten versehen. In diesem Fall
wird die vorhandene Leistung des Lüfters wirklich gebraucht!
Dann dürfen Sie ihn natürlich nicht bremsen oder durch einen
schwächeren ersetzen. Nur wenn Ihr Amiga nicht voll ausgelastet
ist, kann man zu diesen Methoden greifen.

Material:

- Lüfter

- Potentiometer

- Kabel

- Lötzinn

Werkzeug:

- Lötkolben

- Seitenschneider

- Schraubenzieher

Preis:

ca. DM 85,-

11.5 Den Amiga aus dem Takt bringen

Nicht immer kann Geschwindigkeit von Vorteil sein! Der Amiga
ist mit seinen 7.16 MHz ein sehr schneller Computer. Dies macht

die Arbeit sehr angenehm, die Fehlersuche oder filigrane
Einstellungen aber für den Menschen unüberschaubar. Es geht

aber auch anders. Wir haben uns zwei kleine Schaltungen über-

legt, mit denen es zum einem möglich ıst, den Amiga vollkom-
men anzuhalten, oder seine Geschwindigkeit zu drosseln.

Wie immer haben wir natürlich gleich darauf geachtet, daß da-
bei nicht zu große Kosten entstehen, daß die Schaltungen ein-
fach nachzubauen und auch leicht zu verstehen sind. Denn
schließlich sollen Sie auch über die Hintergründe unserer Ideen
informiert werden.

——— Hardware-Basteleien 445

11.5.1 Stop! Der Amiga hält an

Es sind nicht nur imaginäre Situationen, in denen man sich
wünschte, seinen Amiga anhalten zu können. Ob es nun bei
einem Spiel ist, das keine PAUSE-Taste besitzt, und von dem

man kurze Zeit abgehen muß, oder ob es ein Anwenderpro-

gramm ist, dessen Arbeiten man einfrieren möchte. Auch bei

der Programmierung bietet es sich an manchen Stellen an, wenn
man für eine Überlegung das Programm - oder besser den gan-
zen Amiga - anhält. Die hier vorgestellte Schaltung erledigt
diese Aufgabe mit wenig Aufwand!

Wir benutzen dafür eine vom Prozessor angebotene Leitung, die
wohl beim 68000er als auch beim 68010 vorhanden ist. Sie trägt
die Bezeichnung HALT und liegt an Pin 17. Verbindet man
dieses Pin mit der an Pin 16 liegenden Masse, so hält der Pro-

zessor so lange an, bis die Masse wieder entfernt wird. Dies
nutzen wir aus, indem wir die beiden Pins über einen Druck-

schalter miteinander verbinden.

Damit die Kabel nicht direkt am Prozessor angelötet werden
müssen - durch die Lötarbeiten könnte er beschädigt werden -

nehmen wir dazu eine separate Fassung, die zwischen der Plati-
nenfassung und dem Prozessor gesteckt wird.

Löten Sie je ein Litzekabel an die Pins 16 und 17 der zusätz-
lichen Fassung. Sie sollten etwa die Lange von 10 bis 15 Zenti-

metern haben. Dies hangt einmal vom Amiga ab (500er, 1000er
oder 2000er) und von der Position, an der Ihr Schalter ange-
bracht oder heraushängen soll. Messen Sie den Weg vorher

großzügig ab! Auf der anderen Seite werden die Kabel mit dem
Schalter verbunden. Die Polung ist dabei vollkommen egal. Fer-
tig!

Nehmen Sie nun nach dem Öffnen des Amiga den Prozessor
vorsichtig aus seiner Fassung (nähere Beschreibungen dazu fin-

den Sie in einem vorhergehenden Kapitel über die Aufrüstung
mit einem 68010-Prozessor). Setzen Sie jetzt die Zwischenfas-
sung richtig herum ein (man achte auf die Kerbe!) und darauf

446 Amiga Tips & Tricks

den Prozessor. Da der Verlust einer Fassung leichter zu ver-
schmerzen ist als der eines Prozessors, sollten Sie vielleicht bei

einer unzugänglichen Position erst den Prozessor in die
Zwischenfassung setzen und erst dann diese in der Computer.

Zum Ausprobieren bietet es sich an ein Demo-Programm oder

ein Spiel zu laden. Dieses können Sie dann auf Knopfdruck an-

halten. Viel Spaß!

Hinweis: Achten Sie beim Start des Amiga darauf, daß der
Schalter ausgeschaltet ist, denn sonst kann Ihr Amiga

nicht booten.

Material:

- Druckschalter 1 x an (einrastend)
- IC-Fassung für Prozessor (64 Beine)
- Lötzinn
- zweiadriges Litzekabel

Werkzeug:

- Seitenschneider

- flachen und breiten Schraubenzieher

- Lötkolben

Preis:

maximal ca. DM 8,-

11.5.2 Die Bremse im Huckepack

Nicht immer reicht es aus, den Amiga nur anzuhalten. Viel
brauchbarer ist es, wenn man zwischen mehreren Geschwindig-

keitsstufen wählen kann. Mit der nun vorgestellten Schaltung ist
dies ohne weiteres möglich.

Wir überlassen es dabei einer kleinen taktgebenden Schaltung,
den Prozessor auf den HALT-Status zu setzen. Dies geschieht in

— Hardware-Basteleien 447

wählbarer Anzahl innerhalb einer Sekunde mehrmals. Durch das
Potentiometer können Sie bestimmen, wie oft der Prozessor auf

HALT gelegt werden soll. Damit wird zwar die Arbeitsge-
schwindigkeit des Prozessors verändert, nicht aber der System-

interne Takt.

Das verwendete IC wird mit 5V und Masse aus dem Amiga mit
Spannung versorgt. Herausgeführt ist eine Leitung, die wir
wieder mit dem HALT-Pin verbinden. Hier liegt periodisch
Masse an. Die Frequenz wird über einen Schwingkreis gesteuert,
der mit dem Potentiometer innerhalb eines festgelegten Bereichs
geregelt werden kann.

HALT

Gnd

Abb. 4: Schaltung fur Takt-Frequenz-Bremse

Fir den Aufbau der oben gezeigten Schaltung verwenden Sie am
besten die in der Material-Liste aufgeführte Lochraster-Platine.
Dort können Sie leicht das IC einlöten. Achten Sie bei Platinen

mit Lötstreifen darauf, daß jedes Bein in einer separaten Reihe
steht. So müssen Sie nur in der Mitte unter dem IC die Bahnen

durchtrennen. Dann können alle weiteren Bauteile ohne Mühe

ergänzt werden. Der Ein-Schalter und das Potentiometer sollten
über Kabel mit der Platine verbunden werden, damit diese nicht

448 Amiga Tips & Tricks ——

starr mit den Bauteilen zusammenhängen. Sie können dann an
geeigneter Stelle im Gehäuse je eine Bohrung für den Schalter
und das Potentiometer vornehmen. Masse, 5 Volt und die

HALT-Leitung werden wieder über die Prozessor-Fassung er-
reicht.

Hinweis:

Material:

Um Geld zu sparen, können Sie auch die Halt-

Schaltung und diese zusammen mit einer Prozessor-
Fassung kombinieren. Sie sparen damit 4,50 DM, die

für eine präzise Fassung nicht zuviel verlangt sind.

- Lochraster-Platine

- Schalter 1 x ein

- Kondensator 22 nF

- Widerstand 820 Ohm

- Potentiometer 10 kOhm

- IC NE 555 (Zeitgeber)
- IC-Fassung für Prozessor (64 Beine)
- Litze

- Lötzinn

Werkzeug:

Preis:

Ca.

11.6

Lötkolben

Seitenschneider

Schraubenzieher

DM 10,50 (mit Fassung)

Prozessor-Umschaltung macht doppelt
kompatibel

Sicherlich sind Sie begeistert, wenn durch den Einbau eines
68010 alles viel schneller, sprich: leichter von der Hand geht.

—— Hardware-Basteleien 449

Die Workbench-Arbeit wird flüssiger, die Programme leisten
mehr. Nun gibt es aber besonders auf dem Gebiet der Spiele
einige, die sich nicht mit dem einen inkompatiblen Befehl ver-
tragen und alsbald abstürzen.

Hier greift unsere Idee! Warum soll man nicht auch zwischen
zwei Prozessoren umschalten können, wie man es auch beim

Kickstart mittlerweile kann? Hierbei sind aber nicht - wie man
zuerst denken mag - aufwendige Platinenarbeiten nötig, sondern

es läßt sich mit wenigen Bauteilen realisieren. Das Verfahren ist
einfach! Wir löten auf den in der Platinen-Fassung befindlichen
Prozessor einen weiteren Sockel (natürlich nicht, während er im
Amiga steckt, das versteht sich unter Elektronikern von selbst),
in den dann der 68010 eingesteckt werden kann. Hierbei müssen
allerdings einige Beine zur Seite gebogen werden, denn hier setzt
die Schaltung an. Aber gehen wir die Schaltung der Reihe nach

durch:

Nach dem Aufschrauben des Amiga (gleich welches Modell)
entfernen Sie den 68000er vorsichtig aus seinem Sockel (wie
wurde schon mehrmals oben beschrieben). Um eine Schaltung

später zu ermöglichen, müssen einige Beine des Prozessors zur

Seite gebogen werden. Es sind im einzelnen Pin 14, 16, 49 und

53. Beachten Sie, daß keines der Beine wirklich abbricht. Sollte
dies doch geschehen, muß später versucht werden, einen Draht

direkt an die Bruchstelle zu löten, was einige Schwierigkeiten

verursacht. Jetzt können Sie den 68000-Prozessor in eine der
beiden neuen Fassungen stecken. Achten Sie auf gleiche Rich-
tung der Kerbe des Prozessors und der Fassung. Die abgeboge-

nen Beine stehen frei.

Die zweite Fassung wird genau wie der Prozessor bearbeitet, d.h.
die oben genannten Pins sind diesmal zu entfernen (knipsen Sie

die Beine unterhalb mit einem Seitenschneider ab). Alle ande-
ren Pins werden, nachdem Sie diese Fassung auf den 68000er
gesetzt haben, angelötet. Achten Sie auch hier wieder auf
Gleichgerichtetheit der Kerben. Nun sind die freistehenden Pins
der Prozessoren oder Fassungen über Litzekabel in geeigneter

Weise zu verbinden, um eine Umschaltung möglich zu machen.

450 Amiga Tips & Tricks

Verwenden Sie zur Verkabelung am besten mehrfarbiges Litze-

kabel, damit die Leitungen leichter unterschieden werden kön-
nen. Am bequemsten ist 6poliges Flachbandkabel, das die Arbeit

sehr übersichtlich gestaltet. Zuerst verbinden Sie mit einem
kurzen Litze-Stück die abgebogenen vier Pins des 68000ers
paarweise: Pin 14 mit 49 und Pin 16 mit 53. Genauso wird die

für den 68010 vorbereitete Fassung bearbeitet. Auch hier müssen

die entfernten, also nicht mit dem darunter liegenden Prozessor
verbundenen Pins in gleicher Weise untereinander verdrahtet
werden.

Nun beginnt die Arbeit am Schalter. Löten Sıe am 68000er von
Masse-Pin (16 bzw. 53) eine Leitung zum Schalter-Pin la (siehe
auch untenstehende Abbildung). Ein zweites Kabel wird vom
5V-Pin (14/49) zum Schalter-Pin 2a geführt. Das gleiche führen
Sie mit zwei weiteren Leitungen an der Fassung für den 68010-
Prozessor durch und verbinden diese am Schalter mit Pin 1b
bzw. 2b. Es fehlt nur noch eine Brücke zwischen Schalter-Pin la

und 3b, die die Masse des 68000ers beim Umschalten auf den
68010’er auf 5V legt, damit diese inaktıv bleibt.

Zur Schalter-Versorgung wird von der untersten Fassung, in die
Sie den 68000er gesteckt haben, am Pin 14 bzw. 49 (5V) abge-

nommen und an die Schalter-Pins 2 und 3 gelegt. Weiterhin ver-
binden Sie Pin 16 bzw. 53 (Masse) der unteren Fassung mit dem
Schalter-Pin 1. Fertig!

68000 Schalter 68010

16/53 1a 1 1b 16/53

14/49 2a 2 2b 14/49

3b 1a (untereinander)

3 (untereinander)

16/53 1 (untere Fassung)

Abb. Schalter-Verbindung

Zum Einbau dieser Huckepack-Schaltung stecken Sie nun end-
lich den 68010 vorsichtig (ohne daß ein Bein abbricht oder ab-

———— Hardware-Basteleien 451

knickt) in die obere Fassung (achten Sie auf die Kerbe) und
dieses Gebilde wiederum in Ihren Amiga. Auch hier ist die
Richtung der Pins über die Kerbe zu beachten.

Zur Durchführung eines Tests schalten Sie den Amiga nach dem
Zusammenbau ein und legen keine Workbench-Diskette ein. Ist
der Amiga funktionsfähig, sollte das Disketten-Symbol auf dem
Bildschirm erscheinen. Ansonsten müßten noch einmal alle Ver-

bindungen auf ihre Richtigkeit überprüft werden. Schalten Sie
zum Test des zweiten Prozessors den Amiga wieder aus, legen
Sie den Schalter um und schalten Sie wieder ein. Auch hier
sollte das Diskettensymbol erscheinen.

Hinweis: Sie zerstören Ihren Amiga, wenn Sie zwischen den

Prozessoren umschalten und unseren Liebling nicht
zuvor vom Netz getrennt haben. Beachten Sie dies
ımmer! Bei unserem Test wurde ferner folgendes
Problem aufgeworfen: der Prozessor erhitzt sich beim
Betrieb sehr stark. Je nachdem, welchen der beiden

Sie eingeschaltet haben, ist es der untere 68000er

oder der oben gelegene 68010. Letzterem macht es
wenig aus, da die Wärme frei entweichen kann. Nur
dem 68000’er sollte es ganz schon warm ums Herz
werden. Deshalb kann es sein, daß er wegen
Überhitzung (wie man im Fachjargon sagt) "stirbt".
Bei unserer Arbeit ist dies jedoch nicht geschehen.
Um dem vorzubeugen, können Sie z.B. ein Kühl-
blech aufbringen und mit Wärmeleitpaste am unteren
Prozessor befestigen. Es war aber während der Test-

phase nicht nötig. |

Material:

- M68000 8 MHz
- M68010 8 MHz
- 2 Fassungen 64 polig
- Schalter 3x um
- Litze (möglichst Flachbandkabel sechsadrig)
- Lötzinn

452 Amiga Tips & Tricks

Werkzeug:

- Lötkolben

- Seitenschneider

- Schraubenzieher

Preis:

ca. DM 80,- (inclusive beider Prozessoren, sonst DM 12,-)

11.7 Das Null-Modem zur Datenkommunikation

Ein Null-Modem ist die Verbindung zwischen zwei Computern
über ein ununerbrochenes Kabel. Man unterscheidet bei der
Modem-Übertragung zwischen Telefon-Modems, die mit der
Telefon-Leitung Daten verschicken, und dem hier beschriebenen
Null-Modem, das mit einem Verbindungskabel auskommt und
praktisch jeden Computer mit jedem verbinden kann. Einzige
Bedingung für diesen Lebensbund ist eine RS-232 Schnittstelle,
die unser Amiga auf jeden Fall besitzt.

Als Beispiel für unsere Anwendung habe ich einen Amiga 2000
und einen AT-Rechner genommen. Die Lötarbeiten sind dabei
ganz einfach. Man benötigt ein mindestens sechsadriges Kabel,
das die Länge von 5 Metern nicht überschreiten sollte, da man

sonst ohne geeignete Verstärkung mit Datenverlusten rechnen
muß. Zusätzlich sind noch zwei RS-232-Buchsen zu besorgen,

die unsere gewünschte Verbindung herstellten. Die einzelnen

Leitungen des Kabels werden nach folgendem Schema verbun-

den:

Serieller Port A Serieller Port B

1 3

3 1

4/5 8

6 20

8 4/5

20 6

——— Hardware-Basteleien 453

Sie sehen hier schon auf den ersten Blick, daß es sich um eine
kreuzweise Verbindung handelt, die keine größeren Schwierig-
keiten bereiten sollte. Beachten Sie bei den Buchsen die kleinen
eingestanzten Nummern an jedem Lötpin, so bekommen Sie
keine Probleme beim Zählen. Prüfen Sie auf jeden Fall vor dem

Anschluß noch einmal theoretisch die Verbindungen, da Sie

sonst böse Überraschungen erleben könnten.

Hier noch eine Informationstabelle, was an welcher Leitung an-
liegt:

Pin-Nummer Signal

Schutz-Masse

Daten losschicken

Daten empfangen

Anfrage zu senden

Bereit zum Senden

Data Set Ready

Signal-Masse

Carrier Detect

Data Terminal ready S
a
N
n
o
a
n
a
w
n

Haben Sie nun zwei Rechner verbunden, können Sie mit den

ersten Probeeinstellungen beginnen. Dazu ist zuerst mit Prefe-
rences die serielle Schnittstelle am Amiga einzustellen. Ich ver-
wende ohne Probleme folgende Werte: |

Baud Rate 1200

Buffer Size 512 (bei AUX: unbenutzt)

Read Bits 8

Write Bits 8

Stop Bits 2

Parity None

Handshaking RTS/CTS

Seit der Workbench 1.3 ist es empfehlenswert, mit dem seriellen

Device AUX: zu arbeiten, da hier die Datenübertragung unge-
puffert geschieht. Bedenken Sie, daß es vor dem ersten Benutzen

geMounted werden muß! Auch beim zweiten Rechner sollten die
gleichen Einstellungen gemacht werden. Ist dies ein Amiga,

454 Amiga Tips & Tricks ———

übernehmen Sie die oben angegebenen Werte. Als Beispiel soll

dazu noch die Einstellung bei einem PC-kompatiblen Rechner

gelten:

mode com1:1200,n,8,2,

Zur Datenübertragung selbst schicken Sie bei dem einen Rech-
ner Daten ab, indem Sie z.B. ein File in das entsprechende

Device kopieren:

Amiga: 1> copy testfile to AUX:

PC: c:\> copy testfile comi:

Der Empfang läuft beim Amiga über ein CON:-Fenster, in das

die Daten der Schnittstelle geschickt werden. Sıe können es auf
folgende Weise öffnen:

1> run copy aux: to con:0/0/640/100/Datenempfang

Beim PC-kompatiblen Rechner soliten Sie ein Terminal-Pro-
gramm wie z.B. VTERM verwenden, da hier neben den Para-

metern der Empfang protokolliert wird.

Material:

- Kabel sechsadrig (ca. 2 Meter)

- RS232-Buchsen

- Lötzinn

Werkzeug:

- Lötkolben

- Seitenschneider

- Schraubenzieher

Preis:

ca. DM 15,-

——— Das Workbench-Equipment 455

12. Das Workbench-Equipment

Zusätzlich zu den lebensnotwendigen Datenfiles wie Fonts,

Druckertreiber und den unbedingt nötigen Programmen wie

CLI-Befehle und den Libraries findet man auf der Workbench-
Diskette noch einiges mehr. Gleiches gilt auch für die Extras-
Diskette, die viele Ergänzungen und zusätzliche Unterstützung
bietet. Dieses Kapitel will sich nun mit allen Ergänzungen be-

schäftigen, die das Leben auf der Workbench leichter machen

sollen. Hierfür betrachten wir beide Disketten. Zuerst wollen wir
uns den Programmen widmen, ohne die manche Aufgabenstel-
lung unmöglich zu lösen wäre. Im zweiten Teil geht es dann
auch an die Datenfiles, in denen einige versteckte Informationen
liegen. Doch nun stürzen wir uns wie Tarzan in das Abenteuer
eines unerkundeten Dschungels! |

12.1 Mit Vorliebe: Preferences

Das Programm Preferences ist sicherlich eines der wichtigsten

Programme, die man mit dem Amiga geliefert bekommt. Schon
alleine der Umstand, daß man alle Daten, die die Ar-

beitsumgebung prägen und bestimmen, ein- und verstellen kann,

macht dieses Programm so wichtig! Nun liegt hinter diesem

ganzen Lob aber auch ein bitterer Geschmack. Immerhin nimmt

das Programm in seiner neuesten Version fast 55 KByte in An-
spruch. Das ist schon mal ein Grund, auf Preferences zu ver-

zichten, denn die Ladezeit läßt einen schon ab und zu ver-

zweifeln.

Hierfür gibt es mehrere Auswege. Der erste besteht darin, daß
man Preferences vielleicht in die (ab Version 1.3 resetfeste)
RAM-Disk legt und so immer schnellen Zugriff hat. Dafür
spricht der große Bedienkomfort. Es ist aber viel öfter so, daß

manche Programme wichtige Einstellungen benötigen, wie z.B.

den 80er Zeichensatz oder eine bestimmte Farbeinstellung. Dafür

456 Amiga Tips & Tricks ———

lohnt es sich dann gar nicht, wenn man extra Preferences lädt.
Und außerdem ist es gar nicht möglich, daß man immer wieder

genau die gleichen Farben einstellt!

12.1.1 Daten lesen und setzen

An dieser Stelle greift nun das Hilfsprogramm ein. Es ermöglicht

über die Intuition-Funktionen einen Zugriff auf die Daten und
zeigt an zwei Beispielen, wie einfach es ist, die Struktur auszu-

lesen. Dabei muß beachtet werden, daß seit Version 1.3 des Be-

triebssystems und der Workbench die Preferences-Struktur um
einige Datenfelder ergänzt und verlängert wurde. Dieser Um-
stand wurde natürlich berücksichtigt! Trotzdem läuft das Pro-
gramm auch mit Kickstart 1.2.

Wenn Sie wissen wollen, wie die Preferences-Struktur aussieht,

schauen Sie bitte im Kapitel 6 nach, wo ein Programm zum
Einstellen der Config.Sys-Daten vorgestellt wird. Sie wissen nach
dem Studium der dort aufgeführten Struktur zwar, welche Daten
von der Preferences-Struktur verwaltet werden, doch eine Pro-

grammier-Anwendung dafür haben wir immer noch nicht! Des-
halb möchte ich Ihnen ein Programm anbieten, das es ermög-
licht, die aktuellen Einstellungen zu lesen und andererseits dieses
zu verändern und dann zu sichern.

Bei dieser Arbeit helfen uns zwei Intuition-Funktionen. Die eine
kopiert die aktuellen Werte in einen von uns reservierten

Speicherbereich. Dann sind wir am Zuge und können mit ge-
schickten Eingriffen die Daten verändern. Mit der anderen
Funktion wird es uns erlaubt, diese korrigierten Parameter in
den Systemeintrag zu übernehmen, womit jetzt die Einstellungen
allgemeingültig sind.

ERARKKKKKEKKKEKKKEERKEEEKEKKKKEEKEK

ix *

'* Preferences-Daten einstellen *
| SEE *

i* *

'* Autor : Wolf-Gideon Bleek *

'* Datum : 15. Mai '88 *

Das Workbench-Equipment

'* Grueße : Brigitte & Verena *

ı* Version: 1.1 *

'* Betriebssystem: V1.2 & V1.3. *
ix *

CRREKKKEKKKKERKKKEKKKKRKKRKKKRKKK

LIBRARY ":bmaps/exec. library"
DECLARE FUNCTION Al locMem& LIBRARY

LIBRARY ":bmaps/ intuition. library"

Hauptprogramm:

' Prefrences laden

GetPreferences Prefs&, 220&

IF Prefs& = 0 THEN GOTO Ende

' Farben neu eintragen

ColourO = 110

Colour1l = 112

Colour2 = 114

POKEW Prefs& + Colour0, 1*15+16*4+256*15
POKEW Prefs& + Colouri, 1*15+16*15+256*0

POKEW Prefs& + Colour2, 1*0+16*15+256*8

' Preferences speicher
SetPreferences Prefs&

Ende:

FreePreferences Prefs&

LIBRARY CLOSE

END

SUB GetPreferences (Adresse&, Size&) STATIC

Adresse& = AllocMem&(Size&t+4, 65536&)

IF Adresse& <> 0 THEN

POKEL Adresse&, Size&

Adresse& = Adresse&+4

CALL GetPrefs(Adresse&, Size&)

ELSE

Adresse& = 0

END IF

END SUB

SUB SetPreferences (Adresse&) STATIC

IF Adresse& <> 0 THEN

Size& = PEEKL(Adresse&-4)

CALL SetPrefs(Adresse&, Size&, -1)
END IF

END SUB

SUB FreePreferences (Adresse&) STATIC

IF Adresse& <> O THEN

Size& = PEEKL (Adresse&-4)

‘CALL FreeMem(Adresse&-4, Size&t4)

END IF

END SUB

457

458 Amiga Tips & Tricks

Programmbeschreibung

Das Programm bietet drei SUB-Routinen an, die alle Funktionen
unterstützen. Die erste, GetPreferences, reserviert für die Da-

tenstruktur den benötigten Speicher und kopiert in diesen die

Daten selbst. Falls ein Fehler auftritt, liefert sie den Wert 0 zu-

rück. Dann kann im Programm jede Einstellung modifiziert
werden. Achten Sie dabei auf die richtigen Startadressen, wie sie
auch in der Tabelle stehen, und auf die richtige POKE-Länge.

POKE für Byte-Werte, POKEW für Worte, d.h. 2-Byte-Werte
und POKEL für Langworte, d.h. 4-Byte-Werte. Die Länge ent-

nehmen Sie auch aus der Tabelle, indem Sie die Differenz zwi-

schen Basis und nächster Adresse bilden.

Die zweite Funktion, SetPreferences, übergibt die Daten aus
dem Speicher an das System und teilt dabei allen anderen lau-

fenden Programmen diese Veränderung mit (das kennzeichnet
die -1!). Wollen Sie nicht, daß auch andere Utilities von der

Änderung erfahren, dann müssen Sie den Wert 0 einsetzen.

Mit der letzten Funktion FreePreferences wird der Speicher

wieder freigegeben. Das ist wichtig und kennzeichnet guten Pro-
grammierstil. Immerhin sollte man alles, was man nicht mehr
benötigt, für andere Programme freigeben, damit nicht irgend-
wann Speichermangel eintritt.

12.1.2 Die neuen Preferences (Version 1.3.10)

In Zusammenhang mit der Betriebssystemverbesserung hielt man
es auch für nötig, die Einstellungen und Veränderungen bei den
Preferences zu erweitern. Hinzugekommen sind hauptsächlich
Druckerbeeinflussungen. So hat man als erstes einmal alle
Druckertreiber wesentlich beschleunigt. Eine Hardcopy, die frü-

her an die 10 Minuten dauerte, braucht jetzt nur noch knapp 2

Minuten. Wenn das kein Fortschritt ist!

Weiterhin hat man sich viele Gedanken über den Grafikausdruck

gemacht, der bisher zwar unterstützt wurde, aber doch sehr

stiefmütterlich. Nun kann man wirklich alles einstellen. Funktio-

——— Das Workbench-Equipment 459

sind ab Version 1.3 Wirklichkeit. Die anderen kleinen Änderun-
gen möchte ich jetzt noch kurz vorziehen, bevor ich ausführ-
lichst auf die Grafikeinstellungen eingehen werde. Beim ersten
Blick auf das Titelbild fällt gar nicht auf, was alles geändert
wurde. So ist z.B. der CLI-Schalter "abgeschaltet worden".

Man kann jetzt immer im CLI arbeiten und braucht sich dafür
nicht erst die Erlaubnis zu holen. Eine Veränderung, so meine
ich, die lange überfällig war. Eine interne Verbesserung, die
keiner auf den ersten Blick erkennen wird, wurde bei der Uhr
vorgenommen. So ist jetzt jede Einstellung auch gleich in die
akkugepufferte Systemuhr übernommen!

Das ist ein großer Vorteil für alle 500er- und 2000er-Eigen-
tümer. Der lästige Weg über das CLI entfällt.

Quereinstieg in Preferences

Eine wirklich gute Verbesserung ist mit dem Quereinstieg in die
Preferences gelungen. Kennen Sie das auch? Man hat sich einen
neuen Drucker zugelegt und will jetzt die richtigen Einstellun-
gen ausprobieren. Dazu wählt man immer wieder Preferences

und verändert auf der Pinter-Seite die Daten. Nach und nach
wird dieser Vorgang aber ziemlich lästig, denn immer müssen
Sie auf der Hauptseite erst anwählen, daß Sıe auf die Drucker-

seite gehen möchten. Das ist jetzt vorbei.

Dafür wurde Preferences in eine Schublade gepackt und um drei
neuen Gesellen ergänzt. Wir finden dort Pointer, Printer und
Serial. Alle drei sind nichts weiter als Pseudo-Icons, die kein

Programm repräsentieren, sondern nur Preferences aufrufen. Je-

doch übergeben Sıe in Tool Types die Variable PREFS, die
entsprechend des Icons auf POINTER, PRINTER oder SERIAL

gesetzt wird. Durch diese Übergabe wird Preferences angewie-
sen, gleich in die gewünschte Seite zu gehen. So erspart man

460 Amiga Tips & Tricks ————-

sich ımmerhin einen Handgriff! Wenn Sie einmal Preferences
über das CLI starten möchten, so brauchen Sie auf diesen Kon-

fort nicht zu verzichten! Geben Sie nach dem Programmnamen
nur den Flag-Namen an.

Neue Grafikeinstellungen

Gehen wir jetzt einen Schritt tiefer in die Voreinstellungen und
sehen uns dazu das Grafik-Fenster an. Dort wurde der locker

geschwungene Pinsel durch ein weiteres Klickfeld ersetzt. Doch
bevor wir in "Graphic 2" in die neuen Grafikeinstellungen wan-

dern, werfen wir zunächst einen Blick auf die alten Einstellun-

gen. Hier ist nämlich ganz nebenbei eine neue Grauabstufung
hinzugekommen. Sie wird mit "Gray Scale 2" bezeichnet.

Die Anwendung dieser Funktion ist allerdings recht selten. Und
zwar bezieht sıe sich auf sog. Hedley-Monitore. Das sind Moni-
tore, die nur sieben Graustufen in der Darstellung erlauben, und
damit das Bild dem des Bildschirms möglichst ähnlich wird,
wurde dieser Parameter implementiert. Doch kommen wir jetzt
zu der neuen Grafikseite. Wir haben hier eine komplett neue

Auswahl an Veränderungen, die alle dazu neu eingerichtet wur-
den, daß die Grafikausgabe naturgetreuer und besser wird.

Antialiasing/Smoothing

Als erstes findet man oben links in der Ecke die Funktion
"Antialiasing" oder auch "Smoothing". Damit bezeichnet man eine
Weichzeichnung von schräg laufenden Linien. Diese sind bisher
immer in Treppenabstufungen ausgegeben worden. Mit Hilfe
von Antialiasing werden diese Treppen in weiche Übergänge
umgewandelt.

——— Das Workbench-Equipment 461

Preferences Vi. Em _ a aie
. | u |

C

a ch teh ce hc ee A

EERTEUEEREN oe,

Eee ELCH SIEHE EICHE, se . Breesezectiecee a a ae a a csr SESESEHEPEHLBEDEDESEHEREIENENE

Ein sehr guter Anwendungsbereich liegt nach Commodore in der
Ausgabe von Text über die Hardcopy-Funktion. Dann wird der
Text nämlich nicht mehr in Kästchen dargestellt, sondern hat

markante Konturen.

Position

Gehen wir nun eine Einstellung weiter nach rechts. Dort können
wir bestimmen, ob die Grafik nicht vielleicht eingerückt werden
soll. Oder es ist sogar möglich, die Grafik zentriert ausgegeben

zu bekommen. Dann ist die Angabe eines Offsets natürlich ge-

sperrt.

462 Amiga Tips & Tricks ———

Preferences Y1,3,18 rn BEE”)

Left Offset

Color Correct

Width Limit Linits

Density

Ganz rechts finden wir in der oberen Reihe das Feld fiir

"Densitiy", was auf deutsch soviel wie Dichte heißt. Bei der

Grafikausgabe ist es nicht unwichtig, daß man die Dichte ein-
stellen kann. Doch bedeutet eine höhere Dichte auch ein Mehr

an Zeit. Somit ist es hilfreich, wenn über Preferences einfach

eine Dichte vorgegeben wird und man dadurch die Grafikaus-
gabe beschleunigen kann. Je geringer die Einstellung ist, desto

schneller erfolgt der Ausdruck.

Color Correct

Mit "Color Correct" kommen wir in einen neuen Bereich. Da
jede Grafik aus maximal 4096 Farben bestehen kann, ist eine
Umsetzung in Grau- oder Farbstufen nötig, bei der auf jeden

——— Das Workbench-Equipment 463

Fall ein Verlust eintritt. Es gibt nun einen Algorithmus, der
immer ganz stur seine Umsetzung betreibt. Doch in manchen
Fällen spielen Teilbereiche der Farben eine nicht so große Rolle
wie andere. Hier wäre es angebracht, wenn bei der Aufteilung
z.B. die Rottöne gar nicht erst beachtet werden, so daß alle
Graustufen nun auf eine viel geringere Zahl aufgeteilt werden.
Dadurch erhält man oftmals eine bessere Ausgabe.

Preferences V1.3.18 — Cae a

Smoothing Left Offset |

 Sealin:

Dithering

Auch "Dithering" bezieht sich auf die Grauabstufung. Es gibt
dafür ja mehrere Verfahren. So kann man jeder Farbe ein ent-
sprechend grobes Muster an Punkten zuordnen. Dieses Muster
kann einmal geordnet sein, dafür verwendet man die Einstellung
"Ordered". Oder aber das Muster soll mehr in Richtung einer
Rasterung, wie sie auch bei Fotos betrieben wird, gehen, dann

wählt man dafür "Halftone" aus. Als letzte Möglichkeit bleibt

464 Amiga Tips & Tricks

noch "F-S". Dahinter verbirgt sich das "Floyd-Steinberg"-Ver-
fahren, bei dem nicht einfach Punktmuster über die Flächen

verteilt werden, sondern unterschiedlich starke Schwingungen.
Sie sollten sich einen Ausdruck ruhig einmal ansehen, es ist
wirklich sehr interessant und zum Erzeugen von Marmortapeten

eines der besten Hilfsmittel!

Preferences ni 18 a 1

Color Correct Dithering

dt Limit - Limits

Scaling

Bisher war die Größe einer Grafik auf dem Papier immer

gleich. Egal, welches Format der Screen hatte, das Bild nutzte

die ganze Breite des Blattes. Aber warum? Eben! Und deshalb
gibt es nun zwei weitere Modi. Der erste "Fraction" stellt den
alten Zustand dar, bei dem die Grafik dem Papier in der Größe

angepaßt wurde. Mit "Integer" wählt man verschiedenes aus. Da-

bei spielen auch "Width Limit" und "Height Limit" eine Rolle.
Und zwar geben beide Werte an, mit wie vielen Punkten jeder

——— Das Workbench-Equipment 465

Grafikpunkt auf dem Drucker ausgegeben werden soll. Steht beı

beiden Eintragungen eine 1, so erscheint die Grafik beim Aus-
druck 1 zu 1. Entsprechend kann die Grafik in jeder Richtung
verdoppelt, verdreifacht oder vervielfacht werden. Ein beson-

derer Wert ist 0! Dann nutzt die Routine nämlich wieder die
ganze Größe des Blattes, als wenn "Fraction" eingestellt wäre.

Limits

Als letztes Auswahlfeld haben wir die Einstellungen für die
Verwendung der angegebenen Limits. In der Limit-Tabelle kann
man aus fünf verschiedenen Verwendungen wählen. "Ignore"
macht die Werte unwichtig und läßt die Grafik wieder im nor-
malen Format ausgeben. Unter "Bounded" stellt man die maximal

zu erwartenden Maße ein. Das heißt, daß die Grafik z.B. nicht

größer als 1 x 2 werden soll. Dann werden 10 und 20 ın die Li-

mits eingetragen. Allerdings kann es durchaus sein, daß manche
Grafik kleiner ausgegeben wird, weil sie sonst verzerrt wäre.
Für eine absolute Größeneinstellung gibt es "Absolute". Dann
trägt man die Höhe und Breite in Zehntel-Inches in den Limit-
Variablen ein.

Gleiches gilt auch für "Pixels". Hier werden die Werte nur nicht
als Zehntel-Inches verstanden, sondern als Druckerpixel. Ein

wenig interessanter ist aber die "Multiply"-Einstellung. Hiermit
kann man das ausgegebene Bild in jeder Richtung beliebig

vervielfachen. Dazu gibt man in die Limits einfach den Faktor
ein.

Damit wären alle neuen Einstellungen der Preferences beschrie-
ben. Ich hoffe, Sie haben einen Drucker und können gleich ans

Probieren gehen, denn nur die Praxis macht richtig Spaß! Ach-
ten Sie darauf, daß Sie beim Kauf eines neuen Druckers einen

zu den bisher vorhandenen Druckertreibern Kompatiblen neh-

men, damit Sie auch wirklich alles ausnutzen können!

466 Amiga Tips & Tricks

Preferences Vi.3. Emm Pia

| smoothin

Linit :

ht Limit fos

12.2 Die Utilities auf der Workbench-Diskette

Die Workbench beinhaltet neben den Systemdaten auch noch

nützliche und hilfreiche Programme. Diese sind in der uns vor-
liegenden neuen Version 1.3 sogar noch um einiges ergänzt wor-
den. Doch auch das Bestehende wurde nicht auf dem Pfad des
Altwerdens gelassen. Neue Parameter und Einstellungen und der

häufig unbekannte Weg über das CLI sind hinzugekommen!

Die Clock auch übers CLI

Die Einstellung der Uhr über die Menüs ist zwar komfortabel
gelöst, jedoch der Weisheit letzter Schluß ist das auch noch

nicht, denn jedesmal, wenn man die Workbench wieder neu
bootet, sind alle Einstellungen in ihrem Ausgangszustand. Bietet

——— Das Workbench-Equipment 467

es sich dann nicht an, die Uhr über die Startup-Sequence auf-

zurufen? Denn dort können wir alle Einstellungen beim Aufruf
erledigen, was nicht einmal über das .info-File der Workbench
erlaubt ist! Dabei können Sie auf die folgenden Flags zurück-
greifen:

Type: ANALOG, DIGITAL, DIGITAL2
Mode: 12HOUR, 24HOUR
Special: SECONDS, DATE

Mit

Clock DIGITAL2 24HOUR DATE

bekommen Sie während des Arbeitens mit der Workbench immer

Informationen über Uhrzeit und Datum!

Mit Cmd zu einer Umleitung

Mit diesem neuartigen Programm ist es möglich, die Ausgabe,
die auf ein externes Laufwerk gehen sollte, in ein Datenfile
umzuleiten. Dabei schaltet es sich zwischen das Ausgabegerät

und die Datenleitung und fängt die Daten ab. Hierbei haben wir
als Benutzer einige Möglichkeiten der Einstellung. Dazu über-
mitteln wir mittels des .info-Files oder der Parameter beim CLI-
Befehl die Flags und Daten.

Das wichtigste dabei ist natürlich, welches Gerät "abgehört"
werden soll und in welches File die Daten geschrieben werden

sollen. Als Device können wir entweder serial oder parallel an-
geben. Somit ist es z.B. möglich, die Ausgabe auf den Drucker
in ein File umzuleiten.

Weiterhin können noch zusätzliche Flags den Vorgang genauer

bestimmen. So schreibt das GraphicDump-Programm zu Anfang

einen Reset, damit der Drucker in den Ursprungszustand ge-
langt. Dies ist zwar ganz interessant, doch wird das Programm
danach einen Augenblick warten. Und dies geschieht später
nicht, wenn wir das File an das Device weiterschicken. Deshalb

kann man mit der SKIP-Option (-s) diese Anweisung überlesen
und nicht in das File schreiben.

468 Amiga Tips & Tricks ———

Normal ist es, daß nach dem Schreiben der Daten das Programm

Cmd sich selbständig wieder abschaltet. Diese Vorsichtsmaß-
nahme wurde aus zwei Gründen getroffen. Erstens kann es
leicht geschehen, daß das Speichermedium, z.B. die RAM-Disk,

irgendwann voll ist, und man bekäme dann eine Meldung!
Zweitens will man die Druckerdaten ja trennen können, genau
wie man es auch mit dem Papier macht. Also wählt man beim

zweiten Mal lieber ein anderes Datenfile an. Hierfür gibt es die
MULTIPLE-Option (-m). Sie heben diese durch erneutes Starten
von Cmd wieder auf! |

Die letzte Option NOTIFY (-n) entscheidet, ob das Programm

Cmd Nachrichten an den Benutzer sendet, die ihn über den Zu-

stand der Arbeit informieren. Ich möchte Ihnen diese Option

empfehlen, damit man immer auf dem neuesten Stand der Da-

tenübertragung ist, denn so erfährt man vielleicht auch von Da-

tensendungen, die man gar nicht kannte. Sehen Sie hier noch

einmal alle Parameter des .info-Files und die des CLIs im Über-
blick:

DEVICE Names des Devices (serial /parallel)

FILE Name des Files, zu dem die Daten gesendet

werden

SKIP Uberspringen der Initialisierungsdaten

(TRUE /FALSE)

MULTIPLE Mehrere Datensendungen (TRUE/FALSE)

NOTIFY Nachrichten an den Benutzer (TRUE/FALSE)

Cmd DeviceName FileName [opt s mn]

Wenn Sie einmal ganz schnell die Informationen brauchen, kön-
nen Sie über das CLI mit Cmd Help eine Information aufrufen.

Grafiken nicht nur so, sondern anders

Was viele Anwender des Amiga nicht wissen, sind die Parameter
von Graphic-Dump. Eine Grafik muß nicht immer in der Stan-

dardgröße auf das Papier kommen. Man kann ohne große
Schwierigkeiten die Ausgabe auf vier Größen einstellen: TINY,
SMALL, MEDIUM und LARGE, oder aber man wählt die Pi-

xelanzahl!

—— Das Workbench-Equipment 469

12.3 Die Utilities auf der Extras-Diskette

Auch auf der Extras-Diskette finden wir einige Tools, die nicht

unbeachtet bleiben sollen. Sehen Sie hierzu eine Auswahl:

Mit ClockPtr immer die Uhrzeit

ClockPtr ist eine Workbench-Uhr, die nicht wie die normale

Clock ein Window beansprucht. ClockPtr nutzt fiir die Darstel-

lung der Zeit und des Datums den Mauscursor. Hierfür muß
man den blauen Workbench-Hintergrund anklicken, und der
Cursor verwandelt sich in eine Uhr, die Stunden und Minuten

anzeigt. Möchte man auch die genauen Sekunden wissen, dann
bewegt man die Maus in die linke obere Ecke. Befindet sich der
Cursor dort, dann werden nur die Minuten mit den Sekunden

angezeigt. Als letztes kann man auch noch das Datum erfahren.

Hierfür muß man an den linken Rand der Workbench-Screen

fahren. Man erhält das Datum in amerikanischer Schreibweise!

Wieviel Speicher? Zwei Möglichkeiten!

Zur Anzeige des freien Speichers gibt es drei Möglichkeiten.
Zum einen die Anzeige in der Workbench-Screen. Sıe hat aller-
dings den Nachteil, daß jedes Window diese verdecken kann,

und außerdem ist die Anzeige nur aktiv, wenn auch die Work-
bench aktiviert wird. Deshalb gibt es zwei Utility-Programme

auf der Extras-Diskette, die den freien Speicher anzeigen.

FreeMap

FreeMap nutzt für die Anzeige des Speichers eine neue Screen,
die man im unteren Bereich hin und her schieben kann. Man
sieht hier sowohl Chip- als auch Fast-RAM. Dies ist eine

Neuerung, denn bisher vertrug sich das Programm nur mit dem
Chip-RAM. Über diese Speicheranzeige ist auch wunderbar er-
kennbar, wie der Speicher in Stücke gerissen wird, wenn meh-
rere einzelne Programme laufen. Allerdings ist diese grafische
Ausgabe natürlich auch platzintensiver.

470 Amiga Tips & Tricks ———_

PerfMon

PerfMon ist ein Monitorprogramm, das neben dem freien Chip-

Speicher auch noch den Fast-RAM-Speicher anzeigt. Als große

Besonderheit findet man über den beiden Anzeigen noch eine
Kurve für die Prozessorauslastung. Hier ist interessant zu sehen,

inwieweit der 68000er ausgenutzt wird oder nicht. Ein Strich
zeigt die maximale und damit ideale Auslastung an. Einziger
Nachteil des Programms: Es verbraucht über sein Window und
den Datenspeicher einiges an Chip-RAM und auch an Textflä-

che auf der Screen.

Palette

Die Farben der Workbench-Screen sind von Hause aus fertig

eingestellt. Es ist aber jederzeit möglich, diese durch das Pro-
gramm Preferences zu verändern. Doch gilt diese Veränderung
mehr für die Ewigkeit als für eine aktuelle Einstellung. Manche
Programme, die auf der Workbench arbeiten, kommen mit den
Standard-Farben nicht ganz zurecht, und deshalb bietet es sich
doch an, die Farben dem Programm anzupassen.

Aber halt! Hier stößt man auf ein Problem. Ist das Programm

schon geladen, steht meist wenig Speicher zur Verfügung, der es

nicht erlaubt, "mal eben" Preferences zu laden. Dafür gibt es

jetzt ein extra Programm. Es heißt Palette und ist klein und
handlich. Alle vier Farben können über die bekannten drei
Regler für Rot, Grün und Blau eingestellt werden. Das Ergebnis
sieht man sogleich im Window und auch auf der Screen.

Als Zusatz bekommt man noch den hexadezimalen Farbwert, der

es auch erlaubt, die Farbeinstellung in Zahlen festzuhalten und
so neue Farbwerte für Programme einzustellen. Dies ist beson-
ders bei den Befehlen der Graphics-Library interessant, weil

hier meistens nur Ausprobieren zum richtigen Ergebnis führt.
Jetzt können Sie nach Herzenslust herumprobieren, bis der ge-

wünschte Farbton eingestellt ist. Sie schreiben sich den Wert
dazu auf und setzen ihn in die Grafik-Funktion ein.

——— Das Workbench-Equipment 471

KeyToy 2000

Das KeyToy ist ein Demo-Programm, mit dem Sie die aktuelle
Tastaturbelegung erfragen können. Wozu, werden Sie fragen.

Doch nicht immer weiß man genau, wo welches Zeichen zu er-
reichen ist. Das gilt besonders für ausländische Tastaturbele-
gungen. Dann lädt man dieses Programm, das individuell nach

der Einstellung mit Setmap die Tasten darstellt. Durch Auswahl

der Sondertasten wie Shift, Alt und Ctrl ergeben sich die ande-
ren Belegungen, die die oft unbekannten Sonderzeichen enthal-
ten.

Wenn Sie wissen wollen, welche Zeichen bei welcher Tastatur-

belegung wo liegen, gehen Sie wie folgt vor:

1. Öffnen Sie ein CLI-Fenster und verlagern Sie die Lage des
Gerätes DEVS: von der Workbench-Diskette auf die Extras-

Diskette mit

1> assign DEVS: Extras:devs

Damit können wir die zusätzlichen Tastaturbelegungen über
den Befehl Setmap ansprechen.

2. Suchen Sie sich jetzt mit

1> dir DEVS:

eine der vielen Belegungen heraus. Als Beispiel soll usa0
gelten, da dort am leichtesten der Umtausch von y und z zu

erkennen ist.

3. Laden Sie nun KeyToy2000 mit einem Doppelklick und

schauen Sıe sich die Belegung genau an. Besonders inter-

essant sind die Zeichen bei der Auswahl der Alt-Taste.

4. Tippen Sie nun im CLI

1> setmap usa0

ein, um die andere Tastaturbelegung zu aktivieren. Jetzt
haben wir in dem KeyToy2000-Fenster zwar immer noch
die gleiche Belegung, wenn Sie nun aber den nächsten
Schritt durchführen ...

472 Amiga Tips & Tricks

5. Laden Sie erneut das KeyToy2000 und schieben Sie das
Fenster unter das zuerst geöffnete.

. werden Sıe merken, welche Unterschiede zwischen den

beiden Tastaturen liegen.

——— Sammelsurium der Tips & Tricks 473

13. __ Sammelsurium der Tips & Tricks

Das lange Arbeiten mit dem Amiga bringt viele Erfahrungen mit
sich. In dem Konzept dieses Buches haben wir uns vorgenom-
men, dem Leser alle diese gesammelten Erfahrungen geordnet

und gut verpackt zu vermitteln. Dafür sind nun schon mehr als
13 Kapitel zusammengetragen. Doch unsere Tips & Tricks sind

damit nicht erschöpft. Oft hat man Kleinigkeiten, die es nicht
lohnen, in einem eigenen Kapitel erörtert zu werden, die aber

trotzdem wissenswert und interessant sind.

Dafür haben wir dieses neue Kapitel geschaffen. Es enthält viele
kleine Informationen, sozusagen Mini-Tips & Tricks. Doch auch
damit läßt sich viel anfangen! Folgen Sie uns jetzt in die Welt
der kleinen, aber feinen Erfahrungen, mit denen man oft mehr

anfangen kann als mit großen und pompös aufgemachten Nich-
tigkeiten.

13.1 Tips zum CLI: schneller, bunter, besser

Tips & Tricks Nr. 01 Mit Backups gerettet

Beim Arbeiten im CLI passiert es oft, daß man z.B. die Startup-

Sequence editiert und durch einen Reset ausprobiert. Dann stellt

man plötzlich entgeistert fest, daß das, was man gerade gelöscht
hat, lebensnotwendig ist. Doch es ist passiert und weil es viel zu

viele Zeilen waren, kann man sie nicht rekonstruieren. Dennoch

gibt es einen letzten Ausweg, der bei vielen schon in Vergessen-
heit geraten ist:

Beide Editoren legen im Verzeichnis T: (für temporary) soge-
nannte Backup-Files ab, die den Text vor dem Editieren des
letzten Files beinhalten. Sie brauchen jetzt dort nur das File "ed-
backup" zu kopieren, und schon ist die alte Startup-Sequence

wieder hergestellt! Aus diesem Grund sollte man auf keinen Fall

474 - Amiga Tips & Tricks

das T:-Verzeichnis im RAM ablegen, denn dort wäre es nach

einem Reset gelöscht, und die geplante Hilfe wäre zunichte.

Tips & Tricks Nr.02 CLI-Ausgabe unterbrechen

Die Listen- oder Textausgabe im CLI-Fenster läßt sich jederzeit
durch Drücken irgendeiner Zeichentaste unterbrechen. Dann
wartet der CON-Handler solange, bis dieses Zeichen wieder mit
BACKSPACE entfernt wird. Erst dann setzt er die Ausgabe fort.

Man kann sich so in Ruhe z.B. mit Space und Backspace eine

Liste ansehen und diese immer wieder anhalten!

Tips & Tricks Nr. 03 Neue Schrifttypen im CLI

Wer hat es nicht schon in einem Vorspann irgendwelcher Public-
Domain-Disketten gesehen? Da erscheinen während des Bootens
Texte im DOS-Fenster, von denen man sonst nur träumt. Ohne

Schwierigkeiten werden die Farben verändert, die Schriften

kursiv, fett oder unterstrichen dargestellt. Dies ist alles auch
ohne weiteres mit dem ganz normalen Echo-Kommando mög-

lich!

Dazu verwendet man zusätzlich zum gewünschten Text noch ei-
nige Steuerzeichen. Diese werden mit einer festgelegten Sequenz

eingeleitet. Und zwar ist das "*e[" (Die Besitzer einer Deutschen
Tastatur finden die eckige Klammer über der TAB-Taste oder
tippen ALT-ü). Die Kombination "*e" kann durch die ESC-Ta-

ste ersetzt werden! Nach dieser Einleitung folgen mehrere Zah-
len, die durch Semikolon getrennt werden können. So steht z.B.
4 für Unterstreichen und 42 für schwarze Hintergrundfarbe.
Alle anderen Werte entnehmen Sie den nachfolgenden Tabellen.
Ist die Steuersequenz abgeschlossen und soll Text ausgegeben

werden, dann notiert man ein "m" als Abschluß der Steuer-

sequenz.

——— Sammelsurium der Tips & Tricks

Schriftarten

Typ Zahl Bemerkung

normal 0 Zustand beim Fenster-Offnen
fett 1

kursiv 3 Schragschrift

unterstrichen 4

invers 7 negativ

Vordergrundfarben

Farbe Zahl Bemerkung

normal 30 Einstellung durch Preferences

weiß 31

schwarz 32

orange 33

Hintergrundfarben

Farbe Zahl Bemerkung

normal 40 Einstellung durch Preferences

weiß 41

scharz 42

orange 43

Tips & Tricks Nr. 04

475

Die CTRL-Tastenkombinationen

Viele Kleinigkeiten lassen sich über Tastenkombinationen erledi-

gen. So gibt es auch welche in Verbindung mit CTRL. Doch die
meisten Anwender kennen diese nur zum Teil oder gar nicht.

Wir wollen hier deshalb nicht darauf verzichten, alle uns be-

kannten Kombinationen zu erklären. Die ersten vier CTRL-Se-
quenzen sind den meisten durch das DOS-Buch bekannt. Mit ih-

nen werden laufende Befehle abgebrochen.

CTRL-C

CTRL-D

CTRL-E

CTRL-F

bricht einen CLI-Befehl ab.

bricht eine laufende Batchdatei ab.

führt einen Abbruch höherer Priorität durch.

führt einen Abbruch höherer Priorität durch.

476 Amiga Tips & Tricks

Alle anderen sind sicherlich von großem Interesse, da sie fast
keiner kennt, man sie aber sehr gut gebrauchen kann.

CTRL-H wie Delete-Taste

CTRL-J wie Tabulator-Taste

CTRL-K wie Cursor-up

CTRL-L löscht das Window (wie ESC-C)

CTRL-M wir Return-Taste

CTRL-N aktiviert einen neuen (alternativen) Zeichensatz

CTRL-O hebt den Zeichensatz wieder auf (gleiches macht auch Return)

CTRL-X löscht den Inhalt der aktuellen Zeile

Tips & Tricks Nr. 05 Copy aber mehr!

Zum Kopieren von Files verwendet man im CLI überlicherweise
das Copy-Kommando. Allerdings sind hier viele Varianten gar
nicht bekannt. Eine Möglichkeit der Ausnutzung bietet sich be-
sonders zum Kopieren mehrerer Files an, die nichts miteinander

zu tun haben. Dann kann nämlich nicht über die Joker-Funktion
gearbeitet werden. Der Tip ist nun ganz einfach: Es wird ja vom
System angeboten, daß es sich aus verschiedenen File-Enden das

entsprechende herraussucht:

Copy :test.(CIHlO) to DF1:

Wir nutzen dies etwas anders, indem wie den ganzen File-Na-
men als Ende ansehen und so ein Mehrfachkopieren auslösen.

Dies erspart das mehrmalige Laden des Copy-Kommandos.

Copy C:(DIR!LIST!RENAME) to RAM:C

Tips & Tricks Nr. 06 Neues CLI-Fenster mit Batchdatei

Die Überschrift hört sich wahrlich etwas konfus an. Doch ist sie
so zu verstehen, wie man es liest. Wir können nämlich beim

Öffnen eines neuen CLI-Fenstes einerseits die Ausmaße und den

Titel angeben und andererseits auch noch das CLI anweisen,
gleichzeitig eine Batchdatei auszuführen. Das sieht dann so aus:

NewCLI Ausgabegerät: Batchdatei

——— Sammelsurium der Tips & Tricks 477

Als Ausgabegerät wählt man bei Version 1.2 sicherlich das CON:
mit beliebigen Größenangaben. Die Batchdatei kann z.B. Initia-
lisierungsarbeiten übernehmen. Sie können aber auch nur das
Vorhaben, eine Datei ausführen zu lassen, dadurch unterstützen,

daß Sıe diese parallel in einem anderen Fenster laufen lassen.

Beides ist möglich.

Für alle stolzen Besitzer einer Workbench 1.3 empfiehlt es sich,
das Ausgabegerät als NEWCON: anzugeben, damit auch im
neuen Fenster alle Editiereigenschaften vorhanden sind, oder Sie
verwenden NewShell ohne Ausgabegerät.

Tips & Tricks Nr. 07 Durchgängiges Design

Die neue Workbench hat ein durchgestylteres Aussehen als die

Vorgängerversion. Beim genaueren Betrachten wird man aber
enttäuscht. Denn alle alten Devices werden auch mit dem alten
Icon dargestellt. So hat die RAM-Disk und auch die neue
RAMBO-Disk das platte Symbol. Wenn man aber immer das
Symbol übernehmen will, das auch die Workbench-Diskette hat,
so reichen zwei kleine Copy-Kommandos in der Startup-Se-
quence aus. Mit

Copy Disk.info to RAM:

und

Copy Disk.info to CARD:

ist schon alles erledigt. Wenn beide Kommandos vor LoadWB
stehen, haben Sie nach dem Öffnen der Workbench ein einheit-
liches Design. Bei alle anderen Disketten läßt sich diese Methode
natürlich auch anwenden.

Tips & Tricks Nr. 08 Zweimal CLI in einem Window

Es ist nicht nur erlaubt, zwei CLIs gleichzeitig zu betreiben
(über zwei Windows), es ist auch möglich, zwei CLIs in einem
Window zu haben. Das geht ganz einfach durch den Aufruf von

478 Amiga Tips & Tricks ————

NewCLI *. So leitet man die Ausgabe in das schon vorhandene
Window um, und es wird kein neues extra geöffnet. Sie bekom-

men dann immer abwechselnd den ersten und den zweiten Task.

Damit erspart man sich die etwas umständliche "Herumwursch-

telei" mit den Windows. Außerdem erspart man sich so das

ewige Aufrufen der Programme mittels RUN.

Tips & Tricks Nr. 09 CLI fällt aus dem Rahmen

Es gibt haufenweise Programme, die über komplizierte Wege
versuchen, den Rand des CLI-Fensters auszuschalten. Jedoch

haben alle bisher vergessen, daß das CLI doch über das Console-
Device realisiert wird. Und dort sind schon Befehle und Kom-

mandos vorhanden, mit denen man den Rand einstellen kann.

Hier sehen Sie nun eine Aufstellung der benötigten Esc-Se-
quenzen, mit denen sich die Größe des Fensters ganz beliebig

einstellen läßt:

Sequenz Erklärung

ESC [n u Setzt die Breite des Windows auf n Zeichen.

ESC [n x Setzt den linken Rand auf n Pixel.

ESC [n y Setzt den oberen Rand auf n Pixel.

ESC [nt Setzt die Anzahl der Zeilen auf n.

ESC c Setzt alles wieder auf die normalen Wert.

Der Aufruf jeder Sequenz sollte über Echo erfolgen. Dann ist es

auch leicht möglich, mehrere Einstellungen über Semikolon mit-
einander zu verbinden. Sie sollten diesen Echo-Befehl in einer
Batchdatei ablegen, so daß man mit einem Aufruf wie Execute

AUS den Rand ausschalten kann. Das Gegenstück dazu wäre
natürlich Execute AN.

Tips & Tricks Nr. 10 Schneller mit Type

Oft möchte man in der Startup-Sequence einige Meldungen aus-

geben. Da sind zuerst einmal Angaben über Version und Erstel-
lungsdatum. Zum anderen haben wir aber auch Grußnachrichten
und Infos zur Konfiguration. Würde man alle Texte über das
Echo-Kommando ausgeben, dann müßte der Befehl jedesmal er-

neut geladen werden. Dies kann man sich ersparen, indem man

——— Sammelsurium der Tips & Tricks | 479

den ganzen auszugebenden Text in ein File schreibt, das am

Anfang der Batchdatei folgendermaßen aufgerufen wird:

Run Type Textfile

13.2 Tips zum AmigaBASIC: rauf und runter!

Tips & Tricks Nr. 11 Schluß mit den Einheits-Icons

Bei der täglichen Arbeit mit AmigaBASIC stört nach einiger
Zeit, daß alle Dateien und alle Programme mit dem gleichen
Icon ausgerüstet sind. Nun gibt es zwei Methoden, Abhilfe zu
schaffen:

Die erste bezieht sich auf das Programm-Icon. Hier können Sie,

nachdem das Programm einigermaßen fertiggestellt ıst, ein eige-
nes über den Icon-Editor kreieren. Dann wird dieses anstatt des
vorhandenen mit dem gleichen Namen versehen und in das
Verzeichnis kopiert. Damit nun aber, und das ıst der Trick,

dieses Icon beim nächsten Abspeichern des Programms nicht
wieder überschrieben wird, setzt man einfach das DELETE-

Flag, und jedes Löschen ist verboten.

Wenn es um Dateien geht, dann ist eine andere Methode einfa-
cher! Diese Dateien sollen bei einem Programm immer ein be-
stimmtes Aussehen haben, wie z.B. alle Texte des Notepads.

Zuerst zeichnet man wieder das gewünschte Symbol mit dem

Icon-Editor. Dieses Symbol wird unter irgendeinem Namen in
dem gleichen Verzeichnis abgelegt, in dem auch das Hauptpro-

gramm liegt. Dann liest man zu Anfang über die Funktion
GetDiskObject& das Icon ein. Bei jedem weiteren Speichern ei-
ner Datei wird dieses Icon dann zusätzlich zum Schließen unter
gleichem Namen abgespeichert, was bewirkt, daß das Amiga-

BASIC-Symbol verschwindet und durch unser neues ersetzt
wird. Zum Abschluß noch die Programmsegmente zum Ein-
bauen:

480 Amiga Tips & Tricks ——

Beim Programmstart

LIBRARY ":bmaps/icon. library"
DECLARE FUNCTION GetDiskObject& LIBRARY

DECLARE FUNCTION PutDiskObject& LIBRARY

FileName$ = ":Basiclcons/Meinlcon"+CHR$(0)

DiskAdr& = GetDiskObject&(SADD(FileName$)

Nach dem File-Close:

File$ = File$+CHR$(0)

PutDiskObject&(SADD(File$), DiskAdr&)

Tips & Tricks Nr. 12 Modular arbeiten

Man sollte es sich von Anfang an angewöhnen, in Programmen
eine gewisse Modulstruktur zu erreichen, dann wird das Listing
nämlich um so einfacher, und außerdem kann man es viel
leichter erweitern. Ein weiterer Vorteil liegt darın, daß manche
dieser Module in vielen eigenen Programmen eingebaut werden
können. Somit erspart man sich eine Menge Arbeit. Sie haben
dann zwei Möglichkeiten, nach denen Sie vorgehen können,

diesen Teil in andere Listings zu übernehmen.

Die erste ist, Sie laden zweimal den BASIC-Interpreter und le-

gen aus dem Quellprogramm das Modul in das Clipboard ab.
Dieses Clipboard kann nun von jedem anderen Programm ange-

sprochen werden, also unter anderen auch von dem zweiten

BASIC-Programm. Also gehen Sie jetzt in das zweite Programm
und holen mit der Paste-Funktion diesen eben abgelegten Teil

wieder ın das Listing zurück - und schon ist ein Programmblock
umkopiert.

Beim zweiten Verfahren speichern Sie diese Programmblöcke in
extra Files ab. Achten Sie dabei darauf, daß Sie das ASCII-For-
mat verwenden, denn sonst ist der beschriebene Weg nicht mög-

lich. Als weiteres können Sie dann in jedem Programm über

MERGE Dateiname

den neuen Block anbinden. Sie ersparen sich hier eine Menge
Arbeit, und diese Methode läßt sıch auch anwenden, wenn Sie

nur wenig Speicher zur Verfügung haben.

——— Sammelsurium der Tips & Tricks 481

Tips & Tricks Nr. 13 Fenster- und Screen-Name ändern!

In AmigaBASIC kann man zwar durch Öffnen eines neuen Fen-
sters den Namen einstellen, bei schon offenen ist eine Verände-

rung aber nicht vorgesehen. Dabei bietet die Intuition.Library
doch einen Weg. Warum sollten wir ihn dann nicht nutzen? Also
öffnen Sie in Ihrem Programm zu Anfang die Library und kön-
nen dann durch Aufruf von SetWindowTitles() nicht nur den
Fensternamen, sondern auch noch den des Screen einstellen. Ein

einfaches SUB hilft hier, denn man darf nicht vergessen, jeden
String mit einem NULL-Byte abzuschließen!

LIBRARY ":bmaps/intuition. library"
SUB SetTitle(WinNam$, ScrNam$) STATIC

WinNam$ = WinNam$ + CHR$(O)
ScrNam$ = ScrNam$ + CHR$(O)

CALL SetWindowTitles(WINDOW(7), SADD(WinNam$), SADD(ScrNam$);

END SUB

Tips & Tricks Nr. 14 Mehr Speicher

Im Normalfall benutzt man CLEAR, um im AmigaBASIC mehr
Speicher zur Verfügung zu haben. Doch oft streikt dieser Be-

fehl, weil er den gewünschten Speicher nicht beschaffen kann.
Dies liegt alleine an einem Fehler des Programms. Es wird näm-

lich erst versucht, neuen Speicher zu besorgen, erst dann wird

der alte wieder freigegeben. Will man also seinen Speicher nur
geringfügig ändern, muß man das Doppelte zur Verfügung
haben, was nicht oft der Fall ist. Es gibt aber eine sichere Me-
thode, mit der man doch zum Ziel kommt. Dafür setzt man

einfach den Bereich auf seine Mindestgröße zurück:

CLEAR ‚1024

Und dann wählt man die gewünschte Zahl:

CLEAR ‚500000

Wenn man sich nicht im Direktmodus befindet, sondern im Pro-
grammablauf, ist diese Methode nicht zu empfehlen. Dann

arbeitet man lieber mit Sicherheit:

482 - Amiga Tips & Tricks

CLEAR ,25000-FRE(O) ‘nur der benötigte Programmspeicher

CLEAR ,FRE(-1)-50000 'gesamter freie Speicher - Sicherheit

y Tips & Tricks Nr. 15 BASIC-Programme editieren

Haben Sie sich auch schon so über den BASIC-Editor geärgert?
Eigenwillig wie er ist, scrollt er horizontal nur mit Mühe und
vertikal nur mit langsamem Tempo. Außerdem kann man nicht
nach Befehlen suchen, weil kein FIND existiert. Doch eine Hilfe

bietet das AmigaBASIC. Wir können Programme als ASCII-Texte
behandeln, und dann ist es das einfachste von der Welt, wenn

man ein bestehendes Programm mit SAVE "name",a abspeichert

und dann über eine Textverarbeitung weiter editiert. Hier bieten
sich z.B. TEXTOMAT oder BECKERtext von DATA BECKER
an.

Beide erfüllen viele Voraussetzungen. Sie können nach Begriffen
suchen oder diese durch neue ersetzen. Bei BECKERtext kann
man sogar über das Lexikon einen Syntax-Check durchführen,
ohne AmigaBASIC zu starten. Und wenn das Programm fertig
editiert ist, kann es mit dem Interpreter zusammen ausgetestet

werden. Für die kleinen Ergänzungen und Verbesserungen reicht
das allemal.

X Tips & Tricks Nr. 16 | Schneller!

Das AmigaBASIC ist zwar von Natur aus nicht gerade langsam,
doch könnte es wie jedes Programm noch schneller sein. Dies ist
ohne weiteres möglich. Bedenken Sie, daß AmigaBASIC meistens
über die Workbench gestartet wird. Einmal nimmt die Work-
bench als Programm selbst ja einen Task im Betriebssystem in
Anspruch. Außerdem sind die Prioritäten nicht gerade optimal
eingestellt.

Für dieses Problem bietet das Betriebssystem zwei Funktionen in
der Exec.Library. Mit SetTaskPri() können wir die Priorität un-
seres Tasks, also des BASIC, einstellen. Es läßt sich ein Wert von

1 bis 127 wählen. Je größer man einstellt, desto schneller läuft
AmigaBASIC, das heißt desto weniger Zeit bekommen andere

——— Sammelsurium der Tips & Tricks 483

Programme. Besonders geeignet ist diese Methode für zeitauf-
wendige Berechnungen, die schneller erledigt werden sollen.
Gleiches gilt auch für die Grafikausgabe, die damit auf ein ma-
ximales Maß gebracht werden kann.

Wie geht man nun dafiir vor? Zuerst verschaffen wir uns Zu-

griff auf die Exec.Library. Dann wird über FindTask() der ei-
gene Task gefunden und mit SetTaskPri() verandert. Zum SchluB
ist es wichtig, daß die Priorität wieder zurückgesetzt wird, damit

nachher noch andere Programme laufen, die so im schlimmsten

Fall ganz unterbunden werden. Sehen Sie abschließend die Pro-

grammfragmente:

Programmbeginn:

LIBRARY ":bmaps/exec. library"
DECLARE FUNCTION FindTask& LIBRARY
BASICTask& = FindTask&()
CALL SetTaskPri(BASICTask&, 80)
Programmende:

CALL SetTaskPri(BASICTask&, 0)

Tips & Tricks Nr. 17 No overflow in line buffer

Kennen Sie das? Beim Arbeiten im AmigaBASIC-Editor
schnappt der Editor über. Es ist nicht mehr möglich, eine Zeile

über Backspace hochzuziehen. Immer meldet er sich mit der

Fehlermeldung "line buffer overflow". Doch dagegen kann man
ganz leicht vorgehen. Dazu müssen wir bloß ein Leerzeichen mit
der Maus markieren und mit Amiga-X in den Textpuffer über-
nehmen. Jetzt arbeitet der Editor wieder korrekt.

Tips & Tricks Nr. 18 Reset!

Wenn Sie über Ihr BASIC-Programm einen Reset auslösen
möchten, brauchen Sie nur CALL 16515072 aufzurufen!

484 Amiga Tips & Tricks

13.3 Ohne Müh’ und Not: Tips zum Drucker

Tips & Tricks Nr. 19 Druckerwechsel ohne Preferences

Haben Sie zwei Drucker? Dies kann sehr praktisch sein, wenn

Sie sehr oft einerseits Listings ausdrucken müssen und anderer-
seits gut aussehende Dokumente benötigen. Dafür nimmt man
am besten einen Matrix- und einen Laserdrucker. Sie haben sich
dann bestimmt einen Hardware-Umschalter besorgt. Schließlich
wäre ein ständiges Umschalten nicht zumutbar. Hingegen zu-
mutbar ist es, daß man ständig Preferences laden muß, um den

anderen Druckertreiber einzustellen. Doch es gibt einen Ausweg
aus der Misere!

Die wenigsten wissen, daß die Druckertreiber eigenständige Pro-
gramme sind, die auch alleine gestartet werden können. Zwar
handelt es sich nicht im eigentlichen Sinne um Programme, so
daß der Zugriff aus dem CLI nicht erlaubt ist. Jedoch weiß die
Workbench mit den Treiber etwas anzufangen. Deshalb sollte
man sich schleunigst die benötigten Treiber aus dem Verzeichnis
DEVS:Printers in das Hauptverzeichnis der Workbench-Diskette

kopieren. Danach besorgt man sich zwei Icons von Typ Tools

wie z.B. das Clock- oder CLI-Icon. Geben Sie den Icons die

gleichen Namen wie den Druckertreibern. Wenn Sie jetzt eines
der Icons von der Workbench aus anklicken, wird der entspre-

. chende Druckertreiber initialisiert!

Tips & Tricks Nr. 20 Drucken über Umwege lohnt sich!

Möchte man in einem BASIC-Programm auch die Funktionen
seines Druckers ausnutzen, so wählen die meisten den Weg über

die direkte Ansteuerung und nehmen dann PAR: oder SER:.
Dies ist aber eigentlich nicht im Sinne des Erfinders. Normaler-
weise soll jede Ausgabe an einen Drucker über das Printer-De-

vice laufen und somit über PRT:. Doch weil kein Mensch weiß,

welche Steuercodes den richtigen Effekt erreichen - Commodore
schweigt sich wie immer aus - möchten wir hier Hilfestellung
leisten:

——— Sammelsurium der Tips & Tricks 485

Es gibt allgemeine Sequenzen, die den jeweils gewünschten Ef-

fekt auf jedem Drucker erreichen. Der entsprechende Drucker-
treiber setzt die Sequenzen dann in die für den Drucker not-

wendigen um. Somit ist gewährleistet, daß Druckroutinen für
einen Drucker auch auf allen anderen laufen. In der folgenden

Tabelle finden Sie die Steuercodes, mit deren Hilfe alle

Drucktypen erreicht werden können. Alle Sequenzen werden mit

ESC eingeleitet. Hierfür definieren Sie am besten einen String:

ESC$=CHR$(27)

Schriftart Sequenz

Kursivschrift ein: ESC[3m

aus: ESC[23m

Fettdruck ein: ESC[1m

aus: ESC[22m

Unterstreichen ein: ESC[4m

aus: ESC[24m

Normalschrift: ESC[Ow

Elite | ein: ESC[2w
aus: ESC[1w

Schmalschrift ein: ESC[4w

| aus: ESC[3w

Breitschrift ein: ESC[6w

aus: ESC[5w

NLQ ein: ESC[2"z

aus: ESC[1"z

Proportionalschrift ein: ESC[2p

aus: ESC[1p

Superscript ein: ESC[2v

aus: ESC[1v

Subscript ein: ESC[4v

aus: ESC[3v

Mit LPRINT kann dann eine Steuersequenz zusammen mit dem

Text geschickt werden:

LPRINT ESC$;"[4m"; Text$;ESC$;"(24m"

486 Amiga Tips & Tricks

13.4 Tips zur Arbeit mit dem Amiga

Tips & Tricks Nr. 21 Schneller, schneller, schneller!

Um den Amiga z.B. während langer Rechenzeiten etwas zu be-
schleunigen, hilft es schon, wenn Sie alle Screens herunterfah-
ren. Dadurch wird der Grafikprozessor entlastet und somit das
ganze System.

Tips & Tricks Nr. 22 Stop!

Wenn irgendein Task irgendwo eine Ausgabe tätigt und sie par-
tout nicht mitkommen, dann muß man nicht immer erst das

ganze Programm unterbrechen. Ein zeitweiliger Aufschub läßt
sich schon durch einen Druck auf die linke Maustaste realisie-
ren. Dann wird nämlich die Menüleiste eingeblendet, wodurch
jede andere Ausgabe gestoppt wird. Erst nachdem Sie die Taste

wieder loslassen, kann die Textausgabe fortgesetzt werden.

Tips & Tricks Nr. 23 Kein Ärger mehr mit Disk-Full!

Haben Sie das auch schon einmal erlebt? Da speichert man so

lustig vor sich hin, Daten über Daten, und plötzlich kommt die-

ser unausstehliche Requester auf den Bildschirm, der uns ohne

ein Wimpernzucken mitteilt, daß leider die Diskette voll sei. Wie

reagiert man auf so etwas, wenn es sich um sehr wichtige Daten

handelt?

Zuerst einmal sollte man die Ruhe bewahren. Dann besorgt man

sich einen neuen Zugriff auf das CLI - am besten über das
CLI-Icon. Nun sieht man sich Schritt für Schritt die angeblich

volle Diskette an. Es gibt nun mehrere Möglichkeiten. Einerseits
kann es wirklich sein, daß alle Daten unbedingt gebraucht wer-
den und nichts mehr frei ist. Aber in vielen Fällen sind einige
unwichtige Dinge auf der Diskette vorhanden. Was ist z.B. mit
der Trashcan und ihrem Verzeichnis? Liegen hier vielleicht Pro-
gramme, die schon lange weg sollten?

——— Sammelsurium der Tips & Tricks 487

Selbst wenn das Verzeichnis leer ist, sollte es gelöscht werden,

denn auch leere Verzeichnisse nehmen Speicher weg. Wenn Sie

auf diese Weise die ganze Diskette bearbeiten, werden bestimmt
noch einige Blöcke frei. Und dann zeigen Sie dem Requester,
was eine Harke ist, und antworten ganz cool mit "Retry"!

Tips & Tricks Nr. 24 Erste Hilfe vom DiskDoctor

Mir passiert so etwas ständig. Immer wieder löscht man viel zu
schnell Programme oder Dateien, die man doch noch brauchte.

Nach vielen verzweifelten Stunden weiß ich jetzt einen Ausweg,
über den ich diese Files doch wieder an das Tageslicht hole.

Der Amiga beschreitet beim Löschen nämlich den gleichen Weg
wie früher der C64. Die Datei wird nicht echt gelöscht und mit
Nullen überschrieben. Nur der Eintrag im Directory und in der
BitMap der Diskette wird zurückgesetzt. Nur wie bekommt man

diese Einträge wieder restauriert? Dazu brauchen Sie nicht ein-
mal einen Diskettenmonitor, denn alles dies erledigt der
DiskDoctor! Nach einem Durchlauf sind alle gerade gelöschten
Dateien wiederhergestellt. Allerdings darf nach dem Löschen
nicht auf die Diskette geschrieben worden sein.

Tips & Tricks Nr. 25 Ein Guru weniger!

Das ist echt wundersam! Starte ich mein Programm von der
Workbench, läuft es anstandslos. Starte ich es vom CLI, schmiert

es garantiert nach 5 Sekunden ab. Warum? Tja! Diese Frage

stellen sich viele, und hier ist auch gleich die Antwort: Auf ei-
nem Multitasking-Computer hat jedes Programm seinen eigenen
Stack, auf dem es Rücksprungadressen ablegt. Dieser Stack ist

mit einem Wert vorbelegt und kann im Info-File der Workbench
eingestellt werden. Auch das CLI bietet diese Möglichkeit. Je-
doch merkt man von den verschiedenen Einstellungen auf der
Workbench nichts, denn wer guckt schon in alle Info-Files?

Beim CLI ist das anders. Hier wird nicht der Wert des Info-Files
übernommen, sondern der des CLI. Und dieser ist ziemlich

klein, wenn man ihn nicht vergrößert hat. Startet man ein Pro-

488 Amiga Tips & Tricks ———

gramm aus dem CLI, so übernimmt es die Stack-Größe. Diese
reicht aber nicht aus, und schon stürzt unser gutes Stück ab.
Also vergrößern Sie in solchen Fällen den Stack. Die Angaben
dazu erfahren Sie über die Workbench-Funktion Info.

Tips & Tricks Nr. 26 Mehrmals das gleiche

Wenn man mit vielen Bootdisketten arbeitet, so ist es nicht ge-

rade einfach, überall die gleichen Einstellungen zu machen. Aus
Gründen des Geschmacks möchte man überall die Farben gleich,

verständlicherweise auch überall den gleichen Drucker und na-
türlich den gleichen Zeichensatz eingestellt haben. Doch die Ar-
beit wird mühsam, wenn nicht unmöglich. Schließlich verzwei-
felt man und gibt das Vorhaben auf. Man merkt es ja spätestens

beim Ausdruck, daß auf dieser Diskette noch nicht der richtige

Drucker eingestellt ist.

Doch es gibt eine einfachere Lösung. Auf jeder Bootdiskette
findet man ım Verzeichnis DEVS: die Datei System-Configura-

tion. Hier sind alle Daten abgespeichert, die über Preferences

eingestellt werden können. Es ist nichts einfacher, als daß man
dieses File auf jede weitere Bootdiskette kopiert. Schon hat man

überall die gleichen Einstellungen!

13.5 Verstecktes und Unbekanntes

Tips & Tricks Nr. 27 Versteckte Grüße im Kickstart

Wie Sie vielleicht im Workbench-Kapitel gelesen haben, waren

die Programmierer des Amiga so mutig, sich in dem Betriebssy-
stem zu verewigen. Aber nicht nur über die Workbench lassen
sich Grüße oder Nachrichten abrufen. Auch wenn Sie einmal im
Speicher "rumwihlen", werden Sie feststellen, daß dieser nicht
nur aus Programmcode besteht.

Folgendes kleine BASIC-Programm macht es möglich, nach der
Eingabe von Start- und Endadresse den Text in diesem Bereich
sichtbar zu machen.

——— Sammelsurium der Tips & Tricks 489

Adressen:
V1.1 16653596 16653672
V1.2 16649670 16649747
INPUT "Startadresse";Start
INPUT "Endadresse ";Ende
PRINT
FOR i = Start to Ende

PRINT CHRS(PEEK(1));

NEXT i

Ich möchte Sie an dieser Stelle ermuntern, ruhig einmal ein
bißchen im Speicher zu stöbern. Vielleicht finden auch Sie so
einen oder einen ähnlichen Text. Wenn Sie die Start- und
Endadresse eines solchen Textes haben, schreiben Sie uns! Wir

würden uns sehr über Ihre Zuschrift freuen. Wenn wir dies dann
in das Buch aufnehmen, ist die Namensnennung das Mindeste.
Vielleicht winkt bei besonders guten Tips ein gratis "Amiga Tips
& Tricks" mit Ihrem Beitrag!

Tips & Tricks Nr. 28 Die Love Story

Wußten Sie schon, daß Ray mit ...

Aber halt! Das sollen Sie schon selbst erfahren. Es handelt sich

hier nämlich um einen versteckten Text im Preferences-Pro-

gramm der Version 1.2. Dazu müssen Sie eine etwas aufwendige
Prozedur durchlaufen, damit Sie in der Window-Titelleiste die

gewisse Nachricht erhalten. Doch immer nach der Reihe.

Starten Sie zuerst Preferences. Sie befinden sich jetzt auf der
Hauptseite. Rechts sehen Sie die beiden Mausgrafiken. Beide

Mäuse haben je zwei Buttons. Fahren Sie jetzt von links nach
rechts alle Buttons viermal ab und klicken Sie jedesmal auf die
Buttons. Nun haben Sie viermal alle vier Buttons angeklickt.
Wenn Sie jetzt das Druckermenü anwählen, müssen Sie nur noch
bei der Printer-Wahltabelle das Pfeil-Nach-Oben-Gadget sooft

anwählen, bis Sie an den obersten Eintrag gekommen sind. Jetzt
noch einmal draufgeklickt, und schon erscheint der Text in der
Titelzeile!

490 Amiga Tips & Tricks

Tips & Tricks Nr. 29 Noch eine Geheimnachricht!

Wenn Sie während des Drückens der beiden SHIFT- und ALT-
Tasten irgendeine Funktionstaste niederhalten und gleichzeitig
noch die Diskette aus irgendeinem Laufwerk ziehen, erscheint

eine weitere Meldung auf der Workbench.

Legen Sıe die Diskette wieder ein, erhalten Sie entweder wieder
die gleiche Meldung oder aber einen anderen Text. Dieser an-
dere Text ist nur noch bei den älteren Versionen zu finden, da
er leichte Kritik am Amiga übt. Wenn Sie ihn auch bei neueren
Versionen noch sehen wollen, müssen Sie eine Diskette einlegen,

deren Icon erst geladen werden muß. Dann vergeht genügend

Zeit, so daß der Text nicht gleich wieder überschrieben wird.

——— Arbeiten mit Betriebssystem V1.3 491

14. Arbeiten mit Betriebssystem V1.3

Um es so kurz wie möglich zu sagen: Nichts ist mehr so, wie
man es bisher gewohnt war, alles wurde verbessert, und viele

Dinge sind neu hinzugekommen. Mit wenigen, ganz speziellen

Ausnahmen ist dabei die volle Kompatibilität zur Version 1.2
erhalten geblieben. Die Ausnahmen sind in der Regel Voraus-

setzungen, von denen bisher stillschweigend ausgegangen werden

konnte, so daß beispielsweise der Font der Workbench immer

der Topaz-Font war, was heute nicht mehr unbedingt der Fall
sein muß. Im Klartext heißt das für den Programmierer, daß er
gezwungen ist, alle Datenstrukturen mit den gewünschten Werten

zu versehen und nicht, wıe es früher üblich war, beispielsweise

die Font-Adresse auf 0 zu setzen, ausgehend davon, daß das Be-
triebssystem dort den Topaz-Font hinterlegt. Jede Pfuscherei bei

der Programmierung führt also bei Version 1.3 eher zu uner-
wünschten Effekten, als dies bei Version 1.2 der Fall war.

Doch Inkompatibilität kann wie gesagt nur in seltenen Fällen
auftreten und ist dann durch einfache Änderungen der Vorein-
stellungen zu beseitigen. Viel interessanter sind natürlich die
ganzen neuen Devices, Libraries und Handler, die Verbesserun-

gen an vorhandenen Features und die fast unüberschaubar vielen

neuen Möglichkeiten, die sich daraus für den Amiga-Besitzer

ergeben. Wahrlich, nützt man jede Möglichkeit und Erweiterung
für diesen erstaunlichen Computer, könnten schon heute selbst

Großrechenanlagen vom Schlage einer Cray X1 nicht mehr

mithalten. Sehen wir uns erst einmal im DEVS-Verzeichnis um
und schauen nach, was sich dort getan hat:

14.1 Die Pipeline im Amiga - das PIPE-Device

Aha, ein neues Device also. Um die Vorzüge des Handlers besser

zu durchleuchten, schauen wir uns zunächst ein bereits bekann-

tes Device an, das ClipBoard-Device. Dieses wird häufig auch

als die Pin-Wand im Amiga bezeichnet, was gar kein schlechter

492 Amiga Tips & Tricks ——

Vergleich ist. Wer im CLI beziehungsweise in der neuen Shell
Datenaustausch mit anderen Tasks betreiben oder sich nur

kurzfristig Daten zur Seite legen wollte, hat meist das

ClipBoard-Device verwendet. Nachdem es durch den Befehl

MOUNT ins System eingebunden worden war, konnte man
durch Aus- und Eingabe-Umlenkung Daten zu diesem Device
befördern oder sıe sich wieder abholen.

Leider kam es dabei häufig zu Verzögerungen und zu Schreib-

Lese-Fehlern der Workbench, die darauf zurückzuführen sind,

was dieses Device mit den erhaltenen Daten anstellt. Sehen Sie
sich das DEVS-Verzeichnis einmal genauer an, werden Sie darin
ein Directory finden, das meist leer ist. Der Name sagt es schon:
In dieses Directory schreibt das ClipBoard-Device die erhaltenen
Daten und holt sie sich gegebenenfalls wieder zurück. Nun ist es
nicht schwer, sich vorzustellen, daß der ständige Disketten-

zugriff ganz nett Zeit kostet, zumal die Workbench dabei nicht
gerade geschont wird.

Im Zuge der Speicherinflation (der Amiga kann mittels 68020-
Prozessor-Erweiterung auf 4.294.967.296 Bytes adressierbaren
Hauptspeicher zugreifen - auf 4 GigaByte!) sollten die meist ge-
ringen Datenmengen, die bisher via ClipBoard auf Diskette ver-

teilt wurden, auch im RAM verwaltet werden können.

Dies bewerkstelligt das neue Device PIPE. Sie können sich dabei
die Wirkungsweise etwa so vorstellen, als ob mitten im RAM

eine Pipeline liegen würde, in die auf der einen Seite Daten

hineingefüllt werden, die bei Bedarf auf der anderen Seite wie-
der herausgeholt werden können, eine Art titanisches Schiebere-
gister, könnte man meinen. Um das PIPE-Device nutzen zu
können, muß dem System erst einmal mitgeteilt werden, daß der

PIPE-Handler aktiviert werden soll. Geben Sie daher ein:

MOUNT PIPE:

In der DEVS/MountList können Sie vorher je nach gewünschter
Pipeline-Größe die Parameter mit dem Editor ED einstellen.

Um etwas in die PIPE zu füllen, wird einfach mit dem Aus-

—_—— Arbeiten mit Betriebssystem V1.3 493

gabe-Umlenk-Befehl des CLI (>) dafür gesorgt, daß anstelle
des Console-Devices beziehungsweise des neuen NewCon-Devi-

ces der PIPE-Handler die Daten bekommt:

DIR >PIPE: SYS:

schickt beispielsweise das Root-Directory der Boot-Disk in die
Pipeline. Da nach der Eingabe dieses Befehls nichts weiter ge-
schieht, als daß das entsprechende Laufwerk kurz anläuft, wol-

len wir einmal nachschauen, ob tatsächlich etwas in der Pipeline
ist. Folgender Befehl leert die PIPE und gibt den Inhalt auf dem

Bildschirm aus:

TYPE PIPE:

Na, haben Sie schon einmal in der Geschwindigkeit ein Direc-
tory im CLI-Fenster erscheinen sehen? Sicher nicht! Sollte die
Pipeline einmal zu voll sein, macht sie sich durch eine Fehler-
meldung bemerkbar.

14.2 Das Shell hält Vorträge (oder was das SPEAK-
Device kann)

Reden konnte der Amiga schon immer und das mit einem für

Sprachsynthese lächerlich kleinen Speicherbedarf. Ab Version
1.3 spricht nun auch das CLI. Der Befehl SAY war zwar bereits

ın Version 1.2 vorhanden, aber hier ist eine Spielerei ganz an-
derer Qualität gemeint - und wer weiß, vielleicht ist das
SPEAK-Device für einen Seh-Behinderten überhaupt keine

Spielerei, sondern eine große Hilfe.

Dieses Device kann eine gewisse Verwandtschaft mit dem PIPE-

Device nicht verleugnen. So wird es ebenso wie PIPE ins System
eingebunden, und Daten werden genauso hineingeschaufelt. Im
Unterschied zur PIPE ist das SPEAK-Device allerdings ein Ei-
mer ohne Boden: Was man hineinschüttet, kommt aus den Laut-

494 Amiga Tips & Tricks ———

sprechern in Form von Sprache wieder heraus. Wir wollen das

einmal ausprobieren und uns das System-Directory vorlesen las-
sen:

MOUNT SPEAK:

DIR >SPEAK: SYS:

Wer seine Kinder lieber dem Amiga anvertraut als selbst den
Mund zu bewegen, oder wer sich gerne Geschichten vorlesen
läßt, sollte gleich ganze Textdateien ausgeben lassen:

RUN TYPE >SPEAK: "GuteNachtGeschichte"

Aber auch für die Sprachsynthesegeschädigten haben wir eine
Anwendung:

RUN TYPE >SPEAK: ExtrasD:AmigaBASIC OPT H

Sinnvoller ist es da, die Abfrage mit ASK hörbar zu machen:

ASK >SPEAK: "Do You Like Stefan?"

Wer häufig englische Texte im Computer hat und diese Korrek-

turlesen muß, hat mit SPEAK die Möglichkeit, die Augen zu
schonen und nebenbei etwas anderes am Amiga zu machen, denn

das Gehör wird schon feststellen, ob Fehler gemacht wurden
(unser hochdifferenziertes, computergestähltes Gehirn überliest

gerne Schreibfehler, weil es weiß, wie es richtig hätte heißen
müssen - SPEAK nicht). Auch alle diejenigen, die den Sinn ei-
nes englischen Satzes besser verstehen können, wenn sie ihn hö-

ren, könnten dieses Device gebrauchen. Selbst das Englisch-Ler-

nen kann durch die Möglichkeit, riesige Textmengen an SPEAK
zu übergeben, gefördert werden.

14.3 Eine Muschel fur’s CLI - das NewCon-Devi4ce.

Die wunderbarste neue Errungenschaft für alle CLI-Enthusiasten
und solche, die es werden wollen, ist eindeutig das NewCon-De-

vice, das Sie durch das Anklicken des Shell-Icons arbeiten las-

—— Arbeiten mit Betriebssystem V1.3 495

sen. Dieses Device wird bereits in der Startup-Sequence einge-

bunden (MOUNT NEWCON:). Die Wirkungsweise besteht
zunächst, ähnlich wie bei dem Console-Device, im Öffnen eines
Windows. Viel mehr tut sich nicht so ohne weiteres. Geben Sie

doch einmal einen Befehl ein und warten mit dem Betätigen der
LineFeed-Taste. Drücken Sie nun die linke Cursor-Taste und

beobachten Sie genau, was auf dem Monitor geschieht.

Richtig, Sie können jetzt die Befehlszeile jederzeit nachträglich
verändern, sprich editieren, ähnlich, wie es im List-Fenster des
AmigaBASIC möglich ist. Haben Sie sich einmal bei einer län-
geren Befehlszeile vertippt, können Sie diesen Fehler korri-

gieren, ohne daß der Text nochmals eingetippt werden muß.

Geben Sie jetzt folgende Befehle der Reihe nach ein:

DIR dfO: DIRS
LIST ram: OPT A

TYPE s/startup- sequence

Nehmen wir an, Sie möchten sich noch einmal die Directories
von Laufwerk 0 ansehen. Bisher mußte zu diesem Zweck der
Befehl noch einmal eingegeben werden. Heute möchte ich Sie
bitten, etwas mit den Cursortasten "auf" und "ab" herum-

zuspielen. Wie Sie bemerken werden, können Sie durch die Liste

der bereits eingegebenen Befehle auf- und abscrollen. Da nur
die Befehle gespeichert werden, ist der Speicherbedarf relativ

gering. Bereits eingebene Befehle, die Sie sich mit den Cursor-
Tasten zurückgeholt haben, können natürlich auch wieder edi-

tiert werden.

Nach dem Drücken der Return-Taste werden sie unten an die
Liste angehängt. Die Größe der Liste ist natürlich begrenzt, ist
aber selbst für CLI-Enthusiasten reichlich dimensioniert, so daß

es kaum vorkommen wird, daß ein Befehl oben aus der Liste

herausgeschoben und damit gelöscht wird. Shift-Cursor ist eine
Möglichkeit, an den Anfang oder das Ende der editierten Be-
fehlszeile zu gelangen. Alle anderen bekannten Tastaturtricks des
CLI sınd weiterhin implementiert.

496 Amiga Tips & Tricks ———

14.4 Das FastFileSystem

Wer hat sich nicht bereits über das etwas träge DOS geärgert,
das zudem recht verschwenderisch mit dem Speicherplatz auf

unseren Disketten umspringt? Seit Version 1.3 gehört das Ami-
gaDOS zu den Veteranen im Umgang mit externen Speicherme-
dien. Grund hierfür ist ein neues Diskettenformat, das alle Er-

wartungen weit übertrifft.

Um Sie mit dem Umgang mit diesem File-System vertraut zu
machen, sehen wir uns zunächst die Unterschiede zum Amiga-
DOS etwas genauer an. Ein Datenblock einer AmigaDOS-Dis-
kette, in dem Ihre Programmdaten abgelegt werden, besteht aus

512 Bytes. Von diesen 512 Bytes werden nur 488 Byte für Daten

verwendet, der Rest geht für Verwaltungsdaten drauf. Wird ein
Programm eingelesen, es müssen durch aufwendigen Speicher-
transfer die Verwaltungsdaten vom übrigen Programm getrennt
werden, da dieses schließlich in einem Stück benötigt wird. Hier
setzt nun das FastFileSystem an. Es sorgt dafür, daß in einem
Datenblock keine Verwaltungsdaten mehr benötigt werden, also

alle 512 Bytes für Programmdaten zur Verfügung stehen.

Liest man jetzt mehrere Datenblöcke eines Programms ein, die
günstigerweise hintereinander liegen, kann dies mit einem einzi-

gen Lesezugriff geschehen. Da hierbei das Trennen von den
Verwaltungsstrukturen entfällt, können diese Blöcke sogar direkt
an die gewünschte Speicheradresse gelesen werden. Der Ge-
schwindigkeitszuwachs dabei ist enorm. So können alle Disket-
tenoperationen auf die fünffache Geschwindigkeit beschleunigt
ablaufen. Am interessantesten ist dabei jedoch der Speicher-
platzgewinn, der durch eine kompaktere Ablage von Verwal-

tungsdaten einer Diskette entsteht. Rechnen Sie bei einer 20-
MByte-Harddisk, die Sie auf FastFileSystem umgestellt haben,
mit 1,5 MByte mehr Speicherplatz.

Die Nutzung des FFS zahlt sich daher im wahrsten Sinne des
Wortes aus: Sie erhalten ein Mehr an Diskette für das gleiche
Geld. Die Anschaffung der Betriebssystemversion 1.3 macht sich
daher ın jedem Falle nach kurzer Zeit bezahlt, auch, wenn Sie

——— Arbeiten mit Betriebssystem V1.3 497

Besitzer eines Amiga 500 oder 2000 sınd und sich das Betriebs-
system auf EPROM brennen lassen, wobei dieser Service im all-
gemeinen von den Vertreibern sogenannter Kickstart-Umschalt-
platinen übernommen wird, da diese dadurch mehr Platinen ab-

setzen können.

Haben Sie Version 1.3, ist das FastFileSystem nicht gleich aktiv.
Sie müssen dem System erst mitteilen, daß Sıe den Handler
gleichen Namens benötigen und auf welches Speichermedium
dieser angewandt werden soll. Zu diesem Zweck empfiehlt es
sich, durch Eingabe von "ED DEVS/MOUNTLIST" die ge-
wünschten Devices in die MountList einzutragen. Diese können
später ın der Startup-Sequence mit dem Befehl MOUNT einge-

bunden werden. Um Sie mit der MountList nicht im Trüben fi-
schen zu lassen, habe ich Ihnen nebst drei Einträgen eine modi-

fizierte Startup-Sequence vorbereitet, durch die Sie automatisch

in den Genuß dieser neuen Features kommen können.

14.5 Das FastFileSystem auf Harddisks

Am meisten fällt der Speicherplatzgewinn natürlich auf Hard-
disks auf, da diese bereits von Hause aus mit dem größten
Speicherplatz ausgerüstet sind. Hier ein Vorschlag für einen
MountList-Eintrag, der Ihre Harddisk auf das FastFileSystem
umstellt. Haben Sie ihn in die MountList integriert, kopieren Sie

zunächst alle Dateien Ihrer Harddisk auf normale Disketten, ge-
ben den Befehl MOUNT FHD: ein, formatieren unsere "Fast-
HardDisk" mit FORMAT DRIVE FHD: NAME "FastHardDisk"
und kopieren Ihre Files auf das neue Device FHD:. Sie werden

überrascht sein, wieviel mehr Dateien auf der Harddisk Platz

finden.

FHD: Device = hddisk.device /* Zugriff auf HD */

FileSystem = L:FastFileSystem /* Na klar ! */
Unit = 1 /* Gerät #0 bleibt

bei AmigaDOS ! */

Flags = 0 /* fur OpenDevice */
Surfaces = 4 /* Diskettenseiten*/

BlocksPerTrack = 15 /* Je nachdem... */

Reserved = 2 /* Bootblocks */

498 Amiga Tips & Tricks ——

Interleave = 0 /* Blockorganisation*/

LowCyl = 10 /* Ab Zylinder 10 */
HighCy! = 800 /* Bis Zyl. 800 */
Buffers = 11 /* Lesebuffer */

BufMemType = 1 /* egal (5=FastRAM)*/

GlobVec = -1 /* Kein GlobVec */

Mount = 1 /* Handler sofort bei

Eingabe von MOUNT

laden */
DosType = 0x444F5301 /* Erkennungs-Code

für FFS */

/* Ende d.Eintrages*/

In die Startup-Sequence muß nun der Eintrag:

MOUNT FHD:

14.6 FastFileSystem auf der resetfesten RAM-Disk _

Natürlich kann auch die RAM-Disk RAD: mit dem FastFileSy-
stem arbeiten, ist dann jedoch nicht mehr resetfest. Bei einem
Reset bleibt Ihnen diese Disk zwar erhalten, die Daten sind al-

lerdings weg. Doch allein Speicherplatzersparnis und Zugriffs-

beschleunigung sollten für viele Anwendungen - gerade im
professionellen Bereich - die Installation des FFS rechtfertigen,

zumal jederzeit die Möglichkeit besteht, sich weitere RAM-
Disks "zurechtzuschustern". Hierbei braucht neben dem Namen
nur die Unit-Nummer der RAM-Disk geändert zu werden. Unit
0 ist im übrigen die normale RAM-Disk. Wollen Sie Über-
schneidungen vermeiden, sollten Sıe die nächsthöheren Num-
mern verwenden. Der entsprechende MountList-Eintrag sieht so

aus:

FRAD: Device = ramdrive.device

FileSystem = L:FastFileSystem
Unit = 1 /* je nach Anzahl der RAM-Disks */

Flags = 0

Surfaces = 2

BlocksPerTrack = 11

Reserved = 2

Interleave = 0

Mount = 1

LowCyl = 0

DosType = 0x444F5301

——— Arbeiten mit Betriebssystem V1.3 499

HighCyl = 79 /* Je nach vorhandenem RAM (512K->5)*/

Buffers = 22 /* dito */

BufMemType = 1 /* egal, wo sie liegt */

In die Startup-Sequence können Sie folgendes einfügen:

MOUNT FRAD:

FORMAT >NIL: <NIL: DRIVE FRAD: NAME "FFS im RAM"

Die beiden Umlenkbefehle auf das Nirwana-Device NIL sorgen
dafür, daß Sie erstens keine Ausgabe erhalten und zweitens
nicht mit der Aufforderung konfrontiert werden, eine Diskette
"in’s RAM einzulegen", worauf Sie mit dem Drücken der Re-
turn-Taste zur Lüge gezwungen wären (wir lassen lieber NIL für
uns schwindeln...). Arbeiten Sie mit Programmen, bei denen Sie
durch Anklicken nur zwischen DFO bis DF3 wählen können
(CLImate), empfiehlt es sich, den Namen in der MountList mit
beispielsweise DF3 anzugeben. Ebenso muß dann natürlich in

der Startup-Sequence DF3 eingebunden werden, und zwar an-

stelle von FRAD.

14.7 FastFileSystem auf normalen Disketten

Da das FFS zur Zeit noch nicht ins AmigaDOS eingebunden ist,
kann es hier zu einigen kleinen Schwierigkeiten kommen, die
ich später ausführlich erläutern werde. Zunächst wenden wir uns

wieder der MountList zu, um Devices mit FFS-Betrieb zu er-

stellen:

DF2: Device = trackdisk.device

FileSystem = L:FastFileSystem
Unit = 0 . /* FFS für DFO: */

Flags = 0

Surfaces = 2

BlocksPerTrack = 11

Reserved = 2

Interleave = 0

LowCyl = 0
HighCyl
Buffers

79
11

500 Amiga Tips & Tricks ———

BufMemType = 1
Mount = 1

GlobVec = -1

DosType = 0x444F5301

In die Startup-Sequence ist nun "MOUNT DF2:" einzufügen.
Dummerweise tritt jetzt folgendes auf: Legen Sie eine mit
"FORMAT DRIVE DF2: NAME SMmagic FFS" formatierte Dis-
kette in Laufwerk 0, geschieht nichts, außer daß auf der Work-

bench die Anzeige "DF0:BAD" erscheint. Gehen Sie jetzt aber
ins Shell und tippen "Diskchange DF2:" ein, erscheint auf der

Workbench Ihre FFS-Diskette genauso, wie dies bei einer nor-

malen Disk der Fall ist. Durch den Workbench-Menüpunkt IN-

ITIALIZE können Sie sie automatisch wieder im FFS-Format
überformatieren.

Ebenso funktioniert alles andere wie gewohnt, so daß es sich

lohnt, im FFS-Format zu arbeiten, was Ihnen im Schnitt über
40.000 Byte mehr Diskettenkapazität beschert. Entfernen Sie die

Disk, verschwindet die Anzeige "DF0:BAD", das Icon der FFS-

Diskette jedoch bleibt. Was hiermit eindeutig dargelegt wurde,
ist, daß das FastFileSystem keine Diskettenwechsel registriert.

Der Grund hierfür ist der, daß es eigentlich nur für Harddisks
entwickelt worden ist, die bekanntlich nicht gewechselt werden
können. Um nun nicht ständig das Shell laden und mit dem FFS
"Diskchange" mitteilen zu müssen, daß die Disk gewechselt
wurde, legen Sıe sich mit ED eine Datei an, die den Befehl ent-

hält:

DISKCHANGE DF2:

Kopieren Sie nun das Shell-Icon unter den Namen der Datei:

Copy Sys:Shell.info to "Sys:c/DiskwechselDF2"

Via Info-Punkt der Workbench tragen Sie in das Default-Tool-
Feld "RAM:XICON" ein und löschen die übrigen Einträge. In
die Startup-Sequence kommt jetzt zusätzlich:

RESIDENT SYS:C/DISKCHANGE PURE
COPY SYS:c/(XICON|DiskwechselDF2) TO RAM:

——— Arbeiten mit Betriebssystem V1.3 501

Auf diese Weise befindet sich nun in der RAM-Disk ein Icon,

das nach dem Anklicken für die Ausführung unserer Batch-Da-
tei sorgt. Das ständige Laden von der Workbench ist so nicht
mehr nötig. Um noch besser arbeiten zu können, sollten Sie das

_ Icon nach dem Hochfahren des Systems aus der RAM-Disk di-
rekt auf die Workbench verlegen, wo es sich immer schnell an-
klicken läßt, ohne dauernd das RAM-Disk-Window offen halten
zu müssen.

14.3 Die neuen MatheLibrarys

Wer hat nicht schon einmal von einem 68030-Prozessor mit
68882-Fließkommaarithmetik-Coprozessor geträumt? Aber bei
DEN Preisen, die diese Turbo-Karten haben... Schnellere Be-

rechnungen sind jetzt mit Version 1.3 jedoch auch mit dem
68000 zu haben. Neue Mathematik-Libraries sorgen für den nö-
tigen Schwung - und obwohl diese für die volle Unterstützung
der Fließkomma-Coprozessoren 6888x ausgelegt sind, fiel mir

beim Ausprobieren mit dem 68000 vor Staunen die obligatori-
sche Kaffeetasse aus der Hand.

Die Geschwindigkeit bei der Bearbeitung von doppelt genauen
IEEE-Floats, wie BASIC sie mit den x#-Variablen verwendet,

ist zıgmal schneller geworden. Nach einer genaueren Analyse

stellte ich fest, daß ich hier auf die schnellsten bekannten Fließ-

kommaroutinen gestoßen bin, die es zur Zeit auf der Erde gibt.

Um Ihnen nicht nur etwas vorzuschwärmen, hier gleich ein
Beispiel, wie diese Routinen in BASIC aufgerufen werden kön-

nen:

DECLARE FUNCTION IEEEDPSin# LIBRARY

LIBRARY "mathieeedoubtrans. Library" 'Pfadnamen akzeptiert
"BASIC hier nicht mehr.

teventuell vorher CHDIR [Pfad zu den BMAP-Files] eingeben!

PI#=4*ATN(1) ‘Zahl PI genau berechnen (Vollkreis=2*PI)

KREIS#=2*PI#

FOR 1%=0 TO 359 'Gesamten Kreis in Grad

WINKEL#=KREIS#/I% ‘Winkel auf Basis 2*PI

HighLong&=PEEKL(VARPTR(WINKEL#)) 'Erstes Long des DFloat

LowLong& =PEEKL(VARPTR(WINKEL#)+4) "Zweites Long des Float

SINUS#=IEEEDPSin#(HighLong&, LowLong&) 'Funktion aufrufen

502 Amiga Tips & Tricks

PSET(1%,90- INTCSINUS#*50)), 1 ‘Punkt zeichnen

NEXT

FOR 1%=0 TO 359 'Just for Demo

WINKEL#=KREIS#/1% 'Mal sehen, wie schnell
SINUS#=SIN(WINKEL#) "BASIC ist...

PSET(1%,90-INTCSINUS#*50)),2 andere Farbe
NEXT

LIBRARY CLOSE

Was man bei der ersten FOR-NEXT-Schleife erwarten muß, ist

eine erheblich langsamere Ausführung als in der zweiten
Schleife. Schließlich muß 2*360=720mal die VARPTR-Funktion
aufgerufen werden, 720mal das langsame PEEKL, 360mal die
Addition des Wertes 4 und 360mal der Routinen-Aufruf mit
Übergabe von zwei Long-Werten, was auch nicht eben schnell
geht. Mehr Zeilen und Variablenzuweisungen verzögern die erste
Schleife zusätzlich. Bei all diesen genannten Einschränkungen
heißt es jetzt staunen: Die erste Schleife ist genauso schnell wie
die zweite! Es ist kaum zu ermessen, welch unglaubliche Ge-
schwindigkeit erst in Maschinensprache erzielt werden kann.

Brandneu ist sie, die MathIEEEdoubtrans-Library, und ermög-

licht endlich alle transzendenten Funktionen mit doppelt ge-

nauen Floats. Aber auch die MathIEEEdoubbas-Library, die die

einfachen Rechenfunktionen enthält, ıst derart schnell geworden,

daß man bei Demonstrationen immer herunterhängenden Kinn-
laden begegnen wird. Gerade für den BASIC-Anwender sind die
neuen transzendenten Funktionen interessant, da hier endlich

einmal die Möglichkeit besteht, beispielsweise den Arcus-Sinus

ohne gewaltige Umrechnungs-Programme zu ermitteln, und das
mit der gleichen Geschwindigkeit wie beim Aufruf der SIN-
Funktion. Daher an dieser Stelle eine Übersicht über die Funk-
tionen:

MathleeeDoubBas-Library

x,y,Double doppeltgenaue Fließkommazahl
(BASIC: anstelle x und y je 2
Longs)

Long vorzeichenbehaftete Long-
Integer-Zahl

Long IEEEDPFix (x) Umwandlung von Double-Float
(DO) -30 (DO/D1) in Long-Integer.

Arbeiten mit Betriebssystem V1.3

Double

(DO/D1) °

Long

(DO)

Long

(DO)

Double
(DO/D1)
Double

(DO/D1)

Double

(D0/D1)
Double

(D0/D1)
Double

(DO/D1)
Double

(DO/D1)

Double

(DO/D1)

Double

(DO/D1)

IEEEDPFIt
-36

IEEEDPCmp
-42

IEEEDPTst
-48

IEEEDPAbs
54
IEEEDPNeg
-60
IEEEDPAdd
-66

IEEEDPSub
-72

IEEEDPMUuI

-78

IEEEDPDiv

-84

IEEEDPFloor

-90

IEEEDPCeil
-96

(Long)
(DO)

(x,y)
(D0/D1,D2/D3)

(x)
(D0/D1)

(x)
(DO/D1)

(x)
(DO/D1)

(x,y)
(DO/D1,D2/D3)

(x,y)
(DO/D1,D2/D3)

(x,y)
(D0/D1,D2/D3)

(x,y)
(D0/D1,D2/D3)

(x)
(DO/D1)

(x)
(D0/D1)

Umwandlung von Long-Integer
in Double-Float.

Vergleicht x und y. cc für Bec
wird gesetzt.
Es gilt:
x>y->1
x=y->0

x<y->-1

Vergleicht x und 0. cc wird
gesetzt. Ergebnis wie bei
IEEEDPCmp wenn dort y=0

Ermittelt den Absolutwert von x.

Funktion: Double =-x

Funktion: Double=x+y

Funktion: Double =x-y

Funktion: Double =x*y

Funktion: Double =x/y

Ermittelt größte Ganzzahl, die
kleiner oder gleich x ist.

-Ermittelt kleinste Ganzzahl,

die größer oder gleich x ist

MathleeeDoubTrans-Library

Double

(DO/D1)
Double

(D0/D1)
Double

(D0/D1)
Double

(D0/D1)
Double

(DO/D1)

Double

(DO/D1)
Double

(DO/D1)
Double

(DO/D1)

IEEEDPAtan

-30
IEEEDPSin
-36
IEEEDPCos
-42
IEEEDPTan
-48
IEEEDPSincos

-54

IEEEDPSinh

-60
IEEEDPCosh

-66

IEEEDPTanh

-72

(x)
(D0/D1)
(x)
(DO/D1)
(x)
(D0/D1)
(x).
(D0/D1)
(x, VARPTR)
(D0/D1,A0)

(x)
(D0/D1)
(x)
(D0/D1)
(x)
(D0/D1)

Ermittelt Arcus-Tangens von xX

Ermittelt den Sinus von x

Ermittelt den Cosinus von x

Ermittelt den Tangens von x

Doppelrechnung:
Sinus von x errechnen, Cosinus
von x an Adresse VARPTR legen
Ermittelt Sinus hyperbolicus
von x
Ermittelt Cosinus hyperbolicus
von x
Ermittelt Tangens hyperbolicus
von x

503

504 Amiga Tips & Tricks ———

Double lIEEEDPExp (x) Exponentialfunktion zur Basis e.
(DO/D1) -78 (DO/D1) Funktion: Double=e”x
Double IEEEDPLog (x) Ermittelt nat. Logarithmus von x
(DO/D1) -84 (DO/D1)
Double IEEEDPPow (x,y) Funktion: Double =x“y
(DO/D1) -90 (DO/D1,D2/D3)
Double lIEEEDPSart (x) Zieht die Quadratwurzel aus x
(DO/D1) -96 (DO/D1)
Float lIEEEDPTieee (x) Rechnet x in einfachgenaue
(DO) -102 (DO/D1) IEEE-Fließkommazahl um
Double IEEEDPFieee (Float) Rechnet einfachgenaue Float in
(DO/D1) -108 (DO) doppeltgenaue um
Double IEEEDPAsin (x) Ermittelt den Arcus-Sinus von x
(DO/D1) -114 (DO/D1)
Double IEEEDPAcos X Ermittelt Arcus-Cosinus von x
(DO/D1) -120 (DO/D1)
Double IEEEDPLog10 X Ermittelt den Logarithmus zur
(DO/D1) -126 (DO/D1) Basis 10 von x

Für die BASIC-Programmierer sei hier nochmals darauf hinge-
wiesen, daß die Übergabe einer Double-Float an eine System-
routine nicht so ohne weiteres möglich ist. Es muß diese 64 Bit
breite Variable in Form zweier Longs übergeben werden, die
ihre Werte via PEEKL(VARPTR()) beziehen. Wie dies zu ge-
schehen hat, ist in der Sinus-Demo dieses Kapitels beschrieben.

Eine weitere unangenehme Eigenschaft von BASIC ist der nur

sehr kurz gestattete Library-Name beim gleichnamigen Befehl.

So ist es zwar möglich, bei den meisten Libraries auch längere
Pfadnamen anzugeben, hier jedoch ist bereits der eigentliche
Name der Datei so lang, daß kein Pfad mehr angegeben werden
kann. Tut man es dennoch, folgt sofort ein File-not-found-
Error. Will man daher an die Mathe-Libraries heran, haben im

aktuellen Verzeichnis oder im LIBS-Verzeichnis der Systemstart-
Disk die entsprechenden BMAP-Files zu liegen. Im Ernstfall
hilft man sich mit einem CHDIR vor dem LIBRARY-Befehl.

——— Betriebssystem-Erweiterungen 505

15. Betriebssystem-Erweiterungen

Das Betriebssystem des Amiga ist sehr flexibel aufgebaut. Fast

alle seine Ein- und Ausgabe-Schnittstellen lassen sich ergänzen,
erweitern oder verändern. So ist es einem versierten Program-
mierer möglich, neue Devices zu programmieren und in das Be-
triebssystem einzubinden, eigene Libraries zu kreieren und diese
in Programmen zu benutzen und bestehende Devices oder

Libraries zu ergänzen. Dies alles erfordert allerdings viel Arbeit.

Noch einfacher hingegen ist es, sich für die eigene Program-

mierung neue Hilfsfunktionen zu programmieren, mit denen
man dann komplizierte Aufgaben leicht und bequem erledigen

kann. In der Sprache C ist dies ohne großen Aufwand möglıch
und läßt sich beliebig weit ergänzen.

Dazu programmiert man einfach die benötigten Funktionen in
einem separaten Programm-File und fügt sie später beim Link-
Vorgang mit dem Hauptprogramm zusammen. Dazu werden
diese Hilfs-Funktionen getrennt von den anderen mit dem Com-
piler und Assembler bearbeitet und stehen dann als sog. Objekt-_
Files zur Verfügung.

15.1 Lade- und Speicherfunktionen mit Pack-
Algorithmus |

Wir wollen als Beispiel für die einfache Ergänzung des Pro-
grammier-Wortschatzes einige Funktionen vorstellen, die wie die
bekannten Lade- und Speicherfunktionen zum Datentransfer der

DOS-Library arbeiten. Unsere Funktionen werden nur den zu-
sätzlichen Vorteil haben, daß sie beim Speichern und Laden die

Daten quasi nebenher packen werden. Dieser Vorgang durch-
sucht den Datenpuffer vor dem Abspeichern auf Diskette noch

nach einer Möglichkeit, die anfallende Menge an Bytes zu kür-
zen. Beim Ladevorgang wird diese Kürzung, die unter anderem

506 Amiga Tips & Tricks

Diskettenplatz spart, wieder rückgängig gemacht, so daß der
Programmierer bei Verwendung unserer Funktionen überhaupt
nichts davon merkt.

Dies ist auch der Ansatzpunkt für die Paramter der Funktionen.

Da man normalerweise mit denen der DOS-Library arbeitet, be-

nutzen die unseren gleiche Werte. Zum Öffnen wird auch hier
der Name des Files und die Zugriffsart übergeben. Zurück er-
halten wir auch hier ein Handle. Dieses mußte allerdings erwei-
tert werden. Nun heißt die Datenstruktur nicht mehr Handle,

sondern PackHandle, dies verändert die Handhabung aber in
keiner Weise.

DOS:

Handle = Open(name, access);

Eigene Funktion:

pHandie = pOpen(name, access);

Die Funktionen zur Datenübertragung lehnen sich im Namen an
die DOS-Funktionen an, werden nur im Namen durch das vor-

angestellte "p" gekennzeichnet. Es gibt eine Funktion zum
Schreiben eines Pufferinhalts bestimmter Größe und eine zum
Lesen von Daten gewünschter Anzahl in einen dafür bereitge-
stellten Puffer:

DOS:

Anzahl

Anzahl

Write(Handle, Puffer, Länge);

Read(Handle, Puffer, Lange);

Eigene Funktionen:

Anzahl = pWrite(pHandle, Puffer, Länge);
Anzahl = pRead(pHandle, Puffer, Lange);

Sowohl die DOS- als auch die eigenen Funktionen liefern beim
Lese- und beim Schreibzugriff die Anzahl der wirklich gelese-
nen oder wirklich geschriebenen Bytes zuriick. Dies kann beim

—— Betriebssystem-Erweiterungen 507

Lesen in beiden Fällen divergieren, wenn das File nicht mehr
genügend Bytes enthält. Beim Schreiben ist das Verhalten der
neuen Funktion grundsätzlich anders. Sie werden bei der Pro-
grammbeschreibung erkennen, woran dies liegt.

Das Packverfahren

Zur Kürzung der auf die Diskette zu schreibenden Datenmenge
verwenden wir hier als Beispiel eine sehr einfaches Verfahren.

Die Daten, die auf die Diskette oder einen anderen Datenträger
geschrieben werden sollen, werden zuerst ist einem Puffer ge-
sammelt, dieser hat die Größe von 512 Bytes und dient dazu,
das Verfahren überhaupt praktikabel zu machen. Ist der Puffer
voll oder wird das File geschlossen, wird sein Inhalt nicht ohne
weiteres abgespeichert. Zuerst wird er nach wiederkehrenden
Zeichen durchsucht. Sind mehr als zwei Zeichen hintereinander
gleich, kann diese Folge kodiert gespeichert werden. Und zwar
verwenden wir dazu ein sog. Kodierbyte - in diesem Fall 255 -,
das anzeigt, daß das darauf folgende Byte mehrfach vorkommt.
Wie oft, das sagt das dritte Byte. Damit haben wir für die Ko-
dierung folgende Byte-Folge:

<Kodierbyte> <Byte> <Anzahl>

Da es aber durchaus möglich ist, daß in einem File das Byte
255, das wir als Kodierbyte gewählt haben, vorkommt, muß
auch dieses Byte kodiert werden. Das bringt einen entscheiden-
den Nachteil mit sich: kommen viele solche Bytes vor, wird das
File nicht kürzer, sondern länger. Hier ist die dafür einzu-
fügende Byte-Folge:

<Kodierbyte> <255> <1>

Gemindert wird diese Streckung durch Folgen dieses Bytes, die

durch Erhöhen der Anzahl keinen Platz verschlingen. Die An-
zahl selbst kann nur einen Bereich von 0 - 255 abdecken. Sollten
mehr gleiche Bytes vorkommen, muß die Kodierung wiederholt
werden. Dies mag zwar verschwenderisch wirken, ist aber in den
meisten Fällen besser, als wenn man zwei Bytes für die Kodie-
rung verwendet. Dann müssen nämlich alle Kodierungen mit 4

508 Amiga Tips & Tricks

Bytes verfaßt werden, was auf diese Art mehr Platz verbraucht.
Und dieser Fall kommt sicherlich öfter vor, als daß man zu viele

Bytes hat.

Die Datenverwaltung

Zur Verwaltung des benötigten Puffers verwenden wir eine neue
Struktur. Sie enthält neben dem Puffer den Zeiger auf die von
DOS verwendete FileHandle-Struktur und einige Positions-
varıablen, mit der die Schreib- und Lese-Position im Puffer

verwaltet wird.

struct PackHandle

{
char Puffer [512];
LONG Position;
LONG Anzahl;
struct FileHandle *Handle;

3;

Die Funktionen

Sehen Sie nun die Funktionen, die zur File-Arbeit verwendet
werden können. Neben den Ersatz-Funktionen zum Öffnen,
Schließen, Schreiben und Lesen gibt es noch eine zum Kopieren

eines Speicherbereichs und die wichtigste von allen, die Pack-

Funktion. Sie erledigt die eigentliche Arbeit.

[BRERREREREREREREKREREEREREREEEERERERERERK

Entwicklung von Funktionen zum

Packen oder kodieren von Daten

Editiert mit dem Editor EDwork

von Data Becker (Autor Peter Schulz)

(c) by DATA BECKER

(p) by Wolf-Gideon Bleek 1989

+
+

+
©

¢
H

“
H
H

H
r

3

HHH HHH KHER EKER 202 21222 202 202.2 202 202 202.2.2.2. 2.2.7

#include <exec/types.h>
#include <exec/memory.h>
#include "packlib.h"

/* #define TEST "Im Falle eines Falles hilft Testen einfach alles" */

—— Betriebssystem-Erweiterungen

void *malloc();
void Close();
LONG Write(), Read();
struct FileHandle *Open();
void free();

/*#FOLD: Funktion MemCopy */

void MemCopy(Von, Nach, Laenge)
register char *Von, *Nach;
register LONG Laenge;

{
whi le(Laenge- -)

*Nach++ = *Vont+:
>

/*#ENDFD*/

/*#FOLD: Funktion Pack() */

byte Code[] = {MARK, 0, 1, 0, 03;

LONG Pack(pHandle)
struct PackHandle *pHandle;

{
struct FileHandle *Handle = pHandle->Handle;
char *Puffer = pHandle->Puffer;
LONG Laenge = pHandle->Anzahl;

LONG Anzahl = NULL;

LONG ZaehlerV

LONG Zaehler

char *Zeiger;

NULL;

NULL;

#define Zeichen Code[1])

#define ZaehlerG Code[2] '

while(Laenge--)

{
Zeichen = *Puffer++;

if (*Puffer == Zeichen && ZaehlerV)

{
#ifdef TEST
printf("(%ld)", Zaehlerv);

/* zum Test Anzahl der unkodierten Bytes */
#endi f
Zaehler += ZaehlerV;
ZaehlerV = NULL;
>

while(*Puffer == Zeichen && Laenge > NULL)

509

510 | Amiga Tips & Tricks ———

{
Puffer ++:
ZaehlerG ++;

Laenge --;

>

if (ZaehlerG>1)
{
Zaehler += ZaehlerG;

if (ZaehlerG <= 3 && Zeichen != MARK) /* Zu wenig Zeichen */

{
#ifdef TEST
printf("<%d>", ZaehlerG); /* bei 3 Zeichen normal speichern */
#endi f
ZaehlerV = (LONG)ZaehlerG;
‘Code[2] = Zeichen;
Code[3] = Zeichen;

Anzahl += Write(Handle, &Code[1], ZaehlerV);

}
else

{
#ifdef TEST
printf("<MARK, %d, %d>\n", Zeichen, ZaehlerG);
#endi f
/* Kodierung auf Diskette bringen */

Anzahl += Write(Handle, &Code[0], 3L);
}

ZaehlerG = 1;
H

else

{
ZaehlerV ++;
Anzahl += Write(Handle, &Zeichen, 1L);
}

>

if (ZaehlerG)

{
Zaehler += ZaehlerG;

if (ZaehlerG <= 3 && Zeichen != MARK) /* Zu wenig Zeichen */

{
#ifdef TEST
printf(''<%d>", ZaehlerG);
#endif
ZaehlerV = (LONG)ZaehlerG;
Code[2] = Zeichen;
Code[3] = Zeichen;
Anzahl += Write(Handle, &Code[1], ZaehlerV);

}
else

{
#ifdef TEST
printf("<MARK, %d, %d>\n", Zeichen, ZaehlerG);

—— Betriebssystem-Erweiterungen 511

#endi f
Anzahl += Write(Handle, &Code[0], 3L);

>
>

else
Zaehler += ZaehlerV;

#ifdef TEST |
printf("ANZAHL: %ld\n", Zaehler); /* Testausgabe */
#endi f

return(Anzahl);

>
/*#ENDFD*/
/*#FOLD: Funktion pOpen() */

struct PackHandle *pOpen(Name, Modus)
char *Name;
LONG Modus;

{
struct FileHandle *Handle;

struct PackHandle *pHandle;

Handle = Open(Name, Modus);

if (Handle != NULL)
{
pHandle = (struct PackHandle *)malloc(sizeof(struct PackHandle));
if (pHandle == NULL)

{
Close(Handle);

return (NULL);

>
pHandle->Handle
pHandle->Position
pHandle->Anzahl
pHandl e->Modus
}

Handle;

NULL;
NULL;
Modus;

return(pHandle);
>

/*#ENDFD*/

/*#FOLD: Funktion pClose() */

LONG pClose(pHandle)
struct PackHandle *pHandle;

C

LONG Anzahl = OL;

if (pHandle->Anzahl && pHandle->Modus == MODE _NEWFILE)
Anzahl = Pack(pHandle);

512 Amiga Tips & Tricks ———

Close(pHandle->Handle);
free(pHandle);

return(Anzahl);

>

/*#ENDFD*/
/*#FOLD: Funktion pWrite() */

LONG pWrite(pHandle, Puffer, Laenge)

struct PackHandle *pHandle;
char *Puffer;

LONG Laenge;

{
LONG Anzahl = NULL;

if (pHandle->Modus == MODE OLDFILE)
return(NULL); /* Schreibzugriff bei einem Lese-File verweigert */

whi le(pHandle->Anzahl+Laenge > 512L)
{

MemCopy(Puf fer , &pHandl e->Puf fer [pHandle->Position] ,512L-pHandle->Anzahl)

Laenge -= 512L-pHandle->Anzahl; /* noch zu Schreibende Bytes */
Puffer += 512L-pHandle->Anzahl; /* Position im \bergabepuffer *
pHandle->Position = 512L; /* Zeiger auf volle "Pulle" */
pHandle->Anzahl = 512L;

Anzahl += Pack(pHandle);

pHandle->Position = NULL;
/* Durch Schreiben wurde der Puffer leer */

pHandle->Anzahl = NULL;
}

MemCopy(Puffer, &pHandle->Puffer [pHandle->Position], Laenge);
pHandle->Position += Laenge; /* Puffer um Laenge Bytes aufstocken */

pHandle->Anzahl += Laenge; |

return(Anzahl);
>

/*#ENDFD*/
/*#FOLD: Funktion pRead() */

LONG pRead(pHandle, Puffer, Laenge)
struct PackHandle *pHandle;
char | *Puffer;
LONG Laenge;

{
LONG Anzahl = NULL;

——— Betriebssystem-Erweiterungen 513

if (pHandle->Modus == MODE_NEWFILE)

return(NULL); /* Lesezugriff bei einem Schreib-File verweigert */

pHandle->Anzahl = Read(pHandle->Handle, &pHandle->Puffer[0], 512L);

while(Laenge)

{
if (pHandle->Puffer [pHandle->Position] != MARK)

{
#ifdef TEST
printf("%c", pHandle->Puf fer [pHandle->Position]);
#endi f
*Puf fer++=pHandl e->Puf fer [pHandle->Position++] ;
Anzahl ++;
Laenge --;

}
else

{
whi le(pHandle->Puffer [pHandle->Position+2] && Laenge)

{
#ifdef TEST
printf ("4c", pHandle->Puffer [pHandle->Position+1]);
#endi f
*Puf fer++=pHandl e->Puf fer [pHandle->Position+t1];
Anzahl ++;
Laenge --;

pHandle->Puf fer [pHandle->Position+2] --;
H

if (pHandle->Puf fer [pHandle->Position+2] == 0)
pHandle->Position += 3;

}

if (pHandle->Position == (pHandle->Anzahl-1))
{
pHandle->Position = NULL;

pHandle->Anzahl = Read(pHandle->Handle, &pHandle->Puffer[0], 512L);
if (!pHandle->Anzahl)

Laenge = NULL;
> |.

>

return(Anzahl);
>

/*#ENDFD*/

Listing: Funktionen zum Packen beim Datenspeichern

#include <libraries/dosextens.h>

typedef unsigned char byte;

514 Ä Amiga Tips & Tricks ——

#define PUFFER_SIZE 512L;
#define MARK (char)0xff

struct PackHandle

{
char Puffer [512];
LONG Position;
LONG Anzahl;

struct FileHandle *Handle;
LONG Modus;

J;

Listing: Include-File mit Struktur-Definition

Programmbeschreibung

Die Funktionen gliedern sich in zwei Teile: Die Hauptfunk-
tionen, die die Fahigkeiten der DOS-Funktionen nachahmen und
die Hilfsfunktionen, die die Arbeit ergänzen.

Zu den Hauptfunktionen zählen pOpen(), mit der über die

gleichen Parameter wie beim DOS-Befehl ein File geöffnet wer-
den kann, das entweder zum Lesen oder zum Schreiben genutzt
werden kann. Diese Funktion verwaltet neben dem Modus noch
einen Puffer, in dem die Daten zwischengespeichert werden.

Die korrespondierende Funktion pClose() schließt ein File ord-
nungsgemäß und gibt den zusätzlich belegten Pufferspeicher
wieder frei. Sollte das File zum Schreiben geöffnet gewesen sein,
wird vorher noch der Pufferinhalt gesichert.

Wichtig sind aber besonders die Funktion pWrite() und pRead().

Beide arbeiten gepuffert, das heißt, sie lesen die Daten nicht

direkt in den angegebenen Speicher, sondern schreiben sie erst

in den für jedes File angelegten Puffer. Von dort aus werden sie
dann entweder bei Überfüllung geschrieben oder dekodiert
übertragen. Beim Schreiben wird die Funktion Pack() aufge-
rufen, da diese Arbeit etwas komplizierter ıst. Die Unterfunk-
tion geht den Puffer Byte für Byte durch und sucht nach Vor-

—— Betriebssystem-Erweiterungen | 515

kommen von mehreren gleichen Bytes. Bei Erfolg wird nur die
oben beschriebene Markierung geschrieben, ansonsten gehen die
Bytes direkt auf Diskette.

Die Funktion pRead() hat zwar auch Arbeit zu erledigen, kann
diese aber einfacher durchführen. Sie geht den Pufferinhalt nach
und nach durch und überträgt entweder jedes Byte ın den Be-
nutzer-Puffer oder überträgt das kodierte Byte entsprechend der

angegebene Anzahl. Ist der Puffer leer, werden erneut Daten

von der Diskette gelesen.

Ein Testprogramm
NETT A

*

Programm zum Testen der neuen

Pack- und Codier-Funktionen

(c) by DATA BECKER
(p) by Wolf-Gideon Bleek 1989

+
+

¢
¢

%*
%*

+
+

+
€

€
&

F

HH KH HHH 2.202.202 202 202 202 202 202 202 202 202 202 2.2.2.2 2.2.27

#include <exec/types.h>
#include "packlib.h"

extern struct PackHandle *pOpen();

#define File argv[1]

#define SrcFile argv[1]

main(argc, argv)

int argc;

char *argv(];

{
struct FileHandle *Handle, *Open();

struct PackHandle *pHandle;

LONG Anzahl, pAnzahl;

int i;

char Puffer (520];

char DestFile[31];

strcpy(DestFile, File);

strcat(DestFile, (char *)". pak");

516 Amiga Tips & Tricks ——

printf("Programm zum Testen den Pack-Funktionen\n");
printf("Die Datei '%s'! wird gepackt ...\n", File);

Handle = Open(SrcFile, MODE_OLDFILE);
if (Handle == NULL)

{
printf("Das File konnte nicht gevffnet werden! \n");
exit(FALSE);
>

pHandle = pOpen(DestFile, MODE_NEWFILE);

if (pHandle == NULL)
{
printf("Das Pack-File konnte nicht gevffnet werden! \n");
exit(FALSE);

>

Anzahl = Read(Handle, &Puffer[0], 520L); /* Puffer mit Daten füllen */
printf("Beim Lesen %ld Daten.\n", Anzahl);

pAnzahl = pWrite(pHandle, &Puffer [0] ,500L); /* Teil des Daten packen */
printf("Beim ersten Schreiben %ld Daten.\n", pAnzahl);

pAnzahl = pWrite(pHandle, &Puffer [500] ,20L); /* restliche Daten packen */
printf("Beim zweiten Schreiben %ld Daten.\n", pAnzahl);

Close(Handle); /* Beide Files schließen */
pAnzahl = pClose(pHandle);
printf("Beim Schließen des Files %ld Daten\n", pAnzahl);

/* Gepacktes File Testen

printf("\nVersuch zum Öffnen des Files ...\n");

pHandle = pOpen(DestFile, MODE_OLDFILE);
if (pHandle == NULL)

{
printf("Das Pack-File konnte zum Lesen nicht geöffnet werden! \n");
exit(FALSE);
>

Anzahl = pRead(pHandle, &Puffer[0], 500L); /* 500 Bytes lesen */
printf ("\nBeim Lesen %ld Daten.\n", Anzahl);
pC lose(pHandle);

—— Betriebssystem-Erweiterungen 517

for(i=0; i<Anzahl; i++) /* gelesene Bytes (max. 500) ausgeben */
printf('"'%c", Puffer[i]);

printf("\n");
>

Programmbeschreibung

Dieses Programm kodiert die ersten 520 Bytes eines Files. Dazu
geben Sie als Parameter beim Programmstart den File-Namen
mit den nötigen Verzeichnis Angaben an. Zum Test werden
noch einmal die ersten 500 Bytes des gepackten Files gelesen

und ausgeben. Dies hat allerdings nur Sinn, wenn es sich um ein
Text-File handelt.

Sie können mit diesem Testprogramm ausprobieren, wie effektiv

dieser Pack-Algorithmus arbeitet. Die Ausbeute ist sehr unter-
schiedlich.

Als Anregung möchte ich Ihnen empfehlen, ein Programm zu
schreiben, das in der Lage ist, jedes beliebige File vollständig zu

komprimieren und eines, das wieder dekodiert. Die Verände-

rungen am obigen Programm sind dabei nicht schwierig.

Compiler- und Link- Anweisungen

Die hier beschriebene Verfahrensweise gilt für den Aztec-C-
Compiler V3.6a, da wir meinen, daß dieser Compiler besonders
einfach zu handhaben ist. Er bietet als weiteren Vorteil die
Möglichkeit, auch schon mit einem Diskettenlaufwerk und nur
512 KByte RAM alle Arbeiten (wenn auch umständlich und
zeitraubend) durchzuführen, während der Lattice-Compiler

mindestens zwei Laufwerke oder 1 MByte Speicher benötigt.

Wichtig ist, daß Sie die oben abgedruckten Funktionen nach
dem Eintippen mit dem Compiler und dem Assembler zu einem
Objekt-File assembliert werden. Es reicht dafür eine einziger
Aufruf:

518 Amiga Tips & Tricks

cc packfunk.c

Wir benötigen keine weiteren Parameter, weil der Compiler au-
tomatisch den Assembler aufruft. Auch die Wahl des Speicher-

typs ist in diesem Fall egal.

Wollen Sie diese Funktionen [pOpen(), pWrite(), pRead(),
pClose()] in einem eigenen Programm verwenden, genügt es,
beim Link-Vorgang den unterstrichenen Teil zu ergänzen:

In testprg.o packfunk.o -Ic etc.

—— Stichwortverzeichnis 519

Stichwortverzeichnis

Fo eeecccccccccccccceccesecccescceeescesccessesseeeeeeeeeesssssscceseeececesesessseeeeengessses 474
-Fenster ccc ccccceccecsccecccscsccccsceccececccccseccscscsccscscscesesesceseccseeeees 454

—OVR oiciicccccsccscccsccssccscccsccsccscccscccsccsccsccessescesseessscesssesceccseceessesesees 435
-SELECT. ooiee esc e ccc cecceecccsccecceccsccccccscceccesccecsscccssscssscecccscesssecseves 435
- Verzeichniscccccccseccesccsccecccccsscccccsccescevcceccescssesscecssssevseesesces 474

.‚bmap-Fileeeccescessseneseeeseennenn osececceccccsceccsccscceccscsscsccsceseescesens 71

device oie eec ce ceeccesccsccceccsscsccecccscceccosccecesccescescnscesceeceecssssescesceseeess 403

QPOLIGcccsssccsccccsccccssccsscceccscesceeccessecesccesceucsccececescceseeesceesceusees 435

BD-Brille ooo... eee tee eeccsecceccsccsccceccscceccescsscesccescescevseeceecessseves 147

ey DD 0) 0) <) a sevesccscessssecesens 135

SI2Z-K Byte-Karte oo... ceeccesccsceescsccescsccecesecescsscescceeceseescs 436

68000er ce 439
68010 ooo cccectscccssccescccsccssccscccsccescessccsscessecscenseevecescscesseeecs 434
7.16 MHZ uc. ccccccsccssccseccscccnsccsscccscccscccccesccescesccssseussssceeseesceuscees 444

Absolute oo... cecceeceeccecceccscceccecesceecceceescscccescsscesceessessssecescenees 465

Absturz oioii.ee te ceccecceccsecceccecceccvccsceeccscescscssseseeccsceeceucesssscessscescevens 434

ALERT wow ecc cece cceccescccssccscecscccccsscecscecscsceascessesscenseeesensees 207, 210
Alert-BOX _...........ussensesssensenannnnnnnnnnnnnnnnnnnnnunnnnnnnnnnnnnannnnnnsnnnonsnsennn 211
ALL RR 4]
AllocMem()uuu2u0002seenssesnsnnnnnnnnnnnnnnnnnnnnnnnnnennnnnonsnnnssnsennonrnnnne 168
AMIGA Internssenssessessessonsesnonnnnnnnnnnnonnnennnnnnnnnnnnnennnnnnnennnnn 434

Amiga-Platineencsesessssssensnssnonnnnnnonnnnunnannnnnnnennnnnnenannnunsnenenen 440
AmigaBASICeensseenssssesssennnnsnnnnnnnnnnnnnnnnunnnnennnnnannnensannnssnennenen 213

Anklickencessesesssensssenosnnennnnnnnnnnnonnnennnnnnnnnsannsnnnnnsnnnnnnnnnnnnn 296

Antialiasingeeeseceseensssensnsssnnnsnnnnnnnnnnnnnnnnnnnnnnnanennnnnnnssnnnennnnnnnnn 460

Antwort-Gadgetsunnsenssessenssnnsnnnnennnnnnnnnnannnnnnnnnnnnnnonnonnnnsnssnennn 210

Archiveeeessssesssnssssnnnnnnnonennnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnsnonsensnnnn 49

ASCH-File200000ssnsssessnennennnnnnnnnnnnannnnnnnnnnnnnnnnennnnnnnnnann 231, 236
ASK RR 39
Assemblerucnaasesssssnssssnnnnnnunennnnnnnnnnnnnnnnnnnenennnnnnnnnnnnnnnnnnnnnnnnen 373
ASSIEN .neeeeeenenseensnnnnnnnnnnnnnnnnnnnnnnnsnnnnnsnunnssnunnnnsnnnnsssnnnssssonessnnnsssnnnnene 47

520 Amiga Tips & Ticks

AutoKnobs oo... ieee ccc eccceecsscsecsccccceccscesccsceecesccsccsccscescssasseceeceseeeees 190

AutoRequest-Funktioncccccccccsccssccssceccscceccuscsscucceseeceacesens 359

AVAIL wooo cece ccc eccescescesccscescescesseees Soeaeceecsceccecsceccscessessccccscececsseecsceesess 40

BAD oiieic ccc ccccescseccsscssccsccsscesccsccssceccnescescessesccesseecseseescsecessessnesseeees 328

BASIC-Interpreterc ccc cccsecceceveccreceececceceseeceeccscecseecesseceesecs 69

Batchdateiccccsssccccccesssscccccccccecessccccccceccessseeccceceeesecsecteaeeees 476
Befehls-Tokenccccescssceccsccescevceccsccsccsccsccecescssssvcessssescesses 252

BefehlssatzZcccccsccsccsccsccecceccscesccscessceseesesceecesceecessssseseecesces 213

Befehlssyntaxcccccccseccsssccssccssccssccssccscsscsseesceaecscessceseescseusees 26
Befehlsvorraätcccccccsccssccssccscccsccesccesccsssssscesscessssscssceesssecseses OD

Benutzeroberflache oo... ecececcsecssccsccceccscccsceescsccscevccscseceeees 327

Betriebssystem-Eingriff oo... ccecccsssccsscceccccsscceeseeceseeseeeseeecs 206
Betriebssystem-Requesterccccccseccssscesscesssceecccescesceesceeess 355
Bildschirmkoordinatencccccsscssscscccssccsccssccusceescescesscessens 137

Bimdr—Files .o......c ccc ccsccecceecceccsccsccssccescssccsccssccsccecesscescesceeseeseesss 236

Blau ooo... ccc cccececcecccceccsceccuccececceccecsaccccsccecesceccsesececcecncecceccensecesacescs 189

Boolean .u........cccccccceccecssceccecssceccsccsceccscsccsccscesseseecesescessssenseseeceseecs 171

BOOt-BIOCKS ou... ete ecectececceccecescecccscecccscsvcessescescessccsseesenceseuss 62

Bootdisketteccccccescccscccsccesccsccesccescccsccccccescesscesscesccescesseescens 488
Bootencccccccecesccsscsscsscescsscncens sesccecceccececcsccccsccssscescescscescsceseecs 30

BootPricceccsscccssccsccssccsccesccssecscccsccusccesscuseeescesscssccescescessseees 63

Border-Struktur hevcececcecececscsceccecscececcccececscecsccscsescececs 174, 184

Bounded 2.......... ccc ccceecescecceccscecccccsccccscececceucsceceucsscesescssescescscesence 465

Break o.....cc.cccecceecsececssccecsscecescssccsceseescccusccesvcsessecseeseuceecscsssesenes 4]

Buchsen.sussussonsossnnennonnennnnnnnnnnnnunnnnonnnnnnnnannnnsnnnnnsnsnnnnsnunnnnnnnn 452

BufMemTypecccsccssccssccecscscccsccescessccsccescessceeseessesccesseeses 62

|: 1 OLS) Ge sevscsscescesccescescesceeeees 328

C-Listing oo... eee eseecessecccssecccsscecssccssvscessccscsvccesceescscessscensscesesceecs 32
CALL 16515072 occ eccceccsscesccesccescccsecsccescesscesscescesseeccecs 483

CLEAR oii.iecc ccc cccccceccseccccccccccsccnsccssccsccesccescecsceuscesscessessceuseseeseecs 481

CLI-Befehl ooo... ececccesccsscccsscccssccsscecsccssscccscssesceence 39, 306

CLI-Befehlswortec.ccccccesccssccsssccsccccssccescccsecesscescesscccscesesees 28

CLI-Fenstercc. cc ccccceccsccceccsccsccssccsccescesccsccescescesens 34, 476, 478

CLI-Icon » 22

CLI-Kommandos unterbrechen 2.............cc ccc ceeccessccsccesccescescceeceess 25

Clipboard ccc ccsccccssccsssccssccsscccssccescccesccssccescenscceesecsscesscensesacs 480

— Stichwortverzeichnis 521

Clock ccereesesenseesessnsnsonsnnnnnnnsnnennnnnnnnnnnnnnnunsnnnnnnnnsnnnnsnnensennnssnsnnanenen 466

ClockPtr oo... ce cececcccececscsccccscccecscascccccseccecesscscsesceseseccssasceeess 469

Close-Gadgetccccssccsssscccesccseeccssscesecscnscceesessescosecensesseseeueees 173
"CloseAll ...cccsenssessessssonsnssnnsnnnnnnnnennnnnnnnnnnnnnunnnennnnsnnnnunsnnsnnunsesenenn 169

CLOSEWINDOW-Messagescssccessecceccescesccecceceeccecesseeseesss 172

CIMuccesssessesssassnnnnonsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnsnnnsnsnnssessnnnunnenne 467

Color Correct ...uccessessensssssennnsnnnnnnnnssnnunnnnnnnnnnnnnnnnnnnnnnennannnnnnnennnn 462

Command Line Interpreteressesessssensssennneosnensnneennnnnnnenssnnnnnnenn 21
COMPLEMENT =MO0dusccccsscscccccececcecsssccceccecsscessesseceeees 82

Console Devicececccecscessccsscsccceccsscccecssccsscescsescssseuscescseseevees 159

OS 6) 2 RN 48, 328

CTRL-Tastenkombinationen02s02s00ssssensnnnonnnnsnsnnnnenenenn 475

CTUTSOTPOSIEIONcenceasessessensennenonsnnnnnnnnnonnnnnnnennnnnnnsnnnnnnnnnnnsnnnnnsnnnen 87

DATA-Zeilen.cccaeeeseesseseesseesenennnnnennenenn dececcvcscsccscscesscesescess 257

| D 7 Gy VRR 257

Datei-Icon | 328

Datenkommunikationzecseaseessesseossonsoennnnnnnnnnnnnnnnnnnnnnnnnennenen 434

Default-Einstellungencccsssseeesssenonnsenenneesennnnnnnenennnennnennn 307
Default-Toolesssssssnenssssssssensnnnnnnnnnnnnnnnnnnnnenunnnnsssonnnnnnnnnnnn nn 305
DefChip() .u.........c ce cecccessccccescccsccecsscecsscccsssecssceecscesscceesscesscenssceses 168

DELETE-FIag on... cccccccecccecceccesscceccesccesccsccesccescesceecsesceeses 479

Densitiycccccessccssscccssccsscccsscenscccscccssccssccssccusceccscesscesscesscesees 462

DESTINATION uuu. iicce cc cecccccssccscceccesccscceccsccsscesccscsscesscsccssescesess 30

Device-Icon oo... cccccecccsscccscccssccesccessccnscoesccssccessccesecsscessceescesens 328

Disk Vecsccsccesccsccsscesseescs Lececeescccecsccescsccscecccssesceesesssesceseescescens 298

Disk-Icon. oec.. ccc. ceseecccssccecssccccsscccccccsccecceccssccsssccessscesscccesceesceecceces 35

Disk-Monitor .u.......ccccccccccsccssccesccesccsccssccsseeecs dececcecnccccsccscsceceuceees 406

Diskcopycsccccsssccccssccccsssccscccccsscccsscccssccsscccssccescccesscsesceeeseeneecs 29

DiskDoctor ou... ccc cecccccsscccsscccscccsscccscccccccssccesccceccescccccccssceesccuceeeecs 487

Disketten-Icon oo... ccccccesccsssccssccsscccecccscccsscccscessccesceeecs 305, 328

Diskettenlaufwerke .0..........cccccccccsecccessccescccsscccsscccsscccescecsscssssccess 405

Diskettenmonitor vecceccccscceccceeccscscesccsesceccecescscescecesevess 487

Ditherimgcccecsecccssscccssscccsecccssccssseccsscccesccesscceecees Sesecssessececee 463

Doppel-Token.enscsessssssassenesennnnnnnonnnnnnnnnennnnnnnnnnnnnnnannannnnnnnnn 253

| DO 437

DrawBorder() .u..........ccccccccssecccsscccssccessscccssccssccsscecssceseccsseeescess 184

Drawerccessessesessensonsonsnnonnnnnunnennnnunnonsnnensensnannnnnnnenensnnanssnunsnnene 298

522 Amiga Tips & Ticks

Dreidimensionale Koordinatenessssressssenneonnonnnenseneeneneenen 135

Druckerceccsensasessesnesenonnnnnnnnnnnnnnnnnnnnnnnnnnnennnnnnnunssensnnnsssenensnsnnene 32

Druckertreiber.0000000ssnseeneneesnanennnnnnnnnnennensnennonennnsensrnnnaennn 484

Druckertreiber-Auswahls0sssssesssnsonsnnsnnennnnnnnsennereneenn 182

Druckerwechsel .0............ccccceccscsccccscsccccsccccccscsscsccccscecscecescessceseees 484

Drucktypencccseccssccssccsccesccsccesccescenscesecsecsscesccssceseeescaseeens 485

Eckpunktkoordinaten.cssesssessssssonsnsnennnnnnensnennsennennsesnnoneene 136

Editor-Sequenzenccsccssccsccssccscccesccescesccesccsccescesccescosceecs 162

Ein- und Ausblendenu0ss02snsssnnnennnnnnnnonnennnnnensensenne 127

Eingaberoutineceencsessseesssessennsennnsnnnnensnnnnnnnnnnnnnnnnnenonnnonenonenn 363
Empty Trash .uu........ccccccsecsscccescesccesccescescesccescesccesccsccssceseesscasceens 295
Endcli ou... cece ccecesccecccsccsccecceccecccsccsccsccceccscescesccscsescscescsscesceseesess 23

Endloslinie sececeveccscccccsscscccsccsecscesccescessssccsscescescesseescesceseuscaseass 143

EndSkip2u00s0ssesssnssonsensenensnnnnnonsnnnnnnnnnennsnssnsnnnnnnnennnnnnnnsnnnnnnn 46

ERR$()000csneseennsennssnnnssnnsnansnnnnennnnnnnnnnnanennnnnnsnnnsnnsnnansnnennnnnn 210

Errorseeeseeseseneesessenensnnnnnonnanonnensnonnenonnnnsnonnansnnnnnnennnnnnnssnnsnnnsnenen 352

Exceptionreesesesssesssessnnssonennnnnnnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnsnnsnnnnnnen 374

Exception 4eeeessensessnessnnnnnnnnnnnnnnunnnnnnnsnnnnnnnnnnnnnenennnnnonnnsnannnenen 442

Exec.Library.........eeseessenssesssesssensnsssnnnnnnennnennnennn 168, 172, 482, 483

Execute-Befehl oo... ccceccscccsccecccssccseccsccssccsscescesscescesscesceeses 36

Expansions-Platime ccc cceccsscccssccssccssccsscccsccesccebecseccesseeuss 435

Extras-DIskcccccccecccccscccssccsscccscccsscccsceccccessccsccescccccetscessceeees 213

F-S Loic cccceccssccscceccssccscccccscceccesccscesccsscesccscesscsscescesccsccscesccscesees 464

Fading .u......ccccceeccssesccssscccsscccsscesscccessccnscessvsccsscccscecsssccesssenscesescess 127

Farbintensitätccccccessccssccssccssscccscccscccssccssccsccesccceecesccescenecs 148

FAST-RAM oui c ccc cccccccceecceccscceccsscscccsscescesccscecscscescescesccssesceees 434

FD-Files .0..........c.cccccsecceccecccsccsccsccsccsscesccsccesccsceeccsccesceces seececscscees 204

FE oui. cccceccscccccsccscccscceccsscssccscsccsccescascssccsecsscsseesccscesccscescesssscesees 42

File-Auswallececccesseesenessesenansnensnnnsnnennnsnennnnnnnnnnnnnnnnnnennnenen 207

File-Select-Boxc.ccccccccsccseccssccsccceccesccssccsscesccessceccescessonscesseess 207

File-Typenccc.cccccccsccscsscscssscccsseccsssccessscccsscecsssceessccesesseeessnees .. 213
FileNote decescencerscccsccsecsccscesccsccsceccecceccecceccscceccscessecescescesseses 300

FIND .0....cccccsssscscsssesssssscssssssccssccssccssscsccessceccessscsesesaseeeeeecens nenne 482
Find Task()ccccsccccsscccsscccessccssccccsecccsscccsscccsscecssccesscesseeasees 483

Flagscsecccesescccessccccnsccecscecccssscccscsccccssccccssceccssccccscccsseccueccaceeees 62

Floyd -Steinberg .u........ccccjeesseccccressssscccccecessscccccccssssccescesceseceeaeses 464

—— Stichwortverzeichnis 523

Flüchtigkeitsfehlercccccscccsscccesccesccssccssccecccasecesscessceeceees 351
Fluchtpunkt ou... ceccecssceceeceseecesceseeees cececcecsscsesccscceeecsceseses 135

Fluchtpunkt-Koordimatenesssesssesesenseseeonensnenssennansnnnnnnnenenn 140

Format cc ceccccecescsccscscceccecccecsscvccscscecssevsscaccececeseececsscstesscessececs 48

Fraction oi... ccccccsecseccsccsccesccsccsccsseccuccucceccsscscaueasceseucescesccesecceceeces 464

FreeMap oui... ccccscceccecceccsccscsccccescsccsccscnccessccecsssecsseccsseceesscesceseees 469

Gadget-Struktur oo... cccceccesccscceccssceecscceccsccsesaeeeecescescseceeuees 170

GadgetDef ooo... ccc cccccccseccsecccscsscecccesccnsceescesccecesccessesceeeesesceesees 170
Gadgetsccccsescceccssccsscesccesenssescceceeccestesccesceseecescsssscecescesceeses 169

Garbage .u......cccccssccsccsccescsscuscuscecceccsececcscecnscsuceccecesceessutsesecesceeees 298

GetDiskObject& oo... ceeccscsesccsevccesccceccccnsccensccenseceescsensesaesenensess 479
GetENV oiccecccccccccssccccsccsccsccscssceccscscceccscsscseeceecescecescscescsescesseveveecess 42

GetMsg()cccescseccsccesccnscceceescusccectesceseessescescceecesesecesceecesseeeees 172

GFA -BASIC oii ccc cccccseccsccscccecenccsccsccsscecsascesceesseceeseuscesceeseeces 204

Gitternetz oo... cece cecccssccsscceccesccecesscscesccsccsscscescescesscsseeseuccessenses 135

Gitternetzausgabe oo... cee ccceccssceseceeccnscesscesscessecscesssesseeseeseess 146

Grafik wick ecceccecccsccssccsccesccsccsscsscescessesscuscescescessessessceccescescenss 80

Grafik-Bibliothek ooo. cc cccecssccsccsccsccesccsccsccsscescsceseessenseess 81

Grafikbereich ooo... ce cceccecceccscceccecescescescsscoscecesscscescescscescences 342

Grafikdaten oo... ce ccccceccesceccsscsscceccscesscscescescessesscescescessesses 146

Grafikelemente .0...........ccccecesccsccsscceccsscssceecessees sesccecsvcscesescesecces 173

Grafikprozessorccccsccecceccssccsccsccceccsscsccsccescensesscesccscessssceeses 486

GraphicDump ..0...... cece ees cesscccscccsccceccccssccssccssccscecscccsscesscescensecens 467

Graphics-Libraryccccccccescesscesscesccescesscesscescesscess 146, 180, 184

Großziehen uo... eee eceeeceescescceccesccsccescescceccsccescescessesscsscsceeseeceses 197

GUM cose ee cee cceccecceccsccsccescccccsccsccscevccscccsscccescessescessesssecesccessesseues 189

Guru-Meditation .o.....ececececsesccscccsccssccsecesccsccsscesscsceeseescs 207, 374

Half tome oo.ccce eee esecccsseccccsscccsscccsscecsscccsscecsscccsscccsseccscceeeseeenacs 463

HALT ooeeiiic cece ccccceccscccsscuccssccsccsccscccsccssesscaseescescessssscscescsseeces u... 445

HALT HPI oooc icc ccccceecccesccscccscccsccsscceccescccsccsscesccusceseccscesseeecees 447

HALT -Schaltercsesesessssssssssssssnsnnssssnsnnnnnnnnennnnnnnnnnennnnnnnn 434
HAL T-Status ooo... ccccescsecccccsccsscccccsccsscasccscessssscesccssescessesecs 446

Hardware-Umnschalter 00.0... cccccccseccsscsccesccsccsccsscesccscesccsceeses 484

HAUPtproZeSSOTs cc cececsecsccscceccecsccsccccsccscsccececcscescscassesescacens 440

Hauptverzeichnisccccesccssscscccnccceccesccescccccesscesccacceessasececces 306

524 Amiga Tips & Ticks

Header-Bytecccccssssccsscccnssccesssccsscccssccenseecssccuscesesceseseeees 236
Height Limitcusscsessssensnennnnennnonensnnnnnnnnennnnennnnennnennnsnnonennen 464
Hidden2200s0ssnssnsssnnnnnnnnnenennsnnnnnennnnnnnnnnnennennensnssnsnnsnsensenee. 49

I/O-Request-Blockcccccesccescceccceccecceeccsscesscesccsscescesesones 403

1/O-Systemeesseosssenssonsesenennnnnnennnnnnnnnnnnnnensnnnnsnnnnennnnnnnnnnnsensnensenn 403

ICOM RE 28, 305

Icon-Datenueeeeseesnsseenessssnensennnnnennn dessececesscessscees sevesccessseees 329
Icon-Editorccccccssccsccssccssccescssccsccnscecsccsscesseescescceesees 340, 479

Icon-Typen 2.0... ccccccsseeetceceveesssneeeeeeeeeessnsneeseceesesessneeeeesseeesseeseeas 328
Icon.Library._........eseeeensensseenessenssnnssennennnnnnnnnnunnnunensonnnnssnnennnnsnnnenen 340

ICON MET QE csccecceccecceccecccccsccscnsccccesscccsscsteccescecceceeccecescecens 341

ICONX GR 306

Ignorecescceescccesccsscccesccnscceescensccsseecesccesccensceeseseesccecceescossceesces 465
Info-Fileccecssenseeanseeneeneennssensnnsnnsnnnsnannnnnnnnnnnnnnnnnonnnneene 35, 36

Info-Funktion.zeesseeaseesseesssesnsnnnnnnnsnnnnnnnnnnnnnunnnnnnnnnnnnnnnnnnnenn 297
Info-Strukturceesceseeessessesenssnonnonnnnnnnnnnnnnnnnnnnnennsnsnnssnnnnonsnnn 190

Installcccensessesessessesnenensonenennnnnnnnnnennnsnnnnnnunennnnnunnnnnnunnsnnnenensnnnnn 48

Integerzessereosseenssnnennonennennnnennnnenannnnnnnnnnennennensnnnnnnnnnnnnessssnnnnsene 464

Integer-Zahlcsssessessnssenssennnssnsnennnnünennennnnnnnnnnnnenssunsnnnnenenn 249

IntuiText-Strukturccuaesesesesseasssesuanennanennnnnnnnnnnnnnnnnnnnnnnnnann 173

Intuitionecesessensesenssonsnonsnnnnunnnannanenene 169

Intuition-Funktionenzcucseessenssesssnassenssnnsnonsnnennensnnenennan sonne 456

Intuition-Programmierung.zueessssnssssanesssnnssssnnnssnsnnnsnesnansnone 204
Intuition.Libraryeeseseenseeensseensssennessnnnnsnonnnnnennnnnnen 166, 189, 481

JAMI viii. ccc cccccecsccsscceccsccsscsccscesscesccsccescseescesscescesccscesscscssscescesens 86

JA M2 Liiceccccceccsssccccscccecsccccsscccsscecsseccsecccsssseesccscsceesscssssceeeseeesseeescs 86 ©

JOIN-Befell wo... ccc cceccceeccsscccssccsscccsecesssscscccsecesscssscceseeeeceues 37

Joker wiviiec ccc cccceccecceccncceccesccsscuscesscssccscescesecsccsssscesscescessescessessesens 25

Kernel ooi.....c. ccc ccceccssccecceccsscesccsccnsccsccssescescenscsscescesscsscsscescascescences 70

Ke yToy 2000 ccc cccccsseccsesccesccsscccescesssccscceececsecsescenccesseesses 471

Kickstart 1.3 ...aeeeeeseeeenesennnnsnnnssnnnnsnnnnnnnnnnenonnnnnnnnnnnnnnnnnnennnnnnnennnnn 39

Kickstart V1.2 ...ceesaseeeensseenensnenesnonsnnonnnsnnnnennnnnnnnnnennnnsnnnnnnnnnenennnnenn 42

Kickstart-Icon woo... ceccccseccsscccsscccscscccsssccsscceccsccesccesseceesceesscees 328

Klickbereich oo... eee cecccesccccescccsscccssscctsscccseccccccusecausececeenaseeas 342

——- Stichwortverzeichnis 525

Koordinaten ccc ceeccsccscccecceccescescecccscceccsccecsscesceeeseseeceescesees 135

Kopierencccccceccceccesccsccsccescsscscescescesscescescaccuccusccsccscescesceeceess 29

Kreuzverweis-Listecccecceccscceccsccsscsecceccecescceceesseseeseeseesees 262

Kursiv oo... c ccc cccccccsccsccscceccsccsccscceccscessesceccecesecsesceecescssessteccssseseveucescs 86

Ladezeiten. ou... .cccccecceeccssccssccscccsccesccsssencessceesees Sececeecscescscscesceses 305

Laufwerkc..ccccceccecssccscsccscsccsccscsccsccccsccscscsscsccccscsscsseccsecccscecens 27

Librariescccccesccescssccsccescsccsccscccscsccscsccscesccscesccsceesescesccessees 70

LIBRARY -Befehl000u02000000sessensnnnonnnnsnnnnnnnnensnnsnnsnnne 69

List oo... eceeessseeeccesscsseececessscessseeeasseessssssssseeeeeeeeseseesssssseseseeseeesens 49
LoadWB oui... e cc cccccccecseccsccccecccceccaceccscsccscscceccscecesceceusecesescaseeeeenes 40

Loch-Token + 256

Lochraster-Platimecccscessccssccecceccesccesccsccsccesscscesceescesees 447

LOCK oie i eee cccceccecesceccscceccscccceccsccccecsccecscsccecssescsccecsscececsessseecssensecens 43

Lötkolben0.u0000200002sesensonsnsnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnannnnnnnenn 433

L6tzinn bucsececsccsccsccccsscucscscceseccecsccsceccsceccscescscesescecescecescuces 433

LPRINT ounce c cece ccccccsecseccscceccsccscssccsccccecesecscesccscsccsccscessesescesceseess 485

Maschinenprogrammececceseecccescesecccsccccncsccnccceescesesseesesecs 70
Maschinenroutinen 0.00.0... ee cece eeccesccescesccescecccsscesccescesscescesseasceess 70

MERGE unis si ese. ceceecceccecccccscceccscceccscceccsccccssesccscscsscecessescsccesevceses - 480

Message-Portccccescecceccccececscceccececcececcesescscescecescsceces 172, 404

Modifikationen. ccc ceeccesccssccesccsccesccssccsccsscesccescesssusceeseaseeeces 166

Motorola-Chip .u..cccce. cece cceccceccsccceccescccsccsccssccsccesccsccescesscssesscesees 439

Mount oui... eee ceceeccsccesccccsscescecccscscesccsssscescscescescescsceesescesssaceceseess 60

MountListesessesssesessensssosssnnnnnnnnnnnnnonnnonnnnnnnunnnnnennnnnnnnnensnnnnnnnnnnn 63

MOVE!ccccecccccevevceccecceccnsesccscescescescececsseesevsescescesecessessesesseuseneecs 87

Millleimer-IcOnc cee ceeecccesccscccsscecsccscccscccssccsscesscesceeesccsseens 328

MULTIPLE oueeee cece ecceccesccscceccescesccscescccscsscsscessescessessessesceess 468

Multiply oo... ce ceeeeccsscccscccescccsscecsscesssceesceeesseesscsessceesceseecs 465

Multitaskingccc tec ecccccesccsscccecccssccsscccscccssccsscesseresees 28, 32, 487

Nachrichtenkanal oo... ccc ceeccceecccsscccsscccsscccesccessconsscessenssceaeecs 171

NDOS ooo ceeseesceeceeeees bosesececcneesssecceeeusseecceseeeseccensenseecessuaeescess 328

NEWCCL ooeecc cece ccecceccesccscccsccsccsccnsccscesccscesccsscsscascescescuscees 33, 478

NewScreen 00.0... ...ceccessccscccnsccesccsscceccesccsscesccsscescccsccsscescesscessesseueces 123

526 Amiga Tips & Ticks

NewWindow-Strukturccseessesenssssnssnnsnennnnnnennenennennnsnnnnnennnen 168

NOTIFYcssssensenssassensonnnnnnnnnnnnnnnennnnnnunannnnunsennnnnnennensesnensssennne 468

Null-MoOdem ccc cc cececscecscsccecccscsceccsescecesecscascesscetecesesseseaes 434

Objekte oo... cceccssecccssccesccnscccscsceceeeesceseceesceeeseencceeceeecseeseseeeees 202
Offset-Tabelle oo... cc ceccsccsccscesccsscscesceestesescescsseseeseecesees 70

Ok talzahlen oo... ec cceccecescecseveceecscnceeccveeseecveecesseseseeseeseeens 251

OPeENALL re 168, 170

OpenWindow()cccccecceeceescceccecccesccesccneceucesscesvcesceesceess 168, 172

Ordered .u...cc.cccceccccsecssccsccccssccscsccsccscesccecessescescescescescescecssssecesceesess 463

OVERSCAN oui. ccccccceccsccsscescceccecececesceasccccescessenssecceesessesseuseess 123

PAL wiciciccec ccc ccceeccsccscceccececcsscscsccsccsccesesccescecessescesctecescessesseceeceseess 435

Palette o..cccec cece ccccecsecsccsccscsecsccecececcscescescasencseeceeseesceseeseeceseesasens 470

Parallel oo... ete ce ceccecscsccecsccccecsceseecsseecscaseesnceseesesessssesseeeseeess 467

Paste ..o.e ccc ccceccececcccscsccscecsccccscccecsccsescsscecsseucesesessecsseeceseseveuceceuees 480

PAUSE-Taste oo..ccec ccc cc cccsccecececcecscsccscsccccescceessccscecsceseecsceseseececs 445

PerfMON ooiiic... ce cccceccecceccsccscceccscssccccsscsccsccsccecessessescescescesensesceusess 470

Peripheriegerätecccccccsccseccsecscccsscceccesscesceescescceeveeseeeseuseeeees 403

Perspektivec.ccccccescesccescsscsscscesccnsseccesscesceseesssescescessescesseeseens 135

PAM 16 ieee ce cecceccececcsccsccsccccscsscsccescssceseucessesceseesceccescssescesceseess 445

Pin 17 cic c sec ceceeccssccsccsccccccsccsscsccescesccsscessesscsscscesseescesceccescessenceucs 445

Pixels .o.iee ee cceceeccescescesccssccsccescenscesscesscecscuesenscesscuscsecsesscescesseeseus 465

PolyDraw() oi... ccccesccescccsscsecessccessscensssceceecceesecesscceesceessesecesensees 184

Preferencesc.cccccsccscccesssccsccssccsccsscescescesscescescesccscecesscescessensens 22

Printerseec ee ceccesccecceccescceccecceccscescesscescessesscescescesscscescescesceseeecs 484

PrOgraMM-ICON ou... ec cecceccecceceecceceeseeccecceccecceccesssseseveveeeceecens 328

ProOgraMM-TyPcccccceceecceccesceeceesesceevens Vesecsesesseecescescescescees 235

Project ou... eeeeeeeeeeeeee eensennennnnsssssssenneensnssnssssssssennennnnsssssssssssnnennnenenn 298
Project-Icon............u..uussesseessessnnsnnnsnnnsnnnnnnnnnnnnnnnnnnnnsnnnennnnnnnnnnn 305

Projektionsflächeesscessseesssseensssenansnsnnnnonnnnennnennnnnsnenennnennn 154
PropInfo-Strukturoucceeseseesesenesneneenenenn asunussosnssssnsnsnsnnsnnnenn 190

Protect2u2ssesessssenonnnnnennnnnnnnnnnnennnnnenennnnnnnnnenenen seccecececcecsceceees 49

Prozessoresensensessesensnssnnnosnnnnnnnnnnnnnnnnnnnnnunsnnnnansnennnansnnnnnnnnnnnsnnnnn 439

Public-Domain ooo... ccccceccseccscccecccscccsccscccsscessccesccscessceeceuseescs 442

Pulldown-Menüöscc ce cecceceeceececcesccscccccscescsscescscnsescescescesens 368

Pureeenssssssennnnnsseonnnnnsnonnnnsssnnnnnssnnnnnnsennonnsnsnsnnnsnsssnnnssnnnnsssssnnnssann 49

——- Stichwortverzeichnis 527

RAMnesosssseossssssonssssnossssnnnnnsnnonsennonsssnonsssronssnenssssnnnssnensssennsssnassnn 24
RAM-DISKunsesessessesssnnssnnsnnnnonnnnnnnnnnnnennnennsnnnnnssnansannnn 24, 477
Raumkoordinaten .0............ccccccecssecesccssccecccsccesccsccesscescescseccesceesees 141

Regelwiderstandccccccccsescccseccccsccneccecessceesceesceeseseeseceesces 443
RemRAD2.000sss00n0onenonnonnnnennnnensnnnennnnnnnnnnnnsnnennenensensenerann 43

Renamesccossasssonsonssnnsnnnonnsnnunnnnnnnnnnnnunnnnnsnnnnnnannnnsensnsnnnnnnnen 298

Requestercscossessesseossnssnnnnnnnnnnnunnnnnnnnonnnnnnennnnnnnennnnennnnnen 356, 359

Reservedc.cccccsccssccccssccsceccsccecccceccscccescccssscesccssesteccscscessescecess 62

Residentuss0sssenenesessonsnnnnnnnnnnnnnnnnnnnnnnnnnnonsnnnnnnnnnnsnssnnnnnnnnnnsenen 44
Roteeeseesensenssessensonsnnnnnnnnnnnnnnnnennannnnnnnnnnnnnnnnsnnsnnnnsnnnsensonnasnasnsnnenn 189

Rubberbanding ou... ccscccssccsscccsecccscceccescsssccesscseceeesceeseees 82, 83

Run oui ee cc cccceccscescccccoccscceccscceccsccsccsccccecscceccsccsccsccseecseccscsscssceceucees 33

SAVEcccccsccssccsccssccscccscccsccscsecceccecccsscsccscsesssseeseescssccscescesseeseesss 231
SAY cneenssansenunnnsnnnnnnnnnnnnnunnensnnnnnnnnsssnnonnsnnsnnnsnnsnsssnsnnsnsssssnannenn seveesvsces 31
Schnittstelle Secsecccccccceccuscccsceccenccscecasccecceccccccessecceccusseccecionces 452

Schraubenzieherc cc ccscccssccoscccscccscccssccesccssccesccsvcesscesseuse 433

Schriftartencccccccccccccssccsccsccccccsccsccsccccccscsccscceccssecscseccscesceesens 84

Schrifttypencccccsssccccscsccesssccesseeccssscceesscecssscscscsceececseesseses 474
SchriftverfOrmungcc cc cccccescccscsccsscccsccecssceeescsecccessceessseessees 84

SCriptcccccccssccsscceccccssccssccccccscccsccssccsccesecsscesseescesccescenscescesscesceuss 49

SEARCH-Befell ooo... cccscccssscsscscssescseccsscsssssscsscsssssceeesveeass 37
Sektorenccccscceccsccsccscccscsccsscsccesecccsccsccscccceccecsecceccscescscesccscess 414

Select-BOXcccesecssceeceees hecsscvececcccceccsccscsccsseectecescecsscsesescesess 169

Serialcccccsecccssccsssccsseccssccssccccsccasccscccscccsssscscecscessceseessceseceucs 467
SetAlertccccccccsccsssccecccsccsscscccsccssccescsscssscesscssseuccesceess 374, 442
SetEnVv ou... ccc ccccecsscescecesccees decccceccsccececcscecceccecsssscsccccscesceccscescscessecs 43

SetPatchcccccseccssccscccecccccssccsccscceccecccsccsccsccecssscusceuccesescesecesees 45

SetTaskPri()cccccccccsssccesscccsscccsscccsscccsscccsscccsssssesccesces 482, 483
SetWindowTitles()ccccccsesecccssvsccsscccecevccceesseseeseseesecessessees 481
Sichtbar Mache 00.0.0... eke csccseccseccsececcssccsscesccssccescescesscescesscens 35

SKIP ouu....ccccccccscscssccsssccsscsscccsccsscecscccsccsccssccesessseesccessceceescesscssceuses 467
Smoothingccceececccsscccssccecccscccseccssccsscccsscccsccescescccsccesccsesess 460

Snapshot Leccecssccececsccesececcecescesscosccsceescesecucescesccesssecescescessescess 296

SORT -Befehl oo... cc ceeeccseecccescccescecescccsscecssceessccesscsecsceseees 38
Sortierenccccccesscccccssccccccsccccsssccccssccccesccessccecsccessccesececsesseseucs 38
SOURCEuunersesssssnsanssssssssnnonunnessnssnnnnnnnnunnnsnsnonnnnonensennnnsnnenanone 30

528 Amiga Tips & Ticks

Special-Menüuuceessssensssennsnnnennensannnnnnnnnnnnnnnenennnnensenssesnensnenenen 29O

Speichererweiterungen bececeesecescusceeseseceeceuseacesceeceesescenceeees 434

Speicherorganisationcccceccessccsesccceeeccsecccseccesecsensceesesesceseses 417
Speicherreservierungc.ceccseccssccnsccecceescsceseccscceuceescssceseceecs . 418

Speichersystemcccccecccsecnsscceesccesceecceascceeccensceesceeseeeeceseeseeses 417

Sprechencccccccccccccccscessessssceccccccccccccsscessssssssccccccccccceseeceeseeeeseesess 31
Stack-Größe oo... cece cccceccccecececcececsccscsccsessseceesceseucsceseeeeceseesesececs 488

Standard-Device .u.c.cee ce cececceccecescsscscccscscsccsseesensescescsscaseuseecessess 307

Startup-Sequence .u.....cececceccecscccecsscsscescescsccsscessecessseceeceesesss 30, 305

STATUS occ eee ceceesecceccessscncescesuecsceeceeccsceceeceseeceeseveueeseecesseceseeceeeeees 41

Steckerleisteccenseesssessessnesnessnnnunnnonnnnnunnnnnnunnnnennnnnsnunsnnnnnnensnenn 436

Steckkartenussussossesensenensnnnnsnnennensnnennunsnnnnnennnnusennunnnnnsennenenen 444

String-Gadgetcccceseccsssccevccesccceccesssscnvctesccesceenccsesceeceeeceeeces 293
SUB-Filecuccenssseesssessenssnnssnnsennennnnnnnnunsnnnnnnnsnnnnensnensnnnsnnssensnnenn 195

Subprogramme.essssessessesssnnnnnsnnennnnnnsnsnnnsnnnsensnennsenen dececsevcesees 254

Suchen. oi... ccceccececcececcecscsscncccsceeseccsessssssesceeeesscesceseeeseuceseusuaeeeses 37

SuperPrint cc ce ceccescceccssccccscesscescesccnvcescessenccescscescessessenseass 159

Surfaces oo... ccc cecccccsccsscssccscccccscsececcncessceccesesscscessescessesceccssessuscessess 62

Symboleeneensensensssnssensennnnnnnnennnunnnnnnnnnnnnnnnnnnennannnnnnsensnnennnnannnee 210

Syntax-Checkcnseassessessenssenennnnnennennnnnnnnnnnsnnnnnsnnnnnnonennensnnennenn 482

System-Configurationueesseessesssesssenssnnenonennenennnnnnnnnsensnnnsenennnnn 488

System-Requester0.. IIPPPPFEFUUEFERERFFRREFERRFFRRRRRRRRRRRRRRRRRRRRRRRER 207

TAK cocci cccccccsccsscescsscsccsscsecsceseescescesscseescessesceceescsscscessescuscesens 447

Terminal-Programmccccccsecccssccccssccecseesceccccscccecceusscesesceees 454

Testenunenensnsensaesssnnsnsnnnnnnnnnnnsnnnnnnnnnensnonnnnannnnnnnnansnnnnsnensnnenenen 351

TextAttr-Strukturccesseseasessesensnesnnsonensnnnnnonnnannenensnnnnnnnenennenen 158

ren ausgeben oon... ce eeceecesscseceeceeccusceeseesceseesseesecescsscesceseeeseeseeses 34

Texte zusammenfassen .0........ cece eee cssceeccsccscesccsccsscscsccscesccsceecees 37

5 oy 0) 298

Tool-Typescccccecceccsscsccscesscuccesccsscuscescescesecesceseessencs 300, 306

Trackdisk.deviceccceeecccsssecccccssssecccceesecens Seveccccsceccecucesccseces 405
Trashcanccccccsesccsccescseccncccscuscescecscescesscsscesceesesseescscescescessesees 295

UnDeff) wovc.ccccccecccccssccsccseccccsscceccscccecssccecescsecsescceusesecenesecsecees 168
UNI ieee ccc ccceccsecccsscccssccsscesscecccenscacscccsscescserccessecsscensecsseeesceers 62

—— Stichwortverzeichnis 529

Variablenesceessesceessnnnenssnnsnnsnnennnnnnnannnennnnnnnunnonnonnunsnsnunsnennen 244

Vektorgrafikeesseeesseessssenssnnnennnnnnnnnnnnnneennnnnnnnnnnnnnnnnnnnnnnnenenenenn 135
Verbindenz.ucuussessessessessnnnnnsnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnen 199

Verbindungsvorschrifteocessssesssesssnnennnsennennnnnnnnennnnnnn 136, 143

Verdunkeln 0... ccc cccsscecscceccccecccscecesceceuccsceseueeceseecususesesens 127

VEISION .o.ceecceccceccesccescccscccsscsccssccsscsccsscescesscscesscescesscescessesscesseusees 50

Verzeichnis-Auf baucc.cecccc ccc ccccceccecceccesceccecceecceccecceceucessensesens 305

— Verzeichnis-Iconcccccccccccccesscccccesesccecnsccceeecceeeecseueeseseneeesens 328
VIEW eeeeeeenaneensnnnsnnnsnnnsnanennnennnnnennnnnnnnnnenensnnnnunnsnnsnnssnnnnnsnnnnensnnnnnnnn 123

Wärmeentwicklungessscseesnsseenessnnnnsnennnenennnnnnnenennnnennnnnnennnn 443

Whicheeeeeessseeenseennnsssnnensnnssnnnnnunnnnnnnnnnnnennnnennnnennnnnnnennnnnennnnnnnnen 46

Widerstandccessseesseeenseennsnnssnnnsnnnnnnnnennnnnnnnennnnnnnennennnennnnenenenenn 443

Width Limit wo... cee ccccscccsccccsccccsccccscccescenssccateccuscenseceessenes 464

WinDef() uo... cccccccecccccesssccceeccessccceesccceuscecesecceescecsesecsnceeustscensess 168
Window -Struktur oo.cecee ec cccceeccecccesccecceccauccccauscuscesceuscs 168, 172

Workbench 2.0.0... ce cccceccscceccsccccsscssceccecescescescecescesceseuseecescsenses 293

Workbench 34.20 wiv ccccccsecsecsecssceccecescescscsseecescesescescsencescs 39

Xlcon 2... .ceccescescsecescesceeccececcesceceucecescesceecsscnsesseececcuseecescesessascescuees 46

Zeichenmodus oo... ees cece cceeecccsccccscccsecccccccecccaucccuucececcaucceusceneeeeuers 80

Zeichensätze eee ccesecccesecccsccccscccecccesccessccucecesccesecaescueeceusens 155

Zeilen-Header oo... ccsssecccsssccccscccccscecceccccceccccecccceseceeeesecseeseeaes 240

Ein Muß für jeden
aktiven
Programmierer.

Amiga Intern Band 2 - das Buch für jeden aktiven
Programmierer, der alle weiterführenden Informa-
tionen zu seiner Arbeit schnell und zuverlässig

finden will. Beispiels-
} weise braucht er eine

detaillierte Dokumen-
tation aller Library-
Funktionen. Eine Do-
kumentation, die eine
sofortige Anwendung
für seine Assembler-
oder C-Programme
garantiert. Amiga In-
tern Band 2 bietet sie
- zu allen bisher aus-
gelieferten Versionen.
Also zu Kickstart 1.1,
1.2 und zur aktuellen
Version 1.3! Ebenfalls
vermißten viele Ami-
ga-Programmierer die

| nötigen Informationen
zur Parameterübergabe an Programme über CLI
und über die Workbench. Amiga Intern Band 2
schließt auch diese Lücke. Dazu natürlich jede
Menge zu den Standard-Austausch-Formaten, den
Basis-und Grundstrukturen im System und nicht
zuletzt zu den verschiedenen Amiga-Devices.

Bleek /Jennrich /Schulz
Amiga Intern Band 2
Hardcover, 895 Seiten, DM 69,-
ISBN 3-89011-268-4

Kompetentes
Detailwissen zum
Amiga 2000.

Von den glorreichen Drei (Rügheimer/Spanik/
Amiga) wurden die Amiga-Anwender schon immer
verwöhnt: Ihre Fachbücher strotzen vor fundiertem

AMIGA pi
r

Know-how und sind
dennoch dank einer
lockeren Schreibe
überaus unterhaltsam.
Warum sollte es also
beim großen Amiga-
2000-Buch anders
sein? Mit viel Liebe
zum Detail und der ge-
wohnten leichtver-
ständlichen Sprache
beschreiben Sie alles,
was den Amiga 2000
so interessant macht:
die möglichen Spei-
chererweiterungen,
Einbau und Einrich-
tung einer PC-/Ami-
ga-Harddisk, Arbei-

ten miteiner PC-/AT-Karte, Kickstart im RAM, jede
Menge zur Janus.Library 2.0, Software-Installa-
tionstips, der Umgang mit dem AmigaDOS und
und und. Selbstverständlich auch mit einer detail-
lierten Einführung zum Amiga 2000 und einigen
wichtigen Software-Tips. Das große Amiga-2000-
Buch - ein großartiges Buch zu einem großartigen
Rechner.

Rügheimer /Spanik
Das große Amiga-2000-Buch
Hardcover, 736 Seiten, DM 59,-
ISBN 3-89011-199-8

So kommt der

Kleine” ganz

grof} raus.

Zum Spielen alleine ist er zu schade: Lernen Sie
Ihren Amiga 500 von seiner professionellen Seite
kennen. Das große Amiga-500-Buch vermittelt

Ihnen nicht nur den
4. Umgang mit CLI und

|] Workbench, sondern
enthält auch ausführ-
liche Kapitel zur Sy-
stemprogrammie-
rung, zum professio-
nellen Einsatz von
Software und zu
“Umbauten”, die Sie
selbst ausführen kön-
nen. Ob Sie Einstei-
ger oder Profi sind: In
diesem Buch finden

| Sie alle wichtigen In-
formationen rund um

AMIGA I den Amiga 500 - etwa
Fs zum Virenschutz, zum

DATA BECKER

Soundsampling, zu
Hardware-Erweiterungen (z.B. never Prozessor,
Harddisk, PC-Karte, Profigehäuse), zu Kickstart
1.3 und zu vielen Themen mehr. Außerdem gibt es
natürlich jede Menge Tips und Tricks.

Bleek /Langlotz
Das große Amiga-500-Buch
Hardcover, 527 Seiten, DM 49,-
ISBN: 3-89011-279-X

Jede Menge
Programme und

Fast 800 Seiten über AmigaBASIC - von Fans (das
bekannte Duo Rügheimer/Spanik) für Fans. Im
ersten Teil werden Sie Schritt für Schritt - und das

vor allem aufverständ-
m liche Weise - in die

Programmierung des
Amiga eingeführt, im
zweiten Teil finden Sie
alle gelernten Befehle
mit Syntax und Para-
meterangaben zum

“bse heer schnellen Nachschla-
CURELE CR, 682, 38.8
SERECT = ASHECT AL.

get Mann gen. Dazu gibt es
eee Programme und Utili-

ties in Hülle und Fülle:
ein Videotitel-Pro-
gramm (OBJECT-Ani-
mation), ein Balken-
und Tortengrafik-Pro-

AMI A | gramm, ein Malpro-
" gramm (mit Windows,

Pulldowns, Mausbe-
fehlen, Füllmustern und dem Einlesen sowie Ab-
speichern von IFF-Bildern), ein Statistikdaten-Pro-
gramm, ein Sprach-Utility, ein Synthesizer-Pro-
gramm u.v.a.m.

Riigheimer/Spanik
AmigaBASIC
Hardcover, 777 Seiten
inkl. Diskette, DM 59,-
ISBN: 3-89011-209-X

Programmieren
in C = nicht
nur für Profis.

Wie einfach es auch für einen absoluten Compu-
ter-Neuling sein kann, die „Profi”-Sprache C in-
nerhalb kürzester Zeit zu beherrschen, zeigt Ihnen

das Buch „C für Ein-
steiger”. Bereits nach
einem Wochende
sind Ihnen die wich-
tigsten Grundlagen
dieser Sprache ver-
traut. Schnell und
leichtverständlich er-
fahren Sie hier alles
zur Programmiertech-
nik — vom ersten Pro-
gramm bis hin zu den
Routinen und den
Bibliotheken. Mit dem
esamten Sprachum-

ang und den beson-
deren Features von C.
Zahlreiche Übungs-
beispiele veranschau-

lichen das Gelernte und sorgen für die nötige prak-
tische Erfahrung. Selbstverständlich lernen Sie dabei
auch die wichtigen Tips und Tricks zur Program-
mierung kennen. Eine detaillierte Beschreibung
der beiden Compiler Lattice C und Aztek C runden
das Ganze ab. C für Einsteiger - ein Einführungs-
kurs, wie ein Neuling ihn sich nur wünschen kann.

Schaun
Amiga C für Einsteiger
272 Seiten, DM 39,-
ISBN 3-89011-107-6

Für alle, die
Spaß an C
gefunden haben.

Das große C-Buch zum Amiga - ein Buch für alle
engagierten Amiga-Anwender, die Spaf} an C
gebunden haben und nun daraufbrennen, eigene,

professionelle Pro-
in gramme zu schreiben.

Hier erfahren Sie, wie
ein C-Compiler arbei-
tet und wie Sie selbst
schwierigste Probleme
in C lösen. Ein kleiner
Blick ins Inhaltsver-
zeichnis macht deut-
lich: Hier finden Sie
das Know-how für
eine optimale C-Pro-
grammierung — Funk-
tionsweise des Aztec-
Compilers, Debug-
ging und Optimierung
des Assembler-Sour-

"ces, Sprungtabellen
und dynamische Ar-

rays in C, Einbinden von Assembler-Source in den
C-Source, alles Wissenswerte zur Intuition-Pro-
grammierung und natürlich eine detaillierte Be-
schreibung der Folder-Technik. Wer mit diesem
Buch arbeitet, dem werden in Zukunft bei der
Programmierung höchstens nochTippfehler unter-
laufen.

Bleek /Jennrich /Schulz
Das große C-Buch zum Amiga
Hardcover, 777 Seiten
inklusive Diskette, DM 69,-
ISBN 3-89011-191-2

Maschinen-
sprache auf dem
Amiga.

Schreiben Sie Ihre Programme.in Maschinenspra-
che - und Sie werden sehen, was Ihr Amiga auch
in Sachen Geschwindigkeit alles draufhat. Das

ndtige Know-how fir
+, eine schnelle, perfek-

te Assembler-Pro-
grammierung finden
Sie in diesem Buch:
Grundlagen des
68000, das Amiga-
Betriebssystem, Druk-
keransteuerung, Dis-
kettenoperationen,
Sprachausgabe,
Windows, Screens,
Register, Pull-Down-
Menüs... Natürlich
wird auch gleich ge-
zeigt, was die wich-

| tigsten Assembler lei-
sten und wie Sie damit

AMIGA) =
SEKA, PROFMAT und ASEEM detailliert und pra-
xisnah beschrieben. Amiga Maschinensprache —
der beste Weg zu schnellen, professionellen As-
semblerprogrammen.

Dittrich
Amiga — Maschinensprache
Hardcover, 288 Seiten, DM 49,-
ISBN 3-89011-076-2

Datenbank-
Probleme optimal
‚gelöst.

Ob Superbase Personal, Superbase 2 oder Super-
base Professional - das große Buch zu Superbase
beschreibt Ihnen detailliert, was Sie mit den einzel-

nen Datenbank-Ver-
, sionen zu leisten ver-

mögen. Es garantiert
nicht nur einen leich-
ten Einstieg in die
Arbeit mit Superbase,
sondern zeigt Ihnen
auch an praxisnahen
Beispielen die optima-
le Problemlösung. Er-
fahren Sie Schritt für
Schritt, wie Sie Ihre

DATA BECKER erste Datei erstellen,

welche verschiedenen
Darstellungsmöglich-
keiten es gibt, was sich
hinter den Meniis ver-
birgt, welche beson-
deren Merkmale Su-

perbase hat, warum relationale Dateien Vorteile
bringen, wie mit den verschiedenen Editoren
gearbeitet wird, was “DML” ist u.v.a.m.

Tornsdorf
Das große Buch zu Superbase
413 Seiten, DM 39,-
ISBN: 3-89011-319-2

Machen Sie

mehr aus Ihren

Disketten

Bei diesem Buch geht es rund - im wahrsten Sinne
des Wortes. Alles dreht sich um die zahlreichen
Möglichkeiten, wie Sie aus Ihren Disketten den

größßten Nutzen zie-
5, hen - durch die Kennt-

nis der nötigen Fakten
und durch die auf
Diskette beiliegenden
Programme. Lesen
Sie, wie die Floppy
unter Workbench und
CLI/Shell arbeitet; wie
in BASIC Daten gela-
den und gespeichert
werden(sequentielle
und relative Dateien);
wie die DOS-Funkti-
onen greifen; was bei
der File-Verwaltung
wichtig ist (Blocktypen,
Bootblock, Checksum- Um

men, File-Header,
Hash-Berechnung, Bitmap); wie man sich vor Vi-
ren schützt; welche Befehle, Strukturen und Nach-
richten zum Trackdisk-Device gehören; wie Sie
ohne DOS auf Disketten zugreifen u.v.a.m. Die
beiliegende Diskette enthält einen Floppyspeeder,
einen Disketten-Monitor und starke Kopierpro-
gramme.

Bleek /Gelfand
Das große Floppybuch
Hardcover, 557 Seiten, inkl. Diskette, DM 59,-
ISBN 3-89011-180-7

Malprogramme, —
Bobs und
Apfelmännchen.

Als Amiga-Freund wissen Sie es längst: Der Amiga
ist eine tolle Grafik-Maschine. Bis zu 4096 Farben
gleichzeitig, 640 x 512 Bildpunkte Auflösung,

Sprites, Bobs und die
Geschwindigkeit des

| Grafikprozessors
=~ begeistern jeden An-

wender. Das neue
Supergrafikbuch zum
Amiga ist die ideale
Hilfe, um alle Funktio-
nen schnell und sicher
in den Griff zu be-
kommen - besonders
dann, wenn man sich
der vielen Beispielpro-
ramme bedient. Er-
hren Sie alles über

die Grafikbefehle (von
PSET bis zum Apfel-
männchen), das Be-
nutzer-Interface Intui-

tion, den Viewport, die Zeichensätze des Amigas,
die Méglichkeiten zur Hardcopy-Erstellung, das
Laden von Fremdgrafiken, ein Malprogramm mit
1024 x 1024 Punkten u.v.a.m.

Trapp/Weltner |
Das neue Supergrafikbuch zum Amiga
405 Seiten, DM 39,-
ISBN: 3-89011-345-1

Perfekt schreiben
mit WordPerfect |
Amiga.

WordPerfect-Amiga ist ein Programm mit auBer-
gewöhnlichen Leistungsmerkmalen, denn gerade
die vielfältigen Formatierungsarten und die Mög-

Tichkeit fast beliebig
| lange Texte zu schrei-
Th ben, zeichnen dieses

Programm aus. Wer
möglichst schnell
WordPerfect-Amiga
nutzen will, findet in
diesem Buch alle
Funktionen ausführlich
beschrieben. Praxis-
nahe Anwendungen,
die sofort zum Erfolg

DATA BECKER führen, fehlen genau-
sowenig wie ein um-
fassender Nachschla-
geteil, der auch spä-

ter das Auffinden der

q
e

benötigten Informati-
onen gewährleistet.

Natürlich auch in diesem Buch: zahlreiche Tips
und Tricks für die tägliche, praktische Arbeit. Das
große Buch zu WordPerfect — für buchstäbliche
Vielschreiber einfach ein Muß.

Polk /Rohrich
Das große Buch zu WordPerfect
316 Seiten, DM 39,-
ISBN 3-89011-305-2

Gewußt wie:
. perfekte Texte

x . . .

Warum BECKERtext und TEXTOMAT Amiga nicht
nur mehrere 100.000mal im Einsatz, sondern
auch bei Anwendern und Fachleuten gleicherma-

Ben beliebt sind, zeigt
dieses Buch: Die au-
Bergewöhnlichen Lei-
stungsmerkmale der
beiden Textverarbei-
tungen werden aus-
führlich beschrieben.
Und damit die ange-
lesenen Kenntnisse
sofort umgesetzt wer-

den können, fehlen
praxisnahe Anwen-
dungen ebensowenig
wie zahlreiche Tips
und Tricks. Lesen Sie,
wie man Kopf- und

| Fußzeilen richtig ein-
" setzt, perfekte Index-

| und Inhaltsverzeich-
nisse erstellt, Rundschreiben und Serienbriefe zu
Papier bringt, Tabellen und Formulare gestaltet,
Zeitungen mit Spaltentext druckt, Texte auf korrek-
te Rechtschreibung überprüfen läfjt u.v.a.m.

Blumenhofer/Petring
TEXTOMAT & BECKERtext Know-how
286 Seiten, DM 39,-
ISBN: 3-89011-245-5

Jennrich - Tornsdof ss i a“ ass ATA BECKER

Endlich Schluß
mit den
Computerviren.

Schlimm genug, aber am leidigen Thema Compu-
ter-Viren kommt keiner vorbei. Speziell auf Ami-
ga-Rechnern treten immer häufiger die sogenann-

ten Boot-Block-Viren
auf. Sorgen Sie schon
im voraus für den
nétigen Schutz: Im
grolsen Amiga-Viren-
Schutzpaket finden Sie
Programme, die diese
Viren sofort erkennen:
und entfernen. Sei es
auf der Festplatte oder
auf der Diskette. Auch
zukünftige Störenfrie-
de, beispielsweise
Link-Viren, werden
dabei schon berück-
sichtigt, denn jede
Veränderung an Pro-
grammen und Daten
wird sofort gemeldet.

Selbst wenn ein Virus bereits den Boot-Block eines
Ihrer Programme zerstört hat, läßt sich dieser ohne
weiteres mit einem der mitgelieferten Hilfspro-
gramme wiederherstellen. Das Buch selbst bietet
Ihnen detaillierte Anleitungen zu den einzelnen
Anti-Viren-Programmen und natürlich auch das
entsprechende Hintergrundwissen zu Verbreitung,
Funktionsweise und Aufbau der verschiedenen
Virenprogramme.

| Mit 3%"-Diskette :

Bleek /Jennrich
Das große Amiga-Viren-Schutzpaket
172 Seiten, inkl. Disk., DM 69,- (unverb. Empf.)
ISBN 3-89011-802-X

EINFACH

Findige Geister wissen längst: Man muß nicht
alles selbst im Kopf haben; wissen sollte man
nur, wo man was findet. Bei Fragen rund um

den Amiga greifen Sie da
her kurzerhand zu den

Dean BECKER te DATA-BECKER-Führern.
‚imieuDos Denn diese kleinen, handli-

q chen Bande sind führend,
wenn es darum geht, ein be-
stimmtes Problem in Sekun-
denschnelle zu lösen. Ob
zum Betriebssystem, zum
Programm oder zur Pro-

___Peronmaconenfue grammiersprache-ein Blick
> pos? geniigt. Geordnet nach

Sp _ Sachgruppen und Stichwor-
ten oder alphabetisch mit
Kurzsyntax finden Sie hier
jede gesuchte Information.
Die DATA-BECKER-Führer-

die kompletteste und zugleich auch erfolg-
reichste Serie ihrer Art.

Amiga : Atari ST- PC ~

Der DATA-BECKER-Fihrer Der DATA-BECKER-Führer

zu AmigaDOS & AmigaBASIC zu Superbase
320 Seiten, DM 24,80 223 Seiten, DM 29,80
ISBN 3-89011-431-8 ISBN 3-89011-468-7

Das steht drin:

Amiga Tips & Tricks ist eine riesige Fundgrube für jeden
Amiga-Benutzer. Denn hier zeigen die Autoren, wie man das
Amiga-Betriebssystem richtig nutzt. Viele Beispielprogramme
veranschaulichen die fantastischen Möglichkeiten dieses
Superrechners.

Aus dem Inhalt:

CLI: Tips & Tricks zum CLI bzw. Shell, Neue
StartUp-Sequencen, Dateiverwaltung mit dem CLI,
Batchprogrammierung.

BASIC: Nutzung des Betriebssystems von AmigaBASIC
und GFA-BASIC, Intuition-Programmierung unter
BASIC, Programmieren von Windows, Screens,
Menüs, Gadgets, ..., Variablen-Dump in
AmigaBASIC, Assembler-Programme mit
AmigaBASIC nutzen, Beschleunigen von
Betriebssystem-Routinen, der
Superdiskettenmonitor zum Abtippen,
Selbstmodifizierende Programme.

Hardware: Die Takt-Bremse (stufenloses Abbremsen des
Amiga), Der Stopp-Schalter läßt den Amiga
einfrieren, Prozessor-Umschaltung, Einbau einer
68010 CPU.

Workbench: Tastaturtricks, MonoColor-Workbench für
zusätzlichen Speicher, Arbeiten mit dem
Betriebssystem 1.3, FastFilingSystem.

Und geschrieben haben dieses Buch:

Wolf-Gideon Bleek, Stefan Maelger und Tobias Weltner, die für Sie auf
der Suche nach unerforschten Gebieten im Amiga waren. Tobias
Weltner ist seit der ersten Auflage dabei. Stefan Maelger ist Kenner
von AmigaBASIC und GFA-BASIC. Wolf-Gideon Bleek hat schon mit
dem »Großen C-Buch« und »Intern Band 2« für Furore gesorgt. Mit
Amiga Tips & Tricks stellen die Autoren ihren Erfolg auch den
BASIC-Programmierern zur Verfügung.

ISB N 3-89011-211-0 DM +049.00

in wee 04900
sFr 47,-

DATA |
BECKER 9"7 112114 00

 3890

